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Margin of error is a term that probably originated in the
popular reporting of results of 7public opinion polls but
has made its way into more professional usage. It usu-
ally represents half of the length of a con�dence interval
(most usually a % con�dence interval, though it could
in theory be any con�dence interval) for a proportion or
percentage, calculated under the assumption of simple ran-
dom sampling. �e sample value of the proportion, p̂, is
used as an estimate of the population proportion π, and
the standard error (se) is estimated as

√
p̂( − p̂)/n.�en

a % con�dence interval is given as p̂± .× se and the
margin of error is .× se. For example, if an opinion
poll gives a result of % of  respondents in favor of
a proposition (a proportion of .), then the estimated se
of the proportion is

√
(. × .)/ = . and that

is expressed as . percentage points.�en the margin of
error would be presented as . × . = . percentage
points.

�e fact that themargin of error is o�en reported in the
popular press represents progress froma timewhen sample
results were not quali�ed at all by notions of sample-to-
sample variability. Such reporting, however, is frequently
subject to misinterpretation, though reporters o�en cau-
tion against such misinterpretation. First, like the con-
�dence interval, the margin of error does not represent
anything about the probability that the results are close to
truth. A % con�dence interval merely says that, with the
procedure as carried out repeatedly by drawing a sample
from this population, % of the time the stated interval
would cover the true population parameter. �ere is no
information whether this current interval does or does not
cover the population parameter and similarly the margin
of error gives no information whether it covers the true
population percentage. Second, the procedure assumes
simple random sampling, but frequently the sampling for
a survey is more complicated than that and hence the

standard error calculated under the assumption of simple
random sampling is an underestimate.�ird, themargin of
error is frequently calculated for the sample as a whole, but
when interest centers on a subgroup of respondents (e.g.,
the percentage of females who prefer a particular candi-
date) the sample size is smaller and a fresh margin of error
should be calculated for the subgroup, though it frequently
is not. And �nally, and perhaps most importantly, there is
a tendency to assume that the margin of error takes into
account all possible “errors” when in fact it deals only with
sampling error. Nonsampling errors, such as noncoverage,
nonresponse, or inaccurate responses are not taken into
account via a con�dence interval or the margin of error
and may indeed be of much larger magnitude than the
sampling error measured by the standard error.
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Definition
Suppose that we have vectors of random variables [v,w] =
[v, v, . . . , vI ,w, . . . ,wJ] in R(I+J). Denote as the joint
density function: fv,w, which obeys: fv,w(v,w) ≥  and
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∫
∞
−∞ . . . ∫

∞
−∞ fv,w(v,w)dv . . . dvIdw . . . dwI = .�en the

probability of the set [Av,Bw] is given by

P(Av,Bw) = ∫ . . .∫
Av ,Bw

fv,w(v,w)dvdw.

�emarginal density fv is obtained as

fv(v) = ∫
∞

−∞
. . .∫

∞

−∞
fv,w(v,w)dw . . . dwI .

�emarginal probability of the set Av is then obtained as,

P(Av) = ∫ . . .∫
Av
fv(v)dv.

We have assumed that the random variables are continu-
ous. When they are discrete, integrals are substituted by
sums. We proceed to present an important application of
marginal probabilities for measuring the probability of a
model.

Measuring the Evidence in Favor of a
Model
In Statistics, a parametricmodel, is denoted as f (x, . . . , xn∣
θ, . . . , θk), where x = (x, . . . , xn) is the vector of n obser-
vations and θ = (θ, . . . , θk) is the vector of k parameters.
For instance we may have n =  observations normally
distributed and the vector of parameters is (θ, θ) the
location and scale respectively, denoted by fNormal(x∣θ) =

∏
n
i=

√
πθ

exp (− 
θ

(xi − θ)).
Assume now that there is reason to suspect that the

location is zero. As a second example, it may be suspected
that the sampling model which usually has been assumed
Normally distributed, is instead a Cauchy, fCauchy(X∣θ) =

∏
n



πθ


(+( xi−θ
θ

)

)
. �e �rst problem is a hypothesis test

denoted by

H : θ =  VS H : θ ≠ ,

and the second problem is amodel selection problem:

M : fNormal VSM : fCauchy.

