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Introduction

It is often required to approximate to the distribution of
some statistics whose exact distribution cannot be conve-
niently obtained. When the first few moments are known,
a common procedure is to fit a law of the Edgeworth type
having the same moments as far as they are given. This
method is often satisfactory in practice, but has the draw-
back that error in the “tail” regions of the distribution are
sometimes comparable with the frequencies themselves.
Notoriously, the Edgeworth approximation can assume
negative values in such regions.

The characteristic function of the statistic may be
known, and the difficulty is then the analytical one of
inverting a Fourier transform explicitly. It is possible to
show that for some statistics a satisfactory approximation
to its probability density, when it exists, can be obtained
nearly always by the method of steepest descents. This gives
an asymptotic expansion in powers of n”', where # is the
sample size, whose dominant term, called the saddlepoint
approximation, has a number of desirable features. The
error incurred by its use is O(n~") as against the more usual
O(n™"?) associated with the normal approximation.

The Saddlepoint Approximation

Lety = (y1,...,yx)" be a vector of observations of 7 ran-
dom variables with joint density f (y). Suppose that the real
random variable S, = S,(y) has a density with respect to
Lebesgue measure which depends on integer n > N for
some positive N. Let ¢,,(z) = E(¢"") be the characteristic
function of S, where i is the imaginary unit. The cumulant
generating function of S is ¥, (z) = log¢,(z) = Ku(T)
with T = iz. Whenever the appropriate derivatives exist,
let &y, (Z)/02 denote the jth order derivative evaluated

at z = Z. The jth cumulant x,,; of S,;, where it exists, satisfies
the relation
j 9’y (0)

P = oz

@
It is assumed that the derivatives 0’y (z) /92’ exist and are
O(n)forallzandj=1,2,...,rwithr > 4. We use here par-
tial derivatives because the functions involved may depend
on something else, a parameter vector for example.

Let hu(x) be the density of the statistics X, =
n"Y2 (S, — E(S,)}. The characteristic function of X,, is

412 B = (exp {7 50 E(Sn)}})

_ e—iﬁE(Sn)E{eiﬁSn}

=R, (%) @)

where ¢, is the characteristic function of S,,.

Without loss of generality assume that E(S,) = 0,
therefore

vn

The cumulant generating function of X, is

éi(z) = E(€™) = ¢, (i) (3)

¥ (2) =log ¢, (z) = K (T), (4)

with T = iz.
Let T = iZ be the root of the equation

0K, (T)

3T X (5)

The density function h,(x) of the statistics X, is given
by the usual Fourier inversion formula

1 r * —izX,
ha(x) = E[(/)n(z)e %dz

= %r f exp {y, (2) - izX, }dz. (6)
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where y;, (z) was given in (4). It is convenient here to
employ the equivalent inversion formula
1 a+ioo
ha(x) = i / exp {K,T(T) - TXn}dT, (7)
a—100
where —c1 <a < ¢,0< ¢ <00,0< ¢ <oo,butei+c¢; >0,
thus either ¢; or c; may be zero, though not both, and
K;; (T) was defined in (4).

Let us writt T = T + iw, where T is the root of
the Eq. (5). The argument then proceeds formally as fol-
lows. On the contour near T, the exponent of (7) can be
written as

K, (T) - TXy = K, (T) - TXn + iwi {K:(T) - TX.}

+ 1wy

5 aT2 {K (T) - TXa}

+é(iw) 8T3 (K (T) - T}

L.
+i(zw) 8T4 {KJ(T) - TXn} + -
A | , 0K (T)
=K, (T) - TX, W om

i I’K,; (T)
6 o713
1 40K (T)
—w -
24 oT*
where aiT {K,j (T) - TX,,} = 0 because T is the root of (5).
Because of (8), the integrand of (7) can be written as

8)

exp {K,T(T) - TXn}
= exp {K:f (T) —TXn} exp {—;w

. 3k (T 4 1% (T
y 1_1W38 Kn(T) +i 48 Kn(T)
6 oT? 24 oT*

1[1 59°K;(T)
_2{6w e }+ } (9)

Using T = T + iw, we can transform from T to w in (7)
resulting that

, 9K (T)
oT?

ha(x) = i exp {K: (T) - TXH}

r 1 ,0°K:(T) i 3o’k (T)
YV el Sl O [ [N VP it U Sl
X_[eXp{ PRFTE 6" T
iw4a4K:(T)
24 oT*
=2
1 (1 30°K;(T)
2{6W 3T + dw. (10)

The odd powers of w vanish on integration. On the other
hand, forj = 2,3,... and since aa—TJjK,,(T) is O(n)

IKI(T) T\ & J
O e (1) )

oTi 9T N
-0 (n*%“), an
where T* = % Therefore

ha(x) = % {aI;”TET)} ’ exp {K:(T) —TXn}

y {1 10 (T)+ } (12)
where
2K* (T) :
{ or? } 1 ,0°K(T)
e AT o
RN 4a“1< (T)
24" ot
1 30°K; (T)
2{ e }}dw. (13)

Clearly, Q4 (T) defined in (13) is # times the sum of two

terms. The first of these terms is, apart from a multi-

Ky (T)

Tt

a normal random variable with zero mean and variance
KT |~ . .

{ a"TE ) } ; and the second term is also a constant times

o 3 .
plicative constant, times fourth order moments of

(a3K:<T> 2

=3 ) and sixth order moments of a normal random
= -1
9*K*(T)
{ S . Thus,

because of (11), Q4 (T) = O(1). Consequently, we write (12)
as

variable with zero mean and variance

ha(x) = (x) {1+ O(n™")}, (14)

where

2 g% (T _%
) - = {“;T(T)} exp (K3 (T) - T, ). (15
The expression (15) receives the name of saddlepoint
approximation to h,(x), been the error of approximation
of order n”".

Daniels (1956) pointed out that when the constant term
in the saddlepoint approximation is adjusted to make the
integral over the whole sample space equal to unity, the
order of magnitude of the error is reduced in a certain sense

from n”" to n~*/?. He called this process renormalization.
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A common problem arising in statistics is to determine the
smallest sample size needed to achieve a specified inference
goal. Examples of inference goals include finding a 95%
confidence interval for a given statistic of width no larger
than a specified amount, or performing a hypothesis test
at the 5% significance level with power no smaller than a
specified amount. These examples and others are discussed
more fully below.

Sample Size to Achieve a Given Variance
or Relative Variance

One may want to estimate a parameter ¢ by an estima-
tor § based on a sample of size n. Often the variance of 6,
var(#), will have the form var(8) = b/n for some known
constant b. To achieve a variance of § no larger than a spec-
ified amount A, one simply sets A = b/n and solves for
n: n = b/ A. The value of n must be an integer, so one takes
n to be the smallest integer no smaller than b/A. Note that
n is inversely related to the desired precision A.

It is more typically the case that b will depend on
unknown parameters, usually including 6. Because the
sample has not been selected yet, one must estimate
the parameters from a previous sample or from other
outside information. Precise values are not needed as one is
usually satisfied with a conservative (that is, high) estimate
for the required sample size n.

It is common to be interested in the relative variance
var(0)
92
variation or CV?. In this case, one has

, also known as the square of the coeflicient of

var( 9) _ b

62 0%
so to keep CV? less than a desired amount A, one sets
n= % Again, b and 6 may need to be estimated from

a previous sample or some outside source.

The variance of an estimated proportion p from a
»simple random sample of size n (from an infinite pop-
ulation) is

yop-p) 1 (1/2-p)* _

1
n 4n n 4n’

var(p
Therefore, to achieve a variance of p of at most A, it suffices

1 . . . .
that n be at least e For this conservation determination

of the sample size, no estimation of unknown parameters
is needed.

One can also consider the estimation of an estimated
proportion p from a simple random sample of size n from
a finite population of size N. In this case,

R n\p(l-p) ( n ) 1
=\l-=)]—<|1-=]—.

var(p) ( N) n N an
To achieve a variance of p of at most A as a conservative

estimate, n must be at least

1
4A +1/N’
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Sample Size to Achieve a Given Power in
a Hypothesis Test

In hypothesis testing, the probability of type I error (the
probability of rejecting a null hypothesis when it, in fact,
holds) is typically fixed at a predetermined level, called
alpha («). The value & = 5% is very common. A sample
size n is sought so that the test achieves a certain type II
error rate (the probability of not rejecting the null hypoth-
esis when a specific alternative actually holds), called beta
(B). The power of a test is 1 — 3, the probability of reject-
ing the null hypothesis when a specific alternative holds.
So sample size determination can be described as finding
the smallest value of # so that for the predetermined « the
power achieves some desired level for a fixed alternative.
The term statistical » power analysis is frequently used as a
synonym for sample size determination.

To be specific, suppose one wants to test that the
mean y of independent, identically normally distributed
data is equal to o versus the alternative that the mean
is greater than po. One can write this as Ho : 4 = o ver-
sus Hy : 4 > po. Suppose also that y” > o is sufficiently
far from po that the difference is deemed to be of practi-
cal significance in the subject-matter area of the test. Let
Z be a standard normal random variable, ® be its cumu-
lative distribution function, and z, be defined by P(Z >
zo) = a. Then it can be calculated that the type II error at

i B(u), is
B(u") = P(Hy is not rejected when y = ")
po— '
=Q|zq +
(z a/\V/n )
where o is the known variance of the data and 7 is the
sample size. It follows from this that

po — '
o/

—Zﬁ =Zq +

Solving for n, one gets

[a(za+zﬁ)]2
n=————-1.
fo — ¢

This sample size (adjusted upward to an integer value, if
necessary) is needed to achieve a significance level of & and
power of 1 — B(u') at u’. The same sample size n applies
when the alternative hypothesis is Hy : g < po. For the
two-sided alternative hypothesis Hy : ¢ # po, one has by a
similar argument (involving an approximation) that

. [a(za/z +zl;)]2
po—p' |

For this testing problem, one is able to get explicit
solutions. It is typical, however, to have to resort to compli-
cated tables or, more recently, software, to get a solution.

Sample Size to Achieve a Given Width for
a Confidence Interval

A 100(1 - a)% »confidence interval for the mean y of a
normal population with known variance ¢ is

— o _ o
(X_Za/zﬁ, X+Zw/2\/ﬁ)

_ 122 . .
where X = — Y x; is the sample mean. When # is reason-
n =1

ably large, say 30 or greater, this interval with o replaced
by S =/ % i(x,— - X)?2 holds approximately when ¢
n-1iz

is unknown.
[
The width of the interval is w = 2z,/, —. So, solv-
n
ing for n, the sample size needed to achieve an interval of
width w and confidence level 100(1 - «)% is n =

4 2 Z, 2
452 (L/z) (or n = 48° (“—/2) when ¢? unknown and
w w

n > 30).

As with hypothesis testing, the sample size problem
for confidence intervals more typically requires tables or
software to solve.

The Scope of Statistical Procedures for
Sample Size Determination

Sample size determination arises in one sample problems,
two sample problems, »analysis of variance, regression
analysis, »analysis of covariance, multilevel models, sur-
vey sampling, nonparametric testing, »logistic regression,
survival analysis, and just about every area of modern
statistics. In the case of multilevel models (e.g., hierarchical
linear models), one must determine the sample size at each
level in addition to the overall sample size (Cohen 2005).
A similar situation arises in sample size determination for
complex sample surveys.

Software for Sample Size Determination
The use of software for sample size determination is highly
recommended. Direct calculation is difficult (or impossi-
ble) in all but the simplest cases. Tables are cumbersome
and often incomplete. Specific software products will not
be recommended here, but we mention some to indicate
the wide range of products available.

Statisticians who use SAS® should be aware that ver-
sions 9.1 and later include releases of PROC POWER and
PROC GLMPOWER (PROC means “procedure” in SAS®
and GLM stands for “general linear model”) that are full
featured.
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SPSS has a product called SamplePower® that also
has many features. Other commercial products include
nQuery Advisor and PASS. G*Power is a free product.
Sampsize is also free with an emphasis on survey sampling
sample size calculations. A Web search will reveal many
other products that should suit particular needs.

About the Author
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A sample survey can be broadly defined as an exercise
that involves collecting standardised data from a sample of
study units (e.g., persons, households, businesses) designed
to represent a larger population of units, in order to make
quantitative inferences about the population. Within this
broad definition there is a large variety of different types of
survey. Surveys can differ in terms of the type of data col-
lected, the methods used to collect the data, the design of
the sample, and whether data is collected repeatedly, either
on the same sample or on different samples. Key features of
a sample survey are:

Survey objectives must be clear and agreed at the outset,
so that all features of the survey can be designed with
these objectives in mind;

The target population - about which knowledge is
required — must be defined. For example, it might be
all persons usually resident in a particular town, or all
farms within a national boundary;

The survey sample must be designed to represent the target
population;

Relevant concepts must be addressed by the survey mea-
sures, so that the survey data can be used to answer
important research questions;

The survey measures — which typically include questions,
but could also include anthropometric measures, soil
samples, etc — must be designed to provide accurate
indicators of the concepts of interest;

Survey implementation should achieve the co-operation of
ahigh proportion of sample members in a cost-efficient
and timely manner.

The aim is to obtain relevant data that are representa-
tive, reliable and valid.

Representation concerns the extent to which the units
in the data set represent the units in the target popula-
tion and therefore share the pertinent characteristics of the
population as a whole. This will depend on the identifica-
tion of a sampling frame, the selection of a sample from
that frame, and the attempts made to obtain data for the
units in the sample.

Sampling frame. Ideally, this is a list of all units in
the population, from which a sample can be selected.
Sometimes the list pre-exists, sometimes it must be con-
structed especially for the survey, and sometimes a sam-
pling method can be devised that does not involve the
creation of an explicit list but is equivalent (Lynn 2002).

Sample design. In 1895 Anders Kiaer, founding Direc-
tor of Statistics Norway, proposed sampling as a way of
learning about a population without having to study every
unit in the population. The basic statistical theory of prob-
ability sampling developed rapidly in the first half of the
twentieth century and underpinned the growth of sur-
veys. The essence is that units must be selected at ran-
dom with known and non-zero selection probabilities.
This enables unbiased estimation of population parameters
and estimation of the precision (standard errors) of esti-
mates (Groves et al. 2004, Chap. 4). Design features such
as stratified sampling and multi-stage (clustered) sam-
pling are commonly used within a probability sampling
framework. Some surveys, particularly in the commer-
cial sector, use non-probability methods such as quota
sampling.

Non-response. Once a representative sample has been
selected, considerable efforts are usually made to achieve
the highest possible response rate (Lynn 2008). In many
countries, high quality surveys of the general population
typically achieve response rates in the range 60-80%, with
rates above 80% being considered outstanding. The main
reasons for non-response are usually refusal (unwillingness
of sample member to take part) and non-contact (inability
of the survey organisation to reach the sample member).
Other reasons include an inability to take part, for example
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due to language or ill health. Different strategies are used
by survey organizations to minimize each of these types
of non-response. Ultimately, non-response can introduce
bias to survey estimates if the non-respondents differ from
respondents in terms of the survey measures. Adjustment
techniques such as weighting (Lynn 2004) can reduce the
bias caused by non-response.

Obtaining reliable and valid data from respondents
depends upon the measurement process. This includes
development of concepts to be measured, development of
measures of those concepts (e.g., survey questions), obtain-
ing responses to the measures, and post-fieldwork process-
ing (such as editing, coding, and combining the answers
to a number of questions to produce derived variables).
Failure of the obtained responses to correctly reflect the
concept of interest is referred to as measurement error
(Biemer et al. 1991). To minimise measurement error, sur-
vey researchers pay attention to cognitive response theory
(Tourangeau et al. 2000), which describes four steps in the
process of answering a survey question:

Understanding. The sample member must understand the
question as intended by the researcher. This requires
the question and the required response to be clear,
simple, unambiguous and clearly communicated.

Recall. The sample member must be able to recall all the
information that is required in order to answer the
question. Question designers must be realistic regard-
ing what respondents can remember and should pro-
vide tools to aid memory, if appropriate.

Evaluation. The sample member must process the recalled
information in order to form an answer to the
question.

Reporting. The sample member must be willing and able
to communicate the answer. Various special techniques
are used by survey researchers to elicit responses to
questions on sensitive or embarrassing issues.

Two fundamental survey design issues with consider-
able implications are the following:

Data collection modes. There are several available
methods to collect survey data (Groves et al. 2004,
Chap. 5). An important distinction is between interviewer-
administered methods (face-to-face personal interview-
ing, telephone interviewing) and self-completion meth-
ods (paper self-completion »questionnaires, web surveys).
With self-completion methods, the researcher usually has
less control over factors such as who is providing the data
and the order in which questions are answered, as well
as having a limited ability to address respondent concerns
and to provide help. Self-completion methods also require

a higher degree of literacy and cognitive ability than inter-
views and so may be inappropriate for certain study pop-
ulations. On the other hand, respondents may be more
willing to reveal sensitive or embarrassing answers if there
is no interviewer involved. There are often large differences
in survey costs between the possible modes. This consid-
eration often leads to surveys being carried out in a mode
which might otherwise be thought sub-optimal.

Longitudinal designs. It is often beneficial to collect
repeated measures from the same sample over time. This
allows the measurement of change and identification of the
ordering of events, which can shed light on causality. Sur-
veys which collect data from the same units on multiple
occasions are known as longitudinal surveys (Lynn 2009)
and involve additional organisation and complexity. Some
longitudinal social surveys have been running for several
decades and are highly valued data sources.
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A sampling algorithm is a procedure that allows us to
select randomly a subset of units (a sample) from a popu-
lation without enumerating all the possible samples of the
population.

More precisely, let U = {1,...,k,...,N} be a finite
population and s ¢ U a sample or a subset of U. A sam-
pling design p(s) is a probability distribution on the set of
all the subsets s ¢ U, i.e., p(s) > 0 and

> p(s) =1.

scU
The inclusion probability 7, = pr(k € s) of a unit k is its
probability of being selected in the sample s. The sum of
the inclusion probabilities is equal to the expectation of the
sample size n.

In many sampling problem, the number of possible
samples is generally very large. For instance, if N = 50

and n = 10, the number of possible samples already
equals 10,272,278,170. The selection of a sample by enu-
merating all the possible samples is generally impos-
sible. A sampling algorithm is a method that allows
bypassing this enumeration. There exists several class of
methods:

o Sequential algorithms. In this case, there is only one
reading of the population file. Each unit is successively
examined and the decision of selection is irremediably
taken.

e One by one algorithms. At each step, a unit is selected
from the population until obtaining the fixed sample
size.

e Eliminatory algorithms. At each step, a unit is removed
from the population until obtaining the fixed sample
size.

e Rejective methods. For instance, sample with replace-
ment are generated until obtaining a sample without
replacement. Rejective methods can be interesting if
there exists a more general sampling design that is
simpler than the design we want to implement.

o Splitting methods. This method described in Deville
and Tillé (1998) starts with a vector of inclusion proba-
bility. At each step, this vector is randomly replaced by
another vector until obtaining a vector containing only
zeros and ones i.e., a sample.

The same sampling design can generally be implemented
by using different methods. For instance, Tillé (2006) gives
sequential, one by one, eliminatory algorithms for several
sampling designs like simple random sampling with and
without replacement and multinomial sampling.

The main difficulties however appears when the sam-
ple is selected with unequal inclusion probabilities with-
out replacement and fixed sample size. The first proposed
method was systematic sampling with unequal inclusion
probabilities (Madow 1949). For this sequential algorithm,
first compute the cumulated inclusion probabilities V.
Next units such that

Vici<u+i—-1<Vy, i=12,...,n,

are selected, where u is a uniform continuous random
variable in [0,1) and 7 is the sample size.

An interesting rejective procedure was proposed by
Sampford (1967). Samples are selected with replacement.
The first unit is selected with probability 7x/n, the n — 1
other units are selected with probability

TT) N TTe B
n(l - 7Tk) {ZZ:; 1’1(1 - T[e)} '
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The sample is accepted if » distinct units are selected,
otherwise another sample is selected.

Chen et al. (1994) discussed the sampling design with-
out replacement and fixed sample size that maximizes the
»entropy given by

I(p) = =3 p(s)logp(s).
seU

They gave a procedure for selecting a sample according this
sampling design. Several other efficient algorithms that
implement this sampling design are given in Tillé (2006).

Other methods have been proposed by Brewer (1975),
Deville and Tillé (1998). A review is given in Brewer and
Hanif (1983) and Tillé (2006). Other sampling algorithms
allows us to solve more complex problems. For instance,
the cube method (Deville and Tillé 2004) allows select-
ing balanced samples (see »Balanced Sampling) in the
sense that the »Horvitz-Thompson estimator are equal or
approximately equal to the population totals for a set of
control variables.
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What s it?

The sampling distribution is a distribution of a sample
statistic. When using a procedure that repeatedly samples
from a population and each time computes the same sam-
ple statistic, the resulting distribution of sample statistics
is a sampling distribution of that statistic. To more clearly
define the distribution, the name of the computed statistic
is added as part of the title. For example, if the computed
statistic was the sample mean, the sampling distribution
would be titled “the sampling distribution of the sample
mean.

For the sake of simplicity let us consider a simple
example when we are dealing with a small discrete pop-
ulation consisting of the first ten integers {1,2,3,4,5,6,7,
8,9,10}. Let us now repeatedly take random samples with-
out replacement of size n = 3 from this population.
The random sampling might generate sets that look like
{8,3,7},{2,1,5},{6,3,5},{10,7,5} . ... If the mean (X) of
each sample is found, the means of the above samples
would appear as follows: 6, 2.67, 4.67, 7.33 ... How many
different samples can we take, or put it differently, how
many different sample means can we obtain? In our artifi-
cial example only 720, but in reality when we analyze very
large populations, the number of possible different samples
(of the same size) can be for all practical purposes treated
as countless.

Once we have obtained sample means for all samples,
we have to list all their different values and number of their
occurrences (frequencies). Finally, we will divide each fre-
quency with the total number of samples to obtain relative
frequencies (empirical probabilities). In this way we will
come up to alist of all possible sample means and their rela-
tive frequencies. When the population is discrete, that list is
called the sampling distribution of that statistic. Generally,
the sampling distribution of a statistic is a probability dis-
tribution of that statistic derived from all possible samples
having the same size from the population.

When we are dealing with a continuous population it
is impossible to enumerate all possible outcomes, so we
have to rely on the results obtained in mathematical statis-
tics (see section “»How Can Sampling Distributions be
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Constructed Mathematically?” of this paper for an exam-
ple). Still, we can imagine a process that is similar to the
one in the case of a discrete population. In that process we
will take repeatedly thousands of different samples (of the
same size) and calculate their statistic. In that way we will
come to the relative frequency distribution of that statistic.
The more samples we take, the closer this relative fre-
quency distribution will come to the sampling distribution.
Theoretically, as the number of samples approaches infin-
ity our frequency distribution will approach the sampling
distribution.

Sampling distribution should not be confused with a
sample distribution: the latter describes the distribution of
values (elements) in a single sample.

Referring back to our example, we can graphically
display the sampling distribution of the mean as follows:

0.06 -
0.04

0.02 -

Every statistic has a sampling distribution. For exam-
ple, suppose that instead of the mean, medians (M)
were computed for each sample. That is, within each
sample the scores would be rank ordered and the middle
score would be selected as the median. Using the samples
above, the medians would be: 7,2,5,7. .. The distribution
of the medians calculated from all possible different sam-
ples of the same size is called the sampling distribution of
the median and could be graphically shown as follows:

0.15+

0.10+

It is possible to make up a new statistic and construct a
sampling distribution for that new statistic. For example,
by rank ordering the three scores within each sample and
finding the mean of the highest and lowest scores a new
statistic could be created. Let this statistic be called the
mid-mean and be symbolized by M. For the above sam-
ples the values for this statistic would be: 5.5,3,4.5,75.. ..
and the sampling distribution of the mid-mean could be
graphically displayed as follows:

0.10 -

0.05

Just as the population distributions can be described with
parameters, so can the sampling distribution. The expected
value and variance of any distribution can be represented
by the symbols y (mu) and ¢* (Sigma squared), respec-
tively. In the case of the sampling distribution, the y sym-
bol is often written with a subscript to indicate which
sampling distribution is being described. For example, the
expected value of the sampling distribution of the mean is
represented by the symbol u, that of the median by uar,,
and so on. The value of yy can be thought of as the theoret-
ical mean of the distribution of means. In a similar manner
the value of pipr,, is the theoretical mean of a distribution
of medians.

The square root of the variance of a sampling distribu-
tion is given a special name, the standard error. In order
to distinguish different sampling distributions, each has a
name tagged on the end of “standard error” and a subscript
on the o symbol. The theoretical standard deviation of the
sampling distribution of the mean is called the standard
error of the mean and is symbolized by o%. Similarly, the
theoretical standard deviation of the sampling distribution
of the median is called the standard error of the median
and is symbolized by op,.

In each case the standard error of the sampling dis-
tribution of a statistic describes the degree to which the
computed statistics may be expected to differ from one
another when calculated from a sample of similar size
and selected from similar population models. The larger
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the standard error of a given statistic, the greater the dif-
ferences between the computed statistics for the different
samples. From the example population, sampling method,
and statistics described earlier, we would find p5 = pm, =
piz; = 5.5 and o5 = 1.46, o, = 1.96, and o3 = 1.39.

Why is the Sampling Distribution
Important - Properties of Statistics
Statistics have different properties as estimators of a popu-
lation parameters. The sampling distribution of a statistic
provides a window into some of the important properties.
For example if the expected value of a statistic is equal
to the expected value of the corresponding population
parameter, the statistic is said to be unbiased. In the exam-
ple above, all three statistics would be unbiased estimators
of the population parameter px.

Consistency is another valuable property to have in
the estimation of a population parameter, as the statistic
with the smallest standard error is preferred as an estima-
tor of the corresponding population parameter, everything
else being equal. Statisticians have proven that the stan-
dard error of the mean is smaller than the standard error of
the median. Because of this property, the mean is generally
preferred over the median as an estimator of ux.

Hypothesis Testing

The sampling distribution is integral to the hypothesis
testing procedure. The sampling distribution is used in
hypothesis testing to create a model of what the world
would look like given the null hypothesis was true and a
statistic was collected an infinite number of times. A sin-
gle sample is taken, the sample statistic is calculated, and
then it is compared to the model created by the sampling
distribution of that statistic when the null hypothesis is
true. If the sample statistic is unlikely given the model,
then the model is rejected and a model with real effects is
more likely. In the example process described earlier, if the
sample {3,1,4} was taken from the population described
above, the sample mean (2.67), median (3), or mid-mean
(2.5) can be found and compared to the corresponding
sampling distribution of that statistic. The probability of
finding a sample statistic of that size or smaller could be
found for each e.g. mean (p < .033), median (p < .18),
and mid-mean (p < .025) and compared to the selected
value of alpha («). If alpha was set to .05, then the selected
sample would be unlikely given the mean and mid-mean,
but not the median.

How Can Sampling Distributions be
Constructed Mathematically?
Using advanced mathematics statisticians can prove that
under given conditions a sampling distribution of some
statistic must be a specific distribution. Let us illustrate this
with the following theorem (for the proof see for example
Hogg and Tanis (1997, p. 256)):

If X1,X5,...,X, are observations of a random sample
of size n from the normal distribution N(y, o),

_ 12
X=-YX;
and
P 1
- 12
then R
-1
%isxz(n—l).

The given conditions describe the assumptions that must
be made in order for the distribution of the given sampling
distribution to be true. For example, in the above theorem,
assumptions about the sampling process (random sam-
pling) and distribution of X (a normal distribution) are
necessary for the proof.

Of considerable importance to statistical thinking is
the sampling distribution of the mean, a theoretical distri-
bution of sample means. A mathematical theorem, called
the Central Limit Theorem, describes the relationship
of the parameters of the sampling distribution of the mean
to the parameters of the probability model and sample size.
The Central Limit Theorem also specifies the form of the
sampling distribution (Gaussian) in the limiting case.

Selection of Distribution Type to Model
Scores

The sampling distribution provides the theoretical foun-
dation to select a distribution for many useful measures.
For example, the central limit theorem describes why a
measure, such as intelligence, that may be considered a
summation of a number of independent quantities would
necessarily be (approximately) distributed as a normal
(Gaussian) curve.

Monte Carlo Simulations

It is not always easy or even possible to derive the exact
nature of a given sampling distribution using mathemat-
ical derivations. In such cases it is often possible to use
Monte Carlo simulations to generate a close approxima-
tion to the true sampling distribution of the statistic. For
example, a non-random sampling method, a non-standard
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distribution, or may be used with the resulting distribution
not converging to a known type of probability distribu-
tion. When much of the current formulation of statistics
was developed, Monte Carlo techniques, while available,
were very inconvenient to apply. With current computers
and programming languages such as Wolfram Mathemat-
ica (Kinney 2009), Monte Carlo simulations are likely to
become much more popular in creating sampling distri-
butions.

Summary

The sampling distribution, a theoretical distribution of a
sample statistic, is a critical concept in statistical thinking.
The sampling distribution allows the statistician to hypoth-
esize about what the world would look like if a statistic was
calculated an infinite number of times.
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Introduction

The statistical objective in survey research and in a number
of other applications is generally to estimate the param-
eters of a finite population rather than to estimate the
parameters of a statistical model. As an example, the finite
population for a survey conducted to estimate the unem-
ployment rate might be all adults aged 18 or older living in a
country at a given date. If valid estimates of the parameters
of a finite population are to be produced, the finite popu-
lation needs to be defined very precisely and the sampling
method needs to be carefully designed and implemented.
This entry focuses on the estimation of such finite popula-
tion parameters using what is known as the randomization
or design-based approach. Another approach that is par-
ticularly relevant when survey data are used for analytical
purposes, such as for regression analysis, is known as the
superpopulation approach (see »Superpopulation Models
in Survey Sampling).

This entry considers only methods for drawing prob-
ability samples from a finite population; Nonprobability
Sampling Methods are reviewed in another entry. The basic
theory and methods of probability sampling from finite
populations were largely developed during the first half
of the twentieth century, motivated by the desire to use
samples rather than censuses (see »Census) to charac-
terize human, business, and agricultural populations. The
paper by Neyman (1934) is widely recognized as a seminal
contribution because it spells out the merits of proba-
bility sampling relative to purposive selection. A num-
ber of full-length texts on survey sampling theory and
methods were published in the 1950’ and 1960’ includ-
ing the first editions of Cochran (1977), Deming (1960),
Hansen et al. (1953), Kish (1965), Murthy (1967), Raj (1968),
Sukhatme et al. (1984), and Yates (1981). Several of these are
still widely used as textbooks and references. Recent texts
on survey sampling theory and methods include Fuller
(2009), Lohr (2010), Pfeffermann and Rao (2009), Sirndal
etal. (1992), Thompson (1997), and Valliant et al. (2000).

Let the size of a finite population be denoted by N
and let Y; (i = 1,2,...,N) denote the individual values of
a variable of interest for the study. To carry forward the
example given above, in a survey to estimate the unem-
ployment rate, Y; might be the labor force status of person
(element) i. Consider the estimation of the population total
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N
Y = }'Y; based on a probability sample of #n elements

drawn tfrom the population by sampling without replace-
ment so that elements cannot be selected more than once.
Let 71; denote the probability that element i is selected for
the sample, with 7; > 0 for all i, and let m;; denote the
probability that elements i and j are jointly included in the
sample. The sample estimator of Y can be represented as

N
Y = > w;Y; where w; is a random variable reflecting the

samplé selection, with w; = 0 for elements that were not
selected. The condition for ¥ to be an unbiased estimator of
Yisthat E(w;) = 1. Now E(w;) = miw;+(1-7;)0 so that for
Y to be unbiased w; = ;. The reciprocal of the selection
probability, w; = 7}, is referred to as the base weight. The
unbiased estimator for Y, ¥ = zn:ini, is widely known

1
as the » Horvitz-Thompson estimator. The variance of ¥ is
given by

N N N
V(¥) = X V(w)Yi +23 3 Cov(wi,w) YiY;

i i

N -1 2
= Z?Ti (1—7T,')Yi
i

N N
+ 22 Zﬂi_lnj_l(mj - mim;)YiY;

i i

These general results cover a range of the different sample
designs described below depending on the values of 77; and
m;j. The selection probabilities 7; appear in the estimator
and, in addition, the joint selection probabilities 7;; appear
in the variance. Note that when estimating the parameters
of a finite population using the design-based approach for
inference, the Y; values are considered fixed; it is the w;’s
that are the random variables.

The selection of a probability sample from a finite pop-
ulation requires the existence of a sampling frame for that
population. The simplest form of sampling frame is a list of
the individual population elements, such as a list of busi-
ness establishments (when they are the units of analysis).
The frame may alternatively be a list of clusters of elements,
such as a list of households when the elements are persons.
The initial frame may be a list of geographical areas that
are sampled at the first stage of selection. These areas are
termed primary sampling units (PSUs). At the second stage,
subareas, or second stage units, may be selected within the
sampled PSUs, etc. This design, which is known as an area
sample, is a form of multistage sampling (see below).

The quality of the sampling frame has an important
bearing on the quality of the final sample. An ideal sam-
pling frame would contain exactly one listing for each ele-
ment of the target population and nothing else. Sampling
frames used in practice often contain departures from this
ideal, in the form of noncoverage, duplicates, clusters, and
ineligible units (see Kish 1965, Section 2.7, for a discussion
of each of these frame problems). Issues with the sampling
frames used in telephone surveys are discussed in the entry
»Telephone Sampling: Frames and Selection Techniques.
Sometimes, two or more sampling frames are used, leading
to dual- or multiple-frame designs.

Sampling frames often contain auxiliary information
that can be used to improve the efficiency of the survey esti-
mators at the sample design stage, at the estimation stage,
or at both stages. Examples are provided below.

Simple Random Sampling

A simple random sample is a sample design in which every
possible sample of size n from the population of N elements
has an equal probability of selection (see »Simple Random
Sample). It may be selected by taking random draws from
the set of numbers {1,2,. .., N}. With simple random sam-
pling, elements have equal probabilities of selection and
simple random sampling is therefore an equal probability
selection method (epsem).

Simple random sampling with replacement (SRSWR),
also known as unrestricted sampling, allows population
elements to be selected at any draw regardless of their selec-
tion on previous draws. Since elements are selected inde-
pendently with this design, 7;; = m;7; for all 4, j. Standard
statistical theory and analysis generally assumes SRSWR;
this is discussed further in the entry »Superpopulation
Models in Survey Sampling.

In simple random sampling without replacement
(SRSWOR), also simply known as simple random sam-
pling, once an element has been drawn, it is removed from
the set of elements eligible for selection on subsequent
draws. Since SRSWOR cannot select any element more
than once (so that there are n distinct sampled elements),
it is more efficient than SRSWR (i.e., the variances of the
estimators are lower under SRSWOR than under SRSWR).

Systematic Sampling

In the simple case where the sampling interval k = N/n is
an integer, a systematic sample starts with a random selec-
tion of one of the first k elements on a list frame, and then
selects every kth element thereafter. By randomly sorting
the sampling frame, systematic sampling provides a con-
venient way to select a SRSWOR. Kish (1965, Section 4.1B)
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describes various techniques for selecting a systematic
sample when the sampling interval is not an integer.

If the sampling frame is sorted to place elements that
are similar in terms of the survey variables near to each
other in the sorted list, then systematic sampling may
reduce the variances of the estimates in much the same way
as proportionate stratified sampling does. Systematic sam-
pling from such an ordered list is often described as implicit
stratification. A general drawback to systematic sampling
is that the estimation of the variances of survey estimates
requires some form of model assumption.

Stratified Sampling

Often, the sampling frame contains information that may
be used to improve the efficiency of the sample design (i.e.,
reduce the variances of estimators for a given sample size).
Stratification involves using information available on the
sampling frame to partition the population into L classes,
or strata, and selecting a sample from each stratum. (See
»Stratified Sampling).

With proportionate stratification, the same sampling
fraction (i.e., the ratio of sample size to population size) is
used in all the strata, producing an epsem sample design.
Proportionate stratification reduces the variances of the
survey estimators to the extent that elements within the
strata are homogeneous with respect to the survey vari-
ables.

With disproportionate stratification, different sampling
fractions are used in the various strata, leading to a design
in which selection probabilities vary. The unequal selec-
tion probabilities are redressed by the use of the base
weights in the analysis. One reason for using a dispro-
portionate stratified design is to improve the precision of
survey estimates when the element standard deviations
differ across the strata. Disproportionate stratified samples
are widely used in business surveys for this reason, sam-
pling the larger businesses with greater probabilities, and
even taking all of the largest businesses into the sample
(see »Business Surveys). The allocation of a given overall
sample size across strata that minimizes the variance of
an overall survey estimate is known as Neyman allocation.
If data collection costs per sampled element differ across
strata, it is more efficient to allocate more of the sample to
the strata where data collection costs are lower. The sample
allocation that maximizes the precision of an overall sur-
vey estimate for a given total data collection cost is termed
an optimum allocation.

A second common reason for using a disproportionate
allocation is to produce stratum-level estimates of ade-
quate precision. In this case, smaller strata are often sam-
pled at above average sampling rates in order to generate

sufficiently large sample sizes to support the production of
separate survey estimates for them.

Cluster and Multistage Sampling

In many surveys, it is operationally efficient to sample
clusters of population elements rather than to sample the
elements directly. One reason is that the sampling frame
may be a list that comprises clusters of elements, such
as a list of households for a survey of persons (the ele-
ments). Another reason is that the population may cover
a large geographical area; when the survey data are to
be collected by face-to-face interviewing, it is then cost-
effective to concentrate the interviews in a sample of areas
in order to reduce interviewers’ travel. The selection of
more than one element in a sampled cluster affects the
precision of the survey estimates because elements within
the same cluster tend to be similar with respect to many
of the variables studied in surveys. The homogeneity of
elements within clusters is measured by the intraclass corre-
lation (see »Intraclass Correlation Coefficient). A positive
intraclass correlation decreases the precision of the survey
estimates from a cluster sample relative to a SRS with the
same number of elements.

When the clusters are small, it is often efficient to
include all the population elements in selected clusters, for
example, to collect survey data for all persons in sampled
households. Such a design is termed a cluster sample or
more precisely a single-stage cluster sample (see »Cluster
Sampling).

Subsampling, or the random selection of elements
within clusters, may be used to limit the effect of cluster-
ing on the precision of survey estimates. Subsampling is
widely used when the clusters are large as, for example, is
the case with areal units such as counties or census enu-
meration districts, schools, and hospitals. A sample design
in which a sample of clusters is selected, followed by the
selection of a subsample of elements within each sampled
cluster is referred to as a two-stage sample. Multistage sam-
pling is an extension of two-stage sampling, in which there
are one or more stages of subsampling of clusters within
the first-stage units (or primary sampling units, PSUs) prior
to the selection of elements. In multistage sample designs,
a key consideration is the determination of the sample
size at each stage of selection. This determination is gen-
erally based on cost considerations and the contribution
of each stage of selection to the variance of the estimator
(See »Multistage Sampling).

In general, large clusters vary considerably in the num-
ber of elements they contain. Sampling unequal-sized
clusters with equal probabilities is inefficient and, with an
overall epsem design, it fails to provide control on the




1280

Sampling From Finite Populations

sample size. These drawbacks may be addressed by sam-
pling the clusters with probability proportional to size (PPS)
sampling. By way of illustration, consider a two-stage sam-
ple design. At the first stage, clusters are sampled with
probabilities proportional to size, where size refers to the
number of elements in a cluster. Then, at the second stage,
an equal number of population elements is selected within
each PSU. The resulting sample is an epsem sample of ele-
ments. This approach extends to multi-stage sampling by
selecting a PPS sample of clusters at each stage through
to the penultimate stage. At the last stage of selection, an
equal number of population elements is selected within
each cluster sampled at the prior stage of selection. In
practice, the exact cluster sizes are rarely known and the
procedure is applied with estimated sizes, leading to what
is sometimes called sampling with probability proportional
to estimated size (PPES).

Two-Phase Sampling

It would be highly beneficial in some surveys to use certain
auxiliary variables for sample design, but those variables
are not available on the sampling frame. Similarly, it may
be beneficial to use certain auxiliary variables at the estima-
tion stage, but the requisite data for the population are not
available. In these cases, two-phase sampling (also known
as double sampling) may be useful. As an example, con-
sider the case where, if frame data were available for certain
auxiliary variables, stratification based on these variables
with a disproportionate allocation would greatly improve
the efficiency of the sample design. Under the two-phase
sampling approach, at the first phase, data are collected
on the auxiliary variables for a larger preliminary sample.
The first-phase sample is then stratified based on the aux-
iliary variables, and a second phase subsample is selected
to obtain the final sample. To be effective, two-phase sam-
pling requires that the first phase data collection can be
carried out with little effort or resource requirements.

Estimation

As noted above, differential selection probabilities must
be accounted for by the use of base weights in estimating
the parameters of a finite population. In practice, adjust-
ments are usually made to the base weights to compensate
for sample deficiencies and to improve the precision of the
survey estimates.

One type of sample deficiency is unit nonresponse, or
complete lack of response from a sampled element. Com-
pensation for unit nonresponse is typically made by inflat-
ing the base weights of similar responding elements in
order to also represent the base weights of nonresponding

eligible elements (see »Nonresponse in Surveys, Groves
et al. 2001, and Sirndal and Lundstrom 2005).

A second type of deficiency is noncoverage, or a fail-
ure of the sampling frame to cover some of the elements
in the population. Compensation for noncoverage requires
population information from an external source. Noncov-
erage is generally handled through a weighting adjustment
using some form of calibration adjustment, such as post-
stratification (see Sdrndal 2007). Calibration adjustments
also serve to improve the precision of survey estimates that
are related to the variables used in calibration.

A third type of deficiency is item nonresponse, or the
failure to obtain a response to a particular item from
a responding element. Item nonresponses are generally
accounted for through imputation, that is, assigning val-
ues for the missing responses (see »Imputation and Brick
and Kalton 1996).

In practice, samples from finite populations are often
based on complex designs incorporating stratification,
clustering, unequal selection probabilities, systematic sam-
pling, and sometimes, two-phase sampling. The estimation
of the variances of the survey estimates needs to take the
complex sample design into account. There are two general
methods for estimating variances from complex designs,
known as the Taylor Series or linearization method and the
replication method (including balanced repeated replica-
tions, jackknife repeated replications, and the bootstrap).
See Wolter (2007) and Rust and Rao (1996). There are
several software programs available for analyzing complex
sample survey data using each method.
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Let X = (Xt)tefo,r] be a d-dimensional diffusion process
defined by the following stochastic differential equation

dXt = b(Xt,(X)dt+ U(Xt,ﬁ)dwt, te [0, T], Xo = Xo,

where w is an r-dimensional Wiener process, (a,f) ¢
O, x O, @4 and O are subsets of R” and RY, respectively.
Furthermore, b is an R?-valued function on R? x @, and ¢
is an R ® R"-valued function on RY x © p- The drift func-
tion b and the diffusion coeflicient function ¢ are known
apart from the parameters a and .

In the asymptotic theory of diffusion processes, the
following two types of data are treated: (1) the continu-
ously observed data and (2) the discretely observed data
of diffusion processes. Concerning the first order asymp-
totic theory of diffusion processes based on the con-
tinuously observed data, Kutoyants extended Ibragimov
and Hasminskii’s approach (1981) to semimartingales,
and many researchers made contributions to establish
the asymptotic theory of semimartingales; see Kutoyants
(1984, 1994, 2004) and Kiichler and Serensen (1997),
Prakasa Rao (1999a, b) and references therein.

On the other hand, parametric estimation for dis-
cretely observed diffusion processes is highly important for
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practical applications and now developing progressively.
The data are discrete observations at regularly spaced time
point on the fixed interval [0, T], that is, (Xkn, )o<k<n With
nhy, = T and h,, is called a discretization step. The discretely
observed data are roughly classified into the following
three types:

(i) decreasing step size on a fixed interval: the observa-

tion time T = nh, is fixed and the discretization step
hy, tends to zero as n — oo,

(ii) constant step size on an increasing interval: the dis-
cretization step is fixed (h, = A) and the observation
time T = nh, = nA tends to infinity as n — oo.

(iii) decreasing step size on an increasing interval: the dis-
cretization step h, tends to zero and the observation
time T = nh, tends to infinity as n - oo.

For the setting of type (i), Genon-Catalot and Jacod
(1993) proposed estimators of the diffusion coefficient
parameter f3 and they showed that the estimators are con-
sistent, asymptotic mixed normal and asymptotic efficient.
For the linearly parametrized case of diffusion coeflicient,
Yoshida (1997) obtained the asymptotic expansion for the
estimator by means of the Malliavin calculus. Gobet (2001)
proved the local asymptotic mixed normality for likeli-
hoods by using the Malliavin calculus. On the other hand,
for the drift parameter «, we can not generally construct
even a consistent estimator under the setting of type (i).
However, under the situation where diffusion term is very
small, which is called a small diffusion process, we can
estimate the drift parameter a. Genon-Catalot (1990) and
Laredo (1990) proposed estimators of the drift parame-
ter under the assumption that the diffusion coefficient is
known, and they proved that the estimators have consis-
tency, »asymptotic normality and asymptotic efficiency.
Uchida (2008) investigated asymptotic efficient estima-
tors under the general asymptotics. Serensen and Uchida
(2003) obtained estimators of both the drift and the dif-
fusion coeflicient parameters simultaneously and investi-
gated the asymptotic properties of their estimators. Gloter
and Serensen (2009) developed the result of Serensen and
Uchida (2003) under the general asymptotics.

As concerns the type (ii), Bibby and Serensen (1995)
proposed martingale estimating functions and obtained
the estimators of the drift and the diffusion coefficient
parameters from the martingale estimating functions.
They proved that both estimators have consistency and
asymptotic normality under ergodicity. Masuda (2005)
showed the asymptotic normality of the moment estimator
for a state space model involving jump noise terms.

Under the setting of type (iii), Prakasa-Rao (1983, 1988)
are early work. As seen in Yoshida (1992a), the estimators
of « and f jointly converge, and they are asymptotically
orthogonal, however their convergence rates are different.
Those authors’ estimators are of maximum likelihood type
in their settings. Kessler (1997) improved the condition
on the sampling scheme and gave generalization. Gobet
(2002) showed local asymptotic normality for the likeli-
hood. A polynomial type large deviation inequality for
an abstract statistical random field, which includes likeli-
hood ratios of stochastic processes, enables to obtain the
asymptotic behaviors of the Bayes and maximum likeli-
hood type estimators; see Yoshida (2010) for details. For
the asymptotic theory of diffusion processes with jumps,
see for example Shimizu and Yoshida (2006).

Regarding the higher order asymptotic theory of dif-
fusion processes, the asymptotic expansions have been
studied; see Yoshida (1992b, 1997), Sakamoto and Yoshida
(2004) and recent papers.
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Measurement involves the assignment of scores (numbers
or other symbols) to entities (objects or events) in such a
way that the scores carry information about some charac-
teristic of the measured entities. With careful considera-
tion of the method by which the scores have been assigned,
one can classify the method of measurement as belong-
ing to one or more “scales of measurement.” S.S. Stevens
(1951) defined four scales of measurement: nominal, ordi-
nal, interval, and ratio. Membership in one or more of
these categories depends on the extent to which empiri-
cal relationships among the measured entities correspond
to numerical relationships among the scores.

If the method of measurement produces scores that
allow one to determine whether the measured entities are
or are not equivalent on the characteristic of interest, then
the scale is referred to as “nominal” For example, I ask
the students in my class to take out all of their paper
money, write their university identification number on
each bill, and deposit all the bills in a bag. I then shake
the bag and pull out two bills. From the identification
numbers on the bills, I can determine whether or not the
same student contributed both bills. The attribute of inter-
est is last ownership of the bill, and the scores allow one
to determine whether or not two bills are equivalent on
that characteristic — accordingly, the identification number
scores represent a nominal scale. “Nominal” derives from
the Latin “nomen,” name. Nominal scores may be no more
than alternative names for entities.

If the scores can be employed to determine whether
two entities are equivalent or not on the measured char-
acteristic and, if they are not equivalent, which entity has
the greater amount of the measured characteristic, then the
scale is “ordinal” The order of the scores is the same as
the order of the true amounts of the measured attribute.
The identification numbers my students wrote on their
bills would not allow one to determine whether “004387”
represents more or less of something than does “093752”
Imagine that I throw all the money out the window and
then invite the students to retrieve the bills. My associate,
outside, assigns to the students the ordinal scores shown
in Table 1. The measured attribute is time taken to retrieve
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Scales of Measurement. Table 1 Relationship between true
scores and observed scores

True Score 1.0 2.0 4.0 8.0 9.0

Ordinal Score 0.5 0.6 0.7 1.1 1.5

Interval Score 12.0 14 18.0 26.0 28.0

Ratio Score 2.0 4.0 8.0 16.0 18.0

a bill, and the order of the scores is the same as the order
of the magnitudes of the measured attribute. If Student A
obtains a score of .5 and Student B a score of .6, I am con-
fident that they differ on retrieval time and that Student B
took longer than Student A.

Scale of measurement can be inferred from the nature
of the relationship between the “observed scores” (the mea-
surements) and the “true scores” (the true amounts of the
measured characteristic) (Winkler and Hays 1975, pp. 277-
282). If that relationship is positive monotonic, then the
scale of measurement is ordinal. Notice that the ordinal
scores in Table 1 are related to the true scores in a positive
monotonic fashion.

The ordinal scores in Table 1 do not allow one to estab-
lish the equivalence of differences or to order differences.
Consider the differences between A and B and between D
and E. The true scores show that the differences are equiva-
lent, but the ordinal scores might lead one to infer that the
difference between D and E is greater than the difference
between A and B. Also, the ordinal scores might lead one
to infer that the difference between C and D (0.4) is equiv-
alent to the difference between D and E (0.4), but the true
scores show that not to be true.

If the relationship between the observed scores and the
true scores is not only positive monotonic but also linear,
then one will be able to establish the equivalence of differ-
ences and will be able to order differences. Such a scale is
called “interval” My hypothetical associate used a mechan-
ical device to measure the retrieval times, obtaining the
interval scores in Table 1. From these observed scores, one
would correctly infer that the difference between A and B
is equivalent to the difference between D and E and that the
difference between C and D is greater than the difference
between D and E.

For the interval scores in Table 1, the function relating
the measurements () to the true scores (t) is m = 10 +2t.
This hypothetical interval scale does not have a “true zero

point” That is, it is not true that an entity that has abso-
lutely none of the measured characteristic will obtain a
measurement of zero. In this case, it will obtain a measure-
ment of 10. This is problematic if one wishes to establish
the equivalences of and orders of ratios of measurements.
With the interval data one might infer that the ratio D/C >
C/B > B/A, but the true scores show that these ratios are
all equivalent. To achieve a ratio scale, the function relat-
ing the measurements to the true scores must not only
be positive linear but also must have an intercept of zero.
For the hypothetical ratio data in Table 1, that function is
m = 0 + 2t. With the ratio scale the ratios of observed
scores are identical to the corresponding ratios of the true
scores.

Stevens (1951) argued that scale of measurement is an
important consideration when determining the type of sta-
tistical analysis to be employed. For example, the mode was
considered appropriate for any scale, even a nominal scale.
If a fruit basket contains five apples, four oranges, and nine
bananas, the modal fruit is a banana. The median was con-
sidered appropriate for any scale that was at least ordinal.
Imagine that we select five fruits, identified as A, B, C, D,
and E. Their true weights are 1.5, 3, 4.5, 9, and 27, and their
ordinal scores are 1, 2, 3, 4, and 5. The entity associated
with the median is C regardless of whether you use the
true scores of the ordinal scores. Interval scores 4, 7, 10,
19, and 55 have a linear relationship with the true scores,
m = 1+2t. The mean true score, 9, is associated with Entity
D, and the mean interval score, 19, is also associated with
Entity D. With the ordinal scores, however, the mean score,
3, is associated with Entity B.

There has been considerable controversy regarding the
role that scale of measurement should play when con-
sidering the type of statistical analysis to employ. Most
controversial has been the suggestion that parametric sta-
tistical analysis is appropriate only with interval or ratio
data, but that nonparametric analysis can be employed
with ordinal data. This proposition has been attacked by
those who opine that the only assumptions required when
employing parametric statistics are mathematical, such
as homogeneity of variance and normality (Gaito 1980;
Velleman and Wilkinson 1993). Defenders of the mea-
surement view have argued that researchers must consider
scale of measurement, the relationship between true scores
and observed scores, because they are interested in making
inferences about the constructs underlying the observed
scores (Maxwell and Delaney 1985; Townsend and Ashby
1984). Tests of hypotheses that groups have identical means



Scales of Measurement and Choice of Statistical Methods

1285

on an underlying construct or that the Pearson p between
two underlying constructs is zero do not require inter-
val level data given the usual assumptions of homogene-
ity of variance and normality, but with non-interval data
the effect size estimates will not apply to the underlying
constructs (Davison and Sharma 1988).

When contemplating whether the observed scores to
be analyzed represent an interval scale or a non-interval,
ordinal scale, one needs makes a decision about the
nature of the relationship between the true scores and the
observed scores. If one conceives of true scores as part of
some concrete reality, the decision regarding scale of mea-
surement may come down to a matter of faith. For example,
how could one know with certainty whether or not the
relationship between IQ scores and true intelligence is lin-
ear? One way to avoid this dilemma is to think of reality
as something that we construct rather than something we
discover. One can then argue that the results of paramet-
ric statistical analysis apply to an abstract reality that is a
linear function of our measurements. Conceptually, this is
similar to defining a population on a sample rather than
the other way around — when we cannot obtain a true ran-
dom sample from a population, we analyze the data we can
obtain and then make inferences about the population for
which our data could be considered random.

About the Author
For biography see the entry »Chi-Square Tests.

Cross References

»Rating Scales

»Scales of Measurement and Choice of Statistical Methods
» Variables

References and Further Reading

Davison ML, Sharma AR (1988) Parametric statistics and levels of
measurement. Psychol Bull 104:137-144

Gaito J (1980) Measurement scales and statistics: resurgence of an
old misconception. Psychol Bull 87:564-567

Maxwell SE, Delaney HD (1985) Measurement and statistics: an
examination of construct validity. Psychol Bull 97:85-93

Stevens SS (1951) Mathematics, measurement, and psychophysics.
In: Stevens SS (ed) Handbook of experimental psychology.
Wiley, New York, pp 1-49

Townsend JT, Ashby FG (1984) Measurement scales and statistics:
the misconception misconceived. Psychol Bull 96:394-401

Velleman PF, Wilkinson L (1993) Nominal, ordinal, interval, and
ratio typologies are misleading. Am Stat 47:65-72

Winkler RL, Hays WL (1975) Statistics: probability, inference, and
decision, 2nd edn. Holt Rinehart and Winston, New York

' Scales of Measurement and
Choice of Statistical Methods

DoNALD W. ZIMMERMAN
Professor Emeritus
Carleton University, Ottawa, ON, Canada

During the last century, it was conventional in many dis-
ciplines, especially in psychology, education, and social
sciences, to associate statistical methods with a hierarchy
of levels of measurement. The well-known classification
proposed by Stevens (1946) included nominal, ordinal,
interval, and ratio scales, defined by increasingly stronger
mathematical restrictions. It came to be generally believed
that the use of statistical significance tests in practice
required choosing a test to match the scale of measurement
responsible for the data at hand. Classes of appropriate sta-
tistical methods were aligned with the hierarchy of levels of
measurement.

In research studies in psychology and education, the
most relevant distinction perhaps was the one made
between interval scales and ordinal scales. The Student
t test (see »Student’s ¢ Tests), the ANOVA F test, and
regression methods were deemed appropriate for inter-
val measurements, and nonparametric tests, such as the
» Wilcoxon-Mann-Whitney test and the Kruskal-Wallis
test were appropriate for ordinal measurements.

Despite the widespread acceptance of these ideas by
many statisticians and researchers, there has been exten-
sive controversy over the years about their validity (see, for
example, Cliff and Keats 2003; Maxwell and Delaney 1985;
Michell 1986; Rozeboom 1966; Velleman and Wilkinson
1993; Zimmerman and Zumbo 1993). The mathematical
theory eventually included more refined definitions of
scales of measurement and additional types of scales (Luce
2001; Narens 1981), but the fourfold classification persisted
for a long time in textbooks and research articles.

Scales of Measurement and

Distributional Assumptions

The derivation of all significance tests is based on
assumptions about probability distributions, such as
independence, normality, and equality of the variances
of separate groups, and some tests involve more restric-
tive assumptions than others. In many textbooks and
research papers, the requirement of a specific level of
measurement was placed on the same footing as these
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distributional assumptions made in the mathematical
derivation of a test statistic. For example, the Student f test
and ANOVA F test were widely believed to assume three
things: normality, homogeneity of variance, and inter-
val measurement, while a nonparametric test such as the
Wilcoxon-Mann-Whitney test is presumably free from
the two distributional assumptions and requires only ordi-
nal measurement. The assumption of within-sample inde-
pendence is part of the definition of random sampling, and
it is typically taken for granted that the data at hand meets
that requirement before a test is chosen.

Many researchers believed that the parametric meth-
ods are preferable when all assumptions are satisfied,
because nonparametric tests discard some information in
the data and have less power to detect differences. Fur-
thermore, the parametric methods were considered to be
robust in the sense that a slight violation of assumptions
does not lessen their usefulness in practical research. Early
simulation studies, such as the one by Boneau (1960), were
consistent with these ideas.

Some complications arose for the orderly correspon-
dence of scales and statistics when researchers began to
investigate how the Type I and Type II errors of both
parametric and nonparametric significance tests depend
on properties of standard probability densities. It was
found that the nonparametric tests were often more pow-
erful than their parametric counterparts for quite a few
continuous densities, such as the exponential, lognormal,
mixed-normal, Weibull, extreme value, chi-square, and
others familiar in theoretical statistics. The power advan-
tage of the nonparametric tests often turned out to be quite
large (see, for example, Blair and Higgins 1980; Lehmann
1975; Randles and Wolfe 1979; Sawilowsky and Blair 1992;
Zimmerman and Zumbo 1993). The superiority of non-
parametric rank methods for many types of non-normal
data has been extensively demonstrated by many simula-
tion studies.

It can be argued that samples from one of these
continuous densities by definition conform to interval
measurement. That is, equal intervals are assumed in defin-
ing the parameters of the probability density. For this rea-
son it is legitimate to employ ¢ and F tests of location on
sequences of random variates generated by different com-
puter programs and obtain useful information. Similarly,
the scaling criteria imply that calculation of means and
variances is appropriate only for interval measurement, but
it has become clear that slight violations of “homogeneity
of variance” have severe consequences for both parametric
and nonparametric tests.

Rank Transformations and Appropriate
Statistics

In the controversies surrounding the notion of levels and
measurement, theorists have tended to overlook the impli-
cations of a procedure known as the rank transformation.
It was discovered that the large-sample normal approxima-
tion form of the Wilcoxon-Mann-Whitney test is equiva-
lent to the Student ¢ test performed on ranks replacing the
original scores and that the Kruskal-Wallis test is equiv-
alent to the ANOVA F test on ranks (Conover and Iman
1981). In the Wilcoxon-Mann-Whitney test, two samples
of scores of size n and n, are combined and converted to a
single series of ranks, that is, integers from 1 to r; +7;. Simi-
larly, in one-way ANOVA, scores in k groups are combined
and converted to n; + ny + ... + ny ranks. Then, the scores
in the original samples are replaced by their corresponding
ranks in the combined group.

The above equivalence means that this rank transfor-
mation followed by the usual Student ¢ test on the ranks
replacing the initial scores leads to the same statistical deci-
sion as calculating and comparing rank sums, as done by
a Wilcoxon-Mann-Whitney test. The Type I and Type II
error probabilities turn out to be the same in both cases.
That is true irrespective of the distributional form of the
original data. If a Student ¢ test performed on ranks is
not appropriate for given data, then the Wilcoxon-Mann-
Whitney test is not appropriate either, and vice versa.

Considered together with the power superiority of
nonparametric tests for various non-normal densities,
these findings imply that the power of ¢ and F tests often
can be increased by transforming interval data to ordinal
data. Arguably, the main benefit of converting to ranks
is not a change in scale, but rather augmentation of the
robustness of the t and F tests. At first glance it seems para-
doxical that statistical power can be increased, often sub-
stantially, by discarding information. However, one should
bear in mind that conversion to ranks not only replaces
real numbers by integers, but also alters the shape of dis-
tributions. Whatever the initial form of the data, ranks
have a rectangular distribution, and, as noted before, the
shape of non-normal distributions, especially those with
heavy tails and extreme outlying values, certainly influ-
ences the power, or the extent of the loss of power, of
significance tests.

Otherwise expressed, changing the distributional form
of the data before performing a significance test appears
to be the source of the power advantages, not the
details of calculating rank-sums and finding quantiles
of the resulting test statistic from a unique formula.
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The rank transformation concept, together with the fact
that unequal variances of scores in several groups is inher-
ited by unequal variances of the corresponding ranks in the
same groups, also provides a rationale for the dependence
of both parametric and nonparametric tests on homogene-
ity of variance (Zimmerman 1996).

Another finding that is difficult to reconcile with
notions of scaling is the fact that the beneficial properties
of rank tests can be maintained despite alteration of the
ranks in a way that modifies the scale properties, some-
times substantially. For example, small random numbers
can be added to ranks, or the number of ranks can be
reduced in number, with little effect on the power of the
t and F tests under a rank transformation. That is, combin-
ingranks1, 2, 3, and 4 all into the value 1, ranks 5, 6, 7, and 8
into the value 2, and so on, haslittle influence on the power
of the test when sample sizes are moderately large.

A quick illustration of these properties of scores and
ranks is provided by Table 1, which gives the probability
of rejecting Hy by three significance tests at the 0.05 level.
These computer simulations consisted of 50,000 pairs of
independent samples of size 50 from normal and seven
non-normal distributions, generated by a Mathematica
program. The columns, labeled ¢ represent the Student ¢
test, those labeled W are the Wilcoxon-Mann-Whitney
test, and those labeled m are the t test performed on
modified ranks.

In this modification, all scores from both groups
were combined and ranked as usual. Then, instead of

transforming to integers, each original score was replaced
by the median of all higher scores in the ranking; that is,
the lowest score, ranked 1, was replaced by the median of
all the higher scores ranked from 2 to n; + n, the score
ranked 2 was replaced by the median of scores ranked from
3 to n1 + ny, and so on. Finally, the scores in the two ini-
tial groups were replaced by their corresponding modified
ranks, and the significance test was performed.

This procedure resulted in a kind of hybrid ordi-
nal/interval data not too different from ordinary ranks,
whereby the real values of the original scores were retained,
the distribution shape was compressed, and »outliers were
eliminated. Table 1 shows that the Type I error rates of
the ¢ test on these modified ranks were close to those of
ordinary ranks for the various distributions. Moreover, the
t test on the modified values was nearly as powerful as
the Wilcoxon-Mann-Whitney test for two distributions
where the ordinary ¢ test is known to be superior, and it
was considerably more powerful than the ¢ test and some-
what more powerful than the Wilcoxon-Mann-Whitney
test for distributions for which the nonparametric test is
known to be superior.

All these facts taken together imply there is not a
one-to-one correspondence between the hierarchy of lev-
els of measurement and methods that are appropriate for
making correct statistical decisions. Transforming data
so that it conforms to the assumptions of a significance
test is not itself unusual, because for many years statisti-
cians employed square-root, reciprocal, and logarithmic

Scales of Measurement and Choice of Statistical Methods. Table 1 Type | error rates and power of Student t test,

Wilcoxon-Mann-Whitney test, and t test on modified ranks, 50,000 iterations at 0.05 level, samples from normal and seven

non-normal distributions

Normal 0.051 0.051 0.053 0.314 0.298 0.295 0.847 0.831 0.812
Exponential 0.049 0.049 0.050 0.331 0.615 0.689 0.842 0.978 0.995
Mixed-normal 0.052 0.051 0.050 0.336 0.952 0.967 0.842 1.000 1.000
Lognormal 0.041 0.051 0.051 0393 0.913 0.962 0.841 0.999 1.000
Extreme value 0.048 0.048 0.049 0.329 0.380 0.426 0.842 0.899 0.934
Uniform 0.049 0.048 0.049 0.31 0.294 0.310 0.845 0.798 0.840
Half-normal 0.049 0.050 0.051 0.318 0.385 0.420 0.837 0.890 0.943
Chi-square 0.049 0.049 0.050 0.326 0.489 0.551 0.845 0.958 0.987
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transformations. The rank transformation can be regarded
as a member of the same broad class of methods as those
procedures. Unlike those methods, it is not continuous
and has no inverse. That can be an advantage, because, by
substituting small integers for intervals of real numbers, it
lessens skewness and eliminates outliers.

As we have seen, the rank transformation in several
instances is equivalent to a corresponding nonparametric
test, in the sense that both either reject or fail to reject Ho
for given data. The earlier normalizing transformations do
not possess such equivalences with well-known nonpara-
metric methods. Each is best suited to a specific problem,
such as stabilizing variances or changing the shape of a
particular distribution, whereas conversion to ranks is an
omnibus transformation that always brings data into a
rectangular form with no outliers. Also, it is possible to
reverse the perspective and regard the Wilcoxon-Mann-
Whitney test and the Kruskal-Wallis test as having an
affinity with those normalizing transformations, because
the conversion to ranks, not the specific formula used in
calculations, is apparently what makes the difference.

Conclusion

When all is said and done, the theory of scales of measure-
ment, although interesting and informative in its own right,
is not closely related to practical decision-making in applied
statistics. Present evidence suggests that the mathematical
property most relevant to choice of statistics in research
is the probability distribution of the random variable that
accounts for the observed data.

Caution is needed in making choices, and the ratio-
nale for a decision is likely to be more subtle and complex
than the prescriptions in textbooks and software pack-
ages. In practice, the shape of a population distribution
is not usually known with certainty. The degree of viola-
tion of assumptions fluctuates from sample to sample along
with the estimates of the parameters, no matter what the
population may be and what measurement procedures are
used. Basing the choice of an appropriate test on inspec-
tion of samples, or even on preliminary significance tests
performed to assess the validity of assumptions, can lead
to incorrect statistical decisions with high probability.
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Introduction

A simple filter often applied in empirical econometric work
is the seasonal difference filter (1 — L*), where s is the
number of observations per year, typically s = 2,4,12 or
52. The seasonal differencing assumes that there are unit
roots at all the seasonal frequencies. The seasonal differ-
ence filter can be written as the product of (1 - L) and the
seasonal summation filter S(L), which for quarterly data is
S(L) = (1+L+L*+L?). The quarterly seasonal summation
filter has the real root —1 and the two complex conjugate
roots =i.

The existence of seasonal unit roots in the data gen-
erating process implies a varying seasonal pattern where
“Summer may become Winter” In most cases, such a situ-
ation is not feasible and the findings of seasonal unit roots
should be interpreted with care and taken as an indication
of a varying seasonal pattern, where the unit root model is
a parsimonious approximation and not the true DGP.

The idea that the seasonal components of a set of eco-
nomic time series are driven by a smaller set of common
seasonal features seems a natural extension of the idea that
the trend components of a set of economic time series
are driven by common trends. In fact, the whole business
of seasonal adjustment may be interpreted as an indirect
approval of such a view.

If the seasonal components are integrated, the idea
immediately leads to the concept of seasonal cointegra-
tion, introduced in the paper by Hylleberg et al. (1990).
In case the seasonal components are stationary, the idea
leads to the concept of seasonal common features, see
Engle and Hylleberg (1996), while so-called periodic coin-
tegration considers cointegration season by season, intro-
duced by Birchenhal et al. (1989). For a recent survey see
Brenstrup et al. (2004).

Seasonal Integration

In general, consider the autoregressive representation
¢ (L) y: = e, & ~ iid(0,0%), where ¢ (L) is a finite lag
polynomial. Suppose ¢ (L) has all its roots outside the
unit circle except for possible unit roots at the long-run
frequency w = 0 corresponding to L = 1, semiannual

frequency w = m corresponding to L = -1, and annual
frequencies w = {%, 37”} corresponding to L = +i.

Dickey et al. (1984) suggested a simple test for seasonal
unit roots in the spirit of the »Dickey - Fuller test for
long-run unit roots. They suggested estimating the auxil-
iary regression (1 - L4)yt = Moy + &1 & ~ iid(0,0%).
The DHE test statistic is the “t-value” corresponding to 7o,
which has a non-standard distributed tabulated in Dickey
et al. (1984). This test, however, is a joint test for unit roots
at the long-run and all the seasonal frequencies.

In order to construct a test for each individual unit
root and overcome the lack of flexibility in the DHF test,
Hylleberg et al. (1990) refined this idea. By use of the result
that any lag polynomial of order p, ¢ (L), with possible unit
roots at each of the frequencies w = 0, 7, [7/2,37/2], can
be written as ¢(L) = i, W +¢*(L)A(L),
Ok(L) =1- ZLgk = 1,-Li,—i, A(L) = Tj_; 8 (L), where
&k is a constant and ¢ (z) = 0 has all its roots outside the
unit circle, it can be shown that the autoregression can be
written in the equivalent form

" (L)yar = myr—1 + mayar1 + M3y3e-2 + maysi—1 + & (1)

where yi; = (1+L+ L? +L3)yt = (1+ L)1+ L)y,
yau = —(1-L+L*-L)yr = ~(1- L)1 + L*)yn, yz =
-(1-L%)y = -(1-L)(1+ L)ys, and yar = (1-L*) y =
(1-L)(1+L)(1+L*)y:. Notice that, in this representation,
¢* (L) is a stationary and finite polynomial if ¢ (L) only
has roots outside the unit circle except for possible unit
roots at the long-run, semiannual , and annual frequencies.

The HEGY tests of the null hypothesis of a unit root
are now conducted by simple “t-value” tests on m; for the
long-run unit root, m, for the semiannual unit root, and
“F-value” tests on 73, 714 for the annual unit roots. As in the
Dickey-Fuller and DHF models, the statistics are not t or
F distributed but have non-standard distributions. Critical
values for the “t” tests are tabulated in Fuller (1976) while
critical values for the “F” test are tabulated in Hylleberg
et al. (1990).

Tests for combinations of unit roots at the seasonal
frequencies are suggested by Ghysels et al. (1994). See also
Ghysels and Osborn (2001), who correctly argue that if the
null hypothesis is four unit roots, i.e., the proper transfor-
mation is (1— L*), the test applied should be an “F-test” of
mi, i =1,2,3,4, all equal to zero.

Asin the Dickey-Fuller case the correct lag-augmentat-
ion in the auxiliary regression (1) is crucial. The errors
need to be rendered white noise in order for the size to be
close to the stipulated significance level, but the use of too
many lag coefficients reduces the power of the tests.
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Obviously, if the data generating process, the DGP,
contains a moving average component, the augmenta-
tion of the autoregressive part may require long lags, see
Hylleberg (1995). As is the case for the Dickey-Fuller test,
the HEGY test may be seriously affected by moving aver-
age terms with roots close to the unit circle, but also one
time jumps in the series, often denoted structural breaks
in the seasonal pattern, and noisy data with »outliers may
cause problems.

A straightforward extension of the HEGY test for quar-
terly data produces tests for semiannual and monthly data,
see Franses (1991) However the extension to weekly or daily
data is not possible in practice due to number of regressors
in the auxiliary regressions.

The results of a number of studies testing for seasonal
unit roots in economic data series suggest the presence of
one or more seasonal unit roots, but often not all required
for the application of the seasonal difference filter, (1- L°),
or the application of the seasonal summation filter, S(L).
Thus, these filters should be modified by applying a fil-
ter which removes the unit roots at the frequencies where
they were found, and not at the frequencies where no unit
roots can be detected. Another and maybe more satisfac-
tory possibility would be to continue the analysis applying
the theory of seasonal cointegration.

Seasonal Cointegration

Seasonal cointegration exists at a particular seasonal fre-
quency if at least one linear combination of series, which
are seasonally integrated at the particular frequency, is
integrated of a lower order. For ease of exposition we will
concentrate on quarterly time series integrated of order 1.
Quarterly time series may have unit roots at the annual
frequency 7/2 with period 4 quarters, at the semian-
nual frequency 7 with period 2 quarters, and/or at the
long-run frequency 0. The cointegration theory at the
semiannual frequency, where the root on the unit cir-
cle is real, is a straightforward extension of the cointe-
gration theory at the long run frequency. However, the
complex unit roots at the annual frequency leads to the
concept of polynomial cointegration, where cointegration
exists if one can find at least one linear combination
including a lag of the seasonally integrated series which is
stationary.

In Hylleberg et al. (1990) seasonal cointegration was
analyzed along the path set up in Engle and Granger (1987).
Consider the quarterly VAR model II(L)X; = &,t =
1,2,...T, where II (L) is a p x p matrix of lag polynomials
of finite dimension, X; is a p x 1 vector of observations on
the demeaned variables, while the p x 1 disturbance vec-
tor is & ~ NID (0,Q). Under the assumptions that the

p variables are integrated at the frequencies 0, 7r/2,37/2,
and 7, and that cointegration exists at these frequencies as
well, the VAR model can be rewritten as a seasonal error
correction model

O(L)Xar = IhiXy, -1 + Mo Xo 1 + 3X3,0-0 + [T X301 + &1,
I = o1 B1, I = a2 85, T3 = aua By — a3 B3,
15 = o B + a3 85, (2)

where the transformed p x 1 vectors Xj;,j = 1,2,3,4, are
defined as in a similar way as y;;,j = 1,2,3,4 above, and
where Z; = B1Xi; and Z»; = B3 X5 contain the cointegrat-
ing relations at the long-run and semiannual frequencies,
respectively, while Z3; = ( B+ ﬁf‘L) X3¢ contains the poly-
nomial cointegrating vectors at the annual frequency. In
Engle et al. (1993) seasonal and non-seasonal cointegrating
relations were analyzed between the Japanese consump-
tion and income, estimating the relations for Zj;, j = 1,2, 3,
in the first step following the Granger-Engle two step
procedure.

The well known drawbacks of this method, especially
when the number of variables included exceeds two, is
partly overcome by Lee (1992) who extended the max-
imum likelihood based methods of Johansen (1988) for
cointegration at the long run frequency, to cointegration
at the semiannual frequency 7.

To adopt the ML based cointegration analysis at the
annual frequency 7/2 with the complex pair of unit
roots +i, is somewhat more complicated, however.

To facilitate the analysis, a slightly different formula-
tion of the seasonal error correction model is given in
Johansen and Schaumburg (1999). In our notation the
formulation is

O(L)Xar = 11 Xn,1 + 02 s X -1 + 0 o Xos t

4
+ a**[—;**xx—x—,t + &

2006 = 003 + 1004, 2055 = O3 — i(X4,ﬁ* = ﬁ3 + iﬁ4,ﬁ>«->\-

=Ps—ipa
Xut = (Xt—z - Xt—4) + i(Xt—l - Xz—3)
= —X3,-2 — iX3,1
Xuwp = (Xim2 = Xi—a) — i(Xe1 — Xi—3)
= —X3,1-2 + 1X3,-1. (3)

The formulation in (3), writes the error correction model
with two complex cointegrating relations, Z; = f%Xx.:
and Zy 4t = By Xsxt, corresponding to the complex pair
of roots +i. Notice that (2)) can be obtained from (3) by
inserting the definitions of ax, f+, X«,1, and their complex
conjugates &, Bxx, X1, and order the terms.
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Note that (2) and (3) show the isomorphi between
polynomial lags and complex variables. The general results
may be found in Johansen and Schaumburg (1999) and
Cubbada (2001). The relation between the cointegration
vector 3, and polynomial cointegration vector f8,,(L) is
Bm(L) = Bm for wm = 0,7, and Bn(L) = [Re(Bm) —
Im(ﬂm)]% for w,, € (0, 7).

Based on the extension of the »canonical correlation
analysis to the case of complex variables by Brillinger
(1981), Cubbada applies the Johansen ML approach based
on canonical correlations to obtain tests for cointegration
at all the frequencies of interest, i.e., at the frequencies 0
and 7 with the real unit roots =1 and at the frequency 7/2
with the complex roots +i.

Hence, for each of the frequencies of interest the like-
lihood function is concentrated by a regression of Xy
and X ,;—1, X2,,—1 or the complex pair (X, X«x, ) on the
other regressors, resulting in the complex residual matri-
ces Uy r and V. ; with complex conjugates Us ¢ and Vi t,
respectively. After having purged X4; and Xi -1, X,1-1 or
the complex pair (Xx ¢, X4xr) for the effects of the other
regressors, the cointegration analysis is based on a canon-
ical correlation analysis of the relations between U, ; and
V.t The product matrices are Syy = T Zthl U*,tUi*,t,
Svv = TS L Vau Ve and Suv = TS0, Uet Vi s
and the trace test of r or more cointegrating vectors
is found as TR = -2T Z{.’:Hl In(1 - ’X,-), where N >
> .....’Xp are the ordered eigenvalues of the problem
|)\va - SVUSI_JIUSUV| = 0 .The corresponding (possibly
complex) eigenvectors properly normalized are vj, j =
L,2....,p, where the first r vectors form the cointegrating
matrix f3.

Critical values of the trace tests for the complex roots
are supplied by Johansen and Schaumburg (1999) and
Cubadda (2001), while the critical values for cointegra-
tion at the real root cases are found in Lee (1992) and
Osterwald-Lenum (1992).

Furthermore, tests of linear hypotheses on the poly-
nomial cointegration vectors may be executed as y* test,
similar to the test applied in the long-run cointegration
case.

Although economic time series often exhibit non-
stationary behavior, stationary economic variables exist as
well, especially when conditioned on some deterministic
pattern such as linear trends, seasonal dummies, breaks
etc. However, a set of stationary economic times series
may also exhibit common behavior, and for instance share
a common seasonal pattern. The technique for finding
such patterns, known as Common Seasonal Features were
introduced by Engle and Hylleberg (1996) and further
developed by Cubadda (1999).
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Introduction

Seasonality customarily refers to the annual cycle in time
series sampled at intervals that are integer fractions of the
annual, such as quarterly or monthly observations. The
concept can easily be generalized to analogous features,
such as the daily cycle in hourly observations.

The characteristics of seasonality are most easily visu-
alized in the frequency-domain representation of the time
series. Denoting the number of observations per year by S,
the seasonal cycle is represented by peaks in the spectral
density at 277/S and at integer multiples of this frequency
2km/S,1 < k < §/2. Seasonal cycles are distinct from other
cycles by their time-constant length, though their shapes
often change over time. These shapes often differ strongly
from pure sine waves, and two peaks and troughs over the
year are not uncommon.

The occurrence of seasonal cycles in time series has
generated two related but distinct strands of literature,
which can be roughly labeled as seasonal modeling and
seasonal adjustment.

Seasonal modeling is concerned with typically para-
metric time-series models that describe the seasonal

behavior of the observed variable as well as the remain-
ing characteristics. In the spectral density interpretation,
a seasonal model captures the spectral mass at the sea-
sonal frequencies as well as the remaining characteristics
of the spectral density, for example the low frequencies that
represent the long run.

Seasonal adjustment builds on the concept of a decom-
position of the data-generating process into a seasonal and
a non-seasonal component. This decomposition can be
additive (X = X* + X™) or multiplicative (X = X* - X").
The aim of adjustment is to retrieve the non-seasonal part
X"™ from the observed X.

Seasonal Adjustment

Seasonality is not confined to economics data. Exam-
ples for seasonal variables range from river-flow data
to incidences of flu epidemics. The practice of seasonal
adjustment, however, is mainly restricted to economic
aggregates.

In economics, seasonal adjustment is so popular that
many variables — for example, some variables of national
accounts — are only available in their adjusted form, that is
as an estimate of X". It has often been pointed out that this
preference tacitly assumes that X* is generated by forces
outside the economic world, such that the seasonal com-
ponent of a variable does not contain useful information
on the non-seasonal component of the same and of other
variables. A famous citation by Svend Hylleberg (Hylleberg
1986) sees seasonal cycles as affected by cultural traditions,
technological developments, and the preferences of eco-
nomic agents, which can be viewed as a critique of this
approach.

Currently, seasonal adjustment of economic data is
mainly enacted by standardized methods, typically X-12 in
the U.S. and TRAMO-SEATS in Europe. The conceptual
basis of X-12 is a sequence of two-sided linear filters, out-
lier adjustments, and the application of linear time-series
models to isolate the components (see Findley et al. 1998).
TRAMO-SEATS aims at isolating the components using
the concepts of unobserved-components representations
and of signal extraction. The assessment of the strengths
and weaknesses of these procedures is difficult, as the true
components are never observed.

Seasonal Modeling

The current literature on seasonal modeling builds on
the SARIMA (seasonal autoregressive integrated moving-
average) models by Box and Jenkins (1970), who
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recommend usage of the seasonal difference X; — X;_s, fol-
lowed by traditional linear modeling of the filtered series.
The application of this filter assumes the existence of the
factor 1-B® in the generalized ARMA representation of the
original series, where B denotes the lag operator. This fac-
tor has zeros at S equidistant points around the unit circle,
hence the name seasonal unit roots. Apart from +1 and pos-
sibly —1, these unit roots come in complex pairs, such that
the S roots correspond to [S/2] +1 frequencies or unit-root
events, if [.] denotes the largest integer.

The 1980s saw an increasing interest in replacing the
Box-Jenkins visual analysis on differencing by statistical
hypothesis tests. An offspring of the unit-root test by
Dickey and Fuller is the test for seasonal unit roots by
Hylleberg et al. (1990), the HEGY test. A regression is run
for seasonal differences of the variable on § specific trans-
forms. F- and ¢-statistics allow investigating the unit-root
events separately. Under the null of seasonal unit roots
will the HEGY statistics follow non-standard distributions
that can be represented as Brownian motion integrals or as
mixtures of normal distributions.

For example, consider quarterly data (S = 4). In the
HEGY regression, X; — X;—4 is regressed on four lagged
‘spectral’ transforms, ie., on Xi—1 + Xi—2 + Xi—3 + Xi—4,
on —X;1 + Xr—2 — Xi—3 + X¢—4, on X;—1 — X;—3 and on
Xi—2 — Xi—4. The t-statistic on the first regressor tests for
the unit root at +1, the t on the second regressor for the
root at —1, and an F-statistic on the latter two terms tests
for the complex root pair at +i.

Testing for seasonal unit roots can be interpreted
as testing whether seasonal cycles experience persistent
changes over time or whether seasonal differencing is
really necessary to yield a stationary variable. A process
with seasonal unit roots is often called seasonally inte-
grated. A variable transformed into white noise by seasonal
differencing is a special seasonally integrated process and
is called a seasonal »random walk.

The HEGY test was generalized to multivariate mod-
els, to cointegration testing, and recently to panel analysis.
Other tests for seasonal unit roots have been developed,
some of them with unit roots as the alternative (for exam-
ple, Canova and Hansen 1995). A detailed description of
many of these tests and also of other issues in seasonality
can be found in Ghysels and Osborn (2001).

While the seasonal unit-root analysis is confined to
extensions of the Box-Jenkins SARIMA class, more sophis-
ticated seasonal models have been suggested, for example
models with evolving seasonality, seasonal long memory,
and seasonality in higher moments. The most intensely

investigated class among them is the periodic model (see
Franses 1996).

An Example

The time series variable is the quarterly number of
overnight stays in the Austrian region of Tyrol for the
years 1975 to 2008, which is constructed from the Austrian
WIFO data base. The time-series plot in Fig. 1 shows the
seasonal structure clearly.

It is a common and recommended practice to plot
such series by quarters. The changes of ranks of quarters
reflect the changes in the seasonal cycle. Figure 2 shows
the increasing importance of winter tourism (skiing) over
the observation period.

In an estimate of the spectral density (see Fig. 3),
the seasonal peaks at m and 7/2 are recognizable, as is
another non-seasonal peak at the zero frequency (the

1975 1980 1985 1990 1995 2000 2005

Seasonality. Fig. 1 Overnight stays in Tyrol, quarterly observa-
tions 1975-2008

0 e

A~
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1975 1980 1985 1990 1995 2000 2005

Seasonality. Fig.2 Overnight stays in Tyrol, plotted by quar-
ters. Curves represent quarters | (solid), Il (dashes), lll (dots), and
IV (dash-dotted)
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Seasonality. Fig. 3 Spectral density estimate for the series on
Tyrolean overnight stays

trend). Similar information is provided by the correlo-
gram. Statistical tests confirm that this variable appears to
have ‘seasonal unit roots. For example, the HEGY regres-
sion introduced above, with quarterly dummies, a trend,
and a lagged X;_1 — X;_5 as additional regressors, deliv-
ers t-statistics of —2.34 and —3.04, and an F-statistic of
2.56. All of these values are insignificant at 5%. The sea-
sonal differencing operator is required to yield a stationary
variable.
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' Selection of Appropriate
Statistical Methods in Developing
Countries

RAYMOND ZEPP
Dewey International University, Battambang, Cambodia

Statistical procedures are dictated by the nature of the
research design. To the extent that comparisons of group
means, searching for trends, or measuring central ten-
dency and dispersion are universal objectives in all
societies, it might be argued that the choice of statistical
methods should be independent of the country or culture
in question.

