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Introduction
It is o�en required to approximate to the distribution of

some statistics whose exact distribution cannot be conve-

niently obtained. When the �rst few moments are known,

a common procedure is to �t a law of the Edgeworth type

having the same moments as far as they are given. �is

method is o�en satisfactory in practice, but has the draw-

back that error in the “tail” regions of the distribution are

sometimes comparable with the frequencies themselves.

Notoriously, the Edgeworth approximation can assume

negative values in such regions.

�e characteristic function of the statistic may be

known, and the di�culty is then the analytical one of

inverting a Fourier transform explicitly. It is possible to

show that for some statistics a satisfactory approximation

to its probability density, when it exists, can be obtained

nearly always by themethod of steepest descents.�is gives

an asymptotic expansion in powers of n−, where n is the
sample size, whose dominant term, called the saddlepoint

approximation, has a number of desirable features. �e

error incurred by its use isO(n−) as against themore usual
O(n−/) associated with the normal approximation.

The Saddlepoint Approximation
Let y = (y, . . . , yn)′ be a vector of observations of n ran-
domvariables with joint density f (y). Suppose that the real
random variable Sn = Sn(y) has a density with respect to
Lebesgue measure which depends on integer n > N for
some positiveN. Let ϕn(z) = E(eizSn) be the characteristic
function of Sn where i is the imaginary unit.�e cumulant

generating function of Sn is ψn(z) = log ϕn(z) = Kn(T)
with T = iz. Whenever the appropriate derivatives exist,
let ∂jψn(̃z)/∂zj denote the jth order derivative evaluated

at z = z̃.�e jth cumulant κnj of Sn, where it exists, satis�es
the relation

i
j
κnj =

∂ jψn()
∂z j

. ()

It is assumed that the derivatives ∂ jψn(z)/∂zj exist and are
O(n) for all z and j = , , . . . , rwith r ≥ .We use here par-
tial derivatives because the functions involvedmay depend

on something else, a parameter vector for example.

Let hn(x) be the density of the statistics Xn =
n−/ {Sn − E(Sn)}.�e characteristic function of Xn is

ϕ
∗
n(z) = E(eizXn) = E(exp{i

z√
n
{Sn − E(Sn)}})

= e−i
z

√

n
E(Sn)E{ei

z
√

n
Sn}

= e−i
z

√

n
E(Sn)ϕn (

z√
n
), ()

where ϕn is the characteristic function of Sn.

Without loss of generality assume that E(Sn) = ,

therefore

ϕ
∗
n(z) = E(eizXn) = ϕn (

z√
n
). ()

�e cumulant generating function of Xn is

ψ
∗
n(z) = log ϕ∗n(z) = K∗n (T), ()

with T = iz.
Let T̂ = i ẑ be the root of the equation

∂K∗n (T)
∂T

= Xn. ()

�e density function hn(x) of the statistics Xn is given
by the usual Fourier inversion formula

hn(x) =


π

∞

∫
−∞

ϕ
∗
n(z)e−izXndz

= 

π

∞

∫
−∞
exp{ψ

∗
n(z) − izXn}dz. ()
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where ψ∗n(z) was given in (). It is convenient here to
employ the equivalent inversion formula

hn(x) =


πi

a+i∞

∫
a−i∞

exp{K∗n (T) − TXn}dT, ()

where −c < a < c,  ≤ c <∞,  ≤ c <∞, but c + c > ,
thus either c or c may be zero, though not both, and

K∗n (T) was de�ned in ().
Let us write T = T̂ + iw, where T̂ is the root of

the Eq. ().�e argument then proceeds formally as fol-

lows. On the contour near T̂, the exponent of () can be

written as

K
∗
n (T) − TXn = K∗n (T̂) − T̂Xn + iw

∂

∂T
{K∗n (T̂) − T̂Xn}

+ 

(iw) ∂

∂T
{K∗n (T̂) − T̂Xn}

+ 

(iw) ∂

∂T
{K∗n (T̂) − T̂Xn}

+ 


(iw) ∂

∂T
{K∗n (T̂) − T̂Xn} +⋯

= K∗n (T̂) − T̂Xn −



w
 ∂
K∗n (T̂)
∂T

− i

w
 ∂
K∗n (T̂)
∂T

+ 


w
 ∂
K∗n (T̂)
∂T

+⋯, ()

where ∂
∂T

{K∗n (T̂) − T̂Xn} =  because T̂ is the root of ().
Because of (), the integrand of () can be written as

exp{K∗n (T) − TXn}

= exp{K∗n (T̂) − T̂Xn} exp{−



w
 ∂
K∗n (T̂)
∂T

}

× { − i

w
 ∂
K∗n (T̂)
∂T

+ 


w
 ∂
K∗n (T̂)
∂T

− 

{ 

w
 ∂
K∗n (T̂)
∂T

}


+⋯
⎫⎪⎪⎬⎪⎪⎭
. ()

Using T = T̂ + iw, we can transform from T to w in ()
resulting that

hn(x) =


π
exp{K∗n (T̂) − T̂Xn}

×
∞

∫
−∞
exp{− 


w
 ∂
K∗n (T̂)
∂T

}{ − i

w
 ∂
K∗n (T̂)
∂T

+ 


w
 ∂
K∗n (T̂)
∂T

− 

{ 

w
 ∂
K∗n (T̂)
∂T

}


+⋯
⎫⎪⎪⎬⎪⎪⎭
dw. ()

�e odd powers of w vanish on integration. On the other

hand, for j = , , . . . and since ∂ j

∂T j
Kn(T) is O(n)

∂ jK∗n (T)
∂T j

= ∂ j

∂T j
Kn (

T√
n
) = ∂ j

∂T∗ j
Kn(T∗)(

√
n
)
j

= O(n−
j


+), ()

where T∗ = T√
n
.�erefore

hn(x) =
√
π

{ ∂
K∗n (T̂)
∂T

}
− 


exp{K∗n (T̂) − T̂Xn}

× { + 
n
Q (T̂) +⋯}, ()

where

Q (T̂) =
n{ ∂K∗

n
(T̂)

∂T
}
− 


√
π

∞

∫
−∞
exp{− 


w
 ∂
K∗n (T̂)
∂T

}

× { 

w
 ∂
K∗n (T̂)
∂T

− 

{ 

w
 ∂
K∗n (T̂)
∂T

}
⎫⎪⎪⎬⎪⎪⎭
dw. ()

Clearly, Q (T̂) de�ned in () is n times the sum of two
terms. �e �rst of these terms is, apart from a multi-

plicative constant,
∂K∗

n
(T)

∂T
times fourth order moments of

a normal random variable with zero mean and variance

{ ∂K∗
n
(T̂)

∂T
}
−
; and the second term is also a constant times

( ∂K∗
n
(T)

∂T
)


and sixth order moments of a normal random

variable with zero mean and variance { ∂K∗
n
(T̂)

∂T
}
−
.�us,

because of (),Q (T̂) = O(). Consequently, wewrite ()
as

hn(x) = ĥn(x) { +O(n−)}, ()

where

ĥn(x) =
√
π

{∂
K∗n (T̂)
∂T

}
− 


exp{K∗n (T̂) − T̂Xn}. ()

�e expression () receives the name of saddlepoint

approximation to hn(x), been the error of approximation
of order n−.
Daniels () pointed out that when the constant term

in the saddlepoint approximation is adjusted to make the

integral over the whole sample space equal to unity, the

order ofmagnitude of the error is reduced in a certain sense

from n− to n−/. He called this process renormalization.
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A common problem arising in statistics is to determine the

smallest sample size needed to achieve a speci�ed inference

goal. Examples of inference goals include �nding a %

con�dence interval for a given statistic of width no larger

than a speci�ed amount, or performing a hypothesis test

at the % signi�cance level with power no smaller than a

speci�ed amount.�ese examples and others are discussed

more fully below.

Sample Size to Achieve a Given Variance
or Relative Variance
One may want to estimate a parameter θ by an estima-

tor θ̂ based on a sample of size n. O�en the variance of θ̂,

var(θ̂), will have the form var(θ̂) = b/n for some known
constant b. To achieve a variance of θ̂ no larger than a spec-

i�ed amount A, one simply sets A = b/n and solves for
n: n = b/A.�e value of nmust be an integer, so one takes
n to be the smallest integer no smaller than b/A. Note that
n is inversely related to the desired precision A.

It is more typically the case that b will depend on

unknown parameters, usually including θ. Because the

sample has not been selected yet, one must estimate

the parameters from a previous sample or from other

outside information. Precise values are not needed as one is

usually satis�ed with a conservative (that is, high) estimate

for the required sample size n.

It is common to be interested in the relative variance
var(θ̂)

θ
, also known as the square of the coe�cient of

variation or CV. In this case, one has

var( θ̂)
θ

= b

θn

so to keep CV less than a desired amount A, one sets

n = b

θA
. Again, b and θ may need to be estimated from

a previous sample or some outside source.

�e variance of an estimated proportion p̂ from a

7simple random sample of size n (from an in�nite pop-
ulation) is

var(p̂) = p( − p)
n

= 

n
− (/ − p)

n
≤ 

n
.

�erefore, to achieve a variance of p̂ of at mostA, it su�ces

that n be at least


A
. For this conservation determination

of the sample size, no estimation of unknown parameters

is needed.

One can also consider the estimation of an estimated

proportion p̂ from a simple random sample of size n from

a �nite population of size N. In this case,

var(p̂) = ( − n
N

) p( − p)
n

≤ ( − n
N

) 
n
.

To achieve a variance of p̂ of at most A as a conservative

estimate, nmust be at least



A + /N
.
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Sample Size to Achieve a Given Power in
a Hypothesis Test
In hypothesis testing, the probability of type I error (the

probability of rejecting a null hypothesis when it, in fact,

holds) is typically �xed at a predetermined level, called

alpha (α).�e value α = % is very common. A sample
size n is sought so that the test achieves a certain type II

error rate (the probability of not rejecting the null hypoth-

esis when a speci�c alternative actually holds), called beta

(β).�e power of a test is  − β, the probability of reject-

ing the null hypothesis when a speci�c alternative holds.

So sample size determination can be described as �nding

the smallest value of n so that for the predetermined α the

power achieves some desired level for a �xed alternative.

�e term statistical 7power analysis is frequently used as a
synonym for sample size determination.

To be speci�c, suppose one wants to test that the

mean µ of independent, identically normally distributed

data is equal to µ versus the alternative that the mean

is greater than µ. One can write this as H : µ = µ ver-
sus Hα : µ > µ. Suppose also that µ′ > µ is su�ciently
far from µ that the di�erence is deemed to be of practi-

cal signi�cance in the subject-matter area of the test. Let

Z be a standard normal random variable, Φ be its cumu-

lative distribution function, and zα be de�ned by P(Z ≥
zα) = α.�en it can be calculated that the type II error at

µ′, β(µ′), is

β(µ′) = P(H is not rejected when µ = µ′)

= Φ(zα +
µ − µ′

σ/
√
n

)

where σ  is the known variance of the data and n is the

sample size. It follows from this that

−zβ = zα +
µ − µ′

σ/
√
n
.

Solving for n, one gets

n = [
σ(zα + zβ)
µ − µ′

]


.

�is sample size (adjusted upward to an integer value, if

necessary) is needed to achieve a signi�cance level of α and

power of  − β(µ′) at µ′.�e same sample size n applies
when the alternative hypothesis is Hα : µ < µ. For the
two-sided alternative hypothesis Hα : µ ≠ µ, one has by a
similar argument (involving an approximation) that

n = [
σ(zα/ + zβ)
µ − µ′

]


.

For this testing problem, one is able to get explicit

solutions. It is typical, however, to have to resort to compli-

cated tables or, more recently, so�ware, to get a solution.

Sample Size to Achieve a Given Width for
a Confidence Interval
A ( − α)% 7con�dence interval for the mean µ of a
normal population with known variance σ  is

(x − zα/
σ√
n
, x + zα/

σ√
n
)

where x = 

n

n

∑
i=
xi is the sample mean. When n is reason-

ably large, say  or greater, this interval with σ replaced

by S =
√



n − 

n

∑
i=

(xi − x) holds approximately when σ 

is unknown.

�e width of the interval is w = zα/
σ
√
n
. So, solv-

ing for n, the sample size needed to achieve an interval of

width w and con�dence level ( − α)% is n =

σ  (
zα/

w
)


(or n = S (
zα/

w
)


when σ  unknown and

n ≥ ).
As with hypothesis testing, the sample size problem

for con�dence intervals more typically requires tables or

so�ware to solve.

The Scope of Statistical Procedures for
Sample Size Determination
Sample size determination arises in one sample problems,

two sample problems, 7analysis of variance, regression
analysis, 7analysis of covariance, multilevel models, sur-
vey sampling, nonparametric testing, 7logistic regression,
survival analysis, and just about every area of modern

statistics. In the case ofmultilevelmodels (e.g., hierarchical

linearmodels), onemust determine the sample size at each

level in addition to the overall sample size (Cohen ).

A similar situation arises in sample size determination for

complex sample surveys.

Software for Sample Size Determination
�e use of so�ware for sample size determination is highly

recommended. Direct calculation is di�cult (or impossi-

ble) in all but the simplest cases. Tables are cumbersome

and o�en incomplete. Speci�c so�ware products will not

be recommended here, but we mention some to indicate

the wide range of products available.

Statisticians who use SAS
r
should be aware that ver-

sions . and later include releases of PROC POWER and

PROC GLMPOWER (PROC means “procedure” in SAS
r

and GLM stands for “general linear model”) that are full

featured.
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SPSS has a product called SamplePower
r
that also

has many features. Other commercial products include

nQuery Advisor and PASS. G
∗
Power is a free product.

Sampsize is also free with an emphasis on survey sampling

sample size calculations. A Web search will reveal many

other products that should suit particular needs.
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A sample survey can be broadly de�ned as an exercise

that involves collecting standardised data from a sample of

study units (e.g., persons, households, businesses) designed

to represent a larger population of units, in order to make

quantitative inferences about the population. Within this

broad de�nition there is a large variety of di�erent types of

survey. Surveys can di�er in terms of the type of data col-

lected, the methods used to collect the data, the design of

the sample, and whether data is collected repeatedly, either

on the same sample or on di�erent samples. Key features of

a sample survey are:

Survey objectives must be clear and agreed at the outset,

so that all features of the survey can be designed with

these objectives in mind;

�e target population – about which knowledge is

required – must be de�ned. For example, it might be

all persons usually resident in a particular town, or all

farms within a national boundary;

�e survey samplemust be designed to represent the target

population;

Relevant concepts must be addressed by the survey mea-

sures, so that the survey data can be used to answer

important research questions;

�e survey measures – which typically include questions,

but could also include anthropometric measures, soil

samples, etc – must be designed to provide accurate

indicators of the concepts of interest;

Survey implementation should achieve the co-operation of

a high proportion of samplemembers in a cost-e�cient

and timely manner.

�e aim is to obtain relevant data that are representa-

tive, reliable and valid.

Representation concerns the extent to which the units

in the data set represent the units in the target popula-

tion and therefore share the pertinent characteristics of the

population as a whole.�is will depend on the identi�ca-

tion of a sampling frame, the selection of a sample from

that frame, and the attempts made to obtain data for the

units in the sample.

Sampling frame. Ideally, this is a list of all units in

the population, from which a sample can be selected.

Sometimes the list pre-exists, sometimes it must be con-

structed especially for the survey, and sometimes a sam-

pling method can be devised that does not involve the

creation of an explicit list but is equivalent (Lynn ).

Sample design. In  Anders Kiaer, founding Direc-

tor of Statistics Norway, proposed sampling as a way of

learning about a population without having to study every

unit in the population.�e basic statistical theory of prob-

ability sampling developed rapidly in the �rst half of the

twentieth century and underpinned the growth of sur-

veys. �e essence is that units must be selected at ran-

dom with known and non-zero selection probabilities.

�is enables unbiased estimation of population parameters

and estimation of the precision (standard errors) of esti-

mates (Groves et al. , Chap. ). Design features such

as strati�ed sampling and multi-stage (clustered) sam-

pling are commonly used within a probability sampling

framework. Some surveys, particularly in the commer-

cial sector, use non-probability methods such as quota

sampling.

Non-response. Once a representative sample has been

selected, considerable e�orts are usually made to achieve

the highest possible response rate (Lynn ). In many

countries, high quality surveys of the general population

typically achieve response rates in the range –%, with

rates above % being considered outstanding.�e main

reasons for non-response are usually refusal (unwillingness

of sample member to take part) and non-contact (inability

of the survey organisation to reach the sample member).

Other reasons include an inability to take part, for example
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due to language or ill health. Di�erent strategies are used

by survey organizations to minimize each of these types

of non-response. Ultimately, non-response can introduce

bias to survey estimates if the non-respondents di�er from

respondents in terms of the survey measures. Adjustment

techniques such as weighting (Lynn ) can reduce the

bias caused by non-response.

Obtaining reliable and valid data from respondents

depends upon the measurement process. �is includes

development of concepts to be measured, development of

measures of those concepts (e.g., survey questions), obtain-

ing responses to the measures, and post-�eldwork process-

ing (such as editing, coding, and combining the answers

to a number of questions to produce derived variables).

Failure of the obtained responses to correctly re�ect the

concept of interest is referred to as measurement error

(Biemer et al. ). To minimise measurement error, sur-

vey researchers pay attention to cognitive response theory

(Tourangeau et al. ), which describes four steps in the

process of answering a survey question:

Understanding.�e sample member must understand the

question as intended by the researcher. �is requires

the question and the required response to be clear,

simple, unambiguous and clearly communicated.

Recall.�e sample member must be able to recall all the

information that is required in order to answer the

question. Question designers must be realistic regard-

ing what respondents can remember and should pro-

vide tools to aid memory, if appropriate.

Evaluation.�e sample member must process the recalled

information in order to form an answer to the

question.

Reporting.�e sample member must be willing and able

to communicate the answer. Various special techniques

are used by survey researchers to elicit responses to

questions on sensitive or embarrassing issues.

Two fundamental survey design issues with consider-

able implications are the following:

Data collection modes. �ere are several available

methods to collect survey data (Groves et al. ,

Chap. ). An important distinction is between interviewer-

administered methods (face-to-face personal interview-

ing, telephone interviewing) and self-completion meth-

ods (paper self-completion7questionnaires, web surveys).
With self-completion methods, the researcher usually has

less control over factors such as who is providing the data

and the order in which questions are answered, as well

as having a limited ability to address respondent concerns

and to provide help. Self-completion methods also require

a higher degree of literacy and cognitive ability than inter-

views and so may be inappropriate for certain study pop-

ulations. On the other hand, respondents may be more

willing to reveal sensitive or embarrassing answers if there

is no interviewer involved.�ere are o�en large di�erences

in survey costs between the possible modes.�is consid-

eration o�en leads to surveys being carried out in a mode

which might otherwise be thought sub-optimal.

Longitudinal designs. It is o�en bene�cial to collect

repeated measures from the same sample over time.�is

allows themeasurement of change and identi�cation of the

ordering of events, which can shed light on causality. Sur-

veys which collect data from the same units on multiple

occasions are known as longitudinal surveys (Lynn )

and involve additional organisation and complexity. Some

longitudinal social surveys have been running for several

decades and are highly valued data sources.
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A sampling algorithm is a procedure that allows us to

select randomly a subset of units (a sample) from a popu-

lation without enumerating all the possible samples of the

population.

More precisely, let U = {, . . . , k, . . . ,N} be a �nite
population and s ⊂ U a sample or a subset of U. A sam-
pling design p(s) is a probability distribution on the set of
all the subsets s ⊂ U, i.e., p(s) ≥  and

∑
s⊂U
p(s) = .

�e inclusion probability πk = pr(k ∈ s) of a unit k is its
probability of being selected in the sample s.�e sum of

the inclusion probabilities is equal to the expectation of the

sample size n.

In many sampling problem, the number of possible

samples is generally very large. For instance, if N = 

and n = , the number of possible samples already

equals ,,,. �e selection of a sample by enu-

merating all the possible samples is generally impos-

sible. A sampling algorithm is a method that allows

bypassing this enumeration. �ere exists several class of

methods:

● Sequential algorithms. In this case, there is only one

reading of the population �le. Each unit is successively

examined and the decision of selection is irremediably

taken.

● One by one algorithms. At each step, a unit is selected

from the population until obtaining the �xed sample

size.

● Eliminatory algorithms. At each step, a unit is removed

from the population until obtaining the �xed sample

size.

● Rejective methods. For instance, sample with replace-

ment are generated until obtaining a sample without

replacement. Rejective methods can be interesting if

there exists a more general sampling design that is

simpler than the design we want to implement.

● Splitting methods. �is method described in Deville

and Tillé () starts with a vector of inclusion proba-

bility. At each step, this vector is randomly replaced by

another vector until obtaining a vector containing only

zeros and ones i.e., a sample.

�e same sampling design can generally be implemented

by using di�erent methods. For instance, Tillé () gives

sequential, one by one, eliminatory algorithms for several

sampling designs like simple random sampling with and

without replacement and multinomial sampling.

�e main di�culties however appears when the sam-

ple is selected with unequal inclusion probabilities with-

out replacement and �xed sample size.�e �rst proposed

method was systematic sampling with unequal inclusion

probabilities (Madow ). For this sequential algorithm,

�rst compute the cumulated inclusion probabilities Vk.

Next units such that

Vk− ≤ u + i −  < Vk, i = , , . . . ,n,

are selected, where u is a uniform continuous random

variable in [,) and n is the sample size.

An interesting rejective procedure was proposed by

Sampford (). Samples are selected with replacement.

�e �rst unit is selected with probability πk/n, the n − 
other units are selected with probability

πk

n( − πk)
{
N

∑
ℓ=

πℓ

n( − πℓ)
}
−

.
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�e sample is accepted if n distinct units are selected,

otherwise another sample is selected.

Chen et al. () discussed the sampling design with-

out replacement and �xed sample size that maximizes the

7entropy given by

I(p) = −∑
s∈U
p(s) log p(s).

�ey gave a procedure for selecting a sample according this

sampling design. Several other e�cient algorithms that

implement this sampling design are given in Tillé ().

Other methods have been proposed by Brewer (),

Deville and Tillé (). A review is given in Brewer and

Hanif () and Tillé (). Other sampling algorithms

allows us to solve more complex problems. For instance,

the cube method (Deville and Tillé ) allows select-

ing balanced samples (see 7Balanced Sampling) in the
sense that the 7Horvitz-�ompson estimator are equal or
approximately equal to the population totals for a set of

control variables.
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What is it?
�e sampling distribution is a distribution of a sample

statistic. When using a procedure that repeatedly samples

from a population and each time computes the same sam-

ple statistic, the resulting distribution of sample statistics

is a sampling distribution of that statistic. To more clearly

de�ne the distribution, the name of the computed statistic

is added as part of the title. For example, if the computed

statistic was the sample mean, the sampling distribution

would be titled “the sampling distribution of the sample

mean.”

For the sake of simplicity let us consider a simple

example when we are dealing with a small discrete pop-

ulation consisting of the �rst ten integers {, , , , , , ,
, , }. Let us now repeatedly take random samples with-
out replacement of size n =  from this population.

�e random sampling might generate sets that look like

{, , },{, , },{, , },{, , } . . . If the mean (X) of
each sample is found, the means of the above samples

would appear as follows: , ., ., . . . . How many

di�erent samples can we take, or put it di�erently, how

many di�erent sample means can we obtain? In our arti�-

cial example only , but in reality when we analyze very

large populations, the number of possible di�erent samples

(of the same size) can be for all practical purposes treated

as countless.

Once we have obtained sample means for all samples,

we have to list all their di�erent values and number of their

occurrences (frequencies). Finally, we will divide each fre-

quency with the total number of samples to obtain relative

frequencies (empirical probabilities). In this way we will

comeup to a list of all possible samplemeans and their rela-

tive frequencies.When the population is discrete, that list is

called the sampling distribution of that statistic. Generally,

the sampling distribution of a statistic is a probability dis-

tribution of that statistic derived from all possible samples

having the same size from the population.

When we are dealing with a continuous population it

is impossible to enumerate all possible outcomes, so we

have to rely on the results obtained in mathematical statis-

tics (see section “7How Can Sampling Distributions be
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Constructed Mathematically?” of this paper for an exam-

ple). Still, we can imagine a process that is similar to the

one in the case of a discrete population. In that process we

will take repeatedly thousands of di�erent samples (of the

same size) and calculate their statistic. In that way we will

come to the relative frequency distribution of that statistic.

�e more samples we take, the closer this relative fre-

quency distributionwill come to the sampling distribution.

�eoretically, as the number of samples approaches in�n-

ity our frequency distribution will approach the sampling

distribution.

Sampling distribution should not be confused with a

sample distribution: the latter describes the distribution of

values (elements) in a single sample.

Referring back to our example, we can graphically

display the sampling distribution of the mean as follows:
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Every statistic has a sampling distribution. For exam-

ple, suppose that instead of the mean, medians (Md)
were computed for each sample. �at is, within each

sample the scores would be rank ordered and the middle

score would be selected as the median. Using the samples

above, the medians would be: , , ,  . . .�e distribution

of the medians calculated from all possible di�erent sam-

ples of the same size is called the sampling distribution of

the median and could be graphically shown as follows:
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It is possible to make up a new statistic and construct a

sampling distribution for that new statistic. For example,

by rank ordering the three scores within each sample and

�nding the mean of the highest and lowest scores a new

statistic could be created. Let this statistic be called the

mid-mean and be symbolized by M. For the above sam-

ples the values for this statistic would be: ., , ., . . . .

and the sampling distribution of the mid-mean could be

graphically displayed as follows:
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Just as the population distributions can be described with

parameters, so can the sampling distribution.�e expected

value and variance of any distribution can be represented

by the symbols µ (mu) and σ  (Sigma squared), respec-

tively. In the case of the sampling distribution, the µ sym-

bol is o�en written with a subscript to indicate which

sampling distribution is being described. For example, the

expected value of the sampling distribution of the mean is

represented by the symbol µX , that of the median by µMd ,

and so on.�e value of µX can be thought of as the theoret-

ical mean of the distribution ofmeans. In a similar manner

the value of µMd , is the theoretical mean of a distribution

of medians.

�e square root of the variance of a sampling distribu-

tion is given a special name, the standard error. In order

to distinguish di�erent sampling distributions, each has a

name tagged on the end of “standard error” and a subscript

on the σ symbol.�e theoretical standard deviation of the

sampling distribution of the mean is called the standard

error of the mean and is symbolized by σX . Similarly, the

theoretical standard deviation of the sampling distribution

of the median is called the standard error of the median

and is symbolized by σMd .

In each case the standard error of the sampling dis-

tribution of a statistic describes the degree to which the

computed statistics may be expected to di�er from one

another when calculated from a sample of similar size

and selected from similar population models. �e larger
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the standard error of a given statistic, the greater the dif-

ferences between the computed statistics for the di�erent

samples. From the example population, sampling method,

and statistics described earlier, we would �nd µX = µMd =
µM = . and σX = ., σMd = ., and σM = ..

Why is the Sampling Distribution
Important – Properties of Statistics
Statistics have di�erent properties as estimators of a popu-

lation parameters.�e sampling distribution of a statistic

provides a window into some of the important properties.

For example if the expected value of a statistic is equal

to the expected value of the corresponding population

parameter, the statistic is said to be unbiased. In the exam-

ple above, all three statistics would be unbiased estimators

of the population parameter µX .

Consistency is another valuable property to have in

the estimation of a population parameter, as the statistic

with the smallest standard error is preferred as an estima-

tor of the corresponding population parameter, everything

else being equal. Statisticians have proven that the stan-

dard error of themean is smaller than the standard error of

themedian. Because of this property, the mean is generally

preferred over the median as an estimator of µX .

Hypothesis Testing
�e sampling distribution is integral to the hypothesis

testing procedure. �e sampling distribution is used in

hypothesis testing to create a model of what the world

would look like given the null hypothesis was true and a

statistic was collected an in�nite number of times. A sin-

gle sample is taken, the sample statistic is calculated, and

then it is compared to the model created by the sampling

distribution of that statistic when the null hypothesis is

true. If the sample statistic is unlikely given the model,

then the model is rejected and a model with real e�ects is

more likely. In the example process described earlier, if the

sample {, , } was taken from the population described
above, the sample mean (.), median (), or mid-mean

(.) can be found and compared to the corresponding

sampling distribution of that statistic. �e probability of

�nding a sample statistic of that size or smaller could be

found for each e.g. mean (p < .), median (p < .),
and mid-mean (p < .) and compared to the selected
value of alpha (α). If alpha was set to ., then the selected
sample would be unlikely given the mean and mid-mean,

but not the median.

How Can Sampling Distributions be
Constructed Mathematically?
Using advanced mathematics statisticians can prove that

under given conditions a sampling distribution of some

statisticmust be a speci�c distribution. Let us illustrate this

with the following theorem (for the proof see for example

Hogg and Tanis (, p. )):

If X,X, . . . ,Xn are observations of a random sample

of size n from the normal distribution N(µ, σ ),

X = 
n

n

∑
i=
Xi

and

S
 = 

n − 

n

∑
i=

(Xi − X)

then
(n − )S

σ 
is χ

(n − ).

�e given conditions describe the assumptions that must

bemade in order for the distribution of the given sampling

distribution to be true. For example, in the above theorem,

assumptions about the sampling process (random sam-

pling) and distribution of X (a normal distribution) are

necessary for the proof.

Of considerable importance to statistical thinking is

the sampling distribution of the mean, a theoretical distri-

bution of sample means. A mathematical theorem, called

the Central Limit �eorem, describes the relationship

of the parameters of the sampling distribution of the mean

to the parameters of the probabilitymodel and sample size.

�e Central Limit�eorem also speci�es the form of the

sampling distribution (Gaussian) in the limiting case.

Selection of Distribution Type to Model
Scores
�e sampling distribution provides the theoretical foun-

dation to select a distribution for many useful measures.

For example, the central limit theorem describes why a

measure, such as intelligence, that may be considered a

summation of a number of independent quantities would

necessarily be (approximately) distributed as a normal

(Gaussian) curve.

Monte Carlo Simulations
It is not always easy or even possible to derive the exact

nature of a given sampling distribution using mathemat-

ical derivations. In such cases it is o�en possible to use

Monte Carlo simulations to generate a close approxima-

tion to the true sampling distribution of the statistic. For

example, a non-random samplingmethod, a non-standard
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distribution, ormay be used with the resulting distribution

not converging to a known type of probability distribu-

tion. When much of the current formulation of statistics

was developed, Monte Carlo techniques, while available,

were very inconvenient to apply. With current computers

and programming languages such as Wolfram Mathemat-

ica (Kinney ), Monte Carlo simulations are likely to

become much more popular in creating sampling distri-

butions.

Summary
�e sampling distribution, a theoretical distribution of a

sample statistic, is a critical concept in statistical thinking.

�e sampling distribution allows the statistician to hypoth-

esize about what the world would look like if a statistic was

calculated an in�nite number of times.
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Introduction
�e statistical objective in survey research and in a number

of other applications is generally to estimate the param-

eters of a �nite population rather than to estimate the

parameters of a statistical model. As an example, the �nite

population for a survey conducted to estimate the unem-

ployment ratemight be all adults aged  or older living in a

country at a given date. If valid estimates of the parameters

of a �nite population are to be produced, the �nite popu-

lation needs to be de�ned very precisely and the sampling

method needs to be carefully designed and implemented.

�is entry focuses on the estimation of such �nite popula-

tion parameters using what is known as the randomization

or design-based approach. Another approach that is par-

ticularly relevant when survey data are used for analytical

purposes, such as for regression analysis, is known as the

superpopulation approach (see 7Superpopulation Models
in Survey Sampling).

�is entry considers only methods for drawing prob-

ability samples from a �nite population; Nonprobability

Sampling Methods are reviewed in another entry.�e basic

theory and methods of probability sampling from �nite

populations were largely developed during the �rst half

of the twentieth century, motivated by the desire to use

samples rather than censuses (see 7Census) to charac-
terize human, business, and agricultural populations.�e

paper by Neyman () is widely recognized as a seminal

contribution because it spells out the merits of proba-

bility sampling relative to purposive selection. A num-

ber of full-length texts on survey sampling theory and

methods were published in the ’s and ’s includ-

ing the �rst editions of Cochran (), Deming (),

Hansen et al. (), Kish (),Murthy (), Raj (),

Sukhatme et al. (), andYates (). Several of these are

still widely used as textbooks and references. Recent texts

on survey sampling theory and methods include Fuller

(), Lohr (), Pfe�ermann and Rao (), Särndal

et al. (),�ompson (), and Valliant et al. ().

Let the size of a �nite population be denoted by N

and let Yi (i = , , . . . ,N) denote the individual values of
a variable of interest for the study. To carry forward the

example given above, in a survey to estimate the unem-

ployment rate, Yi might be the labor force status of person

(element) i. Consider the estimation of the population total

http://www.psychstat.missouristate.edu/multibook2/mlt.htm
http://www.psychstat.missouristate.edu/multibook2/mlt.htm
http://www.psychstat.missouristate.edu/IntroBook2/sbk.htm
http://www.psychstat.missouristate.edu/IntroBook2/sbk.htm
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Y =
N

∑
i

Yi based on a probability sample of n elements

drawn from the population by sampling without replace-

ment so that elements cannot be selected more than once.

Let πi denote the probability that element i is selected for

the sample, with πi >  for all i, and let πij denote the

probability that elements i and j are jointly included in the

sample.�e sample estimator of Y can be represented as

Ŷ =
N

∑
i

wiYi where wi is a random variable re�ecting the

sample selection, with wi =  for elements that were not
selected.�e condition for Ŷ to be an unbiased estimator of

Y is that E(wi) = . Now E(wi) = πiwi+(−πi) so that for
Ŷ to be unbiased wi = π−i .�e reciprocal of the selection
probability, wi = π−i , is referred to as the base weight.�e

unbiased estimator for Y , Ŷ =
n

∑
i

wiYi, is widely known

as the7Horvitz-�ompson estimator.�e variance of Ŷ is
given by

V(Ŷ) =
N

∑
i

V(wi)Yi + 
N

∑
i

N

∑
j>i
Cov(wi,wj)YiYj

=
N

∑
i

π
−
i ( − πi)Yi

+ 
N

∑
i

N

∑
j>i

π
−
i π

−
j (πij − πiπj)YiYj

�ese general results cover a range of the di�erent sample

designs described below depending on the values of πj and

πij.�e selection probabilities πi appear in the estimator

and, in addition, the joint selection probabilities πij appear

in the variance. Note that when estimating the parameters

of a �nite population using the design-based approach for

inference, the Yi values are considered �xed; it is the wi’s

that are the random variables.

�e selection of a probability sample from a �nite pop-

ulation requires the existence of a sampling frame for that

population.�e simplest form of sampling frame is a list of

the individual population elements, such as a list of busi-

ness establishments (when they are the units of analysis).

�e framemay alternatively be a list of clusters of elements,

such as a list of households when the elements are persons.

�e initial frame may be a list of geographical areas that

are sampled at the �rst stage of selection.�ese areas are

termed primary sampling units (PSUs). At the second stage,

subareas, or second stage units, may be selected within the

sampled PSUs, etc.�is design, which is known as an area

sample, is a form of multistage sampling (see below).

�e quality of the sampling frame has an important

bearing on the quality of the �nal sample. An ideal sam-

pling frame would contain exactly one listing for each ele-

ment of the target population and nothing else. Sampling

frames used in practice o�en contain departures from this

ideal, in the form of noncoverage, duplicates, clusters, and

ineligible units (see Kish , Section ., for a discussion

of each of these frame problems). Issues with the sampling

frames used in telephone surveys are discussed in the entry

7Telephone Sampling: Frames and Selection Techniques.
Sometimes, two ormore sampling frames are used, leading

to dual- or multiple-frame designs.

Sampling frames o�en contain auxiliary information

that can be used to improve the e�ciency of the survey esti-

mators at the sample design stage, at the estimation stage,

or at both stages. Examples are provided below.

Simple Random Sampling
A simple random sample is a sample design in which every

possible sample of sizen from the population ofN elements

has an equal probability of selection (see7Simple Random
Sample). It may be selected by taking random draws from

the set of numbers {, , . . . ,N}.With simple random sam-
pling, elements have equal probabilities of selection and

simple random sampling is therefore an equal probability

selection method (epsem).

Simple random sampling with replacement (SRSWR),

also known as unrestricted sampling, allows population

elements to be selected at any draw regardless of their selec-

tion on previous draws. Since elements are selected inde-

pendently with this design, πij = πiπj for all i, j. Standard

statistical theory and analysis generally assumes SRSWR;

this is discussed further in the entry 7Superpopulation
Models in Survey Sampling.

In simple random sampling without replacement

(SRSWOR), also simply known as simple random sam-

pling, once an element has been drawn, it is removed from

the set of elements eligible for selection on subsequent

draws. Since SRSWOR cannot select any element more

than once (so that there are n distinct sampled elements),

it is more e�cient than SRSWR (i.e., the variances of the

estimators are lower under SRSWOR than under SRSWR).

Systematic Sampling
In the simple case where the sampling interval k = N/n is
an integer, a systematic sample starts with a random selec-

tion of one of the �rst k elements on a list frame, and then

selects every kth element therea�er. By randomly sorting

the sampling frame, systematic sampling provides a con-

venient way to select a SRSWOR. Kish (, Section .B)
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describes various techniques for selecting a systematic

sample when the sampling interval is not an integer.

If the sampling frame is sorted to place elements that

are similar in terms of the survey variables near to each

other in the sorted list, then systematic sampling may

reduce the variances of the estimates inmuch the sameway

as proportionate strati�ed sampling does. Systematic sam-

pling from such an ordered list is o�en described as implicit

strati�cation. A general drawback to systematic sampling

is that the estimation of the variances of survey estimates

requires some form of model assumption.

Stratified Sampling
O�en, the sampling frame contains information that may

be used to improve the e�ciency of the sample design (i.e.,

reduce the variances of estimators for a given sample size).

Strati�cation involves using information available on the

sampling frame to partition the population into L classes,

or strata, and selecting a sample from each stratum. (See

7Strati�ed Sampling).
With proportionate strati�cation, the same sampling

fraction (i.e., the ratio of sample size to population size) is

used in all the strata, producing an epsem sample design.

Proportionate strati�cation reduces the variances of the

survey estimators to the extent that elements within the

strata are homogeneous with respect to the survey vari-

ables.

With disproportionate strati�cation, di�erent sampling

fractions are used in the various strata, leading to a design

in which selection probabilities vary. �e unequal selec-

tion probabilities are redressed by the use of the base

weights in the analysis. One reason for using a dispro-

portionate strati�ed design is to improve the precision of

survey estimates when the element standard deviations

di�er across the strata. Disproportionate strati�ed samples

are widely used in business surveys for this reason, sam-

pling the larger businesses with greater probabilities, and

even taking all of the largest businesses into the sample

(see 7Business Surveys).�e allocation of a given overall
sample size across strata that minimizes the variance of

an overall survey estimate is known as Neyman allocation.

If data collection costs per sampled element di�er across

strata, it is more e�cient to allocate more of the sample to

the strata where data collection costs are lower.�e sample

allocation that maximizes the precision of an overall sur-

vey estimate for a given total data collection cost is termed

an optimum allocation.

A second common reason for using a disproportionate

allocation is to produce stratum-level estimates of ade-

quate precision. In this case, smaller strata are o�en sam-

pled at above average sampling rates in order to generate

su�ciently large sample sizes to support the production of

separate survey estimates for them.

Cluster and Multistage Sampling
In many surveys, it is operationally e�cient to sample

clusters of population elements rather than to sample the

elements directly. One reason is that the sampling frame

may be a list that comprises clusters of elements, such

as a list of households for a survey of persons (the ele-

ments). Another reason is that the population may cover

a large geographical area; when the survey data are to

be collected by face-to-face interviewing, it is then cost-

e�ective to concentrate the interviews in a sample of areas

in order to reduce interviewers’ travel. �e selection of

more than one element in a sampled cluster a�ects the

precision of the survey estimates because elements within

the same cluster tend to be similar with respect to many

of the variables studied in surveys. �e homogeneity of

elementswithin clusters ismeasured by the intraclass corre-

lation (see 7Intraclass Correlation Coe�cient). A positive
intraclass correlation decreases the precision of the survey

estimates from a cluster sample relative to a SRS with the

same number of elements.

When the clusters are small, it is o�en e�cient to

include all the population elements in selected clusters, for

example, to collect survey data for all persons in sampled

households. Such a design is termed a cluster sample or

more precisely a single-stage cluster sample (see 7Cluster
Sampling).

Subsampling, or the random selection of elements

within clusters, may be used to limit the e�ect of cluster-

ing on the precision of survey estimates. Subsampling is

widely used when the clusters are large as, for example, is

the case with areal units such as counties or census enu-

meration districts, schools, and hospitals. A sample design

in which a sample of clusters is selected, followed by the

selection of a subsample of elements within each sampled

cluster is referred to as a two-stage sample. Multistage sam-

pling is an extension of two-stage sampling, in which there

are one or more stages of subsampling of clusters within

the �rst-stage units (or primary sampling units, PSUs) prior

to the selection of elements. In multistage sample designs,

a key consideration is the determination of the sample

size at each stage of selection.�is determination is gen-

erally based on cost considerations and the contribution

of each stage of selection to the variance of the estimator

(See 7Multistage Sampling).
In general, large clusters vary considerably in the num-

ber of elements they contain. Sampling unequal-sized

clusters with equal probabilities is ine�cient and, with an

overall epsem design, it fails to provide control on the
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sample size.�ese drawbacks may be addressed by sam-

pling the clusters with probability proportional to size (PPS)

sampling. By way of illustration, consider a two-stage sam-

ple design. At the �rst stage, clusters are sampled with

probabilities proportional to size, where size refers to the

number of elements in a cluster.�en, at the second stage,

an equal number of population elements is selected within

each PSU.�e resulting sample is an epsem sample of ele-

ments.�is approach extends to multi-stage sampling by

selecting a PPS sample of clusters at each stage through

to the penultimate stage. At the last stage of selection, an

equal number of population elements is selected within

each cluster sampled at the prior stage of selection. In

practice, the exact cluster sizes are rarely known and the

procedure is applied with estimated sizes, leading to what

is sometimes called sampling with probability proportional

to estimated size (PPES).

Two-Phase Sampling
It would be highly bene�cial in some surveys to use certain

auxiliary variables for sample design, but those variables

are not available on the sampling frame. Similarly, it may

be bene�cial to use certain auxiliary variables at the estima-

tion stage, but the requisite data for the population are not

available. In these cases, two-phase sampling (also known

as double sampling) may be useful. As an example, con-

sider the casewhere, if frame datawere available for certain

auxiliary variables, strati�cation based on these variables

with a disproportionate allocation would greatly improve

the e�ciency of the sample design. Under the two-phase

sampling approach, at the �rst phase, data are collected

on the auxiliary variables for a larger preliminary sample.

�e �rst-phase sample is then strati�ed based on the aux-

iliary variables, and a second phase subsample is selected

to obtain the �nal sample. To be e�ective, two-phase sam-

pling requires that the �rst phase data collection can be

carried out with little e�ort or resource requirements.

Estimation
As noted above, di�erential selection probabilities must

be accounted for by the use of base weights in estimating

the parameters of a �nite population. In practice, adjust-

ments are usually made to the base weights to compensate

for sample de�ciencies and to improve the precision of the

survey estimates.

One type of sample de�ciency is unit nonresponse, or

complete lack of response from a sampled element. Com-

pensation for unit nonresponse is typically made by in�at-

ing the base weights of similar responding elements in

order to also represent the base weights of nonresponding

eligible elements (see 7Nonresponse in Surveys, Groves
et al. , and Särndal and Lundström ).

A second type of de�ciency is noncoverage, or a fail-

ure of the sampling frame to cover some of the elements

in the population. Compensation for noncoverage requires

population information from an external source. Noncov-

erage is generally handled through a weighting adjustment

using some form of calibration adjustment, such as post-

strati�cation (see Särndal ). Calibration adjustments

also serve to improve the precision of survey estimates that

are related to the variables used in calibration.

A third type of de�ciency is item nonresponse, or the

failure to obtain a response to a particular item from

a responding element. Item nonresponses are generally

accounted for through imputation, that is, assigning val-

ues for the missing responses (see 7Imputation and Brick
and Kalton ).

In practice, samples from �nite populations are o�en

based on complex designs incorporating strati�cation,

clustering, unequal selection probabilities, systematic sam-

pling, and sometimes, two-phase sampling.�e estimation

of the variances of the survey estimates needs to take the

complex sample design into account.�ere are two general

methods for estimating variances from complex designs,

known as the Taylor Series or linearizationmethod and the

replication method (including balanced repeated replica-

tions, jackknife repeated replications, and the bootstrap).

See Wolter () and Rust and Rao (). �ere are

several so�ware programs available for analyzing complex

sample survey data using each method.
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Let X = (Xt)t∈[,T] be a d-dimensional di�usion process
de�ned by the following stochastic di�erential equation

dXt = b(Xt , α)dt + σ(Xt , β)dwt , t ∈ [,T], X = x,

where w is an r-dimensional Wiener process, (α, β) ∈
Θα ×Θβ , Θα and Θβ are subsets ofRp andRq, respectively.
Furthermore, b is anRd-valued function onRd×Θα and σ

is an Rd ⊗Rr-valued function on Rd ×Θβ .�e dri� func-

tion b and the di�usion coe�cient function σ are known

apart from the parameters α and β.

In the asymptotic theory of di�usion processes, the

following two types of data are treated: () the continu-

ously observed data and () the discretely observed data

of di�usion processes. Concerning the �rst order asymp-

totic theory of di�usion processes based on the con-

tinuously observed data, Kutoyants extended Ibragimov

and Has’minskii’s approach () to semimartingales,

and many researchers made contributions to establish

the asymptotic theory of semimartingales; see Kutoyants

(, , ) and Küchler and Sørensen (),

Prakasa Rao (a, b) and references therein.

On the other hand, parametric estimation for dis-

cretely observed di�usion processes is highly important for
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practical applications and now developing progressively.

�e data are discrete observations at regularly spaced time

point on the �xed interval [,T], that is, (Xkhn)≤k≤n with
nhn = T and hn is called a discretization step.�e discretely
observed data are roughly classi�ed into the following

three types:

(i) decreasing step size on a �xed interval: the observa-

tion time T = nhn is �xed and the discretization step
hn tends to zero as n→∞.

(ii) constant step size on an increasing interval: the dis-

cretization step is �xed (hn = ∆) and the observation
time T = nhn = n∆ tends to in�nity as n→∞.

(iii) decreasing step size on an increasing interval: the dis-

cretization step hn tends to zero and the observation

time T = nhn tends to in�nity as n→∞.

For the setting of type (i), Genon-Catalot and Jacod

() proposed estimators of the di�usion coe�cient

parameter β and they showed that the estimators are con-

sistent, asymptotic mixed normal and asymptotic e�cient.

For the linearly parametrized case of di�usion coe�cient,

Yoshida () obtained the asymptotic expansion for the

estimator bymeans of theMalliavin calculus. Gobet ()

proved the local asymptotic mixed normality for likeli-

hoods by using the Malliavin calculus. On the other hand,

for the dri� parameter α, we can not generally construct

even a consistent estimator under the setting of type (i).

However, under the situation where di�usion term is very

small, which is called a small di�usion process, we can

estimate the dri� parameter α. Genon-Catalot () and

Laredo () proposed estimators of the dri� parame-

ter under the assumption that the di�usion coe�cient is

known, and they proved that the estimators have consis-

tency, 7asymptotic normality and asymptotic e�ciency.
Uchida () investigated asymptotic e�cient estima-

tors under the general asymptotics. Sørensen and Uchida

() obtained estimators of both the dri� and the dif-

fusion coe�cient parameters simultaneously and investi-

gated the asymptotic properties of their estimators. Gloter

and Sørensen () developed the result of Sørensen and

Uchida () under the general asymptotics.

As concerns the type (ii), Bibby and Sørensen ()

proposed martingale estimating functions and obtained

the estimators of the dri� and the di�usion coe�cient

parameters from the martingale estimating functions.

�ey proved that both estimators have consistency and

asymptotic normality under ergodicity. Masuda ()

showed the asymptotic normality of themoment estimator

for a state space model involving jump noise terms.

Under the setting of type (iii), Prakasa-Rao (, )

are early work. As seen in Yoshida (a), the estimators

of α and β jointly converge, and they are asymptotically

orthogonal, however their convergence rates are di�erent.

�ose authors’ estimators are of maximum likelihood type

in their settings. Kessler () improved the condition

on the sampling scheme and gave generalization. Gobet

() showed local asymptotic normality for the likeli-

hood. A polynomial type large deviation inequality for

an abstract statistical random �eld, which includes likeli-

hood ratios of stochastic processes, enables to obtain the

asymptotic behaviors of the Bayes and maximum likeli-

hood type estimators; see Yoshida () for details. For

the asymptotic theory of di�usion processes with jumps,

see for example Shimizu and Yoshida ().

Regarding the higher order asymptotic theory of dif-

fusion processes, the asymptotic expansions have been

studied; see Yoshida (b, ), Sakamoto and Yoshida

() and recent papers.
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Measurement involves the assignment of scores (numbers

or other symbols) to entities (objects or events) in such a

way that the scores carry information about some charac-

teristic of the measured entities. With careful considera-

tion of themethod by which the scores have been assigned,

one can classify the method of measurement as belong-

ing to one or more “scales of measurement.” S.S. Stevens

() de�ned four scales of measurement: nominal, ordi-

nal, interval, and ratio. Membership in one or more of

these categories depends on the extent to which empiri-

cal relationships among the measured entities correspond

to numerical relationships among the scores.

If the method of measurement produces scores that

allow one to determine whether the measured entities are

or are not equivalent on the characteristic of interest, then

the scale is referred to as “nominal.” For example, I ask

the students in my class to take out all of their paper

money, write their university identi�cation number on

each bill, and deposit all the bills in a bag. I then shake

the bag and pull out two bills. From the identi�cation

numbers on the bills, I can determine whether or not the

same student contributed both bills.�e attribute of inter-

est is last ownership of the bill, and the scores allow one

to determine whether or not two bills are equivalent on

that characteristic – accordingly, the identi�cation number

scores represent a nominal scale. “Nominal” derives from

the Latin “nomen,” name. Nominal scores may be no more

than alternative names for entities.

If the scores can be employed to determine whether

two entities are equivalent or not on the measured char-

acteristic and, if they are not equivalent, which entity has

the greater amount of themeasured characteristic, then the

scale is “ordinal.” �e order of the scores is the same as

the order of the true amounts of the measured attribute.

�e identi�cation numbers my students wrote on their

bills would not allow one to determine whether “”

represents more or less of something than does “.”

Imagine that I throw all the money out the window and

then invite the students to retrieve the bills. My associate,

outside, assigns to the students the ordinal scores shown

in Table .�e measured attribute is time taken to retrieve
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Scales of Measurement. Table  Relationship between true
scores and observed scores

Entity A B C D E

True Score . . . . .

Ordinal Score . . . . .

Interval Score .  . . .

Ratio Score . . . . .

a bill, and the order of the scores is the same as the order

of the magnitudes of the measured attribute. If Student A

obtains a score of . and Student B a score of ., I am con-

�dent that they di�er on retrieval time and that Student B

took longer than Student A.

Scale of measurement can be inferred from the nature

of the relationship between the “observed scores” (themea-

surements) and the “true scores” (the true amounts of the

measured characteristic) (Winkler andHays , pp. –

). If that relationship is positive monotonic, then the

scale of measurement is ordinal. Notice that the ordinal

scores in Table  are related to the true scores in a positive

monotonic fashion.

�e ordinal scores in Table  do not allow one to estab-

lish the equivalence of di�erences or to order di�erences.

Consider the di�erences between A and B and between D

and E.�e true scores show that the di�erences are equiva-

lent, but the ordinal scores might lead one to infer that the

di�erence between D and E is greater than the di�erence

between A and B. Also, the ordinal scores might lead one

to infer that the di�erence between C and D (.) is equiv-

alent to the di�erence between D and E (.), but the true

scores show that not to be true.

If the relationship between the observed scores and the

true scores is not only positive monotonic but also linear,

then one will be able to establish the equivalence of di�er-

ences and will be able to order di�erences. Such a scale is

called “interval.”Myhypothetical associate used amechan-

ical device to measure the retrieval times, obtaining the

interval scores in Table . From these observed scores, one

would correctly infer that the di�erence between A and B

is equivalent to the di�erence betweenD andE and that the

di�erence between C and D is greater than the di�erence

between D and E.

For the interval scores in Table , the function relating

the measurements (m) to the true scores (t) ism = +t.
�is hypothetical interval scale does not have a “true zero

point.”�at is, it is not true that an entity that has abso-

lutely none of the measured characteristic will obtain a

measurement of zero. In this case, it will obtain a measure-

ment of .�is is problematic if one wishes to establish

the equivalences of and orders of ratios of measurements.

With the interval data one might infer that the ratio D/C >
C/B > B/A, but the true scores show that these ratios are
all equivalent. To achieve a ratio scale, the function relat-

ing the measurements to the true scores must not only

be positive linear but also must have an intercept of zero.

For the hypothetical ratio data in Table , that function is

m =  + t. With the ratio scale the ratios of observed
scores are identical to the corresponding ratios of the true

scores.

Stevens () argued that scale of measurement is an

important considerationwhen determining the type of sta-

tistical analysis to be employed. For example, themodewas

considered appropriate for any scale, even a nominal scale.

If a fruit basket contains �ve apples, four oranges, and nine

bananas, the modal fruit is a banana.�e median was con-

sidered appropriate for any scale that was at least ordinal.

Imagine that we select �ve fruits, identi�ed as A, B, C, D,

and E.�eir true weights are ., , ., , and , and their

ordinal scores are , , , , and . �e entity associated

with the median is C regardless of whether you use the

true scores of the ordinal scores. Interval scores , , ,

, and  have a linear relationship with the true scores,

m = +t.�e mean true score, , is associated with Entity
D, and the mean interval score, , is also associated with

EntityD.With the ordinal scores, however, themean score,

, is associated with Entity B.

�ere has been considerable controversy regarding the

role that scale of measurement should play when con-

sidering the type of statistical analysis to employ. Most

controversial has been the suggestion that parametric sta-

tistical analysis is appropriate only with interval or ratio

data, but that nonparametric analysis can be employed

with ordinal data.�is proposition has been attacked by

those who opine that the only assumptions required when

employing parametric statistics are mathematical, such

as homogeneity of variance and normality (Gaito ;

Velleman and Wilkinson ). Defenders of the mea-

surement view have argued that researchers must consider

scale ofmeasurement, the relationship between true scores

and observed scores, because they are interested inmaking

inferences about the constructs underlying the observed

scores (Maxwell and Delaney ; Townsend and Ashby

). Tests of hypotheses that groups have identicalmeans



Scales of Measurement and Choice of Statistical Methods S 

S

on an underlying construct or that the Pearson ρ between

two underlying constructs is zero do not require inter-

val level data given the usual assumptions of homogene-

ity of variance and normality, but with non-interval data

the e�ect size estimates will not apply to the underlying

constructs (Davison and Sharma ).

When contemplating whether the observed scores to

be analyzed represent an interval scale or a non-interval,

ordinal scale, one needs makes a decision about the

nature of the relationship between the true scores and the

observed scores. If one conceives of true scores as part of

some concrete reality, the decision regarding scale of mea-

surementmay comedown to amatter of faith. For example,

how could one know with certainty whether or not the

relationship between IQ scores and true intelligence is lin-

ear? One way to avoid this dilemma is to think of reality

as something that we construct rather than something we

discover. One can then argue that the results of paramet-

ric statistical analysis apply to an abstract reality that is a

linear function of our measurements. Conceptually, this is

similar to de�ning a population on a sample rather than

the other way around – when we cannot obtain a true ran-

dom sample from a population, we analyze the data we can

obtain and then make inferences about the population for

which our data could be considered random.
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During the last century, it was conventional in many dis-

ciplines, especially in psychology, education, and social

sciences, to associate statistical methods with a hierarchy

of levels of measurement. �e well-known classi�cation

proposed by Stevens () included nominal, ordinal,

interval, and ratio scales, de�ned by increasingly stronger

mathematical restrictions. It came to be generally believed

that the use of statistical signi�cance tests in practice

required choosing a test tomatch the scale ofmeasurement

responsible for the data at hand. Classes of appropriate sta-

tisticalmethodswere alignedwith the hierarchy of levels of

measurement.

In research studies in psychology and education, the

most relevant distinction perhaps was the one made

between interval scales and ordinal scales. �e Student

t test (see 7Student’s t Tests), the ANOVA F test, and
regression methods were deemed appropriate for inter-

val measurements, and nonparametric tests, such as the

7Wilcoxon–Mann–Whitney test and the Kruskal–Wallis
test were appropriate for ordinal measurements.

Despite the widespread acceptance of these ideas by

many statisticians and researchers, there has been exten-

sive controversy over the years about their validity (see, for

example, Cli� and Keats ; Maxwell and Delaney ;

Michell ; Rozeboom ; Velleman and Wilkinson

; Zimmerman and Zumbo ). �e mathematical

theory eventually included more re�ned de�nitions of

scales of measurement and additional types of scales (Luce

; Narens ), but the fourfold classi�cation persisted

for a long time in textbooks and research articles.

Scales of Measurement and
Distributional Assumptions
�e derivation of all signi�cance tests is based on

assumptions about probability distributions, such as

independence, normality, and equality of the variances

of separate groups, and some tests involve more restric-

tive assumptions than others. In many textbooks and

research papers, the requirement of a speci�c level of

measurement was placed on the same footing as these
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distributional assumptions made in the mathematical

derivation of a test statistic. For example, the Student t test

and ANOVA F test were widely believed to assume three

things: normality, homogeneity of variance, and inter-

val measurement, while a nonparametric test such as the

Wilcoxon–Mann–Whitney test is presumably free from

the two distributional assumptions and requires only ordi-

nal measurement.�e assumption of within-sample inde-

pendence is part of the de�nition of random sampling, and

it is typically taken for granted that the data at hand meets

that requirement before a test is chosen.

Many researchers believed that the parametric meth-

ods are preferable when all assumptions are satis�ed,

because nonparametric tests discard some information in

the data and have less power to detect di�erences. Fur-

thermore, the parametric methods were considered to be

robust in the sense that a slight violation of assumptions

does not lessen their usefulness in practical research. Early

simulation studies, such as the one by Boneau (), were

consistent with these ideas.

Some complications arose for the orderly correspon-

dence of scales and statistics when researchers began to

investigate how the Type I and Type II errors of both

parametric and nonparametric signi�cance tests depend

on properties of standard probability densities. It was

found that the nonparametric tests were o�en more pow-

erful than their parametric counterparts for quite a few

continuous densities, such as the exponential, lognormal,

mixed-normal, Weibull, extreme value, chi-square, and

others familiar in theoretical statistics.�e power advan-

tage of the nonparametric tests o�en turned out to be quite

large (see, for example, Blair and Higgins ; Lehmann

; Randles and Wolfe ; Sawilowsky and Blair ;

Zimmerman and Zumbo ). �e superiority of non-

parametric rank methods for many types of non-normal

data has been extensively demonstrated by many simula-

tion studies.

It can be argued that samples from one of these

continuous densities by de�nition conform to interval

measurement.�at is, equal intervals are assumed in de�n-

ing the parameters of the probability density. For this rea-

son it is legitimate to employ t and F tests of location on

sequences of random variates generated by di�erent com-

puter programs and obtain useful information. Similarly,

the scaling criteria imply that calculation of means and

variances is appropriate only for intervalmeasurement, but

it has become clear that slight violations of “homogeneity

of variance” have severe consequences for both parametric

and nonparametric tests.

Rank Transformations and Appropriate
Statistics
In the controversies surrounding the notion of levels and

measurement, theorists have tended to overlook the impli-

cations of a procedure known as the rank transformation.

It was discovered that the large-sample normal approxima-

tion form of the Wilcoxon–Mann–Whitney test is equiva-

lent to the Student t test performed on ranks replacing the

original scores and that the Kruskal–Wallis test is equiv-

alent to the ANOVA F test on ranks (Conover and Iman

). In the Wilcoxon–Mann–Whitney test, two samples

of scores of size n and n are combined and converted to a

single series of ranks, that is, integers from  ton+n. Simi-
larly, in one-way ANOVA, scores in k groups are combined

and converted to n + n + . . . + nk ranks.�en, the scores
in the original samples are replaced by their corresponding

ranks in the combined group.

�e above equivalence means that this rank transfor-

mation followed by the usual Student t test on the ranks

replacing the initial scores leads to the same statistical deci-

sion as calculating and comparing rank sums, as done by

a Wilcoxon–Mann–Whitney test.�e Type I and Type II

error probabilities turn out to be the same in both cases.

�at is true irrespective of the distributional form of the

original data. If a Student t test performed on ranks is

not appropriate for given data, then theWilcoxon–Mann–

Whitney test is not appropriate either, and vice versa.

Considered together with the power superiority of

nonparametric tests for various non-normal densities,

these �ndings imply that the power of t and F tests o�en

can be increased by transforming interval data to ordinal

data. Arguably, the main bene�t of converting to ranks

is not a change in scale, but rather augmentation of the

robustness of the t and F tests. At �rst glance it seems para-

doxical that statistical power can be increased, o�en sub-

stantially, by discarding information. However, one should

bear in mind that conversion to ranks not only replaces

real numbers by integers, but also alters the shape of dis-

tributions. Whatever the initial form of the data, ranks

have a rectangular distribution, and, as noted before, the

shape of non-normal distributions, especially those with

heavy tails and extreme outlying values, certainly in�u-

ences the power, or the extent of the loss of power, of

signi�cance tests.

Otherwise expressed, changing the distributional form

of the data before performing a signi�cance test appears

to be the source of the power advantages, not the

details of calculating rank-sums and �nding quantiles

of the resulting test statistic from a unique formula.
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�e rank transformation concept, together with the fact

that unequal variances of scores in several groups is inher-

ited by unequal variances of the corresponding ranks in the

same groups, also provides a rationale for the dependence

of both parametric and nonparametric tests on homogene-

ity of variance (Zimmerman ).

Another �nding that is di�cult to reconcile with

notions of scaling is the fact that the bene�cial properties

of rank tests can be maintained despite alteration of the

ranks in a way that modi�es the scale properties, some-

times substantially. For example, small random numbers

can be added to ranks, or the number of ranks can be

reduced in number, with little e�ect on the power of the

t and F tests under a rank transformation.�at is, combin-

ing ranks , , , and  all into the value , ranks , , , and 

into the value , and so on, has little in�uence on the power

of the test when sample sizes are moderately large.

A quick illustration of these properties of scores and

ranks is provided by Table , which gives the probability

of rejecting H by three signi�cance tests at the . level.

�ese computer simulations consisted of , pairs of

independent samples of size  from normal and seven

non-normal distributions, generated by a Mathematica

program. �e columns, labeled t represent the Student t

test, those labeled W are the Wilcoxon–Mann–Whitney

test, and those labeled m are the t test performed on

modi�ed ranks.

In this modi�cation, all scores from both groups

were combined and ranked as usual. �en, instead of

transforming to integers, each original score was replaced

by the median of all higher scores in the ranking; that is,

the lowest score, ranked , was replaced by the median of

all the higher scores ranked from  to n + n, the score
ranked was replaced by themedian of scores ranked from

 to n + n, and so on. Finally, the scores in the two ini-
tial groups were replaced by their corresponding modi�ed

ranks, and the signi�cance test was performed.

�is procedure resulted in a kind of hybrid ordi-

nal/interval data not too di�erent from ordinary ranks,

whereby the real values of the original scoreswere retained,

the distribution shape was compressed, and7outliers were
eliminated. Table  shows that the Type I error rates of

the t test on these modi�ed ranks were close to those of

ordinary ranks for the various distributions. Moreover, the

t test on the modi�ed values was nearly as powerful as

the Wilcoxon–Mann–Whitney test for two distributions

where the ordinary t test is known to be superior, and it

was considerably more powerful than the t test and some-

what more powerful than the Wilcoxon–Mann–Whitney

test for distributions for which the nonparametric test is

known to be superior.

All these facts taken together imply there is not a

one-to-one correspondence between the hierarchy of lev-

els of measurement and methods that are appropriate for

making correct statistical decisions. Transforming data

so that it conforms to the assumptions of a signi�cance

test is not itself unusual, because for many years statisti-

cians employed square-root, reciprocal, and logarithmic

Scales of Measurement and Choice of Statistical Methods. Table  Type I error rates and power of Student t test,
Wilcoxon–Mann–Whitney test, and t test on modified ranks, , iterations at . level, samples from normal and seven
non-normal distributions

µ − µ =  µ − µ = .σ µ − µ = .σ

Distribution t W m t W m t W m

Normal . . . . . . . . .

Exponential . . . . . . . . .

Mixed-normal . . . . . . . . .

Lognormal . . . . . . . . .

Extreme value . . . . . . . . .

Uniform . . . . . . . . .

Half-normal . . . . . . . . .

Chi-square . . . . . . . . .
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transformations.�e rank transformation can be regarded

as a member of the same broad class of methods as those

procedures. Unlike those methods, it is not continuous

and has no inverse.�at can be an advantage, because, by

substituting small integers for intervals of real numbers, it

lessens skewness and eliminates outliers.

As we have seen, the rank transformation in several

instances is equivalent to a corresponding nonparametric

test, in the sense that both either reject or fail to reject H

for given data.�e earlier normalizing transformations do

not possess such equivalences with well-known nonpara-

metric methods. Each is best suited to a speci�c problem,

such as stabilizing variances or changing the shape of a

particular distribution, whereas conversion to ranks is an

omnibus transformation that always brings data into a

rectangular form with no outliers. Also, it is possible to

reverse the perspective and regard the Wilcoxon–Mann–

Whitney test and the Kruskal–Wallis test as having an

a�nity with those normalizing transformations, because

the conversion to ranks, not the speci�c formula used in

calculations, is apparently what makes the di�erence.

Conclusion
When all is said and done, the theory of scales of measure-

ment, although interesting and informative in its own right,

is not closely related to practical decision-making in applied

statistics. Present evidence suggests that the mathematical

property most relevant to choice of statistics in research

is the probability distribution of the random variable that

accounts for the observed data.

Caution is needed in making choices, and the ratio-

nale for a decision is likely to be more subtle and complex

than the prescriptions in textbooks and so�ware pack-

ages. In practice, the shape of a population distribution

is not usually known with certainty.�e degree of viola-

tion of assumptions �uctuates from sample to sample along

with the estimates of the parameters, no matter what the

population may be and what measurement procedures are

used. Basing the choice of an appropriate test on inspec-

tion of samples, or even on preliminary signi�cance tests

performed to assess the validity of assumptions, can lead

to incorrect statistical decisions with high probability.
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Introduction
Asimple �lter o�en applied in empirical econometricwork

is the seasonal di�erence �lter ( − Ls), where s is the
number of observations per year, typically s = , ,  or
.�e seasonal di�erencing assumes that there are unit

roots at all the seasonal frequencies. �e seasonal di�er-

ence �lter can be written as the product of ( − L) and the
seasonal summation �lter S(L), which for quarterly data is
S(L) = (+L+L+L).�e quarterly seasonal summation
�lter has the real root − and the two complex conjugate
roots ±i.

�e existence of seasonal unit roots in the data gen-

erating process implies a varying seasonal pattern where

“Summer may becomeWinter.” In most cases, such a situ-

ation is not feasible and the �ndings of seasonal unit roots

should be interpreted with care and taken as an indication

of a varying seasonal pattern, where the unit root model is

a parsimonious approximation and not the true DGP.

�e idea that the seasonal components of a set of eco-

nomic time series are driven by a smaller set of common

seasonal features seems a natural extension of the idea that

the trend components of a set of economic time series

are driven by common trends. In fact, the whole business

of seasonal adjustment may be interpreted as an indirect

approval of such a view.

If the seasonal components are integrated, the idea

immediately leads to the concept of seasonal cointegra-

tion, introduced in the paper by Hylleberg et al. ().

In case the seasonal components are stationary, the idea

leads to the concept of seasonal common features, see

Engle and Hylleberg (), while so-called periodic coin-

tegration considers cointegration season by season, intro-

duced by Birchenhal et al. (). For a recent survey see

Brenstrup et al. ().

Seasonal Integration
In general, consider the autoregressive representation

ϕ (L) yt = εt , εt ∼ iid(, σ ), where ϕ (L) is a �nite lag
polynomial. Suppose ϕ (L) has all its roots outside the
unit circle except for possible unit roots at the long-run

frequency ω =  corresponding to L = , semiannual

frequency ω = π corresponding to L = −, and annual
frequencies ω = { π


, π

} corresponding to L = ±i.

Dickey et al. () suggested a simple test for seasonal

unit roots in the spirit of the 7Dickey – Fuller test for
long-run unit roots.�ey suggested estimating the auxil-

iary regression ( − L) yt = πyt− + εt , εt ∼ iid(, σ ).
�e DHF test statistic is the “t-value” corresponding to π,

which has a non-standard distributed tabulated in Dickey

et al. ().�is test, however, is a joint test for unit roots

at the long-run and all the seasonal frequencies.

In order to construct a test for each individual unit

root and overcome the lack of �exibility in the DHF test,

Hylleberg et al. () re�ned this idea. By use of the result

that any lag polynomial of order p, ϕ(L), with possible unit
roots at each of the frequencies ω = , π, [π/, π/], can
be written as ϕ(L) = ∑k=

ξk∆(L)(−δk(L))
δk(L) + ϕ∗(L)∆(L),

δk(L) =  − 

ςk
L, ςk = ,−, i,−i, ∆(L) = Πk=δk(L), where

ξk is a constant and ϕ
∗(z) =  has all its roots outside the

unit circle, it can be shown that the autoregression can be

written in the equivalent form

ϕ
∗(L)yt = πyt− + πyt− + πyt− + πyt− + εt . ()

where yt = ( + L + L + L) yt = ( + L)( + L)yt ,
yt = − ( − L + L − L) yt = −( − L)( + L)yt , yt =
− ( − L) yt = −( − L)( + L)yt , and yt = ( − L) yt =
(−L)(+L)(+L)yt . Notice that, in this representation,
ϕ∗ (L) is a stationary and �nite polynomial if ϕ (L) only
has roots outside the unit circle except for possible unit

roots at the long-run, semiannual , and annual frequencies.

�e HEGY tests of the null hypothesis of a unit root

are now conducted by simple “t-value” tests on π for the

long-run unit root, π for the semiannual unit root, and

“F-value” tests on π, π for the annual unit roots. As in the

Dickey–Fuller and DHF models, the statistics are not t or

F distributed but have non-standard distributions. Critical

values for the “t” tests are tabulated in Fuller () while

critical values for the “F” test are tabulated in Hylleberg

et al. ().

Tests for combinations of unit roots at the seasonal

frequencies are suggested by Ghysels et al. (). See also

Ghysels and Osborn (), who correctly argue that if the

null hypothesis is four unit roots, i.e., the proper transfor-

mation is (−L), the test applied should be an “F-test” of
πi, i = , , , , all equal to zero.
As in theDickey–Fuller case the correct lag-augmentat-

ion in the auxiliary regression () is crucial. �e errors
need to be rendered white noise in order for the size to be

close to the stipulated signi�cance level, but the use of too

many lag coe�cients reduces the power of the tests.
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Obviously, if the data generating process, the DGP,

contains a moving average component, the augmenta-

tion of the autoregressive part may require long lags, see

Hylleberg (). As is the case for the Dickey-Fuller test,

the HEGY test may be seriously a�ected by moving aver-

age terms with roots close to the unit circle, but also one

time jumps in the series, o�en denoted structural breaks

in the seasonal pattern, and noisy data with 7outliers may
cause problems.

A straightforward extension of theHEGY test for quar-

terly data produces tests for semiannual andmonthly data,

see Franses ()However the extension toweekly or daily

data is not possible in practice due to number of regressors

in the auxiliary regressions.

�e results of a number of studies testing for seasonal

unit roots in economic data series suggest the presence of

one or more seasonal unit roots, but o�en not all required

for the application of the seasonal di�erence �lter, (−Ls),
or the application of the seasonal summation �lter, S(L).
�us, these �lters should be modi�ed by applying a �l-

ter which removes the unit roots at the frequencies where

they were found, and not at the frequencies where no unit

roots can be detected. Another and maybe more satisfac-

tory possibility would be to continue the analysis applying

the theory of seasonal cointegration.

Seasonal Cointegration
Seasonal cointegration exists at a particular seasonal fre-

quency if at least one linear combination of series, which

are seasonally integrated at the particular frequency, is

integrated of a lower order. For ease of exposition we will

concentrate on quarterly time series integrated of order .

Quarterly time series may have unit roots at the annual

frequency π/ with period  quarters, at the semian-
nual frequency π with period  quarters, and/or at the

long-run frequency . �e cointegration theory at the

semiannual frequency, where the root on the unit cir-

cle is real, is a straightforward extension of the cointe-

gration theory at the long run frequency. However, the

complex unit roots at the annual frequency leads to the

concept of polynomial cointegration, where cointegration

exists if one can �nd at least one linear combination

including a lag of the seasonally integrated series which is

stationary.

In Hylleberg et al. () seasonal cointegration was

analyzed along the path set up in Engle andGranger ().

Consider the quarterly VAR model Π (L)Xt = εt , t =
, , ....T, where Π (L) is a p × p matrix of lag polynomials
of �nite dimension, Xt is a p ×  vector of observations on
the demeaned variables, while the p ×  disturbance vec-
tor is εt ∼ NID (, Ω). Under the assumptions that the

p variables are integrated at the frequencies , π/, π/,
and π, and that cointegration exists at these frequencies as

well, the VAR model can be rewritten as a seasonal error

correction model

Φ(L)Xt = ΠX,t− +ΠX,t− +ΠX,t− +ΠX,t− + εt ,

Π = αβ
′
, Π = αβ

′
, Π = αβ

′
 − αβ

′
,

Π = αβ
′
 + αβ

′
, ()

where the transformed p ×  vectors Xj,t , j = , , , , are
de�ned as in a similar way as yj,t , j = , , ,  above, and
where Zt = β′Xt and Zt = β′Xt contain the cointegrat-
ing relations at the long-run and semiannual frequencies,

respectively, while Zt = (β′ + β′L)Xt contains the poly-
nomial cointegrating vectors at the annual frequency. In

Engle et al. () seasonal and non-seasonal cointegrating

relations were analyzed between the Japanese consump-

tion and income, estimating the relations for Zjt , j = , , ,
in the �rst step following the Granger-Engle two step

procedure.

�e well known drawbacks of this method, especially

when the number of variables included exceeds two, is

partly overcome by Lee () who extended the max-

imum likelihood based methods of Johansen () for

cointegration at the long run frequency, to cointegration

at the semiannual frequency π.

To adopt the ML based cointegration analysis at the

annual frequency π/ with the complex pair of unit
roots ±i, is somewhat more complicated, however.
To facilitate the analysis, a slightly di�erent formula-

tion of the seasonal error correction model is given in

Johansen and Schaumburg (). In our notation the

formulation is

Φ(L)Xt = αβ
′
X,t− + αβ

′
X,t− + α∗β

′
∗X∗,t

+ α∗∗β
′
∗∗X∗∗,t + εt

α∗ = α + iα, α∗∗ = α − iα, β∗ = β + iβ, β∗∗
= β − iβ

X∗,t = (Xt− − Xt−) + i(Xt− − Xt−)
= −X,t− − iX,t−

X∗∗,t = (Xt− − Xt−) − i(Xt− − Xt−)
= −X,t− + iX,t−. ()

�e formulation in (), writes the error correction model

with two complex cointegrating relations, Z∗,t = β′∗X∗,t
and Z∗∗,t = β′∗∗X∗∗,t , corresponding to the complex pair
of roots ±i. Notice that ()) can be obtained from () by
inserting the de�nitions of α∗, β∗, X∗,t , and their complex
conjugates α∗∗, β∗∗, X∗∗,t , and order the terms.
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Note that () and () show the isomorphi between

polynomial lags and complex variables.�e general results

may be found in Johansen and Schaumburg () and

Cubbada (). �e relation between the cointegration

vector βm and polynomial cointegration vector βm(L) is
βm(L) = βm for ωm = , π, and βm(L) = [Re(βm) −
Im(βm)] cos(ωm)−L

sin(ωm) for ωm ∈ (, π).
Based on the extension of the 7canonical correlation

analysis to the case of complex variables by Brillinger

(), Cubbada applies the Johansen ML approach based

on canonical correlations to obtain tests for cointegration

at all the frequencies of interest, i.e., at the frequencies 

and π with the real unit roots ± and at the frequency π/
with the complex roots ±i.
Hence, for each of the frequencies of interest the like-

lihood function is concentrated by a regression of Xt
and X,t−, X,t− or the complex pair (X∗,t , X∗∗,t) on the
other regressors, resulting in the complex residual matri-

cesU∗,t andV∗,t with complex conjugatesU∗∗,t andV∗∗,t ,
respectively. A�er having purged Xt and X,t−, X,t− or
the complex pair (X∗,t , X∗∗,t) for the e�ects of the other
regressors, the cointegration analysis is based on a canon-

ical correlation analysis of the relations between U∗,t and
V∗,t .�e product matrices are SUU = T−∑Tt= U∗,tU′∗∗,t ,
SVV = T−∑Tt= V∗,tV′∗∗,t , and SUV = T−∑Tt= U∗,tV′∗∗,t ,
and the trace test of r or more cointegrating vectors

is found as TR = −T∑pi=r+ ln( − λ̂i), where λ̂ >
λ̂ > .....̂λp are the ordered eigenvalues of the problem
∣λSVV − SVUS−UUSUV ∣ =  .�e corresponding (possibly

complex) eigenvectors properly normalized are νj, j =
, ...., p, where the �rst r vectors form the cointegrating

matrix β.

Critical values of the trace tests for the complex roots

are supplied by Johansen and Schaumburg () and

Cubadda (), while the critical values for cointegra-

tion at the real root cases are found in Lee () and

Osterwald-Lenum ().

Furthermore, tests of linear hypotheses on the poly-

nomial cointegration vectors may be executed as χ test,

similar to the test applied in the long-run cointegration

case.

Although economic time series o�en exhibit non-

stationary behavior, stationary economic variables exist as

well, especially when conditioned on some deterministic

pattern such as linear trends, seasonal dummies, breaks

etc. However, a set of stationary economic times series

may also exhibit common behavior, and for instance share

a common seasonal pattern. �e technique for �nding

such patterns, known as Common Seasonal Features were

introduced by Engle and Hylleberg () and further

developed by Cubadda ().
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Introduction
Seasonality customarily refers to the annual cycle in time

series sampled at intervals that are integer fractions of the

annual, such as quarterly or monthly observations. �e

concept can easily be generalized to analogous features,

such as the daily cycle in hourly observations.

�e characteristics of seasonality are most easily visu-

alized in the frequency-domain representation of the time

series. Denoting the number of observations per year by S,

the seasonal cycle is represented by peaks in the spectral

density at π/S and at integer multiples of this frequency
kπ/S,  ≤ k ≤ S/. Seasonal cycles are distinct from other
cycles by their time-constant length, though their shapes

o�en change over time.�ese shapes o�en di�er strongly

from pure sine waves, and two peaks and troughs over the

year are not uncommon.

�e occurrence of seasonal cycles in time series has

generated two related but distinct strands of literature,

which can be roughly labeled as seasonal modeling and

seasonal adjustment.

Seasonal modeling is concerned with typically para-

metric time-series models that describe the seasonal

behavior of the observed variable as well as the remain-

ing characteristics. In the spectral density interpretation,

a seasonal model captures the spectral mass at the sea-

sonal frequencies as well as the remaining characteristics

of the spectral density, for example the low frequencies that

represent the long run.

Seasonal adjustment builds on the concept of a decom-

position of the data-generating process into a seasonal and

a non-seasonal component. �is decomposition can be

additive (X = Xs + Xns) or multiplicative (X = Xs ⋅ Xns).
�e aim of adjustment is to retrieve the non-seasonal part

Xns from the observed X.

Seasonal Adjustment
Seasonality is not con�ned to economics data. Exam-

ples for seasonal variables range from river-�ow data

to incidences of �u epidemics. �e practice of seasonal

adjustment, however, is mainly restricted to economic

aggregates.

In economics, seasonal adjustment is so popular that

many variables – for example, some variables of national

accounts – are only available in their adjusted form, that is

as an estimate ofXns. It has o�en been pointed out that this

preference tacitly assumes that Xs is generated by forces

outside the economic world, such that the seasonal com-

ponent of a variable does not contain useful information

on the non-seasonal component of the same and of other

variables. A famous citation by SvendHylleberg (Hylleberg

) sees seasonal cycles as a�ected by cultural traditions,

technological developments, and the preferences of eco-

nomic agents, which can be viewed as a critique of this

approach.

Currently, seasonal adjustment of economic data is

mainly enacted by standardized methods, typically X- in

the U.S. and TRAMO-SEATS in Europe. �e conceptual

basis of X- is a sequence of two-sided linear �lters, out-

lier adjustments, and the application of linear time-series

models to isolate the components (see Findley et al. ).

TRAMO-SEATS aims at isolating the components using

the concepts of unobserved-components representations

and of signal extraction.�e assessment of the strengths

and weaknesses of these procedures is di�cult, as the true

components are never observed.

Seasonal Modeling
�e current literature on seasonal modeling builds on

the SARIMA (seasonal autoregressive integrated moving-

average) models by Box and Jenkins (), who
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recommend usage of the seasonal di�erence Xt − Xt−S, fol-
lowed by traditional linear modeling of the �ltered series.

�e application of this �lter assumes the existence of the

factor −BS in the generalizedARMA representation of the
original series, where B denotes the lag operator.�is fac-

tor has zeros at S equidistant points around the unit circle,

hence the name seasonal unit roots. Apart from+ and pos-
sibly −, these unit roots come in complex pairs, such that
the S roots correspond to [S/]+ frequencies or unit-root
events, if [.] denotes the largest integer.

�e s saw an increasing interest in replacing the

Box-Jenkins visual analysis on di�erencing by statistical

hypothesis tests. An o�spring of the unit-root test by

Dickey and Fuller is the test for seasonal unit roots by

Hylleberg et al. (), the HEGY test. A regression is run

for seasonal di�erences of the variable on S speci�c trans-

forms. F– and t–statistics allow investigating the unit-root

events separately. Under the null of seasonal unit roots

will the HEGY statistics follow non-standard distributions

that can be represented as Brownianmotion integrals or as

mixtures of normal distributions.

For example, consider quarterly data (S = ). In the
HEGY regression, Xt − Xt− is regressed on four lagged
‘spectral’ transforms, i.e., on Xt− + Xt− + Xt− + Xt−,
on −Xt− + Xt− − Xt− + Xt−, on Xt− − Xt− and on
Xt− − Xt−.�e t–statistic on the �rst regressor tests for
the unit root at +, the t on the second regressor for the
root at −, and an F–statistic on the latter two terms tests
for the complex root pair at ±i.
Testing for seasonal unit roots can be interpreted

as testing whether seasonal cycles experience persistent

changes over time or whether seasonal di�erencing is

really necessary to yield a stationary variable. A process

with seasonal unit roots is o�en called seasonally inte-

grated. A variable transformed into white noise by seasonal

di�erencing is a special seasonally integrated process and

is called a seasonal 7random walk.
�e HEGY test was generalized to multivariate mod-

els, to cointegration testing, and recently to panel analysis.

Other tests for seasonal unit roots have been developed,

some of them with unit roots as the alternative (for exam-

ple, Canova and Hansen ). A detailed description of

many of these tests and also of other issues in seasonality

can be found in Ghysels and Osborn ().

While the seasonal unit-root analysis is con�ned to

extensions of the Box-Jenkins SARIMAclass,more sophis-

ticated seasonal models have been suggested, for example

models with evolving seasonality, seasonal long memory,

and seasonality in higher moments. �e most intensely

investigated class among them is the periodic model (see

Franses ).

An Example
�e time series variable is the quarterly number of

overnight stays in the Austrian region of Tyrol for the

years  to , which is constructed from the Austrian

WIFO data base.�e time-series plot in Fig.  shows the

seasonal structure clearly.

It is a common and recommended practice to plot

such series by quarters.�e changes of ranks of quarters

re�ect the changes in the seasonal cycle. Figure  shows

the increasing importance of winter tourism (skiing) over

the observation period.

In an estimate of the spectral density (see Fig. ),

the seasonal peaks at π and π/ are recognizable, as is
another non-seasonal peak at the zero frequency (the

1975 1980 1985 1990 1995 2000 2005

Seasonality. Fig.  Overnight stays in Tyrol, quarterly observa-
tions –

1975 1980 1985 1990 1995 2000 2005

III

I

II

IV

Seasonality. Fig.  Overnight stays in Tyrol, plotted by quar-
ters. Curves represent quarters I (solid), II (dashes), III (dots), and
IV (dash-dotted)
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Seasonality. Fig.  Spectral density estimate for the series on
Tyrolean overnight stays

trend). Similar information is provided by the correlo-

gram. Statistical tests con�rm that this variable appears to

have ‘seasonal unit roots’. For example, the HEGY regres-

sion introduced above, with quarterly dummies, a trend,

and a lagged Xt− − Xt− as additional regressors, deliv-
ers t–statistics of −. and −., and an F–statistic of
.. All of these values are insigni�cant at %. �e sea-

sonal di�erencing operator is required to yield a stationary

variable.
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Selection of Appropriate
Statistical Methods in Developing
Countries
Raymond Zepp

Dewey International University, Battambang, Cambodia

Statistical procedures are dictated by the nature of the

research design. To the extent that comparisons of group

means, searching for trends, or measuring central ten-

dency and dispersion are universal objectives in all

societies, it might be argued that the choice of statistical

methods should be independent of the country or culture

in question.

On the other hand, research in developing countries

presents several challenges that are not as prevalent in

developed countries, and therefore, the appropriateness of

the statistical treatment may vary according to the type of

data available.

First, data collected in developing countries can su�er

fromde�ciencies of reliability. Industries, for example,may

submit their production �gures to the national statistics

o�ce in a variety of units ofmeasurement (kilograms, tons,

pounds), and these discrepancies are not always noticed by

untrained workers in the statistics o�ce.

As a result, statistics should be kept simple and

transparent, so that problems of reliability can surface

and be spotted easily. Research reports should include

7sensitivity analysis, that is, an analysis of howmuch vari-
ation in outputs could be caused by small variations in

inputs.

Second, experimenters may �nd it more di�cult in

developing countries to control all variables. For example,

social researchmay �nd it di�cult to control the socioeco-

nomic status of the subjects of a study. In this case, it may

be more di�cult to identify the real variable that gives rise

to group di�erences.�us, factoring out extraneous vari-

ables, for example by the7analysis of covariance, may be a
primary focus of research designs in developing countries.
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�ird, probability distributions may stray from the

normal bell-shaped curve. Many developing countries

have not only widely disparate populations, but may have

two or three subpopulations such as tribal cultures or

rich-poor splits that can yield bimodal distributions, or

even distributions with most of the data occurring at the

extremes of the curve rather than in the middle.

For this reason, there may be a tendency to use non-

parametric statistical models in the analysis of data. Or,

if parametric methods are to be used, careful study of the

robustness of the procedure should be taken into account.

If slight discrepancies from normality can result in large

deviations in results, then the use of the parametric statis-

tics should be called into question.

Fourth, technical and educational facilities in devel-

oping countries may limit the capacity to use more

sophisticated statistical methods. For one thing, computer

capability may be limited in either hardware or so�ware,

or else local statisticians may not be fully conversant with

statistical so�ware packages. In either case, it is probably

more appropriate to adopt statistical methods that are as

simple as possible.

A note needs to be made concerning statistical edu-

cation in developing countries. Because schools and even

universities lack the necessary computers, statistics as a

subject is o�en taught by the old-fashioned method of

calculations by hand-held calculators or even by pencil-

and-paper. In such an educational system, the emphasis is

o�en on the calculation algorithms of, say,means and stan-

dard deviations, rather on the interpretation of results. In

developed countries where the entire class has unlimited

access to computers with statistical so�ware, the calcula-

tions can be done very easily, so that the emphasis can

be placed on interpreting the results, or on assessing the

appropriateness of the statistical method in question. In

developing countries, however, students o�en “lose sight

of the forest for the trees,” that is, their academic assess-

ment is entirely dependent on their ability to calculate

algorithms that they do not focus on design of experiments

and interpretation of results.

A second point about education in developing coun-

tries is the lack of teachers trained in locally appropriate

methods. A university teacher quite likely has been trained

in the developed world, and therefore wishes to teach stu-

dents themost sophisticated and up-to-datemethods, even

though those methods may not be the most appropriate in

the local context.

Related to the above point is the fact that the publica-

tion of research results is o�en biased by the complexity

of the statistical methods used. A journal editor may reject

a research study simply because the statistics used do not

appear sophisticated enough to merit publication.�us, a

researcher may reject a simple but appropriate method in

favor of a more complicated one in order to impress the

readers.

One may summarize the above points in four recom-

mendations:

. When in doubt, opt for the simpler statistical procedure.

. Be prepared to use nonparametric statistics.

. Sensitivity Analysis should be carried out to compen-

sate for possibilities of unreliable data.

. Students should be trained in the appropriateness of

statistical design and interpretation of results, not just

in the calculation of statistical algorithms.
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In statistics, semiparametric regression includes regres-

sion models that combine parametric and nonparametric

models.�ey are o�en used in situations where the fully

nonparametric model may not perform well or when the

researcher wants to use a parametric model but the func-

tional form with respect to a subset of the regressors or the

density of the errors is not known. Suppose Y is a response

and X = (x, ..., xp) are covariates. A basic goal is to esti-
mate m(x) = E(Y ∣X = x) or the model Y = m(X) + ε

with E(ε∣X) =  almost surely. Without any information
about the structure of the function, it is di�cult to estimate

m(x) well when p > , and as a consequence many para-
metric and semiparametric models have been proposed

that impose structural constraints or special functional

forms uponm(x). Popular semiparametricmodels include
partially linear models, see for example Speckman (),

in which

Y = βx + ... + βp−xp− + gp(xp) + ε,

additive models, see for example Hastie and Tibshirani

(), in which

Y = g(x) + g(x) + ... + gp(xp) + ε,

single-index models, see for example Ichimura (), in

which

Y = g(βx + ... + βpxp) + ε,

varying coe�cient models, see for example Chen and Tsay

() and Hastie and Tibshirani (), in which

Y = g(x) + g(x)x + ... + gp(x)xp + ε.

and extended partially linear single-index model, see Xia

et al. (), in which

Y = βx + ... + βpxp + g(θx + ... + θpxp) + ε.

In all the above models, g, ..., gp and g are unknown

functions and β, ..., βp, θ, ..., θp are parameters need to be

estimated. A general form of the semiparametric model

including all the models above is

µ{E(Y ∣x, ..., xp)} = G(g, β,X),

where g = (g, ..., gq)T are unknown smooth functions, G
is known up to a parameter vector β, function µ is known

and usually monotonic.

Both splines smoothing and Kernel smoothing can be

used to estimate these models.�e general model can be

estimated by the method proposed by Xia et al. ().

�eoretically, all these models can avoid the “curse of

dimensionality” in the estimation. �e estimators of the

unknown functions g, ..., gp and g can achieve the optimal

consistency rate of univariate function, and the parameters

such as β, ..., βp and θ are root-n consistent.

�ese models have been found very useful in applica-

tion; see for exampleHastie and Tibshirani (), Fan and

Gijbels () and Ruppert et al. ().
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For any random variable X with �nite variance, and any

constant t

E{(X − t)} = E{(X − t)−} + E{(X − t)+}.

If t = µ = EX, then E{(X − t)} = σ , the vari-

ance of X.�e quantity E{(X − µ)−} is called the (lower)
semi-variance of X whereas E{(X − µ)+} is called the
upper semi-variance of X. In �nancial applications where

X represents return on an investment, σ is widely used

as a measure of risk of an investment (portfolio). In that

context σ is called volatility since it measures volatility of

returns. Risk-averse investors like consistency of returns

and hence lower volatility. In order to compare two or

more investments one compares their returns per unit of

risk, that is, µ/σ = /coe�cient of variation. A modi�ed
version of this measure is due to Sharpe () who uses

the ratio excess returns (over risk free returns) divided by

volatility. Another widely used measure of investors’ risk

is beta, the coe�cient of linear regression of returns over

some benchmark returns such as Standard and Poor 

index.�us, a value of beta over  means that the invest-

ment under consideration is more volatile (risky) than the

benchmark.

For risk-averse investors neither of these twomeasures

�ts their need.�ey are more interested in the downside

risk, the risk of losing money or falling below the target

return. For instance, variance assigns equal weight to both

deviations, those above the mean and those below the

mean. In that sense it ismore suitable for symmetric return

distributions in which case σ  = E{(X − µ)−}. In prac-
tice the return distributions are o�en skewed to the right.

No investor is averse to returns in excess of the target. He

or she prefers positive skewness because the chance of large

deviations from the target rate is much less.

Markowitz () introduced

σ

D(t) = E{(X − t)−}

as a measure of downside risk. Here t may be called the

target rate of return which could be the riskless rate such

as the three month T-bill rate or the Libor rate. Recall that

E{(X − t)} is minimized for t = µ. On the other hand

σ D(t) is an increasing function of t and a Chebyshev type
inequality holds:

P (X < µ − kσD(t)) ≤ /k for k ≥ .

As an estimate of σ D(t) one generally uses the substitution
principle estimator

(/n)
n

∑
i=

{(xi − t)−}


and when t = µ we use the estimator

(/n)
n

∑


{(xi − x)−}

.

Markowitz () was the �rst to propose amethod of con-

struction of portfolios based on mean returns, and their

variances and covariances (see 7Portfolio theory). In 
he proposed semivariance as a measure of downside risk

and advocated its use in portfolio selection. Due to compu-

tational complexity of semivariance and semicovariance,

however, he used the variance measure of risk instead.

A�er the advent of desktop computers and their com-

putational power in s the focus shi�ed to portfolio

selection based on semivariance as a measure of downside

risk. See for example Markowitz et al. ().

Both σD(t) and σU(t) (σ U(t) = E{(X − t)+}) have
been used inQualityControl (see7StatisticalQualityCon-
trol) in constructing process capability indices. See for

example, Kotz and Cynthia (). Other uses are in spa-

tial statistics and in construction of con�dence intervals in

simulation output analysis Coobineh and Branting ().

�e semi-standard deviation σD(µ) can also be used in
setting up dynamic stop loss points in security trading.
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Existing guidelines for impact assessment recommend that

mathematical modeling of real or man-made system be

accompanied by a ‘sensitivity analysis’ - SA (EC ;

EPA ; OMB ).�e same recommendation can be

found in textbooks for practitioners (e.g., Kennedy ,

Saltelli et al. ). Mathematical models can be seen as

machines capable of mapping from a set of assumptions

(data, parameters, scenarios) into an inference (model

output).

In this respect modelers should tackle:

● Uncertainty. Characterize the empirical probability
density function and the con�dence bounds for a

model output. �is can be viewed as the numeri-

cal equivalent of the measurement error for physical

experiments.�e question answered is “Howuncertain

is this inference?”

● Sensitivity. Identify factors or groups of factors
mostly responsible for the uncertainty in the predic-

tion. �e question answered is “Where is this uncer-

tainty coming from?”

�e two terms are o�en used di�erently, with sensitiv-

ity analysis used for both challenges (e.g., Leamer ).

We focus on sensitivity analysis proper, i.e., the e�ect of

individual factors or group of factors in driving the output

and its uncertainty.

Basic Concepts
�e ingredients of a sensitivity analysis are the model’s

uncertain input factors and model’s outputs. Here and in

the following we shall interpret as factor all that can be

plausibly changed at the level of model formulation or

model input in the quest tomap the space of themodel pre-

dictions.�us a factor could be an input datum acquired

with a known uncertainty, as well as a parameter estimated

with known uncertainty in a previous stage ofmodeling, as

well a trigger acting on the model’s structure (e.g., a mesh

size choice), or a trigger selecting the choice of amodel ver-

sus another, or the selection of a scenario.Modelers usually

have considerable latitude of choice as to how to combine

factors in a sensitivity analysis, e.g., what to vary, what

to keep �xed. Also a modeler’s choice is, to some extent,

whether to treat factors as dependent upon one another or

as independent.�e design and the interpretation of this

ensemble of the model simulations constitute a sensitivity

analysis.

Use of Sensitivity Analysis
Sensitivity analysis is a tool to test the quality of a model

or better the quality of an inference based on a model.�is

is investigated by looking at the robustness of an inference.

�ere is a trade o� here between how scrupulous an analyst

is in exploring the input assumptions and how wide the

resulting inference will be. Edward E. Leamer () calls

this an organized sensitivity analysis:

7 I have proposed a form of organized sensitivity analysis that

I call ‘global sensitivity analysis’ in which a neighborhood of

alternative assumptions is selected and the corresponding

interval of inferences is identified. Conclusions are judged to

be sturdy only if the neighborhood of assumptions is wide

enough to be credible and the corresponding interval of infer-

ences is narrow enough to be useful.

In fact it is easy to invalidate a model demonstrating that

it is fragile with respect to the uncertainty in the assump-

tions. Likewise one can criticize a sensitivity analysis by

showing that its assumptions have not been taken ‘wide

enough.’

Examples of application of SA are: robustness assess-

ment in the context of impact assessment; model simpli�-

cation in the context of complex and computer demanding

models; quality assurance for detecting coding errors or
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misspeci�cations. Sensitivity analysis can also highlight

the region in the space of input factors for which themodel

output assumes extreme values, as can be relevant in7risk
analysis. Likewise it can identify model instability regions

within the space of the factors for use in a subsequent

calibration study.

Local Vs Global Methods
In the model Y = f (X,X, . . . ,Xk) Y is the output and Xis
are the input factors.�e model is linear if each factor Xi
enters linearly in f .�e model is additive if the function f

may be decomposed into a sum of k functions fi ≡ fi(Xi),
each fi depending only on its own factor Xi.

�ere are ‘local’ and ‘global’ methods for SA. If the

model is linear, a local approach based on �rst derivatives

of the output with respect to the input factors will provide

all the information that is needed for SA. If the model is

non linear but additive, i.e., there are no interactions among

factors, then derivatives of higher and cross order will be

needed. When a-priori information on the nature of the

model is not available (model-free setting) or the model is

acknowledged to be non additive, then global methods are

needed whereby all the space of the uncertain input fac-

tors is explored. Note that o�en modelers cannot assume

linearity and additivity as their models come in the form

of computer programs, possibly including several compu-

tational steps. In this situation it is better to use ‘global’

methods (EPA ; Saltelli et al. ).

A Very Popular Practice: OAT-SA
Most sensitivity analysis met in the literature are realized

by varying one factor at a time – OAT approaches. Model-

ers have many good reasons to adopt OAT, including the

use of a common ‘baseline’ value from which all factors

aremoved. Derivative based approaches - when the deriva-

tives stop at the �rst order - are a particular case of OAT.

Typical arguments in favor of OAT are: () �e baseline

vector is a safe starting point where the model properties

are well known; () Whatever e�ect is detected on the out-

put, this is solely due to that factor which was moved and

to none other; ()�e chances of the model to crash or to

give unacceptable results are minimized as these generally

increase with the distance from the baseline.

Despite all these points in favor to an OAT sensitivity

analysis we would like to discourage as much as possible

this practice (Saltelli and Annoni ). OAT is ine�cient

in exploring the input space as the coverage of the design

space is extremely poor already with few input factors.�e

issue of uniformly covering the hyperspace in high dimen-

sions is a well known and widely discussed matter under

the name curse of dimensionality (Hastie et al. ).�ere
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Sensitivity Analysis. Fig.  Curse of dimensionality-horizontal
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are various ways to visualize this ‘curse’. Figure  may be

e�ective. It shows that, as the number of dimensions k

increases, the volume of the hyper-sphere inscribed in the

unitary hyper-cube goes rapidly to zero (it is less than %

already for k = ).
�e OAT approach – moving always one step away

from the same baseline – can be shown to generate points

inside the hyper-sphere. Of course when one throws a

handful of points in a multidimensional space these points

will be sparse, and in no way the space will be fully

explored. Still, even if one has only a handful of points at

disposal, there is no reason why one should concentrate all

these points in the hyper-sphere, i.e., closer to the origin

on average than randomly generated points in the cube.

An additional shortcoming of OAT is that it cannot

detect factor interactions. It may be the case that a fac-

tor is detected as no in�uential while it is actually relevant

but only through its interaction with the other factors. In a

model free setting,OAT is by nomeans thewinning choice.

Design and Estimators
Unlike OAT, a good experimental design will tend to

change more factors simultaneously. �is design can be

realized using the same techniques used for experimental

design (e.g., a saturated two-level design or an unsaturated

designwithmore levels). A practical alternative for numer-

ical experiments is a Monte Carlo method. Beside design,

sensitivity analysis needs sensitivity estimators which will

translate the function values computed at the design points

into sensitivity coe�cients for the various factors.
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Model’s predictions have to be evaluated at di�erent

points within the parameter space, whose dimensional-

ity is equal to the number k of input factors. To explore

the k-dimensional factor space (the hyperspace) the �rst

step in usually to reduce the problem to traveling across

the k-dimensional unit cube by using the inverse cumu-

lative distribution function of input factors. �e input

space can be explored using ad hoc trajectories (such as in

the elementary e�ects method below), random numbers

or quasi-random numbers. Quasi-random numbers are

speci�cally designed to generate samples from the space

of input factors as uniformly as possible. For a review on

quasi random sequences and their properties see Bratley

and Fox ().

A�er sampling the space of input factors, various

methods may be applied to compute di�erent sensitivity

measures. Selected practices are given next.

Morris’ Elementary Effects
�e Elementary E�ect method (Morris ) provides a

ranking of input factors according to a sensitivity mea-

sure simply based on averages of derivatives over the space

of factors. In the Morris setting each input factor is dis-

cretized into p levels and the exploration of the input

space is carried out along r trajectories of (k + ) points,
where each point di�ers from the previous one in only

one component. Each trajectory provides rough sensitivity

measures for each factor called elementary e�ect EE.�e

elementary e�ect of trajectory j for factor i is:

EE
(j)
i =

Y(X,. . .,Xi−,Xi + ∆,Xi+,. . .,Xk) − Y(X,. . .,Xk)
∆

()

where convenient choices for p and ∆ are p even and

∆ equal to p/[(p − )]. �e point (X, . . . ,Xk) is any
point in the input space such that the incremental point

(X, . . . ,Xi−,Xi+∆,Xi+, . . . ,Xk) still belongs to the input
space (for each i = , . . . , k). Elementary e�ect EE(j)i pro-

vides a sensitivity index which highly depends on the par-

ticular trajectory, being in this sense local. To compute a

more global sensitivity measure, many trajectories are cho-

sen and the average value of EE
( j)
i over j is computed.

Following a recent revision of original Morris’ measure,

factors may be ranked according to µ∗ (Campolongo et al.
):

µ
∗
i =



r

r

∑
j=

∣EE(j)i ∣ ()

�e elementary e�ects sensitivity measure is an e�cient

alternative toOAT. It is used for factor screening, especially

with large and complex models. When modellers are con-

strained by computational costs, a recommended practice

is to perform a preliminary analysis by means of Morris’

trajectories to detect possible non in�uential factors. More

computationally intensive methodsmay be then applied to

a smaller set of input factors.

Monte Carlo Filtering
An alternative setting for sensitivity analysis is the ‘fac-

tor mapping’ which relates to situations when there is a

special concern towards a particular portion of the distri-

bution of the output Y , e.g., one is concerned with Y above

or below a given threshold – e.g., an investment loss or a

toxicity level not to be exceeded.�is is the typical setting

of Monte Carlo Filtering MCF (see Saltelli et al.  for

a review).�e realizations of Y are classi�ed into ‘good’ –

behavioral – and ‘bad - non-behavioral depending on the

value of Y with respect to the threshold. AMCF analysis is

divided into the following steps:

. Compute di�erent realizations of Y corresponding to

di�erent sampled points in the space of input factor by

means of a Monte Carlo experiment;

. Classify each realization as either behavioral (B) or
non behavioral (B);

. For each Xi de�ne two subsets, one including all the

values of Xi which give behavioral Y , denoted (Xi∣B),
the other including all the remaining values (Xi∣B);

. Compute the statistical di�erence between the two

empirical distribution functions of (Xi∣B) and (Xi∣B).
A factor is considered in�uential if the two distribution

functions are statistically di�erent. Classical statistical

tests, such as Smirnov two-sample test may be used to

the purpose.

Variance-Based Sensitivity Measures
With variance-based sensitivity analysis (VB-SA) input

factors can be ranked according to their contribution to

the output variance. VB-SA also tackles interaction e�ects

instructing the analyst about cooperative behavior of fac-

tors. Interactions can lead to extremal values of model

output and are thus relevant to the analysis. In VB-SA sen-

sitivity analysis the two most relevant measures are ‘�rst

order’ and ‘total order’ indices.

�e best systematization of the theory of variance-

based methods is due to Sobol’ (Sobol ), while total

sensitivity indices were introduced by Homma and Saltelli

(). For reviews see also Saltelli et al. () or Helton

et al. (). Variance-based SA uses measures as

Si =
VXi (EX∼i(Y ∣Xi))

V(Y)
()
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and

STi =
EX∼i (VXi(Y ∣X∼i))

V(Y)
=  − VX∼i (EXi(Y ∣X∼i))

V(Y)
()

where X∼i = {X,X, . . . ,Xi−,Xi+, . . . ,Xk}.
EX∼i(Y ∣Xi) is the value of Y obtained by averaging

over all factors but Xi, and is thus a function of Xi alone.

VXi (EX∼i(Y ∣Xi)) is the variance of this function over Xi
itself. Intuitively a high value of this statistics implies an

in�uent factor.

�e quantity Si corresponds to the fraction of V(Y)
that can be attributed toXi alone. It can be viewed as amea-

sure of how well EX∼i(Y ∣Xi) �ts Y : if the �tting is optimal
then Si ≅  and factor Xi is highly relevant. �e quan-
tity STi corresponds to the fraction of V(Y) that can be
attributed to Xi and all its interactions with other factors.

For additive models the two measures Si and STi are equal

to one another for each factor Xi. For an interacting factor

the di�erence STi − Si is a measure of the strength of the
interactions.

�e estimation of Si and STi requires the computation

of k-dimensional integrals. �ey are generally approxi-

mated assuming independency among input factors and

using Monte-Carlo or quasi-Monte-Carlo sampling from

the joint distribution of the space of input factors. Alterna-

tive procedures for the computation of Si and STi are avail-

able which use direct calculations. �ey all derive from

metamodels, which provide cheap emulators of complex

and large computational models (see for example Oakley

and O’Hagan ; Storlie et al. ).
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Introduction
�e use of humans as measurement instruments is playing

an increasing role in product development and user-driven

innovation in many industries. �is ranges from the use

of experts and trained human test panels to market stud-

ies where the consumer population is tested for preference

and behavior patterns.�is calls for improved understand-

ing on one side of the human measurement instrument

itself and on the other side the modeling and empirical

treatment of data. �e scienti�c grounds for obtaining

improvements within a given industry span from exper-

imental psychology to mathematical modeling, statistics,

chemometrics, and machine learning together with spe-

ci�c product knowledge be it food, TVs, hearing aids,

mobile phones, or whatever.

In particular in the food industry, sensory and con-

sumer data is frequently produced and applied as the basis

for decisionmaking. And in the �eld of food research, sen-

sory and consumer data is produced and used similar to

the industrial use, and academic environments speci�cally

for sensory and consumer sciences exist worldwide. �e

development and application of statistics and data analysis

within this area is called sensometrics.

Sensory Science and Sensometrics
As the name indicates, sensometrics really grew out of

and is still closely linked to sensory science, where the

use of trained sensory panels plays a central role. Sen-

sory science is the cross-disciplinary scienti�c �eld deal-

ing with human perception of stimuli and the way they

act upon sensory input. Sensory food research focuses

on better understanding of how the senses react during

food intake, but also how our senses can be used in qual-

ity control and innovative product development. Histor-

ically it can be viewed as a merger of simple industrial

product testing with psychophysics as originated by G.T.

Fechner and S.S. Stevens in the nineteenth century. Prob-

ably the �rst exposition of the modern sensory science

is given by Amerine et al. (). Rose Marie Pangborn

(–) was considered one of the pioneers of sen-

sory analysis of food and the main global scienti�c con-

ference in sensory science is named a�er her. �e �rst

Pangborn Symposium was held in Helsinki, Finland, in

 and these conferences are approaching in the order of

, participants – the ninth was planned for in Bangkok,

�ailand, in . Jointly with this, international senso-

metrics conferences have been held also since , where

the �rst took place in Leiden, Holland (as a small work-

shop), and the tenth took place in Rotterdam, Holland,

in . �e sensometrics conferences have a participa-

tion level of around –. Both conferences are working

together with the Elsevier Journal Food Quality and Prefer-

ence, which is also the o�cial membership journal for the

Sensometrics Society (www.sensometric.org).

Sensometrics: Statistics, Psychometrics,
or Chemometrics?
�e “sensometrician” is faced with a vast collection of data

types froma large number of experimental settings ranging

from a simple one-sample binomial outcome to complex

dynamical and/or multivariate data sets; see, e.g., Bredie

et al. () for a recent review of quantitative sensory

methodology. So what is really (good) sensometrics?�e

answer will depend on the background of the sensometri-

cian, who for the majority, if not a food scientist, is coming

from one of the following �elds: generic statistics, psy-

chophysics/experimental psychology, or chemometrics.

�e generic statistician arch type would commonly

carry out the data analysis as a purely “empirical” exercise

in the sense that methods are not based on any models for

the fundamental psychological characteristics underlying

the sensory phenomena that the measurements express.

�e advantage of a strong link to the generic scienti�c

�elds of mathematical and applied statistics is the ability

to employ the most modern statistical techniques when

relevant for sensory data and to be on top of sampling

uncertainty and formal statistical inferential reasoning.

And this is certainly needed for the sensory �eld as for

any other �eld producing experimental data. �e weak-

ness is that the lack of proper psychophysical models may

lead to inadequate interpretations of the analysis results.

In, e.g., MacKay () the �rst sentence of the abstract

is expressing this concern rather severely: “Sensory and

hedonic variability are fundamental psychological char-

acteristics that must be explicitly modeled if one is to

develop meaningful statistical models of sensory phenom-

ena.” A fundamental challenge of this ambitious approach

is that the required psychophysical (probabilistic) models

of behavior are on one hand only vaguely veri�able, since

they are based on models of a (partly) unobserved sys-

tem, the human brain and perceptual system, and on the

other handmay lead to rather complicated statistical mod-

els. MacKay () is published in a special sensory data

issue of�e Journal of Chemometrics; see Brockho� et al.

(). Chemometricians are the third and �nal arch type

www.sensometric.org
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of a sensometrician. In chemometrics the focus is more on

multivariate data analysis (see 7Multivariate Data Analy-
sis: An Overview) and for some the explorative principle

is at the very heart of the �eld; see, e.g., Munck () and

Martens andMartens ().�e advantage of the chemo-

metrics approach is that usually all multivariate features

of the data are studied without forcing certain potentially

inadequate model structures on the data.�e weakness is

exactly also this lack ofmodeling rendering potentially cer-

tain well-understood psychophysical phenomena for the

explorative modeling to �nd out by itself. Also, linked with

the explorative approach, the formal statistical inferential

reasoning is sometimes considered less important by the

chemometrician.

Now, none of these arch types are (at their best) unin-

telligent and they would, all three of them, understand

(some of) the limitations of their pure versions of analysis

approach. And they all have ways of dealing with (some of)

these concerns for practical data analysis, such that o�en,

at the end of the day, the end results may not di�er that

much.�ere is though, in the point of view of this author,

a lack of comprehensive comparisons between these di�er-

ent approaches where they all are used at their best.

Example : Sensory Profile Data
As an example, consider the so-called descriptive sensory

analysis, also called sensory pro�ling. In sensory pro�ling

the panelists develop a test vocabulary (de�ning attributes)

for the product category and rate the intensity of these

attributes for a set of di�erent samples within the cate-

gory.�us, a sensory pro�le of each product is provided

for each of the panelists, and most o�en this is replicated;

see Lawless and Heymann (). Hence, data is inher-

ently multivariate as many characteristics of the products

are measured.

�e statistics arch type would focus on the ANOVA

structure of the setting and perform univariate and mul-

tivariate analyses of variance (ANOVA) and would make

sure that the proper version of a mixed model ANOVA is

used; see, e.g., Lea et al. () and Næs et al. (). For

studying the multivariate product structure the Canonical

Variates Analysis (CVA) within the Multivariate ANOVA

(MANOVA) framework would be the natural choice (see,

e.g., Schlich ()) since it would be an analysis that

incorporates the within-product (co)variability.

�e chemometrics arch type would begin with prin-

cipal components analysis (PCA) on averaged and/or

unfolded data. For more elaborate analysis maybe three-

way methods (see Brockho� et al. (), Bro et al. ())

or other more ANOVA-like extensions would be used (see,

e.g., Luciano and Næs ()). Analysis accounting for

within-product (co)variability could be provided by exten-

sions as presented in Bro et al. () or in Martens et al.

().

In MacKay () the approach for this type of

data is that of probabilistic multidimensional scaling

(PROSCAL). In short, a formal statistical model for prod-

uct di�erences is expressed as variability on the (low-

dimensional) underlying latent sensory scale. It is usually

presented as superior to the use of, e.g., standard PCA,

focusing on the point that it naturally includes models

for di�erent within-product variability, which in the stan-

dard PCA could be confounded with the “signal” – the

inter-product distances.

Example : Sensory Difference and
Similarity Test Data
�e so-called di�erence and/or similarity tests are a com-

monly used sensory technique resulting in binary and/or

categorical frequency data – the so-called triangle test is a

classical example. In the triangle test an individual is pre-

sented with three samples, two of which are the same, and

then asked to select the odd sample.�e result is binary:

correct or incorrect. Such sensory tests were already in

the s treated by the statistical community; see, e.g.,

Hopkins () and Bradley ().�ese types of tests and

results have also been treated extensively from amore psy-

chophysical approach, o�en here denoted a �urstonian

approach. �e focus in the �urstonian approach is on

quantifying/estimating the underlying sensory di�erence

d between the two products that are compared in the di�er-

ence test.�is is done by setting up mathematical/psycho-

physical models for the cognitive decision processes that

are used by assessors in each sensory test protocol see;

e.g., Ennis (). For the triangle test, the usual model

for how the cognitive decision process is taking place is

that the most deviating product would be the answer –

sometimes called that the assessors are using a so-called

tau-strategy. Using basic probability calculus on three real-

izations from two di�erent normal distributions, di�ering

by exactly the true underlying sensory di�erence d, one

can deduce the probability of getting the answer correct

for such a strategy.�is function is called the psychome-

tric function and relates the observed number of correct

answers to the underlying sensory di�erence d. Di�er-

ent test protocols will then lead to di�erent psychometric

functions. InBock and Jones () probably the �rst sys-

tematic exposition of the psychological scaling theory and

methods by�urstone was given.�is included a sound

psychological basis as well as a statistical one with the use

and theory of maximum likelihood methods. Within the

�eld known as signal detection theory (see, e.g., Green and
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Swets () or Macmillan and Creelman ()), meth-

ods of this kind were further developed, originally with

special emphasis on detecting weak visual or auditory sig-

nals. Further developments of such methods and their use

within food testing and sensory science have developed

over the last couple of decades with the numerous con-

tributions of D. Ennis as a corner stone; see, e.g., Ennis

(). In Brockho� and Christensen () it was empha-

sized and exploited that the�urstonian-based statistical

analysis of data from the basic sensory discrimination test

protocols can be identi�ed as 7generalized linear models
using the inverse psychometric functions as link functions.

With this in place, it is possible to extend and combine

designed experimentation with discrimination/similarity

testing and combine standard statistical modeling/analysis

with�urstonian modeling.

Summary
One recurrent issue in sensometrics is the monitoring

and/or accounting for individual di�erences in sensory

panel data, also called dealing with panel performance.

A model-based approach within the univariate ANOVA

framework was introduced in Brockho� and Skovgaard

(), leading to multiplicative models for interaction

e�ect expressing the individual varying scale usage. In

Smith et al. () and in Brockho� and Sommer ()

random e�ect versions of such analyses were put forward

leading to either a multiplicative (nonlinear) mixed model

or a linear random coe�cient model. Another recurring

issue is the relation of multivariate data sets, e.g., trying

to predict sensory response by instrumental/spectroscopic

and/or chemicalmeasurements. Similarly there is a wish to

be able to predict how the market (consumers) will react

to sensory changes in food products – then called Prefer-

enceMapping (McEwen ).�is links the area closely to

the chemometrics �eld and also naturally to the (machine)

learning area, which in part is explored in Meullenet et al.

(). Another commonly used sensory and consumer

survey methodology is to use rankings or scoring on an

ordinal scale. InRayner et al. () standard and extended

rank-based non-parametrics is presented speci�cally for

sensory and consumer data.

As indicated, there are yet many other examples of

sensory and consumer data together with other purposes

of analysis challenging the sensometrician whoever he or

she is. Recently some open-source dedicated sensometrics

so�ware have appeared: the R-based SensoMiner (Lê and

Husson ), the stand-alone tool PanelCheck (Tomic

et al. ), and the R-package sensR (Christensen and

Brockho� ).
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Introduction: Sequential Testing and
Sequential Probability Ratios
An important topic in statistical theory and practice con-

cerns the analysis of data that are sampled sequentially.

�e development of powerful mathematical and statistical

tools for the analysis of sequential data is a critical area in

statistical research. Our emphasis in this short, introduc-

tory exposition is on sequential testing, and in particular

on the best-known version for such testing, the sequential

probability ratio test.

Suppose we are given two hypotheses about the under-

lying distribution of a random variable X: H : X ∼ f(x)
vs Ha : X ∼ f(x), for two probability density functions
(pdfs) or probability mass functions (pmfs) fi(x), i = , .
To perform a sequential test of H vs. Ha, we sample indi-

vidual observations one at a time, and assess in a series of

separate stepswhether or not the accumulated information

favors departure from H:

Step : Begin by setting two constants, A and B, such that

 < A <  < B.
Step : Observe X. Compute the probability ratio Λ =
f(x)/f(x). Since very large values of this ratio support
Ha, reject H if Λ ≥ B. Alternatively, since very small
values of this ratio support H, accept H if Λ ≤ A.�e
sequential approach also allows for an indeterminate out-

come, so ifA < Λ < B, continue sampling and go to Step .
Step : Observe X. Compute the probability ratio Λ =
f(x, x)/f(x, x). As in Step , if Λ ≥ B, rejectH, while
if Λ ≤ A, acceptH. IfA < Λ < B, continue sampling and
observe X.

⋮
Step n: Observe Xn. Compute the probability ratio Λn =
f(x, x, . . . , xn)/ f(x, x, . . . , xn). As in Step , if Λn ≥ B,
reject H, while if Λn ≤ A, accept H. If A < Λn < B, con-
tinue sampling and observe Xn+. (etc.)

�is is known as a Sequential Probability Ratio Test

(SPRT), due to Wald (a; b).

Notice that in the typical setting where the indi-

vidual observations are sampled independently from

f(x) or f(x), the probability ratios take the form

http://www.cran.r-project.org/package=sensR/
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Λn =
n

∏
i=

{ f(xi)/f(xi)}. �en, the continuance con-

dition A < Λn < B is equivalent to log{A} <

log{
n

∏
i=

[ f(xi)/f(xi)]} < log{B}. For Di = log{ f(xi)} −

log{ f(xi)} at any i = , , . . . , this simpli�es to

log{A} <
n

∑
i=
Di < log{B}. ()

An idealized schematic of this procedure can be given,

analogous to Fig. – of Lindgren (), for example. For

speci�c choices of f and f, one can o�en simplify () even

further. Example  illustrates the approach.

Example  �e Exponential Family

Suppose we test the simple hypotheses H : θ = θ vs

Ha : θ = θ. Let theXis be independent and identically dis-

tributed (i.i.d.) with underlying pdf or pmf taken from the

exponential family of probability functions (Pierce ):

f (x) = h(x)c(θ)eω(θ)t(x)
.�en, the continuance condi-

tion simpli�es to log{A} < n log{c(θ)/c(θ)}+ [ω(θ)−
ω(θ)]

n

∑
i=
t(Xi) < log{B}, which if ω(θ) − ω(θ) > 

becomes

an <
n

∑
i=
t(Xi) < bn, ()

where

an =
log{A} − n log [ c(θ)

c(θ)
]

ω(θ) − ω(θ)
and

bn =
log{B} − n log [ c(θ)

c(θ)
]

ω(θ) − ω(θ)
.

[If ω(θ) − ω(θ) < , then the inequalities in () are
reversed.] Notice that the central quantity in () is the

su�cient statistic Tn =
n

∑
i=
t(Xi).

For instance, suppose we sample randomly from

the single-parameter exponential distribution with mean

θ,Xi ∼i.i.d. Exp(θ), and wish to test H : θ = θ vs

Ha : θ = θ, where θ > θ.�e pdf has the form f (x∣θ) =
θ− exp{−x/θ}I(,∞)(x), which is a member of the expo-
nential family with c(θ) = θ−,ω(θ) = −θ−, and t(x) = x.
�us log{Λn} = n log{θ/θ}+[θ− − θ− ]

n

∑
i=
Xi.�e con-

tinuance region’s form can be simpli�ed here by noting that

since θ > θ, we have ω(θ) − ω(θ) = θ− − θ− > , so

() applies: continue sampling when an <
n

∑
i=
Xi < bn, for

an =
log{A} − n log [ θ

θ
]

θ− − θ−
and

bn =
log{B} − n log [ θ

θ
]

θ− − θ−
.

Otherwise, reject H when
n

∑
i=
Xi ≥ bn, or accept H when

n

∑
i=
Xi ≤ an.

Choosing the Sequential Limits A and B
For most hypothesis tests, concern centers on the test-

ing error rates, i.e., the Type I error rate, α =
P[reject H∣H true], and the Type II error rate, β =
P[accept H∣H false]. For the SPRT these quantities will
both be functions of A and B, thus one could in principle

invert the relationships and select A and B as functions of

α and β. Unfortunately, SPRT error rates in these forms

are di�cult to evaluate. It is possible to approximate them,

however, as the following theorem shows.

�eorem  �e SPRT as de�ned above relates its contin-

uance limits and Type I and II error rates via

B ≤ ( − β)/α and A ≥ β/( − α). ()

See, e.g., Wald (, §.) for a proof. �e �eorem

may be used to de�ne A and B as functions of α and β

by choosing A and B to satisfy the equalities in (): given

nominal error rates α∗ and β∗, use () to set

B = ( − β
∗)/α

∗
and A = β

∗/( − α
∗). ()

Of course, these choices of A and B do not ensure that the

actual underlying Type I and Type II error rates, α and β,

respectively, will attain the nominally-chosen rates α∗ and
β∗. However, one can produce a series of upper bounds
using () and () to obtain α+β ≤ α∗+β∗, α ≤ α∗/(−β∗)
and β ≤ β∗/(− α∗). Wald (, §.) notes that for most
typical values of α∗ and β∗ these bounds are o�en rather
tight and may even be negligible in practice.

Example  Supposewe set the nominal error rates to α∗ =
. and β∗ = ..�en we �nd α + β ≤ ., while the
individual error rates are bounded as α ≤ (.)/(.) =
. and β ≤ (.)/(.) = ..

Finite Termination and Average Sample
Number (ASN)
Notice that the (�nal) sample size N of any sequential test

procedure is not a �xed quantity, but is in fact a random
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variable determined from the data. As such, an obvious

concern with any form of sequential test is whether or not

the method eventually terminates. Luckily, for i.i.d. sam-

pling the SPRT possesses a �nite termination characteristic

in that P[N < ∞] = . �is holds under either H or
Ha, and is based on a more general result given by Wald

(); also see Lehmann (, §.).�e larger literature

on �nite termination of sequential tests is quite diverse;

some historically interesting expositions are available in,

e.g., David and Kruskal (), Savage and Savage (),

or Wijsman ().

When P[N < ∞] = , it is reasonable to ask what
the expected sample size, E[N], is for a given SPRT.�is
is known as the average sample number (ASN) or expected

sample number (ESN). A basic result for the ASN is avail-

able via the following theorem (Wald b):

�eorem  (Wald’s Equation): Let D,D, . . . be a

sequence of i.i.d. random variables with E[ ∣Di∣ ] <∞. Let
N >  be an integer-valued random variable whose real-
ized value, n, depends only onD, . . . ,Dn, with E[N] <∞.
�en E[D +D + . . . +DN] = E[N] ⋅ E[D].
A consequence of Wald’s Equation is the immediate

application to the SPRT and its ASN. Clearly log{ΛN} =

log{ f(x)/f(x)}+⋯+ log{ f(xN)/f(xN)} =
N

∑
i=
Di. So,

applyingWald’s equation yieldsE[N] = E[log{ΛN}]/E[D],
where D= log{ f(X)/f(X)}. �is result lends itself
to a series of approximations. For instance, if H
is rejected at some N, log{ΛN}≈ log{B}. Or, if H is
accepted at some N, log{ΛN}≈ log{A}. �us, under
H, E[log{ΛN}∣H]≈ α ⋅ log{B} + ( − α) log{A}, so
E[N∣H]≈ [α⋅log{B}+(−α) log{A}]/E[D∣H]. Similarly,
E[N∣Ha]≈ [(− β) log{B}+ β ⋅ log{A}]/E[D∣Ha]. For any
given parametric con�guration, these relationships may

be used to determine approximate values for ASN. Wald

() gives some further results on ways to manipulate

the ASN.

An important reason for employing the SPRT, at least

for the case of testing simple hypotheses, is that it achieves

optimal ASNs: if the Xis are i.i.d., then for testing H : θ =
θ vs. Ha : θ = θ both E[N∣H] and E[N∣Ha] are mini-
mized among all sequential tests whose error probabilities

are atmost equal to those of the SPRT (Wald andWolfowitz

). For testing composite hypotheses, the theory of

SPRTs is more complex, although a variety of interesting

results are possible (Stuart et al. , §.–; Lai ,

§). In his original article, Wald (a) himself discussed

the problem of sequential testing of composite hypothe-

ses on a binomial parameter; also see Siegmund (,

§II.). For testing with normally distributed samples, var-

ious forms of sequential t-tests have been proposed; see

Jennison and Turnbull () and the references therein for

a useful discussion on sequential t-tests (and sequential χ-

and F-tests) that includes the important problem of group

sequential testing.

Since Wald’s formalization of the SPRT, a number of

powerful, alternative formulations/constructions have led

to wide application of the method.We provide here a short

introduction to the basic mathematical underpinnings;

however, comprehensive reviews on the larger area of

sequential analysis date as far back as Johnson (), along

with more modern expositions given by Lai (, ,

) and Ghosh (). For a perspective emphasizing

7sequential sampling, seeMukhopadhyay (). Also see
the book-length treatments by Siegmund (), Ghosh

and Sen (), or Mukhopadhyay and de Silva (),

along with Wald’s () classic text. For cutting-edge

developments a dedicated scienti�c journal exists: Sequen-

tial Analysis, with more information available online at the

website http://www.informaworld.com/smpp/title~db=

all~content=t.
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Sequential Ranks
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New Zealand

To discuss sequential ranks it will be more helpful to

present them in comparison with ordinary ranks.