How to measure the evidence in favor of H or M?
Instead ofmaximized likelihoods as it is done in traditional
statistics, in 7Bayesian statistics the central concept is the
evidence ormarginal probability density

mj(x) = ∫ fj(x∣θj)π(θj)dθj,

where j denotes either model or hypothesis j and π(θ)
denotes the prior for the parameters under model or
hypothesis j.
Marginal probabilities embodies the likelihood of a

model or hypothesis in great generality and can be claimed
it is the natural probabilistic quantity to compare models.

Marginal Probability of a Model
Once the marginal densities of the model j, for j = , . . . , J
models have been calculated and assuming the priormodel
probabilities P(Mj), j = , . . . , J with ∑Jj= P(Mj) =  then,
using Bayes�eorem, the marginal probability of a model
P(Mj∣x) can be calculated as,

P(Mj∣x) =
mj(x) ⋅ P(Mj)

∑
n
i=mi(x) ⋅ P(Mi)

.

We have then the following formula for any two models or
hypotheses:

P(Mj∣x)
P(Mi∣x)

=
P(Mj)
P(Mi)

×
mj(x)
mi(x)

,

or in words: Posterior Odds equals Prior Odds times Bayes
Factor, where the Bayes Factor ofMj overMi is

Bj,i =
mj(x)
mi(x)

,

Je�reys ().
In contrast to 7p-values, which have interpretations

heavily dependent on the sample size n, and its de�ni-
tion is not the same as the scienti�c question, the posterior
probabilities and Bayes Factors address the scienti�c ques-
tion: “how probable is model or hypothesis j as compared
with model or hypothesis i?,” and the interpretation is the
same for any sample size, Berger and Pericchi (). Bayes
Factors and Marginal Posterior Model Probabilities have
several advantages, like for example large sample consis-
tency, that is as the sample size grows the Posterior Model
Probability of the sampling model tends to one. Further-
more, if the goal is to predict future observations yf it isnot
necessary to select onemodel as the predictingmodel since
wemay predict by the so called BayesianModel Averaging,
which if quadratic loss is assumed, the optimal predictor
takes the form,

E[Yf ∣x] =
J

∑
j=
E[Yf∣x,Mj] × P(Mj∣x),

where E[Yf ∣x,Mj] is the expected value of a future obser-
vation under the model or hypothesisMj.

Intrinsic Priors for Model Selection and
Hypothesis Testing
Having said some of the advantages of the marginal prob-
abilities of models, the question arises: how to assign the
conditional priors π(θ j)? In the two examples abovewhich
priors are sensible to use?�e problem is not a simple one
since it is not possible to use the usual Uniformpriors since
then the Bayes Factors are undetermined. To solve this
problem with some generality, Berger and Pericchi ()



Marine Research, Statistics in M 

M

introduced the concepts of Intrinsic Bayes Factors and
Intrinsic Priors. Start by splitting the sample in two sub-
samples x = [x(l),x(-l)] where the training sample x(l) is as
small as possible such that for j= , . . . , J : <mj(x(l))<∞.
�us starting with an improper prior πN(θ j), which does
not integrate to one (for example the Uniform), by using
the minimal training sample x(l), all the conditional prior
densities π(θ j∣x(l)) become proper. So we may form the
Bayes Factor using the training sample x(l) as

Bji(x(l)) =
mj(x( − l)∣x(l))
mi(x( − l)∣x(l))

.

�is however depends on the particular training sample
x(l). So some sort of average of Bayes Factor is necessary.
In Berger and Pericchi () it is shown that the average
should be the arithmetic average. It is also found a theo-
retical prior that is an approximation to the procedure just
described as the sample size grows.�is is called an Intrin-
sic Prior. In the examples above: (i) in the normal case,
assuming for simplicity that the variance is known and
θ =  then it turns out that the Intrinsic Prior is Normal
centered at the null hypothesis θ =  and with variance .
On the other hand in the Normal versus Cauchy example,
it turns out that the improper prior π(θ, θ) = /θ is
the appropriate prior for comparing the models. For other
examples of Intrinsic Priors see for instance, Berger and
Pericchi (a,b, ), and Moreno et al. ().
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Marine science is a wide �eld of research, including
hydrography, chemistry, biological oceanography and �sh-
ery science. Onemay consider that the longer-term aspects
of global warming and issues with pollution monitoring
are the most critical statistical modeling issues. Somewhat
subjectively, the next in line are probably issues which
relate to the sustainable use of marine resources, com-
monly called �shery science. Statistics enters all of the
above sub�elds but the most elaborate models have been
developed for �shery science and aspects of these will
mainly be described here. Within marine research it was
quite common up through about  to use models of
the biological processes set up using di�erential equations,
but had no error component and basically transformed
observed data through an arbitrary computational mech-
anism into desired measures of population size, growth,
yield potential and so forth (Baranov ; Beverton and
Holt ; Gulland ).
Data in �shery science are quite noisy for several rea-