On the other hand, research in developing countries
presents several challenges that are not as prevalent in
developed countries, and therefore, the appropriateness of
the statistical treatment may vary according to the type of
data available.

First, data collected in developing countries can suffer
from deficiencies of reliability. Industries, for example, may
submit their production figures to the national statistics
office in a variety of units of measurement (kilograms, tons,
pounds), and these discrepancies are not always noticed by
untrained workers in the statistics office.

As a result, statistics should be kept simple and
transparent, so that problems of reliability can surface
and be spotted easily. Research reports should include
»sensitivity analysis, that is, an analysis of how much vari-
ation in outputs could be caused by small variations in
inputs.

Second, experimenters may find it more difficult in
developing countries to control all variables. For example,
social research may find it difficult to control the socioeco-
nomic status of the subjects of a study. In this case, it may
be more difficult to identify the real variable that gives rise
to group differences. Thus, factoring out extraneous vari-
ables, for example by the »-analysis of covariance, may be a
primary focus of research designs in developing countries.
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Third, probability distributions may stray from the
normal bell-shaped curve. Many developing countries
have not only widely disparate populations, but may have
two or three subpopulations such as tribal cultures or
rich-poor splits that can yield bimodal distributions, or
even distributions with most of the data occurring at the
extremes of the curve rather than in the middle.

For this reason, there may be a tendency to use non-
parametric statistical models in the analysis of data. Or,
if parametric methods are to be used, careful study of the
robustness of the procedure should be taken into account.
If slight discrepancies from normality can result in large
deviations in results, then the use of the parametric statis-
tics should be called into question.

Fourth, technical and educational facilities in devel-
oping countries may limit the capacity to use more
sophisticated statistical methods. For one thing, computer
capability may be limited in either hardware or software,
or else local statisticians may not be fully conversant with
statistical software packages. In either case, it is probably
more appropriate to adopt statistical methods that are as
simple as possible.

A note needs to be made concerning statistical edu-
cation in developing countries. Because schools and even
universities lack the necessary computers, statistics as a
subject is often taught by the old-fashioned method of
calculations by hand-held calculators or even by pencil-
and-paper. In such an educational system, the emphasis is
often on the calculation algorithms of, say, means and stan-
dard deviations, rather on the interpretation of results. In
developed countries where the entire class has unlimited
access to computers with statistical software, the calcula-
tions can be done very easily, so that the emphasis can
be placed on interpreting the results, or on assessing the
appropriateness of the statistical method in question. In
developing countries, however, students often “lose sight
of the forest for the trees,” that is, their academic assess-
ment is entirely dependent on their ability to calculate
algorithms that they do not focus on design of experiments
and interpretation of results.

A second point about education in developing coun-
tries is the lack of teachers trained in locally appropriate
methods. A university teacher quite likely has been trained
in the developed world, and therefore wishes to teach stu-
dents the most sophisticated and up-to-date methods, even
though those methods may not be the most appropriate in
the local context.

Related to the above point is the fact that the publica-
tion of research results is often biased by the complexity
of the statistical methods used. A journal editor may reject
a research study simply because the statistics used do not

appear sophisticated enough to merit publication. Thus, a
researcher may reject a simple but appropriate method in
favor of a more complicated one in order to impress the
readers.

One may summarize the above points in four recom-
mendations:

1. When in doubt, opt for the simpler statistical procedure.

2. Be prepared to use nonparametric statistics.

3. Sensitivity Analysis should be carried out to compen-
sate for possibilities of unreliable data.

4. Students should be trained in the appropriateness of
statistical design and interpretation of results, not just
in the calculation of statistical algorithms.

About the Author

Raymond Zepp holds a Bachelor’s Degree in Mathemat-
ics from Oberlin College, a Master’s Degree in Mathe-
matics from the University of Cincinnati, and a Ph.D. in
Mathematics Education from the Ohio State University.
He is Vice President of the newly-opened Dewey Interna-
tional University in Battambang, Cambodia. As founder
of DIU (www.diucambodia.org), he has incorporated his
vision of “Learning by Doing” into a strong emphasis
on community service learning and research. Dr. Zepp
has taught statistics in developing universities, govern-
ments, and non-governmental organizations around the
world, for example, in Nigeria, Lesotho, Macau, Papua
New Guinea, Micronesia, Mozambique, Uganda, Qatar,
and Cyprus, and as Fulbright Professor in the Ivory Coast.
He has set up research institutes at the University of Cam-
bodia and at Qatar University, and has designed new uni-
versities in Nigeria (Maiduguri) and Papua New Guinea
(Goroka), and of course Cambodia (Dewey International).
He has done statistical consulting for USAID, UNDP, Asia
Development Bank, the World Bank, and others. Dr. Zepp
has authored or co authored over 40 books (e.g., Business
Research and Statistics, Hong Kong: Asia Pacific Inter-
national Press, 1988) and over 100 journal articles, con-
ference papers, etc. He currently resides in Battambang,
Cambodia.

Cross References

» African Population Censuses

»Decision Trees for the Teaching of Statistical Estimation
»Learning Statistics in a Foreign Language
»Nonparametric Statistical Inference

»Promoting, Fostering and Development of Statistics in
Developing Countries

»Role of Statistics: Developing Country Perspective
»Sensitivity Analysis



www.diucambodia.org

1296

Semiparametric Regression Models
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In statistics, semiparametric regression includes regres-
sion models that combine parametric and nonparametric
models. They are often used in situations where the fully
nonparametric model may not perform well or when the
researcher wants to use a parametric model but the func-
tional form with respect to a subset of the regressors or the
density of the errors is not known. Suppose Y is a response
and X = (xi,...,Xp) are covariates. A basic goal is to esti-
mate m(x) = E(Y|X = x) or the model Y = m(X) + ¢
with E(¢]X) = 0 almost surely. Without any information
about the structure of the function, it is difficult to estimate
m(x) well when p > 1, and as a consequence many para-
metric and semiparametric models have been proposed
that impose structural constraints or special functional
forms upon m(x). Popular semiparametric models include
partially linear models, see for example Speckman (1988),
in which

Y= Bixi+ .+ fpo1Xpo1 + g (Xp) + &,
additive models, see for example Hastie and Tibshirani
(1990), in which

Y=g(x)+g@(x)+..+5(x) +&

single-index models, see for example Ichimura (1993), in
which

Y =g(Bixi+ ...+ fpXp) + &
varying coefficient models, see for example Chen and Tsay
(1993) and Hastie and Tibshirani (1993), in which

Y= gl(Xl) +g2(X1)X2 + ... +gp(X1)Xp + &.

and extended partially linear single-index model, see Xia
et al. (1999), in which

Y =Bixi+ ..+ Bpxp + g(01x1 + ... + 0p%,) + &

In all the above models, g, ...,gy and g are unknown
functions and fi, ..., Bp, 01, ..., 0 are parameters need to be
estimated. A general form of the semiparametric model
including all the models above is

u{E(Y[x1,...%p) } = G(g, B, X),

where g = (g1,...g;)" are unknown smooth functions, G
is known up to a parameter vector 3, function g is known
and usually monotonic.

Both splines smoothing and Kernel smoothing can be
used to estimate these models. The general model can be
estimated by the method proposed by Xia et al. (2002).
Theoretically, all these models can avoid the “curse of
dimensionality” in the estimation. The estimators of the
unknown functions g1, ..., gy and g can achieve the optimal
consistency rate of univariate function, and the parameters
such as fi, ..., B and 0 are root-n consistent.

These models have been found very useful in applica-
tion; see for example Hastie and Tibshirani (1990), Fan and
Gijbels (1996) and Ruppert et al. (2003).
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For any random variable X with finite variance, and any
constant ¢

E{(X-1)}* =E{(X - 1) ) + E{(X - 1)"}".

Ift = u = EX, then E{(X - t)}* = o7, the vari-
ance of X. The quantity E{ (X — u)~}* is called the (lower)
semi-variance of X whereas E{(X — u)*}* is called the
upper semi-variance of X. In financial applications where
X represents return on an investment, o is widely used
as a measure of risk of an investment (portfolio). In that
context ¢ is called volatility since it measures volatility of
returns. Risk-averse investors like consistency of returns
and hence lower volatility. In order to compare two or
more investments one compares their returns per unit of
risk, that is, y/o = 1/coeflicient of variation. A modified
version of this measure is due to Sharpe (1994) who uses
the ratio excess returns (over risk free returns) divided by
volatility. Another widely used measure of investors’ risk
is beta, the coeflicient of linear regression of returns over
some benchmark returns such as Standard and Poor 500
index. Thus, a value of beta over 1 means that the invest-
ment under consideration is more volatile (risky) than the
benchmark.

For risk-averse investors neither of these two measures
fits their need. They are more interested in the downside
risk, the risk of losing money or falling below the target
return. For instance, variance assigns equal weight to both
deviations, those above the mean and those below the
mean. In that sense it is more suitable for symmetric return
distributions in which case ¢ = 2E{(X — )~ }*. In prac-
tice the return distributions are often skewed to the right.
No investor is averse to returns in excess of the target. He
or she prefers positive skewness because the chance of large
deviations from the target rate is much less.

Markowitz (1959) introduced

op(1) = E{(X - 1)"}*

as a measure of downside risk. Here ¢t may be called the
target rate of return which could be the riskless rate such
as the three month T-bill rate or the Libor rate. Recall that
E{(X - t)}* is minimized for t = y. On the other hand

op(t) is an increasing function of ¢ and a Chebyshev type
inequality holds:

P(X < pu—kop(t)) <1/k* fork>1.

As an estimate of o (¢) one generally uses the substitution
principle estimator

(1/n>le{(x,- 0y

and when ¢ = g we use the estimator

(1/n) z (-5

Markowitz (1952) was the first to propose a method of con-
struction of portfolios based on mean returns, and their
variances and covariances (see »Portfolio theory). In 1959
he proposed semivariance as a measure of downside risk
and advocated its use in portfolio selection. Due to compu-
tational complexity of semivariance and semicovariance,
however, he used the variance measure of risk instead.
After the advent of desktop computers and their com-
putational power in 1980s the focus shifted to portfolio
selection based on semivariance as a measure of downside
risk. See for example Markowitz et al. (1993).

Both op(t) and ou(t) (of(t) = E{(X - t)*}?) have
been used in Quality Control (see »Statistical Quality Con-
trol) in constructing process capability indices. See for
example, Kotz and Cynthia (1998). Other uses are in spa-
tial statistics and in construction of confidence intervals in
simulation output analysis Coobineh and Branting (1991).
The semi-standard deviation op(¢) can also be used in
setting up dynamic stop loss points in security trading.
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Existing guidelines for impact assessment recommend that
mathematical modeling of real or man-made system be
accompanied by a ‘sensitivity analysis’ - SA (EC 2009;
EPA 2009; OMB 2006). The same recommendation can be
found in textbooks for practitioners (e.g., Kennedy 2007,
Saltelli et al. 2008). Mathematical models can be seen as
machines capable of mapping from a set of assumptions
(data, parameters, scenarios) into an inference (model
output).
In this respect modelers should tackle:

e Uncertainty. Characterize the empirical probability
density function and the confidence bounds for a
model output. This can be viewed as the numeri-
cal equivalent of the measurement error for physical
experiments. The question answered is “How uncertain
is this inference?”

e Sensitivity. Identify factors or groups of factors
mostly responsible for the uncertainty in the predic-
tion. The question answered is “Where is this uncer-
tainty coming from?”

The two terms are often used differently, with sensitiv-
ity analysis used for both challenges (e.g., Leamer 1990).
We focus on sensitivity analysis proper, i.e., the effect of
individual factors or group of factors in driving the output
and its uncertainty.

Basic Concepts

The ingredients of a sensitivity analysis are the models
uncertain input factors and model’s outputs. Here and in
the following we shall interpret as factor all that can be
plausibly changed at the level of model formulation or
model input in the quest to map the space of the model pre-
dictions. Thus a factor could be an input datum acquired
with a known uncertainty, as well as a parameter estimated
with known uncertainty in a previous stage of modeling, as
well a trigger acting on the model’s structure (e.g., a mesh
size choice), or a trigger selecting the choice of a model ver-
sus another, or the selection of a scenario. Modelers usually
have considerable latitude of choice as to how to combine
factors in a sensitivity analysis, e.g., what to vary, what
to keep fixed. Also a modeler’s choice is, to some extent,
whether to treat factors as dependent upon one another or
as independent. The design and the interpretation of this
ensemble of the model simulations constitute a sensitivity
analysis.

Use of Sensitivity Analysis

Sensitivity analysis is a tool to test the quality of a model
or better the quality of an inference based on a model. This
is investigated by looking at the robustness of an inference.
There is a trade off here between how scrupulous an analyst
is in exploring the input assumptions and how wide the
resulting inference will be. Edward E. Leamer (1990) calls
this an organized sensitivity analysis:

» | have proposed a form of organized sensitivity analysis that
I call ‘global sensitivity analysis’ in which a neighborhood of
alternative assumptions is selected and the corresponding
interval of inferences is identified. Conclusions are judged to
be sturdy only if the neighborhood of assumptions is wide
enough to be credible and the corresponding interval of infer-
ences is narrow enough to be useful.

In fact it is easy to invalidate a model demonstrating that
it is fragile with respect to the uncertainty in the assump-
tions. Likewise one can criticize a sensitivity analysis by
showing that its assumptions have not been taken ‘wide
enough’

Examples of application of SA are: robustness assess-
ment in the context of impact assessment; model simplifi-
cation in the context of complex and computer demanding
models; quality assurance for detecting coding errors or
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misspecifications. Sensitivity analysis can also highlight
the region in the space of input factors for which the model
output assumes extreme values, as can be relevant in »risk
analysis. Likewise it can identify model instability regions
within the space of the factors for use in a subsequent
calibration study.

Local Vs Global Methods

In the model Y = f(Xi, X5, ..., Xk) Y is the output and X;s
are the input factors. The model is linear if each factor X;
enters linearly in f. The model is additive if the function f
may be decomposed into a sum of k functions f; = fi(X;),
each f; depending only on its own factor X;.

There are ‘local’ and ‘global’ methods for SA. If the
model is linear, a local approach based on first derivatives
of the output with respect to the input factors will provide
all the information that is needed for SA. If the model is
non linear but additive, i.e., there are no interactions among
factors, then derivatives of higher and cross order will be
needed. When a-priori information on the nature of the
model is not available (model-free setting) or the model is
acknowledged to be non additive, then global methods are
needed whereby all the space of the uncertain input fac-
tors is explored. Note that often modelers cannot assume
linearity and additivity as their models come in the form
of computer programs, possibly including several compu-
tational steps. In this situation it is better to use ‘global
methods (EPA 2009; Saltelli et al. 2008).

A Very Popular Practice: OAT-SA

Most sensitivity analysis met in the literature are realized
by varying one factor at a time — OAT approaches. Model-
ers have many good reasons to adopt OAT, including the
use of a common ‘baseline’ value from which all factors
are moved. Derivative based approaches - when the deriva-
tives stop at the first order - are a particular case of OAT.
Typical arguments in favor of OAT are: (1) The baseline
vector is a safe starting point where the model properties
are well known; (2) Whatever effect is detected on the out-
put, this is solely due to that factor which was moved and
to none other; (3) The chances of the model to crash or to
give unacceptable results are minimized as these generally
increase with the distance from the baseline.

Despite all these points in favor to an OAT sensitivity
analysis we would like to discourage as much as possible
this practice (Saltelli and Annoni 2010). OAT is inefficient
in exploring the input space as the coverage of the design
space is extremely poor already with few input factors. The
issue of uniformly covering the hyperspace in high dimen-
sions is a well known and widely discussed matter under
the name curse of dimensionality (Hastie et al. 2001). There
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Sensitivity Analysis. Fig. 1 Curse of dimensionality-horizontal
axis = number of dimensions; vertical axis = volume of the
inscribed unitary sphere

are various ways to visualize this ‘curse. Figure 1 may be
effective. It shows that, as the number of dimensions k
increases, the volume of the hyper-sphere inscribed in the
unitary hyper-cube goes rapidly to zero (it is less than 1%
already for k = 10).

The OAT approach — moving always one step away
from the same baseline - can be shown to generate points
inside the hyper-sphere. Of course when one throws a
handful of points in a multidimensional space these points
will be sparse, and in no way the space will be fully
explored. Still, even if one has only a handful of points at
disposal, there is no reason why one should concentrate all
these points in the hyper-sphere, i.e., closer to the origin
on average than randomly generated points in the cube.

An additional shortcoming of OAT is that it cannot
detect factor interactions. It may be the case that a fac-
tor is detected as no influential while it is actually relevant
but only through its interaction with the other factors. In a
model free setting, OAT is by no means the winning choice.

Design and Estimators

Unlike OAT, a good experimental design will tend to
change more factors simultaneously. This design can be
realized using the same techniques used for experimental
design (e.g., a saturated two-level design or an unsaturated
design with more levels). A practical alternative for numer-
ical experiments is a Monte Carlo method. Beside design,
sensitivity analysis needs sensitivity estimators which will
translate the function values computed at the design points
into sensitivity coefficients for the various factors.
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Model’s predictions have to be evaluated at different
points within the parameter space, whose dimensional-
ity is equal to the number k of input factors. To explore
the k-dimensional factor space (the hyperspace) the first
step in usually to reduce the problem to traveling across
the k-dimensional unit cube by using the inverse cumu-
lative distribution function of input factors. The input
space can be explored using ad hoc trajectories (such as in
the elementary effects method below), random numbers
or quasi-random numbers. Quasi-random numbers are
specifically designed to generate samples from the space
of input factors as uniformly as possible. For a review on
quasi random sequences and their properties see Bratley
and Fox (1988).

After sampling the space of input factors, various
methods may be applied to compute different sensitivity
measures. Selected practices are given next.

The Elementary Effect method (Morris 1991) provides a
ranking of input factors according to a sensitivity mea-
sure simply based on averages of derivatives over the space
of factors. In the Morris setting each input factor is dis-
cretized into p levels and the exploration of the input
space is carried out along r trajectories of (k + 1) points,
where each point differs from the previous one in only
one component. Each trajectory provides rough sensitivity
measures for each factor called elementary effect EE. The
elementary effect of trajectory j for factor i is:

->Xi—l)Xi + A:Xi+l)~ . ')Xk) - Y(XI)- . ->Xk)
A

. Y (X,
EEY)- X
@

where convenient choices for p and A are p even and
A equal to p/[2(p — 1)]. The point (X;,...,Xx) is any
point in the input space such that the incremental point
(X1, Xic1, Xi + A, Xis1, - . ., X ) still belongs to the input
space (for each i = 1,...,k). Elementary effect EEfj ) pro-
vides a sensitivity index which highly depends on the par-
ticular trajectory, being in this sense local. To compute a
more global sensitivity measure, many trajectories are cho-
sen and the average value of EEfj ) over j is computed.
Following a recent revision of original Morris’ measure,
factors may be ranked according to * (Campolongo et al.
2007):

1< -
ul == 3 |[EEY| (2)
rig
The elementary effects sensitivity measure is an efficient
alternative to OAT. It is used for factor screening, especially

with large and complex models. When modellers are con-
strained by computational costs, a recommended practice
is to perform a preliminary analysis by means of Morris’
trajectories to detect possible non influential factors. More
computationally intensive methods may be then applied to
a smaller set of input factors.

An alternative setting for sensitivity analysis is the ‘fac-
tor mapping’ which relates to situations when there is a
special concern towards a particular portion of the distri-
bution of the output Y, e.g., one is concerned with Y above
or below a given threshold - e.g., an investment loss or a
toxicity level not to be exceeded. This is the typical setting
of Monte Carlo Filtering MCF (see Saltelli et al. 2004 for
a review). The realizations of Y are classified into ‘good’ -
behavioral - and ‘bad - non-behavioral depending on the
value of Y with respect to the threshold. A MCF analysis is
divided into the following steps:

1. Compute different realizations of Y corresponding to
different sampled points in the space of input factor by
means of a Monte Carlo experiment;

2. Classify each realization as either behavioral (B) or
non behavioral (B);

3. For each X; define two subsets, one including all the
values of X; which give behavioral Y, denoted (X;|B),
the other including all the remaining values (X,v|§);

4. Compute the statistical difference between the two
empirical distribution functions of (X;|B) and (X;|B).
A factor is considered influential if the two distribution
functions are statistically different. Classical statistical
tests, such as Smirnov two-sample test may be used to
the purpose.

With variance-based sensitivity analysis (VB-SA) input
factors can be ranked according to their contribution to
the output variance. VB-SA also tackles interaction effects
instructing the analyst about cooperative behavior of fac-
tors. Interactions can lead to extremal values of model
output and are thus relevant to the analysis. In VB-SA sen-
sitivity analysis the two most relevant measures are ‘first
order’ and ‘total order’ indices.

The best systematization of the theory of variance-
based methods is due to Sobol’ (Sobol 1990), while total
sensitivity indices were introduced by Homma and Saltelli
(1996). For reviews see also Saltelli et al. (2005) or Helton
et al. (2006). Variance-based SA uses measures as

_ Vx (Bx, (Y]Xi))

S v(Y)

(3)
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and
Ex., (Vx (Y[X~)) Vx. (Ex, (Y[X~i))
St, = =1- (4)
V(Y) V(Y)
where X.i= {Xl,Xz, R CETD. €75 T ,Xk}.

Ex_,(Y|X;) is the value of Y obtained by averaging
over all factors but Xj, and is thus a function of X; alone.
Vx, (Ex.,(Y]X;)) is the variance of this function over X;
itself. Intuitively a high value of this statistics implies an
influent factor.

The quantity S; corresponds to the fraction of V(Y)
that can be attributed to X; alone. It can be viewed as a mea-
sure of how well Ex_,(Y|X;) fits Y: if the fitting is optimal
then S; = 1 and factor X; is highly relevant. The quan-
tity S, corresponds to the fraction of V(Y) that can be
attributed to X; and all its interactions with other factors.
For additive models the two measures S; and S, are equal
to one another for each factor X;. For an interacting factor
the difference St, — S; is a measure of the strength of the
interactions.

The estimation of S; and St, requires the computation
of k-dimensional integrals. They are generally approxi-
mated assuming independency among input factors and
using Monte-Carlo or quasi-Monte-Carlo sampling from
the joint distribution of the space of input factors. Alterna-
tive procedures for the computation of S; and St, are avail-
able which use direct calculations. They all derive from
metamodels, which provide cheap emulators of complex
and large computational models (see for example Oakley
and O’Hagan 2004; Storlie et al. 2009).
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Introduction

The use of humans as measurement instruments is playing
an increasing role in product development and user-driven
innovation in many industries. This ranges from the use
of experts and trained human test panels to market stud-
ies where the consumer population is tested for preference
and behavior patterns. This calls for improved understand-
ing on one side of the human measurement instrument
itself and on the other side the modeling and empirical
treatment of data. The scientific grounds for obtaining
improvements within a given industry span from exper-
imental psychology to mathematical modeling, statistics,
chemometrics, and machine learning together with spe-
cific product knowledge be it food, TVs, hearing aids,
mobile phones, or whatever.

In particular in the food industry, sensory and con-
sumer data is frequently produced and applied as the basis
for decision making. And in the field of food research, sen-
sory and consumer data is produced and used similar to
the industrial use, and academic environments specifically
for sensory and consumer sciences exist worldwide. The
development and application of statistics and data analysis
within this area is called sensometrics.

Sensory Science and Sensometrics

As the name indicates, sensometrics really grew out of
and is still closely linked to sensory science, where the
use of trained sensory panels plays a central role. Sen-
sory science is the cross-disciplinary scientific field deal-
ing with human perception of stimuli and the way they
act upon sensory input. Sensory food research focuses
on better understanding of how the senses react during
food intake, but also how our senses can be used in qual-
ity control and innovative product development. Histor-
ically it can be viewed as a merger of simple industrial
product testing with psychophysics as originated by G.T.
Fechner and S.S. Stevens in the nineteenth century. Prob-
ably the first exposition of the modern sensory science
is given by Amerine et al. (1965). Rose Marie Pangborn
(1932-1990) was considered one of the pioneers of sen-
sory analysis of food and the main global scientific con-
ference in sensory science is named after her. The first
Pangborn Symposium was held in Helsinki, Finland, in
1992 and these conferences are approaching in the order of

1,000 participants — the ninth was planned for in Bangkok,
Thailand, in 2011. Jointly with this, international senso-
metrics conferences have been held also since 1992, where
the first took place in Leiden, Holland (as a small work-
shop), and the tenth took place in Rotterdam, Holland,
in 2010. The sensometrics conferences have a participa-
tion level of around 120-150. Both conferences are working
together with the Elsevier Journal Food Quality and Prefer-
ence, which is also the official membership journal for the
Sensometrics Society (www.sensometric.org).

Sensometrics: Statistics, Psychometrics,
or Chemometrics?
The “sensometrician” is faced with a vast collection of data
types from a large number of experimental settings ranging
from a simple one-sample binomial outcome to complex
dynamical and/or multivariate data sets; see, e.g., Bredie
et al. (2010) for a recent review of quantitative sensory
methodology. So what is really (good) sensometrics? The
answer will depend on the background of the sensometri-
cian, who for the majority, if not a food scientist, is coming
from one of the following fields: generic statistics, psy-
chophysics/experimental psychology, or chemometrics.
The generic statistician arch type would commonly
carry out the data analysis as a purely “empirical” exercise
in the sense that methods are not based on any models for
the fundamental psychological characteristics underlying
the sensory phenomena that the measurements express.
The advantage of a strong link to the generic scientific
fields of mathematical and applied statistics is the ability
to employ the most modern statistical techniques when
relevant for sensory data and to be on top of sampling
uncertainty and formal statistical inferential reasoning.
And this is certainly needed for the sensory field as for
any other field producing experimental data. The weak-
ness is that the lack of proper psychophysical models may
lead to inadequate interpretations of the analysis results.
In, e.g., MacKay (2005) the first sentence of the abstract
is expressing this concern rather severely: “Sensory and
hedonic variability are fundamental psychological char-
acteristics that must be explicitly modeled if one is to
develop meaningful statistical models of sensory phenom-
ena” A fundamental challenge of this ambitious approach
is that the required psychophysical (probabilistic) models
of behavior are on one hand only vaguely verifiable, since
they are based on models of a (partly) unobserved sys-
tem, the human brain and perceptual system, and on the
other hand may lead to rather complicated statistical mod-
els. MacKay (2005) is published in a special sensory data
issue of The Journal of Chemometrics; see Brockhoff et al.
(2005). Chemometricians are the third and final arch type
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of a sensometrician. In chemometrics the focus is more on
multivariate data analysis (see »Multivariate Data Analy-
sis: An Overview) and for some the explorative principle
is at the very heart of the field; see, e.g., Munck (2007) and
Martens and Martens (2001). The advantage of the chemo-
metrics approach is that usually all multivariate features
of the data are studied without forcing certain potentially
inadequate model structures on the data. The weakness is
exactly also this lack of modeling rendering potentially cer-
tain well-understood psychophysical phenomena for the
explorative modeling to find out by itself. Also, linked with
the explorative approach, the formal statistical inferential
reasoning is sometimes considered less important by the
chemometrician.

Now, none of these arch types are (at their best) unin-
telligent and they would, all three of them, understand
(some of) the limitations of their pure versions of analysis
approach. And they all have ways of dealing with (some of)
these concerns for practical data analysis, such that often,
at the end of the day, the end results may not differ that
much. There is though, in the point of view of this author,
alack of comprehensive comparisons between these differ-
ent approaches where they all are used at their best.

Example 1: Sensory Profile Data

As an example, consider the so-called descriptive sensory
analysis, also called sensory profiling. In sensory profiling
the panelists develop a test vocabulary (defining attributes)
for the product category and rate the intensity of these
attributes for a set of different samples within the cate-
gory. Thus, a sensory profile of each product is provided
for each of the panelists, and most often this is replicated;
see Lawless and Heymann (1999). Hence, data is inher-
ently multivariate as many characteristics of the products
are measured.

The statistics arch type would focus on the ANOVA
structure of the setting and perform univariate and mul-
tivariate analyses of variance (ANOVA) and would make
sure that the proper version of a mixed model ANOVA is
used; see, e.g., Lea et al. (1997) and Nees et al. (2010). For
studying the multivariate product structure the Canonical
Variates Analysis (CVA) within the Multivariate ANOVA
(MANOVA) framework would be the natural choice (see,
e.g., Schlich (1998)) since it would be an analysis that
incorporates the within-product (co)variability.

The chemometrics arch type would begin with prin-
cipal components analysis (PCA) on averaged and/or
unfolded data. For more elaborate analysis maybe three-
way methods (see Brockhoff et al. (1996), Bro et al. (2002))
or other more ANOVA-like extensions would be used (see,
e.g., Luciano and Naes (2008)). Analysis accounting for

within-product (co)variability could be provided by exten-
sions as presented in Bro et al. (2002) or in Martens et al.
(2003).

In MacKay (2005) the approach for this type of
data is that of probabilistic multidimensional scaling
(PROSCAL). In short, a formal statistical model for prod-
uct differences is expressed as variability on the (low-
dimensional) underlying latent sensory scale. It is usually
presented as superior to the use of, e.g., standard PCA,
focusing on the point that it naturally includes models
for different within-product variability, which in the stan-
dard PCA could be confounded with the “signal” - the
inter-product distances.

Example 2: Sensory Difference and
Similarity Test Data

The so-called difference and/or similarity tests are a com-
monly used sensory technique resulting in binary and/or
categorical frequency data — the so-called triangle test is a
classical example. In the triangle test an individual is pre-
sented with three samples, two of which are the same, and
then asked to select the odd sample. The result is binary:
correct or incorrect. Such sensory tests were already in
the 1950s treated by the statistical community; see, e.g.,
Hopkins (1950) and Bradley (1958). These types of tests and
results have also been treated extensively from a more psy-
chophysical approach, often here denoted a Thurstonian
approach. The focus in the Thurstonian approach is on
quantifying/estimating the underlying sensory difference
dbetween the two products that are compared in the differ-
ence test. This is done by setting up mathematical/psycho-
physical models for the cognitive decision processes that
are used by assessors in each sensory test protocol see;
e.g., Ennis (1993). For the triangle test, the usual model
for how the cognitive decision process is taking place is
that the most deviating product would be the answer -
sometimes called that the assessors are using a so-called
tau-strategy. Using basic probability calculus on three real-
izations from two different normal distributions, differing
by exactly the true underlying sensory difference d, one
can deduce the probability of getting the answer correct
for such a strategy. This function is called the psychome-
tric function and relates the observed number of correct
answers to the underlying sensory difference d. Differ-
ent test protocols will then lead to different psychometric
functions. InBock and Jones (1968) probably the first sys-
tematic exposition of the psychological scaling theory and
methods by Thurstone was given. This included a sound
psychological basis as well as a statistical one with the use
and theory of maximum likelihood methods. Within the
field known as signal detection theory (see, e.g., Green and
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Swets (1966) or Macmillan and Creelman (2005)), meth-
ods of this kind were further developed, originally with
special emphasis on detecting weak visual or auditory sig-
nals. Further developments of such methods and their use
within food testing and sensory science have developed
over the last couple of decades with the numerous con-
tributions of D. Ennis as a corner stone; see, e.g., Ennis
(2003). In Brockhoft and Christensen (2010) it was empha-
sized and exploited that the Thurstonian-based statistical
analysis of data from the basic sensory discrimination test
protocols can be identified as »generalized linear models
using the inverse psychometric functions as link functions.
With this in place, it is possible to extend and combine
designed experimentation with discrimination/similarity
testing and combine standard statistical modeling/analysis
with Thurstonian modeling.

Summary

One recurrent issue in sensometrics is the monitoring
and/or accounting for individual differences in sensory
panel data, also called dealing with panel performance.
A model-based approach within the univariate ANOVA
framework was introduced in Brockhoff and Skovgaard
(1994), leading to multiplicative models for interaction
effect expressing the individual varying scale usage. In
Smith et al. (2003) and in Brockhoff and Sommer (2008)
random effect versions of such analyses were put forward
leading to either a multiplicative (nonlinear) mixed model
or a linear random coefficient model. Another recurring
issue is the relation of multivariate data sets, e.g., trying
to predict sensory response by instrumental/spectroscopic
and/or chemical measurements. Similarly there is a wish to
be able to predict how the market (consumers) will react
to sensory changes in food products - then called Prefer-
ence Mapping (McEwen 1996). This links the area closely to
the chemometrics field and also naturally to the (machine)
learning area, which in part is explored in Meullenet et al.
(2007). Another commonly used sensory and consumer
survey methodology is to use rankings or scoring on an
ordinal scale. In Rayner et al. (2005) standard and extended
rank-based non-parametrics is presented specifically for
sensory and consumer data.

As indicated, there are yet many other examples of
sensory and consumer data together with other purposes
of analysis challenging the sensometrician whoever he or
she is. Recently some open-source dedicated sensometrics
software have appeared: the R-based SensoMiner (Lé and
Husson 2008), the stand-alone tool PanelCheck (Tomic
et al. 2007), and the R-package sensR (Christensen and
Brockhoff 2009).
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Introduction: Sequential Testing and
Sequential Probability Ratios

An important topic in statistical theory and practice con-
cerns the analysis of data that are sampled sequentially.
The development of powerful mathematical and statistical
tools for the analysis of sequential data is a critical area in
statistical research. Our emphasis in this short, introduc-
tory exposition is on sequential testing, and in particular
on the best-known version for such testing, the sequential
probability ratio test.

Suppose we are given two hypotheses about the under-
lying distribution of a random variable X: Hy : X ~ fo(x)
vs Hy : X ~ fi(x), for two probability density functions
(pdfs) or probability mass functions (pmfs) fi(x),i = 0,1.
To perform a sequential test of Hy vs. H,, we sample indi-
vidual observations one at a time, and assess in a series of
separate steps whether or not the accumulated information
favors departure from Ho:

STEP 0: Begin by setting two constants, A and B, such that
0<A<1<B

STEP 1: Observe X;. Compute the probability ratio A; =
fi(x1)/fo(x1). Since very large values of this ratio support
H,, reject Hy if Ay > B. Alternatively, since very small
values of this ratio support Hy, accept Hg if A; < A. The
sequential approach also allows for an indeterminate out-
come, so if A < A; < B, continue sampling and go to Step 2.
STEP 2: Observe X,. Compute the probability ratio A, =
fi(x1,x2) [fo(x1,x2). Asin Step 1, if A, > B, reject Hy, while
if Ay < A,accept Ho. If A < A, < B, continue sampling and
observe X3.

STEP n: Observe X,,. Compute the probability ratio A, =
filxnx2, .. xa) /] fo(x1,%2,. .., %0 ). Asin Step 1, if A, > B,
reject Ho, while if A, < A, accept Hy. If A < A, < B, con-
tinue sampling and observe X,,11. (etc.)

This is known as a Sequential Probability Ratio Test
(SPRT), due to Wald (1945a; 1945b).

Notice that in the typical setting where the indi-
vidual observations are sampled independently from
fo(x) or fi(x), the probability ratios take the form
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Aw = TI{fi(xi)/fo(xi)}. Then, the continuance con-
i=1
dition A < A,

og {FILCe) 51| < og{). For D = o)) -

< B is equivalent to log{A} <

log{ fo(xi)} atany i =1,2,..., this simplifies to

log{A} < Zn:Di <log{B}. @

i=1

An idealized schematic of this procedure can be given,
analogous to Fig. 6-13 of Lindgren (1976), for example. For
specific choices of fy and fi, one can often simplify (1) even
further. Example 1 illustrates the approach.

Example1 The Exponential Family

Suppose we test the simple hypotheses Ho : 8 = 6 vs
H, : 0 = 0;. Let the Xjs be independent and identically dis-
tributed (i.i.d.) with underlying pdf or pmf taken from the
exponential family of probability functions (Pierce 1998):
f(x) = h(x)c(6)e“ '™ Then, the continuance condi-
tion simplifies to log{ A} < nlog{c(61)/c(60)}+[w(6:1) -

w(00)] 5 1(Xi) < log{B}, which if w(61) - w(6) > 0

becomes

an < i;t(x,») <bn, @
where
o
N O (D
. log{B} - nlog [EEZ;;]

w(61) - w(6o)

[If w(61) — w(6o) < 0, then the inequalities in (2) are
reversed.] Notice that the central quantity in (2) is the

n
sufficient statistic T, = . t(Xi).
i=1

For instance, suppose we sample randomly from
the single-parameter exponential distribution with mean
0,X; ~iid. Exp(0), and wish to test Hy : 8 = 0¢ vs
H, : 6 = 01, where 6; > 0. The pdf has the form f(x|0) =
67! exp{—x/6}1(g,00) (x), which is a member of the expo-
nential family with ¢(6) = 07", w(60) = -07",and t(x) = x.

Thuslog{A,} = nlog{60/01}+[651 - 61_1] iXi.The con-
i=1

tinuance region’s form can be simplified here_by noting that
since 0 > 6o, we have w(0)) — w(0o) = 8;' — 67" > 0, so

(2) applies: continue sampling when a,, < ). X; < by, for
i=1

log{A} — nlog [%]
— 1

an = =6 and
0o
log{B} — nlog [6—]
b, = !
05" - 6!

n
Otherwise, reject Hy when Y. X; > by, or accept Hy when
i=1

n
> Xi < ay.
i=1

Choosing the Sequential Limits A and B
For most hypothesis tests, concern centers on the test-
ing error rates, ie., the Type I error rate, « =
P[reject Hy|Hp true], and the Type II error rate, § =
Placcept Ho|H false]. For the SPRT these quantities will
both be functions of A and B, thus one could in principle
invert the relationships and select A and B as functions of
« and f. Unfortunately, SPRT error rates in these forms
are difficult to evaluate. It is possible to approximate them,
however, as the following theorem shows.

Theorem1 The SPRT as defined above relates its contin-
uance limits and Type I and II error rates via

B<(1-8)/a and A2p/Q1-a). (3

See, e.g., Wald (1947, §3.2) for a proof. The Theorem
may be used to define A and B as functions of « and
by choosing A and B to satisfy the equalities in (3): given
nominal error rates «* and ¥, use (3) to set

B=(1-p8")/a" and  A=p"/(1-a%). (4)

Of course, these choices of A and B do not ensure that the
actual underlying Type I and Type II error rates, & and f3,
respectively, will attain the nominally-chosen rates ™ and
B*. However, one can produce a series of upper bounds
using (3) and (4) to obtaina+B < a* + %, a < a* /(1- )
and < B*/(1-a™). Wald (1947, §3.3) notes that for most
typical values of a* and 8* these bounds are often rather
tight and may even be negligible in practice.

Example2 Suppose we set the nominal error rates to a* =
0.0l and B* = 0.05. Then we find a + 8 < 0.06, while the
individual error rates are bounded as a < (0.01)/(0.95) =
0.0105 and 8 < (0.05)/(0.99) = 0.0505.

Finite Termination and Average Sample
Number (ASN)

Notice that the (final) sample size N of any sequential test
procedure is not a fixed quantity, but is in fact a random
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variable determined from the data. As such, an obvious
concern with any form of sequential test is whether or not
the method eventually terminates. Luckily, for i.i.d. sam-
pling the SPRT possesses a finite termination characteristic
in that P[N < oo] = I This holds under either Hy or
H,, and is based on a more general result given by Wald
(1944); also see Lehmann (1959, §3.10). The larger literature
on finite termination of sequential tests is quite diverse;
some historically interesting expositions are available in,
e.g., David and Kruskal (1956), Savage and Savage (1965),
or Wijsman (1967).

When P[N < oo] = 1, it is reasonable to ask what
the expected sample size, E[N], is for a given SPRT. This
is known as the average sample number (ASN) or expected
sample number (ESN). A basic result for the ASN is avail-
able via the following theorem (Wald 1945b):

Theorem 2 (Wald’s Equation): Let Dj,D,,... be a
sequence of 1.i.d. random variables with E[ |D;| ] < co. Let
N > 0 be an integer-valued random variable whose real-
ized value, n, depends only on D, . .., Dy, with E[N] < oo.
Then E[D; + D, + ... + Dy] = E[N] - E[Dy].

A consequence of Wald’s Equation is the immediate
application to the SPRT and its ASN. Clearly log{An} =

N

log{fi(x1)/fo(x1)} + -+ +log{ fi(xn)/fo(xn)} = ¥ Di. So,

i=1
applying Wald’s equation yields E[N] = E[log{ An }]/E[D],
where D=log{fi(X)/fo(X)}. This result lends itself
to a series of approximations. For instance, if Hp
is rejected at some N, log{An}~ log{B}. Or, if Hy is
accepted at some N, log{An}~ log{A}. Thus, under
Ho, E[log{An}|Ho]~a - log{B} + (1 — a)log{A}, so
E[N|Ho] ~ [a-log{B}+(1-a)log{A}]/E[D|Ho]. Similarly,
E[N|Ha]~[(1-)log{B} + B-log{A}]/E[D|H.]. For any
given parametric configuration, these relationships may
be used to determine approximate values for ASN. Wald
(1946) gives some further results on ways to manipulate
the ASN.

An important reason for employing the SPRT, at least
for the case of testing simple hypotheses, is that it achieves
optimal ASNss: if the X;s are i.i.d., then for testing Ho : 6 =
0o vs. Ha : 6 = 61 both E[N|Ho] and E[N|H,] are mini-
mized among all sequential tests whose error probabilities
are at most equal to those of the SPRT (Wald and Wolfowitz
1948). For testing composite hypotheses, the theory of
SPRTs is more complex, although a variety of interesting
results are possible (Stuart et al. 1999, $§24.23-24; Lai 2001,
§2). In his original article, Wald (1945a) himself discussed
the problem of sequential testing of composite hypothe-
ses on a binomial parameter; also see Siegmund (1985,

§I1.3). For testing with normally distributed samples, var-
ious forms of sequential ¢-tests have been proposed; see
Jennison and Turnbull (1991) and the references therein for
auseful discussion on sequential ¢-tests (and sequential y*-
and F-tests) that includes the important problem of group
sequential testing.

Since Wald’s formalization of the SPRT, a number of
powerful, alternative formulations/constructions have led
to wide application of the method. We provide here a short
introduction to the basic mathematical underpinnings;
however, comprehensive reviews on the larger area of
sequential analysis date as far back as Johnson (1961), along
with more modern expositions given by Lai (1998, 2001,
2004) and Ghosh (2004). For a perspective emphasizing
»sequential sampling, see Mukhopadhyay (2002). Also see
the book-length treatments by Siegmund (1985), Ghosh
and Sen (1991), or Mukhopadhyay and de Silva (2008),
along with Wald’s (1947) classic text. For cutting-edge
developments a dedicated scientific journal exists: Sequen-
tial Analysis, with more information available online at the
website  http://www.informaworld.com/smpp/title~db=
all~content=t713597296.
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To discuss sequential ranks it will be more helpful to
present them in comparison with ordinary ranks.

Suppose Xi, ..., X, is a sequence of random variables.
Denote by I 4 the indicator function of an event A. For each
X; consider now what one can call its “ordinary” rank:

n
Rin = ZH{XJ‘SXJ'
=1

So, R, counts the number of our random variables that
take values not exceeding X;. For example, if X; happens
to be the smallest, its rank will be 1, and if it happens to
be the largest, its rank will be ». If the joint distribution of
X1, ..., X, is absolutely continuous, then with probability 1
all values of our random variables will be different. There-
fore, for any integer k = 1,.. ., n there will be one and only
one random variable with rank equal to k. For example, for
n =5, if our X;-s happened to be

—-1.31, 0.24, —3.52, 4.11 and 2.25,
their ranks will be

2, 3, 1, 5 and 4.

Hence, the vector of “ordinary” ranks R, = {Riu, ..., Run}
is a random permutation of the numbers {1,...,n}. Thus,
its distribution possesses a certain degeneracy. In partic-
ular, even if Xj,...,X, are independent and identically
distributed, the ordinary ranks are dependent random
variables — for example, if R;, = 3 it precludes any other
rank R;j,,j # i, from taking the value 3, so that the condi-
tional probability P(Rj, = 3|Ri, = 3) = 0, while without
this condition P(Rj, = 3) does not need to be 0 at all.
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Moreover, any symmetric statistic from the vector R, is
not random and, for given n, must be constant: if  is a
symmetric function of its n arguments, then

Y(Rins...»Run) = w(1L,...

The definition of sequential ranks is slightly different,
but the difference in their properties is quite remarkable.
Namely, the sequential rank of X; is defined as

i
=D Tixexy-
=1

Therefore, it is the rank of X; among only “previous”
observations, including X; itself, but not “later” observa-
tions Xj1, . . ., X,. For the sample values given above, their
sequential ranks are

L 2, 1 4, 4

The relationship between the vectors of ordinary ranks
and sequential ranks is one-to-one. Namely, given vector
R, = {Rin,...,Run} of ordinary ranks, the sums

i
Si = ZH{RJnSRin}
=1

return sequential ranks of Xj,...,X, and the other way
around, given a vector of sequential ranks S,, if

Siit1 = Si + Lggins,1 Siivz = Sijirt + I, msi01s e+ o

then finally
Si,n = Rin.

Because of this one-to-oneness, the vector S, also must
have some sort of degeneracy. It does, but in a very mild
form: S, is always 1.

Assume that Xj,...,X, are independent and identi-
cally distributed random variables with continuous distri-
bution function F. Then U; = F(Xi),...,U, = F(X,) are
independent uniformly distributed on [0,1] random vari-
ables. The values of R;, and S; will not change, if we replace
Xi-s by Uj-s. Therefore, the distribution of both ranks must
be independent of F - they both are “distribution free” We
list some properties of S, in this situation - they can be
found, e.g., in Barndolf-Nielsen (1963), Renyi (1962, 1976),
Sen (1981).

The distribution of each S; is P(S; = k) = 1/i,k =
L,...,i,and, therefore, the distribution function of S;/ (i+1)
quickly converges to the uniform distribution function:

i k 1 i 1
P(,Sl :,7):*,, and|P(,S < ) x| < —.
i+1 i+1 i i+1 i+1

), eg. §1¢(an) - iﬁ“")'

Recall that, similarly, for ordinary ranks P(R;, = k) =
1/n,k = 1,...,n, see, e.g., Hajek and Shidak (1975). How-
ever, unlike ordinary ranks, sequential ranks S, . . ., S, are
independent random variables. Hence symmetric statis-
tics from sequential ranks are non-degenerate random
variables. For example,

ilqs(si)

is a sum of independent random variables. Also unlike
ordinary ranks, with arrival of a new observation X,
sequential ranks Si,...,S, stay unchanged and only one
new rank Sy41 is to be calculated.

Therefore, asymptotic theory of sequential ranks
is relatively simple and computationally they are very
convenient.

The ordinary ranks are used in testing problems, usu-
ally, through the application of two types of statistics—widely
used linear rank statistics and goodness of fit statistics,
based on the empirical field

[nu]

n+1

nt
zr(tu) =) [H{Rmsu(,,Jrl)} - ] ., (tu)e[0,1]
i=1
Linear rank statistics can also be thought of as based on
the field zr (¢, ), and, more exactly, are linear functionals
from it:

W(Ro) = [ w(tu)zr(dt,du)

n i R,‘n i Rin
- ;[w(;’n+l)_Ew(;’n+l)]

(the term “linear” would not be very understandable oth-
erwise). Without loss of generality one can assume that
Jo w(tu)dt=0

One of the central results in the theory of rank tests,
see Hajek and Shidak (1975), is the optimality statement
about linear rank statistics. If under the null hypothesis the
sample is 1.i.d.(F) while under the alternative hypothesis
the distribution A; of each X; is such that
dAi(x) -1 1

i
+—a (*,F(x))-ksmaller terms, asn — oo,
n

dE(x) o

where fol a(t,F(x))dt = 0, then the linear rank statistic,
with y equal to a from (1),

(i B,

‘0 \n n+l

a(R,) =

is asymptotically optimal against this alternative. Indeed,
the statistic

Xn:a( ,F(Xi) )

i=1
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is the statistic of the asymptotically optimal test for our
alternative, based on the observations Xj,..., X, “them-
selves,” and R;,/(n + 1) is a “natural” approximation for
F(Xi).

Returning to sequential ranks, one can again consider
the empirical field

[iu]
i+1

nt
2s(t) = 3 Loy - 1o |+ (6) € 10T
i=1

and sequential linear rank statistics, based on it:

$(Sn) = f¢(f u)zs(dt, du) = Z[ (n zil)

B ¢(n zil)]

Although Si/(i + 1) is no less “natural” an approximation
for F(X;), the statistic

a(Sn) = Z (n z+1)

i=1

is not optimal for the alternative (1) any more. The papers
(Khmaladze 1986) and (Pardzhanadze 1986) derived the
form of this optimal statistic, and hence established the
theory of sequential ranks to the same extent as the theory
of “ordinary” rank statistics.

More Specifically, it was shown that the empirical fields
zg and zg are asymptotically linear transformations of each
other and, as a consequence, the two linear rank statistics
¥(R,) and ¢(S,) have the same limit distribution under
the null hypothesis and under any alternative (1) as soon as
functions ¥ and ¢ are linked as below:

y(tu) - % /(;tw(r,u)drz é(t,u) or
st~ [ Lp(ruds = y(tu),

In particular, both linear rank statistics
n ; R
elass) w0 2lGo)
P n n+l n i+l

_’i‘foi/"a(f,iiil)df] @)

are asymptotically optimal test statistics against alterna-
tive (1).

Two examples of particular interest should clarify the
situation further.

Example1 (Wilcoxon rank (or rank-sum) statistic). In the
two-sample problem, when we test if both samples came

from the same distribution or not, the following Wilcoxon
rank statistic

o Rin

an+l
is most widely used (see »Wilcoxon-Mann-Whitney
Test). Its sequential analogue is not mentioned often, but
according to (2) there is such an analogue, which is

”mSi

i 1 i1

In general, the following two statistics are asymptotically
equivalent:

n

a(f) e £ m(5)

iZme b \i+]

Note again, that if the size m of the first sample is fixed, but
we keep adding new observations to the second sample, so
that n—m keeps increasing, we would only need to add new
summands to the sequential rank statistics, on the right,
without changing the previous summands.

Example 2 (Kendall’s T and Spearman’s p rank correlation
coefficients). The latter correlation coeflicient has the form

" i ( Rin 1
m2 (i3)

on\n+l

while the former is

U S; 1

These two coefficients are usually perceived as different
statistics. However, from (2) it follows that they also are
asymptotically equivalent.

Among other papers that helped to form and advance
the theory of sequential ranks we refer to Miiller-Funk
(1983), Renyi (1962, 1976), and Reynolds (1975). Among
more recent papers and applications to change-point prob-

lem we would point to Bhattacharya and Zhou (1994),
Gordon and Pollak (1994), and Malov (1993).

About the Author

For biography see the entry »Testing Exponentiality of
Distribution.
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Introduction
Sequential sampling entails observing data in a sequence.
How long should one keep observing data? That will largely
depend on the preset levels of errors that one may be
willing to live with and the optimization techniques that
may be required. In the early 1940s, Abraham Wald devel-
oped the theory and practice of the famous sequential
probability ratio test (SPRT) to decide between a sim-
ple null hypothesis and a simple alternative hypothesis
(Wald 1947). Wald and Wolfowitz (1948) proved optimal-
ity of Walds SPRT within a large class of tests, includ-
ing Neyman and Pearson’s (1933) UMP test, in the sense
that the SPRT needs on an average fewer observations
under either hypothesis. These were mentioned in another
chapter.

For a comprehensive review, one should refer to the
Handbook of Sequential Analysis, a landmark volume that
was edited by Ghosh and Sen (1991). This nearly 20 years

old handbook is still one of the most prized resource in this
whole field.

Section »“Why Sequential Sampling?” explains with
Examples 1 and 2 why one must use sequential sam-
pling strategies to solve certain statistical problems. We
especially highlight the Stein (1945, 1949) path-breaking
two-stage and the Ray (1957) and Chow and Robbins
(1965) purely sequential fixed-width confidence interval
procedures in sections »“Stein’s Two-stage Sampling” and
“Purely Sequential Sampling” respectively.

Sections »“Two-stage Sampling” and “Purely Sequen-
tial Sampling” analogously highlight the Ghosh and
Mukhopadhyay (1976) two-stage and the Robbins (1959)
purely sequential bounded-risk point estimation pro-
cedures respectively. Both sections »“Two-stage and
Sequential Fixed-width Confidence Interval” and “Two-
stage and Sequential Bounded Risk Point Estimation”
handle the problems of estimating an unknown mean
of a normal distribution whose variance is also assumed
unknown.

Section »“Which Areas Are Hot Beds for Sequential
Sampling?” briefly mentions applications of sequential and
multi-stage sampling strategies in concrete problems that
are in the cutting edge of statistical research today.

Why Sequential Sampling?

There is a large body of statistical inference problems that
cannot be solved by any fixed-sample-size procedure. We
will highlight two specific examples. Suppose that X, ..., X,
are iid N (g, 0) where —oo < g < 00,0 < 0° < oo are both
unknown parameters, and n(> 2) is fixed.

Example 1 'We want to construct a confidence interval I
for p such that (i) the length of I is 2d(> 0) where d is
preassigned, and (ii) the associated confidence coefficient,
Pyo2{u €I} >1- awhere0 < a < 1is also preassigned.
Dantzig (1940) showed that this problem has no solution
regardless of the form of the confidence interval I when n
is fixed in advance.

Example 2 Suppose that X, the sample mean, estimates
p and we want to claim its bounded-risk property, namely
that sup,, . E[(Xs — 4)*] < w where w(> 0) is a pre-
assigned risk-bound. This problem also has no solution
regardless of the form of the estimator of y.

Theorem 1 Suppose that Xi,---, X, are iid with a proba-
bility density function Lf (07" (x - 0)) where —00 < 0 <
00,0 < 0 < oo are two unknown parameters. For esti-
mating 0, let the loss function be given by W(0,8(x)) =
H(|6(x) — 0]) where x = (x1,--,%,) is a realization of
X = (X1, Xn). Assume that H(|u|) 1 |u|, and let M =
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SUP_ o cycoo H(|u|), which may be infinite. Then, for any
fixed L < M, there does not exist an estimator §(X) such
that sup, , Ee . {W (6,0(X))} < L.

This statement is similar to that of Theorem 3.7.1 in
Ghosh et al. (1997) and Theorem 2.3.1 in Mukhopadhyay
and de Silva (2009). It was originally proved in Lehmann
(1951).

Theorem 1 proves immediately the non-existence of
a fixed-sample-size methodology to solve the problems
mentioned in Examples 1-2 exactly. There are these and
numerous other inference problems where we have no
fixed-sample-size procedure at all to talk about. In order
to address this class of important inference problems, an
appropriately designed sequential sampling procedure is a
must.

Two-Stage and Sequential Fixed-Width
Confidence Interval

In the context of Example 1, we first summarize Stein’s
(1945, 1949) two-stage procedure and then the purely
sequential procedure due to Ray (1957) and Chow and
Robbins (1965).

Stein (1945, 1949) gave his path-breaking two-stage sam-
pling design to solve exactly the problem mentioned in
Example 1. One begins with pilot observations Xj, -, X,
with a pilot or initial sample size m(>2). Let a,,-; =
ay_1,4/2 be the upper 50a% point of the Student’s
t distribution with m — 1 degrees of freedom. Now,
based on Xi,---, X, we obtain the sample variance,
$2, = (m- 1)712,»=1(X,- - ym)z which estimates unknown
o”. Let us denote (u) = the largest integer < u, u > 0.
We define the final sample size as

2 @2
N =N(d) :max{m,<am;sm>+l}. 4]

It is easy to see that N is finite with probability one. This
two-stage procedure is implemented as follows:

If N = m, it indicates that we already have too many
observations at the pilot stage. Hence, we do not need any
more observations at the second stage.

But, if N > m, it indicates that we have started with
too few observations at the pilot stage. Hence, we sam-
ple the difference at the second stage by gathering new
observations X+1, -+, Xn at the second stage.

Casel. If N = m, the final dataset is X1, -+, X;n

Case2. If N > m, the final dataset is X1, -+, X,

Xm+1> XN

Combining the two possibilities, one can say that the final
dataset is composed of N and Xj, -+, Xy. This gives rise
to the sample mean Xy and the associated fixed-width
interval Iy = [XN + d] .

It is clear that (i) the event {N = n} depends only
on the random variable S2,, and (ii) X,, SZ, are indepen-
dent random variables, for all fixed n(> m). So, any event
defined only through X,, must be independent of the event
{N = n}. Using these tools, Stein (1945, 1949) proved the
following result that is considered a breakthrough. More
details can be found in Mukhopadhyay and de Silva (2009,
Sect. 6.2.1).

Theorem 2 P, {y € [XN + d]} > 1 - «a for all fixed
d>0,0<a<l,p andd’.

It is clear that the final sample size N from (1) tried
to mimic the optimal fixed sample size C, the smallest
integer > 2> /Zozd_z, had ¢* been known. This procedure,
however, is known for its significant oversampling on an
average.

In order to overcome significant oversampling, Ray
(1957) and Chow and Robbins (1965) proposed a purely
sequential procedure. One begins with pilot observations
Xi,+++, Xm with a pilot or initial sample size m(>2), and
then proceed by taking one additional observation at-a-
time until the sampling process terminates according to
the following stopping rule: With X, = n'Z/,X; and
SE=(n-1)""ZL (X - Xn)?, let

22 ),S;
NzN(d):inf{an:nz a;n}. (2)

It is easy to see that N is finite with probability one.
Based on the final dataset composed of N and X, -+, Xn,
one finds Xy and proposes the associated fixed-width
interval Iy = [XN + d] . Now, one can prove that asymptot-
ically, P, o2 {p € [Xny +d]} - 1- aforall fixed 0 < & < 1,
p, and 0* as C — oo when m > 2.

One can also prove that E,.[N — C] = -1.1825if m > 4.
This property is referred to as the asymptotic second-order
efficiency according to Ghosh and Mukhopadhyay (1981).
One has to employ mathematical tools from nonlinear
renewal theory to prove such a property. The nonlinear
renewal theory has been fully developed by Woodroofe
(1977) and Lai and Siegmund (1977, 1979).
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Two-Stage and Sequential Bounded Risk
Point Estimation

In the context of Example 2, we first summarize a two-
stage procedure from Ghosh and Mukhopadhyay (1976)
followed by a purely sequential procedure along the line
of Robbins (1959).

Ghosh and Mukhopadhyay (1976) discussed a two-stage
sampling design analogous to (1) to solve exactly the prob-
lem mentioned in Example 2. We again start with pilot
observations X, -+, X, where m(>4) is the pilot size and
obtain S2,. Define the final sample size as:

2
N =N(w) =max{m,<bmjm> +1} (3)

where b,, = % It is easy to see that N is finite with
probability one.

The two-stage sampling scheme is implemented as
before.

Casel. If N = m, the final dataset is X1, -+, X,

Case2. If N > m, the final dataset is X1, -+, Xy,

Xm+1: "')XN

Combining the two situations, one can see that the final
dataset is again composed of N and Xj, -+, Xy which give
rise to an estimator Xy for Y.

Now, we recall that X, is independent of the event
{N = n} for all fixed n(> m). Hence, we can express the
risk associated with the estimator Xy as follows:

E”’oz {(YN - ;4)2} = UZEM’UZ [N_l] 5

which will not exceed the set risk-bound w for all fixed y
and ¢>. More details can be found in Mukhopadhyay and
de Silva (2009, Sect. 6.3).

It is clear that the final sample size N from (3) tried to
mimic the optimal fixed sample size n*, the smallest inte-
ger > 0>w™", had o® been known. This procedure is also
well-known for its significant oversampling on an average.

For either problem, there are more efficient two-stage,
three-stage, accelerated sequential, and other estimation
methodologies available in the literature. One may begin
by reviewing this field from Mukhopadhyay and Solanky
(1994), Ghosh et al. (1997), Mukhopadhyay and de Silva
(2009), among other sources.

In order to overcome significant oversampling, along the
line of Robbins (1959), one can propose the following

purely sequential procedure. One begins with pilot obser-
vations Xi, ---, X, with a pilot or initial sample size m(>2),
and then proceed by taking one additional observation at-
a-time until the sampling process terminates according to
the following stopping rule: Let

2
NEN(w):inf{an:nZi:'}. (4)

It is easy to see that N is finite with probability
one. Based on the final dataset composed of N and
Xi, -+ XN, one finds Xy and proposes the associated esti-
mator Xy for y. Now, one can prove that asymptotically,
@ 'E, 2 {(Xn —p)*} — 1forall fixed y, and 0” as n* —
oo when m > 2.

One can again prove that E;:[N — C] is bounded by
appealing to nonlinear renewal theory. This property is
referred to as the asymptotic second-order efficiency accord-
ing to Ghosh and Mukhopadhyay (1981).

Which Areas Are Hot Beds for Sequential
Sampling?

First, we should add that all computer programs neces-
sary to implement the sampling strategies mentioned in
sections »“Two-stage and Sequential Fixed-width Confi-
dence Interval” and “Two-stage and Sequential Bounded
Risk Point Estimation” are available in conjunction with
the recent book of Mukhopadhyay and de Silva (2009).

Sequential and multi-stage sampling techniques are
implemented practically in all major areas of statistical
science today. Some modern areas of numerous appli-
cations include change-point detection, clinical trials,
computer network security, computer simulations, »data
mining, disease mapping, educational psychology, finan-
cial mathematics, group sequential experiments, horticul-
ture, infestation, kernel density estimation, longitudinal
responses, multiple comparisons, nonparametric func-
tional estimation, ordering of genes, »randomization tests,
reliability analysis, scan statistics, selection and ranking,
sonar, surveillance, survival analysis, tracking, and water
quality.

In a majority of associated statistical problems, sequen-
tial and multi-stage sampling techniques are absolutely
essential in the sense of our prior discussions in section
> “Why Sequential Sampling?”. In other problems, appro-
priate sequential and multi-stage sampling techniques
are more efficient than their fixed-sample-size counter-
parts, if any.

For an appreciation of concrete real-life problems
involving many aspects of sequential sampling, one may
refer to Applied Sequential Methodologies, a volume edited
by Mukhopadhyay et al. (2004).
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Sex Ratio in National Birth Registers

The sex ratio at birth, also called the secondary sex ratio,
and here denoted SR, is usually defined as the number of
males per 100 females. Among newborns there is almost
always a slight excess of boys. Consequently, the SR is
greater than 100, mainly around 106.

John Graunt (1620-1674) was the first person to com-
pile data showing an excess of male births to female
births and to note spatial and temporal variation in the
SR. John Arbuthnot (1667-1735) demonstrated that the
excess of males was statistically significant and asserted
that the SR is uniform over time and space (Campbell
2001). Referring to christenings in London in the 82
years up to 1710, Arbuthnot suggested that the regular-
ity in the SR and the dominance of males over females
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could not be attributed to chance and must be an indica-
tion of divine providence. Nicholas Bernoulli’s (1695-1726)
counter-argument was that Arbuthnot’s model was too
restrictive. Instead of a fair coin model, the model should
be based on an asymmetric coin. Based on the generalized
model, chance could give uniform dominance of males
over females. Later, Daniel Bernoulli (1700-1782), Pierre
Simon de Laplace (1749-1827) and Siméon-Denis Pois-
son (1781-1840) also contributed to this discussion (David
1962; Hacking 1975).

Some general features of the SR can be noted. Stillbirth
rates are usually higher among males than females, and the
SR among stillborn infants is markedly higher than normal
values, but the excess of males has decreased during the last
decades. Hence, the SR among liveborn infants is slightly
lower than among all births, but this difference is today
very minute. Further, the SR among multiple maternities
is lower than among singletons. In addition to these gen-
eral findings, the SR shows marked regional and temporal
variations.

In a long series of papers, attempts have been made
to identify factors influencing the SR, but statistical analy-
ses have shown that comparisons demand large data sets.
Variations in the SR that have been reliably identified in
family data have in general been slight and without notable
influence on national birth registers. Attempts to iden-
tify reliable associations between SRs and stillbirth rates
have been made, but no consistent results have emerged.
Hawley (1959) stated that where prenatal losses are low,
as in the high standard of living in Western countries,
the SRs at birth are usually around 105 to 106. By con-
trast, in areas with a lower standard of living, where the
frequencies of prenatal losses are relatively high, SRs are
around 102. Visaria (1967) stressed that available data on
late fetal mortality lend at best only weak support for these
findings and concluded that racial differences seem to exist
in the SR. He also discussed the perplexing finding that the
SR among Koreans is high, around 113.

A common pattern observed in different countries
is that during the first half of the twentieth century the
SR showed increasing trends, but during the second half
the trend decreased. Different studies have found marked
peaks in the proportion of males during the First and Sec-
ond World War. It has been questioned whether temporal
or spatial variations of the SR are evident, and whether
they constitute a essential health event. A common opinion
is that secular increases are caused by improved socio-
economic conditions. The recent downward trends in the
SRs have been attributed to new reproductive hazards,
specifically exposure to environmental oestrogens. How-
ever, the turning point of the SR preceded the period

of global industrialization and particularly the introduc-
tion of pesticides or hormonal drugs, rendering a causal
association unlikely.

Sex Ratio in Family Data
In general, factors that affect the SR within families remain
poorly understood. In a long series of papers, using family
data, attempts have been made to identify factors influenc-
ing the SR. Increasing evidence confirms that exposure to
chemicals, including pollutants from incinerators, dioxin,
pesticides, alcohol, lead and other such workplace haz-
ards, has produced children with reduced male proportion,
Variables reported to be associated with an increase in the
SR are large family size, high ancestral longevity, pater-
nal baldness, excessive coffee-drinking, intensive coital
frequency and some male reproductive tract disorders.
Some striking examples can be found in the literature
of unisexual pedigrees extending over several generations.
Slater (1943) stated that aberrant SRs tend, to some extent,
to run in families. The finding by Lindsey and Altham
(1998) that the probability of couples being only capa-
ble of having children of one sex is very low contradicts
Slater’s statement. The variation in the SR that has been
reliably identified in family studies has invariable been
slight compared with what we have observed in families
with X-linked recessive retinoschisis (cleavage of retinal
layers). We noted a marked excess of males within such
families, in contrast to normal SRs in families with the
X-linked recessive disorders haemophilia and color blind-
ness (Eriksson et al. 1967; Fellman et al. 2002). However,
with the exception of the X-linked recessive retinoschi-
sis, no unequivocal examples exist of genes in man that
affect the SR, and X-linked retinoschisis is universally very
rare. Summing up, influential factors, although they have
an effect on family data, have not been identified in large
national birth registers.
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The sign test is a nonparametric test for hypotheses about
a population median given a sample of observations from
that population, or for testing for equality of medians, or
for a prespecified constant median difference, given paired
sample (i.e., matched pairs) values from two populations.
These tests are analogues of the one-sample and matched
pairs t-test for means in a parametric test such as the
t-test.

The sign test is one of the simplest and oldest non-
parametric tests. The name reflects the fact that each more
detailed observation is effectively replaced by one of the
signs plus (+) or minus (—). This was basically the test used
by Arbuthnot (1710) to refute claims that births are equally
likely to be male or female. Records in London showed
that for each of 81 consecutive years an excess of male over
female births. Calling such a difference a plus, Arbuthnot
argued that if births were equally likely to be of either gen-
der, then the probability of such an outcome was, (0.5)%,
or effectively zero.

Given a sample of n observations from any popula-
tion which may be discrete or continuous and not nec-
essarily symmetric, the test is used to test a hypothesis
Hy : M = My where M is the population median. If

Hpy holds the number of values less than M, will have a
binomial distribution with parameters n and p = 0.5. The
symmetry of the »binomial distribution when p = 0.5
means the number of sample values greater than M, (a
plus) may be used as an alternative equivalent statistic in
a one or two-tail test.

Although not a commonly arising case, the test is still
valid if each observation in a sample is from a differ-
ent population providing each such population has the
same median. For example, the populations may differ in
»variance or in »skewness.

Among tests for location the sign test thus requires
fewer assumptions for validity than any other well estab-
lished test. The main disadvantage of the test is that it often
has lower efficiency and lower power than tests that require
stronger assumptions when those assumptions are valid.
However, when the stronger assumptions are not valid the
sign test may have greater power and efficiency. If the sam-
ple is from a normal distribution with known variance the
asymptotic relative efficiency (ARE) of the sign test relative
to the normal theory test is 2/7. However if the sample is
from a double exponential distribution the ARE of the sign
test is twice that attained using the -test.

For continuous data except in special cases like sam-
ples from a double exponential distribution the sign test
is usually less efficient than some parametric test or non-
parametric test that makes more use of information about
the data. For example, the t-test is preferable for sam-
ples from a normal, or near normal, distribution and the
» Wilcoxon-signed-rank test performs better if an assump-
tion of symmetry can be made.

Even when a sign test is less efficient than some other
test it may prove economically beneficial if exact data of the
type needed for that other test is expensive to collect but it
is easy to determine whether such data, if it were available,
would indicate a value less than or greater than an hypothe-
sised median value My. For example, if in a manufacturing
process rods produced should have a median diameter of
40 mm it may be difficult to measure diameters precisely,
but easy to determine whether the diameter of each rod
is less than 40 mm by attempting to pass it through a cir-
cular aperture of diameter 40 mm. Those that pass though
have a diameter less than 40 mm (recorded as a minus);
those that fail to pass through have a greater diameter
(recorded as a plus). If diameters can be assumed to be
normally distributed and a sample size of 30 is required
to give the required power with a normal theory test when
exact measurements are available, the ARE for a sign test
(which gives a fairly good idea of the efficiency for a sam-
ple of this size) suggests that if we only have information
on whether each item has diameter less than (or greater
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than) 40 mm, then a sample of size 30 x 7/2 ~ 47 should
have similar power. An assumption here is that efficiency
for smaller samples is close to the ARE, a result verified in
some empirical studies. Thus if the cost of obtaining each
exact measurement were twice that of determining only
whether or not a diameter exceeded 40 mm there would be
a clear cost saving in measuring simply whether diameters
were more or less than 40 mm for a sample of 47 com-
pared to that for taking exact measurements for a sample
of 30.

Sample values exactly equal to My are usually ignored
when using the test and the sample size used in
assessing significance is reduced by 1 for each such
value.

In the case of matched pair samples from distributions
that may be assumed to differ if at all only in their medi-
ans, the test may be applied using the signs of the paired
differences to test if the difference is consistent with a zero
median and by a slight modification to test the hypothesis
that the median difference has some specified value 6. The
test is available in most standard statistical software pack-
ages or may be conducted using tables for the binomial
distribution when p = 0.5 and the relevant n (sample size).
For continuous data one may determine confidence inter-
vals based on this test with the aid of such tables. Details
are given in most textbooks covering basic nonparamet-
ric methods such as Gibbons and Chakraborti (2004) or
Sprent and Smeeton (2007).

An interesting case that leads to a test equivalent to
the sign test with heavy tying was proposed by McNemar
(1947) and is usually referred to as McNemar's test. This test
is relevant where observations are made to test if there are
nonneutralizing changes in attitudes of individuals before
or after exposure to a treatment or stimulus. For exam-
ple, a group of 200 motorists may be asked whether or
not they think the legal maximum permissible level of
blood alcohol for drivers should be lowered. The num-
bers answering yes or no are recorded. The group are then
shown a video illustrating the seriousness of accidents
where drivers have exceeded the legal limit. Their answers
to the same question about lowering the level are now
recorded and tabulated as shown in this table:

Aftervideo Lower limit | Yes 160 24

No n 5

If we denote a change from No before the video to Yes
after the video by a plus there are 24 plus, and a change
from Yes before to No afterwards there are 11 minus. Thus,
although the video seems to have influenced some changes
of opinion in both directions more (24) who did not sup-
port a reduction before seeing the video appear to have
been persuaded to support a reduction after seeing the
video, whereas 11 have switched opinions in the opposite
direction, opposing a ban after seeing the video although
they supported one before seeing the video.

A sign test may be applied on the basis of 24 plus and
11 minus being observed in an effective sample of size 35.
The diagonal values of 160 and 5 represent “ties” in the
sense that they represent drivers who are not influenced
by the video and so are ignored.
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Introduction

A significance test is a statistical procedure for testing a
hypothesis based on experimental or observational data.
Let, for example, X; and X, be the average scores obtained
in two groups of randomly selected subjects and let y;
and y> denote the corresponding population averages. The
observed averages can be used to test the null hypothesis
p1 = H2, which expresses the idea that both populations
have equal average scores. A significant result occurs if
X; and X, are very different from each other, because
this contradicts or falsifies the null hypothesis. If the two
group averages are similar to each other, the null hypoth-
esis is not contradicted by the data. What exact values of
the difference X; — X, of the group averages are judged
as significant depends on various elements. The variation
of the scores between the subjects, for example, must be
taken into account. This variation creates uncertainty and
is the reason why the testing of hypotheses is not a triv-
ial matter. Because of the uncertainty in the outcome of
the experiment, it is possible that a seemingly significant
result is obtained, even though the null hypothesis is true.
Conversely, the null hypothesis being false does not mean
that the experiment will necessarily result in a significant
result.

The significance of a test is usually measured in terms
of a tail-error probability of the null distribution of a test
statistic. In the above example, assume the groups are nor-
mally distributed with common known variance 2. The
Z-test statistic is Z = (X; — X2)/SE[X1 — X»], where
SE[Xi — X2] = o*{1/m + 1/my} is the standard error of
the difference. Here n;, n, are the respective sample sizes
for the two groups. Under the null hypothesis, Z has the
standard normal distribution with cumulative distribution
P(Z < z) = ®(z). A large observed value Z = Z,; cor-
responds to a small tail area probability P(Z > Z,) =
®(=Zops ). The smaller this probability the more the evi-
dence against the null in the direction of the alternative

u1 > ua. For a two-sided alternative y; # y», a test statis-
tic is |Z| and the evidence against the null is measured by
the smallness of P(|Z| > |Z,ps|) = 2®(—|Z,ps|). These tail-
error probabilities are examples of p-values for one- and
two-sided tests.

To carry out a significance test then one needs, first,
a statistic S(X) (real function of the data X) that orders
the outcomes X of a study so that larger values of S(X)
cast more doubt on the null hypothesis than smaller ones;
and second, the probability distribution Py of S(X) when
the null hypothesis is true. One may be interested in
simply assessing the evidence in the value obtained for
the statistic S in an experiment, the Fisherian approach,
or in making a decision to reject the null hypothesis in
favor of an alternative hypothesis, the Neyman-Pearson
approach.

Significance Tests for Assessing Evidence
By far the most prevalent concept for assessing evidence
in § is the p-value, promoted by the influential scientist
R.A. Fisher through his many articles and books, see the
collection Fisher (1990).

Having observed data X = x, and hence S(x) = Sobs
the p-value is defined by p = Po(S > Sops). It is the
probability of obtaining as much or more evidence against
the null hypothesis as just observed with S,ps, assuming
the null hypothesis is true. The p-value is decreasing with
increasing Sps, which means that smaller »p-values are
indicative of a more significant result. Fisher (1973, pp.
80, 82, and 122), offered some rough guidelines for inter-
preting the strength of evidence measured by the p-value,
based on his experience with agricultural experiments.
He suggested that a p-value larger than 0.1 was not small
enough to be significant, a p-value as small as 0.05 could
seldom be disregarded, and a p-value less then 0.01 was
clearly significant. Thus according to Fisher “significance
testing” is the conducting of an experiment that will give
the data a chance to provide evidence S, against the null
hypothesis. Very small values of the p-value correspond
to significant evidence, where “significant” is somewhat
arbitrarily defined. It is a matter of history that Fisher’s
rough guideline “a value as small as 0.05 could seldom be
disregarded” became a de facto necessity for publication
of experimental results in many scientific fields. However,
despite its usefulness for filtering out many inconsequen-
tial results, the p-value is often confused with fixed signif-
icance levels (see section »“Significance Tests for Making
Decisions”).
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It is not always easy to find the null distribution of a test
statistic. It must be chosen carefully. For example, in the
Z-test example of section »“Introduction”, three assump-
tions were made, normality of the observations, equality of
the group variances and knowledge of the common vari-
ance 0. If the first two assumptions hold, but the latter is
relaxed to o* > 0, then the distribution of the Z-test statis-
tic depends on the unknown nuisance parameter >, so one
does not have a unique null distribution. An appropriate
test statistic is the two-sample pooled t-statistic, which is
just the Z-test statistic with o replaced by spoed, Where
Sfmozed = {(nl - l)sf +(ny - 1)3%} /(m + m - 2), and 2,
s3 are the the respective sample variances. This ¢ statis-
tic has, under the null 41 = y» a Student-t distribution
with v = n + n, — 2 degrees of freedom, which allows for
computation of p-values.

If the assumption of normality of the groups is
retained, but their variances are not assumed equal, then
one can estimate them separately using the respective sam-
ple variances. An approximating ¢t distribution for the
resulting standardized mean difference is known as the
Welch t-test see Welch (1938). If the assumption of nor-
mality is relaxed to a continuous distribution then a com-
parison can be based on the sum S of the ranks of one
sample within the ranking of the combined sets of observa-
tions. The null hypothesis is that each group has the same
continuous distribution F and then S has a unique distribu-
tion. This test is known as the » Wilcoxon-Mann-Whitney
test. It is an example of a distribution-free test, because F is
unspecified.

Another way of computing a p-value when the null
hypothesis distribution is not uniquely specified is to sam-
ple repeatedly from the empirical distribution of the data
and for each sample compute the value of the test statistic;
the proportion of values greater than the original S, is a
bootstrap estimate of the p-value.

Significance Tests for Making Decisions

Neyman and Pearson (1928), Neyman (1933) formulated
the significance testing problem as one of decision making.
The data X are assumed to have distributions Py indexed by
the parameter 6 known to lie in one of two mutually exclu-
sive sets @, @1, and one must choose between them, using
only X. The parameter sets ®y and ©; are called the null
and alternative hypotheses, respectively. Each may be sim-
ple, containing only a single value, or composite. If X ~ Py
for some 0 € @, and one chooses ®; a Type I error, (or,
error of the first kind), is committed. If X ~ Py for some
0 € Oy, and one chooses @¢ a Type II error, (or, error of
the second kind), is committed. Because the consequences

of Type I and Type II errors are often incommensurate, see
Neyman (1950), the Neyman-Pearson framework places a
bound a on Type I error probabilities, called the level of the
test, and subject to this constraint seeks a decision rule that
in some sense minimizes the Type II error probabilities,
[)’(91) fOI‘ 91 € @1.

A decision rule equals 1 or 0 depending on whether ©,
or @ is chosen, after observing X = x. It is by definition
the indicator function Ic(x) of the critical region C, which
is the set of values of X for which @ is chosen. This region
is critical in the sense that if X € C, one rejects the null
hypothesis and risks making a Type I error. The size of a
critical region is supy e Po(X € C). One seeks a critical
region (test) for which the size is no greater than the level
« and which has large power of detecting alternatives. The
size may be set equal to the desired level « by choice of C
when the distributions Py are continuous, but in the case
of discrete Py, the size will often be less than «, unless some
form of »randomization is employed, see Lehmann (1986).

The power of a test for detecting an alternative 0; € O is
defined by I1(61) = Py, (X € C) =1— B(61). It is the prob-
ability of making the right decision (rejecting ®¢) when
01 € ©1; and as indicated, it is also 1 minus the probability
of making a Type II error for this 8. The power function
is defined by IT1(6,), for each 0; € ©y. Let fy be the den-
sity of Py with respect to a dominating measure for the
distributions of X. Neyman and Pearson showed that for a
simple hypothesis 8y and simple alternative 0y, there exists
a most powerful level-a test which rejects the null when
the likelihood ratio N(x) = fp, (x)/fo,(x) is large. That is,
the critical region is of the form C = {x : A(x) > c},
where the critical value ¢ defining the boundary of the crit-
ical region is chosen so Py, {\(X) > c} = . For composite
hypotheses, the likelihood test statistic defined by A(x) =
supg fo(x)/ supg, fo(x) is the basis for many tests, because
its large sample distribution is known. A uniformly most
powerful level-a test maximizes the power for each value
of the alternative amongst all level-« tests. Uniformly most
powerful tests for composite alternatives are desirable, but
such tests do not usually exist. See Lehmann (1986) for a
comprehensive development of the theory of hypothesis
testing.

A confidence region of level 1 - « for a parameter 0 is a ran-
dom set R(X) for which Pg{6 € R(X)} > 1- «a for all
0 € ©. When O is a subset of the real line, the region is
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usually in the form of a random confidence interval [L, U],
where L = L(X), U = U(X). The inversion procedure, due
to Neyman (1935), supposes that for each 0y € © there is
a level-a test with critical region Ca(6o) for testing the
simple null hypothesis ® = {6y} against its complement
@y = {6 € ® : 6 6o} This family of tests can be
converted into a level 1 — « confidence region for 0, given
by R(X) = {6p € ® : X ¢ Ca(6o)}. Thus a parameter
0o belongs to the confidence region if and only if it is not
rejected by the level « test of 6 = 6 against 6 # 0.

The purpose of choosing a fixed level « as a prior upper
bound on the probability of Type I errors is to avoid mak-
ing decisions that are influenced by the observed data x.
The p-value, on the other hand, requires knowledge of x
for its computation, and subsequent interpretation as evi-
dence against the null hypothesis. Thus when used for the
separate purposes for which they were designed, there is
no confusion. However, having observed S(x) = Sops, the
p-value is equal to the level « for which Syps = cq; that is,
the smallest fixed level for which the test rejects the null.
For this reason, it is sometimes called the observed signifi-
cance level. One rejects the null at level « if and only if the
p-value < a. It is widespread practice to use the Neyman-
Pearson framework to obtain a powerful test of level o =
0.05, and then to report the p-value. Thus there has evolved
in practice a combination of concepts that can prove con-
fusing to the uninitiated, see Berger (2003) Hubbard and
Bayarri (2003) and Lehmann (1993).

Bayesian Hypothesis Testing

The Bayesian framework for significance testing assumes a
prior probability measure 7(8) over the parameter space
©® = @ U 0. This yields prior probabilities 79 = 7(@o),
1 — mo on the null and alternative hypotheses ¢, ®,
respectively, and the prior odds mo/(1 — mo) in favor of
the null. It is further assumed that for each 6, the data
X has a conditional distribution f(x|6) for X, given 6.
The posterior probability of the null is then P(®glx) =
Jo, F(510)dm(0) [fic(x). where fi(x) = [, f(x|9)d(0).
One can, if a decision is required, reject the null in favor
of the alternative when P(®y|x) is less than some preas-
signed level, as in NP testing; or, one can simply choose to
interpret it as a measure of support for ®.

It turns out that the posterior odds for ® are related to its
prior odds by P(@¢|x)/(1-P(®y|x)) = Boi(x) mo/(1-m0),
The Bayes factor Boi(x) = fe,(x)/fe,(x), where fo,(x) =
f®xf(x|6)dn(9)/rr(®i), i = 0,1 The Bayes factor mea-
sures the change in odds for the null hypothesis ©¢ after

observation of X = x. It is also often interpreted as a
measure of support for @, but this interpretation is not
without controversy; for further discussion see Kass (1995)
and Lavine and Schervish (1999).

Significance Tests for Special Purposes
When one wants to adopt the model X ~ {Py : 0 € @}
for inference, be it testing or estimation, a goodness-of-
fit test rejects the entire model if a suitable test statistic
S(X) has small p-value. Thus if the data do not cast doubt
on the model, the statistician happily proceeds to adopt
it. This procedure is informal in that many other models
might equally pass such a test, but are not considered. Tests
for submodel selection in regression have the same fea-
ture; one “backs into” acceptance of a submodel because an
F-test does not reject it. All such significance tests are sim-
ply informal guides to »model selection, with little regard
for Type II errors, or the subsequent effects on inference
with the chosen model. Equivalence tests, on the other
hand, place great emphasis on formal testing, and do pro-
vide evidence for a null hypothesis of no effect. They do
this by interchanging the traditional roles of null and alter-
native hypotheses. For example, if 8 represents the mean
difference in effects of two drugs, one might be interested
in evidence for |6] < 6o, where 6, defines a region of
“equivalence” This is taken as the alternative hypothesis,
to a null |8] > 6, where 6, > 0y is large, say. One also
simultaneously tests the null 6 < -0, against the alternative
of equivalence. If one rejects both these null hypotheses in
favor of the alternative, evidence for equivalence is found.
See Wellek (2003) for a complete development.

Final Remarks and Additional Literature
Statistical significance of a test, meaning a null hypothe-
sis is rejected at a pre-specified level such as 0.05, is not
evidence for a result which has practical or scientific sig-
nificance. This has led many practitioners to move away
from the simple reporting of p-values to reporting of con-
fidence intervals for effects; see Krantz (1999) for example.
A measure of evidence for a positive effect that leads to con-
fidence intervals for effects is developed in Kulinskaya et al.
(2008). Fuzzy hypothesis tests and confidence intervals are
introduced in Dollinger et al. (1996) and explored in Geyer
and Meeden (2006).
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By most accounts, the first significance test was published
in 1710 by the Scottish mathematician, physician, and
author John Arbuthnot. He believed that, because males
were subject to more external accidents than females, they
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enjoyed an advantage of a higher birthrate. Arbuthnot cal-
culated the expectation, or the probability, of the data from
82 years of birth records in London given a chance hypoth-
esis of equal birthrates for both sexes. Because this expecta-
tion was very low he concluded “that it is Art, not Chance,
that governs” (p. 189), and that this result constituted a
proof of existence of an active god. Although he never
used the terms significance or significant — these terms were
first used at the end of the nineteenth century by Francis
Ysidro Edgeworth (1885) and John Venn (1888) - his argu-
ment is strikingly similar to the logic underlying modern
null hypothesis testing as implemented in Ronald Fisher’s
significance testing approach (e.g., 1925, 1935).