Suppose X, . . . ,Xn is a sequence of random variables.

Denote by IA the indicator function of an eventA. For each
Xi consider now what one can call its “ordinary” rank:

Rin =
n

∑
j=

I{Xj≤Xi}.

So, Rin counts the number of our random variables that

take values not exceeding Xi. For example, if Xi happens

to be the smallest, its rank will be , and if it happens to

be the largest, its rank will be n. If the joint distribution of

X, . . . ,Xn is absolutely continuous, then with probability 

all values of our random variables will be di�erent.�ere-

fore, for any integer k = , . . . ,n there will be one and only
one random variable with rank equal to k. For example, for

n = , if our Xi-s happened to be

−., ., −., . and .,

their ranks will be

, , ,  and .

Hence, the vector of “ordinary” ranksRn = {Rn, . . . ,Rnn}
is a random permutation of the numbers {, . . . ,n}.�us,
its distribution possesses a certain degeneracy. In partic-

ular, even if X, . . . ,Xn are independent and identically

distributed, the ordinary ranks are dependent random

variables – for example, if Rin =  it precludes any other
rank Rjn, j ≠ i, from taking the value , so that the condi-
tional probability P(Rjn = ∣Rin = ) = , while without
this condition P(Rjn = ) does not need to be  at all.
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Moreover, any symmetric statistic from the vector Rn is
not random and, for given n, must be constant: if ψ is a

symmetric function of its n arguments, then

ψ(Rn, . . . ,Rnn) = ψ(, . . . ,n), e.g.,
n

∑
i=
ϕ(Rin) =

n

∑
i=
ϕ(i).

�e de�nition of sequential ranks is slightly di�erent,

but the di�erence in their properties is quite remarkable.

Namely, the sequential rank of Xi is de�ned as

Si =
i

∑
j=

I{Xj≤Xi}.

�erefore, it is the rank of Xi among only “previous”

observations, including Xi itself, but not “later” observa-

tions Xi+, . . . ,Xn. For the sample values given above, their
sequential ranks are

, , , , .

�e relationship between the vectors of ordinary ranks

and sequential ranks is one-to-one. Namely, given vector

Rn = {Rn, . . . ,Rnn} of ordinary ranks, the sums

Si =
i

∑
j=

I{Rjn≤Rin}

return sequential ranks of X, . . . ,Xn and the other way

around, given a vector of sequential ranks Sn, if

Si,i+ = Si + I{Si≥Si+}, Si,i+ = Si,i+ + I{Si,i+≥Si+}, . . . ,

then �nally

Si,n = Rin.

Because of this one-to-oneness, the vector Sn also must
have some sort of degeneracy. It does, but in a very mild

form: S is always .

Assume that X, . . . ,Xn are independent and identi-

cally distributed random variables with continuous distri-

bution function F.�en U = F(X), . . . ,Un = F(Xn) are
independent uniformly distributed on [, ] random vari-
ables.�e values of Rin and Si will not change, if we replace

Xi-s byUi-s.�erefore, the distribution of both ranksmust

be independent of F – they both are “distribution free.” We

list some properties of Sn in this situation – they can be
found, e.g., in Barndolf-Nielsen (), Renyi (, ),

Sen ().

�e distribution of each Si is P(Si = k) = /i, k =
, . . . , i, and, therefore, the distribution function of Si/(i+)
quickly converges to the uniform distribution function:

P ( Si
i + 

= k

i + 
) = 

i
, and ∣P ( Si

i + 
≤ x) − x∣ ≤ 

i + 
.

Recall that, similarly, for ordinary ranks P(Rin = k) =
/n, k = , . . . ,n, see, e.g., Hajek and Shidak (). How-
ever, unlike ordinary ranks, sequential ranks S, . . . , Sn are

independent random variables. Hence symmetric statis-

tics from sequential ranks are non-degenerate random

variables. For example,

n

∑
i=
ϕ(Si)

is a sum of independent random variables. Also unlike

ordinary ranks, with arrival of a new observation Xn+
sequential ranks S, . . . , Sn stay unchanged and only one

new rank Sn+ is to be calculated.
�erefore, asymptotic theory of sequential ranks

is relatively simple and computationally they are very

convenient.

�e ordinary ranks are used in testing problems, usu-

ally, through the application of two types of statistics–widely

used linear rank statistics and goodness of �t statistics,

based on the empirical �eld

zR(t,u) =
nt

∑
i=

[I{Rin≤u(n+)} −
[nu]
n + 

] , (t,u) ∈ [, ].

Linear rank statistics can also be thought of as based on

the �eld zR(t,u), and, more exactly, are linear functionals
from it:

ψ(Rn) = ∫ ψ(t,u)zR(dt,du)

=
n

∑
i=

[ψ ( i
n
,
Rin

n + 
) − Eψ ( i

n
,
Rin

n + 
)]

(the term “linear” would not be very understandable oth-

erwise). Without loss of generality one can assume that

∫



ψ(t,u)dt = .
One of the central results in the theory of rank tests,

see Hajek and Shidak (), is the optimality statement

about linear rank statistics. If under the null hypothesis the

sample is i.i.d.(F) while under the alternative hypothesis

the distribution Ai of each Xi is such that

dAi(x)
dF(x)

= + √
n
a( i
n
,F(x))+smaller terms, asn→∞,

()

where ∫



a(t,F(x))dt = , then the linear rank statistic,

with ψ equal to a from (),

a(Rn) =
n

∑
i=
a( i
n
,
Rin

n + 
),

is asymptotically optimal against this alternative. Indeed,

the statistic
n

∑
i=
a( i
n
,F(Xi))
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is the statistic of the asymptotically optimal test for our

alternative, based on the observations X, . . . ,Xn “them-

selves,” and Rin/(n + ) is a “natural” approximation for
F(Xi).
Returning to sequential ranks, one can again consider

the empirical �eld

zS(t,u) =
nt

∑
i=

[I{Si≤u(i+)} −
[iu]
i + 

] , (t,u) ∈ [.],

and sequential linear rank statistics, based on it:

ϕ(Sn) = ∫ ϕ(t,u)zS(dt,du) =
n

∑
i=

[ϕ ( i
n
,
Si

i + 
)

−Eϕ ( i
n
,
Si

i + 
)] .

Although Si/(i + ) is no less “natural” an approximation
for F(Xi), the statistic

a(Sn) =
n

∑
i=
a( i
n
,
Si

i + 
)

is not optimal for the alternative () any more.�e papers

(Khmaladze ) and (Pardzhanadze ) derived the

form of this optimal statistic, and hence established the

theory of sequential ranks to the same extent as the theory

of “ordinary” rank statistics.

More Speci�cally, it was shown that the empirical �elds

zR and zS are asymptotically linear transformations of each

other and, as a consequence, the two linear rank statistics

ψ(Rn) and ϕ(Sn) have the same limit distribution under
the null hypothesis and under any alternative () as soon as

functions ψ and ϕ are linked as below:

ψ(t,u) − 
t
∫

t


ψ(τ,u)dτ = ϕ(t,u) or

ϕ(t,u) − ∫


t



τ
ϕ(τ,u)dτ = ψ(t,u).

In particular, both linear rank statistics

n

∑
i=
a( i
n
,
Rin

n + 
) and

n

∑
i=

[a( i
n
,
Si

i + 
)

−n
i
∫

i/n


a(τ,

Si

i + 
)dτ] ()

are asymptotically optimal test statistics against alterna-

tive ().

Two examples of particular interest should clarify the

situation further.

Example  (Wilcoxon rank (or rank-sum) statistic). In the

two-sample problem, when we test if both samples came

from the same distribution or not, the followingWilcoxon

rank statistic
m

∑
i=

Rin

n + 

is most widely used (see 7Wilcoxon–Mann–Whitney
Test). Its sequential analogue is not mentioned o�en, but

according to () there is such an analogue, which is

−
n

∑
i=m+

m

i

Si

i + 
.

In general, the following two statistics are asymptotically

equivalent:

m

∑
i=
a( Rin
n + 

) and −
n

∑
i=m+

m

i
a( Si
i + 

).

Note again, that if the sizem of the �rst sample is �xed, but

we keep adding new observations to the second sample, so

that n−m keeps increasing, wewould only need to add new
summands to the sequential rank statistics, on the right,

without changing the previous summands.

Example  (Kendall’s τ and Spearman’s ρ rank correlation

coe�cients).�e latter correlation coe�cient has the form

ρn =
n

∑
i=

i

n
( Rin
n + 

− 

)

while the former is

τn =
n

∑
i=

i

n
( Si
i + 

− 

).

�ese two coe�cients are usually perceived as di�erent

statistics. However, from () it follows that they also are

asymptotically equivalent.

Among other papers that helped to form and advance

the theory of sequential ranks we refer to Müller-Funk

(), Renyi (, ), and Reynolds (). Among

more recent papers and applications to change-point prob-

lem we would point to Bhattacharya and Zhou (),

Gordon and Pollak (), and Malov ().

About the Author
For biography see the entry 7Testing Exponentiality of
Distribution.
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7Wilcoxon–Mann–Whitney Test



Sequential Sampling S 

S

References and Further Reading
Barndolf-Nielsen O () On limit behaviour of extreme order

statistics. Ann Math Stat :–

Bhattacharya PK, Zhou H () A rank cusum procedure for detect-

ing small changes in a symmetric distribution, Change-Point

problems. IMS Lecture notes, vol 

Gordon L, Pollak M () An efficient sequential nonparamet-

ric scheme for detecting a change in distribution. Ann Stat :

–

Hajek J, Shidak Z () Theory of rank tests Academic, CSZV,

Prague

Khmaladze EV, Parjanadze AM () Functional limit theorems for

linear statistics of sequential ranks. Probab theor relat fields

:–

Malov SV () Sequential ranks and order statistics. Notes Sci

Seminars POMI :–

Müller-Funk U () Sequential signed rank statistics. Sequential

Anal Design Meth Appl :–

Pardzhanadze AM, Khmaladze EV () On the asymptotic the-

ory of statistics based on sequential ranks. Theor Probab Appl

:–

Renyi A (, ) On the extreme elements of observations

Academiai Kiado. Selected papers of Alfred Renyi

Reynolds M () A sequential rank test for symmetry. Ann Stat

:–

Sen PK () Sequential non-parametrics. Wiley, New York

Sequential Sampling

NitisMukhopadhyay

Professor

University of Connecticut-Storrs, Storrs, CT, USA

Introduction
Sequential sampling entails observing data in a sequence.

How long should one keep observing data?�atwill largely

depend on the preset levels of errors that one may be

willing to live with and the optimization techniques that

may be required. In the early s, AbrahamWald devel-

oped the theory and practice of the famous sequential

probability ratio test (SPRT) to decide between a sim-

ple null hypothesis and a simple alternative hypothesis

(Wald ). Wald and Wolfowitz () proved optimal-

ity of Wald’s SPRT within a large class of tests, includ-

ing Neyman and Pearson’s () UMP test, in the sense

that the SPRT needs on an average fewer observations

under either hypothesis.�ese were mentioned in another

chapter.

For a comprehensive review, one should refer to the

Handbook of Sequential Analysis, a landmark volume that

was edited by Ghosh and Sen ().�is nearly  years

old handbook is still one of themost prized resource in this

whole �eld.

Section 7“Why Sequential Sampling?” explains with
Examples  and  why one must use sequential sam-

pling strategies to solve certain statistical problems. We

especially highlight the Stein (, ) path-breaking

two-stage and the Ray () and Chow and Robbins

() purely sequential �xed-width con�dence interval

procedures in sections 7“Stein’s Two-stage Sampling” and
“Purely Sequential Sampling” respectively.

Sections 7“Two-stage Sampling” and “Purely Sequen-
tial Sampling” analogously highlight the Ghosh and

Mukhopadhyay () two-stage and the Robbins ()

purely sequential bounded-risk point estimation pro-

cedures respectively. Both sections 7“Two-stage and
Sequential Fixed-width Con�dence Interval” and “Two-

stage and Sequential Bounded Risk Point Estimation”

handle the problems of estimating an unknown mean

of a normal distribution whose variance is also assumed

unknown.

Section 7“Which Areas Are Hot Beds for Sequential
Sampling?” brie�ymentions applications of sequential and

multi-stage sampling strategies in concrete problems that

are in the cutting edge of statistical research today.

Why Sequential Sampling?
�ere is a large body of statistical inference problems that

cannot be solved by any �xed-sample-size procedure. We

will highlight two speci�c examples. Suppose thatX, ...,Xn
are iid N(µ, σ ) where −∞ < µ <∞,  < σ  <∞ are both
unknown parameters, and n(≥ ) is �xed.

Example  We want to construct a con�dence interval I

for µ such that (i) the length of I is d(> ) where d is
preassigned, and (ii) the associated con�dence coe�cient,

Pµ ,σ {µ ∈ I} ≥  − α where  < α <  is also preassigned.
Dantzig () showed that this problem has no solution

regardless of the form of the con�dence interval I when n

is �xed in advance.

Example  Suppose that Xn, the sample mean, estimates

µ and we want to claim its bounded-risk property, namely

that supµ ,σ  E[(Xn − µ)
] ≤ ω where ω(> ) is a pre-

assigned risk-bound. �is problem also has no solution

regardless of the form of the estimator of µ.

�eorem  Suppose that X,⋯,Xn are iid with a proba-
bility density function 

σ
f (σ−(x − θ)) where −∞ < θ <

∞,  < σ < ∞ are two unknown parameters. For esti-

mating θ, let the loss function be given by W(θ, δ(x)) =
H(∣δ(x) − θ∣) where x = (x,⋯, xn) is a realization of
X = (X,⋯,Xn). Assume that H(∣u∣) ↑ ∣u∣, and let M =
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sup−∞<u<∞H(∣u∣), which may be in�nite. �en, for any
�xed L < M, there does not exist an estimator δ(X) such
that supθ ,σ Eθ ,σ {W (θ, δ(X))} ≤ L.

�is statement is similar to that of �eorem .. in

Ghosh et al. () and�eorem .. in Mukhopadhyay

and de Silva (). It was originally proved in Lehmann

().

�eorem  proves immediately the non-existence of

a �xed-sample-size methodology to solve the problems

mentioned in Examples – exactly. �ere are these and

numerous other inference problems where we have no

�xed-sample-size procedure at all to talk about. In order

to address this class of important inference problems, an

appropriately designed sequential sampling procedure is a

must.

Two-Stage and Sequential Fixed-Width
Confidence Interval
In the context of Example , we �rst summarize Stein’s

(, ) two-stage procedure and then the purely

sequential procedure due to Ray () and Chow and

Robbins ().

Stein’s Two-Stage Sampling
Stein (, ) gave his path-breaking two-stage sam-

pling design to solve exactly the problem mentioned in

Example . One begins with pilot observations X,⋯,Xm
with a pilot or initial sample size m(≥). Let am− ≡
am−,α/ be the upper α% point of the Student’s

t distribution with m −  degrees of freedom. Now,
based on X,⋯,Xm, we obtain the sample variance,
Sm = (m − )−Σmi=(Xi − Xm) which estimates unknown
σ . Let us denote ⟨u⟩ = the largest integer < u, u > .
We de�ne the �nal sample size as

N ≡ N(d) = max{m, ⟨a

m−S


m

d
⟩ + } . ()

It is easy to see that N is �nite with probability one.�is

two-stage procedure is implemented as follows:

If N = m, it indicates that we already have too many
observations at the pilot stage. Hence, we do not need any

more observations at the second stage.

But, if N > m, it indicates that we have started with
too few observations at the pilot stage. Hence, we sam-

ple the di�erence at the second stage by gathering new

observations Xm+,⋯,XN at the second stage.

Case . If N = m, the �nal dataset is X,⋯,Xm

Case . If N > m, the �nal dataset is X,⋯,Xm,
Xm+,⋯,XN

Combining the two possibilities, one can say that the �nal

dataset is composed of N and X,⋯,XN . �is gives rise
to the sample mean XN and the associated �xed-width

interval IN = [XN ± d] .
It is clear that (i) the event {N = n} depends only

on the random variable Sm, and (ii) Xn, S

m are indepen-

dent random variables, for all �xed n(≥ m). So, any event
de�ned only through Xn must be independent of the event

{N = n}. Using these tools, Stein (, ) proved the
following result that is considered a breakthrough. More

details can be found inMukhopadhyay and de Silva (,

Sect. ..).

�eorem  Pµ ,σ  {µ ∈ [XN ± d]} ≥  − α for all �xed

d > ,  < α < , µ, and σ .

It is clear that the �nal sample size N from () tried

to mimic the optimal �xed sample size C, the smallest

integer ≥ zα/σ
d−, had σ  been known.�is procedure,

however, is known for its signi�cant oversampling on an

average.

Purely Sequential Sampling
In order to overcome signi�cant oversampling, Ray

() and Chow and Robbins () proposed a purely

sequential procedure. One begins with pilot observations

X,⋯,Xm with a pilot or initial sample size m(≥), and
then proceed by taking one additional observation at-a-

time until the sampling process terminates according to

the following stopping rule: With Xn = n−Σni=Xi and
Sn = (n − )−Σni=(Xi − Xn), let

N ≡ N(d) = inf
⎧⎪⎪⎨⎪⎪⎩
n ≥ m : n ≥

zα/S

n

d

⎫⎪⎪⎬⎪⎪⎭
. ()

It is easy to see that N is �nite with probability one.

Based on the �nal dataset composed of N and X,⋯,XN ,
one �nds XN and proposes the associated �xed-width

interval IN = [XN ± d] . Now, one can prove that asymptot-
ically, Pµ ,σ {µ ∈ [XN ± d]} →  − α for all �xed  < α < ,
µ, and σ  as C →∞ whenm ≥ .
One can also prove that Eσ [N −C] = −. ifm ≥ .

�is property is referred to as the asymptotic second-order

e�ciency according to Ghosh and Mukhopadhyay ().

One has to employ mathematical tools from nonlinear

renewal theory to prove such a property. �e nonlinear

renewal theory has been fully developed by Woodroofe

() and Lai and Siegmund (, ).
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Two-Stage and Sequential Bounded Risk
Point Estimation
In the context of Example , we �rst summarize a two-

stage procedure from Ghosh and Mukhopadhyay ()

followed by a purely sequential procedure along the line

of Robbins ().

Two-Stage Sampling
Ghosh and Mukhopadhyay () discussed a two-stage

sampling design analogous to () to solve exactly the prob-

lem mentioned in Example . We again start with pilot

observations X,⋯,Xm where m(≥) is the pilot size and
obtain Sm. De�ne the �nal sample size as:

N ≡ N(ω) = max{m, ⟨bmS

m

ω
⟩ + } ()

where bm = m−
m− . It is easy to see that N is �nite with

probability one.

�e two-stage sampling scheme is implemented as

before.

Case . If N = m, the �nal dataset is X,⋯,Xm

Case . If N > m, the �nal dataset is X,⋯,Xm,
Xm+,⋯,XN

Combining the two situations, one can see that the �nal

dataset is again composed of N and X,⋯,XN which give
rise to an estimator XN for µ.

Now, we recall that Xn is independent of the event

{N = n} for all �xed n(≥ m). Hence, we can express the
risk associated with the estimator XN as follows:

Eµ ,σ  {(XN − µ)} = σ Eµ ,σ  [N−] ,

which will not exceed the set risk-bound ω for all �xed µ

and σ . More details can be found in Mukhopadhyay and

de Silva (, Sect. .).

It is clear that the �nal sample size N from () tried to

mimic the optimal �xed sample size n∗, the smallest inte-
ger ≥ σ ω−, had σ  been known.�is procedure is also

well-known for its signi�cant oversampling on an average.

For either problem, there are more e�cient two-stage,

three-stage, accelerated sequential, and other estimation

methodologies available in the literature. One may begin

by reviewing this �eld from Mukhopadhyay and Solanky

(), Ghosh et al. (), Mukhopadhyay and de Silva

(), among other sources.

Purely Sequential Sampling
In order to overcome signi�cant oversampling, along the

line of Robbins (), one can propose the following

purely sequential procedure. One begins with pilot obser-

vations X,⋯,Xm with a pilot or initial sample sizem(≥),
and then proceed by taking one additional observation at-

a-time until the sampling process terminates according to

the following stopping rule: Let

N ≡ N(ω) = inf {n ≥ m : n ≥ S

n

ω
} . ()

It is easy to see that N is �nite with probability

one. Based on the �nal dataset composed of N and

X,⋯,XN , one �nds XN and proposes the associated esti-
mator XN for µ. Now, one can prove that asymptotically,

ω−Eµ ,σ  {(XN − µ)} →  for all �xed µ, and σ  as n∗ →
∞ whenm ≥ .
One can again prove that Eσ [N − C] is bounded by

appealing to nonlinear renewal theory. �is property is

referred to as the asymptotic second-order e�ciency accord-

ing to Ghosh and Mukhopadhyay ().

Which Areas Are Hot Beds for Sequential
Sampling?
First, we should add that all computer programs neces-

sary to implement the sampling strategies mentioned in

sections 7“Two-stage and Sequential Fixed-width Con�-
dence Interval” and “Two-stage and Sequential Bounded

Risk Point Estimation” are available in conjunction with

the recent book of Mukhopadhyay and de Silva ().

Sequential and multi-stage sampling techniques are

implemented practically in all major areas of statistical

science today. Some modern areas of numerous appli-

cations include change-point detection, clinical trials,

computer network security, computer simulations, 7data
mining, disease mapping, educational psychology, �nan-

cial mathematics, group sequential experiments, horticul-

ture, infestation, kernel density estimation, longitudinal

responses, multiple comparisons, nonparametric func-

tional estimation, ordering of genes,7randomization tests,
reliability analysis, scan statistics, selection and ranking,

sonar, surveillance, survival analysis, tracking, and water

quality.

In amajority of associated statistical problems, sequen-

tial and multi-stage sampling techniques are absolutely

essential in the sense of our prior discussions in section

7“Why Sequential Sampling?”. In other problems, appro-
priate sequential and multi-stage sampling techniques

are more e�cient than their �xed-sample-size counter-

parts, if any.

For an appreciation of concrete real-life problems

involving many aspects of sequential sampling, one may

refer to Applied Sequential Methodologies, a volume edited

by Mukhopadhyay et al. ().
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Sex Ratio in National Birth Registers
�e sex ratio at birth, also called the secondary sex ratio,

and here denoted SR, is usually de�ned as the number of

males per  females. Among newborns there is almost

always a slight excess of boys. Consequently, the SR is

greater than , mainly around .

John Graunt (–) was the �rst person to com-

pile data showing an excess of male births to female

births and to note spatial and temporal variation in the

SR. John Arbuthnot (–) demonstrated that the

excess of males was statistically signi�cant and asserted

that the SR is uniform over time and space (Campbell

). Referring to christenings in London in the 

years up to , Arbuthnot suggested that the regular-

ity in the SR and the dominance of males over females



Sex Ratio at Birth S 

S

could not be attributed to chance and must be an indica-

tion of divine providence. Nicholas Bernoulli’s (–)

counter-argument was that Arbuthnot’s model was too

restrictive. Instead of a fair coin model, the model should

be based on an asymmetric coin. Based on the generalized

model, chance could give uniform dominance of males

over females. Later, Daniel Bernoulli (–), Pierre

Simon de Laplace (–) and Siméon-Denis Pois-

son (–) also contributed to this discussion (David

; Hacking ).

Some general features of the SR can be noted. Stillbirth

rates are usually higher amongmales than females, and the

SR among stillborn infants ismarkedly higher than normal

values, but the excess ofmales has decreased during the last

decades. Hence, the SR among liveborn infants is slightly

lower than among all births, but this di�erence is today

very minute. Further, the SR among multiple maternities

is lower than among singletons. In addition to these gen-

eral �ndings, the SR shows marked regional and temporal

variations.

In a long series of papers, attempts have been made

to identify factors in�uencing the SR, but statistical analy-

ses have shown that comparisons demand large data sets.

Variations in the SR that have been reliably identi�ed in

family data have in general been slight andwithout notable

in�uence on national birth registers. Attempts to iden-

tify reliable associations between SRs and stillbirth rates

have been made, but no consistent results have emerged.

Hawley () stated that where prenatal losses are low,

as in the high standard of living in Western countries,

the SRs at birth are usually around  to . By con-

trast, in areas with a lower standard of living, where the

frequencies of prenatal losses are relatively high, SRs are

around . Visaria () stressed that available data on

late fetal mortality lend at best only weak support for these

�ndings and concluded that racial di�erences seem to exist

in the SR. He also discussed the perplexing �nding that the

SR among Koreans is high, around .

A common pattern observed in di�erent countries

is that during the �rst half of the twentieth century the

SR showed increasing trends, but during the second half

the trend decreased. Di�erent studies have found marked

peaks in the proportion of males during the First and Sec-

ond World War. It has been questioned whether temporal

or spatial variations of the SR are evident, and whether

they constitute a essential health event. A commonopinion

is that secular increases are caused by improved socio-

economic conditions.�e recent downward trends in the

SRs have been attributed to new reproductive hazards,

speci�cally exposure to environmental oestrogens. How-

ever, the turning point of the SR preceded the period

of global industrialization and particularly the introduc-

tion of pesticides or hormonal drugs, rendering a causal

association unlikely.

Sex Ratio in Family Data
In general, factors that a�ect the SR within families remain

poorly understood. In a long series of papers, using family

data, attempts have beenmade to identify factors in�uenc-

ing the SR. Increasing evidence con�rms that exposure to

chemicals, including pollutants from incinerators, dioxin,

pesticides, alcohol, lead and other such workplace haz-

ards, has produced childrenwith reducedmale proportion,

Variables reported to be associated with an increase in the

SR are large family size, high ancestral longevity, pater-

nal baldness, excessive co�ee-drinking, intensive coital

frequency and some male reproductive tract disorders.

Some striking examples can be found in the literature

of unisexual pedigrees extending over several generations.

Slater () stated that aberrant SRs tend, to some extent,

to run in families. �e �nding by Lindsey and Altham

() that the probability of couples being only capa-

ble of having children of one sex is very low contradicts

Slater’s statement. �e variation in the SR that has been

reliably identi�ed in family studies has invariable been

slight compared with what we have observed in families

with X-linked recessive retinoschisis (cleavage of retinal

layers). We noted a marked excess of males within such

families, in contrast to normal SRs in families with the

X-linked recessive disorders haemophilia and color blind-

ness (Eriksson et al. ; Fellman et al. ). However,

with the exception of the X-linked recessive retinoschi-

sis, no unequivocal examples exist of genes in man that

a�ect the SR, and X-linked retinoschisis is universally very

rare. Summing up, in�uential factors, although they have

an e�ect on family data, have not been identi�ed in large

national birth registers.
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�e sign test is a nonparametric test for hypotheses about

a population median given a sample of observations from

that population, or for testing for equality of medians, or

for a prespeci�ed constant median di�erence, given paired

sample (i.e., matched pairs) values from two populations.

�ese tests are analogues of the one-sample and matched

pairs t-test for means in a parametric test such as the

t-test.

�e sign test is one of the simplest and oldest non-

parametric tests.�e name re�ects the fact that each more

detailed observation is e�ectively replaced by one of the

signs plus (+) or minus (−).�is was basically the test used
by Arbuthnot () to refute claims that births are equally

likely to be male or female. Records in London showed

that for each of  consecutive years an excess of male over

female births. Calling such a di�erence a plus, Arbuthnot

argued that if births were equally likely to be of either gen-

der, then the probability of such an outcome was, (.),
or e�ectively zero.

Given a sample of n observations from any popula-

tion which may be discrete or continuous and not nec-

essarily symmetric, the test is used to test a hypothesis

H : M = M where M is the population median. If

H holds the number of values less than M will have a

binomial distribution with parameters n and p = ..�e
symmetry of the 7binomial distribution when p = .
means the number of sample values greater than M (a

plus) may be used as an alternative equivalent statistic in

a one or two-tail test.

Although not a commonly arising case, the test is still

valid if each observation in a sample is from a di�er-

ent population providing each such population has the

same median. For example, the populations may di�er in

7variance or in 7skewness.
Among tests for location the sign test thus requires

fewer assumptions for validity than any other well estab-

lished test.�e main disadvantage of the test is that it o�en

has lower e�ciency and lower power than tests that require

stronger assumptions when those assumptions are valid.

However, when the stronger assumptions are not valid the

sign test may have greater power and e�ciency. If the sam-

ple is from a normal distribution with known variance the

asymptotic relative e�ciency (ARE) of the sign test relative

to the normal theory test is /π. However if the sample is

from a double exponential distribution the ARE of the sign

test is twice that attained using the t-test.

For continuous data except in special cases like sam-

ples from a double exponential distribution the sign test

is usually less e�cient than some parametric test or non-

parametric test that makes more use of information about

the data. For example, the t-test is preferable for sam-

ples from a normal, or near normal, distribution and the

7Wilcoxon-signed-rank test performs better if an assump-
tion of symmetry can be made.

Even when a sign test is less e�cient than some other

test itmay prove economically bene�cial if exact data of the

type needed for that other test is expensive to collect but it

is easy to determine whether such data, if it were available,

would indicate a value less than or greater than anhypothe-

sised median valueM. For example, if in a manufacturing

process rods produced should have a median diameter of

mm it may be di�cult to measure diameters precisely,

but easy to determine whether the diameter of each rod

is less than mm by attempting to pass it through a cir-

cular aperture of diameter mm.�ose that pass though

have a diameter less than mm (recorded as a minus);

those that fail to pass through have a greater diameter

(recorded as a plus). If diameters can be assumed to be

normally distributed and a sample size of  is required

to give the required power with a normal theory test when

exact measurements are available, the ARE for a sign test

(which gives a fairly good idea of the e�ciency for a sam-

ple of this size) suggests that if we only have information

on whether each item has diameter less than (or greater
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than) mm, then a sample of size  × π/ ≈  should
have similar power. An assumption here is that e�ciency

for smaller samples is close to the ARE, a result veri�ed in

some empirical studies.�us if the cost of obtaining each

exact measurement were twice that of determining only

whether or not a diameter exceeded mm there would be

a clear cost saving in measuring simply whether diameters

were more or less than mm for a sample of  com-

pared to that for taking exact measurements for a sample

of .

Sample values exactly equal toM are usually ignored

when using the test and the sample size used in

assessing signi�cance is reduced by  for each such

value.

In the case of matched pair samples from distributions

that may be assumed to di�er if at all only in their medi-

ans, the test may be applied using the signs of the paired

di�erences to test if the di�erence is consistent with a zero

median and by a slight modi�cation to test the hypothesis

that themedian di�erence has some speci�ed value θ.�e

test is available in most standard statistical so�ware pack-

ages or may be conducted using tables for the binomial

distribution when p = . and the relevant n (sample size).
For continuous data one may determine con�dence inter-

vals based on this test with the aid of such tables. Details

are given in most textbooks covering basic nonparamet-

ric methods such as Gibbons and Chakraborti () or

Sprent and Smeeton ().

An interesting case that leads to a test equivalent to

the sign test with heavy tying was proposed by McNemar

() and is usually referred to asMcNemar’s test.�is test

is relevant where observations are made to test if there are

nonneutralizing changes in attitudes of individuals before

or a�er exposure to a treatment or stimulus. For exam-

ple, a group of  motorists may be asked whether or

not they think the legal maximum permissible level of

blood alcohol for drivers should be lowered. �e num-

bers answering yes or no are recorded.�e group are then

shown a video illustrating the seriousness of accidents

where drivers have exceeded the legal limit.�eir answers

to the same question about lowering the level are now

recorded and tabulated as shown in this table:

Before video Lower limit

Yes No

After video Lower limit Yes  

No  

If we denote a change from No before the video to Yes

a�er the video by a plus there are  plus, and a change

from Yes before to No a�erwards there are  minus.�us,

although the video seems to have in�uenced some changes

of opinion in both directions more () who did not sup-

port a reduction before seeing the video appear to have

been persuaded to support a reduction a�er seeing the

video, whereas  have switched opinions in the opposite

direction, opposing a ban a�er seeing the video although

they supported one before seeing the video.

A sign test may be applied on the basis of  plus and

 minus being observed in an e�ective sample of size .

�e diagonal values of  and  represent “ties” in the

sense that they represent drivers who are not in�uenced

by the video and so are ignored.
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Introduction
A signi�cance test is a statistical procedure for testing a

hypothesis based on experimental or observational data.

Let, for example, X and X be the average scores obtained

in two groups of randomly selected subjects and let µ
and µ denote the corresponding population averages.�e

observed averages can be used to test the null hypothesis

µ = µ, which expresses the idea that both populations
have equal average scores. A signi�cant result occurs if

X and X are very di�erent from each other, because

this contradicts or falsi�es the null hypothesis. If the two

group averages are similar to each other, the null hypoth-

esis is not contradicted by the data. What exact values of

the di�erence X − X of the group averages are judged
as signi�cant depends on various elements.�e variation

of the scores between the subjects, for example, must be

taken into account.�is variation creates uncertainty and

is the reason why the testing of hypotheses is not a triv-

ial matter. Because of the uncertainty in the outcome of

the experiment, it is possible that a seemingly signi�cant

result is obtained, even though the null hypothesis is true.

Conversely, the null hypothesis being false does not mean

that the experiment will necessarily result in a signi�cant

result.

�e signi�cance of a test is usually measured in terms

of a tail-error probability of the null distribution of a test

statistic. In the above example, assume the groups are nor-

mally distributed with common known variance σ .�e

Z-test statistic is Z = (X − X)/SE[X − X], where
SE[X − X] = σ {/n + /n} is the standard error of
the di�erence. Here n,n are the respective sample sizes

for the two groups. Under the null hypothesis, Z has the

standard normal distribution with cumulative distribution

P(Z ≤ z) = Φ(z). A large observed value Z = Zobs cor-
responds to a small tail area probability P(Z ≥ Zobs) =
Φ(−Zobs).�e smaller this probability the more the evi-
dence against the null in the direction of the alternative

µ > µ. For a two-sided alternative µ ≠ µ, a test statis-
tic is ∣Z∣ and the evidence against the null is measured by
the smallness of P(∣Z∣ ≥ ∣Zobs∣) = Φ(−∣Zobs∣).�ese tail-
error probabilities are examples of p-values for one- and

two-sided tests.

To carry out a signi�cance test then one needs, �rst,

a statistic S(X) (real function of the data X) that orders
the outcomes X of a study so that larger values of S(X)
cast more doubt on the null hypothesis than smaller ones;

and second, the probability distribution P of S(X) when
the null hypothesis is true. One may be interested in

simply assessing the evidence in the value obtained for

the statistic S in an experiment, the Fisherian approach,

or in making a decision to reject the null hypothesis in

favor of an alternative hypothesis, the Neyman–Pearson

approach.

Significance Tests for Assessing Evidence
By far the most prevalent concept for assessing evidence

in S is the p-value, promoted by the in�uential scientist

R.A. Fisher through his many articles and books, see the

collection Fisher ().

The p-Value
Having observed data X = x, and hence S(x) = Sobs,

the p-value is de�ned by p = P(S ≥ Sobs). It is the
probability of obtaining as much or more evidence against

the null hypothesis as just observed with Sobs, assuming

the null hypothesis is true.�e p-value is decreasing with

increasing Sobs, which means that smaller 7p-values are
indicative of a more signi�cant result. Fisher (, pp.

, , and ), o�ered some rough guidelines for inter-

preting the strength of evidence measured by the p-value,

based on his experience with agricultural experiments.

He suggested that a p-value larger than . was not small

enough to be signi�cant, a p-value as small as . could

seldom be disregarded, and a p-value less then . was

clearly signi�cant.�us according to Fisher “signi�cance

testing” is the conducting of an experiment that will give

the data a chance to provide evidence Sobs against the null

hypothesis. Very small values of the p-value correspond

to signi�cant evidence, where “signi�cant” is somewhat

arbitrarily de�ned. It is a matter of history that Fisher’s

rough guideline “a value as small as . could seldom be

disregarded” became a de facto necessity for publication

of experimental results in many scienti�c �elds. However,

despite its usefulness for �ltering out many inconsequen-

tial results, the p-value is o�en confused with �xed signif-

icance levels (see section 7“Signi�cance Tests for Making
Decisions”).
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Finding the Null Distribution
It is not always easy to �nd the null distribution of a test

statistic. It must be chosen carefully. For example, in the

Z-test example of section 7“Introduction”, three assump-
tions weremade, normality of the observations, equality of

the group variances and knowledge of the common vari-

ance σ . If the �rst two assumptions hold, but the latter is

relaxed to σ  > , then the distribution of the Z-test statis-
tic depends on the unknown nuisance parameter σ , so one

does not have a unique null distribution. An appropriate

test statistic is the two-sample pooled t-statistic, which is

just the Z-test statistic with σ replaced by spooled, where

spooled = {(n − )s + (n − )s} /(n + n − ), and s ,
s are the the respective sample variances. �is t statis-

tic has, under the null µ = µ a Student-t distribution
with ν = n + n −  degrees of freedom, which allows for
computation of p-values.

If the assumption of normality of the groups is

retained, but their variances are not assumed equal, then

one can estimate them separately using the respective sam-

ple variances. An approximating t distribution for the

resulting standardized mean di�erence is known as the

Welch t-test see Welch (). If the assumption of nor-

mality is relaxed to a continuous distribution then a com-

parison can be based on the sum S of the ranks of one

samplewithin the ranking of the combined sets of observa-

tions.�e null hypothesis is that each group has the same

continuous distribution F and then Shas a unique distribu-

tion.�is test is known as the 7Wilcoxon–Mann–Whitney
test. It is an example of a distribution-free test, because F is

unspeci�ed.

Another way of computing a p-value when the null

hypothesis distribution is not uniquely speci�ed is to sam-

ple repeatedly from the empirical distribution of the data

and for each sample compute the value of the test statistic;

the proportion of values greater than the original Sobs is a

bootstrap estimate of the p-value.

Significance Tests for Making Decisions
Neyman and Pearson (), Neyman () formulated

the signi�cance testing problem as one of decisionmaking.

�e dataX are assumed to have distributionsPθ indexed by

the parameter θ known to lie in one of twomutually exclu-

sive sets Θ, Θ, and onemust choose between them, using

only X.�e parameter sets Θ and Θ are called the null

and alternative hypotheses, respectively. Each may be sim-

ple, containing only a single value, or composite. If X ∼ Pθ

for some θ ∈ Θ, and one chooses Θ a Type I error, (or,
error of the �rst kind), is committed. If X ∼ Pθ for some

θ ∈ Θ, and one chooses Θ a Type II error, (or, error of
the second kind), is committed. Because the consequences

of Type I and Type II errors are o�en incommensurate, see

Neyman (), the Neyman–Pearson framework places a

bound α on Type I error probabilities, called the level of the

test, and subject to this constraint seeks a decision rule that

in some sense minimizes the Type II error probabilities,

β(θ) for θ ∈ Θ.
A decision rule equals  or  depending on whether Θ

or Θ is chosen, a�er observing X = x. It is by de�nition
the indicator function IC(x) of the critical region C, which
is the set of values of X for which Θ is chosen.�is region

is critical in the sense that if X ∈ C, one rejects the null
hypothesis and risks making a Type I error.�e size of a

critical region is supθ∈Θ Pθ(X ∈ C). One seeks a critical
region (test) for which the size is no greater than the level

α and which has large power of detecting alternatives.�e

size may be set equal to the desired level α by choice of C

when the distributions Pθ are continuous, but in the case

of discrete Pθ , the size will o�en be less than α, unless some

formof7randomization is employed, see Lehmann ().

Power Function of a Test and Optimal Test
Statistics
�e power of a test for detecting an alternative θ ∈ Θ is
de�ned by Π(θ) = Pθ (X ∈ C) =  − β(θ). It is the prob-
ability of making the right decision (rejecting Θ) when
θ ∈ Θ; and as indicated, it is also  minus the probability
of making a Type II error for this θ.�e power function

is de�ned by Π(θ), for each θ ∈ Θ. Let fθ be the den-
sity of Pθ with respect to a dominating measure for the

distributions of X. Neyman and Pearson showed that for a

simple hypothesis θ and simple alternative θ, there exists

a most powerful level-α test which rejects the null when

the likelihood ratio λ(x) = fθ (x)/fθ(x) is large.�at is,
the critical region is of the form C = {x : λ(x) ≥ c},
where the critical value c de�ning the boundary of the crit-

ical region is chosen so Pθ{λ(X) ≥ c} = α. For composite

hypotheses, the likelihood test statistic de�ned by λ(x) =
sup

Θ
fθ(x)/ supΘ fθ(x) is the basis formany tests, because

its large sample distribution is known. A uniformly most

powerful level-α test maximizes the power for each value

of the alternative amongst all level-α tests. Uniformlymost

powerful tests for composite alternatives are desirable, but

such tests do not usually exist. See Lehmann () for a

comprehensive development of the theory of hypothesis

testing.

Inversion of a Family of Tests to Obtain
Confidence Regions
A con�dence region of level −α for a parameter θ is a ran-

dom set R(X) for which Pθ{θ ∈ R(X)} ≥  − α for all

θ ∈ Θ. When Θ is a subset of the real line, the region is
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usually in the form of a random con�dence interval [L,U],
where L = L(X),U = U(X).�e inversion procedure, due
to Neyman (), supposes that for each θ ∈ Θ there is
a level−α test with critical region Cα(θ) for testing the
simple null hypothesis Θ = {θ} against its complement
Θ
c
 = {θ ∈ Θ : θ ≠ θ}. �is family of tests can be
converted into a level  − α con�dence region for θ, given

by R(X) = {θ ∈ Θ : X ∉ Cα(θ)}.�us a parameter
θ belongs to the con�dence region if and only if it is not

rejected by the level α test of θ = θ against θ ≠ θ.

On p-Values and Fixed Significance Levels
�e purpose of choosing a �xed level α as a prior upper

bound on the probability of Type I errors is to avoid mak-

ing decisions that are in�uenced by the observed data x.

�e p-value, on the other hand, requires knowledge of x

for its computation, and subsequent interpretation as evi-

dence against the null hypothesis.�us when used for the

separate purposes for which they were designed, there is

no confusion. However, having observed S(x) = Sobs, the
p-value is equal to the level α for which Sobs = cα ; that is,
the smallest �xed level for which the test rejects the null.

For this reason, it is sometimes called the observed signi�-

cance level. One rejects the null at level α if and only if the

p-value ≤ α. It is widespread practice to use the Neyman–

Pearson framework to obtain a powerful test of level α =
., and then to report the p-value.�us there has evolved

in practice a combination of concepts that can prove con-

fusing to the uninitiated, see Berger () Hubbard and

Bayarri () and Lehmann ().

Bayesian Hypothesis Testing
�e Bayesian framework for signi�cance testing assumes a

prior probability measure π(θ) over the parameter space
Θ = Θ ∪ Θ.�is yields prior probabilities π = π(Θ),
 − π on the null and alternative hypotheses Θ, Θ,

respectively, and the prior odds π/( − π) in favor of
the null. It is further assumed that for each θ, the data

X has a conditional distribution f (x∣θ) for X, given θ.

�e posterior probability of the null is then P(Θ∣x) =
∫Θ f (x∣θ)dπ(θ)/fX(x), where fX(x) = ∫Θ f (x∣θ)dπ(θ).
One can, if a decision is required, reject the null in favor

of the alternative when P(Θ∣x) is less than some preas-
signed level, as in NP testing; or, one can simply choose to

interpret it as a measure of support for Θ.

Bayes Factor
It turns out that the posterior odds for Θ are related to its

prior odds by P(Θ∣x)/(−P(Θ∣x)) = B(x) π/(−π),
�e Bayes factor B(x) = fΘ(x)/fΘ(x), where fΘi(x) =
∫Θi f (x∣θ)dπ(θ)/π(Θi), i = , . �e Bayes factor mea-
sures the change in odds for the null hypothesis Θ a�er

observation of X = x. It is also o�en interpreted as a

measure of support for Θ, but this interpretation is not

without controversy; for further discussion see Kass ()

and Lavine and Schervish ().

Significance Tests for Special Purposes
When one wants to adopt the model X ∼ {Pθ : θ ∈ Θ}
for inference, be it testing or estimation, a goodness-of-

�t test rejects the entire model if a suitable test statistic

S(X) has small p-value.�us if the data do not cast doubt
on the model, the statistician happily proceeds to adopt

it.�is procedure is informal in that many other models

might equally pass such a test, but are not considered. Tests

for submodel selection in regression have the same fea-

ture; one “backs into” acceptance of a submodel because an

F-test does not reject it. All such signi�cance tests are sim-

ply informal guides to 7model selection, with little regard
for Type II errors, or the subsequent e�ects on inference

with the chosen model. Equivalence tests, on the other

hand, place great emphasis on formal testing, and do pro-

vide evidence for a null hypothesis of no e�ect. �ey do

this by interchanging the traditional roles of null and alter-

native hypotheses. For example, if θ represents the mean

di�erence in e�ects of two drugs, one might be interested

in evidence for ∣θ∣ ≤ θ, where θ de�nes a region of

“equivalence.” �is is taken as the alternative hypothesis,

to a null ∣θ∣ ≥ θ, where θ > θ is large, say. One also

simultaneously tests the null θ ≤ −θ against the alternative

of equivalence. If one rejects both these null hypotheses in

favor of the alternative, evidence for equivalence is found.

See Wellek () for a complete development.

Final Remarks and Additional Literature
Statistical signi�cance of a test, meaning a null hypothe-

sis is rejected at a pre-speci�ed level such as ., is not

evidence for a result which has practical or scienti�c sig-

ni�cance. �is has led many practitioners to move away

from the simple reporting of p-values to reporting of con-

�dence intervals for e�ects; see Krantz () for example.

Ameasure of evidence for a positive e�ect that leads to con-

�dence intervals for e�ects is developed inKulinskaya et al.

(). Fuzzy hypothesis tests and con�dence intervals are

introduced in Dollinger et al. () and explored in Geyer

and Meeden ().
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By most accounts, the �rst signi�cance test was published

in  by the Scottish mathematician, physician, and

author John Arbuthnot. He believed that, because males

were subject to more external accidents than females, they

www.wiley.com/go/meta_analysis


 S Significance Tests, History and Logic of

enjoyed an advantage of a higher birthrate. Arbuthnot cal-

culated the expectation, or the probability, of the data from

 years of birth records in London given a chance hypoth-

esis of equal birthrates for both sexes. Because this expecta-

tion was very low he concluded “that it is Art, not Chance,

that governs” (p. ), and that this result constituted a

proof of existence of an active god. Although he never

used the terms signi�cance or signi�cant – these termswere

�rst used at the end of the nineteenth century by Francis

Ysidro Edgeworth () and John Venn () – his argu-

ment is strikingly similar to the logic underlying modern

null hypothesis testing as implemented in Ronald Fisher’s

signi�cance testing approach (e.g., , ).

�e beginning of the twentieth century saw the

development of the �rst modern signi�cance tests: Karl

Pearson’s () chi-squared test andWilliamSealyGosset’s

(or Student’s ) t-test (although the term t-test appeared

only later, in  in the fourth edition of Fisher’s Statistical

Methods for Research Workers). Both are examples of tail-

area signi�cance tests, in which a hypothesis is rejected if

the tail of the null distribution beyond the observed value

is less than a prescribed small number. Gosset’s article was

also the beginning of the �eld of small sample statistics,

where the earlier asymptotics (n → ∞) were replaced by
exact probabilities.

�e use of signi�cance tests really took root among

applied researchers a�er the publication of Fisher’s in�uen-

tial books, Statistical Methods for Research Workers ()

and�e Design of Experiments (). Fisher rejected the

(older)methods of inverse probability (of hypothesis given

data) and proposed a method of inductive inference, a for-

mal way of getting from data to hypothesis. His approach

can be summarized as follows: �e researcher sets up a

null hypothesis that a sample statistic comes from a hypo-

thetical in�nite population with a known sampling distri-

bution.�e null hypothesis is rejected or, as Fisher called

it, “disproved,” if the sample statistic deviates from the

mean of the sampling distribution by more than a speci-

�ed criterion. �is criterion – or level of signi�cance – is

typically set to %, although Fisher later recommended

reporting the exact probability. In this approach, no claims

about the validity of alternative hypotheses are possible.

It is nevertheless tempting to view the complement of the

null hypothesis as an alternative hypothesis and argue, as

Arbouthnot did, that the rejection of the null hypothe-

sis gives credit to an unspeci�ed alternative hypothesis.

Fisher’s approach is also associatedwith an epistemic inter-

pretation of signi�cance: A Fisherian p-value is thought

to measure the strength of evidence against the null

hypothesis and to allow the researcher to learn about the

truth or falsehood of a speci�c hypothesis from a single

experiment.

�e major rival to Fisher’s approach was Jerzy Neyman

and Egon Pearson’s (a, b, ) approach to

hypothesis testing, originally viewed as an extension and

improvement of Fisher’s ideas. Neyman and Pearson

rejected the idea of inductive inference and replaced it with

the concept of inductive behavior.�ey sought to establish

rules for making decisions between di�erent hypotheses

regardless of researcher’s beliefs about the truth of those

hypotheses.�ey argued for specifying both a null hypoth-

esis and an alternative hypothesis, which allows for the

calculation of two error probabilities,Type I error andType

 error, based on considerations regarding decision crite-

ria, sample size and e�ect size. Type I error occurs when

the null hypothesis is rejected although it is true.�e prob-

ability of a Type I error is called α. Type II error occurs

when the alternative hypothesis is rejected although it is

true.�e probability of a Type II error is called β and -β

is called the power of the test or the long run frequency of

accepting the alternative hypothesis if it is true.�e deci-

sion to accept or reject hypotheses in theNeyman–Pearson

approach depends on the costs associated with Type I and

Type II errors. �e cost considerations lie outside of the

formal statistical theory and must be based on context-

dependent pragmatic personal judgment.�e goal, then,

for a researcher is to design an experiment that controls for

α and β and use a test that minimizes β given a bound on

α. In contrast to the data dependent 7p-values in Fisher’s
approach, α is speci�ed before collecting the data. Despite

the di�erent conceptual foundations of Fisher’s approach

and Neyman-Pearson’s approach, classical statistical infer-

ence, as commonly presented, is essentially an incoher-

ent hybrid of the two approaches (Hubbard and Bayarri

; Gigerenzer ), although there exist attempts to

reconcile them (Lehmann ). �ere is a considerable

literature discussing the pros and cons of classical statisti-

cal inference, especially null hypothesis signi�cance testing

in the Fisherian tradition (e.g., Berger and Wolpert ;

Royall ; Morrison and Henkel ).�e major alter-

native to classical signi�cance and hypothesis testing is

Bayesian hypothesis testing (Je�reys ; Kass and Ra�ery

).
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7 It is very bad practice to summarise an important investi-
gation solely by a value of P.

(Cox , p )

In spite of some recent changes, signi�cance tests are

again conventionally used in most scienti�c experimental

publications. According to this publication practice, each

experimental result is dichotomized: signi�cant vs. non-

signi�cant. But scientists cannot in this way �nd appropri-

ate answers to their precise questions, especially in terms

of e�ect size evaluation. It is not surprising that, from

the outset (e.g., Boring ), signi�cance tests have been

subject to intense criticism.�eir use has been explicitly

denounced by themost eminent andmost experienced sci-

entists, both on theoretical and methodological grounds,

not to mention the sharp controversies on the very foun-

dations of statistical inference that opposed Fisher to

Neyman and Pearson, and continue to oppose frequen-

tists to Bayesians. In the s there was more and more

criticism, especially in the behavioral and social sciences,

denouncing the shortcomings of signi�cance tests: the sig-

ni�cance test controversy (Morrison and Henkel ).

Significance Test Are Not a Good Scientific
Practice
7 It is foolish to ask ‘Are the effects of A and B different?’ They

are always different - for some decimal place.
(Tukey , p )

In most applications, no one can seriously believe

that the di�erent treatments have produced no e�ect: the

point null hypothesis is only a straw man and a signi�cant

result is an evidence against an hypothesis known to be

false before the data are collected, but not an evidence in

favor of the alternative hypothesis. It is certainly not a good

scienti�c practice, where one is expected to present argu-

ments that support the hypothesis in which one is really

interested.�e real problem is to obtain estimates of the

sizes of the di�erences.

The innumerable misuses of significance
tests
7 The psychological literature is filled with misinterpretations

of the nature of the tests of significance.
(Bakan , in Morrison and Henkel , p )

Due to their inadequacy in experimental data analysis,

the practice of signi�cance tests entails considerable dis-

tortions in the designing and monitoring of experiments.

It leads to innumerable misuses in the selection and inter-

pretation of results. �e consequence is the existence of

publication biases denounced bymany authors: while non-

signi�cant results are – theoretically – only statements of

ignorance, only the signi�cant results would really deserve

publication.

�e evidence of distortions is the use of the symbols

NS, *, **, and *** in scienti�c journals, as if the degree

of signi�cance was correlated with the meaningfulness

of research results. Many researchers and journal editors

appear to be “star worshippers”: see Guttman (), who

openly attacked the fact that some scienti�c journals, and

Science in particular, consider the signi�cance test as a cri-

terion of scienti�cness. A consequence of this overeliance
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on signi�cant e�ects is that most users of statistics over-

estimate the probability of replicating a signi�cant result

(Lecoutre et al. ).

The Considerable Difficulties Due to the
Frequentist Approach
7 What the use of P implies, therefore, is that a hypothe-

sis that may be true may be rejected because it has not
predicted observable results that have not occurred. This
seems a remarkable procedure.

(Jeffreys /, Sect. .)

Since the p-value is the proportion of samples that are

“at least as extreme” as the observed data (under the null

hypothesis), the rejection of the null hypothesis is based on

the probability of the samples that have not been observed,

what Je�reys ironically expressed in the above terms.�is

mysterious and unrealistic use of the sampling distribution

for justifying null hypothesis signi�cance tests is for the

least highly counterintuitive.�is is revealed by questions

frequently asked by students and statistical users: “why

one considers the probability of samples outcomes that are

more extreme than the one observed?”

Actually, due to their frequentist conception, signi�-

cance tests involve considerable di�culties in practice. In

particular, many statistical users misinterpret the p-values

as inverse (Bayesian) probabilities:  − p is “the probability
that the alternative hypothesis is true.” All the attempts to

rectify this misinterpretation have been a loosing battle.

Significance Tests Users’ Dissatisfaction
7 Neither Fisher’s null hypothesis testing nor Neyman-

Pearson decision theory can answer most scientific prob-
lems.

(Gigerenzer , p )

Several empirical studies emphasized the widespread

existence of common misinterpretations of signi�cance

tests among students and scientists (for a review, see

Lecoutre et al. ). Many methodology instructors who

teach statistics, including professors who work in the area

of statistics, appear to share their students’ misinterpre-

tations. Moreover, even professional applied statisticians

are not immune to misinterpretations of signi�cance tests,

especially if the test is nonsigni�cant. It is hard to interpret

these �nding as an individual’s lack of mastery: they reveal

that signi�cance test do not address the questions that are

of primary interest for the scienti�c research.

In particular, the dichotomous signi�cant/non signi�-

cant outcome of signi�cance tests strongly suggests binary

research decisions: “reject/accept the null hypothesis.” “But

the primary aim of a scienti�c experiment is not to precip-

itate decisions, but to make an appropriate adjustment in

the degree to which one accepts, or believes, the hypothe-

sis or hypotheses being tested” (Rozeboom, in Morrison

and Henkel , p. ). �e “reject/accept” attitude is

obviously a poor and unfortunate decision practice.

● A statistically signi�cant test provides no information

about the departure from the null hypothesis. When

the sample is large a descriptively small departure may

be signi�cant.

● A nonsigni�cant test is not evidence favoring the null

hypothesis. In particular, a descriptively large depar-

ture from the null hypothesis may be nonsigni�cant if

the experiment is insu�ciently sensitive.

In fact, in order to interpret their data in a reasonable

way, users must resort to a more or less naive mixture of

signi�cance tests outcomes and other information. But this

is not an easy task!�is leads users to make adaptative dis-

tortions, designed to make an ill-suited tool �t their true

needs. Actually, many users explicitly appear to have a real

consciousness of the stranglehold of signi�cance tests: in

many cases they use themonly because they knowno other

alternative.

Concluding Remarks
7 Inevitably, students (and essentially everyone else) give an

inverse or Bayesian twist to frequentist measures such as
confidence intervals and P values.

(Berry , p )

It is not acceptable that statistical inference meth-

ods users will continue using nonappropriate procedures

because they know no other alternative. Nowadays, pro-

posals for changes in reporting experimental results are

constantly made. In all �elds these changes, especially

in presenting and interpreting e�ect sizes, are more and

more enforced within editorial policies. Unfortunately,

academic debates continue and give a discouraging feeling

of déjà-vu. Rather than stimulating the interest of experi-

mental scientists, this endless controversy is without doubt

detrimental to the impact of new proposals, if not to the

image of statistical inference.

�emajority o�cial trend is to advocate the use of con-

�dence intervals, in addition to or instead of signi�cance

tests. However, reporting con�dence intervals appears to

have very little impact on the way the authors interpret

their data. Most of them continue to focus on the statistical

signi�cance of the results.�ey only wonder whether the
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interval includes the null hypothesis value, rather than on

the full implications of con�dence intervals: the steam-

roller of signi�cance tests cannot be escaped.

Furthermore, for many reasons due to their frequentist

conception, con�dence intervals can hardly be seen as the

ultimate method. We then naturally have to ask ourselves

whether the “Bayesian choice” will not, sooner or later, be

unavoidable. It can be argued that an objective Bayes theory

is by nomeans a speculative viewpoint but on the contrary

is perfectly feasible (Rouanet et al. ; Lecoutre et al.

; Lecoutre ).
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Simes’ Test in Multiple Testing
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Over the past decade there has been a revival of interest

in the �eld of multiple testing due to its increased rele-

vance in modern scienti�c investigations, such as DNA

microarray and functional magnetic resonance imaging

(fMRI) studies. Simes’ () test plays an important role

in the developments of a number of multiple testing meth-

ods. Given a family of null hypotheses H, . . . ,Hn and the

corresponding p-values P, . . . ,Pn, it is a global test of the

intersection null hypothesis H :
n

⋂
i=
Hi based on these

p-values. It rejectsH at a signi�cance level α if P(i) ≤ iα/n
for at least one i = , . . . ,n, where P() ≤ ⋯ ≤ P(n) are the
ordered p-values.

Simes’ test is more powerful than the Bonferroni test.

However, to control the Type I error rate at the desired

level, it requires certain assumptions about dependence

structure of the p-values under H, unlike the Bonferroni

test. For instance, if p-values are either independent or

positively dependent in the following sense:

EH {ϕ(P, . . . ,Pn)∣Pi = u} is non-decreasing in u ()

for each i = , . . . ,n, and any coordinatewise non-

decreasing function φ(P, . . . ,Pn) of P, . . . ,Pn, then
Simes’ test controls the Type I error rate at α; that is, the

following inequality holds:

Pr H{Rejecting H} = Pr H {
n

⋃
i=

(P(i) ≤ iα/n)} ≤ α.

Such positive dependence is exhibited by p-values in

some commonly encountered multiple testing situations.

For instance, p-values generated from (I) dependent stan-

dard normal variates with non-negative correlations, (II)

absolute values of dependent standard normal variates

with a correlation matrix R such that the o�-diagonal

entries of −DR−D are non-negative for some diagonal
matrix D with diagonal entries ±, (III) multivariate t with
the associated normal variates having non-negative corre-

lations (under a minor restriction on the range of values

of u), and (IV) absolute values of multivariate t with the
associated normal variates having a correlation matrix as

in (II), satisfy () (Sarkar , a; Sarkar and Chang

).

For simultaneous testing of H, . . . ,Hn, the family-

wise error rate (FWER), which is the probability of falsely
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rejecting at least one null hypothesis, is o�en used as a

measure of overall Type I error. Methods strongly control-

ling the FWER, that is, with this probability not exceeding

a pre-speci�ed value α under any con�guration of true

and false null hypotheses, have been proposed. Hochberg

() suggested such a method. It rejects Hi if Pi ≤ P(î),
where

î = max{i : P(i) ≤ α/(n − i + )}

provided the maximum exists, otherwise accepts all null

hypotheses.�is is a stepupmethodwith the critical values

αi = α/(n − i + ), i = , . . . ,n. For any stepup method
with critical values α ≤ ⋯ ≤ αn, the FWER is  if n, the

number of true null hypotheses, is , otherwise it satis�es

the following inequality:

FWER ≤ Pr{
n

⋃
i=

(P̂(i) ≤ αn−n+i)} ,

where P̂() ≤ ⋯ ≤ P̂(n) are the ordered versions of
the p-values corresponding to the n true null hypothe-

ses (Romano and Shaikh ). For theHochbergmethod,

since

αn−n+i = α/(n − i + ) ≤ iα/n for i = , . . . ,n,

its FWER is bounded above by the Type I error rate

of the level α Simes’ test for the intersection of n null

hypotheses based on their p-values. In other words, the

Hochberg method controls its FWER in situations where

Simes’ global test controls its Type I error rate.

�e closed testing method of Marcus et al. () is

o�en used to construct multiple testing method with a

strong control of the FWER. It operates as follows. Given a

�nite family of null hypotheses {Hi, i = , . . . ,n} , form the
closure of this family by considering all non-empty inter-

sections HJ = ⋂
i∈J
Hi for J ⊆ {, . . . ,n}. Suppose a level-α

global test is available for each HJ .�en, a closed testing

method rejects HJ if and only if every HK with K ⊇ J
is rejected by its level-α test. Hommel () used Simes’

global test in the closed testing method to construct an

improvement of the Hochberg method. It �nds

ĵ = max{i : P(n−i+k) ≥ kα/i for all k = , . . . , i} ,

and rejects Hi if Pi ≤ α/̂j, provided the maximum exists,
otherwise rejects all null hypotheses.

Benjamini and Hochberg () introduced the 7false
discovery rate (FDR), which is a less conservative notion of

error rate than the FWER.WithR andV denoting the total

number rejections and the total number of false rejections,

respectively, of null hypotheses, it is de�ned as follows:

FDR = E(V/max{R, }).

�e FDR is said to be strongly controlled at α by a multiple

testing method if the above expectation does not exceed

α, irrespective of the number of true null hypotheses. As

noted in Hommel (), while making decisions on the

individual null hypotheses using the stepup method based

on the critical values in the Simes’ test, which are αi =
iα/n, i = , . . . ,n, the FWER is not strongly controlled.
However, the false discovery rate (FDR) is strongly con-

trolled, again if the p-values are independent or positively

dependent in the sense of (), but with the Pi now rep-

resenting the p-value corresponding to a null hypothesis

(Benjamini and Hochberg ; Benjamini and Yekutieli

; Sarkar ). A proof of this result can be seen in

Sarkar (b), who gave the following expression for the

FDR of a stepup method with critical values α ≤ ⋯ ≤ αn:

FDR =∑
i∈J
E

⎡⎢⎢⎢⎢⎢⎣

I (Pi ≤ α
R
(−i)

n− +
)

R
(−i)
n− + 

⎤⎥⎥⎥⎥⎥⎦
,

where I is the indicator function, J is the set of indices cor-

responding to the true null hypotheses,R
(−i)
n− is the number

of rejections in the stepup method based on the n − 
p-values other than Pi and the critical values α ≤ ⋯ ≤ αn.

Examples of p-values satisfying this positive dependence

condition are those that are generated from test statistics

in (I) and (III).
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Regression analysis is a collection of statistical modeling

techniques that usually describes the behavior of a ran-

dom variable of interest by using one or more quantitative

variables. �e variable of interest may be the crop yield,

the price of oil in the world market, the tensile strength

of metal wire, and so on.�is variable of interest is called

the dependent variable, or response variable and denoted

with Y . Other variables that are thought to provide infor-

mation on the dependent variable are incorporated into

themodel as independent variables.�ese variables are also

called the predictor, or regressor, or explanatory variables,

and are denoted by Xs. If the height of a son is a�ected by

the height of his father, then the height of the father is X

and the height of the son becomes Y .

�eXs are assumed to be known constants. In addition

to the Xs, all models involve unknown constants, called

parameters, which control the behavior of the model. In

practical situations, the statistical models usually fall into

the class of models that are linear in the parameters.�at

is, the parameters enter themodel as simple coe�cients on

the independent variables. Such models are referred to as

7linear regressionmodels. If there is only one independent
variable X for the dependent variable of interest Y , and the

functional relationship between Y and X is a straight line,

this model is called the simple linear regressionmodel.

In a nonstatistical context, the word regression means

“to return to an earlier place or state.” �e term “regres-

sion” was �rst used by Francis Galton (–), who

observed that children’s heights tended to “revert” to the

average height of the population rather than diverting from

it. Galton applied “a regression line” to explain that the

future generations of o�spring who are taller than average

are not progressively taller than their respective parents,

and parents who are shorter than average do not beget suc-

cessively smaller children. But the term is now applied to

any linear or nonlinear functional relationships in general.

In the simple linear model, the true mean of Y changes

at a constant rate as the value of X increases or decreases.

�us, the functional relationship between the truemean of

Y , denoted by E(Y), andX is the equation of a straight line

E(Y) = β + βX.

Here, β is the intercept, the value ofE(Y)whenX = , and
β is the slope of the line, the rate of change inE(Y)per unit
change in X. Suppose we have n observations on Y , say,

Y,Y,Y, . . . ,Yn at X,X,X, . . . ,Xn, respectively.�e i
th

observation on the dependent variable Yi at Xi is assumed

to be a random observation with the random error εi to

give the statistical model

Yi = β + βXi + εi. ()

�e random errors εi have zero mean and assumed to have

common variance σ  and to be pairwise independent.�e

random error assumptions are frequently stated as

εi ∼ NID(, σ )

where NID stands for normally and independently dis-

tributed. �e quantities in parentheses denote the mean

and the variance, respectively, of the normal distribution.

Once β and β in Eq.  have been estimated from a

given set of data on X and Y , the following prediction

equation results:

Ŷ = β̂ + β̂X or Ŷi = β̂ + β̂Xi ()

�e “hats” (as they are called) above β and β signify that

those parameters are being estimated, but the hat above

Y means that the dependent variable is being predicted.

Point estimates of β and β are needed to obtain the �t-

ted line given in Eq. . One way is to minimize the sum

of the absolute values of the vertical distances with each

distance measured from each point to the �tted line (see,



 S Simple Random Sample

e.g., Birkes and Dodge ).�ese vertical distances are

called 7residuals. �e standard approach, however, is to
minimize the sum of the squares of the vertical distances,

and this is accomplished by using the method of least

squares.

�e starting point of the method of7least squares is to
write the estimated model as

e = Ŷ − (β̂ + β̂X)

since the residual e represents the vertical distance Y to the

line.�en the estimates β̂ and β̂ are chosen thatminimize

the sum of the squares of residuals

S = Σe i = Σ (Yi − β̂ − β̂Xi)


.

To minimize S, we take the partial derivative of S with

respect to each of the two estimates and set the resulting

expressions equal to zero.�us we obtain

β̂n + β̂ΣXi = 

β̂ΣXi + β̂ΣX

i = 

which are called the normal equations. If we solve these

equations for β̂ and β̂, we obtain

β̂ =
∑(Xi − X)(Yi − Y)

∑(Xi − X)

β̂ = Y − β̂X.

�e method of least squares, on which most methods

of estimation for regression analysis are based was appar-

ently �rst published by Legendre (), but the �rst treat-

ment along the lines now familiar was given by Gauss (for

the details regarding history of least squares see 7Gauss–
Markov theorem). Gauss showed that the least squares

method gives estimators of the unknown parameters with

minimumvariance amongunbiased linear estimators.�is

basic result is now known as the Gauss–Markov theorem,

and the least squares estimators as Gauss–Markov estima-

tors.�at is, there is no other choice of values for the two

parameters β and β that provide a smaller ∑e i . If a

residual, ei, is too large compared with the other residu-

als, the corresponding Yi may be an outlier or may be an

in�uential observation that in�uences the estimates of two

parameters β and β. Detection of an outlier or an in�u-

ential observation is an important research area, andmany

books such as Belsley et al. () and Cook and Weisberg

(), deal with this topic. (see also 7Cook’s distance,
7Regression diagnostics, 7In�uential observations).
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A7census, surveying every element in a �nite population,
is used to discover characteristics of the population. If the

population is large, a census can be costly, time consuming,

or impracticable. Alternatively, a simple random sample

can be used to obtain information and draw inferences

about the population. It is customary to sample elements

without replacement. �at is, once an element has been
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selected, it is removed from the population so that it can-

not be selected a second time. A simple random sampling

procedure is used to obtain a simple random sample.�e

procedure selects a sample of size n from a �nite popu-

lation of size N < n such that each of the NCn =
N!/[n!(N − n)!] possible samples is equally likely to be
selected. If sample elements are returned to the population

a�er being selected – sampling with replacement – each of

the N+n−Cn = (N +n− )!/{n![(N +n− )−n]!} possible
samples is equally likely to be selected.

Simple random sampling is a type of probability sam-

pling. All probability sampling procedures have three char-

acteristics in common: (a) the elements that compose the

population are explicitly de�ned, (b) every potential sam-

ple of a given size that could be drawn from the population

can be enumerated, and (c) the probability of selecting any

potential sample can be speci�ed. Non-probability sam-

pling procedures do not satisfy one or more of the three

characteristics. An example of a non-probability sampling

procedure is convenience sampling-elements are selected

because they are readily available. For simple random sam-

pling without replacement, the probability of a particu-

lar sample being selected is /(NCn). For sampling with
replacement, the probability of a particular sample being

selected is /(N+n−Cn). When sampling with replacement
the inclusions of the ith and jth (i ≠ j)members of the pop-
ulation are statistically independent.However, these events

are not statistically independent when sampling without

replacement. For this case, the probability of the inclusions

of ith and jth population members is n(n− )/[N(N − )]
(McLeod ).

Simple random samples have two interrelated advan-

tages over non-probability samples. First, randomness

avoids bias, that is, a systematic or long-run misrepre-

sentation of the population. Second, randomness enables

researchers to apply the laws of probability in determining

the likely error of sample statistics. A particular random

sample rarely yields an estimate of the population charac-

teristic that equals the population characteristic. However,

the expected value of the sample estimate will over an

inde�nitely large number of samples equal the popula-

tion characteristic. Furthermore, for any simple random

sample, it is possible to estimate the magnitude of the

error associated with the estimate. For large populations

the error depends only on the sample size, a fact that is

counterintuitive (Anderson ).

�e �rst step in obtaining a simple random sample is to

develop a sampling frame: a list of all of the elements in the

population of interest. �e sampling frame operationally

de�nes the population from which the sample is drawn

and to which the sample results can be generalized. Once

the sampling frame has been developed, a simple random

sample can be obtained in a variety of ways. For example,

a researcher can record on a slip of paper the identifying

code for each element in the sampling frame.�e slips of

paper are placed in a container and thoroughly shu�ed.

�e �rst n unique slips drawn without bias from the con-

tainer compose the sample.�e most common method of

obtaining a simple random sample uses random numbers.

Tables of random numbers are available in many statistics

textbooks.�e tables contain a sequence of random digits

whose terms are chosen so that each digit is equally likely to

be , , . . . ,  and the choices at any two di�erent places in

the sequence are independent. For ease in reading the dig-

its in a random number table, the digits are o�en grouped

with two digits in a group, four digits in a group, and so

on. To use a table to select a simple random sample of size,

say, n =  from a population of size N = , assign the
numbers , , . . . ,  to the elements in the sampling

frame. Select a starting point in the table by dropping a

pointed object on the table. Choose three-digit numbers

beginning at the starting point until  distinct numbers

between  and  are obtained.�e sample consists of

the elements corresponding to the  numbers selected.

�is procedure illustrates sampling without replacement

because once a number has been selected, the number

is ignored if it is encountered again. Computer packages

such as SAS, SPSS, and MINITAB and many hand calcu-

lators have routines that produce numbers that in every

observable way appear to be random. For an in-depth

discussion of sampling procedures, see Schae�er et al.

().
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An association measurement between two variables X

and Y may be dramatically changed from positive

to negative by omitting a third variable Z, which is

called Simpson’s paradox or the Yule-Simpson para-

dox (Yule, ; Simpson, ). A numerical exam-

ple is shown in Table . �e risk di�erence (RD) is

de�ned as the di�erence between the recovery propor-

tion in the treated group and that in the placebo group,

RD = (/) − (/) = −.. If the population is
split into two populations of male and female, a dramatic

change can be seen from Table .�e risk di�erences for

male and female are both changed to ..�us we obtain

a self-contradictory conclusion that the new drug is e�ec-

tive for both male and female but it is ine�ective for the

whole population. Should patients in the population take

the new drug or not? Should the correct answer depend on

whether the doctor know the gender of patients?

FromTable , we can see that most males took placebo,

but most females took the new drug. As depicted in Fig. ,

theremay be a spurious association between treatment and

response because gender associates with both treatment

and response. Such a factor that is associated with both

treatment and response is called a confounding factor or

a confounder. If a confounder is known and observed, the

bias due to the confounder can be removed by strati�cation

or standardization. If there are unknown or unobserved

Simpson’s Paradox. Table  Recovery proportions in
treatment and placebo groups

Treatment Recovery Non-recovery Total

New drug   

Placebo   

RD = 


− 


= −.

Simpson’s Paradox. Table  Populations stratified by gender

Male Female

Treatment Recovery Non-recovery Recovery Non-recovery

New drug    

Placebo    

RDM = . RDF = .

Gender

RecoveryTreatment

Simpson’s Paradox. Fig.  A confounding factor: gender
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Simpson’s Paradox. Fig.  Randomized experiment

confounders, in order to remove the confounding bias,

we can randomize the treatment assignment such that

the association path between the confounders and the

treatment is broken. In Fig. , we depict a randomized

experiment for this example, where  males (M) and
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Simpson’s Paradox. Table  Subscription renewal rates in 

Source of current subscription

Previous Direct Subscription Catalog
Month Gift renewal mail service agent Overall

January

Total , , , ,  ,

Renewals , , , ,  ,

Rate . . . . . .

February

Total  , ,   ,

Renewals  , ,   ,

Rate . . . . . .

Simpson’s Paradox. Table  Total income and total tax (in  dollars) and tax rate

 

Adjusted Tax Tax
gross income Income Tax rate Income Tax rate

Under $, ,, ,, . ,, , .

$, to $, ,, ,, . ,, ,, .

$, to $, ,, ,, . ,, ,, .

$, to $, ,, ,, . ,, ,, .

$, or more ,, ,, . ,, ,, .

Total ,, ,, . ,,, ,, .

 females (F) are randomly assigned into the new drug

group (T) and the placebo group (M).�e recovery pro-

portion is / in the new drug group of males, and

thus  of  treated males recover (R) and the other

 do not recover (N). From Fig. , the total number of

recovered people is += and the recovery propor-

tion is / in the new drug group; the total number

is += and the recovery proportion is / in the

placebo group. �us, we conclude on that the new drug

increases recovery proportion by %, which is consistent

with that shown in Table .

Two real-life examples of Simpson’s paradox were

showed by Wagner ().�e �rst example, as shown in

Table , illustrates that the overall renewal rate ofAmerican

History Illustrated magazine increased from . percent

in January  to . percent in February , but the

renewal rates actually declined in every subscription cate-

gory.�e second example, as shown in Table , illustrates

that the overall income tax rate increased from . percent

in  to . percent in , but the tax rate decreased

in each income category. Reintjes et al. () gave the

following example from hospital epidemiology:  gyne-

cology patients from eight hospitals in a nonexperimental

study were used to study the association between antibi-

otic prophylaxis (AB-proph.) and urinary tract infections

(UTI).�e eight hospitals were strati�ed into two groups

with a low incidence percentage (< .%) and a high per-
centage (> .%) of UTI. By Table , the relative risk (RR)
was (/)/(/) = . for the overall eight hospi-

tals, which means that AB-proph. had a protective e�ect

on UTI. But the RRs were . and . for the low and

the high incidence groups, respectively, which means that
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Simpson’s Paradox. Table  Data on UTI and AB-proph. stratified by incidence of UTI per hospital

Hospitals with low UTI Hospitals with high UTI All hospitals

AB-proph. UTI no-UTI UTI no-UTI UTI no-UTI

Yes      

No      

RRL = . RRH = . RR = .

AB-proph. had a risk e�ect on UTI for both groups.�e

real e�ect of AB-proph. on UTI has been shown to be pro-

tective in randomized clinical trials, which is consistent

with the crude analysis rather than the strati�ed analysis.

�is result explains that there were more unidenti�ed con-

founders which canceled their e�ects each other out in the

crude analysis.

�ere are many topics related to Simpson’s para-

dox. Collapsibility of association measurements deals

with conditions under which association measurements

are unchanged by omitting other variables (Cox and

Wermuth, ; Ma et al. ). From the viewpoint of

causality, Simpson’s paradox occurs because there are con-

founders such that associationmeasurement is biased from

causal e�ects (Pearl, ; Geng et al. ). A variation

of Simpson’s paradox is a surrogate paradox, which means

that a treatment has a positive e�ect on an intermediate

variable called a surrogate, which in turn has a positive

e�ect on the true endpoint, but the treatment has a negative

e�ect on the true endpoint (Chen et al. ; Ju and Geng,

). Moore () describes a real trial of antiarrhyth-

mic drugs in which an irregular heartbeat is a risk factor

of early mortality but correction of the heartbeat increased

mortality.
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�e �nancial market turmoil has been shocking the world

since early . As is aptly stated by the president of the

European Central Bank, Trichet (), the widespread
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undervaluation of risk is one of the most important issues

in this context and appropriate operational risk manage-

ment is a crucial issue to be investigated. A seemingly

unrelated issue is to measure and predict the treatment

e�ect of education on income.�is issue is crucial for any

country that increasingly relies on the “knowledge econ-

omy. ” In recent research by the authors it is stressed that

these seemingly unrelated issues pose similar questions
and have common components from a modeling and sta-
tistical viewpoint.

�ere exist connections between dynamic time series

models used in the �rst issue and treatment e�ect models.

�is common problem structure is explained in research

by the authors as follows: the restricted reduced form of

the instrumental variable (IV) model and the Vector Error

Correction Model (VECM) under cointegration are both

instances of the general reduced rank regression model

with di�erent variables and parameters playing the same

roles, as summarized in the Table .

In these models with near reduced rank one may

encounter non-elliptical posteriors. In the Bayesian anal-

ysis of treatment e�ects, for example in the instrumental

variable (IV) model, we o�en encounter posterior distri-

butions that display these shapes. �e reason for this is

Simulation Based Bayes Procedures for Model Structures with Non-Elliptical Posteriors. Table  Common model structures

Model
Restricted reduced form (RRF)
of instrumental variable (IV) model

Vector Error Correction Model
(VECM) under cointegration

Endogenous variables Dependent variable and (possibly)
endogenous regressors

Vector of variables’ changes
(= current − previous values)

Predetermined variables corresponding
to parameter matrix with reduced rank

Instrumental variables (having no direct
effect on the dependent variable, only
an indirect effect via the (possibly)
endogenous regressors)

Vector of previous values

Predetermined variables corresponding to
unrestricted parameter matrix

Control variables (having a direct effect
on both the dependent variable and the
(possibly) endogenous regressors)

Vector of other explanatory variables
and past variables’ changes
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posterior (p,b) under flat prior: posterior (p,b ) under Jeffreys prior:

Simulation Based Bayes Procedures for Model Structures with Non-Elliptical Posteriors. Fig.  Posterior density of π (expected
difference in years of education between children born in April-December and January-March) and β (treatment effect of
education on income) for , data (used by Angrist and Krueger ()) from men born in the state of New York
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local non-identi�cation: if some of the model parame-
ters (re�ecting the strength of the instruments) tend to ,

i.e., the case of weak instruments, other model parameters

(corresponding to the relevant treatment e�ect) become

unidenti�ed.

Angrist and Krueger () consider the estimation

of the treatment e�ect β of education on income, which

is non-trivial due to unobserved (intellectual) capabilities

that not only in�uence education but also directly a�ect

income, and due to measurement errors in the reported

education level. Angrist and Krueger () use Amer-

ican data and suggest using quarter of birth to form

7instrumental variables. �ese instruments exploit that
students born in di�erent quarters have di�erent average

education.�is results since most school districts require

students to have turned age six by a certain date, a so-called

“birthday cuto�” which is typically near the end of the

year, in the year they enter school, whereas compulsory

schooling laws compel students to remain at school until

their th, th or th birthday.�is asymmetry between

school-entry requirements and compulsory schooling laws

compels students born in certain months to attend school

longer than students born in other months: students born

earlier in the year enter school at an older age and reach the

legal dropout age a�er less education. Hence, for students

who leave school as soon as the schooling laws allow for

it, those born in the �rst quarter have on average attended

school for three quarters less than those born in the fourth

quarter. Suppose we use as a single instrument a / indi-

cator variable with value  indicating birth in the �rst

quarter; the strength of this instrument is given by its e�ect

on education, parameter π.�e le� panel of Fig.  shows the

posterior density of π and β (under a �at prior) for ,

data frommen born in the state of New York in –.

�is shows a clear “ridge” around π = , indicating that for
π tending to  a wide range of values of β becomes possi-

ble. An alternative prior, the Je�reys prior, regularizes the

posterior shapes in the sense that it eliminates the asymp-

tote around π =  for the marginal posterior of π, yet the

joint posterior shapes in the right panel of Fig.  are still far

from elliptical.�is example illustrates that the weakness

of the instruments may imply that even for large data sets

posterior distributions may be highly non-elliptical.

�us for the Bayesian analysis of (non-linear) exten-

sions of the IV model, we need �exible simulation meth-

ods. �e use of neural network based simulation is then

particularly useful. A Bayesian optimal information pro-

cessing procedure using advanced simulation techniques

based on arti�cial neural networks (ANN) is recently

developed and it can be used as a powerful tool for fore-

casting and policy advice.�ese simulation methods have

already been successfully applied to evaluate risk mea-

sures (Value-at-Risk, Expected Shortfall) for a single asset.

�e procedures proposed by the authors are just one step

forward on the path of understanding these issues and

these involve a novel manner of processing the informa-

tion �ow on these issues. It is – of course – the inten-

tion of this research that its results improve forecasting

of risk and uncertainty that in�uence the e�ectiveness of

interventions and treatments.
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Singular spectrum analysis (SSA) is a technique of time

series analysis and forecasting. It combines elements of

classical time series analysis, multivariate statistics, mul-

tivariate geometry, dynamical systems and signal process-

ing. SSA aims at decomposing the original series into a sum

of a small number of interpretable components such as a

slowly varying trend, oscillatory components and a “struc-

tureless” noise. It is based on the singular-value decompo-

sition of a speci�c matrix constructed upon time series.

Neither a parametric model nor stationarity-type condi-

tions have to be assumed for the time series; this makes

SSA a model-free technique.

�e commencement of SSA is usually associated with

publication of the papers (Broomhead and King a, b)

by Broomhead and King. Nowadays SSA is becoming

more and more popular, especially in applications.�ere

are several hundred papers published on methodologi-

cal aspects and applications of SSA, see Golyandina et al.

(), Vautard et al. (), Vautard andGhil (), Allen

and Smith (), and Zhigljavsky () and references

therein. SSA has proved to be very successful, and has

already become a standard tool in the analysis of climatic,

meteorological and geophysical time series; see, for exam-

ple, Vautard et al. (), Vautard and Ghil (), and

Allen and Smith (). More recent areas of application

of SSA include engineering, medicine, econometrics and

many other �elds. Most recent developments in the the-

ory and methodology of SSA can be found in Zhigljavsky

(). We start with ‘Basic SSA’ , which is the most com-

mon version of SSA.

Basic SSA
Let x, . . . , xN be a time series of length N. Given a win-

dow length L (<L<N), we construct the L-lagged vectors
Xi =(xi, . . . , xi+L−)T , i = , , . . . ,K=N−L+, and compose
these vectors into the matrix X = (xi+j−)L,Ki,j= = [X : . . . :
XK] .�is matrix has size L ×K and is o�en called “trajec-
torymatrix.” It is a Hankel matrix, whichmeans that all the

elements along the diagonal i+j=const are equal.
�e columns Xj of X, considered as vectors, lie in the

L-dimensional space RL. �e singular-value decomposi-
tion of the matrix X XT yields a collection of L eigen-
values and eigenvectors. A particular combination of a

certain number l < L of these eigenvectors determines
an l-dimensional subspace in RL.�e L-dimensional data
{X, . . . ,XK} is then projected onto this l-dimensional
subspace and the subsequent averaging over the diagonals

gives us some Hankel matrix X̃ which is considered as an
approximation to X.�e series reconstructed from X̃ sat-
is�es some linear recurrent formula whichmay be used for

forecasting.

In addition to forecasting, the Basic SSA can be

used for smoothing, �ltration, noise reduction, extrac-

tion of trends of di�erent resolution, extraction of peri-

odicities in the form of modulated harmonics, gap-�lling

(Kondrashov and Ghil ; Golyandina and Osipov

) and other tasks, see Golyandina et al. (). Also,

the Basic SSA can be modi�ed and extended in many

di�erent ways some of which are discussed below.

Extensions of the Basic SSA
SSA for analyzing stationary series (Vautard andGhil ).

Under the assumption that the series x, . . . , xN is station-

ary, the matrix X XT of the Basic SSA is replaced with the
so-called lag-covariance matrixCwhose elements are cij =


N−k ∑
N−k
t= xtxt+k with i, j = , . . . ,L and k = ∣i − j∣. In the

terminology of Golyandina et al. (), this is “Toeplitz

SSA.”
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Monte-Carlo SSA (Allen and Smith ). In the Basic

SSA we implicitly associate the “structureless” component

of the resulting SSAdecompositionwith “white noise” (this

noise may not necessarily be random). In some applica-

tions, however, it is more natural to assume that the noise

is “colored”. In this case, special tests based on Monte

Carlo simulations may be used to test the hypothesis of the

presence of a signal.

Improvement or replacement of the singular-value

decomposition (SVD) procedure. �ere are two main rea-

sons why it may be worthwhile to replace the SVD oper-

ation in the Basic SSA with some another operation.�e

�rst reason is simplicity: in problems where the dimen-

sions of the trajectory matrix is large, SVD may simply

be too costly to perform; substitutions of SVD are avail-

able, see Golub and van Loan () and Moskvina and

Schmidt ().�e second reason is the analysis of the

accuracy of SSA procedures based on the perturbation the-

ory (Zhigljavsky ). For example, in the problems of

separating signal from noise, some parts of the noise are

o�en found in SVD components corresponding to the sig-

nal. As a result, a small adjustment of the eigenvalues and

eigenvectors is advisable to diminish this e�ect.�e sim-

plest version of the Basic SSA with a constant adjustment

in all eigenvalues was suggested in VanHu�el () and is

sometimes called the minimum-variance SSA.

Low-rank matrix approximations, Cadzow iterations,

connections with signal processing. As an approximation to

the trajectory matrix X, the Basic SSA yields the Hankel
matrix X̃.�is matrix is obtained as a result of the diagonal
averaging of amatrix of rank l. Hence X̃ is typically amatrix
of full rank. However, in many signal processing applica-

tions, when a parametric form of an approximation is of

prime importance, one may wish to �nd a Hankel matrix

of size L×K and rank lwhich gives the best approximation
to X; this is a problem of the structured low-rank approxi-
mation (Markovsky et al. ).�e simplest procedure of

�nding a solution to this problem (not necessarily the glob-

ally optimal one though) is the so-called Cadzow iterations

(Cadzow ) which are the repeated alternating projec-

tions of the matrices (starting at X) to the set of matrices
of rank l (by performing the singular-value decomposi-

tions) and to the set of Hankel matrices (by making the

diagonal averaging).�at is, Cadzow iterations are simply

the repeats of the Basic SSA. It is not guaranteed however

that Cadzow iterations lead to more accurate forecasting

formulas than the Basic SSA (Zhigljavsky ).

SSA for change-point detection and subspace track-

ing (Moskvina and Zhigljavsky ). Assume that the

observations x, x, . . . of the series arrive sequentially in

time and we apply the Basic SSA to the observations

at hand. �en we can monitor the distances from the

sequence of the trajectory matrices to the l-dimensional

subspaces we construct and also the distances between

these l-dimensional subspaces. Signi�cant changes in any

of these distances may indicate on a change in the mech-

anism generating the time series. Note that this change in

the mechanism does not have to a�ect the whole structure

of the series but rather only a few of its components.

SSA for multivariate time series. Multivariate (or mul-

tichannel) SSA (shortly, MSSA) is a direct extension of

the standard SSA for simultaneous analysis of several time

series. Assume that we have two series, X = {x, . . . , xN}
and Y = {y, . . . , yN}.�e (joint) trajectory matrix of the
two-variate series (X,Y) can be de�ned as either Z =
(X,Y) or Z = (X,Y)T , where X and Y are the trajec-
tory matrices of the individual series X and Y . Matrix Z
is block-Hankel rather than simply Hankel. Other stages

of MSSA are identical to the stages of the univariate SSA

except that we build a block-Hankel (rather than ordinary

Hankel) approximation Z̃ to the trajectory matrix Z.
MSSA may be very useful for analyzing several series

with common structure. MSSAmay also be used for estab-

lishing a causality between two series. Indeed, the absence

of causality of Y on X implies that the knowledge of Y

does not improve the quality of forecasts of X. Hence an

improvement in the quality of forecasts for X which we

obtain using MSSA against univariate SSA forecasts for X

gives us a family of SSA-causality tests, see Hassani et al.

().

Cross References
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7Six Sigma can be de�ned as a highly structured strategy for
acquiring, assessing, and applying customer, competitor, and

enterprise intelligence in order to produce superior product,

system or enterprise innovation and designs (Klefsjö et al.

). Focal to this de�nition is the customer and indeed

the customer functions as the pivot point for this contri-

bution as customer needs and wants drive change in most

organizations.

Six Sigma originated at Motorola approximately

 decades ago as a means of generating near-perfect prod-

ucts via focus on associated manufacturing processes and

while initially applied almost exclusively in manufactur-

ing environments, its inherent sensibilities and organiza-

tion facilitated migration to service operations. Similarly,

while Six Sigma was at the outset used to generate signi�-

cant innovation in and improvement of existing products,

those same sensibilities led to its adaptation to new prod-

uct and process design environments. In statistical terms

a process operating at a “true” six sigma level produces

an average of only . defects per million opportunities

(DPMO) for defects where this �gure is associated with a

process with a  standard deviation spread between lower

and upper speci�cation limits, but wherein the . DPMO

�gure is based on allowance for a . standard deviation

non-centrality factor or shi� away from “perfect centering”

so that, in essence, one speci�cation limit is . standard

deviations away from the targeted or ideal performance

level whereas the other speci�cation limit is . standard

deviations away from that performance level.

Within the context of a structured problem-solving

context Six Sigma integrates various strategies and tools

fromStatistics,Quality, Business, andEngineeringwith the

adoption of newones likely as its use expands tomore busi-

ness sectors and areas of application. Its focus divides into

two signi�cant and related branches that share a number of

tools, techniques and objectives, but o�en apply these tools

and techniques di�erently and its use has added multiple

billions in any currency to the �nancial bottom lines of

numerous organizations across many sectors of the econ-

omy, including �nancial, healthcare, military, and general

manufacturing. Six Sigma’s branches are ones that focus

on signi�cant innovation/redesign in or of existing prod-

ucts, processes, and systems and a second that is directed

at design of new products, processes or systems. Included

among the leading companies emphasizing Six Sigma are

GE, M, Raytheon, Sun Microsystems, DuPont, Bank of

America, American Express, Motorola, Rolls Royce, and

Boeing.

Central to business �ow is the familiar SIPOC model

(Suppliers→ Inputs→Processes→Outputs→Customers)
indicating that, commonly, suppliers provide inputs that

are transformed by internal processes into outputs that are

in turn provided to customers. While this �ow is com-

mon and logical, its optimization is far less so, but can be

approached application of StephenCovey’s familiar “habit”

of “beginning with the end inmind” (Covey ), a mani-

festation of which in the present case is COPIS (Customers

→ Outputs→ Processes→ Inputs→ Suppliers).
Organizations that practice COPIS – o�en as part of a

quality management or six sigma culture – do so by �rst

carefully elaborating who their customers are as well as the

needs and wants of those customers (called the “Voice of

the Customer” or “VOC”). Customer-driven organizations

will ensure that these needs and wants are re�ected in and

ful�lled by the outputs of processes that must be optimally
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SIPOC and COPIS: Business Flow – Business Optimization Connection in a Six Sigma Context. Fig. 

con�gured in order to deliver these outputs by transform-

ing themost appropriate inputs that have been provided by

the most apt suppliers. It can be seen from this that, con-

sistent with Covey, “see the end from the beginning,” that

is, to be customer-driven. In a continuous improvement

culture this occurs not once, but cyclically.�ese ideas are

portrayed in Fig. .

Statistical and other quantitatively oriented methods

that can be brought to bear throughout the COPIS-SIPOC

�ow include the use of sample survey methods to elicit the

VOC and numerous additional analytical techniques from

across the statistical spectrum can be used to assess the

VOC.Optimal process con�guration is notmerely amatter

of work �ow and equipment, but also of ensuring that how-

ever those are assembled, that the outputs themselves are

optimized. While many tools can be employed, generally

outputs can be regarded as response variables, Y , where

Y = f (X,X, . . . ,XP) + ε,

whereX,X, . . . ,XP are controllable variables, the optimal

combination of settings of which can be determined using

response surface methods, steepest ascent methods, and

evolutionary operations or EVOP (Myers et al. ). In

a similar way, such methods can be used to assist in selec-

tion of inputs and subsequently the suppliers from whom

these should be obtained.

In all, what we see is that as best practice, business is

conceived of as COPIS to yield optimal results as deter-

mined by the VOC, but subsequently deployed as SIPOC.

While SIPOC is common to most business environments,

employment of COPIS is practiced far less o�en and then

typically only in customer-driven environments. Prac-

tice of COPIS o�ers rich opportunities for application of

statistical methods as well as subsequent rewards.

About the Author
For biography see the entry 7Design for Six Sigma.

Cross References
7Business Statistics
7Design for Six Sigma
7Industrial Statistics
7Six Sigma

References and Further Reading
Covey SR () The seven habits of highly effective people. Free,

New York

Klefsjö B, Bergquist B, Edgeman, R () Six sigma and total

quality management: different day, same soup? Six Sigma and

Competitive Advantage ():–

Myers RH, Montgomery DC, Anderson-Cook CM () Response

surface methodology: process and product optimization using

designed experiments, rd edn. Wiley, New York



Six Sigma S 

S

Six Sigma

DavidM. Levine

Professor Emeritus of Statistics and Computer

Information Systems

Baruch College, City University of New York, New York,

NY, USA

Six Sigma is a quality improvement systemoriginally devel-

oped by Motorola in the mid-s. A�er seeing the

huge �nancial successes at Motorola, GE, and other early

adopters of Six Sigma, many companies worldwide have

now instituted Six Sigma to improve e�ciency, cut costs,

eliminate defects, and reduce product variation (see Arndt

; Cyger ; Hahn et al. ; Snee ). Six Sigma

o�ers a more prescriptive and systematic approach to pro-

cess improvement than TQM. It is also distinguished from

other quality improvement systems by its clear focus on

achieving bottom-line results in a relatively short - to

-month period of time.

�e name Six Sigma comes from the fact that it is

a managerial approach designed to create processes that

result in no more than . defects per million. �e Six

Sigma approach assumes that processes are designed so

that the upper and lower speci�cation limits are six stan-

dard deviations away from themean.�en, if the processes

are monitored correctly with 7control charts, the worst
possible scenario is for the mean to shi� to within .

standard deviations from the nearest speci�cation limit.

�e area under the normal curve less than . standard

deviations below the mean is approximately . out of a

million.

The DMAIC Model
To guide managers in their task of improving short- and

long-term results, Six Sigma uses a �ve-step process known

as the DMAIC model – named for the �ve steps in the

process:

● De�ne. �e problem is de�ned, along with the costs,

the bene�ts, and the impact on the customer.

● Measure. Operational de�nitions for each critical-to-

quality (CTQ) variable are developed. In addition, the

measurement procedure is veri�ed so that it is consis-

tent over repeated measurements.

● Analyze.�e root causes ofwhy defects occur are deter-

mined, and variables in the process causing the defects

are identi�ed. Data are collected to determine bench-

mark values for each process variable. �is analysis

o�en uses control charts.

● Improve. �e importance of each process variable on

the CTQ variable is studied using designed experi-

ments.�e objective is to determine the best level for

each variable.

● Control. �e objective is to maintain the bene�ts for

the long term by avoiding potential problems that can

occur when a process is changed.

�e De�ne phase of a Six Sigma project consists of the

development of a project charter, performing a SIPOC

analysis, and identifying the customers for the output of

the process.�e development of a project charter involves

forming a table of business objectives and indicators for

all potential Six Sigma projects. Importance ratings are

assigned by top management, projects are prioritized, and

themost important project is selected. A SIPOC analysis is

used to identify the Suppliers to the process, list the Input

provided to the suppliers, �owchart the Process, list the

process Outputs, and identify the Customers of the pro-

cess.�is is followed by a Voice of the Customer analysis

that involves market segmentation in which di�erent types

of users of the process are identi�ed and the circumstances

of their use of the process are identi�ed. Statistical meth-

ods used in the De�ne phase include tables and charts,

descriptive statistics, and control charts.

In the Measure phase of a Six Sigma project, members

of a team �rst develop operational de�nitions of each CTQ

variable. �is is done so that everyone will have a �rm

understanding of the CTQ. �en studies are undertaken

to ensure that there is a valid measurement system for

the CTQ that is consistent across measurements. Finally,

baseline data are collected to determine the capability and

stability of the current process. Statistical methods used in

the Measure phase include tables and charts, descriptive

statistics, the normal distribution, theAnalysis ofVariance,

and control charts.

�e Analyze phase of a Six Sigma project focuses on

the factors that a�ect the central tendency, variation, and

shape of each CTQ variable. Factors are identi�ed, related

to each CTQ, have operational de�nitions developed, and

have measurement systems established. Statistical meth-

ods used in the Analyze phase include tables and charts,

descriptive statistics, the7Analysis of Variance, regression
analysis, and control charts.

In the Improve phase of a Six Sigma project, team

members carry out designed experiments to actively inter-

vene in a process.�e objective of the experimental design

is to determine the settings of the factors that will optimize

the central tendency, variation, and shape of each CTQ

variable. Statistical methods used in the Improve phase

include tables and charts, descriptive statistics, regression
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analysis, hypothesis testing, the Analysis of Variance, and

designed experiments.

�e Control phase of a Six Sigma project focuses on

the maintenance of improvements that have been made in

the Improve phase. A risk abatement plan is developed to

identify elements that can cause damage to a process. Sta-

tistical methods used in the Control phase include tables

and charts, descriptive statistics, and control charts.
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Skewness is a measure of distributional asymmetry. Con-

ceptually, skewness describes which side of a distribution

has a longer tail. If the long tail is on the right, then the

skewness is rightward or positive; if the long tail is on the

le�, then the skewness is le�ward or negative. Right skew-

ness is common when a variable is bounded on the le� but

unbounded on the right. For example, durations (response

time, time to failure) typically have right skewness since

they cannot take values less than zero; many �nancial vari-

ables (income, wealth, prices) typically have right skewness

since they rarely take values less than zero; and adult body

weight has right skewness since most people are closer

to the lower limit than to the upper limit of viable body

weight. Le� skewness is less common in practice, but it can

occur when a variable tends to be closer to its maximum

than its minimum value. For example, scores on an easy
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examare likely to have le� skewness, withmost scores close

to % and lower scores tailing o� to the le�.Well-known

right-skewed distributions include the Poisson, chi-square,

exponential, lognormal, and gamma distributions. I am

not aware of any widely used distributions that always have

le� skewness, but there are several distributions that can

have either right or le� skew depending on their parame-

ters. Such ambidextrous distributions include the binomial

and the beta.

Mathematically, skewness is usually measured by the

third standardized moment E((X − µ)/σ)), where X
is a random variable with mean µ and standard devia-

tion σ .�e third standardized moment can take any pos-

itive or negative value, although in practical settings it

rarely exceeds  or  in absolute value. Because it involves

cubed values, the third standardizedmoment is sensitive to

7outliers (Kim andWhite ), and it can even be unde-
�ned for heavy-tailed distributions such as the Cauchy

density or the Pareto density with a shape parameter of .

When the third standardized moment is �nite, it is zero

for symmetric distributions, although a value of zero does

not necessarily mean that the distribution is symmetric

(Ord ; Johnson and Kotz , p. ). To estimate

the third standardized moment from a sample of n obser-

vations, a biased but simple estimator is the third sample

moment /n∑((x − x)/s), where x is the sample mean
and s is the sample standard deviation. An unbiased esti-

mator is the third k statistic, which is obtained by taking the

third sample moment and replacing /n with the quantity
n/((n − )(n − )) (Rose and Smith ).
Although the third standardized moment is far and

away the most popular de�nition of skewness, alternative

de�nitions have been proposed (MacGillivray ).�e

leading alternatives are bounded by − and +, and are
zero for symmetric distributions, although again a value

of zero does not guarantee symmetry. One alternative is

Bowley’s () quartile formula for skew: ((q−m)−(m−
q))/(q − q), or more simply (q + q − m)/(q − q),
where m is the median and q and q are the �rst (or

le�) and third (or right) quartiles. Bowley’s skew focuses

on the part of the distribution that �ts in between the

quartiles: if the right quartile is further from the median

than is the le� quartile, then Bowley’s skew is positive;

if the le� quartile is further from the median than the

right quartile, then Bowley’s skew is negative. Because it

doesn’t cube any values and doesn’t use any values more

extreme than the quartiles, Bowley’s skew is more robust

to outliers than is the conventional third-moment formula

(Kim and White ). But the quantities in Bowley’s for-

mula are arbitrary: instead of the le� and right quartiles –

i.e., the th and th percentiles – Bowley could just as

plausibly have used the th and th percentiles, the th

and th percentiles, or more generally the pth and

( − p)th percentiles F−(p) and F−( − p). Substi-
tuting these last two expressions into Bowley’s formula,

Hinkley () proposed the generalized skewness formula

(F−(−p)+F−(p)−m)/(F−(−p)−F−(p)), which is a
function of high and low percentiles de�ned by p. Since it is

not clear what value of p is most appropriate, Groeneveld

and Meeden () averaged Hinkley’s formula across all

ps from  to .. Groeneveld and Meeden’s average was

(µ − m)/E∣X − m∣, which is similar to an old skewness
formula that is attributed to Pearson: (µ−m)/σ (Yule ).

�e Pearson and Groeneveld–Meeden formulas are

consistent with a widely taught rule of thumb claiming

that the skewness determines the relative positions of the

median and mean. According to this rule, in a distribu-

tion with positive skew the mean lies to the right of the

median, and in a distribution with negative skew the mean

lies to the le� of the median. If we de�ne skewness using

the Pearson or Groeneveld–Meeden formulas, this rule is

self-evident: since the numerator of both formulas is sim-

ply the di�erence between the mean and the median, both

will give positive skew when the mean is greater than the

median, and negative skew when the situation is reversed.

But if we de�ne skewness more conventionally, using the

third standardized moment, the rule of thumb can fail.

Violations of the rule are rare for continuous variables, but

common for discrete variables (von Hippel ). A sim-

ple discrete violation is the 7binomial distribution with
n =  and π = . (cf. Lesser ). In this distribu-
tion, the mean . is le� of the median , but the skewness

as de�ned by the third standardized moment is positive,

at ., and the distribution, with its long right tail, looks

like a textbook example of positive skew. Examples like this

one argue against using the Pearson, Groeneveld-Meeden,

or Bowley formulas, all of which yield a negative value

for this clearly right-skewed distribution. Most versions

of Hinkley’s skew also contradict intuition here: Hinkley’s

skew is negative for . > p > ., zero for . ≥ p >
., and doesn’t become positive until p ≤ ..
Since many statistical inferences assume that vari-

ables are symmetrically or evennormally distributed, those

inferences can be inaccurate if applied to a variable that

is skewed. Inferences grow more accurate as the sample

size grows, with the required sample size depending on

the amount of skew and the desired level of accuracy.

A useful rule states that, if you are using the normal or t

distribution to calculate a nominal % con�dence inter-

val for the mean of a skewed variable, the interval will have

at least % coverage if the sample size is at least  times

the absolute value of the (third-moment) skew (Cochran



 S Skew-Normal Distribution

; Boos and Hughes-Oliver ). For example, a sam-

ple of  observations should be plenty even if the skew is

as large as  (or −).
In order to use statistical techniques that assume

symmetry, researchers sometimes transform a variable to

reduce its skew (von Hippel ). �e most common

transformations for reducing positive skew are the loga-

rithm and the square root, and a much broader family

of skew-reducing transformations has been de�ned (Box

and Cox ). But reducing skew has costs as well as

bene�ts. A transformed variable can be hard to interpret,

and conclusions about the transformed variable may not

apply to the original variable before transformation (Levin

et al. ). In addition, transformation can change the

shape of relationships among variables; for example, if X

is right-skewed and has a linear relationship with Y , then

the square root of X, although less skewed, will have a

curved relationship with Y (von Hippel ). In short,

skew reduction is rarely by itself a su�cient reason to trans-

form a variable. Skew should be treated as an important

characteristic of the variable, not just a nuisance to be

eliminated.
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In its simplest reading, the term “skew-normal” refers to a

family of continuous probability distributions on the real

line having density function of form

φ(z; α) =  φ(z) Φ(αz), (−∞ < z <∞), ()

where φ(⋅) andΦ(⋅) denote theN(, ) density and cumu-
lative distribution function, respectively, and α is a real

parameter which regulates the shape of the density. �e

fact that () integrates to  holds by a more general result,

given by Azzalini (), where φ and Φ are replaced by

analogous functions for any choice of two distributions

symmetric around .

It is immediate that the choice α =  lends the N(, )
distribution, and that, ifZ is a randomvariablewith density

(), denoted Z ∼ SN(α), then −Z ∼ SN(−α). Figure a
displays φ(z; α) for a few choices of α; only positive values
of this parameter are considered, because of the property

just stated.

An interesting property is that Z ∼ χ , if Z ∼ SN(α),
irrespectively of α.�e 7moment generating function of
Z is

M(t) =  exp(t/)Φ(δt) , δ = α/
√
 + α , ()

and from M(t) it is simple to obtain the mean, the vari-
ance, the index of skewness and the index of kurtosis,

http://www.amstat.org/publications/jse/v13n3/lesser_letter.html
http://www.amstat.org/publications/jse/v13n3/lesser_letter.html
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Skew-Normal Distribution. Fig.  Some examples of skew-normal density function, for the scalar case (left) and for the bivariate
case in the form of contour level plots (right)

which are

µα =
√


π
δ, σ


α =  − µα ,

γ =
 − π



µα

σ α
, γ =  (π − ) µ


α

σ α
()

respectively. Multiplication of M(t) by exp(t/) shows
another interesting property: if U ∼ N(, ) independent
of Z, then (Z + U)/

√
 ∼ SN (α/

√
 + α). Additional

facts about this distribution are given by Azzalini; Azzalini

(; ), Henze () and Chiogna ().

For practical statistical work, we need to consider the

three-parameter distribution ofY = ξ+ωZ, where ξ and ω

are a location and a scale parameter, respectively (ω > ).
Extension of the above results to the distribution of Y is

immediate.

For the d-dimensional version of () we introduce

directly a location parameter ξ ∈ Rd and a scale d×dmatrix
Ω which is symmetric and positive de�nite, and we denote

by ω a d × d diagonal matrix formed by the square roots
of the diagonal elements of Ω.�e density function of the

multivariate skew-normal distribution at x is

 φd(x − ξ; Ω)Φ (α
⊺

ω
−(x − ξ)) , (x ∈ Rd) , ()

where φd(x; Ω) denotes the Nd(, Ω) density function,
and the shape parameter α is a vector in Rd. Figure b
displays function  for two choices of the parameter set

(ξ, Ω, α). Initial results on this distribution have been
obtained byAzzalini andDallaValle () and byAzzalini

and Capitanio ().

�e multivariate skew-normal distribution enjoys a

number of formal properties. If Y is a d-dimensional

random variable with density (), its moment generating

function is

M(t) = exp(ξ
⊺
t + 

t
⊺
Ωt)Φ(δ

⊺
ωt) ,

δ = 

( + α⊺Ωα)/
Ωα ()

where Ω = ω−Ωω− is the correlation matrix associated
to Ω. FromM(t) one obtains that

E{Y} = ξ +
√


π
ωδ , var{Y} = Ω − 

π
ωδδ

⊺
ω ,

while the marginal indices of skewness and kurtosis are

computed by applying expressions γ and γ in () to each

component of δ. Another result derived from () is that an

a�ne transformation a+AY , where a ∈ Rp and A ∈ Rp×d,
is still of type (), with suitably modi�ed dimension and

parameters.�is fact implies closure of this family of dis-

tributions with respect to marginalization. Closure of the

class under conditioning holds if one extends the class by

inserting an additional parameter in the argument of Φ in

(), and adapting the normalizing constant correspond-

ingly; for details on this extended class, see Arnold and

Beaver () and Capitanio et al. ().

�e chi-square distribution property stated for the

scalar case extends substantially in the multivariate case.

If Y has density () with ξ = , then a quadratic form
Y⊺AY , where A is a symmetric d × d matrix, has the same
distribution of X⊺AX where X ∼ Nd(, Ω); for instance
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Y⊺Ω−Y ∼ χd.�is distributional result can be obtained

from �rst principles, but it is mosty simply derived as a

special case of the distributional invariance property of

the family of skew-symmetric distributions, of which the

skew-normal distribution is a special instance. According

to this property, the distribution of T(Y) is the same of
T(X) for any function T, possibly multi-valued, such that
T(x) = T(−x) for all x ∈ Rd.
An attractive feature of this distribution is that it admits

various stochastics representations, which are relevant for

random number generation and also for supporting the

adoption of this distribution in statistical modelling work.

Here we restrict ourselves to one of these representations,

which is related to a selective sampling mechanism: if

⎛
⎜
⎝

X

X

⎞
⎟
⎠
∼ N+d(, Ω∗), Ω

∗ =
⎛
⎜
⎝

 δ⊺ω

ωδ Ω

⎞
⎟
⎠
> ,

where X and X have dimension  and d, respectively, then

Y = ξ +
⎧⎪⎪⎨⎪⎪⎩

X if X > ,
−X otherwise

has density function () where α = (−δ⊺Ω
−

δ)−/Ω−δ.
Additional information on the skew-normal distribu-

tion and related areas is presented in the review paper

of Azzalini (), followed by a set of comments of

Marc Genton, and rejoinder of the author.�emes consid-

ered include: additional properties and types of stochastic

representation, aspects of statistical inference, histori-

cal development, extensions to skew-ellitical and skew-

symmetric type of distributions, and connections with

various application areas.
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Skew-Symmetric Families of
Distributions
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�e term ‘skew-symmetric distributions’ refers to the con-

struction of a continuous probability distribution obtained

by applying a certain form of perturbation to a symmetric

density function.

To bemore speci�c, a concept of symmetric distribution

must be adopted �rst, since in the multivariate setting var-

ious forms of symmetry have been introduced.�e variant

used in this context is the one of central symmetry, a nat-

ural extension of the traditional one-dimensional form to

the d-dimensional case: if f is a density function on Rd

and ξ is a point ofRd, central symmetry around ξ requires

that f(t − ξ) = f(−t − ξ) for all t ∈ Rd, ignoring sets of
 probability. To avoid notational complications, we shall

concentrate on the case with ξ = ; it is immediate to
rephrasewhat follows in the case of general ξ, which simply

amounts to a shi� of the location of the distribution.

http://arXiv.org
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If f is a probability density function on Rd cen-
trally symmetric around , there are two largely equivalent

expressions to build skew-symmetric densities. For the �rst

one, introduce a one-dimensional continuous distribution

function G such that G(−x) =  − G(x) for all x ∈ R,
and w(⋅) a real-valued function on Rd such that w(−t)
= −w(t) for all t ∈ Rd.�en it can be shown that

f (t) =  f(t)G{w(t)} ()

is a density function onRd. Notice that in generalG{w(t)}
is not a probability distribution. In the second type of for-

mulation, consider a function π(t) such that  ≤ π(t) ≤ 
and π(t) + π(−t) =  for all t ∈ Rd, which leads to the
density function

f (t) =  f(t) π(t) . ()

Formulations () and () have been obtained indepen-

dently by Azzalini and Capitanio () and by Wang

et al. (), who adopted the term ‘skew-symmetric dis-

tribution’. Each of the two forms has its advantages. Any

expression of type G{w(t)} in () automatically satis�es
the requirements for π(t) in (), but it is not unique:
there are several forms G{w(t)} corresponding to the
same π(t). On the other hand, any π(t) can be written
in the form G{w(t)}. Hence the two sets of distributions
coincide.

�e proof that () and () are proper density functions

is exceptionally simple.�e argument below refers to () in

the univariate case; the multivariate case is essentially the

same with only a minor technical complication. If Y is a

random variable with density function f and X is an inde-

pendent variable with distribution function G, then w(Y)
is symmetrically distributed around  and




= P{X − w(Y) ≤ } = EY{P{X ≤ w(y)∣Y = y}}

= ∫
Rd
G{w(y)} f(y)dy .

�is proof also shows the intimate connection of this

formulation with a selective sampling mechanism where

a value Y sampled from f is retained with probability

G{w(t)}, and it is otherwise rejected. A re�nement of this
scheme says that

Z =
⎧⎪⎪⎨⎪⎪⎩

Y if X ≤ w(Y),
−Y otherwise

()

has density (). Since () avoids rejection of samples, it is

well suited for random numbers generation.

In spite of their name, skew-symmetric distributions

are not per se linked to any idea of 7skewness.�e name
is due to the historical connection with the 7skew-normal
distribution, which has been the �rst construction of this

type.�e skew-normal density function is

 φd(y; Ω)Φ(η
⊺
y), (y ∈ Rd), ()

where φd(y; Ω) is the Nd(, Ω) density function, Φ is
the N(, ) distribution function and η is a vector param-

eter. �is density is of type () with f(y) = φd(y; Ω)
and G{w(y)} = Φ(η⊺y). In this case the perturbation
of the original density φd does indeed lead to an asym-

metric density, as it typically occurs when w(y) is a linear
function.

To illustrate visually the �exibility which can be

achieved by the perturbationmechanism, consider f to be

the product of two symmetric Beta densities of parameters

(a, a) and (b, b), say, both shi�ed and scaled to the inter-
val (−, ), G equal to the standard logistic distribution
function and

w(y) = sin(py + py)
 + cos(qy + qy)

, y = (y, y)⊺ ∈ (−, )

where p = (p, p) and q = (q, q) are additional parame-
ters. Figure  displays a few of the shapes produced with

various choices of the parameters a, b, p, q. �ese skew-

symmetric densities do not exhibit any obvious sign of

skewness.

An important implication of representation () is the

following property of distributional invariance: if Y has

density f and Z has density (), then T(Z) and T(Y) have
the same distribution for any function T(⋅) from Rd to
Rq which is even, in the sense that T(z) = T(−z) for all
z ∈ Rd. For instance, if Z has skew-normal distribution
(), then a quadratic form T(Z) = Z⊺AZ has the same
distribution of T(Y) = Y⊺AY when Y ∼ Nd(, Ω), for
any symmetric matrix A; a further specialization says that

Z⊺Ω−Z ∼ χd. Other results on skew-elliptical distribu-

tions have been given by Arellano-Valle et al. () and

Umbach ().

An important subset of the skew-symmetric distribu-

tions occurs if f in () or () is an elliptically contoured

density, or brie�y an elliptical density, in which case we

obtain a skew-elliptical distribution. In fact, this subset

was the �rst considered, in chronological order, starting

from the skew-normal distribution, and the formulation

evolved via a sequence of successive generalizations.�is

development is visible in the following sequence of papers,

to be complemented with those already quoted: Azzalini

and Capitanio (), Branco and Dey (), Genton and
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f

Skew-Symmetric Families of Distributions. Fig.  Densities obtained by perturbation of the product of two symmetric Beta
densities for some choices of the parameters a,b,p,q

Loper�do () and the collection of papers in the book

edited by Genton ().
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Introduction
Over the past three decades there is a growing demand

in many countries for reliable estimates of small domain

parameters such as means, counts, proportions or

quantiles. Common examples include the estimation of

unemployment rates, proportions of people under poverty,

disease incidence and use of illicit drugs. �ese esti-

mates are used for fund allocations, new social or health

programs, and more generally, for short and long term

planning. Recently, small area estimates are employed for

testing, the administrative records used for modern cen-

suses (see7Census). Although commonly known as “small
area estimation” (SAE), the domain of studies may actu-

ally consist of socio-demographic subgroups as de�ned,

for example, by gender, age and race, or the intersection

of such domains with geographical location.

�e problem of SAE is that the sample sizes in at least

some of the domains of study are very small, and o�en

there are no samples available for many or even most of

these domains. As a result, the direct estimates obtained

from the survey are unreliable (large, unacceptable vari-

ances), and no direct survey estimates can be computed

for areas with no samples. SAE methodology addresses

therefore the following two major problems:

http://arXiv.org
http://arXiv.org
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. How to obtain reliable estimates for each of these areas.

. How to assess the error of the estimators (MSE, con�-

dence intervals, etc.).

Notice in this regard that even if direct survey estimates can

be used for areas with samples, no design-basedmethodol-

ogy exists for estimating the quantities of interest in areas

with no samples.�e term “Design-based inference” refers

to inference based on the randomization distribution over

all the samples possibly selected from the �nite popula-

tion under study, with the population values considered as

�xed numbers. Note also that the sample sizes in the var-

ious areas are random, unless when some of the domains

of study are de�ned as strata and samples of �xed sizes are

taken in these domains.

In what follows I describe brie�y some of the basic

methods used for SAE, assuming, for simplicity, that the

sample is selected by simple random sampling. More

advanced methods and related theory, with many exam-

ples and references can be found in the book of Rao

() and the review papers by Ghosh and Rao (),

Rao (), Pfe�ermann (), and Rao (). See also

Chaps.  and  in the new Handbook of Statistics, B

(eds. Pfe�ermann and Rao ).

Design-Based Methods
Let Y de�ne the characteristic of interest and denote by
yij the outcome value for unit j belonging to area i, i =
, . . . ,M; j = , . . . ,Ni, where Ni is the area size. Let s =
s∪⋯∪sm denote the sample, where si of size ni is the
sample observed for area i. Suppose that it is required to

estimate the true area mean Y i =
Ni

∑
j=

yij/Ni. If no auxil-

iary information is available, the direct design unbiased
estimator and its design variance over the randomization
distribution (the distribution induced by the random selec-
tion of the sample with the population values held �xed),

are given by

ˆ
Y i =

ni

∑
j=

yij/ni ; VarD [ ˆY i ∣ni] = (S i /ni) [ − (ni/Ni)]= S∗i ,

()

where Si =
Ni

∑
k=

(yik −Y i)/(Ni − ). Clearly, for small ni the

variance will be large, unless the variability of the y-values

is su�ciently small. Suppose, however, that values xij of p

concomitant variables x, . . . , xp are measured for each of

the sample units and that the area means Xi =
Ni

∑
k=

xik/Ni
are likewise known. Such information may be obtained

from a recent census or some other administrative records.

In this case, a more e�cient design-based estimator is the

regression estimator,

ˆY i,reg = yi + (Xi − xi)′βi; VarD(yreg ,i∣ni) = S
∗
i ( − R i ) ,

()

where yi and xi are the sample means of Y and X in area

i, and βi and Ri are correspondingly the vector of regres-

sion coe�cients and the multiple correlation coe�cient

between Y and x, . . . , xp in area i. �us, by use of the
concomitant variables, the variance is reduced by the fac-

tor ( − R i ) , illustrating the importance of using auxiliary
information with good prediction power for SAE.

In practice, the coe�cients βi are unknown. Replacing

βi by its ordinary least square estimator from the sample si
may not be e�ective in the case of a small sample size. If,

however, the regression relationships are “similar” across

the areas and assuming xij, =  for all (i,j), a more stable
estimator is the synthetic regression estimator,

ˆY i,syn =
Ni

∑
j=
ŷik/Ni = X

′
i B̂, ()

where ŷik = x′ikB̂ and B̂ = [∑
i,j∈S

xijx
′
ij]
−

∑
i,j∈S

xijyij is the ordi-

nary least squares estimator computed from all the sample

data.�e prominent advantage of synthetic estimation is

the substantial variance reduction since the estimator uses

all the sample data, but it can lead to severe biases if the

regression relationships di�er between the areas.

An approximately design-unbiased estimator is

obtained by replacing the synthetic estimator by the GREC

estimator,

ˆY i,greg =
Ni

∑
k=
ŷik/Ni +∑

j∈Si
(yij − ŷij)/ni. ()

However, this estimator may again be very unstable in

small samples. �e choice between the synthetic estima-

tor and the GREG is therefore a trade o� between bias and

variance. A compromise is achieved by using a composite

estimator of the form,

ˆY i,com = αi
ˆY i,greg + ( − αi) ˆY i,syn, ()

but there is no principled theory of how to determine the

coe�cients αi.

Design-based estimators are basically model free but

the requirement for approximate design-unbiasedness

generally yields estimators with large variance due to the

small sample sizes.�e construction of con�dence inter-

vals requires large sample normality assumptions, which

do not generally hold in SAE problems. No design-based

theory exists for estimation in areas with no samples.
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Model-Dependent Estimators
In view of the problems underlying the use of design-based

methods, it is common practice in many applications to

use instead statistical models that de�ne how to “borrow

strength” from other areas and/or over time in case of

repeated surveys. Let θ i de�ne the parameter of interest in

area i, i = , . . . ,M, and let yi, xi denote the data observed
for this area. When the only available information is at the

area level, yi is typically the direct estimator of θ i and xi
is a vector of area level covariates. When unit level infor-

mation is available, yi is a vector of individual outcomes

and xi is the corresponding matrix of individual covariate
information.

A typical small area model consists of two parts:�e

�rst part models the distribution of yi∣θ i; Ψ(). �e sec-
ond part models the distribution of θ i∣xi; Ψ() linking
θ i to the parameters in other areas and to the covari-

ates.�e (vector) parameters Ψ() and Ψ() are typically
unknown and are estimated from all the available data

D(s) = {yi, xi; , . . . ,m}. In what follows I de�ne and
discuss brie�y three models in common use.

“Unit Level Random Effects Model”
�e model, employed originally by Battese et al. (),

assumes,

yij = x′ijβ + ui + εij, ()

where ui and εij aremutually independent error termswith

zero means and variances σ u and σ ε respectively.�e ran-

dom term ui represents the joint e�ect of area characteris-

tics not accounted for by the concomitant variables. Under

the model, the true small area means are Y i = X
′
iβ+ui+ εi,

but since εi =
Ni

∑
k=

εik/Ni ≅  for large Ni, the target parame-

ters are o�en de�ned as θ i = X
′
iβ+ui. For known variances

(σ u , σ

ε ) , the Best Linear Unbiased Predictor (BLUP) of θ i

is,

θ̂ i = γi[ yi + (Xi − xi)′ β̂GLS] + ( − γi)X
′
i β̂GLS, ()

where β̂GLS is the generalized least square (GLS) estima-

tor of β computed from all the observed data and γi =
σ u/ (σ u + σ ε /ni) . For areas lwith no samples, θ̂ l = X

′
l β̂GLS.

Notice that unlike under the randomization distribution,

the synthetic estimatorX
′
i β̂GLS is unbiased for θ i under the

model in the sense that E(X′i β̂GLS − θ i) = .
�e BLUP θ̂ i is also the Bayesian predictor (posterior

mean) under normality of the error terms and a di�use

prior for β. In practice, however, the variances σ u and

σ ε are seldom known. A Bayesian solution to this prob-

lem is to set prior distributions for the unknown variances

and then compute the corresponding posterior mean and

variance of θ i∣{yk, xk; k ∈ s} by aid of Markov Chain
Monte Carlo (MCMC) simulations (see 7Markov Chain
Monte Carlo).�e common procedure under the frequen-

tist approach is to replace the unknown variances in the

BLUP formula by standard variance components estimates

like Maximum Likelihood Estimators (MLE), Restricted

MLE (REML) or Analysis of Variance (ANOVA) estima-

tors.�e resulting predictors are known as the Empirical

BLUP (EBLUP). See the references listed in the intro-

duction for estimation of the MSE of the EBLUP under

di�erent methods of variance estimation.

“Area Level Random Effects Model”
�is model is in broad use when the concomitant informa-

tion is only at the area level. It was used originally by Fay

and Herriot () for predicting the mean income in geo-

graphical areas of less than  inhabitants. Denote by θ̃ i
the direct sample estimator of θ i.�e model assumes that,

θ̃ i = θ i + ei; θ i = x′iβ + ui, ()

such that ei represents the sampling error, assumed to have

zero mean and known design variance VarD(ei) = σ Di,

(= S∗i if θ̃ i = yi, see Eq. ).�e model integrates there-
forex a model dependent random e�ect ui and a sampling

error ei with the two errors being independent.�e BLUP

under this model is,

θ̂ i = γi θ̃ i+(−γi)x′i β̂GLS = x′i β̂GLS+γi (θ̃ i − x′i β̂GLS) , ()

which again is a composite estimator with coe�cient γi =
σ u/ (σ Di + σ u) . As with the unit level model, the variance
σ u is usually unknown and is either assigned a prior dis-

tribution under the Bayesian approach, or is replaced by a

sample estimate in (), yielding the corresponding EBLUP

predictor.

Unit Level Random Effects Model for Binary
Data
�e previous two models are for continuous measure-

ments. Suppose now that yij is a binary variable taking the

values  or . For example, yij =  if individual j in area i is
unemployed (or su�ers from a certain disease), and yij = 

otherwise, such that pi = N−i
Ni

∑
k=

yik is the true unemploy-

ment rate (true disease incidence).�e following model is

o�en used for predicting the proportions pi:

yij∣pij
indep.∼ Bernoulli(pij)

logit(pij) = log[ pij/( − pij)] = x′ijβ + ui;

ui
indep.∼ N (, σ u ) ,

()
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where as in (), xij is a vector of concomitant values, β

is a vector of �xed regression coe�cients and ui is a ran-

dom e�ect representing the unexplained variability of the

individual probabilities between the areas.

For this model there is no explicit expression for the

predictor p̂i. Writing pi = N−i
⎡⎢⎢⎢⎣
∑
j∈si

yij +∑
l/∈si

yil

⎤⎥⎥⎥⎦
, predicting

pi by its best predictor is equivalent to the prediction of

the sum∑
l/∈si

yil of the missing observations. See Jiang et al.