sons. One source of variation is measurement error and
one should expect considerable variability in data which
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are almost always collected indirectly. �us one cannot
observe the marine community through simple popula-
tion measurements but only with surveys (bottom trawl,
divers etc) or sampling of catch, both of which will provide
measures which only relate indirectly to the corresponding
stock parameters, are o�en biased and always quite vari-
able.�e second source of variation is due to the biological
processes themselves, all of which have natural variation.
A typical such process is the recruitment process, i.e., the
production of a new yearclass by the mature component
of the stock in question. Even for biology, this process is
incredibly variable and it is quite hard to extract meaning-
ful signals out of the noise. Unfortunately this process is the
single most important process with regard to sustainable
utilization (Beverton and Holt , ).
As is to be expected, noisy input data will lead to

variation in estimates of stock sizes, productivity and pre-
dictions (Patterson et al. ). As is well-known to statis-
ticians, it is therefore important not only to obtain point
estimates but also estimates of variability. In addition to
the general noise issue, �sheries data are almost never i.i.d.
and examples show how ignoring this can easily lead to
incorrect estimates of stock size, state of utilization and
predictions (Myers and Cadigan ).
Bayesian approaches have been used to estimate stock

sizes (Patterson ). A particular virtue of Bayesian anal-
ysis in this context is the potential to treat natural mor-
tality more sensibly than in other models. �e natural
mortality rate, M, is traditionally treated as a constant in
parametric models and it turns out that this is very hard
to estimate unless data are quite exceptional. �us, M is
commonly assumed to be a known constant and di�erent
values are tested to evaluate the e�ect of di�erent assump-
tions. �e Bayesian approach simply sets a prior on the
naturalmortality like all other parameters and the resulting
computations extend all the way into predictions. Other
methods typically encounter problems in the prediction
phase where it is di�cult to encompass the uncertainty in
M in the estimate of prediction uncertainty.
One approach to extracting general information on

di�cult biological parameters is to consider several stocks
and even several species. For the stock-recruit question it
is clear when many stocks are considered that the typi-
cal behavior is such that the stock tend to produce less at
low stock sizes, but this signal can rarely be seen for indi-
vidual stocks. Formalizing such analyses needs to include
parameters (as random e�ects) for each stock and com-
bining them reduces the noise enough to provide patterns
which otherwise could not be seen (see e.g., Myers et al.
).
In addition to the overall view of sustainable use of

resources, many smaller statistical models are commonly

considered. For example, one can model growth alone,
typically using a nonlinear model, sometimes incor-
porating environmental e�ects and/or random e�ects
(Miller ; Taylor and Stefansson ; Brandão et al.
; Gudmundsson ).
Special e�orts have been undertaken to make the use

of nonlinear and/or random e�ects models easier for the
user (Skaug ; Skaug and Fournier ). Although
developed for �shery science, these are generic C++-based
model-building languages which undertake automatic dif-
ferentiation transparently to the user (Fournier ).
Most of the above models have been developed for

“data-rich” scenarios but models designed for less infor-
mative data sets abound. Traditionally these include simple
models which were non-statistical and were simply a static
model of equilibrium catch but a more time-series orien-
tated approach was set up by Collie and Sissenwine ().
In some cases these simple population models have been
extended to formal random e�ects models (Conser ;
Trenkel ).
At the other extreme of the complexity scale, several