The beginning of the twentieth century saw the
development of the first modern significance tests: Karl
Pearson’s (1900) chi-squared test and William Sealy Gosset’s
(or Student’s 1908) ¢-test (although the term t-test appeared
only later, in 1932 in the fourth edition of Fisher’s Statistical
Methods for Research Workers). Both are examples of tail-
area significance tests, in which a hypothesis is rejected if
the tail of the null distribution beyond the observed value
is less than a prescribed small number. Gosset’s article was
also the beginning of the field of small sample statistics,
where the earlier asymptotics (n — oo) were replaced by
exact probabilities.

The use of significance tests really took root among
applied researchers after the publication of Fisher’s influen-
tial books, Statistical Methods for Research Workers (1925)
and The Design of Experiments (1935). Fisher rejected the
(older) methods of inverse probability (of hypothesis given
data) and proposed a method of inductive inference, a for-
mal way of getting from data to hypothesis. His approach
can be summarized as follows: The researcher sets up a
null hypothesis that a sample statistic comes from a hypo-
thetical infinite population with a known sampling distri-
bution. The null hypothesis is rejected or, as Fisher called
it, “disproved,” if the sample statistic deviates from the
mean of the sampling distribution by more than a speci-
fied criterion. This criterion — or level of significance - is
typically set to 5%, although Fisher later recommended
reporting the exact probability. In this approach, no claims
about the validity of alternative hypotheses are possible.
It is nevertheless tempting to view the complement of the
null hypothesis as an alternative hypothesis and argue, as
Arbouthnot did, that the rejection of the null hypothe-
sis gives credit to an unspecified alternative hypothesis.
Fisher’s approach is also associated with an epistemic inter-
pretation of significance: A Fisherian p-value is thought
to measure the strength of evidence against the null
hypothesis and to allow the researcher to learn about the
truth or falsehood of a specific hypothesis from a single
experiment.

The major rival to Fisher’s approach was Jerzy Neyman
and Egon Pearson’s (1928a, 1928b, 1933) approach to
hypothesis testing, originally viewed as an extension and
improvement of Fisher’s ideas. Neyman and Pearson
rejected the idea of inductive inference and replaced it with
the concept of inductive behavior. They sought to establish
rules for making decisions between different hypotheses
regardless of researcher’s beliefs about the truth of those
hypotheses. They argued for specifying both a null hypoth-
esis and an alternative hypothesis, which allows for the
calculation of two error probabilities, Type I error and Type
2 error, based on considerations regarding decision crite-
ria, sample size and effect size. Type I error occurs when
the null hypothesis is rejected although it is true. The prob-
ability of a Type I error is called a. Type II error occurs
when the alternative hypothesis is rejected although it is
true. The probability of a Type II error is called f and 1-$
is called the power of the test or the long run frequency of
accepting the alternative hypothesis if it is true. The deci-
sion to accept or reject hypotheses in the Neyman-Pearson
approach depends on the costs associated with Type I and
Type 1I errors. The cost considerations lie outside of the
formal statistical theory and must be based on context-
dependent pragmatic personal judgment. The goal, then,
for a researcher is to design an experiment that controls for
a and f and use a test that minimizes f given a bound on
. In contrast to the data dependent »p-values in Fisher’s
approach, « is specified before collecting the data. Despite
the different conceptual foundations of Fisher’s approach
and Neyman-Pearson’s approach, classical statistical infer-
ence, as commonly presented, is essentially an incoher-
ent hybrid of the two approaches (Hubbard and Bayarri
2003; Gigerenzer 1993), although there exist attempts to
reconcile them (Lehmann 1993). There is a considerable
literature discussing the pros and cons of classical statisti-
cal inference, especially null hypothesis significance testing
in the Fisherian tradition (e.g., Berger and Wolpert 1988;
Royall 1997; Morrison and Henkel 1970). The major alter-
native to classical significance and hypothesis testing is
Bayesian hypothesis testing (Jeffreys 1961; Kass and Raftery
1995).
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» Itis very bad practice to summarise an important investi-
gation solely by a value of P.
(Cox 1982,p327)

In spite of some recent changes, significance tests are
again conventionally used in most scientific experimental
publications. According to this publication practice, each
experimental result is dichotomized: significant vs. non-
significant. But scientists cannot in this way find appropri-
ate answers to their precise questions, especially in terms
of effect size evaluation. It is not surprising that, from
the outset (e.g., Boring 1919), significance tests have been

subject to intense criticism. Their use has been explicitly
denounced by the most eminent and most experienced sci-
entists, both on theoretical and methodological grounds,
not to mention the sharp controversies on the very foun-
dations of statistical inference that opposed Fisher to
Neyman and Pearson, and continue to oppose frequen-
tists to Bayesians. In the 1960s there was more and more
criticism, especially in the behavioral and social sciences,
denouncing the shortcomings of significance tests: the sig-
nificance test controversy (Morrison and Henkel 1970).

» Itis foolish to ask ‘Are the effects of A and B different? They
are always different - for some decimal place.
(Tukey 1991, p 100)

In most applications, no one can seriously believe
that the different treatments have produced no effect: the
point null hypothesis is only a straw man and a significant
result is an evidence against an hypothesis known to be
false before the data are collected, but not an evidence in
favor of the alternative hypothesis. It is certainly not a good
scientific practice, where one is expected to present argu-
ments that support the hypothesis in which one is really
interested. The real problem is to obtain estimates of the
sizes of the differences.

» The psychological literature is filled with misinterpretations
of the nature of the tests of significance.
(Bakan 1967, in Morrison and Henkel 1970, p 239)

Due to their inadequacy in experimental data analysis,
the practice of significance tests entails considerable dis-
tortions in the designing and monitoring of experiments.
It leads to innumerable misuses in the selection and inter-
pretation of results. The consequence is the existence of
publication biases denounced by many authors: while non-
significant results are — theoretically - only statements of
ignorance, only the significant results would really deserve
publication.

The evidence of distortions is the use of the symbols
NS, *, **, and *** in scientific journals, as if the degree
of significance was correlated with the meaningfulness
of research results. Many researchers and journal editors
appear to be “star worshippers”: see Guttman (1983), who
openly attacked the fact that some scientific journals, and
Science in particular, consider the significance test as a cri-
terion of scientificness. A consequence of this overeliance
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on significant effects is that most users of statistics over-
estimate the probability of replicating a significant result
(Lecoutre et al. 2010).

» What the use of P implies, therefore, is that a hypothe-
sis that may be true may be rejected because it has not
predicted observable results that have not occurred. This
seems a remarkable procedure.

(Jeffreys 1998/1939, Sect.7.2)

Since the p-value is the proportion of samples that are
“at least as extreme” as the observed data (under the null
hypothesis), the rejection of the null hypothesis is based on
the probability of the samples that have not been observed,
what Jeffreys ironically expressed in the above terms. This
mysterious and unrealistic use of the sampling distribution
for justifying null hypothesis significance tests is for the
least highly counterintuitive. This is revealed by questions
frequently asked by students and statistical users: “why
one considers the probability of samples outcomes that are
more extreme than the one observed?”

Actually, due to their frequentist conception, signifi-
cance tests involve considerable difficulties in practice. In
particular, many statistical users misinterpret the p-values
as inverse (Bayesian) probabilities: 1 — p is “the probability
that the alternative hypothesis is true” All the attempts to
rectify this misinterpretation have been a loosing battle.

» Neither Fisher’s null hypothesis testing nor Neyman-
Pearson decision theory can answer most scientific prob-
lems.

(Gigerenzer 2004, p 599)

Several empirical studies emphasized the widespread
existence of common misinterpretations of significance
tests among students and scientists (for a review, see
Lecoutre et al. 2001). Many methodology instructors who
teach statistics, including professors who work in the area
of statistics, appear to share their students’ misinterpre-
tations. Moreover, even professional applied statisticians
are not immune to misinterpretations of significance tests,
especially if the test is nonsignificant. It is hard to interpret
these finding as an individual’s lack of mastery: they reveal
that significance test do not address the questions that are
of primary interest for the scientific research.

In particular, the dichotomous significant/non signifi-
cant outcome of significance tests strongly suggests binary

» «

research decisions: “reject/accept the null hypothesis” “But
the primary aim of a scientific experiment is not to precip-
itate decisions, but to make an appropriate adjustment in
the degree to which one accepts, or believes, the hypothe-
sis or hypotheses being tested” (Rozeboom, in Morrison
and Henkel 1970, p. 221). The “reject/accept” attitude is
obviously a poor and unfortunate decision practice.

e A statistically significant test provides no information
about the departure from the null hypothesis. When
the sample is large a descriptively small departure may
be significant.

e A nonsignificant test is not evidence favoring the null
hypothesis. In particular, a descriptively large depar-
ture from the null hypothesis may be nonsignificant if
the experiment is insufficiently sensitive.

In fact, in order to interpret their data in a reasonable
way, users must resort to a more or less naive mixture of
significance tests outcomes and other information. But this
is not an easy task! This leads users to make adaptative dis-
tortions, designed to make an ill-suited tool fit their true
needs. Actually, many users explicitly appear to have a real
consciousness of the stranglehold of significance tests: in
many cases they use them only because they know no other
alternative.

» Inevitably, students (and essentially everyone else) give an
inverse or Bayesian twist to frequentist measures such as
confidence intervals and P values.

(Berry 1997, p 241)

It is not acceptable that statistical inference meth-
ods users will continue using nonappropriate procedures
because they know no other alternative. Nowadays, pro-
posals for changes in reporting experimental results are
constantly made. In all fields these changes, especially
in presenting and interpreting effect sizes, are more and
more enforced within editorial policies. Unfortunately,
academic debates continue and give a discouraging feeling
of déja-vu. Rather than stimulating the interest of experi-
mental scientists, this endless controversy is without doubt
detrimental to the impact of new proposals, if not to the
image of statistical inference.

The majority official trend is to advocate the use of con-
fidence intervals, in addition to or instead of significance
tests. However, reporting confidence intervals appears to
have very little impact on the way the authors interpret
their data. Most of them continue to focus on the statistical
significance of the results. They only wonder whether the
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interval includes the null hypothesis value, rather than on
the full implications of confidence intervals: the steam-
roller of significance tests cannot be escaped.

Furthermore, for many reasons due to their frequentist
conception, confidence intervals can hardly be seen as the
ultimate method. We then naturally have to ask ourselves
whether the “Bayesian choice” will not, sooner or later, be
unavoidable. It can be argued that an objective Bayes theory
is by no means a speculative viewpoint but on the contrary
is perfectly feasible (Rouanet et al. 2000; Lecoutre et al.
2001; Lecoutre 2008).
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Over the past decade there has been a revival of interest
in the field of multiple testing due to its increased rele-
vance in modern scientific investigations, such as DNA
microarray and functional magnetic resonance imaging
(fMRI) studies. Simes’ (1986) test plays an important role
in the developments of a number of multiple testing meth-
ods. Given a family of null hypotheses H, ..., H, and the
corresponding p-values Pi,.. ., Py, it is a global test of the
intersection null hypothesis Hy : ﬁH,- based on these
i=1
p-values. It rejects Ho at a significance level a if P(;) < ia/n
for at least one i = 1,..., n, where P(yy < -+ < P, are the
ordered p-values.

Simes’ test is more powerful than the Bonferroni test.
However, to control the Type I error rate at the desired
level, it requires certain assumptions about dependence
structure of the p-values under Ho, unlike the Bonferroni
test. For instance, if p-values are either independent or
positively dependent in the following sense:

Em, {¢(P1, ..

for each i = 1,...,n, and any coordinatewise non-
decreasing function ¢(Pi,...,P,) of Pi,...,P,, then
Simes’ test controls the Type I error rate at ; that is, the
following inequality holds:

.,P,)|P;i = u} is non-decreasinginu (1)

n
Pr , {Rejecting Ho } = Pr g, {U (P < i(x/no)} <a.
i=1
Such positive dependence is exhibited by p-values in
some commonly encountered multiple testing situations.
For instance, p-values generated from (I) dependent stan-
dard normal variates with non-negative correlations, (II)
absolute values of dependent standard normal variates
with a correlation matrix R such that the off-diagonal
entries of ~DR™'D are non-negative for some diagonal
matrix D with diagonal entries +1, (III) multivariate ¢ with
the associated normal variates having non-negative corre-
lations (under a minor restriction on the range of values
of u), and (IV) absolute values of multivariate ¢ with the
associated normal variates having a correlation matrix as
in (II), satisfy (1) (Sarkar 1998, 2008a; Sarkar and Chang
1997).
For simultaneous testing of Hi,...,H,, the family-
wise error rate (FWER), which is the probability of falsely
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rejecting at least one null hypothesis, is often used as a
measure of overall Type I error. Methods strongly control-
ling the FWER, that is, with this probability not exceeding
a pre-specified value a under any configuration of true
and false null hypotheses, have been proposed. Hochberg
(1988) suggested such a method. It rejects H; if P; < P(;y,
where
1= max{i Py <af(n —i+l)}

provided the maximum exists, otherwise accepts all null
hypotheses. This is a stepup method with the critical values
ai = af(n—i+1),i=1,...,n For any stepup method
with critical values o; < -+ < &y, the FWER is 0 if ng, the
number of true null hypotheses, is 0, otherwise it satisfies
the following inequality:

no
FWER < Pr {U (Pgiy < (Xnnoﬂ')}:

i=1

where P(l) < - < f)(no) are the ordered versions of
the p-values corresponding to the no true null hypothe-
ses (Romano and Shaikh 2006). For the Hochberg method,
since

Un—no+i = &[(ng —i+1) <iafngfori=1,...,no,

its FWER is bounded above by the Type I error rate
of the level & Simes’ test for the intersection of 7o null
hypotheses based on their p-values. In other words, the
Hochberg method controls its FWER in situations where
Simes’ global test controls its Type I error rate.

The closed testing method of Marcus et al. (1976) is
often used to construct multiple testing method with a
strong control of the FWER. It operates as follows. Given a
finite family of null hypotheses {Hj,i =1,...,n}, form the
closure of this family by considering all non-empty inter-
sections Hj = _ﬂ]Hi for ] ¢ {1,...,n}. Suppose a level-a

1€

global test is available for each Hj. Then, a closed testing
method rejects Hj if and only if every Hx with K 2 J
is rejected by its level-a test. Hommel (1988) used Simes’
global test in the closed testing method to construct an
improvement of the Hochberg method. It finds

j= max{i  P(nivky 2 kafiforall k = l,...,i},

and rejects H; if P; < a/], provided the maximum exists,
otherwise rejects all null hypotheses.

Benjamini and Hochberg (1995) introduced the »false
discovery rate (FDR), which is a less conservative notion of
error rate than the FWER. With R and V denoting the total
number rejections and the total number of false rejections,
respectively, of null hypotheses, it is defined as follows:

FDR = E(V/max{R,1}).

The FDR is said to be strongly controlled at « by a multiple
testing method if the above expectation does not exceed
a, irrespective of the number of true null hypotheses. As
noted in Hommel (1988), while making decisions on the
individual null hypotheses using the stepup method based
on the critical values in the Simes’ test, which are a; =
ia/n,i = 1,...,n, the FWER is not strongly controlled.
However, the false discovery rate (FDR) is strongly con-
trolled, again if the p-values are independent or positively
dependent in the sense of (1), but with the P; now rep-
resenting the p-value corresponding to a null hypothesis
(Benjamini and Hochberg 1995; Benjamini and Yekutieli
2001; Sarkar 2002). A proof of this result can be seen in
Sarkar (2008b), who gave the following expression for the
FDR of a stepup method with critical values a; < -+ < ey

I|Pi<a,
FDR = ZE ((_)RHIH)
i€]y Rn_ll +1

where I is the indicator function, Jy is the set of indices cor-
responding to the true null hypotheses, Rf,:? is the number
of rejections in the stepup method based on the n — 1
p-values other than P; and the critical values a; < -+ < .
Examples of p-values satisfying this positive dependence
condition are those that are generated from test statistics

in (I) and (III).
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Regression analysis is a collection of statistical modeling
techniques that usually describes the behavior of a ran-
dom variable of interest by using one or more quantitative
variables. The variable of interest may be the crop yield,
the price of oil in the world market, the tensile strength
of metal wire, and so on. This variable of interest is called
the dependent variable, or response variable and denoted
with Y. Other variables that are thought to provide infor-
mation on the dependent variable are incorporated into
the model as independent variables. These variables are also
called the predictor, or regressor, or explanatory variables,
and are denoted by Xs. If the height of a son is affected by
the height of his father, then the height of the father is X
and the height of the son becomes Y.

The Xs are assumed to be known constants. In addition
to the Xs, all models involve unknown constants, called
parameters, which control the behavior of the model. In
practical situations, the statistical models usually fall into
the class of models that are linear in the parameters. That
is, the parameters enter the model as simple coeflicients on

the independent variables. Such models are referred to as
»linear regression models. If there is only one independent
variable X for the dependent variable of interest Y, and the
functional relationship between Y and X is a straight line,
this model is called the simple linear regression model.

In a nonstatistical context, the word regression means
“to return to an earlier place or state” The term “regres-
sion” was first used by Francis Galton (1822-1911), who
observed that children’s heights tended to “revert” to the
average height of the population rather than diverting from
it. Galton applied “a regression line” to explain that the
future generations of offspring who are taller than average
are not progressively taller than their respective parents,
and parents who are shorter than average do not beget suc-
cessively smaller children. But the term is now applied to
any linear or nonlinear functional relationships in general.

In the simple linear model, the true mean of Y changes
at a constant rate as the value of X increases or decreases.
Thus, the functional relationship between the true mean of
Y, denoted by E(Y'), and X is the equation of a straight line

E(Y) = ‘B() + ﬁlX.

Here, B is the intercept, the value of E(Y) when X = 0,and
B1 is the slope of the line, the rate of change in E(Y') per unit
change in X. Suppose we have n observations on Y, say,
Y1,Y2,Y3,..., Yy at X1, X5, X3, . .., Xy, respectively. The i
observation on the dependent variable Y; at X; is assumed
to be a random observation with the random error ¢; to
give the statistical model

Yi = Bo + piXi +&i. n

The random errors ¢; have zero mean and assumed to have
common variance o> and to be pairwise independent. The
random error assumptions are frequently stated as

& ~ NID(0,0%)

where NID stands for normally and independently dis-
tributed. The quantities in parentheses denote the mean
and the variance, respectively, of the normal distribution.

Once fo and f; in Eq. 1 have been estimated from a
given set of data on X and Y, the following prediction
equation results:

?:B\O+B\1Xor?i:ﬁo+ﬁ1xi (2)

The “hats” (as they are called) above o and f3; signify that
those parameters are being estimated, but the hat above
Y means that the dependent variable is being predicted.
Point estimates of o and f; are needed to obtain the fit-
ted line given in Eq. 2. One way is to minimize the sum
of the absolute values of the vertical distances with each
distance measured from each point to the fitted line (see,
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e.g., Birkes and Dodge 1993). These vertical distances are
called »residuals. The standard approach, however, is to
minimize the sum of the squares of the vertical distances,
and this is accomplished by using the method of least
squares.

The starting point of the method of »least squares is to
write the estimated model as

e=Y - (Bo+PiX)

since the residual e represents the vertical distance Y to the
line. Then the estimates 8 and f3; are chosen that minimize
the sum of the squares of residuals

2

S = Xe? :z(Yi—EO—EXi)

To minimize S, we take the partial derivative of S with
respect to each of the two estimates and set the resulting
expressions equal to zero. Thus we obtain

Bon+BiZXi = 0
BoZXi+ PiEX? =0

which are called the normal equations. If we solve these
equations for o and f31, we obtain

_ YE-R)(n-T)
T

B -Y-BX.

The method of least squares, on which most methods
of estimation for regression analysis are based was appar-
ently first published by Legendre (1805), but the first treat-
ment along the lines now familiar was given by Gauss (for
the details regarding history of least squares see »Gauss—
Markov theorem). Gauss showed that the least squares
method gives estimators of the unknown parameters with
minimum variance among unbiased linear estimators. This
basic result is now known as the Gauss—-Markov theorem,
and the least squares estimators as Gauss—Markov estima-
tors. That is, there is no other choice of values for the two
parameters 8o and f; that provide a smaller Se?. If a

residual, e;, is too large compared with the other residu-
als, the corresponding Y; may be an outlier or may be an
influential observation that influences the estimates of two
parameters f3o and f3;. Detection of an outlier or an influ-
ential observation is an important research area, and many
books such as Belsley et al. (1980) and Cook and Weisberg
(1982), deal with this topic. (see also »Cook’s distance,
»Regression diagnostics, »Influential observations).
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A »census, surveying every element in a finite population,
is used to discover characteristics of the population. If the
population is large, a census can be costly, time consuming,
or impracticable. Alternatively, a simple random sample
can be used to obtain information and draw inferences
about the population. It is customary to sample elements
without replacement. That is, once an element has been



Simple Random Sample

1329

selected, it is removed from the population so that it can-
not be selected a second time. A simple random sampling
procedure is used to obtain a simple random sample. The
procedure selects a sample of size n from a finite popu-
lation of size N < n such that each of the yC, =
N!/[n!(N - n)!] possible samples is equally likely to be
selected. If sample elements are returned to the population
after being selected - sampling with replacement - each of
the N+n—1Cy = (N +n-1)!/{n![(N+n-1) —n]!} possible
samples is equally likely to be selected.

Simple random sampling is a type of probability sam-
pling. All probability sampling procedures have three char-
acteristics in common: (a) the elements that compose the
population are explicitly defined, (b) every potential sam-
ple of a given size that could be drawn from the population
can be enumerated, and (c) the probability of selecting any
potential sample can be specified. Non-probability sam-
pling procedures do not satisfy one or more of the three
characteristics. An example of a non-probability sampling
procedure is convenience sampling-elements are selected
because they are readily available. For simple random sam-
pling without replacement, the probability of a particu-
lar sample being selected is 1/(xCy). For sampling with
replacement, the probability of a particular sample being
selected is 1/ (N+n-1Cn ). When sampling with replacement
the inclusions of the ith and jth (i # j) members of the pop-
ulation are statistically independent. However, these events
are not statistically independent when sampling without
replacement. For this case, the probability of the inclusions
of ith and jth population members is n(n —1)/[N(N -1)]
(McLeod 1988).

Simple random samples have two interrelated advan-
tages over non-probability samples. First, randomness
avoids bias, that is, a systematic or long-run misrepre-
sentation of the population. Second, randomness enables
researchers to apply the laws of probability in determining
the likely error of sample statistics. A particular random
sample rarely yields an estimate of the population charac-
teristic that equals the population characteristic. However,
the expected value of the sample estimate will over an
indefinitely large number of samples equal the popula-
tion characteristic. Furthermore, for any simple random
sample, it is possible to estimate the magnitude of the
error associated with the estimate. For large populations
the error depends only on the sample size, a fact that is
counterintuitive (Anderson 2001).

The first step in obtaining a simple random sample is to
develop a sampling frame: a list of all of the elements in the
population of interest. The sampling frame operationally
defines the population from which the sample is drawn
and to which the sample results can be generalized. Once
the sampling frame has been developed, a simple random

sample can be obtained in a variety of ways. For example,
a researcher can record on a slip of paper the identifying
code for each element in the sampling frame. The slips of
paper are placed in a container and thoroughly shuffled.
The first n unique slips drawn without bias from the con-
tainer compose the sample. The most common method of
obtaining a simple random sample uses random numbers.
Tables of random numbers are available in many statistics
textbooks. The tables contain a sequence of random digits
whose terms are chosen so that each digit is equally likely to
be 0,1,...,9 and the choices at any two different places in
the sequence are independent. For ease in reading the dig-
its in a random number table, the digits are often grouped
with two digits in a group, four digits in a group, and so
on. To use a table to select a simple random sample of size,
say, n = 50 from a population of size N = 988, assign the
numbers 000,002, . . ., 987 to the elements in the sampling
frame. Select a starting point in the table by dropping a
pointed object on the table. Choose three-digit numbers
beginning at the starting point until 50 distinct numbers
between 000 and 987 are obtained. The sample consists of
the elements corresponding to the 50 numbers selected.
This procedure illustrates sampling without replacement
because once a number has been selected, the number
is ignored if it is encountered again. Computer packages
such as SAS, SPSS, and MINITAB and many hand calcu-
lators have routines that produce numbers that in every
observable way appear to be random. For an in-depth
discussion of sampling procedures, see Schaeffer et al.
(2006).
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Simpson’s Paradox. Table 1 Recovery proportions in
treatment and placebo groups

New drug 80 120 200
Placebo 100 100 200
_ 80 _ 100 _
RD = 5T = I =-0.10

Simpson’s Paradox. Table 2 Populations stratified by gender

New drug 35 15 45 105
Placebo 90 60 10 40

[ e

Simpson’s Paradox RDy = 010 RDf = 0.10

ZH1 GENG

Professor, Director of the Institute of Mathematical Ger)der

Statistics of Peking University

Peking University, Beijing, China

An association measurement between two variables X Treatment - Recovery

and Y may be dramatically changed from positive
to negative by omitting a third variable Z, which is
called Simpson’s paradox or the Yule-Simpson para-
dox (Yule, 1903; Simpson, 1951). A numerical exam-
ple is shown in Table 1. The risk difference (RD) is
defined as the difference between the recovery propor-
tion in the treated group and that in the placebo group,
RD = (80/200) - (100/200) = —0.10. If the population is
split into two populations of male and female, a dramatic
change can be seen from Table 2. The risk differences for
male and female are both changed to 0.10. Thus we obtain
a self-contradictory conclusion that the new drug is effec-
tive for both male and female but it is ineffective for the
whole population. Should patients in the population take
the new drug or not? Should the correct answer depend on
whether the doctor know the gender of patients?

From Table 2, we can see that most males took placebo,
but most females took the new drug. As depicted in Fig. 1,
there may be a spurious association between treatment and
response because gender associates with both treatment
and response. Such a factor that is associated with both
treatment and response is called a confounding factor or
a confounder. If a confounder is known and observed, the
bias due to the confounder can be removed by stratification
or standardization. If there are unknown or unobserved

Simpson’s Paradox. Fig. 1 A confounding factor: gender

R 70
- 100 <
N 30
200
M R 60
P 100 <
N 40
400
R 30
. T 100 <
N 70
200
R 20
P 100 <
N 80

Simpson’s Paradox. Fig. 2 Randomized experiment

confounders, in order to remove the confounding bias,
we can randomize the treatment assignment such that
the association path between the confounders and the
treatment is broken. In Fig. 2, we depict a randomized
experiment for this example, where 200 males (M) and
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Simpson’s Paradox. Table 3 Subscription renewal rates in 1979

January
Total 3,594 18,364 2,986 20,862 149 45,955
Renewals 2,918 14,488 1,783 4,343 13 23,545
Rate 0.812 0.789 0.597 0.208 0.087 0.512
February
Total 884 5,140 2,224 864 45 9,157
Renewals 704 3,907 1134 122 2 5,869
Rate 0.796 0.760 0.510 0.141 0.044 0.641
Simpson'’s Paradox. Table 4 Total income and total tax (in 10° dollars) and tax rate
Under $5,000 41,651,643 2,244,467 0.054 19,879,622 689,318 0.035
$5,000 to $9,999 146,400,740 13,646,348 0.093 122,853,315 8,819,461 0.072
$10,000 to $14,999 192,688,922 21,449,597 0m 171,858,024 17,155,758 0.100
$15,000 to $99,999 470,010,790 75,038,230 0.160 865,037,814 137,860,951 0.159
$100,000 or more 29,427,152 1,311,672 0.384 62,806,159 24,051,698 0.383
Total 880,179,247 123,690,314 0.141 1,242,434,934 188,577,186 0.152

200 females (F) are randomly assigned into the new drug
group (T) and the placebo group (M). The recovery pro-
portion is 35/50 in the new drug group of males, and
thus 70 of 100 treated males recover (R) and the other
30 do not recover (N). From Fig. 2, the total number of
recovered people is 70+30=100 and the recovery propor-
tion is 100/200 in the new drug group; the total number
is 60+20=80 and the recovery proportion is 80/200 in the
placebo group. Thus, we conclude on that the new drug
increases recovery proportion by 10%, which is consistent
with that shown in Table 2.

Two real-life examples of Simpson’s paradox were
showed by Wagner (1982). The first example, as shown in
Table 3, illustrates that the overall renewal rate of American
History Illustrated magazine increased from 51.2 percent
in January 1979 to 64.1 percent in February 1979, but the

renewal rates actually declined in every subscription cate-
gory. The second example, as shown in Table 4, illustrates
that the overall income tax rate increased from 14.1 percent
in 1974 to 15.2 percent in 1978, but the tax rate decreased
in each income category. Reintjes et al. (2000) gave the
following example from hospital epidemiology: 3519 gyne-
cology patients from eight hospitals in a nonexperimental
study were used to study the association between antibi-
otic prophylaxis (AB-proph.) and urinary tract infections
(UTTI). The eight hospitals were stratified into two groups
with a low incidence percentage (< 2.5%) and a high per-
centage (> 2.5%) of UTL. By Table 5, the relative risk (RR)
was (42/1279)/(104/2240) = 0.7 for the overall eight hospi-
tals, which means that AB-proph. had a protective effect
on UTI But the RRs were 2.6 and 2.0 for the low and
the high incidence groups, respectively, which means that
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Simpson’s Paradox. Table 5 Data on UTIl and AB-proph. stratified by incidence of UTI per hospital

Yes

20

1093

22

144

42

1237

No

715

99

1421

104

2136

RRL =26

RRy =2.0

RR =07

AB-proph. had a risk effect on UTI for both groups. The
real effect of AB-proph. on UTT has been shown to be pro-
tective in randomized clinical trials, which is consistent
with the crude analysis rather than the stratified analysis.
This result explains that there were more unidentified con-
founders which canceled their effects each other out in the
crude analysis.

There are many topics related to Simpson’s para-
dox. Collapsibility of association measurements deals
with conditions under which association measurements
are unchanged by omitting other variables (Cox and
Wermuth, 2003; Ma et al. 2006). From the viewpoint of
causality, Simpson’s paradox occurs because there are con-
founders such that association measurement is biased from
causal effects (Pearl, 2000; Geng et al. 2002). A variation
of Simpson’s paradox is a surrogate paradox, which means
that a treatment has a positive effect on an intermediate
variable called a surrogate, which in turn has a positive
effect on the true endpoint, but the treatment has a negative
effect on the true endpoint (Chen et al. 2007; Ju and Geng,
2010). Moore (1995) describes a real trial of antiarrhyth-
mic drugs in which an irregular heartbeat is a risk factor
of early mortality but correction of the heartbeat increased
mortality.
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The financial market turmoil has been shocking the world
since early 2008. As is aptly stated by the president of the
European Central Bank, Trichet (2008), the widespread
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undervaluation of risk is one of the most important issues
in this context and appropriate operational risk manage-
ment is a crucial issue to be investigated. A seemingly
unrelated issue is to measure and predict the treatment
effect of education on income. This issue is crucial for any
country that increasingly relies on the “knowledge econ-
omy.” In recent research by the authors it is stressed that
these seemingly unrelated issues pose similar questions
and have common components from a modeling and sta-
tistical viewpoint.

There exist connections between dynamic time series
models used in the first issue and treatment effect models.

This common problem structure is explained in research
by the authors as follows: the restricted reduced form of
the instrumental variable (IV) model and the Vector Error
Correction Model (VECM) under cointegration are both
instances of the general reduced rank regression model
with different variables and parameters playing the same
roles, as summarized in the Table 1.

In these models with near reduced rank one may
encounter non-elliptical posteriors. In the Bayesian anal-
ysis of treatment effects, for example in the instrumental
variable (IV) model, we often encounter posterior distri-
butions that display these shapes. The reason for this is

Simulation Based Bayes Procedures for Model Structures with Non-Elliptical Posteriors. Table 1 Common model structures

Endogenous variables

Dependent variable and (possibly)
endogenous regressors

Vector of variables’ changes
(= current — previous values)

Predetermined variables corresponding
to parameter matrix with reduced rank

Instrumental variables (having no direct
effect on the dependent variable, only
an indirect effect via the (possibly)
endogenous regressors)

Vector of previous values

Predetermined variables corresponding to
unrestricted parameter matrix

Control variables (having a direct effect
on both the dependent variable and the
(possibly) endogenous regressors)

Vector of other explanatory variables
and past variables’ changes

posterior (r, B) under flat prior:

posterior (r, B) under Jeffreys prior:

Simulation Based Bayes Procedures for Model Structures with Non-Elliptical Posteriors. Fig. 1 Posterior density of 7 (expected

difference in years of education between children born in April-December and January-March) and § (treatment effect of

education on income) for 29,015 data (used by Angrist and Krueger (1991)) from men born in the state of New York
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local non-identification: if some of the model parame-
ters (reflecting the strength of the instruments) tend to 0,
i.e., the case of weak instruments, other model parameters
(corresponding to the relevant treatment effect) become
unidentified.

Angrist and Krueger (1991) consider the estimation
of the treatment effect § of education on income, which
is non-trivial due to unobserved (intellectual) capabilities
that not only influence education but also directly affect
income, and due to measurement errors in the reported
education level. Angrist and Krueger (1991) use Amer-
ican data and suggest using quarter of birth to form
»instrumental variables. These instruments exploit that
students born in different quarters have different average
education. This results since most school districts require
students to have turned age six by a certain date, a so-called
“birthday cutoff” which is typically near the end of the
year, in the year they enter school, whereas compulsory
schooling laws compel students to remain at school until
their 16th, 17th or 18th birthday. This asymmetry between
school-entry requirements and compulsory schooling laws
compels students born in certain months to attend school
longer than students born in other months: students born
earlier in the year enter school at an older age and reach the
legal dropout age after less education. Hence, for students
who leave school as soon as the schooling laws allow for
it, those born in the first quarter have on average attended
school for three quarters less than those born in the fourth
quarter. Suppose we use as a single instrument a 0/1 indi-
cator variable with value 0 indicating birth in the first
quarter; the strength of this instrument is given by its effect
on education, parameter 7. The left panel of Fig. 1 shows the
posterior density of 7 and 8 (under a flat prior) for 29,015
data from men born in the state of New York in 1930-1939.
This shows a clear “ridge” around 7 = 0, indicating that for
7 tending to 0 a wide range of values of 5 becomes possi-
ble. An alternative prior, the Jeftreys prior, regularizes the
posterior shapes in the sense that it eliminates the asymp-
tote around 7 = 0 for the marginal posterior of 7, yet the
joint posterior shapes in the right panel of Fig. 1 are still far
from elliptical. This example illustrates that the weakness
of the instruments may imply that even for large data sets
posterior distributions may be highly non-elliptical.

Thus for the Bayesian analysis of (non-linear) exten-
sions of the IV model, we need flexible simulation meth-
ods. The use of neural network based simulation is then
particularly useful. A Bayesian optimal information pro-
cessing procedure using advanced simulation techniques
based on artificial neural networks (ANN) is recently
developed and it can be used as a powerful tool for fore-
casting and policy advice. These simulation methods have

already been successfully applied to evaluate risk mea-
sures (Value-at-Risk, Expected Shortfall) for a single asset.
The procedures proposed by the authors are just one step
forward on the path of understanding these issues and
these involve a novel manner of processing the informa-
tion flow on these issues. It is — of course - the inten-
tion of this research that its results improve forecasting
of risk and uncertainty that influence the effectiveness of
interventions and treatments.
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Singular spectrum analysis (SSA) is a technique of time
series analysis and forecasting. It combines elements of
classical time series analysis, multivariate statistics, mul-
tivariate geometry, dynamical systems and signal process-
ing. SSA aims at decomposing the original series into a sum
of a small number of interpretable components such as a
slowly varying trend, oscillatory components and a “struc-
tureless” noise. It is based on the singular-value decompo-
sition of a specific matrix constructed upon time series.
Neither a parametric model nor stationarity-type condi-
tions have to be assumed for the time series; this makes
SSA a model-free technique.

The commencement of SSA is usually associated with
publication of the papers (Broomhead and King 19864, b)
by Broomhead and King. Nowadays SSA is becoming
more and more popular, especially in applications. There
are several hundred papers published on methodologi-
cal aspects and applications of SSA, see Golyandina et al.

(2001), Vautard et al. (1992), Vautard and Ghil (1989), Allen
and Smith (1996), and Zhigljavsky (2010) and references
therein. SSA has proved to be very successful, and has
already become a standard tool in the analysis of climatic,
meteorological and geophysical time series; see, for exam-
ple, Vautard et al. (1992), Vautard and Ghil (1989), and
Allen and Smith (1996). More recent areas of application
of SSA include engineering, medicine, econometrics and
many other fields. Most recent developments in the the-
ory and methodology of SSA can be found in Zhigljavsky
(2010). We start with ‘Basic SSA’, which is the most com-
mon version of SSA.

Basic SSA

Let x1,...,xn be a time series of length N. Given a win-
dow length L (1<L<N), we construct the L-lagged vectors
Xi=(xi,... ,x,-+L_1)T, i=1,2,...,K=N-L+], and compose
these vectors into the matrix X = (x,-ﬁ,l)f’}fl =[Xi:...:
Xk ] . This matrix has size L x K and is often called “trajec-
tory matrix.” It is a Hankel matrix, which means that all the
elements along the diagonal i+j=const are equal.

The columns X; of X, considered as vectors, lie in the
L-dimensional space R. The singular-value decomposi-
tion of the matrix X X” yields a collection of L eigen-
values and eigenvectors. A particular combination of a
certain number [ < L of these eigenvectors determines
an I-dimensional subspace in R". The L-dimensional data
{Xi,..., Xk} is then projected onto this I-dimensional
subspace and the subsequent averaging over the diagonals
gives us some Hankel matrix X which is considered as an
approximation to X. The series reconstructed from X sat-
isfies some linear recurrent formula which may be used for
forecasting.

In addition to forecasting, the Basic SSA can be
used for smoothing, filtration, noise reduction, extrac-
tion of trends of different resolution, extraction of peri-
odicities in the form of modulated harmonics, gap-filling
(Kondrashov and Ghil 2006; Golyandina and Osipov
2007) and other tasks, see Golyandina et al. (2001). Also,
the Basic SSA can be modified and extended in many
different ways some of which are discussed below.

Extensions of the Basic SSA

SSA for analyzing stationary series (Vautard and Ghil 1989).
Under the assumption that the series xi, . . ., xn is station-
ary, the matrix X X" of the Basic SSA is replaced with the
so-called lag-covariance matrix C whose elements are ¢;; =
o SN xxe with i,j = 1,...,Land k = |i - j|. In the
terminology of Golyandina et al. (2001), this is “Toeplitz
SSA”
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Monte-Carlo SSA (Allen and Smith 1996). In the Basic
SSA we implicitly associate the “structureless” component
of the resulting SSA decomposition with “white noise” (this
noise may not necessarily be random). In some applica-
tions, however, it is more natural to assume that the noise
is “colored”. In this case, special tests based on Monte
Carlo simulations may be used to test the hypothesis of the
presence of a signal.

Improvement or replacement of the singular-value
decomposition (SVD) procedure. There are two main rea-
sons why it may be worthwhile to replace the SVD oper-
ation in the Basic SSA with some another operation. The
first reason is simplicity: in problems where the dimen-
sions of the trajectory matrix is large, SVD may simply
be too costly to perform; substitutions of SVD are avail-
able, see Golub and van Loan (1996) and Moskvina and
Schmidt (2003). The second reason is the analysis of the
accuracy of SSA procedures based on the perturbation the-
ory (Zhigljavsky 2010). For example, in the problems of
separating signal from noise, some parts of the noise are
often found in SVD components corresponding to the sig-
nal. As a result, a small adjustment of the eigenvalues and
eigenvectors is advisable to diminish this effect. The sim-
plest version of the Basic SSA with a constant adjustment
in all eigenvalues was suggested in Van Huffel (1993) and is
sometimes called the minimum-variance SSA.

Low-rank matrix approximations, Cadzow iterations,
connections with signal processing. As an approximation to
the trajectory matrix X, the Basic SSA yields the Hankel
matrix X. This matrix is obtained as a result of the diagonal
averaging of a matrix of rank I. Hence X is typically a matrix
of full rank. However, in many signal processing applica-
tions, when a parametric form of an approximation is of
prime importance, one may wish to find a Hankel matrix
of size L x K and rank [ which gives the best approximation
to X; this is a problem of the structured low-rank approxi-
mation (Markovsky et al. 2006). The simplest procedure of
finding a solution to this problem (not necessarily the glob-
ally optimal one though) is the so-called Cadzow iterations
(Cadzow 1988) which are the repeated alternating projec-
tions of the matrices (starting at X) to the set of matrices
of rank [ (by performing the singular-value decomposi-
tions) and to the set of Hankel matrices (by making the
diagonal averaging). That is, Cadzow iterations are simply
the repeats of the Basic SSA. It is not guaranteed however
that Cadzow iterations lead to more accurate forecasting
formulas than the Basic SSA (Zhigljavsky 2010).

SSA for change-point detection and subspace track-
ing (Moskvina and Zhigljavsky 2003). Assume that the
observations xi, Xz, .. of the series arrive sequentially in
time and we apply the Basic SSA to the observations

at hand. Then we can monitor the distances from the
sequence of the trajectory matrices to the I-dimensional
subspaces we construct and also the distances between
these I-dimensional subspaces. Significant changes in any
of these distances may indicate on a change in the mech-
anism generating the time series. Note that this change in
the mechanism does not have to affect the whole structure
of the series but rather only a few of its components.

SSA for multivariate time series. Multivariate (or mul-
tichannel) SSA (shortly, MSSA) is a direct extension of
the standard SSA for simultaneous analysis of several time
series. Assume that we have two series, X = {x1,...,xy}
and Y = {y,...,yn}. The (joint) trajectory matrix of the
two-variate series (X,Y) can be defined as either Z =
(X,Y) or Z = (X,Y)", where X and Y are the trajec-
tory matrices of the individual series X and Y. Matrix Z
is block-Hankel rather than simply Hankel. Other stages
of MSSA are identical to the stages of the univariate SSA
except that we build a block-Hankel (rather than ordinary
Hankel) approximation Z to the trajectory matrix Z.

MSSA may be very useful for analyzing several series
with common structure. MSSA may also be used for estab-
lishing a causality between two series. Indeed, the absence
of causality of Y on X implies that the knowledge of Y
does not improve the quality of forecasts of X. Hence an
improvement in the quality of forecasts for X which we
obtain using MSSA against univariate SSA forecasts for X
gives us a family of SSA-causality tests, see Hassani et al.
(2010).
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»Six Sigma can be defined as a highly structured strategy for
acquiring, assessing, and applying customer, competitor, and
enterprise intelligence in order to produce superior product,
system or enterprise innovation and designs (Klefsjo et al.
2006). Focal to this definition is the customer and indeed
the customer functions as the pivot point for this contri-
bution as customer needs and wants drive change in most
organizations.

Six Sigma originated at Motorola approximately
3 decades ago as a means of generating near-perfect prod-
ucts via focus on associated manufacturing processes and
while initially applied almost exclusively in manufactur-
ing environments, its inherent sensibilities and organiza-
tion facilitated migration to service operations. Similarly,

while Six Sigma was at the outset used to generate signifi-
cant innovation in and improvement of existing products,
those same sensibilities led to its adaptation to new prod-
uct and process design environments. In statistical terms
a process operating at a “true” six sigma level produces
an average of only 3.4 defects per million opportunities
(DPMO) for defects where this figure is associated with a
process with a 12 standard deviation spread between lower
and upper specification limits, but wherein the 3.4 DPMO
figure is based on allowance for a 1.5 standard deviation
non-centrality factor or shift away from “perfect centering”
so that, in essence, one specification limit is 4.5 standard
deviations away from the targeted or ideal performance
level whereas the other specification limit is 75 standard
deviations away from that performance level.

Within the context of a structured problem-solving
context Six Sigma integrates various strategies and tools
from Statistics, Quality, Business, and Engineering with the
adoption of new ones likely as its use expands to more busi-
ness sectors and areas of application. Its focus divides into
two significant and related branches that share a number of
tools, techniques and objectives, but often apply these tools
and techniques differently and its use has added multiple
billions in any currency to the financial bottom lines of
numerous organizations across many sectors of the econ-
omy, including financial, healthcare, military, and general
manufacturing. Six Sigma’s branches are ones that focus
on significant innovation/redesign in or of existing prod-
ucts, processes, and systems and a second that is directed
at design of new products, processes or systems. Included
among the leading companies emphasizing Six Sigma are
GE, 3M, Raytheon, Sun Microsystems, DuPont, Bank of
America, American Express, Motorola, Rolls Royce, and
Boeing.

Central to business flow is the familiar SIPOC model
(Suppliers — Inputs — Processes — Outputs — Customers)
indicating that, commonly, suppliers provide inputs that
are transformed by internal processes into outputs that are
in turn provided to customers. While this flow is com-
mon and logical, its optimization is far less so, but can be
approached application of Stephen Covey’s familiar “habit”
of “beginning with the end in mind” (Covey 1989), a mani-
festation of which in the present case is COPIS (Customers
— Outputs — Processes — Inputs — Suppliers).

Organizations that practice COPIS - often as part of a
quality management or six sigma culture — do so by first
carefully elaborating who their customers are as well as the
needs and wants of those customers (called the “Voice of
the Customer” or “VOC”). Customer-driven organizations
will ensure that these needs and wants are reflected in and
fulfilled by the outputs of processes that must be optimally
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SIPOC and COPIS: Business Flow - Business Optimization Connection in a Six Sigma Context. Fig. 1

configured in order to deliver these outputs by transform-
ing the most appropriate inputs that have been provided by
the most apt suppliers. It can be seen from this that, con-
sistent with Covey, “see the end from the beginning,” that
is, to be customer-driven. In a continuous improvement
culture this occurs not once, but cyclically. These ideas are
portrayed in Fig. 1.

Statistical and other quantitatively oriented methods
that can be brought to bear throughout the COPIS-SIPOC
flow include the use of sample survey methods to elicit the
VOC and numerous additional analytical techniques from
across the statistical spectrum can be used to assess the
VOC. Optimal process configuration is not merely a matter
of work flow and equipment, but also of ensuring that how-
ever those are assembled, that the outputs themselves are
optimized. While many tools can be employed, generally
outputs can be regarded as response variables, Y, where

Y :f(Xl,Xz, e ,Xp) + &,

where Xi, X, . . ., Xp are controllable variables, the optimal
combination of settings of which can be determined using
response surface methods, steepest ascent methods, and
evolutionary operations or EVOP (Myers et al. 2009). In
a similar way, such methods can be used to assist in selec-
tion of inputs and subsequently the suppliers from whom
these should be obtained.

In all, what we see is that as best practice, business is
conceived of as COPIS to yield optimal results as deter-
mined by the VOC, but subsequently deployed as SIPOC.
While SIPOC is common to most business environments,
employment of COPIS is practiced far less often and then
typically only in customer-driven environments. Prac-
tice of COPIS offers rich opportunities for application of
statistical methods as well as subsequent rewards.

About the Author
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Six Sigma is a quality improvement system originally devel-
oped by Motorola in the mid-1980s. After seeing the
huge financial successes at Motorola, GE, and other early
adopters of Six Sigma, many companies worldwide have
now instituted Six Sigma to improve efficiency, cut costs,
eliminate defects, and reduce product variation (see Arndt
2002; Cyger 2006; Hahn et al. 2000; Snee 2000). Six Sigma
offers a more prescriptive and systematic approach to pro-
cess improvement than TQM. It is also distinguished from
other quality improvement systems by its clear focus on
achieving bottom-line results in a relatively short 3- to
6-month period of time.

The name Six Sigma comes from the fact that it is
a managerial approach designed to create processes that
result in no more than 3.4 defects per million. The Six
Sigma approach assumes that processes are designed so
that the upper and lower specification limits are six stan-
dard deviations away from the mean. Then, if the processes
are monitored correctly with »control charts, the worst
possible scenario is for the mean to shift to within 4.5
standard deviations from the nearest specification limit.
The area under the normal curve less than 4.5 standard
deviations below the mean is approximately 3.4 out of a
million.

The DMAIC Model

To guide managers in their task of improving short- and
long-term results, Six Sigma uses a five-step process known
as the DMAIC model - named for the five steps in the
process:

e Define. The problem is defined, along with the costs,
the benefits, and the impact on the customer.

e  Measure. Operational definitions for each critical-to-
quality (CTQ) variable are developed. In addition, the
measurement procedure is verified so that it is consis-
tent over repeated measurements.

e Analyze. The root causes of why defects occur are deter-
mined, and variables in the process causing the defects
are identified. Data are collected to determine bench-
mark values for each process variable. This analysis
often uses control charts.

e Improve. The importance of each process variable on
the CTQ variable is studied using designed experi-
ments. The objective is to determine the best level for
each variable.

e Control. The objective is to maintain the benefits for
the long term by avoiding potential problems that can
occur when a process is changed.

The Define phase of a Six Sigma project consists of the
development of a project charter, performing a SIPOC
analysis, and identifying the customers for the output of
the process. The development of a project charter involves
forming a table of business objectives and indicators for
all potential Six Sigma projects. Importance ratings are
assigned by top management, projects are prioritized, and
the most important project is selected. A SIPOC analysis is
used to identify the Suppliers to the process, list the Input
provided to the suppliers, flowchart the Process, list the
process Outputs, and identify the Customers of the pro-
cess. This is followed by a Voice of the Customer analysis
that involves market segmentation in which different types
of users of the process are identified and the circumstances
of their use of the process are identified. Statistical meth-
ods used in the Define phase include tables and charts,
descriptive statistics, and control charts.

In the Measure phase of a Six Sigma project, members
of a team first develop operational definitions of each CTQ
variable. This is done so that everyone will have a firm
understanding of the CTQ. Then studies are undertaken
to ensure that there is a valid measurement system for
the CTQ that is consistent across measurements. Finally,
baseline data are collected to determine the capability and
stability of the current process. Statistical methods used in
the Measure phase include tables and charts, descriptive
statistics, the normal distribution, the Analysis of Variance,
and control charts.

The Analyze phase of a Six Sigma project focuses on
the factors that affect the central tendency, variation, and
shape of each CTQ variable. Factors are identified, related
to each CTQ, have operational definitions developed, and
have measurement systems established. Statistical meth-
ods used in the Analyze phase include tables and charts,
descriptive statistics, the » Analysis of Variance, regression
analysis, and control charts.

In the Improve phase of a Six Sigma project, team
members carry out designed experiments to actively inter-
vene in a process. The objective of the experimental design
is to determine the settings of the factors that will optimize
the central tendency, variation, and shape of each CTQ
variable. Statistical methods used in the Improve phase
include tables and charts, descriptive statistics, regression
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analysis, hypothesis testing, the Analysis of Variance, and
designed experiments.

The Control phase of a Six Sigma project focuses on
the maintenance of improvements that have been made in
the Improve phase. A risk abatement plan is developed to
identify elements that can cause damage to a process. Sta-
tistical methods used in the Control phase include tables
and charts, descriptive statistics, and control charts.
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Skewness is a measure of distributional asymmetry. Con-
ceptually, skewness describes which side of a distribution
has a longer tail. If the long tail is on the right, then the
skewness is rightward or positive; if the long tail is on the
left, then the skewness is leftward or negative. Right skew-
ness is common when a variable is bounded on the left but
unbounded on the right. For example, durations (response
time, time to failure) typically have right skewness since
they cannot take values less than zero; many financial vari-
ables (income, wealth, prices) typically have right skewness
since they rarely take values less than zero; and adult body
weight has right skewness since most people are closer
to the lower limit than to the upper limit of viable body
weight. Left skewness is less common in practice, but it can
occur when a variable tends to be closer to its maximum
than its minimum value. For example, scores on an easy



Skewness

1341

exam are likely to have left skewness, with most scores close
to 100% and lower scores tailing off to the left. Well-known
right-skewed distributions include the Poisson, chi-square,
exponential, lognormal, and gamma distributions. I am
not aware of any widely used distributions that always have
left skewness, but there are several distributions that can
have either right or left skew depending on their parame-
ters. Such ambidextrous distributions include the binomial
and the beta.

Mathematically, skewness is usually measured by the
third standardized moment E((X — u)/0)*), where X
is a random variable with mean y and standard devia-
tion o. The third standardized moment can take any pos-
itive or negative value, although in practical settings it
rarely exceeds 2 or 3 in absolute value. Because it involves
cubed values, the third standardized moment is sensitive to
»outliers (Kim and White 2004), and it can even be unde-
fined for heavy-tailed distributions such as the Cauchy
density or the Pareto density with a shape parameter of 3.
When the third standardized moment is finite, it is zero
for symmetric distributions, although a value of zero does
not necessarily mean that the distribution is symmetric
(Ord 1968; Johnson and Kotz 1970, p. 253). To estimate
the third standardized moment from a sample of n obser-
vations, a biased but simple estimator is the third sample
moment 1/n Y ((x — X)/s)*, where X is the sample mean
and s is the sample standard deviation. An unbiased esti-
mator is the third k statistic, which is obtained by taking the
third sample moment and replacing 1/n with the quantity
n/((n—-1)(n-2)) (Rose and Smith 2002).

Although the third standardized moment is far and
away the most popular definition of skewness, alternative
definitions have been proposed (MacGillivray 1986). The
leading alternatives are bounded by -1 and +1, and are
zero for symmetric distributions, although again a value
of zero does not guarantee symmetry. One alternative is
Bowley’s (1920) quartile formula for skew: ((g3 —m) - (m—
q1))/(4 = q1), or more simply (g1 + g5 ~ 2m)/(q5 — q1),
where m is the median and q; and g3 are the first (or
left) and third (or right) quartiles. Bowley’s skew focuses
on the part of the distribution that fits in between the
quartiles: if the right quartile is further from the median
than is the left quartile, then Bowley’s skew is positive;
if the left quartile is further from the median than the
right quartile, then Bowley’s skew is negative. Because it
doesn’t cube any values and doesn’t use any values more
extreme than the quartiles, Bowley’s skew is more robust
to outliers than is the conventional third-moment formula
(Kim and White 2004). But the quantities in Bowley’s for-
mula are arbitrary: instead of the left and right quartiles -
i.e., the 25th and 75th percentiles — Bowley could just as

plausibly have used the 20th and 80th percentiles, the 10th
and 90th percentiles, or more generally the 100pth and
100(1 — p)th percentiles F~'(p) and F~'(1 - p). Substi-
tuting these last two expressions into Bowley’s formula,
Hinkley (1975) proposed the generalized skewness formula
(F'(1=p)+F " (p)=2m)/(F" (1-p)=F ' (p)), whichsa
function of high and low percentiles defined by p. Since it is
not clear what value of p is most appropriate, Groeneveld
and Meeden (1984) averaged Hinkley’s formula across all
ps from 0 to 0.5. Groeneveld and Meeden’s average was
(4 — m)/E|X — m|, which is similar to an old skewness
formula that is attributed to Pearson: (y—m)/o (Yule 1911).

The Pearson and Groeneveld-Meeden formulas are
consistent with a widely taught rule of thumb claiming
that the skewness determines the relative positions of the
median and mean. According to this rule, in a distribu-
tion with positive skew the mean lies to the right of the
median, and in a distribution with negative skew the mean
lies to the left of the median. If we define skewness using
the Pearson or Groeneveld-Meeden formulas, this rule is
self-evident: since the numerator of both formulas is sim-
ply the difference between the mean and the median, both
will give positive skew when the mean is greater than the
median, and negative skew when the situation is reversed.
But if we define skewness more conventionally, using the
third standardized moment, the rule of thumb can fail.
Violations of the rule are rare for continuous variables, but
common for discrete variables (von Hippel 2005). A sim-
ple discrete violation is the »binomial distribution with
n = 10 and 7 = 0.09 (cf. Lesser 2005). In this distribu-
tion, the mean 0.9 is left of the median 1, but the skewness
as defined by the third standardized moment is positive,
at 0.906, and the distribution, with its long right tail, looks
like a textbook example of positive skew. Examples like this
one argue against using the Pearson, Groeneveld-Meeden,
or Bowley formulas, all of which yield a negative value
for this clearly right-skewed distribution. Most versions
of Hinkley’s skew also contradict intuition here: Hinkley’s
skew is negative for 0.5 > p > 0.225, zero for 0.225 > p >
0.054, and doesn’t become positive until p < 0.054.

Since many statistical inferences assume that vari-
ables are symmetrically or even normally distributed, those
inferences can be inaccurate if applied to a variable that
is skewed. Inferences grow more accurate as the sample
size grows, with the required sample size depending on
the amount of skew and the desired level of accuracy.
A useful rule states that, if you are using the normal or ¢
distribution to calculate a nominal 95% confidence inter-
val for the mean of a skewed variable, the interval will have
at least 94% coverage if the sample size is at least 25 times
the absolute value of the (third-moment) skew (Cochran
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1977; Boos and Hughes-Oliver 2000). For example, a sam-
ple of 50 observations should be plenty even if the skew is
as large as 2 (or -2).

In order to use statistical techniques that assume
symmetry, researchers sometimes transform a variable to
reduce its skew (von Hippel 2003). The most common
transformations for reducing positive skew are the loga-
rithm and the square root, and a much broader family
of skew-reducing transformations has been defined (Box
and Cox 1964). But reducing skew has costs as well as
benefits. A transformed variable can be hard to interpret,
and conclusions about the transformed variable may not
apply to the original variable before transformation (Levin
et al. 1996). In addition, transformation can change the
shape of relationships among variables; for example, if X
is right-skewed and has a linear relationship with Y, then
the square root of X, although less skewed, will have a
curved relationship with Y (von Hippel 2010). In short,
skew reduction is rarely by itself a sufficient reason to trans-
form a variable. Skew should be treated as an important
characteristic of the variable, not just a nuisance to be
eliminated.

Cross References

»Box-Cox Transformation

»Heavy-Tailed Distributions

»Mean Median and Mode

» Mean, Median, Mode: An Introduction
»Normality Tests

»Omnibus Test for Departures from Normality

References and Further Reading

Boos DD, Hughes-Oliver JM (2000) How large does n have to be for
Z and t intervals? Am Stat 54(2):121-128

Bowley AL (1920) Elements of statistics. Scribner, New York

Box GEP, Cox D (1964) An analysis of transformations. J R Stat Soc
B 26(2):211-252

Cochran WG (1977) Sampling techniques. Wiley, New York

Groeneveld RA (1986) Skewness for the Weibull family. Stat Neerl
40:135-140

Groeneveld RA, Meeden G (1984) Measuring skewness and kurtosis.
Stat 33:391-399

Hinkley DV (1975) On power transformations to symmetry.
Biometrika 62:101-111

Johnson NL, Kotz S (1970) Continuous univariate distributions 1.
Houghton Mifflin, Boston

Kim TH, White H (2004) On more robust estimation of skewness
and kurtosis. Finance Res Lett 1(1):56-73

Lesser LM (2005) Letter to the editor [comment on von
Hippel (2005)]. J Stat Educ 13(2) http://www.amstat.org/
publications/jse/v13n3/lesser_letter.html

Levin A, Liukkonen J, Levine DW (1996) Equivalent inference using
transformations. Commun Stat Theor Meth 25(5):1059-1072

MacGillivray HL (1986) Skewness and asymmetry: measures and
orderings. Ann Stat 14(3):994-1011

Ord JK (1968) The discrete student’s ¢ distribution. Ann Math Stat
39:1513-1516

Rose C, Smith M (2002) Mathematical statistics with mathematica.
Springer, New York

Sato M (1997) Some remarks on the mean, median, mode and
skewness. Aust J Stat 39(2):219-224

von Hippel PT (2003) Normalization. In: Lewis-Beck M, Bryman A,
Liao TF (eds) Encyclopedia of social science research methods.
Sage, Thousand Oaks

von Hippel PT (2005) Mean, median, and skew: correct-
ing a textbook rule. J Stat Edu 13 (2) www.amstat.org/
publications/jse/v13n2/vonhippel.html

von Hippel PT (2010) How to impute skewed variables under a
normal model. Unpublished manuscript, under review

Yule GU (1911) Introduction to the theory of statistics. Griffith,
London

! Skew-Normal Distribution

ADELCHI AZZALINI
Professor of Statistics
University of Padua, Padua, Italy

In its simplest reading, the term “skew-normal” refers to a
family of continuous probability distributions on the real
line having density function of form

P(za) =29(z) ©(az),

where ¢(-) and @ (-) denote the N(0,1) density and cumu-
lative distribution function, respectively, and « is a real
parameter which regulates the shape of the density. The

(moo<z<o0), (1)

fact that (1) integrates to 1 holds by a more general result,
given by Azzalini (1985), where ¢ and @ are replaced by
analogous functions for any choice of two distributions
symmetric around 0.

It is immediate that the choice a = 0 lends the N(0,1)
distribution, and that, if Z is a random variable with density
(1), denoted Z ~ SN(«), then —Z ~ SN(-a). Figure la
displays ¢(z; ) for a few choices of «; only positive values
of this parameter are considered, because of the property
just stated.

An interesting property is that Z* ~ 47, if Z ~ SN(«),
irrespectively of a. The »moment generating function of
Zis

M(t) =2 exp(£/2) ®(86t), S=a/V1+a?, (2)

and from M(¢) it is simple to obtain the mean, the vari-
ance, the index of skewness and the index of kurtosis,
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Skew-Normal Distribution. Fig. 1 Some examples of skew-normal density function, for the scalar case (left) and for the bivariate
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respectively. Multiplication of M(t) by exp(t*/2) shows
another interesting property: if U ~ N(0,1) independent
of Z, then (Z + U)/v/2 ~ SN (a/v2+a?). Additional
facts about this distribution are given by Azzalini; Azzalini
(1985; 1986), Henze (1986) and Chiogna (1998).

For practical statistical work, we need to consider the
three-parameter distribution of Y = £+ w Z, where £ and w
are a location and a scale parameter, respectively (w > 0).
Extension of the above results to the distribution of Y is
immediate.

For the d-dimensional version of (1) we introduce
directly alocation parameter ¢ € R? and a scale dxd matrix
Q which is symmetric and positive definite, and we denote
by w a d x d diagonal matrix formed by the square roots
of the diagonal elements of Q). The density function of the
multivariate skew-normal distribution at x is

204(x-EQ) O (a0 (x-8)), (xeRY), (4

where ¢4(x; Q) denotes the N;(0,Q) density function,
and the shape parameter « is a vector in R%. Figure 1b
displays function 4 for two choices of the parameter set
(& Q,a). Initial results on this distribution have been
obtained by Azzalini and Dalla Valle (1996) and by Azzalini
and Capitanio (1999).

The multivariate skew-normal distribution enjoys a
number of formal properties. If Y is a d-dimensional
random variable with density (4), its moment generating
function is

M(t) = exp (ETt + %tTQt) D8 wt),
1 _

0=———F—Qu (5)
(1+a™Qa)l/2

where O = ©w 'Qw™! is the correlation matrix associated

to Q. From M(t) one obtains that

E{Y}=¢+ \/Zw(?, var{Y}=Q - %w&?Tw,

while the marginal indices of skewness and kurtosis are
computed by applying expressions y; and y; in (3) to each
component of §. Another result derived from (5) is that an
affine transformation a + A Y, where a € R and A € RP*%,
is still of type (4), with suitably modified dimension and
parameters. This fact implies closure of this family of dis-
tributions with respect to marginalization. Closure of the
class under conditioning holds if one extends the class by
inserting an additional parameter in the argument of @ in
(4), and adapting the normalizing constant correspond-
ingly; for details on this extended class, see Arnold and
Beaver (2000) and Capitanio et al. (2003).

The chi-square distribution property stated for the
scalar case extends substantially in the multivariate case.
If Y has density (4) with £ = 0, then a quadratic form
YTAY, where A is a symmetric d x d matrix, has the same
distribution of X" AX where X ~ Ny(0,Q); for instance
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YTQ7'Y ~ 5. This distributional result can be obtained
from first principles, but it is mosty simply derived as a
special case of the distributional invariance property of
the family of skew-symmetric distributions, of which the
skew-normal distribution is a special instance. According
to this property, the distribution of T(Y) is the same of
T(X) for any function T, possibly multi-valued, such that
T(x) = T(~x) forall x ¢ RY.

An attractive feature of this distribution is that it admits
various stochastics representations, which are relevant for
random number generation and also for supporting the
adoption of this distribution in statistical modelling work.
Here we restrict ourselves to one of these representations,
which is related to a selective sampling mechanism: if

X . . 1 8w
U ~ Nipa(0,Q%), Q= >0,

wd  Q
where X and X have dimension 1 and d, respectively, then

X if Xo>0,

Y=¢(+ ]
—X otherwise

has density function (4) where o = (1- (ST()_IS)_I/ZQ_I(S.

Additional information on the skew-normal distribu-
tion and related areas is presented in the review paper
of Azzalini (2005), followed by a set of comments of
Marc Genton, and rejoinder of the author. Themes consid-
ered include: additional properties and types of stochastic
representation, aspects of statistical inference, histori-
cal development, extensions to skew-ellitical and skew-
symmetric type of distributions, and connections with
various application areas.
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The term ‘skew-symmetric distributions’ refers to the con-
struction of a continuous probability distribution obtained
by applying a certain form of perturbation to a symmetric
density function.

To be more specific, a concept of symmetric distribution
must be adopted first, since in the multivariate setting var-
ious forms of symmetry have been introduced. The variant
used in this context is the one of central symmetry, a nat-
ural extension of the traditional one-dimensional form to
the d-dimensional case: if fo is a density function on R?
and & is a point of RY, central symmetry around £ requires
that fo(t — &) = fo(~t — &) for all t € R%, ignoring sets of
0 probability. To avoid notational complications, we shall
concentrate on the case with & = 0; it is immediate to
rephrase what follows in the case of general &, which simply
amounts to a shift of the location of the distribution.
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If fo is a probability density function on R? cen-
trally symmetric around 0, there are two largely equivalent
expressions to build skew-symmetric densities. For the first
one, introduce a one-dimensional continuous distribution
function G such that G(-x) = 1 - G(x) for all x € R,
and w(-) a real-valued function on RY such that w(-t)
= —w(¢t) for all € R%. Then it can be shown that

f(®) = 2£0 () G{w(t)} M

is a density function on R?. Notice that in general G{w(t)}
is not a probability distribution. In the second type of for-
mulation, consider a function 7(¢) such that 0 < 7(¢) <1
and 7(t) + m(~t) = 1for all t € R, which leads to the
density function

f(@) =2fo(t) 7 (). ()

Formulations (1) and (2) have been obtained indepen-
dently by Azzalini and Capitanio (2003) and by Wang
et al. (2004), who adopted the term ‘skew-symmetric dis-
tribution’ Each of the two forms has its advantages. Any
expression of type G{w(t)} in (1) automatically satisfies
the requirements for 7(¢) in (2), but it is not unique:
there are several forms G{w(t)} corresponding to the
same 7(t). On the other hand, any 7(t) can be written
in the form G{w(t)}. Hence the two sets of distributions
coincide.

The proof that (1) and (2) are proper density functions
is exceptionally simple. The argument below refers to (1) in
the univariate case; the multivariate case is essentially the
same with only a minor technical complication. If Y is a
random variable with density function f and X is an inde-
pendent variable with distribution function G, then w(Y)
is symmetrically distributed around 0 and

> =B{X-w(Y) <0} = Er{B{X <w()I¥ =}
- [, GOy

This proof also shows the intimate connection of this
formulation with a selective sampling mechanism where
a value Y sampled from fy is retained with probability
G{w(t)}, and it is otherwise rejected. A refinement of this
scheme says that

if X <w(Y),

Y
= . (3)
-Y otherwise

has density (1). Since (3) avoids rejection of samples, it is
well suited for random numbers generation.

In spite of their name, skew-symmetric distributions
are not per se linked to any idea of »skewness. The name
is due to the historical connection with the »skew-normal
distribution, which has been the first construction of this
type. The skew-normal density function is

204(5Q)@(1"y),  (yeRY), (4)

where ¢ (y; Q) is the Ny(0,Q) density function, @ is
the N(0,1) distribution function and # is a vector param-
eter. This density is of type (1) with fo(y) = @a(3;Q)
and G{w(y)} = ®(%"y). In this case the perturbation
of the original density ¢, does indeed lead to an asym-
metric density, as it typically occurs when w(y) is a linear
function.

To illustrate visually the flexibility which can be
achieved by the perturbation mechanism, consider f, to be
the product of two symmetric Beta densities of parameters
(a,a) and (b,b), say, both shifted and scaled to the inter-
val (-1,1), G equal to the standard logistic distribution
function and

sin(piyr + pay2)
1+ cos(qu + q2)2)°

w(y) = y=0ny) € (-11)°

where p = (p1,p2) and g = (g1, q2) are additional parame-
ters. Figure 1 displays a few of the shapes produced with
various choices of the parameters a,b, p,q. These skew-
symmetric densities do not exhibit any obvious sign of
skewness.

An important implication of representation (3) is the
following property of distributional invariance: if Y has
density fo and Z has density (1), then T(Z) and T(Y') have
the same distribution for any function T(-) from RY to
R7 which is even, in the sense that T(z) = T(-z) for all
z € RY. For instance, if Z has skew-normal distribution
(4), then a quadratic form T(Z) = Z'AZ has the same
distribution of T(Y) = Y'AY when Y ~ N,;(0,Q), for
any symmetric matrix A; a further specialization says that
ZTQ7'Z ~ x4 Other results on skew-elliptical distribu-
tions have been given by Arellano-Valle et al. (2006) and
Umbach (2008).

An important subset of the skew-symmetric distribu-
tions occurs if fy in (1) or (2) is an elliptically contoured
density, or briefly an elliptical density, in which case we
obtain a skew-elliptical distribution. In fact, this subset
was the first considered, in chronological order, starting
from the skew-normal distribution, and the formulation
evolved via a sequence of successive generalizations. This
development is visible in the following sequence of papers,
to be complemented with those already quoted: Azzalini
and Capitanio (1999), Branco and Dey (2001), Genton and
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Skew-Symmetric Families of Distributions. Fig. 1 Densities obtained by perturbation of the product of two symmetric Beta

densities for some choices of the parameters a,b,p,q

Loperfido (2005) and the collection of papers in the book
edited by Genton (2004).
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Introduction

Over the past three decades there is a growing demand
in many countries for reliable estimates of small domain
parameters such as means, counts, proportions or
quantiles. Common examples include the estimation of
unemployment rates, proportions of people under poverty,
disease incidence and use of illicit drugs. These esti-
mates are used for fund allocations, new social or health
programs, and more generally, for short and long term
planning. Recently, small area estimates are employed for
testing, the administrative records used for modern cen-
suses (see »Census). Although commonly known as “small
area estimation” (SAE), the domain of studies may actu-
ally consist of socio-demographic subgroups as defined,
for example, by gender, age and race, or the intersection
of such domains with geographical location.

The problem of SAE is that the sample sizes in at least
some of the domains of study are very small, and often
there are no samples available for many or even most of
these domains. As a result, the direct estimates obtained
from the survey are unreliable (large, unacceptable vari-
ances), and no direct survey estimates can be computed
for areas with no samples. SAE methodology addresses
therefore the following two major problems:
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1. How to obtain reliable estimates for each of these areas.
2. How to assess the error of the estimators (MSE, confi-
dence intervals, etc.).

Notice in this regard that even if direct survey estimates can
be used for areas with samples, no design-based methodol-
ogy exists for estimating the quantities of interest in areas
with no samples. The term “Design-based inference” refers
to inference based on the randomization distribution over
all the samples possibly selected from the finite popula-
tion under study, with the population values considered as
fixed numbers. Note also that the sample sizes in the var-
ious areas are random, unless when some of the domains
of study are defined as strata and samples of fixed sizes are
taken in these domains.

In what follows I describe briefly some of the basic
methods used for SAE, assuming, for simplicity, that the
sample is selected by simple random sampling. More
advanced methods and related theory, with many exam-
ples and references can be found in the book of Rao
(2003) and the review papers by Ghosh and Rao (1994),
Rao (1999), Pfeffermann (2002), and Rao (2005). See also
Chaps. 31 and 32 in the new Handbook of Statistics, 29B
(eds. Pfeffermann and Rao 2009).

Design-Based Methods

Let Y define the characteristic of interest and denote by
vij the outcome value for unit j belonging to area i, i =
L...,M;j = 1,...,N;, where N; is the area size. Let s =
S1U---Usy, denote the sample, where s; of size n; is the
sample observed for area i. Suppose that it is required to

N;
estimate the true area mean Y; = ) y;;/N;. If no auxil-
j=1
iary information is available, the direct design unbiased
estimator and its design variance over the randomization
distribution (the distribution induced by the random selec-
tion of the sample with the population values held fixed),
are given by

Y,' = Zy,-j/n,-; VarD [?,‘h’l,‘] = (S,-Z/I’l,') [1 - (I’Ii/Ni)] :S;rz,
j=1
M

N’ p—
where 7 = 3 (yix - Yi)?/(Ni - 1). Clearly, for small ; the
k=1

variance will be large, unless the variability of the y-values
is sufficiently small. Suppose, however, that values x;; of p

concomitant variables xy, ..., x, are measured for each of

— Ni

the sample units and that the area means X; = Y x;/N;
k=1

are likewise known. Such information may be obtained

from a recent census or some other administrative records.
In this case, a more efficient design-based estimator is the

regression estimator,

Yireg =7, + (Xi—%:) Bis Varp (§,,0,ini) = St (1-R?),
()
where ¥, and X; are the sample means of Y and X in area
i, and f; and R; are correspondingly the vector of regres-
sion coefficients and the multiple correlation coefficient
between Y and xi,...,X, in area i. Thus, by use of the
concomitant variables, the variance is reduced by the fac-
tor (1 - Riz) , illustrating the importance of using auxiliary
information with good prediction power for SAE.
In practice, the coeflicients f; are unknown. Replacing
i by its ordinary least square estimator from the sample s;
may not be effective in the case of a small sample size. If,
however, the regression relationships are “similar” across
the areas and assuming x;;; = 1 for all (i,j), a more stable
estimator is the synthetic regression estimator,

N N; .
Yi,syn = Zj}ik/Ni = XII'B’ (3)
j=1

-1
where J = xl{kl:} and B = I:ngxfj] > xijyij is the ordi-
ijeS ijes

nary least squares estimator]computed f]rom all the sample
data. The prominent advantage of synthetic estimation is
the substantial variance reduction since the estimator uses
all the sample data, but it can lead to severe biases if the
regression relationships differ between the areas.

An approximately design-unbiased estimator is
obtained by replacing the synthetic estimator by the GREC
estimator,

A Ni
?i,greg = Z)A’ik/Ni + Z(yij _}Alij)/nb (4)
k=1 JjeS;

However, this estimator may again be very unstable in
small samples. The choice between the synthetic estima-
tor and the GREG is therefore a trade off between bias and
variance. A compromise is achieved by using a composite
estimator of the form,

7i,com = (xiYi,greg + (1 - “i)?i,syns (5)

but there is no principled theory of how to determine the
coefficients «;.

Design-based estimators are basically model free but
the requirement for approximate design-unbiasedness
generally yields estimators with large variance due to the
small sample sizes. The construction of confidence inter-
vals requires large sample normality assumptions, which
do not generally hold in SAE problems. No design-based
theory exists for estimation in areas with no samples.
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Model-Dependent Estimators

In view of the problems underlying the use of design-based
methods, it is common practice in many applications to
use instead statistical models that define how to “borrow
strength” from other areas and/or over time in case of
repeated surveys. Let 8; define the parameter of interest in
area i, i = 1,..., M, and let y;, x; denote the data observed
for this area. When the only available information is at the
area level, y; is typically the direct estimator of 6; and x;
is a vector of area level covariates. When unit level infor-
mation is available, y; is a vector of individual outcomes
and x; is the corresponding matrix of individual covariate
information.

A typical small area model consists of two parts: The
first part models the distribution of y;|0;;¥(;). The sec-
ond part models the distribution of 8;|x;;¥(,) linking
0; to the parameters in other areas and to the covari-
ates. The (vector) parameters ¥(;y and ¥,y are typically
unknown and are estimated from all the available data
D(s) = {yixi;1,...,m}. In what follows I define and
discuss briefly three models in common use.

The model, employed originally by Battese et al. (1988),
assumes,
yij = X + ui + £, (6)
where u; and ¢;; are mutually independent error terms with
zero means and variances g, and o7 respectively. The ran-
dom term u; represents the joint effect of area characteris-
tics not accounted for by the concomitant variables. Under
- -/ —
the model, the true small area means are Y; = X; 8+ u; + ¢,
N;
but since & = Y &;x/N; 0 for large Nj, the target parame-
k=1
ters are often defined as 0, = Y:ﬂ +u;. For known variances
(03, agz) , the Best Linear Unbiased Predictor (BLUP) of 6;
is,

0 = yi[y, + (Xi - %) Pors] + (1 - y)Xifes,  (7)

where ﬁGLS is the generalized least square (GLS) estima-
tor of 3 computed from all the observed data and y; =
o/ (U,f + af/n,-) . For areas [ with no samples, §; = X;[?GLS.
Notice that unlike under the randomization distribution,
the synthetic estimator X; Bars is unbiased for 6; under the
model in the sense that E(X;/;’GLS -6;)=0.

The BLUP ; is also the Bayesian predictor (posterior
mean) under normality of the error terms and a diffuse
prior for B. In practice, however, the variances o; and
0? are seldom known. A Bayesian solution to this prob-
lem is to set prior distributions for the unknown variances
and then compute the corresponding posterior mean and

variance of 6|{yx,xi;k € s} by aid of Markov Chain
Monte Carlo (MCMC) simulations (see »Markov Chain
Monte Carlo). The common procedure under the frequen-
tist approach is to replace the unknown variances in the
BLUP formula by standard variance components estimates
like Maximum Likelihood Estimators (MLE), Restricted
MLE (REML) or Analysis of Variance (ANOVA) estima-
tors. The resulting predictors are known as the Empirical
BLUP (EBLUP). See the references listed in the intro-
duction for estimation of the MSE of the EBLUP under
different methods of variance estimation.

This model is in broad use when the concomitant informa-
tion is only at the area level. It was used originally by Fay
and Herriot (1979) for predicting the mean income in geo-
graphical areas of less than 500 inhabitants. Denote by 6;
the direct sample estimator of 6;. The model assumes that,

0;=0i+es 0:=xiB+u, (8)

such that e; represents the sampling error, assumed to have
zero mean and known design variance Varp(e;) = o
(= $%if 0; = ;> see Eq. 1). The model integrates there-
forex a model dependent random effect u; and a sampling
error e; with the two errors being independent. The BLUP
under this model is,

0 = yibi+(1-yi)xiBars = xiPors+yi (6i — xiBars)» (9)

which again is a composite estimator with coeflicient y; =
o/ (0,%,- + 03) . As with the unit level model, the variance
0,0 is usually unknown and is either assigned a prior dis-
tribution under the Bayesian approach, or is replaced by a
sample estimate in (9), yielding the corresponding EBLUP
predictor.

The previous two models are for continuous measure-
ments. Suppose now that y;; is a binary variable taking the
values 0 or 1. For example, y;; = 1if individual j in area i is
unemployed (or suffers from a certain disease), and y;; = 0

N;
otherwise, such that p; = N;'> y; is the true unemploy-
k=1
ment rate (true disease incidence). The following model is
often used for predicting the proportions p;:
yilps """ Bernoulli(py)
logit(pij) =log[ pij/ (1= pyj)] = xi; + uis (10)

0 N (0,022),
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where as in (6), x;; is a vector of concomitant values, f3

is a vector of fixed regression coefficients and ; is a ran-

dom effect representing the unexplained variability of the
individual probabilities between the areas.

For this model there is no explicit expression for the

predictor p;. Writing p; = N;' [Z}/U + Zy,{l , predicting
jes; I¢s;

pi by its best predictor is equivalent to the prediction of

the sum "y;; of the missing observations. See Jiang et al.
Ifsi
(2002) for the computation of the empirical best predictor

and estimation of its MSE.
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Univariate Smoothing Splines

Univariate smoothing splines were introduced by
LJ. Schoenberg in the 40s, an early paper is (Schoenberg
1964). Given data y; = f(x(i)) + €i,i = 1,--+,n, where the
€; are i.1.d samples from a zero mean Gaussian distribution
and 0 < x(1) < -~ < x(n) < 1, the (univariate) polyno-
mial smoothing spline is the solution to: find f in W3 to
minimize

B 200 A [ )

where W3 is the Sobolev space of functions with square
integral mth derivative. The solution is well known to be a
piecewise polynomial of degree 2m — 1 between each pair
{x(j+1),x(j)},j =1,---,n—1and of degree m—1in [0, x(1)]
and [x(n),1], and the pieces are joined so that the func-
tion has 2m — 1 continuous derivatives. Figure 1 illustrates
the cubic smoothing spline (m = 2) and how it depends
on the smoothing parameter A. The dashed line in each of
the three panels is the underlying function f(x) used to
generate the data. The observations y; were generated as
yi = f(xi) + €; where the ¢; were samples from a zero mean
Gaussian distribution with common variance. The wiggly
solid line in the top panel was obtained with a A that is too
small. The solid line in the middle panel has A too large.
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If A had been even larger, the solid line would have tended
to flatten out towards the least squares straight line best fit-
ting the data. Note that linear functions are in the null space
of the penalty functional [( f”)?, that is, their second
derivatives are 0. In the third panel, A has been chosen by
the GCV (Generalized Cross Validation) method (Craven
and Wahba 1979; Golub et al. 1979). Generalizations of the
univariate smoothing spline include penalties that replace
(f(m) )? with (Lf)?, where Lf is a linear differential oper-
ator of order m, see Kimeldorf and Wahba (1971) and
Ramsay and Silverman (1997). Code for smoothing splines
is available in the R library http://cran.r-project.org, for
example pspline and elsewhere. Other generalizations
include replacing the residual sum of squares by the nega-
tive log likelihood for Bernoulli, Poisson or other members
of the exponential family, by robust or quantile function-
als, or by the so-called hinge function to get a Support
Vector Machine (Cristianini and Shawe-Taylor 2000). In
each case the solution will be a piecewise polynomial of the
same form as before as a consequence of the so called rep-
resenter theorems in Kimeldorf and Wahba (1971). Other
tuning criteria are appropriate for the other functionals, for
example the GACV (Xiang and Wahba 1996) for Bernoulli
data.

Thin Plate Splines

Thin Plate Splines (TPS) appeared in French in 1975
(Duchon 1975) and were combined with the GCV for tun-
ing in Wahba and Wendelberger (1980). The TPS of order
2 in two dimensions is the minimizer of

1 & . .
" S (i = f (i), x2(i)) + A2 (f)
i=1
where ], , is given by

e 2 2 2
f f fx1x1 + zfxlxz +fodeX1dX2.
—oo —oo

In this case f is known to have a representation

f(x) = do +dix1 + daxy + zn:CiE(xax(i))

i=1

where

E(x,x(i)) = |x - x(i) | *log | - x(i),

where | - | is the Euclidean norm.

There is no penalty on linear functions of the com-
ponents (xi,x2) of the attribute vector (the “null space”
of J»2). It is known that the ¢; for the solution satisfy
o= 0,3 cxi(i) = 0and Y1, cix2(i) = 0, and

furthermore,

Ra(f) = X agE(x(i),x()).

ij=Tn

The TPS is available for general d and for any m with 2m —
d > 0. The general TPS penalty functional in d dimensions
and m derivatives is

]d,m = ! |
e Tag=m Gl ag! J oo

oo o"f
f (axf“ -0xy’ )de]

See Wahba (1990). Note that there is no penalty on poly-
nomials of degree less than m, so that the TPS with d
greater than 3 or 4 is rarely attempted because of the very
high dimensional null space of J;,,. As A tends to infinity,
the solution tends to its best fit in the unpenalized space,
and as A tends to 0, the solution attempts to interpolate
the data. Public codes in R containing TPS codes include
assist, fields, gss, mgcv. Again, the residual
sum of squares may be replaced by other functionals as in
the univariate spline and the form of the solution will be
the same.

Splines on the Sphere

Splines on the sphere were proposed in Wahba; Wahba
(1981; 1982). The penalty functional J(f) for splines on
the sphere is J(f) = f(A)m/zf where A is the (surface)
Laplacian on the the (unit) sphere given by

= cos

Af COSZ ——foo + ¢( Pfs)¢

where 0 is the longitude, (0 < 6 < 27) and ¢ is the lati-
tude (—Z < ¢ < Z). Here we are using subscripts 6 and ¢
to indicate derivatives with respect to 6 and ¢. Closed form
expressions for the minimizer f are not in general available,
but closed form expressions for a close approximation are,
see Wahba; Wahba (1981; 1982).