() for the computation of the empirical best predictor

and estimation of its MSE.
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Univariate Smoothing Splines
Univariate smoothing splines were introduced by

I.J. Schoenberg in the s, an early paper is (Schoenberg

). Given data yi = f (x(i)) + єi, i = ,⋯,n, where the
єi are i.i.d samples from a zero mean Gaussian distribution

and  < x() < ⋯. < x(n) < , the (univariate) polyno-
mial smoothing spline is the solution to: �nd f inWm

 to

minimize



n



∑
i=

( yi − f (x(i)) + λ∫



( f (m)(x))dx,

where Wm
 is the Sobolev space of functions with square

integralmth derivative.�e solution is well known to be a

piecewise polynomial of degree m −  between each pair
{x( j+), x( j)}, j = ,⋯,n− and of degreem− in [, x()]
and [x(n), ], and the pieces are joined so that the func-
tion has m −  continuous derivatives. Figure  illustrates
the cubic smoothing spline (m = ) and how it depends
on the smoothing parameter λ.�e dashed line in each of

the three panels is the underlying function f (x) used to
generate the data. �e observations yi were generated as

yi = f (xi)+ єi where the єi were samples from a zero mean
Gaussian distribution with common variance.�e wiggly

solid line in the top panel was obtained with a λ that is too

small.�e solid line in the middle panel has λ too large.
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If λ had been even larger, the solid line would have tended

to �atten out towards the least squares straight line best �t-

ting the data. Note that linear functions are in the null space

of the penalty functional ∫ ( f ′′), that is, their second
derivatives are . In the third panel, λ has been chosen by

the GCV (Generalized Cross Validation) method (Craven

andWahba ; Golub et al. ). Generalizations of the

univariate smoothing spline include penalties that replace

( f (m)) with (Lf ), where Lf is a linear di�erential oper-
ator of order m, see Kimeldorf and Wahba () and

Ramsay and Silverman (). Code for smoothing splines

is available in the R library http://cran.r-project.org, for

example pspline and elsewhere. Other generalizations
include replacing the residual sum of squares by the nega-

tive log likelihood for Bernoulli, Poisson or othermembers

of the exponential family, by robust or quantile function-

als, or by the so-called hinge function to get a Support

Vector Machine (Cristianini and Shawe-Taylor ). In

each case the solution will be a piecewise polynomial of the

same form as before as a consequence of the so called rep-

resenter theorems in Kimeldorf and Wahba (). Other

tuning criteria are appropriate for the other functionals, for

example the GACV (Xiang andWahba ) for Bernoulli

data.

Thin Plate Splines
�in Plate Splines (TPS) appeared in French in 

(Duchon ) and were combined with the GCV for tun-

ing in Wahba and Wendelberger ().�e TPS of order

 in two dimensions is the minimizer of



n

n

∑
i=

( yi − f (x(i), x(i)) + λJ,( f )

where J, is given by

∫
∞

−∞
∫

∞

−∞
f

xx + f


xx + f


xxdxdx.

In this case f is known to have a representation

f (x) = d + dx + dx +
n

∑
i=
ciE(x, x(i))

where

E(x, x(i)) = ∥x − x(i)∥log∥x − x(i)∥,

where ∥ ⋅ ∥ is the Euclidean norm.
�ere is no penalty on linear functions of the com-

ponents (x, x) of the attribute vector (the “null space”
of J,). It is known that the ci for the solution satisfy

∑ni= ci = , ∑ni= cix(i) =  and ∑ni= cix(i) = , and

furthermore,

J,( f ) = ∑
i,j=,⋯,n

cicjE(x(i), x(j)).

�e TPS is available for general d and for anym with m−
d > .�e general TPS penalty functional in d dimensions
andm derivatives is

Jd,m = ∑
α+⋯+αd=m

m!

α!⋯αd!
∫

∞

−∞
⋯

∫
∞

−∞
( ∂mf

∂xα
 ⋯∂x

αd
d

)


∏
j

dxj.

See Wahba (). Note that there is no penalty on poly-

nomials of degree less than m, so that the TPS with d

greater than  or  is rarely attempted because of the very

high dimensional null space of Jd,m. As λ tends to in�nity,

the solution tends to its best �t in the unpenalized space,

and as λ tends to , the solution attempts to interpolate

the data. Public codes in R containing TPS codes include

assist, fields, gss, mgcv. Again, the residual
sum of squares may be replaced by other functionals as in

the univariate spline and the form of the solution will be

the same.

Splines on the Sphere
Splines on the sphere were proposed in Wahba; Wahba

(; ). �e penalty functional J( f ) for splines on
the sphere is J( f ) = ∫ (∆)m/f where ∆ is the (surface)
Laplacian on the the (unit) sphere given by

∆f = 

cos ϕ
fθθ +



cos ϕ
(cos ϕfϕ)ϕ

where θ is the longitude, ( ≤ θ ≤ π) and ϕ is the lati-
tude (− π


≤ ϕ ≤ π


). Here we are using subscripts θ and ϕ

to indicate derivatives with respect to θ and ϕ. Closed form

expressions for theminimizer f are not in general available,

but closed form expressions for a close approximation are,

see Wahba; Wahba (; ).

Splines on Riemannian Manifolds
�e splines we have mentioned above have penalty func-

tionals associated with the Laplacian (note the form is

di�erent for the compact domain cases of splines on the

unit interval and splines on the sphere, as opposed to the

thin plate spline on the in�nite plane). Splines on arbitrary

compact Riemannian manifolds can be de�ned, implicitly

or explicitly involving the eigenfunctions and eigenval-

ues of the m-iterated Laplacian, see Kim (), Pesenson

(), Belkin and Niyogi (, Sect. .).

http://cran.r-project.org
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Smoothing Spline ANOVA Models
Let x = (x,⋯, xd), where xα ∈ T (α)

, α = ,⋯,d and
yi = f (x(i)) + єi, i = ,⋯,n. where the єi are as before.�e
T (α)

can be quite arbitrary domains. It is desired to esti-

mate f (x) for x in some region of interest contained in T =
T ()⊗⋯⊗T (d)

. f is expanded as f (x) = C+∑α fα(xα)+
∑α<β fαβ(xα , tβ) + ⋯, where the terms satisfy side con-
ditions analogous to those in ordinary ANOVA which

guarantee identi�ability, and the decomposition is usually

truncated at some point.�e model is �t by minimizing

the residual sum of squares plus

Jλ( f ) =∑
α

λαJα( fα) +∑
α<β

λαβJαβ( fαβ) +⋯.

�e Jα , Jαβ ,⋯ are composites of penalty functionals on the
individual components and closed form expressions are

available when they are available for the components. As

before, the residual sum of squares may be replaced by the

negative log likelihood and other functionals depending

on yi and f (x(i)). Details may be found in Wahba et al.
() and Gu (), and the R codes assist and gss
are available to �t these models.
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�e idea of smoothing techniques is to identify trends, pat-

terns, relationships and shapes in data without adopting

strong assumptions about the speci�c nature of these.�e

one assumption that is made is that any trends and pat-

terns are smooth. �e term nonparametric is o�en used

in the context of smoothing techniques to distinguish the

methods from parametric modelling where speci�c dis-

tributional shapes (such as normal) or trends (such as

linear) are adopted, leaving only some parameters to be

estimated.

�ere are many situations where smoothing can be

applied and many ways in which it can be implemented.

�is short article will give some simple examples in just

two areas, namely density estimation and regression, and

show how the latter techniques can be used in the context

of wider regression modelling.

Density Estimation
�e histogram is a time-honored way of presenting the

shape of the variation in a set of data in graphical form.

In fact, when the histogram is scaled to have area  it can

be viewed as an estimate of the underlying density function

f (y). However, from that perspective it can be criticized
because of its sharp edges. Instead of building the esti-

mate from rectangular blocks, a kernel density estimate

uses smooth functions, called kernels, in the estimate

f̂ (y) = 
n

n

∑
i=
w(y − yi;h)

constructed from a sample of data {y, . . . , yn}.�e kernel
w(.;h) might conveniently be chosen as a normal den-
sity function with mean  and standard deviation h. It

remains to make a choice of the bandwidth, or smooth-

ing parameter, h which is the equivalent of the bin width

in a histogram. One e�ective means of doing this is to

estimate the optimal value produced by a theoretical anal-

ysis. However, a very simple choice, which can also be very

e�ective, is to use the optimal value associated with a nor-

mal distribution.�at is the solution used in the examples

below.
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�e le� panel of the �gure above shows a histogram

of data on the waiting times between eruptions of the Old

Faithful geyser inYellowstoneNational Park. A kernel den-

sity estimate has been superimposed for comparison.�e

right panel shows the same density estimate along with

estimates produced with larger (short dashed line) and

smaller (long dashed line) degrees of smoothing.

�ese simple principles extend without di�culty to

other types of data, simply by adopting a suitable form of

kernel function. For example, the le� hand panel below

shows a plot of waiting time and the subsequent eruption

time.�e right panel shows the sameplotwith the contours

of a density estimate superimposed. �e kernel function

here is simply a two-dimensional normal density function,

with two smoothing parameters, one for each dimension.

Although the scatterplot clearly shows a cluster of erup-

tions with shorter durations, the density estimate draws

attention to the presence of two clusters in the eruptions

with longer durations. In general, smoothing techniques

such as density estimation can be helpful in identifying

structure which is sometimes obscured by the variation in

the data.
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Silverman () gave one of the �rst discussions of

density estimation, with Scott () focussing on themul-

tivariate case. Wand and Jones () is a source of very
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useful theoretical analysiswhile Simono� () is particu-

larly helpful in its broad coverage and extensive references.

Nonparametric Regression
In the case of regression with a single covariate, smoothing

techniques assume the model

yi = m(xi) + εi

for observed data {(x, y), . . . , (xn, yn)}, where the εi
denote errors terms.�e smooth function m can be esti-

mated in a wide variety of ways. A kernel approach �ts a

standard model, such as a linear regression, but does so

locally by solving the weighted least squares problem

min
α ,β

n

∑
i=

{yi − α − β(xi − x)}w(xi − x;h).

�e solution α̂ provides the estimate. However, there are

many other approaches, many of these based on splines.

For example, 7smoothing splines arise as the solution
of the problem minm∑ni={yi − m(xi)} + λ ∫

b

a
m′′(x)dx.

Regression splines �t amodel which is constructed as a lin-

ear combination of a set of basis functions while penalized

splines place a smoothness penalty on these coe�cients.

�is is a research topic with a large literature. Fan and

Gijbels () and Bowman and Azzalini () describe

the theory and applications of the kernel approach while

Green and Silverman () andRuppert et al. () focus

on spline representations. In broad terms, these di�erent

methods have di�erent approaches but a common aim.�e

method chosen for a particular problem can be a matter of

convenience.
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�e panels above illustrate local linear smoothing on

water quality data, expressed in dissolved oxygen (DO)

at a particular sampling station on the River Clyde near

Glasgow. �e le� hand panel shows DO against time in

years, with little evidence of trend. �e right hand plot

adds a nonparametric regression curve which suggests that

some trend may in fact be present, obscured by the large

degree of variation in the data.�e vector of �tted values

from local linear, and indeed most other, forms of regres-

sion smoothing can be represented in vector–matrix form

as m̂ = Sy, where S is an n × n smoothing matrix.�is lin-
ear structure gives relatively easy access to standard errors

and to the quanti�cation of the level of smoothing through

approximate degrees of freedom, by analogy with standard

linear models.�e right hand panel above has added two

standard errors on either side of the nonparametric regres-

sion line, to indicate the precision of estimation. Bias is

an inevitable consequence of smoothing so this cannot be

strictly interpreted as a con�dence band.

�e two panels below show DO against temperature

and Salinity on a log scale. Here the patterns are close to

linear and the suitability of this model can be assessed by

displaying a reference band around the linearmodel, based

on two standard errors of the di�erence between a linear

and a nonparametric model. Linearity looks reasonable for

temperature but less so for Salinity.
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�e plots above were created by specifying the level of

smoothing through the approximate number of degrees of

freedom ().�e level of smoothing can also be chosen in

a data-adaptive manner, through principles such as cross-

validation or AIC.

�ese methods of nonparametric smoothing can be

adapted to a wide variety of situations, such as more than

one covariate or other types of response data.

Additive Models
Smoothing techniques can be built into widermodels, par-

ticularly where several covariates are involved. An attrac-

tive framework is provided by additive models, described

byHastie and Tibshirani () with an updated treatment

by Wood (). Here, the regression model is de�ned as

yi = α +m(xi) + . . . +mp(xpi) + εi

for covariates x, . . . , xp. Each covariate xj is allowed to

in�uence the response variable through its own regression

function mj, which may be nonparametric but could in

fact be linear or some other standard form.�e back�tting
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algorithm provides a means of �tting this type of model

through the iterations de�ned by

m̂
(r+)
j = Sj

⎛
⎝
y − α̂ −∑

k<j
m̂

(r+)
k

−∑
k>j
m̂

(r)
k

⎞
⎠
.

At each stage, the regression function mj is estimated

by smoothing the partial residuals by Sj, the smooth-

ing matrix associated with covariate j. For identi�ability,

the constraint that each component sums to  over the

observed covariate values should also be added.
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�e panels above illustrate an additive model for the

Clyde data. Instead of examining the e�ects of the covari-

ates separately, they are combined into a single model

which estimates the e�ects of one covariate while adjust-

ing for the e�ects of the others.�is much more powerful

description now shows a much clearer time trend. �e

e�ects of temperature and salinity remain broadly linear

but some unusual behavior is evident at high temperature

and high salinity.

Bowman () gives a more extended discussion of

this example, using a di�erent sampling station on the

Clyde while McMullan et al. () develop a more com-

plex model for the whole river.
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Social Networks
Social Network Analysis is concerned with the study of

relations between social actors. Examples are friendship

between persons, collaboration between employees in a

�rm, or trade between countries.�e relation is regarded

as a collection of dyadic ties, i.e., ties between pairs of

actors. In most cases, data collection is either sociocentric,

where a given group of actors is speci�ed (in the examples

this could be, e.g., a school class, a department of the �rm,

or all countries in the world), and all ties of the speci�c

kind between actors in this group are considered; or ego-

centric, where a sample of actors is taken, and all ties of the

sampled actors are considered. Other types of data collec-

tion exist, of which snowball sampling is themain example.

�e most interesting contributions of network analysis are

made by considering indirect ties – in the sense that the

way in which actors i and j are tied is better understood

by considering the other ties of these two actors. Informa-

tion about these is obtainedmuch better from sociocentric

than from egocentric approaches. �erefore, this article

considers only statistical models for sociocentric network

data.

�e �rst step for the collection of sociocentric network

data is to de�ne the relation and the group of actors.�is

group will usually be treated as an isolated group, and any

ties outside this group are disregarded.�is is called the

network boundary problem. An overview of methods for

collecting network data is given by Marsden ().

Notation
�e group of actors is denoted by N = {, . . . ,n}. Rela-
tions under study o�en are directed, which means that the

tie i→ j is distinct from the tie j→ i.�e relation can then
be represented by a nonre�exive directed graph (digraph)

onN or, alternatively, by an n× n adjacency matrix with a
structurally zero diagonal.�e actors i ∈ N are the nodes
of the graph.�e adjacency matrix y = (yij) indicates by
yij =  or yij = , respectively, that there is a tie, or there
is no tie, from actor i to actor j.�e nonre�exivity means

that self-ties are not considered, so that yii =  for all i.�e
variables yij are referred to as tie variables. If the network

is nondirected, the representation is by a simple graph,

or a symmetric adjacency matrix. Models for social net-

works in this article will be random graphs or digraphs and

denoted by Y.

Exponential Random Graph Models
Exponential families of probability distributions for graphs

or digraphs are usually called Exponential Random Graph

Models or ERGMs. �e �rst model of this kind was the

so-called p model proposed by Holland and Leinhardt

(). In this model the symmetrically positioned pairs

(Yij,Yji) are assumed to be independent.�is very restric-
tive assumption was li�ed in the de�nition by Frank and

Strauss () ofMarkov graphs.�is model can represent

tendencies toward transitivity. It postulates that edge indi-

cators Yij and Yhk, when i, j, k,h are four distinct nodes,

are independent conditional on the rest of the graph,

i.e., conditional on the collection of tie indicators Yrs for

(r, s) ≠ (i, j), (r, s) ≠ (h, k). For non-directed networks
with distributions not depending on the node labels, they

proved that this property holds if and only if the probability

distribution for Y can be expressed as

Pθ {Y = y} = exp(∑
h

θhzh(y) − ψ(θ)), ()

where the zh(y) are functions of y each of which can be
either the number of k-stars embedded in the graph y (for
some k,  ≤ k ≤ n− ) or the number of triangles embedded
in y.�ese are the statistics Sk and T de�ned by

S(y) =∑≤i<j≤n yij number of edges

Sk(y) =∑≤i≤n (yi+
k
) number of k-stars (k ≥ ) ()

T(y) =∑
≤i<j<h≤n yij yih yjh number of triangles.

�e Markov model was generalized by Frank ()

and Wasserman and Pattison () to the Exponential

Random Graph Model, in which the statistics zh(y) in ()
can be any functions of y and of covariates. Markov chain
Monte Carlo (MCMC) methods (see 7Markov Chain
Monte Carlo) for parameter estimation for thismodel were

proposed by Snijders (). Some interesting properties

of this model are discussed by Robins et al. (). It

appeared in applications, however, that in most cases the

Markov model is not plausible as a model for transitivity.

An model speci�cation with more appropriate choices of

the functions zh(y) was proposed in Snijders et al. (),
and this has turned out to be a very useful model for

representing empirically observed networks.
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�is model can represent dependencies between tie

variables Yij in a reasonable manner. It can be used when

the representation of these dependencies (transitivity, hier-

archy, brokerage etc.) is an aim in itself; but also when the

dependencies are a nuisance and the aim of the statistical

analysis is the dependence of tie variables on covariates.

Latent Structure Models
Another way to represent dependencies between tie vari-

ables is to postulate a latent space of which the nodes are

elements, and which probabilistically determines the ties.

�is is an application of the ideas of Latent Structure Anal-

ysis (Lazarsfeld and Henry ), and closely related to

Latent Class Analysis.�e tie variables Yij – or sometimes

the dyads (Yij,Yji) – then are assumed to be conditionally
independent given the latent structure.

Various latent space models have been proposed.

● A discrete (categorical) space, where the nodes have

‘colors’ and the distribution of the dyad (Yij,Yji)
depends on the colors of i and j: see Nowicki and

Snijders ().

● A general or Euclidean metric space, where the proba-

bility of a tie Yij =  depends on the distance between
nodes i and j: see Ho� et al. ().

● An ultrametric space, where the probability of a tie

Yij =  depends on the ultrametric distance between
nodes i and j: see Schweinberger and Snijders ().

● A partially ordered space, where the probability of a tie

Yij =  depends on how i and j are ordered: see Mogapi
().

Compared to Exponential Random Graph Models, these

models have less �exibility to represent dependence struc-

tures between tie variables, so that they will usually achieve

a less satisfactory goodness of �t. However, the representa-

tion of the nodes in the latent space can o�en provide an

illuminating representation in itself and may be regarded

as a helpful type of data reduction.

Longitudinal Models
Models for longitudinally observed networks were pro-

posed by Snijders (). �e most usual observational

design is a panel design, where the observations of the

network are Y(t), . . . ,Y(tM) for observation moments
t, . . . , tM (M ≥ ). A �exible class of models for panel data
on networks can be obtained by assuming that the data

aremomentary observations of a continuous-timeMarkov

process (see 7Markov Processes), in which each tie vari-
ableXij(t) develops in stochastic dependence on the entire
network X(t). An actor-based model is o�en plausible,

where tie changes are based on hypothetical choices of the

actors. Such a model can be de�ned by the following steps,

formulated in such a way that they can easily be repre-

sented by a computer simulation model. To obtain a parsi-

moniousmodel, it is assumed that only one tie variable can

change at any givenmoment.�emodel is characterized by

so-called rate functions λi(y) and objective functions fi(y),
de�ned on the set of all digraphs.

. �e current state of the network is denoted y.
. �e time until the next change is an exponentially dis-

tributed waiting time, with an expected duration of

/λ+(y) where λ+(y) = ∑i λi(y).
. When this change occurs, the probability that an out-

going tie variable Yij of actor i can be changed, is

λi(y)/λ(y).
. If actor i can change on outgoing tie variable, the set of

new possible states of the network is

C(y) = {y′ ∣ y′hk ≠ yhk only for h = i,
and for at most one k} .

�e probability that the new state is y′ is

exp (fi(y′))
∑y′′∈C(y) exp ( fi(y′′))

.

�e model speci�cation is done in the �rst place by the

appropriate de�nition of the objective function. �is is

usually speci�ed as a linear combination,

fi(β, y) =∑
k

βk ski(y) . ()

�e functions ski(y) represent ways in which the cre-
ation andmaintenance of ties depend on currently existing

ties, e.g.,

sik(, y) =∑
j
yij (outdegree)

∑
j
yij yji (reciprocated ties)

∑
j,k

yij yjk yik (transitive triplets),

and they can also depend on combinations of network

structure and covariates.

For this model, estimation procedures and algorithms

according to a method of moments were proposed by

Snijders (), Bayesian procedures by Koskinen and

Snijders (), and an algorithm formaximum likelihood

estimation by Snijders et al. ().

�is model was generalized to a model for the simul-

taneous dynamics of networks and actor characteristics
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(“networks and behavior”) by Snijders et al. (). Sta-

tistical procedures for this model are available in the

R package RSiena.
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Social statistics is one of the largest domains of mod-

ern statistical science and practice, the subject of which

is the exposure and study of regularity for formation and

alteration of social phenomena with statistical techniques.

It has grown and developed at the borders of other

sciences (7demography, economics, political science, phi-
losophy, ethics, and psychology) as the discipline that

integrates statistical resources and bases of humanitarian

information studying human beings and society. It gained

intensive development in the 
th
and 

th
centuries as a

science studying social dynamics, which was initiated in

the United States by Russian-American sociologist Pitirim

Sorokin, although the �rst record of it one can �nd in

ancient origins at the beginning of AD.

Social statistics operates with the branched system

of indicators characterizing standards of life and human

activities and further groups of people, public societies,

nations, and civilizations, their evolution and structure,

ways and standards of life, households, culture, education,

moral, and human values, freedoms, rights, etc.

In contrast to many other statistical disciplines, its

main emphasis is on the study of quantitatively immea-

surable indicators as most common in social science.
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It also scrutinizes and forecasts unobservable and non-

registering “shadow,” illegal, and informal social phenom-

ena, by means of analysis techniques of social projects and

doctrines, votes, and elections in particular.

In its work, along with the methods of sample sur-

veys and7public opinion polls, social statistics extensively
applies special methods, among which are various meth-

ods of multivariate factor analysis, cluster analysis (see

7Cluster Analysis: An Introduction), and latent analysis.
�e particular classes are the methods of social model-

ing and managerial social analysis, on the basis of which

a new section of modern statistics, called sociometrics

evolved.

At present time, social statistics is positioned as an

instrument of the application of its methods and informa-

tion about social sciences, the main aim and product of

which is qualitativemeasurement of social andwidely spir-

itual aspects ofmaterial production and their integration as

superior values and achievements of modern society into

the socio-economic context.

�ere are an extensive collection of models, not only

for common but also for applied social changes, in partic-

ular, the dynamics of climate change, epidemics, catastro-

phes, health care and diseases, crime, cloning, psycholog-

ical and psychotropic conspiracies and wars, application

of up-to-date and specialized computer and mathematical

methods in demographics, medicine and sanitary statis-

tics, as well as in biology, anthropology and other related

sciences.

Social statistics also develops as social groups statis-

tics, in particular poverty statistics, behavioral statistics,

i.e., behavior of people in the exotic environment, statis-

tics of crime, statistics of fair competition, and statistics on

globalization and mass protests.

Another area is a statistics of interethnic con�icts and

wars, terrorism, crisis and anthropogenic catastrophes,

which threaten the existence of world civilizations.

Social statistics is formed on the basis of sampling sur-

veys and public opinion polls; it actually relies upon opin-

ions about facts rather than on the facts themselves, it char-

acterizes mainly feedback, original responses to events in

the surrounding world, rather than the events themselves.

Without reliable criteria of estimation for data quality.

Social statistics and its indicators, where applicable, require

preliminary veri�cation of their results and publications as

they are least of all true and acceptable.

Main Social Statistics Centers:

● Harvard Institute for Quantitative Social Science

● Inter-University Consortium for Political and Social

Research

● Social Statistics Division, School of Social Sciences, Uni-

versity of Southampton, UK

● Social Statistics Research Group, University of Auckland,

New Zealand

● UN Statistics Division - Demographic and Social Statis-

tics

● Organization for Economic Co-operation and Develop-

ment (OECD)
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Introduction
Statistics and sociology have a strong relationship that goes

back several centuries. As new social theories andmethods

have been developed, statistics has responded by develop-

ing appropriate statistical methods. Also, sociologists have

been quick adopting new statistical methods not neces-

sarily developed with them in mind.�e same is also the

case with other social sciences such as political science,

economics and psychology.

A few social sciences have reliedmore on statistics than

others. Perhaps, the heaviest user of statistics has been eco-

nomics, and the uses of statistics there have led to their

own branch of statistics known as econometrics. With the

abundance of economic data, econometrics has led to new

uses of regression analysis. In turn, econometrics has been

adopted by other social sciences, such as sociology and

psychology.

Psychology is another social science where statistics

has led to its own branch of statistics known as psy-

chometrics. Psychology has an abundance of scores on
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tests administered to college students and people seeking

employment as well as psychiatry trying do diagnose peo-

ple with suspected mental disorders.�e most well known

statistical methods in psychometrics is known as factor

analysis of various kinds.

�e abundance of survey analysis with the uses of

questionnaires (see 7Questionnaire) in sociology would
not have been possible without modern statistical sam-

pling methods. Needs of sociology have led statisticians

to develop sampling methods such as strati�ed sampling,

7cluster sampling and other sampling procedures. In turn,
this has spilled over into the uses of samplingwhen the goal

is obtain a complete 7census of some population. One of
the leading organizations in the development of modern

sampling methods for the collection of social science data

has been the United States Bureau of the Census.

Sampling Theory
Sociologists, as well as others, have long collected data on

individuals to study how people feel about issues of the

day. In addition, political scientists have used sample sur-

veys to try to predict outcomes of elections to be held

sometime in the future. One of the most famous examples

of such a prediction being wrong took place during the

presidential election in the United States in . On the

night of the elections many surveys showed that�omas

E. Dewey had won and the incumbent Harry S. Truman

had lost the election. Instead, Truman woke up the next

day and found he had been elected president for the next

four years. Another famous example took place during the

US presidential election of  when a well-known pub-

lication predicted on the basis of their poll that Governor

Alf Landon would win the election. Instead, Franklin D.

Roosevelt won almost two thirds of the popular vote that

year and went on to win the next two elections as well.

What went wrong in both of these two cases was that

statisticians had not stressed hard enough is that in order to

generalize from a sample to a larger population, the sample

must have been selected according to proper random sta-

tisticalmethods. In  the samplewas drawn from lists of

people who owned cars. But this was in the middle of the

economic depression years, and only reasonably wealthy

people owned cars while most people without cars voted

for Roosevelt. In  George Gallup and others made use

of the so-called quota sampling method. Each interviewer

was told to go out and select respondents in such a way that

the sample would re�ect the population on characteristics

such as gender and age. But that way interviewers would

miss people who worked during o� hours like a night shi�

at a factory and slept during the daytimewhen interviewers

were seeking people with the right characteristic to satisfy

the quotas they were given. An occasional survey still uses

quota sampling for the selection of respondents, in spite

of the well-known shortcomings of quota sampling.�ese

days it is much more common to chose respondents by

making a random selection of telephone numbers and dial

those numbers.

Demography
For centuries, states have wanted to count the number of

inhabitants for tax andmilitary purposes. For this purpose,

the German word Statistik was introduced more than two

hundred and ��y years ago to denote matters of state, and

the word probably comes from the Latin word Statisticum.

In principle, a census does not require the use of statistical

methods, but it is very di�cult to take an accurate census

without the use of sampling to count people who otherwise

would be hard to include in the �nal count.

Simultaneous Structural Equations
�e analysis of complex sociological models has led to

generalizations of simple regressions models to models

involving several regression equations where the param-

eters in all the equations are estimated at the same time.

�is formulation of a model has led both statisticians

and sociologists to fruitful collaborations on how to esti-

mate the parameters and how to interpret the estimates.

�e estimation procedure has moved from ordinary least

squares estimation to what is known as two-stage and even

three-stage estimation, depending upon the model.�is is

a case where theoretical work by economists have made

major contributions to statistical theory and major uses in

sociology.

Such models also go under the name of causal analy-

sis or path analysis. Path analysis seems to have originated

in biology around , and it caught on in sociology in

the ies. A leading person in this �eld was the sociol-

ogist Hubert Blalock, perhaps best known for his famous

textbook Social Statistics in addition to his writings on

causal models. Causal modeling using path analysis has

lost some of its attraction a�er people realized that estab-

lishing causality using statisticalmodels did not necessarily

lead to truly causal connections between variables.

Contingency Table Analysis
Much of the data in sociology consist of nominal (qual-

itative) variables such as gender (female, male), religious

a�liation (protestant, catholic, Muslim, Jewish, etc.) and

others. Because there are no meaningful numerical values

attached to these categories, such data cannot be analyzed
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by using means, standard deviations, single or multiple

regression, etc. Instead, perhaps the best-known and old-

est statistical method for the analysis of the relationship

between two such variables is the chi-square analysis. It is

based on the di�erence between the observed frequencies

and expected frequencies computed as what the frequen-

cies would have been if there were no relationship between

the two variables.

A more recent development is the multivariate chi-

square analysis for more than two categorical variables.

�is permits the study of interaction e�ects of the indepen-

dent variables onto the dependent variable. Also,7logistic
regression has become popular for the case where the

dependent variable has only two values. Finally, the use of

7dummy variables for quantitative variables have become
possible using so�ware so designed. Any quantitative vari-

able with k di�erent categories can be represented by

k −  dummy variable, each having values of  and . With
the data in this form it is possible to use ordinary linear

regression for the study of the relationship between the

dependent and the independent variables.

Conclusion
�e empirical part of sociology could not exist without

the use of statistics. Statistics has become an integral part

of empirical sociological research. Any randomly cho-

sen issue of a major sociological journal will have several

articles making using of data analysis and statistics.

At one time it looked as if mathematics could play a

similar role for sociology, but that e�ort has not paid o�

the way it was hoped.�is takes us back to the importance

of statistics for sociology. However, a major obstacle is that

most sociologists lack the necessary background in statis-

tics, partly due to the fact that they do not know enough

mathematics to fully understand the statistical methods

they are using. Similarly, most statisticians lack the knowl-

edge of sociology needed to understand what statistical

methods sociologists need. A few people have been able to

bridge this gap, but most sociology students, even sociol-

ogy graduate students, see the study of statistics as a hard

task, perhaps mostly because statistics for sociologist has

not been taught very well.
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Introduction
A spatial point pattern is a set of data consisting of the loca-

tions, xi : i = , . . . ,n, of all events of a particular kind
within a designated spatial region A. Typically, the pattern

is assumed to be the outcome of a stochastic point process

(see 7Point Processes) whose properties are of scienti�c
interest.

An example would be the locations xi of all trees in

a designated region within a naturally regenerated forest.

�e observed pattern could be the result of a complex

mix of natural processes. For example: regeneration from

seedlings around the base of a mature tree could produce

clusters of young trees; variation in soil fertility could pro-

duce patches of relatively low and high intensity of regener-

ation; competition for limited nutrient or light could lead

to a spatially regular pattern is which only the dominant

member of a cluster of seedlings survives.
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Complete Spatial Randomness
�e simplest statistical model for a spatial point process

is the homogeneous Poisson process (see 7Poisson Pro-
cesses). One of several possible de�nitions of this process

is that:

. �e number of points in any planar region A follows a

Poisson distribution with mean λ∣A∣, where ∣ ⋅ ∣ denotes
area and the parameter λ >  is the intensity, or mean
number of points per unit area.

. �e numbers of events in any two disjoint areas are

independent.

Properties () and () imply that, conditionally on the

number of points inA, their locations forman independent

random sample from the uniform distribution on A.

Models
�e Poisson process provides a standard of complete spa-

tial randomness, but is inadequate as amodel formost nat-

urally occurring phenomena. As would be the case in our

hypothetical forestry example, we need models to describe

a response to an inhomoegeneous environment, or a ten-

dency for points either to cluster together or to inhibit the

occurrence of mutually close sets of points.

To model a response to an inhomogeous environment,

a �rst possibility is to replace the constant intensity λ by

a function λ(x). In practice, this is only useful if we can
model λ(x) as a function of spatially referenced explana-
tory variables, for example height above sea-level. In the

absence of such information, we can treat λ(x) as a reali-
sation of an unobserved stochastic process, so de�ning the

class of Cox processes (Cox ).

�e �rst, and still widely used, model for clustering of

points is the Neyman–Scott process (Neyman and Scott

), in which parents form a homogeneous Poisson pro-

cess and each parent generates a family of o�spring that

are spatially dispersed around their parent. Bartlett ()

showed that in some cases the resulting process is indis-

tinguishable from a Cox process; speci�cally, a process in

which family sizes are independent Poisson variates and

the positions of o�spring relative to their parents are an

independent random sample from a bivariate distribution

with density f (⋅) is also a Cox proicess with stochastic
intensity proportional to ∑∞

i= f (x − Xi), where the Xi are
the points of a homogeneous Poisson process.

�e most widely used model for an inhibitory pro-

cess is a Markov point process (Ripley and Kelly ).

A Markov point process can be de�ned by its likelihood

ratio with respect to a Poisson process with intensity

λ = . A useful sub-class of such processes is the pair-

wise interaction process, in which the likelihood ratio for

a realization X = {xi : i = , . . . ,n} is

ℓ(X ) = β
n∏
j≠i
h(∣∣xi − xj∣∣),

where ∣∣ ⋅ ∣∣ denotes distance, h(⋅) is an interaction function
and β >  determines the intensity of the process. A suf-
�cient condition for validity of the model is that h(⋅) is
inhibitory, meaning that  ≤ h(u) ≤  for all u.�e case
h(u) =  yields a homogeneous Poisson process.

Inference
Until relatively recently, likelihood-based inference was

considered intractable for most spatial point process

models. Instead, sensible ad hoc methods based on

functional summary statistics were used. �ese included

so-called nearest neighbor methods and moment-based

methods (Ripley ). Recent developments in Monte

Carlo methods of inference have made likelihood-based

inference a feasible, albeit computationally intensive, alter-

native (Møller and Waagepetersen ).

General accounts of statistical models andmethods for

spatial point pattern data include Diggle () and Ilian

et al. ().
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Introduction
Spatial statistics is concerned with modeling and analysis

of spatial data. By spatial data wemean datawhere, in addi-

tion to the (primary) phenomenon of interest the relative

spatial locations of observations are recorded, too, because

these may be important for the interpretation of data.�is

is of primary importance in earth-related sciences such as

geography, geology, hydrology, ecology and environmental

sciences, but also in other scienti�c disciplines concerned

with spatial variations and patterns such as astrophysics,

economics, agriculture, forestry, epidemiology and, at a

microscopic scale, medical and health research.

In contrast to non-spatial data analysis, which is con-

cerned with statistical modelling and analysis of data

which just happen to phenomena in space and time, spatial

statistics focuses on methods and techniques which con-

sider explicitly the importance of the locations, or the spa-

tial arrangement of the objects being analysed.�e basic

di�erence from classical statistics is that in spatial statistics

we are concerned with non-independence of observations.

In spatial problems, observations come from a spa-

tial random process Z = {Z(s) : s ∈ S}, indexed by a
spatial/spatiotemporal set S ⊂ Rd, with Z(s) taking val-
ues in some state space.�e positions of observation sites

s ∈ S are either �xed in advance or random. Typically,
S ⊂ R, the study of spatial dynamics adds a tempo-
ral dimension, i.e., S ⊂ R × (,∞). However, S could
also be one-dimensional (e.g., �eld trials along transect

lines) or a subset of R (oil and mineral prospection, D
imaging). In some �elds such as Bayesian data analysis

and simulation one even requires spaces S of dimension

d≥ , this pertains, in particular, to the design and analysis
of computer experiments with a moderate to large num-

ber of input variables. Comprehensive treatments of the

whole �eld of spatial statistics are given in Ripley (),

Cressie () and Gaetan and Guyon (). Statisti-

cal Methods for spatio-temporal systems are given in

Finkenstädt et al. ().

Basically, there are four classes of problems which

spatial statistics is concerned with: point pattern analy-

sis, geostatistical data analysis, areal/lattice data analysis

and spatial interaction analysis. �ese subproblems are

treated separately in a number of papers in this volume:

Mase (), Kazianka and Pilz (), Vere-Jones (),

Diggle () and Spöck and Pilz ().�erefore, in this

paper we limit ourselves to a brief overview over the areas

comprising spatial statistics.

For a good overview on so�ware for di�erent problem

areas of spatial data analysis we recommend the book by

Bivand et al. (), for the important issue of simulation

of spatial models we refer to Lantuéjoul () and Gaetan

and Guyon ().

Geostatistics
Here, S is a continuous subspace of Rd and the random
�eld is observed at n �xed sites {s, . . . , sn} ⊂ S. Typical
examples include rainfall data, data on soil, characteristics

(porosity, humidity etc.), oil and mineral exploration data,

airquality and groundwater data a.s.o. For d ≥  the ran-
domprocessZ = {Z(s) : s ∈ S} is usually termed a random
�eld.�e mathematical structure and the most important

properties of random �elds are described in Moklyachuk

().

�e concept of stationarity is key in the analysis of

spatial and/or temporal variation: roughly spoken, station-

arity means that the statistical properties. (e.g., mean and
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variance) of the variable of interest do not change over

the considered area. However, testing for stationarity is

not possible. For spatial prediction the performance of a

stationary and a nonstationary model could be compared

through assessment of the accuracy of predictions.

�e random �eld is characterised by its �nite dimen-

sional distributions P(Z(s) ≤ z, . . . , Z(sn) ≤ zn) for
all n ∈ N and sj ∈ S; j = , . . . ,n. If all these distri-

butions are Gaussian then Z is called a Gaussian ran-
dom �eld (GRF). A GRF is completely determined by its

expectation (trend function) m(s) = E(Z(s)) and covari-
ance function C(s, s) = Cov(Z(s),Z(s)). Contrary to
traditional statistics, in a geostatistical setting we usually

observe only one realization ofZ at a �nite number of loca-

tions s, . . . , sn.�erefore, the distribution underlying the

random �eld cannot be inferred without imposing further

assumptions.�emost simple assumption is that of (strict)

stationarity, which means that the �nite dimensional dis-

tributions do not change when all positions are translated

by the same (lag) vector h, i.e., (Z(s), . . . ,Z(sn)) and
(Z(s + h), . . . ,Z(sn + h)) are identically distributed for
all n ∈ N and locations sj ∈ S; j = , . . . ,n. For a GRF
this implies that m(s) = const for all s ∈ S, and C(s, s)
= C(s − s) for all s, s ∈ S. For arbitrary RF’s, the invari-
ance of the �rst two moments is denoted as the property

of weak stationarity. In geostatistics it is common to use

the so-called semi-variogram γ(s, s) = . ∗ Var(Z(s +
h)−Z(s)) instead of the covariance function and to assume
intrinsic stationarity: m(s) = const and γ(s, s + h) =
γ(h) for all s,h ∈ S. If Z(⋅) is weakly stationary then
γ(h) = C() − C(h). Weak stationarity implies intrinsic
stationarity, the converse is not true.

For d = , however, intrinsic stationarity is equiva-
lent to weak stationarity of the �rst order di�erences of

the underlying random process, a well-known fact from

time series analysis. For an intrinsically stationary RF the

semi-variogram has the important property of conditional

negative de�niteness, i.e.,

Var(aZ(s) + . . . + anZ(sn)) = −
n

∑
i=
∑
j/=i
aiajγ(si − sj) ≥ 

for all n ∈ N and real numbers a, . . . , an such that∑ ai = .
�is is the reason why one usually employs parametric

models (e.g., spherical, exponential, Gaussian or Matérn

models) for �tting variogram functions to the data. More-

over, �tting is o�en done under the additional assump-

tion of isotropy: γ(h) = γ(∣h∣), ∣h∣ = length of h ∈ S.
For “classical” estimation methods for variogram param-

eters see Mase (), for Bayesian approaches we refer to

Banerjee et al. () and Kazianka and Pilz (). For

non-stationary variogrammodeling we refer to the review

provided by Sampson et al. () and Schabenberger and

Gotway ().

Now, let us step to predicting Z at an unobserved loca-

tion s ∈ S, based on the observations Z:= (Z(s), . . . ,Z
(sn))T , such that the mean squared error of prediction
(MSEP) E[Z(s) − Ẑ(s)] is minimized. For a GRF, the
optimal predictor is known to be the mean of the condi-

tional distribution of Z(s) given the data:

Ẑ(s) = E(Z(s)∣Z) = E(Z(s)) + cTK−(Z − E(Z)) ()

where the vector c has elements C(s − si); i = , . . . ,n;
and K is the covariance matrix of the observations. For

non-GaussianRF’s, the predictor () is the best linear unbi-
ased predictor (BLUP). Inserting the optimal estimators

for EZ(s) and E(Z) into  we get various forms of Krig-
ing predictors: assuming EZ(s) = m to be constant we get
ÊZ(s) = m̂ = (TK−Z)/(K−Z) and E(Z) = m̂, where
 denotes the n-vector of one’s, and this is known as the
ordinary Kriging predictor. For non-constantm, assuming

a linear regression setup for m(s), one arrives at the uni-
versal Kriging predictor. Clearly, for non-Gaussian data,

the best predictor w.r.t. MSEP is no longer linear in the

observations. Comprehensive accounts of “classical” linear

and nonlinear geostatistics are given in Chilés andDel�ner

() and Webster and Oliver ().

In a Bayesian setting, assuming a prior distribution for

the covariance parameters, one has to determine the pre-

dictive density of Z(s)∣Z via the posterior distribution of
the covariance parameters given Z, fromwhich an optimal
predictor and the associated uncertainty can be derived.

For non-Gaussian data, the framework of generalized lin-

ear models or the copula framework can be used to arrive

at optimal predictors (see Banerjee et al. (), Diggle and

Ribeiro () and Kazianka and Pilz ()).�is exten-

sion of the classical geostatisticalmethodology has become

known under the heading of model-based geostatistics.

Concerning so�ware for geostatistical analysis, we rec-

ommend the freely available R-packages “gstat,” “geoR,”

“geoRglm” and the functions contained in the R-library

“intamap.” For spatio-temporal analysis and prediction of

environmental processes we refer to Le and Zidek ()

where also so�ware is being described. For geostatistical

space-timemodels particular care is needed for combining

spatial and temporal variables (separability versus non-

separability), a thorough treatment of this issue is given in

Gneiting et al. (). A very exciting new development

has been opened by Rue et al. () who consider approx-

imate Bayesian inference in latent Gaussian models, using

an integrated nested Laplace approximation (INLA).�is
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approach o�ers computational advantages, the approxi-

mations are accurate and orders of magnitude faster than

MCMC algorithms, and its generality also allows the com-

putation of various predictive measures for doing model

comparisons.

Point Process Analysis and Random Sets
By a (spatial) point process (PP) or point pattern we mean

a random, locally �nite collectionZ = {s, s, . . .} of points
si ∈ S ⊂ Rd such that si /= sj for i /= j. Here, locally �nite
means that the number of points is �nite in each bounded

subset of S.�e process is said to bemarked if at each site si
we additionally record a (random) value, for example the

length of the material cracks, height or diameter of plants,

intensity of earthquakes a.s.o. For statistical analysis, the

process is observed in a windowW ⊂ S leading to a real-
ization z = {s, . . . , sn} with a random number n = n(z)
of points si ∈ S.�us, contrary to geostatistical data anal-
ysis, in point pattern analysis the set of observation sites

{s, . . . , sn} is random, along with the number of sites n.
7Point processes are important in a variety of appli-

cations, in ecology and forestry (spatial, spatiotempo-

ral distribution of plant/animal species), epidemiology

(location of sick individuals, spatiotemporal spread of

diseases), seismology (earthquake epicenters), materials

science (locations of cracks and porosities), biology and

medicine (centers of cells/tumours in histological sec-

tions), crime scene analysis (locations and intensities of

burglaries) etc.

�e probabilistic theory of PP’s is quite technical and

requires a good knowledge of measure theory, for a good

introductory account we refer to the review articles by

Møller and Waagepetersen (), Vere-Jones () and

Diggle ().

�e PP Z is characterized through the �nite-dimen-
sional distributions (N(B), . . . ,N(Bk)) for all k ∈ N and
bounded subsets B, . . . ,Bk inRd, where the random vari-
able N(Bi) counts the number of points in Bi.�e point
pattern is called stationary, i� its �nite-dimensional distri-

butions are invariant under translations, and isotropic i� all

these distributions are invariant under rotations.

One of the major problems is to �nd out whether a

given point pattern can be considered as completely ran-

dom, or if there is a tendency to clustering or to some

“regularity.” As the reference model for “no interaction

between points” or “complete spatial randomness (CSR)”

the Poisson Process (see7Poisson Processes) is chosen (cf.
Diggle ).

In general the mean structure of the count variables

is modelled by a non-negative intensity function λ(⋅)
such that µ(B) := ∫B λ(s)ds for all B in Rd. Here the

interpretation is that λ(s)ds is the probability that there
is precisely one point in the ball with center at s and

area/volume ds. Likewise, the second order moment mea-

sure µ(A × B) := E{N(A)N(B)} is modelled by a sec-
ond order product density λ such that µ(A × B) =
∫
A
∫
B

IA×B(u, v)λ(u, v)dudv. For a Poisson PP one then

has: µ(a × B) = µ(A)µ(B), λ(u, v) = λ(u)λ(v).
�e tendency of attraction or repulsion between points

can be characterized by the so-called pair correlation func-

tion g(u, v) := λ(u, v)/[λ(u)λ(v)]. If points appear
independently from each other then we have λ(u, v) =
λ(u)λ(v) and thus g(u, v) = . �us, there is attraction
between points ofZ at locations u and v i� g(u, v) >  and
repulsion i� g(u, v) < .

�e characterization of point patterns becomes rela-

tively easy in case of stationarity and additional isotropy.

�en λ(u) = λ = const, λ(u, v) = λ(∣u − v∣),
g(u, v) = g(∣u − v∣) and it su�ces to work with the so-
called K-function K(r) = (/λ)E {number of extra points
within distance r of a randomly chosen point}.�is takes

the form

K(r) = (νd/λ
)∫

r


u
d−

λ(u)du

where νd stands for the surface area of the unit sphere in

Rd. For the Poisson PP inR, for example, we have K(r) =
πr. We remark, however, that second order moments and

the related K function describe the dependence in point

patterns only partly, i.e., the visual appearance of two point

patterns may be di�erent even if their �rst and second

order moments are the same.�erefore, other features are

considered as well, in particular the empty space function

Fs and the nearest neighbour function Gs. �e former is

de�ned as Fs(r) = P(N(b(s, r)) > ), where b(s, r) is the
ball with radius r >  and centered at a �xed location s ∈ Rd

(not necessarily s ∈ Z). For a stationary PP the function Fs
does not depend on s.�e function Gs is the distribution

function of the distance of a given point s ∈ Z to its near-
est neighbour in Z , i.e., Gs(r) = P(N(b(s, r) > ∣s ∈ Z).
For the sake of comparison, the functions F and G are

compared to those of a homogeneous Poisson (constant

intensity) PP, for which F(r) =  − exp(−λ∣b(, r)∣) =
G(r), r > . Popular models of processes with dependence
between points include theCox PPs (less regular than Pois-

son PPs) and the Gibbs PPs (more regular than Poisson

PPs).�e Cox-process is de�ned by a two-stage model Z∣ζ
with random intensity µ(B) = ∫ ζ(s)ds where ζ is a latent

(non-observable) non-negative random �eld. For exam-

ple, Z describes the (random) locations of the plants and
ζ models the random environmental conditions at these
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locations.�erefore, a Cox process is o�en termed a “dou-

bly stochastic” Poisson PP (Poisson PPwith random inten-

sity). Assuming log ζ(⋅) to be a Gaussian RF leads to the
widely used log-Gaussian Cox process: log ζ(s) = g(s)Tβ +
ε(s), g(s) includes the covariates, β is a parameter vector

modeling (random) e�ects and ε(s) is a centered Gaus-
sian RF. Choosing ζ(s) = λ∑

i
k(s − si), where {s, s, . . .}

form a stationary Poisson PP and k(⋅) is a density on S cen-
tered at si ∈ Rd, we arrive at a so-called Neyman–Scott
process. �is way clustering tendencies can be modelled

interpreting the points si as cluster centers (positions of

parents) around which clusters with random numbers of

descendants (children) are formed. Various special cases

arise with particular choices of the density function k(⋅),
choosing e.g., a Gaussian density results in a�omas PP.

�e class of Cox models allows for many generalizations

of�omas and Neyman–Scott processes: di�erent spatial

con�guration of the parents PP, interdependence (compe-

tition) and nonidentical distribution for children (variable

fertility of parents) etc., all leading to aggregated PPswhich

are less regular than the Poisson PP.

One way to “regularize” a spatial point pattern is to

disallow close points. �is is appropriate for modeling

situations such as tree distributions in forests and cell dis-

tributions in cellular tissues.�esemodels are special cases

of Gibbs models which are conditionally speci�ed through

the probabilities that there is a point at location s given

the pattern on Rd ∖ {s}: λ(s∣z)ds := P(N(b(s,ds)) =
∣Z ∩ (Rd ∖ {s}) = z).�e conditional intensity λ(s∣z) is
usuallymodelled through some energy functionalU(s, z) :
λ(s∣z) = exp(−U(s, z)). For example, Strauss PP’s corre-
spond to the choice U(s, z) = exp ( − a − b∑

i
I(∣∣s − si∣∣ ≤

r)) including only the energy of the singletons and pair
potentials. For b >  we have repulsion and, conversely,
b <  implies attraction. We remark that the Strauss PPs
are examples of Markov PPs since the conditional density

λ(s, z) depends only on neighboring points of s belonging
to the pattern z.

For testing the CSR hypothesis, the parameters and

functions introduced before (λ, λ,K,F,G) have to be esti-
mated on the basis of an observation window W ⊂ Rd

(usually a (hyper-) rectangle). For testing this hypothe-

sis, estimates of the following two summary statistics are

in common use: L(r) = {K(r)/bd}/d and J(r) = ( −
G(r))/(−F(r)), bd denotes the volume of the unit sphere
in Rd. For a stationary PP, J > , J =  and J >  indi-
cate respectively that the PP is more, equally or less regular

than a Poisson PP. For estimation of G the well-known

7Kaplan–Meier-estimator can be used, for a comprehen-
sive discussion of estimators and its properties we refer to

Illian et al. (). Baddeley et al. () present a number

of interesting case studies in spatial point process model-

ing, in areas as diverse as human and animal epidemiology,

materials sciences, social sciences, biology and seismology.

For practical estimation and testing we recommend the

freely available R-package “spatstat.”

Random Sets
�ese are generalizations of point patterns in such a way

that Z de�nes an arbitrary random closed subset (RACS)
of Rd. Again, stationarity means that the distributions of
Z are invariant w.r.t. translations. In this case, random
closed sets can be characterized by some simple numbers

and functions, resp., e.g., by (a) the covariance function

C(h) = P({s ∈ Z} ∩ {s + h ∈ Z}) and (b) the contact
distributionHB(r) = −P(Z ∩ rB = /)/(−P(s ∈ Z)) for
some (test) set B ⊂ Rd, e.g., a ball or polygon.

�e most simple models for RACS are Boolean mod-

els,Z =
∞
∪
i=

{Zi + si}, where {s, s, . . .} is a Poisson PP with
constant intensity and Z,Z, . . . a sequence of i.i.d. RACS

which are independent of the PP. For instance, Zi can be

assumed to be spheres with random radii, or segments of

random length and direction. In applications, the random

sets are not of that simple type. However, more realistic

models can be built on the basis of Boolean models using

the opening and closure operations of mathematical mor-

phology, see e.g., Serra () and Lantuéjoul (); for

interesting applications in the materials sciences we refer

to Ohser and Mücklich ().

Lattice Data Analysis
In areal/lattice data analysis we observe the random �eld

Z = {Z(s) : s ∈ S} at the points of a �xed, discrete and
non-random set S ⊂ Rd, which is then o�en called a lattice.
�en it is su�cient to describe the joint probability func-

tion or density on S. Typical examples of such type of data

are population characteristics and infections disease num-

bers at district or country level, remote sensing imagery

and image texture data frommaterials sciences.�e lattice

may be regularly or irregularly spaced. In areal data anal-

ysis, the measurements are aggregated over spatial zones

(administrative units, land parcel sections) and the points

si are geographical regions (areas) represented as a network

with a given adjacency graph. In image analysis, the lattice

S is a regularly spaced set of pixels or voxels. Goals of the

analysis for these types of data include the quanti�cation of

spatial correlations, prediction, classi�cation and synthesis

of textures and image smoothing and reconstruction.

For areal data analysis usually autoregressive models

are employed, the spatial correlation structure is induced

by the particular model chosen, e.g., SAR or CAR models.

For a detailed account of this type of analysis we refer to
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Lloyd () and Anselin and Rey (), for an overview

and further references see Spöck and Pilz (). A par-

ticular area of lattice data analysis is image analysis where

d =  (or ), S = {, . . . ,N}d and N = k for some inte-
ger k > . For modelling, Markov random �elds are widely
used. We call Z = {Z(s) : s ∈ S} a Markov random
�eld if the conditional density of Z(s) given Z(y), y /= s,
only depends on realizations of Z(y) for which y belongs
to some neighbourhood N (s) of s. As a simple exam-
ple, consider a Gaussian Markov random �eld (GMRF).

�e neighborhood of s is usually de�ned via a symmet-

ric neighborhood relation s ∼ y which is non-re�exive,
i.e., s /∼ s. �en the joint density on S can be written as
p(z)∝ exp(−.(z − µ)TΣ−(z − µ)) and the conditional
density ofZ(s) givenZ(y), y /= s, is easily seen to be normal
with expectation

E(Z(s)∣Z(y) = zy, y ∈ S ∖ {s}) = µs −


ass
∑
y/=s
asy(zy − µy)

and variance /ass, where µy = E(Z(y)) and asy denotes
the element of the inverse of Σ = (Cov(Z(s),Z(y)))s,y∈S.
�erefore, a Gaussian RF is Markovian i� asy /=  →
y ∈ N (s), i.e., i� Σ− is sparse. For a detailed account of
GMRF we refer to Rue and Held (). According to the

Hammersley–Cli�ord theorem (see Besag ()), MRF

can be characterized as Gibbs RFs with local interaction

potentials.�e state space of a Gibbs random �eld can be

rather general:N for count variables, e.g., in epidemiology,
R+
for a positive-valuedRF, e.g., a GammaRF, a �nite set of

labels for categorical RFs, as e.g., in texture analysis, {, }
for binary RFs labeling presence or absence or alternative

con�gurations as in Ising models, Rd for GRF, or mixtures
of qualitative and quantitative states. Gibbs RFs are associ-

ated with families of conditional distributions pΦ de�ned

w.r.t. interaction potentials Φ = {ϕA,A ∈ S} where S is
a family of �nite subsets of S. In Bayesian image restora-

tion, with k >  qualitative states (e.g., colours, textures or
features) and �nite set S = {, , . . . , } one o�en uses
models of the form pΦ(z)∝ exp(−U(z)) whereU stands
for the energy associated with Φ. In the simplest case one

has only one interaction parameter β and U(z) = β ⋅ n(z),
where n(z) is the number of points of neighbouring sites
with the same state. Here β plays the role of a regulariza-

tion parameter: decreasing β leads to more regularity.�e

central goal in (Bayesian) image and signal processing is

then to reconstruct an object z based on a noisy observa-

tion y from the posterior pΦ(⋅∣y) of Z given y, e.g., on the
basis of the MAP = maximum (mode) of the a posteriori

distribution.

A good summary of the theory and applications of

image data analysis based on the theory of random �elds

is given in Li () and Winkler (); for description,

classi�cation and simulation of D-image data we refer to

Ohser and Schladitz ().
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Introduction
�e term spectral analysis surely for most of us is con-

nected with the experiment where a beam of sunlight is

sent through a prism and split into many components

of di�erent colors, the spectrum. What looks nice is the

starting point of a deeper understanding of nature, too.

�e idea of splitting into components was copied by

statisticians whenworking on time series. At �rst they pro-

ceeded like Kepler, who found his rules by �tting a model

to data gathered by Tycho de Brahe. Deterministic model-

ing is a standard procedure in time series analysis. Given an

economic time series xt , one tries to �t xt = Gt+Zt+St+Rt
where G stands for trend, Z is a cyclic component, S a

seasonal component, and R stands for the rest, the so-

called noise. Regression is the important tool to study these

models.�e book by Davis still is a good starter. Unfor-

tunately, this approach is not always as successful as with

Kepler, “too many suns,” Hotelling once complained.

Quite another approach is to interpret a time series

{xt}tєT as a realization of a stochastic process {X(t)}tєT .
From now on we assume T to be a countable set. �en

we might go in the direction of ARIMA-models – see, for

instance, the book by Box and Jenkins – or choose spectral

analysis as we will do here. So we are looking for a prism

to work with.

A stochastic process is based on a system Fn(u, . . . ,un;
t, . . . , tn) of distribution functions. For these func-
tions certain rules are valid, i.e., symmetric conditions

F(u,u; t, t) = F(u,u : t, t), or consistency con-
ditions such as F(u; t) = F(u,∞; t, t). Let E stand
for the expectation operator. �en the mean function of

the process is de�ned as M(t) = E[X(t)] and the (auto-
)covariance function as C(t, t) = E[X(t)X(t)]. A pro-
cess is stationary ifM(t) = m andC(t, s) = C(t−s) = C(τ)
for all t, sєT.

For such stationary processes the autocovariance func-

tion can be represented as C(τ) = ∫ eiτωdF(ω). �e
function F(ω) is called spectral distribution.Whenwe have
dF(ω) = f (ω)dω the function f (ω) is called spectral den-
sity. �e integration borders are −∞,∞ for continuous

index set T and π, π for countable T. As can be seen by

C() = ∫ dF(ω), the spectral distribution splits the vari-
ance into components. dF(ω) is the contribution to the
variance of the frequencies in the interval between ω and

ω+ dω. Such a stationary process can be written as X(t) =
∫ eitωdZ(ω). For ω ≠ ωj dZ(ωi), dZ(ωj) are orthogo-
nal random variables with E[dZ(ω)dZ(ω) = dF(ω). So
the process {X(t)}tєT is split into orthogonal components
eitωdZ(ω).
What can be gained by spectral analysis may be seen

by two simple examples.

Example  Firstly, take the process {X(t)} = {ξ cosωt+
η sinωt}where ξ and η are random variables with E[ξ] =
E[η] = , E[ξ] = E[η] = c, and E[ξη] = .�e object
is to get information about ω.�e covariance function of

this process is C(τ) = c cosωτ. In Fig.  the function C

and the corresponding spectral density, cπ{δ(ω − ω) +
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δ(ω + ω)}, demonstrate how the latter provides a much
clearer picture of the structure of the process.

Example  Next let us take a stationary process {X(t)}tєT
with autocovariance function CX(τ) and spectral density
fX(ω). Y(t)tєT is a linear time invariant transformation of
{X(t)}tєT . If w(t) is the impulse function of the trans-
formation, we have Y(t) = ∫

∞
−∞ w(τ)X(t − τ)dτ. Doing

some mathematics, we get for the autocovariance func-

tion CY(τ) = ∫
∞
−∞∫

∞
−∞ w(τ)w(τ)CX(τ− τ − τ)dτdτ.

Turning to the spectral densities of the processes, we get

fY(ω) = ∣ϕ(ω)∣fX(ω), with ϕ(ω) = ∫
∞
−∞ w(τ)eiτωdτ, a

nice, simple multiplication of a spectral density with the

square of a Fourier transform.

From now on we assume that we deal with discrete

stationary processes. For these the covariance function

C(τ) = ∫
π

−π
eiτωf (ω)dω and the spectral density f (ω) =



π ∑
∞
τ=−∞ e

−iτωC(τ) are a pair of Fourier transforms that
are the base for further steps.

Estimation of the Spectral Density
In applications we usually don’t have the full ensemble

but only one member – a piece of a member – of the

sample space. To go on, we have to assume that the pro-

cess {X(t)}tєT is ergodic.�at is, limT→ 

T
∑Tt= X(t) =

E(X(t) (mean ergodic) and limT→ 

T
∑Tt= X(t+τ)X(t) =

E(X(t + τ)X(t) (covariance ergodic). In both cases, the
convergence is in quadratic mean. A simple su�cient con-

dition for mean ergodic is ∣C(τ)∣ < є, i.e., events far away

are not correlated –might be true inmany applications. For

covariance ergodic the same must be true for the process

Z(t) = X(t + τ)X(t).
To get an estimate for the spectral density there

are two approaches. Either one starts with an estimate

of the covariance function and take its Fourier trans-

form as an estimate for the spectral density. Or one

starts from the representation X(t) = ∫ eitωdZ(ω) and
E[dZ(ω)dZ(ω) = dF(ω). �e so-called periodogram
Pn(ω) = 

πn
∣∑nt= x(t)eitω ∣ combines these features.�is

approach is backed by the fast Fourier transform (FFT).

Cooley and Tukey found this famous algorithm.

In each case, applying spectral analysis to time series

of �nite length leads to a lot of problems. So we only have

estimates C(τ) for ∣τ∣ ≤ τ.�eory calls for an estimator

for all τ. A function L(τ) with L() = , L(τ) = L(−τ) for
∣τ∣ ≤ τ, and L(τ) =  elsewhere may be a solution. C̃(τ) =
L(τ)C(τ) is de�ned for all τ. Further problems emerge

immediately. How does one choose τ? Is this estimator

unbiased, consistent? What is a good L(τ)? And so on.
�eoretically, these questions are hard to solve. Simulation

is an aid in studying these problems.�e book by Jenkins

and Watts may be a good introduction to this approach.

Multivariate Spectral Analysis
�e simplest cases of multiple spectral analysis are two

stochastic processes, {X(t)}tєT and {Y(t)}tєT . �e base
of our analysis is the cross-variance function CXY(t, t) =
E[X(t)Y(t)] = CXY(t − t). For this function we
have the representation Cxy(τ) = ∫ eiτωdFXY(ω). From
Cxy(τ) = ∫ eiτωdFXY(ω) we get the complex cross-
spectral density fXY(ω) = k(ω) + iq(ω) k(ω) is called
co-spectrum and q(ω) quadrature spectrum. A num-
ber of functions are based on these two spectra, e.g.,

the amplitude A(ω) =
√

{k(ω}) + {q(ω)}, the phase
ϕ(ω) = arctan(q(ω)/k(ω)), and the coherence C(ω) =
A(ω)

fX(ω)fY(ω) . Plots of these functions are nice tools to study

the relation between {X(t)}tєT and {Y(t)}tєT .

An Application
Finally we will deal with an application of spectral meth-

ods.�is example is a very short version taken from the

book by Venables and Ripley p.  f.�e details are shown

in Figs.  and . Figure  depicts the time series of monthly

deaths from lung diseases in the UK –. Figure 

shows one estimate of the spectrum. All calculation were

done with R.�e function spectrum is based on FFT and

smoothing by running means.

�e interpretation of spectral functions and graphs cal-

culated in applications is not an easy task. �e book by

Granger – the late Nobel Prize winner – might be a good

starting place.
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Fans love statistics about sport – sets of numbers that

describe and summarise what is happening on the �eld.

With developments in computer technology, global posi-

tioning systems and the internet, the range and availability

of sports statistics is growing at a rapid rate. In tennis

majors, for example, an on-court statistician enters the

result of every rally, whether the �nal shot was a forehand

or backhand drive or volley, a winner or forced or unforced

error, and whether either or both players were at the net.

Cumulative results are immediately available to spectators,

the media, and the general population through the inter-

net. Only a few years ago, the number of kicks marks and

handballs each player obtained in anAustralian Rules foot-

ballmatchwas provided in printed tables two days a�er the

match. Now over  statistics are collected in real time and

immediately available to coaches and the general public.

�e science of statistics can be used to add value, to make

sense, to discern patterns, to separate random variation

from underlying trends in these sports data.

We are discussing here not just the collection and accu-

mulation of statistics, but statistical modeling. Collection

of raw statistics is one thing (how long is it since a batsman

made over  in an international match? how old was

Stanley Matthews when he played his last soccer game?)

and statistical modeling (how can statistics be used) by

analysts is another. If we are interested in the chance a

male player might break  in a golf tournament next year,

past statisticsmight tell us the percentage of all tournament

rounds in which this has occurred. But if we want to esti-

mate the chance TigerWoods will break  in the USmas-

ters next year, this is of little use.We need to do somemod-

eling. For example we might use past statistics to obtain

Tiger’s scores on each hole in previous masters, and by

sampling from these use simulation to get a useful estimate.

Cricket has the distinction of being the �rst sport

used for the illustration of statistics. In Primer in Statis-

tics, (Elderton and Elderton ) used individual scores

of batsmen to illustrate frequency distributions and ele-

mentary statistics. Some previous work on correlation and

consistency resulted in (Wood ) and (Elderton )

reading separate papers at the same meeting of the Royal

Statistical Society.�ese papers investigated the distribu-

tion of individual and pairs of batsmen scores, and have

some claim as the �rst full quantitative papers applying

statistics to sport.

�e literature now contains hundreds of papers detail-

ing applications of statistical modeling in virtually every

sport. Researchers in the area are not con�ned to Statisti-

cians. Other disciplines include Mathematics, Operational

research, Engineering, Economics and Sports Science.

Learned societies such as the American Statistical Associa-

tion, the AustralianMathematical Society and the Institute

of Mathematics and its Applications have sections of their

membership or conferences devoted to this area.�e range

of journals which publish articles on sport o�en makes it

di�cult to search for previous work in a particular topic.

Much early work in the area is covered in the two texts

(Machol et al. ) and (Ladany and Machol ). More

recently (Bennett ) gives an excellent overview, with

chapters on particular sports: American football, baseball,

basketball, cricket, soccer, golf, ice hockey, tennis, track

and �eld; and theme chapters on design of tournaments,

statistical data graphics, predicting outcomes and hierar-

chicalmodels. Later collections of papers include (Butenko

et al. ) and (Albert and Koning ).�ese provide

good examples of the issues currently being investigated by

researchers. We discuss here some of these issues.

As mentioned above, �tting known distributions to

sporting data was amongst the earliest work performed

in this area. If the performance data follow a known dis-

tribution, that tells you something about the underlying

behavior of the sportsman. If a batsman’s cricket scores fol-

low an exponential (or geometric) distribution, then he has

a constant hazard, or probability of dismissal, throughout



 S Sport, Statistics in

his innings. If the number of successful shots a basketball

player makes in a given number of tries can be modeled by

the 7Binomial distribution, then he has a constant prob-
ability of success, and is not a�ected by previous success

or failure. If goals scored each match by a soccer team are

Poisson distributed, this implies their form is not variable

throughout the season, and they are not a�ected by early

success or failure in a match. Departures from known dis-

tributions can be used to investigate the existence of the

“hot hand” in basketball or baseball, or “momentum” in

tennis or soccer.

Predicting the outcomes of sporting contests is of great

interest to modelers and fans alike. Statistical modelers

are usually interested in not only predicting the winner,

but in estimating the chance of each participant win-

ning and likely scores or margins.�ese predictions have

become increasingly important with the introduction of

sports betting.�e estimated chances developed from the

statistical model can be compared with the bookmaker’s

odds, and ine�ciencies of betting markets investigated (or

exploited). If the probabilities of head to head encounters

can be estimated, then the chances of various outcomes of

whole tournaments or competitions can be estimated via

simulation.

A usual by-product of prediction is the rating of

individuals or teams. For example a simple model might

predict the winning margin between two teams as the dif-

ference in their ratings plus a home advantage. 7Least
squares, maximum likelihood or other methods are then

used to obtain the ratings and home advantage that give

the best �t to previous results. Chess has a rating system

based on exponential smoothing that is applicable to past

and present players frombeginners toworld champions. In

golf, much e�ort has gone into developing ratings of play-

ers (handicaps) that are fair to players of all standards from

all courses.

Home advantage, the degree to which a team performs

better at home than away, is present inmost sports. (Stefani

and Clarke ) show that in balanced competitions the

home side wins anywhere from % (baseball) to %

(international soccer) of the matches. In scoring terms 

goal in  in international soccer can be attributed to home

advantage, while in baseball the home advantage con-

tributes  run in . While home advantage can be quan-

ti�ed it is more di�cult to isolate its causes. Many papers

have looked at the e�ects of travel, crowd, ground famil-

iarity and referee bias without much consensus. Other

research has shown thatmodels assuming a di�erent home

advantage for di�erent teams or groups of teams provide

a better �t to the data than ones with a common home

advantage.

�ere are many di�erent scoring systems in sport, (for

example in racquet sports), and researchers are interested

in their operating characteristics. To what extent do the

scoring systems a�ect the probabilities of each player win-

ning, and the distribution of the number of rallies in the

match? What is the chance of winning from any score-

line? Generally the longer the match the more chance for

the better player. For example, a player who wins % of

the points at tennis, will win % of the games, % of

the sets and % of  set matches. But the few breaks of

serve in men’s tennis makes the scoring system relatively

ine�cient. �e better player may win a higher percent-

age of his serves than his opponent, but the set score still

reaches  all. Researchers have suggested alternative scor-

ing systems, such as - tennis, where the server still has

to win  points to win the game, but the receiver only has

to win  points.�ey have also looked at the importance

of points – the change in a player’s chance of winning the

game (or match) resulting by winning or losing the point.

(In tennis the most important point in a game is the ser-

vice break point).�e assertion that better players win the

important points can then be tested.

What o�en makes sport interesting is the choice of

alternative strategies. Should a baseball player try and steal

a base or not? Should a footballer try for a �eld goal or a

touchdown? Should a tennis player use a fast or slow serve?

Should an orienteer choose a short steep route or a longer

�atter one? When should the coach pull the goalie in ice-

hockey? Operational Researchers �nd this a fertile �eld

for study (Wright ), with techniques such as Dynamic

Programming and simulation used to determine optimal

strategies. (Norman ) gives one example of the use of

Dynamic Programming in each of  sports.

Sport is an important area for the application of sta-

tistical modeling. Sport is big business, and occupies an

important role in today’s society. By the use of a range of

modeling and analysis techniques Statisticians can assist

players, coaches, administrators and fans to better under-

stand and improve their performance and enjoyment.

About the Authors
Dr. Stephen Clarke is a Professor of Statistics in the fac-

ulty of Life and Social Sciences at Swinburne University,

Melbourne, Australia. He has authored and co-authored

more than  papers. He received the (U.K.) Operational

Research Society president’s medal in  for his paper on

one-day cricket.

John M. Norman is an emeritus professor at She�eld

University Management School, UK. He has written two

books and ��y papers, several in collaboration with

Stephen Clarke.



Spreadsheets in Statistics S 

S

Cross References
7Binomial Distribution
7Poisson Distribution and Its Application in Statistics
7Record Statistics
7Testing Exponentiality of Distribution

References and Further Reading
Albert J, Koning RH (eds) () Statistical thinking in sports.

Chapman & Hall, Boca Raton

Bennett J (ed) () Statistics in sport. Arnold, London

Butenko S, Gil-Lafuente J et al (eds) () Economics, management

and optimization in sports. Springer-Verlag, Berlin

Elderton WE () Cricket scores and some skew correlation dis-

tributions. J Roy Stat Soc (Ser A) :–

EldertonWP, Elderton EM () Primer of statistics. Black, London

Ladany SP, Machol RE () Optimal strategies in sports. North

Holland, Amsterdam

Machol RE, Ladany SP et al () Management science in sports.

North Holland, New York

Norman JM () Dynamic programming in sport: a survey of

applications. IMA J Math Appl Bus Ind (December):–

Stefani RT, Clarke SR () Predictions and home advantage for

Australian rules football. J Appl Stat ():–

Wood GH () Cricket scores and geometrical progression. J Roy

Stat Soc (Ser A) :–

Wright MB ()  years of OR in sport. J Oper Res Soc

(S):S–S

Spreadsheets in Statistics

Rade Stankic, Jasna Soldic-Aleksic

Professors, Faculty of Economics

Belgrade University, Belgrade, Serbia

Spreadsheet is a computer program thatmanipulates tables

consisting of rows and columns of cells. It transforms a

computer screen into a ledger sheet or grid of coded rows

and columns simulating a paper worksheet.�e program

environment consists of one ormore huge electronicwork-

sheets (each worksheet can contain up to one million rows

by a few thousands columns) organized in the form of an

electronic workbook.

�e general features of such programs are powerful

computing and graphical capabilities, �exibility, excellent

report generating feature, easy-to-use capability, and com-

patibility with many other data analytical so�ware tools.

�ese features are responsible for the substantial popular-

ity and wide practical usage of the program.�us, spread-

sheet so�ware is being used in academic, government, and

business organizations for tasks that require summarizing,

reporting, data analysis, and business modeling.

�e spreadsheet concept became widely known in the

late s and early s due to the Dan Bricklin’s imple-

mentation of VisiCalc which is considered to be the �rst

electronic spreadsheet. It was the �rst spreadsheet program

that combined all essential features of modern spreadsheet

applications, such as: WYSIWYG (What You See Is What

You Get), interactive user interface, automatic recalcula-

tion, existence of status and formula lines, copy of cell

range with relative and absolute references, and formula

building by selecting referenced cells. Lotus –– was the

leading spreadsheet program in the period when DOS

(Disk Operating System) prevailed as an operating system.

Later on, Microso� Excel took the lead and became the

dominant spreadsheet program in the commercial elec-

tronic spreadsheet market.

�e basic building blocks of a spreadsheet program

are cells that represent the intersections of the rows and

columns in a table. Each individual cell in the spreadsheet

has a unique column and row identi�er that takes spe-

ci�c forms in di�erent spreadsheet programs. �us, the

top le�-hand cell in the worksheet may be designated with

symbols A, , or A. �e content of the cell may be a

value (numerical or textual data) or a formula. When the

formula is entered in a particular cell, it de�nes how the

content of that cell is calculated and updated depending

on the content of another cell (or combination of cells)

that is/are referenced to in the formula. References can

be relative (e.g., A1, or C1:C3), absolute (e.g., $B$1,
or $C$1:$C$3), mixed row-wise or column-wise abso-
lute/relative (e.g., $B1 is column-wise absolute and B$1 is
row-wise absolute), three-dimensional (e.g., Sheet!A), or

external (e.g., [Book]Sheet!A).�is well-de�ned struc-

ture of cell addresses enables a smooth data �ow regardless

whether data are stored in just one or several worksheets or

workbooks. In most implementations, a cell (or range of

cells) can be “named” enabling the user to refer to that cell

(or cell range) by its name rather than by grid reference.

Names must be unique within a spreadsheet, but when

using multiple sheets in a spreadsheet �le, an identically

named cell range on each sheet can be used if it is distin-

guished by adding the sheet name.Name usage is primarily

justi�ed by the need for creating and running macros that

repeat a command across many sheets.

What makes the spreadsheet program a powerful data

analytical tool is the wide range of integrated data pro-

cessing functions. Functions are organized into logically

distinct groups, such as: Arithmetic functions, Statistical

functions, Logical functions, Financial functions, Date and

Time functions, Text functions, Information, Mathemati-

cal function, etc. In general, each function is determined

by its name (written in uppercase by convention) and
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appropriate argument(s) which is/are placed in parenthe-

sis.�e arguments are a set of values, separated by semi-

colons, to which the function applies. �us, a function

called FUNCTION would be written as follows: FUNC-

TION (argument; argument; etc.).

Spreadsheet so�ware integrates a large number of

built-in statistical functionalities, but some caveats about

its statistical computations have been observed. A few

authors have criticized the use of spreadsheets for statis-

tical data processing and have presented some program

shortcomings, such as: no log �le or audit trail, inconsistent

behavior of computational dialogs, poor handling of miss-

ing values, low-level of accuracy of built-in spreadsheet

statistical calculations, and no sophisticated data coding

techniques for speci�c statistical calculations. In response

to such criticism directed against the statistical “incor-

rectness” and limitations of spreadsheet programs, many

e�orts have been made (both in the academic and com-

mercial community) to compensate for them.�us, many

statistics add-ins have appeared, granting robust statisti-

cal power to the spreadsheet program environment.�ese

add-ins are usually seamlessly integrated into a spread-

sheet program and cover the range of most commonly

used statistical procedures, such as: descriptive statistics,

7normality tests, group comparisons, correlation, regres-
sion analysis, forecast, etc. Some leading statistical so�ware

vendors have provided statistical modules and function-

alities for spreadsheet users. For example, the statistical

so�ware package PASWStatistics . o�ered the following

additional techniques and features for Excel spreadsheet

program (SPSS Advantage for Excel ): Recency, Fre-

quency, and Monetary value (RFM) analysis for direct

marketing research (where most pro�table customers are

identi�ed), classi�cation tree analysis for group identi�ca-

tion, unusual data detection, procedure for data prepara-

tion and transformation, and the option to save spread-

sheet data as a statistical so�ware data �le.

One of the crucial spreadsheet package features is its

capability to carry out “What-if ” data analysis. “What-if ”

analysis is the process of observing and learning how the

changes in some cells (as an input) a�ect the outcome of

formulas (as an output) in the other cells in the work-

sheet. For example, Microso� Excel provides the following

“what-if ” analytical tools: scenario manager, data tables,

and Goal Seek. Scenario manager and data tables operate

in a very simple way: they take sets of input values and

determine possible results. While a data table works only

with one or two variables, accepting many di�erent values

for those variables, a scenario manager can handle multi-

ple variables, but has a limitation of accommodating only

up to  values.�ese tools are appropriate for running the

sensitivity analysis, which determines how a spreadsheet’s

output varies in response to changes to the input values.

Contrary to the functioning of scenario manager and data

tables, Goal Seek allows the user to compute a value for a

spreadsheet input that makes the value of a given formula

match a speci�ed goal.

In the era of the Internet, networked computing, and

web applications, online spreadsheet programs also came

about. An online spreadsheet is a spreadsheet document

edited through a web-based application that allows multi-

ple users to have access, to edit and to share it online (mul-

tiple users can work with a spreadsheet, view changes in

real time, and discuss changes). Equippedwith a rich Inter-

net application user interface, the best web-based online

spreadsheets have many of the features seen in desktop

spreadsheet applications and some of them have strong

multiuser collaboration features. Also, there are spread-

sheet programs that o�er real time updates from remote

sources. �is feature allows updating of a cell’s content

when its value is derived from an external source - such

as a cell in another “remote” spreadsheet. For shared,

web-based spreadsheets, this results in the “immediate”

updating of the content of cells that have been altered by

another user and, also, in the updating of all dependent

cells.
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A well-known weakness of regression modeling based on

observational data is that the observed association between
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two variables may be because both are related to a third

variable that has been omitted from the regression model.

�is phenomenon is commonly referred to as “spurious

correlation.” �e term spurious correlation dates back to

at least Pearson ().

Neyman (, pp. –) provides an example based

on �ctitious data which dramatically illustrates spurious

correlation. According to Kronmal (, p. ), a �c-

titious friend of Neyman was interested in empirically

examining the theory that storks bring babies and col-

lected data on the number of women, babies born and

storks in each of  counties. �is �ctitious data set was

reported in Kronmal (, p. ) and it can be found

on the web page associated with Sheather (), namely,

http://www.stat.tamu.edu/~sheather/book.

Figure  shows scatter plots of all three variables from

the stork data set along with the least squares �ts. Ignoring

the data on the number of women and �tting the following

straight-line regression model produces the output shown

below.

Babies = β + βStorks + e ()

�e regression output for model () shows that there

is very strong evidence of a positive linear association

between the number of storks and the number of babies

born (p-value < .). However, to date we have ignored
the data available on the other potential predictor variable,

namely, the number of women.

Regression output for model ()

Coefficients

Estimate Std. Error t value Pr(> ∣t∣)

(Intercept) . . . .

Storks . . . .e- ***

Residual standard error: . on  degrees of freedom

Multiple R-Squared: ., Adjusted R-squared: .

Next we consider the other potential predictor vari-

able, namely, the number of women.�us, we consider the

following regression model:

Babies = β + βStorks + βWomen + e ()

Given below is the output from R for a regression model

(). Notice that the estimated regression coe�cient for the

number of storks is zero to many decimal places. �us,

correlation between the number of babies and the num-

ber of storks calculated from () is said to be spurious as

it is due to both variables being associated with the num-

ber of women. In other words, a predictor (the number of

women) exists which is related to both the other predictor

(the number of storks) and the outcome variable (the num-

ber of babies), and which accounts for all of the observed

association between the latter two variables.�e number

of women predictor variable is commonly called either an

omitted variable or a confounding covariate.

Regression output for model ()

Coefficients

Estimate Std. Error t value Pr(> ∣t∣)

(Intercept) .e
+

.e
+

. .e
−***

Women .e
+

.e
−

. .e
−***

Storks −.e
−

.e
−

−.e
−



Residual standard error: . on  degrees of freedom

Multiple R-Squared: ., Adjusted R-squared: .

We next brie�y present some mathematics wish

quanti�es the e�ect of spurious correlation due to omit-

ted variables. We shall consider the situation in which an

important predictor is omitted from a regression model.

We shall denote the omitted predictor variable by ν and

the predictor variable included in the one-predictor regres-

sion model by x. In the �ctitious stork data x corresponds

to the number of storks and ν corresponds to the number

of women.

To make things as straightforward as possible we shall

consider the situation in which Y is related to two predic-

tors x and ν as follows:

Y = β + βx + βν + eY⋅x,ν ()

Similarly, suppose that ν is related to x as follows:

ν = α + αx + eν⋅x ()

Substituting () into () we will be able to discover what

happens if omit ν from the regression model.�e result is

as follows:

Y = (β + βα) + (β + βα)x + (eY⋅x,ν + βeν⋅x) ()

Notice that the regression coe�cient of x in () is the sum

of two terms, namely, β + βα.

http://www.stat.tamu.edu/~sheather/book
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Spurious Correlation. Fig.  A plot of the variables from the fictitious data on storks

We next consider two distinct cases:

. α =  and/or β = :�en the omitted variable has no
e�ect on the regression model, which includes just x as

a predictor.

. α ≠  and β ≠ :�en the omitted variable has an
e�ect on the regression model, which includes just x

as a predictor. For example, Y and x can be strongly

linearly associated (i.e., highly correlated) even when

β = . (�is is exactly the situation in the �ctitious
stork data.) Alternatively, Y and x can be strongly

negatively associated even when β > .

Spurious correlation due to omitted variables is most

problematic in observational studies. We next look at a

real example, which exempli�es the issues.�e example is

based on a series of papers (Cochrane et al. ; Hinds

; Jayachandran and Jarvis ) that model the rela-

tionship between the prevalence of doctors and the infant

mortality rate. �e controversy was the subject of a 

Lancet editorial entitled “�e anomaly that wouldn’t go

away.” In the words of one of the authors of the original

paper, Selwyn St. Leger ():

7 When Archie Cochrane, Fred Moore and I conceived of
trying to relate mortality in developed countries to mea-
sures of health service provision little did we imagine that
it would set a hare running  years into the future. . . The
hare was not that a statistical association between health

service provision and mortality was absent. Rather it was
the marked positive correlation between the prevalence
of doctors and infant mortality. Whatever way we looked
at our data we could not make that association disappear.
Moreover, we could identify no plausible mechanism that
would give rise to this association.

Kronmal (, p. ) reports that Sankrithi et al.

() found a signi�cant negative association (p< .)
between infant mortality rate and the prevalence of doc-

tors a�er adjusting for population size.�us, this spurious

correlation was due to an omitted variable. In summary,

the possibility of spurious correlation due to omitted vari-

ables should be considered when the temptation arises

to over interpret the results of any regression analysis

based on observational data. Stigler () advises that

we “discipline this predisposition (to accept the results of

observational studies) by a heavy dose of skepticism.”
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St. Petersburg Paradox
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�e St. Petersburg “Paradox” concerns a betting situa-

tion in which a gambler’s fortune will be increased by

$
n
if the �rst tail appears on the nth toss a fair coin.

Nicholas Bernoulli introduced this problem in  as a

challenge to the then prevailing view that the fair price

of a wager (the price at which one should be equally

happy to buy or sell it) is equal to its expected monetary

payo�. While Bernoulli’s wager has an in�nite expected

payo�, any reasonable person will sell it for $. By 

Gabriel Cramer had recognized that the prevailing view

goes wrong because it assumes that people value money

linearly. As he wrote, “mathematicians evaluate money in

proportion to its quantity while, in practice, people with

common sense evaluate money in proportion to the (prac-

tical value) they can obtain from it” (Bernoulli , p. ).

Since an extra increment of money buys less happiness for

a prince than a pauper, Cramer observed, the St. Petersburg

wager can have a �nite “practical value” provided that

the worth of an extra dollar falls o� rapidly enough as

a person’s fortune grows. In modern terms, Cramer had

understood that money has declining marginal utility and

that the St. Petersburg wager can have a �nite expected

utility if the marginal decrease in utility is su�ciently

steep. He noted, for example, that a utility function of

the form u($x) = x/ produces an expected utility of

∑
n

(/)
n

n/ ≈ . for Bernoulli’s wager, which is

equivalent to a fair price of $..

Cramer never published, and it was le� to Daniel

Bernoulli to report Cramer’s contributions and to write the

de�nitive treatment () of his cousin Nicholas’s prob-

lem in the St. Petersburg Academy Proceedings of , from

which the Paradox derives its name. Daniel, who hit upon

the declining utility of money independently of Cramer,

went further by advocating the general principle that ratio-

nal agents should value wagers according to their expected

utility. He also argued that a person’s marginal utility for

an extra sum of money should be both inversely propor-

tional to the person’s fortune and directly proportional to

the size of the sum.�is means that the utility of $x is a

function of the form u($x) = k ⋅ ln(x). When evaluated
using such a utility function, the St. Petersburg wager has

a �nite expected utility of k ⋅ ln().
Bernoulli was also explicit that, as a general matter,

the value of any gamble is its expected utility, and not its

expected payo�. Speci�cally, he maintained that if the util-

ity function u(x)measures the “practical value” of having
fortune $x, then the value of any wager X is E(u(X)) =
∫



P(X = x) ⋅ u(x)dx and its fair price is that sum $f such

that u( f ) = E(u(X)).�ough this was perhaps Bernoulli’s
deepest insight, its implications were not fully appreciated

until the early s when the work of Savage () and

vonNeumann andMorgenstern () moved the hypoth-

esis of expected utility maximization to the very center of

both microeconomics and 7Bayesian statistics.
Until that time, Bernoulli was better known among

economists and statisticians for postulating thatmoney has

decliningmarginal utility and for solving the St. Petersburg
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Paradox. �e thesis that money has declining marginal

utility has been immensely in�uential since it serves as

the basis for the standard theory of risk aversion, which

explains a wide variety of economic phenomena. In eco-

nomic parlance, a risk averse agent prefers a straight pay-

ment of a gamble’s expected payo� to the gamble itself.

Economists seek to explain risk aversion by postulating

concave utility functions for money, with greater concav-

ity signaling more aversion. If u(x) is concave for a ≤
x ≤ b, and if a wager X’s payouts are con�ned to [a, b],
then it is automatic that E(u(X)) ≥ u(E(X)). Moreover,
if v is a concave transformation of u, the absolute risk

aversion associated with v exceeds that associated with u,

where absolute risk aversion is measured by the Arrow

()–Pratt () coe�cient v′′(x)/v′(x). Agents with
Bernoulli’s logarithmic utility are everywhere risk averse,

and their absolute level of risk aversion decreases with

increases in x since u′′(x)/u′(x) = /x.
Interestingly, the Cramer/Bernoulli solution to the

St. Petersburg Paradox failed the test of time. As Karl

Menger () �rst recognized (Basset ), if money has

unbounded utility then one can always construct a “Super

St. Petersburg Paradox.” For example, using u($x) = ln(x),
a wager that pays e, e, e, . . . if a tail appears �rst on

the st, nd, rd,. . . toss will have in�nite expected utility.

One can avoid this either by insisting that realistic util-

ity functions are bounded or by restricting the allowable

gambles so that events of high utility are always assigned

such low probabilities that gambles with in�nite expected

utilities never arise. On either view, the St. Petersburg Para-

dox ceases to be a problem since there is no chance that

anyone will ever face it. Most standard treatments, e.g.,

(Ingersoll ), endorse bounded utility functions on the

grounds that arbitrarily large payo�s are impossible in a

�nite economy. Others, who want to leave open the theo-

retical possibility of unbounded utility, require all realiz-

able wagers to be limits of wagers with uniformly bounded

support, where limits are taken in the weak topology. For

a well-developed approach of this sort see (Kreps ,

pp. –).
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Introduction
Standard deviation is a measure of variability or disper-

sion.�e term Standard deviation was �rst used in writ-

ing by Karl Pearson in . �is was a replacement for

earlier alternative names for the same idea: for example,

“mean error” (Gauss), “mean square error,” and “error of

mean square” (Airy) have all been used to denote standard

deviation. Standard deviation is the most useful and most

frequently used measure of dispersion. It is expressed in

the same units as the data. Standard deviation is a number

between  and∞. A large standard deviation indicates that
observations/data points are far from themean and a small

standard deviation indicates that they are clustered closely

around the mean.

Definition
If X is a random variable with mean value µ = E(x), the
standard deviation of X is de�ned by

σ =
√
E(X − µ). ()
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�at is, the standard deviation σ is the square root of

the average value of (X − µ).�e standard deviation of a
continuous real-valued randomvariableXwith probability

density function f (x) is

σ =
√
∫ (x − µ)f (x)dx, ()

where µ = ∫ x f (x)dx, and the integrals are the de�nite
integrals taken over the range of X. If the variable X is dis-

crete with probability function f (x), the integral signs are
replaced by summation signs.

In the case where X takes random values from a �nite

data set x, x,⋯, xN , the standard deviation is given by

σ =

¿
ÁÁÀ 

N

N

∑
i=

(xi − µ), ()

where µ is the mean of X.

Estimation
For estimating the standard deviation from sample obser-

vations, µ in Eq.  is to be replaced by the sample mean

x given by x =
n

∑
i=

xi/n, and then it is denoted by sn.

�is sn is the maximum likelihood estimate of σ when the

population is normally distributed.

For estimating the standard deviation from a small

sample, the sample standard deviation, denoted by s, can

be computed by

s =

¿
ÁÁÀ 

n − 

n

∑
i=

(xi − x), ()

where {x, x,⋯, xn} is the sample, and x is the sample
mean.�is correction (use of n −  instead of n), known
as Bessel’s correction, makes s an unbiased estimator for

the variance σ .

It can be shown that σ̂ = IQR/., where IQR is the
interquartile range of the sample, is a consistent estimate of

σ .�e asymptotic relative e�ciency of this estimator with

respect to sample standard deviation is .. It is, therefore,

better to use sample standard deviation for normal data,

while σ̂ can be more e�cient when the distribution of data

is with thicker tail

. Standard deviation is independent of

change of origin but not of scale.

Interpretation and Application
Standard deviation is the most useful and frequently used

measure of dispersion. Standard deviation is used both as

a separate entity and as a part of other analyses, such as

computing con�dence intervals and in hypotheses testing.

Standard deviation is zero if all the elements of a popula-

tion or data set are identical. It becomes larger if the data

tend to spread over a larger range of values.

In science, researchers use standard deviation of exper-

imental data for testing statistical signi�cance. σ and σ̂ are

used inmaking certain tests of statistical signi�cance. Stan-

dard deviation of a group of repeated measurements gives

the precision of those measurements. In �nance, it is used

as a measure of risk on an investment. Standard deviation

can be used to examine if a professional is consistent in his

work. Similarly, standard deviation of scores (runs) made

by a cricket player in a season tells about the consistency

in his performance.

Standard deviation of an estimate, called the Standard

error, is used to have an idea of the precision of that

estimate.

7Chebyshev’s inequality, (which enables to �nd prob-
ability without knowing probability function of a random

variable), throws light on the connection between stan-

dard deviation and dispersion. For all distributions for

which standard distribution is de�ned, it states that at least

( − 

k
) %of the values arewithin k standard deviation

from the mean.
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Introduction
Essential to the e�cacy of performance of drug deliv-

ery systems is the ability of the drug to di�use from the

said delivery systems and dissolve within the biological

medium. Following this, the drug may di�use through the

biological media and subsequently di�use across the atten-

dant biological membranes, thereby gaining entry into the

systemic circulation. In certain systems, the rate at which

the drug dissolves within the biological �uid is the slowest

and hence the rate-limiting step whereas in other scenarios

the di�usion of the drug across the biological membrane

may present the greatest challenge. In light of the impor-

tance of drug release, it is essential to ensure that the

statistical analysis of the data from such experiments is

successfully performed to enable rational conclusions to be

drawn.

�e conductance and design of drug release experi-

ments is relatively straightforward and is de�ned within

the scienti�c literature and within Pharmacopoeial mono-

graphs, e.g., the British Pharmacopoeia, the United States

Pharmacopoeia. However, there is a relative paucity of

information concerning methods that may be used to

statistically quantify the outcomes of these experiments.

Experimentally the analysis of drug release is typically

performed by immersion of the dosage form within a

de�ned volume of �uid designed to mimic a particular

biological matrix, e.g., simulated gastric �uid, simulated

intestinal �uid. �e volume of �uid is chosen to ensure

that the subsequent dissolution is typically not a�ected

by the concentration of dissolved drug within the �uid.

�erea�er, at de�ned time intervals, a sample of the sur-

rounding �uid is removed and the mass of drug quanti�ed

using an appropriate analytical method, e.g., ultraviolet

spectroscopy, �uorescence spectroscopy. A�er this analy-

sis, there are two major challenges to the pharmaceutical

scientist to ensure that the interpretation of the data is

satisfactorily performed, namely:

() Selection of the appropriate mathematical model to

de�ne release.

() Use of statistical methods to examine formulation

e�ects or release �uid e�ects on drug release.

�e intention of this paper is to de�ne appropriate sta-

tistical methods to address the above issues and thereby

to de�ne a protocol for the analysis of data that has been

derived from drug release experiments.

Drug Release from Pharmaceutical
Systems
Since the �rst publication of papers on the modelling of

drug release for drug delivery systems (see Baker ,

Chien ) there have been several papers that have

applied mathematical concepts to understand the mecha-

nism of drug release from such systems. For the purpose of

this article, these methods may be summarised into three

categories de�ned according to the mechanism of drug

release, as follows:

(a) Controlled (Fickian) release from monolithic devices
In this method the release of a homogeneously dispersed

drug from the delivery system is controlled by conven-

tional di�usion (as initially described by Adolf Fick).

Mathematically, Fickian di�usion of a drug from a slab

geometry may be de�ned as follows:

Mt

M∞
=  −

∞
∑
n=

 exp [−D(n + )πt/l]
(n + )π

. ()

At early time approximations ( ≤ Mt

M∞

≤ .) , the fol-
lowing approximation may be made:

Mt

M∞
= ( Dt

πl
)
.

, ()

where: D is the di�usion coe�cient of the drug

t is time

l is the thickness of the slab geometry

M is the mass of drug released.

Accordingly it may be observed that the fraction of drug

release is proportional to the square root of time.

(b) Reservoir devices

In these systems, drug di�usion from the device is con-

trolled by the presence of a membrane. Mathematically,

drug di�usion from the core of the device is de�ned by the

following equations:

dMt

dt
= DAKCs

l
for a slab geometry ()

dMt

dt
= πhDKCs

ln( r
r
)

for a cylinder geometry ()

dMt

dt
= πhDKCsrr

r − r
for a sphere geometry ()
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where: D is the di�usion coe�cient

l is the thickness of the slab geometry

Mt is the mass of drug released at time t

h is the length of the cylinder

r and r are the outside and inside radii of the

cylinder/sphere

A is the area of the device

K is the partition coe�cient of the drug between

the core and membrane

Under the above circumstances it may be observed that the

mass of drug released is directly proportional to time.

More recently, Peppas () described the use of a

generic equation to model and characterise drug release

from pharmaceutical platforms, as follows:

Mt

M∞
= ktn ()

where:

k is the release constant
Mt

M∞

is the fractional drug release

n is the release exponent.

In this approach, the equation encompasses the previ-

ous mathematical model, the value of the release expo-

nent being used to de�ne whether the mechanism of drug

release from slab systems is:

(a) Fickian (n = .)
(b) Reservoir controlled (n = )
(c) Anomalous (. < n < )

Defining the Statistical Problem
Whilst themathematical approaches described above seem

quite straightforward, there is an ongoing issue with the

application of these models within a statistical framework.

�ere are several issues, which may be de�ned as follows:

() Use of the incorrect mathematical model

�e choice of the correct mathematical model should

be performed following consideration of the design of

the dosage form and also the experimental conditions.

In many situations, the limitations of the models are

overlooked to render the mathematical analysis more

straightforward. For example, in Fickian di�usion con-

trolled systems, the mathematical model may only be

used whenever there is no swelling of the pharmaceutical

device. Furthermore, as highlighted in one of the examples

above, the geometry of the device will a�ect the choice of

equation. However, whilst the above concerns may seem

obvious to those experienced in the pharmaceutical sci-

ences, one common concern regards the modelling pro-

cess. Typically the Peppas model is used to model release

data however, in the early stages the model may yield an

exponent of unity which may not be a true re�ection of

the release kinetics of the system as both di�usion con-

trolled release and anomalous release will also yield similar

exponents over this period of testing.

() Choice of Statistical Tests

Having acquired drug di�usion/dissolution data, the

next challenge to the pharmaceutical scientist concerns the

choice of the correct statistical method. One test that is

recommended by the FDA is the f test, which is used to

compare the dissolution of two products, typically a test

product (e.g., a generic product) and a reference prod-

uct.�e f value is calculated using the following equation

(Bolton and Bon ):

f =  log([ +


N
]∑(Rt − Tt) × ), ()

where: Rt and Tt are the % dissolution of the reference and

test product at time t.

In this test an f value > illustrates similarity of dis-
solution pro�les. However, it should be noted that this

test has several limitations; most notably individual dif-

ferences at early time points may render the dissolution

of two formulations di�erent whenever the overall pro-

�les are similar. �e f test has been principally used in

the pharmaceutical industry to compare the dissolution of

two dosage forms however; it is not commonly usedwithin

pharmaceutical research due to its relative in�exibility.�e

questionmay then be asked, “How are the drug release pro-

�les of two, or more than two dosage forms compared?”

Examples of the strategies that may be used are provided

below.

(a) Comparison of the release rates of the di�erent

formulations

Mathematically the release of a drug from a dosage

form is frequently described using the release rate, i.e., the

slope of the plot of cumulative drug release against time
n
.

To use this method it must initially be correctly proven

that the mechanisms of drug release from the di�erent

formulations are similar, a point o�en overlooked within

the scienti�c literature. In light of the potential similari-

ties of the kinetics of drug release for di�usion controlled,

anomalous and zero order systems at early time points, it is

essential to statistically establish similarity.�erefore, drug

release should be allowed to progress to ensure that up to

% release has occurred. To establish similarity of release

mechanisms, it is appropriate to model drug release using

the Peppas model and to then compare the release expo-

nent values. For this purpose the Peppas model is trans-

formed logarithmically, the release exponent (n) being the
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resultant slope of the line following linear regression.

ln
Mt

M∞
= ln k + n ln t. ()

�e underlying prerequisite of this approach is the require-

ment for linearity. Typically linearity should be proven

using both an7Analysis of Variance and reference to Pear-
son’s correlation coe�cient (this should be greater than

. [Jones ]). To facilitate meaningful statistical anal-

ysis of the data, it is suggested that approximately six repli-

cate measurements should be performed as this increase

the likelihood of the use of parametric tests for subsequent

comparisons of the release exponents. Following the acqui-

sition of this information the following points should be

considered:

● To establish the release mechanism of the drugs from

the pharmaceutical systems, the calculated release

exponent should be statistically compared to . and

also to ..�is is typically performed using a one sam-

ple t test. Retaining of the null hypothesis in these

tests con�rms that the release is either zero-order or

di�usion controlled. Rejection of the null hypothesis

veri�es that the release mechanism is anomalous, i.e.,

. < n < ..�e reader should note that the values of
n representative of di�usion controlled and zero-order

release are dependent on the geometry of the system.

For a cylindrical system the release exponents are .

and . for Fickian controlled and zero-order systems,

respectively whereas for spherical systems these values

become . and ..

● Assuming that the release mechanism of all formu-

lations under examination is similar, it is therefore

appropriate to statistically compare the drug release

kinetics from the various formulations.�erefore, for

reservoir systems (in which the mechanism of release

is zero-order), the plot of cumulative drug release

against time is linear whereas in Fickian di�usion,

the plot of cumulative drug release against
√
time is

linear. Using linear regression analysis (and remem-

bering not to include the point , in the analysis),

the slope of the plot may be statistically determined

for each individual replicate, which for di�usion con-

trolled release and reservoir (zero-order) controlled

release have the units of (concentration)(time)
−.
and

(concentration)(time)
−
. Replication of these analyses

(e.g., n = ) enables calculation of the mean ± stan-
dard deviation or the median and ranges of the rates

of release. Finally comparison of the rates of release

may be easily performed using either the Analysis of

Variance or the Kruskal-Wallis test if more than two

samples/formulations require to be compared or, alter-

natively, the unpaired t test or the Mann Whitney U

test, if the number of formulations under comparison

is two. �e choice of parametric or non-parametric

tests to analyse the data is performed according to con-

ventional statistical theory, the former tests being used

if the populations from which the data were sampled

were normally distributed (commonly tested using,

e.g., the 7Kolmogorov-Smirnov test or the Shapiro-
Wilk test) and if the variances of the populations

from which the data were samples were statistically

similar (commonly tested using e.g., Leveine’s test or

7Bartlett’s test). It should be noted that this approach
is employed if the release mechanisms of di�erent for-

mulations are statistically similar, independent of the

mechanism of drug release. Accordingly, the release

exponent of di�erent formulations may be identical

within the range of . < n < ..

(b) Comparing drug release from pharmaceutical systems

that exhibit di�erent release mechanisms

In the above scenarios, the release rate of the drug from

the pharmaceutical platform was obtained from linear

regression of the associated cumulative drug release plot,

i.e., cumulative drug release against time for the zero-order

system and cumulative drug release against the square root

of time for di�usion control systems.�e above approach

is predicated on the identical mechanisms of drug release;

however, this requirement does raise a statistical dilemma.

Consequently if the release mechanisms (and hence mea-

sured units) are di�erent, therefore it is impossible to gen-

erate a single parameter that may be used as the basis for

comparisons of the various formulations.

Under these conditions there are two approaches that

may be employed to generate meaningful comparisons of

drug release from di�erent formulations.

() Analysis of the data sets using a repeated measures

Analysis of Variance

�is approach uses a repeated measures experimental

design to compare drug release from di�erent formula-

tions. In this the repeated measure is time (which should

be identical for each formulation) and the factor is for-

mulation type. Individual di�erences between the various

formulations may then be identi�ed using an appropriate

post hoc test. It is essential to ensure that the experimental

design does not become overly complicated and that the

demands of the ANOVA (with respect to homogeneity of

population variances and the use of normally-distributed

populations) hold.
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() Analysis of data at single time points

�e main requirements for the use of the repeated

measures Analysis of Variance are, �rstly that the require-

ments for the use of this test are met and secondly, that the

times at which the data were collected (sampled) are iden-

tical for each formulation. In practice these problems are

straightforward to overcome at the experimental design

stage however, theremay be issues concerning the ability to

perform the required number of replicates (typically ≥) to
allow a parametric test is suitable to use for the data anal-

ysis. For example, experiments in which the release is rel-

atively rapid (< h) may be easier to perform with many
replicates whereas the converse is true for experiments in

which the release is protracted. In such circumstances (e.g.,

whenever there are few replicates, typically n ≤ ), one
method that may be employed to compare the drug release

pro�les of di�erent formulation involves the comparison

of the formulations at each sampling point using a multi-

ple hypothesis test, e.g., the Kruskal-Wallis test. In a similar

fashion, individual di�erences between formulations may

be identi�ed by the application of an appropriate post hoc

test, e.g., Dunn’s test, Nemenyi’s test.

In an alternative approach, typically encountered

whenever the sampling periods di�er, comparison of the

drug release kinetics of candidate formulationsmay be per-

formed by ascertaining the time required for a de�ned

fraction of the initial drug loading to be released. A regres-

sion of the release pro�le (using the Peppas model) is per-

formed and, using the output from this model, the times

required for each formulation to release a de�ned fraction

is obtained and statistically compared using the appropri-

ate statistical test (Jones et al. ; Jones et al. ).�e

choice if test to perform the analysis is important and the

reader should be reminded that the use of parametric sta-

tistical tests (the unpaired t test and the ANOVA) should

be validated.

Conclusions
Analysing release data is an essential component in the

development and assessment of the performance of phar-

maceutical systems. In spite of this, suitable methods to

analyse release data are not clearly de�ned. In this mono-

graph strategies for the statistical comparisons of release

data are de�ned.
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Statistical Analysis of
Longitudinal and Correlated Data

David Todem

Michigan State University, East Lansing, MI, USA

Introduction
Correlated data are typically generated from studies where

the outcomes under investigation are collected on clus-

tered units. Speci�c examples include; () longitudinal data

where outcomes are collected on the same experimen-

tal unit (for instance, the same person) at two or more

di�erent points in time; and () studies where outcomes
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are recorded at one single point in time on clustered

units. Such studies have one major attraction, the abil-

ity to control for unobserved variables in making infer-

ences. Sampled units serve as controls for other units in

the same cluster. As an example, in a longitudinal study,

each subject serves as his or her own control in the study

of change across time. �erefore, these studies allow the

researcher to eliminate a number of competing explana-

tions for observed e�ects. �e determination of causal

ordering in making solid inferences contitutes another

attraction for longitudinal studies.

Despite these advantages, statistical analysis of cor-

related data raises a number of challenging issues. It is

well known, for example, that the multiplicity of outcomes

recorded over time on the same unit necessitates the use

of methods for correlated data. �is entry reviews some

of the common statistical techniques to analyze such data.

A focus is on longitudinal data as statistical models for

clustered data are typically simple versions of techniques

for longitudinal data. In longitudinal data analysis, the

response y(t) is a time-varying variable and the covariate

can be a baseline vector x, a time-varying covariate vec-

tor x(t), or a combination of both. A key issue for such

data is to relate the longitudinal mean responses to covari-

ates and draw related inferences while accounting for the

within-subject association. In essence, two classes of mod-

els exist for modeling the mean outcomes and covariates

relationship; () the parametric models and; () the semi-

parametric and nonparametric models.�is entry exam-

ines each of these models in some detail, with an eye to

discerning their relative advantages and disadvantages. A

discussion on emerging issues in analyzing longitudinal

data is also given but touched on brie�y.

Parametric Models
Parametric models are the predominant approaches for

longitudinal data. �ey make parametric assumptions

about the relationship between the mean of a longitu-

dinal response to covariates. �ey are known as growth

curve models and include the popular mixed-e�ects mod-

els (Laird and Ware ) and generalized estimating

equations models (Liang and Zeger ). Verbeke and

Molenberghs () and Diggle et al. () provide an

extensive review of this literature.

Mixed-Effects Models
Mixed-e�ects models are a useful tool to analyze repeated

measurements recorded on the same subject. �ey were

primarily developed for continuous outcomes in time

(Laird and Ware ) and were later extended to cate-

gorical and discrete data (Breslow and Clayton ). For

continuous outcomes with an identity link, they are known

as linear mixed-e�ects models. Generalized linear mixed-

e�ects models constitute the broader class of mixed-e�ects

models for correlated continuous, binary, multinomial,

ordinal and count data (Breslow and Clayton ).�ey

are likelihood-based and o�en are formulated as hierar-

chical models. At the �rst stage, a conditional distribution

of the responses given random e�ects is speci�ed, usually

assumed to be a member of the exponential family. At the

second stage, a prior distribution is imposed on the ran-

dom e�ects.�e conditional expectations (given random

e�ects) are made of two components, a �xed-e�ects and

a random-e�ects term. �e �xed-e�ects term represents

covariate e�ects that do not change with the subject. Ran-

dom e�ects represent a deviation of a subject’s pro�le from

the average pro�le. Most importantly, they account for

the within-subject correlation across time under the con-

ditional independence assumption. For continuous out-

comes with an identity link function, these models have an

appealing feature in that the �xed-e�ects parameters have a

subject-speci�c as well as a population-averaged interpre-

tation (Verbeke andMolenberghs ). For non continu-

ous data and nonlinear relationships, this elegant property

is lost.�e �xed-e�ects parameters, with the exception of

few link functions, only have a subject-speci�c interpreta-

tion, conditional on random e�ects.�is interpretation is

only meaningful for covariates that change within a sub-

ject such as time-varying covariates.�ese e�ects capture

the change occurringwithin an individual pro�le. To assess

changes for time-independent covariates, the modeler is

then required to integrate out the random e�ects from the

quantities of interest.

Mixed-e�ects models are likelihood-based and there-

fore can be highly sensitive to any distribution misspec-

i�cation. But they are known to be robust against less

restrictive missing data mechanisms. �ere exist other

likelihood-based methods for analyzing correlated data.

Before the advent of 7linear mixed models, longitudinal
continuous data were analyzed using techniques such as

repeated measures analysis of variance (ANOVA). �is

approach has a number of disadvantages and has generally

been superseded by linear mixed-e�ects models, which

can easily be �t in mainstream statistical so�ware. For

example, repeatedmeasures ANOVAmodels require a bal-

anced design in that measurements should be recorded

at the same time points for all subjects, a condition not

required by linear mixed models.

Generalized Estimating Equations Models
Although there is a variety of standard likelihood-based

models available to analyze data when the outcome is

approximately normal, models for discrete outcomes (such
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as binary outcomes) generally require a di�erent method-

ology. Liang and Zeger () have proposed the so-called

Generalized Estimating Equations-GEE model, which is

an extension of 7generalized linear models to corre-
lated data. �e basic idea of this family of models is to

specify a function that links the linear predictor to the

mean response, and use a set of estimating functions

with any working correlation model for parameter esti-

mation. A sandwich estimator that corrects for any mis-

speci�cation of the working correlationmodel is then used

to compute the parameters’ standard errors. GEE-based

models are very popular as an all-round technique to ana-

lyze correlated data when the exact likelihood is di�cult

to specify. One of the strong points of this methodol-

ogy is that the full joint distribution of the data does not

need to be speci�ed to guarantee asymptotically consis-

tent and normal parameter estimates. Instead, a working

correlation model between the clustered observations is

required for estimation. GEE regression parameter esti-

mates have a population-averaged interpretation, analo-

gous to those obtained from a cross-sectional data anal-

ysis. �is property makes GEE-based models desirable

in population-based studies, where the focus is on aver-

age a�ects accounting for the within-subject association

viewed as a nuisance term.

�e GEE approach has several advantages over a

likelihood-based model. It is computationally tractable in

applications where the parametric approaches are compu-

tationally very demanding, if not impossible. It is also less

sensitive to distribution misspeci�cation as compared to

full likelihood-based models. A major limitation of GEE-

based models at least in their  original formulation

is that they require a more stringent missing data mech-

anism (missing data completely at random) to produce

valid inferences. Weighted GEE-based models have been

proposed to accommodate a less stringent missing data

mechanism, the missing data at random process (Robins

et al. ).

Semiparametric and Nonparametric
Models
A major limitation of parametric models is that the

relationship of the mean of a longitudinal response to

covariates is assumed fully parametric. Although such

parametricmeanmodels enjoy simplicity and ease of inter-

pretation, they o�en su�ered from in�exibility in model-

ing complicated relationships between the response and

covariates in various longitudinal studies. Speci�c exam-

ples include modeling of; () longitudinal CD+ counts
as function of time in HIV/AIDS research; and () tra-

jectories of angiogenic and antiogenic factors in mater-

nal plasma concentrations (s-eng, sVEGFR- and PlGF)

in perinatal research. Parametric models typically require

higher degree polynomials to capture the relationship

between these mean responses and covariates. �is has

been seen as an indication of poor �t and has motivated

the development of more complex and �exible approaches

to model these data. Semiparametric and nonparametric

regression models, well known to be more data adap-

tive, have emerged as promising alternative to paramet-

ric models in these settings. Nonparametric models make

no parametric assumption about the relationship between

themean response and covariates. Semiparametric models

assume a parametric relationship between some covariates

and the mean response while maintaining a nonparamet-

ric relationship between other covariates and the mean

response.�ese methods are well developed for indepen-

dent data, but their extensions to longitudinal data remain

an active area of research. A major di�culty o�en cited

in the literature for this extension is the inherent within-

subject correlation in longitudinal studies. �is correla-

tion presents signi�cant challenges in the development

of kernel and spline smoothing methods for longitudinal

data. Speci�cally, as reported by many researchers in the

�eld (see for example, Lin and Carroll ; Lin et al.

), local likelihood-based kernel methods are not able

to e�ectively account for the within-subject correlation in

longitudinal data.

Discussion
�is entry has reviewed some of the common techniques to

model longitudinal data. A focus was on parametric mod-

els. Nonparametric and semiparametric approaches based

on smoothing techniques have emerged as a �exible way

to model longitudinal data. Other approaches that do not

require smoothing have recently been proposed (Lin and

Ying ). But much research, especially from a theoret-

ical standpoint, is needed to understand these methods.

Moreover, statistical so�ware to �t these models routinely

in real time is much needed.�is is in contrast to paramet-

ric models which can be �t using mainstream statistical

so�ware such as SAS, Stata, R, Splus and SPSS.�ere are

emerging areas in connection to longitudinal data analysis

that need further research such as; () the joint modeling

of longitudinal and 7survival data, () missing data and
() causal inference.�ese areas have enjoyed some signif-

icant developments in the past several years. But there are

numerous open questions that remain unanswered and are

the subject of future research.
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Many national statistical agencies, survey organizations,

and researchers – henceforth all called agencies – collect

data that they intend to share with others. Wide dissem-

ination of data facilitates advances in science and public

policy, enables students to develop skills at data analysis,

and helps ordinary citizens learn about their communities.

O�en, however, agencies cannot release data as collected,

because doing so could reveal data subjects’ identities or

values of sensitive attributes. Failure to protect con�den-

tiality can have serious consequences for agencies, since

they may be violating laws or institutional rules enacted

to protect con�dentiality. Additionally, when con�dential-

ity is compromised, the agencies may lose the trust of the

public, so that potential respondents are less willing to give

accurate answers, or even to participate, in future studies

(Reiter ).

At �rst glance, sharing safe data with others seems a

straightforward task: simply strip unique identi�ers like

names, tax identi�cation numbers, and exact addresses

before releasing data. However, these actions alone may

not su�ce when quasi-identi�ers, such as demographic

variables, employment/education histories, or establish-

ment sizes, remain on the �le.�ese quasi-identi�ers can

be used to match units in the released data to other

databases. For example, Sweeney () showed that %

of the records in a medical database for Cambridge, MA,

could be identi�ed using only birth date and nine-digit

ZIP code by linking them to a publicly available voter

registration list.

Agencies therefore further limit what they release, typi-

cally by altering the collected data (Willenborg anddeWaal

). Common strategies include those listed below.Most

public use data sets released by national statistical agencies

have undergone at least one of these methods of statistical

disclosure limitation.

Aggregation. Aggregation reduces disclosure risks by turn-

ing atypical records – which generally are most at risk –

into typical records. For example, there may be only one

person with a particular combination of demographic

characteristics in a city, but many people with those char-

acteristics in a state. Releasing data for this person with

geography at the city level might have a high disclosure

risk, whereas releasing the data at the state level might not.

Unfortunately, aggregation makes analysis at �ner levels

di�cult and o�en impossible, and it creates problems of

ecological inferences.

Top coding. Agencies can report sensitive values exactly

only when they are above or below certain thresholds,

for example reporting all incomes above $, as

“$, or more. ” Monetary variables and ages are

frequently reported with top codes, and sometimes with

bottom codes as well. Top or bottom coding by de�ni-

tion eliminates detailed inferences about the distribution
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beyond the thresholds. Chopping o� tails also negatively

impacts estimation of whole-data quantities.

Suppression. Agencies can delete sensitive values from the

released data.�ey might suppress entire variables or just

at-risk data values. Suppression of particular data values

generally creates data that are not missing at random,

which are di�cult to analyze properly.

Data swapping. Agencies can swap data values for selected

records – for example, switch values of age, race, and sex

for at-risk records with those for other records – to dis-

courage users frommatching, since matches may be based

on incorrect data (Dalenius and Reiss ). Swapping is

used extensively by government agencies. It is generally

presumed that swapping fractions are low – agencies do

not reveal the rates to the public – because swapping at

high levels destroys relationships involving the swapped

and unswapped variables.

Adding random noise. Agencies can protect numerical

data by adding some randomly selected amount to the

observed values, for example a random draw from a nor-

mal distribution with mean equal to zero (Fuller ).

�is can reduce the possibilities of accurate matching on

the perturbed data and distort the values of sensitive vari-

ables.�e degree of con�dentiality protection depends on

the nature of the noise distribution; for example, using

a large variance provides greater protection. However,

adding noise with large variance introduces measurement

error that stretches marginal distributions and attenuates

regression coe�cients (Yancey et al. ).

Synthetic data.�e basic idea of synthetic data is to replace

original data values at high risk of disclosure with val-

ues simulated from probability distributions (Rubin ).

�ese distributions are speci�ed to reproduce as many of

the relationships in the original data as possible. Synthetic

data approaches come in two �avors: partial and full syn-

thesis (Reiter and Raghunathan ). Partially synthetic

data comprise the units originally surveyedwith some sub-

set of collected values replaced with simulated values. For

example, the agencymight simulate sensitive or identifying

variables for units in the sample with rare combinations of

demographic characteristics; or, the agency might replace

all data for selected sensitive variables. Fully synthetic data

comprise an entirely simulated data set; the originally sam-

pled units are not on the �le. In both types, the agency

generates and releases multiple versions of the data (as

in multiple imputation for missing data, see 7Multiple
Imputation). Synthetic data can provide valid inferences

for analyses that are in accord with the synthesis models,

but they may not give good results for other analyses.

Statisticians play an important role in determining

agencies’ data sharing strategies. First, they measure the

risks of disclosures of con�dential information in the data,

both before and a�er application of data protection meth-

ods. Assessing disclosure risks is a challenging task involv-

ingmodeling of data snoopers’ behavior and resources; see

Reiter () and Elamir and Skinner () for exam-

ples. Second, they advise agencies on which protection

methods to apply and with what level of intensity. Gen-

erally, increasing the amount of data alteration decreases

the risks of disclosures; but, it also decreases the accuracy

of inferences obtained from the released data, since these

methods distort relationships among the variables. Statisti-

cians quantify the disclosure risks and data quality of com-

peting protection methods to select ones with acceptable

properties.�ird, they develop new approaches to sharing

con�dential data (see 7Data Privacy and Con�dential-
ity). Currently, for example, there do not exist statistical

approaches for safe and useful sharing of network and rela-

tional data, remote sensing data, and genomic data. As

complex new data types become readily available, there

will be an increased need for statisticians to develop new

protection methods that facilitate data sharing.
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Hurricanes are complex, natural phenomena that can

cause property damage on a catastrophic scale.�e human

toll depends on the preparedness of the population – his-

torical events with thousands of casualties are rare but

do occur (e.g., the  Galveston storm – Larson ).

Depending on where hurricanes form and traverse, they

have other names such as typhoons (western Paci�c) and

cyclones (Indian Ocean and Australia). O�cially, a hur-

ricane is de�ned as a closed circulation, warm core, and

convective weather system with maximum -min average

winds of m/s or higher, measured at m above ground

level (WMO ).�is precise and technical de�nition is

important since insurance payouts for losses o�en depend

on the declaration of a hurricane event.�e de�nition also

provides a threshold for establishing the event frequency

at speci�c locations, a criterion especially important for

climate change studies. For planning purposes, the return

period of hurricanes of various intensities is needed – i.e.,

what is the probability that mphwinds will strike a spe-

ci�c location this season or what wind speed corresponds

to the  year worst event? Fortunately, hurricanes are

relatively rare events (as compared to thunderstorms or

tornadoes) and thus, extreme value methods are used to

assess their frequencies (Embrechts et al. ). An excel-

lent introduction to hurricanes is given by Emanuel ()

while a more technical treatise is available by Anthes

().

Iman et al. () reviewed many aspects of statistical

forecasting and planning in the premier Interdisciplinary

Section of�e American Statistician.�e invitation to pre-

pare this article was motivated in part by the hyperactive

 and  Atlantic hurricane seasons which stunned

the American public following relatively minor hurricane

activity in the United States since Hurricane Andrew in

. Various researchers took these two seasons as the

onset of sustained, increased activity, only to witness the

four subsequent years of little hurricane activity impacting

Florida (O’Hagan et al. ).�is perspective illustrates

a United States-centric perspective regarding hurricane

activity.�e  season endured two very strong events

(Hurricanes Dean and Erin) which pummeled the Mexi-

can Yucatan and the Gulf of Campeche, causing massive

havoc with their oil and gas industry. Similarly, in ,

the Philippines experienced multiple typhoons le� nearly

, dead, thousands homeless, and widespread agricul-

tural devastation, yet received little media attention.

Forecasting hurricane track and intensity are key prob-

lems that must be addressed in real time for actual

events under a harsh public and media spotlight as hur-

ricane watches and warnings go into e�ect. �e “obvi-

ous” forecast is to extrapolate the current track with a

linear trend in intensity. A more sophisticated version

of this forecast is to draw upon the historical record to

develop a regression model using comparable informa-

tion on the movement of storms getting to the current

position of the storm (CLIPER and CLIPER in use by

the National Hurricane Center). More advanced models

take into account current and forecast upper level winds

(“steering currents”), while the most advanced include

�uid dynamics calculations of mesoscale storm structure.

In addition to themany individual forecastmodels, ensem-

ble models are also in use (for a technical summary, see

www.nhc.noaa.gov/modelsummary.shtml). �e increase

in skill (accuracy of prediction) of the more sophisticated

models is o�set by data input needs and computational run

times. Forecasts must be timely – a  h forecast that takes

 h to produce may be inferior to a much simpler fore-

cast that can be formulated in a matter of minutes. For a

further discussion of themany pitfalls associatedwith fore-

casts, especially the problems encountered with Hurricane

Charley in , see the aforementioned article by Iman

et al. ().

In determining hurricane impacts for insurance pur-

poses, a more leisurely time frame for computation is

available. �e computational burden is severe in that a

probabilistic assessment of hurricane losses is necessary.

www.nhc.noaa.gov/modelsummary.shtml
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Most approaches have proceeded by choosing speci�c,

individual models of hurricane frequency, wind �eld,

track, friction impacts, wind �eld decay, damage, and

actuarial summaries. Given the approximately  year

Atlantic storm history, less in other regions, practitioners

have tended to �t probability distributions to key charac-

teristics and then proceed to simulate –, years

of future hurricane seasons, accumulating losses for each

generated event. To assess the uncertainty and sensitiv-

ity of the parameter speci�cations for these models, the

Florida Commission on Hurricane Loss Methodology has

prescribed the use of Latin hypercube sampling (McKay

et al. ). One speci�c implementation pertinent to hur-

ricane modeling is described by Iman et al. (a, b).�e

latest research focuses on the use of climate models to pro-

vide track and intensity guidance (Watson and Johnson

).

A basic issue with evaluating hurricane modeling

e�orts is that every hurricane is somewhat di�erent and

anymodel that “�ne tunes” its modeling approach to a spe-

ci�c event will ultimately su�er for it (not all future events

are just like the particular event. For somehistorical events,

a very simple hurricane wind�eld model can do extremely

well with respect to matching modeled to actual losses. An

approach used by the Florida Commission to address this

di�culty follows the contextual analysis developed byWat-

son and Johnson () and expounded from an actuarial

perspective byWatson, Johnson and Simons. In brief, a fac-

torial combination of model components are considered

(nine wind �elds, four friction models, nine damage func-

tions and three frequency approaches) and the loss costs

for speci�c models are placed in the context of  model

combination results.7Outliers with respect to the range of
the factorial models generate relevant probing questions of

speci�c models.

Nelder () noted the importance of learning

another jargon for statisticians doing interdisciplinary

research.�e e�ort is well-rewarded for statisticians deal-

ing with the topic of hurricanes which will likely entail

collaborations withmeteorologists, atmospheric scientists,

geophysicists, and wind engineers.

About the Authors
Dr. Mark E. Johnson is professor, Department of Statis-

tics, University of Central Florida. He was Depart-

ment Chair (–). Dr Johnson is a Fellow of the

American Statistical Association (), Elected Member,

International Statistical Institutue (), Chartered Statis-

tician, Royal Statistical Society (). He has (co-

)authored more than  refereed papers and is author of

Multivariate Statistical Simulation (Wiley ). Professor

Johnson was awarded the Jack Youden Prize (), ASQC

Shewell Award (),�omas L. Saaty Prize (, 

and ), and ASQC Brumbaugh Award (), He was

Associate Editor of Technometrics (–), Journal of

Quality Technology, American Journal of Management and

Mathematical Sciences, and Journal of Statistical Computa-

tion and Simulation.

Mr. Charles C.Watson Jr. is the founder andDirector of

Research and Development of Kinetic Analysis Corpora-

tion. He has authored or co-authored more than  papers

and book contributions in the �elds of satellite remote

sensing, geophysics, andmeteorology, in such diverse pub-

lications such as Bulletin of the American Meteorological

Society, Photogrammetric Engineering & Remote Sensing,

the Journal of Insurance Regulation, and �e American

Statistician. Mr. Watson has served or is active as a scien-

ti�c consultant on hazard planning and remote sensing to

numerous national and international projects and agencies

such as the Caribbean Catastrophe Risk Insurance Facil-

ity, the Intergovernmental Panel on Climate Change, UN

Agencies such as the World Meteorological Organization,

UN Environment Program, and World Food Program, as

well asUS agencies such asNational Aeronautics and Space

Administration.

Cross References
7Actuarial Methods
7Forecasting: An Overview
7Statistics and Climate Change
7Statistics of Extremes
7Stochastic Di�erence Equations and Applications
7Time Series

References and Further Reading
Anthes RA () Tropical cyclones, their evolution, structure,

and effects, American Meteorological Society meteorological

monographs, vol (). AMS, Boston

Emanuel K () Divine wind: the history of science and hurri-

canes. Oxford University Press, New York

Embrechts P, Klüppelberg C, Mikosch T () Modelling extremal

events. Springer, Berlin

Iman RL, Johnson ME, Watson C Jr (a) Sensitivity analysis

for computer model projections of hurricane losses. Risk Anal

:–

Iman RL, Johnson ME, Watson C Jr (b) Uncertainty analysis

for computer model projections of hurricane losses. Risk Anal

:–

Iman RL, Johnson ME, Watson C Jr () Statistical aspects of

forecasting and planning for hurricanes. Am Stat ():–

Larson E () Isaac’s Storm. A man, a time, and the deadliest

hurricane in history. Crown Publishers, New York

McKay MD, Beckman RJ, Conover WJ () A comparison of three

methods for selecting values of input variables in the analysis of

output from a computer code. Technometrics :–



 S Statistical Consulting

Nelder J () “Statistics: Nelder’s view,” International encyclopedia

of statistical science. Springer, New York

O’Hagan T, Ward B, Coughlin K () How many Katrinas? Pre-

dicting the number of hurricanes striking the USA. Significance

():–

Watson C Jr, Johnson ME () Integrating hurricane loss mod-

els with climate models. In: Murnane R, Diaz H (eds) Climate

extremes and society. Cambridge University Press, Cambridge,

pp –

Watson C Jr, Johnson ME () Hurricane loss estimation models:

opportunities for improving the state of the art. B Am Meteorol

Soc :–

Watson C Jr, Johnson ME, Simons M () Insurance rate filings

and hurricane loss estimation models. J Insur Regul ():–

World Meteorological Organization (WMO) () Global guide

to tropical cyclone forecasting, WMO/TC-No. , Report

No. TCO-, World Meteorological Organization, Geneva,

Switzerland

Statistical Consulting
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What Is Statistical Consulting?
Here is a sketch of a normal consultation in the con-

sulting unit of my department, in a faculty of sciences.