Splines on Riemannian Manifolds

The splines we have mentioned above have penalty func-
tionals associated with the Laplacian (note the form is
different for the compact domain cases of splines on the
unit interval and splines on the sphere, as opposed to the
thin plate spline on the infinite plane). Splines on arbitrary
compact Riemannian manifolds can be defined, implicitly
or explicitly involving the eigenfunctions and eigenval-
ues of the m-iterated Laplacian, see Kim (1999), Pesenson
(2004), Belkin and Niyogi (2004, Sect. 5.2).
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Smoothing Spline ANOVA Models

Let x = (x1,--%4), where x, € T( & = 1,-,d and
vi = f(x(i)) + €i,i = 1,---, n. where the ¢; are as before. The
T can be quite arbitrary domains. It is desired to esti-
mate f (x) for x in some region of interest contained in 7~ =
TO..@ T fisexpandedasf(x) = C+ ¥, falxa) +
Y a<pfap(Xartg) + -+, where the terms satisfy side con-
ditions analogous to those in ordinary ANOVA which
guarantee identifiability, and the decomposition is usually
truncated at some point. The model is fit by minimizing
the residual sum of squares plus

]A(f) = Z/la]a(ftx) + z:ﬁ/\aﬂ]aﬂ(faﬂ) +oee

The J, Jap, -+ are composites of penalty functionals on the
individual components and closed form expressions are
available when they are available for the components. As
before, the residual sum of squares may be replaced by the
negative log likelihood and other functionals depending
on y; and f(x(i)). Details may be found in Wahba et al.
(1995) and Gu (2002), and the R codes assist and gss
are available to fit these models.
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The idea of smoothing techniques is to identify trends, pat-
terns, relationships and shapes in data without adopting
strong assumptions about the specific nature of these. The
one assumption that is made is that any trends and pat-
terns are smooth. The term nonparametric is often used
in the context of smoothing techniques to distinguish the
methods from parametric modelling where specific dis-
tributional shapes (such as normal) or trends (such as
linear) are adopted, leaving only some parameters to be
estimated.

There are many situations where smoothing can be
applied and many ways in which it can be implemented.
This short article will give some simple examples in just
two areas, namely density estimation and regression, and
show how the latter techniques can be used in the context
of wider regression modelling.

Density Estimation

The histogram is a time-honored way of presenting the
shape of the variation in a set of data in graphical form.
In fact, when the histogram is scaled to have area 1 it can
be viewed as an estimate of the underlying density function
f(y). However, from that perspective it can be criticized
because of its sharp edges. Instead of building the esti-
mate from rectangular blocks, a kernel density estimate
uses smooth functions, called kernels, in the estimate

F0) = 3wy —yish)
i=
constructed from a sample of data {y1,. ..,y }. The kernel
w(.;h) might conveniently be chosen as a normal den-
sity function with mean 0 and standard deviation A. It
remains to make a choice of the bandwidth, or smooth-
ing parameter, h which is the equivalent of the bin width
in a histogram. One effective means of doing this is to

estimate the optimal value produced by a theoretical anal-
ysis. However, a very simple choice, which can also be very
effective, is to use the optimal value associated with a nor-
mal distribution. That is the solution used in the examples
below.

0.04 0.04
. i
2 0.02 0.02
[0
[a]
0.00 ! 0.00-
| ' T T T 1T 1 I T 1T 1T T1
40 60 80 100 40 60 80 100

Waiting Waiting

The left panel of the figure above shows a histogram
of data on the waiting times between eruptions of the Old
Faithful geyser in Yellowstone National Park. A kernel den-
sity estimate has been superimposed for comparison. The
right panel shows the same density estimate along with
estimates produced with larger (short dashed line) and
smaller (long dashed line) degrees of smoothing.

These simple principles extend without difficulty to
other types of data, simply by adopting a suitable form of
kernel function. For example, the left hand panel below
shows a plot of waiting time and the subsequent eruption
time. The right panel shows the same plot with the contours
of a density estimate superimposed. The kernel function
here is simply a two-dimensional normal density function,
with two smoothing parameters, one for each dimension.
Although the scatterplot clearly shows a cluster of erup-
tions with shorter durations, the density estimate draws
attention to the presence of two clusters in the eruptions
with longer durations. In general, smoothing techniques
such as density estimation can be helpful in identifying
structure which is sometimes obscured by the variation in
the data.
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Silverman (1986) gave one of the first discussions of
density estimation, with Scott (1992) focussing on the mul-
tivariate case. Wand and Jones (1995) is a source of very
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useful theoretical analysis while Simonoft (1996) is particu-
larly helpful in its broad coverage and extensive references.

Nonparametric Regression
In the case of regression with a single covariate, smoothing
techniques assume the model

yi=m(xi) + &

for observed data {(x1,3),...,(%n,¥n)}, where the ¢;
denote errors terms. The smooth function m can be esti-
mated in a wide variety of ways. A kernel approach fits a
standard model, such as a linear regression, but does so
locally by solving the weighted least squares problem

rg)iﬁn i{yi —a— B(xi —x) Y w(xi — xh).

The solution & provides the estimate. However, there are
many other approaches, many of these based on splines.
For example, »smoothing splines arise as the solution
of the problem min, 31 {y; — m(x;)} + Afab m" (x)dx.
Regression splines fit a model which is constructed as a lin-
ear combination of a set of basis functions while penalized
splines place a smoothness penalty on these coefficients.
This is a research topic with a large literature. Fan and
Gijbels (1996) and Bowman and Azzalini (1997) describe
the theory and applications of the kernel approach while
Green and Silverman (1994) and Ruppert et al. (2003) focus
on spline representations. In broad terms, these different
methods have different approaches buta common aim. The
method chosen for a particular problem can be a matter of
convenience.
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The panels above illustrate local linear smoothing on
water quality data, expressed in dissolved oxygen (DO)
at a particular sampling station on the River Clyde near
Glasgow. The left hand panel shows DO against time in
years, with little evidence of trend. The right hand plot
adds a nonparametric regression curve which suggests that
some trend may in fact be present, obscured by the large
degree of variation in the data. The vector of fitted values

from local linear, and indeed most other, forms of regres-
sion smoothing can be represented in vector-matrix form
as 1 = Sy, where S is an n x n smoothing matrix. This lin-
ear structure gives relatively easy access to standard errors
and to the quantification of the level of smoothing through
approximate degrees of freedom, by analogy with standard
linear models. The right hand panel above has added two
standard errors on either side of the nonparametric regres-
sion line, to indicate the precision of estimation. Bias is
an inevitable consequence of smoothing so this cannot be
strictly interpreted as a confidence band.

The two panels below show DO against temperature
and Salinity on a log scale. Here the patterns are close to
linear and the suitability of this model can be assessed by
displaying a reference band around the linear model, based
on two standard errors of the difference between a linear
and a nonparametric model. Linearity looks reasonable for
temperature but less so for Salinity.
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The plots above were created by specifying the level of
smoothing through the approximate number of degrees of
freedom (6). The level of smoothing can also be chosen in
a data-adaptive manner, through principles such as cross-
validation or AIC.

These methods of nonparametric smoothing can be
adapted to a wide variety of situations, such as more than
one covariate or other types of response data.

Additive Models

Smoothing techniques can be built into wider models, par-
ticularly where several covariates are involved. An attrac-
tive framework is provided by additive models, described
by Hastie and Tibshirani (1990) with an updated treatment
by Wood (2006). Here, the regression model is defined as

yi=a+m(x) + ..+ mp(xpi) + &

for covariates x1,...,x,. Each covariate x; is allowed to
influence the response variable through its own regression
function m;, which may be nonparametric but could in
fact be linear or some other standard form. The backfitting
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algorithm provides a means of fitting this type of model
through the iterations defined by

rhj(r-f—l) _ Sj y— Gl — Z m}Er+1) _ Z rh]((r)
k<j k>j

At each stage, the regression function m; is estimated
by smoothing the partial residuals by S;, the smooth-
ing matrix associated with covariate j. For identifiability,
the constraint that each component sums to 1 over the
observed covariate values should also be added.
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The panels above illustrate an additive model for the
Clyde data. Instead of examining the effects of the covari-
ates separately, they are combined into a single model
which estimates the effects of one covariate while adjust-
ing for the effects of the others. This much more powerful
description now shows a much clearer time trend. The
effects of temperature and salinity remain broadly linear
but some unusual behavior is evident at high temperature
and high salinity.

Bowman (2008) gives a more extended discussion of
this example, using a different sampling station on the
Clyde while McMullan et al. (2007) develop a more com-
plex model for the whole river.
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Social Networks

Social Network Analysis is concerned with the study of
relations between social actors. Examples are friendship
between persons, collaboration between employees in a
firm, or trade between countries. The relation is regarded
as a collection of dyadic ties, i.e., ties between pairs of
actors. In most cases, data collection is either sociocentric,
where a given group of actors is specified (in the examples
this could be, e.g., a school class, a department of the firm,
or all countries in the world), and all ties of the specific
kind between actors in this group are considered; or ego-
centric, where a sample of actors is taken, and all ties of the
sampled actors are considered. Other types of data collec-
tion exist, of which snowball sampling is the main example.
The most interesting contributions of network analysis are
made by considering indirect ties - in the sense that the
way in which actors i and j are tied is better understood
by considering the other ties of these two actors. Informa-
tion about these is obtained much better from sociocentric
than from egocentric approaches. Therefore, this article
considers only statistical models for sociocentric network
data.

The first step for the collection of sociocentric network
data is to define the relation and the group of actors. This
group will usually be treated as an isolated group, and any
ties outside this group are disregarded. This is called the
network boundary problem. An overview of methods for
collecting network data is given by Marsden (2005).

The group of actors is denoted by A = {1,...,n}. Rela-
tions under study often are directed, which means that the
tie i — j is distinct from the tie j — i. The relation can then
be represented by a nonreflexive directed graph (digraph)
on A\ or, alternatively, by an n x n adjacency matrix with a
structurally zero diagonal. The actors i € A" are the nodes
of the graph. The adjacency matrix y = (y;;) indicates by
yij = Llory; = 0, respectively, that there is a tie, or there
is no tie, from actor i to actor j. The nonreflexivity means
that self-ties are not considered, so that y;; = 0 for all i. The
variables y;; are referred to as tie variables. If the network

is nondirected, the representation is by a simple graph,
or a symmetric adjacency matrix. Models for social net-
works in this article will be random graphs or digraphs and
denoted by Y.

Exponential Random Graph Models
Exponential families of probability distributions for graphs
or digraphs are usually called Exponential Random Graph
Models or ERGMs. The first model of this kind was the
so-called p; model proposed by Holland and Leinhardt
(1981). In this model the symmetrically positioned pairs
(Yij, Yji) are assumed to be independent. This very restric-
tive assumption was lifted in the definition by Frank and
Strauss (1986) of Markov graphs. This model can represent
tendencies toward transitivity. It postulates that edge indi-
cators Y;; and Yy, when i,j,k, h are four distinct nodes,
are independent conditional on the rest of the graph,
i.e., conditional on the collection of tie indicators Y, for
(r,s) # (i,j), (r;s) # (h,k). For non-directed networks
with distributions not depending on the node labels, they
proved that this property holds if and only if the probability
distribution for Y can be expressed as

Po{Y =y} = exp (Zh: Onzn(y) - 1//(9)), 6)

where the z,(y) are functions of y each of which can be
either the number of k-stars embedded in the graph y (for
some k, 1 < k < n—1) or the number of triangles embedded
iny. These are the statistics Sy and T defined by

$i(y) =2, <i<jen Vi number of edges

S(y) = leis” (y;:) number of k-stars (k > 2) (2)

T(y) = lei<j<hSn Yij yin yjn  number of triangles.

The Markov model was generalized by Frank (1991)
and Wasserman and Pattison (1996) to the Exponential
Random Graph Model, in which the statistics z; (y) in (1)
can be any functions of y and of covariates. Markov chain
Monte Carlo (MCMC) methods (see »Markov Chain
Monte Carlo) for parameter estimation for this model were
proposed by Snijders (2002). Some interesting properties
of this model are discussed by Robins et al. (2005). It
appeared in applications, however, that in most cases the
Markov model is not plausible as a model for transitivity.
An model specification with more appropriate choices of
the functions z;,(y) was proposed in Snijders et al. (2006),
and this has turned out to be a very useful model for
representing empirically observed networks.
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This model can represent dependencies between tie
variables Yj; in a reasonable manner. It can be used when
the representation of these dependencies (transitivity, hier-
archy, brokerage etc.) is an aim in itself; but also when the
dependencies are a nuisance and the aim of the statistical
analysis is the dependence of tie variables on covariates.

Latent Structure Models

Another way to represent dependencies between tie vari-
ables is to postulate a latent space of which the nodes are
elements, and which probabilistically determines the ties.
This is an application of the ideas of Latent Structure Anal-
ysis (Lazarsfeld and Henry 1986), and closely related to
Latent Class Analysis. The tie variables Y;; — or sometimes
the dyads (Y, Yj;) - then are assumed to be conditionally
independent given the latent structure.

Various latent space models have been proposed.

e A discrete (categorical) space, where the nodes have
‘colors’ and the distribution of the dyad (Yj,Y})
depends on the colors of i and j: see Nowicki and
Snijders (2001).

e A general or Euclidean metric space, where the proba-
bility of a tie Y;; = 1 depends on the distance between
nodes i and j: see Hoff et al. (2002).

e An ultrametric space, where the probability of a tie
Y;j = 1depends on the ultrametric distance between
nodes i and j: see Schweinberger and Snijders (2003).

e A partially ordered space, where the probability of a tie
Yj; = 1 depends on how i and j are ordered: see Mogapi
(2009).

Compared to Exponential Random Graph Models, these
models have less flexibility to represent dependence struc-
tures between tie variables, so that they will usually achieve
a less satisfactory goodness of fit. However, the representa-
tion of the nodes in the latent space can often provide an
illuminating representation in itself and may be regarded
as a helpful type of data reduction.

Longitudinal Models

Models for longitudinally observed networks were pro-
posed by Snijders (2001). The most usual observational
design is a panel design, where the observations of the
network are Y(#1),...,Y(tm) for observation moments
f,. .t (M > 2). A flexible class of models for panel data
on networks can be obtained by assuming that the data
are momentary observations of a continuous-time Markov
process (see »Markov Processes), in which each tie vari-
able X;;(t) develops in stochastic dependence on the entire
network X(¢). An actor-based model is often plausible,

where tie changes are based on hypothetical choices of the
actors. Such a model can be defined by the following steps,
formulated in such a way that they can easily be repre-
sented by a computer simulation model. To obtain a parsi-
monious model, it is assumed that only one tie variable can
change at any given moment. The model is characterized by
so-called rate functions A;(y) and objective functions fi(y),
defined on the set of all digraphs.

1. The current state of the network is denoted y.
2. The time until the next change is an exponentially dis-
tributed waiting time, with an expected duration of

1/A+(y) where 1. (y) = X, Ai(y)-
3. When this change occurs, the probability that an out-
going tie variable Yj; of actor i can be changed, is

Ai(y)/A(y)-
4. Ifactor i can change on outgoing tie variable, the set of
new possible states of the network is
C(y) ={y'| ¥k # yui only for h = i,
and for at most one k} .

The probability that the new state is y’ is
exp (£i(v))
Yyrec(y) exp (fi(y"))

The model specification is done in the first place by the
appropriate definition of the objective function. This is
usually specified as a linear combination,

fi(By) = Zk: B sii(y) - 3)

The functions si;(y) represent ways in which the cre-
ation and maintenance of ties depend on currently existing
ties, e.g.,

si(GY) =2 i (outdegree)
j

X yii i (reciprocated ties)
j

> yiiyikyik  (transitive triplets),
ik

and they can also depend on combinations of network
structure and covariates.

For this model, estimation procedures and algorithms
according to a method of moments were proposed by
Snijders (2001), Bayesian procedures by Koskinen and
Snijders (2007), and an algorithm for maximum likelihood
estimation by Snijders et al. (2010).

This model was generalized to a model for the simul-
taneous dynamics of networks and actor characteristics
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(“networks and behavior”) by Snijders et al. (2007). Sta-
tistical procedures for this model are available in the
R package RSiena.
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Social statistics is one of the largest domains of mod-
ern statistical science and practice, the subject of which
is the exposure and study of regularity for formation and
alteration of social phenomena with statistical techniques.

It has grown and developed at the borders of other
sciences (»>demography, economics, political science, phi-
losophy, ethics, and psychology) as the discipline that
integrates statistical resources and bases of humanitarian
information studying human beings and society. It gained
intensive development in the 19™and 20" centuries as a
science studying social dynamics, which was initiated in
the United States by Russian-American sociologist Pitirim
Sorokin, although the first record of it one can find in
ancient origins at the beginning of AD.

Social statistics operates with the branched system
of indicators characterizing standards of life and human
activities and further groups of people, public societies,
nations, and civilizations, their evolution and structure,
ways and standards of life, households, culture, education,
moral, and human values, freedoms, rights, etc.

In contrast to many other statistical disciplines, its
main emphasis is on the study of quantitatively immea-
surable indicators as most common in social science.



Sociology, Statistics in

1359

It also scrutinizes and forecasts unobservable and non-
registering “shadow;” illegal, and informal social phenom-
ena, by means of analysis techniques of social projects and
doctrines, votes, and elections in particular.

In its work, along with the methods of sample sur-
veys and »public opinion polls, social statistics extensively
applies special methods, among which are various meth-
ods of multivariate factor analysis, cluster analysis (see
»Cluster Analysis: An Introduction), and latent analysis.
The particular classes are the methods of social model-
ing and managerial social analysis, on the basis of which
a new section of modern statistics, called sociometrics
evolved.

At present time, social statistics is positioned as an
instrument of the application of its methods and informa-
tion about social sciences, the main aim and product of
which is qualitative measurement of social and widely spir-
itual aspects of material production and their integration as
superior values and achievements of modern society into
the socio-economic context.

There are an extensive collection of models, not only
for common but also for applied social changes, in partic-
ular, the dynamics of climate change, epidemics, catastro-
phes, health care and diseases, crime, cloning, psycholog-
ical and psychotropic conspiracies and wars, application
of up-to-date and specialized computer and mathematical
methods in demographics, medicine and sanitary statis-
tics, as well as in biology, anthropology and other related
sciences.

Social statistics also develops as social groups statis-
tics, in particular poverty statistics, behavioral statistics,
i.e., behavior of people in the exotic environment, statis-
tics of crime, statistics of fair competition, and statistics on
globalization and mass protests.

Another area is a statistics of interethnic conflicts and
wars, terrorism, crisis and anthropogenic catastrophes,
which threaten the existence of world civilizations.

Social statistics is formed on the basis of sampling sur-
veys and public opinion polls; it actually relies upon opin-
ions about facts rather than on the facts themselves, it char-
acterizes mainly feedback, original responses to events in
the surrounding world, rather than the events themselves.
Without reliable criteria of estimation for data quality.
Social statistics and its indicators, where applicable, require
preliminary verification of their results and publications as
they are least of all true and acceptable.

Main Social Statistics Centers:

e Harvard Institute for Quantitative Social Science
o Inter-University Consortium for Political and Social
Research

e Social Statistics Division, School of Social Sciences, Uni-
versity of Southampton, UK

o Social Statistics Research Group, University of Auckland,
New Zealand

e UN Statistics Division - Demographic and Social Statis-
tics

e Organization for Economic Co-operation and Develop-
ment (OECD)
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Introduction

Statistics and sociology have a strong relationship that goes
back several centuries. As new social theories and methods
have been developed, statistics has responded by develop-
ing appropriate statistical methods. Also, sociologists have
been quick adopting new statistical methods not neces-
sarily developed with them in mind. The same is also the
case with other social sciences such as political science,
economics and psychology.

A few social sciences have relied more on statistics than
others. Perhaps, the heaviest user of statistics has been eco-
nomics, and the uses of statistics there have led to their
own branch of statistics known as econometrics. With the
abundance of economic data, econometrics has led to new
uses of regression analysis. In turn, econometrics has been
adopted by other social sciences, such as sociology and
psychology.

Psychology is another social science where statistics
has led to its own branch of statistics known as psy-
chometrics. Psychology has an abundance of scores on
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tests administered to college students and people seeking
employment as well as psychiatry trying do diagnose peo-
ple with suspected mental disorders. The most well known
statistical methods in psychometrics is known as factor
analysis of various kinds.

The abundance of survey analysis with the uses of
questionnaires (see »Questionnaire) in sociology would
not have been possible without modern statistical sam-
pling methods. Needs of sociology have led statisticians
to develop sampling methods such as stratified sampling,
»cluster sampling and other sampling procedures. In turn,
this has spilled over into the uses of sampling when the goal
is obtain a complete »census of some population. One of
the leading organizations in the development of modern
sampling methods for the collection of social science data
has been the United States Bureau of the Census.

Sampling Theory
Sociologists, as well as others, have long collected data on
individuals to study how people feel about issues of the
day. In addition, political scientists have used sample sur-
veys to try to predict outcomes of elections to be held
sometime in the future. One of the most famous examples
of such a prediction being wrong took place during the
presidential election in the United States in 1948. On the
night of the elections many surveys showed that Thomas
E. Dewey had won and the incumbent Harry S. Truman
had lost the election. Instead, Truman woke up the next
day and found he had been elected president for the next
four years. Another famous example took place during the
US presidential election of 1936 when a well-known pub-
lication predicted on the basis of their poll that Governor
Alf Landon would win the election. Instead, Franklin D.
Roosevelt won almost two thirds of the popular vote that
year and went on to win the next two elections as well.
What went wrong in both of these two cases was that
statisticians had not stressed hard enough is that in order to
generalize from a sample to a larger population, the sample
must have been selected according to proper random sta-
tistical methods. In 1936 the sample was drawn from lists of
people who owned cars. But this was in the middle of the
economic depression years, and only reasonably wealthy
people owned cars while most people without cars voted
for Roosevelt. In 1948 George Gallup and others made use
of the so-called quota sampling method. Each interviewer
was told to go out and select respondents in such a way that
the sample would reflect the population on characteristics
such as gender and age. But that way interviewers would
miss people who worked during oft hours like a night shift
at a factory and slept during the daytime when interviewers

were seeking people with the right characteristic to satisfy
the quotas they were given. An occasional survey still uses
quota sampling for the selection of respondents, in spite
of the well-known shortcomings of quota sampling. These
days it is much more common to chose respondents by
making a random selection of telephone numbers and dial
those numbers.

Demography

For centuries, states have wanted to count the number of
inhabitants for tax and military purposes. For this purpose,
the German word Statistik was introduced more than two
hundred and fifty years ago to denote matters of state, and
the word probably comes from the Latin word Statisticum.
In principle, a census does not require the use of statistical
methods, but it is very difficult to take an accurate census
without the use of sampling to count people who otherwise
would be hard to include in the final count.

Simultaneous Structural Equations

The analysis of complex sociological models has led to
generalizations of simple regressions models to models
involving several regression equations where the param-
eters in all the equations are estimated at the same time.
This formulation of a model has led both statisticians
and sociologists to fruitful collaborations on how to esti-
mate the parameters and how to interpret the estimates.
The estimation procedure has moved from ordinary least
squares estimation to what is known as two-stage and even
three-stage estimation, depending upon the model. This is
a case where theoretical work by economists have made
major contributions to statistical theory and major uses in
sociology.

Such models also go under the name of causal analy-
sis or path analysis. Path analysis seems to have originated
in biology around 1920, and it caught on in sociology in
the 1960ies. A leading person in this field was the sociol-
ogist Hubert Blalock, perhaps best known for his famous
textbook Social Statistics in addition to his writings on
causal models. Causal modeling using path analysis has
lost some of its attraction after people realized that estab-
lishing causality using statistical models did not necessarily
lead to truly causal connections between variables.

Contingency Table Analysis

Much of the data in sociology consist of nominal (qual-
itative) variables such as gender (female, male), religious
affiliation (protestant, catholic, Muslim, Jewish, etc.) and
others. Because there are no meaningful numerical values
attached to these categories, such data cannot be analyzed
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by using means, standard deviations, single or multiple
regression, etc. Instead, perhaps the best-known and old-
est statistical method for the analysis of the relationship
between two such variables is the chi-square analysis. It is
based on the difference between the observed frequencies
and expected frequencies computed as what the frequen-
cies would have been if there were no relationship between
the two variables.

A more recent development is the multivariate chi-
square analysis for more than two categorical variables.
This permits the study of interaction effects of the indepen-
dent variables onto the dependent variable. Also, »logistic
regression has become popular for the case where the
dependent variable has only two values. Finally, the use of
»dummy variables for quantitative variables have become
possible using software so designed. Any quantitative vari-
able with k different categories can be represented by
k — 1 dummy variable, each having values of 0 and 1. With
the data in this form it is possible to use ordinary linear
regression for the study of the relationship between the
dependent and the independent variables.

Conclusion

The empirical part of sociology could not exist without
the use of statistics. Statistics has become an integral part
of empirical sociological research. Any randomly cho-
sen issue of a major sociological journal will have several
articles making using of data analysis and statistics.

At one time it looked as if mathematics could play a
similar role for sociology, but that effort has not paid off
the way it was hoped. This takes us back to the importance
of statistics for sociology. However, a major obstacle is that
most sociologists lack the necessary background in statis-
tics, partly due to the fact that they do not know enough
mathematics to fully understand the statistical methods
they are using. Similarly, most statisticians lack the knowl-
edge of sociology needed to understand what statistical
methods sociologists need. A few people have been able to
bridge this gap, but most sociology students, even sociol-
ogy graduate students, see the study of statistics as a hard
task, perhaps mostly because statistics for sociologist has
not been taught very well.
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Introduction
A spatial point pattern is a set of data consisting of the loca-
tions, x; : i = 1,...,n, of all events of a particular kind
within a designated spatial region A. Typically, the pattern
is assumed to be the outcome of a stochastic point process
(see »Point Processes) whose properties are of scientific
interest.

An example would be the locations x; of all trees in
a designated region within a naturally regenerated forest.
The observed pattern could be the result of a complex
mix of natural processes. For example: regeneration from
seedlings around the base of a mature tree could produce
clusters of young trees; variation in soil fertility could pro-
duce patches of relatively low and high intensity of regener-
ation; competition for limited nutrient or light could lead
to a spatially regular pattern is which only the dominant
member of a cluster of seedlings survives.
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Complete Spatial Randomness

The simplest statistical model for a spatial point process
is the homogeneous Poisson process (see »Poisson Pro-
cesses). One of several possible definitions of this process
is that:

1. The number of points in any planar region A follows a
Poisson distribution with mean A|A|, where |- | denotes
area and the parameter A > 0 is the intensity, or mean
number of points per unit area.

2. 'The numbers of events in any two disjoint areas are
independent.

Properties (1) and (2) imply that, conditionally on the
number of points in A, their locations form an independent
random sample from the uniform distribution on A.

Models

The Poisson process provides a standard of complete spa-
tial randomness, but is inadequate as a model for most nat-
urally occurring phenomena. As would be the case in our
hypothetical forestry example, we need models to describe
a response to an inhomoegeneous environment, or a ten-
dency for points either to cluster together or to inhibit the
occurrence of mutually close sets of points.

To model a response to an inhomogeous environment,
a first possibility is to replace the constant intensity A by
a function A(x). In practice, this is only useful if we can
model A(x) as a function of spatially referenced explana-
tory variables, for example height above sea-level. In the
absence of such information, we can treat 1(x) as a reali-
sation of an unobserved stochastic process, so defining the
class of Cox processes (Cox 1955).

The first, and still widely used, model for clustering of
points is the Neyman-Scott process (Neyman and Scott
1958), in which parents form a homogeneous Poisson pro-
cess and each parent generates a family of offspring that
are spatially dispersed around their parent. Bartlett (1964)
showed that in some cases the resulting process is indis-
tinguishable from a Cox process; specifically, a process in
which family sizes are independent Poisson variates and
the positions of offspring relative to their parents are an
independent random sample from a bivariate distribution
with density f(-) is also a Cox proicess with stochastic
intensity proportional to 377, f (x — X;), where the X; are
the points of a homogeneous Poisson process.

The most widely used model for an inhibitory pro-
cess is a Markov point process (Ripley and Kelly 1977).
A Markov point process can be defined by its likelihood
ratio with respect to a Poisson process with intensity
A = 1. A useful sub-class of such processes is the pair-

wise interaction process, in which the likelihood ratio for

arealization X = {x;:i=1,...,n} is
e(x) = B" [Th(llxi - xl),
ji
where || - || denotes distance, h(+) is an interaction function

and > 0 determines the intensity of the process. A suf-
ficient condition for validity of the model is that h(-) is
inhibitory, meaning that 0 < h(u) < 1 for all u. The case
h(u) = 1yields a homogeneous Poisson process.

Inference
Until relatively recently, likelihood-based inference was
considered intractable for most spatial point process
models. Instead, sensible ad hoc methods based on
functional summary statistics were used. These included
so-called nearest neighbor methods and moment-based
methods (Ripley 1977). Recent developments in Monte
Carlo methods of inference have made likelihood-based
inference a feasible, albeit computationally intensive, alter-
native (Moller and Waagepetersen 2004).

General accounts of statistical models and methods for
spatial point pattern data include Diggle (2003) and Ilian
et al. (2008).
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Introduction
Spatial statistics is concerned with modeling and analysis
of spatial data. By spatial data we mean data where, in addi-
tion to the (primary) phenomenon of interest the relative
spatial locations of observations are recorded, too, because
these may be important for the interpretation of data. This
is of primary importance in earth-related sciences such as
geography, geology, hydrology, ecology and environmental
sciences, but also in other scientific disciplines concerned
with spatial variations and patterns such as astrophysics,
economics, agriculture, forestry, epidemiology and, at a
microscopic scale, medical and health research.

In contrast to non-spatial data analysis, which is con-
cerned with statistical modelling and analysis of data
which just happen to phenomena in space and time, spatial

statistics focuses on methods and techniques which con-
sider explicitly the importance of the locations, or the spa-
tial arrangement of the objects being analysed. The basic
difference from classical statistics is that in spatial statistics
we are concerned with non-independence of observations.

In spatial problems, observations come from a spa-
tial random process Z = {Z(s) : s € S}, indexed by a
spatial/spatiotemporal set § ¢ R?, with Z(s) taking val-
ues in some state space. The positions of observation sites
s € § are either fixed in advance or random. Typically,
S c R? the study of spatial dynamics adds a tempo-
ral dimension, ie., $ ¢ R* x (0, 00). However, S could
also be one-dimensional (e.g., field trials along transect
lines) or a subset of R* (oil and mineral prospection, 3D
imaging). In some fields such as Bayesian data analysis
and simulation one even requires spaces S of dimension
d > 3, this pertains, in particular, to the design and analysis
of computer experiments with a moderate to large num-
ber of input variables. Comprehensive treatments of the
whole field of spatial statistics are given in Ripley (1988),
Cressie (1993) and Gaetan and Guyon (2010). Statisti-
cal Methods for spatio-temporal systems are given in
Finkenstidt et al. (2007).

Basically, there are four classes of problems which
spatial statistics is concerned with: point pattern analy-
sis, geostatistical data analysis, areal/lattice data analysis
and spatial interaction analysis. These subproblems are
treated separately in a number of papers in this volume:
Mase (2010), Kazianka and Pilz (2010), Vere-Jones (2010),
Diggle (2010) and Spo6ck and Pilz (2010). Therefore, in this
paper we limit ourselves to a brief overview over the areas
comprising spatial statistics.

For a good overview on software for different problem
areas of spatial data analysis we recommend the book by
Bivand et al. (2008), for the important issue of simulation
of spatial models we refer to Lantuéjoul (2002) and Gaetan
and Guyon (2010).

Geostatistics
Here, S is a continuous subspace of RY and the random
field is observed at n fixed sites {si,...,s,} c S. Typical
examples include rainfall data, data on soil, characteristics
(porosity, humidity etc.), oil and mineral exploration data,
airquality and groundwater data a.s.o. For d > 2 the ran-
dom process Z = {Z(s) : s € S} is usually termed a random
field. The mathematical structure and the most important
properties of random fields are described in Moklyachuk
(2010).

The concept of stationarity is key in the analysis of
spatial and/or temporal variation: roughly spoken, station-
arity means that the statistical properties. (e.g., mean and
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variance) of the variable of interest do not change over
the considered area. However, testing for stationarity is
not possible. For spatial prediction the performance of a
stationary and a nonstationary model could be compared
through assessment of the accuracy of predictions.

The random field is characterised by its finite dimen-
sional distributions P(Z(s1) < z1,..., Z(sp) < zu) for
alln € Nands; € S5 = L,...,n If all these distri-
butions are Gaussian then Z is called a Gaussian ran-
dom field (GRF). A GRF is completely determined by its
expectation (trend function) m(s) = E(Z(s)) and covari-
ance function C(s1,s2) = Cov(Z(s1),Z(s2)). Contrary to
traditional statistics, in a geostatistical setting we usually
observe only one realization of Z at a finite number of loca-
tions sy, . .., sy. Therefore, the distribution underlying the
random field cannot be inferred without imposing further
assumptions. The most simple assumption is that of (strict)
stationarity, which means that the finite dimensional dis-
tributions do not change when all positions are translated
by the same (lag) vector h, ie., (Z(s1),...,Z(ss)) and
(Z(s1 + h),...,Z(sn + h)) are identically distributed for
all n € N and locations s; € S;j = 1,...,n. For a GRF
this implies that m(s) = const for all s € S, and C(s1,52)
= C(s1 — s2) for all 51,5, € S. For arbitrary RF’s, the invari-
ance of the first two moments is denoted as the property
of weak stationarity. In geostatistics it is common to use
the so-called semi-variogram y(si,s2) = 0.5 * Var(Z(s +
h)—Z(s)) instead of the covariance function and to assume
intrinsic stationarity: m(s) = const and y(s,s + h) =
y(h) for all s,h € S. If Z(-) is weakly stationary then
y(h) = C(0) — C(h). Weak stationarity implies intrinsic
stationarity, the converse is not true.

For d = 1, however, intrinsic stationarity is equiva-
lent to weak stationarity of the first order differences of
the underlying random process, a well-known fact from
time series analysis. For an intrinsically stationary RF the
semi-variogram has the important property of conditional
negative definiteness, i.e.,

Var(mZ(s1) + ...+ anZ(sn)) = — Y. > aiajy(si—sj) > 0
= i

forall n € Nand real numbersay, .. .,a, such that 3 a; = 0.
This is the reason why one usually employs parametric
models (e.g., spherical, exponential, Gaussian or Matérn
models) for fitting variogram functions to the data. More-
over, fitting is often done under the additional assump-
tion of isotropy: y(h) = yp(|h|),|h| = length of h € S.
For “classical” estimation methods for variogram param-
eters see Mase (2010), for Bayesian approaches we refer to
Banerjee et al. (2004) and Kazianka and Pilz (2010). For

non-stationary variogram modeling we refer to the review
provided by Sampson et al. (2001) and Schabenberger and
Gotway (2005).

Now, let us step to predicting Z at an unobserved loca-
tion s €S, based on the observations Z:=(Z(s1),...,Z
(s1))7, such that the mean squared error of prediction
(MSEP) E[Z(s0) — Z(s0)]? is minimized. For a GRE, the
optimal predictor is known to be the mean of the condi-
tional distribution of Z(so) given the data:

Z(50) = B(Z(0)|2) = E(Z(50)) + 4K N(Z - E(2)) )

where the vector ¢y has elements C(sp — s;);i = L,...,1;
and K is the covariance matrix of the observations. For
non-Gaussian RF’s, the predictor (1) is the best linear unbi-
ased predictor (BLUP). Inserting the optimal estimators
for EZ(so) and E(Z) into 1 we get various forms of Krig-
ing predictors: assuming EZ(s) = m to be constant we get
EZ(so) = m = (1"K™'Z)/(1K™'Z) and E(Z) = 1, where
1 denotes the n-vector of one’s, and this is known as the
ordinary Kriging predictor. For non-constant m, assuming
a linear regression setup for m(s), one arrives at the uni-
versal Kriging predictor. Clearly, for non-Gaussian data,
the best predictor w.r.t. MSEP is no longer linear in the
observations. Comprehensive accounts of “classical” linear
and nonlinear geostatistics are given in Chilés and Delfiner
(1999) and Webster and Oliver (2007).

In a Bayesian setting, assuming a prior distribution for
the covariance parameters, one has to determine the pre-
dictive density of Z(s)|Z via the posterior distribution of
the covariance parameters given Z, from which an optimal
predictor and the associated uncertainty can be derived.
For non-Gaussian data, the framework of generalized lin-
ear models or the copula framework can be used to arrive
at optimal predictors (see Banerjee et al. (2004), Diggle and
Ribeiro (2007) and Kazianka and Pilz (2010)). This exten-
sion of the classical geostatistical methodology has become
known under the heading of model-based geostatistics.
Concerning software for geostatistical analysis, we rec-
ommend the freely available R-packages “gstat,” “geoR,
“geoRglm” and the functions contained in the R-library
“intamap.” For spatio-temporal analysis and prediction of
environmental processes we refer to Le and Zidek (2006)
where also software is being described. For geostatistical
space-time models particular care is needed for combining
spatial and temporal variables (separability versus non-
separability), a thorough treatment of this issue is given in
Gneiting et al. (2007). A very exciting new development
has been opened by Rue et al. (2009) who consider approx-
imate Bayesian inference in latent Gaussian models, using
an integrated nested Laplace approximation (INLA). This
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approach offers computational advantages, the approxi-
mations are accurate and orders of magnitude faster than
MCMC algorithms, and its generality also allows the com-
putation of various predictive measures for doing model
comparisons.

Point Process Analysis and Random Sets
By a (spatial) point process (PP) or point pattern we mean
arandom, locally finite collection Z = {s,s3,...} of points
si € S ¢ R? such that s; # sj for i # j. Here, locally finite
means that the number of points is finite in each bounded
subset of S. The process is said to be marked if at each site s;
we additionally record a (random) value, for example the
length of the material cracks, height or diameter of plants,
intensity of earthquakes a.s.o. For statistical analysis, the
process is observed in a window W c S leading to a real-
ization z = {s,...,s,} with a random number n = n(z)
of points s; € S. Thus, contrary to geostatistical data anal-
ysis, in point pattern analysis the set of observation sites
{s1,-..,sn} is random, along with the number of sites n.

»Point processes are important in a variety of appli-
cations, in ecology and forestry (spatial, spatiotempo-
ral distribution of plant/animal species), epidemiology
(location of sick individuals, spatiotemporal spread of
diseases), seismology (earthquake epicenters), materials
science (locations of cracks and porosities), biology and
medicine (centers of cells/tumours in histological sec-
tions), crime scene analysis (locations and intensities of
burglaries) etc.

The probabilistic theory of PP’s is quite technical and
requires a good knowledge of measure theory, for a good
introductory account we refer to the review articles by
Mpoller and Waagepetersen (2007), Vere-Jones (2010) and
Diggle (2010).

The PP Z is characterized through the finite-dimen-
sional distributions (N(B1),...,N(B)) for all k € N and
bounded subsets By, . .., By in R, where the random vari-
able N(B;) counts the number of points in B;. The point
pattern is called stationary, iff its finite-dimensional distri-
butions are invariant under translations, and isotropic iff all
these distributions are invariant under rotations.

One of the major problems is to find out whether a
given point pattern can be considered as completely ran-
dom, or if there is a tendency to clustering or to some
“regularity” As the reference model for “no interaction
between points” or “‘complete spatial randomness (CSR)”
the Poisson Process (see »Poisson Processes) is chosen (cf.
Diggle 2010).

In general the mean structure of the count variables
is modelled by a non-negative intensity function A(-)
such that y(B) := [, A(s)ds for all B in RY. Here the

interpretation is that A(s)ds is the probability that there
is precisely one point in the ball with center at s and
area/volume ds. Likewise, the second order moment mea-
sure p2(A x B) := E{N(A)N(B)} is modelled by a sec-
ond order product density A such that y,(A x B) =

ffIAxB(u v)A2(u, v)dudv. For a Poisson PP one then

has: r2(a x B) = p(A)(B) Aa (1) = A()A(Y).

The tendency of attraction or repulsion between points
can be characterized by the so-called pair correlation func-
tion g(u,v) := A2(u,v)/[A(u)A(v)]. If points appear
independently from each other then we have A, (u,v) =
A(u)A(v) and thus g(u,v) = 1. Thus, there is attraction
between points of Z at locations u and v iff g(u,v) > 1and
repulsion iff g(u,v) < 1.

The characterization of point patterns becomes rela-
tively easy in case of stationarity and additional isotropy.
Then A(u) = A = const, La(u,v) = A
g(u,v) = g(Ju = v|) and it suffices to work with the so-
called K-function K(r) = (1/1)E {number of extra points
within distance r of a randomly chosen point}. This takes
the form

K(r) = (va/2?) forud*xz(u)du

where v, stands for the surface area of the unit sphere in
R?. For the Poisson PP in R?, for example, we have K () =
nr*. We remark, however, that second order moments and
the related K function describe the dependence in point
patterns only partly, i.e., the visual appearance of two point
patterns may be different even if their first and second
order moments are the same. Therefore, other features are
considered as well, in particular the empty space function
F; and the nearest neighbour function Gs. The former is
defined as Fs(r) = P(N(b(s,r)) > 0), where b(s,r) is the
ball with radius > 0 and centered at a fixed location s € R?
(not necessarily s € Z). For a stationary PP the function F;
does not depend on s. The function G; is the distribution
function of the distance of a given point s € Z to its near-
est neighbour in Z, i.e., Gs(r) = P(N(b(s,r) > s € Z).
For the sake of comparison, the functions F and G are
compared to those of a homogeneous Poisson (constant
intensity) PP, for which F(r) = 1 - exp(-A|b(0,r)|) =
G(r),r > 0. Popular models of processes with dependence
between points include the Cox PPs (less regular than Pois-
son PPs) and the Gibbs PPs (more regular than Poisson
PPs). The Cox-process is defined by a two-stage model Z|{
with random intensity y(B) = [ {(s)ds where { is a latent
(non-observable) non-negative random field. For exam-
ple, Z describes the (random) locations of the plants and
¢ models the random environmental conditions at these
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locations. Therefore, a Cox process is often termed a “dou-
bly stochastic” Poisson PP (Poisson PP with random inten-
sity). Assuming log {(-) to be a Gaussian RF leads to the
widely used log-Gaussian Cox process:log {(s) = g(s)" +
€(s),g(s) includes the covariates, 8 is a parameter vector
modeling (random) effects and &(s) is a centered Gaus-
sian RE. Choosing {(s) = A Y k(s — s;), where {s1,s2,...}

1

form a stationary Poisson PP and k(-) is a density on S cen-
tered at s; € R? we arrive at a so-called Neyman-Scott
process. This way clustering tendencies can be modelled
interpreting the points s; as cluster centers (positions of
parents) around which clusters with random numbers of
descendants (children) are formed. Various special cases
arise with particular choices of the density function k(-),
choosing e.g., a Gaussian density results in a Thomas PP.
The class of Cox models allows for many generalizations
of Thomas and Neyman-Scott processes: different spatial
configuration of the parents PP, interdependence (compe-
tition) and nonidentical distribution for children (variable
fertility of parents) etc., all leading to aggregated PPs which
are less regular than the Poisson PP.

One way to “regularize” a spatial point pattern is to
disallow close points. This is appropriate for modeling
situations such as tree distributions in forests and cell dis-
tributions in cellular tissues. These models are special cases
of Gibbs models which are conditionally specified through
the probabilities that there is a point at location s given
the pattern on R? \ {s}: A(s|z)ds := P(N(b(s,ds)) =
112 n (RY\ {s}) = z). The conditional intensity A(s|z) is
usually modelled through some energy functional U(s, z) :
A(s|z) = exp(=U(s,z)). For example, Strauss PP’s corre-
spond to the choice U(s,z) = exp(—a— b I(||s - sil| <

1

r)) including only the energy of the singletons and pair
potentials. For b > 0 we have repulsion and, conversely,
b < 0 implies attraction. We remark that the Strauss PPs
are examples of Markov PPs since the conditional density
A(s, z) depends only on neighboring points of s belonging
to the pattern z.

For testing the CSR hypothesis, the parameters and
functions introduced before (1, A, K, F, G) have to be esti-
mated on the basis of an observation window W ¢ RY
(usually a (hyper-) rectangle). For testing this hypothe-
sis, estimates of the following two summary statistics are
in common use: L(r) = {K(r)/bs}"/* and J(r) = (1 -
G(r))/(1=E(r)), b; denotes the volume of the unit sphere
in R%. For a stationary PP, ] > 1,J = 1and J > 1 indi-
cate respectively that the PP is more, equally or less regular
than a Poisson PP. For estimation of G the well-known
»Kaplan-Meier-estimator can be used, for a comprehen-
sive discussion of estimators and its properties we refer to
Illian et al. (2008). Baddeley et al. (2006) present a number

of interesting case studies in spatial point process model-
ing, in areas as diverse as human and animal epidemiology,
materials sciences, social sciences, biology and seismology.
For practical estimation and testing we recommend the
freely available R-package “spatstat.”

These are generalizations of point patterns in such a way
that Z defines an arbitrary random closed subset (RACS)
of R?. Again, stationarity means that the distributions of
Z are invariant w.r.t. translations. In this case, random
closed sets can be characterized by some simple numbers
and functions, resp., e.g., by (a) the covariance function
C(h) = P({s e Z}n{s+h € Z}) and (b) the contact
distribution Hg(r) =1-P(ZnrB=0)/(1-P(s € £Z)) for
some (test) set B ¢ RY, e.g., a ball or polygon.

The most simple models for RACS are Boolean mod-

els, Z = E{Zi +si}, where {s1,52,...} is a Poisson PP with

constant intensity and Z;, Z,, . . . a sequence of i.i.d. RACS
which are independent of the PP. For instance, Z; can be
assumed to be spheres with random radii, or segments of
random length and direction. In applications, the random
sets are not of that simple type. However, more realistic
models can be built on the basis of Boolean models using
the opening and closure operations of mathematical mor-
phology, see e.g., Serra (1988) and Lantuéjoul (2002); for
interesting applications in the materials sciences we refer
to Ohser and Miicklich (2000).

Lattice Data Analysis

In areal/lattice data analysis we observe the random field
Z = {Z(s) : s € S} at the points of a fixed, discrete and
non-random set § ¢ R?, which is then often called a lattice.
Then it is sufficient to describe the joint probability func-
tion or density on S. Typical examples of such type of data
are population characteristics and infections disease num-
bers at district or country level, remote sensing imagery
and image texture data from materials sciences. The lattice
may be regularly or irregularly spaced. In areal data anal-
ysis, the measurements are aggregated over spatial zones
(administrative units, land parcel sections) and the points
s are geographical regions (areas) represented as a network
with a given adjacency graph. In image analysis, the lattice
S is a regularly spaced set of pixels or voxels. Goals of the
analysis for these types of data include the quantification of
spatial correlations, prediction, classification and synthesis
of textures and image smoothing and reconstruction.

For areal data analysis usually autoregressive models
are employed, the spatial correlation structure is induced
by the particular model chosen, e.g., SAR or CAR models.
For a detailed account of this type of analysis we refer to
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Lloyd (2007) and Anselin and Rey (2010), for an overview
and further references see Spock and Pilz (2010). A par-
ticular area of lattice data analysis is image analysis where
d=2(or3),S={L...,N}¥and N = 2 for some inte-
ger k > 1. For modelling, Markov random fields are widely
used. We call Z = {Z(s) : s € S} a Markov random
field if the conditional density of Z(s) given Z(y),y # s,
only depends on realizations of Z(y) for which y belongs
to some neighbourhood N(s) of s. As a simple exam-
ple, consider a Gaussian Markov random field (GMREF).
The neighborhood of s is usually defined via a symmet-
ric neighborhood relation s ~ y which is non-reflexive,
ie., s ¢ s. Then the joint density on S can be written as
p(z) o< exp(~0.5(z— u) 27" (z - p)) and the conditional
density of Z(s) given Z(y), y # s, is easily seen to be normal
with expectation

BENA0) =2y €5 5D = = - (1)
SS y#s

and variance 1/as;, where y, = E(Z(y)) and a4, denotes
the element of the inverse of £ = (Cov(Z(s),Z(y)))s,yes-
Therefore, a Gaussian RF is Markovian iff a;, # 0 —
y € N(s), i.e., iff 27" is sparse. For a detailed account of
GMREF we refer to Rue and Held (2005). According to the
Hammersley-Clifford theorem (see Besag (1974)), MRF
can be characterized as Gibbs RFs with local interaction
potentials. The state space of a Gibbs random field can be
rather general: N for count variables, e.g., in epidemiology,
R* for a positive-valued RE e.g.,a Gamma RF, a finite set of
labels for categorical RFs, as e.g., in texture analysis, {0,1}
for binary RFs labeling presence or absence or alternative
configurations as in Ising models, R? for GRF, or mixtures
of qualitative and quantitative states. Gibbs RFs are associ-
ated with families of conditional distributions p¢ defined
w.r.t. interaction potentials ® = {¢4,A € S} where S is
a family of finite subsets of S. In Bayesian image restora-
tion, with k > 2 qualitative states (e.g., colours, textures or
features) and finite set S = {0,1,...,255}> one often uses
models of the form po (z) o< exp(—U(z)) where U stands
for the energy associated with ®. In the simplest case one
has only one interaction parameter  and U(z) = - n(z),
where n(z) is the number of points of neighbouring sites
with the same state. Here 3 plays the role of a regulariza-
tion parameter: decreasing f3 leads to more regularity. The
central goal in (Bayesian) image and signal processing is
then to reconstruct an object z based on a noisy observa-
tion y from the posterior po (-|y) of Z given y, e.g., on the
basis of the MAP = maximum (mode) of the a posteriori
distribution.

A good summary of the theory and applications of
image data analysis based on the theory of random fields

is given in Li (1995) and Winkler (2003); for description,
classification and simulation of 3D-image data we refer to
Ohser and Schladitz (2009).
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Introduction

The term spectral analysis surely for most of us is con-
nected with the experiment where a beam of sunlight is
sent through a prism and split into many components
of different colors, the spectrum. What looks nice is the
starting point of a deeper understanding of nature, too.

The idea of splitting into components was copied by
statisticians when working on time series. At first they pro-
ceeded like Kepler, who found his rules by fitting a model
to data gathered by Tycho de Brahe. Deterministic model-
ingis a standard procedure in time series analysis. Given an
economic time series x;, one tries to fitx; = Gi+Z; + S + Ry
where G stands for trend, Z is a cyclic component, S a
seasonal component, and R stands for the rest, the so-
called noise. Regression is the important tool to study these
models. The book by Davis still is a good starter. Unfor-
tunately, this approach is not always as successful as with
Kepler, “too many suns,” Hotelling once complained.

Quite another approach is to interpret a time series
{xt}ter as a realization of a stochastic process {X(t) }ser-
From now on we assume T to be a countable set. Then
we might go in the direction of ARIMA-models - see, for
instance, the book by Box and Jenkins - or choose spectral
analysis as we will do here. So we are looking for a prism
to work with.

A stochastic process is based on a system F, (u1, . . . , n;
fi,...,ty) of distribution functions. For these func-
tions certain rules are valid, i.e., symmetric conditions
Fy(ui,uzsti,t2) = Fa(uz,un @ f2,h), or consistency con-
ditions such as Fi(ui;t1) = Fa(ui, 0051, 12). Let E stand
for the expectation operator. Then the mean function of
the process is defined as M(t) = E[X(¢)] and the (auto-
)covariance function as C(t,t2) = E[X(t1)X(#2)]. A pro-
cess is stationary if M(¢) = mand C(¢,s) = C(t—s) = C(7)
for all t, seT.

For such stationary processes the autocovariance func-
tion can be represented as C(7) = [ e™dF(w). The
function F(w) is called spectral distribution. When we have
dF(w) = f(w)dw the function f(w) is called spectral den-
sity. The integration borders are —oo, co for continuous
index set T and 7, for countable T. As can be seen by
C(0) = [ dF(w), the spectral distribution splits the vari-
ance into components. dF(w) is the contribution to the
variance of the frequencies in the interval between w and
w + dw. Such a stationary process can be written as X(t) =
[ €"“dZ(w). For w; # w; dZ(w;), dZ(w;) are orthogo-
nal random variables with E[dZ(w)dZ(w) = dF(w). So
the process {X(t) }ser is split into orthogonal components
e"dz(w).

What can be gained by spectral analysis may be seen
by two simple examples.

Examplel  Firstly, take the process {X(t)} = {£cos wot +
# sin wot } where & and 7 are random variables with E[£] =
E[n] = 0, E[£*] = E[#*] = ¢, and E[£x] = 0. The object
is to get information about wy. The covariance function of
this process is C(7) = ccoswo7. In Fig. 1 the function C
and the corresponding spectral density, cn{d(w — wo) +
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0(w + wo)}, demonstrate how the latter provides a much
clearer picture of the structure of the process.

Example2 Nextlet us take a stationary process {X () } et
with autocovariance function Cx(7) and spectral density
fx(w). Y(t)¢er is a linear time invariant transformation of
{X(#) }eer. If w(t) is the impulse function of the trans-
formation, we have Y(¢t) = [ w(7)X(¢ - 7)dr. Doing
some mathematics, we get for the autocovariance func-
tion Cy(T) = f:;f:; W(Tl)W(Tz)Cx(T— T1— Tz)dTlde.
Turning to the spectral densities of the processes, we get
fr(@) = [9(@)Pfi(@), with $(w) = [ w(r)e™dr, a
nice, simple multiplication of a spectral density with the
square of a Fourier transform.

From now on we assume that we deal with discrete
stationary processes. For these the covariance function
C(1) = [" ¢™f(w)dw and the spectral density f(w) =
= Y22 . e " C(7) are a pair of Fourier transforms that
are the base for further steps.

Estimation of the Spectral Density

In applications we usually don't have the full ensemble
but only one member - a piece of a member - of the
sample space. To go on, we have to assume that the pro-
cess {X(t) }eer is ergodic. That is, limr, ¢ TLO Dox(t) =
E(X(t) (mean ergodic) and limr, o TLO ZL"I X(t+1)X(t) =
E(X(t + 1)X(t) (covariance ergodic). In both cases, the
convergence is in quadratic mean. A simple sufficient con-
dition for mean ergodic is |C(7)]| < ¢, i.e., events far away
are not correlated — might be true in many applications. For
covariance ergodic the same must be true for the process
Z(t) = X(t+ 1)X(t).

To get an estimate for the spectral density there
are two approaches. Either one starts with an estimate
of the covariance function and take its Fourier trans-
form as an estimate for the spectral density. Or one
starts from the representation X(t) = [ ¢"“dZ(w) and
E[dZ(w)dZ(w) = dF(w). The so-called periodogram
Py(w) = 5| X1, x(t)e"|* combines these features. This
approach is backed by the fast Fourier transform (FFT).
Cooley and Tukey found this famous algorithm.

In each case, applying spectral analysis to time series
of finite length leads to a lot of problems. So we only have
estimates C(7) for |7| < 7¢. Theory calls for an estimator
for all 7. A function L(7) with L(0) =1, L(7) = L(-7) for
|7] < 70, and L(t) = 0 elsewhere may be a solution. C(7) =
L(7)C(7) is defined for all 7. Further problems emerge
immediately. How does one choose 7¢? Is this estimator
unbiased, consistent? What is a good L(7)? And so on.
Theoretically, these questions are hard to solve. Simulation
is an aid in studying these problems. The book by Jenkins
and Watts may be a good introduction to this approach.

Multivariate Spectral Analysis

The simplest cases of multiple spectral analysis are two
stochastic processes, {X(#) }ter and {Y () }ser. The base
of our analysis is the cross-variance function Cxy (#1,t2) =
E[X(t)Y(t2)] = Cxy(t1 — t2). For this function we
have the representation Cyy(7) = [ €™ dFxy(w). From
Cy(1) = [e™dFxy(w) we get the complex cross-
spectral density fxy(w) = k(w) + ig(w) k(w) is called
co-spectrum and q(w) quadrature spectrum. A num-
ber of functions are based on these two spectra, e.g.,
the amplitude A(w) = \/{k(w})? + {q(w)}2, the phase
¢(w) = arctan(gq(w)/k(w)), and the coherence C(w) =
J#;Y)(w). Plots of these functions are nice tools to study
the relation between {X(¢) }ser and {Y(¢) }ser-

An Application

Finally we will deal with an application of spectral meth-
ods. This example is a very short version taken from the
book by Venables and Ripley p. 355 f. The details are shown
in Figs. 2 and 3. Figure 2 depicts the time series of monthly
deaths from lung diseases in the UK 1974-1979. Figure 3
shows one estimate of the spectrum. All calculation were
done with R. The function spectrum is based on FFT and
smoothing by running means.

The interpretation of spectral functions and graphs cal-
culated in applications is not an easy task. The book by
Granger - the late Nobel Prize winner - might be a good
starting place.
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Fans love statistics about sport — sets of numbers that
describe and summarise what is happening on the field.
With developments in computer technology, global posi-
tioning systems and the internet, the range and availability
of sports statistics is growing at a rapid rate. In tennis
majors, for example, an on-court statistician enters the
result of every rally, whether the final shot was a forehand
or backhand drive or volley, a winner or forced or unforced
error, and whether either or both players were at the net.
Cumulative results are immediately available to spectators,
the media, and the general population through the inter-
net. Only a few years ago, the number of kicks marks and
handballs each player obtained in an Australian Rules foot-
ball match was provided in printed tables two days after the
match. Now over 80 statistics are collected in real time and
immediately available to coaches and the general public.
The science of statistics can be used to add value, to make
sense, to discern patterns, to separate random variation
from underlying trends in these sports data.

We are discussing here not just the collection and accu-
mulation of statistics, but statistical modeling. Collection
of raw statistics is one thing (how long is it since a batsman
made over 400 in an international match? how old was

Stanley Matthews when he played his last soccer game?)
and statistical modeling (how can statistics be used) by
analysts is another. If we are interested in the chance a
male player might break 60 in a golf tournament next year,
past statistics might tell us the percentage of all tournament
rounds in which this has occurred. But if we want to esti-
mate the chance Tiger Woods will break 60 in the US mas-
ters next year, this is of little use. We need to do some mod-
eling. For example we might use past statistics to obtain
Tiger’s scores on each hole in previous masters, and by
sampling from these use simulation to get a useful estimate.

Cricket has the distinction of being the first sport
used for the illustration of statistics. In Primer in Statis-
tics, (Elderton and Elderton 1909) used individual scores
of batsmen to illustrate frequency distributions and ele-
mentary statistics. Some previous work on correlation and
consistency resulted in (Wood 1945) and (Elderton 1945)
reading separate papers at the same meeting of the Royal
Statistical Society. These papers investigated the distribu-
tion of individual and pairs of batsmen scores, and have
some claim as the first full quantitative papers applying
statistics to sport.

The literature now contains hundreds of papers detail-
ing applications of statistical modeling in virtually every
sport. Researchers in the area are not confined to Statisti-
cians. Other disciplines include Mathematics, Operational
research, Engineering, Economics and Sports Science.
Learned societies such as the American Statistical Associa-
tion, the Australian Mathematical Society and the Institute
of Mathematics and its Applications have sections of their
membership or conferences devoted to this area. The range
of journals which publish articles on sport often makes it
difficult to search for previous work in a particular topic.

Much early work in the area is covered in the two texts
(Machol et al. 1976) and (Ladany and Machol 1977). More
recently (Bennett 1998) gives an excellent overview, with
chapters on particular sports: American football, baseball,
basketball, cricket, soccer, golf, ice hockey, tennis, track
and field; and theme chapters on design of tournaments,
statistical data graphics, predicting outcomes and hierar-
chical models. Later collections of papers include (Butenko
et al. 2004) and (Albert and Koning 2008). These provide
good examples of the issues currently being investigated by
researchers. We discuss here some of these issues.

As mentioned above, fitting known distributions to
sporting data was amongst the earliest work performed
in this area. If the performance data follow a known dis-
tribution, that tells you something about the underlying
behavior of the sportsman. If a batsman’s cricket scores fol-
low an exponential (or geometric) distribution, then he has
a constant hazard, or probability of dismissal, throughout
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his innings. If the number of successful shots a basketball
player makes in a given number of tries can be modeled by
the »Binomial distribution, then he has a constant prob-
ability of success, and is not affected by previous success
or failure. If goals scored each match by a soccer team are
Poisson distributed, this implies their form is not variable
throughout the season, and they are not affected by early
success or failure in a match. Departures from known dis-
tributions can be used to investigate the existence of the
“hot hand” in basketball or baseball, or “momentum” in
tennis or soccer.

Predicting the outcomes of sporting contests is of great
interest to modelers and fans alike. Statistical modelers
are usually interested in not only predicting the winner,
but in estimating the chance of each participant win-
ning and likely scores or margins. These predictions have
become increasingly important with the introduction of
sports betting. The estimated chances developed from the
statistical model can be compared with the bookmaker’s
odds, and inefficiencies of betting markets investigated (or
exploited). If the probabilities of head to head encounters
can be estimated, then the chances of various outcomes of
whole tournaments or competitions can be estimated via
simulation.

A usual by-product of prediction is the rating of
individuals or teams. For example a simple model might
predict the winning margin between two teams as the dif-
ference in their ratings plus a home advantage. »Least
squares, maximum likelihood or other methods are then
used to obtain the ratings and home advantage that give
the best fit to previous results. Chess has a rating system
based on exponential smoothing that is applicable to past
and present players from beginners to world champions. In
golf, much effort has gone into developing ratings of play-
ers (handicaps) that are fair to players of all standards from
all courses.

Home advantage, the degree to which a team performs
better at home than away, is present in most sports. (Stefani
and Clarke 1992) show that in balanced competitions the
home side wins anywhere from 54% (baseball) to 70%
(international soccer) of the matches. In scoring terms 1
goal in 3 in international soccer can be attributed to home
advantage, while in baseball the home advantage con-
tributes 1 run in 34. While home advantage can be quan-
tified it is more difficult to isolate its causes. Many papers
have looked at the effects of travel, crowd, ground famil-
iarity and referee bias without much consensus. Other
research has shown that models assuming a different home
advantage for different teams or groups of teams provide
a better fit to the data than ones with a common home
advantage.

There are many different scoring systems in sport, (for
example in racquet sports), and researchers are interested
in their operating characteristics. To what extent do the
scoring systems affect the probabilities of each player win-
ning, and the distribution of the number of rallies in the
match? What is the chance of winning from any score-
line? Generally the longer the match the more chance for
the better player. For example, a player who wins 52% of
the points at tennis, will win 55% of the games, 64% of
the sets and 75% of 5 set matches. But the few breaks of
serve in men’s tennis makes the scoring system relatively
inefficient. The better player may win a higher percent-
age of his serves than his opponent, but the set score still
reaches 6 all. Researchers have suggested alternative scor-
ing systems, such as 4-3 tennis, where the server still has
to win 4 points to win the game, but the receiver only has
to win 3 points. They have also looked at the importance
of points — the change in a player’s chance of winning the
game (or match) resulting by winning or losing the point.
(In tennis the most important point in a game is the ser-
vice break point). The assertion that better players win the
important points can then be tested.

What often makes sport interesting is the choice of
alternative strategies. Should a baseball player try and steal
a base or not? Should a footballer try for a field goal or a
touchdown? Should a tennis player use a fast or slow serve?
Should an orienteer choose a short steep route or a longer
flatter one? When should the coach pull the goalie in ice-
hockey? Operational Researchers find this a fertile field
for study (Wright 2009), with techniques such as Dynamic
Programming and simulation used to determine optimal
strategies. (Norman 1995) gives one example of the use of
Dynamic Programming in each of 12 sports.

Sport is an important area for the application of sta-
tistical modeling. Sport is big business, and occupies an
important role in today’s society. By the use of a range of
modeling and analysis techniques Statisticians can assist
players, coaches, administrators and fans to better under-
stand and improve their performance and enjoyment.

About the Authors

Dr. Stephen Clarke is a Professor of Statistics in the fac-
ulty of Life and Social Sciences at Swinburne University,
Melbourne, Australia. He has authored and co-authored
more than 130 papers. He received the (U.K.) Operational
Research Society president’s medal in 1989 for his paper on
one-day cricket.

John M. Norman is an emeritus professor at Sheffield
University Management School, UK. He has written two
books and fifty papers, several in collaboration with
Stephen Clarke.



Spreadsheets in Statistics

1373

Cross References

»Binomial Distribution

»Poisson Distribution and Its Application in Statistics
»Record Statistics

» Testing Exponentiality of Distribution

References and Further Reading

Albert J, Koning RH (eds) (2008) Statistical thinking in sports.
Chapman & Hall, Boca Raton

Bennett J (ed) (1998) Statistics in sport. Arnold, London

Butenko S, Gil-Lafuente J et al (eds) (2004) Economics, management
and optimization in sports. Springer-Verlag, Berlin

Elderton WE (1945) Cricket scores and some skew correlation dis-
tributions. ] Roy Stat Soc (Ser A) 108:1-11

Elderton WP, Elderton EM (1909) Primer of statistics. Black, London

Ladany SP, Machol RE (1977) Optimal strategies in sports. North
Holland, Amsterdam

Machol RE, Ladany SP et al (1976) Management science in sports.
North Holland, New York

Norman JM (1995) Dynamic programming in sport: a survey of
applications. IMA ] Math Appl Bus Ind 6(December):171-176

Stefani RT, Clarke SR (1992) Predictions and home advantage for
Australian rules football. ] Appl Stat 19(2):251-261

Wood GH (1945) Cricket scores and geometrical progression. ] Roy
Stat Soc (Ser A) 108:12-22

Wright MB (2009) 50 years of OR in sport. ] Oper Res Soc
60(S1):S161-S168

! Spreadsheets in Statistics
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Spreadsheet is a computer program that manipulates tables
consisting of rows and columns of cells. It transforms a
computer screen into a ledger sheet or grid of coded rows
and columns simulating a paper worksheet. The program
environment consists of one or more huge electronic work-
sheets (each worksheet can contain up to one million rows
by a few thousands columns) organized in the form of an
electronic workbook.

The general features of such programs are powerful
computing and graphical capabilities, flexibility, excellent
report generating feature, easy-to-use capability, and com-
patibility with many other data analytical software tools.
These features are responsible for the substantial popular-
ity and wide practical usage of the program. Thus, spread-
sheet software is being used in academic, government, and
business organizations for tasks that require summarizing,
reporting, data analysis, and business modeling.

The spreadsheet concept became widely known in the
late 1970s and early 1980s due to the Dan Bricklin’s imple-
mentation of VisiCalc which is considered to be the first
electronic spreadsheet. It was the first spreadsheet program
that combined all essential features of modern spreadsheet
applications, such as: WYSIWYG (What You See Is What
You Get), interactive user interface, automatic recalcula-
tion, existence of status and formula lines, copy of cell
range with relative and absolute references, and formula
building by selecting referenced cells. Lotus 1-2-3 was the
leading spreadsheet program in the period when DOS
(Disk Operating System) prevailed as an operating system.
Later on, Microsoft Excel took the lead and became the
dominant spreadsheet program in the commercial elec-
tronic spreadsheet market.

The basic building blocks of a spreadsheet program
are cells that represent the intersections of the rows and
columns in a table. Each individual cell in the spreadsheet
has a unique column and row identifier that takes spe-
cific forms in different spreadsheet programs. Thus, the
top left-hand cell in the worksheet may be designated with
symbols Al, 11, or 1A. The content of the cell may be a
value (numerical or textual data) or a formula. When the
formula is entered in a particular cell, it defines how the
content of that cell is calculated and updated depending
on the content of another cell (or combination of cells)
that is/are referenced to in the formula. References can
be relative (e.g., A1, or C1:C3), absolute (e.g., $BS1,
or $CS$1:5CS$3), mixed row-wise or column-wise abso-
lute/relative (e.g., $B1 is column-wise absolute and B$1 is
row-wise absolute), three-dimensional (e.g., Sheetl!Al), or
external (e.g., [Bookl]Sheetl!Al). This well-defined struc-
ture of cell addresses enables a smooth data flow regardless
whether data are stored in just one or several worksheets or
workbooks. In most implementations, a cell (or range of
cells) can be “named” enabling the user to refer to that cell
(or cell range) by its name rather than by grid reference.
Names must be unique within a spreadsheet, but when
using multiple sheets in a spreadsheet file, an identically
named cell range on each sheet can be used if it is distin-
guished by adding the sheet name. Name usage is primarily
justified by the need for creating and running macros that
repeat a command across many sheets.

What makes the spreadsheet program a powerful data
analytical tool is the wide range of integrated data pro-
cessing functions. Functions are organized into logically
distinct groups, such as: Arithmetic functions, Statistical
functions, Logical functions, Financial functions, Date and
Time functions, Text functions, Information, Mathemati-
cal function, etc. In general, each function is determined
by its name (written in uppercase by convention) and
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appropriate argument(s) which is/are placed in parenthe-
sis. The arguments are a set of values, separated by semi-
colons, to which the function applies. Thus, a function
called FUNCTION would be written as follows: FUNC-
TION (argumentl; argument2; etc.).

Spreadsheet software integrates a large number of
built-in statistical functionalities, but some caveats about
its statistical computations have been observed. A few
authors have criticized the use of spreadsheets for statis-
tical data processing and have presented some program
shortcomings, such as: no log file or audit trail, inconsistent
behavior of computational dialogs, poor handling of miss-
ing values, low-level of accuracy of built-in spreadsheet
statistical calculations, and no sophisticated data coding
techniques for specific statistical calculations. In response
to such criticism directed against the statistical “incor-
rectness” and limitations of spreadsheet programs, many
efforts have been made (both in the academic and com-
mercial community) to compensate for them. Thus, many
statistics add-ins have appeared, granting robust statisti-
cal power to the spreadsheet program environment. These
add-ins are usually seamlessly integrated into a spread-
sheet program and cover the range of most commonly
used statistical procedures, such as: descriptive statistics,
»normality tests, group comparisons, correlation, regres-
sion analysis, forecast, etc. Some leading statistical software
vendors have provided statistical modules and function-
alities for spreadsheet users. For example, the statistical
software package PASW Statistics 17.0 offered the following
additional techniques and features for Excel spreadsheet
program (SPSS Advantage for Excel 2007): Recency, Fre-
quency, and Monetary value (RFM) analysis for direct
marketing research (where most profitable customers are
identified), classification tree analysis for group identifica-
tion, unusual data detection, procedure for data prepara-
tion and transformation, and the option to save spread-
sheet data as a statistical software data file.

One of the crucial spreadsheet package features is its
capability to carry out “What-if” data analysis. “What-if”
analysis is the process of observing and learning how the
changes in some cells (as an input) affect the outcome of
formulas (as an output) in the other cells in the work-
sheet. For example, Microsoft Excel provides the following
“what-if” analytical tools: scenario manager, data tables,
and Goal Seek. Scenario manager and data tables operate
in a very simple way: they take sets of input values and
determine possible results. While a data table works only
with one or two variables, accepting many different values
for those variables, a scenario manager can handle multi-
ple variables, but has a limitation of accommodating only
up to 32 values. These tools are appropriate for running the
sensitivity analysis, which determines how a spreadsheet’s

output varies in response to changes to the input values.
Contrary to the functioning of scenario manager and data
tables, Goal Seek allows the user to compute a value for a
spreadsheet input that makes the value of a given formula
match a specified goal.

In the era of the Internet, networked computing, and
web applications, online spreadsheet programs also came
about. An online spreadsheet is a spreadsheet document
edited through a web-based application that allows multi-
ple users to have access, to edit and to share it online (mul-
tiple users can work with a spreadsheet, view changes in
real time, and discuss changes). Equipped with a rich Inter-
net application user interface, the best web-based online
spreadsheets have many of the features seen in desktop
spreadsheet applications and some of them have strong
multiuser collaboration features. Also, there are spread-
sheet programs that offer real time updates from remote
sources. This feature allows updating of a cell’s content
when its value is derived from an external source - such
as a cell in another “remote” spreadsheet. For shared,
web-based spreadsheets, this results in the “immediate”
updating of the content of cells that have been altered by
another user and, also, in the updating of all dependent
cells.
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A well-known weakness of regression modeling based on
observational data is that the observed association between
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two variables may be because both are related to a third
variable that has been omitted from the regression model.
This phenomenon is commonly referred to as “spurious
correlation” The term spurious correlation dates back to
at least Pearson (1897).

Neyman (1952, pp. 143-154) provides an example based
on fictitious data which dramatically illustrates spurious
correlation. According to Kronmal (1993, p. 379), a fic-
titious friend of Neyman was interested in empirically
examining the theory that storks bring babies and col-
lected data on the number of women, babies born and
storks in each of 50 counties. This fictitious data set was
reported in Kronmal (1993, p. 383) and it can be found
on the web page associated with Sheather (2009), namely,
http://www.stat.tamu.edu/~sheather/book.

Figure 1 shows scatter plots of all three variables from
the stork data set along with the least squares fits. Ignoring
the data on the number of women and fitting the following
straight-line regression model produces the output shown
below.

Babies = o + BiStorks + e @

The regression output for model (1) shows that there
is very strong evidence of a positive linear association
between the number of storks and the number of babies
born (p-value < 0.0001). However, to date we have ignored
the data available on the other potential predictor variable,
namely, the number of women.

(Intercept) | 4.3293 23225 1.864 0.068

Storks 3.6585 0.3475 10.528 | 1.71e-14 ***

Residual standard error: 5.451 on 52 degrees of freedom

Multiple R-Squared: 0.6807, Adjusted R-squared: 0.6745

Next we consider the other potential predictor vari-
able, namely, the number of women. Thus, we consider the
following regression model:

Babies = f3o + BiStorks + S, Women + e (2)

Given below is the output from R for a regression model
(2). Notice that the estimated regression coefficient for the
number of storks is zero to many decimal places. Thus,
correlation between the number of babies and the num-
ber of storks calculated from (1) is said to be spurious as
it is due to both variables being associated with the num-
ber of women. In other words, a predictor (the number of

women) exists which is related to both the other predictor
(the number of storks) and the outcome variable (the num-
ber of babies), and which accounts for all of the observed
association between the latter two variables. The number
of women predictor variable is commonly called either an
omitted variable or a confounding covariate.

(Intercept) 1.000e 2.021e 4.948 8.56e
+01 +00 —06***
BT 5.000e 8.272e 6.045 1.74e
+00 -01 —Q7***
Storks —-6.203e 6.619% -9.37e 1
-16 —01 -16

Residual standard error: 4.201 on 51 degrees of freedom

Multiple R-Squared: 0.814, Adjusted R-squared: 0.8067

We next briefly present some mathematics wish
quantifies the effect of spurious correlation due to omit-
ted variables. We shall consider the situation in which an
important predictor is omitted from a regression model.
We shall denote the omitted predictor variable by v and
the predictor variable included in the one-predictor regres-
sion model by x. In the fictitious stork data x corresponds
to the number of storks and v corresponds to the number
of women.

To make things as straightforward as possible we shall
consider the situation in which Y is related to two predic-
tors x and v as follows:

Y = ﬁo + ﬁlx + ﬁzv + ey.x,y (3)
Similarly, suppose that v is related to x as follows:
V=00 + X+ ey (4)

Substituting (4) into (3) we will be able to discover what
happens if omit v from the regression model. The result is
as follows:

Y = (fo+ Paao) + (B + Paai)x + (ey.xy + B2evx) (5)

Notice that the regression coefficient of x in (5) is the sum
of two terms, namely, B + f2a1.
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Spurious Correlation. Fig. 1 A plot of the variables from the fictitious data on storks

We next consider two distinct cases:

1. a1 = 0and/or 32 = 0: Then the omitted variable has no
effect on the regression model, which includes just x as
a predictor.

2. a1 # 0 and B, # 0: Then the omitted variable has an
effect on the regression model, which includes just x
as a predictor. For example, Y and x can be strongly
linearly associated (i.e., highly correlated) even when
P1=0. (This is exactly the situation in the fictitious
stork data.) Alternatively, ¥ and x can be strongly
negatively associated even when f; > 0.

Spurious correlation due to omitted variables is most
problematic in observational studies. We next look at a
real example, which exemplifies the issues. The example is
based on a series of papers (Cochrane et al. 1978; Hinds
1974; Jayachandran and Jarvis 1986) that model the rela-
tionship between the prevalence of doctors and the infant
mortality rate. The controversy was the subject of a 1978
Lancet editorial entitled “The anomaly that wouldn’t go
away. In the words of one of the authors of the original
paper, Selwyn St. Leger (2001):

» When Archie Cochrane, Fred Moore and | conceived of
trying to relate mortality in developed countries to mea-
sures of health service provision little did we imagine that
it would set a hare running 20 years into the future. .. The
hare was not that a statistical association between health

service provision and mortality was absent. Rather it was
the marked positive correlation between the prevalence
of doctors and infant mortality. Whatever way we looked
at our data we could not make that association disappear.
Moreover, we could identify no plausible mechanism that
would give rise to this association.

Kronmal (1993, p. 624) reports that Sankrithi et al.
(1991) found a significant negative association (p <0.001)
between infant mortality rate and the prevalence of doc-
tors after adjusting for population size. Thus, this spurious
correlation was due to an omitted variable. In summary,
the possibility of spurious correlation due to omitted vari-
ables should be considered when the temptation arises
to over interpret the results of any regression analysis
based on observational data. Stigler (2005) advises that
we “discipline this predisposition (to accept the results of
observational studies) by a heavy dose of skepticism.”
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The St. Petersburg “Paradox” concerns a betting situa-
tion in which a gambler’s fortune will be increased by
$2" if the first tail appears on the nth toss a fair coin.
Nicholas Bernoulli introduced this problem in 1713 as a
challenge to the then prevailing view that the fair price
of a wager (the price at which one should be equally
happy to buy or sell it) is equal to its expected monetary

payoff. While Bernoulli’s wager has an infinite expected
payoff, any reasonable person will sell it for $20. By 1727
Gabriel Cramer had recognized that the prevailing view
goes wrong because it assumes that people value money
linearly. As he wrote, “mathematicians evaluate money in
proportion to its quantity while, in practice, people with
common sense evaluate money in proportion to the (prac-
tical value) they can obtain from it” (Bernoulli 1954, p. 33).
Since an extra increment of money buys less happiness for
aprince than a pauper, Cramer observed, the St. Petersburg
wager can have a finite “practical value” provided that
the worth of an extra dollar falls off rapidly enough as
a person’s fortune grows. In modern terms, Cramer had
understood that money has declining marginal utility and
that the St. Petersburg wager can have a finite expected
utility if the marginal decrease in utility is sufficiently
steep. He noted, for example, that a utility function of
the form u($x) = X2 produces an expected utility of
Z (%)"2"/ 2~ 2.41421 for Bernoulli’s wager, which is

eauivalent to a fair price of $5.83.

Cramer never published, and it was left to Daniel
Bernoulli to report Cramer’s contributions and to write the
definitive treatment (1954) of his cousin Nicholas’s prob-
lem in the St. Petersburg Academy Proceedings 0f1738, from
which the Paradox derives its name. Daniel, who hit upon
the declining utility of money independently of Cramer,
went further by advocating the general principle that ratio-
nal agents should value wagers according to their expected
utility. He also argued that a person’s marginal utility for
an extra sum of money should be both inversely propor-
tional to the person’s fortune and directly proportional to
the size of the sum. This means that the utility of $x is a
function of the form u($x) = k- In(x). When evaluated
using such a utility function, the St. Petersburg wager has
a finite expected utility of k - In(4).

Bernoulli was also explicit that, as a general matter,
the value of any gamble is its expected utility, and not its
expected payof. Specifically, he maintained that if the util-
ity function u(x) measures the “practical value” of having
fortune $x, then the value of any wager X is E(u(X)) =
folP(X = x) - u(x)dx and its fair price is that sum $f such
that u(f) = E(u(X)). Though this was perhaps Bernoulli’s
deepest insight, its implications were not fully appreciated
until the early 1950s when the work of Savage (1954) and
von Neumann and Morgenstern (1953) moved the hypoth-
esis of expected utility maximization to the very center of
both microeconomics and »Bayesian statistics.

Until that time, Bernoulli was better known among
economists and statisticians for postulating that money has
declining marginal utility and for solving the St. Petersburg
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Paradox. The thesis that money has declining marginal
utility has been immensely influential since it serves as
the basis for the standard theory of risk aversion, which
explains a wide variety of economic phenomena. In eco-
nomic parlance, a risk averse agent prefers a straight pay-
ment of a gamble’s expected payoft to the gamble itself.
Economists seek to explain risk aversion by postulating
concave utility functions for money, with greater concav-
ity signaling more aversion. If u(x) is concave for a <
x < b, and if a wager X’s payouts are confined to [a,b],
then it is automatic that E(u(X)) > u(E(X)). Moreover,
if v is a concave transformation of u, the absolute risk
aversion associated with v exceeds that associated with u,
where absolute risk aversion is measured by the Arrow
(1965)-Pratt (1964) coefficient v (x)/v'(x). Agents with
Bernoulli’s logarithmic utility are everywhere risk averse,
and their absolute level of risk aversion decreases with
increases in x since u”’ (x)/u'(x) = 1/x.

Interestingly, the Cramer/Bernoulli solution to the
St. Petersburg Paradox failed the test of time. As Karl
Menger (1934) first recognized (Basset 1987), if money has
unbounded utility then one can always construct a “Super
St. Petersburg Paradox.” For example, using u($x) = In(x),
a wager that pays e”,e*,¢%,... if a tail appears first on
the 1Ist, 2nd, 3rd,. .. toss will have infinite expected utility.
One can avoid this either by insisting that realistic util-
ity functions are bounded or by restricting the allowable
gambles so that events of high utility are always assigned
such low probabilities that gambles with infinite expected
utilities never arise. On either view, the St. Petersburg Para-
dox ceases to be a problem since there is no chance that
anyone will ever face it. Most standard treatments, e.g.,
(Ingersoll 1978), endorse bounded utility functions on the
grounds that arbitrarily large payoffs are impossible in a
finite economy. Others, who want to leave open the theo-
retical possibility of unbounded utility, require all realiz-
able wagers to be limits of wagers with uniformly bounded
support, where limits are taken in the weak topology. For
a well-developed approach of this sort see (Kreps 1988,
pp- 63-68).

About the Author

James M. Joyce is Professor of Philosophy and Statistics at
the University of Michigan, Ann Arbor. He is the author
of The Foundations of Causal Decision Theory (Cambridge
Studies in Probability, Induction and Decision Theory,
Cambridge University Press, 1999), as well as a number
of articles on decision theory and Bayesian approaches to
epistemology and the philosophy of science.

Cross References
» Statistics and Gambling

References and Further Reading

Arrow KJ (1965) Aspects of the theory of risk-bearing. Markham,
Chicago

Basset GW (1987) The St. Petersburg paradox and bounded utility.
Hist Polit Econ 19:517-523

Bernoulli D (1738) Specimen theoriae de mensura sortis. Com-
mentarii academiae scientiarum imperialis petropolitanae. In:
Proceedings of the royal academy of science, St. Petersburg.
English translation (1954) by Louise Sommer with notes by Karl
Menger. Exposition of a new theory on the measurement of risk.
Econometrica 22:23-36

Ingersoll J (1978) Theory of financial decision making. Rowman and
Littlefield, Oxford

Kreps D (1988) Notes on the theory of choice. Westview, Boulder

Menger K (1934) Das unsicherheitsmoment in der wertlehre.
Zeitschrift fiir Nationalocokonomie 51:459-485

Pratt JW (1964) Risk aversion in the small and in the large. Econo-
metrica 32:122-136

Savage LJ (1954) The foundations of statistics. Wiley, New York

von Neumann ], Morgenstern O (1953) Theory of games and eco-
nomic behavior, 3rd edn. Princeton University Press, Princeton

! Standard Deviation

SEKANDER HAYAT KHAN M.

Professor of Statistics

Institute of Statistical Research and Training
University of Dhaka, Dhaka, Bangladesh

Introduction

Standard deviation is a measure of variability or disper-
sion. The term Standard deviation was first used in writ-
ing by Karl Pearson in 1894. This was a replacement for
earlier alternative names for the same idea: for example,
“mean error” (Gauss), “mean square error,” and “error of
mean square” (Airy) have all been used to denote standard
deviation. Standard deviation is the most useful and most
frequently used measure of dispersion. It is expressed in
the same units as the data. Standard deviation is a number
between 0 and co. A large standard deviation indicates that
observations/data points are far from the mean and a small
standard deviation indicates that they are clustered closely
around the mean.

Definition
If X is a random variable with mean value y = E(x), the
standard deviation of X is defined by

o = \JE(X - ). 1)
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That is, the standard deviation o is the square root of
the average value of (X — u)”. The standard deviation of a
continuous real-valued random variable X with probability
density function f(x) is

o=\ [ G- w0 ®)

where = [xf(x)dx, and the integrals are the definite
integrals taken over the range of X. If the variable X is dis-
crete with probability function f(x), the integral signs are
replaced by summation signs.

In the case where X takes random values from a finite
data set x1, x2, -+, xn, the standard deviation is given by

o= li(x-— )? 3)
N,-:l i—H§)>

where y is the mean of X.

Estimation
For estimating the standard deviation from sample obser-
vations, g in Eq. 3 is to be replaced by the sample mean

X given by X = Y xi/n, and then it is denoted by s,.
i=1

This s, is the maximum likelihood estimate of o when the
population is normally distributed.