One or a couple of researchers/Ph.D-students from a biol-

ogy/geology/... department contact us asking for help with

the analysis of data from a study they are carrying out.

At the meeting the client �rst describes the background,

the set-up, and (some of) the data of the study.�e aims

of the study are o�en in a general, vague form that needs

speci�cation and statistical reformulation in quanti�able

units. What is the client’s problem, really, and what kind

of questions can possibly be answered from that kind of

data? O�en the clients will be forced to think about their

problems in fresh ways.�e consultant will also ask a lot

of questions in order to make clear how the data were

collected. What populations do the data represent? Was

there 7randomization, strati�cation, censoring, etc? On
what parts of the data should the focus be? Explore the

data! What is the structure of these data? �is can lead

up to a tentative statistical model, and later to parameter

estimation procedures and hypothesis tests, etc.

�e �rst meeting hopefully ends at a stage where the

client and the statistician have agreed about what ques-

tions should be addressed statistically, and how this might

be attempted on the data. Either this appears so simple

and clear that the clients want and can do this themselves,

or else a time plan and a work plan for the contribution

by the statistician is agreed on. A�er a week or two, with

some e-mail correspondence in between, client and con-

sultant meet again to discuss the results so far and what

kind of report from the statistician that the clients might

want. O�en also the answer to one question triggers new

questions.

Another statistical consultation type of work could be

more of a collaborative/partnership character, where the

statistician is a member of a team, and the aims are more

far-reaching. �e statistician then invests a lot of time

and e�ort, to become knowledgeable in the subject matter

area and expert in the applications of statistical methods

in that area, but can therefore also expect more in�u-

ence and credit, and is a natural coauthor of the project

publications.

Also a consultation where the client is seen only once

or twice is rewarding for the statistician, but in a more

indirect way. Hopefully it will be an intellectually stimu-

lating challenge that together with other such experiences

can have a profound in�uence on our personal develop-

ment as statisticians. And it might still lead to a joint

publication.

Consultation work is typically done under time pres-

sure from one or both parties. Too o�en the client has

unrealistic expectations in this respect. On the other hand,

the clients usually do not need or want a perfect model

for data (remember the George Box phrase: “All models

are wrong, but some are useful”) or the most sophisticated

method of analysis. A solution that is approximately right

is much better than one that is precisely wrong.�e con-

sultant should think of the acronym KISS, here read out

as “Keep It Simple, but Scienti�c,” or rephrased as another

quotation: “as simple as possible, but no simpler.” “Errors

of the third kind” (testing the wrong hypothesis) are most

dangerous, Common sense and a critical mind are impor-

tant. As statistical consultants we must beware of falling in

the traps of being a More Data Yeller or a Nit Picker, or

any other of the consultant stereotypes coined by Hyams

().

Desirable Qualities for a Statistical
Consultant
Among the desirable qualities to be possessed by an ideal

consultant are:

● Interest in the statistical problems of others (Derr:

“Regard each client as a potential collaborator”), and a

general interest in science, technology, nature, society.
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● Sound basis in theoretical and applied statistics. As

a start it should certainly include linear and loglin-

ear models (7generalized linear models), some exper-
imental design (and sampling), and some multivari-

ate analysis, but also experience from a few courses

in methods for particular �elds of application, and

experience from applying such methods to data.

● Eagerness to extend and improve one’s statistical

knowledge.

● Computer skills in at least one (preferably more) statis-

tical packages.

● Good ability to communicate with clients (includes

understanding and adjusting to the client’s statistical

level).

● Skills in report writing (using a word processor).

● E�ciency under time restrictions and time pressure.

● Awareness of ethical dilemmas that can appear, and an

ability to deal with problematic clients.

Teaching Statistical Consulting
Nowadays a large number of universities provide educa-

tion in statistical consulting, in one form or the other. At

my department, as an example, this is a master level course

for mathematical statistics students, involving real clients,

and real problems in real time. Much of the training in the

course is orientated towards three aspects:

● �e �rst meeting with a client (in particular asking

questions to �nd out about the problem)

● Statistical thinking

● Structuring problems and seeing the structure in data

�e students are also provided some extended knowledge

of statistical methods and models, and they are in a con-

crete way involved in one consulting project, ending with

the writing of a project report.

Some Suggested Reading
�e entry by Stinnet et al. () in Encyclopedia of Bio-

statistics describes the roles of biostatisticians in a variety

ofmedical/biological environments (medical school, phar-

maceutical industry, governmental agency, etc.), and dis-

cusses some of the special challenges in consulting with

physicians, as well as the training of consultants in bio-

statistics. Joiner’s () older entry in Encyclopedia of

Statistical Sciences also exempli�es what consulting statis-

ticians might do, before it sets up and discusses a list of

desirable skills.�e discussion of computers and literature

is a bit out-of-date, for natural reasons.

Mallows () discusses “statistical thinking” and the

question “how do the data relate to the problem?”, in an

attempt to formulate a “theory of applied statistics.” Cox

() provides a review of applied statistics in his typical

style, while Chat�eld’s () nicely written book provides

more concrete advice.

E�cient communication is a key element in statis-

tical consultation, and it is the topic of Derr’s ()

book, with an accompanying CD-ROM showing illustra-

tive short movies of positive and negative examples. Com-

munication is themain topic also of Boen and Zahn (),

who provide much discussion of how to deal with clients,

not least with di�cult clients, cf. Hyams ().

Cabrera andMcDougall () is written as a textbook

on the whole topic. �e �rst half is on consulting, com-

munication, and statistical methods. I do not agree fully

with the statistical methods chapter, but who would expect

two statisticians to agree fully? �e second half consists

of case studies. Such a mix also characterizes Chat�eld’s

() book, and the older book by Cox and Snell (),

that can be recommended in this context for a section on

strategy and for its many case studies. More case studies

are found in Hand and Everitt () and in Tweedie et al.

(). Green�eld’s contribution to the former is an enter-

taining chapter on the encounters he has had with some

di�cult client characters (cf. Hyams , again).

To �nish, here is a quote from one of Terry Speed’s

columns in the IMS Bulletin (), entitled “How to do

Statistical Research.” Former IMS President Speed explains

his research strategy to be that of doing

● Consulting: a very large amount

● Collaboration: quite a bit

● Research: some

“Why? A very large amount of consulting means meeting

many people and many problems, learning a lot, includ-

ing �nding out where we are ignorant.�en wemight spot

some low-hanging fruit.”
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Model and Denotations
As in regression analysis, DoE is concerned with mod-

elling the dependence of a random target variable Y in

dependence of a number of controllable deterministic vari-

ables x, . . . , xk (called factors).�e major goal of DoE is

to �nd con�gurations for x = (x, . . . , xk) out of a given
regionV ⊂ Rk which lead to “optimal” results for the target
variable under consideration.�e di�erent con�gurations

x(), . . . , x(n) for the factors are summarized in a statistical
design dn = (x(), . . . , x(n)) ∈ Vn of size n.�e optimality
criterion is usually de�ned through some objective func-

tion, e.g., the information or 7entropy associated with an
experiment, the variance of some predictor Ŷ(x∗) for an

unobserved con�guration x∗ = (x∗ , . . . , x∗k ) etc.�e main
areas of concern in DoE are:

(a) statistical design in regression analysis and analysis of

variance

(b) factorial designs

(c) identi�cation and elimination of disturbing in�u-

ences (blocking)

�is o�en includes, as a �rst step, the design of the size

of the experiment; i.e., the number of observations n to

be taken in order to achieve a prede�ned goal, see e.g.,

Rasch et al. ().�e mean function of Y = Y(x) given
x = (x, . . . , xk) ∈ V is called the response surface, usually
denoted by η(x) = EY(x), and the model becomes

Y(x) = η(x) + ε, x ∈ V ()

where the random error term is assumed to be indepen-

dent of x and such that E(ε) = Var(ε) = σ . Interpreting

x as realisation of a random vector X = (X, . . . ,Xk), the
response function is simply the regression function of Y

w.r.t. X.�e unknown response surface is o�en modelled
through a linear setup

η(x) = β + βf(x) + . . . + βrfr(x) ()

with given functions f, . . . , fr . For example, η(x) could be
a second order polynomial setup

η(x) = β +
k

∑
i=

βixi +
k

∑
i≤j=

βijxixj ()

arising from a second order Taylor expansion of η. Here,

the �rst sum contains all main e�ects x, . . . , xk and the

second sum contains the (second order) interactions xixj.

Optimal Designs
For any given concrete design dn = (x(), . . . , x(n)) of size
n; where x(i) = (xi, xi, . . . , xik); i =  . . . n are not nec-
essarily distinct from each other, it is well-known that the

estimated response surface yields the best linear unbiased

estimate (BLUE)

η̂(x) = β̂ + β̂ f(x) + . . . + β̂rfr(x) = f (x)T β̂

where f (x)= (, f(x), . . . , fr(x))T and β̂ = (β̂, β̂, . . . , β̂r)T
provided the parameters are estimated by the method of

7least squares (LS); i.e., β̂ = (XTX)−XTY .
Here Y = (Y(x()), . . . ,Y(x(n))) stands for the vector
of observations taken at the design points and X for the

so-called design matrix

X = ( fj(x(i))) =

⎛
⎜⎜⎜⎜⎜
⎝

 f(x()) . . . fr(x())

⋮ ⋮ ⋮

 f(x(n)) fr(x(n))

⎞
⎟⎟⎟⎟⎟
⎠

()

www.amstat.org/sections/cnsl/brochures/SCSbrochure.pdf
http://bulletin.imstat.org/archive/34/1
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which is of type n×(r+). For a �rst order regression setup
η(x) = β + βx + . . . + βkxk we have r = k and the design
matrix has the simple form

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

 x . . . xk

 x . . . xk

⋮

 xn . . . xnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

 xT()

⋮ ⋮

 xT(n)

⎞
⎟⎟⎟⎟⎟
⎠

()

Criteria for the optimal choice of a design, as e.g., min-

imum prediction variance, are based on the covariance

matrix

Cov(β̂) = σ
(XTX)−

of the LSE β̂. For i.i.d. normally distributed observa-

tions this matrix is proportional to the Fisher information

matrix, therefore

M(dn) =


n
X
T
X ()

is called the information matrix of the design dn =
(x(), . . . , x(n)). �us it makes sense to base optimality
criteria for designs on functionals of (the inverse of) this

matrix.

De�nition �e design d∗n is called

(a) L-optimal w.r.t. some positive de�nite matrix U if

tr (UM (d∗n)
−) = min

dn
tr(UM(dn)−)

(b) G-optimal if it minimizes the maximum variance of

η̂(x) = f (x)T β̂ over some region H ⊂ Rk, i.e., max
x∈H

f (x)TM (d∗n)
−
f (x) = min

dn
max
x∈H
f (x)TM(dn)−f (x)

(c) D-optimal if it minimizes the determinant:

det (M (d∗n)
−) = min

dn
det (M(dn)−)

Important special cases of L-optimality include A-opti-

mality and c-optimality, where U = Ir+ and U = ccT for
a given vector c ∈ Rr+, respectively. An A-optimal design
minimizes the sumof the variancesVar(β̂)+. . .+Var(β̂r)
and thus the average variance of the regression coe�cients,

and a c-optimal design minimizes the variance of the lin-
ear combination Var(cT β̂) = Var(c β̂ + c β̂ + . . .+ cr β̂r).
A D-optimal design minimizes the volume of the disper-

sion (con�dence) ellipsoid for β̂.
Further criteria and numerical procedures for the con-

struction of optimal designs may be found in Pukelsheim

(), Atkinson et al. (), and Fedorov and Hackl

() on the basis of fundamental results by Kiefer and

Wolfowitz in the late s and early s. Bayesian

extensions of this theory are given in Pilz () and

Chaloner and Verdinelli (). An extensive theory of

optimal designs for correlated errors in a spatial setting

can be found in Müller (), Pilz and Spöck ()

and Spöck and Pilz () develop a theory of optimal

spatial design for the construction of environmental mon-

itoring networks using spectral theory for random �elds.

Optimal designs for higher-dimensional random �elds

are considered in Santner et al. (), with applications

in the area of the design of computer experiments, see

also Fang et al. (). Here, Kriging approximation mod-

els are constructed and then used as surrogates for the

computer model. �e design problem then refers to the

optimal choice of the inputs at which to evaluate the

computer model. Several so�ware toolboxes are available

for constructing optimal designs, see, e.g., Santner et al.

(), DACE (http://www..imm.dtu.dk/hbn/dace) and

the R-toolbox DoE (see Rasch et al. ).

Factorial Designs
Contrary to the mathematically well-de�ned optimality

criteria considered in the last section, it is also customary

to consider heuristically motivated and “practically use-

ful” criteria for the construction of designs. Brie�y, the �rst

branch is called the “Kiefer design theory” and the latter

branch is referred to as “Box design theory, ” in honour of

their pioneers.

We assume that the response surface can be su�ciently

well described by a polynomial of degree g ≥  in k ≥  fac-
tors x, . . . , xk. In order to guarantee the non-singularity

of the information matrix it is necessary that each factor

can take at least g +  di�erent values, the latter are called
the levels of the factors. A factorial design then means a

design which de�nes a subset of all possible combinations

of the levels of the k factors. It is said to be a full facto-

rial design if it contains all of the (g + )k combinations
of the levels, otherwise it is said to be a fractional facto-

rial design. In most applications the response surface is

investigated in a sequentialmanner. In a �rst step, a screen-

ing of the essential factors has to be made, using tools

from regression analysis or frommultivariate analysis (e.g.,

7principal component analysis). Herea�er, a �rst order
polynomial in the remaining (essential) factors is formed

to study the response surface and quantities of interest

(e.g., extrema). If this setup is insu�cient then a second or

third order polynomial setup is chosen and the factor levels

are updated until no further signi�cant improvements are

obtained. A formal way for proceeding in this manner had

already been developed byBox andWilson in , with the

aim of �nding factor con�gurations leading to optimum

experimental results.

http://www.2.imm.dtu.dk/hbn/dace
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Full Factorial Designs of the Type k

Usually, one starts with a full factorial design, where all

factors are controlled at two levels, “high” and “low, ” say.

Such a design contains 
k
con�gurations (design points).

By an appropriate scaling the design region can be trans-

formed to the k-dimensional cube V = {x = (x, . . . , xk) :
− ≤ xi ≤ +, i = , . . . , k} and the design points are just
the vertices of the cube. �e full factorial design of size

n = k, dn = FF(k) for short, allows the estimation of
all 

k
parameters of the model

η(x) = β +
k

∑
i=

βixi +∑
i,j=
i<j

βijxixj+. . .+β.. .kxx . . . xk

()

As an example, consider a full factorial 

design with fac-

tors x, x, and x which can be adjusted at two levels −
(“low”) and + (“high”), respectively.�e design has n = 
points and allows the estimation of all parameters of the

model η(x) = β + βx + βx + βx + βxx + βxx +
βxx + βxxx.�e basic structure of this design is

displayed in the following table:

Trial no. Coding x x x xx xx xx xxx

 () − − − + + + −

 a + − − − − + +

 b − + − − + − +

 c − − + + − − +

 ab + + − + − − −

 ac + − + − + − −

 bc − + + − − + −

 abc + + + + + + +

�e coding follows the usual standard in the litera-

ture; the letters a, b, c, . . . represent the factors x, x, x, . . .

and are used to indicate that the corresponding factor is

adjusted at the level +.
It is easily seen that M(dn) = 

n
XTX = In for a full

factorial dn = FF(k) and the estimated regression coef-
�cients are uncorrelated, in case of normally distributed

observations they are even independent, and have a simple

structure: β̂ = 

n
XTY , Cov(β̂) = σ 

n
In.

Such designs are called orthogonal, they can easily be

constructed using Hadamard matrices. When restricting

attention to �rst order polynomials η(x) = β+βx+ . . .+

βkxk then an FF(k) design leads to minimum variance
estimates with Var(β̂i) = σ /n, moreover these full facto-
rial designs turn out to be A-, D- and G-optimal. Finally,

the estimated response surface has variance Var(η̂(x)) =
σ 

n
( + xTx) which only depends on the distance of x =

(x, . . . , xk) from the center point  = (, . . . , )T of the
design region V . Such designs are called rotatable, i.e., for

�rst order polynomial setups full factorial designs of the

type 
k
are rotatable.

Fractional Factorial Designs of the Type k−p

If the number of factors is getting large, then one is inter-

ested in having less than 
k
observations to reduce the

experimental e�orts. On the other hand, such a reduc-

tion is justi�ed if it is clear that there are no higher-order

interactions between all or some of the factors. In practical

applications it is very common that only the main e�ects

and second-order interaction e�ects matter. To illustrate

this: a full factorial 

design requires n =  observa-

tions, but only  degrees of freedom are needed to estimate

the main e�ects and another  are needed for the exti-

mation of the two-factorial interchanging e�ects. �us,

only one third of the  observations would be needed

for parameter estimation if third- and higher-order inter-

actions were negligible.�erefore, fractional (incomplete)

factorial designs are widely used in practice.�ey had �rst

been introduced by Finney in .

We call a design dn of size n = k−p,  ≤ p < k, a frac-
tional factorial design of the type k−p if it forms the −p-th
part of a full factorial design of type 

k
. Such designs are

constructed algorithmically by means of p de�ning rela-

tions. To illustrate the ideas, let k =  and p = , i.e., we
construct a half replication of the FF(k) using the de�n-
ing relation x = xxx or, equivalently, multiplying by
x,  = xxxx.
Using the coding of the previous full factorial FF()

for the new FF() and observing the de�ning relation
 = xxxx we arrive at the coding for the required frac-
tional factorial 

−
design: (), ab, ac, ad, bc, bd, cd, abcd.

Finally, using the alternative de�ning relation  =
−xxxx we arrive at the alternative − design:
a, b, c,d, abc, abd, acd, bcd.�e unionof both half replicates

results in the full factorial FF() design.
�e reduction of the number of observations achieved

with fractional factorial designs, however, comes at the

price of confounded parameter estimates. In our example,

multiplying the de�ning relation  = xxxx by x, x, x,
and x, respectively, we obtain x = xxx, x = xxx,
x = xxx, x = xxx, which implies that the main
e�ects parameters β, β, β, and β are confounded with
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the third-order interaction parameters β, β, β, and

β, respectively. From the de�ning relation  = xxxx
itself follows that the intercept term β is confounded

with the fourth-order interaction parameter β. How-

ever, there is no confounding of main e�ects with low-

order interaction (second order interaction) parameters

β, . . . , β. Designs dn for which n = s for some inte-
ger s ≥  are called regular, designs for which n = r + 
(= number of unknown regressin parameters) are called
saturated. Clearly, full factorial as well as fractional facto-

rial designs are regular; full factorial designs FF(k) are
saturated for the linear regression setup () including all

possible interactions between the main factors.�e con-

struction of saturated orthogonal designs for the hyper-

cube region V = {x = (x, . . . , xk) : − ≤ xi ≤ +, i =
, . . . , k} is only possible for sizes n which are multiples of
, such designs had already been constructed by Plackett

and Burman in .

Blocking in Factorial Designs
Random disturbances in the experimental conditions lead

to an increased variance of the experimental error. In order

to reduce this variance it is necessary to randomize the

sequence of level combinations of a given design. If the

number of factors k is getting larger (which usually implies

an increased duration of experimentation in time) then

systematic changes in the experimental conditions can

occur (e.g., changing weather conditions in agricultural

experiments). In this case, reductions in the variance of the

experimental error can be achieved by blocking. Blocks are

subsets of an experimental design which are constructed

such that they guarantee the homogeneity of experimental

conditions within the corresponding subsets. Such blocks

can be formed, e.g., from subsets of full or fractional facto-

rial designs, the sequence of trials within the blocks again

chosen at random. For example, having k factors x, . . . , xk
and assuming that only the main e�ects and two-factorial

interaction e�ects are signi�cant, then the response surface

takes the form

η(x) = β +
k

∑
i=

βixi +
k

∑
i,j=
i<j

βijxixj

For an unconfounded estimation of the e�ects a full facto-

rial FF(k) may be chosen, or, for k ≥ , some fractional
factorial 

k−p
with small p ≥ . In order to take account of

the block e�ect a block factor xB is introduced, adjusted to

the levels of the product xx . . . xk (or some other gener-

ator when starting with a fractional factorial). �e block

factor xB can then be interpreted as an indicator variable

taking values + and −, and the resulting design can be

interpreted as a fractional factorial design of type 
(k+)−

wtih the de�ning relation  = xx . . . xkxB. Assuming the
interaction e�ects βB, . . . , βkB, βB, βB, . . . , β.. .kB to be

negligible, the main e�ects and two-factorial interaction

e�ects can be estimated without confounding. Moreover,

since the design is orthogonal, blocking has no in�uence

on these estimates.

For further results on fractional factorial designs,

blocking, multilevel designs and other topics relevant in

the vast �eld of statistical (optimum) experimental design

we refer to the extensive monograph by Wu and Hamada

().
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Introduction
Statistical distributions are used to model sample data that

were collected from a population or to model the out-

comes of a random experiment.�e statistical distribution

is simply the probability distribution of a random vari-

able.�ese probabilitymodels are commonly used inmany

applied areas such as economics, education, engineering,

social, health, and biological sciences. �e distributions

of discrete random variables (whose possible values are

countable) are referred to as the discrete distribution while

those of continuous random variables are called continu-

ous distribution. To begin with an example, let X denote

the number of heads that can be observed by �ipping a

fair coin three times.�e sample space of X includes eight

outcomes, namely, HHH, HTH, THH, TTH, HHT, HTT,

THT, TTT, where H denotes the head and T denotes the

tail. �e probability that X equals one is the probability

of observing any one of the mutually exclusive outcomes

TTH, HTT and THT. As all eight outcomes are equally

likely, P(X = ) = 


. Proceeding this way, we obtain the

probability distribution of X as

x    

P(X = x) 











�e above distribution is a member of the family of

binomial distributions indexed by n and p, where n is the

number of independent Bernoulli trials (each trial results

into either “success” or “failure”) and p is the probability

of observing a success in each trial.�e function that gives

the probability that a discrete randomvariable takes a spec-

i�ed value is referred to as the probability mass function

(pmf). For example, the pmf of a binomial randomvariable

is given by

P(X = x∣n, p) =
⎛
⎜⎜
⎝

n

x

⎞
⎟⎟
⎠
p
x( − p)n−x, x = , , , . . . ,n.

For a continuous random variable X, P(X = x) =  for any
�xed x, and so we consider only P(X ∈ A) for any given
interval A ∈ R, and this probability can be evaluated as
P(X ∈ A) = ∫A f (x; θ)dx, where f (x; θ) is called the prob-
ability density function (pdf), and θ is a parameter vector.

�e pdf f (x) should satisfy two conditions: f (x) ≥  for all
x, and ∫

∞
−∞ f (x; θ)dx = .

In the following we shall list some commonly used

discrete and continuous distributions, their physical sig-

ni�cance, relations among them and some measures that

describe features of a distribution.

Discrete Distributions
Most commonly used discrete distributions are the bino-

mial, Poisson, hyper geometric, negative binomial and log-

arithmic series distributions. �e �rst four distributions

are closely related.�e 7binomial distribution is used to
estimate the proportion of individual with an attribute

of interest in a population. In particular, the number of

individuals with an attribute of interest in a random sam-

ple from a large population (e.g., proportion of defective

items in a large shipment) is a binomial random vari-

able with the sample size as the value of n, and the true

proportion (usually unknown) in the sampled popula-

tion is the parameter p. On the other hand, if the sample

is drawn (without replacement) from a �nite population,

then the number of units in the sample with the char-

acteristic of interest is a hypergeometric random variable

with the size of the population N (usually known) as the

“lot size,” the true number of units M (usually unknown)

with the attribute in the population as the parameter, and

the sample size n as another (known) parameter.�e pmf

of a hypergeometric random variable is given by P(X =
x∣n,M,N) = (M

x
)(N−M

n−x )/(
N

n
), L ≤ x ≤ U, where L =

max{,M −N +n} andU = min{n,M}. If the population
is reasonably large, then one could use the binomial model

instead of the hypergeometric.

�e Poisson distribution (see 7Poisson Distribution
and Its Application in Statistics) is postulated to model

the probability distribution of rare events. Speci�cally, if
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Statistical Distributions: An Overview. Table  Some discrete distributions

Distribution Probability mass function Description

Uniform f(x; N) = 
N

, k = , . . . , N. Positive integer N

Binomial f(x; n, p) = (n
x
)px( − p)n−x x = , , . . . , n n = No. of trials

p = Success probability

Hypergeometric f(x; n, M, N) =
(

M

x
)(

N−M

n−x
)

(
N

n
)

,

max{, M − N + n} ≤ x ≤ U = min{n, M}

n = Sample size; M = No. of defects
N = Lot size

Poisson f(x; λ) = e−λ λx

x!
, x = , , , . . . λ = Mean

Geometric f(x; p) = ( − p)x p, x = , , , . . . p = Success probability
x = No. of failures until the first success

Negative binomial f(x; r, p) = (r+x−
x

)pr( − p)x , x = , , , . . . p = Success probability
x = Number of failures until the rth success

Logarithmic series f(x; θ) = − θx

x ln(−θ)  < θ < 

an event is almost unlikely to occur in a moment of time,

but the number of occurrences over a long period of time

could be very large, then a Poisson model is appropriate

to describe the frequency distribution of the event. �is

description implies that the binomial distribution with

large n and small p can be approximated by a Poisson

distribution with mean λ = np. More speci�cally, for a
binomial(n, p) random variable with large n and small p,
P(X ≤ x∣n, p) ≃ ∑xi= e

−λ λi

i!
, x = , , . . . ,n, where λ = np

and e−λ λx/x! is the pmf of a Poisson random variable with
mean λ.

�e geometric distribution arises as the probability

distribution of number of trials in a sequence of indepen-

dent Bernoulli trials needed to get the �rst success. �e

negative-binomial distribution is a generalization of the

geometric distribution where we consider the number of

trials required to get r successes. Note that in the binomial

distribution, the number of successes in a �xed number of

independent Bernoulli trials is a random variable where as

in the case of negative-binomial the number of trials is a

random variable.�e number of failures K in a sequence

of independent Bernoulli trials that can be observed before

observing exactly r successes is also referred to as the

negative-binomial random variable. In the former case,

n takes on values r, r + , r + , . . . . whereas in the lat-
ter case K takes on values , , ,…. Both binomial and

negative-binomial distributions are related to the beta dis-

tribution: If X is a binomial(n, p) random variable then,
for x ≠ , P(X ≥ x∣n, p) = P(Y ≤ p), where Y is a
beta(x, n − x + ) random variable. Also, for x ≠ n P(X ≤
x∣n, p) = P(W ≥ p), whereW is a beta(x+ , n−x) random

variable. If X is the number of failures before the rth suc-

cess (in a sequence of independent Bernoulli trials), then

P(X ≤ x∣r, p) = P(W ≤ p), whereW is a beta(r, x+ ) ran-
dom variable. Similar relation exists between the Poisson

and the chi-square distributions. Speci�cally, P (χn > x) =
P(Y ≤ n/− ), where Y is a Poisson random variable with
mean x/.

�e probability mass function of a logarithmic series

distribution with parameter θ is given by P(X = k) =
aθk

k
,  < θ < , k = , , . . . , where a = −/[ln( − θ)].

�e logarithmic series distribution is useful to describe a

variety of biological and ecological data. It is o�en used to

model the number of individuals per species.�is distri-

bution is also used to �t the number of products requested

per order from a retailer.

Some popular discrete distributions are listed in

Table . For detailed descriptions, properties and appli-

cations of various discrete distributions, see the books

by Johnson et al. (), Evans et al. (), and

Krishnamoorthy ().

Continuous Distributions
Continuous distributions are grouped into a few fam-

ilies based on the form of pdfs: location family, scale

family, location-scale family and exponential family,

etc. In the following we shall describe some of these

families.

Location-Scale Family: �e pdf of a location-scale dis-

tribution can be expressed as 

σ
f ( x−µ

σ
) , where µ is the

location parameter, σ >  is the scale parameter and f is any
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pdf that does not depend on any parameter. As an example,

the pdf of a normal distribution can be expressed as

f (x; µ, σ) = √
πσ

e
− (x−µ)

σ = 
σ
f (x − µ

σ
) , with

f (z) = √
π
e
−x/

.

�e two-parameter exponential distribution, normal,

Cauchy, double exponential (Laplace), extreme-value and

logistic are popular location-scale distributions. �e

cumulative distribution function (cdf) of a location-scale

random variable can be computed using its standard form

as P (X ≤ x) = P (Z ≤ x−µ
σ

). For a location-scale family,
µ̂−µ

σ
and σ̂

σ
are pivotal quantities provided µ̂ and σ̂ are

equivariant estimators.�ese pivotal quantities are useful

to �nd inferential procedures for µ, σ or for any invariant

function of (µ, σ).
�e normal distribution is themost popular among the

location-scale families. In fact there is nothing inherently

normal about the normal distribution, and its commonuse

in applications is due its simplicity. Distributions of many

commonly used statistics can be approximated by the stan-

dard normal distribution via the central limit theorem (see

7Central Limit �eorems). Furthermore, the asymptotic
distribution of a maximum likelihood estimator is normal

with the variance determined by the Fisher information

matrix.

Exponential Family: A family of distributions whose

pdf or pmf can be written in the form f (x; θ) = h(x)c(θ)
exp (∑ki= qi(θ)wi(x)) is called an exponential family. As
an example, the binomial family is an exponential family

because thepmf f (x; p) = h(x)c(p) exp(q(p)w(x)),with
h(x) = (n

x
), c(p) = ( − p)n, q(p) = ln(p/( − p)) and

w(x) = x.�enormaldistributionandlognormaldistribu-
tionaremembersofexponentialfamilies.Astatisticalmodel

from an exponential family is easy to work with because

exponential families have some nice mathematical proper-

ties. For instance, it is easier to �nd su�cient statistics for

an exponential family. In fact, for a sampleX, . . . ,Xn from

an exponential family, (∑ni= w(Xi), . . . ,∑ni= wk(Xi)) is a
su�cient statistic for θ.

Some distributions are routinely used tomodel lifetime

data, and they are referred to as lifetimes (or failure times)

distributions.�e7Weibull distribution is one of the most
widely used lifetime distributions in reliability and survival

analysis. It is a versatile distribution that can take on the

characteristics of other types of distributions, based on the

value of the shape parameter. If X follows a Weibull dis-

tribution with shape parameter c and the scale parameter

b, then ln(X) has the extreme-value distribution with the

location parameter µ = ln(b) and the scale parameter σ =
/c.�is one–one relation allows us to transform the results
based on aWeibull model to an extreme-value distribution

(see 7Weibull distribution). Other lifetime distributions
include exponential, two-parameter exponential, lognor-

mal, and gamma distributions. Some popular continuous

distributions are listed in Table .

Relations Among Distributions: Many of the continu-

ous distributions have one–one relation with others. For

example, normal and lognormal (via logarithmic trans-

formation of lognormal random variable), two-parameter

exponential and Pareto (via logarithmic transformation

of Pareto random variable), two-parameter exponential

and power distribution (via negative log transformation

of power random variable).�is one–one relation enables

us to transform some invariant inferential procedures for

one distribution to another. Another important distribu-

tion that has relation with the t, F, binomial and negative

binomial distributions is the beta distribution. An e�cient

program that evaluates the beta distribution can be used to

computes the cumulative distribution functions (cdfs) of

other related random variables just cited.�e gamma dis-

tribution with the shape parameter α = n/ and the scale
parameter β =  specializes to the 7chi-square distribu-
tion with n degrees of freedom; when α = , it simpli�es to
the exponential distribution with mean β. A diagram that

describes relations among various distributions is given in

Casella and Berger (, p. ).

Moments and Other Measures
Moments are set of measures that are useful to judge some

important properties of a probability distribution. Mean

and median are commonly used measure of location or

center of the distribution. Range and variance are used to

quantify the variability of a random variable. We shall now

overview some of these measures that describe important

characteristics of a distribution.

�emean of a random variable is usually denoted by µ,

which is expectation of the random variable. For a discrete

random variable X, µ = E(X) = ∑k kP(X = k), where
the sum is over all possible values of X. If X is continuous,

then µ = ∫
∞
−∞ xf (x)dx, where f (x) is the pdf of X. �e

expectation E(Xk), k = , , . . ., is referred to as the kth
moment about the origin, while E(X− µ)k is called the kth
moment about the mean or the kth central moment.�e

second moment about the mean is the variance (denoted

by σ ), and its positive square root is called the standard

deviation.�e absolute moment E(∣X − µ∣) is referred to
as the mean deviation. �e mean deviation and variance
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Statistical Distributions: An Overview. Table  Some continuous distributions

Distribution Probability density function Description of parameters

Uniform f(x; a, b) = 
b−a

, a ≤ x ≤ b a < b; known or unknown

Normal f(x; µ, σ) = 
σ
√

π
exp [− (x−µ)

σ ] ,−∞ < x <∞ −∞ < µ <∞, σ > 
Mean µ
Standard deviation σ

Chi-square f(x; n) = 
n/Γ(n/)

e−x/xn/−, x >  Degrees of freedom (df) n > 

F-distribution f(x; m, n) =
Γ( m+n


)

Γ( m

)Γ( n


)

(
m

)

m/
xm/−

(
n

)

m/
[+ mx

n
]

m/+n/ , x > 
m = Numerator df
n = Denominator df

Student’s-t f(x; n) = Γ[(n+)/]
Γ(n/)

√

nπ


(+x

/n)(n+)/ , −∞ < x <∞ df n ≥ 

Exponential f(x; µ, σ) = 
σ

exp (− (x−µ)
σ

) , x > µ Location µ
Scale σ > 

Gamma f(x; a, b) = 
Γ(a)ba e−x/bxa−, x >  Shape a > 

Scale b > 

Beta f(x; a, b) = 
B(a,b)

xa−( − x)b−,  < x <  Shape a > 
Scale b > 

Noncentral
Chi-square

f(x; n, δ) =
∞

∑
k=

exp(− δ


)(

δ


)

k

k!

exp(− x

)x

n+k
 −


n+k

 Γ( n+k


)

df n > 
δ = Noncentrality parameter > 

Noncentral F cdf =
∞

∑
k=

exp(− δ


)(

δ


)

k

k!
P (Fm+k,n ≤ mx

m+k
) Numerator df m > 

Denominator df n > 
Noncentrality parameter δ > 

Noncentral t f(x; n, δ) = nn/ exp(−δ
/)

√

π Γ(n/)(n+x
)
(n+)/

∞

∑
i=

Γ[(n+i+)/]
i!

( xδ
√


√

n+x
)

i
df n ≥ 
−∞ < δ <∞

Laplace (Double exponential) f(x; a, b) = 
b

exp [− ∣x−a∣
b

], −∞ < x <∞ −∞ < a <∞, b > 
Location a, scale b > 

Logistic f(x; a, b) = 
b

exp{−( x−a
b
)}

[+exp{−( x−a
b
)}]

 , −∞ < x <∞ Location a, scale b > 

Lognormal f(x; µ, σ) = 
√

πxσ
exp [− (ln x−µ)

σ ] , x >  σ > , −∞ < µ <∞

Pareto f(x; a, b) = bab

xb+ , x ≥ a a > ; b > 

Weibull f(x; b, c, m) = c
b
( x−m

b
)c− exp{− [ x−m

b
]c} , x > m Scale b > 

Shape c > 
Location m

Extreme-value f(x; a, b) = 
b

exp [− x−a
b

] exp{− exp [− x−a
b

]} Location a
Scale b > 

Cauchy f(x; a, b) = 
π b[+((x−a)/b)

]
, −∞ < x <∞ Location a, scale b > 

Inverse Gaussian f(x; µ, λ) = ( λ

πx )

 exp (−λ(x−µ)

µ x
) , x >  λ > , µ > 

are used to judge the spread of a distribution.�e measure

of variability that is independent of the units of measure-

ments is called coe�cient of variation, and is de�ned as

(standard deviation/mean = σ/µ).

�e measures that are used to judge the shape of a dis-

tribution are the coe�cient of7skewness and the coe�cient
of kurtosis (see 7Kurtosis: An Overview).�e coe�cient
of skewness is de�ned as (the third moment about the
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mean)/(variance)
/
. �e skewness measures the lack of

symmetry. A negative coe�cient of skewness indicates that

the distribution is le�-skewed (larger proportion of the

population is below the mean) while a positive value indi-

cates that the distribution is right-skewed.�e coe�cient

of kurtosis, de�ned as γ = (the fourth moment about the
mean)/(variance)


, is a measure of peakedness or �atness

of the probability density curve. As an example, for the

normal distribution, the coe�cient of skewness is zero

(symmetric about the mean), and the coe�cient of kurto-

sis is three. For a Student t distribution with n degrees of

freedom, the coe�cient of skewness is zero and the coe�-

cient of kurtosis is (n−)/(n−), which approaches  as
n→∞.

�e 7moment generating function for a random vari-
able is de�ned asMX(t) = E[etX] provided the expectation
exists for t in some neighborhood of zero. Note that the

kth derivative ofMX(t) evaluated at t =  is E(Xk), the kth
moment about the origin.�e logarithmofmoment gener-

ating function,GX(t) = ln(MX(t)), is called the cumulant
generating function. �e kth derivative of GX(t) evalu-
ated at t =  is the kth moment about the mean. �us,
G′(t)∣t= = µ, G′′(t)∣t= = σ , and so on.

Fitting a Probability Model
�ere are several methods available to �t a probability

distribution for a given sample data. A popular simple

method is quantile–quantile plot (Q-Q plot) which is the

plot of the sample quantiles (percentiles) and the corre-

sponding population quantiles. �e population quantiles

are usually unknown, and they are obtained using the esti-

mates of the model parameters. If the Q–Q plot exhibits

a linear pattern, then the data can be regarded as a sam-

ple from the postulated probability distribution.�ere are

other rigorous approaches available to check if the sam-

ple is from a speci�c family of distributions. For instance,

theWilks–Shapiro test and the Anderson–Darling test (see

7Anderson-Darling Tests of Goodness-of-Fit) are popular
tests to determine if the sample is from a normal pop-

ulation. Another well-known nonparametric test is the

7Kolmogorov–Smirnov test which is based on the di�er-
ence between the empirical distribution of the sample and

the cumulative distribution function of the hypothesized

probability model.

Multivariate Distributions
�e probability distribution of a random vector is called

multivariate distribution. In general, it is assumed that

all the components of the random vector are continuous

or all of them are discrete.�e most popular continuous

multivariate distribution is the multivariate normal (see

7Multivariate Normal Distributions). A random vector X
is multivariate normally distributed with mean vector µ
and the variance–covariance matrix Σ if and only if αX ∼
N(α′µ, α′Σα) for every non-zero α′ ∈ Rp. Many results
and properties of the univariate normal can be extended

to the multivariate normal distribution (see 7Multivariate
Normal Distributions) using this de�nition. Even though

there are other multivariate distributions, such as mul-

tivariate gamma and multivariate beta, are available in

literature, their practical applications are not well-known.

One of the most popular books in the area of multivariate

analysis is Anderson () and its earlier editions.

A popular multivariate discrete distribution is the

7multinomial distribution, which is a generalization of
the 7binomial distribution.�is distribution is routinely
used to analyze the categorical data in the form of con-

tingency table. Another distribution to model a sample of

categorical vector observations from a �nite population is

the multivariate hypergeometric distribution. A useful ref-

erence formultivariate discrete distributions is the book by

Johnson et al. ().
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Ecologists study complex systems, and o�en need to use

non-standard methods of sampling and data analysis.�e

datamight be collected over a long-time scale, involve little

spatial replication, or be highly aggregated in space.�ere

have been many fruitful collaborations between ecologists

and statisticians, o�en leading to the development of new

statistical methods. In this brief overview of the subject,

I will focus on three areas that have been of particular

interest in the management of animal populations. I will

also discuss the use of statistical methods in other areas

of ecology, the aim being to highlight interesting areas of

development rather than a comprehensive review.

Mark-Recapture Methods
Mark-recapture methods are commonly used to esti-

mate abundance and survival rates of animal populations

(Lebreton et al. ; Williams et al. ). Typically, a

number of individuals are physically captured,marked and

released. �e information obtained from successive cap-

ture occasions is summarized in a “capture history,” which

indicates whether or not an individual was captured on the

di�erent occasions.�e likelihood is speci�ed in terms of

demographic parameters of interest, such as annual sur-

vival probabilities, and nuisance parameters that model

the capture process. A range of goodness-of-�t diagnostics

have been developed, including estimation of overdisper-

sion (Anderson et al. ). Overdispersion usually arises

as a consequence of heterogeneity, or lack of indepen-

dence, amongst individuals in the survival and/or cap-

ture probabilities; attempts have also been made to model

such heterogeneity directly (Pledger et al. ). 7Model
selection o�en involves use of 7Akaike’s information cri-
terion (AIC), and model-averaging is also commonly used

(Johnson and Omland ). Bayesian methods are

becoming popular, particularly as means of �tting hierar-

chical models (Brooks et al. ). Recent developments

include the use of genotyping of fecal, hair or skin samples

to identify individuals (Lukacs and Burnham ;Wright

et al. ), and spatially-explicitmodels that allow estima-

tion of population density (Borchers and E�ord ). A

related area of recent interest has been the estimation of the

occupancy rate, i.e., the proportion of a set of geograph-

ical locations that are occupied by a species (MacKenzie

et al. ). �is can be of interest in large-scale moni-

toring programs, for which estimation of abundance is too

costly, and in understandingmetapopulation dynamics. In

this setting, the “individuals” are locations and the “capture

history” records whether or not a species was observed at

that location, on each of several occasions.

Distance Sampling
A common alternative method for estimating population

abundance or density is distance sampling.�is involves

recording the distance of each observed individual from
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a transect line or a point.�e analysis then involves esti-

mation of the probability of detection of an individual as a

function of distance (Buckland et al. ), thereby allow-

ing estimation of the number of individuals that have not

been detected. Two important assumptions in using this

method is that detection is certain for an individual on

the line or point and that individuals do not move during

the observation process, althoughmodi�cations have been

suggested for situations inwhich these assumptions are not

met (Borchers et al. ; Buckland and Turnock ).

Compared to the use of mark-recapture methods for esti-

mating abundance, distance sampling typically provides

savings in terms of �eld e�ort, and will usually be more

appropriate when the population is widely dispersed. A

useful discussion of the theory underlying use of distance

sampling is given by Fewster and Buckland (), while

Schwarz and Seber () provide an extensive review of

methods for estimating abundance.

Population Modeling
Population projectionmodels have long been used as a tool

in the process of managing animal and plant populations,

most o�en as means of assessing the impact of manage-

ment on the population growth rate or on the probability

of quasi-extinction (Caswell ; Burgman et al. ).

A population model will typically involve one or more

demographic parameters, such as annual survival proba-

bilities and annual reproductive rates, for individuals in

di�erent ages or stages. In the past, estimation of the

parameters has been performed by separately �tting statis-

tical models to the di�erent sets of data; recent work in this

area has focussed on regarding the population model as a

statistical model that can be �tted to all the available data

(Buckland et al. ).�e bene�t of this approach is that

all the uncertainty can be allowed for, and that estimation

of the parameters can be improved by including data that

provide a direct indication of the population growth rate

(Besbeas et al. ).�is development has the potential

to allow ecologists to �t a broad range of population mod-

els to their data, including ones that allow for immigration

(cf., Nichols and Hines ; Peery et al. ).

Other Developments
A key aspect of studying many plant and animal popula-

tions is their aggregated spatial distribution. �is distri-

bution might be of interest in itself, or be something that

needs to be allowed for in the sampling and data analysis.

�ere is a long tradition of the analysis of spatial pattern in

ecology, involving a range of statistical techniques, includ-

ing distance-based methods and spatial 7point processes

(Fortin and Dale ). Various statistical distributions

have been suggested as ameans of allowing for the fact that

aggregation o�en leads to zero-in�ated and/or positively

skewed data.�ese include the negative binomial, lognor-

mal and gamma distributions, plus zero-in�ated versions

of these (Dennis and Patil ;Martin et al. ; Fletcher

). Likewise, methods have been developed for �tting

models that incorporate spatial autocorrelation (Legendre

; Fortin and Dale ).

7Adaptive sampling is a modi�cation of classical sam-
pling that aims to allow for spatial aggregation by adap-

tively increasing the sample size in those locations where

the highest abundances have been found in an initial sam-

ple (�ompson and Seber ; Brown and Manly ).

Information on the number and relative abundance of

individual species in one or more geographical areas has

been of interest to many ecologists, leading to the use of

species abundance models (Hughes ; Hill and Hamer

), estimation of species richness (Chao ), model-

ing species-area relationships (Connor and McCoy ),

and the analysis of species co-occurrence (Mackenzie et al.

; Navarro-Alberto and Manly ).

In studying ecological communities, it is o�en natural

to consider the use ofmultivariatemethods.�ere is a large

literature in this area, primarily focussing on classi�ca-

tion and ordination techniques for providing informative

summaries of the data (McGarigal et al. ). Likewise,

multivariate analysis of variance (see 7Multivariate Anal-
ysis of Variance (MANOVA)) has been used to assess the

ecological impact of human disturbance on a range of

species (Anderson and Ter Braak ).

In order to study processes operating at large spatial

scales, it is useful to carry out studies at those scales. In

doing so, there is a tension between satisfying the statis-

tical requirements of replication and keeping the study at

a scale that is large enough to provide meaningful results

(Schindler ; Hewitt et al. ).�ere has been some

discussion in the ecological literature regarding appropri-

ate statistical methods for such studies (Cottenie and De

Meester ). One approach is to consider a single large-

scale study as insu�cient to provide the level of evidence

that is usually required of a small-scale experiment, with

the hope that information from a number of studies can

eventually be combined, either informally of using meta

analysis (Gurevitch and Hedges ).

Future
It is clear that the increasing popularity of computationally-

intensive Bayesian methods of analysis will lead to ecolo-

gists being able to �t statistical models that provide them
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with a better understanding of the spatial and tempo-

ral processes operating in their study populations (Clark

). Likewise, recently-developed techniques such as

7neural networks (Lek et al. ) and boosted trees (Elith
et al. ), are likely to appear more frequently in the

ecological literature. In tandem with the development of

new techniques, there will always be a need to balance

complexity and simplicity in the analysis of ecological data

(Murtaugh ).
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Introduction
Risk measures are used to quantify insurance losses and

measure �nancial risk assessments. Several risk measures

have been proposed in actuarial science literature, namely,

the value at risk, the expected shortfall or the condi-

tional tail expectation, and the distorted risk measures

(DRM). Let X be a nonnegative random variable (rv) rep-

resenting losses of an insurance company with a continu-

ous distribution function (df) F.�e DRM of X is de�ned

by

Πg = ∫
∞


g ( − F (x))dx,

where the distortion function g is an increasing function

such that g () =  and g () =  (see, Wang ).

In terms of the generalized inverse function Q(s) := inf
{x : F(x) ≥ s} , the DRMmay rewritten as

Πg = ∫



g
′ (s)Q ( − s)ds,

provided that g is di�erentiable. In this entry, we con-

sider the DRM corresponding to the distortion function

g (s) = s/ρ
, ρ ≥  called the proportional hazard transform

(PHT) risk measure. In this case we write

Πρ = ρ
−
∫




s
/ρ−

Q ( − s)ds.

Empirical Estimation of Πρ

Supposewehave independent randomvariablesX,X, . . . ,

each with the cdf F, and let X:n < . . . < Xn:n be the 7order
statistics corresponding to X, . . . ,Xn. It is most natural to

de�ne an empirical estimator of Πρ as follows

Π̂ρ := ρ
−
∫




s
/ρ−

Qn ( − s)ds, ρ ≥ , ()

where Qn(s) is the empirical quantile function, which is
equal to the ith order statisticXi:n when s ∈ ((i−)/n, i/n],
i = , . . . ,n. We note that Π̂ρ is a linear combinations

order statistics, that is, Π̂ρ = ∑ni= ai,nXn−i+,n, with ai,n :=
ρ− ∫

i/n
(i−)/n s

/ρ−ds, i = , . . . ,n, and n ∈ N. A statistic hav-
ing the form () is an L-statistic (see, for instance, Shorack

and Wellner , p. ).�e 7asymptotic normality of
the estimator Π̂ρ is discussed in Jones and Zitikis ().

�eorem  (Jones and Zitikis, ). For any  < ρ < ,
we have

n
/ (Π̂ρ − Πρ)

D→ N (, σ ρ) , as n→∞,

where

σ

ρ : = ρ

−
∫




∫




(min(s, t) − st)s/ρ−

t
/ρ−

dQ ( − s)

dQ ( − t) ,

provided that E [Xη] <∞ for some η > ρ/ ( − ρ) .

�e premium, which is greater than or equal to the mean

risk,must be�nite for any ρ ≥ .�at is,wehave  ≤ ρ < /γ.

For γ > /, the second-order moment E [X] is in�nite
and  ≤ ρ < . In this case, we have ρ/ ( − ρ) >  that
implies that E [∣X∣η] is in�nite for any η > ρ/ ( − ρ) .
�erefore,�eorem  does not hold for regularly varying
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distributions with tail indices −/γ > −/. To solve this
problem, we propose an alternative estimator for Πρ with

normal asymptotic distribution for any−/γ > −/. To get
into a more general setting, assume that F is heavy-tailed,

which means that lim
x→∞

eλx( − F(x)) =∞ for every λ > .
�e class of regularly varying cdfs is a good example for

heavy-tailedmodels:�ecdfF is said toberegularlyvarying

at in�nity with index (−/γ) <  if the condition

lim
t→∞

 − F(tx)
 − F(t)

= x−/γ
, ()

is satis�ed for every x > . �is class includes a num-
ber of popular distributions such as Pareto, Generalized

Pareto, Burr, Fréchet, Student,…, which are known to be

appropriate models for �tting large insurance claims, large

�uctuations of prices, log-returns, etc. (see, e.g., Beirlant

et al. ). In the remainder of this entry, we therefore

restrict ourselves to this class of distributions, and formore

information on themwe refer to, for example, de Haan and

Ferreira ().

New Estimator for Πρ : Extreme Values
Based Estimation
Wehave already noted that the estimator Π̂ρ does not yield

asymptotic normality beyond the condition E[X] < ∞.
For this reason, Necir and Meraghni () proposed

an alternative of PHT estimator, which would take into

account di�erences between moderate and high quantiles,

that is

Π̃ρ :=
n

∑
i=k+

ai,nXn−i+,n + (k/n)/ρ Xn−k,n
 − ργ̂n

,

whereweassume that the tail indexγ ∈ [/, )andestimate

it using the Hill () estimator γ̂n := k−
k

∑
i=
logXn−i+:n

− logXn−k:n. Here, let k = kn be a sequence such that

k → ∞, and k/n →  as n → ∞.�e construction of this
estimator is inspired from the work of Necir et al. ()

and Necir and Boukhetala ().

Asymptotic Normality of Π̃ρ

�e main theoretical result of this entry is �eorem ,

below, in which we establish weak approximations for Π̃ρ

by functional of Brownian bridges and therefore asymp-

totic con�dence bounds for Πρ . To formulate it, we need

to introduce an assumption that ensures the weak approxi-

mation of Hill’s estimator γ̂n.�e assumption is equivalent

to the following second-order condition (see Geluk et al.

). Namely, it said that the cdf F satis�es the generalized

second-order regular variation condition with second-

order parameter β ≤  (see de Haan and Stadtmüller )

if there exists a function a(s), which does not change its
sign in a neighborhood of in�nity and is such that, for

every x > ,

lim
s→∞

(a(s))− {  − F(sx)
 − F(s)

− x−/γ} = x−/γ x
ρ/γ − 
ρ/γ

, ()

where ρ ≤  is the so-called second-order parameter; when
ρ = , then the ratio on the right-hand side of Eq. ()
should be interpreted as log x. In the formulation of�eo-

rem , we shall use A(z) := γa(U(z)) with a(s) as above
and U(z) := Q( − /z).

�eorem  (Necir and Meraghni ). Let F be a df

satisfying () with γ > / and suppose that Q (⋅) is con-
tinuously di�erentiable on [, ) . Let k = kn be such that
k → ∞, k/n →  and k/A (n/k)→  as n → ∞. For any
 ≤ ρ < /γ, there exists a sequence of independent Brownian

bridges (Bn) such that

n/ (Π̃ρ − Πρ)

(k/n)/ρ−/
Q ( − k/n)

=d L (Bn, ρ, γ) + op () ,

where

L (Bn, ρ, γ) : = δ (ρ, γ) (n/k)/ Bn ( − k/n)

− λρ ,γ (n/k)/∫


−k/n

Bn (s)
 − s

ds

−
ρ− ∫



k/n s
/ρ−Bn ( − s)Q′ ( − s)ds

(k/n)/ρ−/
Q ( − k/n)

,

with δ (ρ, γ) := λρ ,γ (ργ − γ +  − γλ−ρ ,γ) , and λρ ,γ :=
ργ

( − ργ)
.

corollary  Under the assumptions of�eorem , we have

n/ (Π̃ρ ,n − Πρ)

(k/n)/ρ−/
Xn−k:n

D→ N (, σ ρ ,γ) , as n→∞,

where the asymptotic variance σ ρ ,γ is given by the sum of

the following terms

κ =
(γρ − γ + γρ)

( − ργ)
, κ =

ργ

( − ργ)

κ =
γ

( − ρ − ργ) ( − ρ − ργ)
, κ =

ργ (γ − γρ − γρ)
( − ργ)

and κ = −
ργ

( − ργ)
.
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Scientists want to know how nature works. Di�erent

scientists have di�erent ideas or hypotheses about the

mechanisms that underlie a phenomenon. To test the

validity of these ideas about mechanisms, they need to be

translated into quantitative form in a mathematical model

that is capable of predicting the possible outcomes from

suchmechanisms. Observations of real outcomes, whether

obtained by designed experiment or observational study,

are used to help discriminate between di�erent mech-

anisms. �e classical approach of hypothesis refutation

depends on showing that the data are impossible under

a speci�c hypothesis. However, because of the intrinsic

stochasticity in nature, appropriate mathematical models

tend to be statistical rather than deterministic. No data are

impossible under a statistical model and hence this clas-

sic approach cannot be used to falsify a statistical model.

On the other hand, although not impossible, data could

be more improbable under one statistical model than a

competing one. Quantifying evidence for one statistical

model vis-à-vis a competing one is one of the major tasks

of statistics.�e evidential paradigm in statistics addresses

the fundamental question: How should we interpret the

observed data as evidence for one hypothesis over the

other? Various researchers have tried to formulate ways

of quantifying evidence, most notably Barnard () and

Edwards (). �e monograph by Hacking (Hacking

) explicitly stated the problem and its solution in terms

of the law of the likelihood:

7 If hypothesis A implies that the probability that a random vari-

able X takes the value x is pA(x), while hypothesis B implies

that the probability is pB(x), then the observation X= x is evi-

dence supporting A over B if and only if pA(x) > pB(x) and

the likelihood ratio pA(x) > pB(x), measures the strength of

that evidence.

Royall () developed this simple yet powerful idea

and turned it into something that is applicable in practice.

He emphasized that the commonly used approaches in

statistics are either decision-theoretic (Neyman-Pearson-

Wald) that address the question “given these data, what

should I do?” or, are belief based (Bayesian) that address

the question “given these data, how do I change my beliefs

about the two hypotheses?” He suggested that statisticians

should �rst address the more fundamental question “how

should we interpret the observed data as evidence for one

hypothesis over the other?”, and only then think about how

the beliefs should be changed or decisions should be made

in the light of this evidence. Royall also pointed out that

evidence is a strictly comparative concept. We need two

competing hypotheses beforewe can compare the evidence

for one over the other. His critique of the commonly used

evidence measures showed that the practice of using Fish-

erian p-value as a measure of evidence is incorrect because

it is not a comparative measure, while the Bayesian poste-

rior probability, aside from being dependent on the prior

beliefs and not solely on the observed data, is also an incor-

rect measure of evidence because it is not invariant to the

choice of the parameterization.

http://www.springer.com/statistics/computanional+statistics/book/978-3-7908-1554-2
http://www.springer.com/statistics/computanional+statistics/book/978-3-7908-1554-2
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One of the reasons, the Neyman-Pearson ideas are

prominent in science is that they accept the fact that

decisions can go wrong. Hence in scienti�c practice, one

quanti�es and controls the probabilities of such wrong

decisions. Royall () introduced concepts of error prob-

abilities that are similar to the Type-I and Type-II error

probabilities in the Neyman-Pearson formulation, but rel-

evant to the evidential paradigm. He realized, evidence,

properly interpreted, can be misleading and asked how

o�enwould bewe bemisled by strong evidence (see below)

if we use the law of the likelihood and how o�en would we

be in a situation that neither hypothesis is supported to the

threshold of strong evidence.

�ree concepts answer those questions. Supposewe say

that hypothesis A has strong evidence supporting it over

hypothesis B if the likelihood ratio is greater than K, for

some a priori �xed K > .�en:

(a) �e probability of misleading strong evidence:

M(K) = PA (x : pB(x)pA(x) > K),
(b) �e probability ofweak evidence:W(K) = PA (x : K <

pB(x)
pA(x) < K),

(c) �e probability of strong evidence for the correct

model: S(K) = PA (x : pA(x)pB(x) > K).

A remarkable result that follows is that there exists a

universal upper bound on the probability of misleading

evidence under any model, namely M(K) ≤ /K. Fur-
thermore, as one increases the sample size, both M(K)
and W(K) converge to  and S(K) → . �us, with

enough observations we are sure to reach the right con-

clusion without any error. �is is in stark contrast with

the Neyman-Pearson Type-I error that remains �xed, no

matter how large the sample size. In the Neyman-Pearson

formulation, as sample size increases, K increases while

error probability is held constant. �us, as one increases

the sample size, the criterion for rejection changes so that

it is harder and harder to distinguish the hypotheses.�is

seems quite counter-intuitive andmakes it di�cult to com-

pare tests of di�erent sample size.

�e concepts of misleading and weak evidence have

implications in the sample size calculations and opti-

mal experimental designs. For example, the experimenter

should make sure the minimal sample size is such that

probability of weak evidence is quite small and at the end

of the experiment one can reach a conclusion. Further-

more, by controlling the probability ofmisleading evidence

through sample size, experimental/sampling design and

evidence threshold one can also make sure that the con-

clusions reached are likely to be correct. Besides these a

priori uses, the probability of misleading evidence can be

calculated as a post data error statistic reminiscent of a

p-value, but explicitly constructed for the comparison of

two hypotheses (Taper and Lele ).

�ere are, however, limitations to the evidential ideas

developed by Royall and described above. One major lim-

itation is that the law of likelihood can only quantify evi-

dence when the hypotheses are simple, but most scienti�c

problems involve comparing composite hypotheses. �is

may arise because the scientist may be interested in test-

ing only some feature of the model without restrictions

on the rest of the features. Similarly, a proper statistical

model might involve in�nitely many nuisance parameters

in order to model the underlying mechanism realistically

but the parameters of interest may be �nite. Such cases

arise in many practically situations, for example, the lon-

gitudinal data analysis or random e�ects models among

others. Aside from raising the need to consider composite

hypothesis, in these situations, the full likelihood function

may be di�cult to write down. One may want to specify

only a few features of the model such as the mean or the

variance, leading to the use of quasi-likelihood, estimating

functions and such other modi�cations. �e question of

7model selection where one is selecting between families
of models instead of a speci�c element of a given family

is important in scienti�c practice. For example, whether

to use a linear regression model (see 7Linear Regression
Models) or a non-linear regressionmodel (see7Nonlinear
Regression) is critical for forecasting.

Can we generalize the law of likelihood and concepts

of error probabilities to make it applicable in such sit-

uations? An initial attempt is described in Lele (),

Taper and Lele (, ).�e key observation in such

a generalization is that quantifying the strength of evi-

dence is the same as comparing distances between the

truth and the competing models that are estimated from

data.�e likelihood ratio simply compares an estimate of

the 7Kullback-Leibler divergence.
One can consider many di�erent kinds of divergences,

each leading to di�erent desirable properties. For exam-

ple, if one uses Hellinger distance to quantify strength

of evidence, one gets a measure that is robust against

7outliers. If one uses Je�rey’s divergence, one needs to
specify only the mean and variance function, similar to

the quasi-likelihood formulation, to quantify strength of

evidence. One can use pro�le likelihood or integrated

likelihood or conditional likelihood to compare evidence

about a parameter of interest in the presence of nuisance

parameters. �ese simply correspond to di�erent diver-

gence measures and hence have di�erent properties. Lele

() terms these as “evidence functions”. �ey may be
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compared in terms of how fast the probability of strong

evidence for the correct model converges to . Not sur-

prisingly, for simple versus simple hypothesis comparison,

it turns out that the Kullback-Leibler divergence or the

likelihood ratio is the best evidence function, provided

the model is correctly speci�ed. Other evidence functions,

however, might be more robust against outliers or may

need less speci�cation; and hence may be more desirable

in practice.

Error probabilities can be calculated for general evi-

dence functions using bootstrapping (Taper and Lele

). When the data are independent and identically dis-

tributed one can circumvent the conceptual constraint that

the true model is in one of the alternative hypotheses

by using a non-parametric bootstrap. We brie�y describe

this in the likelihood ratio context. Notice that the like-

lihood ratio is simply a statistic, a function of the data.

One can generate a 7simple random sample with replace-
ment from the original data and compute the strength of

evidence based on this new sample. By repeating this pro-

cedure large number of times, one obtains the bootstrap

estimate of the distribution of the strength of evidence.

�e percentile-based con�dence interval tells us the small-

est level of strength of evidence one is likely to obtain if

the experiment is repeated. One of the vexing questions in

evidential paradigm is how to relate evidence to decision

making without invoking beliefs. It may be possible to use

the bootstrap distribution of the strength of evidence, in

conjunction with the7loss function, for decision-making.
Because this distribution is obtained empirically from the

observations, such decisions will be robust against model

speci�cations.

�e evidential paradigm is still in its adolescence, with

much scope for innovation. Nevertheless the paradigm is

su�ciently developed to make immediate contributions;

in fact, information criterion comparisons, which are evi-

dence functions, have already revolutionized the practice

of many sciences. �e references below will be useful to

further widen the reader’s knowledge and understanding

beyond just our views.
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�e range of possible fallacies in statistics is as wide as

the range of statistics itself (see Cohen ; Good ,

; Moran  for convenient overviews); there is prob-

ably no application and no theory where one does not �nd

examples of intentional or unintentional misuse of statis-

tical facts and theories (which of course is not unique to

statistics – there is probably no science or social science

whatsoever which is immune to such abuse). When col-

lecting data, there is the well known problem of biased or

self-selected samples, or ill-phrased questionnaires where

answers are already imbedded in the questions. A nice

example is provided by two surveys on workers’ attitude

towards working on Saturdays which were conducted in

Germany in the same months of the same year (Krämer

, p. ).�e �rst survey produced a rejection rate of

% whereas in the second survey, % of workers who

were asked were happy to work on Saturdays if only they

could. A�er inspection of the questionnaires it was clear

how these results came about:�e �rst survey was spon-

sored by a trade union and started with reminding the

audience of the hard work it had taken to push through the

�ve day work week, ending with the question (I exagger-

ate slightly): Are you really prepared to sacri�ce all of what

your fellow workers have fought about so hard?�e sec-

ond survey started with a comment on �erce competition

for German industry from Asia which in the end let to the

�nal question of whether workers were prepared to work

on Saturdays if otherwise their employer went bankrupt.

Such extreme examples are of course quite rare, but

it is rather easy to lead people in any direction which is

convenient from the researcher’s point of view.

In the area of biased and self-selected samples, the

best known example is of course the historical disaster

of the Literary Digest magazine back in .�e maga-

zine had asked well above ten million Americans, a record

sample by any standards, whom they intended to vote for

in the upcoming presidential election. According to this

survey, the republican candidate was going to win hand-

somely whereas in reality Roosevelt, the incumbent, won

by a landslide.�e Digest’s sample was drawn from lists of

automobile and telephone owners (likely to vote republi-

can) and among those asked, less than a quarter actually

replied (presumably voters with an axe to grind with the

incumbent; see Bryson ).

Other fallacies arise in the context of interpreting or

presenting the results of statistical analyses. �ere is the

obvious area of confusing correlation and causation or of

misreading the meaning of statistical tests of signi�cance,

where even professional statisticians have a hard time to

correctly interpret a positive test result at – say – a % level

of signi�cance (there are even textbooks which state that

this means: “�e null hypothesis is wrong with % prob-

ability”). Another problem here is that true signi�cance

levels are in many applications much higher then nomi-

nal ones due to the fact that only “signi�cant” outcomes

are reported.



 S Statistical Fallacies

Such problems with interpreting statistical tests are

tightly connected with the misuse of conditional proba-

bilities, which is probably the both most widespread and

most dangerous way that one can misread statistical evi-

dence (Krämer and Gigerenzer ). One of these is to

infer, from a conditional probability P(A∣B) that is seen as
“large,” that the conditional event A is “favorable” to the

conditioning event B, in the sense that P(B∣A) > P(B).
�is confusion occurs in various contexts and is

possibly the most frequent logical error that is made in

the interpretation of statistical information. Here are some

examples from theGermanpress (with the headlines trans-

lated into English):

● “Beware of German tourists” (According toDer Spiegel

magazine, most skiers involved in accidents in a Swiss

skiing resort came from Germany).

● “Boys more at risk on bicycles” (the newspaper Han-

noversche Allgemeine Zeitung reported that among

children involved in bicycle accidents, the majority

were boys).

● “Soccer most dangerous sport” (the weekly magazine

Stern commenting on a survey of accidents in sports).

● “Private homes as danger spots” (the newspaper Die

Welt musing about the fact that a third of all fatal

accidents in Germany occur in private homes).

● “German shepherd most dangerous dog around” (�e

newspaperRuhr-Nachrichten on a statistic according to

which German shepherds account for a record % of

all reported attacks by dogs).

● “Women more disoriented drivers” (�e newspaper

Bild commenting on the fact that among cars that were

found entering a one-way street in the wrong direction,

most were driven by women).

�ese examples can easily be extended.Most of them result

from unintentionally misreading the statistical evidence.

When there are cherished stereotypes to conserve, such

as the German tourist bullying his fellow vacationers, or

women somehow lost in space, perhaps some intentional

neglect of logic may have played a role as well. Also, not

all of the above statements are necessarily false. It might,

for instance, well be true that when , men and ,

women drivers are given a chance to enter a one-way street

the wrong way, more women than men will actually do so,

but the survey by Bild simply counted wrongly entering

cars and this is certainly no proof of their claim. For exam-

ple, what if there were no men on the street at that time of

the day? And in the case of the Swiss skiing resort, where

almost all foreign tourists came from Germany, the attri-

bution of abnormally dangerous behavior to this class of

visitors is clearly wrong.

In terms of favorable events, Der Spiegel, on observ-

ing that P(German tourist ∣ skiing accident) was “large,”
concluded that the reverse conditional probability was also

large, in particular, that being a German tourist increases

the chances of being involved in a skiing accident:

P(skiing accident∣German tourist) > P(skiing accident).

Similarly, Hannoversche Allgemeine Zeitung concluded

from P(boy ∣ bicycle accident) = large that P(bicycle acci-
dent ∣ boy) > P(bicycle accident) and so on. In all these
examples, the point of departure was always a large value

of P(A∣B), which then led to the – possibly unwarranted –
conclusion that P(B∣A) > P(B). From the symmetry

P(B∣A) > P(B)⇐⇒ P(A∣B) > P(A)

it is clear, however, that one cannot infer anything regard-

ingA’s favorableness forB from P(A∣B) alone, and that one
needs information on P(A) as well.
Another avenue through which the attribute of favor-

ableness can be incorrectly attached to certain events is

7Simpson’s paradox, which in our context asserts that it
is possible that B is favorable to A when C holds, B is

also favorable to A when C does not hold, yet overall, B

is unfavorable to A. Formally, one has

P(A∣B ∩ C) > P(A) and

P(A∣B ∩ C) > P(A) yet

P(A∣B) < P(A).

�is paradox also extends to situations where C ∪ . . . ∪
Cn = Ω, Ci ∩ C = / (i ≠ j).
One instance where Simpson’s paradox (to be precise:

the refusal to take account of Simpson’s paradox) has been

deliberately used to mislead the public is the debate on

the causes of cancer in Germany.�e o�cial and �ercely

defended credo of the Green movement has it that the

increase in cancer deaths fromwell below % of all deaths

a�er the war to almost % today, is mostly due to indus-

trial pollution and chemical waste of all sorts. However,

as Table  shows, among women, the probability of dying

from cancer has actually decreased for young and old alike!

Similar results hold for men.

A �nal and more trivial example for faulty inferences

from conditional probabilities concerns the inequality

P(A∣B ∩D) > P(A∣C ∩D).

Plainly, this does not imply

P(A∣B) > P(A∣C),

yet this conclusion is still sometimes drawn. A German

newspaper once claimed that people get happier as they
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Statistical Fallacies. Table  Probability of dying from
cancer Number of women (among , in the respective
age groups) who died from cancer in Germany

Age  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

–  

(Statistisches Jahrbuch für die Bundesrepublik Deutschland)

grow older. �e paper’s “proof ” runs as follows: Among

people who die at age –, about % commit suicide.

�is percentage then decreases with advancing age; thus,

for instance, among people who die over the age of , only

% commit suicide. Formally, one can put these observa-

tions as

P(suicide ∣ age  −  and death)
> P(suicide ∣ age >  and death),

and while this is true, it certainly does not imply

P(suicide ∣ age  − ) > P(suicide ∣ age > ).

In fact, a glance at any statistical almanac shows that quite

the opposite is true.

Here is a more recent example from the US, where

likewise P(A∣B) is confused with P(A∣B ∩ D). �is time

the confusion is spread by renowned Harvard Law pro-

fessor who advised the O. J. Simpson defense team. �e

prosecution had argued that Simpson’s history of spousal

abuse re�ects a motive to kill, advancing the premise that

“a slap is a prelude to homicide.”�e defence – in the end

successfully – argued that the probability of the event K

that a husband killed his wife if he battered her was rather

small, so battering showed not be viewed as evidence of

murder.

P(K ∣ battered) = /, .

�e relevant probability, however, is not this one. It is that

of a man murdering his partner given that he battered her

and that she was murdered:

P(K ∣ battered and murdered).

�is probability is about / (Good ). It must not of

course be confused with the probability that O. J. Simp-

son is guilty. But it shows that battering is a fairly good

predictor of guilt for murder.
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Compilations and illustrations of statistical fallacies, mis-

conceptions, and myths abound (e.g., Brewer ; Huck

; Hu� ; Hunter and May ; King ;

Sawilowsky , a, b, c, d, , a, b; Vandenberg

).�e statistical faux pas is appealing, intuitive, log-

ical, and persuasive, but demonstrably false. �ey are

uniformly presented based on authority and supported

based on assertion. Unfortunately, these errors sponta-

neously regenerate every few years, propagating in peer

reviewed journal articles; popular college textbooks; and

most prominently, in the alternate (e.g., qualitative), non-

professional (e.g., Wikipedia), and dissident literature.

Some of the most egregious and grievous are noted

below.

. Law of Large Numbers, Central Limit�eorem (CLT),

population normality, and asymptotic theory. �is

quartet is asserted to inform the statistical prop-

erties (i.e., Type I and II errors, comparative sta-

tistical power) of parametric tests for small sam-

ples (e.g., n≤ or so). In fact, much of what was
asserted regarding small samples based on these eigh-

teenth to nineteenth century theorems was wrong.

Most of what is correctly known about the proper-

ties of parametric statistics has been learned through

Monte Carlo studies and related methods conducted

in the last quarter of the twentieth century to the

present.

Examples ofwrong statements include (a) random

selection is mooted by drawing a su�ciently large

sample, (b) the CLT guarantees X is normally dis-

tributed, (c) the CLT safeguards parametric tests as

long as n ≥ , and (d) asymptotic relative e�ciency
is a meaningful predictor of small sample power. A

corollary that is particularly destructive is journal edi-

tor and reviewer bias in favor of this quartet over

MonteCarlo evidence, relegating the inelegance of the

latter to be a function of “anyone who has a personal

computer and knowledge of Algebra I.”

(e) Perhaps the most pervasive myth is that real

variables are normally distributed. Micceri ()

canvassed authors of psychology and education

research over a number of years and determined that

less than % of their data sets (even those where

n > ,) could be considered even remotely bell-
shaped (e.g., symmetric with light tails). Not a single

data set was able to pass any known statistical test

of normality. Similar studies have been conducted

in other disciplines with the same result. Population

normality is not the norm.

(f) Journal editors and reviewers mistakenly

attach more importance to lemmas, theorems, and

corollaries from this quartet than on evidence from

small samples Monte Carlo studies and related

methods.

. Random assignment. It is commonly asserted that

the lack of random assignment can be rehabili-

tated via matching, ANCOVA, regression, economet-

ric simultaneous modeling, latent-variable modeling,

etc. In truth, “there is no substitute for randomization”

(Sawilowsky b, p .)

. Control group. It is frequently asserted by journal edi-

tors and referees, and funding agency reviewers, that

science and rigorous experimental design demand the

use of a control, comparison, or second treatment

group. Actually, there are many designs that do not

require this, such as factorial ANOVA, times series,

and single subject repeated measures layouts.

. Data transformations. (a)One reason for transforming

data is to better meet a parametric test’s underlying

assumptions. �e inexplicable pressure to shoehorn

a parametric test into a situation where doesn’t �t

has prompted textbook authors to recommend trans-

forming data to better meet underlying assumptions.

For example, if the data are skewed then the square

root transformation is recommended.�e debate on

the utility of transforming for this purpose is known

as the Games-Levine controversy that was waged in

the early s, primarily recorded in Psychological

Bulletin.

�ere is a misguided presumption that the statis-

tician has a priori knowledge of when or how best to

transform. Also, it is a fallacy to interpret results from

a transformation in the original metric. What does it

mean to conclude that the arcsin of children’s weight

in the intervention groupwas statistically signi�cantly

higher than the arcsin of children’s weight in the com-

parison group?When was the last time a patient chal-
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lenged the physician’s recommended medication by

demanding to know the logarithm of the expected

reduction in weight as predicted from the clinical

trial?

(b) Another reason for transforming the data is to

convert a parametric procedure into a nonparamet-

ric procedure.�e rank transformation is the prime

example. Based on asymptotic theory published in

very prestigious journals, and subsequent recommen-

dations from high pro�le statistical so�ware compa-

nies, data analysts were encouraged to routinely run

their data through a ranking procedure, and follow

with the standard parametric test on those ranks.

Careful data analysts have shown through Monte

Carlo studies that good results may be obtained for

the two independent samples, one-way independent

ANOVA, and two independent samples multivariate

layouts. �e myth persists, however, that this pro-

cedure is a panacea. �ose same careful data ana-

lyst have also shown the rank transformation does

not work in the context of two dependent samples,

factorial ANOVA, factorial ANCOVA, MANOVA,

or MANCOVA layouts, yielding Type I error rates

as high as , and greatly suppressed power (e.g.,

Sawilowsky a; Sawilowsky et al. ; Blair et al.

). Yet, so�ware vendors continue to promote this

procedure.

(c) It is also a myth that secondary transforma-

tions resolve this problem.�e original data are trans-

formed into ranks, and the ranks are in turn trans-

formed into expected normal scores, random normal

scores, or some other type of score. However, careful

data analysts have also shown that secondary transfor-

mations fare no better than the rank transformation

in terms of displaying poor Type I error control and

severely depressed power (Sawilowsky b).

. p values. (a) Signi�cance testing, as opposed to

hypothesis testing, is mistakenly asserted to be sci-

enti�c. Whereas hypothesis testing is objective due

to the a priori stated threshold of what constitutes a

rare event, signi�cance testing is not objective. With

the advent of easily obtained (and even exact) p val-

ues through statistical so�ware, signi�cance testing

permits citing the resulting p value and letting the

reader decide a posteriori if it is signi�cant. Unfortu-

nately, post and ad hoc signi�cance testing obviates

objectivity in interpreting the results, which is a fatal

violation of a cornerstone of science. (b) Obtained p

values are asserted to be transitory. For example, a p

value that is close to nominal alpha (e.g., α = .
and p = .) is incorrectly claimed to be approaching

statistical signi�cance, when in fact the result of the

experiment is quite stationary. (c)�e magnitude of

the p value is asserted to inform the magnitude of the

treatment e�ect. A p value of . is erroneously

claimed to mean the e�ect is of great practical impor-

tance. Although that may be true, it is not because of

any evidence based on the magnitude of p.

. E�ect Size. Statistical philosophers stipulate that the

null hypothesis can never literally be true. By virtue

of all phenomena existing in a closed universe, at

some part of the mantissa the population values must

diverge from zero.�us, it is claimed that e�ect sizes

should be reported even if a hypothesis test was not

conducted, or even if the result of a hypothesis test is

not statistically signi�cant.

�is viewpoint is presaged on an imputed meta-

analytic intent that will arise in the future even if there

is no such intent at the time the experiment was con-

ducted.�is fallacy arises, as do many errors in inter-

pretation of statistics, by ignoring the null hypothesis

being tested. Under the truth of the null hypothesis

observed results for the sample are not statistically sig-

ni�cantly di�erent from zero, and thus themagnitude

of the observed result is meaningless. Hence, e�ect

sizes are only meaningfully reported in conjunction

with a statistically signi�cant hypothesis test.

. Experiment-wise Type I error. It is universally rec-

ommended that prudent statisticians should con-

duct preliminary tests of underlying assumptions

(e.g., homoscedasticity, normality) prior to testing for

e�ects. It is asserted that this does no harm to the

experiment-wise Type I error rate. However, Monte

Carlo evidence demonstrates that the experiment-

wise Type I error rate will in�ate if preliminary tests

are conducted without statistical adjustment for mul-

tiple testing. Moreover, there will be a Type I in�ation

even if the decision to proceed is based on eye-balling

the data.

. Con�dence Intervals. Con�dence intervals have

recently been promoted over the use of hypothesis

tests for a litany of unsupported reasons. (a) Among

its supposed bene�ts is the assertion that con�dence

intervals providemore con�dence than do hypothesis

tests.�is is based on the fallacy that con�dence inter-

vals are based on some system of probability theory

other than that of hypothesis tests, when in fact they

are the same. (b) Another prevalent misconception is

con�dence intervals must be symmetric.

. 7Robust statistics. Typically, proposed expansions of
descriptive robust statistics into inferential proce-

dures are substantiated via comparisons with para-
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metric methods. It is rare to �nd direct comparisons

of inferential robust statistics with nonparametric

procedures. (a) It is asserted that robust descrip-

tive statistics maintain their robustness when evolved

into inferential counterparts. �is is a fallacy, how-

ever, because robust descriptive statistics were derived

under parametric models confronted with pertur-

bations. �erefore, Monte Carlo studies show they

exhibit in�ated Type I errors in many layouts. (b) It

is similarly asserted that robust inferential statistics

are high in comparative statistical power, but they are

generally less powerful than rank based nonparamet-

ric methods when testing hypotheses for which the

latter are intended.

. 7Permutation tests. Permutation analogs to paramet-
ric tests are correctly stated to have equal power,

and indeed can rehabilitate parametric tests’ poor

Type I error properties. However, it is incorrectly

asserted that they are more powerful than nonpara-

metric methods when testing for shi� in location,

when in fact the power spectrum of permutation tests

generally follows (albeit somewhat higher) the power

spectrum of their parametric counterparts, which

is considerably less powerful than nonparametric

procedures.

. Exact statistics. Exact statistics, recently prevalent due

to the advent of statistical so�ware, are o�en adver-

tised by so�ware venders as being the most powerful

procedure available to the statistician for the analy-

sis of small samples. Actually, the advantage of exact

statistics is that the p values are correct, but as o�en as

not a smaller p value will result from the use of tabled

asymptotic p values.

. Parametric tests.�e t and F tests are asserted to be

(a) completely robust to Type I errors with respect

to departures from population normality, (b) gener-

ally robustwith respect to departures frompopulation

homoscedasticity, and (c) at least somewhat robust

with respect to departures from independence. All

three of these assertions are patently false. (d) Para-

metric tests are incorrectly asserted to trump the need

for random selection or assignment of data, particu-

larly due to Sir Ronald Fisher’s paradigm of analysis

on the data at hand.

(e) Parametric tests (e.g., t,F) are asserted to

be more powerful than nonparametric tests (e.g.,

Wilcoxon Rank Sum (see 7Wilcoxon–Mann–
Whitney Test), Wilcoxon Signed Ranks

(see 7Wilcoxon-signed-rank test)) when testing for
shi� in location. In fact, for skewed distributions,

the nonparametric tests are o�en three to four times

more powerful than their parametric counterparts. (f)

As sample size increases, these parametric tests are

asserted to increase their power advantages over non-

parametric tests. In fact, the opposite is true until the

upper part of the power spectrum is reached (e.g., the

ceiling is ) when the parametric tests eventually con-

verge with the nonparametric test’s statistical power.

. Nonparametric rank tests.�e assertions denigrating

the Wilcoxon tests are so pervasive (to the extent

that the two independent samples case is more fre-

quently attributed as the Mann Whitney U, even

though Wilcoxon had priority by  years) that the

reader is referred to Sawilowsky () for a list-

ing of  frequently cited fallacies, misconceptions,

and myths. Among the highlights are the incorrect

beliefs that (a) the uniformly most powerful unbiased

moniker follows the usage of the parametric t test for

data sampled from nonnormally distributed popula-

tions, (b) theWilcoxon tests should only be used with

small data sets, (c) the Wilcoxon tests should only be

used with ordinal scaled data, and (d) the Wilcoxon

tests’ power properties are oblivious to 7outliers.
. χ. (a) We live in a χ society due to political cor-

rectness that dictates equality of outcome instead of

equality of opportunity.�e test of independence ver-

sion of this statistic is accepted sans voire dire bymany

legal systems as the single most important arbiter of

truth, justice, and salvation. It has been asserted that

any statistical di�erence between (o�en even nonran-

domly selected) samples of ethnicity, gender, or other

demographic as compared with (o�en even inaccu-

rate, incomplete, and outdated) census data is pri-

mae faciea evidence of institutional racism, sexism, or

other ism. A plainti� allegation that is supportable by

a signi�cant χ is o�en accepted by the court (judges

and juries) praesumptio iuris et de iure. Similarly, the

goodness of �t version of this statistic is also placed

on an unwarranted pedestal.

In fact, χ is super powered for any arbitrary large

number of observations. For example, in the good-

ness of �t application where the number of observed

data points is very large and the obtained χ can be

of an order of magnitude greater than three, there is

the custom not to even bother with the divisor Ei,

and instead to proclaim a good �t if the new empir-

ical process results in a reduced obtained value of the

numerator.�e converse is true where the number of

observed data points are small (e.g., N <  or ),
in which case the χ test of independence is among

the least powerful methods available in a statistician’s

repertoire.
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. Stepwise regression. Stepwise (or “unwise”, Leamer

) regression and replicability are two mutually

exclusive concepts. It is asserted to be an appropriate

datamining technique (see7DataMining). However,
it is analogous to talking awalk in the dark in the park,

tripping over a du�e bag, inspecting the bag and �nd-

ing data sheets crumpled together, transcribing and

entering the data into a statistical so�ware program,

having the so�ware command the CPU to regress all

possible combinations of independent variables on

the dependent variable until the probability to enter

has been met, reporting the results, and eyeballing

the results to construct an explanation or prediction

about an as yet unstated research hypothesis.�ere is

nothing scienti�cally rigorous about Stepwise regres-

sion, even when it is adorned with the appellation

of nonmodel-based regression. It is tantamount to a

search for Type I errors.

. ANOVA main and interaction e�ects. (a) It is asserted

that because certain transformations can be invoked

to make interaction e�ects apparently vanish, main

e�ects are real and interaction e�ects are illusion-

ary. Actually, it is easily demonstrated through sym-

bolic modeling that main e�ects in the presence of

interactions are spurious.

(b) It is a misguided tendency to interpret sig-

ni�cant main e�ects �rst and signi�cant interaction

e�ects second.�e correct interpreting and stopping

rules (see Sawilowsky a) are to begin with the

highest order e�ect, and cease with the highest order

statistically signi�cant e�ect(s) on that level.

For example, in a  ×  ×  ANOVA layout,
meaningful interpretation begins with the a × b × c
interaction. Analysis should cease if it is statistically

signi�cant. If it is not, then the focus of analysis

descends to the a × b, a × c, and b × c lower order
interactions. If none are statistically signi�cant, it is

then appropriate to give attention to the a, b, and

c main e�ects. (c) It is true that MANOVA is use-

ful even when there are only univariate hypothe-

ses, because the sole reason for invoking it is to

provide increased statistical power.�us, it is mean-

ingful to follow with univartiate tests to provide fur-

ther insight a�er a statistically signi�cant MANOVA

result. However, it is a misconception that so-called

step-down univariate tests are necessary, or meaning-

ful, to interpret a statistically signi�cant MANOVA

that was conducted to examine amultivariate hypoth-

esis, which by de�nition is multivariate because it

consists of hopelessly intertwined dependent vari-

ables (see Sawilowsky a).

. ANCOVA. (a)�is procedure is the Catch- of sta-

tistical methods. Because it is erroneously assumed

to correct for baseline di�erences, and baseline di�er-

ences are concomitant with the lack of

7randomization, the myth has arisen that using
ANCOVA rehabilitates the lack of randomization.

Unfortunately, to be a legitimate test ANCOVA

requires randomization, only a�er which it serves to

decrease the error term in the denominator of the F

ratio, and hence increase statistical power.

(b) ANCOVA, even when legitimately applicable

due to randomization, is used to control for unwanted

e�ects.�e logic of partitioning and then removing

sums of squares of an e�ect known to be signi�cant is

nearlymeritless. It is by farmore realistic to retain and

model the unwanted e�ects by entering it (by some

technique other than dummy coding) into a general

linear model (i.e., regression) than it is to remove it

from consideration.

Consider a hypothetical treatment for the fresh

water �sh disease ichthyophthirius multi�lis (ich).

Suppose to determine its e�ectiveness the following

veterinarian prescribed treatment protocol must be

followed: () Remove the water while the �sh remain

in the aquarium. () Wait ten days until all mois-

ture is guaranteed to have evaporated from the �sh.

() Apply Sawilowsky’s miracle ich-b-goneTMr© salve

to the �sh. () Wait an additional ten days for the

salve to completely dry. () Re�ll the aquarium with

water. Results of the experiment show no evidence of

ich. Hence, the salve is marketable as a cure for ich,

controlling for water.

(c) �ere is a propensity, especially among doc-

toral dissertation proposals, and proposals submitted

to funding agencies, to invoke as many covariates into

ANCOVA as possible, under themistaken impression

that any covariate will reduce the error term and result

in a more powerful test. In fact, a covariate must be

carefully chosen. If it is not highly correlated with the

dependent variable the trivial sum of squares that it

may remove from the residual in the denominatorwill

not overcome the impact of the loss of the df, result-

ing in a less powerful test. See Sawilowsky (b) for

other myths regarding ANCOVA.

. Readership’s view on publication di�ers from retrac-

tion and errata. One of the most unfortunate, and

sometimes insidious, characteristics of peer reviewed

statistical outlets is the propensity to publish new and

exciting statistical procedures that were derived via

elegant squiggles, but were never subjected to Monte

Carlo or other real data analysis methodologies to
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determine their small samples Type I error and power

properties. It appears that the more prestigious the

outlet, the greater is the reluctance in publishing sub-

sequent notices to the readership that the statistic or

procedure fails, is severely limited, or has no practical

value. If an editor imagines an article is so important

to the readership that it is publishable, it is a miscon-

ception for editors to presume that the same reader-

ship would be uninterested in subsequently learning

that the article was erroneous.

Some editors and reviewers, in an e�ort to pro-

tect the prestige of the outlet, create great barriers to

correcting previously published erroneous work, such

as demanding that the critical manuscript also solve

the original problem in order to be worthy of publi-

cation (e.g., Hyman ). For example, this removes

oversight if an ine�ective or counter-productive cure

for cancer was published by demanding the rebuttal

author �rst cure cancer in order to demonstrate the

published cure was vacuous.

. Mathematical and applied statistics/data analysis. It

is a myth that mathematical statistics and applied

statistics/data analysis share a common mission and

toolkit. �e former is a branch of mathematics,

whereas the latter are not.�e consumer of real world

statistics rejoices over an innovation that increases

the ability to analyze data to draw a practical conclu-

sion that will improve the quality of life, even if the

memoir in which it was enshrined will never appear

in theAmericanMathematical Society’sMathematical

Reviews and itsMathSciNet online database.

. Statisticians, authors of statistical textbooks, and statis-

tics. �e following are myths: (a) Statisticians are

subject matter experts in all disciplines. (b) Statisti-

cians are mathematician wannabes. (c) Anyone who

has a cookbook of statistical procedures is a quali�ed

statistician. Corollary: Only the British need to certify

statisticians. (d)Anyonewhohas taken an undergrad-

uate course in statistics is quali�ed to teach statistics

or serve as an expert witness in court. (e) Statis-

tics textbooks are free from computational errors.

(f) Statistics textbook authors are consistent in their

use of symbols. (g) If three randomly selected statis-

tics textbook authors opine the same view it must

be true. Corollary: It is a myth that if a statistical

topic is examined in three randomly selected statis-

tics textbooks the explanations will be i.i.d. (h) t, F,

regression, etc., aren’t statistics – they are data analy-

sis. (i) It is amyth that statistics can be used to perform

miracles.
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Statistical genetics broadly refers to the development and

application of statistical methods to problems arising in

genetics. Genetic data analysis covers a broad range of top-

ics, from the search for the genetic background a�ecting

manifestation of human diseases to understanding genetic

traits of economic importance in domestic plants and ani-

mals.�e nature of genetic data has been evolving rapidly,

particularly in the past decade, due mainly to ongoing

advancements in technology.

�e work over a century ago of Gregor Mendel, using

inbred pea lines that di�ered in easily scored character-

istics, marks the start of collecting and analysing genetic

data. Today we can easily, and relatively inexpensively,

obtain many thousands, even millions or more, of genetic

and phenotypic, as well as environmental, observations on

each individual. Such data include high-throughput gene

expression data, single nucleotide polymorphism (SNP)

data and high-throughput functional genomic data, such

as those that examine genome copy number variations,

chromatin structure, methylation status and transcrip-

tion factor binding. �e data are being generated using

technologies like microarrays, and very recently, next-

generation sequencing. In the next few years, it is antici-

pated that it will be possible to sequence an entire human

genome for $, in a matter of days or even hours.�e

sheer size and wealth of these new data are posing many,

ongoing, challenges.

Traditionally there have been close links between

developments in genetics and in statistics. For example Sir

RA Fisher’s proposal of 7analysis of variance (ANOVA)
can be traced back to the genetic problems in which he was

interested. It is not widely known that probabilistic graph-

ical models have their origins at about the same time in

S Wright’s genetic path analysis. A current thrust of mod-

ern statistical science concerns research into methods for

dealing with data in very high dimensional space, such

as is being generated today in molecular biology labora-

tories. New opportunities abound for analysing extremely

complex biological data structures.

Basic analyses of genetic data include estimation of

allele and haplotype frequencies, determining if Hardy-

Weinberg equilibrium holds, and evaluating linkage dise-

quilibrium. Statistical analyses of sequence, structure and

expression data cover a range of di�erent types of data and

questions, from mapping, to �nding sequence homolo-

gies and gene prediction, and to �nding protein structure.

Although many tools appear ad hoc, o�en it is found that

there are some solid, statistical underpinnings. For exam-

ple, the very widely used heuristic computational biology

tool, Basic Local Alignment Sequence Tool (BLAST) is

based on random walk theory (see 7RandomWalk).
In animal and plant breeding, there are a range of

approaches to �nding and mapping quantitative trait loci,

in both inbred lines and outbred pedigrees. Population

genetics is a large topic in its own right, and is con-

cerned with the analysis of factors a�ecting the genetic

composition of a population. Hence it is centrally con-

cerned with evolutionary questions, namely the change in

the genetic composition of a population over time due to
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natural selection, mutation, migration, and other factors.

�e knowledge of the structure of genes as DNA sequences

has completely changed population genetics, including ret-

rospective theory, in which a sample of genes is taken,

DNA sequence determined, and the questions relate to

the way in which, through evolution, the population has

arrived at its presently observed state. For intrapopula-

tion genetic inferences, coalescent theory (whereby from

a sample of genes one traces ancestry back to the common

ancestor) is fundamental. Evolutionary genetics is another,

huge, topic. Many approaches have been developed for

phylogenetic analyses, from applying likelihood methods,

to use of parsimony and distance methods. In forensics,

the use of DNA pro�les for human identi�cation o�en

requires statistical genetic calculations. �e probabilities

for a matching DNA pro�le can be evaluated under alter-

native hypotheses about the contributor(s) to the pro�le,

and presented as likelihood ratios. Conditional probabil-

ities are needed, namely the probabilities of the pro�les

given that they have already been seen, and these depend

on the relationships between known and unknown people.

Genetic epidemiology is a growing area, especiallywith

current research to �nd the genes underpinning complex

genetic diseases. “Methodological research in genetic epi-

demiology (is developing) at an ever-accelerating pace, and

such work currently comprises one of themost active areas

of methodological research in both 7biostatistics and epi-
demiology. �rough an understanding of the underlying

genetic architecture of common, complex diseasesmodern

medicine has the potential to revolutionize approaches to

treatment and prevention of disease” (Elston et al. ).

Pharmacogenetics research is concerned with the identi-

�cation and characterization of genes that in�uence indi-

vidual responses to drug treatments and other exogenous

stimuli.Modern pharmacogenetics involves the evaluation

of associations between genetic polymorphisms and out-

comes in large-scale clinical trials typically undertaken to

evaluate the e�cacy of a particular drug in the population

at large. Meta-analysis methods (see 7Meta-Analysis) are
an increasingly important tool formodern genetic analysis.

A starting point for the whole area of statistical

genetics is the “Handbook” (Balding et al. ) that

is also available online. Interestingly, the �nal chap-

ter addresses ethics in the use of statistics in genet-

ics. An encyclopaedic approach is used in the reference

text of Elston et al. (). So�ware also is prolif-

erating, and a good starting point is the suite of R

packages in the Comprehensive R Archive Network

(CRAN) Task View: Statistical Genetics (http://cran.r-

project.org/web/views/Genetics.html) and in Bioconduc-

tor (http://www.bioconductor.org), an open source and

open development so�ware project for the analysis of

genomic data.
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At the heart of statistics lie the ideas of statistical inference.

Methods of statistical inference enable the investigator to

argue from the particular observations in a sample to the

general case. In contrast to logical deductions from the

general case to the speci�c case, a statistical inference can

sometimes be incorrect. Nevertheless, one of the great

intellectual advances of the twentieth century is the real-

ization that strong scienti�c evidence can be developed on

the basis of many, highly variable, observations.

�e subject of statistical inference extends well beyond

statistics’ historical purposes of describing and displaying

data. It deals with collecting informative data, interpreting

these data, and drawing conclusions. Statistical inference

includes all processes of acquiring knowledge that involve

fact �nding through the collection and examination of

data.�ese processes are as diverse as opinion polls, agri-

cultural �eld trials, clinical trials of newmedicines, and the

studying of properties of exotic new materials. As a con-

sequence, statistical inference has permeated all �elds of

human endeavor in which the evaluation of information

must be grounded in data-based evidence.

http://www.bioconductor.org
http://cran.r-project.org/web/views/Genetics.html
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A few characteristics are common to all studies involv-

ing fact �nding through the collection and interpretation

of data. First, in order to acquire new knowledge, rele-

vant data must be collected. Second, some variability is

unavoidable even when observations are made under the

same or very similar conditions.�e third, which sets the

stage for statistical inference, is that access to a complete

set of data is either not feasible from a practical standpoint

or is physically impossible to obtain.

To more fully describe statistical inference, it is neces-

sary to introduce several key terminologies and concepts.

�e �rst step in making a statistical inference is to model

the population(s) by a probability distribution which has a

numerical feature of interest called a parameter.�e prob-

lem of statistical inference arises once we want to make

generalizations about the population when only a sample

is available.

A statistic, based on a sample, must serve as the

source of information about a parameter. �ree salient

points guide the development of procedures for statistical

inference

. Because a sample is only part of the population, the

numerical value of the statistic will not be the exact

value of the parameter.

. �e observed value of the statistic depends on the

particular sample selected.

. Some variability in the values of a statistic, over di�er-

ent samples, is unavoidable.

�e two main classes of inference problems are esti-

mation of parameter(s) and testing hypotheses about the

value of the parameter(s).�e �rst class consists of point

estimators, a single number estimate of the value of the

parameter, and interval estimates. Typically, the interval

estimate speci�es an interval of plausible values for the

parameter but the subclass also includes prediction inter-

vals for future observations. A test of hypotheses provides

a yes/no answer as to whether the parameter lies in a

speci�ed region of values.

Because statistical inferences are based on a sample,

they will sometimes be in error. Because the actual value

of the parameter is unknown, a test of hypotheses may

yield the wrong yes/no answer and the interval of plausible

values may not contain the true value of the parameter.

Statistical inferences, or generalizations from the sam-

ple to the population, are founded on an understanding

of the manner in which variation in the population is

transmitted, via sampling, to variation in a statistic. Most

introductory texts (see Johnson and Bhattacharyya ;

Johnson, Freund, and Miller ) give expanded discus-

sions of these topics.

�ere are two primary approaches, frequentist and

Bayesian, for making statistical inferences. Both are

based on the likelihood but their frameworks are entirely

di�erent.

�e frequentist treats parameters as �xed but unknown

quantities in the distribution which governs variation in

the sample. �en, the frequentist tries to protect against

errors in inference by controlling the probabilities of

errors. �e long-run relative frequency interpretation of

probability then guarantees that if the experiment is

repeated many times only a small proportion of times will

produce incorrect inferences. Most importantly, using this

approach in many di�erent problems keeps the overall

proportion of errors small.

Frequentists are divided on the problem of testing

hypotheses. Some statisticians (Cox ) follow R. A.

Fisher and perform signi�cance tests where the decision

to reject a null hypothesis is based on values of the statis-

tic that are extreme in directions considered important

by subject matter interest. It is more common to take a

Neyman–Pearson approachwhere an alternative hypothesis

is clearly speci�ed together with the corresponding distri-

butions for the statistic. Power, the probability of rejecting

the null hypothesis when it is false, can then be optimized.

A de�nitive account of Neyman–Pearson theory is given in

Lehmann and Casella () and Lehmann and Romano

().

In contrast, Bayesians consider unknown parameters

to be random variables and, prior to sampling, assign a

prior distribution for the parameters. A�er the data are

obtained, the Bayesian takes the product prior times likeli-

hood and obtains the posterior distribution of the parame-

ter a�er a suitable normalization. Depending on the goal of

the investigation, a pertinent feature or features of the pos-

terior distribution are used to make inferences.�e mean

is o�en a suitable point estimator and a suitable region of

highest posterior density gives an interval of plausible val-

ues. See Box and Tiao () and Gelman et al. () for

discussions of Bayesian approaches.

A second phase of statistical inference,model checking,

is required for both frequentist and Bayesian approaches.

Are the data consonant with the model or must the model

be modi�ed in some way? Checks on the model are o�en

subjective and rely on graphical diagnostics.

D. R. Cox, gives an excellent introduction to statisti-

cal inference in Cox () where he compares Bayesian

and frequentist approaches and highlights many of the

important issues.

Statistical inferences have been extended to semipara-

metric and fully nonparametric models where functions

are the in�nite dimension parameters.
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With the advent of lasers and optical communication it was

realized that speci�c restrictions on the �delity of infor-

mation transmission due to quantum-mechanical nature

of a communication channel need be taken into account

and require a special approach. In the –s this

led to creation of a consistent quantum statistical deci-

sion theory which gave the framework for investigation

of fundamental limits for detection and estimation of the

states of quantum systems (Helstrom; Holevo ; ).

In this theory statistical uncertainty is described by using

mathematical apparatus of quantum mechanics – opera-

tor theory in a Hilbert space.�us, the quantum statistical

decision theory is a “noncommutative” counterpart of the

classical one which was based on the Kolmogorov prob-

ability model and both of them can be embedded into a

general framework (Holevo ). �e interest to quan-

tum statistical inference got the new impetus at the turn of

the century (Barndor�-Nielsen et al. ). In high preci-

sion and quantum optics experiments researchers became

able to operate with elementary quantum systems such

as single ions, atoms and photons leading to potentially

important applications such as quantum cryptography and

novel communication protocols. In currently discussed

proposals for quantumcomputing, the information iswrit-

ten into states of elementary quantum cells – qubits, and is

read o� via quantummeasurements.�erefore the issue of

extracting the maximum statistical information from the

state of a given quantum system becomes important. On

the other hand, building a consistent statistical theory of

quantum measurement has signi�cant impact onto foun-

dations of quantum mechanics resulting in clari�cation of

several subtle points. Last but not the least, quantum sta-

tistical inference has a number of appealing speci�cally
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noncommutative featureswhich open newperspectives for

avantgarde research in the mathematical statistics.

As in the classical statistical decision theory, there is a

set Θ of values of an unknown parameter θ, a setX of deci-
sions x and a loss function Lθ(x), de�ning the quality of
the decision x for a given value of parameter θ.�e di�er-

ence comes with the description of statistical uncertainty:

here to each θ corresponds a density operator ρθ in the sep-

arable Hilbert spaceH of the system. Density operator ρ is

a positive operator in H with unit trace, describing state
of the quantum system. In physical problems the quantum

system is the information carrier such as coherent electro-

magnetic �eld, prepared by transmitter in a state which

depends on the signal θ.

A decision rule is de�ned by a quantum measurement

with outcomes x ∈ X . In the case of �nite set X corre-
sponding to hypotheses testing (detection), decision rule is

described mathematically by a resolution of the identity in

H, i.e., the family of operatorsM = {Mx; x ∈ X} satisfying

Mx ≥ , ∑
x∈X
Mx = I, ()

where I is the identity operator.�e probability of making

decision x in the state ρθ is de�ned by the basic formula

generalizing the Born-von Neumann statistical postulate

PM(x∣θ) = TrρθMx.

Decision rule is implemented by a receivermaking a quan-

tum measurement and the problem is to �nd the optimal

measurement performance.

�e mean risk corresponding to the decision ruleM is

given by the usual formula

Rθ{M} = ∑
x∈X
Lθ(x)PM(x∣θ). ()

In this way one has a family {Rθ{M}, θ ∈ Θ} of a�ne
functionals de�ned on the convex set M(X ) of decision
rules ().�e notions of admissible, minimax, Bayes deci-

sion rule are then de�ned as in the classical Wald’s theory.

�e profounddi�erence lies in themuchmore complicated

convex structure of the sets of quantum states and decision

rules.

�e Bayes risk corresponding to a priori distribution π

on Θ is

Rπ{M} = ∫
θ∈Θ
Rθ{M}dπ(θ) = Tr∑

x∈X
L̂(x)Mx, ()

where

L̂(x) = ∫
θ∈Θ

ρθLθ(x)dπ(θ) ()

is the operator-valued posterior loss function. Bayes deci-

sion rule minimizing Rπ{M} always exists and can be

found among extreme points of the convex setM(X ). An
illustration of the e�ect of noncommutativity is the follow-

ing analog of the classical rule saying that Bayes procedure

minimizes posterior loss: M is Bayes if and only if there

exists Hermitian trace-class operator Λ such that

Λ ≤ L̂(x), (L̂(x) − Λ)Mx = , x ∈ X . ()

�e operator Λ plays here the role of the minimized pos-

terior loss.

�e Bayes problem can be solved explicitly in a number

of important cases, notably in the case of two hypotheses

and for the families of stateswith certain symmetry. In gen-

eral, symmetry and invariance play in quantum statistical

inferencemuch greater role; on the other hand, the concept

of su�ciency has less applicability because of the severe

restrictions onto existence of conditional expectations in

the noncommutative probability theory (Petz ).

�e optimum is found among the extreme points of

the convex set of decision rules which therefore play a

central role. In the classical case the extreme points are pre-

cisely deterministic decision rules.�eir quantum analog

are orthogonal resolutions of the identity satisfyingMxMy =
δxyMx in addition to (). However in the noncommuta-

tive case these form only a subset of all extreme decision

rules. According to a classical result of Naimark, any res-

olution of the identity can be extended to an orthogonal

one in a larger Hilbert space. In statistical terms, such an

extension amounts to an outer quantum randomization.

Consequently, there are quantumBayes problems in which

the optimal rule is inherently “randomized” (Holevo ).

�is paradoxical fact has a profound physical background,

namely, the measurement entanglement between the sys-

tem and the outer randomizer, which is a kind of intrinsi-

cally quantum correlation due to tensor product structure

of the composite systems in quantum theory. Notably, in

standard approach to quantum mechanics only orthogo-

nal resolutions of the identity (namely, spectral measures

of self-adjoint operators) were considered as representing

observables (i.e., random variables).�us, quantum statis-

tical decision theory gives a strong argument in favor of

the substantial generalization of the fundamental notion

of quantum observable.

As in the classics, the case of two simple hypothe-

ses ρ, ρ is the most tractable one: there are quantum

counterparts of the Neumann-Pearson criterion and of the

asymptotics for the error probability and for the Bayes risk

(the quantumCherno� bound). However the derivation of

these asymptotics is much more involved due to possible

noncommutativity of the density operators ρ, ρ (Hayashi

).
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In estimation problems Θ and X are parametric vari-
eties (typically X = Θ ⊂ Rs) and the decision rules are
given by positive operator-valued measures on Θ which

are (generalized) spectral measures for operators repre-

senting the estimates. Solution of the Bayes estimation

problem can be obtained by generalizing results for �nite

X with appropriate integration technique (Holevo ).
Explicit solutions are obtained for problems with sym-

metry and for estimation of the mean value of Bosonic

Gaussian states.�e last is quantum analog of the classi-

cal “signal+noise” problem, however with the noise having

quantum-mechanical origin and satisfying the canonical

commutation relations (Holevo ).

Quantum statistical treatment of models with the shi�

or rotation parameter provides a consistent approach to

the issue of canonical conjugacy and nonstandard uncer-

tainty relations in quantum mechanics, such as time-

energy, phase-number of quanta, as well as to approximate

joint measurability of incompatible observables. In the

quantum case estimation problems withmultidimensional

parameter are inherently more complex than those with

one-dimensional parameter. �is is due to the possible

non-commutativity of the components re�ecting existence

of incompatible quantities that in principle cannot be mea-

sured exactly in one experiment.�is sets new statistical

limitations to the components of multidimensional esti-

mates, absent in the classical case, and results in essential

non-uniqueness of logarithmic derivatives and of the cor-

responding quantum Cramér–Rao inequalities (Helstrom

; Holevo ).

Another special feature of quantum statistical infer-

ence appears when considering series of i.i.d. quantum

systems: the statistical information in quantum models

with independent observations can be strictly superaddi-

tive.�is means that the value of a measure of statistical

information for a quantum system consisting of indepen-

dent components can be strictly greater than the sum of

its values for the individual systems.�e property of strict

superadditivity is again due to the existence of entan-

gled (collective) measurements over the composite system

(Hayashi ).

One of the most important quantum estimation mod-

els is the full model, in which the state is assumed com-

pletely unknown. In the case of �nite dimensionality d this

is a parametric model with a speci�c group of symmetries

(the unitary group), in particular, for d =  it is the model
of unknown qubit state (i.e.,  × -density matrix), with
the three-dimensional Stokes parameter varying inside the

Bloch sphere. �e most advanced results here concern

the asymptotic estimation theory for the i.i.d. observa-

tions, culminating in the noncommutative analog of Le

Cam’s local asymptotic normality for estimation of an arbi-

trary mixed state of a �nite dimensional quantum system

(Guta and Kahn ; Hayashi ). �e full model in

in�nite dimensions belongs to nonparametric quantum

mathematical statistics, which is at present in a stage of

development. In this connection the method of homodyne

tomography of a density operator widely used in quantum

optics is particularly important (Artiles et al. ).

Quantum statistical decision theory provides power-

ful general methods for computing fundamental limits

to accuracy of physical measurements, which serve as

benchmarks for evaluating the quality of existing physical

measurement procedures. It also gives the mathematical

description of the optimal decision rule; however the quan-

tum theory in principle provides no universal recipe for

constructing a measuring device from the corresponding

resolution of the identity and such kind of problems have

to be treated separately in each concrete situation. Still,

in several cases methods of quantum statistical inference

give important hints towards the realization (based, e.g.,

on covariance with respect to the relevant symmetries)

and can provide an applicable description of the required

(sub)optimal measurement procedure (Artiles et al. ;

Hayashi ; Helstrom ) .
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Statistical inference for 7stochastic processes deals with
dependent observations made at time points in {, , ,⋯}
or [,∞).�us, the time parameter can be either discrete
or continuous in nature.

Markov Chains and Sequences
Let {Xt , t = , , , . . .} be a time-homogeneous L-

order Markov sequence with the state-space S. Let

pθ(xt ∣xt−, xt−,⋯xt−L)be the conditional probabilitymass
function(p.m.f.)orprobabilitydensity function(p.d.f.)ofXt
givenXt−,Xt−,⋯Xt−L, θ being an unknown parameter in
Θ, an open set in the K-dimensional Euclidean space.

�e (conditional) log-likelihood (given (X(),X(),⋯,

X(L))) is given by ln(LT(θ)) = ∑t=L,T ln[pθ(xt ∣xt−,
xt−,⋯, xt−L)], T > L. We assume that the conditional
p.m.f./p.d.f. satis�es the Cramer regularity conditions and

that {Xt , t = , , , . . .} is a strictly stationary and ergodic
sequence.�e Fisher Information matrix is de�ned by

I(θ) = (( −E[∂ ln(pθ(Xt ∣Xt−,Xt−,⋯Xt−L))/∂θ i∂θ j] ))

and is assumed to be positive de�nite (the expectation is

with respect to the joint distribution of (Xt ,Xt−,⋯,Xt−L)
and is computed under the assumption of stationarity).

Under these conditions, it can be shown that there exists a

consistent solution θ̂ of the likelihood equations, such that√
T(θ̂ − θ)→ NK(, [I(θ)]−) in distribution (Billingsley

). We apply the 7martingale central limit theorem
to the score function (i.e., the vector of ∂ ln(LT(θ))/∂θ i,

i = , ,⋯,K) (Billingsley ; Hall and Heyde ) and
the Strong Law of Large numbers for various sample aver-

ages of stationary and ergodic sequences to prove this

result.�e large-sample distribution theory of Likelihood

Ratio Tests (LRTs) and con�dence sets follows in a man-

ner similar to the case of independently and identically

distributed (i.i.d.) observations.

Some of the assumptions made above can be relaxed,

cf. Basawa andPrakasa Rao (), Chap. .�e LRT can be

used for selecting the order of a model by testing a model

against the alternatives of a higher order model. However,

the 7Akaike’s Information Criterion (AIC) and Bayes cri-
terion (BIC), respectively given by AIC = − lnLT(θ̂) + K
and BIC = − lnLT(θ̂) + K ln(T) are more appropriate
for selection of a model and an order.�e model with the

least AIC/BIC is selected. When S is �nite, the procedure

based onBIC yields a consistent estimator of the true order,

cf. Katz (). �e AIC is an inconsistent procedure, cf.

Davison (), Sect. .. For �nite Markov chains, Pear-

son’s χ-statistic can be used in place of the LRT for various

hypotheses of interest. Inmoderate samples, the chi-square

approximation to Pearson’s χ-statistic is better than the

same to LRT.

First order Markov models o�er a satisfactory �t to

observations somewhat infrequently. Lindsey (, p.

) discusses approaches based on 7logistic regression
and log-linear models (contingency table analysis) for

higher order �nite 7Markov chains. A distinct advan-
tage of such a modeling is that both time-dependent and

time-independent covariates can be incorporated, see dis-

cussion of Generalized Auto-Regressive Moving Average

(GARMA) models below. A limitation of such models is

that the conditional probabilities depend upon the numer-

ical values (coding) assigned to the states, which is not suit-

able for models for data without any numerical structure,

such as linguistic classes.
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Higher order Markov chains and sequences can be

handicapped by a large number of parameters. An impor-

tant Markov model of order L with a substantially small

number of parameters is due to Ra�ery () and it is

given by

pθ(xt ∣xt−, xt−,⋯xt−L) = ∑
l=,L

λlqxt−l ,xt , λl ≥ , ∑
l

λl = .

Here, qx,y is a transition probability matrix (t.p.m.) or a

transition density.�e model is known as Mixture Tran-

sition Density (MTD) model. For an M-state chain, the

number of parameters of the MTD model is M(M − ) +
L − , far less (particularly for M > ) than (ML)(M −
), the number of parameters in the corresponding satu-
rated Markov chain. In the MTD models, like the Auto-

Regressive (AR) time series models, we need to add only

a single parameter to the r-order model to get the (r +
)-order model. Wemay note that if the state-space is con-
tinuous or countably in�nite, the transition density qx,y is

a speci�ed function of K unknown parameters.

Non-Markovian Models

Hidden Markov Model (HMM). HMM was introduced

in speech recognition studies. It has a very wide range

of applications. Let {Yt , t = , , , . . .} be a �rst-order
Markov chain with the state-space Sy = {, ,⋯M} and the
one-step t.p.m. P. �e Markov chain {Yt , t = , , , . . .}
is not observable. Let {Xt , t = , , , . . .} be an observ-
able process taking values in Sx with M elements such

that P[Xt = j∣Yt = i,Yt−,⋯Y,Xt−⋯Xt−,⋯,X] = qij,
i ∈ Sx, j ∈ Sy.�us, ifM = M, the number of parameters
of a Hidden Markov chain is M(M − ) which is con-
siderably smaller than a higher order Markov chain. For

estimation of unobserved states {Yt , t = , , , . . .T} and
estimation of parameters, the Baum-Welsch algorithm is

widely used, which is an early instance of the Expectation-

Maximization (EM) algorithm.

For a discussion of Hidden Markov chains, we refer to

MacDonald and Zucchini () and Elliot et al. ().

Cappe et al. () give a thorough and more recent

account of a general state-space HMM.

ARMAModels for integer valued random variables. A non-

negative Integer-valued ARMA (INARMA) sequence is

de�ned as follows.�e binomial operator γ ○W is de�ned
by a binomial random variable with W as the number of

trials and γ as the success probability (if W = , γ ○
W = ). Let {Zt , t = ,±,±,⋯} be a sequence of
i.i.d. non-negative integer valued random variables with a

�nite variance.�en, the INARMA(p, q) process is de�ned
by Xt = ∑i=,p αi ○ Xt−i + ∑j=,q βj ○ Zt−j + Zt . All the

binomial experiments required in the de�nition of the pro-

cess are independent.�e process {Zt} is not observable.
�e process {Xt} is (second order) stationary if ∑ αi < 
and is invertible if ∑ βj < . An excellent review of such
processes has been given in McKenzie (). Interesting

special cases such as AR, MA and Poisson, Binomial, Neg-

ative Binomial as the stationary distributions are reported

therein.

GARMAmodels.�ese are extensions of the7Generalized
Linear Models based on an exponential family of dis-

tributions and can incorporate vector of time-dependent

covariates zt along with past observations. �e condi-

tional mean of Xt given the past is given by h(ηt) where
h− = g (say) is the link function of the chosen expo-

nential family and ηt = z′tγ +∑i=,p ϕi [g (xt−i) − z′t−iγ] +
∑j=,q θ j[g(xt−j) − ηt−j]. �e parameters {ϕi} and {θ j}
denote the auto-regressive andmoving average parameters

respectively.�e parameter γ explains the e�ect of covari-

ates. A modi�cation of the mean function is required to

take care of the range of the observations. A limitation of

this class of models is that in the absence of regressors or

when the vector γ is null, it may not be possible to have

a stationary series. We refer to Benjamin et al. () and

Fahrmeir and Tutz (), Chap.  for more details.

Bienayme-Galton-Watson Branching Process
Billingsley’s work based on martingale methods for deriv-

ing asymptotic properties of the maximum likelihood

estimator paved the way for many interesting theoretical

developments for non-ergodicmodels such as a Bienayme-

Galton-Watson (BGW) branching process.

Let {Xt , t = , ,⋯} be a BGW Branching process with
the state-space S = {, ,⋯} and the o�-spring distribu-
tion pk, k = , ,⋯. Parameters of interest are the o�spring
distribution and its functions such as the mean µ and the

variance σ . A number of estimators for µ have been sug-

gested: Lotka’s estimator XT/XT− (taken to be  if XT− =
), Heyde’s estimator (XT)/T and the nonparametricmax-
imum likelihood estimator µ̂T = (YT − X)/YT− with
Yt = X + X + . . . + Xt . �e maximum likelihood esti-
mator has a natural interpretation that it is the ratio of

the total number of o�-springs (in the realization) born

to the total number of parents. By using the Scott cen-

tral limit theorem for martingales (Scott ), it can be

shown that, on the non-extinction path,
√
YT−(µ̂T−µ)/σ

is asymptotically standard Normal. A natural estimator of

σ , resulting from regression considerations, is given by

(/T)∑t Xt−(Xt/Xt− − µ̂T). �is can be shown to be
consistent and asymptotic normal with

√
T-norming, if
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the fourth moment of the o�spring distribution is �nite.

�ese results are useful to construct tests and con�dence

intervals for µ.

Based on a single realization, only µ and σ  are

estimable on the non-extinction path of the process (i.e.,

consistent estimators exist for these parameters), if no

parametric form of the o�spring distribution is assumed.

A good account of inference for branching processes, their

extensions and related population processes along with

applications can be found in Guttorp ().

Non-parametric Modeling Based on
Functional Estimation
For a stationary process, where every �nite dimensional

distribution is absolutely continuous, we may opt for a

non-parametric approach. We estimate the conditional

density of Xt given Xt−,Xt−, . . . ,Xt−L by the ratio of
estimators of appropriate joint densities. �e joint den-

sity of p consecutive random variables is estimated by

a kernel-based estimator as follows. Let Kp(x) be a
probability density function, where x ∈ Rp, the p-

dimensional Euclidean space. Let hT be a sequence of

positive constants such that hT →  and �
p

T → ∞
as T → ∞. �e estimator of joint density of consec-
utive p observations at (x, x,⋯, xp) is then given by
f̂ (x, x,⋯, xp) = [/(�p

T)]∑j=,T−p K((x−Xj)/hT , (x−
Xj+)/hT ,⋯, (xp−Xj+p)/hT). Based on the estimator of the
conditional p.d.f., one can estimate the conditional mean

(or other parameters such as conditionalmedian ormode).

Properties of conditional density estimators are estab-

lished assuming that the random sequence {Xt , t =
, , ,⋯} satis�es certain mixing conditions. We dis-
cuss strong or α-mixing, since most of the other forms

of mixing imply the strong mixing. Let F,s be the σ-

�eld generated by the random variables (X,X,⋯,Xs)
and let Fs+t,∞ be the σ-�eld generated by the collec-

tion of random variables {Xs+t ,Xs+t+,⋯}.�e stationary
sequence {Xt , t = , , ,⋯} is said to be strong mixing
if supA∈F,s ,B∈Fs+t,∞{∣P(A⋂B) − P(A)P(B)∣} ≤ α(t) and
α(t)→  as t →∞. For most of the results, we need faster
rates of decay of α(t). Asymptotic properties of the kernel-
based estimator have been established in Robinson ()

who also illustrates how plots of conditional means can

be helpful in bringing out nonlinear relationships. Prakasa

Rao () discusses, in detail, non-parametric analysis of

time series based on functional estimation.

Non-parametric inference. Tests for median or tests and

estimation procedures based on order or rank statistics,

like the widely used tests in the case of i.i.d. observations

can be suggested. However, the exact distribution is nei-

ther free from the unknown parameters, nor it is known,

except in some special cases.�us, such procedures for sta-

tionary observations lack simplicity and elegance of the

rank-based tests. Further, robustness of an estimator is

much more complex for dependent observations, since

the e�ect of a spurious observation or an outlier (which

can be an innovation outlier in an ARMA model) spreads

over a number of succeeding observations. In an important

paper,Martin and Yohai () discuss in�uence functions

of estimators obtained from ARMA Time Series model.

Bootstrap. Efron’s Bootstrap (see 7Bootstrap Methods) for
i.i.d. samples is now routinely used to estimate the variance

or the sampling distributions of estimators, test statistics

and approximate pivotals. Inmost of the situations of prac-

tical interests, it gives amore accurate estimator of the sam-

pling distribution than the one obtained by the traditional

methods based on the Central Limit�eorem. In the i.i.d.

case, we obtain B bootstrap samples, each sample being a

Simple Random Sample With Replacement (SRSWR) of

size T from the observed sample.�is generates B values

of a statistic or pivotal of interest.

For a stationary AR model of order L, the �rst L val-

ues of a bootstrap series may be the same as those of the

observed time series.We take a SRSWR sample of sizeT−L
from residuals.�e randomly selected residuals are then

successively used to generate a bootstrap time series. We

then have B time series, each of length T. For stationary

and invertible MA or ARMA models, a bootstrap series is

constructed from a SRSWR sample of the residuals. Rest

of the methodology is the same as the usual bootstrap pro-

cedure. Bose () (AR models) and () (MAmodels)

has shown that such a bootstrap approximation to the sam-

pling distribution of the least square estimators is superior

to the traditional normal approximation.

Bootstrap procedures for (strictly) stationary and

ergodic sequence are based on blocks of consecutive obser-

vations. Bootstrap procedure is a boon for stochastic mod-

els, since in most of the cases, working out the variance of

a statistic or its sampling distribution is very complex. By

and large, it is beyond the reach of an end-user of statistics.

(Consider, for example, computing the variance of a  per

cent trimmed mean computed from stationary observa-

tions.) In a Moving Blocks Bootstrap (MBB)(Kunsch ;

Liu and Singh ), we form K blocks of L consecutive

observations to capture the dependence structure of the

process.�ere are N = T − L +  blocks of L consecutive
observations. We obtain a SRSWR of size K from these N

blocks to get a bootstrap sample of size T∗ = KL. If T is
divisible by L,K = T/L, otherwise, it can be taken to be the
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integer nearest to T/L. Let FT be the empirical distribution
function of T observations and let H be a functional on

the space of distribution functions, computed at FT (such

as the trimmedmean or a percentile). A bootstrap statistic

H∗ is computed from the empirical distribution function
of T∗ bootstrap observations. Other procedures are NBB
(Non-overlapping Blocks Bootstrap) and CBB (Circular

Blocks Bootstrap), cf. Lahiri (), Chap. . Carlstein

() considers non-overlapping subseries of size L.

Let us assume that L → ∞, T → ∞ such that

T/L → ∞. Kunsch has shown that the bootstrap estima-
tor of the variance of the normalized sample mean (

√
TX)

is consistent. (He further discusses jackknife procedures

wherein we delete a block at a time.)�e MBB procedure

correctly estimates the sampling distribution of the sample

mean.�is property holds for a large number of mean-like

statistics and smooth (continuously di�erentiable) func-

tions of the mean vector, see Lahiri ( p. ). Statistics

based on averages of consecutive observations or their

smooth functions (such as serial correlation coe�cients)

can be similarly bootstrapped. Second-order properties of

the bootstrap estimator of the sampling distribution of the

normalized/Studentized smooth functions of the sample

mean (vector) have been obtained by Lahiri () and

Gotze and Kunsch (). Let G(µ), a third order di�er-
entiable function of the population mean vector µ, be the

parameter of interest. While constructing the bootstrap

version of the pivotal, we need to considerG(X∗)−G(µ̂T),
where µ̂T = E∗(X∗). If the block length L is of the order
T/, the best possible error rate of theMBB approximation
for estimation of the distribution function is O(T−/).
�ough it is not as good as the accuracy that we have in the

case of i.i.d. or residual based ARMA bootstrap, it is still

better than the normal approximation to an asymptotic

pivotal. Optimal block lengths for estimator of variance

and the sampling distribution of a smooth statistics have

been discussed in Chap.  of Lahiri ().

Under certain conditions, it is possible to bootstrap the

empirical process, cf. Radulovic (). Such results as well

as those discussed above for block based bootstrap, assume

that the underlying process is strong mixing with a spec-

i�ed rate of decay of the mixing coe�cients along with

the block lengths L. We can construct con�dence bands

for the distribution function, by using the bootstrap dis-

tribution of the empirical process. Further, a number of

statistics such as natural estimators of a compactly dif-

ferentiable functional of the distribution function can be

bootstrapped. Such a class of estimators include most of

the estimators that we use in practice.

Kulperger and Prakasa Rao () discuss bootstrap

estimation of the sampling distribution of the estimator

of a suitable function of P, the one-step t.p.m. of a

�nite ergodic irreducible Markov chain.�ey consider the

expected value of time taken to reach a state from another

state of a Markov chain, as a parametric function P. Com-

puting the variance of such an estimator is very tedious.

Bootstrap samples are generated by regarding the maxi-

mum likelihood estimate of the t.p.m. P as the underlying

parameter.

State-space models (Doubly stochastic processes/Randomly

driven stochastic processes). Let {Xt , t = , ,⋯} be
an unobservable process. Let {Yt , t = , ,⋯} be an
observable process with the conditional p.m.f. or p.d.f.

f (y, y,⋯, yt ∣ x, x,⋯, xt) . In practice, o�en the process
{Xt , t = , ,⋯} is a Markov sequence and the condi-
tional distribution of Yt given (y, y,⋯, yt−, x, x,⋯, xt)
depends upon xt and yt− only. Such models are useful
in situations where parameters vary slowly over time. It

may be noted that models such as HMM, MTD or ARMA

among others can be conveniently viewed as state-space

models. Varying parameters can be modeled by a random

process, see Guttorp (, p. ) for an example involving

a two state Markov chain.

Counting and Pure Jump Markov
Processes
Let {X(t), t ≥ } be a counting process with X() = .
Let F(t−) be the complete history up to t but not includ-
ing t (technically the σ-�eld generated by the collection of

random variables {X(u),u < t}).�e intensity function
λ(t) can be stochastic (a random variable with respect to
F(t−)). It is characterized by the properties that P[X(t +
dt) − X(t) = ∣F(t−)] = λ(t)dt + o(dt), P[X(t + dt) −
X(t) = ∣F(t−)] =  − λ(t)dt + o(dt) and P[X(t +
dt) − X(t) ≥ ∣F(t−)] = o(dt) for small dt. We assume
that E(X(t)) < ∞ for every t. Let M(t) = X(t) −
E[X(t)∣F(t−)]. It can be shown that {M(t), t > } is
a continuous time martingale with respect to F(t−), i.e.,
E[M(t + s) − M(t) ∣ F(t−)] =  for every s > . Time-
dependent or time independent regressors can be included

in the intensity function λ(t).
Let the intensity λ(t) be λ(t, θ), a speci�ed function

of the time and the parameters θ. In practice, to informally

compute the likelihood, a partition t = , t, t, . . . , tN = T
of [,T] is selected and the likelihood for such a partition is
computed �rst. One then allows the norm of this partition

to converge to . It turns out that the likelihood is given by

ln(L(θ) = ∫ ln(λ(u, θ))dX(u) − ∫ λ(u, θ)I(u)du, where
I(t) = , if there is a jump at t and , otherwise. Such a
general formulation linking counting processes inference

withmartingales in continuous time is due toAalen ().
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Important special cases include (a) Poisson process

(see 7Poisson process) with λ(t) = λ for all t; (b) a

Non-homogeneous Poisson Process where λ(t) is a deter-
ministic function, (c) Pure birth process λ(t) = λX(t−),
and (d) Renewal process (see 7Renewal Processes) λ(t) =
h[t − t(x(t))] where h(t) is the failure rate or hazard
function of the absolutely continuous lifetime distribution

of the underlying i.i.d. lifetimes and t(x(t)) is the time
epoch at which the last failure before t takes place. (d)

Semi-Markov or Markov renewal process. Here the inten-

sity function depends on the state of the process at t(x(t))
and the state observed at t (assuming that there is an

event at t).

Inference for counting processes and asymptotic prop-

erties of the maximum likelihood estimators have been

discussed in Karr () and Andersen et al. ().

Likelihood of a time-homogeneous continuous time

Pure Jump Markov process follows similarly. Let, for i ≠ j,
P[X(t + dt) = j∣X(t) = i] = λijdt + o(dt) and let P[X(t +
dt) = i∣X(t) = i] = −Qiidt+o(dt).�e probability of other
events is o(dt). Here, Qii = −∑j≠i λij. If the state space is
�nite, each of the row-sums of the matrixQ = ((Qij)) is .
�e transition function P[X(t) = j∣X() = i] of the pro-
cess is assumed to be di�erentiable in t for every i, j.�e

log-likelihood, conditional on X() = x(), is given by
lnL = ∑i≠j Nij lnQij −∑i Qiiτi, where Nij is the number of
direct transitions from i to j and τi is the time spent in the

state i, both during [,T]. If the number of states is �nite,
the non-parametric maximum likelihood estimator of Qij
is given by Nij/τi. Properties of maximum likelihood esti-

mators have been discussed in Adke andManjunath ()

and Guttorp (, Chap. ). Important cases include (Lin-

ear or Non-linear) Birth-Death-Immigration-Emigration

processes and Markovian Queuing models.

Goodness of �t procedures are both graphical and for-

mal. �e Q-Q plot of the times spent in a state i scaled

by the maximum likelihood estimates of their expected

values, reveals departures from the exponential distribu-

tion. Since Nij’s form transition counts of the embedded

Markov chain, one can check whether such transitions

have any memory. If the model under study has a station-

ary distribution, the observed frequencies of the test can

be compared with the �tted stationary distribution, see

Keiding () who analyzes a Birth-Death-Immigration

process model.

Diffusion Processes
Let {X(t), t ≥ } be a di�usion process with µ(x, θ) and
σ (x) as the trend anddi�usion functions respectively.�e
likelihood for the observed path {X(t),  ≤ t ≤ T} is the

Radon-Nikodym derivative of the probability measure of

{X(t),  ≤ t ≤ T} under the assumed di�usion process
with respect to the probability measure of {X(t),  ≤ t ≤
T} under the assumption of a di�usion process with the
mean function equal to  for all x and the variance func-

tion σ (x). It is assumed that σ (x) is a known function.
�e log-likelihood is given by

ln(L(θ)) = ∫
,T
µ(x(t), θ)/(σ(x(t))dx(t)

− /∫
,T
µ
(x(t), θ)/(σ(x(t))dt.

(If the variance functions is unknown, a time transfor-

mation is used to reduce the process with a known variance

function.) Some special cases are (a) Brownianmotion, (b)

Geometric BrownianMotion, and (c)Ornstein-Uhlenbeck

process.
√
T− consistency and 7asymptotic normality of

the estimator of the mean of the process can be shown

under the assumption that the process is non-null persis-

tent (i.e., the process almost surely returns to any bounded

set and the corresponding mean return time is �nite). In

this case, we can obtain non-parametric estimators of the

common distribution function and the probability den-

sity function of X(t). We refer to Prakasa Rao (a)
and Kutoyants () for details. Kutoyants () also

discusses asymptotic distributions of the estimator of the

mean of the process in the null persistent case.

Observing a continuous time process may not be

always feasible. We choose a partition of [,T], write the
likelihood of such a partially observed process and then

take the limit as the norm of the partition tends to . Valid-

ity of such operations has been established in Kutoyants

(). Sorensen () gives an extensive review for

inference for stationary and ergodic di�usion processes

observed at discrete points.�e following techniques are

discussed therein: (a) estimating functions with special

emphasis onmartingale estimating functions and so-called

simple estimating functions, (b) analytical and numerical

approximations of the likelihood function which can, in

principle, be made arbitrarily accurate, (c) Bayesian analy-

sis and MCMC methods, and (d) indirect inference and

Generalized Method of Moments which both introduce

auxiliary (but wrong) models and correct for the implied

bias by simulation.

Statistical analysis and theoretical derivation of di�u-

sion processes (as well as counting processes) is based on

the theory of semimartingales. A semimartingale is a sum

of a local martingale and a function of bounded variation.

A class of di�usion processes and counting processes form
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a subclass of the family of submartingales. A uni�ed theory

of statistical inference for semimartingales is presented in

Prakasa Rao (b).

A fractional di�usion process is driven by the frac-

tional Brownian motion (see 7Brownian Motion and Dif-
fusions), which is not a semimartingale. Such processes

can be useful in modeling phenomena with long range

dependence, but the earlier techniques based on the theory

of semimartingales are not applicable. Statistical inference

for fractional di�usion processes has been discussed in

Prakasa Rao ().

Concluding Remarks
Computational aspects. Computation of likelihood and its

subsequent maximization are involved for most of the

stochastic models. �ere are many procedures such as

Kalman Filter, EM algorithm and Monte Carlo EM algo-

rithm (which is based on Markov Chain Monte Carlo

methods, see 7Markov Chain Monte Carlo), to compute
the likelihood and the maximum likelihood estimator.

From a computer programming view-point, implemen-

tation of the EM algorithm and its stochastic versions,

require a special routine for each model.�e conditional

expectation step may require extensive simulations from

a joint density, the constant of integration of which is not

known. For state-space models, one needs to carry out a

T-tuple integral (or a sum) to compute the likelihood. It

seems that various methods based on numerical analysis

to get a good approximation to the likelihood, its max-

imization and derivatives (which are needed to compute

standard error of the maximum likelihood estimator), are

preferred to other procedures. Possibly this is due to a very

slow rate for convergence of the EM algorithm (and its

stochastic versions) and yet another round of computa-

tions required to compute the estimator of the variance of

the maximum likelihood estimator.

Efficiency of Estimators
(a)Finite sampleoptimality.Godambe’scriterion(Godambe

) of a �nite sample optimality of an estimator is based

onoptimalityof theestimatingequation it solves.Under the

usual di�erentiability-based regularity conditions, an esti-

mating function g∗ is said to beoptimal inG, if itminimizes
E(g(A))/(E(∂g(A)/∂θ)). Let Ft be the σ−�eld gener-
atedbythecollectionofrandomvariables{Xs, s = , ,⋯, t}.
Let g(t, θ) be an Ft measurable random variable involving
θ, a real parameter, such that E[g(t, θ) ∣ Ft−] =  and
Var[g(t, θ) ∣ Ft−] = V(t). Let g(A) = ∑t A(t)g(t, θ),
where A(t) is an Ft− measurable random variable, t ≥ .
Let G = {g(A)} be the class of estimating functions g(A)
which satisfy the regularity conditions together with the

assumptions that E(g(A)) < ∞ and E(∂g(A)/∂θ) ≠ .
Godambe proves that the optimal choice ofA(t) is given by
E[∂g(t, θ)/∂θ ∣ Ft−]/V(t). In practice, we need to assume
that such optimal weights do not involve other (incidental

or nuisance) parameters.

A number of widely used estimators turn out to be

solutions of such an optimal estimating equations g∗ = .
Further, Godambe’s result justi�es the estimator for each

�nite sample size and in addition, it broadens the class

of parametric models to a larger class of semi-parametric

models, for which the estimating function is optimal.�e

score function is optimal in a class of regular estimat-

ing functions, justifying use of the maximum likelihood

estimator in �nite samples. Continuous time analogues of

these results with applications to counting processes have

been discussed in a number of papers in a volume edited

by Godambe () and Prakasa Rao and Bhat ().

Optimality of an estimating function in a class is also

equivalent to an optimal property of con�dence intervals

based on it. In large samples, the optimal g∗ leads to a
shortest con�dence interval for θ at a given con�dence

coe�cient. In a number of situations, the con�dence inter-

val, obtained from a Studentized estimating function, is

typically better than the approximate pivotal obtained by

Studentizing the corresponding estimator, in the sense that

the true coverage rate of the procedure based on estimat-

ing function is closer to the nominal con�dence coe�cient.

Bootstrapping the Studentized estimating function further

improves performance of the corresponding con�dence

interval.

(b) Asymptotic e�ciency. In non-ergodic models such as

a BGW process, large-sample e�ciency issues are rather

complex.�ough the random norming is convenient from

an application view-point, the non-random norming is

more appropriate and meaningful for e�ciency issues.

Further, notions of asymptotic e�ciency based on vari-

ance of an estimator are no more applicable, since the

variance of the asymptotic distribution for a large num-

ber of estimators does not exist. �e W-e�ciency of the

maximum likelihood estimator, under certain regularity

conditions, has been established by Hall and Heyde ()

and Basawa and Scott (). Estimators based on other

criteria can also beW-e�cient.�e Bayes estimator, under

certain conditions, is asymptotically distributed like the

maximum likelihood estimator.�is result is known as the

Bernstein-von Mises theorem and for its proof in the case

of stochastic processes, we refer to Chap.  of Basawa and

Prakasa Rao ().

Inference problems in stochastic processes have

enrichedboththeoreticalinvestigationsandappliedstatistics.



Statistical Inference for Stochastic Processes S 

S

�eoretical research in bootstrap, estimating functions,

functional estimation and non-Gaussian non-Markov pro-

cesses has widened scope of stochastic models. Use of fast

and cheap computing has been helpful in computing likeli-

hood,maximumlikelihoodestimatorsandBayesestimators

in very complicated stochastic models.
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Researchers in ecology and evolution have long recog-

nized the importance of understanding randomness in

nature in order to distinguish the underlying pattern. Sir

Francis Galton developed regression analysis to answer

questions about heredity; Karl Pearson’s systems of dis-

tributions were motivated by the desire to �t evolution-

ary data on the size of crab claws. Fisher’s contributions

from the fundamental theorem of evolution to �elds of

quantitative genetics, species abundance distributions and

measurement of diversity are legendary. Studies on the

geographic distribution of species led to the study of spatial

statistics in ecology in the early part of the th century.

�e classi�cation and discrimination methods developed

by Fisher and others for numerical taxonomy and commu-

nity ecology are still commonly used in ecology.

Unfortunately, Karl Pearson believed that causation

was an illusion of scienti�c perception, stating in the intro-

duction to the  rd edition of �e Grammar of Sci-

ence, “Nobody believes now that science explains anything;

we all look upon it as a shorthand description, as an

economy of thought.” Under Pearson’s in�uence, statisti-

cal techniques in ecology tended, until recently, to bemore

descriptive than predictive with a major early exception

of path analysis developed by Sewall Wright in the �rst

decades of the th century.

In curious contradiction, mathematical models used

by ecologists to model population dynamics and related

processes were highly sophisticated and predictive in

nature. For example, Lotka–Volterra models were devel-

oped in the s. Generalization of thesemodels tomulti-

species cases such as the Predator-Prey, Host-Parasitoid

and other systems of models were available soon a�er

that. Skellam () pioneered the use of spatial di�usion

processes to model spread of invasive species.

Gause’s work (Gause ) was unique in that he tried

to validate the mathematical models using experimental

data. He used non-linear regression to �t Logistic growth

model to the population growth series for paramecia.

Most of this work was based on the assumption that error

comes into the process only through observational inaccu-

racies, and thus he missed the modern nuance of inherent

randomness or process variation.

Statistical ecology received a large impetus in the s

a�er the publication of Professor E.C. Pielou’s numerous

classic books (e.g., Pielou ) and number of conferences

and the resultant edited volumes by Professor G.P. Patil

(e.g., Patil et al. ).�ese provided nice summaries of

what was known then and also indicated future directions.

Driven by the passage of the  Endangered Species Act

(ESA) and the dozens of other environmental laws passed

in the United States during the ’s the �eld of ecology

gained substantial prominence in the context of managing

and not simply describing ecosystems. �is necessitated

the development of models that were predictive and not

simply descriptive.
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Population Viability Analysis (PVA) where one uses

stochastic models to predict the distribution of extinction

times for a population or species of concern became an

important tool for studying the e�ect of various human

activities on nature. Political decisions regarding the con-

servation of species are o�en legally required by the

ESA to consider the results of a PVA. �e importance

of demographic and environmental stochasticity as well

as the measurement error in forecasting became appar-

ent. Expanding beyond a single population focus, the

development of meta-population theory was based on

probabilisticmodels for spatial dispersal and growth. Ecol-

ogists became more familiar and comfortable with the

idea of modeling randomness and studying its impact on

prediction. While much of what is modeled as random

in ecology undoubtedly represents unrecognized deter-

ministic in�uences, it seems likely that true stochastic-

ity is as much a fundamental part of ecology as it is in

physics. For example, demographic events such as the

sex of o�spring are truly random, and not simply the

consequence unrecognized deterministic in�uences. Such

demographic stochasticity strongly in�uences population

dynamics when population size is low.

Although stochastic models became prominent in the

s and s, statistical inference, the methods that con-

nect theoretical models to data, or inductive inference,

was still limited. Most of the statistical techniques used

were based on linear regression and its derivatives such

as the 7Analysis of Variance.�e main hurdles were lim-
ited data, limited computational power and mathemati-

cal nature of the statistical inferential tools. Dennis et al.

() and Dennis and Taper () made a major advance

by incorporating stochastic population dynamic models

as the skeleton for a full likelihood based inference in

ecological time series.

�e rapid rise in computational power available to

ecologists, coupled with the development of computa-

tional statistical techniques especially the bootstrap (see

7Bootstrap Methods) and Monte-Carlo approaches have
reduced the threshold of mathematical expertise neces-

sary to apply sophisticated statistical inference techniques

making the analysis of complex ecological models feasi-

ble.�is has provided signi�cant impetus for developing

strong inferential tools in ecology.

Following are some of the important examples of the

application of statistical thinking in ecology.

. Sampling methods for estimation of population abun-

dances and occurrences: Mark-Capture-Recapture

(Seber ) methods have formed an important tool

in the statistical ecology toolbox, but have also led

to development of new statistical methods that have

found applications in epidemiology and other sciences.

Capture probabilities may change temporally or spa-

tially. 7Generalized Linear models and mixed models
have proved their usefulness in these situations. Biases

due to visibility are adjusted using distance based sam-

pling methods. In many instances, it is too expensive

to conduct abundance estimation and one has to settle

for site occupancy models based on presence-absence

data. Site occupancy data and methods have made a

broader range of ecologists aware of the ubiquitous

nature of measurement error. Although a species may

be present, it may not be detected because of various

factors such as lack of visibility, time of the day when

birds may not be singing etc. (MacKenzie et al. ).

�is is an active area of research.

. Resource selection by animals: Ecologists need to know

what resources animals select and how does this selec-

tion a�ect their �tness and survival. Human develop-

ments such as dams or a gas pipe line across a habitat

that might be critical to the animals can doom their

survival. Recent technological advances such as GPS

collars and DNA analysis help in collecting informa-

tion on where animals spend their time and what they

eat.�e resource selection probability function (RSPF)

(Manly et al. ; Lele and Allen ) and habitat

suitability maps (Hirzel et al. ) have been essential

tools for environmental impact assessments (EIA) for

studying impact of various developments.

. Model identi�cation and selection:�e statistical mod-

els used for prediction can be either process driven

or phenomenological, “black box”, models (Breiman

). Predictions from ecological models are o�en

made for the distant and not the immediate future.�is

extrapolation makes it essential that ecological mod-

els be process driven.�e use of powerful likelihood

methods for analyzing population time series models

is a relatively new development. �e predictions are

strongly a�ected by the particular process basedmodel

chosen. �is has forced ecologist to consider many

models simultaneously and to search for good meth-

ods for 7model selection. Information based model
selection (Burnham and Anderson ) has received

considerable attention in this context. Although alter-

native methods andmodi�cations are constantly being

suggested and tested (Taper et al. ).

. Hierarchical models: �is is one of the most exciting

developments in statistical ecology. General hierarchi-

cal models are also known as latent variable models,

random e�ects models, mixed models and 7mixture
models. �ese models are natural models to account
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for the hierarchical structure inherent in many eco-

logical processes.�ey also simplify statistical analysis

in the presence of missing data, sampling variability,

covariates measured with error and other problems

commonly faced by ecologists. Reviews of the use of

hierarchical models in ecology are available in Royle

and Dorazio (), Cressie et al. () or Clark

and Gelfand (). Survival analysis methods and

random e�ects models have found important appli-

cations in avian nest survival studies (Natarajan and

McCulloch ). Linear mixed e�ects models have

been used in evolution and animal breeding since the

’s. However, generalization of those ideas to more

complex models was not possible until recently. Writ-

ing down the likelihood function for general hierar-

chical models is di�cult (Lele et al. ) and hence

use of standard likelihood based inference is not pop-

ular. On the other hand, non-informative Bayesian

inference using Markov Chain Monte Carlo algorithm

(see 7Markov Chain Monte Carlo) is computationally
feasible. �ese calculations are simulation based and

replicate the causal processes that ecologists seek to

understand. Due to its simplicity, the non-informative

Bayesian approach has become quite popular in ecol-

ogy. However, there are important philosophical and

pragmatic issues that should be considered before

using this approach (Lele and Allen , Lele and

Dennis ). Moreover, the recent development of

the data-cloning algorithm (Lele et al. ; Ponciano

et al. ) has removed the computational obstacle to

likelihood inference for general hierarchical models.

Powerful statistical methods are being developed for ecol-

ogy, generally coupled with so�ware.�e development of

accessible tools has greatly facilitated the application of

complex statistical analysis to ecological problems.�ese

advances have come at a cost. Researchers are under pres-

sure to be cutting edge and consequently tend to use tech-

niques because they are convenient and fashionable not

necessarily because they are appropriate.

Ecological statistics is vibrant and contributing greatly

to the advancement of the science, but what are the future

directions? One clear recommendation that can be made

is in the realm of teaching. Education in ecological statis-

tics has not kept pace with statistical practice in ecol-

ogy, and improvements are desperately needed (Lele and

Taper , Dennis ). While methods instruction will

always be essential, what is needed most by young ecol-

ogists is the development of strong foundational thinking

about the role of statistical inference in ecological research.

On the other hand, recommendations regarding the devel-

opment of new statistics are less clear. Techniques generally

follow the questions that need to be answered. However,

we are con�dent that while descriptive statistics and black

box prediction will have their place, the greatest advances

to knowledge in ecology will come from challenging the

probabilistic predictions from explicit models of ecologi-

cal process with data from well-designed experiments and

surveys.
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Introduction
Statistical inference concerns the application and appraisal

of methods and procedures with a view to learn from data

about observable stochastic phenomena of interest using

probabilistic constructs known as statistical models. �e

basic idea is to construct statistical models using proba-

bilistic assumptions that “capture” the chance regularities

in the data with a view to adequately account for the

underlying data-generating mechanism; see ? (?). �e

discussion that follows focuses primarily on frequentist

inference, and to a lesser extent on Bayesian inference.

�e perspective on statistical inference adopted here

is broader than earlier accounts, such as: “making infer-

ences about a population from a random sample drawn

from it” (Dodge ), in so far as it extends its intended

scope beyond random samples and static populations, to

include dynamic phenomena giving rise to observational

(non-experimental) data. In addition, the discussion takes

into account the fact that the demarcation of the intended

scope of statistical inference is intrinsically challenging

because it is commonly part of broader scienti�c inquiries;

see Lehmann (). In such a broader context statistical

inference is o�en preceded with substantive questions of

interest, combined with the selection of data pertaining

to the phenomenon being studied, and succeeded with the

desideratum to relate the inference results to the original

substantive questions.

�is special placing of statistical inference raises a

number of crucial methodological problems pertaining to

the adequateness of the statistical model to provide a well-

grounded link between the phenomenon of interest, at one

end of the process, and furnishing evidence for or against

the substantive hypotheses of interest, at the other. �e

link between the phenomenon of interest and the statis-

tical model – thru the data – raises several methodologi-

cal issues including: the role of substantive and statistical

information (Lehmann ), as well as the criteria for

selecting a statistical model and establishing its adequacy

Spanos ().�e link between the data – construed in

the context of a statistical model – and evidence for or

against particular substantive claims also raises a num-

ber of di�cult problems including the fact that “accept”

or “reject” the null hypothesis (or a small p-value) does

not mean that there is evidence for the null or the alterna-

tive, respectively. Indeed, one can make a case that most of

the foundational problems bedeviling statistical inference

since the s stem from its special place in this broader

scienti�c inquiry; see Mayo ().

Frequentist Statistical Inference
Modern statistical inference was founded by Fisher ()

who initiated a change of paradigms in statistics by

recasting the then dominating Bayesian-oriented induc-

tion, relying on large sample size (n) approximations

(Pearson ), into a frequentist statistical model-based

induction, relying on �nite sampling distributions, inspired

by Gosset’s () derivation of the Student’s t distribution

for any sample size n > . Before Fisher, the notion of a
statistical model was implicit, and its role was primarily

con�ned to the description of the distributional features
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of the data in hand using the histogram and the �rst few

sample moments. Unlike Karl Pearson who would com-

mence with data x: = (x, . . . , xn) in search of a frequency
curve to describe the histogramof x, he proposed to begin
with (a) a prespeci�ed model (a hypothetical in�nite pop-

ulation), and (b) view x as a realization thereof. Indeed,
he made the initial choice (speci�cation) of the prespeci-

�ed statistical model a response to the question: “Of what

population is this a random sample?” (Fisher , p. ),

emphasizing that: “the adequacy of our choice may be

tested a posteriori” (ibid., p. ).

The Notion of a Statistical Model
Fisher’s notion of a prespeci�ed statistical model can be

formalized in terms of the stochastic process {Xk, k∈N},
underlying data x.�is takes the form of parameterizing
the probabilistic structure of {Xk, k∈N} to specify a statis-
tical model:

Mθ(x) = { f (x; θ), θ ∈Θ}, x ∈ RnX , for Θ⊂Rm,
m < n. ()

f (x; θ) denotes the joint distribution of the sample X:
= (X, . . . ,Xn) that encapsulates the whole of the proba-
bilistic information inMθ(x), by giving a general descrip-
tion of the probabilistic structure of {Xk, k∈N} (Doob
).Mθ(x) is chosen to provide an idealized descrip-
tion of the mechanism that generated data x with a
view to appraise and address the substantive questions of

interest.

�e quintessential example of a statistical model is the

simple Normal model:

Mθ(x): Xk ∽ NIID(µ, σ ), θ: = (µ, σ )∈R×R+,

k = , , . . . ,n, . . . , ()

where “∽ NIID(µ, σ )” stands for “distributed as Normal,
Independent and Identically Distributed, with mean µ and

variance σ ”.

�e statistical modelMθ(x) plays a pivotal role in sta-
tistical inference in so far as it determines what constitutes

a legitimate:

(a) Event — any well-behaved (Borel) functions of the

sample X—
(b) Assignment of probabilities to legitimate events via

f (x; θ)
(c) Data x for inference purposes
(d) Hypothesis or inferential claim

(e) Optimal inference procedure and the associated error

probabilities

Formally an event is legitimate when it belongs to the

σ-�eld generated by X (Billingsley ). Legitimate data
come in the form of data x that can be realistically viewed
as a truly typical realization of the process {Xk, k∈N},
as speci�ed byMθ(x). Legitimate hypotheses and infer-
ential claims are invariably about the data-generating

mechanism and framed in terms of the unknown parame-

ters θ. Moreover, the optimality (e�ectiveness) of the var-

ious inference procedures depends on the validity of the

probabilistic assumptions constitutingMθ(x); see Spanos
().

�e interpretation of probability underlying frequen-

tist inference associates probability with the limit of rel-

ative frequencies anchored on the Strong Law of Large

Numbers (SLLN). “Stable relative frequencies” (Neyman

), i.e., one’s that satisfy the SLLN, constitute a cru-

cial feature of real-world phenomena we call stochastic.

�e long-runmetaphor associated with this interpretation

enables one to conceptualize probability in terms of view-

ing Mθ(x), x ∈ RnX as an idealized description of the
data-generating mechanism. �e appropriateness of this

interpretation stems primarily from its capacity to facilitate

the task of bridging the gap between stochastic phenomena

and the mathematical underpinnings ofMθ(x), as well as
elucidate a number of issues pertaining to modeling and

inference; see Spanos ().

Different Forms of Statistical Inference
Fisher (), almost single-handedly, put forward a fre-

quentist theory of optimal estimation, and Neyman and

Pearson () modi�ed Fisher’s signi�cance testing to

propose an analogous theory for optimal testing; see Cox

and Hinkley (). Optimality of inference in frequen-

tist statistics is de�ned in terms of the capacity of di�erent

procedures to give rise to valid inferences, evaluated in

terms of the associated error probabilities: how o�en these

procedures lead to erroneous inferences.

�e main forms of statistical inference in frequentist

statistics are: (a) point estimation, (b) interval estimation,

(c) hypothesis testing, and (d) prediction.

All these forms share the following features:

(a) Assume that the prespeci�ed statisticalmodelMθ(x)
is valid vis-à-vis data x.

(b) �e objective of inference is always to learn about

the underlying data-generating mechanism, and it is

framed in terms of the unknown parameter(s) θ.

(c) An inference procedure is based on a statistic (estima-

tor, test statistic,predictor), sayYn = g(X,X, . . . ,Xn),
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whose sampling distribution provides the rele-

vant error probabilities that calibrate its reliability.

In principle, the sampling distribution ofYn is derived

via:

P(Yn ≤ y) = ∫∫ ⋅ ⋅ ⋅∫
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

{x: g(x ,. . .,xn)≤y}

f (x; θ)dxdx⋯dxn. ()

Point estimation centers on amapping: h(.):RnX → Θ,
say θ̂n(X) = h(X,X, . . . ,Xn), known as an estimator of
θ. �e idea underlying optimal estimation is to select a

mapping h(.) that locates, as closely as possible, the true
value of θ; whatever that happens to be.�e quali�cation

“as closely as possible” is quanti�ed in terms of certain

features of the sampling distribution of θ̂n(X), known as
estimation properties: unbiasedness, e�ciency, su�ciency,

consistency, etc.; see Cox and Hinkley ().

A key concept in Fisher’s approach to inference is the

likelihood function:

L(θ; x) = ℓ(x) ⋅ f (x; θ), θ ∈Θ, ()

where ℓ(x) >  denotes a proportionality constant. Fisher
() de�ned the Maximum Likelihood (ML) estimator

θ̂ML(X) of θ to be the one that maximizes L(θ; x). He was
also the �rst to draw a sharp distinction between the esti-

mator θ̂(X) and the estimate θ̂(x), and emphasized the
importance of using the sampling distribution of θ̂(X) to
evaluate the reliability of inference in terms of the relevant

error probabilities.

Example In the case of the simple Normal model, the

statistics:

Xn =


n
Σ
n
k=Xk ∽ N(µ, σ 

n
),

s
 = 

(n − )
Σ
n
k=(Xk−Xn)

 ∽ ( σ 

n − 
) χ

(n−), ()

whereN (., .) and χ(.) denote theNormal and chis-square
distributions, constitute “good” estimators of (µ, σ ) is
terms of satisfying most of the above properties.

Point estimation is o�en considered inadequate for
the purposes of scienti�c inquiry because a “good” point

estimator θ̂n(X), by itself, does not provide any mea-
sure of the reliability and precision associated with the

estimate θ̂n(x). �is is the reason why θ̂n(x) is o�en
accompanied by some signi�cance test result (e.g., p-value)

associated with the generic hypothesis θ = .
Interval estimation recti�es this crucial weakness of

point estimation by providing the relevant error probabili-

ties associated with inferences pertaining to “covering” the

true value of θ.�is comes in the form of the Con�dence

Interval (CI):

P (L(X) ≤ θ ≤ U(X)) =  − α, ()

where the statistics L(X) and U(X) denote the lower
and upper (random) bounds that “covers” the true value

θ∗ with probability (−α), or equivalently, the “coverage
error” probability is α.

Example In the case of the simple Normal model:

P(Xn − c α

( s√
n
) ≤ µ ≤ Xn + c α


( s√
n
)) =  − α, ()

provides a (−α) Con�dence Interval (CI) for µ.�e eval-
uation of the coverage probability (−α) is based on the
following sampling distribution result:

√
n(Xn − µ)
s

∽ St(n−), ()

where St(n − ) denotes the Student’s t distribution with
(n − ) degrees of freedom, attributed to Gosset ().

What is o�en not appreciated su�ciently about esti-

mation in general, and CIs in particular, is the underlying

reasoning that gives rise to sampling distribution results

such as () and ().�e reasoning that underlies estimation

is factual, based on evaluating the relevant sampling dis-

tributions “under the True State of Nature” (TSN), i.e., the

true data-generating mechanism:M∗(x) = { f (x; θ∗)},
x ∈ RnX , where θ∗ denotes the true value of the unknown
parameter(s) θ. Hence, the generic CI in () is more accu-

rately stated as:

P (L(X) ≤ θ ≤ U(X); θ = θ
∗) =  − α, ()

where θ = θ∗ denotes ‘evaluated under the TSN’. �e
remarkable thing about factual reasoning is that one can

make probabilistic statements like (), with a precise error

probability (α), without knowing the true θ∗.

Example In the case of the simpleNormalmodel, the dis-

tributional results () and () aremore accurately stated as:

Xn
TSN∽ N(µ∗,

σ ∗
n

) , (n − )s

σ ∗

TSN∽ χ
(n−),

√
n(Xn − µ∗)

s

TSN∽ St(n−), ()

where θ∗: = (µ∗, σ ∗) denote the “true” values of the
unknown parameters θ: = (µ, σ ).
Prediction is similar to estimation in terms of its

underlying factual reasoning, but it di�ers from it in so

far as it is concerned with �nding the most representative
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value ofXk beyond the observed data, sayXn+. An optimal
predictor of Xn+ is given by:

X̂n+ = Xn, ()

whose reliability can be calibrated using the sampling

distribution of the prediction error:

ûn+ = (Xn+ − Xn) TSN∽ N(, σ ∗ ( +


n
)) , ()

to construct a (−α) prediction interval:

P
⎛
⎝
Xn − c α



⎛
⎝
s

√
( + 

n
)
⎞
⎠
≤ Xn+ ≤ Xn

+c α


⎛
⎝
s

√
( + 

n
)
⎞
⎠
; θ = θ

∗⎞
⎠
=  − α. ()

Hypothesis testing. In contrast to estimation, the rea-
soning underlying hypothesis testing is hypothetical. �e

sampling distribution of a test statistic is evaluated under

several hypothetical scenarios concerning the statistical

modelMθ(x), referred to as “under the null” and “under
the alternative” hypotheses of interest.

Example Consider testing the hypotheses in the context

of ():

H: µ ≤ µ vs. H: µ > µ. ()

What renders the hypotheses in () legitimate is that:

(a) they pose questions concerning the underlying data-

generating mechanism, (b) they are framed in terms of

the unknown parameter θ, and (c) in a way that partitions

Mθ(x). In relation to (c), it is important to stress that even
in cases where substantive information excludes or focuses

exclusively on certain subsets (or values) of the parameter

space, the entire Θ is relevant for statistical inference pur-

poses. Ignoring this, and focusing only on the substantively

relevant subsets of Θ, gives rise to fallacious results.

�e N-P test for the hypotheses () Tα :={τ(X),
C(α)}, where:

τ(X) =
√
n(Xn−µ)
s

, C(α) = {x: d(x) > cα}, ()

can be shown to beUniformlyMost Powerful (UMP) in the

sense that, its type I error probability (signi�cance level) is:

(a) α = maxµ≤µP(x: τ(X) > cα ;H)
= P(x: τ(X) > cα ; µ = µ), ()

and among all the α-level tests Tα has highest power

(Lehmann ):

(b) P(x : τ(X) > cα ; µ = µ), for all µ > µ,
µ = µ+γ, γ ≥ ; ()

In this sense, aUMP test provides themost e�ective α-level

probing procedure for detecting any discrepancy (γ ≥ ) of
interest from the null.

To evaluate the error probabilities in () and () one

needs to derive the sampling distribution of τ(X) under
several hypothetical values of µ relating to ():

(a) τ(X) µ=µ∽ St(n−), (b) τ(X) µ=µ∽ St(δ(µ);n−),
for any µ > µ, ()

where δ(µ) =
√
n(µ−µ)

σ
is known as the non-centrality

parameter.�e sampling distribution in (a) is also used

to evaluate Fisher’s () p-value:

p(x) = P(x: τ(X) > τ(x); µ = µ), ()

where a small enough p(x) can be interpreted as indicat-
ing discordance with H.

Remark It is unfortunate that most statistics books use

the vertical bar (∣) instead of the semi-colon (;) in for-
mulae ()–() to denote the evaluation under H or H,

as it relates to (), encouraging practitioners to misin-

terpret error probabilities as being conditional on H or

H; see Cohen (). It is worth emphasizing these error

probabilities are: () never conditional, () always assigned

to inference procedures (never to hypotheses), and ()

invariably depend on the sample size n > .

Comparing the sampling distributions in () with

those in () brings out the key di�erence between hypo-

thetical and factual reasoning: in the latter case there is

only one unique scenario, but in hypothetical reasoning

there is usually an in�nity of scenarios. �e remarkable

thing about hypothetical reasoning is that one can pose

sharp questions by comparingMθ(x), x ∈ RnX , for dif-
ferent hypothetical values of θ, with M∗(x), to learn
aboutM∗(x), x ∈ RnX .�is o�en elicits more informative
answers from x than factual reasoning.�is di�erence is
important in understanding the nature of the error proba-

bilities associated with each type of inference as well as in

interpreting the results of these procedures.

In particular, factual reasoning can only be used pre-

data to generate the relevant error probabilities, because

when data x is observed (i.e., post-data) the unique factual
scenario has been realized and the sampling distribution

in question becomes degenerate.�is is the reason why the

p-value in () is a well-de�ned post-data error probability,

but one cannot attach error probabilities to an observedCI:

(L(x) ≤ θ ≤ U(x)) ; see the exchange between Fisher
() and Neyman (). In contrast, the scenarios in

hypothetical reasoning are equally relevant to both pre-

data and post-data assessments. Indeed, one can go a long
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way towards delineating some of the confusions surround-

ing frequentist testing, as well as addressing some of the

criticisms leveled against it – statistical vs. substantive sig-

ni�cance, with a large enough n one can reject any null

hypothesis, no evidence against the null is not evidence for

it – using post-data error probabilities to provide an evi-

dential interpretation of frequentist testing based on the

severity rationale; see Mayo and Spanos () for further

discussion.

Bayesian Inference
Bayesian inference also begins with a prespeci�ed statistical

modelMθ(x), as speci�ed in (), but modi�es it in three
crucial respects:

() Probability is now interpreted as (subjective or ratio-

nal) degrees of belief (not as the limit of relative fre-

quencies).

() �e unknown parameter(s) θ are now viewed as ran-

dom variables (not as constants) with their own dis-

tribution π(θ), known as the prior distribution.
() �e distribution of the sample is now viewed as con-

ditional on θ, and denoted by f (x ∣ θ) instead of
f (x; θ).

All three of these modi�cations have been questioned

in the statistics literature, but the most prominent contro-

versies concern the nature and choice of the prior distribu-

tion.�ere are ongoing disputes concerning subjective vs.

default (reference) priors, informative vs. non-informative

(invariant) priors, proper vs. improper priors, conjugate

vs. non-conjugate, matching vs. non-matching priors, and

how should these choices bemade in practice; see Kass and

Wasserman () and Roberts ().

In light of these modi�cations, one can use the de�-

nition of conditional probability distribution between two

jointly distributed random vectors, say (Z,W):

f (z ∣ w) = f (z,w)
f (w)

= f (z,w)
∫z f (z,w)dz

= f (w ∣ z)f (z)
∫z f (w ∣ z)f (z)dz

,

to de�ne Bayes formula that determines the posterior dis-

tribution of θ:

π(θ ∣ x

) = f (x∣θ) ⋅ π(θ)

∫θ
f (x∣θ) ⋅ π(θ)dθ

∝ π(θ)⋅L(θ ∣ x

), θ ∈ Θ,

()

where L(θ ∣ x

) denotes the reinterpreted likelihood func-

tion, not ().

Bayesian inference is based exclusively on the poste-

rior distribution π(θ ∣ x) which is viewed as the revised
(from the initial π(θ)) degrees of belief for di�erent val-
ues of θ in light of the summary of the data by L(θ ∣ x


).

A Bayesian point estimate of θ speci�ed by selecting the

mean (θ̂B(x) = E(π(θ ∣ x))) or the mode of the poste-
rior. A Bayesian interval estimate for θ is given by �nding

two values a < b such that:

∫
b

a
π(θ ∣ x)dθ =  − α, ()

known as a ( − α) posterior (or credible) interval.
Bayesian testing of hypotheses ismore di�cult to handle

in terms of the posterior distribution, especially for point

hypotheses, because of the technical di�culty in attaching

probabilities to particular values of θ, since the parameter

space Θ is usually uncountable. �ere have been numer-

ous attempts to address this di�culty, but no agreement

seems to have emerged; see Roberts (). Assuming that

one adopts his/her preferred way to sidestep this di�culty,

Bayesian testing forH: θ = θ vs.H: θ = θ relies on com-

paring their respective degrees of belief using the posterior

ratio:

π(θ∣x)
π(θ∣x)

=
L(θ∣x) ⋅ π(θ)
L(θ∣x) ⋅ π(θ)

, ()

or, its more widely used modi�cation in the form of the

Bayes Factor (BF):

BF(x) = (
π(θ∣x)
π(θ∣x)

) /(π(θ)
π(θ)

) = L(θ∣x)
L(θ∣x)

, ()

together with certain rules of thumb, concerning the

strength of the degrees of belief against H based on the

magnitude of lnBF(x): for  ≤ lnBF(x) ≤ ., . <
lnBF(x) ≤ ,  < lnBF(x) ≤  and lnBF(x) > ,
the degree of belief against H is poor, substantial, strong

and decisive, respectively; see Roberts (). Despite their

intuitive appeal, these rules of thumbhave been questioned

by Kass and Ra�ery () inter alia.

�e question that naturally arises at this stage con-

cerns the nature of the reasoning underlying Bayesian

inference. In Bayesian inference learning is about revising

one’s degrees of belief pertaining to θ ∈ Θ, from π(θ)
(pre-data) to π(θ ∣ x


) (post-data). In contrast to frequen-

tist inference—which pertains to the true data-generating

mechanismM∗(x), x ∈ RnX — Bayesian inference is con-
cernedwithmore or less appropriate (in terms of π(θ ∣ x))
models withinMθ(x), θ ∈ Θ. In terms of the underlying
reasoning the Bayesian is similar to the decision theo-

retic inference which is also about selecting among more

or less cost (or utility)-appropriate models.�is questions

attempts to present N-P testing as naturally belonging to

the decision theoretic approach.

�e problem with the inference not pertaining to the

underlying data-generating mechanism can be brought

out more clearly when Bayesian inference is viewed in
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the context of the broader scienti�c inquiry. In that con-

text, one begins with substantive questions pertaining to

the phenomenon of interest, and the objective is to learn

about the phenomenon itself. Contrasting frequentist with

Bayesian inference, using interval estimation as an exam-

ple, Wasserman () argued: “Frequentist methods have

coverage guarantees; Bayesian methods don’t. In science,

coverage matters” (p. ).
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Statistical Literacy, Reasoning,
and Thinking

Joan Garfield

Professor

University of Minnesota, Minneapolis, MN, USA

Statistics educators o�en talk about their desired learning

goals for students, and invariably, refer to outcomes such as

being statistically literate, thinking statistically, and using

good statistical reasoning. Despite the frequent reference

to these outcomes and terms, there have been no agreed

upon de�nitions or distinctions.�erefore, the following

de�nitions were proposed by Gar�eld ( and have been

elaborated in Gar�eld and Ben-Zvi ().

Statistical literacy is regarded as a key ability expected

of citizens in information-laden societies, and is o�en

touted as an expected outcome of schooling and as a nec-

essary component of adults’ numeracy and literacy. Statis-

tical literacy involves understanding and using the basic

language and tools of statistics: knowingwhat basic statisti-

cal terms mean, understanding the use of simple statistical

symbols, and recognizing and being able to interpret dif-

ferent representations of data (Gar�eld ; Rumsey ;

Snell ).

�ere are other views of statistical literacy such as Gal’s

(, ), whose focus is on the data consumer: Statisti-

cal literacy is portrayed as the ability to interpret, critically

evaluate, and communicate about statistical information

and messages. Gal () argues that statistically literate

behavior is predicated on the joint activation of �ve inter-

related knowledge bases (literacy, statistical, mathematical,

context, and critical), together with a cluster of supporting

dispositions and enabling beliefs. Watson and Callingham

() proposed and validated a model of three levels

of statistical literacy (knowledge of terms, understand-

ing of terms in context, and critiquing claims in the

media).

Statistical reasoning is the way people reason with sta-

tistical ideas and make sense of statistical information.

Statistical reasoning may involve connecting one concept

to another (e.g., understanding the relationship between

the mean and standard deviation in a distribution) or may

combine ideas about data and chance (e.g., understand-

ing the idea of con�dence when making an estimate about

a population mean based on a sample of data). Statisti-

cal reasoning also means understanding and being able

to explain statistical processes, and being able to interpret

statistical results (Gar�eld ). For example, being able

to explain the process of creating a sampling distribution

for a statsistics and why this distribution has particular

features. Statistical reasoning invovles the mental repre-

sentations and connections that students have regarding

statistical concepts. Another examples is being able to see

how and why an outlier makes the mean and standard

deviation larger than when that outlier is removed, or rea-

soning about the e�ect of an in�uential data value on the

correlation coe�cient.

Statistical thinking involves a higher order of think-

ing than statistical reasoning. Statistical thinking is the

way professional statisticians think (Wild and Pfannkuch

). It includes knowing how and why to use a particular

method, measure, design or statistical model; deep under-

standing of the theories underlying statistical processes

and methods; as well as understanding the constraints and

limitations of statistics and statistical inference. Statisti-

cal thinking is also about understanding how statistical

models are used to simulate random phenomena, under-

standing how data are produced to estimate probabilities,

recognizing how, when, and why existing inferential tools

can be used, and being able to understand and utilize the

context of a problem to plan and evaluate investigations

and to draw conclusions (Chance ). Finally, statistical

thinking is the normative use of statistical models, meth-

ods, and applications in considering or solving statistical

problems.

Statistical literacy, reasoning, and thinking are unique

learning outcomes, but there is some overlap as well as

a type of hierarchy, where statistical literacy provides the

foundation for reasoning and thinking (see Fig. ). A sum-

mary of additional models of statistical reasoning and

thinking can be found in Jones et al. ().

�ere is a growing network of researchers who are

interested in studying the development of students’ sta-

tistical literacy, reasoning, and thinking (e.g., SRTL –�e
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Statistical Literacy, Reasoning, and Thinking. Fig.  The over-
lap and hierarchy of statistical literacy, reasoning, and thinking
(Artist Website, https://app.gen.umn.edu/artist)

International Statistical Reasoning,�inking, and Literacy

Research Forums, http://srtl.stat.auckland.ac.nz/). �e

topics of the research studies conducted by members of

this community re�ect a shi� in emphasis in statistics

instruction, from developing procedural understanding,

i.e., statistical techniques, formulas, computations and pro-

cedures; to developing conceptual understanding and sta-

tistical literacy, reasoning, and thinking.

Words That Characterize Assessment
Items for Statistical Literacy, Reasoning,
and Thinking
One way to distinguish between these related outcomes

is by examining the types of words used in assessment of

each outcome. Table  (modi�ed from delMas ()) lists

words associated with di�erent assessment items or tasks.

Statistical Literacy, Reasoning, and Thinking. Table. 
Typical words associated with different assessment items
or tasks

Basic Literacy Reasoning Thinking

Identify Explain why Apply

Describe Explain how Critique

Translate Evaluate

Interpret Generalize

Read

Compute

�e following three examples (from Gar�eld and Ben-

Zvi ) illustrate how statistical literacy, reasoning, and

thinking may be assessed.

Example of an Item Designed

to Measure Statistical Literacy

A random sample of  first-year students was selected
at a public university to estimate the average score on a
mathematics placement test that the state mandates for all
freshmen. The average score for the sample was found to
be . with a sample standard deviation of .. Describe
to someone who has not studied statistics what the stan-
dard deviation tells you about the variability of placement
scores for this sample.

�is item assesses statistical literacy because it focuses

on understanding (knowing) what the term “standard

deviation” means.

Example of an Item Designed

to Measure Statistical Reasoning

The following stem plot displays the average annual snow-
fall amounts (in inches, with the stems being tens and
leaves being ones) for a random sample of  American
cities:

 

 

 

 

 

 

 

Without doing any calculations, would you expect the
mean of the snowfall amounts to be larger, smaller, or
about the same as the median? Why?

�is item assess statistical reasoning because students

need to connect and reason about how shape of a distribu-

tion a�ects the relative locations of measures of center, in

https://app.gen.umn.edu/artist
http://srtl.stat.auckland.ac.nz/
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this case, reasoning that the mean would be larger than the

mean because of the positive skew.

Example of an Item Designed

to Assess Statistical Thinking

A random sample of  first year students was selected
at a public university to estimate the average score on a
mathematics placement test that the state mandates for
all freshmen. The average score for the sample was found
to be . with a sample standard deviation of ..

A psychology professor at a state college has read the
results of the university study. The professor wants to know
if students at his college are similar to students at the uni-
versity with respect to their mathematics placement exam
scores. This professor collects information for all  first
year students enrolled this semester in a large section (
students) of his “Introduction to Psychology”course. Based
on this sample, he calculates a % confidence interval
for the average mathematics placement scores exam to
be . to .. Below are two possible conclusions that
the psychology professor might draw. For each conclu-
sion, state whether it is valid or invalid. Explain your choice
for both statements. Note that it is possible that neither
conclusion is valid.

(a) The average mathematics placement exam score for
first year students at the state college is lower than the
average mathematics placement exam score of first
year students at the university.

(b) The average mathematics placement exam score for
the  students in this section is lower than the aver-
age mathematics placement exam score of first year
students at the university.

�is item assesses statistical thinking because it asks stu-

dents to think about the entire process involved in this

research study in critiquing and justifying di�erent possi-

ble conclusions.

Comparing Statistical Literacy,
Reasoning, and Thinking to Bloom’s
Taxonomy
�ese three statistics learning outcomes also seem to coin-

cide somewhat with Bloom’s more general categories of

learning outcomes (). In particular, some currentmea-

surement experts feel that Bloom’s taxonomy is best used if

it is collapsed into three general levels (knowing, compre-

hending, and applying). Statistical literacy may be viewed

as consistent with the “knowing” category, statistical rea-

soning as consistent with the “comprehending” category

(with perhaps some aspects of application and analysis)

and statistical thinking as encompassing many elements

of the top three levels of Bloom’s taxonomy (application,

analysis, and synthesis).
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Non-Precise Data
Real data obtained from measurement processes are not

precise numbers or vectors, but more or less non-precise,

also called fuzzy.�is uncertainty is di�erent from mea-

surement errors and has to be described formally in order

to obtain realistic results from data analysis. A real life

example is the water level of a river at a �xed time. It is

typically not a precise multiple of the scale unit for height

measurements. In the past this kind of uncertainty was

mostly neglected in describing such data.�e reason for

that is the idea of the existence of a “true” water level which

is identi�ed with a real number times the measurement

unit. But this is not realistic.�e formal description of such

non-precise water levels can be given using the intensity

of the wetness of the gauge to obtain the so called charac-

terizing functions from the next section. Further examples

of non-precise data are readings on digital measurement

equipments, readings of pointers on scales, color intensity

pictures, and light points on screens.

Remark  Non-precise data are di�erent from measure-

ment errors because in error models the observed values

yi are considered to be numbers, i.e., yi = xi + єi, where єi
denotes the error of the i-th observation.

Historically non-precise data were not studied su�-

ciently. Some earlier workwas done in interval arithmetics.

General non-precise data in form of so called fuzzy num-

bers were considered in the s and �rst publications

combining fuzzy imprecision and stochastic uncertainty

came up, see Kacprzyk and Fedrizzi (). Some of these

approaches are more theoretically oriented. An applicable

approach for statistical analysis of non-precise data is given

in Viertl ().

Characterizing Functions of Non-Precise
Data
In case of measurements of one-dimensional quantities

non-precise observations can be reasonably described by

so-called fuzzy numbers x⋆. Fuzzy numbers are general-
izations of real numbers in the following sense. Each real

number x ∈ IR is characterized by its indicator function
I{x}(⋅). A fuzzy number is characterized by its so-called
characterizing function ξ(⋅) which is a generalization of
an indicator function. A characterizing function is a real

function of a real variable obeying the following:

. ξ : IRÐ→ [, ]
. ∀ δ ∈ (, ] the so called δ-cut Cδ(x⋆) := {x ∈ IR :

ξ(x) ≥ δ} is a non-empty and closed bounded interval

Remark  A characterizing function is describing the

imprecision of one observation. It should not be confused

with a probability density which is describing the stochas-

tic variation of a random quantity X.

A fundamental problem is how to obtain the character-

izing function of a non-precise observation.�is depends

on the area of application. Some examples can be given.

Example  For data in form of gray intensities in one

dimension as boundaries of regions the gray intensity g(x)
as an increasing function of one real variable x can be used

to obtain the characterizing function ξ(⋅) in the follow-
ing way. Take the derivative d

dx
g(x) and divide it by its

maximum then the resulting function or its convex hull

can be used as characterizing function of the non-precise

observation.

http://www.amstat.org/publications/jse/v10n3/garfield.html
http://www.amstat.org/publications/jse/v10n3/garfield.html
http://www.amstat.org/publications/jse/v10n3/rumsey2.html
http://www.amstat.org/publications/jse/v10n3/rumsey2.html
http://www.stat.auckland.ac.nz/~iase/serj/SERJ2(2)_Watson_Callingham.pdf
http://www.stat.auckland.ac.nz/~iase/serj/SERJ2(2)_Watson_Callingham.pdf


Statistical Methods for Non-Precise Data S 

S

Non-Precise Samples
Taking observations of a one-dimensional continuous

quantity X in order to estimate the distribution of X usu-

ally a �nite sequence x⋆ ,⋯, x⋆n of non-precise numbers is
obtained. �ese non-precise data are given in form of n

characterizing functions ξ(⋅),⋯, ξn(⋅) corresponding to
x⋆ ,⋯, x⋆n . Facing this kind of samples even themost simple
concepts like histograms have to be modi�ed.�is is nec-

essary by the fact that for a given class Kj of a histogram in

case of a non-precise observation x⋆i with characterizing
function ξi(⋅) obeying ξi(x) >  for an element x ∈ Kj and
ξi(y) >  for an element y ∈ Kcj it is not possible to decide
if x⋆i is an element of Kj or not.
A generalization of the concept of histograms is possi-

ble by so-called fuzzy histograms. For those histograms the

height of the histogram over a �xed classKj is a fuzzy num-

ber h⋆j . For the de�nition of the characterizing function of
h⋆j compare Viertl (). For other concepts of statistics
in case of non-precise data compare Viertl ().

Fuzzy Vectors
In case of multivariate continuous data x = (x,⋯, xn), for
example the position of an object on a radar screen, the

observations are non-precise vectors x⋆. Such non-precise
vectors are characterized by so called vector-characterizing

functions ζx⋆(⋅,⋯, ⋅). �ese vector-characterizing func-
tions are real functions of n real variables x,⋯, xn obeying
the following:

() ζx⋆ : IR
n Ð→ [, ]

() ∀δ ∈ (, ] the δ-cut Cδ(x⋆) := {x ∈ IRn : ζx⋆(x) ≥ δ}
is a non-empty, closed and star shaped subset of IRn

with �nite n-dimensional content

In order to generalize statistics t(x,⋯, xn) to the situ-
ation of fuzzy data the fuzzy sample has to be combinded

into a fuzzy vector called fuzzy combined sample.

Generalized Classical Inference
Based on combined fuzzy samples point estimators for

parameters can be generalized using the so-called exten-

sion principle from fuzzy set theory. If ϑ(x,⋯, xn) is a
classical point estimator for θ, then ϑ (x⋆ ,⋯, x⋆n) = ϑ(x⋆)
yields a fuzzy element θ̂⋆ of the parameter space Θ.
Generalized con�dence regions for θ can be con-

structed in the following way. Let κ(x,⋯, xn) be a classical
con�dence function for θ with coverage probability  − α,

i.e., Θ−α is the corresponding con�dence set. For fuzzy

data x⋆ ,⋯, x⋆n a generalized con�dence set Θ⋆−α is de�ned

as the fuzzy subset of Θ whose membership function φ(⋅)
is given by its values

φ(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sup{ζ(x) : x ∈MnX , θ ∈ κ(x)} if ∃ x : θ ∈ κ(x)

 if ∃/ x : θ ∈ κ(x)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

∀θ ∈ Θ.

Statistical tests are mostly based on so-called test

statistics t(x,⋯, xn). For non-precise data the values
t (x⋆ ,⋯, x⋆n) become non-precise numbers.�erefore test
decisions are not as simple as in the classical (frequently

arti�cial) situation.�ere are di�erent generalizations pos-

sible. Also in case of non-precise values of the test statistic

it is possible to �nd 7p-values and the test decision is pos-
sible similar to the classical case. Another possibility is to

de�ne fuzzy p-values which seems to be more problem

adequate. For details see Viertl ().

�ere are other approaches for the generalization of

classical inference procedures to the situation of fuzzy data.

References for that are Gil et al. () and Näther ().

Generalized Bayesian Inference
In Bayesian inference for non-precise data, besides the

imprecision of data there is also imprecision of the a-

priori distribution. So 7Bayes’ theorem is generalized in
order to take care of this. �e result of this generalized

Bayes’ theorem is a so-called fuzzy a-posteriori distribu-

tion π⋆ (⋅ ∣ x⋆ ,⋯, x⋆n)which is given by its so-called δ-level

functions πδ(⋅ ∣ x
⋆) and πδ(⋅ ∣ x⋆) respectively.

From the fuzzy a-posteriori distributions generalized

Bayesian con�dence regions, fuzzy highest a-posteriori

density regions, and fuzzy predictive distributions can be

constructed. Moreover also decision analysis can be gen-

eralized to the situation of fuzzy utilities and non-precise

data.

Applications
Whenever measurements of continuous quantities have to

be modeled non-precise data appear.�is is the case with

initial conditions for di�erential equations, time depen-

dent description of quantities, as well as in statistical anal-

ysis of environmental data.
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Introduction
Epidemiology is the study of the distribution and determi-

nants of health-related states or events in speci�ed pop-

ulations and the translation of study results to control

health problems at the group level. �e major objectives

of epidemiologic studies are to describe the extent of dis-

ease in the community, to identify risk factors (factors

that in�uence a persons risk of acquiring a disease), to

determine etiology, to evaluate both existing and new pre-

ventive and therapeutic measures (including health care

delivery), and to provide the foundation for developing

public policy and regulatory decisions regarding public

health practice. Epidemiologic studies provide research

strategies for investigating public health questions in a sys-

tematic fashion relating a given health outcome to the

factors that might cause and/or prevent this outcome in

human populations. Statistics informs many decisions in

epidemiologic study design and statistical tools are used

extensively to study the association between risk factors

and health outcomes.

When analyzing data for epidemiologic research, the

intent is usually to extrapolate the �ndings from a sample

of individuals to the population of all similar individuals

to draw generalizable conclusions. Despite the enormous

variety of epidemiologic problems and statistical solu-

tions, there are two basic approaches to statistical analysis:

regression and non-regression methods.

Types of Epidemiologic Studies
and Related Risk Measures
Epidemiologist, in conceptualizing basic types of epi-

demiologic studies, o�en group them as experimental

(e.g., randomized control trials) and observational (cohort,

case-control, and cross-sectional) studies.�is manuscript

will focus on cohort and 7case-control studies.�e study
design determines how risk is measured (e.g., person-time

at risk, absolute risk, odds) and which probability model

should be employed.

Cohort Studies
In a cohort study, a group of persons are followed over

a period of time to determine if an exposure of interest

is associated with an outcome of interest. �e key factor

identifying a cohort study is that the exposure of inter-

est precedes the outcome of interest. Depending on the

exposure, di�erent levels of exposure are identi�ed for each

subject and the subjects are subsequently followed over a

period of time to determine if they experienced the out-

come of interest (usually, health-related). Cohort studies

are also called prospective studies, retrospective cohort

studies, follow-up studies or longitudinal studies. Among

all the observational studies (which includes cohort, case-

control, and cross-section studies), cohort studies are the

“gold standard.” However, the major limitation of cohort

studies is that they may require a large number of study
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participants and usually many years of follow-up (which

can be expensive). Loss to follow-up is another concern for

cohort studies. Disease prevalence in the population under

study may also determine the practicality of conducting a

cohort study. Should the prevalence of an outcome be very

low, the number of subjects needed to determine if there is

an association between an exposure and outcome may be

prohibitive within that population.

Cohort studies may result in counts, incidence (cumu-

lative incidence or incidence proportion), or incidence rate

of the outcome of interest. Suppose each subject in a large

population-based cohort study is classi�ed as exposed or

unexposed to a certain risk factor and positive (case) or

negative (noncase) for some disease state. Due to the loss-

to-follow-up or late entry in the study, the data are usually

presented in terms of number of diseases developed per

person-years at risk.

�e incidence rate in the exposed group and unex-

posed groups are then expressed as π = y/t per
person-year and π = y/t per person-year, respectively
(Table ). In this situation, the numbers of disease devel-

oped in exposed and unexposed groups are usually mod-

eled assuming a Poisson distribution when the event is

relatively rare (see, Haight ; Johnson et al. ).

If there is no loss-to-follow-up or late entry in the study

(closed cohort in which all participants contribute equal

follow-up time), itmay be convenient to present the data in

terms of proportion experiencing the outcome (i.e., cumu-

lative incidence or incidence proportion). A  ×  table of
sample person-count data in a cohort study is presented in

Table .

Let p and p be the probabilities denoting risks for

developing cases in the population for exposed and unex-

posed groups, respectively.�emost commonly used sam-

ple estimates for p and p are obtained as

π =
x

n
and π =

x

n
.

Statistical Methods in Epidemiology. Table  Data
presented in terms of person-year at risk and the number of
diseases developed

Exposed Unexposed

Disease develops y y

Person-year at risk t t

Incidence rate y/t y/t

Statistical Methods in Epidemiology. Table   ×  table of
sample person-count data

Exposed Unexposed Total

Cases x x m

Noncases x x m

Total n n N

Note that p and p are the incidence proportion in the

exposed and unexposed groups, respectively. In this situa-

tion, the probability of disease in exposed and unexposed

groups are usually modeled assuming a 7binomial distri-
bution. Statistical estimation and related inference for inci-

dence can be found in Lui () and Sahai and Khurshid

().

It is o�entimes the goal in epidemiologic studies to

measure the association between an exposure and an out-

come. Depending upon how subjects are followed, in

regard to time, di�erent measures of risk are used. Relative

risk (RR) is de�ned as

RR =
incidence proportion (or rate) in exposed group

incidence proportion (or rate) in unexposed group
=

π

π
.

�e relative risk is a ratio, therefore, it is dimensionless

and without unit. It is a measure of the strength of an

association between an exposure and a disease, and is the

measure used in etiologic studies. In most real-world situ-

ations, subjects enter the study at di�erent times and they

are follow for variable lengths of time. In this situation, we

should consider the number of cases per the total person-

time contributed and the relative rate that approximates

the RR de�ned as

Relative rate = incidence rate in exposed group

incidence rate in unexposed group
= π

π
.

Note that the units for π and π are per person-year. As it

is a ratio, it is also unitless. Another measure of risk is the

attributable risk (AR) which is de�ned as:

AR = incidence rate in exposed group − incidence rate
in unexposed group = π − π.

In the rare event of a closed cohort study framework, π
and π can be replaced by p and p. Attributable risk is

the magnitude of disease incidence attributable to a spe-

ci�c exposure. It tells us the most we can hope to accom-

plish in reducing the risk of disease among the exposed

if we totally eliminated the exposure. In other words,

AR is a measure of how much of the disease incidence

is attributable to the exposure. It is useful in assessing

the exposures public health importance. Attributable risk
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percent (ARP) in exposed group, the percent of disease

incidence attributable to a speci�c exposure, is also used

to measure the risk of disease

ARP = (RR − )
RR

× .

ARP tells us what percent of disease in the exposed pop-

ulation is due to the exposure.�e statistical inference on

these measures of risk is discussed extensively in the liter-

ature, see, for example, Lui () and Sahai and Khurshid

().

Case-Control Studies
Case-control studies (see also 7Case-Control Studies)
compare a group of persons with a disease (cases) with

a group of persons without the disease (controls) with

respect to history of past exposures of interest. In contrast

to a cohort study where an exposure of interest is deter-

mined preceding the development of future outcome, in a

case-control, the disease status is known a priori while the

exposure of interest is subsequently assessed among cases

and controls.

Although the underlying concept of case-control stud-

ies is di�erent from cohort study, the data for case-control

study can be summarized as in a  ×  table in Table . We
can calculate the probability that cases were exposed as

Pr(exposed∣case) = x
m

and the probability that cases were not exposed as

Pr(unexposed∣case) = x
m
.

We can also calculate the odds of a case being exposed as

x/m
x/m

= x
x

and the odds of a case not being exposed as x/x. In case-
control studies, although risk factors might contribute to

the development of the disease, we cannot distinguish

between risk factors for the development of the disease

and risk factors for cure or survival. A major weakness in

case control studies is that they are inherently unable to

discern whether the exposure of interest precedes the out-

come (with few exceptions). Additionally, there is some

di�culty in the selection of controls. It is o�en the case

that selected controls are not necessarily from the source

population that gave rise to the cases. �erefore, mea-

surement of association can be problematic. We cannot

measure incidence rate (or proportion) in the exposed and

non-exposed groups, and therefore cannot calculate rate

ratios or relative risk directly. Because direct measures of

risk are not applicable here, it is necessary to describe the

relationship between an exposure and outcome using odds

of exposure. �e odds ratio (OR), ratio of the odds of

exposure in cases and the odds of exposure in controls, is

OR = x/x
x/x

= xx
xx

.

�e odds ratio is the cross-product ratio in the  × 
table.�e odds ratio is a good approximation of the relative

risk when the disease being studied occurs infrequently

in the population under study (case-control studies are

conducted most frequently in this situation). An OR = 
indicates that there is no association between exposure and

outcome. When OR >  (OR < ), it indicates a positive
(negative) association between the exposure and disease

and the larger (smaller) the OR, the stronger the associ-

ation. An example of the calculation and interpretation of

the odds ratio is given by Bland and Altman ().

Note that there are other variations in case-control

studies and related statistical techniques which are appli-

cable in particular situations. For instance, McNemar’s test

is used in matched case-control studies. For an exten-

sive review on major development on statistical analysis of

case-control studies, one can refer to Breslow ().

Regression vs. Non-Regression Methods
In analyzing data from epidemiologic studies, non-

regression and regression methods are o�en used to study

the relationship between an outcome and exposure. Non-

regression methods of analysis control for di�erences in

the distribution of covariates among subjects in exposure

groups of interest by stratifying, while regression methods

control for covariates by including possible confounders

(see 7Confounding and Confounder Control) of the asso-
ciation of interest in a regression model. In some situa-

tions, regardless ofwhether regression techniques are used,

strati�cation may still be necessary.

Statistical techniques used in epidemiologic stud-

ies are determined by the study design and data type.

For cohort or case-control studies dealing with propor-

tions, non-regression statistical methods based on bino-

mial or negative binomial distribution could be applied,

depending on the sampling method used (if any). Mantel-

Haenszel procedures and 7Chi-square tests are the com-
mon approaches to access the association between the

disease and risk factorwith orwithout strati�cation.Logis-
tic regression and generalized linear models are other
possible regression methods that can be used for obser-

vational studies (see, for example, Harrell ). For stud-
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ies with count data, statistical methods based on Poisson

distribution could be applied (Cameron and Trivedi ).

Study designs that employmatched pairs or one-to-one

matching are o�en approached by methods that assume a

certain uniqueness of each member of the pair.�e ratio-

nale for matching resembles that of blocking in statistical

design, in that each stratum formed by the matching strat-

egy is essentially the same with respect to the factors being

controlled.Whenmatching in cohort or case-control stud-

ies, McNemar’s test, Mantel-Haenszel test and conditional

logistic regression are normally used for analysis.

When the outcome variable is time-to-event, non-

regression statistical estimation techniques for survival

curves and log-rank tests can be applied, for example, the

well-known Kaplan-Meier estimator can be used to esti-
mate the survival curve. Lifetime parametric or semipara-
metric regression models, such as the Weibull regression
model and Cox proportional hazard model (see 7Hazard
Regression Models), can be used to model time-to-event

data while controlling for possible confounders.

Cross References
7Binomial Distribution
7Biostatistics
7Case-Control Studies
7Confounding and Confounder Control
7Geometric and Negative Binomial Distributions
7Hazard Regression Models
7Incomplete Data in Clinical and Epidemiological Studies
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7Time Series Models to Determine the Death Rate of a
Given Disease
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Overview
Optimal investment strategies and e�cient risk manage-

ment o�en need high-performance predictions of market

evolutions.�ese predictions are usually provided by sta-

tistical models based on both statistical analyses of �nan-

cial historical data and theoretical modeling of �nancial

market working.

One of the pioneering works of �nancial market sta-

tistical modeling is the Ph.D. thesis of Bachelier ()

who was the �rst to note that �nancial stock prices have

unforecastable and apparently random variations. Bache-

lier introduced the Brownian process to model the price

movements and to assess contingent claims in �nancial

markets. He also introduced the random walk assump-

tion (see7RandomWalk) according to which future stock
price movements are generally unforecastable. More pre-

cisely, he assumed that the price evolves as a continuous

homogeneous Markov process (see 7Markov Processes).
�en, by considering the price process as a limit of random

walks, he showed that this process satis�es the Chapman–

Kolmogorov equation and that the Gaussian distribution

with the linearly increasing variance solves this equation.

Between the s and the s,many economists and

statisticians (Coles, Working, Kendall, Samuelson, etc.)

analyzed several historical stock prices data and supported

the random walk assumption.

In the s, Samuelson and Fama gave both theoreti-

cal and empirical proofs of the random walk assumption.

�ey introduced the important e�cient market hypothesis

stating that, in e�cient markets, price movements should

be unforecastable since they should fully incorporate the

expectations and informations of all market participants.

Mandelbrot in  criticized the Bachelier Gaussian

assumptionandstated that “Despite the fundamental impor-

tance of the Brownian motion, (see 7Brownian Motion and
Di�usions) it is now obvious that it does not account for

the abundant data accumulated since  by empirical

economists, simply because the empirical distributions of

price changes are usually too peaked to be relative to sam-

ples from Gaussian population.” It is consensually assumed

now that �nancial returns are generally leptokurtic and

should be modeled by heavy tailed probability distribu-

tions. Many mathematical tools were suggested to model
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this heavy tailed property: Levy process (see 7Lévy Pro-
cesses), alpha-stable processes, Pareto-type distributions,

Extreme value theory, long memory processes, GARCH

time series, etc. Leptokurtosis and heteroskedasticity are

stylized facts observed in log-returns of a large variety

of �nancial data (security prices, stock indices, foreign

exchange rates, etc.).

In the following, it will be assumed that a market

economy containsN �nancial assets, Sjt andRjt will denote,

respectively, the daily price and log-return of the j-th asset

on day t (Rjt = log(Sjt/Sjt−)). R(m)t will denote the log-

return on day t of the market portfolio. It will also be

assumed that there exists a single deterministic lending

and borrowing risk-free rate denoted r.

Markowitz in  developed the mean-variance port-

folio optimization, where it is assumed that rational

investors choose among risky assets purely on the basis of

expected return and risk (measured as returns variance).

Sharpe in  presented the Capital Asset Pricing Model

(CAPM) where the excess return over the risk-free rate

r of each asset j is, up to noise, a linear function of the

excess return of the market portfolio. In other words, for

each asset j: Rjt − r = αj + βj(R(m)t − r) + єjt ; where the

noise sequence єjt is uncorrelatedwith themarket portfolio

return.

A thirdmajor step in the history of statistical modeling

of�nancialmarketsconcerns theproblemofpricingderiva-

tive securities. Merton, Black, and Scholes introduced a

reference paradigm for pricing and hedging derivatives

on �nancial assets.�eir paradigm, known as the Black–

Scholes formula, is based on continuous time modeling of

asset price movements. It gave an explicit formula for pric-

ing European options and got tremendous impact on the

�nancial engineering �eld. Since , the Black–Scholes

model was used to develop several extensions combining

�nancial, mathematical, and algorithmic re�nements.

Alternative statistical modeling approaches used time

series statistical tools. Since the s, time series tools

are very frequently used in everyday manipulations and

statistical analysis of �nancial data. Statistical Time series

models, such as ARMA, ARIMA, ARCH, GARCH, state

space models, and the important Granger cointegration

concept, are o�en used to analyze the statistical inter-

nal structure of �nancial time series. �ese models, and

especially the Engel Auto-Regressed Conditionally Het-

eroskedastic (ARCH) model, are well suited to the nature

of �nancial markets, they capture time dependencies,

volatility clustering, comovements, etc.

In the s, the statistical modeling of �nancial mar-

kets data was linked to the rich literature of Extreme Value

�eory (EVT). Many researchers found that EVT is well

suited to model maxima and minima of �nancial returns.

�is yielded amore e�cient assessment of �nancialmarket

risks. New EVT-based methods were developed to esti-

mate the Value-at-Risk (VaR), which is now one of the

most used quantitative benchmarks formanaging �nancial

risk (recommended by the Basel international committee

of banking supervision).

In the last  years, copula functions (see7Copulas and
7Copulas: Distribution Functions and Simulation) have
been used by many �nance researchers to handle observed

comovements betweenmarkets, risk factors, and other rel-

evant dependent �nancial variables.�e use of copula for

modeling multivariate �nancial series open many chal-

lenging methodological questions to statisticians, espe-

cially concerning the estimation of copula parameters and

the choice of the appropriate copula function.

It is worth noting that many works combining statis-

tical science and market �nance were rewarded by Nobel

prizes in economics: Samuelson in , Markowitz and

Sharpe in , Merton and Scholes in , and Engle and

Granger in .

Due to space limitations, only two selected topics

will be detailed in the following: Black–Scholes modeling

paradigm and the contribution of Extreme Value�eory

to the market risk estimation.

Black–Scholes Model
�e Black–Scholes model is one of the most used option-

pricing models in the trading rooms. For liquid secu-

rities, quotations could occur every  sec; continuous

time models could therefore give good approximations to

the variations of asset prices. Price evolution of a single

asset is modeled here by a continuous time random pro-

cess denoted {St}t∈R+ . Black and Scholes assume that the
studied market has some ideal conditions: Market e�-

ciency, no transaction costs in buying or selling the stock,

the studied stock pays no dividend, and known and con-

stant risk-free interest-rate r.

�e basic modeling equation of Black, Scholes, and

Merton, comes from the updating of a risky investment

in a continuous time modeling: (St+ dt − St)/St = µ dt +
σ(Bt+ dt −Bt), where µ is a constant parameter called dri�
giving the global trend of the stock price; σ is a nonnegative

constant called volatility giving the magnitude of the price

variations and Bt+ dt −Bt are independent increments (the
independence results from the market e�ciency assump-

tion) fromaBrownianmotion, i.e., randomcenteredGaus-

sian variables. So in Black–Scholes dynamics, the stock

price {St}t∈R+ satis�es the following stochastic di�erential
equation :dSt/St = µ dt + σdBt .
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Using Itô lemma on Black–Scholes equation gives the

explicit solution of the previous stochastic di�erential

equation: St = S exp [(µ − σ /) t + σBt], which is a geo-
metric Brownian motion.�e model parameters µ and σ

are easily estimated from data.

�e Black–Scholes model is still a reference tool for

pricing �nancial derivatives. Its simple formula makes it

an everyday benchmark tool in all trading rooms. But

its restrictive assumptions contradict many stylized facts

recognized by all �nancial analysts (volatility clustering,

leptokurtosis, and le� asymmetry of the �nancial returns).

Many works have extended the Black–Scholes model:

in the stochastic volatility extensions, for example, prices

aremodeled by the two following equations: dSt = St[µ dt+
σt dBt] and dσt = σt[νdt + ζdWt], where B and W are

two correlated Brownian motions having a constant cor-

relation coe�cient ρ. Both parametric and nonparametric

estimators are available for the parameters µ, ν, ζ , ρ, and σ.

Challenging research topics now concern the problem

of pricing sophisticated derivative products (American

options, Asian or Bermudian options, swaptions, etc.).

Longsta� and Schwartz, for example, gave an interesting

pricing algorithm for American options, where they com-

binedMonte Carlo simulations with7least squares to esti-
mate the conditional expected payo� of the optionholder.

Monte Carlo simulation is now widely used in �nancial

engineering; for example, Broadie and Glasserman 

used simulations to estimate security price derivatives

within amodeling frameworkmuchmore realistically than

the simple Black–Scholes paradigm. Monte Carlo simula-

tions are also used in stress testing (which identi�es poten-

tial losses under simulated extreme market conditions)

and in the estimation of nonlinear stochastic volatility

models.

EVT and Financial Risks
�e Extreme Value theory (EVT) gives interesting tools

for modeling and estimating extreme �nancial risk (see

Embrecht et al.  for a general survey). One com-

mon use of EVT concerns the estimation of Value-at-

Risk (an extreme quantile of the loss distribution). If at

day t, VaRt(α) denotes the Value-at-Risk of a single asset
at con�dence level  − α with a prediction horizon of

one day, then VaR writes: Pr(Rt+ ≤ −VaRt(α)∣Ht) =
α, where Rt+ is the return at t +  and Ht denotes
the σ−algebra modeling all the information available at
time t. Many statistical methods were used to estimate the

extreme quantile VaRt(α). McNeil and Frey (), for
example, combined ARCH and EVT to take into account

volatility clustering and leptokurtosis.�ey used an AR()

model for the average returns µt and a GARCH(,) with

pseudo-maximum-likelihood estimation for the stochastic

volatility dynamics σt . McNeil and Frey used the previous

AR-GARCH for estimating the parameters of the model

Rt = µt + σtZt where {Zt}t is a strict white noise process.
EVT peaks-over-threshold approach is then used on the

AR-GARCH-residuals z, . . . , zk in order to estimate their

extreme quantiles.�ese estimates are plugged in the esti-

mator of the VaRt(α).�e idea behind this method is the
elimination of data dependence by the use of time series

models and then the use of EVT tools to estimate extreme

quantiles of the i.i.d. residuals.

When VaR of a multi-asset portfolio is considered,

multivariate statistical tools should be used: variance–

covariance, multivariate GARCH, simulation approach,

Multivariate Extreme �eory, dynamic copula approach,

etc. In the variance–covariance approach, for example, the

portfolio returns are modeled as a linear combination of

slectedmarket factors.�e copula approach gives generally

more e�cient portfolio VaR estimations since it improves

the modeling of the dependence structure between the

studied assets and the risk factors.

Conclusions
Statistical science has provided essential tools for market

�nance.�ese important contributions concern the prob-

lems of portfolio selection and performance analysis, the

pricing and hedging of derivative securities, the assess-

ment of �nancial risks (market risk, operational risk, credit

risk), the modeling of crises contagion, etc. Many chal-

lenging research topics concern both statistics and �nance:

the huge amount of data (called high-frequency data) need

new statistical modeling approaches. �e high complex-

ity of the new �nancial products and the management of

portfolios with high number of assets need more tractable

multivariate statistical models. New research challenges

are also given by the multivariate extreme value theory

where copula functions gave promising results when used

to model extreme comovements of asset prices or stock

indices. Copulamodeling has become an increasingly pop-

ular tool in �nance, especially for modeling dependency

between di�erent assets. However many statistical ques-

tions remain open: copula parameter estimations, sta-

tistical comparison of competitive copula, etc. Another

use of copula functions in market �nance concerns the

modeling of crises contagion (see, e.g., Rodriguez ).

Many empirical works proved that dependence struc-

ture between international markets during crises is gen-

erally nonlinear and therefore better modeled by copula

functions.
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Mathematical modelling is a key element of quantitative

marketing and helps companies around the globe in mak-

ing important marketing decisions about launching new

products and managing existing ones. Most mathemati-

cal models used in marketing research are either purely

statistical or include elements of statistical models.

An extensive discussion (by the top market research

academics) of the state-of-art in the �eld of marketing

modelling and its prospects for the future is contained

in Steemkamp (), a special issue of the Interna-

tional Journal of Research in Marketing. One can consult

Steemkamp () for many references related to the sub-

ject; see also recent books (Wierenga ; Wittink et al.

; Mort ; Zikmund and Babin ).

We look at the �eld of market modelling from a view-

point of a professional statistician with twenty years of

experience on designing and using statistical models in

market research.We startwith distinguishing the following

types of statistical models used in market research:

. Direct simulation models

. Standard statistical models

. Models of consumer purchase behaviour

. Dynamic models for modelling competition, pricing

and advertising strategies

. Statistical components of inventory and othermanage-

ment science models

Let us brie�y consider these types of models separately.

. Direct simulationmodels.�ese are specializedmod-

els based on attempts to directly imitate the market (e.g.,

via the behaviour of individual customers) using a syn-

ergy of stochastic and deterministic rules. �ese models

were popular – years ago but are less popular now.

�e reasons are the lack of predictive power, huge num-

ber of parameters in the models and impossibility of their

validation.

. Standard statistical models. All standard statistical

models and methods can be used in market research,

see Mort (); Zikmund and Babin (); Rossi et al.

(); Hanssens et al. ().Most commonly, the follow-

ing statistical models are used:

● Various types of regression

● ARIMA and other time series models

● Bayesian models

● Models and methods of multivariate statistics; espe-

cially, structural equation and multinomial response

models, conjoint, factor, and principal component

analyses

.Models of consumer purchase behaviour. Several types

of statistical models are used for modelling consumer pur-

chase behaviour including brand choice. �e following

three basic models (and some of their extensions) have

www.numdam.org
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proved to be the most useful: Mixed 7Poisson processes,
the Dirichlet model, and Markovian models.

�e mixed Poisson process model assumes that a cus-

tomer makes his/her purchase according to a Poisson pro-

cess with some intensity λ where λ is random across the

population. In the most popular model, called Gamma-

Poisson, λ has Gamma distribution (with two unknown

parameters); this yields that the number of purchases for

a given period is the Negative Binomial Distribution. Typ-

ical questions, which the Poisson process model answers,

is the forecasting of the behaviour of the market research

measures (like penetration, purchase frequency and repeat

buying measures) in the form of the so-called growth

curves. Extensions of the mixed Poisson models cover the

issues like the zero-buyer problem (some zero-buyers do

have a positive propensity to buy but some other don’t),

seasonality of the market and the panel �ow-through.

�e Dirichlet model is a brand-choice model. It

assumes that customers make their brand choice inde-

pendently with certain propensities; these propensities are

di�erent for all customers and are independent realiza-

tions from the Dirichlet distribution which parameters are

determined by the market shares of the brands. In Marko-

vian brand-choice models, the propensity to buy a given

brand for a random customer may vary depending on

either the previous purchase or other market variables.

�ese models are more complicated than the mixed Pois-

son process and Dirichlet models but in some circum-

stances are easily applicable and sometimes are able to

accurately describe some features of the market.

Of course, the models above are unrealistic on the

individual level (e.g., few people have the Poisson pro-

cess pattern as their purchase sequence). However, these

models (and especially the mixed Poisson model) o�en �t

data extremely accurately on the aggregated level (when

the time period considered and the number of customers

are su�ciently large). �ese models can be classi�ed as

descriptive (rather than “prescriptive”) andhelp in explain-

ing di�erent aspects of market research dynamics and

some phenomena related to the brand-choice.

. Dynamic models for modelling competition, pricing

and advertising strategies. �ere is extensive literature on

this subject, see, e.g., Erickson ().�e majority of the

models are so-called di�erential games or simpler models

still written in terms of di�erential equations. �e mod-

els are deterministic and the statistical aspect only arrives

through the assumption that the data contain random

errors. Statistical modelling part is therefore negligible in

these models. Alternatively, in some Markovian brand-

choice models mentioned above, there is an option of

including the market variables (e.g., promotion) into the

updating rule for the buying propensities. �ese models

are proper stochasticmodels but they are o�en too compli-

cated (have toomany parameters) and therefore di�cult to

validate.

. Statistical components of inventory and other man-

agement science models. Inventory and other management

science models applied in market research are typically

standard models of Operations Research, see Ingene and

Parry () for a recent review of these models. Despite

these models o�en have a large stochastic component,

they do not represent anything special from the statistics

view-point.

Statistical models are used for the following purposes:

(a) forecasting themarket behaviour of a new brand to pre-

pare its launch and (b) managing existing brands. In case

(a), themodels are usually based solely on standard statisti-

calmodels, type  above. Sometimes, other types ofmodels

(especially, large simulation models, type ) are used too.

A lot of speci�c market research data are o�en collected

to feed these models.�ese data includes market surveys,

various types of questionnaires and focus group research

in direct contact with customers. All available market data,

for example economic trends and speci�c industry sector

reports, is used too. In case (b), the models are used for

making decisions about pricing, promotion and advertis-

ing strategies, production and inventory management etc.

All available statistical models and methods are used to

help managers to make their decisions.

While reading academic papers and books on market-

ing research, one can get an impression that mathematical

and statistical modelling in marketing is a mature sub-

ject with many models developed and used constantly for

helping market research managers in working out their

decisions. Indeed, there are many models available (some

of them are quite sophisticated). However, only a small

number of them are really used in practice: the major-

ity of practical models can be reduced either to a simple

regression or sometimes to another standardmodel among

thosementioned above. One of the reasons for this gloomy

observation is the fact that managers rarely want a descrip-

tion of the market. Instead, they want ‘a prescription’; that

is, a number (with a hope that no con�dence interval is

attached to this number) which would lead them to a right

decision. Another reason is the fact that only a very few

models used in market research satisfy the following natu-

ral requirements for a good statisticalmodel: (a) simplicity,

(b) robustness to the deviations from the model assump-

tions, (c) clear range of applicability, and (d) empirical

character, which means that the models have to be built

with the data (and data analysis) in view and with the

purpose of explaining/�tting/forecasting relevant data.
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Despite huge amounts of market data is available to

analysts, these data are typically messy, not reliable, badly

structured and become outdated very quickly. Develop-

ment of reliable statistical models dealing with such data

is hard.�e progress in understanding all these issues and

tackling them by means of the development of appropriate

models andmaking them correctly applicable is visible but

it is justi�ably slow.
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Natural language processing (NLP) is a �eld of arti�-

cial intelligence concerned with the interactions between

computers and human (natural) languages. It refers to a

technology that creates and implements ways of executing

various tasks concerning natural language (such as design-

ing natural language based interfaces with databases,

machine translation, etc.). NLP applications belong to

three main categories:

. Text-based applications (such as knowledge acqui-

sition, information retrieval, information extraction,

text summarization, machine translation, etc.)

. Dialog-based applications (such as learning systems,

question answering systems, etc.)

. Speech processing (although NLP may refer to both

text and speech, work on speech processing has grad-

ually evolved into a separate �eld)

Natural language engineering deals with the implementa-

tion of large-scale natural language–based systems. It refers

to the related �eld of Human Language Technology (HLT).

NLP represents a di�cult and largely unsolved task.

�is is mainly due to the interdisciplinary nature of the

problem that requires interaction between many sciences

and �elds: linguistics, psycholinguistics, computational

linguistics, philosophy, statistics, computer science in gen-

eral, and arti�cial intelligence in particular.

Statistical NLP has been the most widely used term to

refer to nonsymbolic and nonlogical work on NLP over

the past decade. Statistical NLP comprises all quantitative

approaches to automated language processing, including

probabilistic modeling, information theory, and linear

algebra (Manning and Schütze ).

As computational problems, many problems posed

by NLP (such as WSD – word sense disambiguation)

were o�en described as AI-complete, that is, problems

whose solutions presuppose a solution to complete natu-

ral language understanding or common-sense reasoning.

�is view originated from the fact that possible statisti-

cal approaches to such problems were almost completely

ignored in the past. As it is well known, starting with the

early s, the arti�cial intelligence community witnessed

a great revival of empirical methods, especially statistical

ones. �is is due to the success of statistical approaches,

as well as of machine learning, in solving problems such

as speech recognition or part-of-speech tagging. It was

mainly research into speech recognition that inspired the

revival of statistical methods within NLP, and many of the

techniques used nowadays were developed �rst for speech

and then spread over into NLP (Manning and Schütze

). Nowadays statistical methods and machine learn-

ing algorithms are used for solving a great number of

problems posed by arti�cial intelligence in general and by

NLP in particular. Furthermore, the availability of large
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text corpora has changed the scienti�c approach to lan-

guage in linguistics and cognitive science, with language

and cognition being viewed as probabilistic phenomena.

From the point of view of NLP, the two main compo-

nents of statistics are:

. Descriptive statistics: methods for summarizing (large)

datasets

. Inferential statistics: methods for drawing inferences

from (large) datasets

�e use of statistics in NLP falls mainly into three cate-

gories (Nivre ):

. Processing: We may use probabilistic models or algo-

rithms to process natural language input or output.

. Learning: We may use inferential statistics to learn

from examples (corpus data). In particular, we may

estimate the parameters of probabilistic models that

can be used in processing.

. Evaluation: We may use statistics to assess the perfor-

mance of language processing systems.

As pointed out in Manning and Schütze (), “com-

plex probabilistic models can be as explanatory as complex

non-probabilistic models – but with the added advantage

that they can explain phenomena that involve the type

of uncertainty and incompleteness that is so pervasive in

cognition in general and in language in particular.”

A practical NLP system must be good at making dis-

ambiguation decisions of word sense, word category, syn-

tactic structure, and semantic scope. One could say that

disambiguation abilities, together with robustness, repre-

sent the two main hallmarks of statistical natural language

processing models. Again as underlined in Manning and

Schütze (), “a statistical NLP approach seeks to solve

these problems by automatically learning lexical and struc-

tural preferences from corpora. . . �e use of statistical

models o�ers a good solution to the ambiguity problem:

statistical models are robust, generalize well, and behave

gracefully in the presence of errors and new data. �us

statistical NLP methods have led the way in providing

successful disambiguation in large scale systems using nat-

urally occurring text. Moreover, the parameters of Sta-

tistical NLP models can o�en be estimated automatically

from text corpora, and this possibility of automatic learn-

ing not only reduces the human e�ort in producing NLP

systems, but raises interesting scienti�c issues regarding

human language acquisition.”
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Problem Description
Mathematically, pattern recognition is a classi�cation

problem. Consider the recognition of characters. We wish

to design a system such that a handwritten symbol will be

recognized as an “A,” a “B,” etc. In other words, themachine

we design must classify the observed handwritten charac-

ter into one of  classes.�e handwritten characters are

o�en ambiguous, and therewill bemisclassi�ed characters.

�emajor goal in designing a pattern recognitionmachine

is to have a low probability of misclassi�cation.

�ere are many problems that can be formulated as

pattern classi�cation problems. For example, the weather

may be divided into three classes, fair, rain, and possible

rain, and the problem is to classify tomorrow’s weather into

one of these three classes. In the recognition of electrocar-

diograms, the classes are disease categories plus the class of

normal subjects. In binary data transmission, a “one” and a

“zero” are represented by signals of amplitudes A and A,

respectively.�e signals are distorted or corrupted by noise

when transmitted over communication channels, and the
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receiver must classify the received signal into “ones” and

“zeros.” Hence, many of the ideas and principles in pattern

recognition may be applied to the design of communica-

tion systems and vice versa (Nechval ; Nechval and

Nechval ).

Pattern recognition theory deals with the mathemati-

cal aspects common to all pattern recognition problems.

Application of the theory to a speci�c problem, however,

requires a thorough understanding of the problem, includ-

ing its peculiarities and special di�culties (Bishop ).

�e input to a pattern recognition machine is a set of

p measurements, and the output is the classi�cation. It is

convenient to represent the input by a p-dimensional vec-

tor x, called a pattern vector, with its components being the
p measurements.�e classi�cation at the output depends

on the input vector x, hence we write

C = d(x). ()

In other words, the machine must make a decision as to

the class to which x belongs, and d(x) is called a decision
function.

A pattern recognition machine may be divided into

two parts, a feature extractor and a classi�er. �e classi-

�er performs the classi�cation, while the feature extractor

reduces the dimensionality of input vectors to the clas-

si�er. �us, feature extraction is a linear or nonlinear

transformation

y = Y(x), ()

which transforms a pattern vector x (in the pattern space
Ωx) into a feature vector y (in a feature space Ωy). �e
classi�er then classi�es x based on y. Since Ωy is of lower
dimensionality than Ωx, the transformation is singular

and some information is lost.�e feature extractor should

reduce the dimensionality but at the same time maintain a

high level of machine performance. A special case of fea-

ture extraction is feature selection, which selects as features

a subset of the given measurements.

�e division of a pattern recognition machine into fea-

ture extractor and classi�er is done out of convenience

rather than necessity. It is conceivable that the two could be

designed in an uni�ed manner using a single performance

criterion. When the structure of the machine is very com-

plex and the dimensionality p of the pattern space is high,

it is more convenient to design the feature extractor and

the classi�er separately.

�e problem of pattern classi�cation may be discussed

in the framework of hypothesis testing. Let us consider a

simple example. Suppose that we wish to predict a stu-

dent’s success or failure in graduate study based on his

GRE (Graduate Record Examination) score. We have two

hypotheses – the null hypothesis H, that he or she will be

successful, and the alternative hypothesisH, that he or she

will fail. Let x be the GRE score, f(x) be the conditional
probability density of x, given that the student will be suc-

cessful, and f(x) be the conditional density of x, given that
he or she will fail.�e density functions f(x) and f(x) are
assumed known fromour past experience on this problem.

�is is a hypothesis testing problem and an obvious deci-

sion rule is to retain H and reject H if x is greater than

a certain threshold value h, and accept H and reject H
if x ≤ h. A typical example of multiple hypothesis testing
is the recognition of English alphabets where we have 

hypotheses.

Illustrative Examples
Applicant Recognition for Project
Realization with Good Contract Risk
One of the most important activities that an employer has

to perform is recognition of applicant for realization of

project with good contract risk. �e employer is de�ned

as a �rm or an institution or an individual who is investing

in a development.�e above problem is a typical example

of a pattern classi�cation problem. An applicant for con-

tract can be represented by a random p ×  vector X =
(X, . . . ,Xp)′ of features or characteristics.We call this p×
vector the applicant’s pattern vector. Using historical data

and the applicant’s pattern vector, a decision-maker must

decide whether to accept or reject the contract request.�e

historical data are summarized in a collection of pattern

vectors.�ere are pattern vectors of former applicants who

received contract and proved to be good risks, and there

are patterns of former applicants who were accepted and

proved to be poor risks.�e historical data should include

the pattern vectors and eventual contract status of appli-

cants who were rejected. �e eventual contract status of

rejected applicants is di�cult to determine objectively, but

without this information, the historical data will contain

the basis of former decision rules.�e historical data con-

sist of the pattern vectors and eventual contract status of

n applicants; n = n + n: n of the n applicants proved to
be good contract risks, and n proved to be poor contract

risks. Given this situation and a new applicant’s pattern

vector, the decision-maker deals with the problem of how

to form his or her decision rule in order to accept or reject

new applicants. In this entry, we shall restrict attention to

the case when p(X;Hi), i = , , are multivariate normal
with unknown parameters. All statistical information is

contained in the historical data. In this case, the procedure

based on a generalized likelihood ratio test is proposed.

�is procedure is relatively simple to carry out and can be
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recommended in those situations when we deal with small

samples of the historical data (Nechval and Nechval ).

Generalized LikelihoodRatio Test for Applicant Recogni-

tion. LetX be a random p× vector that is distributed in the
population Πi (i = , , ) according to the p-variate non-
singular normal distribution N(ai,Qi) (i = , , ). Let x
be an observation on X in Π.�e ni independent obser-
vations from Πi will be denoted by {xij, j = , , . . . ,ni}
distributed with the density p(xij; ai,Qi) for i = ,  and
the density of the unidenti�ed observation x will be taken
as p(x; a,Q). �e ais and Qis are unknown and it is
assumed that either (a,Q) = (a,Q), or (a,Q) =
(a,Q), and a ≠ a, Q ≠ Q. Assume for the moment
that there are prior odds of ξ/( − ξ) in favor of type  for
x. �en the likelihood ratio statistic for testing the null
hypothesis H : (a = a, Q = Q) versus the alternative
hypothesis H : (a = a, Q = Q) is given by

LR =
ξmax
H
p(x; a,Q)



∏
i=

ni

∏
j=

p(xij; ai,Qi)

( − ξ)max
H
p(x; a,Q)



∏
i=

ni

∏
j=

p(xij; ai,Qi)
, ()

where

p(x; a,Q) = (π)−P/∣Q∣
−/

exp{− 

(x − a)′Q− (x − a)} , ()

p(xij; ai,Qi) = (π)−P/∣Qi∣
−/

exp{− 

(xij − ai)′Q−i (xij − ai)} . ()

�e maximum likelihood estimators of the unknown

parameters under H are

â =
nx + x
n + 

, ()

â = x, ()

Q̂ =


n + 
[(n − )S+

n

n + 
(x − x)(x − x)′] , ()

Q̂ =
n − 
n
S, ()

where

xi =
ni

∑
j=
xij/ni, ()

Si =
ni

∑
j=

(xij − xi)(xij − xi)′/(ni − ), i = , , ()

with obvious changes for the corresponding estimators

under H. Substitution of the estimators in () gives, a�er

some simpli�cation,

LR=[(n + )(n − )
(n + )(n − )

]
p/
=
⎡⎢⎢⎢⎢⎣

(n/(n + ))pn/

(n/(n + ))pn/
( ∣S∣
∣S∣

)
/

×
( + nv(x)/ (n  − ))

(n+)/

( + nv(x)/(n  − ))
(n+)/

⎤⎥⎥⎥⎥⎦
( ξ

 − ξ
) , ()

where

vi(x) = (x − xi)′S−i (x − xi), i = , . ()

ForQ = Q, the likelihood ratio statistic simpli�es to

LR =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ nv(x)
(n + )(n + n − )

+ nv(x)
(n + )(n + n − )

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(n+n+)/

( ξ

 − ξ
) , ()

and hypothesis H or H is favoured according to whether

LR is greater or less than , that is,

LR

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

> , then H

≤ , then H

. ()

Signal Detection in Clutter
�e problem of detecting the unknown deterministic

signal s in the presence of a clutter process, which is incom-
pletely speci�ed, can be viewed as a binary hypothesis-

testing problem (Nechval ; Nechval et al. ).�e

decision is based on a sample of observation vectors xi =
(xi, . . . , xip)′, i = ()n, each of which is composed of
clutter wi = (wi, . . . ,wip)′ under the null hypothesis H
and a signal s = (s, . . . , sp)′ added to clutter wi under the
alternative H, where n > p.�e two hypotheses that the
detector must distinguish are given by

H : X =W (clutter alone), ()

H : X =W + cs′ (signal present), ()

where

X = (x, . . . , xn)′, ()

W = (w, . . . ,wn)′, ()

are n × p random matrices, and

c = (, . . . , )′ ()

is a column vector of n units. It is assumed that wi,
i = ()n, are independent and normally distributed with
common mean  and covariance matrix (positive de�nite)

Q, i.e.,
wi ∼ Np(,Q), ∀i = ()n. ()
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�us, for �xed n, the problem is to construct a test, which

consists of testing the null hypothesis

H : xi ∼ Np(,Q), ∀i = ()n, ()

versus the alternative

H : xi ∼ Np(s,Q), ∀i = ()n, ()

where the parameters Q and s are unknown.
One of the possible statistics for testing H versus

H is given by the generalized maximum likelihood ratio

(GMLR)

GMLR = max
θ∈Θ

LH(X; θ)/max
θ∈Θ

LH(X; θ), ()

where θ = (s,Q),Θ = {(s,Q) : s = ,Q ∈ Qp}, Θ =
Θ − Θ, Θ = {(s,Q) : s ∈ Rp,Q ∈ Qp}, Qp denotes the
set of p × p positive de�nite matrices. Under H, the joint
likelihood for X based on () is

LH(X; θ) = (π)−np/∣Q∣−n/ exp(−
n

∑
i=
x′iQ

−xi/) .

()

Under H, the joint likelihood for X based on () is

LH(X; θ) = (π)−np/∣Q∣−n/

exp(−
n

∑
i=

(xi − s)′Q−(xi − s)/) . ()

It can be shown that

GMLR = ∣Q̂∣
n/∣Q̂∣

−n/
, ()

and

Q̂ = X
′X/n, ()

Q̂ = (X′ − ŝc′)(X′ − ŝc′)′/n, ()

and

ŝ = X′c/n ()

are the well-knownmaximum likelihood estimators of the

unknown parameters Q and s under the hypotheses H
and H, respectively. It can be shown, a�er some algebra,

that () is equivalent �nally to the statistic

y = T′T− T/n, ()

where T = X′c, T = X′X. It is known that (T,T) is a
complete su�cient statistic for the parameter θ = (s,Q).
�us, the problemhas been reduced to consideration of the

su�cient statistic (T,T). It can be shown that underH,
the result () is aQ-free statistic y, which has the property

that its distribution does not depend on the actual covari-

ance matrixQ. It is clear that the statistic y is equivalent to
the statistic

v = [(n − p)/p] y/( − y) = [n(n − p)/p] (ŝ′[Ĝ]
− ŝ) ,
()

where

Ĝ = nQ̂ = (X′ − ŝc′)(X′ − ŝc′)′ =
n

∑
i=

(xi − ŝ)(xi − ŝ)′.

()

Under H, the statistic v is subject to a noncentral F-

distribution with p and n − p degrees of freedom, the
probability density function of which is (Nechval ;

Nechval et al. )

fH(v;n, q) = [B(p

,
n − p


)]
− (

p

n − p
)
p/
vp/−

( + p

n − p
v)
n/

× e−q/F
⎛
⎝
n


;
p


;
q



⎛
⎝
p

n−p
v(+ p

n−p
v)

−⎞
⎠
⎞
⎠
,

 < v <∞, ()

where F(a; b; x) is the con�uent hypergeometric function
(Abramowitz and Stegun ),

q = n (s′Q−s) ()

is a noncentrality parameter representing the generalized

signal-to-noise ratio (GSNR). Under H, when q = ,

() reduces to a standard F-distribution with p and n − p
degrees of freedom,

fH(v;n) = [B(p

,
n − p


)]
− (

p

n − p
)
p/
vp/−

( + p

n − p
v)
n/ ,  < v <∞.

()

�e test of H versus H, based on the GMLR statistic

v, is given by

v{> h, then H (signal present),

≤ h, then H (clutter alone),
()

and can be written in the form of a decision rule u(v) over
{v : v ∈ (,∞)},

u(v) = {, v > h (H),
, v ≤ h (H),

()
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where h >  is a threshold of the test that is uniquely
determined for a prescribed level of signi�cance so that

sup
θ∈Θ

Eθ {u(v)} = α. ()

For �xed n, in terms of the probability density function

(), tables of the central F-distribution permit one to

choose h to achieve the desired test size (false alarm prob-

ability PFA),

PFA = α =
∞

∫
h

fH(v;n)dv. ()

Furthermore, once h is chosen, tables of the noncentral

F-distribution permit one to evaluate, in terms of the

probability density function (), the power (detection

probability PD) of the test,

PD = γ =
∞

∫
h

fH(v;n, q)dv. ()

�e probability of a miss is given by

β =  − γ. ()

It follows from () and () that the GMLR test is

invariant to intensity changes in the clutter background

and achieves a �xed probability of a false alarm, that is, the

resulting analyses indicate that the test has the property of a

constant false alarm rate (CFAR). Also, no learning process

is necessary in order to achieve the CFAR.�us, operat-

ing in accordance to the local clutter situation, the test is

adaptive.
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Statistical publications are editions that contain summa-

rized numerical data about socio-economic phenomena,

usually presented in the form of statistical tables, charts,

diagrams, graphs, etc.�ese statistical publications are an

inseparable part of common numerical information con-

cerning the state and development of healthcare, educa-

tion, science, and culture provided by the statistical author-

ities.

Depending on the common purpose, one may distin-

guish their various types. �ese include Statistical Year-

book, Annual Statistics; Statistical Abstract; Manual Guide,

Handbook of Statistics; overview of census, and othermajor

surveys. By order of coverage, statistical publications can

be common (National Accounts), industrial (Industrial

Indicators), or may deal with other activities of an econ-

omy (for example, Financial Statistics). By the level of

details they can be complete (Yearbooks, Almanacs, etc.) or

short (Pocket Book and Statistisches Handbook are themost

common types).

�ere are also di�erences by the domain of coverage

among one or another statistical publication: an entire

country, an administrative territorial part of the country

(for example, state, region, land, county, etc.); in interna-

tional statistical publications, this could be several coun-

tries, an entire continent, or the whole world (for example,

UN Statistical Publications).

�e outcomes of large surveys are presented in non-

recurrent statistical publications; among the recurrent sta-

tistical publications, the most signi�cant are periodical

statistical publications (published annually, quarterly, or

monthly), the least signi�cant are non-periodical statistical

publications (containing demographic �gures, birth and

death rates, marriage status, etc.).

�e statistical publications cover current and previous

years (retrospective statistical publications) with the scope

of decades and centuries (Historical Statistics of theUS from

, Colonial Times to , , , and ; USSR’s

Economics  years, ; Russia:  Years of Economic

Growth – Historical Series; Annuaire Statistique

de la France, vols. –, –).

Statistical publications have various forms of editions:

yearbooks, reports, series of books (for example, a cen-

sus of the population), bulletins, and journals, “notebooks”,

which contain statistical reviews (quarterly, monthly, Bul-

letin of Statistics, Journal of Statistics, Survey of Statistics and

Review of Statistics), summaries, and reports.

�e form and content of statistical publications have

been changing along with history.

�e �rst statistical publications (similar to modern

ones) appeared in 
th
century in Venice and then later

on in Holland (a series of  small volumes under a com-

mon name “Elsevier republics,” from ). In England

numerical statistical �gures appeared in the 
th
century

in works by the founders of “political arithmetic,” William

Petty and JohnGraunt, and in the 
th
century in the works

by Gregory King. In Germany (“�e Holy Roman Empire

of the German Nation”), the second half of the 
th
and


th
centuries were predominated by “descriptive govern-

ment statistics” (H.Conring,G.Achenwall, A. L. Schlözer);

only in the last quarter of the 
th
century did a new type

of statistical publications appeared, i.e., the works of “lin-

ear arithmeticians” tending to represent numerical data

about one or several countries in the shape of statistical

graphs—diagrams and cartograms (the founder of these

statistical publications is August Friedrich Crome, who

published “Producten-Karte von Europa” () and Über

die Größe und Bevölkerung der sämtlichen europäischen

Staaten ()). In Russia, the �rst statistical publications

date back to  (historical, ethnographic, and economic

atlases with a statistical description of Russia by I. K. Kir-

ilov).�e classi�ed yearbooks (with the scope of data for

a period of  years and more by various types of �gures

describing territories, natural resources, population, GDP,

standard of living etc.) of the USA have been published

in the United States since  ( yearbooks), in Great

Britain since  ( yearbooks), in France since  (

yearbooks of old series and  of new series), in Germany

since , in Canada since , in Sweden since , and

in Japan since .

Apart from yearbooks there are also many other spe-

cialized statistical publications, themost important among

them being “Census of Population,” “Census of Manufac-

turers,” etc., annual surveys on separate industries “Annual

Survey on Manufacturers,” enterprises “Moody’s manual”

in the U.S. “Compas” in Germany, France, and Belgium,

and also personal references such as “Who’s Who,” “Who’s

Who in the world,” “Poor’s Register of Corporations Direc-

tors and Executives,” “GreatMinds of the 
st
Century,” etc.

�e �rst international statistical dictionary was by

Michael G. Mulhall, “�e Dictionary of Statistics,” which

ran into several editions (, , , ) included

�gures on – countries for a period from  to .

Augustus D. Webb’s “�e New Dictionary of Statistics”x

covered –. From  to , the International
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Statistical Institute (ISI) published the “International Sta-

tistical Yearbook” (from – there were editions

from the International Statistical Congresses). With the

establishment of the League of Nations () the number

of statistical publications increased.�e signi�cant statis-

tical publications by the League of Nations were “Statistical

Yearbook of the League of Nations” ( yearbooks for a

period from  to ), “Monthly Bulletin of Statistics,”

“World Economic Surveys” (–,  issues), “World

Production and Prices” (–,  issues), “Review of

World Trade” (–,  issues), etc. In , the Inter-

national Labour Organization began publication of the

“Yearbook of Labour Statistics,” and in  the Interna-

tional Institute of Agriculture started publication of the

“International Yearbook of Agriculture Statistics”.

In , the United Nations Organization (UN) and

its specialized institutions started a new stage of statis-

tical publications subdivided into nine series - A, B, C,

D, J, K, M, P, F. �e most important of them are: “Sta-

tistical Yearbook,” “Demographic Yearbook,” “Yearbook

of National Accounts Statistics,” “Yearbook of Interna-

tional Trade Statistics,” “Balance of Payments Yearbook,”

“Annual Epidemiological and Vital Statistics,” “United

Nations Juridical Yearbook,” and “Yearbook of the United

Nations.”

�e Food and Agriculture Organization publishes

“Yearbook of Food and Agricultural Statistics,” “Yearbook

of Fishery Statistics,” and “Yearbook of Forest Products.”

UNESCOpublishes “International Yearbook of Educa-

tion,” “Yearbook of Youth Organizations,” and “UNESCO

Statistical Yearbook.”

EU, OECD, WHO, EuroStat, IMF, and World Bank

have their own statistical publications. �e most impor-

tant statistical publications are world economic reviews

(published separately by the UN and its commissions for

Europe, Asia, Africa and Latin America, on annual basis)

and various statistical editions. �ere are also statistical

journals, for example, theUN’s “Monthly Bulletin of Statis-

tics” and the UN’s reference books, “World Weight and

Measures,” “Nomenclature of Geographic Areas for Sta-

tistical Purposes,” “Name’s of Countries and Adjectives of

Nationality,” etc.�e international bibliographies, indexes,

dictionaries, and encyclopedias are also considered to be

statistical publications.

�e specialized editions and international statistical

classi�ers, questionnaires, systems, methods, and stan-

dards (there are over , of titles including  stan-

dard classi�ers in the world) regulate the procedures of

the international comparisons, the most recognized stan-

dards of which are UN’s System of National Accounts,

trade, banking and monetary transactions, and standards

of EuroStat and IMF on the statistical ethics and assess-

ment of data quality.
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Quality: A Brief Introduction
�e main objective of statistical quality control (SQC) is

to achieve quality in production and service organizations,

through the use of adequate statistical techniques.�e fol-

lowing survey relates to manufacturing rather than to the

service industry, but the principles of SQC can be suc-

cessfully applied to either. For an example of how SQC

applies to a service environment, see Roberts ().Qual-

ity of a product can be de�ned as its adequacy to be used

(Montgomery ), which is evaluated by the so-called

quality characteristics. �ose are random variables in a

probability language, and are usually classi�ed as: physi-

cal, like length and weight; sensorial, like �avor and color;

temporally oriented, like the maintenance of a system.

Quality Control (QC) has been an activity of engi-

neers and managers, who have felt the need to work

jointly with statisticians. Di�erent quality characteristics

are measured and compared with pre-determined speci�-

cations, the quality norms. QC began a long time ago, when

manufacturing began and competition accompanied it,
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with consumers comparing and choosing the most attrac-

tive product. �e Industrial Revolution, with a clear dis-

tinction between producer and consumer, led producers

to the need of developing methods for the control of their

manufactured products. On the other hand, SQC is com-

paratively new, and its greatest developments have taken

place during the twentieth century. In , at the Bell

Laboratories, Shewhart developed the concept of control

chart and, more generally, statistical process control (SPC),

shi�ing the attention from the product to the production

process (Shewhart ). Dodge and Romig (), also in

the Bell Laboratories, developed sampling inspection, as an

alternative to the % inspection.

Among the pioneers in SPC we also distinguish W.E.

Deming, J.M. Juran, P.B. Crosby andK. Ishikawa (see other

references in Juran and Gryna ). But it was during the

Second World War that there was a generalized use and

acceptance of SQC, largely used in USA and considered as

primordial for the defeat of Japan. In , the American

Society for Quality Controlwas founded, and this enabled a

huge push to the generalization and improvement of SQC

methods.

A�er the IIWorldWar, Japan was confronted with rare

food and lodging, and the factories were in ruin.�ey eval-

uated and corrected the causes of such a defeat.�e quality

of the products was an area where USA had de�nitely over

passed Japan, and this was one of the items they tried to

correct, becoming rapidly masters in inspection sampling

and SQC, and leaders of quality around . Recently, the

quality developments have also been devoted to the moti-

vation of workers, a key element in the expansion of the

Japanese industry and economy.

Quality is more and more the prime decision factor

in the consumer preferences, and quality is o�en pointed

out as the key factor for the success of organizations.

�e implementation of a production QC clearly leads to

a reduction in the manufacturing costs, and the money

spent with control is almost irrelevant. At the moment,

the quality improvement in all areas of an organization, a

philosophy known as Total Quality Management (TQM)

is considered crucial (see Vardeman and Jobe ).�e

challenges are obviously di�cult. But the modern SQC

methods surely provide a basis for a positive answer to

these challenges. SQC is at this moment much more than

a set of statistical instruments. It is a global way of thinking

of workers in an organization, with the objective of mak-

ing things right in the �rst place.�is is mainly achieved

through the systematic reduction of the variance of relevant

quality characteristics.

Usual Statistical Techniques in SQC
�e statistical techniques useful in SQC are quite diverse.

In this survey, we shall brie�y mention SPC, an on-line

control technique of a process production with the use

of 7control charts. 7Acceptance sampling, performed out
of the line production (before it, for sentencing incoming

batches, and a�er it, for evaluating the �nal product), is

another important topic in SQC (see Duncan [] and

Pandey [], among others). A similar comment applies

to reliability theory and reliability engineering, o�-line tech-

niques performed when the product is complete, in order

to detect the resistance to failure of a device or system (see

Pandey [], also among others).

It is however sensible to mention that, additionally to

these techniques, there exist other statistical topics useful

in the improvement of a process. We mention a few exam-

ples: in a line of production, we have the input variables,

the manufacturing process and the �nal product (output).

It is thus necessary to model the relationship between

input and output. Among the statistical techniques useful

in the building of thesemodels, wementionRegression and

Time Series Analysis.�e area of Experimental Design (see

Taguchi et al. ) has also proved to be powerful in the

detection of the most relevant input variables. Its adequate

use enables a reduction of variance and the identi�cation

of the controllable variables that enable the optimization of

the production process.

Statistical Process Control (SPC). Key monitoring and
investigating tools in SPC include histograms, Pareto

charts, cause and e�ect diagrams, scatter diagrams and

control charts. We shall here focus on control chart

methodology.

A control chart is a popular statistical tool for moni-

toring and improving quality, and its success is based on

the idea that no matter how well the process is designed,

there exists a certain amount of nature variability in out-

put measurements. When the variation in process quality

is due to random causes alone, the process is said to be

in-control. If the process variation includes both random

and special causes of variation, the process is said to be

out-of-control.�e control chart is supposed to detect the

presence of special causes of variation.

Generally speaking, the main steps in the construc-

tion of a control chart, performed at a stable stage of the

process, are the following: determine the process param-

eter you want to monitor, choose a convenient statistic,

sayW, and create a central line (CL), a lower control limit

(LCL) and an upper control limit (UCL).�en, sample the
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production process along time, and group the processmea-

surements into rational subgroups of size n, by time period

t. For each rational subgroup, compute wt , the observed

value ofWt , and plot it against time t.�emajority ofmea-

surements should fall in the so-called continuation interval

C = [LCL,UCL]. Data can be collected at �xed sampling
intervals (FSI), with a size equal to d, or alternatively, at

variable sampling intervals (VSI), usually with sampling

intervals of sizes d,d ( < d < d).�e region C is then
split in two disjoint regions C and C, with C around CL.

�e sampling interval d is used as soon as a measurement

falls inC; otherwise, it is used the largest sampling interval

d. If themeasurements fall within LCL andUCLno action

is taken and the process is considered to be in-control. A

point wt that exceeds the control limits signals an alarm,

i.e., it indicates that the process is out of control, and some

action should be taken, ranging from taking a re-check

sample to the tracing and elimination of these causes. Of

course, there is a slight chance that is a false alarm, the

so-called α-risk. �e design of control charts is a com-

promise between the risks of not detecting real changes

(β-risks) and of α-risks. Other relevant primary character-

istics of a chart are the run length (RL) or number of samples

to signal (NSS) and the associated mean value, the aver-

age run length, ARL=E(RL) = /( − β), as well as the
capability indices, Ck and Cpk (see Pearn and Kotz ).

Essentially, a control chart is a test, performed along time

t, of the hypothesis H : the process is in-control versus

H : the process is out-of-control.

Stated di�erently, we use historical data to compute the

initial control limits.�en the data are compared against

these initial limits. Points that fall outside of the limits are

investigated and, perhaps, some will later be discarded.

If so, the limits need to be recomputed and the process

repeated.�is is referred to as Phase I. Real-time process

monitoring, using the limits from the end of Phase I, is

Phase II. �ere thus exists a strong link between control

charts and hypothesis testing performed along time.

Note that a preliminary statistical data analysis (usu-

ally histograms andQ-Q plots) should be performed on the

prior collected data. A common assumption in SPC is that

quality characteristics are distributed according to a nor-

mal distribution. However, this is not always the case, and

in practice, if data seemvery far frommeeting this assump-

tion, it is common to transform them through a7Box–Cox
transformation (Box and Cox ). But muchmore could

be said about the case of nonnormal data, like the use of

robust control charts (see Figueiredo and Gomes [],

among others).

With its emphasis on early detection and prevention of

problems, SPC has a distinct advantage over quality meth-

ods such as inspection, that apply resources to detecting

and correcting problems in the �nal product or service. In

addition to reducing waste, SPC can lead to a reduction in

the time required to produce the �nal products. SPC is rec-

ognized as a valuable tool from both a cost reduction and

a customer satisfaction standpoint. SPC indicates when an

action should be taken in a process, but it also indicates

when no action should be taken.

Classical Shewhart Control Charts: A Simple
Example. In this type of charts, measurements are
assumed to be independent and distributed according to a

normal distribution.Moreover, the statisticsWt built upon

those measurements are also assumed to be independent.

�e main idea underlying these charts is to �nd a simple

and convenient statistic, W, with a sampling distribution

easy to �nd under the validity of the in-control state, so

that we can easily construct a con�dence interval for a

location or spread measure of that statistic. For continu-

ous quality characteristics, the most common Shewhart-

charts are the average chart (X-chart) and the range chart

(R-chart), as an alternative to the standard-deviation

chart (S-chart). For discrete quality characteristics, the

most usual charts are the p-charts and np-charts in a

Binomial(n, p) background, and the so-called c-charts and
u-charts for Poisson(c) backgrounds.

Example  (X-chart). Imagine a breakfast cereal packag-

ing line, designed to �ll each cereal box with  grams of

product.�e production manager wants to monitor on-line

the mean weight of the boxes, and it is known that, for a sin-

gle pack, an estimate of the weight standard-deviation σ is

 g. Daily samples of n =  packs are taken during a stable
period of the process, the weights xi,  ≤ i ≤ n, are recorded,
and their average, x = ∑ni= xi/n, is computed.�ese aver-
ages are estimates of the processmean value µ, the parameter

to be monitored.�e center line is CL =  g (the target).
If we assume that data are normally distributed, i.e., X ⌢
N(µ = , σ = ), the control limits can be determined
on the basis that X ⌢ N(µ = , σ/

√
n = /

√
 = .).

In-control, it thus expected that ( − α)% of the average
weights are between  + . ξα/ and  − . ξα/
where ξα/ is the (α/)-quantile of a standard normal dis-
tribution. For a α-risk equal to . (a common value
in English literature), ξα/ = −.. �e American Stan-
dard is based on “ − sigma” control limits (corresponding
to .% of false alarms), while the British Standard uses
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“.−sigma” limits (corresponding to .%of false alarms).
In this case, the -sigma control limits are LCL =  −  ×
/

√
 = . and UCL =  +  × /

√
 = ..

Other Control Charts. Shewhart-type charts are e�cient
in detecting medium to large shi�s, but are insensitive to

small shi�s. One attempt to increase the power of these

charts is by adding supplementary stopping rules based

on runs.�e most popular stopping rules, supplementing

the ordinary rule, “one point exceeds the control limits,”

are: two out of three consecutive points fall outside warn-

ing (-sigma) limits; four out of �ve consecutive points fall

beyond -sigma limits; eight consecutive points fall on one

side of the centerline.

Another possible attempt is to consider some kind of

dependency between the statistics computed at the di�er-

ent sampling points. To control themean value of a process

at a target µ, one of the most common control charts

of this type is the cumulative sum (CUSUM) chart, with

an associated control statistic given by St := ∑tj=(xj −
µ) = St− + (xt − µ), t = , ,⋯ (S = ). Under
the validity of H : X ⌢ N(µ, σ), we thus have a ran-
dom walk with null mean value (see 7Random Walk). It
is also common to use the exponentially weighted moving

average (EWMA) statistic, given byZt := λxt+(−λ)Zt− =
λ∑t−j=( − λ)j xt−j + ( − λ)tZ, t = , , . . . , Z =
x,  < λ < , where x denotes the overall average of a
small number of averages collected a priori, when the pro-

cess is considered stable and in-control. Note that it is also

possible to replace averages by individual observations (for

details, see Montgomery ).

ISO , Management and Quality
�e main objective of this survey was to speak about sta-

tistical instruments useful in the improvement of quality.

But these instruments are a small part of the total e�ort

needed to achieve quality. Nowadays, essentially due to

an initiative of the International Organization for Stan-

dardization (ISO), founded in , all organizations are

pushed towards quality. In , ISO published the ISO

 series, with general norms for quality management

and quality guarantee, and additional norms were estab-

lished later on diversi�ed topics. �e ISO  norms

provide a guide for producers, whowant to implement e�-

cient quality.�ey can also be used by consumers, in order

to evaluate the producers’ quality. In the past, the produc-

ers were motivated to the establishment of quality through

the increasing satisfaction of consumers. Nowadays, most

of the them are motivated by the ISO  certi�cation –

if they do not have it, they will lose potential clients.

Regarding management and quality: as managers have

a �nal control of all organization resources, management

has a ultimate responsibility in the quality of all products.

Management should thus establish a quality policy, mak-

ing it perfectly clear to all workers (see Burrill and Ledolter

, for details).
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Statistical quality control aims to achieve the product or

process quality by utilizing statistical techniques, in which

statistical process control (SPC) has been demonstrated to

be one primary tool for monitoring the process or product

quality. Since s, the control chart, as one of the most

important SPC techniques, has been widely studied.

Univariate Control Charts Versus
Multivariate Control Charts
In terms of the number of variables,7control charts can be
classi�ed into two types, that is, univariate control charts

and multivariate control charts.

�e performance of the conventional univariate con-

trol charts, including Shewhart control charts, cumulative

sum (CUSUM) control charts and exponentially weighted

moving average (EWMA) control charts have been exten-

sively reviewed. �e research demonstrates that the She-

whart chart is more sensitive to large shi�s than the

EWMA and CUSUM chart and vice versa. �ese tra-

ditional control charts usually assume that the observa-

tions are independent and identically follow the normal

distribution. In some practical situations, however, these

assumptions are not valid.�erefore, other control charts

that are di�erent or extended from the traditional charts

are developed for some special cases, such as monitoring

autocorrelated processes and/or processes with huge sam-

ple data, detecting dynamicmean change and/or a range of

mean shi�s. See Han and Tsung (, , , ),

Han et al. (a, b), Wang and Tsung (), Zhao et al.

() and Zou et al. (c) for detailed discussion.

Although the aforementioned univariate charts per-

formwell inmonitoring some process or product qualities,

their performance is not satisfactory when the quality of

a product or process is characterized by several correlated

variables.�erefore,multivariate statistical process control

(MSPC) techniques were developed and widely applied.

Hotelling’s T chart, the traditional multivariate control

chart, was proposed in  (Hotelling ) to deal with

the multivariate monitoring case, which assumed that sev-

eral variables follow the multivariate normal distribution

(see 7Multivariate Normal Distributions). Following that,
a variety of studies extended this research further. Among

others, see Tracy et al. (), Mason et al. (), and Sul-

livan and Woodall () for discussion concerning the

property and performance of the T chart.

Besides the Hotelling’s T chart, the other traditional

multivariate control charts include theMultivariate cumu-

lative sum (MCUSUM) chart presented by Crosier ()

and Pignatiello and Runger () and the multivariate

exponentially weighted moving average (MEWMA) chart

proposed by Lowry et al. (). Similarly toHotelling’sT,

these two charts are sensitive to moderate and small mean

shi�s. Other extensions of traditional MSPC techniques,

i.e., adaptive T chart for dynamic processes (see Wang

and Tsung (, )), have been analyzed. Besides

the multivariate charts for mean shi�s, the multivariate

charts for monitoring the process variation were also pre-

sented recently, such as the multivariate exponentially

weighted mean squared deviation (MEWMS) chart and

a multivariate exponentially weighted moving variance

(MEWMV) chart (Huwang et al. ()).�e extensive lit-

erature reviews were provided by Kourti and MacGregor

() and Bersimis et al. (), in which other statisti-

cal methods applied in MSPC, i.e., 7principal component
analysis (PCA) and partial least square (PLS), are also

reviewed.

Most of thementioned charts have a common assump-

tion that process variables follow normal distributions.

When there is no distribution assumption, nonparamet-

ric methods, like the depth function (Zuo and Ser�ing

()), can be used, the advantages ofwhich are examined

by Chakraborti et al. (). However, with the develop-

ment of technology, a more complicate situation occurs.

Numerical process variables may be mixed up with the

categorical process variables to represent the real condi-

tion of a process. Direct application of the aforementioned

methods may lead to inappropriate ARL and unsatisfac-

tory false alarms. An alternative way to solve this prob-

lem is to use some distribution-free methods, like the

K-chart proposed by Sun and Tsung (). More research

is needed in this area.
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SPC for Profile Monitoring
In most SPC applications, either in the univariate or mul-

tivariate cases, it is assumed that the quality of a process

or product can be adequately represented by the distri-

bution of a single quality characteristic or by the general

multivariate distribution of the several correlated quality

characteristics. In some practical situations, however, the

quality of a process or product is better characterized and

summarized by a relationship between a response vari-

able and one or more explanatory variables (Woodall et al.

).�erefore, studies on pro�le monitoring have been

steadily increasing.

�e early research on pro�le monitoring usually

assumes that the relationship can be represented by the

linear model. �ere has been extensive existing research

on linear pro�le monitoring in the literature. For example,

as early as , Kang and Albin presented two methods

in order to monitor the linear pro�les. One approach is

to monitor the intercept and slope of the linear model by

constructing the multivariate chart (T

chart).�e other

is to monitor the average residuals by using the exponen-

tial weighted moving average (EWMA) chart and rang (R)

chart simultaneously. It can be noted that some di�erent

control schemes were also developed for solving di�er-

ent linear pro�le monitoring problems, i.e., the self-staring

control chart for linear pro�les with unknown parame-

ters (Zou et al. (a)). In addition, Zou et al. (b)

proposed a multivariate EWMA (MEWMA) scheme for

monitoring the general linear pro�le. Furthermore, recent

studies on the nonlinear pro�lemonitoring can be sourced

in the relevant literature. Among others, the nonparamet-

ric methods are commonly used in monitoring the non-

linear pro�les (see Zou et al. b, Jensen et al. ).

Besides,Woodall et al. () provided an extensive review

on pro�lemonitoring. Recent research focused on the con-

trol scheme for monitoring pro�les with categorical data

rather than continuous data (Yeh et al. )), in which a

Phase I monitoring scheme for pro�les with binary output

variables was proposed.

SPC for Processes with Multiple Stages
In modern manufacturing and service environments, it

is very common that most manufacturing and/or service

processes involve a large number of operating stages rather

than one single stage. Many examples of such multistage

processes can be found in semiconductor manufactur-

ing, automobile assembly lines and bank services, etc.

For instance, the print circuit board (PCB) manufactur-

ing process includes several stages, that is, exposure to

black oxide, lay-up, hot press, cutting, drilling, and inspec-

tion. However, most of the abovementioned conventional

SPCmethods focus on single-stage processes without con-

sidering the multistage scenario, which do not consider

the relationship among di�erent stages. �erefore, the

recent research on multistage processes has been widely

conducted.

�e existing popular SPC methods for multistage pro-

cesses usually involve three types of approaches, which

are the regression adjustment method, the cause-selecting

method and methods based on linear state space mod-

els. �e regression adjustment method was developed

by Hawkins (, ), while Zhang (, , ,

) proposed the cause-selecting method. A review of

the cause-selecting method can be found in Wade and

Woodall (). Recent research on the use of cause-

selecting charts for multistage processes can be found in

Shu et al. (), Shu and Tsung (), Shu et al. ()

and Shu et al. (). A variety of current studies on mul-

tistage processes also adopt engineering models with a

linear state space model structure. �is model incorpo-

rates physical laws and engineering knowledge in order

to describe the quality linkage among multiple stages in

a process. Latest works on multistage process monitoring

and diagnosis can be referred to Xiang and Tsung (),

Zou et al. (a), Jin and Tsung (), and Li and Tsung

(). With respect to multistage processes with categor-

ical variables, some monitoring schemes were developed

recently. For example, Skinner et al. (, ) proposed

the generalized linear model (GLM)-based control chart

for the Poisson data obtained from multiple stages.

An extensive review on the quality control of mul-

tistage systems including monitoring and diagnosing

schemes was presented by Shi and Zhou ().

SPC Applications in Service Industries
SPC techniques can be applied in di�erent industries such

as manufacturing or service industries, although most

of these techniques are originally developed for manu-

facturing industries, i.e., machining processes, assembly

processes, semiconductor processes etc. Because the SPC

techniques have been demonstrated to be e�cient forman-

ufacturing processes, the application of these techniques in

service processes was argued in some papers (see Wycko�

(), Palm et al. () and Sulek ()). In the existing

literature, several control charts have been applied in ser-

vice processes, i.e., quick service restaurant, the auto loan

process that provides better service from the loan com-

pany to car dealers and buyers, and invoicing processes.

See Apte and Reynolds (), Mehring (), Cartwright

and Hogg () for detailed discussion. In addition, the

control charts were also widely applied in health-care

and public-health �elds (see Wardell and Candia (),
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Green ()). Recently,Woodall () discussed in great

detail di�erent control charts that have been proposed in

health-care and public-health �elds. Both the manufactur-

ing process and the service operation process involve mul-

tiple operating stages rather than a single stage.�erefore,

Sulek et al. () proposed to use the cause selecting con-

trol chart for monitoring the service process with multiple

stages in the grocery store and showed that it outperformed

the Shewhart chart in monitoring the multistage service

process. More recent studies on the application of SPC

techniques, especially in service industries, were reviewed

by Maccarthy and Wasusri () and Tsung et al. ().