For estimating the standard deviation from a small
sample, the sample standard deviation, denoted by s, can
be computed by

s:\' ﬁg(xi—i)z, (4)

where {x1,x2,---,x,} is the sample, and X is the sample
mean. This correction (use of n — 1 instead of n), known
as Bessel's correction, makes s> an unbiased estimator for
the variance o*.

It can be shown that 6 = IQR/1.35, where IQR is the
interquartile range of the sample, is a consistent estimate of
0. The asymptotic relative efficiency of this estimator with
respect to sample standard deviation is 0.37. It is, therefore,
better to use sample standard deviation for normal data,
while 6 can be more efficient when the distribution of data
is with thicker tail®. Standard deviation is independent of
change of origin but not of scale.

Interpretation and Application

Standard deviation is the most useful and frequently used
measure of dispersion. Standard deviation is used both as
a separate entity and as a part of other analyses, such as
computing confidence intervals and in hypotheses testing.

Standard deviation is zero if all the elements of a popula-
tion or data set are identical. It becomes larger if the data
tend to spread over a larger range of values.

In science, researchers use standard deviation of exper-
imental data for testing statistical significance. 0 and ¢ are
used in making certain tests of statistical significance. Stan-
dard deviation of a group of repeated measurements gives
the precision of those measurements. In finance, it is used
as a measure of risk on an investment. Standard deviation
can be used to examine if a professional is consistent in his
work. Similarly, standard deviation of scores (runs) made
by a cricket player in a season tells about the consistency
in his performance.

Standard deviation of an estimate, called the Standard
error, is used to have an idea of the precision of that
estimate.

»Chebyshev’s inequality, (which enables to find prob-
ability without knowing probability function of a random
variable), throws light on the connection between stan-
dard deviation and dispersion. For all distributions for
which standard distribution is defined, it states that at least

1
(1 ~ 2 ) 100% of the values are within k standard deviation

from the mean.
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Introduction

Essential to the efficacy of performance of drug deliv-
ery systems is the ability of the drug to diffuse from the
said delivery systems and dissolve within the biological
medium. Following this, the drug may diffuse through the
biological media and subsequently diffuse across the atten-
dant biological membranes, thereby gaining entry into the
systemic circulation. In certain systems, the rate at which
the drug dissolves within the biological fluid is the slowest
and hence the rate-limiting step whereas in other scenarios
the diffusion of the drug across the biological membrane
may present the greatest challenge. In light of the impor-
tance of drug release, it is essential to ensure that the
statistical analysis of the data from such experiments is
successfully performed to enable rational conclusions to be
drawn.

The conductance and design of drug release experi-
ments is relatively straightforward and is defined within
the scientific literature and within Pharmacopoeial mono-
graphs, e.g., the British Pharmacopoeia, the United States
Pharmacopoeia. However, there is a relative paucity of
information concerning methods that may be used to
statistically quantify the outcomes of these experiments.
Experimentally the analysis of drug release is typically
performed by immersion of the dosage form within a
defined volume of fluid designed to mimic a particular
biological matrix, e.g., simulated gastric fluid, simulated
intestinal fluid. The volume of fluid is chosen to ensure
that the subsequent dissolution is typically not affected
by the concentration of dissolved drug within the fluid.
Thereafter, at defined time intervals, a sample of the sur-
rounding fluid is removed and the mass of drug quantified
using an appropriate analytical method, e.g., ultraviolet
spectroscopy; fluorescence spectroscopy. After this analy-
sis, there are two major challenges to the pharmaceutical
scientist to ensure that the interpretation of the data is
satisfactorily performed, namely:

(1) Selection of the appropriate mathematical model to
define release.

(2) Use of statistical methods to examine formulation
effects or release fluid effects on drug release.

The intention of this paper is to define appropriate sta-
tistical methods to address the above issues and thereby
to define a protocol for the analysis of data that has been
derived from drug release experiments.

Drug Release from Pharmaceutical
Systems

Since the first publication of papers on the modelling of
drug release for drug delivery systems (see Baker 1987,
Chien 1992) there have been several papers that have
applied mathematical concepts to understand the mecha-
nism of drug release from such systems. For the purpose of
this article, these methods may be summarised into three
categories defined according to the mechanism of drug
release, as follows:

(a) Controlled (Fickian) release from monolithic devices
In this method the release of a homogeneously dispersed
drug from the delivery system is controlled by conven-
tional diffusion (as initially described by Adolf Fick).
Mathematically, Fickian diffusion of a drug from a slab
geometry may be defined as follows:

M, & 8exp [—D(Zn + 1)2ﬂ2t/l2]

— =1 . 1
Mo T Gn+ 1) M

At early time approximations (0 < M < 0.6) , the fol-

co

lowing approximation may be made:

Mt Dt 0.5

where: D is the diffusion coefficient of the drug

t is time

lis the thickness of the slab geometry

M is the mass of drug released.
Accordingly it may be observed that the fraction of drug
release is proportional to the square root of time.
(b)  Reservoir devices
In these systems, drug diffusion from the device is con-
trolled by the presence of a membrane. Mathematically,
drug diffusion from the core of the device is defined by the
following equations:

% = %KCS for a slab geometry 3)
My = 2mhDKC, for a cylinder geometry (4)
dt 1 ( To )
o2
n
M:  4mhDKC;
dM; _ 47hDRCGiron g sphere geometry  (5)
dt ro— 11
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where: D is the diffusion coefficient

I is the thickness of the slab geometry

M; is the mass of drug released at time ¢

h is the length of the cylinder

ro and r; are the outside and inside radii of the

cylinder/sphere

A is the area of the device

K is the partition coefficient of the drug between

the core and membrane
Under the above circumstances it may be observed that the
mass of drug released is directly proportional to time.

More recently, Peppas (1985) described the use of a

generic equation to model and characterise drug release
from pharmaceutical platforms, as follows:

M,

M kt (6)

where:
k is the release constant

M; . .
M—' is the fractional drug release

nis the release exponent.
In this approach, the equation encompasses the previ-
ous mathematical model, the value of the release expo-
nent being used to define whether the mechanism of drug
release from slab systems is:

(a) Fickian (n=0.5)
(b) Reservoir controlled (n =1)
(c) Anomalous (0.5 <n <1)

Defining the Statistical Problem
Whilst the mathematical approaches described above seem
quite straightforward, there is an ongoing issue with the
application of these models within a statistical framework.
There are several issues, which may be defined as follows:
(1)  Use of the incorrect mathematical model

The choice of the correct mathematical model should
be performed following consideration of the design of
the dosage form and also the experimental conditions.
In many situations, the limitations of the models are
overlooked to render the mathematical analysis more
straightforward. For example, in Fickian diffusion con-
trolled systems, the mathematical model may only be
used whenever there is no swelling of the pharmaceutical
device. Furthermore, as highlighted in one of the examples
above, the geometry of the device will affect the choice of
equation. However, whilst the above concerns may seem
obvious to those experienced in the pharmaceutical sci-
ences, one common concern regards the modelling pro-
cess. Typically the Peppas model is used to model release
data however, in the early stages the model may yield an

exponent of unity which may not be a true reflection of
the release kinetics of the system as both diffusion con-
trolled release and anomalous release will also yield similar
exponents over this period of testing.
(2) Choice of Statistical Tests

Having acquired drug diffusion/dissolution data, the
next challenge to the pharmaceutical scientist concerns the
choice of the correct statistical method. One test that is
recommended by the FDA is the f; test, which is used to
compare the dissolution of two products, typically a test
product (e.g., a generic product) and a reference prod-
uct. The f, value is calculated using the following equation
(Bolton and Bon 2004):

f= SOlog([l + %] SR~ Ty)? x 100), (7)

where: R; and T} are the % dissolution of the reference and
test product at time ¢.

In this test an f, value >50 illustrates similarity of dis-
solution profiles. However, it should be noted that this
test has several limitations; most notably individual dif-
ferences at early time points may render the dissolution
of two formulations different whenever the overall pro-
files are similar. The f, test has been principally used in
the pharmaceutical industry to compare the dissolution of
two dosage forms however; it is not commonly used within
pharmaceutical research due to its relative inflexibility. The
question may then be asked, “How are the drug release pro-
files of two, or more than two dosage forms compared?”
Examples of the strategies that may be used are provided
below.

(a) Comparison of the release rates of the different
formulations

Mathematically the release of a drug from a dosage
form is frequently described using the release rate, i.e., the
slope of the plot of cumulative drug release against time”.
To use this method it must initially be correctly proven
that the mechanisms of drug release from the different
formulations are similar, a point often overlooked within
the scientific literature. In light of the potential similari-
ties of the kinetics of drug release for diffusion controlled,
anomalous and zero order systems at early time points, it is
essential to statistically establish similarity. Therefore, drug
release should be allowed to progress to ensure that up to
60% release has occurred. To establish similarity of release
mechanisms, it is appropriate to model drug release using
the Peppas model and to then compare the release expo-
nent values. For this purpose the Peppas model is trans-
formed logarithmically, the release exponent (n) being the
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resultant slope of the line following linear regression.

M;

In =lnk+nlnt. (8)

()

The underlying prerequisite of this approach is the require-
ment for linearity. Typically linearity should be proven
using both an »Analysis of Variance and reference to Pear-
son’s correlation coefficient (this should be greater than
0.99 [Jones 2002]). To facilitate meaningful statistical anal-
ysis of the data, it is suggested that approximately six repli-
cate measurements should be performed as this increase
the likelihood of the use of parametric tests for subsequent
comparisons of the release exponents. Following the acqui-
sition of this information the following points should be
considered:

e To establish the release mechanism of the drugs from
the pharmaceutical systems, the calculated release
exponent should be statistically compared to 0.5 and
also to 1.0. This is typically performed using a one sam-
ple t test. Retaining of the null hypothesis in these
tests confirms that the release is either zero-order or
diffusion controlled. Rejection of the null hypothesis
verifies that the release mechanism is anomalous, i.e.,
0.5 < n < 1.0. The reader should note that the values of
n representative of diffusion controlled and zero-order
release are dependent on the geometry of the system.
For a cylindrical system the release exponents are 0.45
and 0.89 for Fickian controlled and zero-order systems,
respectively whereas for spherical systems these values
become 0.43 and 0.85.

e Assuming that the release mechanism of all formu-
lations under examination is similar, it is therefore
appropriate to statistically compare the drug release
kinetics from the various formulations. Therefore, for
reservoir systems (in which the mechanism of release
is zero-order), the plot of cumulative drug release
against time is linear whereas in Fickian diffusion,
the plot of cumulative drug release against /time is
linear. Using linear regression analysis (and remem-
bering not to include the point 0,0 in the analysis),
the slope of the plot may be statistically determined
for each individual replicate, which for diffusion con-
trolled release and reservoir (zero-order) controlled
release have the units of (concentration)(time) °-° and
(concentration)(time) . Replication of these analyses
(e.g., n = 6) enables calculation of the mean + stan-
dard deviation or the median and ranges of the rates
of release. Finally comparison of the rates of release
may be easily performed using either the Analysis of
Variance or the Kruskal-Wallis test if more than two

samples/formulations require to be compared or, alter-
natively, the unpaired ¢ test or the Mann Whitney U
test, if the number of formulations under comparison
is two. The choice of parametric or non-parametric
tests to analyse the data is performed according to con-
ventional statistical theory, the former tests being used
if the populations from which the data were sampled
were normally distributed (commonly tested using,
e.g., the »Kolmogorov-Smirnov test or the Shapiro-
Wilk test) and if the variances of the populations
from which the data were samples were statistically
similar (commonly tested using e.g., Leveine’s test or
»Bartlett’s test). It should be noted that this approach
is employed if the release mechanisms of different for-
mulations are statistically similar, independent of the
mechanism of drug release. Accordingly, the release
exponent of different formulations may be identical
within the range of 0.5 < n < L.0.

(b) Comparing drug release from pharmaceutical systems
that exhibit different release mechanisms

In the above scenarios, the release rate of the drug from
the pharmaceutical platform was obtained from linear
regression of the associated cumulative drug release plot,
i.e., cumulative drug release against time for the zero-order
system and cumulative drug release against the square root
of time for diffusion control systems. The above approach
is predicated on the identical mechanisms of drug release;
however, this requirement does raise a statistical dilemma.
Consequently if the release mechanisms (and hence mea-
sured units) are different, therefore it is impossible to gen-
erate a single parameter that may be used as the basis for
comparisons of the various formulations.

Under these conditions there are two approaches that
may be employed to generate meaningful comparisons of
drug release from different formulations.

(1)  Analysis of the data sets using a repeated measures
Analysis of Variance

This approach uses a repeated measures experimental
design to compare drug release from different formula-
tions. In this the repeated measure is time (which should
be identical for each formulation) and the factor is for-
mulation type. Individual differences between the various
formulations may then be identified using an appropriate
post hoc test. It is essential to ensure that the experimental
design does not become overly complicated and that the
demands of the ANOVA (with respect to homogeneity of
population variances and the use of normally-distributed
populations) hold.



Statistical Analysis of Longitudinal and Correlated Data

1383

(2) Analysis of data at single time points

The main requirements for the use of the repeated
measures Analysis of Variance are, firstly that the require-
ments for the use of this test are met and secondly, that the
times at which the data were collected (sampled) are iden-
tical for each formulation. In practice these problems are
straightforward to overcome at the experimental design
stage however, there may be issues concerning the ability to
perform the required number of replicates (typically >5) to
allow a parametric test is suitable to use for the data anal-
ysis. For example, experiments in which the release is rel-
atively rapid (<48 h) may be easier to perform with many
replicates whereas the converse is true for experiments in
which the release is protracted. In such circumstances (e.g.,
whenever there are few replicates, typically n < 3), one
method that may be employed to compare the drug release
profiles of different formulation involves the comparison
of the formulations at each sampling point using a multi-
ple hypothesis test, e.g., the Kruskal-Wallis test. In a similar
fashion, individual differences between formulations may
be identified by the application of an appropriate post hoc
test, e.g., Dunn’s test, Nemenyi’s test.

In an alternative approach, typically encountered
whenever the sampling periods differ, comparison of the
drug release kinetics of candidate formulations may be per-
formed by ascertaining the time required for a defined
fraction of the initial drug loading to be released. A regres-
sion of the release profile (using the Peppas model) is per-
formed and, using the output from this model, the times
required for each formulation to release a defined fraction
is obtained and statistically compared using the appropri-
ate statistical test (Jones et al. 1999; Jones et al. 2000). The
choice if test to perform the analysis is important and the
reader should be reminded that the use of parametric sta-
tistical tests (the unpaired ¢ test and the ANOVA) should
be validated.

Conclusions

Analysing release data is an essential component in the
development and assessment of the performance of phar-
maceutical systems. In spite of this, suitable methods to
analyse release data are not clearly defined. In this mono-
graph strategies for the statistical comparisons of release
data are defined.

About the Author

David Jones is Professor of Biomaterial Science at the
Queen’s University of Belfast. Professor Jones is a Char-
tered Engineer, Chartered Chemist and holds Fellowships
of the Royal Statistical Society and the Institute of Mate-
rials, Minerals and Mining and is a Member of the Royal

Society of Chemistry, the Institute of Engineers in Ireland
and the Pharmaceutical Society of Northern Ireland. He is
the Editor of the Journal of Pharmacy and Pharmacology
and has been the Statistical Advisor to the International
Journal of Pharmacy Practice. Professor Jones is a former
winner of the Eli Lilly Award and the British Pharmaceu-
tical Conference Science Medal.

Cross References

» Analysis of Variance
»Biopharmaceutical Research, Statistics in
»Medical Research, Statistics in
»Parametric Versus Nonparametric Tests
»Pharmaceutical Statistics: Bioequivalence
»Repeated Measures

»Student’s t-Tests

» Wilcoxon-Mann-Whitney Test

References and Further Reading

Baker RW (1987) Controlled release of biologically active agents.
Wiley-Interscience, New York

Bolton S, Bon C (2004) Pharmaceutical statistics: practical and
clinical applications, vol 135. Marcel Dekker, New York, p 755

Chien YW (1992) Novel drug delivery systems, 2nd edn. vol 50.
Marcel Dekker, New York

Jones DS (2002) Pharmaceutical statistics. Pharmaceutical Press,
London, p 608

Jones DS, Irwin CR, Woolfson AD, Djokic J, Adams V (1999) Physic-
ochemical characterization and preliminary in vivo efficacy of
bioadhesive, semisolid formulations containing flurbiprofen for
the treatment of gingivitis. ] Pharm Sci 88(6):592-598

Jones DS, Woolfson AD, Brown AF, Coulter WA, McClelland C,
Irwin CR (2000) Design, characterisation and preliminary clin-
ical evaluation of a novel mucoadhesive topical formulation
containing tetracycline for the treatment of periodontal disease.
] Cont Rel 67(2-3):357-368

Peppas NA (1985) Analysis of Fickian and Non-Fickian drug release
from polymers. Pharm Acta Helvet 60(4):110-111

' Statistical Analysis of
Longitudinal and Correlated Data

Davip TopEM
Michigan State University, East Lansing, MI, USA

Introduction

Correlated data are typically generated from studies where
the outcomes under investigation are collected on clus-
tered units. Specific examples include; (1) longitudinal data
where outcomes are collected on the same experimen-
tal unit (for instance, the same person) at two or more
different points in time; and (2) studies where outcomes
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are recorded at one single point in time on clustered
units. Such studies have one major attraction, the abil-
ity to control for unobserved variables in making infer-
ences. Sampled units serve as controls for other units in
the same cluster. As an example, in a longitudinal study,
each subject serves as his or her own control in the study
of change across time. Therefore, these studies allow the
researcher to eliminate a number of competing explana-
tions for observed effects. The determination of causal
ordering in making solid inferences contitutes another
attraction for longitudinal studies.

Despite these advantages, statistical analysis of cor-
related data raises a number of challenging issues. It is
well known, for example, that the multiplicity of outcomes
recorded over time on the same unit necessitates the use
of methods for correlated data. This entry reviews some
of the common statistical techniques to analyze such data.
A focus is on longitudinal data as statistical models for
clustered data are typically simple versions of techniques
for longitudinal data. In longitudinal data analysis, the
response y(t) is a time-varying variable and the covariate
can be a baseline vector x, a time-varying covariate vec-
tor x(t), or a combination of both. A key issue for such
data is to relate the longitudinal mean responses to covari-
ates and draw related inferences while accounting for the
within-subject association. In essence, two classes of mod-
els exist for modeling the mean outcomes and covariates
relationship; (1) the parametric models and; (2) the semi-
parametric and nonparametric models. This entry exam-
ines each of these models in some detail, with an eye to
discerning their relative advantages and disadvantages. A
discussion on emerging issues in analyzing longitudinal
data is also given but touched on briefly.

Parametric Models

Parametric models are the predominant approaches for
longitudinal data. They make parametric assumptions
about the relationship between the mean of a longitu-
dinal response to covariates. They are known as growth
curve models and include the popular mixed-effects mod-
els (Laird and Ware 1982) and generalized estimating
equations models (Liang and Zeger 1986). Verbeke and
Molenberghs (2000) and Diggle et al. (2002) provide an
extensive review of this literature.

Mixed-effects models are a useful tool to analyze repeated
measurements recorded on the same subject. They were
primarily developed for continuous outcomes in time
(Laird and Ware 1982) and were later extended to cate-
gorical and discrete data (Breslow and Clayton 1993). For
continuous outcomes with an identity link, they are known

as linear mixed-effects models. Generalized linear mixed-
effects models constitute the broader class of mixed-effects
models for correlated continuous, binary, multinomial,
ordinal and count data (Breslow and Clayton 1993). They
are likelihood-based and often are formulated as hierar-
chical models. At the first stage, a conditional distribution
of the responses given random effects is specified, usually
assumed to be a member of the exponential family. At the
second stage, a prior distribution is imposed on the ran-
dom effects. The conditional expectations (given random
effects) are made of two components, a fixed-effects and
a random-effects term. The fixed-effects term represents
covariate effects that do not change with the subject. Ran-
dom effects represent a deviation of a subject’s profile from
the average profile. Most importantly, they account for
the within-subject correlation across time under the con-
ditional independence assumption. For continuous out-
comes with an identity link function, these models have an
appealing feature in that the fixed-effects parameters have a
subject-specific as well as a population-averaged interpre-
tation (Verbeke and Molenberghs 2000). For non continu-
ous data and nonlinear relationships, this elegant property
is lost. The fixed-effects parameters, with the exception of
few link functions, only have a subject-specific interpreta-
tion, conditional on random effects. This interpretation is
only meaningful for covariates that change within a sub-
ject such as time-varying covariates. These effects capture
the change occurring within an individual profile. To assess
changes for time-independent covariates, the modeler is
then required to integrate out the random effects from the
quantities of interest.

Mixed-effects models are likelihood-based and there-
fore can be highly sensitive to any distribution misspec-
ification. But they are known to be robust against less
restrictive missing data mechanisms. There exist other
likelihood-based methods for analyzing correlated data.
Before the advent of »linear mixed models, longitudinal
continuous data were analyzed using techniques such as
repeated measures analysis of variance (ANOVA). This
approach has a number of disadvantages and has generally
been superseded by linear mixed-effects models, which
can easily be fit in mainstream statistical software. For
example, repeated measures ANOVA models require a bal-
anced design in that measurements should be recorded
at the same time points for all subjects, a condition not
required by linear mixed models.

Although there is a variety of standard likelihood-based
models available to analyze data when the outcome is
approximately normal, models for discrete outcomes (such
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as binary outcomes) generally require a different method-
ology. Liang and Zeger (1986) have proposed the so-called
Generalized Estimating Equations-GEE model, which is
an extension of bgeneralized linear models to corre-
lated data. The basic idea of this family of models is to
specify a function that links the linear predictor to the
mean response, and use a set of estimating functions
with any working correlation model for parameter esti-
mation. A sandwich estimator that corrects for any mis-
specification of the working correlation model is then used
to compute the parameters’ standard errors. GEE-based
models are very popular as an all-round technique to ana-
lyze correlated data when the exact likelihood is difficult
to specify. One of the strong points of this methodol-
ogy is that the full joint distribution of the data does not
need to be specified to guarantee asymptotically consis-
tent and normal parameter estimates. Instead, a working
correlation model between the clustered observations is
required for estimation. GEE regression parameter esti-
mates have a population-averaged interpretation, analo-
gous to those obtained from a cross-sectional data anal-
ysis. This property makes GEE-based models desirable
in population-based studies, where the focus is on aver-
age affects accounting for the within-subject association
viewed as a nuisance term.

The GEE approach has several advantages over a
likelihood-based model. It is computationally tractable in
applications where the parametric approaches are compu-
tationally very demanding, if not impossible. It is also less
sensitive to distribution misspecification as compared to
full likelihood-based models. A major limitation of GEE-
based models at least in their 1986 original formulation
is that they require a more stringent missing data mech-
anism (missing data completely at random) to produce
valid inferences. Weighted GEE-based models have been
proposed to accommodate a less stringent missing data
mechanism, the missing data at random process (Robins
etal. 1995).

Semiparametric and Nonparametric
Models

A major limitation of parametric models is that the
relationship of the mean of a longitudinal response to
covariates is assumed fully parametric. Although such
parametric mean models enjoy simplicity and ease of inter-
pretation, they often suffered from inflexibility in model-
ing complicated relationships between the response and
covariates in various longitudinal studies. Specific exam-
ples include modeling of; (1) longitudinal CD4+ counts
as function of time in HIV/AIDS research; and (2) tra-
jectories of angiogenic and antiogenic factors in mater-
nal plasma concentrations (s-eng, sVEGFR-1 and PIGF)

in perinatal research. Parametric models typically require
higher degree polynomials to capture the relationship
between these mean responses and covariates. This has
been seen as an indication of poor fit and has motivated
the development of more complex and flexible approaches
to model these data. Semiparametric and nonparametric
regression models, well known to be more data adap-
tive, have emerged as promising alternative to paramet-
ric models in these settings. Nonparametric models make
no parametric assumption about the relationship between
the mean response and covariates. Semiparametric models
assume a parametric relationship between some covariates
and the mean response while maintaining a nonparamet-
ric relationship between other covariates and the mean
response. These methods are well developed for indepen-
dent data, but their extensions to longitudinal data remain
an active area of research. A major difficulty often cited
in the literature for this extension is the inherent within-
subject correlation in longitudinal studies. This correla-
tion presents significant challenges in the development
of kernel and spline smoothing methods for longitudinal
data. Specifically, as reported by many researchers in the
field (see for example, Lin and Carroll 2000; Lin et al.
2004), local likelihood-based kernel methods are not able
to effectively account for the within-subject correlation in
longitudinal data.

Discussion

This entry has reviewed some of the common techniques to
model longitudinal data. A focus was on parametric mod-
els. Nonparametric and semiparametric approaches based
on smoothing techniques have emerged as a flexible way
to model longitudinal data. Other approaches that do not
require smoothing have recently been proposed (Lin and
Ying 2001). But much research, especially from a theoret-
ical standpoint, is needed to understand these methods.
Moreover, statistical software to fit these models routinely
in real time is much needed. This is in contrast to paramet-
ric models which can be fit using mainstream statistical
software such as SAS, Stata, R, Splus and SPSS. There are
emerging areas in connection to longitudinal data analysis
that need further research such as; (1) the joint modeling
of longitudinal and »survival data, (2) missing data and
(3) causal inference. These areas have enjoyed some signif-
icant developments in the past several years. But there are
numerous open questions that remain unanswered and are
the subject of future research.
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Many national statistical agencies, survey organizations,
and researchers — henceforth all called agencies - collect

data that they intend to share with others. Wide dissem-
ination of data facilitates advances in science and public
policy, enables students to develop skills at data analysis,
and helps ordinary citizens learn about their communities.
Often, however, agencies cannot release data as collected,
because doing so could reveal data subjects’ identities or
values of sensitive attributes. Failure to protect confiden-
tiality can have serious consequences for agencies, since
they may be violating laws or institutional rules enacted
to protect confidentiality. Additionally, when confidential-
ity is compromised, the agencies may lose the trust of the
public, so that potential respondents are less willing to give
accurate answers, or even to participate, in future studies
(Reiter 2004).

At first glance, sharing safe data with others seems a
straightforward task: simply strip unique identifiers like
names, tax identification numbers, and exact addresses
before releasing data. However, these actions alone may
not suffice when quasi-identifiers, such as demographic
variables, employment/education histories, or establish-
ment sizes, remain on the file. These quasi-identifiers can
be used to match units in the released data to other
databases. For example, Sweeney (1997) showed that 97%
of the records in a medical database for Cambridge, MA,
could be identified using only birth date and nine-digit
ZIP code by linking them to a publicly available voter
registration list.

Agencies therefore further limit what they release, typi-
cally by altering the collected data (Willenborg and de Waal
2001). Common strategies include those listed below. Most
public use data sets released by national statistical agencies
have undergone at least one of these methods of statistical
disclosure limitation.

Aggregation. Aggregation reduces disclosure risks by turn-
ing atypical records - which generally are most at risk -
into typical records. For example, there may be only one
person with a particular combination of demographic
characteristics in a city, but many people with those char-
acteristics in a state. Releasing data for this person with
geography at the city level might have a high disclosure
risk, whereas releasing the data at the state level might not.
Unfortunately, aggregation makes analysis at finer levels
difficult and often impossible, and it creates problems of
ecological inferences.

Top coding. Agencies can report sensitive values exactly
only when they are above or below certain thresholds,
for example reporting all incomes above $200,000 as
“$200,000 or more.” Monetary variables and ages are
frequently reported with top codes, and sometimes with
bottom codes as well. Top or bottom coding by defini-
tion eliminates detailed inferences about the distribution
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beyond the thresholds. Chopping off tails also negatively
impacts estimation of whole-data quantities.
Suppression. Agencies can delete sensitive values from the
released data. They might suppress entire variables or just
at-risk data values. Suppression of particular data values
generally creates data that are not missing at random,
which are difficult to analyze properly.
Data swapping. Agencies can swap data values for selected
records - for example, switch values of age, race, and sex
for at-risk records with those for other records - to dis-
courage users from matching, since matches may be based
on incorrect data (Dalenius and Reiss 1982). Swapping is
used extensively by government agencies. It is generally
presumed that swapping fractions are low - agencies do
not reveal the rates to the public - because swapping at
high levels destroys relationships involving the swapped
and unswapped variables.
Adding random noise. Agencies can protect numerical
data by adding some randomly selected amount to the
observed values, for example a random draw from a nor-
mal distribution with mean equal to zero (Fuller 1993).
This can reduce the possibilities of accurate matching on
the perturbed data and distort the values of sensitive vari-
ables. The degree of confidentiality protection depends on
the nature of the noise distribution; for example, using
a large variance provides greater protection. However,
adding noise with large variance introduces measurement
error that stretches marginal distributions and attenuates
regression coeflicients (Yancey et al. 2002).
Synthetic data. The basic idea of synthetic data is to replace
original data values at high risk of disclosure with val-
ues simulated from probability distributions (Rubin 1993).
These distributions are specified to reproduce as many of
the relationships in the original data as possible. Synthetic
data approaches come in two flavors: partial and full syn-
thesis (Reiter and Raghunathan 2007). Partially synthetic
data comprise the units originally surveyed with some sub-
set of collected values replaced with simulated values. For
example, the agency might simulate sensitive or identifying
variables for units in the sample with rare combinations of
demographic characteristics; or, the agency might replace
all data for selected sensitive variables. Fully synthetic data
comprise an entirely simulated data set; the originally sam-
pled units are not on the file. In both types, the agency
generates and releases multiple versions of the data (as
in multiple imputation for missing data, see »Multiple
Imputation). Synthetic data can provide valid inferences
for analyses that are in accord with the synthesis models,
but they may not give good results for other analyses.
Statisticians play an important role in determining
agencies’ data sharing strategies. First, they measure the

risks of disclosures of confidential information in the data,
both before and after application of data protection meth-
ods. Assessing disclosure risks is a challenging task involv-
ing modeling of data snoopers’ behavior and resources; see
Reiter (2005) and Elamir and Skinner (2006) for exam-
ples. Second, they advise agencies on which protection
methods to apply and with what level of intensity. Gen-
erally, increasing the amount of data alteration decreases
the risks of disclosures; but, it also decreases the accuracy
of inferences obtained from the released data, since these
methods distort relationships among the variables. Statisti-
cians quantify the disclosure risks and data quality of com-
peting protection methods to select ones with acceptable
properties. Third, they develop new approaches to sharing
confidential data (see »Data Privacy and Confidential-
ity). Currently, for example, there do not exist statistical
approaches for safe and useful sharing of network and rela-
tional data, remote sensing data, and genomic data. As
complex new data types become readily available, there
will be an increased need for statisticians to develop new
protection methods that facilitate data sharing.
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Hurricanes are complex, natural phenomena that can
cause property damage on a catastrophic scale. The human
toll depends on the preparedness of the population - his-
torical events with thousands of casualties are rare but
do occur (e.g., the 1900 Galveston storm - Larson 1999).
Depending on where hurricanes form and traverse, they
have other names such as typhoons (western Pacific) and
cyclones (Indian Ocean and Australia). Officially, a hur-
ricane is defined as a closed circulation, warm core, and
convective weather system with maximum 10-min average
winds of 33 m/s or higher, measured at 10 m above ground
level (WMO 2007). This precise and technical definition is
important since insurance payouts for losses often depend
on the declaration of a hurricane event. The definition also
provides a threshold for establishing the event frequency
at specific locations, a criterion especially important for
climate change studies. For planning purposes, the return
period of hurricanes of various intensities is needed - i.e.,
what is the probability that 100 mph winds will strike a spe-
cific location this season or what wind speed corresponds
to the 100 year worst event? Fortunately, hurricanes are
relatively rare events (as compared to thunderstorms or
tornadoes) and thus, extreme value methods are used to
assess their frequencies (Embrechts et al. 1997). An excel-
lent introduction to hurricanes is given by Emanuel (2005)

while a more technical treatise is available by Anthes
(1982).

Iman et al. (2006) reviewed many aspects of statistical
forecasting and planning in the premier Interdisciplinary
Section of The American Statistician. The invitation to pre-
pare this article was motivated in part by the hyperactive
2004 and 2005 Atlantic hurricane seasons which stunned
the American public following relatively minor hurricane
activity in the United States since Hurricane Andrew in
1992. Various researchers took these two seasons as the
onset of sustained, increased activity, only to witness the
four subsequent years of little hurricane activity impacting
Florida (O’Hagan et al. 2008). This perspective illustrates
a United States-centric perspective regarding hurricane
activity. The 2007 season endured two very strong events
(Hurricanes Dean and Erin) which pummeled the Mexi-
can Yucatan and the Gulf of Campeche, causing massive
havoc with their oil and gas industry. Similarly, in 2009,
the Philippines experienced multiple typhoons left nearly
1,000 dead, thousands homeless, and widespread agricul-
tural devastation, yet received little media attention.

Forecasting hurricane track and intensity are key prob-
lems that must be addressed in real time for actual
events under a harsh public and media spotlight as hur-
ricane watches and warnings go into effect. The “obvi-
ous” forecast is to extrapolate the current track with a
linear trend in intensity. A more sophisticated version
of this forecast is to draw upon the historical record to
develop a regression model using comparable informa-
tion on the movement of storms getting to the current
position of the storm (CLIPER and CLIPERS in use by
the National Hurricane Center). More advanced models
take into account current and forecast upper level winds
(“steering currents”), while the most advanced include
fluid dynamics calculations of mesoscale storm structure.
In addition to the many individual forecast models, ensem-
ble models are also in use (for a technical summary, see
www.nhc.noaa.gov/modelsummary.shtml). The increase
in skill (accuracy of prediction) of the more sophisticated
models is offset by data input needs and computational run
times. Forecasts must be timely — a 6 h forecast that takes
5h to produce may be inferior to a much simpler fore-
cast that can be formulated in a matter of minutes. For a
further discussion of the many pitfalls associated with fore-
casts, especially the problems encountered with Hurricane
Charley in 2004, see the aforementioned article by Iman
et al. (2006).

In determining hurricane impacts for insurance pur-
poses, a more leisurely time frame for computation is
available. The computational burden is severe in that a
probabilistic assessment of hurricane losses is necessary.
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Most approaches have proceeded by choosing specific,
individual models of hurricane frequency, wind field,
track, friction impacts, wind field decay, damage, and
actuarial summaries. Given the approximately 150 year
Atlantic storm history, less in other regions, practitioners
have tended to fit probability distributions to key charac-
teristics and then proceed to simulate 50-300,000 years
of future hurricane seasons, accumulating losses for each
generated event. To assess the uncertainty and sensitiv-
ity of the parameter specifications for these models, the
Florida Commission on Hurricane Loss Methodology has
prescribed the use of Latin hypercube sampling (McKay
et al. 1979). One specific implementation pertinent to hur-
ricane modeling is described by Iman et al. (2005a, b). The
latest research focuses on the use of climate models to pro-
vide track and intensity guidance (Watson and Johnson
2008).

A basic issue with evaluating hurricane modeling
efforts is that every hurricane is somewhat different and
any model that “fine tunes” its modeling approach to a spe-
cific event will ultimately suffer for it (not all future events
are just like the particular event. For some historical events,
a very simple hurricane windfield model can do extremely
well with respect to matching modeled to actual losses. An
approach used by the Florida Commission to address this
difficulty follows the contextual analysis developed by Wat-
son and Johnson (2004) and expounded from an actuarial
perspective by Watson, Johnson and Simons. In brief, a fac-
torial combination of model components are considered
(nine wind fields, four friction models, nine damage func-
tions and three frequency approaches) and the loss costs
for specific models are placed in the context of 972 model
combination results. »Outliers with respect to the range of
the factorial models generate relevant probing questions of
specific models.

Nelder (2010) noted the importance of learning
another jargon for statisticians doing interdisciplinary
research. The effort is well-rewarded for statisticians deal-
ing with the topic of hurricanes which will likely entail
collaborations with meteorologists, atmospheric scientists,
geophysicists, and wind engineers.
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What Is Statistical Consulting?

Here is a sketch of a normal consultation in the con-
sulting unit of my department, in a faculty of sciences.
One or a couple of researchers/Ph.D-students from a biol-
ogy/geology/... department contact us asking for help with
the analysis of data from a study they are carrying out.
At the meeting the client first describes the background,
the set-up, and (some of) the data of the study. The aims
of the study are often in a general, vague form that needs
specification and statistical reformulation in quantifiable
units. What is the client’s problem, really, and what kind
of questions can possibly be answered from that kind of
data? Often the clients will be forced to think about their
problems in fresh ways. The consultant will also ask a lot
of questions in order to make clear how the data were
collected. What populations do the data represent? Was
there »randomization, stratification, censoring, etc? On
what parts of the data should the focus be? Explore the
data! What is the structure of these data? This can lead
up to a tentative statistical model, and later to parameter
estimation procedures and hypothesis tests, etc.

The first meeting hopefully ends at a stage where the
client and the statistician have agreed about what ques-
tions should be addressed statistically, and how this might
be attempted on the data. Either this appears so simple

and clear that the clients want and can do this themselves,
or else a time plan and a work plan for the contribution
by the statistician is agreed on. After a week or two, with
some e-mail correspondence in between, client and con-
sultant meet again to discuss the results so far and what
kind of report from the statistician that the clients might
want. Often also the answer to one question triggers new
questions.

Another statistical consultation type of work could be
more of a collaborative/partnership character, where the
statistician is a member of a team, and the aims are more
far-reaching. The statistician then invests a lot of time
and effort, to become knowledgeable in the subject matter
area and expert in the applications of statistical methods
in that area, but can therefore also expect more influ-
ence and credit, and is a natural coauthor of the project
publications.

Also a consultation where the client is seen only once
or twice is rewarding for the statistician, but in a more
indirect way. Hopefully it will be an intellectually stimu-
lating challenge that together with other such experiences
can have a profound influence on our personal develop-
ment as statisticians. And it might still lead to a joint
publication.

Consultation work is typically done under time pres-
sure from one or both parties. Too often the client has
unrealistic expectations in this respect. On the other hand,
the clients usually do not need or want a perfect model
for data (remember the George Box phrase: “All models
are wrong, but some are useful”) or the most sophisticated
method of analysis. A solution that is approximately right
is much better than one that is precisely wrong. The con-
sultant should think of the acronym KISS, here read out
as “Keep It Simple, but Scientific,” or rephrased as another
quotation: “as simple as possible, but no simpler” “Errors
of the third kind” (testing the wrong hypothesis) are most
dangerous, Common sense and a critical mind are impor-
tant. As statistical consultants we must beware of falling in
the traps of being a More Data Yeller or a Nit Picker, or
any other of the consultant stereotypes coined by Hyams
1971).

Desirable Qualities for a Statistical
Consultant

Among the desirable qualities to be possessed by an ideal
consultant are:

e Interest in the statistical problems of others (Derr:
“Regard each client as a potential collaborator”), and a
general interest in science, technology, nature, society.
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e Sound basis in theoretical and applied statistics. As
a start it should certainly include linear and loglin-
ear models (»generalized linear models), some exper-
imental design (and sampling), and some multivari-
ate analysis, but also experience from a few courses
in methods for particular fields of application, and
experience from applying such methods to data.

e Eagerness to extend and improve one’s statistical
knowledge.

e Computer skills in at least one (preferably more) statis-
tical packages.

e Good ability to communicate with clients (includes
understanding and adjusting to the client’s statistical
level).

Skills in report writing (using a word processor).
Efficiency under time restrictions and time pressure.

e Awareness of ethical dilemmas that can appear, and an

ability to deal with problematic clients.

Teaching Statistical Consulting

Nowadays a large number of universities provide educa-
tion in statistical consulting, in one form or the other. At
my department, as an example, this is a master level course
for mathematical statistics students, involving real clients,
and real problems in real time. Much of the training in the
course is orientated towards three aspects:

e The first meeting with a client (in particular asking
questions to find out about the problem)

e Statistical thinking

e Structuring problems and seeing the structure in data

The students are also provided some extended knowledge
of statistical methods and models, and they are in a con-
crete way involved in one consulting project, ending with
the writing of a project report.

Some Suggested Reading
The entry by Stinnet et al. (2009) in Encyclopedia of Bio-
statistics describes the roles of biostatisticians in a variety
of medical/biological environments (medical school, phar-
maceutical industry, governmental agency, etc.), and dis-
cusses some of the special challenges in consulting with
physicians, as well as the training of consultants in bio-
statistics. Joiners (1982) older entry in Encyclopedia of
Statistical Sciences also exemplifies what consulting statis-
ticians might do, before it sets up and discusses a list of
desirable skills. The discussion of computers and literature
is a bit out-of-date, for natural reasons.

Mallows (1998) discusses “statistical thinking” and the
question “how do the data relate to the problem?”, in an

attempt to formulate a “theory of applied statistics” Cox
(2007) provides a review of applied statistics in his typical
style, while Chatfield’s (1995) nicely written book provides
more concrete advice.

Efficient communication is a key element in statis-
tical consultation, and it is the topic of Derrs (2000)
book, with an accompanying CD-ROM showing illustra-
tive short movies of positive and negative examples. Com-
munication is the main topic also of Boen and Zahn (1982),
who provide much discussion of how to deal with clients,
not least with difficult clients, cf. Hyams (1971).

Cabrera and McDougall (2002) is written as a textbook
on the whole topic. The first half is on consulting, com-
munication, and statistical methods. I do not agree fully
with the statistical methods chapter, but who would expect
two statisticians to agree fully? The second half consists
of case studies. Such a mix also characterizes Chatfield’s
(1995) book, and the older book by Cox and Snell (1981),
that can be recommended in this context for a section on
strategy and for its many case studies. More case studies
are found in Hand and Everitt (1987) and in Tweedie et al.
(1998). Greenfield’s contribution to the former is an enter-
taining chapter on the encounters he has had with some
difficult client characters (cf. Hyams 1971, again).

To finish, here is a quote from one of Terry Speed’s
columns in the IMS Bulletin (2005), entitled “How to do
Statistical Research.” Former IMS President Speed explains
his research strategy to be that of doing

o Consulting: a very large amount
o Collaboration: quite a bit
e Research: some

“Why? A very large amount of consulting means meeting
many people and many problems, learning a lot, includ-
ing finding out where we are ignorant. Then we might spot
some low-hanging fruit”
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Model and Denotations

As in regression analysis, DoE is concerned with mod-
elling the dependence of a random target variable Y in
dependence of a number of controllable deterministic vari-
ables xi,...,x; (called factors). The major goal of DoE is
to find configurations for x = (xi,...,xx) out of a given
region V c R which lead to “optimal” results for the target
variable under consideration. The different configurations
X(1)> - - > X(n) for the factors are summarized in a statistical
design d, = (x(1),...,%(s)) € V" of size n. The optimality
criterion is usually defined through some objective func-
tion, e.g., the information or »entropy associated with an
experiment, the variance of some predictor Y(x*) for an

unobserved configuration x* = (x{,...,x; ) etc. The main

areas of concern in DoE are:

(a) statistical design in regression analysis and analysis of
variance

(b) factorial designs

(c) identification and elimination of disturbing influ-
ences (blocking)

This often includes, as a first step, the design of the size
of the experiment; i.e., the number of observations # to
be taken in order to achieve a predefined goal, see e.g.,
Rasch et al. (2010). The mean function of Y = Y(x) given
x = (x1,...,x¢) € Vis called the response surface, usually
denoted by (x) = EY(x), and the model becomes

Y(x)=#n(x)+e xeV (1)

where the random error term is assumed to be indepen-
dent of x and such that E(¢) = Var(e) = o°. Interpreting
x as realisation of a random vector X = (Xj,...,Xy), the
response function is simply the regression function of Y
w.r.t. X. The unknown response surface is often modelled
through a linear setup

(%) = o+ Pufi(x) + ...+ Brfr (%) )

with given functions fi, . . ., f. For example, #(x) could be
a second order polynomial setup

k k
n(x) = Po+ 3 Pixi+ 3 Pijxix; (3)
i=1 i<j=1
arising from a second order Taylor expansion of #. Here,
the first sum contains all main effects xi,...,x; and the
second sum contains the (second order) interactions x;x;.

Optimal Designs

For any given concrete design d, = (x(1...,%(y)) of size
n; where x(;y = (Xi, Xi2,...,Xix); i = 1...n are not nec-
essarily distinct from each other, it is well-known that the
estimated response surface yields the best linear unbiased

estimate (BLUE)
7(x) = Po + PLfi(x) + ...+ Pofe(x) = f(x)" B
where f(x) = (LA(x),....f:(x))Tand = (Bo, P> .. ., )T

provided the parameters are estimated by the method of
»least squares (LS); i.e., f = (X'X)'XTy.

Here Y = (Y(x(1)),...,Y(x(n))) stands for the vector
of observations taken at the design points and X for the
so-called design matrix

1 filxqy) - frlxqy)

X =(fi(x1))) = 4)

1 fl(x(n)) f’(x(n))
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which is of type nx (r+1). For a first order regression setup
n(x) = fo + Pix1 + ... + Bixx we have r = k and the design
matrix has the simple form

1 xn ... Xi
1 «f
1)
1 xa ... x5
X = =1 : : (5)

T
O]
1 Xm ... Xpk
Criteria for the optimal choice of a design, as e.g., min-
imum prediction variance, are based on the covariance
matrix
Cov(p) = *(X"x)™

of the LSE f. For iid. normally distributed observa-
tions this matrix is proportional to the Fisher information
matrix, therefore

M(dy,) = %XTX (6)

is called the information matrix of the design d, =
(X(1)>- > %(n))- Thus it makes sense to base optimality
criteria for designs on functionals of (the inverse of) this
matrix.

Definition The design d}, is called

(a) L-optimal w.r.t. some positive definite matrix U if
*\—1 _ . -1
tr(UM (dn) ) = min tr(UM(dn) ™)

(b) G-optimal if it minimizes the maximum variance of
A(x) = f(x)"B over some region H c R, i, max
X€

flx)™™ (dZ)_lf(x) = n}in IilS_IXf(X)TM(dn)ilf(X)

(c) D-optimal if it minimizes the determinant:
*\"1) . -1
det (M (dn) ) = n}lin det (M(dn)™)

Important special cases of L-optimality include A-opti-
mality and c-optimality, where U = I,4; and U = ¢c” for
a given vector ¢ € R, respectively. An A-optimal design
minimizes the sum of the variances Var(fo)+. ..+ Var(f,)
and thus the average variance of the regression coefficients,
and a c-optimal design minimizes the variance of the lin-
ear combination Var(c' B) = Var(cofo +cifr+...+cbr).
A D-optimal design minimizes the volume of the disper-
sion (confidence) ellipsoid for B.

Further criteria and numerical procedures for the con-
struction of optimal designs may be found in Pukelsheim
(1993), Atkinson et al. (2001), and Fedorov and Hackl
(1997) on the basis of fundamental results by Kiefer and
Wolfowitz in the late 1950s and early 1960s. Bayesian

extensions of this theory are given in Pilz (1991) and
Chaloner and Verdinelli (1995). An extensive theory of
optimal designs for correlated errors in a spatial setting
can be found in Miller (2007), Pilz and Spock (2008)
and Spock and Pilz (2010) develop a theory of optimal
spatial design for the construction of environmental mon-
itoring networks using spectral theory for random fields.
Optimal designs for higher-dimensional random fields
are considered in Santner et al. (2003), with applications
in the area of the design of computer experiments, see
also Fang et al. (2005). Here, Kriging approximation mod-
els are constructed and then used as surrogates for the
computer model. The design problem then refers to the
optimal choice of the inputs at which to evaluate the
computer model. Several software toolboxes are available
for constructing optimal designs, see, e.g., Santner et al.
(2003), DACE (http://www.2.imm.dtu.dk/hbn/dace) and
the R-toolbox DoE (see Rasch et al. 2010).

Factorial Designs

Contrary to the mathematically well-defined optimality
criteria considered in the last section, it is also customary
to consider heuristically motivated and “practically use-
ful” criteria for the construction of designs. Briefly, the first
branch is called the “Kiefer design theory” and the latter
branch is referred to as “Box design theory,” in honour of
their pioneers.

We assume that the response surface can be sufficiently
well described by a polynomial of degree ¢ > 1in k > 2 fac-
tors x1,...,xk. In order to guarantee the non-singularity
of the information matrix it is necessary that each factor
can take at least g + 1 different values, the latter are called
the levels of the factors. A factorial design then means a
design which defines a subset of all possible combinations
of the levels of the k factors. It is said to be a full facto-
rial design if it contains all of the (g + 1)* combinations
of the levels, otherwise it is said to be a fractional facto-
rial design. In most applications the response surface is
investigated in a sequential manner. In a first step, a screen-
ing of the essential factors has to be made, using tools
from regression analysis or from multivariate analysis (e.g.,
»principal component analysis). Hereafter, a first order
polynomial in the remaining (essential) factors is formed
to study the response surface and quantities of interest
(e.g., extrema). If this setup is insufficient then a second or
third order polynomial setup is chosen and the factor levels
are updated until no further significant improvements are
obtained. A formal way for proceeding in this manner had
already been developed by Box and Wilson in 1951, with the
aim of finding factor configurations leading to optimum
experimental results.
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Usually, one starts with a full factorial design, where all
factors are controlled at two levels, “high” and “low, ” say.
Such a design contains 2k configurations (design points).
By an appropriate scaling the design region can be trans-
formed to the k-dimensional cube V = {x = (x1,...,xx) :
-1< x; <41, i =1,...,k} and the design points are just
the vertices of the cube. The full factorial design of size
n = 25, d, = FF(2") for short, allows the estimation of
all 2¥ parameters of the model

k
n(x) = o + Zﬁixi + Z Biixixj+..+Pro.. kx1Xa . .. X
i=1 i

o )
As an example, consider a full factorial 2° design with fac-
tors x1,x2, and x3 which can be adjusted at two levels -1
(“low”) and +1 (“high”), respectively. The design has n = 8
points and allows the estimation of all parameters of the
model 1’](.76) = ﬁo + ﬁlxl +/32X2 +ﬁ3X3 +ﬂ12X1X2 + ﬁ13X1X3 +
Ba3xax3 + Prazxixax3. The basic structure of this design is
displayed in the following table:

1 (1) -|=--1 + + + -
2 a == = = + +
3 b -+ |- - + - +
4 C - -1+ + - - +
5 ab + |+ -] + - - -
6 ac + | - |+ | - + - _
7 bc -+ |+ ] - = + -
8 abc + |+ |+ ] + + + +

The coding follows the usual standard in the litera-
ture; the letters a, b, ¢, . . . represent the factors x1, x2, x3, . . .
and are used to indicate that the corresponding factor is
adjusted at the level +1.

It is easily seen that M(d,) = iXTX = I, for a full
factorial d, = FF(2*) and the estimated regression coef-
ficients are uncorrelated, in case of normally distributed
observations they are even independent, and have a simple
structure: f3 = %XTY, Cov(p) = ”721”.

Such designs are called orthogonal, they can easily be
constructed using Hadamard matrices. When restricting
attention to first order polynomials 7(x) = Bo+fix1+. ..+

Bixx then an FF(2¥) design leads to minimum variance
estimates with Var(f;) = o2 /n, moreover these full facto-
rial designs turn out to be A-, D- and G-optimal. Finally,
the estimated response surface has variance Var(#(x)) =
”72(1 + x"x) which only depends on the distance of x =
(x1...,x) from the center point 0 = (0,...,0)” of the
design region V. Such designs are called rotatable, i.e., for
first order polynomial setups full factorial designs of the
type 2 are rotatable.

If the number of factors is getting large, then one is inter-
ested in having less than 2 observations to reduce the
experimental efforts. On the other hand, such a reduc-
tion is justified if it is clear that there are no higher-order
interactions between all or some of the factors. In practical
applications it is very common that only the main effects
and second-order interaction effects matter. To illustrate
this: a full factorial 2° design requires n = 64 observa-
tions, but only 6 degrees of freedom are needed to estimate
the main effects and another 15 are needed for the exti-
mation of the two-factorial interchanging effects. Thus,
only one third of the 64 observations would be needed
for parameter estimation if third- and higher-order inter-
actions were negligible. Therefore, fractional (incomplete)
factorial designs are widely used in practice. They had first
been introduced by Finney in 1945.

We call a design d, of size n = 287, 1 < p < k, a frac-
tional factorial design of the type 2577 if it forms the 277-th
part of a full factorial design of type 2*. Such designs are
constructed algorithmically by means of p defining rela-
tions. To illustrate the ideas, let k = 4 and p = 1, i.e., we
construct a half replication of the FF(2¥) using the defin-
ing relation x4 = x1x2x3 or, equivalently, multiplying by
X4,1 = X1X2X3X4.

Using the coding of the previous full factorial FF(2*)
for the new FF(2*) and observing the defining relation
1 = x1x2x3x4 we arrive at the coding for the required frac-
tional factorial 2*~" design: (1), ab, ac, ad, bc, bd, cd, abed.
Finally, using the alternative defining relation 1 =
—x1x2x3x4 we arrive at the alternative 2*7' design:
a,b, ¢, d, abc, abd, acd, bed. The union of both half replicates
results in the full factorial FF(2*) design.

The reduction of the number of observations achieved
with fractional factorial designs, however, comes at the
price of confounded parameter estimates. In our example,
multiplying the defining relation 1 = x1x2x3x4 by x1, x2, x3,
and x4, respectively, we obtain x; = X2X3X4, X2 = X1X3X4,
X3 = Xi1X2X4, X4 = X1X2x3, which implies that the main
effects parameters fi, 82, 3, and B4 are confounded with
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the third-order interaction parameters 234, 134, 124, and
P23, respectively. From the defining relation 1 = x1x2x3x4
itself follows that the intercept term B is confounded
with the fourth-order interaction parameter S1234. How-
ever, there is no confounding of main effects with low-
order interaction (second order interaction) parameters
Bi2, ..., B3s. Designs d, for which n = 2° for some inte-
ger s > 2 are called regular, designs for which n = r + 1
(= number of unknown regressin parameters) are called
saturated. Clearly, full factorial as well as fractional facto-
rial designs are regular; full factorial designs FF(2*) are
saturated for the linear regression setup (7) including all
possible interactions between the main factors. The con-
struction of saturated orthogonal designs for the hyper-
cube region V = {x = (x1,...,x) : -1 < x; < +1,i =
L,...,k} is only possible for sizes n which are multiples of
4, such designs had already been constructed by Plackett
and Burman in 1946.

Random disturbances in the experimental conditions lead
to an increased variance of the experimental error. In order
to reduce this variance it is necessary to randomize the
sequence of level combinations of a given design. If the
number of factors k is getting larger (which usually implies
an increased duration of experimentation in time) then
systematic changes in the experimental conditions can
occur (e.g., changing weather conditions in agricultural
experiments). In this case, reductions in the variance of the
experimental error can be achieved by blocking. Blocks are
subsets of an experimental design which are constructed
such that they guarantee the homogeneity of experimental
conditions within the corresponding subsets. Such blocks
can be formed, e.g., from subsets of full or fractional facto-
rial designs, the sequence of trials within the blocks again
chosen at random. For example, having k factors x1, . .., x¢
and assuming that only the main effects and two-factorial
interaction effects are significant, then the response surface
takes the form

k k
n(x) = Po+ 3 Pixi+ Y, Pijxix;
i=1 ij=1
i<

For an unconfounded estimation of the effects a full facto-
rial FF(2¥) may be chosen, or, for k > 6, some fractional
factorial 2577 with small p > 1. In order to take account of
the block effect a block factor x3 is introduced, adjusted to
the levels of the product x1x; ... xx (or some other gener-
ator when starting with a fractional factorial). The block
factor xp can then be interpreted as an indicator variable
taking values +1 and -1, and the resulting design can be

interpreted as a fractional factorial design of type (k-1
wtih the defining relation 1 = x1x; . . . ¢ xp. Assuming the
interaction effects Bip, . .., Bks> 128> P138> - - - > P12...k5 to be
negligible, the main effects and two-factorial interaction
effects can be estimated without confounding. Moreover,
since the design is orthogonal, blocking has no influence
on these estimates.

For further results on fractional factorial designs,
blocking, multilevel designs and other topics relevant in
the vast field of statistical (optimum) experimental design
we refer to the extensive monograph by Wu and Hamada
(2009).
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Introduction

Statistical distributions are used to model sample data that
were collected from a population or to model the out-
comes of a random experiment. The statistical distribution
is simply the probability distribution of a random vari-
able. These probability models are commonly used in many
applied areas such as economics, education, engineering,
social, health, and biological sciences. The distributions
of discrete random variables (whose possible values are
countable) are referred to as the discrete distribution while
those of continuous random variables are called continu-
ous distribution. To begin with an example, let X denote
the number of heads that can be observed by flipping a
fair coin three times. The sample space of X includes eight
outcomes, namely, HHH, HTH, THH, TTH, HHT, HTT,
THT, TTT, where H denotes the head and T denotes the
tail. The probability that X equals one is the probability
of observing any one of the mutually exclusive outcomes
TTH, HTT and THT. As all eight outcomes are equally
likely, P(X = 1) = 2. Proceeding this way, we obtain the
probability distribution of X as

X 0 1 2 3
RN RN

The above distribution is a member of the family of
binomial distributions indexed by n and p, where # is the

number of independent Bernoulli trials (each trial results
into either “success” or “failure”) and p is the probability
of observing a success in each trial. The function that gives
the probability that a discrete random variable takes a spec-
ified value is referred to as the probability mass function
(pmf). For example, the pmf of a binomial random variable
is given by

n
n,p) = pP(A-p)"* x=0,1,2,...,n
X

P(X =x

For a continuous random variable X, P(X = x) = 0 for any
fixed x, and so we consider only P(X € A) for any given
interval A € R, and this probability can be evaluated as
P(X € A) = [, f(x;0)dx, where f(x; 0) is called the prob-
ability density function (pdf), and 0 is a parameter vector.
The pdff(x) should satisfy two conditions: f(x) > 0 for all
x,and [ f(x;0)dx =1

In the following we shall list some commonly used
discrete and continuous distributions, their physical sig-
nificance, relations among them and some measures that
describe features of a distribution.

Discrete Distributions
Most commonly used discrete distributions are the bino-
mial, Poisson, hyper geometric, negative binomial and log-
arithmic series distributions. The first four distributions
are closely related. The »binomial distribution is used to
estimate the proportion of individual with an attribute
of interest in a population. In particular, the number of
individuals with an attribute of interest in a random sam-
ple from a large population (e.g., proportion of defective
items in a large shipment) is a binomial random vari-
able with the sample size as the value of n, and the true
proportion (usually unknown) in the sampled popula-
tion is the parameter p. On the other hand, if the sample
is drawn (without replacement) from a finite population,
then the number of units in the sample with the char-
acteristic of interest is a hypergeometric random variable
with the size of the population N (usually known) as the
“lot size,” the true number of units M (usually unknown)
with the attribute in the population as the parameter, and
the sample size n as another (known) parameter. The pmf
of a hypergeometric random variable is given by P(X =
xn, M,N) = (M) )/(N), L <x < U, whereL =
max{0, M — N + n} and U = min{n, M}. If the population
is reasonably large, then one could use the binomial model
instead of the hypergeometric.

The Poisson distribution (see »Poisson Distribution
and Its Application in Statistics) is postulated to model
the probability distribution of rare events. Specifically, if
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Uniform fOGN) =1, k=1,...,N.

Positive integer N

Binomial

fogn,p) = ()P (1-p)"™*x=01,...

,n n = No. of trials

p = Success probability

f(;n,M,N) = (16) '

()

Hypergeometric

n = Sample size; M = No. of defects

N = Lot size
max{0,M — N +n} <x < U= min{n, M}
Poisson Fo;) = <X, x=0,1,2,... A = Mean
X!
Geometric f(x;p) =(1-p)*p, x=0,1,2,... p = Success probability

x = No. of failures until the first success

Negative binomial

foarp) = ()P (1-p), x=012,...

p = Success probability
x = Number of failures until the rth success

f(x;0) = o

Logarithmic series ~ XIn(1=0)

0<0<1

an event is almost unlikely to occur in a moment of time,
but the number of occurrences over a long period of time
could be very large, then a Poisson model is appropriate
to describe the frequency distribution of the event. This
description implies that the binomial distribution with
large n and small p can be approximated by a Poisson
distribution with mean A = np. More specifically, for a
binomial(n, p) random variable with large n and small p,
P(X < xln,p) =~ X & :1”, x=01..
and e *1*/x! is the pmf of a Poisson random variable with
mean A.

The geometric distribution arises as the probability
distribution of number of trials in a sequence of indepen-
dent Bernoulli trials needed to get the first success. The
negative-binomial distribution is a generalization of the

.,n, where A = np

geometric distribution where we consider the number of
trials required to get r successes. Note that in the binomial
distribution, the number of successes in a fixed number of
independent Bernoulli trials is a random variable where as
in the case of negative-binomial the number of trials is a
random variable. The number of failures K in a sequence
of independent Bernoulli trials that can be observed before
observing exactly r successes is also referred to as the
negative-binomial random variable. In the former case,
n takes on values r,r + 1,r + 2,.... whereas in the lat-
ter case K takes on values 0, 1, 2,.... Both binomial and
negative-binomial distributions are related to the beta dis-
tribution: If X is a binomial(n, p) random variable then,
for x # 0, P(X > x|n,p) = P(Y < p), where Y is a
beta(x, n — x + 1) random variable. Also, for x + n P(X <
x|n,p) = P(W > p), where W is a beta(x+ 1, n—x) random

variable. If X is the number of failures before the rth suc-
cess (in a sequence of independent Bernoulli trials), then
P(X < x|r,p) = P(W < p), where W is a beta(r, x +1) ran-
dom variable. Similar relation exists between the Poisson
and the chi-square distributions. Specifically, P ( P x) =
P(Y < n/2-1), where Y is a Poisson random variable with
mean x/2.

The probability mass function of a logarithmic series
distribution with parameter 6 is given by P(X = k) =
@ 0<B0<1, k=12,...,wherea = —1/[In(1 - 6)].
The logarithmic series distribution is useful to describe a
variety of biological and ecological data. It is often used to
model the number of individuals per species. This distri-
bution is also used to fit the number of products requested
per order from a retailer.

Some popular discrete distributions are listed in
Table 1. For detailed descriptions, properties and appli-
cations of various discrete distributions, see the books
by Johnson et al. (1992), Evans et al. (2000), and
Krishnamoorthy (2006).

Continuous Distributions
Continuous distributions are grouped into a few fam-
ilies based on the form of pdfs: location family, scale
family, location-scale family and exponential family,
etc. In the following we shall describe some of these
families.

Location-Scale Family: The pdf of a location-scale dis-
tribution can be expressed as % (%), where y is the
location parameter, o > 0 is the scale parameter and f is any
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pdf that does not depend on any parameter. As an example,
the pdf of a normal distribution can be expressed as
1 G-’
22

_ 1 X — .

V2o 2 :;f( ay)’Wlth
_ 1 ep

f(z)_me .

The two-parameter exponential distribution, normal,
Cauchy, double exponential (Laplace), extreme-value and
logistic are popular location-scale distributions. The

f(xu,0)=

cumulative distribution function (cdf) of a location-scale
random variable can be computed using its standard form
asP(X<x) =P (Z < %) For a location-scale family,
£2£ and < are pivotal quantities provided i and ¢ are
equivariant estimators. These pivotal quantities are useful
to find inferential procedures for y, o or for any invariant
function of (y, o).

The normal distribution is the most popular among the
location-scale families. In fact there is nothing inherently
normal about the normal distribution, and its common use
in applications is due its simplicity. Distributions of many
commonly used statistics can be approximated by the stan-
dard normal distribution via the central limit theorem (see
»Central Limit Theorems). Furthermore, the asymptotic
distribution of a maximum likelihood estimator is normal
with the variance determined by the Fisher information
matrix.

Exponential Family: A family of distributions whose
pdf or pmf can be written in the form f(x;0) = h(x)c(6)
exp (Zf-;l qi(0)wi(x)) is called an exponential family. As
an example, the binomial family is an exponential family
because the pmff(x;p) = h(x)c(p) exp(qi(p)wi(x)), with
h(x) = (1), cp) = 1-p)", q1(p) = In(p/(1-p)) and
wi(x) = x. Thenormaldistributionandlognormal distribu-
tionare membersofexponential families. A statistical model
from an exponential family is easy to work with because
exponential families have some nice mathematical proper-
ties. For instance, it is easier to find sufficient statistics for
an exponential family. In fact, for a sample X, . . ., X, from
an exponential family, (X7, wi(X;), ..., 2 wi(Xi)) isa
sufficient statistic for 0.

Some distributions are routinely used to model lifetime
data, and they are referred to as lifetimes (or failure times)
distributions. The »Weibull distribution is one of the most
widely used lifetime distributions in reliability and survival
analysis. It is a versatile distribution that can take on the
characteristics of other types of distributions, based on the
value of the shape parameter. If X follows a Weibull dis-
tribution with shape parameter ¢ and the scale parameter
b, then In(X) has the extreme-value distribution with the

location parameter p = In(b) and the scale parameter o =
1/c. This one-one relation allows us to transform the results
based on a Weibull model to an extreme-value distribution
(see »Weibull distribution). Other lifetime distributions
include exponential, two-parameter exponential, lognor-
mal, and gamma distributions. Some popular continuous
distributions are listed in Table 2.

Relations Among Distributions: Many of the continu-
ous distributions have one-one relation with others. For
example, normal and lognormal (via logarithmic trans-
formation of lognormal random variable), two-parameter
exponential and Pareto (via logarithmic transformation
of Pareto random variable), two-parameter exponential
and power distribution (via negative log transformation
of power random variable). This one-one relation enables
us to transform some invariant inferential procedures for
one distribution to another. Another important distribu-
tion that has relation with the ¢, F, binomial and negative
binomial distributions is the beta distribution. An efficient
program that evaluates the beta distribution can be used to
computes the cumulative distribution functions (cdfs) of
other related random variables just cited. The gamma dis-
tribution with the shape parameter a = /2 and the scale
parameter 3 = 2 specializes to the »chi-square distribu-
tion with n degrees of freedom; when & = 1, it simplifies to
the exponential distribution with mean 8. A diagram that
describes relations among various distributions is given in
Casella and Berger (2002, p. 627).

Moments and Other Measures

Moments are set of measures that are useful to judge some
important properties of a probability distribution. Mean
and median are commonly used measure of location or
center of the distribution. Range and variance are used to
quantify the variability of a random variable. We shall now
overview some of these measures that describe important
characteristics of a distribution.

The mean of a random variable is usually denoted by g,
which is expectation of the random variable. For a discrete
random variable X, y = E(X) = Y kP(X = k), where
the sum is over all possible values of X. If X is continuous,
then yu = [ xf(x)dx, where f(x) is the pdf of X. The
expectation E(X¥), k = 1,2, ..., is referred to as the kth
moment about the origin, while E(X — ) is called the kth
moment about the mean or the kth central moment. The
second moment about the mean is the variance (denoted
by ¢?), and its positive square root is called the standard
deviation. The absolute moment E(|X — y|) is referred to
as the mean deviation. The mean deviation and variance
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Uniform f(x;a,b) = b%a, a<x<b a < b; known or unknown
Normal fOGuo)= [ (Xz_;;)z],—oo <X< oo —0o < U <o00,0>0
Mean p
Standard deviation ¢
Chi-square f(x;n) = me—x/zxn/z_1, x>0 Degrees of freedom (df) n > 0
N men M2 m /21 —
F-distribution f(x;m,n) = r(me) gm) x X >0 m= Numer.ator df
r(z )F( ) (2)" [+ =] n = Denominator df
Student’s-t f(x;n) = 11:([,(,;;)1\)//,% ('|+X2/n)(n+1)/21 —00 <X <00 dfn>1
Exponential f(;u0) = Lexp (—@), x>y Location y
Scaleo >0
Gamma f(x;a,b) = Wef"/bx“q, x>0 Shapea > 0
Scaleb >0
Beta f(x;0,b) = g5y X~ T1-x)7", 0<x<1 Shapea > 0
Scaleb >0
Noncentral Fin ) = 5 ep(-2)(2)" ewp(-x) dfn>0
Chi-square Y k=0 K 2% r( =) & = Noncentrality parameter > 0
Noncentral F cdf = § exp(—%)(%)kP(F " me) Numerator df m > 0
=y 2 Jha) ok <
k=0 & = Denominator df n > 0
Noncentrality parameter § > 0
n§) = Pep(=82) Il /2] (2072 '
Noncentral t f(x;n,8) = \/ﬂ,?(n/e;;’(nﬂz)(w)/z Z n+i (\X/W) dfn>1
—00 < § < oo
Laplace (Double exponential) | f(x;a,b) = 5 exp [— ‘X;"l ], —00 < X < 00 —c0<da<oo,b>0
Location a, scaleb > 0
Logistic f(x;a,b) = %M, —00 < X < 00 Location g, scaleb > 0
[1+exp{—(%")}]
(Inx—p)?
Lognormal f(xip o) = 211)(0 exp [* 52 ], x>0 0>0, 0o < p<oo
Pareto f(x;a,b):xb%,xza a>0,b>0
Weibull f(;b,c,m) = £ (%)E_1 exp{—[%]c}, xX>m Scaleb >0 n
Shapec >0
Location m
Extreme-value f(x;a,b) = ¢ exp [-% ] exp{-exp[-% ]} Locationa
Scaleb >0
f(6a,b) = — " ——, —00 <X <00 ;
Cauchy GCh 7 b[1+((x—a)/b)7]’ Location g, scale b > 0
Inverse Gaussian fOxuA) = (Zﬂxg)2 exp (M) ;x>0 A>0,u>0
are used to judge the spread of a distribution. The measure The measures that are used to judge the shape of a dis-

of variability that is independent of the units of measure-  tribution are the coefficient of »skewness and the coefficient
ments is called coefficient of variation, and is defined as  of kurtosis (see »Kurtosis: An Overview). The coeflicient
(standard deviation/mean = g /u). of skewness is defined as (the third moment about the
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mean)/(variance)3/ 2. The skewness measures the lack of
symmetry. A negative coefficient of skewness indicates that
the distribution is left-skewed (larger proportion of the
population is below the mean) while a positive value indi-
cates that the distribution is right-skewed. The coefficient
of kurtosis, defined as y = (the fourth moment about the
mean)/(variance)?, is a measure of peakedness or flatness
of the probability density curve. As an example, for the
normal distribution, the coefficient of skewness is zero
(symmetric about the mean), and the coefficient of kurto-
sis is three. For a Student ¢ distribution with n degrees of
freedom, the coefficient of skewness is zero and the coeffi-
cient of kurtosis is 3(n—2)/(n—4), which approaches 3 as
n — oo.

The »moment generating function for a random vari-
able is defined as Mx (t) = E[¢"*] provided the expectation
exists for t in some neighborhood of zero. Note that the
kth derivative of Mx(t) evaluated at ¢ = 0 is E(X*), the kth
moment about the origin. The logarithm of moment gener-
ating function, Gx(t) = In(Mx(t)), is called the cumulant
generating function. The kth derivative of Gx(t) evalu-
ated at t = 0 is the kth moment about the mean. Thus,
G'(t)|i=0 = t» G"(t)1=0 = 0*, and s0 on.

Fitting a Probability Model

There are several methods available to fit a probability
distribution for a given sample data. A popular simple
method is quantile-quantile plot (Q-Q plot) which is the
plot of the sample quantiles (percentiles) and the corre-
sponding population quantiles. The population quantiles
are usually unknown, and they are obtained using the esti-
mates of the model parameters. If the Q-Q plot exhibits
a linear pattern, then the data can be regarded as a sam-
ple from the postulated probability distribution. There are
other rigorous approaches available to check if the sam-
ple is from a specific family of distributions. For instance,
the Wilks-Shapiro test and the Anderson-Darling test (see
» Anderson-Darling Tests of Goodness-of-Fit) are popular
tests to determine if the sample is from a normal pop-
ulation. Another well-known nonparametric test is the
»Kolmogorov-Smirnov test which is based on the differ-
ence between the empirical distribution of the sample and
the cumulative distribution function of the hypothesized
probability model.

Multivariate Distributions

The probability distribution of a random vector is called
multivariate distribution. In general, it is assumed that
all the components of the random vector are continuous
or all of them are discrete. The most popular continuous
multivariate distribution is the multivariate normal (see

» Multivariate Normal Distributions). A random vector X
is multivariate normally distributed with mean vector u
and the variance-covariance matrix X if and only if aX ~
N(a'p,a’'Sa) for every non-zero &’ € RP. Many results
and properties of the univariate normal can be extended
to the multivariate normal distribution (see »Multivariate
Normal Distributions) using this definition. Even though
there are other multivariate distributions, such as mul-
tivariate gamma and multivariate beta, are available in
literature, their practical applications are not well-known.
One of the most popular books in the area of multivariate
analysis is Anderson (2003) and its earlier editions.

A popular multivariate discrete distribution is the
»multinomial distribution, which is a generalization of
the »binomial distribution. This distribution is routinely
used to analyze the categorical data in the form of con-
tingency table. Another distribution to model a sample of
categorical vector observations from a finite population is
the multivariate hypergeometric distribution. A useful ref-
erence for multivariate discrete distributions is the book by
Johnson et al. (1997).
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Ecologists study complex systems, and often need to use
non-standard methods of sampling and data analysis. The
data might be collected over a long-time scale, involve little

spatial replication, or be highly aggregated in space. There
have been many fruitful collaborations between ecologists
and statisticians, often leading to the development of new
statistical methods. In this brief overview of the subject,
I will focus on three areas that have been of particular
interest in the management of animal populations. I will
also discuss the use of statistical methods in other areas
of ecology, the aim being to highlight interesting areas of
development rather than a comprehensive review.

Mark-Recapture Methods

Mark-recapture methods are commonly used to esti-
mate abundance and survival rates of animal populations
(Lebreton et al. 1992; Williams et al. 2002). Typically, a
number of individuals are physically captured, marked and
released. The information obtained from successive cap-
ture occasions is summarized in a “capture history;,” which
indicates whether or not an individual was captured on the
different occasions. The likelihood is specified in terms of
demographic parameters of interest, such as annual sur-
vival probabilities, and nuisance parameters that model
the capture process. A range of goodness-of-fit diagnostics
have been developed, including estimation of overdisper-
sion (Anderson et al. 1994). Overdispersion usually arises
as a consequence of heterogeneity, or lack of indepen-
dence, amongst individuals in the survival and/or cap-
ture probabilities; attempts have also been made to model
such heterogeneity directly (Pledger et al. 2003). »Model
selection often involves use of »Akaike’s information cri-
terion (AIC), and model-averaging is also commonly used
(Johnson and Omland 2004). Bayesian methods are
becoming popular, particularly as means of fitting hierar-
chical models (Brooks et al. 2000). Recent developments
include the use of genotyping of fecal, hair or skin samples
to identify individuals (Lukacs and Burnham 2005; Wright
etal. 2009), and spatially-explicit models that allow estima-
tion of population density (Borchers and Efford 2008). A
related area of recent interest has been the estimation of the
occupancy rate, i.e., the proportion of a set of geograph-
ical locations that are occupied by a species (MacKenzie
et al. 2006). This can be of interest in large-scale moni-
toring programs, for which estimation of abundance is too
costly, and in understanding metapopulation dynamics. In
this setting, the “individuals” are locations and the “capture
history” records whether or not a species was observed at
that location, on each of several occasions.

Distance Sampling

A common alternative method for estimating population
abundance or density is distance sampling. This involves
recording the distance of each observed individual from
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a transect line or a point. The analysis then involves esti-
mation of the probability of detection of an individual as a
function of distance (Buckland et al. 2004), thereby allow-
ing estimation of the number of individuals that have not
been detected. Two important assumptions in using this
method is that detection is certain for an individual on
the line or point and that individuals do not move during
the observation process, although modifications have been
suggested for situations in which these assumptions are not
met (Borchers et al. 1998; Buckland and Turnock 1992).
Compared to the use of mark-recapture methods for esti-
mating abundance, distance sampling typically provides
savings in terms of field effort, and will usually be more
appropriate when the population is widely dispersed. A
useful discussion of the theory underlying use of distance
sampling is given by Fewster and Buckland (2004), while
Schwarz and Seber (1999) provide an extensive review of
methods for estimating abundance.

Population Modeling

Population projection models have long been used as a tool
in the process of managing animal and plant populations,
most often as means of assessing the impact of manage-
ment on the population growth rate or on the probability
of quasi-extinction (Caswell 2001; Burgman et al. 1993).
A population model will typically involve one or more
demographic parameters, such as annual survival proba-
bilities and annual reproductive rates, for individuals in
different ages or stages. In the past, estimation of the
parameters has been performed by separately fitting statis-
tical models to the different sets of data; recent work in this
area has focussed on regarding the population model as a
statistical model that can be fitted to all the available data
(Buckland et al. 2007). The benefit of this approach is that
all the uncertainty can be allowed for, and that estimation
of the parameters can be improved by including data that
provide a direct indication of the population growth rate
(Besbeas et al. 2002). This development has the potential
to allow ecologists to fit a broad range of population mod-
els to their data, including ones that allow for immigration
(cf., Nichols and Hines 2002; Peery et al. 2006).

Other Developments

A key aspect of studying many plant and animal popula-
tions is their aggregated spatial distribution. This distri-
bution might be of interest in itself, or be something that
needs to be allowed for in the sampling and data analysis.
There is a long tradition of the analysis of spatial pattern in
ecology, involving a range of statistical techniques, includ-
ing distance-based methods and spatial »point processes

(Fortin and Dale 2005). Various statistical distributions
have been suggested as a means of allowing for the fact that
aggregation often leads to zero-inflated and/or positively
skewed data. These include the negative binomial, lognor-
mal and gamma distributions, plus zero-inflated versions
of these (Dennis and Patil 1984; Martin et al. 2005; Fletcher
2008). Likewise, methods have been developed for fitting
models that incorporate spatial autocorrelation (Legendre
1993; Fortin and Dale 2005).

» Adaptive sampling is a modification of classical sam-
pling that aims to allow for spatial aggregation by adap-
tively increasing the sample size in those locations where
the highest abundances have been found in an initial sam-
ple (Thompson and Seber 1996; Brown and Manly 1998).
Information on the number and relative abundance of
individual species in one or more geographical areas has
been of interest to many ecologists, leading to the use of
species abundance models (Hughes 1986; Hill and Hamer
1998), estimation of species richness (Chao 2005), model-
ing species-area relationships (Connor and McCoy 2001),
and the analysis of species co-occurrence (Mackenzie et al.
2004; Navarro-Alberto and Manly 2009).

In studying ecological communities, it is often natural
to consider the use of multivariate methods. There is a large
literature in this area, primarily focussing on classifica-
tion and ordination techniques for providing informative
summaries of the data (McGarigal et al. 2000). Likewise,
multivariate analysis of variance (see »Multivariate Anal-
ysis of Variance (MANOVA)) has been used to assess the
ecological impact of human disturbance on a range of
species (Anderson and Ter Braak 2003).

In order to study processes operating at large spatial
scales, it is useful to carry out studies at those scales. In
doing so, there is a tension between satisfying the statis-
tical requirements of replication and keeping the study at
a scale that is large enough to provide meaningful results
(Schindler 1998; Hewitt et al. 2007). There has been some
discussion in the ecological literature regarding appropri-
ate statistical methods for such studies (Cottenie and De
Meester 2003). One approach is to consider a single large-
scale study as insufficient to provide the level of evidence
that is usually required of a small-scale experiment, with
the hope that information from a number of studies can
eventually be combined, either informally of using meta
analysis (Gurevitch and Hedges 1999).

Future

Itis clear that the increasing popularity of computationally-
intensive Bayesian methods of analysis will lead to ecolo-
gists being able to fit statistical models that provide them



Statistical Ecology

1403

with a better understanding of the spatial and tempo-
ral processes operating in their study populations (Clark
2007). Likewise, recently-developed techniques such as
»neural networks (Lek et al. 1996) and boosted trees (Elith
et al. 2008), are likely to appear more frequently in the
ecological literature. In tandem with the development of
new techniques, there will always be a need to balance
complexity and simplicity in the analysis of ecological data
(Murtaugh 2007).
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Introduction

Risk measures are used to quantify insurance losses and
measure financial risk assessments. Several risk measures
have been proposed in actuarial science literature, namely,
the value at risk, the expected shortfall or the condi-
tional tail expectation, and the distorted risk measures
(DRM). Let X be a nonnegative random variable (rv) rep-

resenting losses of an insurance company with a continu-
ous distribution function (df) F. The DRM of X is defined
by
Me= [ 7 g(-F(x)dx
0

where the distortion function g is an increasing function
such that g(0) = 0 and g(1) = 1 (see, Wang 1996).
In terms of the generalized inverse function Q(s) := inf
{x: F(x) > s}, the DRM may rewritten as

Hg:/(;lg/(s)Q(l—s)ds,

provided that g is differentiable. In this entry, we con-
sider the DRM corresponding to the distortion function
g(s) = ste, p > 1called the proportional hazard transform
(PHT) risk measure. In this case we write

1
M,=p" ; $PIQ(1-5) ds.

Empirical Estimation of I],

Suppose we have independent random variables Xi, X, . . .,
each with the cdf F, and let Xi., < ... < Xy.n be the »order
statistics corresponding to Xj, . . ., Xj. It is most natural to
define an empirical estimator of I, as follows

i N Y
pi=p ) S Qu(1-s)ds, p>1, 4))

where Qy(s) is the empirical quantile function, which is
equal to the ith order statistic X;., whens € ((i—1)/n,i/n],
i = 1,...,n. We note that ﬁp is a linear combinations
order statistics, that is, ﬁp = Y0 ainXn—it1,n, With a;, =
p! f(ii/fl)/n s/P7lds,i=1,...,n,and n € N. A statistic hav-
ing the form (1) is an L-statistic (see, for instance, Shorack
and Wellner 1986, p. 260). The »asymptotic normality of
the estimator ﬁp is discussed in Jones and Zitikis (2003).

Theorem 1 (Jones and Zitikis, 2003). For any1 < p < 2,
we have

nl/z(ﬁp—l'lp) 2./\/'(0,0;), asn — oo,

where

11
gy = p? / f (min(s,t) — st)s/P /P 714Q (1 - )
o Jo
dQ(1-1t),
provided that E[X"] < oo for some n > 2p/ (2 - p).

The premium, which is greater than or equal to the mean
risk, must be finite forany p > 1. Thatis, wehavel < p < 1/y.
For y > 1/2, the second-order moment E [Xz] is infinite
and 1 < p < 2. In this case, we have 2p/ (2 — p) > 2 that
implies that E [|X|"] is infinite for any # > 2p/(2-p).
Therefore, Theorem 1 does not hold for regularly varying
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distributions with tail indices —1/y > —1/2. To solve this
problem, we propose an alternative estimator for IT, with
normal asymptotic distribution for any —1/y > -1/2. To get
into a more general setting, assume that F is heavy-tailed,
which means that xlinoloe’\x(l — F(x)) = oo for every A > 0.

The class of regularly varying cdfs is a good example for
heavy-tailed models: The cdf Fis said to be regularly varying
at infinity with index (-1/y) < 0 if the condition

lim l—F(tx) -1y

TR Y @

is satisfied for every x > 0. This class includes a num-
ber of popular distributions such as Pareto, Generalized
Pareto, Burr, Fréchet, Student, ..., which are known to be
appropriate models for fitting large insurance claims, large
fluctuations of prices, log-returns, etc. (see, e.g., Beirlant
et al. 2001). In the remainder of this entry, we therefore
restrict ourselves to this class of distributions, and for more
information on them we refer to, for example, de Haan and
Ferreira (2006).

New Estimator for I1, : Extreme Values
Based Estimation

We have already noted that the estimator [T, does not yield
asymptotic normality beyond the condition E[X*] < co.
For this reason, Necir and Meraghni (2009) proposed
an alternative of PHT estimator, which would take into
account differences between moderate and high quantiles,
that is

n

~ X,

Hp = Z ai,nxn—i+1,n + (k/n)l/P nik,{l’
i=k+1 1= pyn

where we assume that the tailindex y € [1/2,1) and estimate
k

it using the Hill (1975) estimator ¥, := 'y log Xp—i+1:n
i=1

—log X,_k.n. Here, let k = k, be a sequence such that

k — oo, and k/n — 0 as n - oo. The construction of this

estimator is inspired from the work of Necir et al. (2007)

and Necir and Boukhetala (2004).

Asymptotic Normality of I1,

The main theoretical result of this entry is Theorem 2,
below, in which we establish weak approximations for ﬁp
by functional of Brownian bridges and therefore asymp-
totic confidence bounds for II,. To formulate it, we need
to introduce an assumption that ensures the weak approxi-
mation of Hill’s estimator ¥},. The assumption is equivalent
to the following second-order condition (see Geluk et al.
1997). Namely, it said that the cdf F satisfies the generalized
second-order regular variation condition with second-
order parameter 3 < 0 (see de Haan and Stadtmiiller 1996)

if there exists a function a(s), which does not change its
sign in a neighborhood of infinity and is such that, for
every x > 0,

. -1 l—F(sx)_ -1/ Y xp/y—l
Jim (a(s)) {I—F(s) * y}_x ' ply ' ©)

where p < 0is the so-called second-order parameter; when
p = 0, then the ratio on the right-hand side of Eq. (3)
should be interpreted as log x. In the formulation of Theo-
rem 2, we shall use A(z) := y*a(U(z)) with a(s) as above
and U(z) := Q(1-1/z).

Theorem 2 (Necir and Meraghni 2009). Let F be a df
satisfying (2) with y > 1/2 and suppose that Q (-) is con-
tinuously differentiable on [0,1). Let k = ky be such that
k — oo, k/n — 0 and k"?A (n/k)— 0 as n — oco. For any
1 < p < 1/y, there exists a sequence of independent Brownian
bridges (By) such that

/2 (T, - 11,)
(k/m)"P7>Q (1~ k/n)

=4 L1(Bn, p>y) +0p (1),

where
L1 (Bu,p.y) : = 8 (p.y) (n/k)* By (1~ k/n)
_ 1/2 Bn (S)
Aoy (nfk) \k/n 1-s ds

) P s B (1=5) Q' (1= 5) ds
(k/n)""P~2 Q (1~ k/n)

with 8 (p,y) = Apy (py2 —yp+1- y)L;}y) ,and Apy =
L
(1-py)°

corollary 1

Under the assumptions of Theorem 2, we have
Y2 (7

n 11 o 11 D

o) 2 v (0,62,), asm - o

(k/i’l) ’ Xn—k:n

where the asymptotic variance aﬁ,y is given by the sum of
the following terms

2
-y +yi) 2p%?
_ L=
(1-pp)* (1-pp)?
2 20y (y—yp-7’p)
K3 = y K4 = 1
(1=p-py) (2-p-2py) (1-py)

2 3

and x5 = —Lz.
(1-py)
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Statistical Evidence
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Scientists want to know how nature works. Different
scientists have different ideas or hypotheses about the
mechanisms that underlie a phenomenon. To test the
validity of these ideas about mechanisms, they need to be
translated into quantitative form in a mathematical model
that is capable of predicting the possible outcomes from
such mechanisms. Observations of real outcomes, whether
obtained by designed experiment or observational study,

are used to help discriminate between different mech-
anisms. The classical approach of hypothesis refutation
depends on showing that the data are impossible under
a specific hypothesis. However, because of the intrinsic
stochasticity in nature, appropriate mathematical models
tend to be statistical rather than deterministic. No data are
impossible under a statistical model and hence this clas-
sic approach cannot be used to falsify a statistical model.
On the other hand, although not impossible, data could
be more improbable under one statistical model than a
competing one. Quantifying evidence for one statistical
model vis-a-vis a competing one is one of the major tasks
of statistics. The evidential paradigm in statistics addresses
the fundamental question: How should we interpret the
observed data as evidence for one hypothesis over the
other? Various researchers have tried to formulate ways
of quantifying evidence, most notably Barnard (1949) and
Edwards (1992). The monograph by Hacking (Hacking
1965) explicitly stated the problem and its solution in terms
of the law of the likelihood:

» Ifhypothesis Aimplies that the probability that a random vari-
able X takes the value x is pa(x), while hypothesis B implies
that the probability is ps(x), then the observation X = x is evi-
dence supporting A over B if and only if pa(x) > pg(x) and
the likelihood ratio pa(x) > pg(x), measures the strength of
that evidence.

Royall (1997) developed this simple yet powerful idea
and turned it into something that is applicable in practice.
He emphasized that the commonly used approaches in
statistics are either decision-theoretic (Neyman-Pearson-
Wald) that address the question “given these data, what
should I do?” or, are belief based (Bayesian) that address
the question “given these data, how do I change my beliefs
about the two hypotheses?” He suggested that statisticians
should first address the more fundamental question “how
should we interpret the observed data as evidence for one
hypothesis over the other?”, and only then think about how
the beliefs should be changed or decisions should be made
in the light of this evidence. Royall also pointed out that
evidence is a strictly comparative concept. We need two
competing hypotheses before we can compare the evidence
for one over the other. His critique of the commonly used
evidence measures showed that the practice of using Fish-
erian p-value as a measure of evidence is incorrect because
it is not a comparative measure, while the Bayesian poste-
rior probability, aside from being dependent on the prior
beliefs and not solely on the observed data, is also an incor-
rect measure of evidence because it is not invariant to the
choice of the parameterization.
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One of the reasons, the Neyman-Pearson ideas are
prominent in science is that they accept the fact that
decisions can go wrong. Hence in scientific practice, one
quantifies and controls the probabilities of such wrong
decisions. Royall (1997) introduced concepts of error prob-
abilities that are similar to the Type-I and Type-II error
probabilities in the Neyman-Pearson formulation, but rel-
evant to the evidential paradigm. He realized, evidence,
properly interpreted, can be misleading and asked how
often would be we be misled by strong evidence (see below)
if we use the law of the likelihood and how often would we
be in a situation that neither hypothesis is supported to the
threshold of strong evidence.

Three concepts answer those questions. Suppose we say
that hypothesis A has strong evidence supporting it over
hypothesis B if the likelihood ratio is greater than K, for
some a priori fixed K > 0. Then:

(a) The probability of misleading strong evidence:
- . pr(x)
M(K) = P, (x il K),
(b) The probability of weak evidence: W(K) = P, (x fx <
pr(x)
peg <K)
(c) The probability of strong evidence for the correct

model: S(K) = P, (x: gggi > K).

A remarkable result that follows is that there exists a
universal upper bound on the probability of misleading
evidence under any model, namely M(K) < 1/K. Fur-
thermore, as one increases the sample size, both M(K)
and W(K) converge to 0 and S(K) — 1. Thus, with
enough observations we are sure to reach the right con-
clusion without any error. This is in stark contrast with
the Neyman-Pearson Type-I error that remains fixed, no
matter how large the sample size. In the Neyman-Pearson
formulation, as sample size increases, K increases while
error probability is held constant. Thus, as one increases
the sample size, the criterion for rejection changes so that
it is harder and harder to distinguish the hypotheses. This
seems quite counter-intuitive and makes it difficult to com-
pare tests of different sample size.

The concepts of misleading and weak evidence have
implications in the sample size calculations and opti-
mal experimental designs. For example, the experimenter
should make sure the minimal sample size is such that
probability of weak evidence is quite small and at the end
of the experiment one can reach a conclusion. Further-
more, by controlling the probability of misleading evidence
through sample size, experimental/sampling design and
evidence threshold one can also make sure that the con-
clusions reached are likely to be correct. Besides these a

priori uses, the probability of misleading evidence can be
calculated as a post data error statistic reminiscent of a
p-value, but explicitly constructed for the comparison of
two hypotheses (Taper and Lele 2010).

There are, however, limitations to the evidential ideas
developed by Royall and described above. One major lim-
itation is that the law of likelihood can only quantify evi-
dence when the hypotheses are simple, but most scientific
problems involve comparing composite hypotheses. This
may arise because the scientist may be interested in test-
ing only some feature of the model without restrictions
on the rest of the features. Similarly, a proper statistical
model might involve infinitely many nuisance parameters
in order to model the underlying mechanism realistically
but the parameters of interest may be finite. Such cases
arise in many practically situations, for example, the lon-
gitudinal data analysis or random effects models among
others. Aside from raising the need to consider composite
hypothesis, in these situations, the full likelihood function
may be difficult to write down. One may want to specify
only a few features of the model such as the mean or the
variance, leading to the use of quasi-likelihood, estimating
functions and such other modifications. The question of
»model selection where one is selecting between families
of models instead of a specific element of a given family
is important in scientific practice. For example, whether
to use a linear regression model (see »Linear Regression
Models) or a non-linear regression model (see »Nonlinear
Regression) is critical for forecasting.

Can we generalize the law of likelihood and concepts
of error probabilities to make it applicable in such sit-
uations? An initial attempt is described in Lele (2004),
Taper and Lele (2004, 2010). The key observation in such
a generalization is that quantifying the strength of evi-
dence is the same as comparing distances between the
truth and the competing models that are estimated from
data. The likelihood ratio simply compares an estimate of
the »Kullback-Leibler divergence.

One can consider many different kinds of divergences,
each leading to different desirable properties. For exam-
ple, if one uses Hellinger distance to quantify strength
of evidence, one gets a measure that is robust against
»outliers. If one uses Jeffrey’s divergence, one needs to
specify only the mean and variance function, similar to
the quasi-likelihood formulation, to quantify strength of
evidence. One can use profile likelihood or integrated
likelihood or conditional likelihood to compare evidence
about a parameter of interest in the presence of nuisance
parameters. These simply correspond to different diver-
gence measures and hence have different properties. Lele
(2004) terms these as “evidence functions” They may be
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compared in terms of how fast the probability of strong
evidence for the correct model converges to 1. Not sur-
prisingly, for simple versus simple hypothesis comparison,
it turns out that the Kullback-Leibler divergence or the
likelihood ratio is the best evidence function, provided
the model is correctly specified. Other evidence functions,
however, might be more robust against outliers or may
need less specification; and hence may be more desirable
in practice.

Error probabilities can be calculated for general evi-
dence functions using bootstrapping (Taper and Lele
2010). When the data are independent and identically dis-
tributed one can circumvent the conceptual constraint that
the true model is in one of the alternative hypotheses
by using a non-parametric bootstrap. We briefly describe
this in the likelihood ratio context. Notice that the like-
lihood ratio is simply a statistic, a function of the data.
One can generate a »simple random sample with replace-
ment from the original data and compute the strength of
evidence based on this new sample. By repeating this pro-
cedure large number of times, one obtains the bootstrap
estimate of the distribution of the strength of evidence.
The percentile-based confidence interval tells us the small-
est level of strength of evidence one is likely to obtain if
the experiment is repeated. One of the vexing questions in
evidential paradigm is how to relate evidence to decision
making without invoking beliefs. It may be possible to use
the bootstrap distribution of the strength of evidence, in
conjunction with the »loss function, for decision-making.
Because this distribution is obtained empirically from the
observations, such decisions will be robust against model
specifications.

The evidential paradigm is still in its adolescence, with
much scope for innovation. Nevertheless the paradigm is
sufficiently developed to make immediate contributions;
in fact, information criterion comparisons, which are evi-
dence functions, have already revolutionized the practice
of many sciences. The references below will be useful to
further widen the reader’s knowledge and understanding
beyond just our views.
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The range of possible fallacies in statistics is as wide as
the range of statistics itself (see Cohen 1938; Good 1962,
1978; Moran 1973 for convenient overviews); there is prob-
ably no application and no theory where one does not find
examples of intentional or unintentional misuse of statis-

tical facts and theories (which of course is not unique to
statistics — there is probably no science or social science
whatsoever which is immune to such abuse). When col-
lecting data, there is the well known problem of biased or
self-selected samples, or ill-phrased questionnaires where
answers are already imbedded in the questions. A nice
example is provided by two surveys on workers’ attitude
towards working on Saturdays which were conducted in
Germany in the same months of the same year (Kramer
2008, p. 121). The first survey produced a rejection rate of
95% whereas in the second survey, 80% of workers who
were asked were happy to work on Saturdays if only they
could. After inspection of the questionnaires it was clear
how these results came about: The first survey was spon-
sored by a trade union and started with reminding the
audience of the hard work it had taken to push through the
five day work week, ending with the question (I exagger-
ate slightly): Are you really prepared to sacrifice all of what
your fellow workers have fought about so hard? The sec-
ond survey started with a comment on fierce competition
for German industry from Asia which in the end let to the
final question of whether workers were prepared to work
on Saturdays if otherwise their employer went bankrupt.

Such extreme examples are of course quite rare, but
it is rather easy to lead people in any direction which is
convenient from the researcher’s point of view.

In the area of biased and self-selected samples, the
best known example is of course the historical disaster
of the Literary Digest magazine back in 1936. The maga-
zine had asked well above ten million Americans, a record
sample by any standards, whom they intended to vote for
in the upcoming presidential election. According to this
survey, the republican candidate was going to win hand-
somely whereas in reality Roosevelt, the incumbent, won
by a landslide. The Digest’s sample was drawn from lists of
automobile and telephone owners (likely to vote republi-
can) and among those asked, less than a quarter actually
replied (presumably voters with an axe to grind with the
incumbent; see Bryson 1976).

Other fallacies arise in the context of interpreting or
presenting the results of statistical analyses. There is the
obvious area of confusing correlation and causation or of
misreading the meaning of statistical tests of significance,
where even professional statisticians have a hard time to
correctly interpret a positive test result at — say — a 5% level
of significance (there are even textbooks which state that
this means: “The null hypothesis is wrong with 95% prob-
ability”). Another problem here is that true significance
levels are in many applications much higher then nomi-
nal ones due to the fact that only “significant” outcomes
are reported.
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Such problems with interpreting statistical tests are
tightly connected with the misuse of conditional proba-
bilities, which is probably the both most widespread and
most dangerous way that one can misread statistical evi-
dence (Krdmer and Gigerenzer 2005). One of these is to
infer, from a conditional probability P(A|B) that is seen as
“large;” that the conditional event A is “favorable” to the
conditioning event B, in the sense that P(B|A) > P(B).

This confusion occurs in various contexts and is
possibly the most frequent logical error that is made in
the interpretation of statistical information. Here are some
examples from the German press (with the headlines trans-
lated into English):

e “Beware of German tourists” (According to Der Spiegel
magazine, most skiers involved in accidents in a Swiss
skiing resort came from Germany).

e “Boys more at risk on bicycles” (the newspaper Han-
noversche Allgemeine Zeitung reported that among
children involved in bicycle accidents, the majority
were boys).

e “Soccer most dangerous sport” (the weekly magazine
Stern commenting on a survey of accidents in sports).

e “Private homes as danger spots” (the newspaper Die
Welt musing about the fact that a third of all fatal
accidents in Germany occur in private homes).

e “German shepherd most dangerous dog around” (The
newspaper Ruhr-Nachrichten on a statistic according to
which German shepherds account for a record 31% of
all reported attacks by dogs).

e “Women more disoriented drivers” (The newspaper
Bild commenting on the fact that among cars that were
found entering a one-way street in the wrong direction,
most were driven by women).

These examples can easily be extended. Most of them result
from unintentionally misreading the statistical evidence.
When there are cherished stereotypes to conserve, such
as the German tourist bullying his fellow vacationers, or
women somehow lost in space, perhaps some intentional
neglect of logic may have played a role as well. Also, not
all of the above statements are necessarily false. It might,
for instance, well be true that when 1,000 men and 1,000
women drivers are given a chance to enter a one-way street
the wrong way, more women than men will actually do so,
but the survey by Bild simply counted wrongly entering
cars and this is certainly no proof of their claim. For exam-
ple, what if there were no men on the street at that time of
the day? And in the case of the Swiss skiing resort, where
almost all foreign tourists came from Germany, the attri-
bution of abnormally dangerous behavior to this class of
visitors is clearly wrong.

In terms of favorable events, Der Spiegel, on observ-
ing that P(German tourist | skiing accident) was “large,’
concluded that the reverse conditional probability was also
large, in particular, that being a German tourist increases
the chances of being involved in a skiing accident:

P(skiing accident|German tourist) > P(skiing accident).

Similarly, Hannoversche Allgemeine Zeitung concluded
from P(boy | bicycle accident) = large that P(bicycle acci-
dent | boy) > P(bicycle accident) and so on. In all these
examples, the point of departure was always a large value
of P(A|B), which then led to the - possibly unwarranted -
conclusion that P(B|A) > P(B). From the symmetry

P(B|A) > P(B) <= P(A|B) > P(A)

it is clear, however, that one cannot infer anything regard-
ing A’s favorableness for B from P(A|B) alone, and that one
needs information on P(A) as well.

Another avenue through which the attribute of favor-
ableness can be incorrectly attached to certain events is
»Simpson’s paradox, which in our context asserts that it
is possible that B is favorable to A when C holds, B is
also favorable to A when C does not hold, yet overall, B
is unfavorable to A. Formally, one has

P(AIBNC) > P(A) and
P(AIBNC) > P(A) yet
P(A|B) < P(A).

This paradox also extends to situations where C; U ... U
Ci=Q,CinC=0(i#j).

One instance where Simpson’s paradox (to be precise:
the refusal to take account of Simpson’s paradox) has been
deliberately used to mislead the public is the debate on
the causes of cancer in Germany. The official and fiercely
defended credo of the Green movement has it that the
increase in cancer deaths from well below 20% of all deaths
after the war to almost 30% today, is mostly due to indus-
trial pollution and chemical waste of all sorts. However,
as Table 1 shows, among women, the probability of dying
from cancer has actually decreased for young and old alike!
Similar results hold for men.

A final and more trivial example for faulty inferences
from conditional probabilities concerns the inequality

P(A|BnD) > P(A|ICn D).
Plainly, this does not imply
P(A|B) > P(A|C),

yet this conclusion is still sometimes drawn. A German
newspaper once claimed that people get happier as they
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Statistical Fallacies. Table 1 Probability of dying from
cancer Number of women (among 100,000 in the respective
age groups) who died from cancer in Germany

0-4 7 3

5-9 6 2
10-14 4 2
15-19 6 2
20-24 8 4
25-29 12 6
30-34 21 13
35-39 45 25
40-44 84 51
45-49 144 98
50-54 214 161
55-59 305 240
60-64 415 321
65-69 601 468
70-74 850 656
75-79 1183 924
80-84 1644 1587

(Statistisches Jahrbuch fir die Bundesrepublik Deutschland)

grow older. The paper’s “proof” runs as follows: Among
people who die at age 20-25, about 25% commit suicide.
This percentage then decreases with advancing age; thus,
for instance, among people who die over the age of 70, only
2% commit suicide. Formally, one can put these observa-
tions as

P(suicide | age 20 — 25 and death)
> P(suicide | age > 70 and death),
and while this is true, it certainly does not imply
P(suicide | age 20 — 25) > P(suicide | age > 70).

In fact, a glance at any statistical almanac shows that quite
the opposite is true.

Here is a more recent example from the US, where
likewise P(A|B) is confused with P(A|B n D). This time

the confusion is spread by renowned Harvard Law pro-
fessor who advised the O. J. Simpson defense team. The
prosecution had argued that Simpson’s history of spousal
abuse reflects a motive to kill, advancing the premise that
“a slap is a prelude to homicide” The defence - in the end
successfully — argued that the probability of the event K
that a husband killed his wife if he battered her was rather
small, so battering showed not be viewed as evidence of
murder.

P(K | battered) = 1/2,500.

The relevant probability, however, is not this one. It is that
of a man murdering his partner given that he battered her
and that she was murdered:

P(K | battered and murdered).

This probability is about 8/9 (Good 1996). It must not of
course be confused with the probability that O. J. Simp-
son is guilty. But it shows that battering is a fairly good
predictor of guilt for murder.
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Compilations and illustrations of statistical fallacies, mis-
conceptions, and myths abound (e.g., Brewer 1985; Huck
2008; Huff 1954; Hunter and May 1993; King 1986;
Sawilowsky 1993, 2003a, b, ¢, d, 2005, 2007a, b; Vandenberg
2006). The statistical faux pas is appealing, intuitive, log-
ical, and persuasive, but demonstrably false. They are
uniformly presented based on authority and supported
based on assertion. Unfortunately, these errors sponta-
neously regenerate every few years, propagating in peer
reviewed journal articles; popular college textbooks; and
most prominently, in the alternate (e.g., qualitative), non-
professional (e.g., Wikipedia), and dissident literature.
Some of the most egregious and grievous are noted
below.

1. Law of Large Numbers, Central Limit Theorem (CLT),
population normality, and asymptotic theory. This
quartet is asserted to inform the statistical prop-
erties (i.e, Type I and II errors, comparative sta-
tistical power) of parametric tests for small sam-
ples (e.g., n<50 or so). In fact, much of what was
asserted regarding small samples based on these eigh-
teenth to nineteenth century theorems was wrong.
Most of what is correctly known about the proper-
ties of parametric statistics has been learned through
Monte Carlo studies and related methods conducted
in the last quarter of the twentieth century to the
present.

Examples of wrong statements include (a) random
selection is mooted by drawing a sufficiently large
sample, (b) the CLT guarantees X is normally dis-
tributed, (c) the CLT safeguards parametric tests as
long as n > 30, and (d) asymptotic relative efficiency
is a meaningful predictor of small sample power. A
corollary that is particularly destructive is journal edi-
tor and reviewer bias in favor of this quartet over
Monte Carlo evidence, relegating the inelegance of the

latter to be a function of “anyone who has a personal
computer and knowledge of Algebra I”

(e) Perhaps the most pervasive myth is that real
variables are normally distributed. Micceri (1989)
canvassed authors of psychology and education
research over a number of years and determined that
less than 3% of their data sets (even those where
n > 5,000) could be considered even remotely bell-
shaped (e.g., symmetric with light tails). Not a single
data set was able to pass any known statistical test
of normality. Similar studies have been conducted
in other disciplines with the same result. Population
normality is not the norm.

(f) Journal editors and reviewers mistakenly
attach more importance to lemmas, theorems, and
corollaries from this quartet than on evidence from
small samples Monte Carlo studies and related
methods.

Random assignment. It is commonly asserted that
the lack of random assignment can be rehabili-
tated via matching, ANCOVA, regression, economet-
ric simultaneous modeling, latent-variable modeling,
etc. In truth, “there is no substitute for randomization”
(Sawilowsky 2007b, p 214.)

Control group. It is frequently asserted by journal edi-
tors and referees, and funding agency reviewers, that
science and rigorous experimental design demand the
use of a control, comparison, or second treatment
group. Actually, there are many designs that do not
require this, such as factorial ANOVA, times series,
and single subject repeated measures layouts.

Data transformations. (a) One reason for transforming
data is to better meet a parametric test’s underlying
assumptions. The inexplicable pressure to shoehorn
a parametric test into a situation where doesn’t fit
has prompted textbook authors to recommend trans-
forming data to better meet underlying assumptions.
For example, if the data are skewed then the square
root transformation is recommended. The debate on
the utility of transforming for this purpose is known
as the Games-Levine controversy that was waged in
the early 1980s, primarily recorded in Psychological
Bulletin.

There is a misguided presumption that the statis-
tician has a priori knowledge of when or how best to
transform. Also, it is a fallacy to interpret results from
a transformation in the original metric. What does it
mean to conclude that the arcsin of children’s weight
in the intervention group was statistically significantly
higher than the arcsin of children’s weight in the com-
parison group? When was the last time a patient chal-
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lenged the physician’s recommended medication by
demanding to know the logarithm of the expected
reduction in weight as predicted from the clinical
trial?

(b) Another reason for transforming the data is to
convert a parametric procedure into a nonparamet-
ric procedure. The rank transformation is the prime
example. Based on asymptotic theory published in
very prestigious journals, and subsequent recommen-
dations from high profile statistical software compa-
nies, data analysts were encouraged to routinely run
their data through a ranking procedure, and follow
with the standard parametric test on those ranks.

Careful data analysts have shown through Monte
Carlo studies that good results may be obtained for
the two independent samples, one-way independent
ANOVA, and two independent samples multivariate
layouts. The myth persists, however, that this pro-
cedure is a panacea. Those same careful data ana-
lyst have also shown the rank transformation does
not work in the context of two dependent samples,
factorial ANOVA, factorial ANCOVA, MANOVA,
or MANCOVA layouts, yielding Type I error rates
as high as 1, and greatly suppressed power (e.g.,
Sawilowsky 1985a; Sawilowsky et al. 1989; Blair et al.
1987). Yet, software vendors continue to promote this
procedure.

(c) It is also a myth that secondary transforma-
tions resolve this problem. The original data are trans-
formed into ranks, and the ranks are in turn trans-
formed into expected normal scores, random normal
scores, or some other type of score. However, careful
data analysts have also shown that secondary transfor-
mations fare no better than the rank transformation
in terms of displaying poor Type I error control and
severely depressed power (Sawilowsky 1985b).

5. p values. (a) Significance testing, as opposed to

hypothesis testing, is mistakenly asserted to be sci-
entific. Whereas hypothesis testing is objective due
to the a priori stated threshold of what constitutes a
rare event, significance testing is not objective. With
the advent of easily obtained (and even exact) p val-
ues through statistical software, significance testing
permits citing the resulting p value and letting the
reader decide a posteriori if it is significant. Unfortu-
nately, post and ad hoc significance testing obviates
objectivity in interpreting the results, which is a fatal
violation of a cornerstone of science. (b) Obtained p
values are asserted to be transitory. For example, a p
value that is close to nominal alpha (e.g., a = 0.05
and p = 0.06) is incorrectly claimed to be approaching

statistical significance, when in fact the result of the
experiment is quite stationary. (c) The magnitude of
the p value is asserted to inform the magnitude of the
treatment effect. A p value of 0.0001 is erroneously
claimed to mean the effect is of great practical impor-
tance. Although that may be true, it is not because of
any evidence based on the magnitude of p.

Effect Size. Statistical philosophers stipulate that the
null hypothesis can never literally be true. By virtue
of all phenomena existing in a closed universe, at
some part of the mantissa the population values must
diverge from zero. Thus, it is claimed that effect sizes
should be reported even if a hypothesis test was not
conducted, or even if the result of a hypothesis test is
not statistically significant.

This viewpoint is presaged on an imputed meta-
analytic intent that will arise in the future even if there
is no such intent at the time the experiment was con-
ducted. This fallacy arises, as do many errors in inter-
pretation of statistics, by ignoring the null hypothesis
being tested. Under the truth of the null hypothesis
observed results for the sample are not statistically sig-
nificantly different from zero, and thus the magnitude
of the observed result is meaningless. Hence, effect
sizes are only meaningfully reported in conjunction
with a statistically significant hypothesis test.
Experiment-wise Type I error. It is universally rec-
ommended that prudent statisticians should con-
duct preliminary tests of underlying assumptions
(e.g., homoscedasticity, normality) prior to testing for
effects. It is asserted that this does no harm to the
experiment-wise Type I error rate. However, Monte
Carlo evidence demonstrates that the experiment-
wise Type I error rate will inflate if preliminary tests
are conducted without statistical adjustment for mul-
tiple testing. Moreover, there will be a Type I inflation
even if the decision to proceed is based on eye-balling
the data.

Confidence Intervals. Confidence intervals have
recently been promoted over the use of hypothesis
tests for a litany of unsupported reasons. (a) Among
its supposed benefits is the assertion that confidence
intervals provide more confidence than do hypothesis
tests. This is based on the fallacy that confidence inter-
vals are based on some system of probability theory
other than that of hypothesis tests, when in fact they
are the same. (b) Another prevalent misconception is
confidence intervals must be symmetric.

»Robust statistics. Typically, proposed expansions of
descriptive robust statistics into inferential proce-
dures are substantiated via comparisons with para-
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12.

metric methods. It is rare to find direct comparisons
of inferential robust statistics with nonparametric
procedures. (a) It is asserted that robust descrip-
tive statistics maintain their robustness when evolved
into inferential counterparts. This is a fallacy, how-
ever, because robust descriptive statistics were derived
under parametric models confronted with pertur-
bations. Therefore, Monte Carlo studies show they
exhibit inflated Type I errors in many layouts. (b) It
is similarly asserted that robust inferential statistics
are high in comparative statistical power, but they are
generally less powerful than rank based nonparamet-
ric methods when testing hypotheses for which the
latter are intended.
» Permutation tests. Permutation analogs to paramet-
ric tests are correctly stated to have equal power,
and indeed can rehabilitate parametric tests poor
Type I error properties. However, it is incorrectly
asserted that they are more powerful than nonpara-
metric methods when testing for shift in location,
when in fact the power spectrum of permutation tests
generally follows (albeit somewhat higher) the power
spectrum of their parametric counterparts, which
is considerably less powerful than nonparametric
procedures.
Exact statistics. Exact statistics, recently prevalent due
to the advent of statistical software, are often adver-
tised by software venders as being the most powerful
procedure available to the statistician for the analy-
sis of small samples. Actually, the advantage of exact
statistics is that the p values are correct, but as often as
not a smaller p value will result from the use of tabled
asymptotic p values.
Parametric tests. The t and F tests are asserted to be
(a) completely robust to Type I errors with respect
to departures from population normality, (b) gener-
ally robust with respect to departures from population
homoscedasticity, and (c) at least somewhat robust
with respect to departures from independence. All
three of these assertions are patently false. (d) Para-
metric tests are incorrectly asserted to trump the need
for random selection or assignment of data, particu-
larly due to Sir Ronald Fisher’s paradigm of analysis
on the data at hand.

(e) Parametric tests (e.g., t,F) are asserted to
be more powerful than nonparametric tests (e.g.,
Wilcoxon Rank Sum (see »Wilcoxon-Mann-
Whitney  Test),  Wilcoxon  Signed  Ranks
(see »Wilcoxon-signed-rank test)) when testing for
shift in location. In fact, for skewed distributions,
the nonparametric tests are often three to four times

13.

14.

more powerful than their parametric counterparts. (f)
As sample size increases, these parametric tests are
asserted to increase their power advantages over non-
parametric tests. In fact, the opposite is true until the
upper part of the power spectrum is reached (e.g., the
ceiling is 1) when the parametric tests eventually con-
verge with the nonparametric test’s statistical power.
Nonparametric rank tests. The assertions denigrating
the Wilcoxon tests are so pervasive (to the extent
that the two independent samples case is more fre-
quently attributed as the Mann Whitney U, even
though Wilcoxon had priority by 2 years) that the
reader is referred to Sawilowsky (2005) for a list-
ing of 22 frequently cited fallacies, misconceptions,
and myths. Among the highlights are the incorrect
beliefs that (a) the uniformly most powerful unbiased
moniker follows the usage of the parametric t test for
data sampled from nonnormally distributed popula-
tions, (b) the Wilcoxon tests should only be used with
small data sets, (c) the Wilcoxon tests should only be
used with ordinal scaled data, and (d) the Wilcoxon
tests’ power properties are oblivious to »outliers.

¥ (a) We live in a y* society due to political cor-
rectness that dictates equality of outcome instead of
equality of opportunity. The test of independence ver-
sion of this statistic is accepted sans voire dire by many
legal systems as the single most important arbiter of
truth, justice, and salvation. It has been asserted that
any statistical difference between (often even nonran-
domly selected) samples of ethnicity, gender, or other
demographic as compared with (often even inaccu-
rate, incomplete, and outdated) census data is pri-
mae faciea evidence of institutional racism, sexism, or
other ism. A plaintiff allegation that is supportable by
a significant y* is often accepted by the court (judges
and juries) praesumptio iuris et de iure. Similarly, the
goodness of fit version of this statistic is also placed
on an unwarranted pedestal.

In fact, y° is super powered for any arbitrary large
number of observations. For example, in the good-
ness of fit application where the number of observed
data points is very large and the obtained y* can be
of an order of magnitude greater than three, there is
the custom not to even bother with the divisor E;,
and instead to proclaim a good fit if the new empir-
ical process results in a reduced obtained value of the
numerator. The converse is true where the number of
observed data points are small (e.g., N < 20 or 30),
in which case the y* test of independence is among
the least powerful methods available in a statistician’s
repertoire.
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16.

Stepwise regression. Stepwise (or “unwise”, Leamer
1985) regression and replicability are two mutually
exclusive concepts. It is asserted to be an appropriate
data mining technique (see »Data Mining). However,
itis analogous to talking a walk in the dark in the park,
tripping over a duffle bag, inspecting the bag and find-
ing data sheets crumpled together, transcribing and
entering the data into a statistical software program,
having the software command the CPU to regress all
possible combinations of independent variables on
the dependent variable until the probability to enter
has been met, reporting the results, and eyeballing
the results to construct an explanation or prediction
about an as yet unstated research hypothesis. There is
nothing scientifically rigorous about Stepwise regres-
sion, even when it is adorned with the appellation
of nonmodel-based regression. It is tantamount to a
search for Type I errors.

ANOVA main and interaction effects. (a) It is asserted
that because certain transformations can be invoked
to make interaction effects apparently vanish, main
effects are real and interaction effects are illusion-
ary. Actually, it is easily demonstrated through sym-
bolic modeling that main effects in the presence of
interactions are spurious.

(b) It is a misguided tendency to interpret sig-
nificant main effects first and significant interaction
effects second. The correct interpreting and stopping
rules (see Sawilowsky 2007a) are to begin with the
highest order effect, and cease with the highest order
statistically significant effect(s) on that level.

For example, in a 2 x 2 x 2 ANOVA layout,
meaningful interpretation begins with the a x b x ¢
interaction. Analysis should cease if it is statistically
significant. If it is not, then the focus of analysis
descends to the a x b, a x ¢, and b x ¢ lower order
interactions. If none are statistically significant, it is
then appropriate to give attention to the a, b, and
¢ main effects. (c) It is true that MANOVA is use-
ful even when there are only univariate hypothe-
ses, because the sole reason for invoking it is to
provide increased statistical power. Thus, it is mean-
ingful to follow with univartiate tests to provide fur-
ther insight after a statistically significant MANOVA
result. However, it is a misconception that so-called
step-down univariate tests are necessary, or meaning-
ful, to interpret a statistically significant MANOVA
that was conducted to examine a multivariate hypoth-
esis, which by definition is multivariate because it
consists of hopelessly intertwined dependent vari-
ables (see Sawilowsky 2007a).

17. ANCOVA. (a) This procedure is the Catch-22 of sta-

18.

tistical methods. Because it is erroneously assumed
to correct for baseline differences, and baseline differ-
with the lack of
»randomization, the myth has arisen that using
ANCOVA rehabilitates the lack of randomization.
Unfortunately, to be a legitimate test ANCOVA
requires randomization, only after which it serves to
decrease the error term in the denominator of the F

ences are concomitant

ratio, and hence increase statistical power.

(b) ANCOVA, even when legitimately applicable
due to randomization, is used to control for unwanted
effects. The logic of partitioning and then removing
sums of squares of an effect known to be significant is
nearly meritless. It is by far more realistic to retain and
model the unwanted effects by entering it (by some
technique other than dummy coding) into a general
linear model (i.e., regression) than it is to remove it
from consideration.

Consider a hypothetical treatment for the fresh
water fish disease ichthyophthirius multifilis (ich).
Suppose to determine its effectiveness the following
veterinarian prescribed treatment protocol must be
followed: (1) Remove the water while the fish remain
in the aquarium. (2) Wait ten days until all mois-
ture is guaranteed to have evaporated from the fish.
(3) Apply Sawilowsky’s miracle ich-b-gone™®© salve
to the fish. (4) Wait an additional ten days for the
salve to completely dry. (5) Refill the aquarium with
water. Results of the experiment show no evidence of
ich. Hence, the salve is marketable as a cure for ich,
controlling for water.

(c) There is a propensity, especially among doc-
toral dissertation proposals, and proposals submitted
to funding agencies, to invoke as many covariates into
ANCOVA as possible, under the mistaken impression
that any covariate will reduce the error term and result
in a more powerful test. In fact, a covariate must be
carefully chosen. If it is not highly correlated with the
dependent variable the trivial sum of squares that it
may remove from the residual in the denominator will
not overcome the impact of the loss of the df, result-
ing in a less powerful test. See Sawilowsky (2007b) for
other myths regarding ANCOVA.

Readerships view on publication differs from retrac-
tion and errata. One of the most unfortunate, and
sometimes insidious, characteristics of peer reviewed
statistical outlets is the propensity to publish new and
exciting statistical procedures that were derived via
elegant squiggles, but were never subjected to Monte
Carlo or other real data analysis methodologies to
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determine their small samples Type I error and power
properties. It appears that the more prestigious the
outlet, the greater is the reluctance in publishing sub-
sequent notices to the readership that the statistic or
procedure fails, is severely limited, or has no practical
value. If an editor imagines an article is so important
to the readership that it is publishable, it is a miscon-
ception for editors to presume that the same reader-
ship would be uninterested in subsequently learning
that the article was erroneous.

Some editors and reviewers, in an effort to pro-
tect the prestige of the outlet, create great barriers to
correcting previously published erroneous work, such
as demanding that the critical manuscript also solve
the original problem in order to be worthy of publi-
cation (e.g., Hyman 1995). For example, this removes
oversight if an ineffective or counter-productive cure
for cancer was published by demanding the rebuttal
author first cure cancer in order to demonstrate the
published cure was vacuous.

Mathematical and applied statistics/data analysis. It
is a myth that mathematical statistics and applied
statistics/data analysis share a common mission and
toolkit. The former is a branch of mathematics,
whereas the latter are not. The consumer of real world
statistics rejoices over an innovation that increases
the ability to analyze data to draw a practical conclu-
sion that will improve the quality of life, even if the
memoir in which it was enshrined will never appear
in the American Mathematical Society’s Mathematical
Reviews and its MathSciNet online database.
Statisticians, authors of statistical textbooks, and statis-
tics. The following are myths: (a) Statisticians are
subject matter experts in all disciplines. (b) Statisti-
cians are mathematician wannabes. (c) Anyone who
has a cookbook of statistical procedures is a qualified
statistician. Corollary: Only the British need to certify
statisticians. (d) Anyone who has taken an undergrad-
uate course in statistics is qualified to teach statistics
or serve as an expert witness in court. (e) Statis-
tics textbooks are free from computational errors.
(f) Statistics textbook authors are consistent in their
use of symbols. (g) If three randomly selected statis-
tics textbook authors opine the same view it must
be true. Corollary: It is a myth that if a statistical
topic is examined in three randomly selected statis-
tics textbooks the explanations will be i.i.d. (h) t, E
regression, etc., aren’t statistics — they are data analy-
sis. (i) It is a myth that statistics can be used to perform
miracles.
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Statistical genetics broadly refers to the development and
application of statistical methods to problems arising in
genetics. Genetic data analysis covers a broad range of top-
ics, from the search for the genetic background affecting
manifestation of human diseases to understanding genetic
traits of economic importance in domestic plants and ani-
mals. The nature of genetic data has been evolving rapidly,
particularly in the past decade, due mainly to ongoing
advancements in technology.

The work over a century ago of Gregor Mendel, using
inbred pea lines that differed in easily scored character-
istics, marks the start of collecting and analysing genetic
data. Today we can easily, and relatively inexpensively,
obtain many thousands, even millions or more, of genetic
and phenotypic, as well as environmental, observations on
each individual. Such data include high-throughput gene
expression data, single nucleotide polymorphism (SNP)
data and high-throughput functional genomic data, such
as those that examine genome copy number variations,
chromatin structure, methylation status and transcrip-
tion factor binding. The data are being generated using
technologies like microarrays, and very recently, next-
generation sequencing. In the next few years, it is antici-
pated that it will be possible to sequence an entire human
genome for $100, in a matter of days or even hours. The
sheer size and wealth of these new data are posing many,
ongoing, challenges.

Traditionally there have been close links between
developments in genetics and in statistics. For example Sir
RA Fisher’s proposal of »analysis of variance (ANOVA)
can be traced back to the genetic problems in which he was
interested. It is not widely known that probabilistic graph-
ical models have their origins at about the same time in
S Wright’s genetic path analysis. A current thrust of mod-
ern statistical science concerns research into methods for
dealing with data in very high dimensional space, such
as is being generated today in molecular biology labora-
tories. New opportunities abound for analysing extremely
complex biological data structures.

Basic analyses of genetic data include estimation of
allele and haplotype frequencies, determining if Hardy-
Weinberg equilibrium holds, and evaluating linkage dise-
quilibrium. Statistical analyses of sequence, structure and
expression data cover a range of different types of data and
questions, from mapping, to finding sequence homolo-
gies and gene prediction, and to finding protein structure.
Although many tools appear ad hoc, often it is found that
there are some solid, statistical underpinnings. For exam-
ple, the very widely used heuristic computational biology
tool, Basic Local Alignment Sequence Tool (BLAST) is
based on random walk theory (see »Random Walk).

In animal and plant breeding, there are a range of
approaches to finding and mapping quantitative trait loci,
in both inbred lines and outbred pedigrees. Population
genetics is a large topic in its own right, and is con-
cerned with the analysis of factors affecting the genetic
composition of a population. Hence it is centrally con-
cerned with evolutionary questions, namely the change in
the genetic composition of a population over time due to




1418

Statistical Inference

natural selection, mutation, migration, and other factors.
The knowledge of the structure of genes as DNA sequences
has completely changed population genetics, including ret-
rospective theory, in which a sample of genes is taken,
DNA sequence determined, and the questions relate to
the way in which, through evolution, the population has
arrived at its presently observed state. For intrapopula-
tion genetic inferences, coalescent theory (whereby from
a sample of genes one traces ancestry back to the common
ancestor) is fundamental. Evolutionary genetics is another,
huge, topic. Many approaches have been developed for
phylogenetic analyses, from applying likelihood methods,
to use of parsimony and distance methods. In forensics,
the use of DNA profiles for human identification often
requires statistical genetic calculations. The probabilities
for a matching DNA profile can be evaluated under alter-
native hypotheses about the contributor(s) to the profile,
and presented as likelihood ratios. Conditional probabil-
ities are needed, namely the probabilities of the profiles
given that they have already been seen, and these depend
on the relationships between known and unknown people.

Genetic epidemiology is a growing area, especially with
current research to find the genes underpinning complex
genetic diseases. “Methodological research in genetic epi-
demiology (is developing) at an ever-accelerating pace, and
such work currently comprises one of the most active areas
of methodological research in both »biostatistics and epi-
demiology. Through an understanding of the underlying
genetic architecture of common, complex diseases modern
medicine has the potential to revolutionize approaches to
treatment and prevention of disease” (Elston et al. 2002).
Pharmacogenetics research is concerned with the identi-
fication and characterization of genes that influence indi-
vidual responses to drug treatments and other exogenous
stimuli. Modern pharmacogenetics involves the evaluation
of associations between genetic polymorphisms and out-
comes in large-scale clinical trials typically undertaken to
evaluate the efficacy of a particular drug in the population
at large. Meta-analysis methods (see »Meta-Analysis) are
an increasingly important tool for modern genetic analysis.

A starting point for the whole area of statistical
genetics is the “Handbook” (Balding et al. 2004) that
is also available online. Interestingly, the final chap-
ter addresses ethics in the use of statistics in genet-
ics. An encyclopaedic approach is used in the reference
text of Elston et al. (2002). Software also is prolif-
erating, and a good starting point is the suite of R
packages in the Comprehensive R Archive Network
(CRAN) Task View: Statistical Genetics (http://cran.r-
project.org/web/views/Genetics.html) and in Bioconduc-
tor (http://www.bioconductor.org), an open source and

open development software project for the analysis of
genomic data.
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At the heart of statistics lie the ideas of statistical inference.
Methods of statistical inference enable the investigator to
argue from the particular observations in a sample to the
general case. In contrast to logical deductions from the
general case to the specific case, a statistical inference can
sometimes be incorrect. Nevertheless, one of the great
intellectual advances of the twentieth century is the real-
ization that strong scientific evidence can be developed on
the basis of many, highly variable, observations.

The subject of statistical inference extends well beyond
statistics’ historical purposes of describing and displaying
data. It deals with collecting informative data, interpreting
these data, and drawing conclusions. Statistical inference
includes all processes of acquiring knowledge that involve
fact finding through the collection and examination of
data. These processes are as diverse as opinion polls, agri-
cultural field trials, clinical trials of new medicines, and the
studying of properties of exotic new materials. As a con-
sequence, statistical inference has permeated all fields of
human endeavor in which the evaluation of information
must be grounded in data-based evidence.
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A few characteristics are common to all studies involv-
ing fact finding through the collection and interpretation
of data. First, in order to acquire new knowledge, rele-
vant data must be collected. Second, some variability is
unavoidable even when observations are made under the
same or very similar conditions. The third, which sets the
stage for statistical inference, is that access to a complete
set of data is either not feasible from a practical standpoint
or is physically impossible to obtain.

To more fully describe statistical inference, it is neces-
sary to introduce several key terminologies and concepts.
The first step in making a statistical inference is to model
the population(s) by a probability distribution which has a
numerical feature of interest called a parameter. The prob-
lem of statistical inference arises once we want to make
generalizations about the population when only a sample
is available.

A statistic, based on a sample, must serve as the
source of information about a parameter. Three salient
points guide the development of procedures for statistical
inference

1. Because a sample is only part of the population, the
numerical value of the statistic will not be the exact
value of the parameter.

2. The observed value of the statistic depends on the
particular sample selected.

3. Some variability in the values of a statistic, over differ-
ent samples, is unavoidable.

The two main classes of inference problems are esti-
mation of parameter(s) and testing hypotheses about the
value of the parameter(s). The first class consists of point
estimators, a single number estimate of the value of the
parameter, and interval estimates. Typically, the interval
estimate specifies an interval of plausible values for the
parameter but the subclass also includes prediction inter-
vals for future observations. A test of hypotheses provides
a yes/no answer as to whether the parameter lies in a
specified region of values.

Because statistical inferences are based on a sample,
they will sometimes be in error. Because the actual value
of the parameter is unknown, a test of hypotheses may
yield the wrong yes/no answer and the interval of plausible
values may not contain the true value of the parameter.

Statistical inferences, or generalizations from the sam-
ple to the population, are founded on an understanding
of the manner in which variation in the population is
transmitted, via sampling, to variation in a statistic. Most
introductory texts (see Johnson and Bhattacharyya 2010;
Johnson, Freund, and Miller 2011) give expanded discus-
sions of these topics.

There are two primary approaches, frequentist and
Bayesian, for making statistical inferences. Both are
based on the likelihood but their frameworks are entirely
different.

The frequentist treats parameters as fixed but unknown
quantities in the distribution which governs variation in
the sample. Then, the frequentist tries to protect against
errors in inference by controlling the probabilities of
errors. The long-run relative frequency interpretation of
probability then guarantees that if the experiment is
repeated many times only a small proportion of times will
produce incorrect inferences. Most importantly, using this
approach in many different problems keeps the overall
proportion of errors small.

Frequentists are divided on the problem of testing
hypotheses. Some statisticians (Cox 2006) follow R. A.
Fisher and perform significance tests where the decision
to reject a null hypothesis is based on values of the statis-
tic that are extreme in directions considered important
by subject matter interest. It is more common to take a
Neyman-Pearson approach where an alternative hypothesis
is clearly specified together with the corresponding distri-
butions for the statistic. Power, the probability of rejecting
the null hypothesis when it is false, can then be optimized.
A definitive account of Neyman-Pearson theory is given in
Lehmann and Casella (2003) and Lehmann and Romano
(2008).

In contrast, Bayesians consider unknown parameters
to be random variables and, prior to sampling, assign a
prior distribution for the parameters. After the data are
obtained, the Bayesian takes the product prior times likeli-
hood and obtains the posterior distribution of the parame-
ter after a suitable normalization. Depending on the goal of
the investigation, a pertinent feature or features of the pos-
terior distribution are used to make inferences. The mean
is often a suitable point estimator and a suitable region of
highest posterior density gives an interval of plausible val-
ues. See Box and Tiao (1973) and Gelman et al. (2004) for
discussions of Bayesian approaches.

A second phase of statistical inference, model checking,
is required for both frequentist and Bayesian approaches.
Are the data consonant with the model or must the model
be modified in some way? Checks on the model are often
subjective and rely on graphical diagnostics.

D. R. Cox, gives an excellent introduction to statisti-
cal inference in Cox (2006) where he compares Bayesian
and frequentist approaches and highlights many of the
important issues.

Statistical inferences have been extended to semipara-
metric and fully nonparametric models where functions
are the infinite dimension parameters.
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With the advent of lasers and optical communication it was
realized that specific restrictions on the fidelity of infor-
mation transmission due to quantum-mechanical nature
of a communication channel need be taken into account
and require a special approach. In the 1960-1970s this
led to creation of a consistent quantum statistical deci-
sion theory which gave the framework for investigation
of fundamental limits for detection and estimation of the
states of quantum systems (Helstrom; Holevo 1976; 1982).
In this theory statistical uncertainty is described by using
mathematical apparatus of quantum mechanics - opera-
tor theory in a Hilbert space. Thus, the quantum statistical
decision theory is a “noncommutative” counterpart of the
classical one which was based on the Kolmogorov prob-
ability model and both of them can be embedded into a
general framework (Holevo 1976). The interest to quan-
tum statistical inference got the new impetus at the turn of
the century (Barndorff-Nielsen et al. 2003). In high preci-
sion and quantum optics experiments researchers became
able to operate with elementary quantum systems such
as single ions, atoms and photons leading to potentially
important applications such as quantum cryptography and
novel communication protocols. In currently discussed
proposals for quantum computing, the information is writ-
ten into states of elementary quantum cells — qubits, and is
read off via quantum measurements. Therefore the issue of
extracting the maximum statistical information from the
state of a given quantum system becomes important. On
the other hand, building a consistent statistical theory of
quantum measurement has significant impact onto foun-
dations of quantum mechanics resulting in clarification of
several subtle points. Last but not the least, quantum sta-
tistical inference has a number of appealing specifically
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noncommutative features which open new perspectives for
avantgarde research in the mathematical statistics.

As in the classical statistical decision theory, there is a
set ® of values of an unknown parameter 0, a set X’ of deci-
sions x and a loss function Ly (x), defining the quality of
the decision x for a given value of parameter 6. The differ-
ence comes with the description of statistical uncertainty:
here to each 6 corresponds a density operator pg in the sep-
arable Hilbert space H of the system. Density operator p is
a positive operator in H{ with unit trace, describing state
of the quantum system. In physical problems the quantum
system is the information carrier such as coherent electro-
magnetic field, prepared by transmitter in a state which
depends on the signal 0.

A decision rule is defined by a quantum measurement
with outcomes x € X. In the case of finite set X" corre-
sponding to hypotheses testing (detection), decision rule is
described mathematically by a resolution of the identity in
H, i.e., the family of operators M = {My; x € X'} satisfying

Z My =1, (1)

xeX

M; >0,

where [ is the identity operator. The probability of making
decision x in the state py is defined by the basic formula
generalizing the Born-von Neumann statistical postulate

P (x]0) = TrpgMx.

Decision rule is implemented by a receiver making a quan-
tum measurement and the problem is to find the optimal
measurement performance.

The mean risk corresponding to the decision rule M is
given by the usual formula

Ro{M} = > Lo(x)Pu(x]0). ()
xeX
In this way one has a family {Rg{M},0 € ®} of affine
functionals defined on the convex set M(X') of decision
rules (1). The notions of admissible, minimax, Bayes deci-
sion rule are then defined as in the classical Wald’s theory.
The profound difference lies in the much more complicated
convex structure of the sets of quantum states and decision
rules.
The Bayes risk corresponding to a priori distribution 7
on ® is

Ro{M} = fs . Re{M}dn(6) - Trg;( LMy )
where

L) = [ polo(x)dn(6) @

is the operator-valued posterior loss function. Bayes deci-
sion rule minimizing R,{M} always exists and can be

found among extreme points of the convex set M(X'). An
illustration of the effect of noncommutativity is the follow-
ing analog of the classical rule saying that Bayes procedure
minimizes posterior loss: M is Bayes if and only if there
exists Hermitian trace-class operator A such that

A<L(x), (L(x)-A)M;=0, xeX. (5)
The operator A plays here the role of the minimized pos-
terior loss.

The Bayes problem can be solved explicitly in a number
of important cases, notably in the case of two hypotheses
and for the families of states with certain symmetry. In gen-
eral, symmetry and invariance play in quantum statistical
inference much greater role; on the other hand, the concept
of sufficiency has less applicability because of the severe
restrictions onto existence of conditional expectations in
the noncommutative probability theory (Petz 2008).

The optimum is found among the extreme points of
the convex set of decision rules which therefore play a
central role. In the classical case the extreme points are pre-
cisely deterministic decision rules. Their quantum analog
are orthogonal resolutions of the identity satisfying MM, =
OxyMy in addition to (1). However in the noncommuta-
tive case these form only a subset of all extreme decision
rules. According to a classical result of Naimark, any res-
olution of the identity can be extended to an orthogonal
one in a larger Hilbert space. In statistical terms, such an
extension amounts to an outer quantum randomization.
Consequently, there are quantum Bayes problems in which
the optimal rule is inherently “randomized” (Holevo 1982).
This paradoxical fact has a profound physical background,
namely, the measurement entanglement between the sys-
tem and the outer randomizer, which is a kind of intrinsi-
cally quantum correlation due to tensor product structure
of the composite systems in quantum theory. Notably, in
standard approach to quantum mechanics only orthogo-
nal resolutions of the identity (namely, spectral measures
of self-adjoint operators) were considered as representing
observables (i.e., random variables). Thus, quantum statis-
tical decision theory gives a strong argument in favor of
the substantial generalization of the fundamental notion
of quantum observable.

As in the classics, the case of two simple hypothe-
ses po, p1 is the most tractable one: there are quantum
counterparts of the Neumann-Pearson criterion and of the
asymptotics for the error probability and for the Bayes risk
(the quantum Chernoff bound). However the derivation of
these asymptotics is much more involved due to possible
noncommutativity of the density operators po, p1 (Hayashi
2006).
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In estimation problems ® and X’ are parametric vari-
eties (typically X = ® c R®) and the decision rules are
given by positive operator-valued measures on ® which
are (generalized) spectral measures for operators repre-
senting the estimates. Solution of the Bayes estimation
problem can be obtained by generalizing results for finite
X with appropriate integration technique (Holevo 1976).
Explicit solutions are obtained for problems with sym-
metry and for estimation of the mean value of Bosonic
Gaussian states. The last is quantum analog of the classi-
cal “signal+noise” problem, however with the noise having
quantum-mechanical origin and satisfying the canonical
commutation relations (Holevo 1982).

Quantum statistical treatment of models with the shift
or rotation parameter provides a consistent approach to
the issue of canonical conjugacy and nonstandard uncer-
tainty relations in quantum mechanics, such as time-
energy, phase-number of quanta, as well as to approximate
joint measurability of incompatible observables. In the
quantum case estimation problems with multidimensional
parameter are inherently more complex than those with
one-dimensional parameter. This is due to the possible
non-commutativity of the components reflecting existence
of incompatible quantities that in principle cannot be mea-
sured exactly in one experiment. This sets new statistical
limitations to the components of multidimensional esti-
mates, absent in the classical case, and results in essential
non-uniqueness of logarithmic derivatives and of the cor-
responding quantum Cramér-Rao inequalities (Helstrom
1976; Holevo 1982).

Another special feature of quantum statistical infer-
ence appears when considering series of i.i.d. quantum
systems: the statistical information in quantum models
with independent observations can be strictly superaddi-
tive. This means that the value of a measure of statistical
information for a quantum system consisting of indepen-
dent components can be strictly greater than the sum of
its values for the individual systems. The property of strict
superadditivity is again due to the existence of entan-
gled (collective) measurements over the composite system
(Hayashi 2005).

One of the most important quantum estimation mod-
els is the full model, in which the state is assumed com-
pletely unknown. In the case of finite dimensionality d this
is a parametric model with a specific group of symmetries
(the unitary group), in particular, for d = 2 it is the model
of unknown qubit state (i.e., 2 x 2-density matrix), with
the three-dimensional Stokes parameter varying inside the
Bloch sphere. The most advanced results here concern
the asymptotic estimation theory for the iid. observa-
tions, culminating in the noncommutative analog of Le

Cam’s local asymptotic normality for estimation of an arbi-
trary mixed state of a finite dimensional quantum system
(Guta and Kahn 2009; Hayashi 2005). The full model in
infinite dimensions belongs to nonparametric quantum
mathematical statistics, which is at present in a stage of
development. In this connection the method of homodyne
tomography of a density operator widely used in quantum
optics is particularly important (Artiles et al. 2005).

Quantum statistical decision theory provides power-
ful general methods for computing fundamental limits
to accuracy of physical measurements, which serve as
benchmarks for evaluating the quality of existing physical
measurement procedures. It also gives the mathematical
description of the optimal decision rule; however the quan-
tum theory in principle provides no universal recipe for
constructing a measuring device from the corresponding
resolution of the identity and such kind of problems have
to be treated separately in each concrete situation. Still,
in several cases methods of quantum statistical inference
give important hints towards the realization (based, e.g.,
on covariance with respect to the relevant symmetries)
and can provide an applicable description of the required
(sub)optimal measurement procedure (Artiles et al. 2005;
Hayashi 2005; Helstrom 1976) .
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Statistical inference for »stochastic processes deals with
dependent observations made at time points in {0,1,2,--}
or [0, 0o). Thus, the time parameter can be either discrete
or continuous in nature.

Markov Chains and Sequences

Let {X;,t = 0,1,2,...} be a time-homogeneous L-
order Markov sequence with the state-space S. Let
po(xi|xi-1, x1—2, ---x:—1 ) be the conditional probability mass
function(p.m.f.) or probability density function(p.d.f.) of X;
given X;_1, X;—2,---X¢—1, 0 being an unknown parameter in
©®, an open set in the K-dimensional Euclidean space.
The (conditional) log-likelihood (given (X(1y,X(2),"*"

X)) is given by In(Lr(6)) = X,prIn[pe(xlxe,
Xt=2,%t-1)], T > L. We assume that the conditional
p.m.f./p.d.f. satisfies the Cramer regularity conditions and
that {X;,#=0,1,2,...} is a strictly stationary and ergodic
sequence. The Fisher Information matrix is defined by

1(8) = (( ~E[0* In(pp (X:|Xi-1, X2, X1-1))/96:06;] ))

and is assumed to be positive definite (the expectation is
with respect to the joint distribution of (X, Xi-1,++ Xi-1)
and is computed under the assumption of stationarity).
Under these conditions, it can be shown that there exists a
consistent solution 8 of the likelihood equations, such that
VT(6-6) - Nk(0,[I(6)]™") in distribution (Billingsley
1961). We apply the »martingale central limit theorem
to the score function (i.e., the vector of dIn(Ly(6))/00;,
i =1,2,---,K) (Billingsley 1961; Hall and Heyde 1980) and
the Strong Law of Large numbers for various sample aver-
ages of stationary and ergodic sequences to prove this
result. The large-sample distribution theory of Likelihood
Ratio Tests (LRTs) and confidence sets follows in a man-
ner similar to the case of independently and identically
distributed (i.i.d.) observations.

Some of the assumptions made above can be relaxed,
cf. Basawa and Prakasa Rao (1980), Chap. 7. The LRT can be
used for selecting the order of a model by testing a model
against the alternatives of a higher order model. However,
the » Akaike’s Information Criterion (AIC) and Bayes cri-
terion (BIC), respectively given by AIC = —2InLr(8) + K
and BIC = —2InLy() + KIn(T) are more appropriate
for selection of a model and an order. The model with the
least AIC/BIC is selected. When S is finite, the procedure
based on BIC yields a consistent estimator of the true order,
cf. Katz (1981). The AIC is an inconsistent procedure, cf.
Davison (2003), Sect. 4.7. For finite Markov chains, Pear-
son’s y-statistic can be used in place of the LRT for various
hypotheses of interest. In moderate samples, the chi-square
approximation to Pearson’s y*-statistic is better than the
same to LRT.

First order Markov models offer a satisfactory fit to
observations somewhat infrequently. Lindsey (2004, p.
113) discusses approaches based on »logistic regression
and log-linear models (contingency table analysis) for
higher order finite »Markov chains. A distinct advan-
tage of such a modeling is that both time-dependent and
time-independent covariates can be incorporated, see dis-
cussion of Generalized Auto-Regressive Moving Average
(GARMA) models below. A limitation of such models is
that the conditional probabilities depend upon the numer-
ical values (coding) assigned to the states, which is not suit-
able for models for data without any numerical structure,
such as linguistic classes.
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Higher order Markov chains and sequences can be
handicapped by a large number of parameters. An impor-
tant Markov model of order L with a substantially small
number of parameters is due to Raftery (1985) and it is
given by

Pe(xt|xr—1,xr—2,"'xz—L) = Z MGx, x> A1 20, ZAZ =1L
I=1,L 1

Here, gy, is a transition probability matrix (t.p.m.) or a
transition density. The model is known as Mixture Tran-
sition Density (MTD) model. For an M-state chain, the
number of parameters of the MTD model is M(M - 1) +
L — 1, far less (particularly for M > 2) than (M")(M -
1), the number of parameters in the corresponding satu-
rated Markov chain. In the MTD models, like the Auto-
Regressive (AR) time series models, we need to add only
a single parameter to the r-order model to get the (r +
1)-order model. We may note that if the state-space is con-
tinuous or countably infinite, the transition density gy is
a specified function of K unknown parameters.

Hidden Markov Model (HMM). HMM was introduced
in speech recognition studies. It has a very wide range
of applications. Let {Y:,t = 0,1,2,...} be a first-order
Markov chain with the state-space Sy = {1,2,---M} and the
one-step t.p.m. P. The Markov chain {Y;,¢t = 0,1,2,...}
is not observable. Let {X;,t = 0,1,2,...} be an observ-
able process taking values in Sx with M; elements such
that P[Xt = ]|Yt = i, Yt_1,"’Y(),Xt_1"'Xt_2,"',X()] = qij,
i €Sy, j €Sy Thus, if M; = M, the number of parameters
of a Hidden Markov chain is 2M(M — 1) which is con-
siderably smaller than a higher order Markov chain. For
estimation of unobserved states {Yy,t = 0,1,2,... T} and
estimation of parameters, the Baum-Welsch algorithm is
widely used, which is an early instance of the Expectation-
Maximization (EM) algorithm.

For a discussion of Hidden Markov chains, we refer to
MacDonald and Zucchini (1997) and Elliot et al. (1995).
Cappe et al. (2005) give a thorough and more recent
account of a general state-space HMM.

ARMA Models for integer valued random variables. A non-
negative Integer-valued ARMA (INARMA) sequence is
defined as follows. The binomial operator y o W is defined
by a binomial random variable with W as the number of
trials and y as the success probability (if W = 0, y o
W = 0). Let {Z,,t = 0,£1,+2,---} be a sequence of
i.i.d. non-negative integer valued random variables with a
finite variance. Then, the INARMA(p, q) process is defined
by X; = Yicip @i 0 Xemi + Xjogg Bj o Zi—j + Z;. All the

binomial experiments required in the definition of the pro-
cess are independent. The process {Z,;} is not observable.
The process {X;} is (second order) stationary if 3" a; < 1
and is invertible if }> 3; < 1. An excellent review of such
processes has been given in McKenzie (2003). Interesting
special cases such as AR, MA and Poisson, Binomial, Neg-
ative Binomial as the stationary distributions are reported
therein.

GARMA models. These are extensions of the »Generalized
Linear Models based on an exponential family of dis-
tributions and can incorporate vector of time-dependent
covariates z; along with past observations. The condi-
tional mean of X; given the past is given by h(#;) where
h™' = g (say) is the link function of the chosen expo-
nential family and 7 = z{y + ¥, , ¢ (g (xemi) —ziiy] +
Pjerg 0[8(x1y) — ). The parameters {¢;} and (6;}
denote the auto-regressive and moving average parameters
respectively. The parameter y explains the effect of covari-
ates. A modification of the mean function is required to
take care of the range of the observations. A limitation of
this class of models is that in the absence of regressors or
when the vector y is null, it may not be possible to have
a stationary series. We refer to Benjamin et al. (2003) and
Fahrmeir and Tutz (2004), Chap. 6 for more details.

Billingsley’s work based on martingale methods for deriv-
ing asymptotic properties of the maximum likelihood
estimator paved the way for many interesting theoretical
developments for non-ergodic models such as a Bienayme-
Galton-Watson (BGW) branching process.

Let {X;,t = 0,1,---} be a BGW Branching process with
the state-space S = {0,1,---} and the off-spring distribu-
tion py, k = 0,1,---. Parameters of interest are the offspring
distribution and its functions such as the mean y and the
variance o*. A number of estimators for 4 have been sug-
gested: Lotka’s estimator Xr/X7_; (taken to be 1 if X7y =
0), Heydes estimator (X7)"/" and the nonparametric max-
imum likelihood estimator iy = (Yr — Xo)/Yr—1 with
Y: = Xo + Xi + ... + X;. The maximum likelihood esti-
mator has a natural interpretation that it is the ratio of
the total number of off-springs (in the realization) born
to the total number of parents. By using the Scott cen-
tral limit theorem for martingales (Scott 1978), it can be
shown that, on the non-extinction path, /Yr_i (4r—p) /o
is asymptotically standard Normal. A natural estimator of
0°, resulting from regression considerations, is given by
(1/T) ¥, Xi-1(X¢/Xi—1 — fir)*. This can be shown to be
consistent and asymptotic normal with \/T-norming, if
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the fourth moment of the offspring distribution is finite.
These results are useful to construct tests and confidence
intervals for u.

Based on a single realization, only y and o are
estimable on the non-extinction path of the process (i.e.,
consistent estimators exist for these parameters), if no
parametric form of the offspring distribution is assumed.
A good account of inference for branching processes, their
extensions and related population processes along with
applications can be found in Guttorp (1991).

For a stationary process, where every finite dimensional
distribution is absolutely continuous, we may opt for a
non-parametric approach. We estimate the conditional
density of X; given X; 1,X;2,...,Xs-1 by the ratio of
estimators of appropriate joint densities. The joint den-
sity of p consecutive random variables is estimated by
a kernel-based estimator as follows. Let K,(x) be a
probability density function, where x € R?, the p-
dimensional Euclidean space. Let hr be a sequence of
positive constants such that hy — 0 and T} — oo
as T — oo. The estimator of joint density of consec-
utive p observations at (xi,x2,---,Xp) is then given by

Flatyxa,eenxp) = [Y(10) | Sjenr-p K(G1=X5) [, (2
Xj+1)/hr, -+ (xp—Xj+p) /h1). Based on the estimator of the
conditional p.d.f., one can estimate the conditional mean
(or other parameters such as conditional median or mode).

Properties of conditional density estimators are estab-
lished assuming that the random sequence {X;t =
0,1,2,---} satisfies certain mixing conditions. We dis-
cuss strong or a-mixing, since most of the other forms
of mixing imply the strong mixing. Let Fo, be the o-
field generated by the random variables (Xo,Xi, -+, X;)
and let Fii10o be the o-field generated by the collec-
tion of random variables { X+, Xs11+1, - }. The stationary
sequence {X;,t = 0,1,2,---} is said to be strong mixing
if SUPA€F, ,BEF,, 00 {|P(A N B) - P(A)P(B)|} < (X(t) and
a(t) — 0ast — co. For most of the results, we need faster
rates of decay of a(t). Asymptotic properties of the kernel-
based estimator have been established in Robinson (1983)
who also illustrates how plots of conditional means can
be helpful in bringing out nonlinear relationships. Prakasa
Rao (1996) discusses, in detail, non-parametric analysis of
time series based on functional estimation.

Non-parametric inference. Tests for median or tests and
estimation procedures based on order or rank statistics,
like the widely used tests in the case of i.i.d. observations

can be suggested. However, the exact distribution is nei-
ther free from the unknown parameters, nor it is known,
except in some special cases. Thus, such procedures for sta-
tionary observations lack simplicity and elegance of the
rank-based tests. Further, robustness of an estimator is
much more complex for dependent observations, since
the effect of a spurious observation or an outlier (which
can be an innovation outlier in an ARMA model) spreads
over a number of succeeding observations. In an important
paper, Martin and Yohai (1986) discuss influence functions
of estimators obtained from ARMA Time Series model.

Bootstrap. Efron’s Bootstrap (see »Bootstrap Methods) for
i.i.d. samples is now routinely used to estimate the variance
or the sampling distributions of estimators, test statistics
and approximate pivotals. In most of the situations of prac-
tical interests, it gives a more accurate estimator of the sam-
pling distribution than the one obtained by the traditional
methods based on the Central Limit Theorem. In the i.i.d.
case, we obtain B bootstrap samples, each sample being a
Simple Random Sample With Replacement (SRSWR) of
size T from the observed sample. This generates B values
of a statistic or pivotal of interest.

For a stationary AR model of order L, the first L val-
ues of a bootstrap series may be the same as those of the
observed time series. We take a SRSWR sample of size T—L
from residuals. The randomly selected residuals are then
successively used to generate a bootstrap time series. We
then have B time series, each of length T. For stationary
and invertible MA or ARMA models, a bootstrap series is
constructed from a SRSWR sample of the residuals. Rest
of the methodology is the same as the usual bootstrap pro-
cedure. Bose (1988) (AR models) and (1990) (MA models)
has shown that such a bootstrap approximation to the sam-
pling distribution of the least square estimators is superior
to the traditional normal approximation.

Bootstrap procedures for (strictly) stationary and
ergodic sequence are based on blocks of consecutive obser-
vations. Bootstrap procedure is a boon for stochastic mod-
els, since in most of the cases, working out the variance of
a statistic or its sampling distribution is very complex. By
and large, it is beyond the reach of an end-user of statistics.
(Consider, for example, computing the variance of a 10 per
cent trimmed mean computed from stationary observa-
tions.) In a Moving Blocks Bootstrap (MBB)(Kunsch 1989;
Liu and Singh 1992), we form K blocks of L consecutive
observations to capture the dependence structure of the
process. There are N = T — L + 1 blocks of L consecutive
observations. We obtain a SRSWR of size K from these N
blocks to get a bootstrap sample of size T* = KL. If T is
divisible by L, K = T/L, otherwise, it can be taken to be the
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integer nearest to T/L. Let Fr be the empirical distribution
function of T observations and let H be a functional on
the space of distribution functions, computed at Fr (such
as the trimmed mean or a percentile). A bootstrap statistic
H* is computed from the empirical distribution function
of T” bootstrap observations. Other procedures are NBB
(Non-overlapping Blocks Bootstrap) and CBB (Circular
Blocks Bootstrap), cf. Lahiri (2003), Chap. 2. Carlstein
(1986) considers non-overlapping subseries of size L.

Let us assume that L — oo, T — oo such that
T/L — oo. Kunsch has shown that the bootstrap estima-
tor of the variance of the normalized sample mean (v/TX)
is consistent. (He further discusses jackknife procedures
wherein we delete a block at a time.) The MBB procedure
correctly estimates the sampling distribution of the sample
mean. This property holds for a large number of mean-like
statistics and smooth (continuously differentiable) func-
tions of the mean vector, see Lahiri (2003 p. 177). Statistics
based on averages of consecutive observations or their
smooth functions (such as serial correlation coefficients)
can be similarly bootstrapped. Second-order properties of
the bootstrap estimator of the sampling distribution of the
normalized/Studentized smooth functions of the sample
mean (vector) have been obtained by Lahiri (1991) and
Gotze and Kunsch (1996). Let G(u), a third order differ-
entiable function of the population mean vector y, be the
parameter of interest. While constructing the bootstrap
version of the pivotal, we need to consider G(X ) - G(jir),
where iy = E*(X"). If the block length L is of the order
T'4, the best possible error rate of the MBB approximation
for estimation of the distribution function is O(T>/*).
Though it is not as good as the accuracy that we have in the
case of i.i.d. or residual based ARMA bootstrap, it is still
better than the normal approximation to an asymptotic
pivotal. Optimal block lengths for estimator of variance
and the sampling distribution of a smooth statistics have
been discussed in Chap. 7 of Lahiri (2003).

Under certain conditions, it is possible to bootstrap the
empirical process, cf. Radulovic (2002). Such results as well
as those discussed above for block based bootstrap, assume
that the underlying process is strong mixing with a spec-
ified rate of decay of the mixing coefficients along with
the block lengths L. We can construct confidence bands
for the distribution function, by using the bootstrap dis-
tribution of the empirical process. Further, a number of
statistics such as natural estimators of a compactly dif-
ferentiable functional of the distribution function can be
bootstrapped. Such a class of estimators include most of
the estimators that we use in practice.

Kulperger and Prakasa Rao (1989) discuss bootstrap
estimation of the sampling distribution of the estimator

of a suitable function of P, the one-step t.p.m. of a
finite ergodic irreducible Markov chain. They consider the
expected value of time taken to reach a state from another
state of a Markov chain, as a parametric function P. Com-
puting the variance of such an estimator is very tedious.
Bootstrap samples are generated by regarding the maxi-
mum likelihood estimate of the t.p.m. P as the underlying
parameter.

State-space models (Doubly stochastic processes/Randomly
driven stochastic processes). Let {X;,t = 0,1,---} be
an unobservable process. Let {Y;,t = 0,1,--} be an
observable process with the conditional p.m.f. or p.d.f.
F o, 1,5y | %0,%1, -+, x¢) . In practice, often the process
{X¢,t = 0,1,-+-} is a Markov sequence and the condi-
tional distribution of Y; given (¥o, y1, -+, ¥i—1, X0, X1, " X1 )
depends upon x; and y;—; only. Such models are useful
in situations where parameters vary slowly over time. It
may be noted that models such as HMM, MTD or ARMA
among others can be conveniently viewed as state-space
models. Varying parameters can be modeled by a random
process, see Guttorp (1995, p. 111) for an example involving
a two state Markov chain.

Counting and Pure Jump Markov
Processes

Let {X(t),t > 0} be a counting process with X(0) = 0.
Let F(t-) be the complete history up to t but not includ-
ing t (technically the o-field generated by the collection of
random variables {X(u),u < t}). The intensity function
A(t) can be stochastic (a random variable with respect to
F(t_)). It is characterized by the properties that P[X (¢ +
dr) — X(t) = YF(t-)] = M¢t)dt + o(dt), P[X(t+dt) -
X(t) = O0|F(t-)] = 1 - A(t)dt + o(dt) and P[X(t +
dt) — X(t) > 1|F(t-)] = o(dt) for small dt. We assume
that E(X(t)) < oo for every t. Let M(t) = X(¢t) -
E[X(t)|F(¢-)]. It can be shown that {M(t),t > 0} is
a continuous time martingale with respect to F(t-), i.e.,
E[M(t+s)—M(t) | F(t-)] = 0 for every s > 0. Time-
dependent or time independent regressors can be included
in the intensity function A(t).

Let the intensity A(¢) be A(t,8), a specified function
of the time and the parameters 6. In practice, to informally
compute the likelihood, a partition tg = 0, f1,£2,...,tn = T
of [0, T] is selected and the likelihood for such a partition is
computed first. One then allows the norm of this partition
to converge to 0. It turns out that the likelihood is given by
In(L(8) = [ In(A(u, 0))dX(u) - [ A(u,0)I(u)du, where
I(t) =1, if there is a jump at t and 0, otherwise. Such a
general formulation linking counting processes inference
with martingales in continuous time is due to Aalen (1978).



Statistical Inference for Stochastic Processes

1427

Important special cases include (a) Poisson process
(see »Poisson process) with A(f) = A for all £ (b) a
Non-homogeneous Poisson Process where A(t) is a deter-
ministic function, (c) Pure birth process A(¢) = AX(t-),
and (d) Renewal process (see »Renewal Processes) A(t) =
h[t - t(x(t))] where h(t) is the failure rate or hazard
function of the absolutely continuous lifetime distribution
of the underlying i.i.d. lifetimes and #(x(t)) is the time
epoch at which the last failure before t takes place. (d)
Semi-Markov or Markov renewal process. Here the inten-
sity function depends on the state of the process at t(x(¢))
and the state observed at f (assuming that there is an
event at ).

Inference for counting processes and asymptotic prop-
erties of the maximum likelihood estimators have been
discussed in Karr (1986) and Andersen et al. (1993).

Likelihood of a time-homogeneous continuous time
Pure Jump Markov process follows similarly. Let, for i # j,
P[X(t +dt) = jlX(t) = i] = Ajdt + o(dt) and let P[X(¢t +
dt) = i|X(t) = i] = 1-Qj;dt+o(dt). The probability of other
events is o(dt). Here, Q;; = — J;.; Ayj. If the state space is
finite, each of the row-sums of the matrix Q = ((Qy)) is 0.
The transition function P[X(¢) = j|X(0) = i] of the pro-
cess is assumed to be differentiable in ¢ for every i,j. The
log-likelihood, conditional on X(0) = x(0), is given by
InL =¥ ,.; Nijln Q; — ¥; Qiiti, where Nj; is the number of
direct transitions from i to j and 7; is the time spent in the
state i, both during [0, T]. If the number of states is finite,
the non-parametric maximum likelihood estimator of Q;;
is given by Nij/7;. Properties of maximum likelihood esti-
mators have been discussed in Adke and Manjunath (1984)
and Guttorp (1995, Chap. 3). Important cases include (Lin-
ear or Non-linear) Birth-Death-Immigration-Emigration
processes and Markovian Queuing models.

Goodness of fit procedures are both graphical and for-
mal. The Q-Q plot of the times spent in a state i scaled
by the maximum likelihood estimates of their expected
values, reveals departures from the exponential distribu-
tion. Since Nj’s form transition counts of the embedded
Markov chain, one can check whether such transitions
have any memory. If the model under study has a station-
ary distribution, the observed frequencies of the test can
be compared with the fitted stationary distribution, see
Keiding (1975) who analyzes a Birth-Death-Immigration
process model.

Diffusion Processes

Let {X(¢),t > 0} be a diffusion process with u(x,0) and
07 (x) as the trend and diffusion functions respectively. The
likelihood for the observed path {X(t),0 < t < T} is the

Radon-Nikodym derivative of the probability measure of
{X(¢),0 < t < T} under the assumed diffusion process
with respect to the probability measure of {X(#),0 < ¢ <
T} under the assumption of a diffusion process with the
mean function equal to 0 for all x and the variance func-
tion o”(x). It is assumed that ¢*(x) is a known function.
The log-likelihood is given by

In(L(8)) = [ | u(x(0),0)/(o(x(t))dx(r)
112 [ W0, 0)/(o(x(1))ar

(If the variance functions is unknown, a time transfor-
mation is used to reduce the process with a known variance
function.) Some special cases are (a) Brownian motion, (b)
Geometric Brownian Motion, and (c) Ornstein-Uhlenbeck
process. \/T— consistency and »asymptotic normality of
the estimator of the mean of the process can be shown
under the assumption that the process is non-null persis-
tent (i.e., the process almost surely returns to any bounded
set and the corresponding mean return time is finite). In
this case, we can obtain non-parametric estimators of the
common distribution function and the probability den-
sity function of X(t). We refer to Prakasa Rao (1999a)
and Kutoyants (2004) for details. Kutoyants (2004) also
discusses asymptotic distributions of the estimator of the
mean of the process in the null persistent case.

Observing a continuous time process may not be
always feasible. We choose a partition of [0, T'], write the
likelihood of such a partially observed process and then
take the limit as the norm of the partition tends to 0. Valid-
ity of such operations has been established in Kutoyants
(2004). Sorensen (2004) gives an extensive review for
inference for stationary and ergodic diffusion processes
observed at discrete points. The following techniques are
discussed therein: (a) estimating functions with special
emphasis on martingale estimating functions and so-called
simple estimating functions, (b) analytical and numerical
approximations of the likelihood function which can, in
principle, be made arbitrarily accurate, (c) Bayesian analy-
sis and MCMC methods, and (d) indirect inference and
Generalized Method of Moments which both introduce
auxiliary (but wrong) models and correct for the implied
bias by simulation.

Statistical analysis and theoretical derivation of diffu-
sion processes (as well as counting processes) is based on
the theory of semimartingales. A semimartingale is a sum
of a local martingale and a function of bounded variation.
A class of diffusion processes and counting processes form
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a subclass of the family of submartingales. A unified theory
of statistical inference for semimartingales is presented in
Prakasa Rao (1999b).

A fractional diffusion process is driven by the frac-
tional Brownian motion (see »Brownian Motion and Dif-
fusions), which is not a semimartingale. Such processes
can be useful in modeling phenomena with long range
dependence, but the earlier techniques based on the theory
of semimartingales are not applicable. Statistical inference
for fractional diffusion processes has been discussed in
Prakasa Rao (2010).

Concluding Remarks

Computational aspects. Computation of likelihood and its
subsequent maximization are involved for most of the
stochastic models. There are many procedures such as
Kalman Filter, EM algorithm and Monte Carlo EM algo-
rithm (which is based on Markov Chain Monte Carlo
methods, see »Markov Chain Monte Carlo), to compute
the likelihood and the maximum likelihood estimator.
From a computer programming view-point, implemen-
tation of the EM algorithm and its stochastic versions,
require a special routine for each model. The conditional
expectation step may require extensive simulations from
a joint density, the constant of integration of which is not
known. For state-space models, one needs to carry out a
T-tuple integral (or a sum) to compute the likelihood. It
seems that various methods based on numerical analysis
to get a good approximation to the likelihood, its max-
imization and derivatives (which are needed to compute
standard error of the maximum likelihood estimator), are
preferred to other procedures. Possibly this is due to a very
slow rate for convergence of the EM algorithm (and its
stochastic versions) and yet another round of computa-
tions required to compute the estimator of the variance of
the maximum likelihood estimator.

(a) Finite sample optimality. Godambe’s criterion (Godambe
1985) of a finite sample optimality of an estimator is based
on optimality of the estimating equation it solves. Under the
usual differentiability-based regularity conditions, an esti-
mating function g” is said to be optimal in G, if it minimizes
E(g(A)*)/(E(dg(A)/00))%. Let F, be the o—field gener-
atedbythecollection ofrandomvariables { X;,s = 0,1,--, ¢ }.
Let g(¢, 0) be an F; measurable random variable involving
0, a real parameter, such that E[g(t,0) | Fi-1] = 0 and
Var(g(t,0) | Fi-1] = V(¢). Let g(A) = X, A(t)g(t,0),
where A(t) is an F;_; measurable random variable, t > L
Let G = {g(A)} be the class of estimating functions g(A)
which satisfy the regularity conditions together with the

assumptions that E(g(A)*) < oo and E(dg(A)/08) # 0.
Godambe proves that the optimal choice of A () is given by
E[0g(t,0)/00 | Fi-1]/V(t).In practice, we need to assume
that such optimal weights do not involve other (incidental
or nuisance) parameters.

A number of widely used estimators turn out to be
solutions of such an optimal estimating equations g* = 0.
Further, Godambe’s result justifies the estimator for each
finite sample size and in addition, it broadens the class
of parametric models to a larger class of semi-parametric
models, for which the estimating function is optimal. The
score function is optimal in a class of regular estimat-
ing functions, justifying use of the maximum likelihood
estimator in finite samples. Continuous time analogues of
these results with applications to counting processes have
been discussed in a number of papers in a volume edited
by Godambe (1991) and Prakasa Rao and Bhat (1996).

Optimality of an estimating function in a class is also
equivalent to an optimal property of confidence intervals
based on it. In large samples, the optimal ¢* leads to a
shortest confidence interval for 0 at a given confidence
coefficient. In a number of situations, the confidence inter-
val, obtained from a Studentized estimating function, is
typically better than the approximate pivotal obtained by
Studentizing the corresponding estimator, in the sense that
the true coverage rate of the procedure based on estimat-
ing function is closer to the nominal confidence coefficient.
Bootstrapping the Studentized estimating function further
improves performance of the corresponding confidence
interval.

(b) Asymptotic efficiency. In non-ergodic models such as
a BGW process, large-sample efficiency issues are rather
complex. Though the random norming is convenient from
an application view-point, the non-random norming is
more appropriate and meaningful for efficiency issues.
Further, notions of asymptotic efficiency based on vari-
ance of an estimator are no more applicable, since the
variance of the asymptotic distribution for a large num-
ber of estimators does not exist. The W-efficiency of the
maximum likelihood estimator, under certain regularity
conditions, has been established by Hall and Heyde (1980)
and Basawa and Scott (1983). Estimators based on other
criteria can also be W-efficient. The Bayes estimator, under
certain conditions, is asymptotically distributed like the
maximum likelihood estimator. This result is known as the
Bernstein-von Mises theorem and for its proof in the case
of stochastic processes, we refer to Chap. 10 of Basawa and
Prakasa Rao (1980).

Inference problems in stochastic processes have
enrichedboththeoreticalinvestigationsandappliedstatistics.
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Theoretical research in bootstrap, estimating functions,
functional estimation and non-Gaussian non-Markov pro-
cesses has widened scope of stochastic models. Use of fast
and cheap computing has been helpful in computing likeli-
hood, maximumlikelihood estimatorsand Bayes estimators
in very complicated stochastic models.
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Researchers in ecology and evolution have long recog-
nized the importance of understanding randomness in
nature in order to distinguish the underlying pattern. Sir
Francis Galton developed regression analysis to answer

questions about heredity; Karl Pearson’s systems of dis-
tributions were motivated by the desire to fit evolution-
ary data on the size of crab claws. Fisher’s contributions
from the fundamental theorem of evolution to fields of
quantitative genetics, species abundance distributions and
measurement of diversity are legendary. Studies on the
geographic distribution of species led to the study of spatial
statistics in ecology in the early part of the 20th century.
The classification and discrimination methods developed
by Fisher and others for numerical taxonomy and commu-
nity ecology are still commonly used in ecology.

Unfortunately, Karl Pearson believed that causation
was an illusion of scientific perception, stating in the intro-
duction to the 1911 3rd edition of The Grammar of Sci-
ence, “Nobody believes now that science explains anything;
we all look upon it as a shorthand description, as an
economy of thought” Under Pearson’s influence, statisti-
cal techniques in ecology tended, until recently, to be more
descriptive than predictive with a major early exception
of path analysis developed by Sewall Wright in the first
decades of the 20th century.

In curious contradiction, mathematical models used
by ecologists to model population dynamics and related
processes were highly sophisticated and predictive in
nature. For example, Lotka—Volterra models were devel-
oped in the 1930s. Generalization of these models to multi-
species cases such as the Predator-Prey, Host-Parasitoid
and other systems of models were available soon after
that. Skellam (1951) pioneered the use of spatial diffusion
processes to model spread of invasive species.