All these applications showed that SPC techniques were

e�cient in monitoring and identifying service processes.

Statistical ProcessControl as one primary tool for qual-

ity control is very e�cient and important in monitoring

the process/product quality. SPC techniqueswill be applied

inmore industries with di�erent characteristics.�erefore,

more advanced studies on SPC schemeswill bewidely con-

ducted in order to achieve the quality required for products

or processes.
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Signal processingmay broadly be considered to involve the

recovery of information from physical observations. �e

received signals is usually disturbed by thermal, electri-

cal, atmospheric or intentional interferences. Due to the

random nature of the signal, statistical techniques play an

important role in signal processing. Statistics is used in the

formulation of appropriatemodels to describe the behavior

of the system, the development of appropriate techniques
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for estimation of model parameters, and the assessment of

model performances. Statistical Signal Processing basically

refers to the analysis of random signals using appropriate

statistical techniques. �e main purpose of this article is

to introduce di�erent signal processing models and di�er-

ent statistical and computational issues involved in solving

them.

The Multiple Sinusoids Model
�e multiple sinusoids model may be expressed as

y(t) =
M

∑
k=

{Ak cos(ωkt)+Bk sinωkt)}+n(t); t = , . . . ,N.

()

Here Ak’s and Bk’s represent the amplitudes of the signal,

ωk’s represent the real radian frequencies of the signals,

n(t)’s are error random variables withmean zero and �nite
variance. �e assumption of independence of the error

random variables is not that critical to the development

of the inferential procedures. �e problem of interest is

to estimate the unknown parameters {Ak,Bk,ωk} for k =
, . . . ,M, given a sample of sizeN. In practical applications

o�en M is also unknown. Usually, when M is unknown,

�rst estimateM using some model selection criterion, and

then it is assumed that M is known, and estimate the

amplitudes and frequencies.

�e sum of sinusoidal model () plays the most impor-

tant role in the Statistical Signal Processing literature.Most

of the periodic signals can be well approximated by the

model () with the proper choice ofM and with the ampli-

tudes and frequencies. For several applications of this

model in di�erent �elds see Brillinger ().

�e problem is an extremely challenging problem both

from the theoretical and computational points of view.

As a statistician Fisher () �rst considered this prob-

lem. It seems that the standard least squares estimators

will be the natural choice in this case, but �nding the least

squares estimators, and establishing their properties are far

from trivial issues. Although, the model () is a non-linear

regression model, but the standard su�cient conditions

needed for the least squares estimators to be consistent

and asymptotically normal do not hold true in this case.

Special care is needed in establishing the consistency and

7asymptotic normality properties of the least squares esti-
mators, see for example Hannan () and Kundu ()

in this respect. Moreover, for computing the least squares

estimators, most of the standard techniques like Newton–

Raphson or its variants do not o�en converge even from

good starting values. Even if it converges, it may converge

to a localminimumrather than the globalminimumdue to

highly non-linear nature of the least squares surface. Spe-

cial purpose algorithms have been developed to solve this

problem.

Several approximate solutions have been suggested in

the literature. Among several approximate estimators, For-

ward Backward Linear Prediction (FBLP) and modi�ed

EquiVariance Linear Prediction (EVLP) work very well.

But it should be mentioned that none of these methods

behaves uniformly better than the other. More than 

references on this topic can be found in Stoica (), and

see also Quinn and Hannan (), the only monograph

written by statisticians in this topic.

Two-Dimensional Sinusoidal Model
Two dimensional periodic signals are o�en being analyzed

by the two-dimensional sinusoidal model, which can be

written as follows:

y(s, t) =
M

∑
k=

{Ak cos(ωks + µkt) + Bk cos(ωks + µkt)}

+ n(s, t), s = , . . . S, t = . . . ,T. ()

Here Ak’s and Bk’s are amplitudes and ωk’s and µk’s are fre-

quencies.�e problem once again involves the estimation

of the signal parameters namely Ak’s, Bk’s, ωk’s and µk’s

from the data {y(s, t)}.
�e model () has been used very successfully for ana-

lyzing two dimensional gray texture data, see for example

Zhang andMandrekar (). A three dimensional version

of it can be used for analyzing color texture data also, see

Prasad () and Prasad and Kundu (). Some of the

estimation procedures available for the one-dimensional

problem may be extended quite easily to two or three

dimensions. However, several di�culties arise when deal-

ing with high dimensional data. �ere are several open

problems in multidimensional frequency estimation, and

this continues to be an active area of research.

Array Model
�e area of array processing has received a considerable

attention in the past several decades.�e signals recorded

at the sensors contain information about the structure of

the generating signals including the frequency and ampli-

tude of the underlying sources. Consider an array of P

sensors receiving signals from M sources (P > M). �e
array geometry is speci�ed by the applications of interest.

In array processing, the signals received at the i− th censor
is given by

yi(t) =
M

∑
j=
ai(θ j)xj(t) + ni(t), i = , . . . ,P. ()
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Here xj(t) represents the signal emitted by the j−th source,
and ni(t) represents additive noise.�e model () may be
written in the matrix form as;

y(t) = [a(θ) : . . . : a(θM)] x(t) + n(t)
= A(θ)x(t) + n(t), t = , . . . ,N. ()

�e matrix A(θ) has a Vandermonde structure if the
underlying array is assumed to be uniform linear array.�e

signal vector x(t) and the noise vector n(t) are assumed
to be independent and zero mean random processes with

covariancematrices Γ and σ I respectively.�emain prob-

lem here is to estimate the signal vector θ, based on the

sample y(), . . . , y(N), when the structure of A is known.
Interestingly, instead of using the traditionalmaximum

likelihoodmethod, di�erent subspace �ttingmethods, like

MUltipe SIgnal Classi�cation (MUSIC) and Estimation

of Signal Parameters via Rotational Invariance Technique

(ESPRIT) and their variants are being used more success-

fully, see for example the text by Pillai () for detailed

descriptions of the di�erent methods.

For basic introduction of the subject the readers are

referred to Kay () and Srinath et al. () and for

advanced materials see Bose and Rao () and Quinn

and Hannan ().
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Statistical thinking pervades the empirical sciences. It is

used to provide principles of initial description, concept

formation, model development, observational design, the-

ory development and theory testing, and much more.

Some of these activities consist in computing signi�cance

tests for statistical hypotheses. Such a hypothesis typically

is a statement about a regression coe�cient in a linear

regression or a relative risk for a chosen life-course event,

such as marriage formation or death.�e hypothesis can

state that the regression coe�cient equals zero (or that

the relative risk equals ), implying that the correspond-

ing covariate has no impact on the transition in question

and thus does not a�ect the behavior it represents, or that

for all practical purposes the analyst may act as if this
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were the case. Alternatively the hypothesis may predict the

sign of the coe�cient, for example that higher education

leads to lower marriage rates, ceteris paribus, as argued by

some economists. �e converse (namely that the sign is

zero or positive) would be called the null hypothesis. Other

hypotheses concern the form of the statistical model for

the behavior in question. In such a case the null hypothe-

sis would be that the model speci�ed is correct; this leads

to questions of goodness of �t. In any case the statistician’s

task is to state whether the data at hand justify rejecting

whatever null hypothesis has been formulated.

�e null hypothesis is typically rejected when a suit-

able test statistic has a value that is unlikely when the null

hypothesis is correct; usually the criterion is that the test

statistic lies in (say) the upper tail of the probability dis-

tribution it has when the hypothesis is correct. An upper

bound on the probability of rejecting the null hypothesis

when it actually is correct is called the level of signi�cance of

the test method. It is an important task for the investigator

to keep control of this upper bound. A test of signi�cance

is supposed to prevent that a conclusion is drawn (about

a regression coe�cient, say) when the data set is so small

that a pattern “detected” can be caused by random varia-

tion. Operationally an investigator will o�en compute the

probability (when the null hypothesis is correct) that in a

new data set, say, the test statistic would exceed the value

actually observed and reject the null hypothesis when this

so-called p-value is very small, since a small p-value is

equivalent to a large value of the test statistic.

Ideally, hypotheses should be developed on the basis of

pre-existing theory and common sense as well as of empir-

ical features known from the existing literature. Strict

protocols should be followed that require any hypothesis

experimentation to be made on one part of the current

data set, with testing subsequently to be carried out on a

virgin part of the same data, or on a new data set. Unfor-

tunately, most empirical scientists in the economic, social,

biological, and medical disciplines, say, �nd such a proce-

dure too con�ning (assuming that they even know about

it). It is commonpractice to use all available data to develop

a model, formulate scienti�c hypotheses, and to compute

test statistics or 7p-values from the same data, perhaps
using canned computer programs that provide values of

test statistics as if scienti�c statistical protocol could be

ignored (Ziliak and McCloskey ).�e danger of such

practices is that the investigator loses control over any

signi�cance levels, a fact which has been of concern to

professional statisticians for a good while (For some con-

tributions from recent decades see Guttman (), Cox

(), Schweder (), and Hurvich and Tsai ().

Such concerns also extend to many others. For instance,

Chow () describes a litany of criticism appearing in

the psychological literature in Chapter  of a book actu-

ally written to defend the null-hypothesis signi�cance-test

procedure. [See Hoem () for a discussion of further

problems connected to common practices of signi�cance

testing, namely the need to embed an investigation into a

genuine theory of behavior rather than to rely on mechan-

ical signi�cance testing, the avoidance of grouped p-values

(o�en using a system of asterisks), the selection of sub-

stantively interesting contrasts rather than those thrown

up mechanically by standard so�ware, and other issues]).

For twenty years and more, remedies have been avail-

able to overcome the weaknesses of the procedures just

described, including rigorous methods for model develop-

ment and data snooping. Such methods prevent the usual

loss of control over the signi�cance level and also allow the

user to handle model misspeci�cation (�e latter feature

is important because a model invariably is an imperfect

representation of reality.). Users of event-history analysis

may want to consult Hjort (, ), Sverdrup (),

and previous contributions from these authors and their

predecessors.

Unfortunately such contributions seem to be little

known outside a circle of professional statisticians, a fact

which for example led Rothman () to attempt to erad-

icate signi�cance tests from his own journal (Epidemiol-

ogy). He underlined the need to see the interpretation of a

study based not on statistical signi�cance, or lack of it, for

one or more study variables, but rather on careful quan-

titative consideration of the data in light of competing

explanations for the �ndings. For example, he would pre-

fer a researcher to consider whether the magnitude of an

estimated e�ect could be readily explained by uncontrolled

confounding or selection biases, rather than simply to o�er

the uninspired interpretation that the estimated e�ect is

signi�cant, as if neither chance nor bias could then account

for the �ndings.
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Introduction
It is generally acknowledged that the most important

changes in statistics in the last  years are driven by

technology. More speci�cally, by the development and

universal availability of fast computers and of devices

to collect and store ever-increasing amounts of data.

Satellite remote sensing, large-scale sensor networks,

continuous environmental monitoring, medical imaging,

micro-arrays, the various genomes, and computerized sur-

veys have not just created a need for new statistical tech-

niques. �ese new forms of massive data collection also

require e�cient implementation of these new techniques

in so�ware. �us development of statistical so�ware has

become more and more important in the last decades.

Large data sets also create new problems of their own.

In the early days, in which the t-test reigned, including the

data in a published article was easy, and reproducing the

results of the analysis did not take much e�ort. In fact, it

was usually enough to provide the values of a small num-

ber of su�cient statistics.�is is clearly no longer the case.

Large data sets require a great deal of manipulation before

they are ready for analysis, and the more complicated data

analysis techniques o�en use special-purpose so�ware and

some tuning.�is makes reproducibility a very signi�cant

problem.�ere is no science without replication, and the

weakest form of replication is that two scientists analyzing

the same data should arrive at the same results.

It is not possible to give a complete overviewof all avail-

able statistical so�ware.�ere are older publications, such

as Francis (), in which detailed feature matrices for

the various packages and libraries are given.�is does not

seem to be a useful approach anymore, there simply are too

many programs and packages. In fact many statisticians

develop ad-hoc so�ware packages for their own projects.

We will give a short historical overview, mentioning

the main general purpose packages, and emphasizing the

present state of the art. Niche players and special purpose

so�ware will be largely ignored. �ere is a well-known

quote from Brian Ripley (): “Let’s not kid ourselves:

the most widely used piece of so�ware for statistics is

Excel.”�is is surely true, but it is equally true that only

a tiny minority of statisticians have a degree in statistics.

We have to distinguish between “statistical so�ware” and

the much wider terrain of “so�ware for statistics.” Only the

�rst type is of interest to us here – we will go on kidding

ourselves.

BMDP, SAS, SPSS
�e original statistical so�ware packages were written for

IBM mainframes. BMDP was the �rst. Its development

started in , at the UCLA Health Computing Facil-

ity. SPSS arrived second, developed by social scientists at

the University of Chicago, starting around . SAS was

almost simultaneous with SPSS, developed since  by

computational statisticians at North Carolina State Uni-

versity.�e three competitors di�ered mainly in the type

of clients they were targeting. And of course health scien-

tists, social scientists, and business clients all needed the

standard repertoire of statistical techniques, but in addi-

tion some more specialized methods important in their

�eld.�us the packages diverged somewhat, although their

basic components were very much the same.
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Around  all three packages added a version for per-

sonal computers, eventually developing WIMP (window,

icon, menu, pointer) interfaces. Somewhat later they also

added matrix languages, thus introducing at least some

form of extensibility and code sharing.

As in other branches of industry, there has been some

consolidation. In  SPSS bought BMDP, and basically

killed it, although BMDP- is still sold in Europe by

Statistical Solutions. It is now, however, no longer a serious

contender. In  SPSS itself was bought by IBM, where

it now continues as PASW (Predictive Analytics So�ware).

As the name change indicates, the emphasis in SPSS has

shi�ed from social science data analysis to business analyt-

ics.�e same development is going on at SAS, which was

originally the Statistical Analysis System. Currently SAS is

not an acronym any more. Its main products are SAS Ana-

lytics and SAS Business Intelligence, indicating that the

main client base is now in the corporate and business com-

munity. Both SPSS (now PASW) and SAS continue to have

their statistics modules, but the keywords have de�nitely

shi�ed to analytics, forecasting, decision, and marketing.

Data Desk, JMP, Stata
�e second generation of statistics packages started

appearing in the ’s, with the breakthrough of the per-

sonal computer. Both Data Desk () and JMP ()

were, from the start, written for Macintosh, i.e., for the

WIMP interface. �ey had no mainframe heritage and

baggage. As a consequence they had a much stronger

emphasis on graphics, visualization, and exploratory data

analysis.

Data Desk was developed by Paul Velleman, a former

student of John Tukey. JMP was the brain child of John

Sall, one of the co-founders and owners of SAS, although

it existed and developed largely independent of the main

SAS products. Both packages featured dynamic graphics,

and used graphical widgets to portray and interactively

manipulate data sets.�ere was much emphasis on brush-

ing, zooming, and spinning. Both Data Desk and JMP

have their users and admirers, but both packages never

became dominant in either statistical research or statisti-

cal applications. �ey were important, precisely because

they emphasized graphics and interaction, but they were

still too rigid and too di�cult to extend.

Stata, another second generation package for the per-

sonal computer, was an interesting hybrid of a di�erent

kind. It was developed since , like BMDP starting in

Los Angeles, near UCLA. Stata had a CLI (command line

interface), and did not get a GUI until . It empha-

sized, from the start, extensibility and user-contributed

code. Stata did not get its own matrix language Mata until

Stata-, in .

Much of Stata’s popularity is due to its huge archive

of contributed code, and a delivery mechanism that uses

the Internet to allow for automatic downloads of updates

and new submissions. Stata is very popular in the social

sciences, where it attracts those users that need to develop

and customize techniques, instead of using the more

in�exible procedures of SPSS or SAS. For such users a CLI

is o�en preferable to a GUI.

Until Stata developed its contributed code techniques,

the main repository had been CMU’s statlib, modeled on

netlib, which was based on the older network interfaces

provided by �p and email. �ere were no clear organiz-

ing principles, and the code generally was FORTRAN or

C, which had to be compiled to be useful. We will see that

the graphics from Data Desk and JMP, and the command

line and code delivery methods from Stata, were carried

over into the next generation.

S, LISP-STAT, R
Work had on the next generation of statistical computing

systems had already started before , but it mostly took

place in research labs. Bell Laboratories in Murray Hill,

N.J., as was to be expected, was the main center for these

developments.

At Bell John Chambers and his group started develop-

ing the S language in the late seventies. S can be thought

of as a statistical version of MATLAB, as a language and

an interpreter wrapped around compiled code for numeri-

cal analysis and probability. It went through various major

upgrades and implementations in the eighties, moving

from mainframes to VAX’es and then to PC’s. S developed

into a general purpose language, with a strong compiled

library of linear algebra, probability and optimization, and

with implementations of both classical and modern sta-

tistical procedures.�e �rst  years of S history are ably

reviewed by Becker (), and there is a  year history

of the S language in Chambers (, Appendix A) .�e

statistical techniques that were implemented, for example

in theWhite Book (Chambers and Hastie ), were con-

siderably more up-to-date than techniques typically found

in SPSS or SAS. Moreover the S system was build on a

rich language, unlike Stata, which until recently just had a

fairly large number of isolated datamanipulation and anal-

ysis commands. Statlib started a valuable code exchange of

public domain S programs.

For a long time S was freely available to academic

institutions, but it remained a product used only in the

higher reaches of academia. AT&T, later Lucent, sold S to
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the Insightful corporation, which marketed the product as

S-plus, initially quite successfully. Books such as Venables

and Ripley; Venables and Ripley (; ) e�ectively

promoted its use in both applied and theoretical statis-

tics. Its popularity was increasing rapidly, even before the

advent of R in the late nineties. S-plus has been quite com-

pletely overtaken by R. Insightful was recently acquired by

TIBCO, and S-plus is now TIBCO Spot�re S+. We need

not longer consider it as a serious contender.

�ere were two truly exciting developments in the

early nineties. Luke Tierney () developed LISP-STAT,

a statistics environment embedded in a Lisp interpreter.

It provided a good alternative to S, because it was more

readily available, more friendly to personal computers, and

completely open source. It could, like S, easily be extended

with code written in either Lisp or C. �is made it suit-

able as a research tool, because statisticians could rapidly

prototype their new techniques, and distribute them along

with their articles. LISP-STAT, likeDataDesk and JMP, also

had interesting dynamic graphics capabilities, but now the

graphics could be programmed and extended quite easily.

Around  active development of LISP-STAT stopped,

and R became available as an alternative (Valero-Mora and

Udina ).

R was written as an alternative implementation of the

S language, using some ideas from the world of Lisp and

Scheme (Ihaka and Gentleman ).�e short history of

R is a quite unbelievable success story. It has rapidly taken

over the academic world of statistical computation and

computational statistics, and to an ever-increasing extend

the world of statistics teaching, publishing, and real-world

application. SAS and SPSS, which initially tended to ignore

and in some cases belittle R, have been forced to include

interfaces to R, or even complete R interpreters, in their

main products. SPSS has a Python extension, which can

run R since SPSS-.�e SAS matrix language SAS/IML,

starting at version .. has an interface to an R interpreter.

R is many things to many people: a rapid prototyping

environment for statistical techniques, a vehicle for com-

putational statistics, an environment for routine statistical

analysis, and a basis for teaching statistics at all levels. Or,

going back to the origins of S, a convenient interpreter to

wrap existing compiled code. R, like S, was never designed

for this all-encompassing role, and the basic engine is

straining to support the rate of change in the size and

nature of data, and the developments in hardware.

�e success of R is both dynamic and liberating. But

it remains an open source project, and nobody is really

in charge. One can continue to tag on packages extending

the basic functionality of R to incorporate XML, multicore

processing, cluster and grid computing, web scraping, and

so on. But the resulting system is in danger of bursting

at the seams.�ere are now four ways to do (or pretend

to do) object-oriented programming, four di�erent sys-

tems to do graphics, and four di�erent ways to link in

compiled C code. �ere are thousands of add-on pack-

ages, with enormous redundancies, and o�en with code

that is not very good anddocumentation that is poor.Many

statisticians, and many future statisticians, learn R as their

�rst programming language, instead of learning real pro-

gramming languages such as Python, Lisp, or even C and

FORTRAN. It seems realistic to worry at least somewhat

about the future, and to anticipate the possibility that all of

those thousands of �owers that are now bloomingmaywilt

rather quickly.

Open Source and Reproducibility
One of the consequences of the computer and Internet

revolution is that more and more scientists promote open

source so�ware and reproducible research. Science should

be, per de�nition, both open and reproducible. In the

context of statistics (Gentleman and Temple-Lang )

this means that the published article or report is not the

complete scienti�c result. In order for the results to be

reproducible, we should also have access to the data and

to a copy of the computational environment in which the

calculations were made.

Publishing is becoming more open, with e-journals,

preprint servers, and open access. Electronic publish-

ing makes both open source and reproducibility more

easy to realize. �e Journal of Statistical So�ware, at

http://www.jstatso�.org, the only journal that publishes

and reviews statistical so�ware, insists on complete code

and completely reproducible examples. Literate Pro-

gramming systems such as Sweave, at http://www.stat.

uni-muenchen.de/~leisch/Sweave/, are becoming more

popular ways to integrate text and computations in statis-

tical publications.

We started this overview of statistical so�ware by indi-

cating that the computer revolution has driven much of

the recent development of statistics, by increasing the size

and availability of data. Replacement of mainframes by

minis, and eventually by powerful personal computers, has

determined the directions in the development of statisti-

cal so�ware. In more recent times the Internet revolution

has accelerated these trends, and is changing the way sci-

enti�c knowledge, of which statistical so�ware is just one

example, is disseminated.
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Information �eory has origins and applications in sev-

eral �elds such as: thermodynamics, communication the-

ory, computer science, economics, biology, mathematics,

probability and statistics. Due to this diversity, there are

numerous informationmeasures in the literature. Kullback

(), Sakamoto et al. (), and Pardo () have

applied several of these measures to almost all statistical

inference problems.

According to�e LikelihoodPrinciple, all experimental

information relevant to a parameter θ is mainly con-

tained in the likelihood function L(θ) of the underly-
ing distribution. Bartlett’s information measure is given

by − log(L(θ)). Entropy measures (see 7Entropy) are
expectations of functions of the likelihood. Divergence

measures are also expectations of functions of likeli-

hood ratios. In addition, Fisher-like information measures

are expectations of functions of derivatives of the log-

likelihood. DasGupta (, Chap. ) reported several

relations among members of these information measures.

In sequential analysis, Wald (, p. ) showed earlier

that the average sample number depends on a divergence

measure of the form

Eθ [log f (X, θ)
f (X, θ)

]

where θ and θ are the assumed values of the parameter

θ of the density function f of the random variable X under

the null and the alternative hypothesis, respectively.

It is worth noting that, and from the point of view

of decision making, the expected change in utility can be
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used as a quantitative measure of the worth of an experi-

ment. In this regard Bayes’ rule can be viewed as a mech-

anism that processes information contained in data to

update the prior distribution into the posterior probability

distribution.

Furthermore, according to Jaynes’ Principle of Maxi-

mum Entropy (), information in a probabilistic model

is the available moment constraints on this model. �is

principle is in fact a generalization of Laplace’s Principle

of Insu�cient Reason.

From a statistical point of view, one should concentrate

on the statistical interpretation of properties of entropy-

information measures with regard to the extent of their

agreement with statistical theorems and to their degree of

success in statistical applications.

�e following provides a discussion of preceding issues

with particular concentration on Shannon’s entropy. For

more details, the reader can consult the list of references.

. Consider a discrete random variable X taking a �nite

number of values
Ð→
X = (x, . . . , xn) with probability

vector P = ( p, . . . , pn). Shannon’s entropy (informa-
tion) of P or of X () is given by

H(X) = H(P) = −
n

∑
i=
pi log(pi).

�e most common bases of the logarithm are  and e.

With base , H is measured in bits whereas, in base e,

the units of H are nats. In coding theory the base is 

whereas, in statistics the base is e.

. It is quite clear that H(P) is symmetric in the com-
ponents of the vector P.�is implies that components

of P can be rearranged to get di�erent density func-

tions which are either: symmetric, negatively skewed,

positively skewed, unimodal or bimodal. Such distri-

butions carry di�erent information even though they

all have same value ofH(P).�erefore,H(P) is unable
to re�ect the information implied by the shape of the

underlying distribution.

. 7Entropy of a discrete distribution is always posi-

tive while the di�erential entropy H( f ) = −
∞
∫
−∞
f (x)

log( f (x))dx of a continuous variableXwith pdf f may
take any value on the extended real line.�is is due to

the fact that the density f (x) need not be less than one
as in the discrete case.�us, Shannon’s entropy lacks

the ability to give a proper assessment of information

when the random variable is continuous. To overcome

this problem, Awad () introduced sup-entropy as

−E[log(f (X)/s)], where s is the supremum of f (x).

. Based on a random sample On = (X, . . . ,Xn) of size
n from a distribution and according to Fisher (), a

su�cient statistic T carries all information in the sam-

ple while any other statistic carries less information

than T. �e question that arises here is that: “Does

Shannon’s entropy agree with Fisher’s de�nition of a

su�cient statistic?”. Let us consider the following two

examples.

First, let Y : N(θ, σ ) denote a normal random
variable with mean θ and variance σ . It can be shown

that H(Y) = log(πeσ )/ which is free of θ. Let On
be a random sample of size n from X : N(θ, ) then by
the additivity property of Shannon’s entropy,H(On) =
nH(X) = n log(πe)/. On the other hand, Shan-
non’s entropy of the su�cient statistic Xn is H(Xn) =
log(πe/n)/ = H(X) − log(n)/. Since H(X) is pos-
itive, H(On) ≥ H(Xn) with equality if n = , i.e.,
Shannon’s entropy of su�cient statistic is less than that

of the sample.

Second, consider a random sample On of size n

from a continuous uniform distribution on the inter-

val [, θ]. Let X:n and Xn:n denote the minimum and
the maximum 7order statistics in On. It can be shown
that H(X:n) = H(Xn:n), i.e., Shannon’s entropy of
su�cient statistic Xn:n equals Shannon’s entropy of a

non-su�cient statistic X:n. �ese examples illustrate

that Shannon’s entropy does not agree with Fisher’s

de�nition of a su�cient statistic.

. If Y = α + βX, β ≠ , then H(Y) = H(X) when X is
a discrete random variable. However, if X is continu-

ous, H(Y) = H(X) + log(∣β∣). So, this result implies
that two su�cient statistics T and T = βT will carry

(according to Shannon’s entropy) unequal amounts

of information, which contradicts the su�ciency

concept.

. Referring to the �rst example in (), it is clear that

Shannon’s information in the samplemean is a decreas-

ing function of the sample size n. �is is in direct

con�ict with the usual contention that the larger the

sample size is the more information one has. It is

also interesting to recall in this regard Basu’s exam-

ple (), where a sample of size  is more informa-

tive (about an unknown parameter) than a sample of

size . In fact, a rewording of Basu’s conclusion is that

some observations in the sample are more in�uential

than others.
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What Does Climate Change Hold for the
Future?
�ere is general agreement among experts that we

can expect a rise in temperatures and an increase

in the number of extreme events, but for other cli-

mate variables such as rainfall there is no clear pre-

diction. However there does not seem to be any doubt

that communities coping with poverty will be particu-

larly vulnerable – this means developing countries like

Africa will be the hardest hit (Cooper et al. ;

Washington et al. ; Climate Proo�ng Africa, DFID

; Burton and van Aaist ).�e climate change dia-

logue brings with it an enormous need for more and better

climate data and greater rigor in its analysis. To understand

both risks and opportunities associatedwith the season-to-

season variability that is characteristic of current climates

as well as changes in the nature of that variability due to

climate change, there is need for all stakeholders, including

the statistical community, policy makers, and scientists, to

work together to propose appropriate strategies to coun-

teract one and enhance the other. Such strategies must be

based on scienti�c studies of climate risk and trend analy-

ses and not fashionable perceptions or anecdotal evidence.

Statisticians have a vital role to play here.

What Is Needed?
One of the ways of approaching this issue of climate

change as it a�ects the people in the developing countries

is through a better understanding of the season-to-season

variability in weather that is a de�ned characteristic of cur-

rent climate (Climate: �e statistical description in terms

of means and variability of key weather parameters for a

given area over a period of time – usually at least  years)

and using this to address future change. Managing current

climate-induced risk is already an issue for farmers who

practice rain-fed agriculture. Helping them to cope bet-

ter with this risk while preparing for future change seems

to be the best way of supporting the needy both for the

present and for the future. Agriculture is one �eld where
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the vagaries of climate have an impact but other �elds such

as health, construction, and transport among others would

bene�t equally from this approach.

Why Do Statisticians Need to Be
Involved?
Meteorology departments are the custodians of climate

data and, especially in many developing countries, data

quality and management, rather than analysis, have been

priority issues and the institutions have limited themselves

mainly to providing data to users. �ere is now a move

to shi� from providing basic data and services to meeting

increasingly challenging user needs.

E�ective use of climatic summaries and especially

applications require an understanding of statistical con-

cepts underlying these summaries as well as pro�ciency

in using and interpreting the advanced statistical tech-

niques and models that are being suggested to understand

climate change.

Statistics is the glue that brings the di�erent dis-

ciplines together and statisticians need to form an

integral part of multidisciplinary teams to understand,

extend, and share knowledge of existing and upcom-

ing technologies and statistical methods for development

purposes.

Where Should Changes Occur?
�e three areas where statisticians can be proactive in

addressing the climate change issue are:

. Working actively with researchers in various disci-

plines in guiding research to develop and test adapta-

tion strategies.

For example, if, as is expected, temperatures are

going to rise, and this a�ects crop growth, it is now that

research agendas must be set if we are to meet the new

challenges. �ere needs to be a clear understanding

about the implications of such conditions.

. Being aggressively involved in building capacities of

data producers and data users. At present the capac-

ity in many developing countries for modeling and

interpreting data is highly inadequate

For example, creating awareness of the need

for quantity, quality, and timeliness of climate data

required for use in modeling climate processes and

for using and extending these models in collab-

oration with agriculture scientists and extension

workers.

. Promoting changes in statistics training at all levels to

meet the expanding needs.

For example, innovative statistics curriculum at

universities & colleges that mainstream climate data

analysis and that emphasize understanding and appli-

cation of concepts using a data-based approach.

Some Available Resources
Given the availability and a�ordability of computers today,

they should now form an integral part of good statistics

training. Among the many resources available to enhance

statistics training in general, and training in climatic statis-

tics in particular are:

● CAST forAfrica (www.cast.massey.ac.nz), an electronic

statistics textbook that provides an interesting interac-

tive way of understanding statistical concepts with a

number of real-life data sets from di�erent disciplines.

Climate CAST, which is an o�shoot of this, provides

the slant for exploring climatic data.�e textbook goes

from the very basic to reasonably complex topics.

● Instat (www.reading.ac.uk/ssc), a simple so�ware pack-

age with a special climatemenu and a number of useful

guides in the help section to facilitate training as well

as self study.

● GenStat (www.vsni.co.uk), a major statistical package,

is an all-embracing data analysis tool, o�ering ease of

use through comprehensive menu system reinforced

with the �exibility of a sophisticated programming lan-

guage. It has many useful facilities including analysis

of extremes.�e discovery version is provided free for

nonpro�t organizations while the latest version is avail-

able at very reasonable rates to training and research

institutions. Here again there is wealth of informa-

tion for the user in terms of guides, including a guide

to climatic analyses, and tutorials and examples from

diverse �elds.

● DSSAT (www.icasa.net/dssat) andApSim (www.apsim.

info/apsim), crop simulation models, driven by long-

term daily climatic data, which can be used to simulate

realistic long-term �eld experiments.�ese are prob-

ably more useful at postgraduate or faculty levels but

have great potential for statisticians working with agri-

culture scientists to explore possible scenarios without

actually undertaking long costly �eld experiments.

Some Working Initiatives
● Statistics Curriculum, at Faculty of Agriculture, Univer-

sity of Nairobi, Kenya

An innovative data-based problem-solving app-

roach to service teaching for the Agriculture Faculty

uses building blocks approach – from descriptive to

modeling to application – to broaden and deepen

www.cast.massey.ac.nz
www.reading.ac.uk/ssc
www.vsni.co.uk
www.icasa.net/dssat
www.apsim.info/apsim
www.apsim.info/apsim
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the students’ understanding of how statistics is used

in practice. �e curriculum includes computer pro-

�ciency and so� skills as an integral part of the

curriculum and exposes students to all types of data,

including climatic data, which is not only important in

its own right but also an important example of mon-

itoring data. Examples of how climatic analyses have

been incorporated into the service teaching of statistics

are given by Kurji and Stern ().

● Masters in Climate Data Analysis, at Science Faculty,

Maseno University, Kenya

Currently there are a number of students who are

working on their postgraduate degree with speci�c

climate-related projects, both advancing the science,

encouraging statisticians to embrace the new chal-

lenges of development, and building capacity in the

�eld of climate analysis.

● Statistics forAppliedClimatology (SIAC) at IMTR (Insti-

tute of Meteorological Training & Research), Kenya

�is is a regional program run by the Institute

for groups comprising o�cers from National Met ser-

vices and Agriculture Research Scientists to develop

statistical skills and build networks for further col-

laborative work. �e course has two components, a

-week e-learning course followed by a -week face-to-

face course, which culminates in a project that can be

continued a�er the participants return to their bases.
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Introduction
Statistics can broadly be de�ned as the science of decision-

making in the face of (random) uncertainty. Gambling has

the same de�nition, except in the narrower domain of a

gambler making decisions that a�ect his fortune in games

of chance. It is hardly surprising, then, that the two sub-

jects are closely related. Indeed, if the de�nitions of “game,”

“decision,” and “fortune” in the context of gambling are

su�ciently broadened, the two subjects become almost

indistinguishable.

Let’s review a bit of the history of the in�uence of

gambling on the development of probability and statistics.

First, of course, gambling is one of the oldest of human

activities. �e use of a certain type of animal heel bone

(called the astragalus) as a crude die dates to about 

BCE (andpossiblymuch earlier).�emodern six-sided die

dates to about  BCE.

�e early development of probability as amathematical

theory is intimately related to gambling. Indeed, the �rst

probability problems to be analyzed mathematically were

gambling problems:

. De Mere’s problem (), named for Chevalier De

Mere and analyzed by Blaise Pascal and Pierre de

Fermat, asks whether it is more likely to get at least one

six with  throws of a fair die or at least one double six

in  throws of two fair dice.

. �e problem of points (), also posed by De Mere

and analyzed by Pascal and Fermat, asks for the fair

division of stakes when a sequence of games between

two players (Bernoulli trials in modern parlance) is

interrupted before its conclusion.

. Pepys’ Problem (), named for Samuel Pepys and

analyzed by Isaac Newton, asks whether it is more

likely to get at least one six in six rolls of a fair die or

at least two sixes in  rolls of the die.

http://www.ssc.rdg.ac.uk/bucs/Manna from Heaven.pdf
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. �e matching problem (), analyzed by Pierre-

Redmond de Montmort, is to �nd the probability that

in a sequence of card draws, the value of a card is the

same as the draw number.

. St. Petersburg Paradox (), analyzed by Daniel

Bernoulli, deals with a gambler betting on a sequence

of coin tosses who doubles his bet each time he loses

(and leads to a random variable with in�nite expected

value).

Similarly, the �rst books on probability were written by

mathematician-gamblers to analyze games of chance: Liber

de Ludo Aleae written sometime in the s by the col-

orful Girolamo Cardano and published posthumously in

, and Essay d’Analyse sur les Jeux de Hazard by Mont-

mort, published in . See David  and Epstein 

for more on the in�uence of gambling on the early devel-

opment of probability and statistics.

In more modern times, the interplay between statistics

and game theory has been enormously fruitful. Hypothe-

sis testing, developed by Ronald Fisher and Karl Pearson

and formalized by Jerzy Neyman and Egon Pearson is one

of the cornerstones of modern statistics, and has a game-

theory �avor. �e basic problem is choosing between a

presumed null hypothesis and a conjectured alternative

hypothesis, with the decision based on the data at hand and

the probability of a type  error (rejecting the null hypoth-

esis when it’s true). In�uenced by the seminal work of John

vonNeumann andOscarMorgenstern on game theory and

economics (von Neumann ), the Neyman-Pearson

hypothesis-testing framework was extended by Abraham

Wald in the s to statistical decision theory (Wald ).

In this completely game-theoretic framework, the statis-

tician (much like the gambler) chooses among a set of

possible decisions, based on the data at hand according

to some sort of value function. Statistical decision theory

remains one of the fundamental paradigms of statistical

inference to this day.

Bold Play in Red and Black
Gambling continue to be a source of interesting and deep

problems in probability and statistics. In this section, we

brie�y describe a particularly beautiful problem analyzed

by Dubins and Savage (). A gambler bets, at even

stakes, on a sequence of Bernoulli trials (independent,

identically distributed trials) with success parameter p ∈
(, ).�e gambler starts with an initial fortune and must
continue playing until he is ruined or reaches a �xed tar-

get fortune. (�e last two sentences form themathematical

de�nition of red and black.) On each trial, the gambler can

bet any proportion of his current fortune, so it’s conve-

nient to normalize the target fortune to ; thus the space

of fortunes is the interval [, ].
�e gambler’s goal is to maximize the probability F(x)

of reaching the target fortune , starting with an initial

fortune x (thus, F is the value function in the context of

statistical decision theory).�e gambler’s strategy consists

of decisions on how much to bet on each trial. Since the

trials are independent, the only information of use to the

gambler on a given trial is his current fortune. �us, we

need only consider stationary, deterministic strategies. Such

a strategy is de�ned by a betting function S(x) that gives
the amount bet on a trial as a function of the current

fortune x.

Dubins and Savage showed that in the sub-fair case

(p ≤ 


), an optimal strategy is bold play, whereby the gam-

bler, on each trial, bets his entire fortune or the amount

needed to reach the target (whichever is smaller).�at is,

the betting function for bold play is

S(x) =
⎧⎪⎪⎨⎪⎪⎩

x,  ≤ x ≤ 



 − x, 


≤ x ≤ 

Conditioning on the �rst trial shows that the value

function F for bold play satis�es the functional equation

F(x) =
⎧⎪⎪⎨⎪⎪⎩

pF(x), x ∈ [, 

]

p + ( − p)F(x − ), x ∈ [ 

, ]

()

with boundary conditions F() = , F() = . More-
over, F is the unique bounded solution of () satisfying

the boundary conditions.�is functional equation is one

of the keys in the analysis of bold play. In particular, the

proof of optimality involves showing that if the gambler

starts with some other strategy on the �rst trial, and then

plays boldly therea�er, the new value function is no better

than the value function with bold play.

Interestingly, as Dubins and Savage also showed, bold

play is not the unique optimal strategy. Consider the fol-

lowing strategy: Starting with fortune x ∈ [, 

) , the

gambler plays boldly, but with the goal of reaching 

. Start-

ing with fortune x ∈ ( 

, ] , the gambler plays boldly, but

with the goal of not falling below 


. In either case, if the

gambler’s fortune reaches 

, he plays boldly and bets 


.

�us, the betting function S for this new strategy is related

to the betting function S of bold play by

S(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩




S(x),  ≤ x < 






S(x − ), 


< x ≤ 




, x = 


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By taking the three cases x ∈ [, 

) , x = 


, and x ∈ ( 


, ] ,

it’s easy to see that that the value function F for strategy S
satis�es the functional equation (). Trivially the boundary

conditions are also satis�ed, so by uniqueness, F = F and
thus S is also optimal.

Once one sees that this new strategy is also optimal,

it’s easy to construct an entire sequence of optimal strate-

gies. Speci�cally, let S = S denote the betting function for
ordinary bold play and then de�ne Sn recursively by

Sn+(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩




Sn(x),  ≤ x < 






Sn(x − ), 


< x ≤ 




, x = 



�en Sn has the same value function F as bold play and so

is optimal for each n. Moreover, if x ∈ (, ) is not a binary
rational (that is, does not have the form k

n
for some k and

n), then there exist optimal strategies that place arbitrarily

small bets when the fortune is x.�is is a surprising result

that seems to run counter to a naive interpretation of the

law of large numbers.

Bold play in red and black leads to some exotic func-

tions of the type that are not usually associated with a

simple, applied problem.�e value function F can be inter-

preted as the distribution function of a random variable X

(the variable whose binary digits are the complements of

the trial outcomes).�us F is continuous, but has deriva-

tive  almost everywhere if p ≠ 


(singular continuous). If

p = 


, X is uniformly distributed on [, ] and F(x) = x.

If G(x) denotes the expected number of trials under bold
play, starting with fortune x, thenG is discontinuous at the

binary rationals and continuous at the binary irrationals.

Finally, note that when the gambler plays boldly, his

fortune process follows the deterministic map x↦ x
mod , until the trial that ends the game (with fortune 

or ).�us, bold play is intimately connectedwith a discrete

dynamical system.�is connection leads to other interest-

ing avenues of research (see Pendergrass and Siegrist ).
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�e role of the statistician in litigation has much in com-

monwith that of a consultant in any �eld. To be an e�ective

expert witness, we should be certain that we know what

questionsmust be answered andwhat data will be required

in order to answer them. Other guidelines include

● Promoting and preserving the con�dence of the client

and the public without exaggerating the accuracy or

explanatory power of the data

● Avoiding unrealistic expectations and not promising

more than you can deliver

● Being responsible and accountable, guarding your

reputation
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● Providing adequate information to permit methods,

procedures, techniques, and �ndings to be assessed

● Addressing rather than minimizing uncertainty

However, the statistician must understand that litigation

is an adversarial process; one must consider the strategy

of the other side and be prepared for what is likely to be

presented.�e keys to e�ective statistical evidence are

● Early involvement by the statistician (as is the case in

any situation)

● Adequate data

● Clarity of presentation

● E�ective supplemental anecdotal evidence (not the

task of the statistician, but an important complement

to it)

● Understanding of the statistics by the litigator

● Recognizing that the statistician cannot reach legal

conclusions nor can s/he be an advocate (for anything

other than statistics!)

In the United States statistical evidence has been used in

cases involving

● Race, sex, and age discrimination in employment and

education

● Evidence-based medicine

● Environmental e�ects of business practices

● DNA, ear prints, bullet composition

● Death penalty

● Product liability

● Intellectual property and many other issues

● On the international scene, statistical evidence was

used in the war crimes trial of Milosevic and in other

human rights cases.

�e techniques used span the range of statistical method-

ology from descriptive statistics to t-tests to regression

(nearly ubiquitous), non-parametric tests, capture-recapture,

urnmodels, change point analysis, multiple systems analy-

sis, Mantel-Hanszel tests to Bayesian techniques (not gen-

erally popular with the courts) and a variety of other

sophisticated methods. Courts have a great deal of di�-

culty with the concept of sampling, especially when the

sample is very small in comparisonwith a population.�ey

also o�enhave di�culty in seeing the applicability of statis-

tics to an individual case. For example, evidence that, all

else being equal, the death penalty was far more likely to

be imposed when the victim was white than when the vic-

timwas black, has not kept individuals whose victims were

white from being sentenced to death.

An important observation to keep in mind is that an

expert with a newly-developed techniquemay not fare well

in court.�e usual standard for admission of statistical or

other scienti�c evidence is that

. �e testimony is based upon su�cient facts or data,

. �e testimony is the product of reliable principles and

methods, and

. �e witness has applied the principles and methods

reliably to the facts of the case

Peer-reviewed publication usually meets the second

requirement.

�e classic example of the 7misuse of statistics is
in People v. Collins (), where the following analy-

sis sent Malcolm Collins to prison. Witnesses reported

various characteristics, characteristics that Malcolm and

Janet Collins had, and the prosecutor got the expert

to agree to certain hypothetical probabilities as follows

(expert witnesses can testify about their opinions based on

hypotheses).

Characteristic Probability

Partly yellow automobile /

Man with mustache /

Woman with ponytail /

Blond woman /

Black man with beard /

Interracial couple in a car /

�en the prosecutor said: the probability of having

all of these characteristics is /,,, overriding the

expert’s objection about their lack of independence. He

continued: since there are ,, people in metropoli-

tan Los Angeles Malcolm and Janet Collins must be the

only couple with these characteristics and thus the per-

petrators of the mugging in question. In addition to the

problem with independence, of course, the probability of

“more than one given at least one” in a Poisson distribu-

tion turns out to be ., hardly the “beyond a reasonable

doubt” required for a criminal conviction.�e unfortunate

Malcolm spent some time in prison before his conviction

was overturned on appeal, as did the Garrett Wilson of
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Maryland v. Wilson (), where not only was the prob-

ability of two children dying of Sudden Infant Death Syn-

drome similarly miscalculated, but the prosecutor argued

not only that there was a low probability that two deaths

would occur in one family but that there was a low prob-

ability that the defendant was innocent (�is is called the

“prosecutor’s fallacy.”). Analogous bad statistics in the UK

led to the physician who testi�ed about statistics being

stricken from the registry and  prior convictions being

reviewed. Unfortunately one of the victims of the erro-

neous testimony, faced with a ruined career as a solicitor,

committed suicide when eventually released from prison.

But there are better results: statistics in cases I have

worked on helped convince the courts that similarly sit-

uated women and men should receive equal pensions and

that women’s sports teams should be supported in colleges

and universities as well as are men’s. In the former case a

man who had the same accumulation of pension funds in

a de�ned contribution plan as a woman, was getting %

more in monthly bene�ts on the stated grounds that (sta-

tistically speaking!) women live longer than men.�e U.S.

law clearly stated that discrimination on the basis of sex in

employment-related matters such as pensions was forbid-

den, but the pension fund administrators insisted that the

discrimination was on the basis of longevity, admitting of

course that no individual woman could be expected to live

long than any individual man. We showed that of a cohort

of  men and women at age , % of the population

would bewomen could be expected to live longer thanmen

with whom they could be matched and % of the popu-

lation would be men who would die young, unmatched

by women’s early deaths. Hence % of the population

could be paired up as to age at death – i.e., % of the

men and women “died at the same age” (for statistical pur-

poses). �us for % of the population, those “similarly

situated with respect to longevity,” men and women were

being treated di�erently.�is together with the fact that,

at least at the time (more than  years ago) men indulged

in more voluntary life-shortening behavior like smoking

and drinking to excess and the – what seemed to many –

clear statutory mandate of equal treatment, convinced the

courts.

In the sports case it was simply that % of the under-

graduate students at Brown University were women, while

only % of the student athletes were.�e probability of

such a disparity were it due to chance was about  in a

million.�us the courts found that the distribution of ath-

letes by sex was not “substantially proportionate” to the

distribution of students by sex. Statistical signi�cance isn’t

everything, but in this case it prevented the cancellation of

university support for some of the women’s teams.

My late husband used to say that mathematics and the

law both have axiom systems – it is just that the law’s is

inconsistent. Sometimes we all feel that way, but statistics

can sometimes help bring justice.
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Overview
Statistics education at all levels, school, undergraduate,

graduate, and in the workplace, has been the subject of

much debate over most of the th century and into the

st. Proposals to make statistics a part of everyone’s basic

education surfaced in the s and s, but gained

little traction. World War II forced a renewed emphasis

on scienti�c thinking and statistics gained attention as

an essential component of applied science and industrial

management. �is led to the few existing graduate pro-

grams in statistics being expanded and new ones being

developed at various universities around the world, a trend

that went on for about the subsequent forty years. Some of

these programs emphasized application and some theory,

but as the need for statistics in many di�erent �elds (busi-

ness, engineering, health sciences, social sciences, to name

a few) became essential and the advent of electronic com-

puting made it possible to meet those needs, graduate pro-

grams in statistics tended to merge toward a combination

of application and theory, a very healthy trend indeed.

During that same period, introductory undergraduate

courses were developed, but these courses stayed on the

theory track perhaps too long and only since about 

have been giving more attention to applications emphasiz-

ing data analysis, again with the assistance of ubiquitous

computing. Work beyond the introductory course has not

kept pace with the need; even todaymost colleges and uni-

versities o�er little in the way of undergraduate statistics

beyond the basic course.

Although overtures to making statistics a part of the

school curriculumwere advanced prior to the s, noth-

ing in that arena really took root until the early s as

well. Today, there is great debate on the place of statistics

in the school curriculum, but most educators agree that it

should be included in the broader picture of mathemati-

cal sciences to which all school students should be exposed

before moving on to college or the workplace.

An enlightened st century view of the role of statistics

in society was presented quite clearly in a recent article by

Hal Varian of Google:

7 The ability to take data – to be able to understand it, to
process it, to extract value from it, to visualize it, to com-
municate it – that’s going to be a hugely important skill
in the next decades, not only at the professional level but
even at the educational level for elementary school kids, for
high school kids, for college kids. Because now we really do
have essentially free and ubiquitous data. So the compli-
mentary scarce factor is the ability to understand that data
and extract value from it. (The McKinsey Quarterly, January
)
�is view of the importance of statistics is becoming

the predominant one among those a�ecting education in

the mathematical sciences, and it appears that statistics

education is on an upward swing as the information age

continues.

University Education in Statistics
�e American Statistical Association (http://www.amstat.

org/) has links to lists that contain information on over

 college and university programs in statistics around

the world.�is is a relatively small number, compared to,

say, mathematics, and many of the programs are small

or highly specialized (7biostatistics, for example). In the
United States, the nearly one hundred graduate programs

in statistics produced about  doctoral degrees and

 master’s degrees in the – academic year. A

much smaller number of bachelors degree programs pro-

duced about  degrees in that same year. �ese num-

bers are underestimates, especially at the master’s level, as

they come from a survey of mathematical science depart-

ments conducted by the American Mathematical Society

(http://www.ams.org/), but they do give a perspective on

the relatively small numbers of degrees awarded in statis-

tics at all levels. Yet, the number of job opportunities in

statistics remains large even in times of economic down-

turn, especially for those with at least a master’s degree

http://www.ams.org/
http://www.amstat.org/
http://www.amstat.org/
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in the subject, and the number of degrees awarded lags

behind demand.

Enrollments and other details on the undergraduate

teaching of statistics in the United States can be found at

in the CBMS  Survey: Statistical Abstract of Under-

graduate Programs in the Mathematical Sciences in the

United States (http://www.cbmsweb.org/). Details on cur-

rent thinking in the teaching of statistics at the college level

can be found in one of two journals, the Journal of Statistics

Education (http://www.amstat.org/PUBLICATIONS/JSE/)

and the Statistics Education Research Journal of the

International Association for Statistics Education (IASE)

(http://www.stat.auckland.ac.nz/~iase/). �e former is

directed toward experiences with teaching practices in the

classroom, o�en including useful data sets, while the lat-

ter is directed toward research on e�ective teaching and

learning of statistics. A good resource on all aspects of

undergraduate statistics education can be found at the

Consortium for Advancing Undergraduate Statistics Edu-

cation (CAUSE) (http://www.causeweb.org/).

School Education in Statistics
�e modern era of statistics education at the school level

dates from the late s, when the United Kingdom, Aus-

tralia, New Zealand and Sweden led the way in developing

educational programs and materials that were e�ective in

enlisting the interest of school children (as well as their

teachers) in data analysis. �e journal Teaching Statistics

(http://ts.rsscse.org.uk/), now a product of the Royal Sta-

tistical Society’s Center for Statistics Education, was an

outcome of those e�orts in the UK and still remains a

premier source of information on e�ective teaching of

statistics in the schools.�ese e�orts in�uenced work in

the United States that led the National Council of Teachers

of Mathematics (NCTM) (http://www.nctm.org/) to place

an emphasis on data analysis in their Principles and Stan-

dards for School Mathematics, �rst published in  and

revised in .

Over the years, national and international assessments

of school mathematics have included increasingly larger

emphases on data analysis, statistics and probability. In

its  framework, the OECD Program for International

Student Assessment (PISA) (http://www.pisa.oecd.org/)

lists Uncertainty as one of the four main areas of math-

ematics, along with Space and shape, Change and rela-

tionships, and Quantity. �ere description of this area is

enlightening:

7 As an overarching idea, uncertainty suggests two related
topics: data and chance. These phenomena are respectively

the subject of mathematical study in statistics and prob-
ability. Relatively recent recommendations concerning
school curricula are unanimous in suggesting that statis-
tics and probability should occupy a much more promi-
nent place than has been the case in the past. Specific
mathematical concepts and activities that are important
in this area are collecting data, data analysis and dis-
play/visualization, probability and inference.

For the United States, the  framework of the

National Assessment of Educational Progress (NAEP)

(http://www.nagb.org/publications/frameworks/math-fra

mework.pdf) gives data analysis, statistics and proba-

bility % of the weight of questions at the high school

level, in connection with number properties (%), mea-

surement and geometry (%) and algebra (%).

As to content emphases, the Guidelines for Assess-

ment and Instruction in Statistics Education (GAISE)

(http://www.amstat.org/education/gaise/) report of the

American Statistical Association has been instrumental in

shaping the revision of mathematics standards for many

states and some other countries. GAISE views statistics as

a problem-solving process built around the steps of:

● Formulate questions

● Collect data

● Analyze data

● Interpret results

Its guiding principles for teaching statistics are:

● Conceptual understanding takes precedence over pro-

cedural skill.

● Active learning is key to the development of conceptual

understanding.

● Real-world data must be used wherever possible in

statistics education.

● Appropriate technology is essential in order to empha-

size concepts over calculations.

● All four steps of the investigative process should be

encountered at each grade level.

● �e illustrative investigations should show situations in

which the statistics is essential to the answering of a

question, not just an add-on.

● Such investigations should be tied to the mathematics

that they illustrate, motivate and emphasize.

Statistics in the Workplace
As Hal Varian expressed it in the article cited above,

“I keep saying the sexy job in the next ten years will be

statisticians.”�ere seems to be no end of the demand for

http://www.cbmsweb.org/
http://www.amstat.org/PUBLICATIONS/JSE/
http://www.stat.auckland.ac.nz/~ iase/
http://www.causeweb.org/
http://ts.rsscse.org.uk/
http://www.nctm.org/
http://www.pisa.oecd.org/
http://www.amstat.org/education/gaise/
http://www.nagb.org/publications/frameworks/math-framework09.pdf
http://www.nagb.org/publications/frameworks/math-framework09.pdf
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statisticians, or those trained in statistics, so long as they

can combine theoretical knowledge and problem-solving

skills with the ability to do practical work with data

and computers. Another manifestation of the huge need

for statistical knowledge lies in the area of productiv-

ity and product improvement in industry, as re�ected

by the interest and excitement that surrounds the Six

Sigma program. (See the American Society for Quality,

Six Sigma program at http://www.asq.org/learn-about-

quality/six-sigma/overview/overview.html.)

Statistics has a bright future, and statistics education

must expand and adapt to meet the increasing needs of a

world economy that runs on data.
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Introduction
Statistics of extremes concerns the occurrence of rare

events: catastrophic �ooding due to very high tides or

landslides following unusually heavy rain, structural fail-

ure of dams and bridges, massive earthquakes, stock

market crashes, and so forth. It has applications in many

domains of engineering, in meteorology, hydrology and

other earth sciences, in telecommunications, in �nance

and insurance – indeed, in any domain in which major

risks arise due to unusual events or combinations thereof.

In applications the available data are o�en very limited

in relation to the event of interest, so a key issue is the

validity of extrapolation far into the tail of a distribution,

based on data that are less extreme.�is is usually formu-

lated mathematically in terms of stability properties that

reasonable models ought to possess, and these properties

place strong restrictions on the families of distributions on
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which extrapolation should be based.�e relevance of such

properties to an application must be carefully considered,

and any relevant subject-matter knowledge incorporated,

if wholly inappropriate extrapolation is to be avoided.

Maxima
Consider the maximum Mk = max(X, . . . ,Xk) of inde-
pendent identically distributed continuous random vari-

ablesX, . . . ,Xk from a distribution Fwhose upper support

point is xmax = sup{x : F(x) < }. In analogy with the
central limit theorem (see 7Central Limit�eorems), we
seek a useful limiting distribution forMk as m → ∞.�e
distribution function of Mk is F

k(x), but this converges
to a degenerate distribution putting unit mass at xmax, so

instead we consider the sequence of linearly rescaled max-

ima Yk = (Mk − bk)/ak for bk ∈ R and ak > , and ask
whether the sequences {ak}, {bk} can be chosen so that a
non-degenerate limiting distribution exists. Remarkably it

can be shown that if such a limit exists, it must lie in the

generalized extreme-value family

H(y) = exp{− [ + ξ (y − η

τ
)]

−/ξ

+
} ,

−∞ < η, ξ <∞, τ > , ()

where x+ = max(x, ).�is result, known as the extremal
types theorem, provides strong motivation for the use of

() when modeling maxima, in analogy with the use of the

Gaussian distribution for averages. Note however the con-

ditional nature of the theorem: there is no guarantee that

such a limiting distribution will exist in practice.�e con-

nection with the stability properties mentioned above is

that () is the entire class of so-called max-stable distribu-

tions, i.e., those satisfying the natural functional stability

relation H(y)m = H(bm + amy) for suitable sequences
{am}, {bm} for allm ∈ N.

�e parameters η and τ in () are location and scale

parameters.�e shape parameter ξ plays a central role, as

it controls the behavior of the upper tail of the distribu-

tion H. Taking ξ >  gives distributions with heavy upper
tails and taking ξ <  gives distributions with a �nite
upper endpoint, while the Gumbel distribution function

exp{− exp[−(y − η)/τ]} valid for −∞ < y < ∞ emerges

as ξ → . Fisher and Tippett () derived these three

classes of distributions, which are known as the Gumbel

or Type I class when ξ = , the Fréchet or Type II class
when ξ > , and the (negative or reversed) Weibull or
Type III class when ξ < .�e appearance of the 7Weibull
distribution signals that there is a close link with reliabil-

ity and with survival analysis, though in those contexts

the behavior of minima is typically the focus of interest.

Since min(X, . . . ,Xk) = −max(−X, . . . ,−Xk), results for
maxima may readily be converted into results for minima;

for example, the extremal types theorem implies that if a

limiting distribution for linearly rescaled minima exists, it

be of form  − H(−y). Below we describe the analysis of
maxima, but the ideas apply equally to minima.

Application
A typical situation in environmental science is that n years

of daily observations are available, and then it is usual to

�t the generalized extreme-value distribution () to the n

annual maxima, e�ectively taking k =  and ignoring
any seasonality or dependence in the series. �e �tting

is typically performed by maximum likelihood estimation

or by Bayesian techniques. �e method of moments is

generally quite ine�cient relative to maximum likelihood

because () has a �nite rth moment only if rξ < . O�en in
environmental applications it is found that ∣ξ∣ < /, but
in �nancial applications second and even �rst moments

may not exist. Probability weighted moments �tting of ()

is quite widely performed by hydrologists, but unlike likeli-

hood estimation, thismethod is too in�exible to deal easily

more complex settings, for example trend in location or

censored observations.

�e parameters of () are rarely the �nal goal of the

analysis, which usually focuses on quantities such as the

/p-year return level, i.e., the level exceeded once on aver-l
age every /p years; here  < p < . �e quantity /p
is known as the return period and is important in engi-

neering design.�e usual return level estimate is the  − p
quantile of (),

y−p = η + τ

ξ
{[− ln( − p)]−ξ − } ,

with parameters replaced by estimates. Analogous quan-

tities, the value at risk and expected shortfall, play a cen-

tral role in the regulation of modern �nancial markets.

Two major concerns in practice are that inference is o�en

required for a return period much longer than the amount

of data available, i.e., np ≪ , and that the �tted distri-

bution is very sensitive to the values of the most extreme

observations; these di�culties are inherent in the subject.

Threshold Exceedances
�e use of annual maxima alone seems to be wasteful

of data: much sample information is ignored. A poten-

tially more e�cient approach may be based on the fol-

lowing characterization. Let X, . . . ,Xnk be a set of nk

independent identically distributed random variables, and

consider the planar point pattern with points at (x, y)
coordinates ( j/(nk + ), ak(Xj − bk)), j = , . . . ,nk.
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�en provided ak and bk are chosen so that the limiting

distribution for (Mk −bk)/ak as k→∞ is given by expres-
sion (), the empirical point pattern above a high threshold

t will converge to a nonhomogeneous Poisson process (see

7Poisson Processes) with measure

Λ{(x, x) × (u,∞)}

= exp [ − n(x − x) ( + ξ
u − η

τ
)
−/ξ

+
] ,

 < x < x < ,u > t. ()

A variety of results follow. For example, on noting that the

rescaled maximum of k observations,Mk, is less than y> t
only if there are no points in the set (, /n) × (y,∞), ()
immediately gives ().�emodel () shows that ifN obser-

vations, y, . . . , yN , exceed a threshold u > t over a period
of n years, their joint probability density function is

exp [−n( + ξ
u − η

τ
)
−/ξ

+
]
N

∏
j=



τ
( + ξ

yj − η

τ
)
−/ξ−

+
,

which can be used as a likelihood for η, τ, and ξ. Maxi-

mum likelihood inference can be performed numerically

for this point process model (see 7Point Processes) and
regression models based on it. A popular and closely

related approach is the �tting of the generalized Pareto

distribution

Pr(X ≤ t + y ∣ X > t) = G(y) = − ( + ξy/τ)−/ξ

+ , y > ;
()

to the exceedances over the threshold t. As ξ →  expres-
sion () becomes the exponential distributionwithmean τ,

which here occupies the same central role as the Gumbel

distribution for maxima.�e distribution () has the sta-

bility property that if X ∼ G, then conditional on X > u,
X − u also has distribution G, but with parameters ξ and

τu = τ + uξ. �e conditioning in () appears to remove

dependence on the location parameter η, but this is illu-

sory because the probability of an exceedance of t must be

modeled in this setting.

One important practical matter is the choice of thresh-

old t. Too high a value for twill result in loss of information

about the process of extremes, while too low a value will

lead to bias because the point process model applies only

asymptotically for high thresholds.�e value of t is usually

chosen empirically, by calculating parameter estimates and

other quantities of interest for a number of thresholds and

choosing the lowest above which the results appear to be

stable. In practice the threshold exceedances are typically

dependent owing to clustering of rare events, and this is

usually dealt with by identifying clusters of exceedances,

and �tting () to the cluster maxima, a procedure that may

be justi�ed using the asymptotic theory.

Dependence
�e discussion above has assumed that the data are inde-

pendent, but this is rare in practice. Fortunately there

is a well-developed probabilistic theory of extremes for

stationary dependent continuous time series. To summa-

rize: under mild conditions on the dependence struc-

ture, the limiting distribution () again emerges as the

limit for the maximum, but with a twist. Suppose that

X, . . . ,Xk are consecutive observations from such a series,

that X∗ , . . . ,X
∗
k are independent observations with the

samemarginal distribution, F, and thatMk andM
∗
k are the

corresponding maxima.�en it turns out that there exist

sequences {ak} and {bk} such that (M∗
k − bk) /ak has lim-

iting distributionH if and only if (Mk−bk)/ak has limiting
distribution Hθ

, where the parameter θ ∈ (, ] is known
as the extremal index (Leadbetter et al. ).�is quantity

has various interpretations, the most direct being that θ−

is the mean size of the clusters of extremes that appear in

dependent data.�e case θ =  corresponds to indepen-
dence but also covers many other situations: for example,

Gaussian autoregressions of order p also have θ = .�is
raises a general problem in the statistics of extremes, that

of the relevance of asymptotic arguments to applications:

this result indicates that extremely rare events will occur

singly, but for levels of interest, there may be appreciable

clustering that must be modeled.

Further Reading
�e probabilistic basis of extremes is discussed from dif-

ferent points of view by Galambos (), Resnick ()

and de Haan and Ferreira (), and Resnick () dis-

cusses the closely related topic of heavy-tailed modeling.

A historically important book on statistics of extremes

is Gumbel (). Coles () and Beirlant et al. ()

give modern accounts, the former focusing exclusively on

modeling using likelihood methods, and the latter taking

a broader approach. Embrechts et al. () give an dis-

cussion oriented towards �nance, while Castillo () is

turned towards applications in engineering; as mentioned

above there is a close connection to the extensive literature

on survival analysis and reliability modeling.�e essays in

Finkenstädt and Rootzén () provide useful overviews

of various topics in extremes.

One important topic not discussed above is multivari-

ate extremes, such as the simultaneous occurrence of rare

events in many �nancial time series, or environmental

events such as heatwaves or severe rainstorms. Much cur-

rent research activity is devoted to this domain, which has



Statistics on Ranked Lists S 

S

obvious implications for 7risk analysis and management.
In addition to the treatments in the books cited above,

Kotz and Nadarajah () provide extensive references to

the early literature on multivariate extremes. Balkema and

Embrechts () take a more geometric approach.

�e journal Extremes (http://www.springer.com/

statistics/journal/) provides an outlet for both theo-

retical and applied work on extremal statistics and related

topics.
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Introduction
In various �elds of application, we are confronted with lists

of distinct objects in rank order because we can always

rank objects according to their position on a scale. When

we have variate values (interval or ratio scale), we might

replace them by corresponding ranks. In the latter case,

there is a loss of accuracy but a gain in generality. �e

ordering might be due to a measure of strength of evi-

dence or to an assessment based on expert knowledge or

a technical device. Taking advantage of the generality of

the rank scale, we are in the position of ranking objects

which might otherwise not be comparable across lists, for

instance, because of di�erent assessment technologies or

levels of measurement error.�is is a direct result of the

fact that rankings are invariant under the stretching of the

scale.

In this article, we focus primarily on statistics for two

ranked lists comprising all elements of a set of objects (i.e.,

nomissing elements). Due to limited space, wewill not dis-

cussmethods form lists in detail but give an example at the

end and some references. Let us assume two (but it could be

http://www.springer.com/statistics/journal/10687
http://www.springer.com/statistics/journal/10687


 S Statistics on Ranked Lists

up to m) assessors, one of which ranks N distinct objects

according to the extent to which a particular attribute is

present.�e ranking is from  toN, without ties.�e other

assessor also ranks the objects from  to N. Historically,

the goal of rank order statistics was to have a handle that

allows the avoidance of the di�culty of setting up an objec-

tive scale in certain applications such as in psychometrics.

It all started about  years ago with seminal work of the

psychologist and statistician Charles E. Spearman (–

) aiming at a measure of association between ranked

lists. Nowadays, there are four primary tasks when ana-

lyzing rank scale data: () measuring association between

ranked lists, () measuring distance between ranked lists,

() identi�cation of signi�cantly overlapping sublists (esti-

mation of the point of degeneration of paired rankings

into noise), and () aggregation of ranked full lists or

sublist.

Association between Ranked Lists
Suppose we have N =  major cities ranked according to
a measure of air pollution (e.g., particulate matter) and the

prevalence of respiratory disease (Table ).

We are interested in the degree of association between

these two rankings representing air pollution and disease

prevalence. Such a measure of association is the Kendall’s

τ coe�cient (Kendall , ). Let us consider any pair

of objects (oi, oj). Is the pair in direct order, we score for
this pair +, is it in inverse order, we score for this pair −.
�en the scores obtained for the two lists for a �xed pair of

objects are multiplied, giving a common score.�is proce-

dure is performed for all 

N(N − ) possible pairs ( in

this example). Finally, the total of the positive scores, say P,

and of the negative scores, say Q, is calculated.�e overall

score S = P +Q is divided by the maximum possible score
(the value that S takes when all rankings are identical).�is

heuristic procedure de�nes the τ coe�cient which in our

example is τ = .. A zero valuewould indicate indepen-
dence (no association). τ takes  for complete agreement

and − for complete disagreement. In practice, there are
more e�cient ways to calculate τ. �e coe�cient can be

interpreted as a measure of concordance between two sets

of N rankings (P is the number of concordant pairs, Q of

Statistics on Ranked Lists. Table  Example of two rankings
for ten cities ordered according to pollution rank

City (object) o o o o o o o o o o

Pollution          

Disease          

discordant pairs, and S is the excess of concordant over dis-

cordant pairs) as well as a coe�cient of disarray (minimum

moves necessary to transform the second list into the natu-

ral order of the �rst one by successively interchanging pairs

of neighbors).

Another famous measure of association is Spearman’s

ρ, also called rank correlation coe�cient (Spearman ).

Let di be the di�erence between the ranks in the two lists

for object oi (for the N objects these di�erences sum to

zero).�e coe�cient is of the form

ρ =  − ∑i d

i

N −N
. ()

When two rankings are identical, it follows from () that

ρ = , in the case of reverse order we have ρ = − (in
our example ρ = .). Q, the total of the negative scores
for Kendall’s τ coe�cient, is equivalent to the number of

pairs which occur in di�erent orders in the two lists form-

ing so-called inversions.�us τ is a linear function of the

number of inversions and ρ can be interpreted as a coef-

�cient of inversion when each inversion is weighted. If a

pair of ranks (i, j) is inverted (i < j), we score ( j − i) for
any inversion, then the sum of all such scores totals to V .

One can show that

ρ =  − V

N −N
,

where V can also be expressed as 
 ∑i d


i .

A detailed account of rank correlation methods sum-

marizing the classical literature up to  can be found in

Kendall and Gibbons (). Around that time there was

little interest in procedures for ranked data, some of them,

like Spearman’s L-based footrule (Spearman ), were

almost unknown in the statistical community because of

technical and computational shortcomings, as well as a

lack of relevance for common applications. Most recently,

there has been a dramatic shi� in relevance because of

emerging technologies producing huge amounts of ranked

lists, such as Web search engines o�ering selected server-

based information and high-throughput techniques in

genomics providing insight into gene expression. �ese

and others have given rise to new developments concern-

ing the statistical handling of rank scale information. An

essential aspect is the measurement of distance between

ranked lists.

Distance between Ranked Lists
�e most popular distance measure is Kendall’s τ intrin-

sic to his already introduced measure of association. It

is equal to the number of adjacent pairwise exchanges

required to convert one ranking to another. Let us have two
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permutations τ and τ′ of a set O of objects.�en Kendall’s
τ distance is given by

K(τ, τ
′) = ∑

{i,j}∈O
Ki,j(τ, τ

′),

where Ki,j(τ, τ′) takes  if the orderings of the ranks of
objects i and j agree in the two lists and otherwise . Its

maximum is 

N(N − ) where N is the list length.

An alternative measure of distance is Spearman’s

footrule (related to the Manhattan distance for variate val-

ues). Let us again assume two permutations τ and τ′ of a
setO of objects. Spearman’s footrule distance is the sum of

the absolute di�erences between the ranks of the two lists

over the N elements in O,

S(τ, τ
′) =

N

∑
i=

∣Rτ(oi) − Rτ′(oi)∣,

where Rτ(oi) is the rank of object oi in list τ, and Rτ′(oi)
in list τ′, respectively. As can be seen from the above for-
mulae, Spearman’s footrule takes the actual rankings of the

elements into consideration, whereas, in Kendall’s τ only

relative rankings matter. �e maximum Spearman’s dis-

tance is 

∣N∣ for N even, and 


(∣N∣ + )(∣N∣ − ) for N

odd, which corresponds to the situation in which the two

lists are exactly the reverse of each other.

For a mathematical theory of distance measures, we

refer to Fagin et al. (). Recent developments as well

as novel applications are discussed in Schimek et al. ().

Degeneration of Rankings into Noise
Typically, when the number N of objects is large or even

huge, it is unlikely that consensus between two rankings of

interest prevails. Only the top-ranked elements might be

relevant. For the remainder objects their ordering is more

or less at random.�is is not only true for surveys of con-

sumer preferences but also for many other applications of

topical interest such as the 7meta-analysis of gene expres-
sion data from several laboratories. In many instances, we

observe a general decrease of the probability for consen-

sus rankings with increasing distance from the top rank

position. Typically, there is reasonable conformity in the

rankings for the �rst, say k, elements of the lists, motivating

the notion of top-k ranked lists.

�e statistical challenge is to identify the length of the

top list. So far, heuristics have been used in practice to

specify k. Recently Hall and Schimek () could derive

a moderate deviation-based inference procedure for ran-

dom degeneration in paired ranked lists.�e result is an

estimate k̂ for the length of the so-called partial (top-k) list.

Such an inference procedure is not straightforward since

the degree of correspondence between ranked lists (full or

partial) is not necessarily high, due to various irregularities

of the assessments.

Let us de�ne a sequence of indicators, where Ij =  if the
ranking given by the second assessor to the object ranked j

by the �rst assessor, is not distant more than δ index posi-

tions from j, and otherwise Ij = . Further, let us assume ()
independent Bernoulli random variables I, . . . , IN , with

pj ≥ 


for each j ≤ j − , pj− > 


, and pj = 


for j ≥ j; ()

a general decrease of pj for increasing j that does not need

to be monotone.�e index j is the point of degeneration

into noise and needs to be estimated ( ĵ −  = k̂). �en
for a pilot sample size ν a constant C >  is chosen such
that zν ≡ (C ν− log ν)/ is a moderate-deviation bound
for testing the null hypothesisH that pk = 


for ν consec-

utive values of k, versus the alternativeH that pk > 


for at

least one of the values of k. In particular, it is assumed that

H applies to the ν consecutive values of k in the respective

series de�ned by

p̂
+
j =



ν

j+ν−
∑
ℓ=j

Iℓ and p̂
−
j =



ν

j

∑
ℓ=j−ν+

Iℓ ,

where p̂+j and p̂
−
j are estimates of pj computed from the ν

data pairs Iℓ for which ℓ lies immediately to the right of j,

or immediately to the le� of j, respectively. We reject H
if and only if p̂±j − 


> zν . Under H, the variance of p̂

±
j

equals (ν)− (this implies C > 


). Taking advantage of

this inference procedure, the complex decision problem is

solved via an iterative algorithm, adjustable for irregularity

in the rankings.

Aggregation of Ranked Lists
�e task of rank aggregation is to provide consensus rank-

ings (majority preferences) of objects across lists, thereby

producing a conforming subset of objects O∗.�e above
described inference procedure facilitates rank aggregation

because it helps to specify the partial list length k which

means a substantial reduction in the associated computa-

tional burden. As amatter of fact, list aggregation bymeans

of brute force is limited to the situation where N is unre-

alistically small.�e approach proposed in Lin and Ding

() which we describe below, outperforms most of the

aggregation techniques so far but for large setsO, the spec-

i�cation of k beforehand remains crucial. It is a stochastic

search algorithm that provides an optimal solution, i.e., a

consolidated list of objects, for a given distance measure

such as Kendall’s τ or Spearman’s footrule, to be precise,

for their penalized versions because of the partial nature

of the input lists (for details see Schimek et al. ). Lin’s

and Ding’s algorithm is preferable to those that do not aim

to optimize any criterion, thus only providing approximate
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solutions under unknown statistical properties (examples

are Dwork et al. , DeConde et al. ).

Let us assume a random matrix (X)N×k with elements
 and  with the constraints of its columns summing up

to  and its rows summing up to, at most, . Under this

setup, each realization of X, x, uniquely determines an
ordered list (permutation) of length k by the position of ’s

in each column from le� to right. Let p = (pjr)N×k denote
the corresponding probability matrix (each column sums

to ). For each column variable, Xr = (Xr ,Xr , . . . ,XNr),
a 7multinomial distribution with sample size  and prob-
ability vector pr = (pr , pr , . . . , pNr) is assumed.�en the
probability mass function is of the form

Pv(x)∝
N

∏
j=

k

∏
r=

( pjr)xjr I (
k

∑
r=
xjr ≤ ,  ≤ j ≤ N;

N

∑
j=
xjr = ,  ≤ r ≤ k

⎞
⎠
.

Any realization x of X uniquely determines the cor-
responding top-k candidate list without reference to the

probability matrix p.�e idea is to construct a stochastic
search algorithm to �nd an ordering x∗ that corresponds
to an optimal τ∗ satisfying the minimization criterion. Lin
and Ding () use a cross-entropy Monte Carlo tech-

nique in combination with an Order Explicit algorithm

(since the orders of the objects in the optimal list are

explicitly given in the probability matrix p). Cross-entropy
Monte Carlo is iterating between two steps: a simulation

step in which random samples from Pv(x) are drawn,
and an update step producing improved samples increas-

ingly concentrating around an x∗ corresponding to an
optimal τ∗.
Let us �nally illustrate the application of the inference

procedure together with rank aggregation as outlined in

this paper. We simulated m =  ranked lists τj of gene

expression data (N =  genes) fromaknown central rank-
ing as outlined in DeConde et al. ().�e length of the

top-k list was set to . In Table , we display the input lists

and the output top-k list for δ =  and ν = , apply-
ing the (penalized) Kendall’s τ distance. We obtained an

estimated k̂ =  instead of the true k = . Most objects
ranked in input position  and  are displaced due to

irregular (random) assignments.�erefore our procedure

was short-cutting the top-ranked elements for the sake of

clear separation. However, a longer partial list could have

been obtained by parameter adaptations in the moderate

deviation-based inference procedure. All calculations were

carried out with the R package TopKLists of the author and

collaborators.

Statistics on Ranked Lists. Table  Example of the
aggregation of five rankings of N =  objects (genes)

and the consensus top-ranking set of
∧

k =  objects

Input lists Output list

Rank τ τ τ τ τ τ∗

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o o

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

 o o o o o –

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

 o o o o o –
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Statistics Targeted Clinical Trials
Stratified and Personalized
Medicines
AboubakarMaitournam

University Abdou Moumouni of Niamey, Niamey, Niger

�e rapid breakthroughs in genomics-based technolo-

gies like DNA sequencing, microarrays for gene expres-

sion andmRNA transcript pro�ling, comparative genomic

hybridization (CGH), and mass spectrometry for pro-

tein characterization and identi�cation of metabolic and

regulatory pathways and networks announce the advent

of strati�ed medicine and its immediate corollary called

personalized medicine. Both strati�ed and personalized

medicine are in their infancy. But, they already raise statis-

tical and stochastic modeling challenges partially handled

by the growing multidisciplinary �eld of 7bioinformatics.

Statistics, Targeted Clinical Trials,
and Stratified Medicine
With the actual progress in the burgeoning �eld of

genomic science, most of the common diseases like can-

cer can be strati�ed at the molecular level.�e aim is to

re�ne disease taxonomies and to allocate patients tomolec-

ularly targeted therapy subgroups based on prognostic and

predictive biomarkers.�is will improve the e�ciency of

the treatment by adapting it to the patient prognostic pro-

�le. However, molecularly targeted therapy bene�ts only a

subset of patients (Betensky et al. ).�e re�nement of

the disease classi�cation is based on gene expression tran-

script pro�ling, and the prediction of which patients will

be more responsive to the experimental treatment than to

the control regimen may be based on a molecular assay

measuring, for example, expression of targeted proteins.

For strati�ed medicine, both molecular signatures of

patients and of the diseases can be used, �rstly for strati�-

cation of patients into responder and nonresponder groups

and, secondly, in the near future also for individualized

therapy. Strati�cation of patients into responder or nonre-

sponder groups based on theranostics (molecular diagno-

sis assays) is the basis of strati�ed medicine.�is implies

that the �rst steps toward strati�ed medicine are random-

ized clinical trials for the evaluation of molecularly tar-

geted therapy called targeted clinical trials (Simon ).

Targeted clinical trials have eligibility restricted to patients

predicted to be responsive to the molecularly targeted

drug.

In a modeling of phase III randomized clinical tri-

als for the evaluation of molecularly targeted therapy,

(Maitournamand Simon and Simon andMaitournam

) established that the targeted clinical trial design is

more e�cient than a conventional untargeted design with

broad eligibility.�ey evaluated relative e�ciencies, e and

e, of the two designs, respectively, with respect to the

number of patients required for randomization (e =
n

nT
)

and relatively to the number required for screening

(e = n/ (
nT
/(( − λspec)γ + λsens( − γ)))) ,

where n is the total number of randomized patients for

untargeted design, nT is that of targeted design, λspec and

λsens are the speci�city and the sensitivity of the molecular

diagnosis assay, and γ is the proportion of not responders

in the referral population. Indeed, for untargeted design, n

patients are allocated to control group and n other patients

to treatment group. Consequently, the total number of

randomized patients for untargeted design is n. In the

same way, for targeted design the total number of ran-

domized patients is nT .�us, the relative e�ciencies are

respectively

e =
n

nT
= n

nT

http://www10.org/cdrom/papers/577/
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and

e =
n

(nT/(( − λspec)γ + λsens( − γ)))

= n

(nT/(( − λspec)γ + λsens( − γ)))

�ey derived explicit formulas for calculating the above

relative e�ciencies, in the case of continuous outcome

based on normal mixture, and in the binary case by

using the Ury and Fleiss formula. In the continuous

case, outcomes are also compared by using a two-sample

Wilcoxon test, and in that nonparametric setting rela-

tive e�ciencies are evaluated by Monte Carlo simulation.

Online e�ciency calculation for binary case is available at

(http://linus.nci.nih.gov/brb/samplesize/td.html).

However, some statistical challenges related to the

design of targeted clinical trials remain. For example, ana-

lytical expressions of relative e�ciencies of targeted versus

untargeted clinical trial designs for continuous outcomes

are not trivial in the nonparametric and Bayesian settings.

Furthermore, the conventional statistical challenges raised

by genomics and microarrays (see Simon et al.  and

Sebastini et al. ) like experimental design, data quality,

normalization, choice of data analysis method, correction

of multiple hypotheses testing, validation of cluster, and

classi�er (see Simon et al.  for a comprehensive syn-

thesis) slow the progress of theranostics and subsequently

that of targeted clinical trials and strati�ed medicine.�e

latter announces the advent of Personalized Medicine.

Statistics and Personalized Medicine
Personalized medicine (Langreth andWaldholz ) is in

a restrictive and ideal sense, the determination of the right

dose at the right time for the right patient or the evaluation

of his predisposition to disease by using genomics-based

technologies andhis genomicmakeup.More precisely, per-

sonalized medicine relies on patient polymorphic mark-

ers like single nucleotide polymorphisms (SNPs), variable

number of tandem repeats (VNTR), short tandem repeats

(STRs), and other mutations (Bentley ). Personalized

medicine is sometimes mistaken as strati�ed medicine. In

fact, strati�ed medicine is the precursor of personalized

medicine.

Personalized medicine is opening huge opportunities

for mathematical formalization sketched, for example, for

molecular biology of DNA (Carbone and Gromov, ).

Indeed, the upcoming era of personalized medicine coin-

cides with the actual era of data (Donoho ) char-

acterized by massive records of various individual data

generated almost continuously. Individual i will thus be

identi�ed as a high-dimensional heterogeneous vector

(Xi, . . . ,Xim), where m is an integer, the Xij, j = , . . . ,m;
are deterministic or random qualitative and quantita-

tive variables. �e latter are for instance: biometric and

genomic �ngerprints, family records, age, gender, height,

weight, diseases status, diet, medical images, personal

medical history, family history, conventional prognostic

pro�les, and so on.

However, as personalized medicine will rely on huge

technological infrastructures, it will generate a lot of data

at the individual level.�is will lead to enormous problems

of:

● Correlation

● Multiple hypotheses testing

● Sensitivity and speci�city of molecular diagnosis tools

● Choice ofmetrics for comparisons between individuals

and between individuals and databases

● Integration of heterogeneous data and, subsequently,

qualitative and quantitative standardization.
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Statistics: Origin of that Term
Many authors discussed this, notably Karl Pearson ().

It is widely believed that the term statistics originated

from the Latin Status (situation, condition) of population

and economics; in late Latin, the same term meant State.

Another root of the term comes from the Italian word stato

(state), and a statista (a person who deals with a�airs of

state). According to Kendall (:) the �rst use of the

word statistics “occurs in a work by an Italian historian

GirolamoGhilini, who in  refers to an account of civile,

politica, statistica e militare scienza.” In  Giovanni

Botero described the political structure of several states

in his Della ragione di stato (English translation )

latinized as De Disciplina status. Humboldt () wrote

“political arithmetic (see Staatswissenscha� and Political

Arithmetic) or, in latino-barbare (late Latin), statistics.”

None of the above belonged to statistics or statisti-

cians in the modern sense and the same is true for later

sources: Shakespeare’s Hamlet (), Helenus Politanus’

() Microscopium statisticum, and for Hermann Con-

ring’s lectures (from , published ).

In English, the word statist appeared in Shakespeare’s

Hamlet, Act V, Scene  (c. ), and Cymbeline, Act II,

Scene  (c. ), and the word statistics was �rst intro-

duced into English in  byW. Hooper in his translation

of J. F. Von Bielfeld’s �e elements of universal erudition,

Containing an analytical argument of the sciences, polite

arts, and belles letters ( vols): “�e science, that is called

statistics, teaches us what is the political arrangement of all

the modern states of the known world.” (vol , p ).�e

word statistics was used again in this old sense in  by

E. A.W. Zimmermann in his book A Political Survey of the

Present State of Europe. According to Karl Pearson (:),

John Sinclair was the �rst who had attachedmodernmean-

ing to the word statistics in�e statistical account of Scot-

land drawn up from the communications of the ministers of

the di�erent parishes ( vols, –).

Staatswissenschaft and Political
Arithmetic
�e Staatswissenscha� or University statistics was born in

Germany in the mid-seventeenth century and a century

later Achenwall established its Göttingen school which

described various aspects of a given state, mostly without

use of numbers. His successor Schlözer (:) coined

a pithy saying: History is statistics �owing, and statistics is

history standing still. His followers adopted it as the de�-

nition of statistics (which did not involve studies of causes

and e�ects).

Also during that time political arithmetic had appeared

(Graunt, Petty). It widely used numbers and elemen-

tary stochastic considerations and discussed causes and

relations, thus heralding the birth of statistics. Graunt

(/) stated that it was necessary to know “how

many people there be” of each sex, age, religion, trade,

etc. (p. ), provided appropriate estimates (sometimes

quite wrongly), especially concerning 7medical statistics.
He was able to use sketchy and unreliable statistical data

for estimating the population of London and England

as well as the in�uence of various diseases on mortality

and attempted to discover regularities in the movement

of population. Contradicting the prevailing opinion, he

established that both sexes were approximately equally

numerous and derived a rough estimate of the sex ratio
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at birth (p. ). Graunt also reasonably noted that mor-

tality from syphilis was underestimated because of moral

considerations (p. ). Graunt doubted, however, that sta-

tistical investigations were needed for anyone except the

King and his main ministers (p. ).

He also compiled the �rst ever mortality table (p. );

although rather faulty but of great methodological impor-

tance, it was applied by Jakob Bernoulli and Huygens.

One of the main subjects of political arithmetic was

indeed population statistics, and it certainly con�rmed

that “In a multitude of people is the glory of a king, but

without people a prince is ruined” (Proverbs :). And

here is another link between the Old Testament and that

new discipline: Moses sent spies to the land of Canaan to

�nd out “whether the people [there] are strong or weak,

whether they are few ormany, […] whether the land is rich

or poor […]” (Numbers : –).

Tabular statisticswhich appeared in themid-eighteenth

century could have served as a link between the two new

disciplines, but its representatives were being scorned as

“slaves of tables” (Knies :). However, in the s

Leibniz recommended to compile “statistical tables” with

or without numbers and wrote several papers belonging

to both those disciplines.�ey were �rst published in the

nineteenth century, then reprinted (Leibniz ).

Numerical description of phenomena without study-

ing causes and e�ects also came into being.�e London

Statistical Society established in  declared that all

conclusions “shall admit of mathematical demonstra-

tions” (which was too di�cult to achieve), and stipulated

that statistics did not discuss causes and e�ects (which

was impossible to enforce) (see Anonymous ). Louis

() described the numerical method which was actually

applied previously. Its partisans (including D’Alembert)

advocated compilation of numerical data on diseases,

scarcely applied probability, and believed that theory was

hardly needed.

A similar attitude had appeared in other natural sci-

ences; the astronomer Proctor () plotted  thousand

stars on his charts wrongly stating that no underlying the-

ory was necessary. Compilation of statistical yearbooks,

star catalogues, etc., can bementioned as positive examples

of applying the same method, but they certainly demand

preliminary discussion of data. Empiricism underlying

the numerical method was also evident in the Biometric

school (�e Two Streams of Statistical�ought).

�e Staatswissenscha� continued to exist, although

in a narrower sense; climate, for example, fell away. At

least in Germany it is still taught at universities, certainly

includes numerical data, and studies causes and e�ects. It

thus is partly the application of the statistical method to

various disciplines and a given state. Chuprov’s opinion

(/:, :) that the Staatswissenscha� will

revive, although with an emphasis on numbers, and deter-

mine the essence of statistics was partly wrong: that science

did not at all die, neither does it determine statistics.

Statistics and the Statistical Method:
The Theory of Errors
Kolmogorov and Prokhorov  de�ned mathematical

statistics as a branch of mathematics devoted to system-

atizing, processing, and utilizing statistical data, i.e., the

number of objects in some totality. Understandably, they

excluded the collection of data and their exploratory anal-

ysis.�e latter is an important stage of theoretical statistics

which properly came into being in the mid-twentieth cen-

tury. Debates about mathematical versus theoretical statis-

tics can be resolved by stating that both data analysis and

collection of data only belong to the latter and determine

the di�erence between it and the former.

�e �rst de�nition of the theory of statistics (which

seems to be almost the same as theoretical statistics) worth

citing is due to Butte (:XI): It is a science of under-

standing and estimating statistical data, their collection,

and systematization. It is unclear whether Butte implied

applications of statistics as well. Innumerable de�nitions of

statistics (without any adjectives) had been o�ered begin-

ning with Schlözer (Staatswissenscha� and Political Arith-

metic), but the above su�ces, and I only adduce the de�ni-

tion of its aims due toGatterer (:) which seems partly

to describe both political arithmetic and the newStaatswis-

senscha� (Staatswissenscha� and Political Arithmetic): To

understand the state of a nation by studying its previous

states.

�e statistical method is reasoning based on mathe-

matical treatment of numerical data and the term ismostly

applied to data of natural sciences. �e method under-

went two previous stages. During the �rst one, statements

based on unrecorded general notions were made, witness

an aphorism (Hippocrates ): Fat men are apt (!) to

die earlier than others. Such statements express qualitative

correlation quite conforming to the qualitative nature of

ancient science.

�e second stage was distinguished by the availability

of statistical data (Graunt).�e present, third stage began

by the mid-nineteenth century when the �rst stochastic

criteria for checking statistical inferences had appeared

(Poisson, see Sheynin , Sect. .). True, those stages

are not really separated one from another: even ancient

astronomers had collected numerical observations.

Most important discoveries were made even without

such criteria. Mortality from cholera experienced by those

whose drinking water was puri�ed was eight times lower

than usual (Snow :–) which explained the spread
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of cholera. Likewise, smallpox vaccination (Jenner )

proved absolutely successful.

�e theory of errors belongs to the statistical method.

Its peculiar feature is the use of the “true value” of the

constants sought. Fourier (/:–) de�ned it as

the limit of the arithmetic mean of observations which is

heuristically similar to the frequentist de�nition of proba-

bility and which means that residual systematic errors are

included in that value.

From its birth in the second half of the eighteenth cen-

tury (Simpson, Lambert who also coined that term (,

Sect. )) to the s it constituted the main �eld of

application for the probability theory, and mathematical

statistics borrowed its principles of maximal likelihood

(Lambert , Sect. ) and least variance (Gauss ,

Sect. ) from it (from the theory of errors).

Gauss’ �rst justi�cation of themethod of7least squares
() for adjusting “indirect observations” (ofmagnitudes

serving as free terms in a system of redundant linear alge-

braic equations with unknowns sought and coe�cients

provided by the appropriate theory) was based on the

(independently introduced) principle of maximum likeli-

hood and on the assumption that the arithmetic mean of

the “direct observations” was the best estimator of obser-

vations. He abandoned that approach and o�ered a sec-

ond substantiation (), extremely di�cult to examine,

which rested on the choice of least variance. Kolmogorov

() noted in passing that it was possible to assume as

the starting point minimal sample variance (whose for-

mulaGauss hadderived) –with themethodof least squares

following at once!

Gauss (, Sect. ) stated that he only considered

random errors. Quite a few authors had been favor-

ing this second substantiation; best known is Markov

(/:) who (p. ) nevertheless declared that the

method of least squares was not optimal in any sense.

On the contrary, in case of normally distributed errors it

provides jointly e�cient estimators (Petrov ).

One of the previous main methods for treating indi-

rect observations was due to Boscovich (Cubranic ,

; Sheynin ) who participated in the measurement

of a meridian arc. In a sense it led to the median. Already

Kepler (Sheynin , Sect. ..) indirectly considered

the arithmetic mean “the letter of the law.” When adjust-

ing indirect observations, he likely applied elements of the

minimax method (choosing a “solution” of a redundant

systemof equations that corresponded to the leastmaximal

absolute residual free term) and of statistical simulation:

He corrupted observations by small arbitrary “corrections”

so that they conform to each other. Ancient astronomers

regarded observations as their private property, did not

report rejected results, and chose any reasonable estimate.

Errors of observation were large, and it is now known that

with “bad” distributions the arithmetic mean is not better

(possibly worse) than a separate observation.

Al-Biruni, the Arab scholar (th–th cc.) who sur-

passed Ptolemy, did not yet keep to the arithmetic mean

but chose various estimators as he saw �t (Sheynin ).

�ere also exists a determinate theory of errors which

examines the entire process of measurement without

applying stochastic reasoning and which is related to

the exploratory data analysis and experimental design.

Ancient astronomers selected optimal conditions for

observation, when errors least in�uenced the end result

(Aaboe and De Solla Price ). Bessel () found out

where should the two supports of a measuring bar be

situated to ensure the least possible change of its length

due to its weight. At least in the seventeenth century, nat-

ural scientists including Newton gave much thought to

suchlike considerations. Daniel Bernoulli () expressly

distinguished random and systematic errors. Gauss and

Bessel originated a new stage in experimental science by

assuming that each instrument was faulty unless and until

examined and adjusted.

Another example: the choice of the initial data. Some

natural scientists of old mistakenly thought that hetero-

geneous material could be safely used. �us, the English

surgeon Simpson (–/:) vainly studiedmor-

tality from amputations performed in many hospitals dur-

ing  years. On the other hand, conclusions were some-

times formulated without any empirical support. William

Herschel (/:) indicated that the size of a star

randomly chosen from many thousands of them will

hardly di�er much from their mean size. He did not know

that stars enormously di�ered in size so that their mean

size did not really exist and in any case nothing follows

from ignorance: Ex nihilo nihil!

Jakob Bernoulli, De Moivre, Bayes:
Chance and Design
�e theory of probability emerged in the mid-seventeenth

century (Pascal, Fermat) with an e�ective introduction of

expectation of a random event. At �rst, it studied games of

chance, then (Halley ) tables of mortality and insur-

ance, and (Huygens ) problems in mortality. Halley’s

research, although classical, contained a dubious state-

ment. Breslau, the city whose population he studied, had

a yearly rate of mortality equal to /, the same as in

London, and yet he considered it as a statistical standard.

If such a concept is at all appropriate, there should be

standards of several levels.

Equally possible cases necessary for calculating chances

(not yet probabilities) were lacking in those applica-

tions, and Jakob Bernoulli (, posthumously) proved
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that posterior statistical chances of the occurrence of

an event stochastically tended to the unknown prior

chances. In addition, his law of large numbers (the term

was due to Poisson) determined the rapidity of that

process; Markov (/:–) improved Bernoulli’s

crude intermediate calculations and strengthened his esti-

mate. Pearson () achieved even better results, but only

by applying the Stirling formula unknown to Bernoulli

(as did Markov providing a parallel alternative improve-

ment on pp –). Pearson also unreasonably compared

Bernoulli’s estimate with the wrong Ptolemaic system of

the world. He obviously did not appreciate theorems of

existence (of the limiting property of statistical chances).

Statisticians never took notice of that rapidity, nei-

ther did they cite Bernoulli’s law if not sure that the prior

probability really existed and they barely recognized the

bene�ts of the theory of probability (and hardlymentioned

the more powerful forms of that law due to Poisson and

Chebyshev).�ey did not knowor forgot thatmathematics

as a science did not depend on the existence of its objects

of study. �e actual problem was to investigate whether

the assumptions of the Bernoulli trials (their mutual inde-

pendence and constancy of the probability of the studied

event) were obeyed, and it was Lexis (�e Two Streams of

Statistical�ought) who formulated it.�e previous state-

ment of Cournot (; Sect. ), whose outstanding book

was not duly appreciated, that prior probability can be

replaced by statistics in accord with the Bernoulli’s principle

was unnoticed.

�e classical de�nition of probability, due toDeMoivre

(, Introduction) rather than to Laplace, with its equally

possible cases is still with us.�e axiomatic approach does

not help statisticians and, moreover, practitioners have to

issue from data, hence from the Mises frequentist theory

developed in the s which is not, however, recognized

as a rigorous mathematical discovery.

Arbuthnot () applied quite simple probability to

prove that only Divine Providence explained why during

 years more boys were invariably born in London than

girls since the chances of a random occurrence of that fact

were quite negligible. Cf. however the D’Alembert–Laplace

problem: a long word is composed of printer’s letters;

was the composition random? Unlike D’Alembert, Laplace

(/:) decided that, although all the arrangements

of the letters were equally unlikely, the word had a de�nite

meaning, and therefore composed with an aim. His was a

practical solution of a general and yet unsolved problem:

to distinguish between a random and a determinate �nite

sequence of unities and zeros.

Arbuthnot could have noticed that Design was

expressed by the binomial law, but it was still unknown.

Even its introduction by Jakob Bernoulli and later sci-

entists failed to become generally accepted: philosophers

of the eighteenth century almost always only understood

randomness in the “uniform” sense.

While extending Arbuthnot’s study of the sex ratio at

birth, De Moivre () essentially strengthened the law of

large numbers by proving the �rst version of the central

limit theorem (see 7Central Limit�eorems) thus intro-
ducing the normal distribution, as it became called in the

end of the nineteenth century. Laplace o�ered a some-

what better result, and Markov (/:) called their

proposition the De Moivre–Laplace theorem.

De Moivre devoted the �rst edition of his Doctrine of

Chances () to Newton, and there, in the Dedication,

reprinted in  (p. ), we �nd his understanding of the

aims of the new theory: separation of chance from Divine

design, not yet the study of various and still unknown

distributions, etc.

Such separations were being made in everyday life

even in ancient India in cases of testimonies (Bühler

/:). A misfortune encountered by a witness

during a week a�er testifying was attributed to Divine

punishment for perjury and to chance otherwise.

Newton himself (manuscript –/:–)

considered geometric probability and statistical estimation

of the probability of various throws of an irregular die.

Bayes (), a memoir with a supplement published

next year (Price and Bayes ), in�uenced statistics not

less than Laplace.�e so-called 7Bayes’ theorem actually
introduced by Laplace (/:) was lacking there, but

here is in essence his pertinent problem: ai urns (i = , )
contain white and black balls in the ratio of αi/βi. A ball

is extracted from a randomly chosen urn, determine the

probability of its beingwhite.�e di�culty here is of a logi-

cal nature:maywe assign a probability to an isolated event?

�is, however, is done, for example, when considering a

throw of a coin. True, prior probabilities such as αi/(αi +
βi) are rarely known, but we may keep to Laplace’s princi-
ple (:xi): adopt a hypothesis and repeatedly correct it

by new observations – if available!

Owing to these di�culties English and American

statisticians for about  years had been abandoning the

Bayes approach, but then (Corn�eld ) the Bayes theo-

rem had returned from the cemetery.

�e main part of the Bayes memoir was his stochastic

estimation of the unknown prior probability of the stud-

ied event as the number of Bernoulli trials increased.�is

is the inverse problem as compared with the investigations

of Bernoulli and DeMoivre, and H. E. Timerding, the Edi-

tor of the German translation of Bayes (), presented

his result as a limit theorem. Bayes himself had not done it
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for reasons concerned with rigor: unlike other mathemati-

cians of his time (including DeMoivre), he avoided the use

of divergent series. Bayes’ great discovery also needed by

statisticians was never mentioned by them. Great, because

it did not at all follow from previous �ndings and con-

cluded the creation of the initial version of the theory of

probability.

Both Bernoulli and DeMoivre estimated the statistical

probability given its theoretical counterpart and declared

that they had at the same time solved the inverse problem

(which Bayes expressly considered). Actually, the matter

concerned the study of two di�erent randomvariableswith

di�ering variances (a notion introduced by Gauss ),

and only Bayes understood that theDeMoivre formula did

not ensure a good enough solution of the inverse problem.

Statistics in the Eighteenth Century
Later statisticians took up De Moivre’s aim (Jakob

Bernoulli, De Moirre, Bayes: Chance and Design) who

actually extendedNewton’s idea of discovering theDivinely

provided laws of nature. �ey, and especially Süssmilch,

made the next logical step by attempting to discover the

laws of the movement of population, hence to discern the

pertinent Divine design. Euler essentially participated in

compiling the most important chapter of the second edi-

tion, –, of Süssmilch (), and Malthus ()

picked up one of its conclusions, viz., that population

increases in a geometric progression.

Süssmilch also initiatedmoral statistics by studying the

number of marriages, of children born out of wedlock, etc.

Its proper appearance was connected with A. M. Guerry

and A. Quetelet (s and later).

Euler published a few elegant andmethodically impor-

tant memoirs on population statistics and introduced such

concepts as increase in population and period of its dou-

bling (see Euler ). Also methodically interesting were

Lambert’s studies of the same subject.When examining the

number of children in families he (, Sect. ) arbitrar-

ily increased by a half their total number as given in his data

likely allowing for stillbirths and mortality.

Most noteworthy were Daniel Bernoulli’s investiga-

tions of several statistical subjects. His �rst memoir was

devoted to inoculation (), to not a quite safe com-

munication of a mild form of the deadly smallpox from

one person to another (Jenner introduced vaccination of

smallpox at the turn of that century) and proved that

it lengthened mean life by two years plus and was thus

highly bene�cial (in the �rst place, for the nation).�en,

he investigated the duration ofmarriages (), whichwas

necessary for insurance depending on two lives. Finally,

he (–) turned to the sex ratio at birth. He evi-

dently wished to discover the true value of the ratio of

male/female births (which does not really exist) but rea-

sonably hesitated to make a �nal choice. However, he also

derived the normal distribution although without men-

tioning De Moivre whose statistical work only became

known on the Continent by the end of the nineteenth

century.

Laplace (, Chapter ) estimated the population of

France by sampling (New Times: Great Progress and the

Soviet cul-de-sac) and studied the sex ratio at birth. In this

latter case he introduced functions of very large numbers (of

births a and b) xa( − x)b and managed to integrate them.
As usual, he had not given thought to thoroughly present-

ing his memoirs. While calculating the probability that

male births will remain prevalent for the next  years,

he did not add under the same conditions of life; and the

�nal estimate of France’s population was stated carelessly:

Poisson, who published a review of that classic, mistakenly

quoted another �gure. Laplace’s Essai philosophique ()

turned general attention to probability and statistics.

The Theory of Probability and Statistics:
Quetelet
Both Cournot () and Poisson () thought that

mathematics should be the base of statistics. Poisson with

coauthors () were the �rst to state publicly that statis-

tics was “the functioning mechanism of the calculus of

probability” and had to do with mass observations. �e

most in�uential scholars of the time shared the �rst state-

ment and likely the second as well. Fourier, in a letter to

Quetelet (, t. , p ) written around , declared

that statistics must be based on mathematical theories,

and Cauchy (/:)maintained that statistics pro-

vided means for judging doctrines and institutions and

should be applied “avec tout la rigueur.”

However, Poisson and Gavarret, his former student

who became a physician and the author of the �rst book

onmedical statistics (), only thought about large num-

bers (e.g., when comparing two empirical frequencies)

and a German physician Liebermeister (ca. ) com-

plained that the alternative, i.e., the mathematical statisti-

cal approach was needed.

�e relations between statistics and mathematics

remained undecided. �e German statistician Knapp

(:–) declared that placing colored balls in

Laplacean urns was not enough for shaking scienti�c

statistics out of them. Much later mathematicians had

apparently been attempting to achieve something of the
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sort since Chuprov (:) remarked that “Mathemati-

cians playing statistics can only be overcome by mathe-

matically armed statisticians.” In the nineteenth, and the

beginning of the twentieth century statisticians had still

been lacking such armament.

Quetelet, who dominated statistics for several decades

around the mid-nineteenth century, popularized the the-

ory of probability. He tirelessly treated statistical data,

attempted to standardize population statistics on an inter-

national scale, initiated anthropometry, declared that

statistics ought to help foresee how various innova-

tions will in�uence society, and collected and system-

atized meteorological data. Being a religious person, he

(:) denied any evolution of organisms which to

some extent explains why Continental statisticians were

far behind their English colleagues in studying biologi-

cal problems. And Quetelet was careless in his writings

so that Knapp (:) stated that his spirit was rich in

ideas but unmethodical and therefore un-philosophical.

�us, Quetelet (, t. , p ) stated without due jus-

ti�cation that the crime rate was constant although he

reasonably but not quite expressly added: under invariable

social conditions.

Quetelet paid attention to preliminary treatment of

data and thus initiated elements of the exploratory data

analysis (Statistics and the Statistical Method:�e�eory

of Errors); for example, he (:)maintained that a too

detailed subdivision of the material was a charlatanisme

scienti�que. He (:) introduced the concept of Aver-

age man both in the impossible physical sense (e.g., mean

stature and mean weight cannot coexist) and in the moral

sphere, attributed to himmean inclinations to crime (,

t. , p ) and marriage (, p ) and declared that that

�ctitious being was a specimen of mankind (, p ).

Only in passing did hemention the Poisson law of large

numbers, so that even his moral mean was hardly substan-

tiated. Worse, he had not emphasized that the inclinations

should not be attributed to individuals, and a�er his death

German statisticians, without understanding the essence

of the matter, ridiculed his innovations (and the theory of

probability in general!) which brought about the downfall

of Queteletism.

Fréchet () replaced the Average man by homme

typique, by an individual closest to the average. In any case,

an average man (although not quite in Quetelet’s sense) is

meant when discussing per capita economic indications.

New Times: Great Progress and the
Soviet cul-de-sac
In the main states of Europe and America statistical insti-

tutions and/or national statistical societies, which studied

and developed population statistics, came into being dur-

ing the �rst �ve decades of the nineteenth century. Inter-

national statistical congresses aiming at unifying o�cial

statistical data had been held from  onward, and in

 the still active International Statistical Institute was

established instead.

A century earlier Condorcet initiated and later Laplace

and Poisson developed the application of probability for

studying the administration of justice.�e French math-

ematician and mechanician Poinsot () declared that

calculus should not be applied to subjects permeated

by imperfect knowledge, ignorance, and passions, and

severe criticism was leveled at applications to jurispru-

dence for tacitly assuming independence of judges or

jurors: “In law courts people behave like themoutons de

Panurge” (Poincaré :). Better known is Mill’s decla-

ration (/:): Such applications disgrace mathe-

matics. Laplace (, Supplement of /:) only

once and in passing mentioned that assumption.

However, stochastic reasoning can provide a “guide-

line” for determining the number of witnesses and jurors

(Gauss, before /:–) and the worth of major-

ity verdicts. Poisson (:) introduced the mean prior

(statistically justi�ed) probability of the defendant’s guilt,

not to be assigned to any individual and akin to Quetelet’s

inclination to crime. Statistical data was also certainly

needed here. Quetelet (, t. , p ) studied the rate

of conviction as a function of the defendant’s personality,

noted that in Belgium the rate of conviction was con-

siderably higher than in France (:) and correctly

explained this by the absence, in the former, of the insti-

tution of jurors (:).

Statistical theory was also invariably involved in

jurisprudence in connection with errors of the �rst and

second kind. �us (Sheynin :), the Talmud stipu-

lated that a state of emergency (leading to losses) had to

be declared in a town if a certain number of its inhabitants

died during three consecutive days. Another example per-

taining to ancient India is in Jakob Bernoulli, De Moirre,

Bayes: Chance and Design.

A number of new disciplines belonging to natural sci-

ence and essentially depending on statistics had appeared

in the nineteenth century. Stellar statistics was initiated

earlier by William Herschel (:) who attempted to

catalogue all the visible stars and thus to discover the form

of our (�nite, as he thought at the time) universe. In one

section of the Milky Way he replaced counting by sample

estimation (p. ). He () also estimated the parame-

ters of the Sun’s motion by attributing to it the common

component of the proper motion of a number of stars.

Galileo () applied the same principle for estimating the



Statistics, History of S 

S

period of rotation of the Sun about its axis: he equated it

with the (largely) common period of rotation of sunspots.

Most various statistical studies of the solar system

(Cournot ) and the starry heaven (F. G. W. Struve,

O. Struve, Newcomb) followed in the mid-nineteenth cen-

tury and later (Kapteyn). Newcomb (Sheynin ) pro-

cessed more than  thousand observations of the Sun and

the planets and revised astronomical constants. His meth-

ods of treating observationswere sometimes quite unusual.

Hill and Elkin (:) concluded that the “great Cos-

mical questions” concerned not particular stars, but rather

their average parallaxes and the general relations between

star parameters.

Daniel Bernoulli was meritorious as the pioneer

of epidemiology (Statistics in the Eighteenth Century).

It came into being in the nineteenth century mostly

while studying cholera epidemics. �e other new dis-

ciplines were public hygiene (the forerunner of ecol-

ogy), geography of plants, zoogeography, biometry, and

climatology.

�us, in Halley published a chart of NorthAtlantic

showing (contour) lines of equal magnetic declination,

and Humboldt () followed suit by inventing lines

of equal mean yearly temperatures (isotherms) replac-

ing thousands of observations and thus separating clima-

tology from meteorology. �ese were splendid examples

of exploratory data analysis (Statistics and the Statistical

Method:�e�eory of Errors). Also inmeteorology, a shi�

occurred from studyingmean values (Humboldt) to exam-

ining deviations from them, hence to temporal and spatial

distributions of meteorological elements.

Statistics ensured the importance of public hygiene.

Having this circumstance inmind, Farr (:) declared

that “Any deaths in a people exceeding  in , annually

are unnatural deaths.” Data pertaining to populations in

hospitals (hospitalism, mortality due to bad hygienic con-

ditions), barracks, and prisons were collected and studied,

causes of excessive mortality indicated and measures for

preventing it made obvious.

At least medicine had not submitted to statistics with-

out opposition since many respected physicians did not

understand its essence or role. A staunch supporter of

“rational” statistics was Pirogov, a cofounder of modern

surgery and founder of military surgery. He stressed the

di�culty of collecting data under war conditions and rea-

sonably interpreted them.

Around the mid-nineteenth century, statistics essen-

tially fostered the introduction of anesthesia since that

new procedure sometimes led to serious complications.

Another important subject statistically studied was the

notorious hospitalism, see above.

Biometry indirectly owed its origin to Darwin, witness

the Editorial in the �rst issue of Biometrika in : “�e

problem of evolution is a problem of statistics. […] Every

idea of Darwin […] seems at once to �t itself to mathemat-

ical de�nition and to demand statistical analysis.”

Extremely important was the recognition of the statis-

tical laws of nature (theory of evolution, in spite of Darwin

himself), kinetic theory of gases (Maxwell), and stellar

astronomy (Kapteyn). And the discovery of the laws of

heredity (Mendel ) would have been impossible with-

out statistics. Methodologically these laws were based on

the understanding that randomness in individual cases

becomes regularity in mass (Kant, Laplace, and actually all

the stochastic laws).

Laplace (; English translation :) declared that

randomness was only occasioned by our failure to com-

prehend all the natural forces and by the imperfection of

analysis, and he was time and time again thought only to

recognize determinism.However, the causes hementioned

were su�ciently serious; he expressly formulated statisti-

cal determinism (e.g., stability of the relative number of

dead letters, an example of transition from randomness

to regularity); and his work in astronomy and theory of

errors was based on the understanding of the action of

random errors. It is also opportune to note here that ran-

domness occurs in connection with unstable movement

(Poincaré) and that a new phenomenon, chaotic behavior

(an especially unpleasant version of instability of motion),

was discovered several decades ago. Finally, Laplace was

not original: Maupertuis (:) and Boscovich (,

Sect. ) preceded him.

In the nineteenth century, but mostly perhaps in the

twentieth, the statistical method penetrated many other

sciences and disciplines beyond natural sciences so that it

is now di�cult to say whether any branch of knowledge

can manage without it.

�ere are other points worth mentioning. Correlation

theory continued to be denied even in  (Markov),

actually because it was not yet su�ciently developed. Its

appearance (Galton, Pearson) was not achieved at once.

In – the German astronomer and mathemati-

cian Seidel quantitatively estimated the dependence of the

number of cases of typhoid fever on the level of subsoil

water and precipitation but made no attempt to general-

ize his study. And in the s several scientists connected

some terrestrial phenomenawith solar activity but without

providing any such estimates.

According to Gauss (:), for series of observations

to be independent, it was necessary for themnot to contain

common measurements, and geodesists without referring

to him have been intuitively keeping to his viewpoint.
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For two series of about m observations each, n of them

common to both, the measure of their interdependence

was thought to be n/m. Kapteyn () made the same
proposal without mentioning anyone.

Estimation of precision was considered super�uous

(Bortkiewicz –, Bd , pp –): it is a

luxury as opposed to the statistical feeling. Sampling met

with protracted opposition although even in  the

German statistician Lueder (Lueder :) complained

about the appearance of “legions” of numbers. In a crude

form, it existed long ago, witness the title of Stigler ().

In the seventeenth century in large Russian estates it was

applied for estimating the quantity of the harvested grain,

and, early in the next century Marshal Vauban, the French

Petty, made similar estimations for France as a whole.

No wonder that Laplace, in , had estimated the

population of France by sampling, and, muchmore impor-

tant, calculated the ensuing error. True, Pearson () dis-

covered a logical inconsistency in his model. As a worthy

method, sampling penetrated statistics at the turn of the

nineteenth century (the Norwegian statistician Kiaer) and

Kapteyn () initiated the study of the starry heaven by

strati�ed sampling, but opposition continued (Bortkiewicz

).

�e study of public opinion and statistical control of

quality of industrial production, also based on sampling,

had to wait until the s (true, Ostrogradsky () pro-

posed to check samples of goods supplied in batches), and

econometrics was born even later, in the s.

A curious side issue of statistics, sociography, emerged

in the beginning of the twentieth century. It studies eth-

nic, religious, etc., subgroups of society, does not anymore

belong solely to statistics, and seems not yet to be really

scienti�c. And in sociology it became gradually under-

stood that serious changes in the life of a society or a large

commercial enterprise should be based on preliminary

statistical studies.

Soviet statistics became a dangerous pseudoscience

alienated from the world (Sheynin ). Its main goal

was to preserve appearances by protectingMarxist dogmas

from the pernicious in�uence of contemporary science

and it frustrated any quantitative studies of economics and

banishedmathematics from statistics. In , Lenin called

Pearson a Machian and an enemy of materialism which

was more than enough for Soviet statisticians to deny the

work of the Biometric school lock, stock, and barrel.

Culmination of the success in that direction occurred

in , during a high-ranking conference in Moscow. Its

participants even declared that statistics did not studymass

random phenomena which, moreover, did not possess any

special features. Kolmogorov, who was present at least for

his own report, criticizedWestern statisticians for adopting

unwarranted hypotheses…

Soviet statisticians invariably demanded that quantita-

tive investigations be inseparably linked with the qualita-

tive content of social life (read: subordinated to Marxism),

but they never repeated such restrictions when discussing

the statistical method as applied to natural sciences.

The Two Streams of Statistical Thought
Lexis () proposed a distribution-free test for the

equality of probabilities of the studied event in a series

of observations, the ratio Q of the standard deviation of

the frequency of the occurrence of the studied event, as

calculated by the Gauss formula, to that peculiar to the

7binomial distribution. �at ratio would have exceeded
unity had the probability changed; been equal to unity oth-

erwise, all this taking place if the trials were independent;

and been less than unity for interdependent trials. Lexis

(, Sect. ) also qualitatively isolated several types of

statistical series and attempted to de�ne stationarity and

trend.

Bortkiewicz initiated the study of the expectation of Q

and in  introduced his celebrated law of small num-

bers which actually only essentially popularized the barely

remembered Poisson distribution. In general, his works

remain insu�ciently known because of his pedestrian

manner, excessive attention to detail, and bad composition

which he refused to improve. Winkler (:) quoted

his letter (date not given) stating that he expected to have

�ve readers (!) of his (unnamed) contribution.

Markov and mostly Chuprov (–) refuted the

applicability of Q but anyway Lexis put into motion the

Continental direction of statistics by attempting to base

statistical investigations on a stochastic basis. Lexis was

not, however, consistent: even in  he held that the

law of large numbers ought to be justi�ed by empirical

data. Poisson can be considered the godfather of the new

direction.

On the other hand, the Biometric school with its leader

Pearson was notorious for disregarding stochastic theory

and thus for remaining empirical. Yet he developed the

principles of correlation theory and contingency, intro-

duced Pearsonian curves for describing asymmetrical dis-

tributions, devised the most important chi-square test (see

7Chi-Square Tests), and published many useful statisti-
cal tables. To a large extent his work ensured the birth of

mathematical statistics.

Pearson successfully advocated the application of the

new statistics in various branches of science and studied

his own discipline in the context of general history (,

posthumous).�ere (p ) we �nd: “I do feel how wrongful
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it was to work for so many years at statistics and neglect its

history.” He acquiredmany partisans and enemies (includ-

ing Fisher). Here is Newcomb in a letter to Pearson of 

(Sheynin , Sect. ..) and Hald (:): “You are

the one living author whose production I nearly always

read when I have time […] and with whom I hold imagi-

nary interviews […]”; “Between  and  [he] created

his own kingdom of mathematical statistics and biom-

etry in which he reigned supremely, defending its ever

expanding frontiers against attacks.”

Nevertheless, the work of his school was scorned

by Continental scientists, especially Markov, the apostle

of rigor. Chuprov, however, tirelessly, although without

much success, strove to unite the two streams of statis-

tical thought. Slutsky also perceived the importance of

the Biometric school. He () expounded its results and,

although only in a letter to Markov of , when he was

not yet su�ciently known, remarked that Pearson’s short-

comingswill be overcome just as it happenedwith the non-

rigorous mathematics of the seventeenth and eighteenth

centuries.

Chuprov also achieved important results, discovering

for example �nite exchangeability (Seneta ).Hemainly

considered problems of the most general nature, hence

inevitably derived unwieldy and too complicated formulas,

and his contributions were barely studied. In addition, his

system of notations was horrible. In one case he (:)

applied two-storey superscripts and, again, two-storey sub-

scripts in the same formula!

Markov, the great mathematician, was to some extent

a victim of his own rigidity. Even allowing for the horrible

conditions in Russia from  to his death in , it seems

strange that he failed, or did not wish to notice the new tide

of opinion in statistics (and even in probability theory).

Mathematical Statistics
In what sense is mathematical statistics di�erent from

biometry? New subjects have been examined such as

sequential analysis, the treatment of previously studied

problems (sampling, time series, hypothesis testing) essen-

tially developed, links with probability theory greatly

strengthened (Pearson’s empirical approach is not toler-

ated anymore). New concepts have also appeared and this

seems to be a most important innovation. Fisher ()

introduced statistical estimators with such properties as

consistency, e�ciency, etc., some of which go back to

Gauss who had used and advocated the principle of unbi-

ased minimum variance.

It is known that the development of mathematics has

been invariably connected with its moving ever away from

Nature (e.g., to imaginaries) and that the more abstract it

was becoming, the more it bene�ted natural sciences.�e

transition from true values to estimating parameters was

therefore a step in the right direction. Nevertheless, the

former, being necessary for the theory of errors, are still

being used in statistics, and even for objects not existing in

Nature, seeWilks (, Sect. .), also preceded by Gauss

(, Sects.  and ) in the theory of errors.

Rao (Math. Rev. k:) noted that modern

statistics has problems with choosing models, measuring

uncertainty, testing hypotheses, and treating massive sets

of data, and, in addition, that statisticians are not acquiring

su�cient knowledge in any branch of natural science.
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One can de�ne statistics in various ways. My favorite de�-

nition is bipartite:

7 Statistics is both the science of uncertainty and the technol-

ogy of extracting information from data.

�is de�nition captures the two aspects of the discipline:

that it is about understanding (and indeed manipulating)

chance, and also about collecting and analyzing data to

enable us to understand the world around us. More specif-

ically, of course, statistics can have di�erent aims, includ-

ing prediction and forecasting, classi�cation, estimation,

description, summarization, decision-making, and others.

Statistics has several roots, which merged to form

the modern discipline. �ese include () the theory of

probability, initially formalized around the middle of the

seventeenth century in attempts to understand games of

chance, and then put on a sound mathematical footing

withKolmogorov’s axioms around ; () surveys of peo-

ple for governmental administrative and economic pur-

poses, as well as work aimed at constructing life tables

(see 7Life Table) for insurance purposes (see 7Insurance,
Statistics in); and () the development of arithmetic meth-

ods for coping with measurement errors in areas like

astronomy and mechanics, by people such as Gauss, in the

eighteenth and nineteenth centuries.

�is diversity of the roots of statistics has beenmatched

by the changing nature of discipline.�is is illustrated by,

for example, the papers which have appeared in the journal

of the Royal Statistical Society (the journal was launched in

). In the earlier decades, there was a marked empha-

sis on social matters, which gradually gave way around the

turn of the century, to more mathematical material. �e

�rst half of the twentieth century then saw the dramatic

development of deep and powerful ideas of statistical infer-

ence, which continue to be re�ned to the present day.

In more recent decades, however, the computer has had

an equally profound impact on the discipline. Not only

has this led to the development of entirely new classes

of methods, it has also put powerful tools into the hands

of statistically unsophisticated users – users who do not

understand the deepmathematics underlying the tools. As

might be expected, this can be a mixed blessing: power-

ful tools in hands which understand and know how to

use them properly can be a tremendous asset, but those
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same tools in hands which can misapply them may lead

to misunderstandings.

Although the majority of statisticians are still ini-

tially trained in university mathematics departments (with

statistics courses typically being part of a mathematics

degree), statistics should not be regarded as a branch of

mathematics – just as physics, engineering, surveying, and

so on have a mathematical base but are not considered

as branches of mathematics. Statistics also has a mathe-

matical base, but modern statistics involves many other

intrinsically non-mathematical ideas.

An illustration of this di�erence is given by the con-

trast between probability (properly considered as a branch

of mathematics – based on an axiom system) and statis-

tics (which is not axiomatic). Given a system or process

which is producing data, probability theory tells us what

the data will be like. If we repeatedly toss a fair coin, for

example, probability theory tells us about the properties of

the sequences of heads and tails we will observe. In con-

trast, given a set of data, statistics seeks to tell us about the

properties of the system which generated the data. Since,

of course, many di�erent systems could typically have

generated any given data set, statistics is fundamentally

inductive, whereas probability is fundamentally deductive.

At its simplest level, statistics is used to describe or

summarize data. A set of , numerical values can

be summarized by their mean and dispersion – though

whether this simple two-value summary will be adequate

will depend on the purpose for which the summary is

being made. At a much more sophisticated level, o�cial

statistics are used to describe the properties of the entire

population and economy of a country: the distribution

of ages, how many are unemployed, the Gross National

Product, and so on. �e e�ective governance of a coun-

try, management of a business, operation of an education

system, running of a health service, and so on, all depend

on accurate descriptive statistics, as well as on statistical

extrapolations of how things are likely to change in the

future.

O�en, however, mere descriptions are not enough.

O�en the observed data are not the entire population, but

are simply a sample from this population, and the aim is to

infer something about the entire population. Indeed, o�en

the “entire population” may not be well-de�ned; what, for

example, would be the entire population of possible mea-

surements of the speed of light in repeated experiments? In

such cases, the aim is to use the observed sample of values

as the basis for an estimate of the “true underlying” value

(of the speed of light in this example).

A single “point” estimate is all very well, but we must

recognize that if we had chosen a di�erent sample of val-

ues we would probably have obtained a di�erent estimate

– there is uncertainty associated with our estimate. A point

estimate can be complemented by indicating the range of

this uncertainty: indicating how con�dent we can be that

the true unobserved value lies in a speci�ed interval of val-

ues. Basic rules of probability tell us that increasing the

sample size allows us to narrow down this range of uncer-

tainty (provided the sample is collected in a certain way),

so that we can be as con�dent as we wish (or as we can

a�ord) about the unknown true value.

Estimation is one aspect of statistics, but o�en one has

more pointed questions. For example, one might be evalu-

ating a new medicine, and want to test whether it is more

e�ective than the current drug of choice. Or one might

want to see how well the data support a particular the-

ory – that the speed of light takes a certain speci�ed value,

for example. Since, in the �rst example, people respond

di�erently, and, in the second, measurement error means

that repeated observations will di�er, the data will typically

consist of several observations – a sample, as noted above

– rather than just one. Statistical tests, based on the sample,

are then used to evaluate the various theories. Hypothe-

sis testing methods (Neyman-Pearson hypothesis tests) are

used for comparing competing explanations for the data

(that the proposed new medicine is more e�ective than or

is as e�ective as the old one, for example). Such tests use

probability theory to calculate the chance that some sum-

mary statistic of the data will take values in given ranges. If

the observed value of the summary statistic is very unlikely

under one hypothesis, but much more likely under the

other, one feels justi�ed in rejecting the former and accept-

ing the latter. Signi�cance testing methods (Fisherian tests)

are used to see how well the observed data match a partic-

ular given hypothesis. If probability calculations show that

one is very unlikely to obtain a value at least as extreme

as the observed value of the summary statistic then this is

taken as evidence against the hypothesis.

Such testing approaches are not uncontroversial.

Intrinsic to them is the calculation of how o�en one would

expect to obtain such results in repeated experiments,

assuming that the data arose from a distribution speci�ed

by a given hypothesis.�ey are thus based on a particular

interpretation of probability – the frequentist view. How-

ever, one might argue that hypothetical repeated exper-

iments are all very well, but in reality we have just the

one observed set of data, and we want to draw a conclu-

sion using that one set.�is leads to 7Bayesian statistics.
Bayesian statistics is based on a di�erent interpretation

of probability – the subjective view. In this view, proba-

bility is regarded as having no external reality, but rather

as a degree of belief. In particular, in the testing context,

the di�erent values of the parameters of the distribution

producing the data are themselves assumed to take some
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distribution. In this approach to inference, one then uses

the data to re�ne one’s beliefs about the likely form of the

distribution of the parameters, and hence of the distribu-

tion from which the data were generated.

�e likelihood function plays an important role in all

schools of inference; it is de�ned as the probability of

obtaining the observed data, viewed as a function of the

parameters of the hypothesized distribution. �e likeli-

hood function is used in Bayesian inference to update one’s

initial beliefs about the distribution of the parameters.

A further school of statistics, the likelihood school, focuses

attention on the likelihood function, on the grounds that

it is this which contains all the relevant information in

the data. Comparative discussions of the various schools

of inference, along with the various profound concepts

involved, are given by Barnett () and Cox ().

�e choice of the term “Bayesian” to describe a

particular school of inference is perhaps unfortunate:

7Bayes’ theorem is accepted and used by all schools.

�e key distinguishing feature of Bayesian statistics is

the subjective interpretation of probability and the inter-

pretation of the parameters of the distributions as random

variables themselves.

�e di�erences between the various schools of infer-

ence have stimulated profound, and sometimes �erce

debates. Increasingly, however, things seem to be mov-

ing towards a recognition that di�erent approaches are

suited to di�erent questions. For example, one might dis-

tinguish between what information the data contain, what

we should believe a�er having observed the data, and

what action we should take a�er having observed the

data.