Gause’s work (Gause 1934) was unique in that he tried
to validate the mathematical models using experimental
data. He used non-linear regression to fit Logistic growth
model to the population growth series for paramecia.
Most of this work was based on the assumption that error
comes into the process only through observational inaccu-
racies, and thus he missed the modern nuance of inherent
randomness or process variation.

Statistical ecology received a large impetus in the 1970s
after the publication of Professor E.C. Pielou’s numerous
classic books (e.g., Pielou1977) and number of conferences
and the resultant edited volumes by Professor G.P. Patil
(e.g., Patil et al. 1971). These provided nice summaries of
what was known then and also indicated future directions.
Driven by the passage of the 1973 Endangered Species Act
(ESA) and the dozens of other environmental laws passed
in the United States during the 1970’ the field of ecology
gained substantial prominence in the context of managing
and not simply describing ecosystems. This necessitated
the development of models that were predictive and not
simply descriptive.
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Population Viability Analysis (PVA) where one uses
stochastic models to predict the distribution of extinction
times for a population or species of concern became an
important tool for studying the effect of various human
activities on nature. Political decisions regarding the con-
servation of species are often legally required by the
ESA to consider the results of a PVA. The importance
of demographic and environmental stochasticity as well
as the measurement error in forecasting became appar-
ent. Expanding beyond a single population focus, the
development of meta-population theory was based on
probabilistic models for spatial dispersal and growth. Ecol-
ogists became more familiar and comfortable with the
idea of modeling randomness and studying its impact on
prediction. While much of what is modeled as random
in ecology undoubtedly represents unrecognized deter-
ministic influences, it seems likely that true stochastic-
ity is as much a fundamental part of ecology as it is in
physics. For example, demographic events such as the
sex of offspring are truly random, and not simply the
consequence unrecognized deterministic influences. Such
demographic stochasticity strongly influences population
dynamics when population size is low.

Although stochastic models became prominent in the
1970s and 80s, statistical inference, the methods that con-
nect theoretical models to data, or inductive inference,
was still limited. Most of the statistical techniques used
were based on linear regression and its derivatives such
as the »Analysis of Variance. The main hurdles were lim-
ited data, limited computational power and mathemati-
cal nature of the statistical inferential tools. Dennis et al.
(1991) and Dennis and Taper (1994) made a major advance
by incorporating stochastic population dynamic models
as the skeleton for a full likelihood based inference in
ecological time series.

The rapid rise in computational power available to
ecologists, coupled with the development of computa-
tional statistical techniques especially the bootstrap (see
»Bootstrap Methods) and Monte-Carlo approaches have
reduced the threshold of mathematical expertise neces-
sary to apply sophisticated statistical inference techniques
making the analysis of complex ecological models feasi-
ble. This has provided significant impetus for developing
strong inferential tools in ecology.

Following are some of the important examples of the
application of statistical thinking in ecology.

1. Sampling methods for estimation of population abun-
dances and occurrences: Mark-Capture-Recapture
(Seber 2002) methods have formed an important tool
in the statistical ecology toolbox, but have also led

to development of new statistical methods that have
found applications in epidemiology and other sciences.
Capture probabilities may change temporally or spa-
tially. »Generalized Linear models and mixed models
have proved their usefulness in these situations. Biases
due to visibility are adjusted using distance based sam-
pling methods. In many instances, it is too expensive
to conduct abundance estimation and one has to settle
for site occupancy models based on presence-absence
data. Site occupancy data and methods have made a
broader range of ecologists aware of the ubiquitous
nature of measurement error. Although a species may
be present, it may not be detected because of various
factors such as lack of visibility, time of the day when
birds may not be singing etc. (MacKenzie et al. 2006).
This is an active area of research.

Resource selection by animals: Ecologists need to know
what resources animals select and how does this selec-
tion affect their fitness and survival. Human develop-
ments such as dams or a gas pipe line across a habitat
that might be critical to the animals can doom their
survival. Recent technological advances such as GPS
collars and DNA analysis help in collecting informa-
tion on where animals spend their time and what they
eat. The resource selection probability function (RSPF)
(Manly et al. 2002; Lele and Allen 2006) and habitat
suitability maps (Hirzel et al. 2006) have been essential
tools for environmental impact assessments (EIA) for
studying impact of various developments.

Model identification and selection: The statistical mod-
els used for prediction can be either process driven
or phenomenological, “black box”, models (Breiman
2001). Predictions from ecological models are often
made for the distant and not the immediate future. This
extrapolation makes it essential that ecological mod-
els be process driven. The use of powerful likelihood
methods for analyzing population time series models
is a relatively new development. The predictions are
strongly affected by the particular process based model
chosen. This has forced ecologist to consider many
models simultaneously and to search for good meth-
ods for »model selection. Information based model
selection (Burnham and Anderson 2002) has received
considerable attention in this context. Although alter-
native methods and modifications are constantly being
suggested and tested (Taper et al. 2008).

Hierarchical models: This is one of the most exciting
developments in statistical ecology. General hierarchi-
cal models are also known as latent variable models,
random effects models, mixed models and »mixture
models. These models are natural models to account
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for the hierarchical structure inherent in many eco-
logical processes. They also simplify statistical analysis
in the presence of missing data, sampling variability,
covariates measured with error and other problems
commonly faced by ecologists. Reviews of the use of
hierarchical models in ecology are available in Royle
and Dorazio (2009), Cressie et al. (2009) or Clark
and Gelfand (2006). Survival analysis methods and
random effects models have found important appli-
cations in avian nest survival studies (Natarajan and
McCulloch 1999). Linear mixed effects models have
been used in evolution and animal breeding since the
1940’s. However, generalization of those ideas to more
complex models was not possible until recently. Writ-
ing down the likelihood function for general hierar-
chical models is difficult (Lele et al. 2007) and hence
use of standard likelihood based inference is not pop-
ular. On the other hand, non-informative Bayesian
inference using Markov Chain Monte Carlo algorithm
(see »Markov Chain Monte Carlo) is computationally
feasible. These calculations are simulation based and
replicate the causal processes that ecologists seek to
understand. Due to its simplicity, the non-informative
Bayesian approach has become quite popular in ecol-
ogy. However, there are important philosophical and
pragmatic issues that should be considered before
using this approach (Lele and Allen 2006, Lele and
Dennis 2009). Moreover, the recent development of
the data-cloning algorithm (Lele et al. 2007; Ponciano
et al. 2009) has removed the computational obstacle to
likelihood inference for general hierarchical models.

Powerful statistical methods are being developed for ecol-
ogy, generally coupled with software. The development of
accessible tools has greatly facilitated the application of
complex statistical analysis to ecological problems. These
advances have come at a cost. Researchers are under pres-
sure to be cutting edge and consequently tend to use tech-
niques because they are convenient and fashionable not
necessarily because they are appropriate.

Ecological statistics is vibrant and contributing greatly
to the advancement of the science, but what are the future
directions? One clear recommendation that can be made
is in the realm of teaching. Education in ecological statis-
tics has not kept pace with statistical practice in ecol-
ogy, and improvements are desperately needed (Lele and
Taper 2002, Dennis 2004). While methods instruction will
always be essential, what is needed most by young ecol-
ogists is the development of strong foundational thinking
about the role of statistical inference in ecological research.

On the other hand, recommendations regarding the devel-
opment of new statistics are less clear. Techniques generally
follow the questions that need to be answered. However,
we are confident that while descriptive statistics and black
box prediction will have their place, the greatest advances
to knowledge in ecology will come from challenging the
probabilistic predictions from explicit models of ecologi-
cal process with data from well-designed experiments and
surveys.

About the Authors
For biographies of both authors see the entry »Statistical
Evidence.
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Introduction

Statistical inference concerns the application and appraisal
of methods and procedures with a view to learn from data
about observable stochastic phenomena of interest using
probabilistic constructs known as statistical models. The
basic idea is to construct statistical models using proba-
bilistic assumptions that “capture” the chance regularities
in the data with a view to adequately account for the
underlying data-generating mechanism; see ? (?). The

discussion that follows focuses primarily on frequentist
inference, and to a lesser extent on Bayesian inference.

The perspective on statistical inference adopted here
is broader than earlier accounts, such as: “making infer-
ences about a population from a random sample drawn
from it” (Dodge 2003), in so far as it extends its intended
scope beyond random samples and static populations, to
include dynamic phenomena giving rise to observational
(non-experimental) data. In addition, the discussion takes
into account the fact that the demarcation of the intended
scope of statistical inference is intrinsically challenging
because it is commonly part of broader scientific inquiries;
see Lehmann (1990). In such a broader context statistical
inference is often preceded with substantive questions of
interest, combined with the selection of data pertaining
to the phenomenon being studied, and succeeded with the
desideratum to relate the inference results to the original
substantive questions.

This special placing of statistical inference raises a
number of crucial methodological problems pertaining to
the adequateness of the statistical model to provide a well-
grounded link between the phenomenon of interest, at one
end of the process, and furnishing evidence for or against
the substantive hypotheses of interest, at the other. The
link between the phenomenon of interest and the statis-
tical model - thru the data - raises several methodologi-
cal issues including: the role of substantive and statistical
information (Lehmann 1990), as well as the criteria for
selecting a statistical model and establishing its adequacy
Spanos (2007). The link between the data — construed in
the context of a statistical model - and evidence for or
against particular substantive claims also raises a num-
ber of difficult problems including the fact that “accept”
or “reject” the null hypothesis (or a small p-value) does
not mean that there is evidence for the null or the alterna-
tive, respectively. Indeed, one can make a case that most of
the foundational problems bedeviling statistical inference
since the 1930s stem from its special place in this broader
scientific inquiry; see Mayo (2006).

Frequentist Statistical Inference

Modern statistical inference was founded by Fisher (1922)
who initiated a change of paradigms in statistics by
recasting the then dominating Bayesian-oriented induc-
tion, relying on large sample size (n) approximations
(Pearson 1920), into a frequentist statistical model-based
induction, relying on finite sampling distributions, inspired
by Gosset’s (1908) derivation of the Student’s t distribution
for any sample size n > 1. Before Fisher, the notion of a
statistical model was implicit, and its role was primarily
confined to the description of the distributional features
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of the data in hand using the histogram and the first few
sample moments. Unlike Karl Pearson who would com-
mence with data xo: = (x1,...,%,) in search of a frequency
curve to describe the histogram of x¢, he proposed to begin
with (a) a prespecified model (a hypothetical infinite pop-
ulation), and (b) view xq as a realization thereof. Indeed,
he made the initial choice (specification) of the prespeci-
fied statistical model a response to the question: “Of what
population is this a random sample?” (Fisher 1922, p. 313),
emphasizing that: “the adequacy of our choice may be
tested a posteriori” (ibid., p. 314).

Fisher’s notion of a prespecified statistical model can be
formalized in terms of the stochastic process { X, keN},
underlying data xo. This takes the form of parameterizing
the probabilistic structure of { Xy, keN} to specify a statis-
tical model:

My(x) = {f(x0), 6 €®}, x € Ry, for OcR",

m<n. 6]

f(x;0) denotes the joint distribution of the sample X:
= (Xi,...,Xn) that encapsulates the whole of the proba-
bilistic information in M (x), by giving a general descrip-
tion of the probabilistic structure of {X;, keN} (Doob
1953). Mg (x) is chosen to provide an idealized descrip-
tion of the mechanism that generated data xo with a
view to appraise and address the substantive questions of
interest.

The quintessential example of a statistical model is the
simple Normal model:

Me(x): Xi ~ NIID(, 07), 0: = (4, 0°)eRxR,,
k=1,2...,n..., )

where “w NIID(y, 0*)” stands for “distributed as Normal,
Independent and Identically Distributed, with mean y and
variance 02",

The statistical model M y(x) plays a pivotal role in sta-
tistical inference in so far as it determines what constitutes
a legitimate:

(a) Event — any well-behaved (Borel) functions of the
sample X —

(b) Assignment of probabilities to legitimate events via
f(x0)

(c) Dataxo for inference purposes

(d) Hypothesis or inferential claim

(e) Optimal inference procedure and the associated error
probabilities

Formally an event is legitimate when it belongs to the
o-field generated by X (Billingsley 1995). Legitimate data
come in the form of data xo that can be realistically viewed
as a truly typical realization of the process {Xy, keN},
as specified by My (x). Legitimate hypotheses and infer-
ential claims are invariably about the data-generating
mechanism and framed in terms of the unknown parame-
ters 0. Moreover, the optimality (effectiveness) of the var-
ious inference procedures depends on the validity of the
probabilistic assumptions constituting M (x); see Spanos
(1999).

The interpretation of probability underlying frequen-
tist inference associates probability with the limit of rel-
ative frequencies anchored on the Strong Law of Large
Numbers (SLLN). “Stable relative frequencies” (Neyman
1952), i.e., one’s that satisfy the SLLN, constitute a cru-
cial feature of real-world phenomena we call stochastic.
The long-run metaphor associated with this interpretation
enables one to conceptualize probability in terms of view-
ing My(x), x € R% as an idealized description of the
data-generating mechanism. The appropriateness of this
interpretation stems primarily from its capacity to facilitate
the task of bridging the gap between stochastic phenomena
and the mathematical underpinnings of My (x), as well as
elucidate a number of issues pertaining to modeling and
inference; see Spanos (2009).

Fisher (1925), almost single-handedly, put forward a fre-
quentist theory of optimal estimation, and Neyman and
Pearson (1933) modified Fisher’s significance testing to
propose an analogous theory for optimal testing; see Cox
and Hinkley (1974). Optimality of inference in frequen-
tist statistics is defined in terms of the capacity of different
procedures to give rise to valid inferences, evaluated in
terms of the associated error probabilities: how often these
procedures lead to erroneous inferences.

The main forms of statistical inference in frequentist
statistics are: (a) point estimation, (b) interval estimation,
(c) hypothesis testing, and (d) prediction.

All these forms share the following features:

(a) Assume that the prespecified statistical model Mg (x)
is valid vis-a-vis data xo.

(b) The objective of inference is always to learn about
the underlying data-generating mechanism, and it is
framed in terms of the unknown parameter(s) 6.

(c) Aninference procedure is based on a statistic (estima-

tor, test statistic, predictor), say Y, = g(X1, X2, .. ., Xn),
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whose sampling distribution provides the rele-
vant error probabilities that calibrate its reliability.
In principle, the sampling distribution of Y, is derived
via:

P(YnSy)=/]-~~ff(x;9)dx1dx2--~dxn. 3)

{x: g(x1,..00%0 )<y}

Point estimation centers on a mapping: h(.): R — O,
say 0,(X) = h(X1,Xa,...,X,), known as an estimator of
0. The idea underlying optimal estimation is to select a
mapping h(.) that locates, as closely as possible, the true
value of 0; whatever that happens to be. The qualification
“as closely as possible” is quantified in terms of certain
features of the sampling distribution of 0, (X), known as
estimation properties: unbiasedness, efficiency, sufficiency,
consistency, etc.; see Cox and Hinkley (1974).

A key concept in Fisher’s approach to inference is the
likelihood function:

L(6;x) = £(x) - f(x;0), 6 €O, (4)

where £(x) > 0 denotes a proportionality constant. Fisher
(1922) defined the Maximum Likelihood (ML) estimator
11 (X) of 6 to be the one that maximizes L(6;x). He was
also the first to draw a sharp distinction between the esti-
mator B(X) and the estimate 8(xo), and emphasized the
importance of using the sampling distribution of @\(X) to
evaluate the reliability of inference in terms of the relevant
error probabilities.

Example
statistics:

2
anlZLlewN(‘u,a),
n n
2 o’ 2
(X=X | — -1),
@ = Gy S ()’ (n_l)x(n)

where N (.,.) and x*(.) denote the Normal and chis-square
distributions, constitute “good” estimators of ( Us 02) is
terms of satisfying most of the above properties.

In the case of the simple Normal model, the

Point estimation is often considered inadequate for
the purposes of scientific inquiry because a “good” point
estimator 8,(X), by itself, does not provide any mea-
sure of the reliability and precision associated with the
estimate 8,,(xo). This is the reason why 8, (xo) is often
accompanied by some significance test result (e.g., p-value)
associated with the generic hypothesis 8 = 0.

Interval estimation rectifies this crucial weakness of
point estimation by providing the relevant error probabili-
ties associated with inferences pertaining to “covering” the

true value of 0. This comes in the form of the Confidence
Interval (CI):
P(L(X)<0<UX))=1-a, (6)

where the statistics L(X) and U(X) denote the lower
and upper (random) bounds that “covers” the true value
6" with probability (1-«), or equivalently, the “coverage
error” probability is a.

Example

]P’(Xn—c; (\;E)<[4<X,,+c; (\;ﬁ))ZI_“’ 7

provides a (1-«) Confidence Interval (CI) for y. The eval-
uation of the coverage probability (1-«) is based on the
following sampling distribution result:

V(X - D)

In the case of the simple Normal model:

« St(n-1), (8)

where St(n — 1) denotes the Student’s ¢ distribution with
(n —1) degrees of freedom, attributed to Gosset (1908).

What is often not appreciated sufficiently about esti-
mation in general, and CIs in particular, is the underlying
reasoning that gives rise to sampling distribution results
such as (5) and (8). The reasoning that underlies estimation
is factual, based on evaluating the relevant sampling dis-
tributions “under the True State of Nature” (TSN), i.e., the
true data-generating mechanism: M*(x) = {f(x0%)},
x € R%, where 6* denotes the true value of the unknown
parameter(s) 6. Hence, the generic Cl in (6) is more accu-
rately stated as:

P(L(X)<0<UX); 0=0")=1-a, )

where 6 = 0 denotes ‘evaluated under the TSN’ The
remarkable thing about factual reasoning is that one can
make probabilistic statements like (9), with a precise error
probability («), without knowing the true 6*.

Example Inthe case of the simple Normal model, the dis-
tributional results (5) and (8) are more accurately stated as:

2 2
— TSN fom (n—1)s" TSN »
Xn b N(‘U*, n)) 0_2 e X (

\/_(Xn

n-1),

VA W) TN (10)

where 6*: ([/l*,d*) denote the “true” values of the

unknown parameters 0: = (g, 0*).

Prediction is similar to estimation in terms of its
underlying factual reasoning, but it differs from it in so
far as it is concerned with finding the most representative
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value of X beyond the observed data, say X,,4+1. An optimal
predictor of X4, is given by:

Xn+1 = Xn; (11)
whose reliability can be calibrated using the sampling
distribution of the prediction error:

—~ =T 1
Unsl = (Xn+l —Xn) §N N (Oa Uf (1 + ;)) , (12)

to construct a (1-a) prediction interval:

IP(X“—C'X (S (1+1)) < Xnt1 an
2 n
1 *
+Ca(s (1+));6:6):1—(x. (13)
2 n

Hypothesis testing. In contrast to estimation, the rea-
soning underlying hypothesis testing is hypothetical. The
sampling distribution of a test statistic is evaluated under
several hypothetical scenarios concerning the statistical
model My (x), referred to as “under the null” and “under
the alternative” hypotheses of interest.

Example
of (2):

Consider testing the hypotheses in the context

Ho: pu < po vs. Hi: p > po. (14)

What renders the hypotheses in (14) legitimate is that:
(a) they pose questions concerning the underlying data-
generating mechanism, (b) they are framed in terms of
the unknown parameter 0, and (c) in a way that partitions
Mg(x). In relation to (c), it is important to stress that even
in cases where substantive information excludes or focuses
exclusively on certain subsets (or values) of the parameter
space, the entire © is relevant for statistical inference pur-
poses. Ignoring this, and focusing only on the substantively
relevant subsets of ®, gives rise to fallacious results.

The N-P test for the hypotheses (14) Tq:={7(X),
Ci(a)}, where:
7(X) = YE) €(a) = {x:d(x) > e}, (15)

can be shown to be Uniformly Most Powerful (UMP) in the
sense that, its type I error probability (significance level) is:
(a) o = maxy<y, P(x: 7(X) > ca3 Ho)

=P(x: 7(X) > cas pt = to)> (16)

and among all the a-level tests T, has highest power
(Lehmann 1986):

(b) P(x: 7(X) > cas pt = pi1), for all p1 > po,
= Ho+y, y = 0; (17)

In this sense, a UMP test provides the most effective a-level
probing procedure for detecting any discrepancy (y > 0) of
interest from the null.

To evaluate the error probabilities in (16) and (17) one
needs to derive the sampling distribution of 7(X) under
several hypothetical values of u relating to (14):

(a) 7(X) " st(n-1),  (b) 7(X) ' St(8(); n-1),
for any w1 > po, (18)

where 8(p1) = M is known as the non-centrality
parameter. The sampling distribution in (18a) is also used

to evaluate Fisher’s (1935) p-value:
p(x0) =P(x: 7(X) > 7(x0); ¢ = po)s 19)

where a small enough p(x¢) can be interpreted as indicat-
ing discordance with Hp.

Remark 1t is unfortunate that most statistics books use
the vertical bar (|) instead of the semi-colon (;) in for-
mulae (16)-(17) to denote the evaluation under Hy or Hi,
as it relates to (18), encouraging practitioners to misin-
terpret error probabilities as being conditional on Hy or
Hi; see Cohen (1994). It is worth emphasizing these error
probabilities are: (1) never conditional, (2) always assigned
to inference procedures (never to hypotheses), and (3)
invariably depend on the sample size n > L.

Comparing the sampling distributions in (18) with
those in (10) brings out the key difference between hypo-
thetical and factual reasoning: in the latter case there is
only one unique scenario, but in hypothetical reasoning
there is usually an infinity of scenarios. The remarkable
thing about hypothetical reasoning is that one can pose
sharp questions by comparing My(x), x € R, for dif-
ferent hypothetical values of 0, with M*(x¢), to learn
about M*(x), x € RY. This often elicits more informative
answers from xo than factual reasoning. This difference is
important in understanding the nature of the error proba-
bilities associated with each type of inference as well as in
interpreting the results of these procedures.

In particular, factual reasoning can only be used pre-
data to generate the relevant error probabilities, because
when data x is observed (i.e., post-data) the unique factual
scenario has been realized and the sampling distribution
in question becomes degenerate. This is the reason why the
p-value in (19) is a well-defined post-data error probability,
but one cannot attach error probabilities to an observed CI:
(L(x0) £0<U(x0)); see the exchange between Fisher
(1955) and Neyman (1956). In contrast, the scenarios in
hypothetical reasoning are equally relevant to both pre-
data and post-data assessments. Indeed, one can go a long
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way towards delineating some of the confusions surround-
ing frequentist testing, as well as addressing some of the
criticisms leveled against it — statistical vs. substantive sig-
nificance, with a large enough n one can reject any null
hypothesis, no evidence against the null is not evidence for
it - using post-data error probabilities to provide an evi-
dential interpretation of frequentist testing based on the
severity rationale; see Mayo and Spanos (2006) for further
discussion.

Bayesian Inference

Bayesian inference also begins with a prespecified statistical
model My (x), as specified in (1), but modifies it in three
crucial respects:

(1) Probability is now interpreted as (subjective or ratio-
nal) degrees of belief (not as the limit of relative fre-
quencies).

(2) The unknown parameter(s) 6 are now viewed as ran-
dom variables (not as constants) with their own dis-
tribution 72(6), known as the prior distribution.

(3) The distribution of the sample is now viewed as con-
ditional on 0, and denoted by f(x | 0) instead of

f(x0).

All three of these modifications have been questioned
in the statistics literature, but the most prominent contro-
versies concern the nature and choice of the prior distribu-
tion. There are ongoing disputes concerning subjective vs.
default (reference) priors, informative vs. non-informative
(invariant) priors, proper vs. improper priors, conjugate
vs. non-conjugate, matching vs. non-matching priors, and
how should these choices be made in practice; see Kass and
Wasserman (1996) and Roberts (2007).

In light of these modifications, one can use the defi-
nition of conditional probability distribution between two
jointly distributed random vectors, say (Z,W):

Fla|wy =L@ __f@w) _ f(w|2)i(z)
fw) [ f(zmw)dz [, f(w|z)f (z)dz’
to define Bayes formula that determines the posterior dis-

tribution of 9:
_fxl) (®)
7T(9| O) fgf(X0|6)7T(6)d9

o< m(0)-L(6 ] x,), 0 € O,

(20)
where L(0 | x,) denotes the reinterpreted likelihood func-
tion, not (4).

Bayesian inference is based exclusively on the poste-
rior distribution (0 | xo) which is viewed as the revised
(from the initial 7(6)) degrees of belief for different val-
ues of 6 in light of the summary of the data by L(6 | x,).
A Bayesian point estimate of 6 specified by selecting the

mean (03(x0) = E(7(8 | x0))) or the mode of the poste-
rior. A Bayesian interval estimate for 0 is given by finding
two values a < b such that:

/bn(6|xo)d9:1—oc, 1)
known as a (1 — «) posterior (or credible) interval.
Bayesian testing of hypotheses is more difficult to handle
in terms of the posterior distribution, especially for point
hypotheses, because of the technical difficulty in attaching
probabilities to particular values of 8, since the parameter
space © is usually uncountable. There have been numer-
ous attempts to address this difficulty, but no agreement
seems to have emerged; see Roberts (2007). Assuming that
one adopts his/her preferred way to sidestep this difficulty,
Bayesian testing for Hy: 0 = 6 vs. H;: 6 = 0 relies on com-
paring their respective degrees of belief using the posterior
ratio:
m(6olxo0)  L(6olx,) - (o)

7(8ix,) ~ L(Bixy) - 7(6) 22

or, its more widely used modification in the form of the
Bayes Factor (BF):

ﬂ(eoxo)) (ﬂ(GO)) _ L(ofx0)
7(01x0) n(61) )  L(6ifxy)’

BF(x) = ( (23)
together with certain rules of thumb, concerning the
strength of the degrees of belief against Hy based on the
magnitude of InBF(xo): for 0 < InBF(x¢) < .5, .5 <
InBF(x0) < 1, 1 <InBF(x9) < 2 and InBF(x¢) > 2,
the degree of belief against Hy is poor, substantial, strong
and decisive, respectively; see Roberts (2007). Despite their
intuitive appeal, these rules of thumb have been questioned
by Kass and Raftery (1995) inter alia.

The question that naturally arises at this stage con-
cerns the nature of the reasoning underlying Bayesian
inference. In Bayesian inference learning is about revising
one’s degrees of belief pertaining to 6 € ©, from 7(6)
(pre-data) to (6 | x,,) (post-data). In contrast to frequen-
tist inference — which pertains to the true data-generating
mechanism M”*(x), x € Ry — Bayesian inference is con-
cerned with more or less appropriate (in terms of (0 | o))
models within M (x¢), 0 € ©. In terms of the underlying
reasoning the Bayesian is similar to the decision theo-
retic inference which is also about selecting among more
or less cost (or utility)-appropriate models. This questions
attempts to present N-P testing as naturally belonging to
the decision theoretic approach.

The problem with the inference not pertaining to the
underlying data-generating mechanism can be brought
out more clearly when Bayesian inference is viewed in
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the context of the broader scientific inquiry. In that con-
text, one begins with substantive questions pertaining to
the phenomenon of interest, and the objective is to learn
about the phenomenon itself. Contrasting frequentist with
Bayesian inference, using interval estimation as an exam-
ple, Wasserman (2008) argued: “Frequentist methods have
coverage guarantees; Bayesian methods don’t. In science,
coverage matters” (p. 463).
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" Statistical Literacy, Reasoning,
and Thinking

JOAN GARFIELD
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University of Minnesota, Minneapolis, MN, USA

Statistics educators often talk about their desired learning
goals for students, and invariably, refer to outcomes such as
being statistically literate, thinking statistically, and using
good statistical reasoning. Despite the frequent reference
to these outcomes and terms, there have been no agreed
upon definitions or distinctions. Therefore, the following
definitions were proposed by Garfield (2005 and have been
elaborated in Garfield and Ben-Zvi (2008).

Statistical literacy is regarded as a key ability expected
of citizens in information-laden societies, and is often
touted as an expected outcome of schooling and as a nec-
essary component of adults’ numeracy and literacy. Statis-
tical literacy involves understanding and using the basic
language and tools of statistics: knowing what basic statisti-
cal terms mean, understanding the use of simple statistical
symbols, and recognizing and being able to interpret dif-
ferent representations of data (Garfield 1999; Rumsey 2002;
Snell 1999).

There are other views of statistical literacy such as Gal’s
(2000, 2002), whose focus is on the data consumer: Statisti-
cal literacy is portrayed as the ability to interpret, critically
evaluate, and communicate about statistical information
and messages. Gal (2002) argues that statistically literate
behavior is predicated on the joint activation of five inter-
related knowledge bases (literacy, statistical, mathematical,
context, and critical), together with a cluster of supporting
dispositions and enabling beliefs. Watson and Callingham

(2003) proposed and validated a model of three levels
of statistical literacy (knowledge of terms, understand-
ing of terms in context, and critiquing claims in the
media).

Statistical reasoning is the way people reason with sta-
tistical ideas and make sense of statistical information.
Statistical reasoning may involve connecting one concept
to another (e.g., understanding the relationship between
the mean and standard deviation in a distribution) or may
combine ideas about data and chance (e.g., understand-
ing the idea of confidence when making an estimate about
a population mean based on a sample of data). Statisti-
cal reasoning also means understanding and being able
to explain statistical processes, and being able to interpret
statistical results (Garfield 2002). For example, being able
to explain the process of creating a sampling distribution
for a statsistics and why this distribution has particular
features. Statistical reasoning invovles the mental repre-
sentations and connections that students have regarding
statistical concepts. Another examples is being able to see
how and why an outlier makes the mean and standard
deviation larger than when that outlier is removed, or rea-
soning about the effect of an influential data value on the
correlation coefficient.

Statistical thinking involves a higher order of think-
ing than statistical reasoning. Statistical thinking is the
way professional statisticians think (Wild and Pfannkuch
1999). It includes knowing how and why to use a particular
method, measure, design or statistical model; deep under-
standing of the theories underlying statistical processes
and methods; as well as understanding the constraints and
limitations of statistics and statistical inference. Statisti-
cal thinking is also about understanding how statistical
models are used to simulate random phenomena, under-
standing how data are produced to estimate probabilities,
recognizing how, when, and why existing inferential tools
can be used, and being able to understand and utilize the
context of a problem to plan and evaluate investigations
and to draw conclusions (Chance 2002). Finally, statistical
thinking is the normative use of statistical models, meth-
ods, and applications in considering or solving statistical
problems.

Statistical literacy, reasoning, and thinking are unique
learning outcomes, but there is some overlap as well as
a type of hierarchy, where statistical literacy provides the
foundation for reasoning and thinking (see Fig. 1). A sum-
mary of additional models of statistical reasoning and
thinking can be found in Jones et al. (2004).

There is a growing network of researchers who are
interested in studying the development of students™ sta-
tistical literacy, reasoning, and thinking (e.g., SRTL - The
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Statistical Literacy, Reasoning, and Thinking. Fig. 1 The over-
lap and hierarchy of statistical literacy, reasoning, and thinking
(Artist Website, https://app.gen.umn.edu/artist)

International Statistical Reasoning, Thinking, and Literacy
Research Forums, http://srtl.stat.auckland.ac.nz/). The
topics of the research studies conducted by members of
this community reflect a shift in emphasis in statistics
instruction, from developing procedural understanding,
i.e., statistical techniques, formulas, computations and pro-
cedures; to developing conceptual understanding and sta-
tistical literacy, reasoning, and thinking.

Words That Characterize Assessment
Items for Statistical Literacy, Reasoning,
and Thinking

One way to distinguish between these related outcomes
is by examining the types of words used in assessment of
each outcome. Table 1 (modified from delMas (2002)) lists
words associated with different assessment items or tasks.

Statistical Literacy, Reasoning, and Thinking. Table. 1
Typical words associated with different assessment items

or tasks
Identify Explain why Apply
Describe Explain how Critique
Translate Evaluate
Interpret Generalize
Read
Compute

The following three examples (from Garfield and Ben-
Zvi 2008) illustrate how statistical literacy, reasoning, and
thinking may be assessed.

Example of an Item Designed
to Measure Statistical Literacy

A random sample of 30 first-year students was selected
at a public university to estimate the average score on a
mathematics placement test that the state mandates for all
freshmen. The average score for the sample was found to
be 81.7 with a sample standard deviation of 11.45. Describe

to someone who has not studied statistics what the stan-
dard deviation tells you about the variability of placement
scores for this sample.

This item assesses statistical literacy because it focuses
on understanding (knowing) what the term “standard
deviation” means.

Example of an Item Designed
to Measure Statistical Reasoning

The following stem plot displays the average annual snow-
fall amounts (in inches, with the stems being tens and
leaves being ones) for a random sample of 25 American
cities:

0 | 000000024

1| 028
00228
8
2248
48
0

o U A W N

Without doing any calculations, would you expect the
mean of the snowfall amounts to be larger, smaller, or
about the same as the median? Why?

This item assess statistical reasoning because students
need to connect and reason about how shape of a distribu-
tion affects the relative locations of measures of center, in
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this case, reasoning that the mean would be larger than the
mean because of the positive skew.

Example of an Item Designed
to Assess Statistical Thinking

A random sample of 30 first year students was selected
at a public university to estimate the average score on a
mathematics placement test that the state mandates for
all freshmen. The average score for the sample was found
to be 81.7 with a sample standard deviation of 11.45.

A psychology professor at a state college has read the
results of the university study. The professor wants to know
if students at his college are similar to students at the uni-
versity with respect to their mathematics placement exam
scores. This professor collects information for all 53 first
year students enrolled this semester in a large section (321
students) of his “Introduction to Psychology” course. Based
on this sample, he calculates a 95% confidence interval
for the average mathematics placement scores exam to
be 69.47 to 75.72. Below are two possible conclusions that
the psychology professor might draw. For each conclu-
sion, state whether it is valid or invalid. Explain your choice
for both statements. Note that it is possible that neither
conclusion is valid.

(@) The average mathematics placement exam score for
first year students at the state college is lower than the
average mathematics placement exam score of first
year students at the university.

(b) The average mathematics placement exam score for
the 53 students in this section is lower than the aver-
age mathematics placement exam score of first year
students at the university.

This item assesses statistical thinking because it asks stu-
dents to think about the entire process involved in this
research study in critiquing and justifying different possi-
ble conclusions.

Comparing Statistical Literacy,
Reasoning, and Thinking to Bloom'’s
Taxonomy

These three statistics learning outcomes also seem to coin-
cide somewhat with Bloom’s more general categories of
learning outcomes (1956). In particular, some current mea-
surement experts feel that Bloom’s taxonomy is best used if
it is collapsed into three general levels (knowing, compre-
hending, and applying). Statistical literacy may be viewed

as consistent with the “knowing” category, statistical rea-
soning as consistent with the “comprehending” category
(with perhaps some aspects of application and analysis)
and statistical thinking as encompassing many elements
of the top three levels of Bloom’s taxonomy (application,
analysis, and synthesis).
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Non-Precise Data

Real data obtained from measurement processes are not
precise numbers or vectors, but more or less non-precise,
also called fuzzy. This uncertainty is different from mea-
surement errors and has to be described formally in order
to obtain realistic results from data analysis. A real life
example is the water level of a river at a fixed time. It is
typically not a precise multiple of the scale unit for height
measurements. In the past this kind of uncertainty was
mostly neglected in describing such data. The reason for
that is the idea of the existence of a “true” water level which
is identified with a real number times the measurement
unit. But this is not realistic. The formal description of such

non-precise water levels can be given using the intensity
of the wetness of the gauge to obtain the so called charac-
terizing functions from the next section. Further examples
of non-precise data are readings on digital measurement
equipments, readings of pointers on scales, color intensity
pictures, and light points on screens.

Remark 1 Non-precise data are different from measure-
ment errors because in error models the observed values
y;i are considered to be numbers, i.e., y; = x; + €;, where ¢;
denotes the error of the i-th observation.

Historically non-precise data were not studied suffi-
ciently. Some earlier work was done in interval arithmetics.
General non-precise data in form of so called fuzzy num-
bers were considered in the 1980s and first publications
combining fuzzy imprecision and stochastic uncertainty
came up, see Kacprzyk and Fedrizzi (1988). Some of these
approaches are more theoretically oriented. An applicable
approach for statistical analysis of non-precise data is given
in Viertl (1996).

In case of measurements of one-dimensional quantities
non-precise observations can be reasonably described by
so-called fuzzy numbers x*. Fuzzy numbers are general-
izations of real numbers in the following sense. Each real
number x € IR is characterized by its indicator function
I, (+). A fuzzy number is characterized by its so-called
characterizing function &(-) which is a generalization of
an indicator function. A characterizing function is a real
function of a real variable obeying the following:

L &: R—>[0,1]
2. V8 € (0,1] the so called §-cut Cs(x*) := {x € R:
&(x) > 8} is a non-empty and closed bounded interval

Remark 2 A characterizing function is describing the
imprecision of one observation. It should not be confused
with a probability density which is describing the stochas-
tic variation of a random quantity X.

A fundamental problem is how to obtain the character-
izing function of a non-precise observation. This depends
on the area of application. Some examples can be given.

Example 1  For data in form of gray intensities in one
dimension as boundaries of regions the gray intensity g(x)
as an increasing function of one real variable x can be used
to obtain the characterizing function &(-) in the follow-
ing way. Take the derivative L ¢(x) and divide it by its
maximum then the resulting function or its convex hull
can be used as characterizing function of the non-precise
observation.
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Non-Precise Samples

Taking observations of a one-dimensional continuous
quantity X in order to estimate the distribution of X usu-
ally a finite sequence x;', -+, x;, of non-precise numbers is
obtained. These non-precise data are given in form of n
characterizing functions &(-), -+, &:(-) corresponding to
X1, -+, x;,. Facing this kind of samples even the most simple
concepts like histograms have to be modified. This is nec-
essary by the fact that for a given class K; of a histogram in
case of a non-precise observation x;* with characterizing
function &;(-) obeying &;(x) > 0 for an element x € Kj and
&i(y) > 0 for an element y € K7 it is not possible to decide
if x is an element of K; or not.

A generalization of the concept of histograms is possi-
ble by so-called fuzzy histograms. For those histograms the
height of the histogram over a fixed class Kj is a fuzzy num-
ber h;". For the definition of the characterizing function of
h; compare Viertl (2006). For other concepts of statistics
in case of non-precise data compare Viertl (2006).

In case of multivariate continuous data x = (x1,---, x4 ), for
example the position of an object on a radar screen, the
observations are non-precise vectors x*. Such non-precise
vectors are characterized by so called vector-characterizing
functions {»(-,--+,-). These vector-characterizing func-
tions are real functions of # real variables x, -+, x, obeying
the following:

D {»: R" —[0,1]

(2) V6 € (0,1] the §-cut Cs(x™) == {x e R" : {(x(x) > 8}
is a non-empty, closed and star shaped subset of IR”
with finite #-dimensional content

In order to generalize statistics #(xi, -+, x ) to the situ-
ation of fuzzy data the fuzzy sample has to be combinded
into a fuzzy vector called fuzzy combined sample.

Generalized Classical Inference
Based on combined fuzzy samples point estimators for
parameters can be generalized using the so-called exten-
sion principle from fuzzy set theory. If 9(x1,-+,x,) is a
classical point estimator for 6, then 9 (x{, -+ x; ) = 9(x™)
yields a fuzzy element 6* of the parameter space ©.
Generalized confidence regions for 6 can be con-
structed in the following way. Let x(x1, -+, X, ) be a classical
confidence function for 8 with coverage probability 1 — «,
i.e., @14 is the corresponding confidence set. For fuzzy
data x{, -+, x;, a generalized confidence set ©;_,, is defined

as the fuzzy subset of ® whose membership function ¢(-)
is given by its values

sup{((x):xeM”,Q € K(x)}ifﬂ x: 0 €x(x)

9(0) = VO eO.

0 ifAx: 0 €x(x)

Statistical tests are mostly based on so-called test
statistics t(x1,---,xn). For non-precise data the values
t(xl* PPN x;) become non-precise numbers. Therefore test
decisions are not as simple as in the classical (frequently
artificial) situation. There are different generalizations pos-
sible. Also in case of non-precise values of the test statistic
it is possible to find »p-values and the test decision is pos-
sible similar to the classical case. Another possibility is to
define fuzzy p-values which seems to be more problem
adequate. For details see Viertl (2006).

There are other approaches for the generalization of
classical inference procedures to the situation of fuzzy data.
References for that are Gil et al. (1988) and Nather (1997).

Generalized Bayesian Inference

In Bayesian inference for non-precise data, besides the
imprecision of data there is also imprecision of the a-
priori distribution. So »Bayes’ theorem is generalized in
order to take care of this. The result of this generalized
Bayes’ theorem is a so-called fuzzy a-posteriori distribu-
tion * (| x{,++x; ) which is given by its so-called &-level
functions (- | x*) and 74 (- | ) respectively.

From the fuzzy a-posteriori distributions generalized
Bayesian confidence regions, fuzzy highest a-posteriori
density regions, and fuzzy predictive distributions can be
constructed. Moreover also decision analysis can be gen-
eralized to the situation of fuzzy utilities and non-precise
data.

Applications

Whenever measurements of continuous quantities have to
be modeled non-precise data appear. This is the case with
initial conditions for differential equations, time depen-
dent description of quantities, as well as in statistical anal-
ysis of environmental data.
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Introduction

Epidemiology is the study of the distribution and determi-
nants of health-related states or events in specified pop-
ulations and the translation of study results to control

health problems at the group level. The major objectives
of epidemiologic studies are to describe the extent of dis-
ease in the community, to identify risk factors (factors
that influence a persons risk of acquiring a disease), to
determine etiology, to evaluate both existing and new pre-
ventive and therapeutic measures (including health care
delivery), and to provide the foundation for developing
public policy and regulatory decisions regarding public
health practice. Epidemiologic studies provide research
strategies for investigating public health questions in a sys-
tematic fashion relating a given health outcome to the
factors that might cause and/or prevent this outcome in
human populations. Statistics informs many decisions in
epidemiologic study design and statistical tools are used
extensively to study the association between risk factors
and health outcomes.

When analyzing data for epidemiologic research, the
intent is usually to extrapolate the findings from a sample
of individuals to the population of all similar individuals
to draw generalizable conclusions. Despite the enormous
variety of epidemiologic problems and statistical solu-
tions, there are two basic approaches to statistical analysis:
regression and non-regression methods.

Types of Epidemiologic Studies

and Related Risk Measures

Epidemiologist, in conceptualizing basic types of epi-
demiologic studies, often group them as experimental
(e.g., randomized control trials) and observational (cohort,
case-control, and cross-sectional) studies. This manuscript
will focus on cohort and »case-control studies. The study
design determines how risk is measured (e.g., person-time
at risk, absolute risk, odds) and which probability model
should be employed.

In a cohort study, a group of persons are followed over
a period of time to determine if an exposure of interest
is associated with an outcome of interest. The key factor
identifying a cohort study is that the exposure of inter-
est precedes the outcome of interest. Depending on the
exposure, different levels of exposure are identified for each
subject and the subjects are subsequently followed over a
period of time to determine if they experienced the out-
come of interest (usually, health-related). Cohort studies
are also called prospective studies, retrospective cohort
studies, follow-up studies or longitudinal studies. Among
all the observational studies (which includes cohort, case-
control, and cross-section studies), cohort studies are the
“gold standard” However, the major limitation of cohort
studies is that they may require a large number of study
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participants and usually many years of follow-up (which
can be expensive). Loss to follow-up is another concern for
cohort studies. Disease prevalence in the population under
study may also determine the practicality of conducting a
cohort study. Should the prevalence of an outcome be very
low, the number of subjects needed to determine if there is
an association between an exposure and outcome may be
prohibitive within that population.

Cohort studies may result in counts, incidence (cumu-
lative incidence or incidence proportion), or incidence rate
of the outcome of interest. Suppose each subject in a large
population-based cohort study is classified as exposed or
unexposed to a certain risk factor and positive (case) or
negative (noncase) for some disease state. Due to the loss-
to-follow-up or late entry in the study, the data are usually
presented in terms of number of diseases developed per
person-years at risk.

The incidence rate in the exposed group and unex-
posed groups are then expressed as m = yi/hi per
person-year and 71, = y»/t; per person-year, respectively
(Table 1). In this situation, the numbers of disease devel-
oped in exposed and unexposed groups are usually mod-
eled assuming a Poisson distribution when the event is
relatively rare (see, Haight 1967; Johnson et al. 2005).

If there is no loss-to-follow-up or late entry in the study
(closed cohort in which all participants contribute equal
follow-up time), it may be convenient to present the data in
terms of proportion experiencing the outcome (i.e., cumu-
lative incidence or incidence proportion). A 2 x 2 table of
sample person-count data in a cohort study is presented in
Table 2.

Let p1 and p, be the probabilities denoting risks for
developing cases in the population for exposed and unex-
posed groups, respectively. The most commonly used sam-
ple estimates for p; and p, are obtained as

X1 X12
m=—andm=—.
ni ny

Statistical Methods in Epidemiology. Table1 Data
presented in terms of person-year at risk and the number of
diseases developed

Disease develops " Y2
Person-year at risk t t
Incidence rate nlt y2/ta

Statistical Methods in Epidemiology. Table 2 2 x 2 table of
sample person-count data

Cases xn X1 m
Noncases X1 X22 my
Total m ny N

Note that p; and p, are the incidence proportion in the
exposed and unexposed groups, respectively. In this situa-
tion, the probability of disease in exposed and unexposed
groups are usually modeled assuming a »binomial distri-
bution. Statistical estimation and related inference for inci-
dence can be found in Lui (2004) and Sahai and Khurshid
(1995).

It is oftentimes the goal in epidemiologic studies to
measure the association between an exposure and an out-
come. Depending upon how subjects are followed, in

regard to time, different measures of risk are used. Relative
risk (RR) is defined as

RR incidence proportion (or rate) in exposed group m
incidence proportion (or rate) in unexposed group 7

The relative risk is a ratio, therefore, it is dimensionless
and without unit. It is a measure of the strength of an
association between an exposure and a disease, and is the
measure used in etiologic studies. In most real-world situ-
ations, subjects enter the study at different times and they
are follow for variable lengths of time. In this situation, we
should consider the number of cases per the total person-
time contributed and the relative rate that approximates
the RR defined as

incidence rate in exposed group m

Relative rate = — - = —.
incidence rate in unexposed group 7
Note that the units for 71; and 7, are per person-year. As it
is a ratio, it is also unitless. Another measure of risk is the
attributable risk (AR) which is defined as:

AR = incidence rate in exposed group — incidence rate
in unexposed group = m — 7>.

In the rare event of a closed cohort study framework, m;
and m; can be replaced by p; and p,. Attributable risk is
the magnitude of disease incidence attributable to a spe-
cific exposure. It tells us the most we can hope to accom-
plish in reducing the risk of disease among the exposed
if we totally eliminated the exposure. In other words,
AR is a measure of how much of the disease incidence
is attributable to the exposure. It is useful in assessing
the exposures public health importance. Attributable risk
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percent (ARP) in exposed group, the percent of disease
incidence attributable to a specific exposure, is also used
to measure the risk of disease

(RR - 1)

ARP = x 100.

ARP tells us what percent of disease in the exposed pop-
ulation is due to the exposure. The statistical inference on
these measures of risk is discussed extensively in the liter-
ature, see, for example, Lui (2004) and Sahai and Khurshid
(1995).

Case-control studies (see also »Case-Control Studies)
compare a group of persons with a disease (cases) with
a group of persons without the disease (controls) with
respect to history of past exposures of interest. In contrast
to a cohort study where an exposure of interest is deter-
mined preceding the development of future outcome, in a
case-control, the disease status is known a priori while the
exposure of interest is subsequently assessed among cases
and controls.

Although the underlying concept of case-control stud-
ies is different from cohort study, the data for case-control
study can be summarized as in a 2 x 2 table in Table 2. We
can calculate the probability that cases were exposed as

X
Pr(exposed|case) = -

n

and the probability that cases were not exposed as

Pr(unexposed|case) = M2
my

We can also calculate the odds of a case being exposed as

xu/m_ xn

Xlz/ml X12

and the odds of a case not being exposed as x21 /x22. In case-
control studies, although risk factors might contribute to
the development of the disease, we cannot distinguish
between risk factors for the development of the disease
and risk factors for cure or survival. A major weakness in
case control studies is that they are inherently unable to
discern whether the exposure of interest precedes the out-
come (with few exceptions). Additionally, there is some
difficulty in the selection of controls. It is often the case
that selected controls are not necessarily from the source
population that gave rise to the cases. Therefore, mea-
surement of association can be problematic. We cannot
measure incidence rate (or proportion) in the exposed and
non-exposed groups, and therefore cannot calculate rate
ratios or relative risk directly. Because direct measures of

risk are not applicable here, it is necessary to describe the
relationship between an exposure and outcome using odds
of exposure. The odds ratio (OR), ratio of the odds of
exposure in cases and the odds of exposure in controls, is

xu/xlz _ XnXx22

OR = = .
x21/X22 X12X21

The odds ratio is the cross-product ratio in the 2 x 2
table. The odds ratio is a good approximation of the relative
risk when the disease being studied occurs infrequently
in the population under study (case-control studies are
conducted most frequently in this situation). An OR =1
indicates that there is no association between exposure and
outcome. When OR > 1 (OR < 1), it indicates a positive
(negative) association between the exposure and disease
and the larger (smaller) the OR, the stronger the associ-
ation. An example of the calculation and interpretation of
the odds ratio is given by Bland and Altman (2000).

Note that there are other variations in case-control
studies and related statistical techniques which are appli-
cable in particular situations. For instance, McNemar’s test
is used in matched case-control studies. For an exten-
sive review on major development on statistical analysis of
case-control studies, one can refer to Breslow (1996).

Regression vs. Non-Regression Methods
In analyzing data from epidemiologic studies, non-
regression and regression methods are often used to study
the relationship between an outcome and exposure. Non-
regression methods of analysis control for differences in
the distribution of covariates among subjects in exposure
groups of interest by stratifying, while regression methods
control for covariates by including possible confounders
(see »Confounding and Confounder Control) of the asso-
ciation of interest in a regression model. In some situa-
tions, regardless of whether regression techniques are used,
stratification may still be necessary.

Statistical techniques used in epidemiologic stud-
ies are determined by the study design and data type.
For cohort or case-control studies dealing with propor-
tions, non-regression statistical methods based on bino-
mial or negative binomial distribution could be applied,
depending on the sampling method used (if any). Mantel-
Haenszel procedures and »Chi-square tests are the com-
mon approaches to access the association between the
disease and risk factor with or without stratification. Logis-
tic regression and generalized linear models are other
possible regression methods that can be used for obser-
vational studies (see, for example, Harrell 2001). For stud-
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ies with count data, statistical methods based on Poisson
distribution could be applied (Cameron and Trivedi 1998).

Study designs that employ matched pairs or one-to-one
matching are often approached by methods that assume a
certain uniqueness of each member of the pair. The ratio-
nale for matching resembles that of blocking in statistical
design, in that each stratum formed by the matching strat-
egy is essentially the same with respect to the factors being
controlled. When matching in cohort or case-control stud-
ies, McNemar’s test, Mantel-Haenszel test and conditional
logistic regression are normally used for analysis.

When the outcome variable is time-to-event, non-
regression statistical estimation techniques for survival
curves and log-rank tests can be applied, for example, the
well-known Kaplan-Meier estimator can be used to esti-
mate the survival curve. Lifetime parametric or semipara-
metric regression models, such as the Weibull regression
model and Cox proportional hazard model (see »Hazard
Regression Models), can be used to model time-to-event
data while controlling for possible confounders.

Cross References

»Binomial Distribution

» Biostatistics

»Case-Control Studies

»Confounding and Confounder Control

»Geometric and Negative Binomial Distributions
»Hazard Regression Models

»Incomplete Data in Clinical and Epidemiological Studies
»Medical Statistics

»Modeling Count Data

»Poisson Regression

»Time Series Models to Determine the Death Rate of a
Given Disease
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Overview

Optimal investment strategies and efficient risk manage-
ment often need high-performance predictions of market
evolutions. These predictions are usually provided by sta-
tistical models based on both statistical analyses of finan-
cial historical data and theoretical modeling of financial
market working.

One of the pioneering works of financial market sta-
tistical modeling is the Ph.D. thesis of Bachelier (1900)
who was the first to note that financial stock prices have
unforecastable and apparently random variations. Bache-
lier introduced the Brownian process to model the price
movements and to assess contingent claims in financial
markets. He also introduced the random walk assump-
tion (see »Random Walk) according to which future stock
price movements are generally unforecastable. More pre-
cisely, he assumed that the price evolves as a continuous
homogeneous Markov process (see »Markov Processes).
Then, by considering the price process as a limit of random
walks, he showed that this process satisfies the Chapman-
Kolmogorov equation and that the Gaussian distribution
with the linearly increasing variance solves this equation.

Between the 1920s and the 1960s, many economists and
statisticians (Coles, Working, Kendall, Samuelson, etc.)
analyzed several historical stock prices data and supported
the random walk assumption.

In the 1960s, Samuelson and Fama gave both theoreti-
cal and empirical proofs of the random walk assumption.
They introduced the important efficient market hypothesis
stating that, in efficient markets, price movements should
be unforecastable since they should fully incorporate the
expectations and informations of all market participants.

Mandelbrot in 1963 criticized the Bachelier Gaussian
assumption and stated that “Despite the fundamental impor-
tance of the Brownian motion, (see » Brownian Motion and
Diffusions) it is now obvious that it does not account for
the abundant data accumulated since 1900 by empirical
economists, simply because the empirical distributions of
price changes are usually too peaked to be relative to sam-
ples from Gaussian population.” It is consensually assumed
now that financial returns are generally leptokurtic and
should be modeled by heavy tailed probability distribu-
tions. Many mathematical tools were suggested to model
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this heavy tailed property: Levy process (see »Lévy Pro-
cesses), alpha-stable processes, Pareto-type distributions,
Extreme value theory, long memory processes, GARCH
time series, etc. Leptokurtosis and heteroskedasticity are
stylized facts observed in log-returns of a large variety
of financial data (security prices, stock indices, foreign
exchange rates, etc.).

In the following, it will be assumed that a market
economy contains N financial assets, Sj: and R;; will denote,
respectively, the daily price and log-return of the j-th asset
on day t (Rj; = log(Sjt/Sjt-1))- Rfm) will denote the log-
return on day ¢ of the market portfolio. It will also be
assumed that there exists a single deterministic lending
and borrowing risk-free rate denoted r.

Markowitz in 1952 developed the mean-variance port-
folio optimization, where it is assumed that rational
investors choose among risky assets purely on the basis of
expected return and risk (measured as returns variance).
Sharpe in 1964 presented the Capital Asset Pricing Model
(CAPM) where the excess return over the risk-free rate
r of each asset j is, up to noise, a linear function of the
excess return of the market portfolio. In other words, for
each asset j: Rjs —r = o + ,Bj(Rt(m) — 1) + €jr; where the
noise sequence ¢j; is uncorrelated with the market portfolio
return.

A third major step in the history of statistical modeling
of financial markets concerns the problem of pricing deriva-
tive securities. Merton, Black, and Scholes introduced a
reference paradigm for pricing and hedging derivatives
on financial assets. Their paradigm, known as the Black-
Scholes formula, is based on continuous time modeling of
asset price movements. It gave an explicit formula for pric-
ing European options and got tremendous impact on the
financial engineering field. Since 1973, the Black-Scholes
model was used to develop several extensions combining
financial, mathematical, and algorithmic refinements.

Alternative statistical modeling approaches used time
series statistical tools. Since the 1980s, time series tools
are very frequently used in everyday manipulations and
statistical analysis of financial data. Statistical Time series
models, such as ARMA, ARIMA, ARCH, GARCH, state
space models, and the important Granger cointegration
concept, are often used to analyze the statistical inter-
nal structure of financial time series. These models, and
especially the Engel Auto-Regressed Conditionally Het-
eroskedastic (ARCH) model, are well suited to the nature
of financial markets, they capture time dependencies,
volatility clustering, comovements, etc.

In the 1990s, the statistical modeling of financial mar-
kets data was linked to the rich literature of Extreme Value
Theory (EVT). Many researchers found that EVT is well

suited to model maxima and minima of financial returns.
This yielded a more efficient assessment of financial market
risks. New EVT-based methods were developed to esti-
mate the Value-at-Risk (VaR), which is now one of the
most used quantitative benchmarks for managing financial
risk (recommended by the Basel international committee
of banking supervision).

In the last 10 years, copula functions (see »Copulas and
»Copulas: Distribution Functions and Simulation) have
been used by many finance researchers to handle observed
comovements between markets, risk factors, and other rel-
evant dependent financial variables. The use of copula for
modeling multivariate financial series open many chal-
lenging methodological questions to statisticians, espe-
cially concerning the estimation of copula parameters and
the choice of the appropriate copula function.

It is worth noting that many works combining statis-
tical science and market finance were rewarded by Nobel
prizes in economics: Samuelson in 1970, Markowitz and
Sharpe in 1990, Merton and Scholes in 1997, and Engle and
Granger in 2003.

Due to space limitations, only two selected topics
will be detailed in the following: Black-Scholes modeling
paradigm and the contribution of Extreme Value Theory
to the market risk estimation.

Black-Scholes Model

The Black-Scholes model is one of the most used option-
pricing models in the trading rooms. For liquid secu-
rities, quotations could occur every 30sec; continuous
time models could therefore give good approximations to
the variations of asset prices. Price evolution of a single
asset is modeled here by a continuous time random pro-
cess denoted {S;} g, . Black and Scholes assume that the
studied market has some ideal conditions: Market effi-
ciency, no transaction costs in buying or selling the stock,
the studied stock pays no dividend, and known and con-
stant risk-free interest-rate r.

The basic modeling equation of Black, Scholes, and
Merton, comes from the updating of a risky investment
in a continuous time modeling: (Sty4: — S¢)/St = pdt +
0 (Bt 4 — By ), where p is a constant parameter called drift
giving the global trend of the stock price; o is a nonnegative
constant called volatility giving the magnitude of the price
variations and B, 4; — B; are independent increments (the
independence results from the market efficiency assump-
tion) from a Brownian motion, i.e., random centered Gaus-
sian variables. So in Black-Scholes dynamics, the stock
price {S: }er, satisfies the following stochastic differential
equation :dS;/S; = y dt + 0dB;.
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Using It6 lemma on Black-Scholes equation gives the
explicit solution of the previous stochastic differential
equation: S; = Sp exp [(y - 02/2) t+ O'Bt], which is a geo-
metric Brownian motion. The model parameters y and o
are easily estimated from data.

The Black-Scholes model is still a reference tool for
pricing financial derivatives. Its simple formula makes it
an everyday benchmark tool in all trading rooms. But
its restrictive assumptions contradict many stylized facts
recognized by all financial analysts (volatility clustering,
leptokurtosis, and left asymmetry of the financial returns).

Many works have extended the Black-Scholes model:
in the stochastic volatility extensions, for example, prices
are modeled by the two following equations: dS; = S;[ p dt+
0+dB:] and do; = o:[vdt + {dW;], where B and W are
two correlated Brownian motions having a constant cor-
relation coeflicient p. Both parametric and nonparametric
estimators are available for the parameters y, v, {, p, and 0y.

Challenging research topics now concern the problem
of pricing sophisticated derivative products (American
options, Asian or Bermudian options, swaptions, etc.).
Longstaff and Schwartz, for example, gave an interesting
pricing algorithm for American options, where they com-
bined Monte Carlo simulations with »least squares to esti-
mate the conditional expected payoff of the optionholder.
Monte Carlo simulation is now widely used in financial
engineering; for example, Broadie and Glasserman 1996
used simulations to estimate security price derivatives
within a modeling framework much more realistically than
the simple Black-Scholes paradigm. Monte Carlo simula-
tions are also used in stress testing (which identifies poten-
tial losses under simulated extreme market conditions)
and in the estimation of nonlinear stochastic volatility
models.

EVT and Financial Risks

The Extreme Value theory (EVT) gives interesting tools
for modeling and estimating extreme financial risk (see
Embrecht et al. 1997 for a general survey). One com-
mon use of EVT concerns the estimation of Value-at-
Risk (an extreme quantile of the loss distribution). If at
day t, VaR,(«) denotes the Value-at-Risk of a single asset
at confidence level 1 — o with a prediction horizon of
one day, then VaR writes: Pr(Res1 < —VaRe(a)|[H:) =
a, where R:y; is the return at t + 1 and H; denotes
the o—algebra modeling all the information available at
time ¢. Many statistical methods were used to estimate the
extreme quantile VaR,(«). McNeil and Frey (2000), for
example, combined ARCH and EVT to take into account
volatility clustering and leptokurtosis. They used an AR(1)
model for the average returns y; and a GARCH(1,1) with

pseudo-maximum-likelihood estimation for the stochastic
volatility dynamics o;. McNeil and Frey used the previous
AR-GARCH for estimating the parameters of the model
Ry = pt + 0 Z; where {Z,}, is a strict white noise process.
EVT peaks-over-threshold approach is then used on the
AR-GARCH-residuals zi, . . ., zx in order to estimate their
extreme quantiles. These estimates are plugged in the esti-
mator of the VaR;(«). The idea behind this method is the
elimination of data dependence by the use of time series
models and then the use of EVT tools to estimate extreme
quantiles of the i.i.d. residuals.

When VaR of a multi-asset portfolio is considered,
multivariate statistical tools should be used: variance-
covariance, multivariate GARCH, simulation approach,
Multivariate Extreme Theory, dynamic copula approach,
etc. In the variance-covariance approach, for example, the
portfolio returns are modeled as a linear combination of
slected market factors. The copula approach gives generally
more efficient portfolio VaR estimations since it improves
the modeling of the dependence structure between the
studied assets and the risk factors.

Conclusions

Statistical science has provided essential tools for market
finance. These important contributions concern the prob-
lems of portfolio selection and performance analysis, the
pricing and hedging of derivative securities, the assess-
ment of financial risks (market risk, operational risk, credit
risk), the modeling of crises contagion, etc. Many chal-
lenging research topics concern both statistics and finance:
the huge amount of data (called high-frequency data) need
new statistical modeling approaches. The high complex-
ity of the new financial products and the management of
portfolios with high number of assets need more tractable
multivariate statistical models. New research challenges
are also given by the multivariate extreme value theory
where copula functions gave promising results when used
to model extreme comovements of asset prices or stock
indices. Copula modeling has become an increasingly pop-
ular tool in finance, especially for modeling dependency
between different assets. However many statistical ques-
tions remain open: copula parameter estimations, sta-
tistical comparison of competitive copula, etc. Another
use of copula functions in market finance concerns the
modeling of crises contagion (see, e.g., Rodriguez 2007).
Many empirical works proved that dependence struc-
ture between international markets during crises is gen-
erally nonlinear and therefore better modeled by copula
functions.
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Mathematical modelling is a key element of quantitative
marketing and helps companies around the globe in mak-
ing important marketing decisions about launching new

products and managing existing ones. Most mathemati-
cal models used in marketing research are either purely
statistical or include elements of statistical models.

An extensive discussion (by the top market research
academics) of the state-of-art in the field of marketing
modelling and its prospects for the future is contained
in Steemkamp (2000), a special issue of the Interna-
tional Journal of Research in Marketing. One can consult
Steemkamp (2000) for many references related to the sub-
ject; see also recent books (Wierenga 2008; Wittink et al.
2000; Mort 2001; Zikmund and Babin 2009).

We look at the field of market modelling from a view-
point of a professional statistician with twenty years of
experience on designing and using statistical models in
market research. We start with distinguishing the following
types of statistical models used in market research:

Direct simulation models

Standard statistical models

Models of consumer purchase behaviour

Dynamic models for modelling competition, pricing
and advertising strategies

5. Statistical components of inventory and other manage-
ment science models

LN -

Let us briefly consider these types of models separately.

1. Direct simulation models. These are specialized mod-
els based on attempts to directly imitate the market (e.g.,
via the behaviour of individual customers) using a syn-
ergy of stochastic and deterministic rules. These models
were popular 20-30 years ago but are less popular now.
The reasons are the lack of predictive power, huge num-
ber of parameters in the models and impossibility of their
validation.

2. Standard statistical models. All standard statistical
models and methods can be used in market research,
see Mort (2001); Zikmund and Babin (2009); Rossi et al.
(2005); Hanssens et al. (2003). Most commonly, the follow-
ing statistical models are used:

e Various types of regression

e ARIMA and other time series models

e Bayesian models

e Models and methods of multivariate statistics; espe-
cially, structural equation and multinomial response
models, conjoint, factor, and principal component
analyses

3. Models of consumer purchase behaviour. Several types
of statistical models are used for modelling consumer pur-
chase behaviour including brand choice. The following
three basic models (and some of their extensions) have
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proved to be the most useful: Mixed »Poisson processes,
the Dirichlet model, and Markovian models.

The mixed Poisson process model assumes that a cus-
tomer makes his/her purchase according to a Poisson pro-
cess with some intensity A where A is random across the
population. In the most popular model, called Gamma-
Poisson, A has Gamma distribution (with two unknown
parameters); this yields that the number of purchases for
a given period is the Negative Binomial Distribution. Typ-
ical questions, which the Poisson process model answers,
is the forecasting of the behaviour of the market research
measures (like penetration, purchase frequency and repeat
buying measures) in the form of the so-called growth
curves. Extensions of the mixed Poisson models cover the
issues like the zero-buyer problem (some zero-buyers do
have a positive propensity to buy but some other don't),
seasonality of the market and the panel flow-through.

The Dirichlet model is a brand-choice model. It
assumes that customers make their brand choice inde-
pendently with certain propensities; these propensities are
different for all customers and are independent realiza-
tions from the Dirichlet distribution which parameters are
determined by the market shares of the brands. In Marko-
vian brand-choice models, the propensity to buy a given
brand for a random customer may vary depending on
either the previous purchase or other market variables.
These models are more complicated than the mixed Pois-
son process and Dirichlet models but in some circum-
stances are easily applicable and sometimes are able to
accurately describe some features of the market.

Of course, the models above are unrealistic on the
individual level (e.g., few people have the Poisson pro-
cess pattern as their purchase sequence). However, these
models (and especially the mixed Poisson model) often fit
data extremely accurately on the aggregated level (when
the time period considered and the number of customers
are sufficiently large). These models can be classified as
descriptive (rather than “prescriptive”) and help in explain-
ing different aspects of market research dynamics and
some phenomena related to the brand-choice.

4. Dynamic models for modelling competition, pricing
and advertising strategies. There is extensive literature on
this subject, see, e.g., Erickson (1991). The majority of the
models are so-called differential games or simpler models
still written in terms of differential equations. The mod-
els are deterministic and the statistical aspect only arrives
through the assumption that the data contain random
errors. Statistical modelling part is therefore negligible in
these models. Alternatively, in some Markovian brand-
choice models mentioned above, there is an option of
including the market variables (e.g., promotion) into the

updating rule for the buying propensities. These models
are proper stochastic models but they are often too compli-
cated (have too many parameters) and therefore difficult to
validate.

5. Statistical components of inventory and other man-
agement science models. Inventory and other management
science models applied in market research are typically
standard models of Operations Research, see Ingene and
Parry (2004) for a recent review of these models. Despite
these models often have a large stochastic component,
they do not represent anything special from the statistics
view-point.

Statistical models are used for the following purposes:
(a) forecasting the market behaviour of a new brand to pre-
pare its launch and (b) managing existing brands. In case
(a), the models are usually based solely on standard statisti-
cal models, type 2 above. Sometimes, other types of models
(especially, large simulation models, type 1) are used too.
A lot of specific market research data are often collected
to feed these models. These data includes market surveys,
various types of questionnaires and focus group research
in direct contact with customers. All available market data,
for example economic trends and specific industry sector
reports, is used too. In case (b), the models are used for
making decisions about pricing, promotion and advertis-
ing strategies, production and inventory management etc.
All available statistical models and methods are used to
help managers to make their decisions.

While reading academic papers and books on market-
ing research, one can get an impression that mathematical
and statistical modelling in marketing is a mature sub-
ject with many models developed and used constantly for
helping market research managers in working out their
decisions. Indeed, there are many models available (some
of them are quite sophisticated). However, only a small
number of them are really used in practice: the major-
ity of practical models can be reduced either to a simple
regression or sometimes to another standard model among
those mentioned above. One of the reasons for this gloomy
observation is the fact that managers rarely want a descrip-
tion of the market. Instead, they want ‘a prescription’; that
is, a number (with a hope that no confidence interval is
attached to this number) which would lead them to a right
decision. Another reason is the fact that only a very few
models used in market research satisfy the following natu-
ral requirements for a good statistical model: (a) simplicity,
(b) robustness to the deviations from the model assump-
tions, (c) clear range of applicability, and (d) empirical
character, which means that the models have to be built
with the data (and data analysis) in view and with the
purpose of explaining/fitting/forecasting relevant data.
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Despite huge amounts of market data is available to
analysts, these data are typically messy, not reliable, badly
structured and become outdated very quickly. Develop-
ment of reliable statistical models dealing with such data
is hard. The progress in understanding all these issues and
tackling them by means of the development of appropriate
models and making them correctly applicable is visible but
it is justifiably slow.
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Natural language processing (NLP) is a field of artifi-
cial intelligence concerned with the interactions between
computers and human (natural) languages. It refers to a
technology that creates and implements ways of executing

various tasks concerning natural language (such as design-
ing natural language based interfaces with databases,
machine translation, etc.). NLP applications belong to
three main categories:

1. Text-based applications (such as knowledge acqui-
sition, information retrieval, information extraction,
text summarization, machine translation, etc.)

2. Dialog-based applications (such as learning systems,
question answering systems, etc.)

3. Speech processing (although NLP may refer to both
text and speech, work on speech processing has grad-
ually evolved into a separate field)

Natural language engineering deals with the implementa-
tion of large-scale natural language—based systems. It refers
to the related field of Human Language Technology (HLT).

NLP represents a difficult and largely unsolved task.
This is mainly due to the interdisciplinary nature of the
problem that requires interaction between many sciences
and fields: linguistics, psycholinguistics, computational
linguistics, philosophy, statistics, computer science in gen-
eral, and artificial intelligence in particular.

Statistical NLP has been the most widely used term to
refer to nonsymbolic and nonlogical work on NLP over
the past decade. Statistical NLP comprises all quantitative
approaches to automated language processing, including
probabilistic modeling, information theory, and linear
algebra (Manning and Schiitze 1999).

As computational problems, many problems posed
by NLP (such as WSD - word sense disambiguation)
were often described as Al-complete, that is, problems
whose solutions presuppose a solution to complete natu-
ral language understanding or common-sense reasoning.
This view originated from the fact that possible statisti-
cal approaches to such problems were almost completely
ignored in the past. As it is well known, starting with the
early 1990s, the artificial intelligence community witnessed
a great revival of empirical methods, especially statistical
ones. This is due to the success of statistical approaches,
as well as of machine learning, in solving problems such
as speech recognition or part-of-speech tagging. It was
mainly research into speech recognition that inspired the
revival of statistical methods within NLP, and many of the
techniques used nowadays were developed first for speech
and then spread over into NLP (Manning and Schiitze
1999). Nowadays statistical methods and machine learn-
ing algorithms are used for solving a great number of
problems posed by artificial intelligence in general and by
NLP in particular. Furthermore, the availability of large
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text corpora has changed the scientific approach to lan-
guage in linguistics and cognitive science, with language
and cognition being viewed as probabilistic phenomena.

From the point of view of NLP, the two main compo-
nents of statistics are:

1. Descriptive statistics: methods for summarizing (large)
datasets

2. Inferential statistics: methods for drawing inferences
from (large) datasets

The use of statistics in NLP falls mainly into three cate-
gories (Nivre 2002):

1. Processing: We may use probabilistic models or algo-
rithms to process natural language input or output.

2. Learning: We may use inferential statistics to learn
from examples (corpus data). In particular, we may
estimate the parameters of probabilistic models that
can be used in processing.

3. Evaluation: We may use statistics to assess the perfor-
mance of language processing systems.

As pointed out in Manning and Schiitze (1999), “com-
plex probabilistic models can be as explanatory as complex
non-probabilistic models — but with the added advantage
that they can explain phenomena that involve the type
of uncertainty and incompleteness that is so pervasive in
cognition in general and in language in particular”

A practical NLP system must be good at making dis-
ambiguation decisions of word sense, word category, syn-
tactic structure, and semantic scope. One could say that
disambiguation abilities, together with robustness, repre-
sent the two main hallmarks of statistical natural language
processing models. Again as underlined in Manning and
Schiitze (1999), “a statistical NLP approach seeks to solve
these problems by automatically learning lexical and struc-
tural preferences from corpora... The use of statistical
models offers a good solution to the ambiguity problem:
statistical models are robust, generalize well, and behave
gracefully in the presence of errors and new data. Thus
statistical NLP methods have led the way in providing
successful disambiguation in large scale systems using nat-
urally occurring text. Moreover, the parameters of Sta-
tistical NLP models can often be estimated automatically
from text corpora, and this possibility of automatic learn-
ing not only reduces the human effort in producing NLP
systems, but raises interesting scientific issues regarding
human language acquisition.”
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Problem Description

Mathematically, pattern recognition is a classification
problem. Consider the recognition of characters. We wish
to design a system such that a handwritten symbol will be
recognized asan “A;” a “B,” etc. In other words, the machine
we design must classify the observed handwritten charac-
ter into one of 26 classes. The handwritten characters are
often ambiguous, and there will be misclassified characters.
The major goal in designing a pattern recognition machine
is to have a low probability of misclassification.

There are many problems that can be formulated as
pattern classification problems. For example, the weather
may be divided into three classes, fair, rain, and possible
rain, and the problem is to classify tomorrow’s weather into
one of these three classes. In the recognition of electrocar-
diograms, the classes are disease categories plus the class of
normal subjects. In binary data transmission, a “one” and a
“zero” are represented by signals of amplitudes A; and Ao,
respectively. The signals are distorted or corrupted by noise
when transmitted over communication channels, and the
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receiver must classify the received signal into “ones” and
“zeros” Hence, many of the ideas and principles in pattern
recognition may be applied to the design of communica-
tion systems and vice versa (Nechval 1997; Nechval and
Nechval 1999).

Pattern recognition theory deals with the mathemati-
cal aspects common to all pattern recognition problems.
Application of the theory to a specific problem, however,
requires a thorough understanding of the problem, includ-
ing its peculiarities and special difficulties (Bishop 2006).

The input to a pattern recognition machine is a set of
p measurements, and the output is the classification. It is
convenient to represent the input by a p-dimensional vec-
tor x, called a pattern vector, with its components being the
p measurements. The classification at the output depends
on the input vector x, hence we write

C = d(x). )

In other words, the machine must make a decision as to
the class to which x belongs, and d(x) is called a decision
function.

A pattern recognition machine may be divided into
two parts, a feature extractor and a classifier. The classi-
fier performs the classification, while the feature extractor
reduces the dimensionality of input vectors to the clas-
sifier. Thus, feature extraction is a linear or nonlinear
transformation

y=Y(x), 2)

which transforms a pattern vector x (in the pattern space
Q) into a feature vector y (in a feature space Qy). The
classifier then classifies x based on y. Since Q, is of lower
dimensionality than Q, the transformation is singular
and some information is lost. The feature extractor should
reduce the dimensionality but at the same time maintain a
high level of machine performance. A special case of fea-
ture extraction is feature selection, which selects as features
a subset of the given measurements.

The division of a pattern recognition machine into fea-
ture extractor and classifier is done out of convenience
rather than necessity. It is conceivable that the two could be
designed in an unified manner using a single performance
criterion. When the structure of the machine is very com-
plex and the dimensionality p of the pattern space is high,
it is more convenient to design the feature extractor and
the classifier separately.

The problem of pattern classification may be discussed
in the framework of hypothesis testing. Let us consider a
simple example. Suppose that we wish to predict a stu-
dent’s success or failure in graduate study based on his
GRE (Graduate Record Examination) score. We have two

hypotheses - the null hypothesis Hy, that he or she will be
successful, and the alternative hypothesis Hj, that he or she
will fail. Let x be the GRE score, fy(x) be the conditional
probability density of x, given that the student will be suc-
cessful, and fi (x) be the conditional density of x, given that
he or she will fail. The density functions fo (x) and fi (x) are
assumed known from our past experience on this problem.
This is a hypothesis testing problem and an obvious deci-
sion rule is to retain Hy and reject H; if x is greater than
a certain threshold value h, and accept H; and reject Hy
if x < h. A typical example of multiple hypothesis testing
is the recognition of English alphabets where we have 26
hypotheses.

lllustrative Examples

One of the most important activities that an employer has
to perform is recognition of applicant for realization of
project with good contract risk. The employer is defined
as a firm or an institution or an individual who is investing
in a development. The above problem is a typical example
of a pattern classification problem. An applicant for con-
tract can be represented by a random p x 1 vector X =
(X1,...,Xp)" of features or characteristics. We call this px1
vector the applicant’s pattern vector. Using historical data
and the applicant’s pattern vector, a decision-maker must
decide whether to accept or reject the contract request. The
historical data are summarized in a collection of pattern
vectors. There are pattern vectors of former applicants who
received contract and proved to be good risks, and there
are patterns of former applicants who were accepted and
proved to be poor risks. The historical data should include
the pattern vectors and eventual contract status of appli-
cants who were rejected. The eventual contract status of
rejected applicants is difficult to determine objectively, but
without this information, the historical data will contain
the basis of former decision rules. The historical data con-
sist of the pattern vectors and eventual contract status of
n applicants; n = ny + ny: m of the n applicants proved to
be good contract risks, and n, proved to be poor contract
risks. Given this situation and a new applicant’s pattern
vector, the decision-maker deals with the problem of how
to form his or her decision rule in order to accept or reject
new applicants. In this entry, we shall restrict attention to
the case when p(X; H;), i = 1,2, are multivariate normal
with unknown parameters. All statistical information is
contained in the historical data. In this case, the procedure
based on a generalized likelihood ratio test is proposed.
This procedure is relatively simple to carry out and can be
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recommended in those situations when we deal with small
samples of the historical data (Nechval and Nechval 1998).
Generalized Likelihood Ratio Test for Applicant Recogni-
tion. Let X be arandom p x1 vector that is distributed in the
population IT; (i = 0,1,2) according to the p-variate non-
singular normal distribution N(a;, Q;) (i = 0,1,2). Let xo
be an observation on X in ITy. The n; independent obser-
vations from IT; will be denoted by {x;,j = 1,2,...,n}
distributed with the density p(xij;a;,Q;) for i = 1,2 and
the density of the unidentified observation xo will be taken
as p(xo;a0, Q). The a;s and Q;s are unknown and it is
assumed that either (ap,Q,) = (a1,Q,), or (a0, Q) =
(22,Q;), and a; # a3, Q; # Q,. Assume for the moment
that there are prior odds of £/(1 - &) in favor of type 1 for
xo. Then the likelihood ratio statistic for testing the null
hypothesis H; : (ag = a1, Q, = Q;) versus the alternative
hypothesis H; : (ag = a2, Qy = Q,) is given by

2 n;
5”}_?"?(1(0;al,Q1)HHP(Xij5ai,Qi)
1 i=1 j=1

LR = T E)
(1= &) max p(xos a2, Q) [ T[ [P (xijs 2, Q)

i=1j=1

where
p(x0320,Qg) = (21) "I Qo
exp {—%(Xo ~a0)'Qq (%0 - 30)}, (4)
p(xipanQ) = (2m) Q™
exp {_%(XU -a;)'Q; " (xij - a,-)} NE)

The maximum likelihood estimators of the unknown
parameters under H; are

. X +X

a=—"d, (6)
m+1
a =X, (7)
P nm — —\/
= 1 _ _ ,
Q —l [(”1 )Sl+n1+1(xo X1) (o Xl)] (®)
—~ ny —1
Q,=——8, )
np
where
X; = ng/ni, (10)
=1

n;

Si=Y (xj - %) (xj - %)/ (ni = 1),

j=1

i=12, (1)

with obvious changes for the corresponding estimators
under H,. Substitution of the estimators in (3) gives, after

some simplification,

LR- [ (m +1)(m2 = 1) ]P” [(m/(nz £ 1)) ( 2| )‘/2

(2 + (=1 | | (mf(m + 1))

(e nana()/ (nf -1) ™" ) @
(1+n1v1(x0)/(n12_1))(m+1)/2 —i)

IS

where
vi(xo) = (x0 - %;)'S7 (%0 - %), i=12  (13)

For Q, = Q,, the likelihood ratio statistic simplifies to

(m+my+1)/2
(%) (14)

and hypothesis H; or H; is favoured according to whether
LR is greater or less than 1, that is,

n2v2(x0)

(l’lz + 1)(}’!1 +ny; — 2)
mvi(xo)

(I’l] + 1)(1’11 + 1y —2)

LR =

>1, then H;
LR . (15)

<1, then H,

The problem of detecting the unknown deterministic
signal s in the presence of a clutter process, which is incom-
pletely specified, can be viewed as a binary hypothesis-
testing problem (Nechval 1992; Nechval et al. 2004). The
decision is based on a sample of observation vectors x; =
(xit>-..>xip)’s i = 1(1)n, each of which is composed of
clutter w; = (wi, ..., w,-p)' under the null hypothesis Hy
and a signal s = (s1,...,s,)" added to clutter w; under the
alternative H;, where n > p. The two hypotheses that the
detector must distinguish are given by

Hy: X =W (clutter alone), (16)
H:X=W+cs (signal present), 17)

where
X=(x1,...,%), (18)
W= (wi,...,wn), (19)

are n x p random matrices, and
c=(1,...,1) (20)

is a column vector of n units. It is assumed that w;,
i = 1(1)n, are independent and normally distributed with
common mean 0 and covariance matrix (positive definite)
Q,ie,

wi ~N,(0,Q), Vi=1(1)n. (21)
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Thus, for fixed n, the problem is to construct a test, which
consists of testing the null hypothesis

H() X~ NP(O,Q), Vi= l(l)n, (22)
versus the alternative
Hi:xi ~Np(s,Q), Vi=1(1)n, (23)

where the parameters Q and s are unknown.

One of the possible statistics for testing Hp versus
Hj is given by the generalized maximum likelihood ratio
(GMLR)

GMLR = max Ly, (X; 0 Ly, (X:0), (24
maxx L ( )/rgre%f 1, (X:0),  (24)

where 0 = (5,Q),00 = {(5,Q) : s = 0,Q € Qp}, 01 =
0 -0,0 ={(5Q) : s € R,Q € Qp}, Qp denotes the
set of p x p positive definite matrices. Under Ho, the joint
likelihood for X based on (22) is

L, (X;0) = (2m) "**|Q| ™ exp ( 2 X?Q’lxi/z) '
i=1
(25)
Under Hj, the joint likelihood for X based on (23) is
Ly (X:0) = (27) "I

exp (— Z (xi—8)'Q ' (x; - s)/Z) . (26)

i=1

It can be shown that

GMLR = [Q,|"|Q,| ", (27)

and
Q, = X'X/n, (28)
Q = (X' -s)(X -35)/n, (29)

and
§=X'c/n (30)

are the well-known maximum likelihood estimators of the
unknown parameters Q and s under the hypotheses Hp
and Hj, respectively. It can be shown, after some algebra,
that (27) is equivalent finally to the statistic

y =TT, 'Ti/n, (31)

where Ty = X'c, T2 = X'X. It is known that (T, T,) is a
complete sufficient statistic for the parameter 6 = (s,Q).
Thus, the problem has been reduced to consideration of the
sufficient statistic (Ty, T;). It can be shown that under Hy,
the result (31) is a Q-free statistic y, which has the property

that its distribution does not depend on the actual covari-
ance matrix Q. It is clear that the statistic y is equivalent to
the statistic

v=[(n=p)/p)yl(1=y) = [n(n=p)/p] (£[G] 8),
(32)
where

Gz nQ, = (X~ 5) (X —3) =3 (xi - §) (i~ 8)'.
i=1 (33)

Under Hj, the statistic v is subject to a noncentral F-
distribution with p and n — p degrees of freedom, the
probability density function of which is (Nechval 1992;
Nechval et al. 2004)

()

n— —
le(V;n’q) = [B (%’ zp)] s ) n/2
(1+ v)
n-p
-1

X eiq/lel E Bg L 1+ P v

2’272\ n-p n—p ’
0<v<oo, (34)

where 1 Fi(a; b; x) is the confluent hypergeometric function
(Abramowitz and Stegun 1964),

q=n (s/Q_ls) (35)

is a noncentrality parameter representing the generalized
signal-to-noise ratio (GSNR). Under Hyp, when g = 0,
(34) reduces to a standard F-distribution with p and n - p
degrees of freedom,

N nr%p )P/zvp/zfl

(1+ nf%pv)””

fHo(v;n):[B(‘B,n_p)] , 0<v< oo,
2 2
(36)
The test of Hy versus Hi, based on the GMLR statistic
v, is given by

{> h,
v
<h,

and can be written in the form of a decision rule u(v) over
{v:ve(0,00)},

u(y) = 1, v>h (H]),
) {0, v<h (Hop),

then H;
then Hy

(signal present),

(37)
(clutter alone),

(38)
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where & > 0 is a threshold of the test that is uniquely

determined for a prescribed level of significance so that
sup Eg {u(v)} = a. (39)
0€®,

For fixed #n, in terms of the probability density function

(36), tables of the central F-distribution permit one to

choose h to achieve the desired test size (false alarm prob-

ability Pra ),

Pra=a= ffHO(v;n)dv. (40)

h

Furthermore, once h is chosen, tables of the noncentral
F-distribution permit one to evaluate, in terms of the
probability density function (34), the power (detection
probability Pp) of the test,

Pp=vy-= fle(v; n,q)dv. (41)
h

The probability of a miss is given by

B=1-y. (42)

It follows from (36) and (40) that the GMLR test is
invariant to intensity changes in the clutter background
and achieves a fixed probability of a false alarm, that is, the
resulting analyses indicate that the test has the property of a
constant false alarm rate (CFAR). Also, no learning process
is necessary in order to achieve the CFAR. Thus, operat-
ing in accordance to the local clutter situation, the test is
adaptive.
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Statistical publications are editions that contain summa-
rized numerical data about socio-economic phenomena,
usually presented in the form of statistical tables, charts,
diagrams, graphs, etc. These statistical publications are an
inseparable part of common numerical information con-
cerning the state and development of healthcare, educa-
tion, science, and culture provided by the statistical author-
ities.