�us far I have been talking about data without men-

tioning how it was collected. But data collection is a

key part of statistical science. Properly designed data col-

lection strategies lead to faster, cheaper collection, and

to more accurate results. Indeed, poorly designed data

collection strategies can completely invalidate the con-

clusions. For example, an experiment to compare two

medicines in which one purposively gave one treatment to

the sicker patients is unlikely to allow one to decide which

is the more e�ective treatment. Sub-disciplines of statis-

tics such as experimental design and survey sampling are

concerned with e�ective data collection strategies. Exper-

imental design studies situations in which it is possible

to manipulate the subject matter: one can choose which

patient will get which treatment, one can control the tem-

perature of a reaction vessel, etc. Survey design is con-

cerned with situations involving observational data, in

which one studies the population as it is, without being

able to intervene: in a salary survey, for example, one sim-

ply records the salaries. Observational data are weaker in

the sense that causality cannot be unambiguously estab-

lished: with such data there is always the possibility that

other factors have caused an observed correlation. With

experimental data, on the other hand, one can ensure that

the only di�erence between two groups is a controlled dif-

ference, so that this must be the cause of any observed

outcome di�erence. Key notions in experimental design

are control groups, so that like is being compared with like,

and random assignment of subjects to di�erent treatments.

A key notion in survey sampling is the random selection of

the sample to be analyzed. In both cases, 7randomization
serves the dual roles of reducing the chance of biases which

could arise (even subconsciously) if purposive selection

were to be used (as in the example of giving one treat-

ment to sicker patients), and permitting valid statistical

inference.

Once the data set has been collected, one has to analyze

it. �ere exist a huge number of statistical data analy-

sis tools. A popular misconception is that one can think

of these tools as constituting a toolbox, from which one

chooses that tool which best matches the question one

wishes to answer.�is notion has probably been promoted

by the advent of powerful and extensive so�ware pack-

ages, such as SAS and SPSS, which have modules struc-

tured around particular analytic techniques. However, the

notion is a misleading one: in fact, statistical techniques

constitute a complex web of related ideas, with, for exam-

ple, some being special cases of others, and others being

variants applied to di�erent kinds of data. Rather than a

toolbox, it is better to think of statistics as a language,

which enables one to construct a way to answer any par-

ticular scienti�c question.�is perspective is illustrated by

statistical languages such as Splus and R. Statistical tools

are underwritten by complex and powerful theory, which

ties them together in various ways. For example:

● We can compare two groups using a t-test.

● If we are uneasy about the t-test assumptions, we

might use a nonparametric alternative, or perhaps a

7randomization test.
● �e t-test can be generalized to deal with more than

two groups, as in 7analysis of variance.
● And it can be generalized to deal with a continuous

“independent” variable in regression.

● Analysis of variance and regression are each special

cases of 7analysis of covariance.
● And all these are examples of linear models.

● Linear models can be extended by generalizing the

assumed distributional forms, in 7generalized linear
models.

● Analysis of variance itself can be generalized to

the multivariate situation in multivariate analysis
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of variance (see 7Multivariate Analysis of Vari-
ance (MANOVA)) and the general linear model (see

7General Linear Models).
● And linear discriminant analysis (see 7Discriminant
Analysis: An Overview, and 7Discriminant Analysis:
Issues and Problems) can be regarded as a special case

of multivariate analysis of variance.

● Linear discriminant analysis is a special case of

supervised classi�cation, with other such tools being

7logistic regression,7neural networks, support vector
machines, recursive partitioning classi�ers, and so on.

● And on and on.

�ere are some very important subdomains of statis-

tics which have been the focus of vast amounts of work,

because of the importance of the problems with which

they deal. �ese include (but are certainly not limited

to) areas such as time series analysis, supervised classi-

�cation, nonparametric methods, latent variable models,

neural networks, belief networks, and so on.

Certain important theoretical ideas pervade statistical

thinking. I have already referred to the likelihood function

as a central concept in inference. Another example is the

concept of over�tting. When one seeks to model a sample

of observations with a view to understanding the mech-

anism which gave rise to it, it is important to recognize

that the sample is just that, a sample. A di�erent sample

would probably be rather di�erent from the observed sam-

ple.What one is really seeking to do is capture the common

underlying characteristics of the various possible samples,

not the peculiar characteristics of the sample one happens

to have drawn. Too close a �t of a model to the observed

data risks capturing the idiosyncrasies of these data.�ere

are various strategies for avoiding this, including smooth-

ing a model, using a weaker model, averaging multiple

models based on subsets of the data or random perturba-

tions of it, adding a penalization term to the measure of

goodness of �t of the model to the data so that over�tting

is avoided, and others.

I have already noted how the discipline of statistics

has evolved over the past two centuries.�is evolution is

continuing, driven by the advent of new application areas

(e.g., 7bioinformatics, retail banking, etc.) and, perhaps
especially, the computer. �e impact of the computer is

being felt inmanyways. A signi�cant one is the appearance

of very large data sets – in all domains, from telecom-

munications, through banking and supermarket sales, to

astronomy, genomics, and others. Such large data sets pose

new challenges.�ese are not merely housekeeping ones

of keeping track of the data, and of the time required to

analyze them, but also new theoretical challenges. Closely

related to the appearance of these very large data sets is

the growth of interest in streaming data: data which simply

keep on coming, like water from a hose. Again, such data

sets are ubiquitous, and typically require real-time analysis.

�e computer has also enabled signi�cant advances

through computer intensive methods, such as 7bootstrap
methods and 7Markov chain Monte Carlo. Bootstrap
methods approximate the relationship between a sample

and a population in terms of the observed relationship

between a subsample and the sample.�ey are a powerful

idea, which can be used to explore properties of even very

complex estimators and procedures. Markov chain Monte

Carlomethods (see7MarkovChainMonteCarlo) are sim-
ulation methods which have enabled the practical imple-

mentation of Bayesian approaches, which were otherwise

stymied to a large extent by impractical mathematics.

Graphical displays have long been a familiar staple

of statistics – on the principle that a picture is worth a

thousand words, provided it is well-constructed. Comput-

ers have opened up the possibility of interactive dynamic

graphics for exploring and displaying data. However, while

some exciting illustrations exist, the promise has not yet

been properly ful�lled – though this appears to be simply

a matter of time.

Another important change driven by the computer has

been the advent of other data analytic disciplines, such as

machine learning, 7data mining, image processing, and
pattern recognition (see 7Pattern Recognition, 7Aspects
of and Statistical Pattern Recognition Principles). All of

these have very considerable overlaps with statistics – to

the extent that one might regard them as part of “greater

statistics,” to use JohnChambers’s phrase (Chambers ).

Such disciplines have their own emphasis and �avor (e.g.,

data mining being concerned with large data sets, machine

learning with an emphasis on algorithms rather thanmod-

els, etc.) but it is futile to try to draw sharp distinctions

between them and statistics.

From an external perspective, perhaps the single most

striking thing about statistics is how pervasive it is. One

cannot run a country e�ectively without measures of

its social and economic characteristics, without know-

ing its needs and resources. One cannot run a corpora-

tion successfully without understanding its customer base,

its manufacturing and service operations, and its work-

force. One cannot develop new medicines without rigor-

ous clinical trials. One cannot control epidemics without

forecasting and extrapolation models. One cannot extract

information from physics or chemistry experiments with-

out proper statistical techniques for analyzing the resulting

data. And so on and on. All of these requiremeasurements,

projections, and understanding based on statistical analy-

sis. �e fact is that the modern world is a very complex

place. Statistical methods are vital tools for understanding
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its complexity, grasping its subtleties, and coping with its

ambiguities and uncertainties.

An excellent overview of statistics is given by

Wasserman (), and a short introduction describing

the power and fascination of themodern discipline is given

by Hand (). Aspects of the modern discipline are set

in context in Hand ().
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Statistics: Controversies in
Practice
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Controversies may arise when statistical methods are

applied to real problems.�e reasons vary, but some pos-

sible sources are () the user fails to appreciate the lim-

itations of the methods and makes claims that are not

justi�ed, () the use of statistical methods is a�ected by

non-statistical considerations, and () researchers disagree

on the appropriate statistical methods to use. In what fol-

lows, we provide examples of controversies involving all

these sources.�e references allow readers to explore these

examples in more detail. We hope that this article will

help readers identify and assess controversies that they

encounter in practice.

Example : Web Surveys
Using the Internet to conduct “Web surveys” is becom-

ing increasingly popular. Web surveys allow one to collect

large amounts of survey data at lower costs than traditional

methods. Anyone can put survey questions on dedicated

sites o�ering free services, thus large-scale data collection

is available to almost every person with access to the Inter-

net. Some argue that eventually Web surveys will replace

traditional survey methods.

Web surveys are not easy to do well. Problems faced by

those who conduct them include () participants may be

self-selected, () certain members of the target population

may be systematically underrepresented and () nonre-

sponse.�ese problems are not unique toWeb surveys, but

how to overcome them in Web surveys is not always clear.

For a more complete discussion, see Couper ().

Controversy arises because those who doWeb surveys

may make claims about their results that are not justi�ed.

�e controversy can be seen in the Harris Poll Online.

�e Harris Poll Online has created an online research

panel of over  million volunteers, consisting “of a diverse

cross-section of people residing in the United States, as

well as in over  countries around the world” (see

www.harrispollonline.com/question.asp). When the Har-

ris Poll Online conducts a survey, a probability sample is

selected from the panel and statistical methods are used

to weight the responses and provide assurance of accuracy

and representativeness. As a result, the Harris Poll Online

believes their results generalize to somewell-de�ned larger

population. But the panel members (and hence partic-

ipants) are self-selected, and no weighting scheme can

account for all the ways in which the panel is di�erent from

the target population.

Example : Accessibility of Data
Research in many disciplines involves the collection and

analysis of data. In order to assess the validity of the

research, it may be important for others to verify the qual-

ity of the data and its analysis. Scienti�c journals, as a

rule, require that published experimental �ndings include

enough information to allow other researchers to repro-

duce the results. But how much information is enough?

Some argue that all data that form the basis for the con-

clusions in a research paper should be publicly available,

or at least available to those who review the research for

possible publication.

Controversy arises because of non-statistical consider-

ations. Data collection can be time consuming and expen-

sive. Researchers expect to use the data they collect as

the basis for several research papers.�ey are reluctant to

make it available to others until they have a chance to fully

exploit the data themselves.

An example of this controversy occurred when mass

spectrometry data from a sample of a fossilized femur of

a Tyrannosaurus rex indicated that fragments of protein

closely matched sequences of collagen, the most common

protein found in bones, from birds (see Asara et al. 

and Schweitzer et al. ). �is was the �rst molecular

con�rmation of the long-theorized relationship between

dinosaurs and birds.Many researcherswere skeptical of the

results (see, for example, Pevzner et al. ).�ey ques-

tioned the quality of the data, the statistical analyses, and

doubted that collagen could survive so long, even partially

intact. Critics demanded that all the data be made publicly

available. Eventually researchers posted all the spectra in

an online database. Although there was evidence that some

of the data may have been contaminated, a reanalysis (see

Bern et al. ) supported the original �ndings.

Example : Placeboes in Surgery
Randomized, double-blind, placebo-controlled trials are

the gold standard for evaluating newmedical interventions

and are routinely used to assess new medical therapies.

However, only a small percentage of studies of surgery use

randomized comparisons. Surgeons think their operations

succeed, but even if the patients are helped, the placebo

www.harrispollonline.com/question.asp
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e�ect may be responsible. To �nd out, one should con-

duct a proper experiment that includes a “sham surgery” to

serve as a placebo. See Freeman et al. () and Macklin

() for discussion of the use of placeboes in surgery

trials.

�e use of placeboes in surgery trials is controver-

sial. Arguments against the use of placeboes include non-

statistical considerations. Placebo surgery always carries

some risk, such as postoperative infection. A fundamental

principle is that “the interests of the subject must always

prevail.” Even great future bene�ts cannot justify risks to

subjects today unless those subjects receive some bene�t.

No doctor would do a sham surgery as ordinary therapy,

because there is some risk. If we would not use it in med-

ical practice, it is not ethical to use it in a clinical trial. Do

these arguments outweigh the acknowledged bene�ts of a

proper experiment?

Example : Hypothesis Testing in
Psychology Research
Research studies inmany �elds rely on tests of signi�cance.

Custommay dictate that results should be signi�cant at the

% level in order to be published. Overreliance on statisti-

cal testing can lead to bad habits. One simply formulates

a hypothesis, decides on a statistical test, and does the

test. One may never look carefully at the data.�e limita-

tions of tests are so severe, the risks of misinterpretation so

high, and bad habits so ingrained, that some critics in psy-

chology have suggested signi�cance tests be banned from

professional journals in psychology.

Here the controversy involves the appropriate statis-

tical method. To help resolve the controversy, the Amer-

ican Psychological Association appointed a Task Force

on Statistical Inference. �e Task Force did not want to

ban tests. Its report (see Wilkinson ) discusses good

statistical practice in general. Regarding hypothesis test-

ing, the report states “It is hard to imagine a situation

in which a dichotomous accept-reject decision is better

than reporting an actual p-value or, better still, a con�-

dence interval.…Always provide some e�ect-size estimate

when reporting a p-value.” Although banning tests might

eliminate some abuses, the committee thought there were

enough counterexamples to justify forbearance.
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Statistical Science is a Wonderful Subject
Many scientists in their training take a basic course in

statistics, and from it most of them learn almost nothing
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that will be useful to them in the practice of their science.

In the wider world statistics has a bad name:

7 There are lies, dams lies, and statistics
You can prove anything with statistics
and so on.

I give here a personal view of my subject, what its com-

ponents are, and what can be done with it. It should have

not have a bad name; rather it should be regarded as a won-

derful subject in which there are many new discoveries to

be made.

Statistical Science
“Statistics” is an unfortunate term, because it can refer

both to data and methods used to analyze those data. I,

therefore, propose to use the term “Statistical science.” It

embraces all the techniques that can be used tomake sense

of �gures. In principle it can be useful in the analysis of data

from any scienti�c experiment or survey. It is above all a

scienti�cally useful activity. A good statistical analysis will

reveal; it will not obscure. I shall use the term “statistician”

as a short form of “statistical scientist.”

The Components of Statistical Science
Mathematics
�e statistician must know some mathematics. Certain

components are vital; for example, matrix algebra and

methods for describing the structures of data. Remember

always that mathematics, or parts of it, are tools for the

statistician in his work. One part of mathematics is special

and will be described separately.

Probability Theory
�e statistician’s use of probability theory is primarily for

the construction of statistical models. �ese involve the

use of probability distributions of one or more random

variables to describe the assumed random components in

the data, that is those aspects of the data that can only

be described by their mass behavior. In addition models

include what are described as �xed e�ects, that is e�ects

that are assumed to stay constant across di�erent data sets.

In their statistics course scientists are usually introduced

to the idea of statistical signi�cance. Many come to believe

that the sole purpose of a statistical analysis is to show that

a di�erence between the e�ects of two treatments applied

in an experiment is signi�cant.�e statistician knows that

the size of a signi�cant di�erence depends both on the size

of the e�ect, the size of the sample and the underlying vari-

ation in themeasurements. It is of course important that an

experiment should be big enough to show clearly the dif-

ferences it is sought tomeasure.Why is there this mistaken

stress on the idea of statistical signi�cance? I believe that

it is because it gives the lecturer an opportunity to prove

some mathematical theorems from probability theory.

Very o�en the lecturer is only interested in probability

theory, whereas the statistician’s interests are much wider.

It is very important to stress that statistical science is not

the same as probability theory.

Statistical Inference
Here we reach what I believe to be the heart of statistical

science, namely what inferences may be legitimately made

from the data we are analyzing.�e components are the

data we have, past data on a similar topic, and a statistical

model for describing the data (we hope). When we have

data from a number of experiments we shall be looking for

e�ects that are constant across these experiments, in other

word looking for statistical sameness rather than statistical

di�erences. If we can �nd such e�ects we have extended

the scope of our inferences about the e�ects in question.

How do we come by the statistical model that drives

our inferences?

Sometimes there is a standard model from past work

that has stood the test of time, but quite o�en the statis-

tician has to draw on his own experience to formulate a

suitable model.

�e inference problem then becomes “given this

model, de�ned by a set of unknown parameters, which

values of those parameters do the data point to?”

�e basic idea here is that of 7likelihood, �rst intro-
duced by Fisher in the s. A likelihood is not a probabil-

ity, and so requires new methods for its manipulation, not

covered by probability theory. Unlike random variables,

which can be integrated over any part of their distribution,

likelihoods can be compared only at di�erent ordinates.

Fisher introduced the idea of maximum likelihood for

de�ning the most likely values of the parameters given

the data. However it may be that the model is unsuitable

for describing the data; then the inference will be false.

�e statistician can test this by de�ning a goodness-of-�t

statistic and testing the statistic against its null distribution.

Models can be extended by adding terms, deleting terms,

or exchanging terms, or by replacing a linear term by a

smooth curve driven by the data, etc.

The Experimental Cycle
Both experiments and surveys need to be designed, and

the statistician can be helpful at this stage if he is knowl-

edgeable. �e need for design is still not known as well

as it should be: remember that double-blind trials, now
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widely used inmedicine, took  years to become accepted!

�e next stage is the execution of an experiment or survey.

Many things can go wrong at this stage, biases introduced

and so on, and a good statistician will be aware of such

things. It is a good thing if all statisticians in their train-

ing actually do at least one experiment themselves, so that

they get �rst-hand experience of the di�culties an exper-

imenter may encounter. A�er execution comes analysis,

which is o�en of major concern to the statistician. Output

from analysis will include estimates of the e�ects of inter-

est to the experimenter, together with estimates of their

uncertainty.

Experiments rarely stand on their own, so �nally a

stage of consolidation is required, where results from the

current experiment are compared with previous exper-

iments on the same topic. �is is o�en called 7meta-
analysis, though I prefer the older combination of infor-

mation. �is completes the experimental cycle except

for writing-up of the results; then the whole cycle can

start again.

The Status of Bayesian Statistics
Many statisticians espouse methods based on Bayes’s the-

orem for the analysis of experiments. In this framework

there are no �xed e�ects and every parameter in the model

is assigned a prior probability distribution. Much has been

written about making these prior distributions uninfor-

mative etc., and some Bayesians regard these as purely

subjective assessments. Given data, there is still no way of

checking these prior assumptions. Various theorems can

be proved from the Bayesian speci�cation, but in my view

these have nothing to do with the problems of scienti�c

inference. Indeed I regard the problem given by Bayes in

his original paper as much better described by a two-stage

likelihood, than by a prior probability.

The Statistician and His Clients
A statistician will usually be working with other scientists

who have statistical problems in the analysis of their data.

�e statisticianmust establish a closeworking relationwith

those he is helping, and to do this it is essential to learn

some of the scientist’s jargon. In my �rst job I had to learn

at least six di�erent jargons.�e statistician should encour-

age his clients to learn something of his own jargon, so

that his methods are not thought of as being some kind

of magic!

Conclusion
Statistical science has a wider scope than any other science,

because the idea of inference is not subject-dependent.

Its scope is therefore huge and its processes are

continually both challenging and interesting. Remember

only that statistical science is not the same as probabil-

ity theory; it is much wider and (I think) much more

interesting.
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Stem-and-Leaf Plot

Vesna Bucevska

Associate Professor, Faculty of Economics

Ss. Cyril and Methodious University, Skopje, Macedonia

A stem-and-leaf plot (or simply stemplot), was invented by

John Tukey (�e idea behind the stemplot can be traced

back to the work of Arthur Bowley in the early s.)

in his paper “Some Graphic and Semigraphic Displays” in

. It is a valuable tool in exploratory data analysis, since

it displays the relative density and shape of data.�erefore,

it is used as an alternative to the histogram. In order to con-

struct a stem-and-leaf plot the following steps have to be

taken:

. �e data have to be sorted in ascending order.

. �e stem-and-leaf units have to be determined. �is

means that we have to de�ne what will be the stems

and what will be the leaves for observations of interest.

Each stem can consist of any number of digits, but each

leaf can have only a single digit.

Data are grouped according to their leading digits, called

stems, which are placed on the le� side of the vertical

line, while on the right hand side of the vertical line in

ascending order follow the �nal digits of each observation

called leaves.We can illustrate the way to construct a stem-

and-leaf plot using the following data set for number of

customers per day in a shop:

                    

First we have to sort data in ascending order:

                    .

Let us decide that the stem unit is , and the leaf unit

is .�us, the stem-and-leaf has the following appearance:

Stem Leaf

 ∣  

 ∣    

 ∣      

 ∣   

 ∣   

 ∣  

 ∣ 

If a stem-and leaf is turned on its side, it looks like

a histogram constructed from the digits of the data. It is

important to list each stem even they do not have associ-

ated leaves. If a larger number of bins is desired then there

may be two stems for each digit.

If some of the observations are not integers then these

numbers have to be rounded. If there are some negative

numbers in data set then aminus sign has to be put in front

of the stem unit.

Typically in statistical so�ware packages (like Minitab

or Statgraphics) stem-and-leaf display is preceded by

another column of numbers to the le� of the plot. It repre-

sents depths, which give cumulative counts from the top

and bottom of the table, stopping at the row that con-

tains the median, and the number for this row is given in

parentheses. Recalling the example given above, we obtain

Stem Leaf

  ∣  

  ∣    

()  ∣      

  ∣   

  ∣   

  ∣  

  ∣ 

Although the stem and leaf plot is very similar to his-

togram it has some advantages over it. First, it keeps data in
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their original form and the values of each individual data

can be recovered from the plot. Second, it can be easily con-

structed without using computer, especially when the data

set we are dealing with is not very large (in a range from 

to  data points). For very large data set the histogram is

prefered.
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Introduction
To ascertain the service life and reliability of a product, or

to compare alternative manufacturing designs, life testing

at normal conditions is clearly the most reliable method.

Due to continual advances in engineering science and

improvement in manufacturing designs, one o�en deals

with products that are highly reliable with a substan-

tially long life span. Electronic products and devices (e.g.,

toasters, washers, and electronic chips), for example, are

expected to last over a period of time much longer than

what laboratory testingwould allow. In these situations, the

standard life testing methods may require long and pro-

hibitively expensive testing time in order to get enough

failure data necessary tomake inferences about its relation-

ship with external stress variables.

In order to shorten the testing period, test units are

subjected to conditions more severe than normal. Such

accelerated life testing (ALT) results in shorter lives than

would be observed under normal conditions. Commonly,

each test unit is run to failure at a constant stress, then

a model for the relationship between the life of the unit

and the constant stress is �tted to the data. �is rela-

tionship is then extrapolated to estimate the life distri-

bution of the product and get the desired information

on its performance under normal use. Stress factors can

include humidity, temperature, vibration, voltage, load, or

any other factor a�ecting the life of the units. For a recent

account of work on accelerated testing and test plans, we

refer the reader to Nelson (a, b).

When constant-stress testing is considered too lengthy,

step-stress testing may be used to reduce the times to fail-

ure still further. Such testing involves starting a test unit

at a speci�ed low stress. If the unit does not fail in a spec-

i�ed time, then the stress on it is raised to a higher value

and held for another speci�ed time.�e stress is repeatedly

increased and held this way until failure occurs.�e time

in the step-stress pattern when a test unit fails is recorded

as the data on that unit. Applications of this type of test-

ing include metal fatigue under varying load in service,

cryogenic cable insulation, and electronics applications to

reveal failure modes (elephant testing), so they can be

designed out of the product.

When more constraints on the length of a life test are

present, some form of censoring is commonly adopted. If

for example, removing unfailed items from the life test at

prespeci�ed times is adopted, we have type I censoring.

Instead, if we terminate the life test at the time of a failed

item and remove all remaining unfailed items from the test,

we have type II censoring.

One advantage of step-stress accelerated life testing

(SSALT) is that the experimenters need not start with a

high stress that could be harsh for the product, hence

avoiding excessive extrapolation of test results.�e obvi-

ous drawback is that it requires stronger assumptions and

more complex analysis, compared to constant-stress ALT.

�e simplest form of SSALT is the partial ALT intro-

duced by DeGroot and Goel () and in which the prod-

ucts are �rst tested under use conditions for a period of

time before the stress is increased and maintained at the

higher level throughout the test.�ey modeled the e�ect

of switching the stress from normal conditions stress to

the single accelerated stress by multiplying the remaining

lifetime of the item by some unknown factor α > .�ey
studied the issues of estimation and optimal design in the

framework of Bayesian decision theory.

Another formulation of this type of ALT, called the

cumulative exposure (CE) model, was proposed by Nelson

(). It assumes that the remaining life of test units

depends on the current cumulative fraction failed and cur-

rent stress. Survivors will fail according to the cdf for that

stress but starting at the previously accumulated fraction

failed. Nelson () and Miller and Nelson () studied
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maximum likelihood estimation (MLE) under this type

of parametric model when the underlying distribution is

taken to be the Weibull and exponential, respectively.

Bhattacharyya and Soejoeti () proposed the tam-

pered failure rate (TFR) model for SSALT. �eir model

assumes that a change in the stress has a multiplicative

e�ect on the failure rate function over the remaining life.

In the special setting of a two-step partially accelerated

life test, and assuming that the initial distribution belongs

to a two-parameter Weibull family, they studied MLE and

derived the Fisher information matrix.

�ere are mainly two types of SSALTs: a simple SSALT

where there is a single change of stress during the test

andmutliple-step SSALTwhere change of the stress occurs

more than once. Madi () generalized the TFR model

from the simple step-stress model to the multiple step-

stress model.

Acceleration Models and Lifetime
Distributions
Stress Functions
Unless a nonparametric approach is used (see Shaked

and Singpurwalla (), McNichols and Padgett (),

and Tyoskin and Krivolapov ()), an SSALT model

(ALT model in general) consists of a theoretical life dis-

tribution whose parameters are functions of accelerating

stress and unknown coe�cients to be estimated from

the test data. �ese simple relationships, called stress

functions, are widely used in practice, and special cases

include the Arrhenius, inverse power, and Eyring laws (see

Nelson ()). For example, Nelson () used the

Weibull with parameters (α, β), as the lifetime distri-
bution, where the scale parameter α depends on stress

according to an inverse power law α(V) = (V/V)p.

Lifetime Distribution Under Step-stress
Pattern
The Cumulative Exposure Model
�e basic idea for this model, introduced byNelson (),

is to assume that the remaining life of specimens depends

only on the current cumulative fraction failed and cur-

rent stress, regardless of how the fraction accumulated.

Speci�cally, if we let Fi denote the cumulative distribution

function (cdf) of the time to failure under stress si, the

cdf of the time to failure under a step-stress pattern, F, is

obtained by considering that the lifetime ti−under si− has
an equivalent time ui under si such that Fi−(ti−) = Fi(ui).
�en the model is built as follows:

We assume that the population cumulative fraction of

specimens failing under stress s, in Step , is

F(t) = F(t),  ≤ t ≤ t

In Step , we write F(u) = F(t) to obtain u that is
the time to failure that would have produced the popula-

tion cumulative fraction failing under s.�e population

cumulative fraction of specimens failing in Step  by total

time t is

F(t) = F(t − t + u), t ≤ t ≤ t

Similarly, in Step , the unit has survived Step  and we

consider an equivalent time u under s such that

F(u) = F(t − t + u)

where t − t + u is an equivalent time under s.�en we
have

F(t) = F(t − t + u), t ≤ t ≤ t

In general, Step i has the equivalent start time ui− that
is the solution of

Fi(ui−) = Fi−(ti− − ti− + ui−)

and

F(t) = Fi(t − ti− + ui−), ti− ≤ t ≤ ti

Finally, the CE model can then be written as

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(t),  ≤ t ≤ t
F(t − t + u), t ≤ t ≤ t
F(t − t + u), t ≤ t ≤ t

. . . . . .

. . . . . .

Fi(t − ti− + ui−), ti− ≤ t ≤ ti

u = t =  and ui is the solution of Fi+(ui) = Fi(ti − ti− +
ui−), for i = , . . . ,m − .
If the stress function is taken to be the inverse power

law and Fi is a 7Weibull distribution, then the cdf for the
fraction of specimens failing by time t for the constant

stress Vi is

Fi(t) =  − exp[−{t(Vi/V)p}β],

and for ti− ≤ t ≤ ti,

F(t) =  − exp[−{(t − ti− + ui−)(Vi/V)p}β].
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The Tampered Failure Rate Model
Consider the experiment in which n units are simultane-

ously put on test at time t =  to a stress setting x.

Starting at time t > , the surviving units are subjected
to a higher stress level x while in the time interval [t, t).
At time t, the stress is increased on the surviving units to

x over [t, t) and so on until the kth and last time inter-
val [tk−,∞), where the remaining units are subjected to xk
until they all fail.�e TFRmodel assumes that the e�ect of

changing the stress from xi− to xi is to multiply the failure
rate function by αi−.�e resulting step-stress failure rate
function is given by

λ
∗(t) =

⎛
⎝

j−
∏
i=

αi
⎞
⎠

λ(t), tj− ≤ t ≤ tj, j = , . . . , k

where t = , tk =∞ and α− = α = .�e corresponding
survival function is

F
∗(t) =

⎛
⎜⎜⎜⎜
⎝

j−
∏
i=
F(ti)

(−αi)
i−
∏
l=−

αl
⎞
⎟⎟⎟⎟
⎠

F(t)

j−
∏
i=

αi
,

tj− ≤ t ≤ tj, j = , . . . , k

Substituting the Weibull survival function with scale

parameter θ and shape parameter β,F(t) = exp[−(y/θ)β],
F
∗(t) becomes

F
∗(t) =

⎛
⎝

j−
∏
i=
exp{(

i

∏
l=−

αl)( ti
θ
)

β

− (
i−
∏
l=−

αl)( ti
θ
)

β

}
⎞
⎠

× exp
⎧⎪⎪⎨⎪⎪⎩
−
⎛
⎝

j−
∏
i=

αi
⎞
⎠
( t

θ
)

β⎫⎪⎪⎬⎪⎪⎭

Putting δj = θ
⎛
⎝

j−
∏
i=

αi
⎞
⎠

−β−

, we have

F
∗(t) =

⎛
⎝

j−
∏
i=
exp{(ti/δi+)β − (ti/δi)β}

⎞
⎠

× exp{−(t/δj)β},

which can be rewritten as

F
∗(t) = exp

⎧⎪⎪⎨⎪⎪⎩

j−
∑
i=

((ti/δi+)β − (ti/δi)β)
⎫⎪⎪⎬⎪⎪⎭

× exp{−(t/δj)β} , tj− ≤ t ≤ tj, j = , . . . , k

Inference
Di�erent �tting methods can be used in the context

of SSALT. �ey include maximum likelihood estima-

tion, 7least squares, best linear unbiased, and graphical

methods. MLE is used frequently because it is straight-

forward and yields approximate variances and con�dence

limits for the parameters and percentiles.�e major draw-

back is the computational complexity.�e estimators are

rarely obtained in closed form and extensive iterative

methods must be used to determine the MLE.

Recent inferential work based on maximum likeli-

hood for the CE model under di�erent censoring schemes

include Gouno et al. (), Zhao and Elsayed (),

Wu et al. (), Balakrishnan and Xie (a, b), and

Balakrishnan and Han (). Madi () considered the

MLE for the multiple step-stress TFR model when the life

distribution under constant stress is Weibull.

Optimal Designs
Di�erent optimization criteria have been used to design

SSALT plans.Most are based on the variance of theMLE of

the parameter of interest (variance optimality) or the deter-

minant of the Fisher information matrix (D-optimality).

One question arising is is on the duration that items need

to be exposed to each stress level.

For example, Miller and Nelson () presented opti-

mal design for simple SSALT under the assumption of an

exponential distribution.�eir optimization criterion is to

minimize the asymptotic variance of the MLE of the mean

at a speci�ed design stress. �is criterion leads to opti-

mizing the levels of the �rst and the second test stresses

and the time of stress change. Bai et al. () extended

their work to the case in which a prescribed censoring time

is involved. Gouno et al. () considered the multiple

SSALT with equal duration steps τ and progressive type I

censoring and addressed the problemof optimizing τ using

variance optimality as well as D-optimality.

About the Author
Dr. Mohamed Madi is a Professor, Department of

Statistics, and Associate Dean, College of Business and

Economics, UAE University, United Arab Emirates. He

was the Assistant Dean for Research and Director of

the UAEU Research A�airs Unit for Internally Funded

Projects (–). He has authored and coauthored

more than  papers and one book. Professor Madi has

received the College of Business and Economics Out-

standing Senior Research Award. He is Associate editor for

the Journal of Statistical�eory & Applications, USA, and

the Jordan Journal of Mathematics and Statistics, Jordan.

Cross References
7Accelerated Lifetime Testing
7Censoring Methodology



Stochastic Difference Equations and Applications S 

S

7Degradation Models in Reliability and Survival
Analysis

7Generalized Weibull Distributions
7Industrial Statistics
7Modeling Survival Data
7Ordered Statistical Data: Recent Developments
7Parametric and Nonparametric Reliability Analysis
7Signi�cance Testing: An Overview
7Survival Data

References and Further Reading
Bai DS, Kim MS, Lee SH () Optimum simple step-stress accel-

erated life tests with censoring. IEEE Trans Reliab :–

Balakrishnan N, Han D () Exact inference for a simple step-

stress model with competing risks for failure from exponen-

tial distribution under Type-II censoring. J Stat Plan Infer

():–

Balakrishnan N, Xie Q (a) Exact inference for a simple step-

stress model with Type-II hybrid censored data from the expo-

nential distribution. J Stat Plan Infer ():–

Balakrishnan N, Xie Q (b) Exact inference for a simple step-

stress model with Type-I hybrid censored data from the expo-

nential distribution. J Stat Plan Infer ():–

Bhattacharyya GK, Soejoeti Z () A tampered failure rate model

for step-stress accelerated test. Commun Stat Theory Meth

():–

DeGroot MH, Goel PK () Bayesian estimation and optimal

design in partially accelerated life testing. Nav Res Logist Q

:–

Gouno E, Sen A, Balakrishnan N () Optimal step-stress

test under progressive Type-I censoring. IEEE Trans Reliab

:–

Madi MT () Multiple step-stress accelerated life test; the

tampered failure rate model. Commun Stat Theory Meth

():–

McNichols DT, Padgett WJ () Inference for step-stress acceler-

ated life tests under arbitrary right-censorship. J Stat Plan Infer

():–

Miller R, Nelson W () Optimum simple step-stress plans for

accelerated life testing. IEEE Trans Reliab :–

NelsonW () Accelerated life testing: step-stress models and data

analysis. IEEE Trans Reliab :–

Nelson W () Accelerated testing: statistical models, test, plans

and data analyses. Wiley, New York

Nelson WB (a) A bibliography of accelerated test plans. IEEE

Trans Reliab :–

Nelson WB (b) A bibliography of accelerated test plans. Part II.

IEEE Trans Reliab :–

Shaked M, Singpurwalla ND () Inference for step-stress accel-

erated life tests. J Stat Plan Infer ():–

Tyoskin OI, Krivolapov SY () Nonparametric model for step-

stress accelerated life testing. IEEE Trans Reliab :–

Wu SJ, Lin YP, Chen YJ () Planning step-stress life test with

progressively type I group-censored exponential data. Stat Neerl

:–

ZhaoW, Elsayed EA () A general accelerated life model for step-

stress testing. IIE Trans :–

Stochastic Difference Equations
and Applications

Alexandra Rodkina

, Cónall Kelly

,


Professor and Head

University of the West Indies,

Mona Campus, Kingston, Jamaica

University of the West Indies, Mona Campus, Kingston,

Jamaica

A �rst-order di�erence equation of the form

xn+ = F(n, xn), n ∈ N, ()

may be used to describe phenomena that evolve in discrete

time, where the size of the each generation is a function of

that preceding. But the real world o�en refuses to conform

to such a neat mathematical representation. Unpredictable

e�ects can be included in the formof a sequence of random

variables {ξn}n∈N, and the result is a stochastic di�erence
equation:

Xn+ = F(n,Xn) +G(n,Xn)ξn+, n ∈ N. ()

�e solution of () is a discrete time stochastic pro-

cess adapted to the natural �ltration of {ξn}n∈N. Stochas-
tic di�erence equations also arise as discretizations of

7stochastic di�erential equations, though their asymptotic
properties can be harder to analyze. Although a thor-

ough introduction to the theory of deterministic di�erence

equations can be found in Elaydi () (for example),

no comparable text exists for their stochastic counterparts.

Nonetheless the recent development of powerful analytic

tools is driving research e�orts forward, and our under-

standing of discrete stochastic dynamics is growing.�is

has implications both for the modeling of real-world phe-

nomena that evolve in discrete time, and the analysis of

numerical methods for stochastic di�erential equations.

Both are discussed in this article.

Mathematical biology is a good place to look for real-

world phenomena that evolve in discrete time (see Murray

). Certain species, for example periodic cicadas and

fruit �ies, reproduce in non-overlapping generations, and

the change in biomass from one generation to the nextmay

be represented as a stochastic di�erence equation of the

form

Xn+ = Xn [N(Xn) +Q(Xn)ξn+] , n ∈ N. ()

Notice that the form of () guarantees the existence of an

equilibrium solution at X ≡ , corresponding to absence
of the species.�e sequence of random variables {ξn}n∈N
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captures random in�uences like disease and natural vari-

ability in fecundity between generations. In order tomodel

predator-prey interaction, competition or mutualism, it is

essential to have a good understanding of the role of the

coe�cient functions N and Q in the dynamics of systems

of such equations. For example, an equilibrium solution

displaying almost sure asymptotic stability indicates that

a species is not viable in the long run, as its biomass will

decay to an unsustainable level over time. In the stochas-

tic context, almost sure means with probability one and is

usually written a.s.

�eoretical tools for investigating the a.s. asymptotic

stability of the equilibrium of the similar equation

Xn+ = Xn [ + R(Xn) +Q(Xn)ξn+] , n ∈ N, ()

were developed in Appleby et al. (a), in the form of a

semi-martingale convergence theorem and a discrete form

of the Itô formula. It turns out that the relative speed of

decay of R and Q close to equilibrium determines the a.s.

asymptotic stability of the equilibrium. One consequence

of this is that an unstable equilibrium in a deterministic

system may be stabilized by an appropriate perturbation

coe�cient Q. In the special case where R and Q are poly-

nomials, a more detailed description is possible. If the a.s.

stability is a result of a dominant R then solutions decay at

an exact power law rate, however if the systemhas been sta-

bilized by a dominantQ no such rate is possible. Moreover,

solutions can be shown to change sign a random (though

�nite) number of times, indicating that discrete equations

with stabilizing noise may be inappropriate in the context

of a population model: biomass is inherently nonnegative.

�e closely related question of the role played byR andQ in

the oscillatory behavior of solutions of () was investigated

in Appleby et al. ().

�e in�uence of random perturbations can be hid-

den from any observer of a single trajectory. In Rod-

kina () it was shown that when R and Q are poly-

nomial, there exist solutions of () that, with arbitrar-

ily high probability, converge to zero monotonically and

inside a well-de�ned deterministic envelope.�e �uctua-

tions that ordinarily characterize the presence of random

noise are absent.�is phenomenon is impossible in contin-

uous time, since solutions of stochastic di�erential equa-

tions have trajectories that are non-di�erentiable almost

everywhere.

Stochastic di�erence equations also �nd applications

in economic modeling. Consider a self regulating island

economy in the tropics, and suppose one wishes to model

the e�ects of the annual hurricane season on economic

activity. �e essential mechanism underlying dynamic

equilibrium in an idealized model of such an economy can

be represented by the equation

xn+ = xn + f (xn), n ∈ N, ()

under appropriate conditions on f (see Appleby et al.

() for details).

�e degree to which activity during a hurricane sea-

son in�uences such a model varies randomly from year

to year, depending on the number and intensity of storm

systems, and how close the centre of each storm passes to

the island. �ese e�ects may be incorporated by adding

the term σnξn+ at each iteration, where again {ξn}n∈N is
a sequence of independent random variables, and each σn
represents intensity of seasonal activity. Notice that includ-

ing a state-independent perturbation in themodel destroys

the equilibrium.

In Appleby et al. () it was shown that, if () is

globally asymptotically stable, the perturbed model will

eventually return to the vicinity of the former equilibrium,

provided the intensity of seasonal activity converges to zero

su�ciently quickly. However, no matter how e�ective the

self-regulatory property of the system, if the seasonal activ-

ity fades outmore slowly than a critical rate, which depends

on the “heaviness” of the tails of the distribution of each ξn,

then the system will not return to the former equilibrium.

Hence (in thismodel), even if seasonal activity lessens each

year, the economy may be prevented from settling back to

near-equilibrium if the storms that do occur tend to be

extremely violent. For models which are only locally sta-

ble in the absence of perturbations, the potential exists for

an external shock to push a fundamentally stable economic

situation over into instability.

Stochastic di�erence equations arise in numerical anal-

ysis, since they are the end product of the discretization of

a stochastic di�erential equation. Consider

dX(t) = f (X(t))dt + g(X(t))dB(t), t ≥ , ()

where B is a standard Brownian motion. In general, solu-

tions of () cannot be written in closed form; to explore

their properties we can try to simulate them on a com-

puter. Since computers are �nite-state machines we must

discretize the time set of () with, for example, a one-step

Euler-Maruyama numerical scheme on a uniform mesh.

�is yields the stochastic di�erence equation

Xn+ = Xn + hf (Xn) +
√
hg(Xn)ξn+, n ∈ N, ()

where {ξn}n∈N is a sequence of i.i.d. standard normal ran-
dom variables, and h is the mesh size. A good discussion

of numerical methods for stochastic di�erential equations

may be found in Kloeden and Platen ().
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But discretization can alter the very properties of ()

that we are trying to examine. For example, a geometric

Brownianmotion (see7BrownianMotion andDi�usions)
with positive initial value remains positive with probabil-

ity one. However, the Euler-Maruyama discretization does

not: discrete processes can jump across equilibrium given

a su�ciently large input from the stochastic component.

�is is a concern as geometric Brownian motion is o�en

used tomodel asset prices in �nancial markets, which (like

biomass in the populationmodel) are inherently nonnega-

tive. However, the probability of positivity can be increased

over a �nite simulation interval by increasing the density

of mesh-points.

Nonetheless, any practical simulation must be carried

out with a �xed non-zero stepsize h, so it is also necessary

to study the e�ect of discretization with �xed h on care-

fully chosen test equations with known dynamics. A linear

stability analysis seeks to discover when the asymptotic

stability of an equilibrium solution of the test equation is

preserved a�er discretization. Direct analysis of solutions

of the stochastic di�erence equation arising from the dis-

cretization is necessary. Since these solutions are stochastic

processes, asymptotic stability may be de�ned in several

ways, each of which speaks to a di�erence aspect of the

process. For example, a.s. asymptotic stability is a property

of almost all trajectories, whereas mean-square asymptotic

stability is a property of the distribution.

�e literature surrounding mean-square stability anal-

ysis of stochastic numerical methods is extensive. For

example an analysis of the stochastic θ-method using a

scalar geometric Brownian motion as test equation may

be found in Higham (), with an extension to systems

of two equations in Saito and Mitsui (), using a tech-

nique outlined in Kloeden and Platen (). By contrast,

developments in a.s. asymptotic stability analysis are more

recent: Rodkina and Schurz () have investigated a.s.

asymptotic stability for the θ-method applied to a scalar

stochastic di�erential equation, and Higham et al. ()

have shown that a.s. exponential asymptotic stability in

systems of equationswith linearly bounded coe�cients can

be recovered in a θ-discretisation for su�ciently small h.

We anticipate an expansion of the literature in the coming

years.

Finally, we comment that it is o�en possible to repro-

duce a speci�c continuous-time dynamic in a discrete

stochastic process by through careful manipulation of the

mesh, presenting two examples from the literature. First,

a.s. oscillatory behavior in linear stochastic di�erential

equations with a fading point delay has been reproduced

in Appleby and Kelly () using a pre-transformation of

the di�erential equation and a mesh that contracts at the

same rate as the delay function. Second, state-dependent

meshes have been used to reproduce �nite-time explosions

in a discretization of () (see for example Dávila et al.,

).
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A scalar stochastic di�erential equation (SDE)

dXt = f (t,Xt)dt + g(t,Xt)dWt ()

involves a the Wiener process Wt , t ≥ , which is one of
the most fundamental 7stochastic processes and is o�en
called a Brownian motion (see 7Brownian Motion and
Di�usions). A Wiener process is a Gaussian process with

W = with probability  andN (, t−s)-distributed incre-
mentsWt−Ws for  ≤ s < t where the incrementsWt −Wt

and Wt − Wt on non-overlapping intervals, (i.e., with

 ≤ t < t ≤ t < t) are independent random variables.
It follows from the Kolmogorov criterion that the sample

paths of a Wiener process are continuous. However, they

are nowhere di�erentiable.

Consequently, an SDE is not a di�erential equation at

all, but only a symbolic representation for the stochastic

integral equation

Xt = Xt + ∫
t

t

f (s,Xs)ds + ∫
t

t

g(s,Xs)dWs,

where the �rst integral is a deterministic Riemann inte-

gral for each sample path.�e second integral cannot be

de�ned pathwise as a Riemann-Stieltjes integral because

the sample paths of the Wiener process do not have even

bounded variation on any bounded time interval, but

requires a new type of stochastic integral. An Itô stochas-

tic integral ∫
T

t
f (t)dWt is de�ned as themean-square limit

of sums of products of an integrand f evaluated at the le�

end point of each partition subinterval times [tn, tn+] the
increment of the Wiener process, i.e.,

∫
T

t

f (t)dWt := m.s. − lim
N∆→∞

N∆−
∑
j=
f (tn) (Wtn+ −Wtn),

where tn+−tn =∆/N∆ for n= , , . . .,N∆−.�e integrand
function f may be random or even depend on the path

of the Wiener process, but f (t) should be independent of
future increments of the Wiener process, i.e., Wt+h −Wt

for h > .
�e Itô stochastic integral has the important properties

(the second is called the Itô isometry) that

E [∫
T

t

f (t)dWt] = ,

E [(∫
T

t

f (t)dWt)


] = ∫
T

t

E [f (t)]dt.

However, the solutions of Itô SDE satisfy a di�erent chain

rule to that in deterministic calculus, called the Itô formula,

i.e.,

U(t,Xt) = U(t,Xt) + ∫
t

t

L

U(s,Xs)ds

+ ∫
t

t

L
(s,Xs)dWs,

where

L

U = ∂U

∂t
+ f ∂U

∂x
+ 

g
 ∂
U

∂x
, L


U = g ∂U

∂x
.

An immediate consequence is that the integration rules

and tricks from deterministic calculus do not hold and

di�erent expressions result, e.g.,

∫
T


Ws dWs =




W

T −




T.

�ere is another stochastic integral called the

Stratonovich integral, for which the integrand function is

evaluated at the mid-point of each partition subinterval

rather than at the le� end point. It is written with ○dWt to

distinguish it from the 7Itô integral. A Stratonovich SDE
is thus written

dXt = f (t,Xt)dt + g(t,Xt) ○ dWt .

Note that the Itô and Stratonovich versions of an SDEmay

have di�erent solutions, e.g.,

dXt = Xt dWt ⇒Xt = XeWt−  t Itô

dXt = Xt ○ dWt⇒Xt = XeWt Stratonovich

However, the Itô SDE () has the same solutions as the

Stratonovich SDE with the modi�ed dri� coe�cient, i.e.,

dXt = f (t,Xt)dt + g(t,Xt) ○ dWt , f := f − 

g
∂g

∂x
.

In particular, the Itô and Stratonovich versions of an SDE

with additive noise, i.e., with g independent of x, are the

same.
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Stratonovich stochastic calculus has the same chain

rule as deterministic calculus, which means that

Stratonovich SDE can be solved with the same integra-

tion tricks as for ordinary di�erential equations. However,

Stratonovich stochastic integrals do not satisfy the nice

properties above for Itô stochastic integrals, nor does the

Stratonovich SDE have the same direct connection with

di�usion process theory as the Itô SDE, e.g., the coe�cient

of the Fokker-Planck equation correspond to those of the

Itô SDE (), i.e.,

∂p

∂t
+ f ∂

∂x
+ 

g
 ∂
p

∂x
= .

�e Itô and Stratonovich stochastic calculi are both math-

ematically correct. Which one should be used is really a

modeling issue, but once one has been chosen, the advan-

tages of the other can be used through the above dri�

modi�cation.

�e situation for vector valued SDE and vector valued

Wiener processes is similar. Details can be found in the

given references.
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Stochastic global optimization methods are methods for

solving a global optimization problem incorporating prob-

abilistic (stochastic) elements, either in the problem data

(the objective function, the constraints, etc.), or in the

algorithm itself, or in both.

Global optimization is a very important part of applied

mathematics and computer science. �e importance of

global optimization is primarily related to the applied areas

such as engineering, computational chemistry, �nance and

medicine amongst many other �elds. For the state of the

art in the theory and methodology of global optimization

we refer to the “Journal of Global Optimization” and two

volumes of the “Handbook of Global Optimization” (Horst

and Pardalos ; Pardalos and Romeijn ). If the

objective function is given as a “black box” computer code,

the optimization problem is especially di�cult. Stochas-

tic approaches can o�en deal with problems of this kind

much easier and more e�ciently than the deterministic

algorithms.

�e problem of global minimization. Consider a gen-

eral minimization problem f (x)→minx∈X with objective
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function f (⋅) and feasible regionX. Let x∗ be a global min-
imizer of f (⋅); that is, x∗ is a point inX such that f (x∗) = f∗
where f∗ = minx∈Xf (x). Global optimization problems
are usually formulated so that the structure of the feasi-

ble region X is relatively simple; this can be done on the

expense of increased complexity of the objective function.

A global minimization algorithm is a rule for con-

structing a sequence of points x, x, . . . in X such that the

sequence of record values yon = mini=...nf (xi) approaches
the minimum f∗ as n increases. In addition to approximat-
ing the minimal value f∗, one o�en needs to approximate
at least one of the minimizers x∗.
Heuristics. Many stochastic optimization algorithms

where randomness is involved have been proposed heuris-

tically. Some of these algorithms are based on analogies

with natural processes; the well-known examples are evo-

lutionary algorithms (Glover and Kochenberger ) and

simulated annealing (Van Laarhoven and Aarts ).

Heuristic global optimization algorithms are very popular

in applications, especially in discrete optimization prob-

lems. Unfortunately, there is a large gap between practical

e�ciency of stochastic global optimization algorithms and

their theoretical rigor.

Stochastic assumptions about the objective function. In

deterministic global optimization, Lipschitz-type condi-

tions on the objective function are heavily exploited. Much

research have been done in stochastic global optimization

where stochastic assumptions about the objective function

are used in amanner similar to how the Lipschitz condition

is used in deterministic algorithms. A typical example of a

stochastic assumption of this kind is the postulation that

f (⋅) is a realization of a certain stochastic process.�is part
of stochastic optimization is well described in Zhigljavsky

and Zilinskas (), Chap.  and will not be pursued in

this article.

Global random search (GRS). �e main research in

stochastic global optimization deals with the so-called

global random search (GRS) algorithms which involve

random decisions in the process of choosing the obser-

vation points. A general GRS algorithm assumes that

a sequence of random points x, x, . . . , xn is generated

where for each j ≥  the point xj has some probability dis-
tribution Pj. For each j ≥ , the distribution Pj may depend
on the previous points x, . . . , xj− and on the results of the
objective function evaluations at these points (the function

evaluations may not be noise-free).�e number of points

n,  ≤ n ≤∞ (the stopping rule) can be either determinis-
tic or random and may depend on the results of function

evaluation at the points x, . . . , xn.

�ree important classes of GRS algorithms. In the algo-

rithm which is o�en called ‘pure random search’ (PRS) all

the distributions Pj are the same (that is, Pj =P for all j)
and the points xj are independent. In Markovian algo-

rithms the distribution Pj depends only on the previous

point xj− and f (xj−), the objective function value at xj−.
In the so-called population-based algorithms the distribu-

tions Pj are updated only a�er a certain number of points

with previous distribution have been generated.

Attractive features of GRS. GRS algorithms are very

popular in both theory and practice. �eir popularity is

owed to several attractive features that many global ran-

dom search algorithms share: (a) the structure of GRS

algorithms is usually simple; (b) these algorithms are o�en

rather insensitive to the irregularity of the objective func-

tion behavior, to the shape of the feasible region, to the

presence of noise in the objective function evaluations,

and even to the growth of dimensionality; (c) it is very

easy to construct GRS algorithms guaranteeing theoretical

convergence.

Drawbacks of GRS.Firstly, the practical e�ciency of the

algorithms o�en depends on a number of parameters, but

the problem of the choice of these parameters frequently

has little relevance to the theoretical results concerning the

convergence of the algorithms. Secondly, for many global

random search algorithms an analysis on good parameter

values is lacking or just impossible. �irdly, the conver-

gence rate can be painfully slow, see discussion below.

Improving the convergence rate (or e�ciency of the algo-

rithms) is a problem that much research in the theory of

global random search is devoted to.

Main principles of GRS. A very large number of spe-

ci�c global random search algorithms exist, but only a few

main principles form their basis.�ese principles can be

summarized as follows:

() Random sampling of points at which f (⋅) is evaluated,
() Random covering of the space,

() Combination with local optimization techniques,

() �e use of di�erent heuristics including cluster-

analysis techniques to avoid clumping of points

around a particular local minima,

() Markovian construction of algorithms,

() More frequent selection of new trial points in the

vicinity of “good” previous points,

() Use of statistical inference, and

() Decrease of randomness in the selection rules for the

trial points.

In constructing a particular global random searchmethod,

one usually incorporates several of these principles, see

Zhigljavsky and Zilinskas  where all these principles

are carefully considered.
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Convergence of GRS. To establish the convergence of

a particular GRS algorithm, the classical Borel-Cantelli

theorem (see 7Borel–Cantelli Lemma and Its Generaliza-
tions) is usually used. �e corresponding result can be

formulated as follows, see Zhigljavsky and Zilinskas ,

�eorem .. Assume that X ⊆ Rd with  < vol(X) <∞
and∑∞

j= inf Pj(B(x, ε)) =∞ for all x ∈ X and ε > , where
B(x, ε) = {y∈X : ∣∣y−x∣∣


≤ ε} and the in�mum is taken

over all possible locations of previous points x, . . . , xj−
and the results of the objective function evaluations at

these points. �en with probability one, the sequence of

points x, x, . . . falls in�nitely o�en into any �xed neigh-

borhood of any global minimizer.

In practice, a very popular rule for selecting the se-

quence of probability measures Pj is Pj = αjP+(−αj)Qj,
where  ≤ αj ≤ , P is the uniform distribution on X and
Qj is an arbitrary probabilitymeasure onX. In this case, the

corresponding GRS algorithm converges if∑∞
j= αj =∞.

Rate of convergence of PRS. Assume X ⊆ Rd with
vol(X) =  and the points x, x, . . . , xn are independent
andhave uniformdistribution onX (that is, GRS algorithm

is PRS).�e rate of convergence of PRS to the minimizer

x∗ is the fastest possible (for the worst continuous objec-
tive function) among all GRS algorithms. To guarantee that

PRS reaches the ε-neighborhood B(x∗, ε) of a point x∗
with probability at least  − γ, we need to perform at least

n∗ = ⌈−log(γ)⋅Γ ( d

+)/ (π

d
 εd)⌉ iterations, where Γ(⋅)

is the Gamma-function.�is may be a very large number

even for reasonable values of d, ε and γ. For example, if

d =  and ε = γ = . then n∗ ≃ . ⋅ . See Sect. ..
in Zhigljavsky and Zilinskas () for an extensive dis-

cussion on convergence and convergence rates of PRS and

other GRS algorithms.

Markovian GRS algorithms. In a Markovian GRS algo-

rithm, the distribution Pj depends only on the previ-

ous point xj− and its function value f (xj−); that is,
the sequence of points x, x, . . . constitutes a Markov

chain (see 7Markov Chains). �e most known Marko-
vian GRS algorithms are the simulated annealing methods

(Van Laarhoven and Aarts ). If a particular simulated

annealing method creates a time-homogeneous Markov

chain then the corresponding stationary distribution of

this Markov chain is called Gibbs distribution. Param-

eters of the simulated annealing can be chosen so that

the related Gibbs distribution is concentrated in a narrow

neighborhood of the global minimizer x∗. �e conver-
gence to the Gibbs distribution can be very slow result-

ing in a slow convergence of the corresponding simulated

annealing algorithm. �e convergence of all Markovian

GRS algorithms is generally slow as the information about

the objective function obtained during the search process

is used ine�ectively.

Population-based methods. Population-based methods

are very popular in practice (Glover and Kochenberger

).�ese methods generalize theMarkovian GRS algo-

rithms in the following way: rather than to allow the dis-

tribution Pj of the next point xj to depend on the previous

point xj−, it is now the distribution of a population of
points (descendants, or children) depends on the previous

population of points (parents) and the objective function

values at these points.�ere are many heuristic arguments

associated with these methods (Glover and Kochenberger

). �ere are also various probabilistic models of the

population-based algorithms (Zhigljavsky ).

Statistical inference in GRS.�e use of statistical proce-

dures can signi�cantly accelerate the convergence of GRS

algorithms. Statistical procedures can be especially useful

for de�ning the stopping rules and the population sizes

in the population-based algorithms.�ese statistical pro-

cedures are based on the use of the asymptotic theory of

extreme order statistics and the related theory of record

moments. As an example, consider PRS and the corre-

sponding sample S = {f (xj), j = , . . . ,n}.�is is an inde-
pendent sample of values from the distribution with c.d.f.

F(t) = ∫f (x)≤t P(dx) and the support [f∗, f
∗], where f ∗ =

supx∈X f (x). It can be shown that undermild conditions on
f and P, this distribution belongs to the domain of attrac-

tion of the 7Weibull distribution, one of the 7extreme
value distributions. Based on this fact, one can construct

e�cient statistical procedures for f∗ using several minimal
order statistics from the sample S.

For the theory, methodology and the use of probabilis-

tic models and statistical inference in GRS, we refer to

Zhigljavsky and Zilinskas () and Zhigljavsky ().
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�e term Stochastic Modeling is related to the theory and

applications of probability in the modeling of phenom-

ena in real life applications. Stochastic is a term coming

from the ancient Greek period and is related to “stochastes”

(people who are philosophers or intellectuals, scientists

in recent notation) and “stochazomai” (I am involved in

highly theoretical and intellectual issues as are philosophy

and science).

�e term model accounts for the representation of the

reality (a real situation) by a verbal, logical or mathemat-

ical form. It is clear that the model includes a part of the

main characteristics of the real situation. As far as the real

situation is better explained the model will be termed as

successful or not.

�e science or even the art to construct and apply a

model to real situations is termed as modeling. It includes

model building and model adaptation, application to spe-

ci�c data and even simulation; that is producing a realiza-

tion of a real situation.

It is clear that it is essential to organise and apply a good

method or even process of collecting, restoring, classify-

ing, organising and �tting data related to the speci�c case;

that is to develop the “data analysis” scienti�c �eld.

Modeling is related to the use of past data to express the

future developments of a real system. To this endmodeling

accounts for two major intellectual and scienti�c schools;

the school of determinism and the school of probabilistic

or stochastic modeling.

Deterministic modeling is related to determinism; that

is the expression of the reality with a modeling approach

that uses the data from the past and could lead to a good

and even precise determination of the future paths of a nat-

ural system. Determinismwas a school of thought that was

the basis of very many developments in various scienti�c

�elds last centuries. Deterministic models of innovation

di�usion appear in (Skiadas , , ).

From the other part, it was clear from the very begin-

ning even from the rising of philosophy and science from

the ancient Greek period that the future was unpredictable

(probabilistic) or even chaotic. However, the successful

solutions of several problems last centuries, especially in

physics, straighten determinism as a school of thought.

Probabilistic methods came more recently with many

applications. Of course the basic elements were developed

during the last centuries but with only few applications.

Some of the famous contributors are P.-S. Laplace and

J.C.F. Gauss. A main development was done by studying

and modeling the heat transfer by proposing and solv-

ing a partial di�erential equation for the space and time

propagation of heat (see Fourier (, ) and Fick

()). However radical progress came by modeling the

Brownian motion, Brown (), (see the seminal paper

by Einstein () followed by Smoluchowski ()). (See

also 7Brownian Motion and Di�usions)

Modeling by Stochastic Differential
Equations
Time was needed to understand and introduce probabilis-

tic ideas into di�erential equations; thus called7stochastic
di�erential equations.�is was achieved only during the

twentieth century. Even more some very important details

weremissing. One important point had to dowith calculus

and how to apply calculus in stochastic di�erential equa-

tions. �e solution came with Itô and his postulate that

the in�nitesimal second order terms of a stochastic pro-

cess do not vanish thus accepting to apply rules of what

is now called as the Itô calculus or stochastic calculus.

Stochastic calculus is also proposed by others di�eren-

tiating their work from Itô’s calculus on the summation

process applied in de�ning the stochastic integral (R.L.

Stratonovich, P.Malliavin). Itô’s proposition can be given in

the following form useful to apply in stochastic di�erential

equations, Oksendal (), Gardiner ():

df (xt , t) =
∂f (xt , t)
∂xt

dxt +




∂f (xt , t)
∂x t

(dxt)

where xt is a stochastic process over time t and f (xt , t) is a
stochastic function of the speci�c process.

�e above form for the function f (xt , t) usually is used
as a transformation function to reduce a nonlinear stochas-

tic di�erential equation to a linear one and thus �nding a

closed form solution.

Although the �rst proposal of a probabilistic di�eren-

tial equation is merely due to P. Langevin, in recent years it
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was generally accepted the following stochastic di�erential

equations form:

dxt = µ(xt , t)dt + σ(xt , t)dwt ,

wherewt is the so-calledWiener process.�is is a stochas-

tic process with mean value zero and variance  and

is usually termed as the standard Wiener process with

N(, ) property, the process is characterized by indepen-
dent increments normally distributed.

By using the above Itô’s rule and the appropriate trans-

formation function the exact solutions of several nonlinear

stochastic di�erential equations arise. Except of the useful-

ness of the exact solutions of stochastic di�erential equa-

tions when dealing with speci�c cases and applications

their use is very important in order to check how precise

the approximate methods of solution of stochastic di�er-

ential equations are. A general method of solution was

proposed by Kloeden et al. (, , ). Related the-

oretical solutionswith applications can be found in Skiadas

et al. (, ), Giovanis and Skiadas (), Skiadas and

Giovanis (), Skiadas ().

�e main stochastic di�erential equations solved can

be summarized into two categories:�e stochastic di�er-

ential equations with a multiplicative error term of the

form: dxt = µ(xt , t)dt+σ(t)xtdwt , frequently used inmar-
ket applications, and the stochastic di�erential equations

with non-multiplicative or additive error term of the form:

dxt = µ(xt , t)dt + σ(t)dwt . In the later case there appear
applications with a constant σ .

�e most known model with a multiplicative error

term is the so-called Black and Scholes () model in

�nance: dxt = µxtdt + σxtdwt (in most applications xt is

replaced by St).
�e famous Ornstein–Uhlenbeck () process is the

most typical model with an additive error term: dxt =
ϑ(µ − xt)dt + σdwt .

�ere are very many stochastic di�erential equations

that could �nd interesting applications. As it was shown

(Skiadas-Katsamaki ) even a general stochastic expo-

nential model could give realistic paths especially during

the �rst stages of a di�usion process: dxt = µ(xt)bdt +
σdwt . In the same paper three methods for estimating the

parameter σ are given.

Modeling using stochastic di�erential equations has

several applications but also faces the problems arising

from the introduction of stochastic theory. First of all, a

stochastic di�erential equation gives a solution which may

provide several stochastic paths during a simulation. How-

ever, one cannot �nd one �nal path as it is the case in

a deterministic process. In most cases the deterministic

solution arises by eliminating the error term. An in�nite

number of stochastic paths could provide the mean value

of the stochastic process as a limit of a summation. When

there exists an exact solution of the stochastic di�erential

equation it can be estimated the mean value and if pos-

sible the variance. More useful, a�er estimating the mean

value and the variance, is the estimation of the con�dence

intervals, thus informing regarding the limits of the real life

application modeled.
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�e classical random �ow and Newtonian mechanics are

two theoretical approaches to analyze dynamic processes

in biological, engineering, physical and social sciences

under random perturbations. Historically, in the classi-

cal approach (Bartlett; , Ross; ), one considers

a dynamic system as a random �ow or process with a

certain probabilistic laws such as: di�usion, Markovian,

nonmarkovian and etc. From this type consideration,

one attempts to determine the state transition probabil-

ity distributions/density functions (STPDF) of the ran-

dom process.�e determination of the unknown STPDF

leads to the study of deterministic problems in the the-

ory of ordinary or partial or integro-di�erential equa-

tions (Lakshmikantham and Leela a, b). For example,

a random �ow that obeys a Markovian probabilistic law

leads to

∂

∂s
P(s, x, t,B) = q(s, x)P(s, x, t,B) − ∫

Rn−{x}

P(s, y, t,B)Q(s, x,dy), ()

that is, Kolmogorov’s backward equation, where, P(s, x,
t,B) is STPDF; Q(s, x,dy) is the state transition intensity
function (STIF) and q(s, x) = −Q(s, x,{x}). In particular,
in the case of Markov chain (see 7Markov Chains) with
�nite number of states r, equation () reduces to:

∂

∂s
P(s, t) = Q(s)P(s, t), P(t, t) = I, ()

where, Pij(s, t) = P(s, i, t,{j}); P(s, t) = (Pij(s, t))r×r ; an
intensity matrix Q(s) and the identity I are r × r matrices.
�ese types of equations are referred as master equations

in the literature (Arnold ; Bartlett ; Gihman ;

Gikhman and Skorokhod ; Goel and Richter-Dyn

; Kimura and Ohta ; Kloeden and Platen ;

Ladde ; Ladde and Sambandham ; Ricciardi ;

Soong ). �e solution processes of such di�erential

equations are used to �nd the higher moments and other

statistical properties of dynamic processes described by

random �ows or processes in sciences. We remark that in

general, Kolmogorov’s backward or forward (master equa-

tions) are nonlinear and non stationary deterministic dif-

ferential equations (Arnold ; Gihman ; Gikhman

and Skorokhod ; Goel andRichter-Dyn ; Ricciardi

; Soong ). As a result of this, the close form STPDF

are not feasible.

A modern approach (Arnold ; Gihman ; Ito

, Kloeden and Platen ; Ladde and Ladde ;

Ladde ; Ladde and Lakshmikantham ; Ladde and

Sambandham ; Nelson ; Øksendal ; Ricciardi

; Soong ; Wong ) of stochastic modeling of

dynamic processes in sciences and engineering sciences

is based on fundamental theoretical information, a prac-

tical experimental setup and basic laws in science and

engineering sciences. Depending on the nature of stochas-

tic disturbances, there are several probabilistic models,

namely, 7Random walk, Poisson, Brownian motion (see
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7Brownian Motion and Di�usions), Colored Noise pro-
cesses. In the following, we very brie�y outline the salient

features of Random Walk and Colored Noise dynamic

modeling approaches (Kloeden and Platen ; Ladde

and Ladde ; Wong ).

Random Walk Modeling Approach
(Ladde and Ladde )
Let x(t) be a state of a system at a time t.�e state of the
system is observed over an interval of [t, t + ∆t], where ∆t
is a small increment in t. Without loss in generality, it is

assumed that x(t) is -dimensional state and ∆t is posi-
tive.�e state is under the in�uence of random perturba-

tions. We experimentally observe the data-set of the state:

x(t) = x(t), x(t), x(t), . . . , x(ti), . . . , x (tn) = x(t+∆t)
of a system at t = t, t = t + τ, t = t + τ, . . . , ti = t +
iτ, . . . , tn = t+∆t = t+nτ over the interval [t, t+∆t], where
n belongs to {, , , . . . } and τ = ∆t

n
.�ese observations

are made under the following conditions:

RWM  �e system is under the in�uence of inde-

pendent and identical random impulses that are taking

place at t, t, . . . , ti, . . . , tn.

RWM  �e in�uence of a random impact on the

state of the system is observed on every time subinterval of

length τ.

RWM  For each i ∈ I(,n) = {, , . . . , k, . . . ,n},
it is assumed that the state is either increased by

∆x(ti) (“success”-the positive increment (∆x (ti) > ))
or decreased by ∆x (ti) (“failure”-the negative increment
(∆x (ti) < )). We refer ∆x (ti) as a microscopic/local
experimentally or knowledge-base observed increment to

the state of the system at the ith impact on the subinterval

of length τ.

RWM  It is assumed that ∆x (ti) is constant for
i ∈ I(,n) and is denoted by ∆x (ti) ≡ Zi = Z with ∣Zi∣ =
∆x > . �us, for each i ∈ I(,n), there is a constant
random increment Z of magnitude ∆x to the state of the

system per impact on the subinterval of length τ.

RWM  For each random impact and any real num-

ber p satisfying  < p < , it is assumed that

P({Zi = ∆x > }) = p and P({Zi = −∆x < }) = − p = q.
()

From RWM, RWM and RWM, under n indepen-

dent and identical random impacts, the initial state and n

experimental or knowledge-base observed random incre-

ments Zi of constant magnitude ∆x in the state, the aggre-

gate change of the state of the system x(t + ∆t) − x(t)

under n observations of the system over the given interval

[t, t + ∆t] of length ∆t is described by

x(t + ∆t) − x(t) = n
[
n

∑
i=
Zi]

n
= ∆t

τ
Sn, ()

where Sn = 

n
[
n

∑
i=
Zi] and Zi = x (ti) − x (ti−). Sn is the

sample average of the state aggregate incremental data. It

is clear that x(t + ∆t) − x(t) = x (tn) − x(t) is a discrete-
time-real-valued stochastic process which is the sum of

n independent Bernoulli random variables Zi (Zi = Z),
i = , , . . . ,n. We also note that for each n, x (tn)−x (t) is
a binomial random variable with parameters (n, p). More-
over, the random variable x (tn) − x(t) takes values from
the set {−n∆x, (− n)∆x, . . . , (m− n)∆x, . . . ,n∆x}.�e
stochastic process x (tn) − x(t) is referred to as a Random
Walk process. Letm be a number of positive increments ∆x

to the state of the system out of total n changes. (n −m) is
the number of negative increments −∆x to the state of the
system out of total n changes. Furthermore, m ∈ I(,n),
we further note that

Sn =


n
[(m − n)S+n ] , ()

where S+n = 

n
[
n

∑
i=

∣Zi∣].

�erefore, the aggregate change of state, x(t+∆t)−x(t)
under n identical random impacts on the system over the

given interval [t, t + ∆t] of time is described by

x(t + ∆t) − x(t) = 
n
(m − n) S

+
n

τ
∆t. ()

Moreover, from (), we have:

E[x(t + ∆t) − x(t)] = (p − q) S
+
n

τ
∆t ()

and

Var(x(t + ∆t) − x(t)) = pq
(S+n )



τ
∆t. ()

S+
n

τ
and

(S+
n
)

τ
are sample microscopic or local average

increment and sample microscopic or local average square

increment per unit time over the uniform length of sample

subintervals [tk−, tk], k = , , . . . ,n of interval [t, t + ∆t],
respectively.

We note that the physical nature of the problem

imposes certain restrictions on ∆x and τ. Similarly, the

parameter p cannot be taken arbitrary. In fact, the follow-

ing conditions seem to be natural for su�ciently large n:
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For x(t +∆t)− x(t) = n∆x, ∆t = nτ, pq = (p+ q) − (p−
q) =  − (p − q), and

lim
τ→

⎡⎢⎢⎢⎢⎣

(S+n )


τ

⎤⎥⎥⎥⎥⎦
= D, lim

∆x→
lim
τ→

[(p − q)S
+
n

τ
]

= C and lim
∆x→

lim
τ→
pq = , ()

where C and D are certain constants, the former is called

a dri� coe�cient, and the latter is called a di�usion

coe�cient. Moreover, C can be interpreted as the aver-

age/mean/expected rate of change of state of the system per

unit time, andD can be interpreted as themean square rate

of change of the system per unit time over an interval of

length ∆t. From (), () and (), we obtain

lim
∆x→

lim
τ→
E[x(t + ∆t) − x(t)] = C∆t, ()

and

lim
∆x→

lim
τ→
Var(x(t + ∆t) − x(t)) = D∆t. ()

Now, we de�ne

y(t,n, ∆t) = x(t + ∆t) − x(t) − n(p − q)S
+
n√

npq (S+n )
. ()

By the application of the DeMoivre–Laplace Central

Limit �eorem, we conclude that the process y(t,n, ∆t)
is approximated by standard normal random variable for

each t (zero mean and variance one). Moreover,

lim
∆x→

lim
τ→
y(t,n, ∆t) = x(t + ∆t) − x(t) − C∆t√

D∆t
. ()

For �xed ∆t, the random variable lim
∆x→

lim
τ→
y(t,n, ∆t)

has standard normal distribution (zero mean and variance

one). Now, by rearranging the expressions in (), we get

x(t + ∆t) − x(t) = C∆t +
√
D∆w(t) ()

where
√
∆t [ lim

∆x→
lim
τ→
y(t,n, ∆t)] = ∆w(t) = w(t + ∆t) −

w(t), w(t) is a Wiener process.�us the aggregate change
of state of the system x(t + ∆t) − x(t) in () under
independent and identical random impacts over the given

interval [t, t + ∆t] is interpreted as the sum of the aver-
age/expected/mean change (C∆t) and the mean square

change (
√
D∆w(t)) of state of the system due to the

random environmental perturbations.

If ∆t is very small, then its di�erential dt = ∆t, and
from () the Itô–Doob di�erential dx is de�ned by

dx(t) = Cdt +
√
Ddw(t), ()

where C and D are as de�ned before.�e equation in ()

is called the Itô–Doob type stochastic di�erential equa-

tion (Arnold ; Gihman and Skorohod ; Ito ;

Kloeden and Platen ; Laddle and Laddle ; Laddle

and Lakshmikantham ; Øksendal ; Soong ;

Wong ).

Observation ()We recall that the experimental or knowl-

edge base observed constant random variables: x (t) =
x(t),Z,Z, . . . ,Zk, . . . ,Zn in () are mutually indepen-
dent.�erefore, expectations

E[x(t + ∆t) − x(t)] and E [(x(t + ∆t) − x(t))]
= Var(x(t + ∆t) − x(t))

in () and () can be replaced by the conditional expecta-

tions as:

E[x(t + ∆t)− x(t)] = E[x(t + ∆t)− x(t) ∣ x(t) = x] ()

and

Var(x(t + ∆t) − x(t)) = E [(x(t + ∆t)
−x(t)) ∣ x(t) = x] . ()

() We further note that based on experimental obser-

vations, information and basic scienti�c laws/principles in

biological, chemical, engineering, medical, physical and

social sciences, we infer that in general the magnitude of

the microscopic or local increment depends on both the

initial time t and the initial state x(t) ≡ x of a system. As a
result of this, in general, the dri� (C) and the di�usion (D)

coe�cients de�ned in () need not be absolute constants.

�ey may depend on both the initial time t and the initial

state x(t) ≡ x of the system, as long as their dependence
on t and x is very smooth. From this discussion, () and

(), one can incorporate both time and state dependent

random environmental perturbation e�ects. As a result of

this, () reduces to:

x(t + ∆t) − x(t) = C(t, x)∆t + σ(t, x)∆w(t), ()

whereC(t, x) and σ (t, x) = D(t, x) are also referred to as
the average/expected/mean rate and the mean square rate

of the state of the systemon the interval of length ∆t.More-

over, the Itô–Doob type stochastic di�erential equation

() becomes:

dx(t) = C(t, x)dt + σ(t, x)dw(t). ()

() From (), () and (), we have

d

dt
E[x(t) ∣ x(t) = x] = C(t, x), ()

dx = C(t, x)dt + σ(t, x)ξ(t)dt, ()

dx = C(t, x)dt ()

where w(t) is the Wiener process and ξ(t) is the white
noise process. We further remark that either () or ()

is considered as a stochastic perturbation of deterministic
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di�erential equation ().�e random terms σ(t, x)dw(t)
and σ(t, x)ξ(t) in the right-hand side of () and (),
respectively, can be, normally, interpreted as random per-

turbations caused by the presence of microscopic and/or

the imperfectness of the controlled conditions, either

known or unknown and/or either environmental or inter-

nal �uctuations in the parameters in C(t, x). It is this idea
that motivates us to build a more general and feasible

stochastic mathematical model for dynamic processes in

biological, chemical, engineering, medical, physical and

social sciences.

Sequential Colored Noise Modeling
Approach (Ladde and Ladde ; Wong
)
�e idea is to start with a deterministic mathematical

model () that is based on phenomenological or bio-

logical or chemical/medical/physical social laws and the

knowledge of systemor environmental parameter(s). From

Observation (), one can identify parameter(s) and the

source of random internal or environmental perturbations

of parameter(s) of the mathematical model (), and for-

mulate a stochasticmathematicalmodel in general formas:

dx = F(t, x, ξ(t))dt, x (t) = x, ()

and, in particular,

dx = C(t, x)dx + σ(t, x)ξ(t)dt, x (t) = x, ()

where ξ is a stochastic process that belongs to R[[a, b],
R[Ω,R]]; rate functions F, C(t, x) and σ(t, x) are su�-
ciently smooth, and are de�ned on [a, b]×R into R, x ∈ R
and t ∈ [a, b]. If the sample paths ξ(t,ω) of ξ(t) are
smooth functions (sample continuous), then one can uti-

lize the usual deterministic calculus, and can look for the

solution process determined by () and ().We note that

such a solution process is a random function with all sam-

ple paths starting at x. In general this is not feasible, for

example, if ξ(t) in () or () is a Gaussian process.�e
sequential colored noise modeling (CNM) approach alle-

viates the limitations of a one-shotmodeling approach.�e

basic ideas are as follows:

CNM  Let us start with a sequence {ξn(t)}∞n= of
su�ciently smooth (sample path wise continuous) Gaus-

sian processes which converges in some sense to a Gaus-

sian white noise process ξ(t) in (). For each n, we
associate a stochastic di�erential equation with a smooth

random process as follows:

dxn = C (t, xn) + σ (t, xn) ξn(t)dt, xn (t) = x ()

where C(t, x) and σ(t, x) are described in ().

CNM  We assume that the IVP () has a unique

solution process. �e IVP () generates a sequence

{xn(t)}∞n= of solution processes corresponding to the
chosen Gaussian sequence {ξn(t)}∞n= in CNM.
CNM  Under reasonable conditions on rate func-

tions C(t, x), σ(t, x) in () and a suitable convergent
sequence of Gaussian processes {ξn(t)}∞n= in CNM, it is
shown that the sequence of solution processes {xn(t)}∞n=
determined by () converges in almost surely or in

quadratic mean or even in probability to a process x(t).
Moreover, x(t) is the solution process of ().
CNM  �e above described ideas CNM, CNM

and CNM make a precise mathematical interpretation

of (). However, we still need to show that () can be

modeled by an Itô–Doob form of stochastic di�erential

equation (). Moreover, one needs to highlight on the

concept of convergence of {ξn(t)}∞n= to the white noise
process in (). For this purpose, we de�ne

wn(t) − wn (t) = ∫
t

t

ξn(s)ds, ()

and rewrite the IVP () into its equivalent integral form:

xn(t) = xn (t) + ∫
t

t

C (s, xn(s))ds

+ ∫
t

t

σ (s, xn(s)) ξn(s)ds

= xn (t) + ∫
t

t

C (s, xn(s))ds

+ ∫
t

t

σ (s, xn(s))dwn(s). ()

CNM  To conclude the convergence of {xn(t)}∞n=,
we need to show the convergence of both terms in the

right-hand side of (). �e procedure for showing this

convergence generates the following two mathematical

steps:

Step :�is step is to establish the following as in Ladde
and Ladde () and Wong ():

lim
n→∞

[yn(t)] = lim
n→∞

[∫
t

tn

ϕ (s,wn(s))dwn(s)]

= ∫
t

t

ϕ(s,w(s))dw(s)

+ 

∫

t

t

∂

∂z
ϕ(s,w(s))ds, ()

where ϕ is a known smooth function of two variables.�is

is achieved by considering a deterministic partial inde�nite

integral of a given smooth deterministic function ϕ:

ψ(t, x) = ∫
x


ϕ(t, z)dz. ()
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Step :�is step deals with the procedure of �nding
a limit of the sequence of the solution process {xn(t)}∞n=
determined by () or its equivalent stochastic di�erential

equation () as in Ladde and Ladde;  andWong; :

dxn = C (t, xn)dt + σ (t, xn)dwn(t),
xn (t) = x, ()

where wn(t) is as de�ned in (). For this purpose,
we assume that σ(t, z) in () satis�es the conditions:
σ(t, z) ≠ , and it is continuously di�erentiable. We set
ϕ(t, z) = 

σ(t,z) in (). Under the smoothness conditions
on rate functionsC, σ and imitating the procedure outlined

in Step , one can conclude that {xn(t)}∞n= converges to
a process x(t) on [t, b].�e �nal conclusion is to show
that x(t) satis�es the following Itô–Doob type stochastic
di�erential equation:

dx = [C(t, x) + 


σ(t, x) ∂

∂x
σ(t, x)]

dt + σ(t, x)dw(t), x (t) = x. ()

�is is achieved by the procedure of solving the Itô–Doob

type stochastic di�erential equation in the form of ().

�e procedure is to reduce di�erential equation () into

the following reduced integrable di�erential equation as in

(Gihman and Skorohod (); Kloeden and Platen ();

Ladde and Ladde () and Wong ()):

dm = f (t)dt + g(t)dw(t), ()

where f (t) and g(t) are suitable stochastic processes deter-
mined by rate functions C and σ in ().�e extra term



σ(t, x) ∂

∂x
σ(t, x) in () is referred to as the correction

term.

In summary, it is further detailed as shown in Ladde

and Ladde () and Wong () that if we interpret

Gaussian white-noise driven di�erential equation () by

the limit of a sequence of stochastic di�erential equa-

tions () with a sequential colored noise process, then

the Gaussian white-noise driven di�erential equation ()

is equivalent to the Itˆo–Doob type stochastic di�eren-

tial equation (). Moreover, this material is -dimensional

state variable, however, it can be easily extended to multi-

dimensional state space.

Several dynamic processes are under both internal

and external random distributions. �e usage of this

information coupled with di�erent modes in probabilis-

tic analysis, namely, an approach through sample calcu-

lus, Lp-calculus, and Itô–Doob calculus as in (Ladde and

Lakshmikantham; , Ladde and Sambandham; ,

Nelson; , Øksendal;  and Soong; ) leads to dif-

ferent dynamic models.�e majority of the dynamic mod-

els are in the context of Itô–Doob calculus (Arnold; ,

Gihman; , Ito; , Kloeden and Platen; , Ladde;

, Ladde andLadde; , Ladde andLakshmikantham;

; Nelson; , Øksendal; , Soong; , Wong;

) and are described by systems of stochastic di�erential

equations

dx = f (t, x)dt + σ(t, x)w(t), x (t) = x, ()

where dx is the Itô–Doob type stochastic di�erential of x,

x ∈ Rn, w is m-dimensional normalized Wiener process
de�ned on a complete probability space (Ω,I,P), f (t, x) is
dri� rate vector, and σ(t, x) is a di�usion rate matrix of
size n × m. Various qualitative properties (Arnold; ,
Ladde; , Ladde and Lakshmikantham; , Ladde

and Sambandham; , Soong; , Wong; ) have

played a very signi�cant role in state estimation and sys-

tem designing processes since the beginning or middle of

the twentieth century.
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�e transport process X(t) = (X(t), . . . ,Xm(t)) in the
Euclidean space, Rm, m ≥ , is generated by the stochas-
tic motion of a particle that, at the time instant t = , starts
from some initial point (e.g., origin) ofRm andmoves with
some �nite speed c in random direction. �e motion is

controlled by some stochastic process x(t), t ≥ , causing,
at random time instants, the changes of direction cho-

sen randomly according to some distribution on the unit

sphere Sm ⊂ Rm. Such stochastic motions, also called ran-
dom �ights, represent the most important type of random

evolutions (for limit and asymptotic theorems for general

random evolutions see, for instance, Papanicolaou [],

Pinsky [], Korolyuk and Swishchuk [] and the bib-

liographies therein). While the �niteness of the velocity is

the basic feature of such motions, the models di�er with

respect to the way of choosing the new directions (the

scattering function), the type of the governing stochas-

tic process x(t), and the dimension of the space Rm. If
the new directions are taken on according to the uniform

probability law and the phase space Rm is isotropic and
homogeneous, X(t) is referred to as the isotropic trans-
port process.�emost studiedmodel is referred to the case

when the speed c is constant and x(t) is the homogeneous
Poisson process (see 7Poisson Processes).

�e simplest one-dimensional isotropic transport pro-

cess with constant �nite speed c driven by a homogeneous

Poisson process of rate λ >  was �rst studied by Goldstein
() and Kac ().�ey have shown that the transition

density f = f (x, t), x ∈ R, t > , of the process satis�es
the telegraph equation

∂f

∂t
+ λ ∂f

∂t
− c ∂

f

∂x
= , ()

and can be found by solving this equation with the initial

conditions f (x, ) = δ(x), ∂f

∂t
∣
t=

= , where δ(x) is the
one-dimensionalDirac delta-function.�e explicit formof
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the transition density of the process (i.e., the fundamental

solution to ()) is given by the formula

f (x, t) = e
−λt


[δ(ct + x) + δ(ct − x)]

+ e
−λt

c
[λI (

λ

c

√
ct − x)

+ λct√
ct − x

I (
λ

c

√
ct − x)]Θ(ct − ∣x∣),

x ∈ R, ∣x∣ ≤ ct, t > , ()

where I(x) and I(x) are the Bessel functions of zero
and �rst orders, respectively, with imaginary argument

and Θ(x) is the Heaviside function.�e �rst term in ()
represents the density of the singular component of the

distribution (which is concentrated in two terminal points

±ct of the interval [−ct, ct]), while the second one repre-
sents the density of the absolutely continuous part of the

distribution (which is concentrated in the open interval

(−ct, ct)).
Let X(t), t > , be the isotropic transport process in

the Euclidean plane, R, generated by the random motion
of a particle moving with constant speed c and choosing

new directions at random Poissonian (λ) instants accord-

ing to the uniform probability law on the unit circumfer-

ence.�en the transition density f = f (x, t), x ∈ R, t > ,
of X(t) has the form (Stadje ; Masoliver et al. ;
Kolesnik and Orsingher )

f (x, t) = e
−λt

πct
δ(ct − ∥x∥)

+ λ

πc

exp (−λt + λ
c

√
ct − ∥x∥))

√
ct − ∥x∥

×Θ (ct − ∥x∥) ,

x = (x, x) ∈ R, ∥x∥ =
√
x + x ≤ ct,

t > . ()

Similar to the one-dimensional case, the density () is

the fundamental solution (the Green’s function) to the

two-dimensional telegraph equation

∂f

∂t
+ λ ∂f

∂t
= c { ∂

f

∂x
+ ∂f

∂x
} . ()

�e transition density f = f (x, t), x ∈ R, t > , of the
isotropic transport process X(t) with unit speed c =  in
the three-dimensional Euclidean space,R, is given by the

formula (Stadje )

f (x, t) = e
−λt

πt
δ(t − ∥x∥) + λ e−λt

π∥x∥

⎡⎢⎢⎢⎢⎢⎣
λ

−∥x∥/t

∫
−

exp(λ(ξt

+∥x∥)arth ξ) (arth ξ) dξ

+ 
t
arth(∥x∥

t
)]Θ (t − ∥x∥) ,

x = (x, x, x) ∈ R,

∥x∥ =
√
x + x + x ≤ t, t > , ()

where arth(x) is the hyperbolic inverse tangent function.
In the four-dimensional Euclidean space,R, the tran-

sition density f = f (x, t), x ∈ R, t > , of the isotropic
transport process X(t) has the following form (Kolesnik
)

f (x, t) = e−λt

π(ct)
δ(ct − ∥x∥) + λt

π(ct)

× [ + λt ( − ∥x∥

ct
)] exp(− λ

ct
∥x∥)

×Θ (ct − ∥x∥) ,
x = (x, x, x, x) ∈ R,

∥x∥ =
√
x + x + x + x ≤ ct, t > . ()

We see that in the spacesR andR, the transition den-
sities of X(t) have very simple analytical forms () and ()
expressed in terms of elementary functions. In contrast,

the three-dimensional density () has the fairly compli-

cated form of an integral with variable limits which, appar-

ently, cannot be explicitly evaluated.�is fact shows that

the behavior of transport processes in the Euclidean spaces

Rm substantially depends on the dimension m. Moreover,
while the transition densities of the processes on the line

R and in the plane R are the fundamental solutions (i.e.,
the Green’s functions) to the telegraph equations () and

(), respectively, the similar results for other spaces have

not been obtained so far.

However, for the integral transforms of the distribu-

tions of X(t), one can give the most general formulas that
are valid in any dimensions. Let H(t) = E{ei(α ,X(t))}
be the characteristic function (Fourier transform) of the

isotropic transport processX(t) in the Euclidean spaceRm

of arbitrary dimensionm ≥ .Here, α = (α, . . . , αm) ∈ Rm

is the real m-dimensional vector of inversion parameters
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and (α,X(t)) means the inner product of the vectors α
and X(t). Introduce the function

φ(t) = (m−)/ Γ (m

)
J(m−)/(ct∥α∥)
(ct∥α∥)(m−)/

, m ≥ ,

()

where ∥α∥ =
√

α + ⋅ ⋅ ⋅ + αm, Γ(x) is the Euler gamma-
function and J(m−)/(x) is the Bessel function of order
(m − )/ with real argument. Note that () is the charac-
teristic function of the uniform distribution on the surface

of the sphere of radius ct in the spaceRm, m ≥ .�en the
characteristic function H(t), t ≥ , satis�es the following
convolution-typeVolterra integral equation of second kind

(Kolesnik ):

H(t) = e−λt
φ(t)+λ∫

t


e
−λ(t−τ)

φ(t−τ)H(τ) dτ, t ≥ .
()

In the class of continuous functions, the integral equa-

tion () has the unique solution given by the uniformly

converging series

H(t) = e−λt
∞
∑
n=

λ
n [φ(t)]∗(n+) , ()

where [φ(t)]∗(n+)means the (n+)-multiple convolution
of function () with itself.�e Laplace transform L of the
characteristic functionH(t) has the form (Kolesnik )

L [H(t)] (s)

=
F ( 


, m−

; m

;

(c∥α∥)
(s+λ)+(c∥α∥) )

√
(s + λ) + (c∥α∥) − λ F ( 


, m−

; m

;

(c∥α∥)
(s+λ)+(c∥α∥) )

,

m ≥ , ()

for Re s > , where F(ξ, η; ζ ; z) is the Gauss hypergeomet-
ric function.

One of the most remarkable features of the isotropic

transport processes in Rm, m ≥ , is their weak conver-
gence to the Brownian motion (see 7Brownian Motion
and Di�usions) as both the speed c and the intensity of

switchings λ tend to in�nity in such a way that the follow-

ing Kac condition holds:

c→∞, λ →∞, c

λ
→ ρ, ρ > . ()

Under this condition (), the transition density f =
f (x, t), x ∈ Rm, m ≥ , t > , of the isotropic trans-
port process X(t) converges to the transition density of

the homogeneous Brownian motion with zero dri� and

di�usion coe�cient σ  = ρ/m (Kolesnik ), i.e.,

lim
c, λ→∞
(c/λ)→ρ

f (x, t) = ( m

ρπt
)
m/

× exp(− m
ρt

∥x∥) , m ≥ ,

where ∥x∥ = x + ⋅ ⋅ ⋅ + xm.
Some of these results are also valid for the trans-

port processes with arbitrary scattering functions. Suppose

that both the initial and each new direction are taken on

according to some arbitrary distribution on the unit sphere

Sm ⊂ Rm, m ≥ . Let χ(x), x ∈ Sm denote the density of
this distribution, assumed to exist. Introduce the function

ψ(t) = ∫
Sm


e
ict(α ,x)

χ(x) µ(dx),

where µ(dx) is the Lebesgue measure on Sm . �en the
characteristic function of such a transport process satis-

�es a Volterra integral equation similar to (), in which

the function φ(t) is replaced everywhere by the function
ψ(t).�e unique continuous solution of such an equation
is similar to () with the same replacement.
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�e word “stochastic process” is derived from the Greek

noun “stokhos” whichmeans “aim.” Another related Greek

word “stokhastikos,” “the dart game,” provides an alterna-

tive image for randomness or chance. Although the con-

cept of Probability is o�en associated with dice games,

the dart game seems to be more adapted to the modern

approach to both Probability�eory and Stochastic Pro-

cesses. Indeed, the fundamental di�erence between a dice

game and darts is that while in the �rst, one cannot con-

trol the issue of the game, in the dart game, one tries to

attain an objective with di�erent degrees of success, thus,

the player increases his knowledge of the game at each trial.

As a result, time is crucial in the dart game, the longer you

play, the better you increase your skills.

Definition of a Stochastic Process
�e mathematical de�nition of a stochastic process, in the

Kolmogorov model of Probability�eory, is given as fol-

lows. Let (Ω,F ,P) be a probability space, that is, Ω is a
non empty set called sample space,F is a sigma �eld of sub-
sets of Ω, which represents the family of events, and P is a
probability measure de�ned on F . T is another non empty
set, and (E,E) a measurable space to represent all possible
states.�en, a stochastic process with states in E is a map

X : T × Ω → E such that for all t ∈ T, ω ↦ X(t,ω) is a
measurable function. In other words, a primary interpre-

tation of a stochastic process X is as a collection of random

variables, and as such, notations like (Xt)t∈T are used to
refer to X, that is Xt(ω) = X(t,ω), for all (t,ω) ∈ T × Ω.
If T is an ordered number set, (e.g., N, Z, R+

, R), it is
o�en referred as the set of time variables and taken as a

subset of integers or real numbers. For each ω ∈ Ω, the
map X(⋅,ω) : t ↦ X(t,ω) is called the trajectory of the
process.�us, each trajectory is an element of ET , the set

of all E-valued functions de�ned on T. Particularly, if T is

a countable set, the process is said to be indexed by discrete

times (the expression Time Series is also in use in this case).

Discrete time stochastic processes were the �rst studied in

Probability�eory under the name of chains (see7Markov
Chains).

Example 

. Consider a sequence (ξn)n≥ of real random variables.
According to the de�nition, this is a stochastic process.

New stochastic processes can be de�ned on this basis.

For instance, take (Sn)n≥, de�ned as, Sn = ξ+ . . .+ ξn,

for each n ≥ .
Suppose now that the random variables (ξn)n≥ are

independent and identically distributed on {−, }with
P(ξ = ±) = /. �en, (Sn)n≥ becomes a Simple
Symmetric RandomWalk.

. Consider a real function x : [,∞[→ R, this is also a
stochastic process. It su�ces to consider any probabil-

ity space (Ω,F ,P) and de�ne X(ω, t) = x(t), for all
ω ∈ Ω, t ≥ .�is is a trivial stochastic process.

. Consider an initial value problem given by

⎧⎪⎪⎨⎪⎪⎩

x′ = f (t, x);
x() = x,

()

where f is a continuous function on the two variables

(t, x). NewtonianMechanics can bewrittenwithin this
framework, which is usually referred as a mathemat-

ical model for a closed dynamical system in Physics.

�at is, the system has no interaction with the environ-

ment, and time is reversible. Now de�ne Ω as the set of

all continuous functions from [,∞[ into R. Endow
Ω with the topology of uniform convergence on com-

pact subsets of the positive real line and call F the
corresponding Borel σ-�eld.�us, any ω ∈ Ω is a func-
tion ω = (ω(t); t ≥ ). De�ne the stochastic process
X(ω, t) = ω(t), known as the canonical process.�e
initial value problem is then written as

X(ω, t) = x + ∫
t


f (s,X(ω, s))ds. ()

�is can be phrased as an example of a Stochastic

Di�erential Equation, without noise term.�e solution
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is a deterministic process which provides a descrip-

tion of the given closed dynamical system. Apparently,

there is no great novelty and one can wonder whether

the introduction of Ω is useful. However, this frame-

work includes processes describing open dynamical

systems too, embracing the interaction of the main

system with the environment, and that is an impor-

tant merit of the stochastic approach. Typically, the

interaction of a given system with the environment is

described through the action of so-called noises inter-

fering with the main dynamics. Let us complete our

example adding a noise term to the closed dynamics.

To consider the action of a noise, take a sequence

(ξn)n≥ of random variables de�ned on Ω, such that
ξn(ω) ∈ {−, }. Let be given a probability P on the
measurable space (Ω,F) such that P(ξn = ±) = /.
Call Sn = ξ+ . . .+ξn and denote [t] the greatest integer
≤ t.�e equation

X(ω, t) = x + ∫
t


f (s,X(ω, s))ds + S[t](ω), ()

is an example of a stochastic di�erential equation

driven by a 7random walk. �e stochastic process
obtained as a solution is no longer deterministic and

describes an open system dynamics. ▽

Distributions
�e space of trajectories ET is usually endowed with the

product σ-�eld E⊗T generated by all projections πt : E
T →

E, which associate to each function x ∈ ET its value x(t) ∈
E, t ∈ T. �us, a stochastic process is, equivalently, a
random variable X : Ω → ET , ω ↦ X(⋅,ω). �e Law
or Probability Distribution PX of a stochastic process X is

the image of the probability P on the measurable space
(ET ,E⊗T) of all trajectories. Given a probability measure
P on the space (ET ,E⊗T), one may construct a Canonical
Process X whose distribution PX coincides with P. Indeed,

it su�ces to consider Ω = ET , F = E⊗T , P = P, X(t,ω) =
ω(t), for each ω = (ω(s); s ∈ T) ∈ ET , t ∈ T.
Let a �nite set I = {t, . . . , tn} ⊂ T be given, and

denote πI the canonical projection de�ned on E
T
with val-

ues in EI , such that x ↦ (x(t), . . . , x(tn)). Call Pf (T)
the family of all �nite subsets of T.�e Finite Dimensional

Distributions or Marginal Probability Distributions of an

E-valued stochastic process is the family (PX,I)I∈Pf (T) of
distributions, where PX,I is de�ned as

PX,I(A) = PX (π
−
i (A)) = P ((X(t, ⋅), . . . ,X(tn, ⋅)) ∈ A) ,

()

for all A ∈ E⊗I .

Example 

. A Poisson Process (Nt)t≥ is de�ned as a stochastic
process with values in N such that
(a) N(ω) =  and t ↦ Nt(ω) is increasing, for all

ω ∈ N.
(b) For all  ≤ s ≤ t < ∞, Nt − Ns is independent of

(Nu; u ≤ s).
(c) For all  ≤ s ≤ t <∞, the distribution of Nt −Ns

is Poisson with parameter t − s, that is

P(Nt −Ns = k) =
(t − s)k

k!
e
−(t−s)

.

. A d-dimensional Brownian Motion (see also

7BrownianMotion andDi�usions) is a stochastic pro-
cess (Bt)t≥, taking values in Rd such that:
(a) If  ≤ s < t < ∞, then Bt − Bs is independent of

(Bu; u ≤ s).
(b) If  ≤ s < t <∞, then

P(Bt −Bs ∈ A) = (π(t− s))−d/ ∫
A
e
−∣x∣/(t−s)

dx,

where dx represents the Lebesguemeasure onRd

and ∣x∣ is the euclidian norm in that space.
�e Brownian Motion starts at x if P(B =

x) = . ▽

Construction of Canonical Processes
An important problem in the construction of a canonical

stochastic process given the family of its �nite dimensional

distributions was solved by Kolmogorov in the case of a

countable set T and extended to continuous time later

by several authors. At present, a particular case, general

enough for applications, is the following version of the

Daniell–Kolmogorov�eorem. Suppose that E is a Polish

space (complete separable metric space) and let E be its
Borel σ-�eld. LetT be a subset ofR+

. Suppose that for each

I ∈ Pf (T) a probability PI is given on the space (E,E⊗I).
�en, there exists a probability P on (ET ,E⊗T) such that
for all I ∈ Pf (T),

PI(A) = P ○ π
−
I (A) = P (π

−
I (A)) , ()

for all A ∈ E⊗I , if and only if the following Consistency
Condition is satis�ed:

PI = PJ ○ π
−
J ,I , ()

for all I, J ∈ Pf (T) such that I ⊂ J, where πJ ,I denotes the

canonical projection from the space EJ onto EI .
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Example  Consider J = {t, . . . , tn} and let Φt be
the normal distribution of mean zero and variance t ≥
, that is,

Φt(A) = (πt)−/ ∫
A
e
−x/t

dx.

Let PJ = Φt ⊗Φt−t ⊗ . . . Φtn−tn− , that is for all Borel sets
A, . . . ,An,

PJ(A×A×. . .×An) = Φt(A)Φt−t(A) . . . Φtn−tn−(An).

�is is a probability on Rn. Take I = {t, . . . , tn−}. Notice
that π−J ,I(A × . . . × An−) = A × . . . × An− ×R, thus

PI(A × A × . . . × An−) = Φt(A)Φt−t(A) . . .
Φtn−−tn−(An−)

= PJ(A × A × . . . ×R). ▽

Regularity of Trajectories
Another interpretation of a stochastic process is based on

regularity properties of trajectories. Indeed, if one knows

that each trajectory belongs almost surely to a function

space S ⊂ ET , endowed with a σ-�eld S , one may provide
another characterization of the stochastic process X as an

S-valued random variable, ω ↦ X(⋅,ω) de�ned on Ω.
Regarding the regularity, Kolmogorov �rst proved one

of the most useful criteria on continuity of trajectories.

Suppose that X = (X(t,ω); t ∈ [, ], ω ∈ Ω) is a real-
valued stochastic process and assume that there exist α, δ >
 and  < C <∞ such that

E (∣X(t + h) − X(t)∣α) < C ∣h∣+δ
, ()

for all t ∈ [, ] and all su�ciently small h > , then
X has continuous trajectories with probability . �ere-

fore, if X satis�es (), then there exists a random vari-

able X̃ : Ω → C[, ], where C[, ] is the metric
space of real continuous functions de�ned on [, ],
endowed with the metric of uniform distance, such that

P ({ω ∈ Ω : X(⋅,ω) = X̃(ω)}) = .

Wiener Measure, Brownian Motion
�e above result is crucial to construct theWienerMeasure

on the space C[, ] or, more generally, on C(R+), which
is the law of the Brownian Motion (see also 7Brownian
Motion and Di�usions). Indeed, by means of Kolmogorv’s

Consistency �eorem, one �rst constructs a probability

measure P on the product space (RR+
,B(R)⊗R+), where

B(R) is the Borel σ-�eld of R, considering the consistent
family of probability distributions

PI = Φt ⊗Φt−t ⊗ . . . ⊗Φtn−tn− , ()

where I = {t, . . . , tn}, and Φt denotes the normal dis-
tribution with mean  and variance t. Since the family

(PI)I∈Pf (R+) is consistent, there exists a unique P proba-

bility measure on (RR+
,B(R)⊗R+) such that PI = P ○ π−I .

One can construct the canonical process with law P which

should correspond to the Brownian Motion. Unfortu-

nately, the set of real-valued continuous functions de�ned

on R+
is not an element of B(R)⊗R+

. However, thanks

to () one proves that the exterior probability measure P∗

de�ned by P is concentrated on the subset C(R+) of RR+

thus, the restriction PW of P
∗
toC(R+) gives the good def-

inition ofWienerMeasure.�us, a canonical version of the

Brownian Motion is given by the canonical process on the

space C(R+).

Series Expansion in L

In the early years of the �eory of Stochastic Processes,

a number of authors, among them Karhunen and Loève,

explored other regularity properties of trajectories, deriv-

ing some useful representations by means of series expan-

sions in an L space. More precisely, let T ∈ B(R+) be
given and call h = L(T) theHilbert space of all real-valued
Lebesgue-square integrable functions de�ned on T. Sup-

pose that all trajectories X(⋅,ω) belong to h for all ω ∈ Ω,
and denote (en)n∈N an orthonormal basis of h.�erefore,
xn(ω) = ⟨X(⋅,ω), en⟩ satis�es ∑n∈N ∣xn(ω)∣ < ∞, for all
ω ∈ Ω. And the series

∑
n∈N
xn(ω)en, ()

converges in h, providing a representation of X(⋅,ω). So
that, by an abuse of language one can represent X(t,ω) by
∑n∈N xn(ω)en(t).

Example  Consider T = [, ] and the Haar orthonor-
mal basis on the space h = L([, ]) constructed by
induction as follows: e(t) =  for all t ∈ [, ];

em+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩


m/
, if  ≤ t < −m− ,

−m/, if −m− ≤ t < −m,
, otherwise.

And �nally, de�ne em+j(t) = em+ (t − −m(j − )), for
j = , . . . , m, m = , , . . .. Given a sequence (bn)n≥ of
independent standard normal random variables (that is,

with distribution N (, )), the L(Ω × [, ])-convergent
series ∑n≥ bn(ω)fn(t) provides a representation of the
Brownian Motion (Bt)t∈[,], where fn(t) = ∫

t


en(s)ds,

(t ∈ [, ], n ∈ N). ▽
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The General Theory of Processes
�e General �eory of Processes emerged in the seven-

ties as a contribution of the Strasbourg School initiated

by Paul André Meyer. �is �eory uses the concept of a

History or Filtration, which consists of an increasing fam-

ily of σ-�elds F = (Ft)t∈T , where T is an ordered set,
Fs ⊂ Ft ⊂ F for all s ≤ t. �us, a stochastic process
X is adapted to F if for all t ∈ T, the variable X(t, ⋅) is
Ft/E–measurable. Strongermeasurability conditionsmix-
ing regularity conditions have been introduced motivated

by the construction of stochastic integrals and the modern

theory of Stochastic Di�erential Equations. Let T = R+

and assume E to be a Polish space endowed with the σ-

�eld of its Borel sets. Denote CE = C(R+
,E) (respectively

DE = D(R+
,E)) the space of all E-valued continuous func-

tions de�ned on R+
to E (resp. the space of all E-valued

functions which have le� hand limit at each point t > 
and are right-continuous at t > , endowed with the Sko-
rokhod’s topology). Consider now the family CE (resp.DE)
of all F-adapted stochastic processes X : R+ ×Ω → E such
that their trajectories belong to CE (resp. to DE).�e Pre-

dictable (resp. Optional) σ-�eld on the product setR+ ×Ω
is the one generated by CE (resp. DE), that is P = σ(CE),
(resp. O = σ(DE)).�en, a process X is predictable (resp.
optional) if (t,ω) ↦ X(t,ω) is measurable with respect to
P , (resp. O). A crucial notion in the development of this
theory is that of Stopping Time: a function τ : Ω → [,∞]
is a stopping time if for all t > , {ω ∈ Ω : τ(ω) ≤ t} is
an element of the σ-�eld Ft .�is de�nition is equivalent
to say that τ is a stopping time if and only if (t,ω) ↦
[,τ(ω)[(t) is an optional process, where the notation
A is used for the indicator or characteristic function of

a set A.

�e development of the General�eory of Processes

encountered at least two serious di�culties which could

not be solved in the framework of Measure �eory and

required a use of Capacity �eory. �ey are the Section

�eorem and the Projection�eorem.�e Section�eorem

asserts that if the probability space (Ω,F ,P) is complete
(that is F contains all P-null sets) and A ∈ O, then there
exists a stopping time τ such that its graph is included

in A. And the Projection �eorem states that given an

optional set A ⊂ R+ × Ω, the projection π(A) on Ω
belongs to the complete σ-�eldF . For instance, this result
allows to prove that given a Borel set B of the real line,

the random variable τB(ω) = inf {t ≥  : X(t,ω) ∈ B}
(inf / = ∞), de�nes a stopping time for an F-adapted
process X with trajectories in D almost surely, provided

the �ltration F is right-continuous, that is, for all t ≥
, Ft = Ft+ := ⋂s>t Fs, and in addition each σ-�eld

contains all P-null sets. Within this theory, the system

(Ω,F , (Ft)t∈R+ ,P) is usually called a Stochastic Basis
and a system (Ω,F , (Ft)t∈T ,E,E ,P, (Xt)t∈T) provides the
whole structure needed to de�ne an E-valued adapted

stochastic process.

Attending to measurability properties only, stochas-

tic processes may be classi�ed as optional or predictable,

as mentioned before, for which no probability is needed.

However, richer properties of processes strongly depend

on the probability considered in the stochastic basis. For

instance, the de�nitions of martingales, submartingales,

supermartingales, semimartingales depend on a speci�c

probability measure, through the concept of conditional

expectation. Let us mention that semimartingales form the

most general class of possible integrands to give a rigorous

meaning to Stochastic Integrals and Stochastic Di�erential

Equations.

Probability is moreover fundamental for introduc-

ing concepts as Markov Process (see 7Markov Processes),
Gaussian Process, Stationary Sequence and Stationary

Process.

Extensions of the Theory
Extensions to the theory have included changing either the

nature of T to consider Random Fields, where t ∈ T may
have the meaning of a space label (T is no more a subset of

the real line), or the state space E, to deal for instance with

measure-valued processes, or random distributions.

Example  Let (T,T , ν) be a σ-�nitemeasure space, and

(Ω,F ,P) a probability space. Call Tν the family of all sets

A ∈ T such that ν(A) < ∞. A Gaussian white noise based
on ν is a random set functionW de�ned on Tν and values

in R such that

(a) W(A) is centeredGaussian andE (W(A)) = ν(A),
for all A ∈ Tν ;

(b) IfA∩B = /, thenW(A) andW(B) are independent.

In particular, if T = R+
, T the corresponding Borel

σ-�eld, and ν = λ the product Lebesgue measure, de�ne

Bt ,t = W(], t]×], t]), for all (t, t) ∈ T.�e process
(Bt ,t)(t ,t)∈T is called the Brownian sheet. ▽

Going further, on the state space E consider the algebra

E of all bounded E-measurable complex-valued functions.
�en, to each E-valued stochastic process X one associates

a family of maps jt : E → L∞C (Ω,F ,P), where jt( f )(ω) =
f (X(t,ω)), for all t ≥ , ω ∈ Ω.�e family ( jt)t∈R+ , known
as the Algebraic Flow can be viewed as a family of complex

randommeasures (each jt is a Dirac measure supported by

X(t,ω)) or, better, as a ∗-homomorphism between the two
∗
-algebras E, L∞C (Ω,F ,P), the ∗ operation being here the
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complex conjugation.�e stochastic process is completely

determined by the algebraic �ow ( jt)t∈R+ .
Example  Consider a Brownian motion B de�ned on a

stochastic basis (Ω,F , (Ft)t∈R+ ,P), with states in R, and
callB the algebra of bounded complex valued Borel func-

tion de�ned on the real line.B is a
∗
-algebra of functions,

that is, there exists an involution
∗
(the conjugation), such

that f ↦ f ∗ is antilinear and ( fg)∗ = g∗f ∗, for all f , g ∈ B.
�e algebraic �ow associated toB is given by jt( f ) = f (Bt),
for all t ≥ , and any f ∈ B, that is jt : B→ L∞C (Ω,F ,P). If
P(B = x) = , then j( f ) = f (x) almost surely. Moreover,
notice that Itô’s formula implies that for all bounded f of

class C, it holds

jt( f ) = f (x)+∫
t


js (
d

dx
f)dBs +∫

t


js (




d

dx
f)ds. ▽

Algebraic �ows provide a suitable framework to deal

with more generalized evolutions, like those arising in the

description of Open Quantum System Dynamics, where

the algebras are non commutative. �us, given two uni-

tal
∗
-algebras (possibly non commutative) A,B, a notion

of Algebraic Stochastic Process is given by a �ow ( jt)t∈R+ ,
where jt : B→ A is a ∗-homomorphisms, for all t ≥ .�at
is, each jt is a linear map, which satis�es ( jt(b))∗ = jt(b∗),
jt(a∗b) = jt(a)∗jt(b), for all a, b ∈ B, and jt(B) = A,
where A (resp. B) is the unit of A (resp.B).

The Dawning of Stochastic Analysis as a
Pillar of Modern Mathematics
�ese days, Stochastic Processes provide the better

description of complex evolutionary phenomena inNature.

Coming from our understanding of the macro world,

through our everyday life, exploring matter at its small-

est component, stochastic modeling has become funda-

mental. In other words, stochastic processes have become

in�uential in all sciences, namely, in biology (popula-

tion dynamics, ecology, neurosciences), computer science,

engineering (especially electric and operation research),

economics (via �nance), physics, among others.�e new

branch of Mathematics, known as Stochastic Analysis, is

founded on stochastic processes. Stochastics is invading

all branches of Mathematics: Combinatorics, Graph�e-

ory, Partial and Ordinary Di�erential Equations, Group

�eory, Dynamical Systems, Geometry, Functional Anal-

ysis, among many other speci�c subjects.�e dawning of

Stochastic Analysis era is a fundamental step in the evo-

lution of human understanding of Chance as a natural

interconnection and interaction of matter in Nature.�is

has been a long historical process which started centuries

ago with the dart game.
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�e applications of 7stochastic processes and martingale
methods (see7Martingales) in �nance and insurance have
attracted much attention in recent years.

Martingales in Finance
Let us consider a continuous time arbitrage free �nan-

cial market with one risk-free investment (bond) and one

risky asset (stock). All processes are assumed to be de�ned

on the complete probability space (Ω,FT , (Ft),P) and
adapted to the �ltration (Ft), t ≤ T.�e bond yields a
constant rate of return r ≥  over each time period.�e
risk-free bond represents an accumulation factor and its

price process B equals

dBt = rBtdt, t ∈ [,T], B = , ()

or Bt = ert .�e evolution of the stock price St is described
by the linear stochastic di�erential equation

dSt = St(µdt + σdWt), t ∈ [,T], S = S, ()

where the expected rate of return µ and the volatility coef-

�cient σ are constants.�e stochastic processWt , t ≥  is
a one-dimensional Brownianmotion.�e solution of Eq. 

is given by

St = S exp(σWt + (µ − σ 


) t), t ∈ [,T]. ()

�e process () is considered by Samuelson () and is

called a geometric Brownian motion.�e market with two

securities is called a standard di�usion (B, S)market and is
suggested by F. Black andM. Scholes ().�e references

are given in Shiryaev () and Rolski et al. ().

A European call (put) option, written on risky security

gives its holder the right, but not obligation to buy (sell) a

givennumber of shares of a stock for a �xed price at a future

date T.�e exercise date T is called maturity date and the

price K is called a strike price.�e problem of option pric-

ing is to determine the value to assign to the option at a

time t ∈ [,T].�e writer of the option has to calculate
the fair price as the smallest initial investment that would
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allow him to replicate the value of the option throughout

the time T.�e replication portfolio can be used to hedge

the risk inherent in writing the option.

De�nition  (Martingale measure) A probability mea-
sure P de�ned on (Ω,FT) is called a martingale measure
if it is equivalent to P (P ∼ P) and the discounted process
St = StB−t is a P− local martingale.

For the Black–Scholes model, the martingale mea-

sure is unique and is de�ned by the following theorem of

Girsanov type.

�eorem  �e unique martingale measure P is given by

the Radon–Nikodym derivative

dP

dP
= exp(− µ − r

σ
WT −




( µ − r

σ
)


T), P − a.s.

Under themartingale measure, P, the discounted stock

price St satis�es the equation

dSt = σStdW t , t ≥ ,

where

W t =Wt +
µ − r

σ
t, t ≤ T

is a standard Brownian motion (see 7Brownian Motion
and Di�usions) with respect to the mea-

sure P.

�e new probability measure P is called also a risk-

neutral measure.�e ratio
µ−r

σ
is called a market price of

risk.

Consider a European call option written on a stock

St , with exercise date T and strike price K. If we assume

that the price of a stock is described by () and the payo�

function is fT = max(ST − K, ), then the fair price Ct of
the European call option at time t is given by the famous

Black–Scholes formula Black F, Scholes M ().

�eorem  (Black–Scholes formula) �e value Ct at
time t of the European call option is given by

Ct = StΦ(d) − Ke−r(T−t)Φ(d), t ≤ T

where

d =
log ( St

K
) + (T − t) (r + σ 


)

σ
√
T − t

,

d =
log ( St

K
) + (T − t) (r − σ 


)

σ
√
T − t

= d − σ
√
T − t

and Φ is the standard Gaussian cumulative distribution

function.

Insurance Risk Model
�e standard model of an insurance company, called risk

process {X(t), t ≥ } is given by

X(t) = ct −
N(t)
∑
k=
Zk, (



∑


= ). ()

Here c is a positive real constant representing the risk pre-

mium rate.�e sequence {Zk}∞k= of mutually independent
and identically distributed random variables, with com-

mon distribution function F, F() = , and mean value
µ, is independent of the counting process N(t), t ≥ .
�e process N(t) is interpreted as the number of claims
on the company during the interval [, t]. In the classi-
cal risk model, also called the Cramér–Lundberg model,

the process N(t) is a homogeneous Poisson process (see
7Poisson Processes), see for instance Grandell ().�e
ruin probability of a company with initial capital u ≥  is
given by

Ψ(u) = P (u + X(t) <  for some t > ).

�e martingale techniques have been introduced by

H. Gerber in  (see Gerber ). Since then, the mar-

tingale approach is a basic tool in risk theory (see the

References in Schmidli (), Rolski et al. (), and

Embrechts et al. ()).

Under the net pro�t condition θ = c
λµ

−  > , the
following fundamental result holds (Embrechts et al. ).

�eorem  (Cramér–Lundberg theorem) Assume that
there exists R >  such that

∫
∞


e
Rx
dFI(x) =  + θ, ()

where FI(x) = ∫
x


( − F(y))dy is the integrated tail distri-

bution of F.

a) For all u ≥ ,

Ψ(u) ≤ e−Ru; ()

b) limu→∞ e
Ru
Ψ(u)=[ R

θµ ∫
∞

xeRx(−F(x))dx]

−
<∞,

provided that

∫
∞


xe
Rx( − F(x))dx <∞.

c)

 − Ψ(u) = θ

 + θ

∞
∑
n=

( 

 + θ
)
n

F
∗n
I (u). ()
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�e condition () is known as the Cramér condition.

Inequality () is called theLundberg inequality and the con-

stant R is the adjustment coe�cient or Lundberg exponent

(see Grandell ). Formula () is known as Pollaczek–

Khinchin formula.

Example  (Exponentially Distributed Claims) Suppose
that the claim sizes are exponentially distributed with

parameter µ, that is F(z) =  − e−
z
µ , z ≥ , µ > .

In this case, FI(z) is also an exponential distribution
function and the solution of equation () is

R = 
µ

θ

 + θ
.

�e Pollaczek–Khinchin formula () gives the ruin proba-

bility

Ψ(u) = 

 + θ
e
− 

µ
θ
+θ
u
, u ≥ .

Cross References
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Definitions
Let {Ω,F ,P} be a complete probability space where Ω is
the sample space, F is the σ-�eld associated with the sam-

ple space containing all the null sets of Ω, and P is the

probability measure de�ned on the �eld F . Let {R,R)
be a measurable range space called the state space, where

R ≡ (−∞,∞) is the real line and R is the σ-�eld associ-

ated with the real lineR. A random variable X is a function
that assigns a rule of correspondence between each ω ∈ Ω
and each x ∈ R.�is correspondence will induce a proba-
bility measure PX de�ned on the �eldR.�us, Xmaps the
probability space {Ω,F ,P} to the probability range space
{R,R,PX}

X : {Ω,F ,P}Ð→ {R,R,PX). ()

�e distribution function FX(x) of X is given by

P{ω : X(ω) ≤ x} = P{X ≤ x} = FX(x), x ∈ R ()

and the density function fX(x), whichmay include impulse
functions of x, is the derivative of FX(x).

�e de�nition (see, e.g., Gikhman and Skorokhod

, p.  and ) of a stochastic (or random) process

requires a parameter set Θ and an increasing sequence of

sub σ-�elds {Fθ ⊂ F , θ ∈ Θ} called the �ltration σ-�eld

such that Fζ ⊂ Fθ for each {θ, ζ ∈ Θ, ζ < θ}. �e �l-
tration σ-�eld is a consequence of the distinction between

the uncertainty of the future and the knowledge of the past.

�e family {X(θ),Fθ} of random variables de�ned on the
probability space {Ω,F ,P} will be called a random func-
tion if the parameter set Θ is arbitrary and a stochastic

process if the parameter set Θ is the time setT ≡ (−∞,∞),
and θ is interpreted as time t.�us, X(t) ∈ Ft is a stochas-
tic process thatmaps the probability space {Ω,F ,P} to the
range space {R,R,PX} for every point ω ∈ Ω and t ∈ T.
X(t) is said to be adapted to the �ltration �eld {Ft , t ∈ T}
if X(t) isFt-measurable in the sense the inverse image set
{X(t)−[B]} ∈ Ft for every subsetB of the real lineR ∈R.

�e important point to emphasize is that a stochastic

process is not a single time function but an ensemble of

time functions. If the time parameter t belongs to a set

of integers Z ≡ {. . . ,−,−, , , , . . .} then X(n) or Xn
denotes a discrete-time stochastic process.
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A non-negative real line will be represented by R+ ≡
[,∞) and non-negative time set by T+ ≡ [,∞). A set
of non-negative integers will be denoted by N ≡ {, , . . .}
and a set of positive integers by N+ ≡ {, , . . . ,N}.
Since X(t) is a random variable for every t ∈ T, the

distribution function FX(x : t) will be given by

P{X(ω, t) ≤ x} = P{X(t) ≤ x} ≡ FX(x : t), x ∈ R, t ∈ T
()

and the density function fX(x : t), which againmay include
impulse functions of x, is the partial derivative of FX(x; t)
with respect to x.

Autocorrelation and autocovariance functions for a

stochastic process X(t) for {t, t ∈ T} are de�ned by:

RX(t, t) = [X(t)X(t)]

= ∫
∞

−∞
∫

∞

−∞
xxf (x, x : t, t)dxdx, ()

CX(t, t) = E{[X(t) − µx(t)][X(t) − µx(t)]}

= ∫
∞

−∞
∫

∞

−∞
[x − µx(t)][x − µx(t)]

f (x, x : t, t)dxdx, ()

where µx(t) and µx(t) are the mean values of X(t) at
times t and t respectively.

Stochastic processes can be classi�ed in di�erent cate-

gories but many of them straddle categories.

Stationary and Ergodic Process
A stochastic process X(t) is nth order stationary if the nth
order distribution function satis�es

FX(x, . . . , xn : t, . . . , tn) = FX(x, . . . , xn :
t + τ, . . . , tn + τ)for any τ ∈ T. ()

It is strictly stationary if Eq. () is true for all n ∈ Z. How-
ever, the most useful concepts of stationarity are the �rst

order stationarity de�ned by

FX(x : t) = FX(x : t + τ) = FX(x), ()

and the second order stationarity called wide sense

stationary de�ned by

FX(x, x : t, t) = FX(x, xn : t+τ, t+τ) = FX(x, x : τ).
()

Wide sense stationarity can be determined from the fol-

lowing two criteria:

. �e expected value E[X(t)] = µX = a constant.
. �e autocorrelation function RX(t, t) = RX(t − t) =
RX(τ) is a function of the time di�erence τ.

A stationary process X(t) is mean ergodic if the ensemble
average is equal to the time average of the sample function

X(t).

lim
T→∞



T
∫

T

−T
X(t)dt = ∫

∞

−∞
xfX(t)dt = µX , ()

or, equivalently the covariance CX(τ) satis�es the condi-
tion ∫

∞

−∞

∣CX(τ)∣dτ <∞.
A stationary process is correlation ergodic if

lim
T→∞



T
∫

T

−T
X(t)X(t + τ)dt

= ∫
∞

−∞
∫

∞

−∞
xxfX(x, x : τ)dxdx = RX(τ), ()

which is equivalent to the condition

∫
∞

−∞

∣E{[X(t)X(t + τ)]} − E{[X(t)]}∣dτ <∞.

State and Time Discretized Process
�e stochastic process X(t) can be classi�ed into four
broad categories depending upon whether the state space

is discretized with R ≡ Z or the time is discretized with
T ≡ Z or both. Asmentioned earlier, discrete-time random
processes will be denoted by Xn or X(n) where n ∈ Z.

. Discrete State Discrete Time Process (DSDT)

At any given time i >  a particle takes a positive
step from X =  with probability p and a nega-

tive step with probability q with p + q = . �e

random variable Zi representing each step is indepen-

dent and identically distributed. �e position Xn of

the particle at time n is a stochastic process Xn =
Z + Z + ⋯ + Zn. It represents a DSDT process with
discrete time set N+ = {, . . . ,n, . . .} and discrete state
spaceR = Z = {. . . ,−, , , . . .} representing the posi-
tion of the particle. �is process known as a simple

7random walk (see, e.g., Cox and Miller , p. )
is nonstationary. If p = q then the process is called a
symmetric simple random walk.

. Discrete State Continuous Time Process (DSCT)

A customer arrives at the service counter of a super-

market at a random time t ≥  at an average rate of λ

per unit time interval. If N(t) is the stochastic process
representing the number of customers arriving in the

time interval [, t] then N(t) is a DSCT process with
time set T+ = { ≤ t < ∞} and discrete state space
N = {, , . . .} representing the number of customers.
�is process known as Poisson process (see 7Poisson
Processes) is nonstationary.

. Continuous State Discrete Time Process (CSDT)

In the DSDT process of (), each step of the particle

at any time i >  is a continuous random variable Z
instead of a discrete one, governed by a distribution

function FZ(z) with mean µZ . If Xn is the position of
the particle at time i = n then Xn represents a CSDT
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process with discrete time set N+ = {, . . . ,n, . . .},
and continuous state space R+ = { ≤ x < ∞} rep-
resenting the position of the particle. �is process is

nonstationary.

. Continuous State Continuous Time Process (CSCT)

In the DSDT process of () the particle undergoes

a positive or negative step of ∆x in a time interval

∆t. If certain limiting conditions on ∆x and ∆t are

satis�ed then as ∆x and ∆t tend to , a CSCT pro-

cess results, which is called Wiener process (see, e.g.,

Cox and Miller , p. ) or Brownian motion (see

7BrownianMotion andDi�usions). Extrusion of plas-
tic shopping bags where the thicknesses of the bags

vary constantly with respect to time with the statistics

being constant over long periods of time is an example

of a CSCT process.�ese processes are nonstationary.

Gaussian Process
A stochastic process X(t) de�ned on a complete probabil-
ity space is aGaussian stochastic process if for any collection

of times {t, t, . . . , tn} ∈ T, the random variables X =
X(t),X = X(t), . . . ,Xn = X(tn) are jointly Gaussian
distributed for all n ∈ Z, with joint probability function

fXXX . . .Xn(x)=


()n/∣CX ∣
exp(−

(x−µX)
TC−X (x−µX)


)

()

where µX is the mean vector and CX is the covari-
ance matrix of the random variables {X,X, . . . ,Xn}.�e
Wiener process is also an example of a Gaussian process.

Markov Process
Let the σ-�eld Ft generated by {X(s), s ≤ t, t ∈ T} rep-
resent the past history up to the present and the σ-�eld

F ct generated by {X(s), s > t, t ∈ T} represent the future
evolution. Let a random variable Y be Ft-measurable and
another random variable Z be F ct -measurable. �en the
process {X(t), t ∈ T} is called a Markov process (see
Markov Processes) if the following hold:

. Given the present informationX(t), the pastY and the
future Z are conditionally independent.

E[YZ∣X(t)] = E[Y ∣X(t)]E[Z∣X(t)]. ()

. �e future Z, conditioned on the past history up to the

present Ft , is equal to the future given the present.

E[Z∣Ft] = E[Z∣X(t)]. ()

. �e future Z, conditioned on the past value X(s) is the
future conditioned on the present valueX(t) and again

conditioned on the past value X(s).

E[Z∣X(s)] = E{E[Z∣X(t)]∣X(s)} for s < t. ()

�is is known as the Chapman-Kolmogorov equation

(see, e.g., Ross , p. ).

In terms of probability, with τ >  and states xh, xi, xj,
Eq. () is equivalent to:

P{X(t + τ) = xj∣X(t) = xi,X(u)
= xh,  ≤ u < t} = P{X(t + τ)
= xj∣X(t) = xi}. ()

Or, for t < t < . . . < tn− < tn, and {xk, k = , . . . ,n, . . .}
belonging to some discrete-state space

P{X(tn+) = xn+∣X(tn) = xn,X(tn−)
= xn−, . . . ,X(t) = x}
= P{X(tn+) = xn+∣X(tn) = xn}. ()

AMarkov process has an important property that the den-

sity fτi(t) of the random time τi spent in any given state xi
is an exponential and hence it is calledmemoryless.

Markov Chains
Discrete state Markov processes are called chains, and if

time is continuous they are called continuous 7Markov
chains, and if time is discrete they are called discrete

Markov Chains. �e Poisson process is an example of a

continuous Markov chain.

A stochastic process {X(t), t ∈ T+} is a continuous-
time Markov chain if for each of the discrete states h, i, j

and any time τ > 

P{X(t + τ) = j∣X(t) = i,X(u) = h,  ≤ u < t}
= P{X(t + τ) = j∣X(t) = i}. (a)

�e quantity P{X(t + τ) = j∣X(t) = i} is the time depen-
dent transition probability de�ned by pij(t, τ), which is
generally a function of times t and τ. If the transition from

the state i to the state j is dependent only on the time dif-

ference τ = (t + τ) − t then the transition probability is
stationary and the Markov chain is called homogeneous. In

this case transition probability becomes pij(τ).
�e probability density function fτi(t) of the random

time τi spent in any given state i for a continuous Markov

chain is exponential and hence it is calledmemoryless.

A stochastic process {X(n),n = , , . . .} is a discrete-
time Markov chain if for each of the discrete states i, j and

{ik, k = , , . . . ,n − } and any timem > ,

P{X(n +m) = j∣X(n) = i,X(n − ) = in−, . . . ,X() = i}
= P{X(n +m) = j∣X(n) = i}. (b)
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�e quantity P{X(n+m) = j∣X(n) = i} is called them-step
transition probability de�ned by p

(m)
ij (n), which is gener-

ally a function of time n. If the transition from the state

i to the state j is dependent only on the time di�erence

m = (n +m) − n then the transition probability is station-
ary and the Markov chain is homogeneous. In this case the

m-step transition probability becomes p
(m)
ij .

�e one-step probability from state i to state j of a

homogeneous discrete Markov chain is given by:

P{X(n + ) = j∣X(n) = i} = pij. ()

�e probability mass function fτi of the random time τi
spent in any given state i for a discrete Markov chain is

geometric and hence it is calledmemoryless.

Semi-Markov Process
In a Markov process the distributions of state transition

times are exponential for a continuous process, and geo-

metric for a discrete process and hence they are considered

memoryless. While the de�nition of a semi-Markov pro-

cess X(t) de�ned on a complete probability space is the
same as that of a Markov process (Eqs.  and ), the dis-

tributions of transition times τi ∈ T between states need
not be memoryless but can be arbitrary. For a continuous-

time semi-Markov process the state transitions can occur

at any instant of time t ∈ T with an arbitrary density
fτi(t) for the time τi spent in state xi and for a discrete-

time semi-Markov process the state transitions can occur

at time instants Z = {. . . ,−, , , . . .} with an arbitrary
probability mass fτi for the time τi spent in state i. If the

amount of time spent in each state is  then this semi-

Markov process is a Markov chain. Markov processes are

a subclass of semi-Markov processes.

Independent Increment Process
A stochastic process {X(t), t ∈ T} is de�ned on a com-
plete probability space with a sequence of time variables

{t < t < . . . < tn} ∈ T. If the increments X(t), [X(t) −
X(t)], . . . , [X(tn)−X(tn−)] of the process {X(t), t ∈ T}
are a sequence of independent random variables then the

process is called an independent increment process (see,

e.g., Krishnan , p. ). If the distribution of the incre-

ments Xt − Xs, t > s depends only on the time di�erence
t − s = τ, then the process is a stationary independent

increment process.

If the time set is discrete given by N+ = {, , . . .}
then the independent increment process is a sequence of

independent random variables given by Z = X,{Zi =
Xi−Xi−, i ∈ N+}. Independent increment process is a spe-
cial case of a Markov process. It is not a stationary process

because of the following (see, e.g., Krishnan , p. ):

E[X(t)] = µ + µt, where µ = E[X(t)] and
µ = E[X(t)] − µ;

Var[X(t)] = σ

 + σ


 t, where σ


 = E[X(t) − µ] and

σ

 = E[X(t) − µ] − σ


 . ()

Poisson and Wiener processes are examples of stationary

independent increment processes.

Uncorrelated and Orthogonal Increment
Process
A stochastic process {X(t), t ∈ T} with s < t, s < t and
t ≤ t

. Has uncorrelated increments (see, e.g., Krishnan ,

p. ) if

E[(Xt−Xs)(Xt−Xs)] = E[(Xt−Xs)]E[(Xt−Xs)].
()

. Has orthogonal increments (see, e.g., Krishnan , p.

) if

E[(Xt − Xs)(Xt − Xs)] = . ()

Clearly, independent increments imply uncorrelated incre-

ments but the converse is not true.

General Random Walk Process
�e simple random walk discussed earlier can be gener-

alized. Starting from X =  a particle takes independent
identically distributed random steps Z,Z, . . . , Zn, whose

values are drawn from an arbitrary distribution, which do

not change with the state of the process.�is distribution

may be continuous with density function fZ(z) or discrete
with probability of transition from state i to state j being pij.

In the latter case pij will be dependent on the di�erence j−i,
or, pij = pj−i.�e position Xn = Z +Z +⋯ + Zn, n ∈ N+

of the particle is a stochastic process where n is the num-

ber of state transitions, which is always forward from state

xi to xi+. Depending upon whether the instants of these
transitions are taken from the set T+ orN+

the process Xn
is either a continuous-time or a discrete-time general ran-

dom walk (see, e.g., Cox and Miller , p. ). In either

case the distribution of the time intervals between these

transitions is arbitrary and hence it is a special case of a

semi-Markov process.

Birth and Death Process
Let{X(t), t ≥ } be a continuousMarkov chain. State tran-
sitions can occur only from the state xi = i to xi+ = i + ,
or xi− = i − , or stays at xi = i. X(t) is called a birth and
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death process (see, e.g., Kleinrock , p. ) if in a small

interval ∆t

P{X(t + ∆t) − X(t) = j∣X(t) = i}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λi∆t + o(∆t), if j = ,

µi∆t + o(∆t), if j = −,

o(∆t), if ∣j∣ > .

()

and P{X(t + ∆t) − X(t) = ∣X(t) = i}
=  − (λi + µi)∆t + o(∆t), ()

where o(∆t)/∆t →  as ∆t → . λi is the rate at which

births occur and µi is the rate at which deaths occur when

the population size is i.�e probability of the population

size being i at any time t >  is given by P{X(t) = i} =
Pi(t). �is is a Markov process with independent incre-
ments. If λi = i λ and µi = i µ then this process is called a
linear birth and death process.

�e pure birth process is a sub-class of birth and death

process with µi ≡  for all i. State transitions can occur only
from the state xi = i to xi+ = i +  with rate λi or stays in

the same state xi = i.
�ePoisson process is a sub-class of pure birth processes

with λi ≡ λ a constant for all i. Here the probability of i

events in time t is given by Pi(t, λ) = [(λt)i/i!]e−λt
, t > .

�is process has stationary independent increments.

Renewal Process
In the general random walk process Xn discussed in the

previous section the interest was in the probability of the

state of the particle a�er n transitions. In 7renewal pro-
cesses the concern is only in the number of transitions that

occur in a time interval [, t] and not on the state. Start-
ing from t =  the transitions occur at sequence of times
 < t < t < . . . < tn,n >  with inter-arrival times de�ned
by random variables Y = t,Y = (t − t), . . . ,Yn =
(tn − tn−).�e random variables Yi, i ∈ N+

are indepen-

dent and identically distributed with an arbitrary density

function f (y) with E[Yi] = µ for all i.
�e stochastic process de�ned byXn = Y+Y+⋯+Yn

is called a renewal process (see, e.g., Cox andMiller , p.

), where a renewal occurs at the epochs at t < t < ⋯ <
tn. In this processXn represents the time of the nth renewal

whereas in the random walk Xn represents the state of the

process at time n.�is process is a subclass of semi-Markov

processes and also a subclass of random walk processes. If

the density function f (y) is either exponential or geomet-
ric then this process isMarkov.�e relationship among the

various discrete-state random processes similar to the one

in Kleinrock (, p. ) is shown in Fig. .

Martingale Process
Amartingale process (see, e.g., Doob , p.  and p. ;

7Martingales) is a stochastic process where the best esti-
mate of the future value conditioned on the past history

Random walk
Pij = Pj– i

fτi any

Birth
mi = 0

Semi-Markov : Pij any : fτi any

Markov : Pij any : fτi memoryless

Pij  : transition probability from states i to j
fτi : pdf of transition time in state i 

Independent Increment : Pij any : fτi memoryless

Poisson
li = l constant

Renewal
Pj– i = 1, j – i = 1

fτi any

Birth and Death
Pij  = 0,⏐j – i ⏐> 1
fτi memoryless
li : birth rate
mi : death rate

Stochastic Processes: Classification. Fig.  Relationships among some discrete state stochastic processes
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including the present is the present value. Since there is

no trend to the process it is unpredictable. Many problems

in engineering and �nance can be cast in the martingale

framework. Pricing stock options (see, e.g., Ross , p.

) and bonds has been cast in themartingale framework.

Let {Ω,F ,P} be a complete probability space and let
{Fn,n ∈ N} be an increasing family of sub σ-�elds of

F .�e real valued sequence of random variables {Xn,n ∈
N} adapted to the family {Fn,n ∈ N} is a discrete
Fn-martingale if for all n:

. E∣Xn∣ <∞
. E{Xn∣Fm} = Xm form ≤ n

If condition () is modi�ed as

. E{Xn∣Fm} ≥ Xm form ≤ n submartingale
. E{Xn∣Fm} ≤ Xm form ≤ n supermartingale

Analogously, let {Ft , t ∈ T+} be an increasing family of
sub σ-�elds of F of a complete probability space.�e real
valued stochastic process {X(t), t ∈ T+} adapted to the
family {Ft , t ∈ T+} is a continuousFt-martingale if for all
t ∈ T+:

. E∣X(t)∣ <∞,
. E{X(t)∣Fs} = Xs for s ≤ t.

If condition () is modi�ed as

. E{X(t)∣Fs} ≥ Xs for s ≤ t submartingale.
. E{X(t)∣Fs} ≤ Xs for s ≤ t supermartingale.

Note that any martingale is both a submartingale and a

supermartingale.

In the simple random walk process given in DSDT, if

n(p− q) is subtracted from Xn, then Yn = [Xn − n(p− q)]
is an example of a discrete martingale with respect to the

sequence {Zk, k = , . . . ,n − } even though Xn is not.�e
Wiener process W(t) is an example of a continuous Ft-
martingale. In the Poisson process N(t), if the mean λt is

subtracted then Y(t) = [N(t) − λt] is another example
of a continuous Ft-martingale even though N(t) is not.
However, both Xn and N(t) are Markov processes leading
to the conclusion that a Markov process is not necessarily

a martingale. It can also be shown that a martingale is not

necessarily a Markov process.

�e martingale property captures the notion of a fair

game. A fair coin is tossed and a player wins a dollar if the

toss is heads and loses a dollar if the toss is tails. At the end

of the mth toss the player has Xm dollars. �e estimated

amount of money a�er the m + st toss is still Xm dollars
since the expected value of them + st toss is zero.

Periodic Process
Let {X(t), t ∈ T} be a stochastic process de�ned on
a complete probability space taking values in the range

space {R,R}. X(t) is periodic in the wide sense (see, e.g.,
Krishnan , p. ) with period Tc(Tc > ) if the mean
µX(t) and the autocorrelation function RX(t, s) satisfy

µX(t) = µX(t + kTc) for all t and integer k ()

RX(t, s) = RX(t + kTc, s)
= RX(t, s + kTc) for all t, s and integer k. ()

Note that RX(t, s) is periodic in both arguments t and s.
However, for a stationary periodic process X(t) with

τ = t − s, Eq. () simpli�es to

RX(τ) = RX(τ + kTc) for all τ and integer k. ()

Since RX(τ) is uniformly continuous, a zero mean sta-
tionary periodic stochastic processX(t)with fundamental
frequency ωc = π/Tc can be represented in the mean
square sense by a Fourier series

X(t) =
∞
∑
n=−∞
Xn exp(jnωt),X = 

where Xn =


Tc
∫

Tc


X(t) exp(−jnωt)dt. ()

Cyclostationary process
Allied to the periodic process is the cyclostationary process

(see, e.g., Krishnan , p. ). A strict sense cyclosta-

tionary process X(t) on a complete probability space with
period Tc(Tc > ) is de�ned by

FX(x, . . . , xn; t, . . . , tn)
= FX(x, . . . , xn; t + kTc, . . . , tn + kTc) ()

for all n and k.

Since the above de�nition is too restrictive, awide sense

cyclostationary X(t) can be de�ned by

µX(t) = µX(t + kTc)

RX(t, t) = RX(t + kTc, t + kTc).
()
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Strati�cation refers to dividing a population into groups,

called strata, such that pairs of population units within

the same stratum are deemed more similar (homogeneous)

than pairs from di�erent strata. �e strata are mutually

exclusive (non-overlapping) and exhaustive of the popu-

lation. Clearly su�cient information on each population

unit must be available before we can divide the population

into strata.

�e primary reason for dividing a population into

strata is to make use of the strata in drawing a sample.

For example, instead of drawing a simple random sam-

ple of sample size n from the population, one may draw

a 7simple random sample of sample size nh from stratum
h of L strata, where n = n+⋯+nL.�e sample selection for
any stratum is done independently of the other strata.�e

stratum sample sizes nh are o�en chosen proportional to

the number of population units in stratum h but other allo-

cations of the stratum samples may be preferred in speci�c

situations.

�ere are two major reasons for drawing a strati�ed

sample instead of an unstrati�ed one:

. Such samples are generally more e�cient (in the sense

that estimates have smaller variances) than samples

that do not use strati�cation.�ere are exceptions, pri-

marily when the strata are far from homogeneous with

respect to the variable being estimated.

. �e sample sizes are controlled (rather than random)

for the population strata.�ismeans, in particular, that

one may guarantee adequate sample size for estimates

that depend only on certain strata. For instance, if men

and women are in separate strata, one can assure the

sample size for estimates for men and for women.

Estimation Under Simple Random
Sampling Within Strata
�e independence of the sample selection by strata allows

for straightforward variance calculation when simple ran-

dom sampling is employed within strata. LetYT denote the

population total for a variable Y for which an estimate is

sought. Let Nh and nh denote respectively the population

size and sample size for stratum h. Let, moreover, Yhj and

yhi denote respectively the Y-value of the jth population

element or ith sample element in stratum h.�en, if

Yh =


Nh

Nh

∑
j=
Yhj and yh =



nh

nh

∑
i=
yhi,

de�ne

S

h =



Nh − 

Nh

∑
j=

(Yhj − Yh) and sh =


nh − 

nh

∑
i=

(yhi − yh)

.
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We estimate YT by ŷ where ŷ =
L

∑
h=
Nhyh. �e variance

of ŷ is

V(ŷ) =
L

∑
h=

Nh
nh

( − nh/Nh)Sh

and the variance is estimated by

V̂(ŷ) =
L

∑
h=

Nh
nh

( − nh/Nh)sh.

Similarly, the population mean Y = YT/N, where N =
L

∑
h=
Nh is the size of the population, is estimated by ŷ/N and

its variance by V̂(ŷ)/N.

Allocation of Sample Sizes to Strata
Under Simple Random Sampling within
Strata
For a total sample size of n and given values of Sh, the ques-

tion arises how should one allocate the sample to the strata;

that is, how should one choose the nh, h = , . . . ,L, so that
n = n +⋯+ nL and V(ŷ) is minimized?�is is a straight-
forward constrained minimization problem (solved with

Lagrange multipliers) that yields the solution:

nh =
nNhSh
L

∑
k=
NkSk

Note that, as one would expect, the more variability in

a stratum (larger Sh), the larger the relative sample size
in that stratum.�is method of determining the stratum

sample sizes is termed Neyman allocation in view of the

seminal paper on strati�ed sampling by Neyman ().

Sometimes the strata are not equally costly to sample.

For example, there may be additional travel costs in sam-

pling a rural geographically-determined stratum over an

urban one. If it costs Ch to sample a unit in stratum h, then

the allocation

nh =
nNhSh/

√
Ch

L

∑
k=
NkSk/

√
Ck

is best in two senses: It minimizes V(ŷ) subject to �xed
total cost (a �xed budget) CT = C + ⋯ + CL and it mini-
mizes CT subject to �xed V(ŷ).

�ese allocations assume that the Sh, h = , . . . ,L, are
known. In practice, rough estimates, perhaps based on a

similar previous survey, will serve. �e same comment

applies to the costs for the cost-based allocation.

In the absence of any prior information, even approx-

imate, the simple proportional allocation nh = nNh/N is

o�en used. In this case, the estimator ŷ has a particularly

simple form

ŷ =
L

∑
h=
Nhyh =

L

∑
h=

Nh

nh

nh

∑
i=
yhi =

L

∑
h=

Nh

(nNh/N)

nh

∑
i=
yhi

= N
n

L

∑
h=

nh

∑
i=
yhi.

�erefore ŷ is just the sum of the sample values expanded

by N/n. In many surveys a wide variety of quantities
are estimated and their within-stratum variability may

di�er so proportional allocation may be employed as a

compromise.

Unbiased estimation requires at least one sample selec-

tion per stratum. Unbiased variance estimation requires at

least two selections per stratum.

Stratum Boundaries
Sometimes strati�cation is based on small discrete cate-

gories like gender or race. Other times, one may have data

on a variable that can be regarded as continuous closely

related to the variable one wants to estimate from the sam-

ple. For example, one may want to estimate the output of

factories based on strata de�ned by the number of work-

ers at the factory. One stratum might be all factories with

– workers. In this case,  and  are said to be

the stratum boundaries. How should these boundaries be

chosen?

One method that has been shown to be good is the

cumulative square root of frequencies method developed

by Dalenius and Hodges (): Start by assuming (in our

example) that the factories have been divided into a rather

large number of categories based on the numbers of work-

ers, numbered from fewest workers to the most workers.

If fk is the number of factories in category k, calculate

Qk =
√
f+⋯+

√
fk. Divide the factories into strata so that

the di�erences between the at adjacent stratum boundary

points are as equal as possible.

More recently, Lavallée and Hidiroglou () devel-

oped an iterative procedure especially designed for skewed

populations.

Variance Estimation for Stratified
Samples
For simple estimators and strati�ed sampling, direct for-

mulas are available to calculate variance estimates.�ese

formulas are tailored to the speci�c estimator whose vari-

ance is sought. General purpose variance estimators have
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been developed, however, that allow one to estimate vari-

ances for a wide class of estimators using a single pro-

cedure. See Wolter () and Shao and Tu () for a

complete discussion of these procedures.

�e procedure balance half-sample replication (or bal-

anced repeated replication) has been developed as a vari-

ance estimation procedure when two primary sampling

units (PSUs) are selected from each stratum. �ere may

be additional sampling within each PSU so the sample

design may be complex.�e variance estimation is based

on half sample replicates, each replicate consisting of one

PSU from each stratum.�e pattern that determineswhich

PSU to choose from each stratum for a particular replicate

is based on a special kind of matrix, called a Hadamard

matrix.

A form of the jackknife method (see 7Jackknife) is
also widely employed with two PSU per stratum sample

designs (although it can be extended to other designs).�is

jackknife method is based on forming replicates, but the

replicate consists of one PSU selected to be in the repli-

cate from a speci�c stratum, with both PSUs being in the

replicate for all other strata.

Various forms of the bootstrapmethod (see7Bootstrap
Methods) have been employed in recent years as general

variance estimation methods for strati�ed sampling.

Although not as generic, the Taylor series (or lineariza-

tion) method is a powerful technique for estimating vari-

ances in complex samples.

Stratified Sampling with Maximal
Overlap (Keyfitzing)
Sometimes it is worthwhile to select a strati�ed sample

in a manner that maximizes overlap with another strati-

�ed sample, subject to the constraint that the probabilities

of selection are the ones desired. For example, cost sav-

ings may arise if a new strati�ed sample is similar to a

previous one, yet births, deaths, andmigration in the popu-

lationmay preclude it being exactly the same. Key�tz ()

developed amethod to deal with this problem, so it is o�en

called Key�tzing. More recent researchers have extended

the method to more general situations.

Stratification in Two Phases
It may be that it is clearly desirable to stratify on a certain

characteristic, but that characteristic may not be available

on the sampling frame (list of units fromwhich the sample

is selected). For example, in travel surveys one would likely

want to stratify onhousehold type (e.g., single adult head of

household or adult couple with children) but this informa-

tion is usually not provided on an address list. One solution

is to �rst conduct a large, relatively inexpensive �rst phase

of the survey for the sole purpose of obtaining the informa-

tion needed to stratify.�is information is then employed

in the strati�cation of the second stage of the survey.�is

process is called two-phase sampling or double sampling.

Let nIh be the size of the �rst stage sample that lies

in stratum h and let nI = nI + ⋯ + nIL be the �rst-stage
sample size. At the second stage, nIIh units with Y-values

yh, . . . , yhnII
h
are sampled in stratum h.�en one can esti-

mate YT by

ỹ = N
L

∑
h=

nIh
nI

nII
h

∑
i=

yhi

nII
h

Approximate variance formulas can also be given. See,

e.g., Raj and Chandhok () or Schea�er et al. ().

Because the nIh are random, the usual (one-phase) variance

formulas would underestimate the variance.

Poststratification
A�er a sample has been selected and the data collected,

sometimes the estimation procedures of strati�cation can

be employed even if the sample selection was for an

unstrati�ed design. An important requirement is that the

population proportions Nh/N must be known, at least
approximately. If so, then

ŷ = N
L

∑
h=

Nh

N

nh

∑
i=

yhi

nh
= N

L

∑
h=

Nh

N
yh

is an improved estimate of the population total.�e usual

variance estimator V̂( ŷ), however, is no longer valid as
it does not account for the randomness of the nh. More

complicated variance estimators can be developed for this

purpose.

Another reason to employ poststrati�cation is to

reduce bias due to nonresponse.

Controlled Selection
Controlled selection is a sample selection method that

is related to strati�ed sampling but di�ers in that inde-

pendent selections are not made from the cells (“strata”).

�e method was introduced by Goodman and Kish

(). For an example of controlled selection, imagine a

two-dimensional array of cells of population units, say of

industrial classi�cation categories by geographic areas. All

population units lie in exactly one cell, analogous to strata.

�e sample size is not large enough for there to be the two

selections per cell needed for unbiased variance estimation

if the selectionswere independent by cell. Under controlled

selection, only certain balanced patterns of cell combina-

tions can be selected. When properly carried out, this is a

valid probability selection technique.
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Strong approximations in Probability and Statistics are

results that describe the closeness almost surely of random

processes such as partial sums and7empirical processes to
certain 7Gaussian processes. As a result, strong laws such
as the law of the iterated logarithm and weak laws such as

the central limit theorem (see 7Central Limit�eorems)
follow.

Let X,X, . . . be a sequence of independent random

variables with the same distribution function. Put Sn =
X + ⋅ ⋅ ⋅ + Xn. If the mean m = E(X) exists (�nite), then
the strong law of large numbers states that Sn/n → m,

almost surely, as n → ∞. One can ask the question, at
what rate does this convergence take place?�is question

is answered, in  by Hartman andWintner, who proved

the law of the iterated logarithm (LIL): If, in addition, the

variance σ  of X is �nite, then

lim sup
n→∞

Sn − nm
σ
√
n log logn

→a.s. ,

lim inf
n→∞

Sn − nm
σ
√
n log logn

→a.s. −.
()

To gain further insight about the asymptotic behav-

ior of partial sums, we can consider S⌊nt⌋,  ≤ t ≤ ,
as a random process. In , Strassen proved that it can

be approximated by a standard Brownian motion pro-

cess (see 7Brownian Motion and Di�usions). A standard
Brownian motion (or Wiener process) is a random pro-

cess {W(t); t ≥ } that has stationary and independent
increments, where the distribution ofW(t) is normal with
mean  and variance t, for any �xed t >  andW() = .
Strassen showed that if m = E(X) and Var(X) =

σ  < ∞, then there exists a common probability space
on which one can de�ne a standard Brownian motion

process W and a sequence of independent and identi-

cally distributed random variables Y,Y, . . . such that

{Sn = ∑ni= Xi : n ≥ } =D {S̃n = ∑ni= Yi : n ≥ } and, as
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n→∞,

sup
≤t≤

∣σ−(S̃⌊nt⌋ −m⌊nt⌋) −W(nt)∣
√
n log logn

→a.s. , ()

where ⌊nt⌋ is the largest integer less than or equal nt.
Statement () is an example of a strong approximation

which gives rise to the strong invariance principle. From

it one can deduce the law of the iterated logarithm for

partial sums () from that of standard Brownian motion

(Khinchin’s LIL). Alternately, one can prove it for a speci�c

sequence of random variables, say simple coin tossing, and

then, via (), it is inherited by any independent sequence

with a common distribution having �nite variance.

If one assumes further conditions on the moments of

the random variables (beyond �nite variance) then the

rate of convergence in () can be improved. In particu-

lar, if one assumes that X has a �nite moment generating

function in an open interval containing the origin, then

Komlós et al. () have proven a�eorem -type result

with convergence statement:

lim sup
n→∞

sup
≤t≤

∣σ−(S̃⌊nt⌋ −m⌊nt⌋) − B(nt)∣
logn

≤ C, a.s. ()

for some constant C > .
Many almost-sure results including () are proven

by �rst establishing an inequality for the maximal devi-

ations and then applying a Borel-Cantelli lemma (see

7Borel–Cantelli Lemma and Its Generalizations). �e
Komlós et al. inequality is:

P{max
≤k≤n

∣σ−(S̃k −mk) − B(k)∣ > c logn + x} < ce−cx,

where c, c, c are positive constants depending only on

the distribution ofX.�e Borel-Cantelli lemma to be used

is: for any sequence of eventsAn,n ≥ , if∑∞
n= P(An) <∞,

then P(An, in�nitely o�en) = . Massart () proved a
multivariate version of ().

�e rateO(logn) in () is the best rate possible.�is is
a consequence of the Erdös- Rényi laws of large numbers:

Let X,X, . . . be a sequence of independent and

identically distributed random variables with mean

E(X) = m and where the 7moment generating func-
tion M(t) = E(et(X−m) of X − m is �nite in an interval
containing t = .�en, for any c > ,

max
≤k≤n−⌊c log n⌋

Sk+⌊c log n⌋ − Sk −m⌊c logn⌋
⌊c logn⌋

→a.s. α(c),

where α(c) = sup{x : (x) ≥ e−/c}, with (x) =
inf t e

−txM(t), the Cherno� function of X −m.
If the le� side of () converged to , almost surely,

then σ−(Xi − m) and B(i) − B(i − ) would share the

same function α. Since α uniquely determines the dis-

tribution function of a random variable, σ−(Xi − m) =
DB(i) − B(i − ), a standard normal distribution.
Empirical process are important in many areas of

statistics. If X,X, . . . is a sequence of independent k-

dimensional random vectors with distribution function F,

let Fn(x) = n−∑ni= I[Xi ≤ x], x ∈ R, is the proportion
of X,X, . . . ,Xn that are less than or equal to the real vec-

tor x = (x, . . . , xk) in the usual partial ordering of Rk.�e
empirical process is de�ned as

αn(x) =
√
n[Fn(x) − F(x)], x ∈ Rk.

Strong approximation results are available for the

empirical process which describe its behavior in terms of

both x ∈ Rk and the sample size. A Kiefer process KF(x, y)
is a Gaussian process de�ned on Rk×[,∞) that has mean
zero and covariance function E(K(x, y)K(x′, y′)) =
(min{y, y′})(F(x ∧ x′) − F(x)F(x′)), where x ∧ x′ =
(min{x, x′} , . . . ,min{xk, x′k}).
In , Csörgő and Horváth proved that there exists

a common probability space on which one can de�ne a

Kiefer process K and a sequence of independent and iden-

tically distributed random variables Y,Y, . . . such that

its empirical process {α̃n(x); x ∈ Rk,n = , , . . . } =
D{αn(x); x ∈ Rk,n = , , . . . }, the empirical process of
the original sequence of Xi, and

lim sup
n→∞

max
≤j≤n

sup
x∈Rk

∣α̃j(x) − j−/K(x, j)∣
n−/(k)(logn)/

≤ C, a.s. ()

When the dimension k = , the denominator in () can
be improved to n−/(logn). Similar to partial sums, the
law of the iterated logarithm for the empirical process can

be deduced from that of the Kiefer process, that is

lim sup
n→∞

sup
x∈Rk

∣αn(x)∣√



log logn

=a.s. .

Other results involve the strong approximation of the

empirical process by a sequence of Brownian bridges Bn,

where each is a Gaussian process de�ned on Rk and each

has mean zero and covariance function EBn(x)Bn(x′) =
F(x ∧ x′) − F(x)F(x′). For general F, Borisov proved an
approximation with rateO(n−/((k−))logn), a.s.When F
has a density, Rio obtained a rate ofO(n−/(logn)(k+)/),
a.s. Here the exponent of n is independent of the

dimension. When F is the uniform distribution on

[, ]k, Massart, in , proved () with a rate of
O(n−/((k+))(logn)) and obtained an approximation in
terms of sequences of Brownian bridges with a rate of

O(n−/(k)(logn)/).
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Introduction
A structural equation model is a representation of a

series of hypothesized relationships between observed

variables and latent variables into a composite hypoth-

esis concerning patterns of statistical dependencies. �e

hypothesized relationships are described by parameters

that indicate the magnitude of the relationship (direct or

indirect) that independent (exogenous) variables (either

observed or latent) have on dependent (endogenous)

variables (either observed or latent). By enabling the

representation of hypothesized relationships into testable

mathematical models, a structural equation model o�ers a

comprehensive method for the quanti�cation and testing

of theoretical models. Once a theory has been proposed, it

can be tested against empirical data.

�e term structural equation model was �rst coined

by econometricians and is probably the most appropriate

name for the process just brie�y sketched. Path analysis,

developed by Sewall Wright (), is an early form of

SEM that is restricted to observed variables.�e exogenous

observed variables are assumed to have been measured

without error and have unidirectional (recursive) relations

with one another. As it turns out, path analysis rules are

still used today to identify the structural equations under-

lying themodels. Using the path analysis approach,models

are presented in the form of a drawing (o�en called a path

diagram), and the structural equations of the model are

inferred by reading the diagram correctly. However, the

term path analysis implies too many restrictions on the

form of the model. Structural equation modeling (SEM),

on the other hand, has grown to incorporate latent and

observed variables that can be measured with and with-

out error and have bidirectional (nonrecursive) relation-

ships among variables. Another term used frequently is

causal analysis. Unfortunately, this is also a misleading

term. Although SEM may appear to imply causality, the

structural equations are not causal relations but functional

relations.Covariance structuremodeling is another popular

term that is used mostly by psychologists. Unfortunately,

it too is restrictive. Although the covariance structure of

observed data is the most commonly modeled, SEM can

be used to model other moments of the data. For example,

mean structures are occasionally modeled, and facilities

are provided for this in a number of SEM so�ware pro-

grams. Modeling the third (skew) and fourth (kurtosis)

moments of the data is also possible.

Mathematical Representation
To date, several mathematical models for SEM have been

proposed. Although thesemathematical models can trans-

late data equally well into the model parameters, they

di�er in how parsimoniously this translation process is

conducted. Perhaps the most well known of these math-

ematical models, the Keesling–Wiley–Jöreskog (LISREL)

model, can require up to nine symbols in order to represent

a model. In contrast, the COSAN model can generally

represent the samemodel using only two symbols. Striking
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a compromise between the LISREL and COSAN models,

the Benter-Weeks (EQS) model can represent any model

using only four symbols. Mathematically, the EQS model

is represented by

η = βη + γξ

where β and γ are coe�cient matrices, and η and ξ are
vectors of random variables.�e random variables within

η are endogenous variables and the variables within ξ are
exogenous variables. Endogenous and exogenous variables

can be either latent or observed.�e matrix β consists of
coe�cients (parameters) that describe the relations among

the endogenous variables. �e matrix ξ consists of coef-
�cients (parameters) that describe the relations between

exogenous and endogenous variables.

It is important to note that the primary interest in SEM

centers on describing the network of relations among the

variables (implying that one is generally interested in

the covariance structure among the variables). Although

the structural equation model is written in terms of equa-

tions lining the variables, the data used to solve the model

parameters are actually covariances or correlations. In fact,

this approach is no di�erent from how many other multi-

variate statisticalmodels are evaluated. For example,multi-

ple regression uses a series of equations that link dependent

to independent variables, but it is the correlational struc-

ture of the data that is used to solve for the regression coef-

�cients. Similarly, in the EQSmodel, the sample covariance

structure (C) among a set of variables x, y is de�ned as

C = (x + y)(x + y)′ = J(I − β)−ΓΦΓ′(I − β)−J′

where Γ is amatrix of coe�cients linking exogenous ξwith

endogenous η variables, β is amatrix of coe�cients linking
endogenous variables, and Φ represents the covariances
among the exogenous variables.�e J matrix serves as a
“�lter” for selecting the observed variables from the total

number of variables to be included in the model.

The Confirmatory Factor Analysis Model
A popular type of structural equation model is the con-

�rmatory factor analysis model. In contrast to exploratory

factor analysis (EFA), where all loadings are free to vary,

con�rmatory factor analysis (CFA) allows for the explicit

constraint of certain loadings to be zero. As traditionally

given, the con�rmatory factor model in matrix notation is

Y = Λξ + ε

where Y is a vector of scores on the observed variables,
Λ is a factor pattern loading matrix, ξ is a matrix of com-
mon factors, and ε is a matrix of measurement errors in
the observed variables. As such, the covariance structure

implied by the con�rmatory factor model is de�ned as

C = ΛΦΛ′ +Ψ

where C is the sample variance-covariance matrix, Φ is
a matrix of the factor variance-covariances, and Ψ is

a variance-covariance matrix among the measurement

errors.

In the EQS representation, the con�rmatory factor

model is generally expressed as

η = βη + γξ with β = 

and the covariance structure implied by the model is

given as

C(ηη
′) = (η + γξ)(η + γξ)′ = ΓΦΓ′

where the asymmetric relations in the model (the e�ects

of the common and error factors on the observed vari-

ables) are in Γ and the symmetric relations (the factor and
error variances and covariances) are inΦ. Note that for the
con�rmatory factor model the matrix β is dropped from
the EQS model because in CFA there are no regression

relations between endogenous variables.

Model Estimation
Model estimation proceeds by rewriting the structural

equations so that each of the parameters of the equations is

a function of the elements of the sample covariance matrix

C. Subsequently, a�er obtaining values for the parameters,

it one were to substitute these values back into the expres-

sion for the covariance structure implied by the model, the

resulting sample matrix C can be represented as Ĉ. Clearly,

Ĉ should be very close toC because it was the elements ofC

that assisted in solving for the model parameters:�e dif-

ference should be small if the model is consistent with the

data.

�e evaluation of C − Ĉ depends on the estimation
method used to solve for the model parameters. �e

most commonly used estimation methods for solving the

parameters are unweighted least squares (ULS), generalized

(weighted) least squares (GLS), and maximum likelihood
(ML). With each estimation method, the structural equa-

tions are solved iteratively, until optimal estimates of the

parameters are obtained. Optimal parameter values are

values that imply covariances (Ĉ) close to the observed
covariances (C).�e di�erenceC−Ĉ is known as a discrep-
ancy function (F). In order to minimize this discrepancy
function, the partial derivatives of F are taken with respect

to the elements of C − Ĉ. �e form of the discrepancy
function varies across the di�erent estimation methods.

However, the general form of this discrepancy function is
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F =∑
ij

(C − Ĉ)′W(C − Ĉ)

in which a weighted sum of di�erences between the I J

elements of C and Ĉ is calculated. As C and Ĉ become

more di�erent, the discrepancy function becomes larger

implying less correspondence between the model-implied

covariances and the observed covariances. Most currently

available SEM programs (e.g., SPSS’ AMOS, EQS, LIS-

REL, Mplus, Mx, the SEM package in R, SAS PROC

CALIS) include ULS, GLS, and ML as standard estimation

methods.

Model Assessment and Fit
For a model with positive df degrees of freedom, it is

very unlikely that the discrepancy function will equal ,

implying a model with perfect �t to the data.�us, there

must be some measure of how large the discrepancy func-

tion must be in order to determine that the model does

not �t the data. If multivariate normality is present, a chi-

square goodness-of-�t test for the model is available using

the sample size and the value of the discrepancy function

χ
 = (N − )(F)

with df = (the number of unique elements of C) − (the
number of parameters solved). If chi-square is not signif-

icant, then no signi�cant discrepancy exists between the

model-implied and observed covariancematrices. As such,

the model �ts the data and is con�rmed. However, the chi-

square test su�ers from several weaknesses, including a

dependence on sample size, and vulnerability to departures

frommultivariate normality.�us, it is recommended that

other descriptive �t criteria (e.g., ratio of χ to df ) and �t
indices (e.g., the comparative �t index, the rootmean square

error of approximation) be examined in addition to the χ

value to assess the �t of the proposed model. Quite a few

�t criteria and indices have been developed, each with its

own strengths and weaknesses, and is it usually advisable

to report a range of them.

Model Identification
Only identi�ed models should be estimated.�e process

of model identi�cation involves con�rming that a unique

numerical solution exists for each of the parameters of the

model. Model identi�cation should be distinguished from

empirical identi�cation, which involves assessing whether

the rank of the information matrix is not de�cit. Most

SEM programs automatically check for empirical identi-

�cation. On the other, model identi�cation is not as easily

or automatically assessed. For structural equation models

in general, themost frequently invoked identi�cation rules

are the t-rule and the rank and order conditions. �e t-

rule is a simple rule to apply, but is only a necessary not

a su�cient condition of identi�cation. �e t-rule is that

the number of nonredundant elements in the covariance

matrix of the observed variables (p) must be greater than
or equal to the number of unknown parameters in the

proposed model. �us, if t ≤ p(p + )/ the necessary
condition of identi�cation is met. Unfortunately, although

the t-rule is simple to apply, it is only good for determin-

ing underidenti�ed models.�e order condition requires

that for the model to be identi�ed, the number of p vari-

ables excluded from each structural equation must equal

p − . Unfortunately, the order condition is also a neces-
sary bit not su�cient condition for identi�cation. Only the

rank condition is a necessary and su�cient condition for

identi�cation; however, it is not easy to apply. In general

terms, the rank condition requires that the rank of any

model matrices (e.g.,Φ, β, Γ) be of at least rank p−  for all
submatrices formed by removing the parameter of inter-

est. However, the usefulness of these criteria is doubtful

because a failure to meet them does not necessarily mean

the model is not identi�ed. As it turns out, the only sure

way to assess the identi�cation status of a model prior to

model �tting is to show through algebraic manipulation

that each of the model parameters can be solved in terms

of the p variances and p(p − )/ covariances.

Equivalent Structural Equation Models
Equivalent structural equation models may be de�ned as

the set of models that, regardless of the data, yield identi-

cal (a) implied covariance, correlation, and other moment

matrices when �t to the same data, which in turn imply

identical (b) residuals and �tted moment matrices, (c) �t

functions and chi-square values, and (d) goodness-of-�t

indices based on �t functions and chi-square. One most

frequently thinks of equivalent models as described in

(a) above. To be precise, consider two alternative models,

denotedM andM, each of which is associated with a set

of estimated parameters and a covariance implied by those

parameter estimates (denoted as ĈM and ĈM). Mod-
elsM andM are considered equivalent if, for any sample

covariance matrix C, the implied matrices ĈM = ĈM or
alternatively,(C−ĈM) = (C−ĈM). Because of this equiv-
alence, the values of statistical tests of �t that are based

on the discrepancy between the sample covariance matrix

and themodel-implied covariancematrix will be identical.

�us, even when a hypothesized model �ts well accord-

ing to multiple �t indices, there may be equivalent models

with identical �t – even if the theoretical implications of

those models are very di�erent. However, model equiva-

lence is not unique to SEM. For example, in exploratory

factor analysis, without the arbitrary constraint of extract-

ing orthogonal factors in decreasing order of magnitude,



Structural Time Series Models S 

S

there would potentially be an in�nite number of equivalent

initial solutions.
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Introduction
�e basic idea of structural time series models is that they

are set up as regression models in which the explana-

tory variables are functions of time with coe�cients which

change over time. �us within a regression framework a

simple trend would be modeled in terms of a constant and

a time with a random disturbance added on, that is

yt = α + βt + εt , t = , . . . ,n. ()

�is model is easy to estimate using ordinary 7least
squares, but su�ers from the disadvantage that the trend

is deterministic. In general, this is too restrictive, however,

the necessary �exibility is introduced by letting the coe�-

cients α and β evolve over time as stochastic processes. In

this way the trend can adapt to underlying changes. �e

current, or �ltered, estimate of the trend is estimated by

putting the model in state space form and applying the

Kalman �lter. Related algorithms are used for making pre-

dictions and for smoothing, which means computing the

best estimate of the trend at all points in the sample using

the full set of observations.�e extent to which the param-

eters are allowed to change is governed by hyperparame-

ters.�ese can be estimated by maximum likelihood but,

again, the key to this is the state space form and theKalman

�lter.�e STAMP package of Koopman et al. () car-

ries out all the calculations and is set up so as to leave the

user free to concentrate on choosing a suitable model.

An excellent general presentation of the Kalman �l-

ter is given in this Encyclopedia by M. S. Grewal under

the title Kalman Filtering. We give below a set of partic-

ular results about the �lter that are for application within

the areas covered by Time Series and Econometric. Simi-

larly, a general presentation of smoothing is given as well in

this Encyclopedia byA.W. Bowmanunder the title Smooth-

ing Techniques. We recall that in our context smoothing

means computing the best estimates based on the full sam-

ple, therefore we give below a set of particular results that

are for application within the areas covered by Time Series

and Econometric.

�e classical approach to time series modeling is based

on the fact that a general model for any indeterministic

stationary series is the autoregressive-moving average of

order (p, q).�is is usually referred to as ARMA(p, q).�e
modeling strategy consists of �rst specifying suitable val-

ues of p and q on the basis of an analysis of the correlogram

and other relevant statistics.�e model is then estimated,

usually under the assumption that the disturbance is Gaus-

sian.�e residuals are then examined to see if they appear

to be random, and various test statistics are computed. In

particular, the Box–LjungQ-statistic, which is based on the

�rst P residual autocorrelations, is used to test for resid-

ual serial correlation. Box and Jenkins () refer to these

stages as identi�cation, estimation and diagnostic check-

ing. If the diagnostic checks are satisfactory, the model is

ready to be used for forecasting. If they are not, another

speci�cation must be tried. Box and Jenkins stress the role
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of parsimony in selecting p and q to be small. However, it

is sometimes argued, particularly in econometrics, that a

less parsimonious pure autoregressive (AR) model is o�en

to be preferred as it is easier to handle.

Many series are not stationary. In order to handle such

situations Box and Jenkins proposed that a series be dif-

ferenced to make it stationary. A�er �tting an ARMA

model to the di�erenced series, the corresponding inte-

grated model is used for forecasting. If the series is di�er-

enced d times, the overall model is called ARIMA( p,d, q).
Seasonal e�ects can be captured by seasonal di�erencing.

�e model selection methodology for structural mod-

els is somewhat di�erent in that there is less emphasis on

looking at the correlograms of various transformations of

the series in order to get an initial speci�cation. �is is

not to say that correlograms should never be examined,

but the experience is that they can be di�cult to interpret

without prior knowledge of the nature of the series and in

small samples and/or withmessy data they can bemislead-

ing. Instead the emphasis is on formulating the model in

terms of components which knowledge of the application

or an inspection of the graph suggests might be present.

For example, with monthly observations, one would prob-

ably wish to build a seasonal pattern into the model at the

outset and only drop it if it proved to be insigni�cant. Once

a model has been estimated, the same type of diagnostics

tests as are used for ARIMA models can be performed on

the residuals. In particular the Box–Ljung statistic can be

computed, with the number of relative hyperparameters

subtracted from the number of residual autocorrelations to

allow for the loss of degrees of freedom. Standard tests for

non-normality and heteroscedasticity can also be carried

out, as can tests of predictive performance in a post-sample

period. Plots of residuals should be examined, a point

which Box and Jenkins stress for ARIMA model building.

In a structural time series model, such plots can be aug-

mented by graphs of the smoothed components.�ese can

o�en be very informative since it enables themodel builder

to check whether the movements in the components cor-

respond to what might be expected on the basis of prior

knowledge.

State Space Form, Kalman Filtering
and Smoothing
As we say before, a structural time series model is one

in which the trend, seasonal and error terms in the

basic model, plus other relevant components, are mod-

eled explicitly.�is is in sharp contrast to the philosophy

underlying ARIMA models where trend and seasonal are

removed by di�erencing prior to detailed analysis.

�e statistical treatment of the structural time series

models is based on the state space form, the Kalman �lter

and the associated smoother.�e likelihood is constructed

from the Kalman �lter in terms of the one-step ahead

prediction errors andmaximizedwith respect to the hyper-

parameters by numerical optimization. �e score vector

for the parameters can be obtained via a smoothing algo-

rithm which is associated with the Kalman �lter. Once the

hyperparameters have been estimated, the �lter is used

to produced one-step ahead predictions residuals which

enables us to compute diagnostic statistics for normality,

serial correlation and goodness of �t.�e smoother is used

to estimate unobserved components, such as trends and

seasonals, and to compute diagnostic statistics for detect-

ing 7outliers and structural breaks. ARIMA models can
also be handled using the Kalman �lter. �e state space

approach becomes particularly attractive when the data are

subject to missing values or temporal aggregation.

State Space Form
All linear time series have a state space representation.

�is representation relates the disturbance vector {εt} to
the observation vector {yt} via a Markov process (see
7Markov Processes) {αt}. A convenient expression of the
state space form is

yt = Ztαt + εt , εt ∼ N(,Ht),

αt = Ttαt− + Rtηt , ηt ∼ N(,Qt), t = , . . . n,
()

where yt is a p ×  vector of observations and αt is an
unobserved m ×  vector called the state vector.�e idea
underlying the model is that the development of the sys-

tem over time is determined by αt according to the second
equation of (), but because αt cannot be observed directly
we must base the analysis on observations yt . �e �rst
equation of () is called themeasurement equation, and the

second one, the transition equation.�e system matrices

Zt , Tt and Rt have dimensions p × m, m × m and m × g
respectively.�e disturbance terms εt and ηt are assume
to be serially independent and independent of each other

at all time points.�e matrixHt has dimension p × p with
rank p, and the matrix Qt has dimension g × g with rank
g ≤ m.�ematricesZt ,Tt ,Rt ,Ht andQt are �xed and their
unknown elements, if any, are place in the hyperparameter

vector ψ which can be estimated by maximum likelihood.
In univariate time series p = , so Zt is a row vector.

�e initial state vector α is assumed to be N(a,P)
where a andP are known.When a andP are unknown,
α is taken as di�use. An adequate approximation can
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o�en be achieved numerically by taking a =  and P =
κIm, where κ is a scalar which tends to in�nity.

Kalman Filter
In the Gaussian state space model (), the Kalman �lter

evaluate the minimum mean squared error estimator of

the state vector αt+ using the set of observations Yt =
{y

, . . . , yt}, denoted at+ = E(αt+∣Yt), and the corre-

sponding variance matrix Pt+ = Var(αt+∣Yt), for all t.
�is means that the Kalman �lter allows to continuously

update the estimation of the state vector whenever a new

observation is available. Since all distributions are normal,

conditional distributions are also normal. Let vt = yt−Ztat ,
then vt is the one-step ahead forecast error yt−E(yt ∣Yt−).
Demote its variance matrix by Ft .�en

Ft = ZtPtZ′t +Ht , t = , . . . n. ()

It is possible to show that the updating recursion is given

by

at+ = Tt+at +Ktvt , ()

where

Kt = Tt+PtZ′tF−t , ()

and

Pt+ = Tt+Pt (T′t+ − Z′tK′t) + Rt+Qt+R
′
t+, ()

for t = , , . . . ,n − , with K = .
�e set () to () constitute the Kalman �lter for model

().�e derivation of the Kalman recursions can be found

inAnderson andMoore (),Harvey (), Abril ()

and Durbin and Koopman ().

�e output of the Kalman �lter is used to compute

the log-likelihood function logL(yt ,ψ), conditional on the
hyperparameter vector ψ, as given by

logL(yt ,ψ) = −np

log(π)− 



n

∑
t=
log ∣Ft ∣−





n

∑
t=
v′tF

−
t vt ,

()

apart from a possible constant. Numericalmaximization of

() with respect to the hyperparameter vector ψ yields the
maximum likelihood estimator ψ̃. Usually () is called the
prediction error decomposition of the likelihood.

Smoothing
�e work of de Jong (, ), Kohn and Ansley ()

and Koopman () leads to a smoothing algorithm from

which di�erent estimators can be computed based on the

full sample Yn. Smoothing takes the form of a backwards

recursion

ut = F−t vt −K′trt , Mt = F−t +K′tNtKt ,

rt− = Z′tF−t vt + L′trt , Nt− = Z′tF−t Zt + L′tNtLt , ()

for t = n,n − , . . . , , where Lt = Tt+ − KtZt , rn =  and
Nn = .�e recursions require memory space for storing
the Kalman output vt , Ft and Kt for t = , . . . ,n.�e series
{ut}will be referred to as smoothing errors.�e smoothing
quantities ut and rt play a pivotal role in the construction
of diagnostic tests for outliers and structural breaks.�e

smoother can be used to compute the smoothed estimator

of the disturbance vector ε̃t = E( εt ∣Yn). �e smoothed
estimator of the state vector α̂t = E(αt ∣Yn) is constructed
as follows

α̂t = at + Ptrt−, ()

for t = , . . . ,n, where rt satis�es the backwards recursions
given in ().
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We say that a random variable X has a Student t distribu-

tion with ν >  degrees of freedom, a scaling parameter
δ >  and a location parameter µ ∈ R, denoted T(ν, δ, µ),
if its probability density function (pdf) is

fX(x) =
Γ ( 


(ν + ))

√
πδΓ ( 


ν)

[ + (x − µ
δ

)


]
− ν+



, x ∈ R,

where Γ(z) is the Euler’s gamma function. T(, δ, µ) is the
Cauchy distribution. T(ν, δ, µ) is heavy tailed and for an
integer r

E(X − µ)r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δr−νrΓ( r

+)Γ( ν


−r)

√
πΓ( 


ν) , if r < ν,

+∞, if r ≥ ν.

Because

fX(x) =
∞

∫


√
πy
e
− (x−µ)

y g(y)dy, x ∈ R,

where

g(y) =
( 

δ)

ν


Γ ( 

ν)
y
− ν

−
e
− δ

y dy, y > 

is pdf of the inverse (reciprocal) gamma distribution,

which is a member of the�orin class, the Student t distri-

bution is a marginal distribution of a�orin subordinated

Gaussian Lévy process (see, e.g., Grigelionis,  and ref-

erences therein). �is property implies that T(ν, δ, µ) is
self-decomposable, i.e., for every c ∈ (, ), there exists

a random variable Xc, independent of X, such that X
law=

cX+Xc, and therefore T(ν, δ, µ) is in�nitely divisible. Self-
decomposability of T(ν, δ, µ) permits to construct several
classes of stationary stochastic processes with marginal

Student t distributions and various types of dependence

structure, relevant for modeling of economic and �nan-

cial time series. In the �elds of �nance Lévy processes

with marginal Student t distributions can o�en be �tted

extremely well to model distributions of logarithmic asset

returns (see Heyde and Leonenko, ).

�e classical Student t distribution was introduced in

 byW.S. Gosset (“Student”), proving that the distribu-

tion law L(tn) = T (n − ,
√
n − , ), where

tn =
√
n(Xn − µ)
sn

, n ≥ ,

X, . . . ,Xn are independent normally distributed random

variables, L(Xi) = N(µ, σ ), Xn = 

n ∑
n
i= Xi, s


n =



n− ∑
n
i=(Xi − Xn). Properties of the classical Student t

distributions are surveyed in Johnson, Kotz, .

During last century the theory of Student t statistics

has evolved into the theory of general Studentized statistics

and self-normalized processes, and the Student t distribu-

tion was generalized to the multivariate case, leading to

multivariate processes with matrix self-normalization (see

de la Peña et al., ).

We say that a random d-dimensional vector X has a

Student t distribution with ν >  degrees of freedom,

a symmetric positive de�nite scaling d × d matrix Σ and
a location vector µ ∈ Rd, denoted Td(ν, Σ, µ), if its pdf is

fX(x) =
Γ ( 


(ν + d))

(νπ)d/Γ ( 

ν) ∣Σ∣/

×
⎛
⎝
 +

((x − µ)Σ−, x − µ)
ν

⎞
⎠

− ν+d


, x ∈ Rd,

where (x, y) = ∑di= xiyi, x, y ∈ Rd, ∣Σ∣ := detΣ (see Johnson
and Kotz, ).

We have that

Ee
i(z,X) = e

i(µ ,z)


ν

−Γ ( 


ν)

× (ν(zΣ, z))
ν
K ν


(
√

ν(zΣ, z)) , z ∈ Rd,

where Kν is the modi�ed Bessel function of the third kind,

i.e.,

Kν(x) =



∫

∞


u
−ν−

exp{− 

x(u + u−)} du,

x > , ν ∈ R,
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implying that for c ∈ Rd, c ≠ , L((c,X)) =
T (ν,

√
ν (cΣ, c), (c, µ)), which means that Td(ν,∑, µ) is

marginal self-decomposable (see, Barndor�–Nielsen and

Pérez-Abreu, ).

If ν > d + , EX = µ and E(c,X − µ)(c,X − µ) =
ν(cΣ−, c)Γ ( ν−d−


) , c, c ∈ Rd.

As ν → ∞, Td(ν, Σ, µ) ⇒ Nd(µ, Σ) and, in partic-
ular, T (ν,

√
νσ , µ) ⇒ N(µ, σ ), where “⇒” means weak

convergence of probability laws.

LetMd be an Euclidean space of symmetric d×dmatri-
ces with the scalar product ⟨A,A⟩ := tr(AA), A,A ∈
Md, M

+
d ⊂Md be the cone of non-negative de�nite matri-

ces, P (M+
d ) be the class of probability distributions on

M+
d .

Since

Ee
i(z,X) = ei(z,µ) ∫

M+

d

e
− 

(zA,z)

U(dA),

where

ϕU(Θ) := ∫
M+
d

e
−tr(ΘA)U(dA)

=
[νtr(ΣΘ)]

ν



ν

−
Γ ( 


ν)
K ν

(
√
νtr(ΣΘ)) ,

Θ ∈M+
d , U ∈ P (M+

d ) ,

L(X−µ) is aU-mixture of centeredGaussian distributions
(see Grigelionis, ).

If ν ≥ d is an integer, U = L (νW−
ν ), where Wν =

∑ν
i= Y

T
i Yi,Y, . . . ,Yν are independent d-dimensional cen-

tered Gaussian vectors with the covariance matrix Σ, zT

is the transposed vector z, i.e., U is the inverse Wishart

distribution.
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Introduction
Student’s t-tests are parametric tests based on the Stu-

dent’s or t-distribution. Student’s distribution is named

in honor of William Sealy Gosset (–), who �rst

determined it in . Gosset, “one of the most original

minds in contemporary science” (Fisher ), was one of

the best Oxford graduates in chemistry and mathematics

in his generation. In , he took up a job as a brewer



 S Student’s t-Tests

at Arthur Guinness Son & Co, Ltd in Dublin, Ireland.

Working for the Guinness brewery, he was interested in

quality control based on small samples in various stages

of the production process. Since Guinness prohibited its

employees from publishing any papers to prevent disclo-

sure of con�dential information, Gosset had published his

work under the pseudonym “Student” (the other possible

pseudonym he was o�ered by the managing director La

Touche was “Pupil,” see Box , p. ), and his iden-

tity was not known for some time a�er the publication

of his most famous achievements, so the distribution was

named Student’s or t-distribution, leaving his name less

well known than his important results in statistics. His,

now, famous paper “�e Probable Error of a Mean” pub-

lished inBiometrika in , where he introduced the t-test

(initially he called it the z-test), was essentially ignored by

most statisticians for more than  decades, since the “sta-

tistical community” was not interested in small samples

(“only naughty brewers take n so small,” Karl Pearson writ-

ing to Gosset, September , , quoted by E.S. Pearson

, p. ). It was only R. Fisher who appreciated the

importance ofGosset’s small-samplework, andwho recon-

�gured and extended it to two independent samples, cor-

relation and regression, and provided correct number of

degrees of freedom. “It took the genius and drive of a Fisher

to give Student’s work general currency” (Zabel , p. );

“�e importance of  article is due to what Fisher found

there, not what Gosset placed there” (Aldrich , p. ).

One-Sample t-Test
In the simplest form, also called the one-sample t-test,

Student’s t-test is used for testing a statistical hypoth-

esis (Miller and Miller ) about the mean µ of a

normal population whose variance σ  is unknown and

sample size n is relatively small (n ≤ ). For a com-
parison of means of two independent univariate nor-

mal populations with equal (but unknown) variances

we use two-sample t-test, and both of these tests have

their multivariate counterparts based on multivariate

extension of the t-variable called Hotelling’s T statis-

tic 7Hotelling’s T statistic (Johnson and Wichern ).
Student’s t-test also serves as the basis for the analysis

of dependent samples (populations) in paired di�erence

t-test or repeated measures design, in both univariate

(Bhattacharyya and Johnson ) and multivariate cases

(Johnson and Wichern ).

To understand the motivation for Student’s t-test, sup-

pose that we have at our disposal a relatively large sample of

size n >  from a normal population with unknownmean
µ and known variance σ . What we want is to determine

the mean µ, i.e., to test our supposition (null hypothesis)

H : µ = µ against one of the alternative hypotheses

µ ≠ µ or µ > µ or µ < µ. Maximum likelihood prin-
ciple (method) (Hogg et al. , or Anderson ) leads

to the sample mean X as the test statistic, and it is known

that X has Gaussian or normal distribution with mean µ

and variance σ /n. Hence, we might calculate (provided
σ ) the probability of observing x in a certain range under
the assumption of the supposed distribution N(µ, σ /n)
and thereby assess our supposition about the unknown µ.

Yet, this would require (numerical) evaluation of the inte-

gral of normal density for every particular pair (µ, σ )
and, therefore, we construct the universal standard normal

variable or z-score

Z = X − µ
σ/

√
n
, ()

which, in our example, represents the distance from the

observed X to the hypothesized population mean µ,

expressed in terms (units) of standard deviation σ/
√
n of

X.�us, variable Z is an independent parameter and it has

a standard normal distribution that has been extensively

tabulated and is readily available in statistical books and

so�ware.�e test itself is nowbased onZ as the test statistic

and the rationale behind the test is that if the null hypoth-

esis is true, then the larger the distance from x to µ (larger

∣z∣-value), the smaller the probability of observing such an
x.�erefore, given a level of signi�cance α, we reject H
if ∣z∣ ≥ zα/, z ≥ zα or z ≤ −zα , respectively, where zα is

the Z-value corresponding to the probability α for a ran-

dom variable having standard normal distribution to take

a value greater than zα , i.e., P(z ≥ zα) = α. By virtue of

the central limit theorem (Anderson ) and provided

that the sample is large enough (n > ), we apply the
same test even though the population distribution cannot

be assumed to be normal, the only precondition being that

the variance is known. Of course, in real applications we

rarely know exact population variance σ , so we substitute

sample variance S

S
 = 

n − 

n

∑
i=

(Xi − X)


()

for σ  and likelihood ratio test statistic () becomes

Students’s t-variable

T = X − µ
S/

√
n
. ()

Having at our disposal a su�ciently large sample (n > ),
we consider s to be a “faithful” estimate of σ and we might

still apply the same test, i.e., compare t with zα values.�is

would then be only an approximate large-sample test, but
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its result would likely correspond to the real truth. How-

ever, when population variance σ  is not known and the

sample size is relatively small (n ≤ ), the test we have
been discussing is not reliable anymore because t in () is

not a faithful approximation of z in (), as a direct conse-

quence of the fact that sample variance S determined from

too small a sample does not approximate σ  well. Con-

struction of a reliable test under such conditions requires

knowledge of the exact distribution of variable T in (),

and due to Gosset, we know that it is a t-distribution with

n−  degrees of freedom.�e same as with z-test, the ratio-
nale behind the t-test is that if the null hypothesis is true,

then observing x too much distant from µ is not likely.

Speci�cally, for a given level of signi�cance α and one of

the alternatives µ ≠ µ or µ < µ or µ > µ, following
the Neyman–Pearson approach, we calculate the critical

value tn−(α/) or tn−(α) de�ned by P(t ≥ tn−(α)) = α,

i.e., tn−(α) is the value corresponding to probability α

for a random variable having t-distribution to take a value

greater than tn−(α), and

reject H if ∣t∣ ≥ tn−(α/) with the alternative

hypothesis µ ≠ µ,
t ≥ tn−(α) with the alternative

hypothesis µ > µ,
t ≤ −tn−(α) with the alternative

hypothesis µ < µ. ()

Statistical tests imply reject–do not reject results, but it is

usually more informative to express conclusions in the

form of con�dence intervals. In the case of the two-sided

t-test (H : µ ≠ µ) constructed from a random sample of
size n, ( − α)% con�dence interval for the mean of a
normal population is

x − tn−(α/) s√
n
< µ < x + tn−(α/) s√

n
. ()

Two-Sample t-Test
When we compare parameters of two populations (means,

variances, or proportions), we need to distinguish two

cases: samples may be independent or dependent accord-

ing to how they were selected. Two random samples are

independent if the sample selected from one population is

not related in any way to the sample from the other popu-

lation. However, if the random samples are chosen in such

a way that each measurement in one sample can be natu-

rally or by design paired or matched with a measurement

in the other sample, then the samples are called dependent.

Dependent samples occur in two situations:

(a) Repeated measures design, when the same subject

or unit is measured twice, before and a�er a treat-

ment (e.g., the blood pressure of each subject in the

study is recorded twice, before and a�er a drug is

administered)

(b) Matched pairs design, when subjects are matched as

closely as possible, and then one of each pair is ran-

domly assigned to each of the treatment group and

control group (see 7Research Designs).

Two Independent Samples
(a) Equal variances σ  = σ  = σ 

�is is a simpler situation because variances of con-

sidered populations, though unknown, are equal.

With the respective sample sizes being n and n,

maximum likelihood principle yields a test based on

test statistic

T =
(X − X) − (µ − µ)

Sp

√


n
+ 

n

, ()

where Sp is the pooled estimator of commonvariance

σ  given by

S

p =

(n − )S + (n − )S
n + n − 

. ()

�e pooled t-test is based on the fact that variable

T in () has Student’s distribution with n + n − 
degrees of freedom, i.e., P(t ≥ tn+n−(α)) = α.

Hence, for instance, we reject the null hypothesis

that both population means are equal (H : µ = µ)
if ∣t∣ ≥ tn+n−(α/).

(b) Unequal variances σ  ≠ σ 
When the assumption of equal variances is unten-

able, we are confronted with what is known as

7Behrens–Fisher problem, which is still an open
challenge. �ere are, however, approximate solu-

tions and a commonly accepted technique is Welch’s

t-test, also referred to as Welch–Aspin, Welch–

Satterthwaite, or Smith–Satterthwaite test (Winer

; Johnson ).�e test statistic is

T =
(X − X) − (µ − µ)√

S

n
+ S




n

()

and it has approximately t-distribution with degrees

of freedom estimated as

ν = (g + g)

g / (n − ) + g/ (n − )
; gi =

si
ni
. ()
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�e di�erence between the denominators in () and

() should be noticed; in () we have the estimate

of the common variance, while in () we have the

estimate of variance of the di�erence.

�e test procedure is to calculate the value t of

the test statistics given by () and degrees of freedom

ν according to () (if ν is not an integer we round

it down rather than up in order to take a conserva-

tive approach).�en, given the level of signi�cance

α, we use the obtained ν and Student’s distribution

to calculate critical value tν(α) and draw conclu-
sions comparing t and tν(α) like in an ordinary
one-sample t-test.

Two Dependent Samples
�e test procedure is essentially the same as for one-sample

t-test, the only di�erence being that we enter () with the

mean and standard deviation of paired di�erences instead

of with the original data. Number of degrees of freedom is

n − , where n is the number of the observed di�erences
(number of pairs). �is test is based on the assumption

that the population of paired di�erences follows normal

distribution.

Robustness of t-Test
Since the t-test requires certain assumptions in order to

be exact, it is of interest to know how strongly the under-

lying assumptions can be violated without degrading the

test results considerably. In general, a test is said to be

robust if it is relatively insensitive to violation of its under-

lying assumptions. �at is, a robust test is one in which

the actual value of signi�cance is una�ected by failure to

meet assumptions (i.e., it is near the nominal level of sig-

ni�cance), and at the same time the test maintains high

power.

�e one-sample t-test is widely considered reasonably

robust against the violation of the normality assumption

for large sample sizes, except for extremely skewed popu-

lations (see Bartlett  or Bradley ). Departure from

normality is most severe when sample sizes are small and

becomes less serious as sample sizes increase (since the

sampling distribution of the mean approaches a normal

distribution; see 7Central Limit�eorems). However, for
extremely skewed distribution even for quite large samples

(e.g., ), t-test may not be robust (Pocock ).

Numerous studies have dealt with the adequacy of the

two-sample t-test if at least one assumption is violated.

In case of unequal variances, it has been shown that the

t-test is only robust if sample sizes are equal (e.g., Sche�é

; Posten et al. ; Zimmerman ). However, if

two equal sample sizes are very small, the t-test may not be

robust (see Huck , pp. –). If both sample size

and variances are unequal, the Welch t-test is preferred to

as a better procedure.

If the normality assumption is not met, a researcher

can select one of the nonparametric alternatives of the

t-test – in one-sample scenario 7Wilcoxon–signed–rank
test, in two independent samples case7Wilcoxon–Mann–
Whitney test, and if the samples are dependent Wilcoxon-

matched pair rank test (for the asymptotic e�ciency

comparison, see 7Asymptotic Relative E�ciency in Test-
ing).

Extension to comparison of an arbitrary number

of independent samples ends up in a technique called

7analysis of variance, abbreviated ANOVA. Multivariate
counterparts of one-sample and two-sample t-tests are

based on Hotelling’s T statistic (Johnson and Wichern

), and ANOVA generalizes to multivariate analysis of

variance, abbreviated MANOVA (see 7Multivariate Anal-
ysis of Variance (MANOVA)).
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Introduction
�e fundamental object of modern statistics is the ran-

dom variable X and its associated probability law. �e

probability law may be given by the cumulative probabil-

ity distribution F(x), or equivalently by the probability
density function f (x) = F′(x), assuming the continu-
ous case. In practice, estimation of the probability density

may approached either parametrically or nonparametri-

cally. If a parametric model f (x∣θ) is assumed, then the
unknown parameter θ may be estimated from a random

sample using maximum likelihood methods, for example.

If no parametric model is available, then a nonparamet-

ric estimator such as the histogram may be chosen.�is

article describes two di�erent methods of specifying the

construction of a histogram from a random sample.

Histogram as Density Estimator
�e histogram is a convenient graphical object for rep-

resenting the shape of an unknown density function. We

begin by reviewing the stem-and-leaf diagram, introduced

by Tukey (). Tukey reanalyzed Lord Rayleigh’s  mea-

surements of the weight of nitrogen. Using the 7R lan-
guage, the stem-and-leaf diagram of the weights is given

in Fig. . One of the  raw numbers is x = .. Where
does x appear in the diagram?�e three digits to the le� of

“∣” are called the stem.�e stems correspond to the bins of
a histogram. Here there are four stems, de�ned by the �ve

cut points (., ., ., ., .).�e bin counts
are (, , , ), with x falling in the second bin. Round-
ing x to . and removing the stem “,” leaves the leaf

value of “,” which is what appears to the right of the second

stem in Figure . In the fourth stem, all seven measure-

ments rounded to ..�is sample was measured to high

accuracy to estimate the atomic weight of nitrogen, but

instead its highly non-normal shape led to the discovery

of the noble gas argon.

�e ordinary histogram depicts only the bin counts,

which we denote by {νk}, where the integer k indicates the
bin number.�en∑k νk = n, where n denotes the sample
size. Given an ordered set of cut points {tk}, the kth bin
Bk is the half-open interval [tk, tk+). If all of the bins have
the same width, then plotting the bin counts gives an indi-

cation of the shape of the underlying density; see the le�

frame of Figure  for an example.

�e le� frame of Fig.  depicts a frequency histogram,

since the bin counts {νk} are plotted. �e density his-
togram is de�ned by the formula

f̂ (x) = νk

nh
x ∈ Bk. ()

�e density histogram estimator is nonnegative and inte-

grates to . �e right frame of Fig.  shows a density

histogram with a narrower bin width.

> stem (wts)

The decimal point is 2 digit (s) to the left of the |

229 | 889999
230 | 12
230 |
231 | 0000000

Sturges’ and Scott’s Rules. Fig.  Tukey’s stem-and-leaf plot of
the Raleigh data (n = )
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Sturges’ and Scott’s Rules. Fig.  Histograms of the number of births daily in the USA in . The bin widths are  and ,
respectively

Sturges’ Rule
�e origins of the histogram may be traced back to 

and the invention of actuarial tables by JohnGraunt ().

But the �rst practical rule for the construction of his-

tograms took another  years. Sturges () essentially

developed a normal reference rule, that is, a formula for

the number of bins appropriate for normal data. Sturges

sought a discrete distribution that was approximately nor-

mal to develop his formula. While several come to mind,

clearly a binomial random variable Y ∼ B(m, p) with
p = 


is suitable. If we imagine appropriately re-scaled

normal data, which are continuous, rounded to integer

values (, , . . . ,m) in them +  bins (each of width h = )

B = (− 

,



] B = ( 


,



] . . . Bm = (m − 


,m + 


],

()

then the Binomial probability in the kth bin is given by

P(Y = k) = (m
k
) pk (−p)m−k = (m

k
)( 

)
m

=
(m
k
)

m ⋅ 
. ()

Comparing the density formulae in Eqs.  and , we have

νk = (m
k
), n = m, and h = . ()

If we letK denote the number of bins, thenK = m+ for the
binomial density, as well as for the appropriately re-scaled

normal data. From Eq. , we compute

n = m = K−; hence K =  + log

(n). ()

�e formula for K in Eq.  is called Sturges’ Rule.

Scott’s Rule
�e density histogram f̂ (x) = νk/nh is not di�cult to ana-
lyze for a random sample of size n from a density f (x).
Given a set of equal-width bins, the bin counts {νk} are

individually a Binomial random variable B(n, pk), with
probability

pk = ∫
Bk

f (t)dt = ∫
tk+

tk

f (t)dt = ∫
tk+h

tk

f (t)dt.

So Eνk = npk.�us for a �xed point x, the expected value
of the density histogram f̂ (x) is (npk)/nh = pk/h. Scott
() shows that this is close to the unknown true value

f (x) when the bin width h is small.
On the other hand, the variance of νk is npk(− pk), so

that the variance of f̂ (x) is npk( − pk)/(nh) ∼ pk/nh.
�is variance will be small if h is large. Since h cannot

be both small and large, and using the integrated mean

squared error as the criterion, Scott () derived the

asymptotically optimal bin width to be

h
∗
S = ( 

n ∫ f ′(t) dt
)
/
. ()

While the formula for h∗ in Eq.  seems to require
knowledge of the unknown density, it is perfectly suit-

able for deriving Scott’s normal-reference bin-width rule.

If f ∼ N(µ, σ ), then

∫
∞

−∞
f
′(t) dt = 


√

πσ 
and

h
∗
S = (

√
πσ 

n
)
/

≈ .σn−/. ()

Scott’s rule ĥS replaces σ in the formula for h∗S by the usual
maximum likelihood estimate of the standard deviation.

The Rules in Practice
For the birth count data used in Fig. , n = , σ̂ = .,
and the sample range is (, ); hence, Sturges’ and
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Scott’s rules give

K = .(or ĥ =  − 
.

= .) and ĥS = ..

Note the density histogram in the right frame of Fig. 

uses h = , which has ten bins. Interestingly, the le�
frame shows the default histogram in R, which implements

Sturges’ rule as well. However, instead of �nding ten bins

exactly, R uses the function pretty to pick approximately

ten binswith “convenient” values for {tk}.�e result in this
case is  bins, and h = . Scott’s rule (not shown) is close
to h = .

The Rules with Massive Datasets
While the two rules o�en give similar results for sample

sizes less than a couple hundred, they diverge for larger

values of n for any density, including the normal. To see

this, let us reconsider the binomial/normal construction

at Eq.  we used to �nd Sturges’ rule. (�e data are basi-

cally rounded to one of them+ integer values , , . . . ,m.)
�us we have K = m+  bins, n = K−, µ = mp = m/,
and σ  = mp(− p) = m/. Note that the variance of this
density increases with the sample size in such a way that

Sturges’ rule always gives h =  for any sample size.
By way of contrast, Scott’s rule from Eq.  is given by

h
∗
S = .

√
m


n
−/ = .

√
K − n−/

= .
√
log


(n)n−/. ()

Observe that h∗S →  as the sample size n → ∞. In fact,
h∗S <  for all n >  for these data. When n = ,
h∗S = ., only % less than Sturges’ h = . However, when
n = , h∗S = ..�us the optimal histogram would
have nearly  (/.) times as many bins as when using

Sturges’ rule.

�e bin width given in Eq.  is also the ratio of Scott’s

rule to the Sturges bin width (since h = ). If the nor-
mal data have any other scale, then the ratio is the same.

�e trick of using the Binomial model facilitates the con-

version of bin counts to bin widths. Otherwise, a more

careful analysis of the sample range of normal data would

be necessary.

Discussion
Both Sturges’ and Scott’s rules use the normal-reference

principle. However, Sturges makes a deterministic calcula-

tion, whereas Scott’s rule is based upon a balancing of the

global variance and squared bias of the histogram estima-

tor. For normal data, we have seen that Sturges’ rule greatly

understates the optimal number of bins (according to inte-

grated mean squared error).�us we say that Sturges’ rule

tends to oversmooth the resulting histogram. Sturges’ rule

wastes a large fraction of the information available in large

samples.

Why are these rules useful in practice? Terrell and

Scott;  show that there exists an “easiest” smooth den-

sity, whose optimal bin width is only . times as wide

as Scott’s normal reference rule. Terrell concludes that for

any other density, the (unknown) optimal bin width will

be narrower still.�us, the normal reference rule is always

useful as a �rst look at the data. Narrower bin widths can

be investigated if the sample size is large enough and there

is obvious non-normal structure.

Hyndman;  cautions that since both νk and n in

Eqs.  and  could be multiplied by a constant factor, that

K could take the general form c + log

(n).�e fact that

Sturges’ rule (c = ) continues to be used is probably due to
its simple form and its closeness to the optimal number of

bins for textbook-sized problems (n < ). Of course, if
you impose the boundary condition that with one sample

(n = ) you should choose one bin (K = ), then you would
conclude that c =  is appropriate.
A variation of Scott’s rule was independently proposed

by Freedman and Diaconis; , who suggested using a

multiple of the interquartile range rather than σ̂ in the nor-

mal reference rule. Of course, there are more advanced

methods of cross-validation for histograms introduced by

Rudemo; . Surveys of these and other ideas may be

found in Scott; , Wand; , and Doane . Finally,

we note that if the bin widths are not of equal width, then

the shape of the frequency histogram can be grossly mis-

leading. �e appropriate density histogram has the form

νk/nhk, but more research is required to successfully con-
struct these generalized histograms in practice.
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Introduction
In the entry 7Su�cient statistics, it was mentioned that
we wished to work with a su�cient or minimal su�cient

statistic T because such a statistic will summarize data,
but preserve all “information” about an unknown param-

eter θ contained in the original data. Here, θ may be real
or vector valued. But, how much (Fisher-)information do

we have in the original data which we attempt to preserve

through data summary?Our present concern is to quantify

Fisher-information content within some data.

�e notion of the information about θ contained in
data was introduced by F. Y. Edgeworth in a series of

papers, published in the J. Roy. Statist. Soc., during –

. Fisher () articulated the systematic development

of this concept. �e reader is referred to Efron’s (,

p. ) commentaries on Fisher-information.

Section “7One Parameter Case” introduces a one-
parameter situation. Section “7Multi-Parameter Case” dis-
cusses the two-parameter case which easily extends

to a multi-parameter situation. When one is forced

to utilize some less than full information data sum-

mary, we discuss in section “7Role in the Recov-
ery of Full Information” how the lost information

may be recovered by conditioning on ancillary statis-

tics. Mukhopadhyay (, Chap. ) includes in-depth

discussions.

One-Parameter Case
Suppose that X is an observable real valued random vari-

able with the pmf or pdf f (x; θ) where the unknown
parameter θ ∈ Θ, an open subinterval of R, while the
X space is assumed not to depend upon θ. We assume

throughout that the partial derivative ∂
∂θ
f (x; θ) is �nite for

all x ∈ X , θ ∈ Θ. We also assume that we can interchange
the derivative (with respect to θ) and the integral (with
respect to x).

De�nition  �e Fisher-information or simply the infor-

mation about θ, contained in the data, is given by

IX(θ) = Eθ [{ ∂

∂θ
log f (X; θ)}



] .

�e informationIX(θ)measures the square of the sen-
sitivity of f (x; θ) on an average due to an in�nitesimal
subtle change in the true parameter value θ.�is concept

may be understood as follows: Consider

lim
∆θ→

f (x; θ + ∆θ) − f (x; θ)
∆θ

÷ f (x; θ)

which is ∂
∂θ
log f (x; θ). Obviously, Eθ [ ∂

∂θ
log f (X; θ)] ≡ ,

and hence one goes on to de�ne IX(θ) = Eθ[ { ∂
∂θ
log

f (X; θ)} ].

Example  Let X be Poisson(λ), λ > . One veri�es that
IX(λ) = λ−. �at is, as we contemplate having larger
and larger values of λ, the variability built in X increases,

and hence it seems natural that the information about the

unknown parameter λ contained in the data X will go

down further and further. ▲
Example  Let X be N(µ, σ ) where µ ∈ (−∞,∞) is an
unknown parameter. Here, σ ∈ (,∞) is assumed known.
One veri�es that IX(µ) = σ−. Again, as we contemplate
having larger and larger values of σ , the variability built in
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X increases, and hence it seems natural that the informa-

tion about the unknown parameter µ contained in the data

X will go down further and further. ▲
�e following result quanti�es the information about

an unknown parameter θ contained in a random sample

X, . . . ,Xn of size n.

�eorem  Let X, . . . ,Xn be iid with a common pmf or

pdf given by f (x; θ). We denote Eθ [{ ∂
∂θ
log f (X; θ)}

] =
IX(θ), the information contained in the observation X.
�en, the information IX(θ), contained in the random
sample X = (X, . . . ,Xn), is given by

IX(θ) = nIX(θ) for all θ ∈ Θ.

Next, suppose that we have collected random samples

X, . . . ,Xn from a population and we have somehow evalu-

ated the informationIX(θ) contained inX = (X, . . . ,Xn).
Also, suppose that we have a summary statistic T = T(X)
in mind for which we have evaluated the information

IT(θ) contained in T. If it turns out that IT(θ) = IX(θ),
can we then claim that the statistic T is indeed su�cient

for θ?�e answer is yes, we certainly can.

We state the following result by referring to Rao (,

result (iii), p. ) for details. In an exchange of personal

communications, C.R. Rao had provided a simple way to

look at the next �eorem . In Mukhopadhyay (),

the Exercise .. gives an outline of Rao’s elegant proof

whereas in the Examples ..–.. of Mukhopadhyay

(), one �nds opportunities to apply this theorem.

�eorem  Suppose that X is the whole data and T =
T (X) is some statistic.�en, IX(θ) ≥ IT(θ) for all θ ∈ Θ.
�e two information measures will be equal for all θ if and

only if T is a su�cient statistic for θ.

Multi-Parameter Case
When the unknown parameter θ is multidimensional, the
de�nition of the Fisher information measure gets more

involved. To keep the presentation simple, we only discuss

the case of a two-dimensional parameter.

Suppose that X is an observable real valued random

variable with the pmf or pdf f (x; θ) where the parame-
ter θ = (θ, θ) ∈ Θ, an open rectangle ⊆ R, and the X
space does not depend upon θ.We assume throughout that
∂
∂θ i
f (x; θ) exists, i = , , for all x ∈ X , θ ∈ Θ, and that we

can also interchange the partial derivative (with respect to

θ, θ) and the integral (with respect to x).

De�nition  Denote Iij(θ) = Eθ [{ ∂
∂θ i
log f (X; θ)}

{ ∂
∂θ j
log f (X; θ)}] , for i, j = , . �e Fisher-information

matrix or simply the information matrix about θ is given

by

IX(θ) =
⎛
⎜⎜
⎝

I(θ) I(θ)

I(θ) I(θ)

⎞
⎟⎟
⎠
.

In situations where ∂

∂θ i∂θ j
f (x; θ) exists for all x ∈ X , for all

i, j = , , and for all θ ∈ Θ, we can alternatively express

Iij(θ) = −Eθ [ ∂

∂θ i∂θ j
log f (X; θ)] for i, j = , ,

and rewrite IX(θ) accordingly.
Having a statistic T = T(X, . . . ,Xn), however, the

associated information matrix about θ will simply be cal-
culated as IT(θ)where onewould replace the original pmf
or pdf f (x; θ) by that of T, namely g(t; θ), t ∈ T . In order
to compare two summary statistics T and T, we have

to consider their individual two-dimensional information

matrices IT(θ) and IT(θ). It would be tempting to say
that T is more informative about θ than T provided that

the matrix IT(θ) − IT(θ) is positive semi de�nite.

A version of�eorem . holds in the multiparameter case.

One may refer to Rao (, Sect. a.).

Example  Let X, . . . ,Xn be iid N(µ, σ ) where µ ∈
(−∞,∞) and σ  ∈ (,∞) are both unknown parameters.
Denote θ = (µ, σ ),X = (X, . . . ,Xn). One can verify that
the information matrix is given by

IX(θ) = nIX(θ) =
⎛
⎜⎜
⎝

nσ− 





nσ−

⎞
⎟⎟
⎠
,

for the whole data X. ▲
Example  (Example . Continued) LetX = n−Σni=Xi, the
sample mean and S = (n − )−Σni=(Xi − X), the sample
variance, n ≥ . One can check that

IX(θ) =
⎛
⎜⎜
⎝

nσ− 





σ−

⎞
⎟⎟
⎠
,

IS(θ) =
⎛
⎜⎜
⎝

 





(n − )σ−

⎞
⎟⎟
⎠
.

Surely, X and S are independent, and hence

IX,S(θ) = IX(θ) + IS(θ) =
⎛
⎜⎜
⎝

nσ− 





nσ−

⎞
⎟⎟
⎠
,

which coincides with IX(θ). ▲
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Role in the Recovery of Full Information
In the entry 7Su�cient statistics, we had seen how ancil-
lary statistics could play signi�cant roles in conjunction

with non-su�cient statistics. Suppose that T is a non-

su�cient statistic for θ and T is ancillary for θ. In other

words, in terms of the information content, IT(θ) <
IX(θ) where X is the whole data and IT(θ) =  for all
θ ∈ Θ. Can we recover all the information contained in X
by reporting T while conditioning on the observed value

of T?�e answer is: we can do so and it is a fairly simple

process.

Such a process of conditioning has far reaching impli-

cations as emphasized by Fisher (, ) in his famous

“Nile” example. Onemay also refer to Basu (), Hinkley

(), Ghosh () and Reid () for fuller discus-

sions of conditional inference. Also, refer toMukhopadhyay

(, Sect. .).

�e approach goes through the following steps. One

�rst �nds the conditional pdf of T when T = u given that
T = v, denoted by gT ∣ v(u; θ). Using this conditional pdf,
one can obtain the information content:

IT ∣ v(θ) = Eθ [{ ∂

∂θ
log{gT ∣ v(T; θ)}}



] .

In general, the expression of IT ∣ v(θ) would depend on v,
that is, the �xed value of T. Next, one averages IT ∣ v(θ)
over all possible values v, that is, evaluates ET[IT ∣T(θ)].
Once this last bit of averaging is done, it will coincide with

the information content in the joint statistic (T,T), that
is, one can claim:

IT ,T(θ) = ET [IT ∣T(θ)] .

�is analysis provides a way to recover the lost information

due to reporting T alone via conditioning on an ancil-

lary statistic T. Two examples follow that are taken from

Mukhopadhyay (, pp. –).

Example  Let X,X be iid N(θ, ) where θ ∈ (−∞,∞)
is an unknown parameter. We know that X is su�cient

for θ. Now, X is distributed as N (θ, 

) so that we can

immediately write IX(θ) = . Now, T = X is not suf-
�cient for θ since IX(θ) =  < IX(θ). �at is, if we
report only X a�er the data (X,X) has been collected,
there will be some loss of information. Next, consider an

ancillary statistic, T = X − X and now the joint dis-
tribution of (T,T) is N (θ, , , , ρ = √


) . Hence, we

�nd that the conditional distribution of T given T = v is
N (θ + 


v, 

) , v ∈ (−∞,∞).�us,we �rst haveIT ∣v(θ) =

ET ∣ v [ (T − θ − 


v)] =  and since this expression does

not involve v, we then have ET [IT ∣T(θ)] =  which

equalsIX(θ). In otherwords, by conditioning on the ancil-
lary statistic T, we have recovered the full information

which is IX(θ). ▲
Example  Suppose that (X,Y) is distributed as N(, ,
, , ρ) where the unknown parameter is the correlation
coe�cient ρ ∈ (−, ). Now consider the two individual
statistics X and Y . Individually, both T = X and T = Y
are ancillary for ρ. We note that the conditional distribu-

tion of X given Y = y isN(ρy, − ρ) for y ∈ (−∞,∞) and
accordingly have,

∂

∂ρ
log fX∣ Y=y(x; ρ) =

ρ

 − ρ

− [ ρ(x − ρy)

( − ρ)
− y(x − ρy)

( − ρ)
] .

In other words, the information about ρ contained in the

conditional distribution of T ∣ T = v, v ∈ R, is given by

ρ

( − ρ)
+ v

( − ρ)
,

which depends on the value v unlike what we had in Exam-

ple . �en, the information contained in (X,Y) will be
given by

IX,Y(ρ) = ET
⎡⎢⎢⎢⎢⎣
ET ∣ T=v

⎛
⎝
{ ∂

∂ρ
log fT ∣ T=v(T; ρ)}

⎞
⎠

⎤⎥⎥⎥⎥⎦

= ET [
ρ

( − ρ)
+ T



( − ρ)
]

= ρ

( − ρ)
+ 

( − ρ)
=  + ρ

( − ρ)
.

In other words, even though the statistic X tells us nothing

about ρ, by averaging the conditional (on the statistic Y )

information in X, we have recovered the full information

about ρ contained in the whole data (X,Y). ▲
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Introduction
Many fundamental concepts and principles of statistical

inference originated in Fisher’s work. Perhaps the deep-

est of all statistical concepts and principles is su�ciency.

It originated from Fisher () and blossomed further in

Fisher ().We introduce the notion of su�ciencywhich

helps in summarizing data without any loss of information.

Section “7Su�ciency” introduces su�ciency andNey-
man factorization. Section “7Minimal Su�ciency” dis-
cussesminimal su�ciency, the Lehmann-Sche�é approach,

and completeness. Section “7NeymanFactorization” shows
the importance of ancillary statistics including Basu’s theo-

rem. Mukhopadhyay (, Chap. ) provides many more

details.

Sufficiency
Let X, . . . ,Xn be independent real-valued observations

having a common probability mass function (pmf) or

probability density function (pdf) f (x; θ), x ∈ X , the
domain space for x. Here, n is known, but θ ∈ Θ(⊆ R)
is unknown. In general, however, the X’s and θ are allowed

to be vector valued.�is should be clear from the context.

A summary from data X ≡ (X, . . . ,Xn) is provided by
some appropriate statistic, T ≡ T(X) which may be vector
valued.

De�nition  A real valued statistic T is called su�cient

for parameter θ if and only if the conditional distribution of

the random sample X = (X, . . . ,Xn) given T = t does not
involve θ, for all t ∈ T , the domain space for T.

In other words, given the value t of a su�cient statis-

tic T, conditionally there is no more information le� in the

original data regarding θ. �at is, once a su�cient sum-

mary T becomes available, the original data X becomes
redundant.

De�nition  A statistic T ≡ (T, . . . ,Tk) where Ti ≡
Ti(X, . . . ,Xn), i = , . . . , k, is called jointly su�cient for
parameter θ if and only if the conditional distribution of

X = (X, . . . ,Xn) given T = t does not involve θ, for all

t ∈ T ⊆ Rk.

Example  Suppose that X, . . . ,Xn are independent

and identically distributed (iid) Poisson(λ) where λ is

unknown,  < λ < ∞. Here, X = {, , , . . .}, θ = λ,

and Θ = (,∞).�en, T = Σni=Xi is a su�cient statistic
for λ.

Neyman Factorization
Suppose that we have observable real valued iid observa-

tions X, . . . ,Xn from a population with a common pmf

or pdf f (x; θ). �en, the likelihood function is given by
L(θ) = Πni= f (xi; θ), θ ∈ Θ. Fisher () discovered the
fundamental idea of factorization whereas Neyman ()

rediscovered a re�ned approach to factorize a likelihood

function. Halmos and Savage () and Bahadur ()

introduced measure-theoretic treatments.

�eorem  (Neyman Factorization�eorem). A vector
valued statistic T = T(X, . . . ,Xn) is jointly su�cient for θ
if and only if the following factorization holds:

L(θ) = g (T(x, . . . , xn); θ)h(x, . . . , xn),
for all x, . . . , xn ∈ X ,

where the functions g(T; θ) and h(.) are both nonnega-
tive, h(x, . . . , xn) is free from θ, and g(T; θ) depends on
x, . . . , xn only through the observed value T(x, . . . , xn)
of T.

Example  Let X, . . . ,Xn be iid N(µ, σ ) where θ =
(µ, σ ) ∈ R × R+ is an unknown parameter vector. Let
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X, S respectively be the sample mean and variance.�en,

T = (X, S) is jointly su�cient for θ. However, this
does not imply component-wise su�ciency. To appreciate

this �ne line, pretend for a moment that one could claim

component-wise su�ciency. But, since (X, S), and hence
(S,X), is jointly su�cient for (µ, σ ). Now, how many
would be willing to push an idea that component-wise, S

is su�cient for µ or X is su�cient for σ !

�eorem  (Su�ciency in an Exponential Family).
Suppose that X, . . . ,Xn are iid with a common pmf or the

pdf belonging to a regular k-parameter exponential family,

namely

f (x; θ) = a(θ)g(x)exp{Σki=bi(θ)Ri(x)}

with appropriate forms for g(x) ≥ , a(θ) ≥ , bi(θ) and
Ri(x), i = , . . . , k. Denote Tj = Σni=Rj(Xi), j = , . . . , k.
�en, the statistic T = (T, . . . ,Tk) is jointly su�cient for θ.

Minimal Sufficiency
From the factorization�eorems –, it should be clear that

thewhole dataXmust always be su�cient for the unknown
parameter θ. But, we ought to reduce the data by means of
summary statistics in lieu of considering X itself. What is
a natural way to de�ne the notion of a “shortest su�cient”

or “best su�cient” summary statistic?�e other concern

should be to get hold of such a summary, if there is one.

Lehmann and Sche�é () gave a mathematical for-

mulation of the concept known asminimal su�ciency and

proposed a technique to locate minimal su�cient statis-

tics. Lehmann and Sche�é (, ) included crucial

follow-ups.

De�nition  A statistic T is called minimal su�cient for
the unknown parameter θ if and only if

. T is su�cient for θ, and
. T is minimal or “shortest′′ in the sense that T is a func-
tion of any other su�cient statistic.

Lehmann–Scheffé Approach
�e following result was proved in Lehmann and Sche�é

(). Its proof requires some understanding of the cor-

respondence between a statistic and so called partitions it

induces on a sample space.

�eorem  (Minimal Su�cient Statistics). Let us
denote h(x, y; θ) = Π

n
i= f (xi; θ)/Πni= f (yi; θ), the ratio

of the likelihood functions at x and y, for x, y ∈ X n. Let
T ≡ T(X, . . . ,Xn) = (T, . . . ,Tk) be a statistic such that
the following holds:

7 With any two arbitrary but fixed data points x = (x , . . . , xn),
y = (y , . . . , yn) fromX n,h(x, y; θ) does not involve θ if and

only if T(x) = T(y).

�en, T is minimal su�cient for θ.
In Examples – and�eorem , the reported su�cient

statistics also happen to be the minimal su�cient statis-

tics. It should be noted, however, that a minimal su�cient

statistic may exist for some distributions from outside a

regular exponential family. For example, let X, . . . ,Xn be

iid Uniform(, θ)where θ ∈ R+ is an unknown parameter.
Here,Xn:n, the largest order statistic, is aminimal su�cient

statistic for θ.

�eorem  (Distribution of a Minimal Su�cient
Statistic in an Exponential Family). Under the conditions
of �eorem , the pmf or the pdf of the minimal su�-

cient statistic (T, . . . ,Tk) also belongs to a k-parameter
exponential family.

In the case of population distributions not belonging to

a regular exponential family, however, sometimes one may

not achieve any substantial data reduction by invoking the

concept of minimal su�ciency. For example, suppose that

we have iid observations X, . . . ,Xn having the following

Cauchy pdf:



π



 + (x − θ)
,−∞ < x, θ <∞.

Here, −∞ < θ < ∞ is an unknown location parameter.

Now, let T = (Xn:, . . . ,Xn:n) where Xn: ≤ . . . ≤ Xn:n
are the sample order statistics. One can verify that T is a
minimal su�cient statistic for θ.

A Complete Sufficient Statistic
Consider a real valued random variable X whose pmf or

pdf is f (x; θ) for x ∈ X and θ ∈ Θ. LetT = T(X) be a statis-
tic and suppose that its pmf or pdf is denoted by g(t; θ) for
t ∈ T and θ ∈ Θ.�en, {g(t; θ): θ ∈ Θ} is called the family
of distributions induced by T.

De�nition  �e family {g(t; θ): θ ∈ Θ} is called com-
plete if and only if the following condition holds. Consider

any real valued function h(t) de�ned for t ∈ T , having a
�nite expectation, such that

Eθ [h(T)] =  for all θ ∈ Θ implies h(t) ≡  w.p..

A statistic T is said to be complete if and only if {g(t; θ): θ ∈
Θ} is complete. A statistic T is called complete su�cient for
θ if and only if () T is su�cient for θ and () T is complete.

A complete su�cient statistic, if it exists, is also a min-

imal su�cient statistic. For example, let X, . . . ,Xn be iid
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Uniform(, θ) where θ ∈ R+ is unknown. Here, Xn:n, the
largest order statistic, is a complete su�cient statistic for

θ. Hence, Xn:n is also minimal su�cient for θ.�is proof

bypasses�eorem . Now, we state a remarkably general

result (�eorem ) in the case of a regular exponential fam-

ily of distributions. One may refer to Lehmann (, pp.

–) for a proof of this result.

�eorem  (Completeness of a Minimal Su�cient
Statistic in an Exponential Family). Under the conditions
of�eorem , the minimal su�cient statistic (T, . . . ,Tk) is
complete.

Ancillary Statistics
�e concept called ancillarity of a statistic is perhaps the

furthest away from the notion of su�ciency. A su�cient

statistic T preserves all the information about θ contained
in the data X. In contrast, an ancillary statistic T by itself
provides no information about θ. �is concept evolved
from Fisher () and later it blossomed into the vast area

of conditional inference. In his  book, Fisher empha-

sized many positive aspects of ancillarity in analyzing real

data. For fuller discussions of conditional inference onemay

look at Basu (), Hinkley () andGhosh (). Reid

() provides an assessment of conditional inference

procedures.

Consider the real valued observable random variables

X, . . . ,Xn from some population having the common pmf

or pdf f (x; θ), where the unknown parameter vector θ ∈
Θ ⊆ Rp. Let us continue writing X for the full data and
T = T(X) for a vector valued statistic.

De�nition  A statistic T is called ancillary for θ or sim-
ply ancillary provided that the pmf or the pdf of T does not
involve θ.

Here is an important result that ties the notions of com-

plete su�ciency and ancillarity. Basu () came up with

this elegant result which we state here under full generality.

�eorem  (Basu’s�eorem). Suppose that we have two
vector valued statistics, U = U(X) which is complete su�-
cient for θ andW = W(X) which is ancillary for θ.�en,
U andW are independently distributed.

An ancillary statistic by itself tells one nothing about

θ! Hence, one may think that an ancillary statistic may
not play a role to come up with a su�cient summary

statistic. But, thatmay not be the case.�e following exam-

ples will highlight the fundamental importance of ancillary

statistics.

Example  Suppose that (X,Y) has a curved exponential
family of distributions with the joint pdf given by

f (x, y; θ) = {
exp{−θx − θ−y} if  < x, y <∞

 elsewhere,

where θ(> ) is an unknown parameter.�is distribution
was discussed by Fisher (, ) in the context of his

famous “Nile” example. Denote U = XY ,V = X/Y . One
can show that U is ancillary for θ, V does not provide the

full information about θ, but (U,V) is minimal su�cient
for θ. Note that V / is the maximum likelihood estimator
of θ, but it is not minimal su�cient for θ.

Example  �is example was due to D. Basu. Let (X,Y)
be distributed as bivariate normal with zero means,

unit variances, and an unknown correlation coe�cient

ρ, − < ρ < . �en, marginally, both X and Y are dis-
tributed as standard normal variables. Clearly, X by itself

is an ancillary statistic, Y by itself is an ancillary statistic,

but X and Y combined has all the information about ρ.
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Summarizing Data with Boxplots
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Introduction
Statisticians have created a variety of techniques for sum-

marizing data graphically. For continuous univariate data

the most commonly used graphical display is the his-

togram. Once the interval width is carefully determined,

the histogram provides a visual summary of the data cen-

ter, spread, 7skewness, and unusual observations, which
may be7outliers.While these features are visible, there are
no speci�c numeric summarymeasures that are part of the

histogram display.

Tukey () introduced a simple alternative to the his-

togram that contains similar features as the histogram, is

easier to graph, and includes measures of location, spread,

skewness, and a rule for �agging outliers. He called this

graphic summary the boxplot.�e key components of the

boxplot consist of Tukey’s �ve number summary.�ese are:

the median = Q; upper quartile = Q; lower quartile =
Q; largest value = X(n); and the smallest value = X().

�is information is all that is needed to graph the sim-

plest version of the boxplot, called the box-and-whisker

plot. Such a plot is illustrated as the le� plot of Fig. .�e

data consists of daily percent changes in the Dow Jones

industrial average closing values for days when the mar-

ket is open.�us, if Yt is the closing Dow Jones Industrial

Average at day t, then the data for the boxplots in Fig. 

consists of Xt = (Yt − Yt−)/Yt−.
�e box-and-whisker plot has a box at the center that

contains approximately % of the middle observations.

�e horizontal line inside the plot is themedian,Q, which

provides a nice summary measure for the data center.�e

upper and lower horizontal lines enclosing the box are

the values of Q, and Q, respectively. From these one can

obtain the interquartile range, IQR = Q − Q, which is a
common robust measure of spread. Skewness can also be

observed by comparingQ −Q withQ −Q or X(n) −Q
with Q − X().
Tukey () also added a simple rule for �agging

observations as potential outliers. �at rule �ags obser-

vations as outliers if they fall outside the interval (Q −
k(IQR), Q + k(IQR)). Tukey suggested using k = . for
a liberal interval with out values so designated. He also

suggested using k =  to designate far out values. �e
box-and-whisker plot that incorporates the rule for �ag-

ging outliers is called a boxplot.�e second from le� plot

in Fig.  illustrates such a boxplot for the June  data.

In addition, this boxplot contains an X in the middle des-

ignating the location of the sample mean. �e inclusion

of the sample mean is a useful added feature that some

statistical computer packages incorporate.

Although the boxplot is a simple graphic summary

procedure, a number ofmodi�cations have been suggested

and properties studied. In section “7VariedVersions of the
Basic Boxplot” we will brie�y review other variants of the

basic boxplot. In section “7Outlier Rule” we will consider
further the properties of the outlier identi�cation rule and

suggest modi�ed versions. In section “7Quartiles” we will
consider the computation of quartiles. A brief summary

will be provided in section “7Summary”.

Varied Versions of the Basic Boxplot
A fair number of alternative versions of the basic boxplot

have been introduced and used. Tu�e () suggested a

slight modi�cation that is useful in summarizing a large

number of parallel boxplots that can be especially useful

when dealing with data collected over many time peri-

ods. Tu�e suggested removing the box, as in the three

right most graphs in Fig. , representing the data for Jan-

uary, February, and March , respectively.�e box can

now be represented by either a solid line or empty space.
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Summarizing Data with Boxplots. Fig.  Graph contains several versions of boxplot construction based on daily percent changes
of the Dow Jones industrial average grouped by month. The two left hand boxplots consist of June  data with the right one
including potential outliers. The next two to the right represent notched boxplots. The three right side boxplots are based on a
version suggested by Tufte

�e point inside the solid line designates the location of

the median. �e dashed lines go towards the largest and

smallest observations excluding �agged outliers, which are

individually plotted on the boxplot graph.

Another avenue of innovation is the thickness of the

box.�e simplest suggestion, given by McGill et al. (),

is to make the width proportional to the square root of

the sample size, thus showing precision. �is is further

re�ned by Benjamini (), who suggested replacing the

two outer vertical lines of the box by density plots. Such

density plots depend on the kernel and window width and

are thus not unique. He called these plots histplots. Ben-

jamini also introduced density plots for the entire vertical

length of the boxplots.�ese plots he called vaseplots. Both

the hisplots and vaseplots consist of lines.�e vaseplot is

further re�ned by Hintze and Nelson () who used a

curved density plot as a replacement. As the resulting plot

o�en looks like a violin, they called their modi�cation a

violin plot.

A further re�nement is the notched boxplot intro-

duced byMcGill et al. ().�e goal is to provide a visual

signi�cance test comparing the medians of two adjacent

boxplots. If the two medians lie within the two notches,

then we can say that the two population medians are not

signi�cantly di�erent. Two notched boxplots are shown as

the April and May data in Fig. , where we can see that

the two population medians are not signi�cantly di�er-

ent.�e intervals are based on asymptotic results from the

normal distribution.�ese are re�ned in common statis-

tical packages by using sign test type intervals. Benjamini

() suggested using the standard boxplot, but represent

the notches by a shaded horizontal region.

Outlier Rule
Tukey’s simple outlier labeling rule is heavily used, typi-

cally with k = ., where observations are labeled as outliers
if they lie outside the interval (Q−k(IQR), Q+k(IQR)).
Hoaglin et al. () studied the performance of this rule

for random normal data. �ey found that the rule with

k = . is very liberal for moderate to large data sets. For
example, for n =  random normal observations there is
an % chance that at least one observation will be falsely
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labeled as an outlier. Even with n =  that percentage
stays at %. For the conservative k = . rule, these out
probabilities drop drastically to . percent for n = .
�e problem is that this k = . rule does not take sample-
size into account. Consequently, the chances of labeling

regular observations as outliers increase with increasing

sample-size.

Let B(k,n) = probability that all observations of a ran-
domnormal sample lie inside (Q−k(IQR), Q+k(IQR)).
Hoaglin and Iglewicz () obtained values of k as func-

tions of n to keep B(k,n) = . or B(k,n) = ..�at is,
all n observations are inside the outlier labeling interval.

�us, for n = , B(k,n) = ., they obtained k = .,
while for n = , k = .. Iglewicz and Banerjee ()
extended this procedure to random samples from a variety

of both symmetric and skewed distributions in addition to

the normal.�eir work was further extended by Sim et al.

() and Banerjee and Iglewicz ().

Quartiles
Although the computation of quartiles seems to be quite

simple on the surface, there are actually a number of

choices for computing quartiles. As an example, Frigge

et al. () discuss eight options for computing quar-

tiles. Although these choices will have limited e�ect for

large samples, they can di�er noticeably for small sam-

ples. �at can lead to di�erent boundaries for the box

part of the boxplot and di�erent values of k to maintain

B(k,n) = ..
Consider the non-negative number f = j+ g, where j is

the integer part of f and g the fractional part. For example,

if f = ., then j =  and g = .. Consider the ordered
observations X() ≤ X() ≤ X() ≤ ⋯ ≤ X(n), then X(f ) =
( − g)X(j) + gX(j+).�e median is typically obtained as
Q() = X(f ), where f = (n + )/. Letting n = N +  for n
odd, Q() = X(N+). For n = N, n even, Q() = (X(N) +
X(N+))/. Tukey () suggested a very simple rule for
obtaining Q() and Q(), as Q() = X(f ), where f = (j +
)/ and j = the integer part of (n + )/. �en Q() =
X(n+−f ). An alternative popular choice for f inX(f ) = Q()
is f = (n + )/.

Summary
�e boxplot is a heavily used graphical tool for summa-

rizing univariate continuous data. Although the boxplot

option shown on the second from the le� plot of Fig.  is

by far the most popular version, a variety of other useful

choices have been discussed. �ese include the notched

boxplots that are useful in comparing two population

medians, the Tu�e version useful when comparing many

samples, and plots that incorporate density information.

On some occasions, professionals are content with the sim-

pler box-and-whisker plot illustrated as the le�most plot

of Fig. . While the illustrations of Fig.  consist of vertical

boxplots, these could have just as e�ectively been drawn

horizontally.

While this write-up has been devoted to discussion of

the popular univariate boxplot, there have been a num-

ber of successful introductions of bivariate boxplots.�ese

again use robustmeasures, but incorporate information on

the correlation between the variables. Two bivariate box-

plot versions worthy of note are by Goldberg and Iglewicz

() and Rousseeuw et al. ().
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Classical sampling theory considers a �nite population,

U = {, . . . ,N} , of known size, N, with a vector of �xed
unknown values of a variable of interest, y = (y, . . . , yN).
A sample of size n, s = {si , . . . , sin} , is selected by a sam-
ple design, which assigns to each possible sub-set of U

a known probability – p(s). �e objective is to estimate
some function of y, which can be assumed, without loss

of generality, to be the population total, y =
N

∑
i=

yi, on the

basis of the sample observations, {yi , . . . , yin} , and the
sample probabilities – p(s). Inference based only on the
sample selection probabilities is known as design based (or

7randomization) inference and the properties of estima-
tors are considered in this framework solely with respect

to the known sample selection probabilities. Although

design-based inference is widely applied in practice for the

estimation of �nite population parameters, it su�ers from

several drawbacks:

. It can be shown that there is no unbiased estimator,

say of the total, which is optimal, in the sense that

its randomization variance is minimal for all sets of

possible values of the population variables (Godambe

).

. While the use of auxiliary data, e.g., known values

of an auxiliary variable for all population units, X =
(X, . . . ,XN), for sample design (e.g., strati�cation) or
for estimation (e.g., ratio estimation) is widely applied,

in practice, it cannot strictly be justi�ed under the

design-based paradigm, unless some model relating

the values of X and Y is assumed. For instance the e�-

ciency of ratio estimation is based on the premise that

there is a linear relationship between the values of X

and Y (without an intercept) – Cochran ().

. �e use of sample survey data for analytical purposes,

which has developed extensively over the past few

decades, cannot be treated on a solid theoretical basis

solely under design-based inference -see e.g., Kish and

Frankel ().�us, although a regression analysis can

formally be carried out on sample data, the results can-

not be interpreted easily when the dependent and the

independent variables are considered as �xed values,

rather than as realizations of random variables, i.e.,

unless a linear model with random errors is assumed

- Brewer and Mellor ().

�is has led sample survey theoreticians and practitioners

to consider a model based, or superpopulation approach,

which assumes that each population unit is associated with

a random variable for which a stochastic structure is spec-

i�ed and the actual value associated with a population unit

is considered as the realization of the random variable,

rather than a �xed unknown value - Cassel et al. .�us

the vector of population values, y, is assumed to be the
realization of a random vector variable: Y = (Y, . . . ,YN).
�e form of the joint distribution of Y, . . . ,YN , o�en

denoted by ξ, is usually assumed to be known, except

for unknown parameters.�us, if we assume a regression

model between Y and X, we might consider ξ as multi-

variate normal, i.e., Y ∣X ∼N (Xβ, Σ) , where β and Σ are
unknown parameters.

�ere are several di�erent possible interpretations of

the superpopulation concept, such as the following - see

also Särndal et al. :

. �e �nite population may be considered as actually

selected from a larger universe by a real world random

mechanism or process.�is would be the interpreta-

tion of a statistical model in the social sciences, such

as econometric models. �is is the approach usually

used by practitioners who wish to analyze sample sur-

vey data created by complex sample designs – see, for
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instance, Nathan and Holt (), Skinner et al. (),

Pfe�ermann () and Chambers and Skinner ().

. �e superpopulation joint distribution, ξ, may be

considered under a Bayesian approach, as a prior

distribution, which re�ects the subjective belief in

the unknown values of Y, . . . ,YN , so that we consider

the problem of �nding the posterior distribution of the

�nite population parameter, given the sample values.

. �e superpopulation distribution may be considered

as re�ecting nonsampling errors, such asmeasurement

errors, which account for di�erences between observed

values of the variables and their ‘true’ values.

. �e superpopulation distribution, ξ, may be consid-

ered as a purely mathematical device, not associated

with any physical process or subjective belief, in order

to make explicit theoretical derivations. �us di�er-

ent estimators or sample designs may be considered

and compared, with respect to their performance and

characteristics (e.g., bias and variance), under di�er-

ent models. Since in most cases our certainty about

the true models is very limited, this can provide a use-

ful tool for checking the robustness of estimators and

sample designs to departures from assumed models.

�e rapid development of sample survey theory and prac-

tice over the past  years has occurred in all aspects

of sample surveys. However the rapid integration of the

superpopulation concept and model-based ideas in main-

stream theory and practice of sample survey inference has

been one of the major developments. �irty �ve years

ago, the fundamental divide between advocates of clas-

sical design-based inference and design, and those who

preferred basing both the sample design and inference

only on superpopulation models was still at its zenith and

the controversies of the two previous decades, exempli�ed

by Brewer and Mellor (), were still raging. �e early

randomization-based approach, developed by the pioneers

of classical design-based sampling theory, was challenged

by the study of the logical foundations of estimation the-

ory in survey sampling, for example, Godambe (), and

by early advocates of pure superpopulation model-based

design and prediction approach to inference, for example,

Royall ().�ese controversies continued to be �ercely

discussed well into the s, see, for example, Hansen

et al. (), and pure superpopulation based prediction

approaches are still being advocated – see Valliant ().

However the extreme views, relating to both approaches,

have mellowed considerably over the past  decades, and

sample survey theory and practice are currently, by and

large, based on a variety of combined approaches, such

as model-assisted methods, which integrate superpopula-

tion models with a randomization-based approach – see

for example the variety of approaches, many of them based

on superpopulationmodels, used in the latestHandbook of

Statistics (volume ), devoted to sample surveys –Rao and

Pfe�ermann ().

�e superpopulation concept has served and continues

to serve as an extremely important and useful tool for the

development of the theory and practice of sample surveys –

in their design, estimation and analysis.
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The Need for Statistical Surveillance
�e aim of statistical surveillance is the timely detection of

important changes in the process that generates the data.

Already at birth surveillance is used, as described by Frisén

().�e baby might get the umbilical cord around the

neck at any time during labour. �is will cause a lack of

oxygen, and a Caesarean section is urgent.�e electrical

signal of the heart of the baby during labour is the base

for the surveillance system. Detection has to be made as

soon as possible to ensure that the baby is deliveredwithout

brain damage.

Around , Walter A. Shewhart developed the �rst

versions of sequential surveillance by introducing control

charts for industrial applications (see 7Control Charts).
Although industrial applications are still important, many

new applications have come into focus.

In �nance, transaction strategies are of great interest

and the timeliness of transactions is important. Most the-

ory of stochastic �nance is based on the assumption of an

e�cient market. When the stochastic model is assumed

to be completely known, we can use probability theory

to calculate the optimal transaction conditions. When the

information about the process is incomplete, as for exam-

plewhen a change can occur in the process, theremay be an

arbitrage opportunity, as demonstrated by Shiryaev ().

In these situations, observations should be analysed con-

tinuously to decide whether a transaction at that time is

pro�table as measured either by return or by risk. Statisti-

cal inference is needed for the decision. Di�erent aspects

of the subject of �nancial surveillance are described in the

book edited by Frisén ().�ere are also other appli-

cations in the �eld of economics.�e detection of turning

points in business cycles is important for both government

and industry.

In public health surveillance, the timely detection of

various types of adverse health events is crucial.�e mon-

itoring of incidences of di�erent diseases and symptoms is

carried out by international, national and local authorities

to detect outbreaks of infectious diseases. Epidemics, such

as in�uenza, are for several reasons very costly to society,

and it is therefore of great value to monitor in�uenza data,

both for the outbreak detection and during the epidemic

period in order to allocate medical resources. Methods

for surveillance for common diseases also serve as mod-

els for the detection of new diseases as well as for detecting

bioterrorism. Surveillance for the onset of an outbreak is

described in Frisén et al. (). Reviews of methods for

the surveillance of public health are given by Sonesson and

Bock () and Woodall et al. ().

The Statistical Surveillance Problem
Terminology
�e terminology is diverse. “Optimal stopping rules” (see

7Optimal StoppingRules) ismost o�enused in probability
theory, especially in connection with �nancial problems.

Literature on “change-point problems” does not always

treat the case of sequentially obtained observations but

o�en refers to the retrospective analysis of a �xed number

of observations.�e term “early warning system” is some-

times used in economic and medical literature. “Monitor-

ing” is most o�en used in medical literature and with a

broad meaning.�e notations “statistical process control”

and “quality control” are used in the literature on industrial

production.

Overviews
Surveys and bibliographies on statistical surveillance are

given for example by Lai (), who gives a full treatment

of the �eld but concentrates on the minimax properties of

stopping rules, by Woodall and Montgomery () and

Ryan (), who concentrate on control charts, and by

Frisén (), who characterisesmethods by di�erent opti-

mality properties.�e overview by Frisén () and the

adjoining discussion takes up many recent issues.
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Differences between hypothesis testing
and surveillance
In the initial example, the decision concerning whether the

baby is at risk has to be made sequentially, based on the

data collected so far. Each new time demands a new deci-

sion.�ere is no �xed data set but an increasing number

of observations. In sequential hypothesis testing, we have

sequentially obtained observations and repeated decisions,

but the hypotheses are �xed. In contrast, there are no �xed

hypotheses in surveillance. We can never accept any null

hypotheses and turn our backs on the mother, since the

baby might get the umbilical cord around the neck in the

next minute.

Statistical specifications
We denote the process by X = {X(t) : t = , , . . .}, where
X(t) is the observation (vector) made at time t, which is
usually discrete.�e purpose of themonitoring is to detect

a possible change, for example the change in distribution

of the observations due to the baby’s lack of oxygen.�e

time of the change is denoted by τ. Before the change, the

distribution belongs to the family f D, and a�er the time

τ, the distribution belongs to the family f C. At each deci-

sion time s, we want to discriminate between two events,

C(s) andD(s). For most applications, these can be further
speci�ed as C(s) = {τ ≤ s} (a change has occurred) and
D(s) = {τ > s} (no change has occurred yet), respectively.
We use the observations Xs = {X(t); t ≤ s} to form

an alarm criterion which, when ful�lled, is an indication

that the process is in state C(s), and an alarm is triggered.
We use an alarm statistic, p(Xs), and a control limit, G(s),
and the alarm time, tA, is tA = min{s; p(Xs) > G(s)}.�e
change point τ can be regarded either as a random vari-

able or as a deterministic but unknown value, depending

on what is most relevant for the application.

Evaluation and Optimality
Quick detection and few false alarms are desired proper-

ties of methods for surveillance. Di�erent error rates and

their implications for active and passive surveillance were

discussed by Frisén and de Maré ().

Evaluation by signi�cance level, power, speci�city, sen-

sitivity, or otherwell-knownmetricsmay seem convenient.

However, these are not easily interpreted in a surveillance

situation. For example, when the surveillance continues,

the speci�city will tend to zero formost surveillancemeth-

ods. �us, there is not one unique speci�city value in a

surveillance situation.

Special metrics such as the expected time to a false

alarm ARL

and the expected delay of a warranted alarm

are used (see Frisén ()).�e expected delay is di�er-

ent for early changes as compared with late ones.�e most

commonly used delay measure is ARL

, the expected delay

for a change that appears at the start of the surveillance.

In addition, the optimality criteria are di�erent in

surveillance as compared with hypothesis testing. �e

minimax optimality and the expected delay over the dis-

tribution of the change point are frequently used.

Methods
In surveillance, it is important to aggregate the sequen-

tially obtained information in order to take advantage of all

information. Di�erent ways of aggregation meet di�erent

optimality criteria. Expressing methods for surveillance

through likelihood functions makes it possible to link the

methods to various optimality criteria. Many methods for

surveillance can be expressed by a combination of partial

likelihood ratios (Frisén ()).�e likelihood ratio for

a �xed value of τ is L(s, t) = fXs(xs∣τ = t)/fXs(xs∣D).�e
exact formula for these likelihood components will vary

between situations.

�e full likelihood ratio method (LR) can be expressed

as a weighted sum of the partial likelihoods L(s, t). It is
optimal with respect to the criterion of minimal expected

delay, as demonstrated by Shiryaev ().

�e simplest way to aggregate the likelihood com-

ponents is to add them. Shiryaev () and Roberts

() suggested what is now called the Shiryaev-Roberts

method.�is means that all possible change times, up to

the decision time s, are given equal weight.

�e method by Shewhart () is simple and the most

commonly usedmethod for surveillance. An alarm is given

as soon as an observation deviates too much from the

target.�us, only the last observation is considered.�e

alarm criterion can be expressed by the condition L(s, s) >
G, where G is a constant.

�e CUSUM method was �rst suggested by Page

(). �e alarm condition of the method can be

expressed by the partial likelihood ratios as tA =
min{s;max(L(s, t); t = , , . . . , s) > G}, where G is a con-
stant.�e CUSUMmethod satis�es the minimax criterion

of optimality, as proved by Moustakides ().

�e alarm statistic of the EWMA method is an expo-

nentially weighted moving average, Zs = ( − λ)Zs− +
λX(s), s = , , . . . where  < λ <  and Z is the tar-
get value.�e EWMA method was described by Roberts

().

Complex Situations
Applications contain complexities such as autocorrela-

tions, complex distributions, complex types of changes and
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spatial as well as othermultivariate settings.�us, the basic

surveillance theory has to be adapted to special cases.

Time series with special dependencies have been

treated for example by Basseville and Nikiforov (),

Schmid () and Lai (). Surveillance for special dis-

tributions such as, for example, discrete ones were dis-

cussed for example by Woodall (). Complex changes

such as gradual ones from an unknown baseline are of

interest at the outbreak of in�uenza or other diseases.�e

maximal partial maximum likelihood will give a CUSUM

variant.�is was used for semiparametric surveillance by

Frisén et al. ().

Multivariate surveillance is of interest in many areas.

In industry, the monitoring of several components in an

assembly process requires multivariate surveillance. An

example in �nance is the on-line decisions on the optimal

portfolio of stocks, as described by Okhrin and Schmid

(). �e surveillance of several distribution parame-

ters, such as the mean and the variance (see e.g., Knoth

and Schmid ()), is another example of multivariate

surveillance.

In spatial surveillance, observations are made at dif-

ferent locations. Most methods for spatial surveillance

are aimed at detecting spatial clusters, but other relations

between the variables can also be of interest.�e surveil-

lance of a set of variables for di�erent locations is a special

case of multivariate surveillance, as discussed by Sonesson

and Frisén () and Sonesson ().
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Preliminaries
�e most immediate examples of survival data come from

7demography and actuarial science and concern the dura-
tion of human life. �e issues of statistical analysis that

arise are similar to those in many �elds. �us survival

time may be the length of time before a piece of industrial

equipment fails, the length of time before a �rm becomes

bankrupt, the duration of a period of employment or, par-

ticularly in a medical or epidemiological context, the time

between diagnosis of a speci�c condition and death from

that condition.

Depending on the perspective involved the term failure

time may be used instead of survival time.

Central requirements are that for each study individ-

ual we have a clear time origin and a clear end point. For

example, time may be measured from the instant an indi-

vidual enters the study population and the end point may

be death from a speci�c cause, or death (all causes) or cure.

Normally the passage of time is clearly de�ned in the nat-

ural way.�ere may be other possibilities, for example the

investigation of tire life in terms of km driven. In appli-

cations considerable care is needed over these de�nitions,

ensuring that they are precise and relevant.

A common characteristic of such data is that the fre-

quency distributions are widely dispersed with positive

skewness. Another is the presence of right censoring.�at

is for some, or in some cases, for many individuals, all that

is known is that by the end of the study the critical event in

question has not occurred, implying that the survival time

in question exceeds some given value. In industrial life test-

ing censoring may be by design but more commonly it is

just a feature of the data acquisition process.

Formalization
We represent survival time by a random variable T, treated

for simplicity as continuously distributed; there is a closely

parallel discussion for discrete random variables.

For a given population of individuals the distribution

of T can be described in several mutually equivalent ways,

for example by

● the survivor function

S(t) = P(T > t), ()

● the probability density function

f (t) = −S′(t) ()

● the hazard or age-speci�c failure rate

h(t) = f (t)/S(t) = − d
dt
log S(t). ()

A more interpretable speci�cation of the hazard at time t

is as a failure rate conditional on survival to time t, that is

as

lim P(T < t + δ ∣ t < T)/δ

as δ tends to zero through positive values.

�ese three speci�cations are mathematically equiva-

lent; all have their uses in applications.

A central role is played in some parts of the subject

by the exponential distribution of rate ρ and mean /ρ,

namely the special case

S(t) = e−ρt
, f (t) = ρe

−ρt
, h(t) = ρ. ()

�e last property shows that failure occurs at random

with respect to “age.” If h(t) increases with t there is age-
ing whereas if h(t) decreases with t then in a certain sense
old is better than new. �ere are other possibilities, in

particular a bath-tub e�ect in which high initial values

are followed by a decrease followed in turn by a gradual

increase.

Many other formsmay be used in applications, notably

the 7Weibull distribution with h(t) = ρ(ρt)γ
.

Statistical Analysis
For n independent individuals from a homogenous popu-

lation it is convenient to write the data in the form

(t,d), . . . , (tn,dn). ()

Here for individual j, tj is a time and if dj =  this is the rel-
evant value of T whereas if dj =  the individual is right
censored. �is is interpreted to mean that all we know

about the value of T for that individual exceeds tj, a non-

trivial assumption implying what is rather misleadingly

called uninformative censoring. It excludes for example the

deliberate or unwitting withdrawal of individuals from a

study because of a presumption of imminent failure.

�ere are two broad approaches to analysis, parametric

based on an assumed form for the distribution, and non-

parametric.

�e former is typically tackled by the method of max-

imum likelihood. Let θ denote the parameter specifying

the distribution, for example ρ for the exponential distri-

bution and (ρ, γ) for the Weibull distribution. �en the
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likelihood is

Π{f (tj; θ}dj{S(tj; θ)}−dj . ()

�at is, each failed individual contributes a term

depending on the density whereas each censored individ-

ual contributes a term depending on the survivor function.

�e method of maximum likelihood may now be applied

(or a Bayesian posterior density calculated).

For the exponential distribution the likelihood takes

the form

ρ
Σdj exp(−ρΣtj). ()

where Σdj is the total number of failures. It follows that the

maximum likelihood estimate of ρ, obtained by maximiz-

ing this expression with respect to ρ, is

Σdj

Σtj
, ()

that is, the total number of failures divided by the total

time at risk calculated from all individuals those who fail

and those who are censored.�is is sometimes called the

fundamental theorem of epidemiology.

For a nonparametric analysis a limiting form of a life-

table approach is used called the Kaplan-Meier method.

Essentially the hazard is estimated as zero at all times at

which failures do not occur and as the number of fail-

ures divided by the number at risk of failure at times at

which failure does occur.�e estimated survivor function

is reconstructed from this by a discrete version of (). If

required, estimates of, say, the median survival time can

be found by interpolation, assuming that su�cient failures

have occurred to allow this part of the distribution to be

estimated e�ectively.

Dependencies and Comparisons
O�en there are more than a single group of observa-

tions and comparisons are required, say between groups

of individuals treated di�erently. In simple cases this can

be achieved either by comparing parameters in paramet-

ric models �tted separately to the di�erent groups or by

graphical comparison of the Kaplan-Meier estimates (see

7Kaplan-Meier Estimator).
In more complicated cases, for example when several

explanatory variables are addressed simultaneously, mod-

els analogous to regression models are helpful.�e most

widely used of these is the proportional hazardsmodel. For

each individual we suppose available a vector z of explana-

tory variables and that the corresponding hazard function

is

h(t) exp(β
T
z). ()

Here h(t), called the baseline hazard, speci�es the hazard
for a reference individual with z = .
A typical example with critical event death from

cardio-vascular causes might have z, age at entry, z, sys-

tolic blood pressure at entry, both typically measured from

some reference level, z, zero for men, one for women and

z, zero for control and one for a new drug under test. A

component of β, say the �rst component β, speci�es the

increase in hazard per unit increase in the component z of

z, with all other components of z held �xed.�at is for �xed

gender, treatment and blood pressure the hazard increases

by a factor eβ per extra year of age.

If the baseline hazard is constant or speci�ed paramet-

rically maximum likelihood estimation is possible, essen-

tially generalizing (). For example if h(t) is an unknown
constant, a baseline individual has an exponential distribu-

tion. If h(t) is le� arbitrary amodi�ed form of likelihood-
based inference is used called partial likelihood. Problems

of interpretation, model choice, etc., are essentially the

same as in multiple linear regression. An important pos-

sibility is that some components of z may be functions of

time.

Generalizations and Literature
�ere are many generalizations of these ideas of which

the most notable is to event-history analysis in which a

sequence of events, possibly of di�erent types, may occur

on each individual.

�ere is a very extensive literature, some of it speci�c

to application �elds. Cox and Oakes () give a broad

introduction and Kalb�eisch and Prentice () a more

specialized and thorough account. For a discussion with

attention to mathematical detail, see Andersen et al. ()

and Aalen et al. ().
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