Depending on the common purpose, one may distin-
guish their various types. These include Statistical Year-
book, Annual Statistics; Statistical Abstract; Manual Guide,
Handbook of Statistics; overview of census, and other major
surveys. By order of coverage, statistical publications can
be common (National Accounts), industrial (Industrial
Indicators), or may deal with other activities of an econ-
omy (for example, Financial Statistics). By the level of
details they can be complete (Yearbooks, Almanacs, etc.) or
short (Pocket Book and Statistisches Handbook are the most
common types).

There are also differences by the domain of coverage
among one or another statistical publication: an entire
country, an administrative territorial part of the country
(for example, state, region, land, county, etc.); in interna-
tional statistical publications, this could be several coun-
tries, an entire continent, or the whole world (for example,
UN Statistical Publications).

The outcomes of large surveys are presented in non-
recurrent statistical publications; among the recurrent sta-
tistical publications, the most significant are periodical
statistical publications (published annually, quarterly, or
monthly), the least significant are non-periodical statistical
publications (containing demographic figures, birth and
death rates, marriage status, etc.).

The statistical publications cover current and previous
years (retrospective statistical publications) with the scope
of decades and centuries (Historical Statistics of the US from
1789, Colonial Times to 1957, 1960, 1975, and 2008; USSR’s
Economics 60 years, 1987; Russia: 100 Years of Economic
Growth 1900-2008 Historical Series; Annuaire Statistique
de la France, vols. 1-106, 1878-2003).

Statistical publications have various forms of editions:
yearbooks, reports, series of books (for example, a cen-
sus of the population), bulletins, and journals, “notebooks”,

which contain statistical reviews (quarterly, monthly, Bul-
letin of Statistics, Journal of Statistics, Survey of Statistics and
Review of Statistics), summaries, and reports.

The form and content of statistical publications have
been changing along with history.

The first statistical publications (similar to modern
ones) appeared in 15" century in Venice and then later
on in Holland (a series of 60 small volumes under a com-
mon name “Elsevier republics,” from 1624). In England
numerical statistical figures appeared in the 17" century
in works by the founders of “political arithmetic,” William
Petty and John Graunt, and in the 18" century in the works
by Gregory King. In Germany (“The Holy Roman Empire
of the German Nation”), the second half of the 17" and
18" centuries were predominated by “descriptive govern-
ment statistics” (H. Conring, G. Achenwall, A. L. Schlozer);
only in the last quarter of the 18" century did a new type
of statistical publications appeared, i.e., the works of “lin-
ear arithmeticians” tending to represent numerical data
about one or several countries in the shape of statistical
graphs—diagrams and cartograms (the founder of these
statistical publications is August Friedrich Crome, who
published “Producten-Karte von Europa” (1782) and Uber
die Grofle und Bevolkerung der simtlichen europdischen
Staaten (1785)). In Russia, the first statistical publications
date back to 1831 (historical, ethnographic, and economic
atlases with a statistical description of Russia by I. K. Kir-
ilov). The classified yearbooks (with the scope of data for
a period of 100 years and more by various types of figures
describing territories, natural resources, population, GDP,
standard of living etc.) of the USA have been published
in the United States since 1878 (125 yearbooks), in Great
Britain since 1850 (150 yearbooks), in France since 1860 (85
yearbooks of old series and 23 of new series), in Germany
since 1872, in Canada since 1818, in Sweden since 1915, and
in Japan since 1818.

Apart from yearbooks there are also many other spe-
cialized statistical publications, the most important among
them being “Census of Population,” “Census of Manufac-
turers,” etc., annual surveys on separate industries “Annual
Survey on Manufacturers,” enterprises “Moody’s manual”
in the U.S. “Compas” in Germany, France, and Belgium,
and also personal references such as “Who’s Who,” “Who’s
Who in the world,” “Poor’s Register of Corporations Direc-
tors and Executives,” “Great Minds of the 21" Century;” etc.

The first international statistical dictionary was by
Michael G. Mulhall, “The Dictionary of Statistics,” which
ran into several editions (1884, 1892, 1899, 1909) included
figures on 30-50 countries for a period from 1800 to 1900.
Augustus D. Webbs “The New Dictionary of Statistics™x
covered 1896-1905. From 1916 to 1926, the International
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Statistical Institute (ISI) published the “International Sta-
tistical Yearbook” (from 1853-1876 there were editions
from the International Statistical Congresses). With the
establishment of the League of Nations (1919) the number
of statistical publications increased. The significant statis-
tical publications by the League of Nations were “Statistical
Yearbook of the League of Nations” (11 yearbooks for a
period from 1932 to 1945), “Monthly Bulletin of Statistics,”
“World Economic Surveys” (1933-1945, 11 issues), “World
Production and Prices” (1925-1939, 7 issues), “Review of
World Trade” (1932-1939, 8 issues), etc. In 1919, the Inter-
national Labour Organization began publication of the
“Yearbook of Labour Statistics,” and in 1921 the Interna-
tional Institute of Agriculture started publication of the
“International Yearbook of Agriculture Statistics”

In 1949, the United Nations Organization (UN) and
its specialized institutions started a new stage of statis-
tical publications subdivided into nine series - A, B, C,
D, J, K, M, P, E The most important of them are: “Sta-
tistical Yearbook,” “Demographic Yearbook,” “Yearbook
of National Accounts Statistics,” “Yearbook of Interna-
tional Trade Statistics,” “Balance of Payments Yearbook,”
“Annual Epidemiological and Vital Statistics,” “United
Nations Juridical Yearbook,” and “Yearbook of the United
Nations”

The Food and Agriculture Organization publishes
“Yearbook of Food and Agricultural Statistics,” “Yearbook
of Fishery Statistics,” and “Yearbook of Forest Products”

UNESCO publishes “International Yearbook of Educa-
tion,” “Yearbook of Youth Organizations,” and “UNESCO
Statistical Yearbook?”

EU, OECD, WHO, EuroStat, IMF, and World Bank
have their own statistical publications. The most impor-
tant statistical publications are world economic reviews
(published separately by the UN and its commissions for
Europe, Asia, Africa and Latin America, on annual basis)
and various statistical editions. There are also statistical
journals, for example, the UN’s “Monthly Bulletin of Statis-
tics” and the UN’s reference books, “World Weight and
Measures,” “Nomenclature of Geographic Areas for Sta-
tistical Purposes,” “Name’s of Countries and Adjectives of
Nationality;” etc. The international bibliographies, indexes,
dictionaries, and encyclopedias are also considered to be
statistical publications.

The specialized editions and international statistical
classifiers, questionnaires, systems, methods, and stan-
dards (there are over 120,000 of titles including 175 stan-
dard classifiers in the world) regulate the procedures of
the international comparisons, the most recognized stan-
dards of which are UN’s System of National Accounts,
trade, banking and monetary transactions, and standards

of EuroStat and IMF on the statistical ethics and assess-
ment of data quality.
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Quality: A Brief Introduction
The main objective of statistical quality control (SQC) is
to achieve quality in production and service organizations,
through the use of adequate statistical techniques. The fol-
lowing survey relates to manufacturing rather than to the
service industry, but the principles of SQC can be suc-
cessfully applied to either. For an example of how SQC
applies to a service environment, see Roberts (2005). Qual-
ity of a product can be defined as its adequacy to be used
(Montgomery 2009), which is evaluated by the so-called
quality characteristics. Those are random variables in a
probability language, and are usually classified as: physi-
cal, like length and weight; sensorial, like flavor and color;
temporally oriented, like the maintenance of a system.
Quality Control (QC) has been an activity of engi-
neers and managers, who have felt the need to work
jointly with statisticians. Different quality characteristics
are measured and compared with pre-determined specifi-
cations, the quality norms. QC began a long time ago, when
manufacturing began and competition accompanied it,
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with consumers comparing and choosing the most attrac-
tive product. The Industrial Revolution, with a clear dis-
tinction between producer and consumer, led producers
to the need of developing methods for the control of their
manufactured products. On the other hand, SQC is com-
paratively new, and its greatest developments have taken
place during the twentieth century. In 1924, at the Bell
Laboratories, Shewhart developed the concept of control
chart and, more generally, statistical process control (SPC),
shifting the attention from the product to the production
process (Shewhart 1931). Dodge and Romig (1959), also in
the Bell Laboratories, developed sampling inspection, as an
alternative to the 100% inspection.

Among the pioneers in SPC we also distinguish W.E.
Deming, .M. Juran, P.B. Crosby and K. Ishikawa (see other
references in Juran and Gryna 1993). But it was during the
Second World War that there was a generalized use and
acceptance of SQC, largely used in USA and considered as
primordial for the defeat of Japan. In 1946, the American
Society for Quality Control was founded, and this enabled a
huge push to the generalization and improvement of SQC
methods.

After the IT World War, Japan was confronted with rare
food and lodging, and the factories were in ruin. They eval-
uated and corrected the causes of such a defeat. The quality
of the products was an area where USA had definitely over
passed Japan, and this was one of the items they tried to
correct, becoming rapidly masters in inspection sampling
and SQC, and leaders of quality around 1970. Recently, the
quality developments have also been devoted to the moti-
vation of workers, a key element in the expansion of the
Japanese industry and economy.

Quality is more and more the prime decision factor
in the consumer preferences, and quality is often pointed
out as the key factor for the success of organizations.
The implementation of a production QC clearly leads to
a reduction in the manufacturing costs, and the money
spent with control is almost irrelevant. At the moment,
the quality improvement in all areas of an organization, a
philosophy known as Total Quality Management (TQM)
is considered crucial (see Vardeman and Jobe 1999). The
challenges are obviously difficult. But the modern SQC
methods surely provide a basis for a positive answer to
these challenges. SQC is at this moment much more than
a set of statistical instruments. It is a global way of thinking
of workers in an organization, with the objective of mak-
ing things right in the first place. This is mainly achieved
through the systematic reduction of the variance of relevant
quality characteristics.

Usual Statistical Techniques in SQC

The statistical techniques useful in SQC are quite diverse.
In this survey, we shall briefly mention SPC, an on-line
control technique of a process production with the use
of »control charts. »Acceptance sampling, performed out
of the line production (before it, for sentencing incoming
batches, and after it, for evaluating the final product), is
another important topic in SQC (see Duncan [1986] and
Pandey [2007], among others). A similar comment applies
to reliability theory and reliability engineering, off-line tech-
niques performed when the product is complete, in order
to detect the resistance to failure of a device or system (see
Pandey [2007], also among others).

It is however sensible to mention that, additionally to
these techniques, there exist other statistical topics useful
in the improvement of a process. We mention a few exam-
ples: in a line of production, we have the input variables,
the manufacturing process and the final product (output).
It is thus necessary to model the relationship between
input and output. Among the statistical techniques useful
in the building of these models, we mention Regression and
Time Series Analysis. The area of Experimental Design (see
Taguchi et al. 1989) has also proved to be powerful in the
detection of the most relevant input variables. Its adequate
use enables a reduction of variance and the identification
of the controllable variables that enable the optimization of
the production process.

Statistical Process Control (SPC). Key monitoring and
investigating tools in SPC include histograms, Pareto
charts, cause and effect diagrams, scatter diagrams and
control charts. We shall here focus on control chart
methodology.

A control chart is a popular statistical tool for moni-
toring and improving quality, and its success is based on
the idea that no matter how well the process is designed,
there exists a certain amount of nature variability in out-
put measurements. When the variation in process quality
is due to random causes alone, the process is said to be
in-control. If the process variation includes both random
and special causes of variation, the process is said to be
out-of-control. The control chart is supposed to detect the
presence of special causes of variation.

Generally speaking, the main steps in the construc-
tion of a control chart, performed at a stable stage of the
process, are the following: determine the process param-
eter you want to monitor, choose a convenient statistic,
say W, and create a central line (CL), a lower control limit
(LCL) and an upper control limit (UCL). Then, sample the
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production process along time, and group the process mea-
surements into rational subgroups of size n, by time period
t. For each rational subgroup, compute w;, the observed
value of W;, and plot it against time ¢. The majority of mea-
surements should fall in the so-called continuation interval
C = [LCL, UCL]. Data can be collected at fixed sampling
intervals (FSI), with a size equal to d, or alternatively, at
variable sampling intervals (VSI), usually with sampling
intervals of sizes di,d> (0 < di < d). The region C is then
split in two disjoint regions C; and C, with C; around CL.
The sampling interval d; is used as soon as a measurement
falls in C;; otherwise, it is used the largest sampling interval
d;. If the measurements fall within LCL and UCL no action
is taken and the process is considered to be in-control. A
point w; that exceeds the control limits signals an alarm,
i.e., it indicates that the process is out of control, and some
action should be taken, ranging from taking a re-check
sample to the tracing and elimination of these causes. Of
course, there is a slight chance that is a false alarm, the
so-called a-risk. The design of control charts is a com-
promise between the risks of not detecting real changes
(B-risks) and of a-risks. Other relevant primary character-
istics of a chart are the run length (RL) or number of samples
to signal (NSS) and the associated mean value, the aver-
age run length, ARL=E(RL) = 1/(1 - 8), as well as the
capability indices, Cx and Cyy (see Pearn and Kotz 2006).
Essentially, a control chart is a test, performed along time
t, of the hypothesis Hy : the process is in-control versus
Hi : the process is out-of-control.

Stated differently, we use historical data to compute the
initial control limits. Then the data are compared against
these initial limits. Points that fall outside of the limits are
investigated and, perhaps, some will later be discarded.
If so, the limits need to be recomputed and the process
repeated. This is referred to as Phase 1. Real-time process
monitoring, using the limits from the end of Phase I, is
Phase 1I. There thus exists a strong link between control
charts and hypothesis testing performed along time.

Note that a preliminary statistical data analysis (usu-
ally histograms and Q-Q plots) should be performed on the
prior collected data. A common assumption in SPC is that
quality characteristics are distributed according to a nor-
mal distribution. However, this is not always the case, and
in practice, if data seem very far from meeting this assump-
tion, it is common to transform them through a » Box-Cox
transformation (Box and Cox 1964). But much more could
be said about the case of nonnormal data, like the use of
robust control charts (see Figueiredo and Gomes [2004],
among others).

With its emphasis on early detection and prevention of

problems, SPC has a distinct advantage over quality meth-
ods such as inspection, that apply resources to detecting
and correcting problems in the final product or service. In
addition to reducing waste, SPC can lead to a reduction in
the time required to produce the final products. SPC is rec-
ognized as a valuable tool from both a cost reduction and
a customer satisfaction standpoint. SPC indicates when an
action should be taken in a process, but it also indicates
when no action should be taken.
Classical Shewhart Control Charts: A Simple
Example. In this type of charts, measurements are
assumed to be independent and distributed according to a
normal distribution. Moreover, the statistics W; built upon
those measurements are also assumed to be independent.
The main idea underlying these charts is to find a simple
and convenient statistic, W, with a sampling distribution
easy to find under the validity of the in-control state, so
that we can easily construct a confidence interval for a
location or spread measure of that statistic. For continu-
ous quality characteristics, the most common Shewhart-
charts are the average chart (X-chart) and the range chart
(R-chart), as an alternative to the standard-deviation
chart (S-chart). For discrete quality characteristics, the
most usual charts are the p-charts and np-charts in a
Binomial(n, p) background, and the so-called c-charts and
u-charts for Poisson(c) backgrounds.

Example1 (X-chart). Imagine a breakfast cereal packag-
ing line, designed to fill each cereal box with 500 grams of
product. The production manager wants to monitor on-line
the mean weight of the boxes, and it is known that, for a sin-
gle pack, an estimate of the weight standard-deviation o is
10 g. Daily samples of n = 5 packs are taken during a stable
period of the process, the weights x;,1 < i < n, are recorded,
and their average, X = I, xi/n, is computed. These aver-
ages are estimates of the process mean value y, the parameter
to be monitored. The center line is CL = 500 g (the target).
If we assume that data are normally distributed, i.e., X ~
N(p =500, ¢ = 10), the control limits can be determined
on the basis that X ~ N(u = 500, 0//n =10//5 = 4.472).
In-control, it thus expected that 100(1 — a) % of the average
weights are between 500 + 4.472 &/, and 500 — 4.472 &/,
where &, is the (a/2)-quantile of a standard normal dis-
tribution. For a a-risk equal to 0.002 (a common value
in English literature), &,/ = —3.09. The American Stan-
dard is based on “3 — sigma” control limits (corresponding
to 0.27% of false alarms), while the British Standard uses
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“3.09—sigma” limits (corresponding to 0.2% of false alarms).
In this case, the 3-sigma control limits are LCL = 500 — 3 x
10//5 = 486.584 and UCL = 500 + 3 x 10//5 = 513.416.

Other Control Charts. Shewhart-type charts are efficient
in detecting medium to large shifts, but are insensitive to
small shifts. One attempt to increase the power of these
charts is by adding supplementary stopping rules based
on runs. The most popular stopping rules, supplementing
the ordinary rule, “one point exceeds the control limits,”
are: two out of three consecutive points fall outside warn-
ing (2-sigma) limits; four out of five consecutive points fall
beyond 1-sigma limits; eight consecutive points fall on one
side of the centerline.

Another possible attempt is to consider some kind of
dependency between the statistics computed at the differ-
ent sampling points. To control the mean value of a process
at a target po, one of the most common control charts
of this type is the cumulative sum (CUSUM) chart, with
an associated control statistic given by S; := Z;-zl(xj -
po) = Se1+ (3¢ — o), t = 1,2,-+ (So = 0). Under
the validity of Hy : X ~ N(uo,0), we thus have a ran-
dom walk with null mean value (see »Random Walk). It
is also common to use the exponentially weighted moving
avemge(EWMA) statistic, given by Z; := /\xt+(1 MNZio =

S(a=-xy xt_]+(1—A)tZ0, t = 1,2,. Zy =
X 0 < A < 1, where X denotes the overall average of a
small number of averages collected a priori, when the pro-
cess is considered stable and in-control. Note that it is also
possible to replace averages by individual observations (for
details, see Montgomery 2009).

ISO 9000, Management and Quality

The main objective of this survey was to speak about sta-
tistical instruments useful in the improvement of quality.
But these instruments are a small part of the total effort
needed to achieve quality. Nowadays, essentially due to
an initiative of the International Organization for Stan-
dardization (ISO), founded in 1946, all organizations are
pushed towards quality. In 1987, ISO published the ISO
9000 series, with general norms for quality management
and quality guarantee, and additional norms were estab-
lished later on diversified topics. The ISO 9000 norms
provide a guide for producers, who want to implement effi-
cient quality. They can also be used by consumers, in order
to evaluate the producers’ quality. In the past, the produc-
ers were motivated to the establishment of quality through
the increasing satisfaction of consumers. Nowadays, most
of the them are motivated by the ISO 9000 certification -
if they do not have it, they will lose potential clients.

Regarding management and quality: as managers have
a final control of all organization resources, management
has a ultimate responsibility in the quality of all products.
Management should thus establish a quality policy, mak-
ing it perfectly clear to all workers (see Burrill and Ledolter
1999, for details).
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Statistical quality control aims to achieve the product or
process quality by utilizing statistical techniques, in which
statistical process control (SPC) has been demonstrated to
be one primary tool for monitoring the process or product
quality. Since 1920s, the control chart, as one of the most
important SPC techniques, has been widely studied.

Univariate Control Charts Versus
Multivariate Control Charts

In terms of the number of variables, »control charts can be
classified into two types, that is, univariate control charts
and multivariate control charts.

The performance of the conventional univariate con-
trol charts, including Shewhart control charts, cumulative
sum (CUSUM) control charts and exponentially weighted
moving average (EWMA) control charts have been exten-
sively reviewed. The research demonstrates that the She-
whart chart is more sensitive to large shifts than the
EWMA and CUSUM chart and vice versa. These tra-
ditional control charts usually assume that the observa-
tions are independent and identically follow the normal
distribution. In some practical situations, however, these
assumptions are not valid. Therefore, other control charts
that are different or extended from the traditional charts
are developed for some special cases, such as monitoring
autocorrelated processes and/or processes with huge sam-
ple data, detecting dynamic mean change and/or a range of
mean shifts. See Han and Tsung (2005, 2006, 2007, 2009),
Han et al. (2007a, b), Wang and Tsung (2005), Zhao et al.
(2005) and Zou et al. (2008c) for detailed discussion.

Although the aforementioned univariate charts per-
form well in monitoring some process or product qualities,
their performance is not satisfactory when the quality of
a product or process is characterized by several correlated
variables. Therefore, multivariate statistical process control
(MSPC) techniques were developed and widely applied.
Hotelling’s T* chart, the traditional multivariate control
chart, was proposed in 1947 (Hotelling 1947) to deal with
the multivariate monitoring case, which assumed that sev-
eral variables follow the multivariate normal distribution
(see »Multivariate Normal Distributions). Following that,
a variety of studies extended this research further. Among
others, see Tracy et al. (1992), Mason et al. (1995), and Sul-
livan and Woodall (1996) for discussion concerning the
property and performance of the T? chart.

Besides the Hotelling’s T2 chart, the other traditional
multivariate control charts include the Multivariate cumu-
lative sum (MCUSUM) chart presented by Crosier (1988)
and Pignatiello and Runger (1990) and the multivariate
exponentially weighted moving average (MEWMA) chart
proposed by Lowry et al. (1992). Similarly to Hotelling’s T2,
these two charts are sensitive to moderate and small mean
shifts. Other extensions of traditional MSPC techniques,
i.e., adaptive T* chart for dynamic processes (see Wang
and Tsung (2007, 2008)), have been analyzed. Besides
the multivariate charts for mean shifts, the multivariate
charts for monitoring the process variation were also pre-
sented recently, such as the multivariate exponentially
weighted mean squared deviation (MEWMS) chart and
a multivariate exponentially weighted moving variance
(MEWMV) chart (Huwang et al. (2007)). The extensive lit-
erature reviews were provided by Kourti and MacGregor
(1996) and Bersimis et al. (2007), in which other statisti-
cal methods applied in MSPC, i.e., »principal component
analysis (PCA) and partial least square (PLS), are also
reviewed.

Most of the mentioned charts have a common assump-
tion that process variables follow normal distributions.
When there is no distribution assumption, nonparamet-
ric methods, like the depth function (Zuo and Serfling
(2000)), can be used, the advantages of which are examined
by Chakraborti et al. (2001). However, with the develop-
ment of technology, a more complicate situation occurs.
Numerical process variables may be mixed up with the
categorical process variables to represent the real condi-
tion of a process. Direct application of the aforementioned
methods may lead to inappropriate ARL and unsatisfac-
tory false alarms. An alternative way to solve this prob-
lem is to use some distribution-free methods, like the
K-chart proposed by Sun and Tsung (2003). More research
is needed in this area.
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SPC for Profile Monitoring

In most SPC applications, either in the univariate or mul-
tivariate cases, it is assumed that the quality of a process
or product can be adequately represented by the distri-
bution of a single quality characteristic or by the general
multivariate distribution of the several correlated quality
characteristics. In some practical situations, however, the
quality of a process or product is better characterized and
summarized by a relationship between a response vari-
able and one or more explanatory variables (Woodall et al.
2004). Therefore, studies on profile monitoring have been
steadily increasing.

The early research on profile monitoring usually
assumes that the relationship can be represented by the
linear model. There has been extensive existing research
on linear profile monitoring in the literature. For example,
as early as 2000, Kang and Albin presented two methods
in order to monitor the linear profiles. One approach is
to monitor the intercept and slope of the linear model by
constructing the multivariate chart (T? chart). The other
is to monitor the average residuals by using the exponen-
tial weighted moving average (EWMA) chart and rang (R)
chart simultaneously. It can be noted that some different
control schemes were also developed for solving differ-
ent linear profile monitoring problems, i.e., the self-staring
control chart for linear profiles with unknown parame-
ters (Zou et al. (2007a)). In addition, Zou et al. (2007b)
proposed a multivariate EWMA (MEWMA) scheme for
monitoring the general linear profile. Furthermore, recent
studies on the nonlinear profile monitoring can be sourced
in the relevant literature. Among others, the nonparamet-
ric methods are commonly used in monitoring the non-
linear profiles (see Zou et al. 2008b, Jensen et al. 2009).
Besides, Woodall et al. (2004) provided an extensive review
on profile monitoring. Recent research focused on the con-
trol scheme for monitoring profiles with categorical data
rather than continuous data (Yeh et al. 2009)), in which a
Phase I monitoring scheme for profiles with binary output
variables was proposed.

SPC for Processes with Multiple Stages

In modern manufacturing and service environments, it
is very common that most manufacturing and/or service
processes involve a large number of operating stages rather
than one single stage. Many examples of such multistage
processes can be found in semiconductor manufactur-
ing, automobile assembly lines and bank services, etc.
For instance, the print circuit board (PCB) manufactur-
ing process includes several stages, that is, exposure to
black oxide, lay-up, hot press, cutting, drilling, and inspec-
tion. However, most of the abovementioned conventional

SPC methods focus on single-stage processes without con-
sidering the multistage scenario, which do not consider
the relationship among different stages. Therefore, the
recent research on multistage processes has been widely
conducted.

The existing popular SPC methods for multistage pro-
cesses usually involve three types of approaches, which
are the regression adjustment method, the cause-selecting
method and methods based on linear state space mod-
els. The regression adjustment method was developed
by Hawkins (1991, 1993), while Zhang (1984, 1985, 1989,
1992) proposed the cause-selecting method. A review of
the cause-selecting method can be found in Wade and
Woodall (1993). Recent research on the use of cause-
selecting charts for multistage processes can be found in
Shu et al. (2003), Shu and Tsung (2003), Shu et al. (2004)
and Shu et al. (2005). A variety of current studies on mul-
tistage processes also adopt engineering models with a
linear state space model structure. This model incorpo-
rates physical laws and engineering knowledge in order
to describe the quality linkage among multiple stages in
a process. Latest works on multistage process monitoring
and diagnosis can be referred to Xiang and Tsung (2008),
Zou et al. (2008a), Jin and Tsung (2009), and Li and Tsung
(2009). With respect to multistage processes with categor-
ical variables, some monitoring schemes were developed
recently. For example, Skinner et al. (2003, 2004) proposed
the generalized linear model (GLM)-based control chart
for the Poisson data obtained from multiple stages.

An extensive review on the quality control of mul-
tistage systems including monitoring and diagnosing
schemes was presented by Shi and Zhou (2009).

SPC Applications in Service Industries

SPC techniques can be applied in different industries such
as manufacturing or service industries, although most
of these techniques are originally developed for manu-
facturing industries, i.e., machining processes, assembly
processes, semiconductor processes etc. Because the SPC
techniques have been demonstrated to be efficient for man-
ufacturing processes, the application of these techniques in
service processes was argued in some papers (see Wyckoff
(1984), Palm et al. (1997) and Sulek (2004)). In the existing
literature, several control charts have been applied in ser-
vice processes, i.e., quick service restaurant, the auto loan
process that provides better service from the loan com-
pany to car dealers and buyers, and invoicing processes.
See Apte and Reynolds (1995), Mehring (1995), Cartwright
and Hogg (1996) for detailed discussion. In addition, the
control charts were also widely applied in health-care
and public-health fields (see Wardell and Candia (1999),
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Green (1999)). Recently, Woodall (2006) discussed in great
detail different control charts that have been proposed in
health-care and public-health fields. Both the manufactur-
ing process and the service operation process involve mul-
tiple operating stages rather than a single stage. Therefore,
Sulek et al. (2005) proposed to use the cause selecting con-
trol chart for monitoring the service process with multiple
stages in the grocery store and showed that it outperformed
the Shewhart chart in monitoring the multistage service
process. More recent studies on the application of SPC
techniques, especially in service industries, were reviewed
by Maccarthy and Wasusri (2002) and Tsung et al. (2008).
All these applications showed that SPC techniques were
efficient in monitoring and identifying service processes.

Statistical Process Control as one primary tool for qual-
ity control is very efficient and important in monitoring
the process/product quality. SPC techniques will be applied
in more industries with different characteristics. Therefore,
more advanced studies on SPC schemes will be widely con-
ducted in order to achieve the quality required for products
or processes.
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Signal processing may broadly be considered to involve the
recovery of information from physical observations. The
received signals is usually disturbed by thermal, electri-
cal, atmospheric or intentional interferences. Due to the
random nature of the signal, statistical techniques play an
important role in signal processing. Statistics is used in the
formulation of appropriate models to describe the behavior
of the system, the development of appropriate techniques
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for estimation of model parameters, and the assessment of
model performances. Statistical Signal Processing basically
refers to the analysis of random signals using appropriate
statistical techniques. The main purpose of this article is
to introduce different signal processing models and differ-
ent statistical and computational issues involved in solving
them.

The Multiple Sinusoids Model

The multiple sinusoids model may be expressed as

y(t) = %{Ak cos(wkt)+Bg sinwit) }+n(t); t=1,...,N.

k=1
ey

Here Ay’s and By’s represent the amplitudes of the signal,
wy’s represent the real radian frequencies of the signals,
n(t)’s are error random variables with mean zero and finite
variance. The assumption of independence of the error
random variables is not that critical to the development
of the inferential procedures. The problem of interest is
to estimate the unknown parameters {Ay, By, wi } for k =
L,..., M, given a sample of size N. In practical applications
often M is also unknown. Usually, when M is unknown,
first estimate M using some model selection criterion, and
then it is assumed that M is known, and estimate the
amplitudes and frequencies.

The sum of sinusoidal model (1) plays the most impor-
tant role in the Statistical Signal Processing literature. Most
of the periodic signals can be well approximated by the
model (1) with the proper choice of M and with the ampli-
tudes and frequencies. For several applications of this
model in different fields see Brillinger (1987).

The problem is an extremely challenging problem both
from the theoretical and computational points of view.
As a statistician Fisher (1929) first considered this prob-
lem. It seems that the standard least squares estimators
will be the natural choice in this case, but finding the least
squares estimators, and establishing their properties are far
from trivial issues. Although, the model (1) is a non-linear
regression model, but the standard sufficient conditions
needed for the least squares estimators to be consistent
and asymptotically normal do not hold true in this case.
Special care is needed in establishing the consistency and
»asymptotic normality properties of the least squares esti-
mators, see for example Hannan (1973) and Kundu (1997)
in this respect. Moreover, for computing the least squares
estimators, most of the standard techniques like Newton-
Raphson or its variants do not often converge even from
good starting values. Even if it converges, it may converge
to alocal minimum rather than the global minimum due to

highly non-linear nature of the least squares surface. Spe-
cial purpose algorithms have been developed to solve this
problem.

Several approximate solutions have been suggested in
the literature. Among several approximate estimators, For-
ward Backward Linear Prediction (FBLP) and modified
EquiVariance Linear Prediction (EVLP) work very well.
But it should be mentioned that none of these methods
behaves uniformly better than the other. More than 200
references on this topic can be found in Stoica (1993), and
see also Quinn and Hannan (2001), the only monograph
written by statisticians in this topic.

Two-Dimensional Sinusoidal Model

Two dimensional periodic signals are often being analyzed
by the two-dimensional sinusoidal model, which can be
written as follows:

M
y(s,t) = > {Ar cos(wgs + prt) + Bi cos(wgs + pxt) }
k=1

+n(s,t), s=1...5t=...,T. 2)

Here Ay’s and By’s are amplitudes and wy’s and yy’s are fre-
quencies. The problem once again involves the estimation
of the signal parameters namely Ay’s, Br’s, wi’s and yy’s
from the data {y(s, ) }.

The model (2) has been used very successfully for ana-
lyzing two dimensional gray texture data, see for example
Zhang and Mandrekar (2001). A three dimensional version
of it can be used for analyzing color texture data also, see
Prasad (2009) and Prasad and Kundu (2009). Some of the
estimation procedures available for the one-dimensional
problem may be extended quite easily to two or three
dimensions. However, several difficulties arise when deal-
ing with high dimensional data. There are several open
problems in multidimensional frequency estimation, and
this continues to be an active area of research.

Array Model

The area of array processing has received a considerable
attention in the past several decades. The signals recorded
at the sensors contain information about the structure of
the generating signals including the frequency and ampli-
tude of the underlying sources. Consider an array of P
sensors receiving signals from M sources (P > M). The
array geometry is specified by the applications of interest.
In array processing, the signals received at the i — th censor
is given by

yi(t) = Zai(ej)xj(t)+n,~(t), i=1...,P. (3)
j=1
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Here x;(t) represents the signal emitted by the j—th source,
and n;(t) represents additive noise. The model (3) may be
written in the matrix form as;

y(t) =[a(61) :...:a(0m)] x(¢t) + n(t)
=A(0)x(t) +n(t), t=1...,N. (4)

The matrix A(0) has a Vandermonde structure if the
underlying array is assumed to be uniform linear array. The
signal vector x(t) and the noise vector n(t) are assumed
to be independent and zero mean random processes with
covariance matrices I' and o*I respectively. The main prob-
lem here is to estimate the signal vector 6, based on the
sample y(1),...,y(N), when the structure of A is known.

Interestingly, instead of using the traditional maximum
likelihood method, different subspace fitting methods, like
MUltipe Slgnal Classification (MUSIC) and Estimation
of Signal Parameters via Rotational Invariance Technique
(ESPRIT) and their variants are being used more success-
fully, see for example the text by Pillai (1989) for detailed
descriptions of the different methods.

For basic introduction of the subject the readers are
referred to Kay (1987) and Srinath et al. (1996) and for
advanced materials see Bose and Rao (1993) and Quinn
and Hannan (2001).
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Statistical thinking pervades the empirical sciences. It is
used to provide principles of initial description, concept
formation, model development, observational design, the-
ory development and theory testing, and much more.
Some of these activities consist in computing significance
tests for statistical hypotheses. Such a hypothesis typically
is a statement about a regression coeflicient in a linear
regression or a relative risk for a chosen life-course event,
such as marriage formation or death. The hypothesis can
state that the regression coefficient equals zero (or that
the relative risk equals 1), implying that the correspond-
ing covariate has no impact on the transition in question
and thus does not affect the behavior it represents, or that
for all practical purposes the analyst may act as if this
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were the case. Alternatively the hypothesis may predict the
sign of the coefficient, for example that higher education
leads to lower marriage rates, ceteris paribus, as argued by
some economists. The converse (namely that the sign is
zero or positive) would be called the null hypothesis. Other
hypotheses concern the form of the statistical model for
the behavior in question. In such a case the null hypothe-
sis would be that the model specified is correct; this leads
to questions of goodness of fit. In any case the statistician’s
task is to state whether the data at hand justify rejecting
whatever null hypothesis has been formulated.

The null hypothesis is typically rejected when a suit-
able test statistic has a value that is unlikely when the null
hypothesis is correct; usually the criterion is that the test
statistic lies in (say) the upper tail of the probability dis-
tribution it has when the hypothesis is correct. An upper
bound on the probability of rejecting the null hypothesis
when it actually is correct is called the level of significance of
the test method. It is an important task for the investigator
to keep control of this upper bound. A test of significance
is supposed to prevent that a conclusion is drawn (about
a regression coeflicient, say) when the data set is so small
that a pattern “detected” can be caused by random varia-
tion. Operationally an investigator will often compute the
probability (when the null hypothesis is correct) that in a
new data set, say, the test statistic would exceed the value
actually observed and reject the null hypothesis when this
so-called p-value is very small, since a small p-value is
equivalent to a large value of the test statistic.

Ideally, hypotheses should be developed on the basis of
pre-existing theory and common sense as well as of empir-
ical features known from the existing literature. Strict
protocols should be followed that require any hypothesis
experimentation to be made on one part of the current
data set, with testing subsequently to be carried out on a
virgin part of the same data, or on a new data set. Unfor-
tunately, most empirical scientists in the economic, social,
biological, and medical disciplines, say, find such a proce-
dure too confining (assuming that they even know about
it). It is common practice to use all available data to develop
a model, formulate scientific hypotheses, and to compute
test statistics or »p-values from the same data, perhaps
using canned computer programs that provide values of
test statistics as if scientific statistical protocol could be
ignored (Ziliak and McCloskey 2008). The danger of such
practices is that the investigator loses control over any
significance levels, a fact which has been of concern to
professional statisticians for a good while (For some con-
tributions from recent decades see Guttman (1985), Cox
(1986), Schweder (1988), and Hurvich and Tsai (1990).
Such concerns also extend to many others. For instance,

Chow (1996) describes a litany of criticism appearing in
the psychological literature in Chapter 1 of a book actu-
ally written to defend the null-hypothesis significance-test
procedure. [See Hoem (2008) for a discussion of further
problems connected to common practices of significance
testing, namely the need to embed an investigation into a
genuine theory of behavior rather than to rely on mechan-
ical significance testing, the avoidance of grouped p-values
(often using a system of asterisks), the selection of sub-
stantively interesting contrasts rather than those thrown
up mechanically by standard software, and other issues]).
For twenty years and more, remedies have been avail-
able to overcome the weaknesses of the procedures just
described, including rigorous methods for model develop-
ment and data snooping. Such methods prevent the usual
loss of control over the significance level and also allow the
user to handle model misspecification (The latter feature
is important because a model invariably is an imperfect
representation of reality.). Users of event-history analysis
may want to consult Hjort (1988, 1992), Sverdrup (1990),
and previous contributions from these authors and their
predecessors.

Unfortunately such contributions seem to be little
known outside a circle of professional statisticians, a fact
which for example led Rothman (1998) to attempt to erad-
icate significance tests from his own journal (Epidemiol-
ogy). He underlined the need to see the interpretation of a
study based not on statistical significance, or lack of it, for
one or more study variables, but rather on careful quan-
titative consideration of the data in light of competing
explanations for the findings. For example, he would pre-
fer a researcher to consider whether the magnitude of an
estimated effect could be readily explained by uncontrolled
confounding or selection biases, rather than simply to offer
the uninspired interpretation that the estimated effect is
significant, as if neither chance nor bias could then account
for the findings.
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Introduction

It is generally acknowledged that the most important
changes in statistics in the last 50 years are driven by
technology. More specifically, by the development and
universal availability of fast computers and of devices
to collect and store ever-increasing amounts of data.
Satellite remote sensing, large-scale sensor networks,
continuous environmental monitoring, medical imaging,
micro-arrays, the various genomes, and computerized sur-
veys have not just created a need for new statistical tech-
niques. These new forms of massive data collection also
require efficient implementation of these new techniques

in software. Thus development of statistical software has
become more and more important in the last decades.

Large data sets also create new problems of their own.
In the early days, in which the ¢-test reigned, including the
data in a published article was easy, and reproducing the
results of the analysis did not take much effort. In fact, it
was usually enough to provide the values of a small num-
ber of sufficient statistics. This is clearly no longer the case.
Large data sets require a great deal of manipulation before
they are ready for analysis, and the more complicated data
analysis techniques often use special-purpose software and
some tuning. This makes reproducibility a very significant
problem. There is no science without replication, and the
weakest form of replication is that two scientists analyzing
the same data should arrive at the same results.

Itis not possible to give a complete overview of all avail-
able statistical software. There are older publications, such
as Francis (1979), in which detailed feature matrices for
the various packages and libraries are given. This does not
seem to be a useful approach any more, there simply are too
many programs and packages. In fact many statisticians
develop ad-hoc software packages for their own projects.

We will give a short historical overview, mentioning
the main general purpose packages, and emphasizing the
present state of the art. Niche players and special purpose
software will be largely ignored. There is a well-known
quote from Brian Ripley (2002): “Let’s not kid ourselves:
the most widely used piece of software for statistics is
Excel” This is surely true, but it is equally true that only
a tiny minority of statisticians have a degree in statistics.
We have to distinguish between “statistical software” and
the much wider terrain of “software for statistics.” Only the
first type is of interest to us here — we will go on kidding
ourselves.

BMDP, SAS, SPSS

The original statistical software packages were written for
IBM mainframes. BMDP was the first. Its development
started in 1957, at the UCLA Health Computing Facil-
ity. SPSS arrived second, developed by social scientists at
the University of Chicago, starting around 1968. SAS was
almost simultaneous with SPSS, developed since 1968 by
computational statisticians at North Carolina State Uni-
versity. The three competitors differed mainly in the type
of clients they were targeting. And of course health scien-
tists, social scientists, and business clients all needed the
standard repertoire of statistical techniques, but in addi-
tion some more specialized methods important in their
field. Thus the packages diverged somewhat, although their
basic components were very much the same.
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Around 1985 all three packages added a version for per-
sonal computers, eventually developing WIMP (window,
icon, menu, pointer) interfaces. Somewhat later they also
added matrix languages, thus introducing at least some
form of extensibility and code sharing.

As in other branches of industry, there has been some
consolidation. In 1996 SPSS bought BMDP, and basically
killed it, although BMDP-2009 is still sold in Europe by
Statistical Solutions. It is now, however, no longer a serious
contender. In 2009 SPSS itself was bought by IBM, where
it now continues as PASW (Predictive Analytics Software).
As the name change indicates, the emphasis in SPSS has
shifted from social science data analysis to business analyt-
ics. The same development is going on at SAS, which was
originally the Statistical Analysis System. Currently SAS is
not an acronym any more. Its main products are SAS Ana-
Iytics and SAS Business Intelligence, indicating that the
main client base is now in the corporate and business com-
munity. Both SPSS (now PASW) and SAS continue to have
their statistics modules, but the keywords have definitely
shifted to analytics, forecasting, decision, and marketing.

Data Desk, JMP, Stata

The second generation of statistics packages started
appearing in the 1980’s, with the breakthrough of the per-
sonal computer. Both Data Desk (1985) and JMP (1989)
were, from the start, written for Macintosh, i.e., for the
WIMP interface. They had no mainframe heritage and
baggage. As a consequence they had a much stronger
emphasis on graphics, visualization, and exploratory data
analysis.

Data Desk was developed by Paul Velleman, a former
student of John Tukey. JMP was the brain child of John
Sall, one of the co-founders and owners of SAS, although
it existed and developed largely independent of the main
SAS products. Both packages featured dynamic graphics,
and used graphical widgets to portray and interactively
manipulate data sets. There was much emphasis on brush-
ing, zooming, and spinning. Both Data Desk and JMP
have their users and admirers, but both packages never
became dominant in either statistical research or statisti-
cal applications. They were important, precisely because
they emphasized graphics and interaction, but they were
still too rigid and too difficult to extend.

Stata, another second generation package for the per-
sonal computer, was an interesting hybrid of a different
kind. It was developed since 1985, like BMDP starting in
Los Angeles, near UCLA. Stata had a CLI (command line
interface), and did not get a GUI until 2003. It empha-

sized, from the start, extensibility and user-contributed
code. Stata did not get its own matrix language Mata until
Stata-9, in 2007.

Much of Stata’s popularity is due to its huge archive
of contributed code, and a delivery mechanism that uses
the Internet to allow for automatic downloads of updates
and new submissions. Stata is very popular in the social
sciences, where it attracts those users that need to develop
and customize techniques, instead of using the more
inflexible procedures of SPSS or SAS. For such users a CLI
is often preferable to a GUL.

Until Stata developed its contributed code techniques,
the main repository had been CMU's statlib, modeled on
netlib, which was based on the older network interfaces
provided by ftp and email. There were no clear organiz-
ing principles, and the code generally was FORTRAN or
C, which had to be compiled to be useful. We will see that
the graphics from Data Desk and JMP, and the command
line and code delivery methods from Stata, were carried
over into the next generation.

S, LISP-STAT, R

Work had on the next generation of statistical computing
systems had already started before 1980, but it mostly took
place in research labs. Bell Laboratories in Murray Hill,
N.J., as was to be expected, was the main center for these
developments.

At Bell John Chambers and his group started develop-
ing the S language in the late seventies. S can be thought
of as a statistical version of MATLAB, as a language and
an interpreter wrapped around compiled code for numeri-
cal analysis and probability. It went through various major
upgrades and implementations in the eighties, moving
from mainframes to VAXes and then to PC’s. S developed
into a general purpose language, with a strong compiled
library of linear algebra, probability and optimization, and
with implementations of both classical and modern sta-
tistical procedures. The first 15 years of S history are ably
reviewed by Becker (1994), and there is a 30 year history
of the S language in Chambers (2008, Appendix A) . The
statistical techniques that were implemented, for example
in the White Book (Chambers and Hastie 1992), were con-
siderably more up-to-date than techniques typically found
in SPSS or SAS. Moreover the S system was build on a
rich language, unlike Stata, which until recently just had a
fairly large number of isolated data manipulation and anal-
ysis commands. Statlib started a valuable code exchange of
public domain S programs.

For a long time S was freely available to academic
institutions, but it remained a product used only in the
higher reaches of academia. AT&T, later Lucent, sold S to
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the Insightful corporation, which marketed the product as
S-plus, initially quite successfully. Books such as Venables
and Ripley; Venables and Ripley (1994; 2000) effectively
promoted its use in both applied and theoretical statis-
tics. Its popularity was increasing rapidly, even before the
advent of R in the late nineties. S-plus has been quite com-
pletely overtaken by R. Insightful was recently acquired by
TIBCO, and S-plus is now TIBCO Spotfire S+. We need
not longer consider it as a serious contender.

There were two truly exciting developments in the
early nineties. Luke Tierney (1990) developed LISP-STAT,
a statistics environment embedded in a Lisp interpreter.
It provided a good alternative to S, because it was more
readily available, more friendly to personal computers, and
completely open source. It could, like S, easily be extended
with code written in either Lisp or C. This made it suit-
able as a research tool, because statisticians could rapidly
prototype their new techniques, and distribute them along
with their articles. LISP-STAT, like Data Desk and JMP, also
had interesting dynamic graphics capabilities, but now the
graphics could be programmed and extended quite easily.
Around 2000 active development of LISP-STAT stopped,
and R became available as an alternative (Valero-Mora and
Udina 2004).

R was written as an alternative implementation of the
S language, using some ideas from the world of Lisp and
Scheme (IThaka and Gentleman 1996). The short history of
R is a quite unbelievable success story. It has rapidly taken
over the academic world of statistical computation and
computational statistics, and to an ever-increasing extend
the world of statistics teaching, publishing, and real-world
application. SAS and SPSS, which initially tended to ignore
and in some cases belittle R, have been forced to include
interfaces to R, or even complete R interpreters, in their
main products. SPSS has a Python extension, which can
run R since SPSS-16. The SAS matrix language SAS/IML,
starting at version 3.2. has an interface to an R interpreter.

R is many things to many people: a rapid prototyping
environment for statistical techniques, a vehicle for com-
putational statistics, an environment for routine statistical
analysis, and a basis for teaching statistics at all levels. Or,
going back to the origins of S, a convenient interpreter to
wrap existing compiled code. R, like S, was never designed
for this all-encompassing role, and the basic engine is
straining to support the rate of change in the size and
nature of data, and the developments in hardware.

The success of R is both dynamic and liberating. But
it remains an open source project, and nobody is really
in charge. One can continue to tag on packages extending
the basic functionality of R to incorporate XML, multicore
processing, cluster and grid computing, web scraping, and

so on. But the resulting system is in danger of bursting
at the seams. There are now four ways to do (or pretend
to do) object-oriented programming, four different sys-
tems to do graphics, and four different ways to link in
compiled C code. There are thousands of add-on pack-
ages, with enormous redundancies, and often with code
that is not very good and documentation that is poor. Many
statisticians, and many future statisticians, learn R as their
first programming language, instead of learning real pro-
gramming languages such as Python, Lisp, or even C and
FORTRAN. It seems realistic to worry at least somewhat
about the future, and to anticipate the possibility that all of
those thousands of flowers that are now blooming may wilt
rather quickly.

Open Source and Reproducibility

One of the consequences of the computer and Internet
revolution is that more and more scientists promote open
source software and reproducible research. Science should
be, per definition, both open and reproducible. In the
context of statistics (Gentleman and Temple-Lang 2004)
this means that the published article or report is not the
complete scientific result. In order for the results to be
reproducible, we should also have access to the data and
to a copy of the computational environment in which the
calculations were made.

Publishing is becoming more open, with e-journals,
preprint servers, and open access. Electronic publish-
ing makes both open source and reproducibility more
easy to realize. The Journal of Statistical Software, at
http://www.jstatsoft.org, the only journal that publishes
and reviews statistical software, insists on complete code
and completely reproducible examples. Literate Pro-
gramming systems such as Sweave, at http://www.stat.
uni-muenchen.de/~leisch/Sweave/, are becoming more
popular ways to integrate text and computations in statis-
tical publications.

We started this overview of statistical software by indi-
cating that the computer revolution has driven much of
the recent development of statistics, by increasing the size
and availability of data. Replacement of mainframes by
minis, and eventually by powerful personal computers, has
determined the directions in the development of statisti-
cal software. In more recent times the Internet revolution
has accelerated these trends, and is changing the way sci-
entific knowledge, of which statistical software is just one
example, is disseminated.
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Information Theory has origins and applications in sev-
eral fields such as: thermodynamics, communication the-
ory, computer science, economics, biology, mathematics,
probability and statistics. Due to this diversity, there are
numerous information measures in the literature. Kullback
(1978), Sakamoto et al. (1986), and Pardo (2006) have
applied several of these measures to almost all statistical
inference problems.

According to The Likelihood Principle, all experimental
information relevant to a parameter 0 is mainly con-
tained in the likelihood function L(8) of the underly-
ing distribution. Bartlett’s information measure is given
by —log(L(0)). Entropy measures (see »Entropy) are
expectations of functions of the likelihood. Divergence
measures are also expectations of functions of likeli-
hood ratios. In addition, Fisher-like information measures
are expectations of functions of derivatives of the log-
likelihood. DasGupta (2008, Chap. 2) reported several
relations among members of these information measures.
In sequential analysis, Wald (1947, p. 53) showed earlier
that the average sample number depends on a divergence
measure of the form

f(X, 60)

where 6 and 0, are the assumed values of the parameter
0 of the density function f of the random variable X under
the null and the alternative hypothesis, respectively.

It is worth noting that, and from the point of view

Eg [log f(X,0) ]

of decision making, the expected change in utility can be
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used as a quantitative measure of the worth of an experi-
ment. In this regard Bayes’ rule can be viewed as a mech-
anism that processes information contained in data to
update the prior distribution into the posterior probability
distribution.

Furthermore, according to Jaynes’ Principle of Maxi-
mum Entropy (1957), information in a probabilistic model
is the available moment constraints on this model. This
principle is in fact a generalization of Laplace’s Principle
of Insufficient Reason.

From a statistical point of view, one should concentrate
on the statistical interpretation of properties of entropy-
information measures with regard to the extent of their
agreement with statistical theorems and to their degree of
success in statistical applications.

The following provides a discussion of preceding issues
with particular concentration on Shannon’s entropy. For
more details, the reader can consult the list of references.

1. Consider a discrete random variable X taking a finite
number of values X = (x1,...,x,) with probability

vector P = (p1,...,pn). Shannon’s entropy (informa-
tion) of P or of X (1948) is given by

H(X) = H(P) = - zp log(p).

The most common bases of the logarithm are 2 and e.
With base 2, H is measured in bits whereas, in base e,
the units of H are nats. In coding theory the base is 2
whereas, in statistics the base is e.

2. Tt is quite clear that H(P) is symmetric in the com-
ponents of the vector P. This implies that components
of P can be rearranged to get different density func-
tions which are either: symmetric, negatively skewed,
positively skewed, unimodal or bimodal. Such distri-
butions carry different information even though they
all have same value of H(P). Therefore, H(P) is unable
to reflect the information implied by the shape of the
underlying distribution.

3. »Entropy of a discrete distribution is always posi-

tive while the differential entropy H(f) = - [f(x)

log(f(x)) dx of a continuous variable X with pdf f may
take any value on the extended real line. This is due to
the fact that the density f(x) need not be less than one
as in the discrete case. Thus, Shannon’s entropy lacks
the ability to give a proper assessment of information
when the random variable is continuous. To overcome
this problem, Awad (1987) introduced sup-entropy as
—E[log(f(X)/s)], where s is the supremum of f (x).

4. Based on a random sample O, = (Xi,...,Xx) of size
n from a distribution and according to Fisher (1925), a
sufficient statistic T carries all information in the sam-
ple while any other statistic carries less information
than T. The question that arises here is that: “Does
Shannon’s entropy agree with Fisher’s definition of a
sufficient statistic?”. Let us consider the following two
examples.

First, let Y : N(6,0”) denote a normal random
variable with mean 6 and variance ¢. It can be shown
that H(Y) = log(2mec®)/2 which is free of 6. Let O,
be a random sample of size n from X : N(6,1) then by
the additivity property of Shannon’s entropy, H(O,) =
nH(X) = nlog(2me)/2. On the other hand, Shan-
non’s entropy of the sufficient statistic X, is H(Xx) =
log(2me/n) /2 = H(X) - log(n)/2. Since H(X) is pos-
itive, H(On) > H(X,) with equality if n = 1, ie.,
Shannon’s entropy of sufficient statistic is less than that
of the sample.

Second, consider a random sample O, of size n
from a continuous uniform distribution on the inter-
val [0, 0]. Let X, and X,., denote the minimum and
the maximum »order statistics in O,. It can be shown
that H(X1.n) = H(Xun), ie., Shannon’s entropy of
sufficient statistic X,.., equals Shannon’s entropy of a
non-sufficient statistic Xi.,. These examples illustrate
that Shannon’s entropy does not agree with Fisher’s
definition of a sufficient statistic.

5 IfY=a+pX, f+0,then H(Y) = H(X) when X is
a discrete random variable. However, if X is continu-
ous, H(Y) = H(X) + log(|f])- So, this result implies
that two sufficient statistics T; and T, = ST; will carry
(according to Shannon’s entropy) unequal amounts
of information, which contradicts the sufficiency
concept.

6. Referring to the first example in (4), it is clear that
Shannon’s information in the sample mean is a decreas-
ing function of the sample size n. This is in direct
conflict with the usual contention that the larger the
sample size is the more information one has. It is
also interesting to recall in this regard Basu’s exam-
ple (1975), where a sample of size 2 is more informa-
tive (about an unknown parameter) than a sample of
size 25. In fact, a rewording of Basu’s conclusion is that
some observations in the sample are more influential
than others.
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What Does Climate Change Hold for the
Future?

There is general agreement among experts that we
can expect a rise in temperatures and an increase
in the number of extreme events, but for other cli-
mate variables such as rainfall there is no clear pre-
diction. However there does not seem to be any doubt
that communities coping with poverty will be particu-
larly vulnerable - this means developing countries like
Africa will be the hardest hit (Cooper et al. 2006;
Washington et al. 2006; Climate Proofing Africa, DFID
2005; Burton and van Aaist 2004). The climate change dia-
logue brings with it an enormous need for more and better
climate data and greater rigor in its analysis. To understand
both risks and opportunities associated with the season-to-
season variability that is characteristic of current climates
as well as changes in the nature of that variability due to
climate change, there is need for all stakeholders, including
the statistical community, policy makers, and scientists, to
work together to propose appropriate strategies to coun-
teract one and enhance the other. Such strategies must be
based on scientific studies of climate risk and trend analy-
ses and not fashionable perceptions or anecdotal evidence.
Statisticians have a vital role to play here.

What Is Needed?

One of the ways of approaching this issue of climate
change as it affects the people in the developing countries
is through a better understanding of the season-to-season
variability in weather that is a defined characteristic of cur-
rent climate (Climate: The statistical description in terms
of means and variability of key weather parameters for a
given area over a period of time — usually at least 30 years)
and using this to address future change. Managing current
climate-induced risk is already an issue for farmers who
practice rain-fed agriculture. Helping them to cope bet-
ter with this risk while preparing for future change seems
to be the best way of supporting the needy both for the
present and for the future. Agriculture is one field where
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the vagaries of climate have an impact but other fields such
as health, construction, and transport among others would
benefit equally from this approach.

Why Do Statisticians Need to Be
Involved?

Meteorology departments are the custodians of climate
data and, especially in many developing countries, data
quality and management, rather than analysis, have been
priority issues and the institutions have limited themselves
mainly to providing data to users. There is now a move
to shift from providing basic data and services to meeting
increasingly challenging user needs.

Effective use of climatic summaries and especially
applications require an understanding of statistical con-
cepts underlying these summaries as well as proficiency
in using and interpreting the advanced statistical tech-
niques and models that are being suggested to understand
climate change.

Statistics is the glue that brings the different dis-
ciplines together and statisticians need to form an
integral part of multidisciplinary teams to understand,
extend, and share knowledge of existing and upcom-
ing technologies and statistical methods for development
purposes.

Where Should Changes Occur?

The three areas where statisticians can be proactive in
addressing the climate change issue are:

1. Working actively with researchers in various disci-
plines in guiding research to develop and test adapta-
tion strategies.

For example, if, as is expected, temperatures are
going to rise, and this affects crop growth, it is now that
research agendas must be set if we are to meet the new
challenges. There needs to be a clear understanding
about the implications of such conditions.

2. Being aggressively involved in building capacities of
data producers and data users. At present the capac-
ity in many developing countries for modeling and
interpreting data is highly inadequate

For example, creating awareness of the need
for quantity, quality, and timeliness of climate data
required for use in modeling climate processes and
for using and extending these models in collab-
oration with agriculture scientists and extension
workers.

3. Promoting changes in statistics training at all levels to
meet the expanding needs.

For example, innovative statistics curriculum at
universities & colleges that mainstream climate data
analysis and that emphasize understanding and appli-
cation of concepts using a data-based approach.

Some Available Resources

Given the availability and affordability of computers today,
they should now form an integral part of good statistics
training. Among the many resources available to enhance
statistics training in general, and training in climatic statis-
tics in particular are:

o CAST for Africa (www.cast.massey.ac.nz), an electronic
statistics textbook that provides an interesting interac-
tive way of understanding statistical concepts with a
number of real-life data sets from different disciplines.
Climate CAST, which is an offshoot of this, provides
the slant for exploring climatic data. The textbook goes
from the very basic to reasonably complex topics.

e Instat (www.reading.ac.uk/ssc), a simple software pack-
age with a special climate menu and a number of useful
guides in the help section to facilitate training as well
as self study.

o GenStat (www.vsni.co.uk), a major statistical package,
is an all-embracing data analysis tool, offering ease of
use through comprehensive menu system reinforced
with the flexibility of a sophisticated programming lan-
guage. It has many useful facilities including analysis
of extremes. The discovery version is provided free for
nonprofit organizations while the latest version is avail-
able at very reasonable rates to training and research
institutions. Here again there is wealth of informa-
tion for the user in terms of guides, including a guide
to climatic analyses, and tutorials and examples from
diverse fields.

e DSSAT (www.icasa.net/dssat) and ApSim (www.apsim.
info/apsim), crop simulation models, driven by long-
term daily climatic data, which can be used to simulate
realistic long-term field experiments. These are prob-
ably more useful at postgraduate or faculty levels but
have great potential for statisticians working with agri-
culture scientists to explore possible scenarios without
actually undertaking long costly field experiments.

Some Working Initiatives
e Statistics Curriculum, at Faculty of Agriculture, Univer-
sity of Nairobi, Kenya
An innovative data-based problem-solving app-
roach to service teaching for the Agriculture Faculty
uses building blocks approach - from descriptive to
modeling to application - to broaden and deepen
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the students’ understanding of how statistics is used
in practice. The curriculum includes computer pro-
ficiency and soft skills as an integral part of the
curriculum and exposes students to all types of data,
including climatic data, which is not only important in
its own right but also an important example of mon-
itoring data. Examples of how climatic analyses have
been incorporated into the service teaching of statistics
are given by Kurji and Stern (2005).

o  Masters in Climate Data Analysis, at Science Faculty,
Maseno University, Kenya

Currently there are a number of students who are

working on their postgraduate degree with specific
climate-related projects, both advancing the science,
encouraging statisticians to embrace the new chal-
lenges of development, and building capacity in the
field of climate analysis.

o Statistics for Applied Climatology (SIAC) at IMTR (Insti-
tute of Meteorological Training ¢~ Research), Kenya

This is a regional program run by the Institute

for groups comprising officers from National Met ser-
vices and Agriculture Research Scientists to develop
statistical skills and build networks for further col-
laborative work. The course has two components, a
6-week e-learning course followed by a 4-week face-to-
face course, which culminates in a project that can be
continued after the participants return to their bases.
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Introduction

Statistics can broadly be defined as the science of decision-
making in the face of (random) uncertainty. Gambling has
the same definition, except in the narrower domain of a
gambler making decisions that affect his fortune in games
of chance. It is hardly surprising, then, that the two sub-
jects are closely related. Indeed, if the definitions of “game,”
“decision,” and “fortune” in the context of gambling are
sufficiently broadened, the two subjects become almost
indistinguishable.

Let’s review a bit of the history of the influence of
gambling on the development of probability and statistics.
First, of course, gambling is one of the oldest of human
activities. The use of a certain type of animal heel bone
(called the astragalus) as a crude die dates to about 3500
BCE (and possibly much earlier). The modern six-sided die
dates to about 2000 BCE.

The early development of probability as a mathematical
theory is intimately related to gambling. Indeed, the first
probability problems to be analyzed mathematically were
gambling problems:

1. De Mere’s problem (1654), named for Chevalier De
Mere and analyzed by Blaise Pascal and Pierre de
Fermat, asks whether it is more likely to get at least one
six with 4 throws of a fair die or at least one double six
in 24 throws of two fair dice.

2. The problem of points (1654), also posed by De Mere
and analyzed by Pascal and Fermat, asks for the fair
division of stakes when a sequence of games between
two players (Bernoulli trials in modern parlance) is
interrupted before its conclusion.

3. Pepys’ Problem (1693), named for Samuel Pepys and
analyzed by Isaac Newton, asks whether it is more
likely to get at least one six in six rolls of a fair die or
at least two sixes in 12 rolls of the die.



http://www.ssc.rdg.ac.uk/bucs/Manna from Heaven.pdf

1478

Statistics and Gambling

4. The matching problem (1708), analyzed by Pierre-
Redmond de Montmort, is to find the probability that
in a sequence of card draws, the value of a card is the
same as the draw number.

5. St. Petersburg Paradox (1713), analyzed by Daniel
Bernoulli, deals with a gambler betting on a sequence
of coin tosses who doubles his bet each time he loses
(and leads to a random variable with infinite expected
value).

Similarly, the first books on probability were written by
mathematician-gamblers to analyze games of chance: Liber
de Ludo Aleae written sometime in the 1500s by the col-
orful Girolamo Cardano and published posthumously in
1663, and Essay d’Analyse sur les Jeux de Hazard by Mont-
mort, published in 1708. See David 1998 and Epstein 1977
for more on the influence of gambling on the early devel-
opment of probability and statistics.

In more modern times, the interplay between statistics
and game theory has been enormously fruitful. Hypothe-
sis testing, developed by Ronald Fisher and Karl Pearson
and formalized by Jerzy Neyman and Egon Pearson is one
of the cornerstones of modern statistics, and has a game-
theory flavor. The basic problem is choosing between a
presumed null hypothesis and a conjectured alternative
hypothesis, with the decision based on the data at hand and
the probability of a type 1 error (rejecting the null hypoth-
esis when it’s true). Influenced by the seminal work of John
von Neumann and Oscar Morgenstern on game theory and
economics (von Neumann 1944), the Neyman-Pearson
hypothesis-testing framework was extended by Abraham
Wald in the 1940s to statistical decision theory (Wald 1950).
In this completely game-theoretic framework, the statis-
tician (much like the gambler) chooses among a set of
possible decisions, based on the data at hand according
to some sort of value function. Statistical decision theory
remains one of the fundamental paradigms of statistical
inference to this day.

Bold Play in Red and Black

Gambling continue to be a source of interesting and deep
problems in probability and statistics. In this section, we
briefly describe a particularly beautiful problem analyzed
by Dubins and Savage (1976). A gambler bets, at even
stakes, on a sequence of Bernoulli trials (independent,
identically distributed trials) with success parameter p €
(0,1). The gambler starts with an initial fortune and must
continue playing until he is ruined or reaches a fixed tar-
get fortune. (The last two sentences form the mathematical
definition of red and black.) On each trial, the gambler can

bet any proportion of his current fortune, so it’s conve-
nient to normalize the target fortune to 1; thus the space
of fortunes is the interval [0,1].

The gambler’s goal is to maximize the probability F(x)
of reaching the target fortune 1, starting with an initial
fortune x (thus, F is the value function in the context of
statistical decision theory). The gambler’s strategy consists
of decisions on how much to bet on each trial. Since the
trials are independent, the only information of use to the
gambler on a given trial is his current fortune. Thus, we
need only consider stationary, deterministic strategies. Such
a strategy is defined by a betting function S(x) that gives
the amount bet on a trial as a function of the current
fortune x.

Dubins and Savage showed that in the sub-fair case
( p< %), an optimal strategy is bold play, whereby the gam-
bler, on each trial, bets his entire fortune or the amount
needed to reach the target (whichever is smaller). That is,
the betting function for bold play is

Conditioning on the first trial shows that the value
function F for bold play satisfies the functional equation

F(x) < PF(2x), xe[0,1] 0

p+(1-p)F(2x-1), xe[3,1]
with boundary conditions F(0) = 0, F(1) = 1. More-
over, F is the unique bounded solution of (1) satisfying
the boundary conditions. This functional equation is one
of the keys in the analysis of bold play. In particular, the
proof of optimality involves showing that if the gambler
starts with some other strategy on the first trial, and then
plays boldly thereafter, the new value function is no better
than the value function with bold play.

Interestingly, as Dubins and Savage also showed, bold
play is not the unique optimal strategy. Consider the fol-
lowing strategy: Starting with fortune x ¢ [0, %), the
gambler plays boldly, but with the goal of reaching % Start-
ing with fortune x ¢ ( %, 1] , the gambler plays boldly, but
with the goal of not falling below 3. In either case, if the
gambler’s fortune reaches 3, he plays boldly and bets 3.
Thus, the betting function S for this new strategy is related
to the betting function S of bold play by

18(2x), 0<x<13
S2(x) =138(2x-1), 1<x<l

1 1

X *=3
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By taking the three cases x € [0, %) ,X= % and x € ( %,1] ,
it’s easy to see that that the value function F; for strategy S»
satisfies the functional equation (1). Trivially the boundary
conditions are also satisfied, so by uniqueness, F, = F and
thus S, is also optimal.

Once one sees that this new strategy is also optimal,
it’s easy to construct an entire sequence of optimal strate-
gies. Specifically, let S; = S denote the betting function for

ordinary bold play and then define S, recursively by

18u(2x), 0<x<3
Sn1(x) =1 38a(2x-1), 3 <x<1

1 1

2’ *=3

Then S,, has the same value function F as bold play and so
is optimal for each n. Moreover, if x € (0,1) is not a binary
rational (that is, does not have the form zi for some k and
n), then there exist optimal strategies that place arbitrarily
small bets when the fortune is x. This is a surprising result
that seems to run counter to a naive interpretation of the
law of large numbers.

Bold play in red and black leads to some exotic func-
tions of the type that are not usually associated with a
simple, applied problem. The value function F can be inter-
preted as the distribution function of a random variable X
(the variable whose binary digits are the complements of
the trial outcomes). Thus F is continuous, but has deriva-
tive 0 almost everywhere if p # % (singular continuous). If
p = 1, X is uniformly distributed on [0,1] and F(x) = x.
If G(x) denotes the expected number of trials under bold
play, starting with fortune x, then G is discontinuous at the
binary rationals and continuous at the binary irrationals.

Finally, note that when the gambler plays boldly, his
fortune process follows the deterministic map x> 2x
mod 1, until the trial that ends the game (with fortune 0
or1). Thus, bold play is intimately connected with a discrete
dynamical system. This connection leads to other interest-
ing avenues of research (see Pendergrass and Siegrist 2001).
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The role of the statistician in litigation has much in com-
mon with that of a consultant in any field. To be an effective
expert witness, we should be certain that we know what
questions must be answered and what data will be required
in order to answer them. Other guidelines include

e Promoting and preserving the confidence of the client
and the public without exaggerating the accuracy or
explanatory power of the data

e Avoiding unrealistic expectations and not promising
more than you can deliver

e Being responsible and accountable, guarding your
reputation



1480

Statistics and the Law

e Providing adequate information to permit methods,
procedures, techniques, and findings to be assessed
e Addressing rather than minimizing uncertainty

However, the statistician must understand that litigation
is an adversarial process; one must consider the strategy
of the other side and be prepared for what is likely to be
presented. The keys to effective statistical evidence are

e Early involvement by the statistician (as is the case in
any situation)

e Adequate data

e Clarity of presentation

o Effective supplemental anecdotal evidence (not the
task of the statistician, but an important complement
to it)

e Understanding of the statistics by the litigator

e Recognizing that the statistician cannot reach legal
conclusions nor can s/he be an advocate (for anything
other than statistics!)

In the United States statistical evidence has been used in
cases involving

e Race, sex, and age discrimination in employment and
education

e Evidence-based medicine

e Environmental effects of business practices

e DNA, ear prints, bullet composition

e Death penalty

e Product liability

o Intellectual property and many other issues

e On the international scene, statistical evidence was
used in the war crimes trial of Milosevic and in other
human rights cases.

The techniques used span the range of statistical method-
ology from descriptive statistics to ¢-tests to regression

(nearly ubiquitous), non-parametric tests, capture-recapture,

urn models, change point analysis, multiple systems analy-
sis, Mantel-Hanszel tests to Bayesian techniques (not gen-
erally popular with the courts) and a variety of other
sophisticated methods. Courts have a great deal of diffi-
culty with the concept of sampling, especially when the
sample is very small in comparison with a population. They
also often have difficulty in seeing the applicability of statis-
tics to an individual case. For example, evidence that, all
else being equal, the death penalty was far more likely to
be imposed when the victim was white than when the vic-
tim was black, has not kept individuals whose victims were
white from being sentenced to death.

An important observation to keep in mind is that an
expert with a newly-developed technique may not fare well
in court. The usual standard for admission of statistical or
other scientific evidence is that

1. The testimony is based upon sufficient facts or data,

2. The testimony is the product of reliable principles and
methods, and

3. The witness has applied the principles and methods
reliably to the facts of the case

Peer-reviewed publication usually meets the second
requirement.

The classic example of the »misuse of statistics is
in People v. Collins (1968), where the following analy-
sis sent Malcolm Collins to prison. Witnesses reported
various characteristics, characteristics that Malcolm and
Janet Collins had, and the prosecutor got the expert
to agree to certain hypothetical probabilities as follows
(expert witnesses can testify about their opinions based on
hypotheses).

Partly yellow automobile 1/10
Man with mustache /4
Woman with ponytail 110
Blond woman 1/3
Black man with beard 110
Interracial couple in a car 1/1000

Then the prosecutor said: the probability of having
all of these characteristics is 1/12,000,000, overriding the
expert’s objection about their lack of independence. He
continued: since there are 12,000,000 people in metropoli-
tan Los Angeles Malcolm and Janet Collins must be the
only couple with these characteristics and thus the per-
petrators of the mugging in question. In addition to the
problem with independence, of course, the probability of
“more than one given at least one” in a Poisson distribu-
tion turns out to be .43, hardly the “beyond a reasonable
doubt” required for a criminal conviction. The unfortunate
Malcolm spent some time in prison before his conviction
was overturned on appeal, as did the Garrett Wilson of
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Maryland v. Wilson (2002), where not only was the prob-
ability of two children dying of Sudden Infant Death Syn-
drome similarly miscalculated, but the prosecutor argued
not only that there was a low probability that two deaths
would occur in one family but that there was a low prob-
ability that the defendant was innocent (This is called the
“prosecutor’s fallacy”). Analogous bad statistics in the UK
led to the physician who testified about statistics being
stricken from the registry and 250 prior convictions being
reviewed. Unfortunately one of the victims of the erro-
neous testimony, faced with a ruined career as a solicitor,
committed suicide when eventually released from prison.

But there are better results: statistics in cases I have
worked on helped convince the courts that similarly sit-
uated women and men should receive equal pensions and
that women’s sports teams should be supported in colleges
and universities as well as are mens. In the former case a
man who had the same accumulation of pension funds in
a defined contribution plan as a woman, was getting 15%
more in monthly benefits on the stated grounds that (sta-
tistically speaking!) women live longer than men. The U.S.
law clearly stated that discrimination on the basis of sex in
employment-related matters such as pensions was forbid-
den, but the pension fund administrators insisted that the
discrimination was on the basis of longevity, admitting of
course that no individual woman could be expected to live
long than any individual man. We showed that of a cohort
of 1000 men and women at age 65, 7% of the population
would be women could be expected to live longer than men
with whom they could be matched and 7% of the popu-
lation would be men who would die young, unmatched
by women’s early deaths. Hence 86% of the population
could be paired up as to age at death - i.e., 86% of the
men and women “died at the same age” (for statistical pur-
poses). Thus for 86% of the population, those “similarly
situated with respect to longevity, men and women were
being treated differently. This together with the fact that,
at least at the time (more than 20 years ago) men indulged
in more voluntary life-shortening behavior like smoking
and drinking to excess and the — what seemed to many -
clear statutory mandate of equal treatment, convinced the
courts.

In the sports case it was simply that 51% of the under-
graduate students at Brown University were women, while
only 39% of the student athletes were. The probability of
such a disparity were it due to chance was about 1 in a
million. Thus the courts found that the distribution of ath-
letes by sex was not “substantially proportionate” to the
distribution of students by sex. Statistical significance isn't

everything, but in this case it prevented the cancellation of
university support for some of the women’s teams.

My late husband used to say that mathematics and the
law both have axiom systems - it is just that the law’s is
inconsistent. Sometimes we all feel that way, but statistics
can sometimes help bring justice.
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Overview
Statistics education at all levels, school, undergraduate,
graduate, and in the workplace, has been the subject of
much debate over most of the 20th century and into the
21st. Proposals to make statistics a part of everyone’s basic
education surfaced in the 1930s and 1940s, but gained
little traction. World War II forced a renewed emphasis
on scientific thinking and statistics gained attention as
an essential component of applied science and industrial
management. This led to the few existing graduate pro-
grams in statistics being expanded and new ones being
developed at various universities around the world, a trend
that went on for about the subsequent forty years. Some of
these programs emphasized application and some theory,
but as the need for statistics in many different fields (busi-
ness, engineering, health sciences, social sciences, to name
a few) became essential and the advent of electronic com-
puting made it possible to meet those needs, graduate pro-
grams in statistics tended to merge toward a combination
of application and theory, a very healthy trend indeed.
During that same period, introductory undergraduate
courses were developed, but these courses stayed on the
theory track perhaps too long and only since about 1980
have been giving more attention to applications emphasiz-
ing data analysis, again with the assistance of ubiquitous
computing. Work beyond the introductory course has not

kept pace with the need; even today most colleges and uni-
versities offer little in the way of undergraduate statistics
beyond the basic course.

Although overtures to making statistics a part of the
school curriculum were advanced prior to the 1940s, noth-
ing in that arena really took root until the early 1980s as
well. Today, there is great debate on the place of statistics
in the school curriculum, but most educators agree that it
should be included in the broader picture of mathemati-
cal sciences to which all school students should be exposed
before moving on to college or the workplace.

An enlightened 21st century view of the role of statistics
in society was presented quite clearly in a recent article by
Hal Varian of Google:

» The ability to take data - to be able to understand it, to
process it, to extract value from it, to visualize it, to com-
municate it — that’s going to be a hugely important skill
in the next decades, not only at the professional level but
even at the educational level for elementary school kids, for
high school kids, for college kids. Because now we really do
have essentially free and ubiquitous data. So the compli-
mentary scarce factor is the ability to understand that data
and extract value from it. (The McKinsey Quarterly, January
2009)

This view of the importance of statistics is becoming
the predominant one among those affecting education in
the mathematical sciences, and it appears that statistics
education is on an upward swing as the information age
continues.

The American Statistical Association (http://www.amstat.
org/) has links to lists that contain information on over
300 college and university programs in statistics around
the world. This is a relatively small number, compared to,
say, mathematics, and many of the programs are small
or highly specialized (»biostatistics, for example). In the
United States, the nearly one hundred graduate programs
in statistics produced about 410 doctoral degrees and
408 master’s degrees in the 2006-2007 academic year. A
much smaller number of bachelors degree programs pro-
duced about 445 degrees in that same year. These num-
bers are underestimates, especially at the master’s level, as
they come from a survey of mathematical science depart-
ments conducted by the American Mathematical Society
(http://www.ams.org/), but they do give a perspective on
the relatively small numbers of degrees awarded in statis-
tics at all levels. Yet, the number of job opportunities in
statistics remains large even in times of economic down-
turn, especially for those with at least a master’s degree
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in the subject, and the number of degrees awarded lags
behind demand.

Enrollments and other details on the undergraduate
teaching of statistics in the United States can be found at
in the CBMS 2005 Survey: Statistical Abstract of Under-
graduate Programs in the Mathematical Sciences in the
United States (http://www.cbmsweb.org/). Details on cur-
rent thinking in the teaching of statistics at the college level
can be found in one of two journals, the Journal of Statistics
Education (http://www.amstat.org/PUBLICATIONS/JSE/)
and the Statistics Education Research Journal of the
International Association for Statistics Education (IASE)
(http://www.stat.auckland.ac.nz/~iase/). The former is
directed toward experiences with teaching practices in the
classroom, often including useful data sets, while the lat-
ter is directed toward research on effective teaching and
learning of statistics. A good resource on all aspects of
undergraduate statistics education can be found at the
Consortium for Advancing Undergraduate Statistics Edu-
cation (CAUSE) (http://www.causeweb.org/).

School Education in Statistics

The modern era of statistics education at the school level
dates from the late 1970s, when the United Kingdom, Aus-
tralia, New Zealand and Sweden led the way in developing
educational programs and materials that were effective in
enlisting the interest of school children (as well as their
teachers) in data analysis. The journal Teaching Statistics
(http://ts.rsscse.org.uk/), now a product of the Royal Sta-
tistical Society’s Center for Statistics Education, was an
outcome of those efforts in the UK and still remains a
premier source of information on effective teaching of
statistics in the schools. These efforts influenced work in
the United States that led the National Council of Teachers
of Mathematics (NCTM) (http://www.nctm.org/) to place
an emphasis on data analysis in their Principles and Stan-
dards for School Mathematics, first published in 1989 and
revised in 2000.

Opver the years, national and international assessments
of school mathematics have included increasingly larger
emphases on data analysis, statistics and probability. In
its 2006 framework, the OECD Program for International
Student Assessment (PISA) (http://www.pisa.oecd.org/)
lists Uncertainty as one of the four main areas of math-
ematics, along with Space and shape, Change and rela-
tionships, and Quantity. There description of this area is
enlightening:

» As an overarching idea, uncertainty suggests two related
topics: dataand chance. These phenomena are respectively

the subject of mathematical study in statistics and prob-
ability. Relatively recent recommendations concerning
school curricula are unanimous in suggesting that statis-
tics and probability should occupy a much more promi-
nent place than has been the case in the past. Specific
mathematical concepts and activities that are important
in this area are collecting data, data analysis and dis-
play/visualization, probability and inference.

For the United States, the 2009 framework of the
National Assessment of Educational Progress (NAEP)
(http://www.nagb.org/publications/frameworks/math-fra
mework09.pdf) gives data analysis, statistics and proba-
bility 25% of the weight of questions at the high school
level, in connection with number properties (10%), mea-
surement and geometry (30%) and algebra (35%).

As to content emphases, the Guidelines for Assess-
ment and Instruction in Statistics Education (GAISE)
(http://www.amstat.org/education/gaise/) report of the
American Statistical Association has been instrumental in
shaping the revision of mathematics standards for many
states and some other countries. GAISE views statistics as
a problem-solving process built around the steps of:

Formulate questions
Collect data
Analyze data
Interpret results

Its guiding principles for teaching statistics are:

e Conceptual understanding takes precedence over pro-
cedural skill.

e Activelearning is key to the development of conceptual
understanding.

e Real-world data must be used wherever possible in
statistics education.

e Appropriate technology is essential in order to empha-
size concepts over calculations.

e All four steps of the investigative process should be
encountered at each grade level.

e Theillustrative investigations should show situations in
which the statistics is essential to the answering of a
question, not just an add-on.

e Such investigations should be tied to the mathematics
that they illustrate, motivate and emphasize.

Statistics in the Workplace

As Hal Varian expressed it in the article cited above,
“I keep saying the sexy job in the next ten years will be
statisticians.” There seems to be no end of the demand for
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statisticians, or those trained in statistics, so long as they
can combine theoretical knowledge and problem-solving
skills with the ability to do practical work with data
and computers. Another manifestation of the huge need
for statistical knowledge lies in the area of productiv-
ity and product improvement in industry, as reflected
by the interest and excitement that surrounds the Six
Sigma program. (See the American Society for Quality,
Six Sigma program at http://www.asq.org/learn-about-
quality/six-sigma/overview/overview.html.)

Statistics has a bright future, and statistics education
must expand and adapt to meet the increasing needs of a
world economy that runs on data.
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Introduction

Statistics of extremes concerns the occurrence of rare
events: catastrophic flooding due to very high tides or
landslides following unusually heavy rain, structural fail-
ure of dams and bridges, massive earthquakes, stock
market crashes, and so forth. It has applications in many
domains of engineering, in meteorology, hydrology and
other earth sciences, in telecommunications, in finance
and insurance - indeed, in any domain in which major
risks arise due to unusual events or combinations thereof.
In applications the available data are often very limited
in relation to the event of interest, so a key issue is the
validity of extrapolation far into the tail of a distribution,
based on data that are less extreme. This is usually formu-
lated mathematically in terms of stability properties that
reasonable models ought to possess, and these properties
place strong restrictions on the families of distributions on
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which extrapolation should be based. The relevance of such
properties to an application must be carefully considered,
and any relevant subject-matter knowledge incorporated,
if wholly inappropriate extrapolation is to be avoided.

Maxima

Consider the maximum My = max(Xy,...,Xx) of inde-
pendent identically distributed continuous random vari-
ables X, . .., Xy from a distribution F whose upper support
point is Xmax = sup{x : F(x) < 1}. In analogy with the
central limit theorem (see »Central Limit Theorems), we
seek a useful limiting distribution for My as m — oo. The
distribution function of My is F*(x), but this converges
to a degenerate distribution putting unit mass at Xmax, SO
instead we consider the sequence of linearly rescaled max-
ima Yy = (M — by)/ay for by € R and a; > 0, and ask
whether the sequences {ay }, {bx} can be chosen so that a
non-degenerate limiting distribution exists. Remarkably it
can be shown that if such a limit exists, it must lie in the
generalized extreme-value family

H(y) = exp{_ [1+ f(y—rn)]:/f}’

—o0o<n,E<00,7>0, 1)

where x; = max(x,0). This result, known as the extremal
types theorem, provides strong motivation for the use of
(1) when modeling maxima, in analogy with the use of the
Gaussian distribution for averages. Note however the con-
ditional nature of the theorem: there is no guarantee that
such a limiting distribution will exist in practice. The con-
nection with the stability properties mentioned above is
that (1) is the entire class of so-called max-stable distribu-
tions, i.e., those satisfying the natural functional stability
relation H(y)" = H(bm + amy) for suitable sequences
{am}, {bm} forallm e N.

The parameters # and 7 in (1) are location and scale
parameters. The shape parameter & plays a central role, as
it controls the behavior of the upper tail of the distribu-
tion H. Taking & > 0 gives distributions with heavy upper
tails and taking & < 0 gives distributions with a finite
upper endpoint, while the Gumbel distribution function
exp{—exp[-(y — n)/7]} valid for —co < y < oo emerges
as & — 0. Fisher and Tippett (1928) derived these three
classes of distributions, which are known as the Gumbel
or Type I class when & = 0, the Fréchet or Type II class
when & > 0, and the (negative or reversed) Weibull or
Type III class when & < 0. The appearance of the »Weibull
distribution signals that there is a close link with reliabil-
ity and with survival analysis, though in those contexts
the behavior of minima is typically the focus of interest.

Since min(Xj, ..., Xx) = —max(-Xj,...,—X), results for
maxima may readily be converted into results for minima;
for example, the extremal types theorem implies that if a
limiting distribution for linearly rescaled minima exists, it
be of form 1 — H(-y). Below we describe the analysis of
maxima, but