multispecies models have been developed, some of which
are formal statistical models (Taylor et al. ), though
most are somewhat ad-hoc and do not take a statisti-
cal approach (Helgason and Gislason ; Fulton et al.
; Pauly et al. ). Simple mathematical descriptions
of species interactions are not su�cient here since it is
almost always essential to take into account spatial vari-
ation in species overlap, di�erent nursery and spawning
areas and so forth. For these reasons a useful multispecies
model needs to take into account multiple areas, migra-
tion and maturation along with several other processes
(Stefansson and Palsson ). To become statistical mod-
els, these need to be set up in the usual statistical man-
ner with likelihood functions, parameters to be formally
estimated, methods to estimate uncertainty and take into
account the large number of di�erent data sources available
through appropriate weighting or comparisons (Richards
; Stefansson , ).
In the year , the single most promising venue

of further research concerns the use of random e�ects
in nonlinear �sheries models. Several of these have been
described by Venables and Dichmont () and some
examples go a few decades back in time as seen above,
o�en in debated implementations (de Valpine andHilborn
). How this can be implemented in the context of
complex multispecies models remains to be seen.
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Introduction
Suppose that π is a probability measure on the probability
space (S,A), h is a measurable function from S → R, and
one is interested in the calculation of the expectation

h̄ = ∫ hdπ

assuming that the integral exists. In many problems, espe-
cially when the sample space S is multivariate or when the
normalizing constant of π is not easily calculable, �nding
the value of this integral is not feasible either by numerial
methods of integration (such as themethod of quadrature)
or by classical Monte Carlo methods (such as the method
of rejection sampling). In such instances, it is usually possi-
ble to �nd h̄ by Markov chain Monte Carlo, or MCMC for
short, a method that stems from Metropolis et al. ()
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in connection with work related to the hydrogen bomb
project. It found early and wide use in computational sta-
tistical mechanics and quantum �eld theory where it was
used to sample the coordinates of a point in phase space.
Applications and developments of this method in statis-
tics, in particular for problems arising in 7Bayesian statis-
tics, can be traced to Hastings (), Geman and Geman
(), Tanner and Wong () and Gelfand and Smith
().

�e idea behind MCMC is to generate a sequence of
draws {ψ(g), g ≥ } that follow a Markov chain (see
7MarkovChains)with the property that the unique invari-
ant distribution of this Markov chain is the target distribu-
tion π.�en, a�er ignoring the �rst n draws to remove the
e�ect of the initial value ψ(), the sample

{ψ(n+), ...,ψ(n+M)
}

forM large, is taken as an approximate sample from π and
h̄ estimated by the sample average

M−
M

∑
g=
h(ψ(n+g))

Laws of large numbers for Markov chains show that

M−
M

∑
g=
h(ψ(n+g)) → ∫ hdπ

as the simulation sample size M goes to in�nity (Tierney
; Chib and Greenberg ; Chen et al. ; Liu ;
Robert and Casella ).
A key reason for the interest in MCMC methods is

that, somewhat surprisingly, it is straightforward to con-
struct one ormoreMarkov chains whose limiting invariant
distribution is the desired target distribution. A leading
method is the Metropolis–Hasting (M-H) method.

Metropolis–Hastings method
In theMetropolis–Hastingsmethod, as theHastings ()
extension of the Metropolis et al. () method is called,
the Markov chain simulation is constructed by a recursive
two step process.
Let π(ψ) be a probabiliy measure that is dominated by

a sigma-�nite measure µ. Let the density of π with respect
to µ be denoted by p(⋅). Let q(ψ,ψ†) denote a condi-
tional density forψ† givenψ with respect to µ.�is density
q(ψ, ⋅) is referred to as the proposal or candidate generat-
ing density.�en, the Markov chain in the M-H algorithm
is constructed in two steps as follows.

Step  Sample a proposal value ψ† from q(ψ(g),ψ)

and calculate the quantity (the acceptance probability or the
probability of move)

α(ψ,ψ†) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min [ p(ψ†)q(ψ† ,ψ)
p(ψ)q(ψ,ψ†) , ] if p(ψ)q(ψ,ψ†) > ;

 otherwise .

Step  Set

ψ(g+)
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ψ† with prob α(ψ(g),ψ†)
ψ(g) with prob  − α(ψ(g),ψ†)

If the proposal value is rejected then the next sam-
pled value is taken to be the current value which means
that when a rejection occurs the current value is repeated
and the chain stays at the current value. Given the new
value, the same two step process is repeated and the whole
process iterated a large number of times.
Given the form of the acceptance probability α(ψ,ψ′)

it is clear that the M-H algorithm does not require knowl-
edge of the normalizing constant of p(⋅). Furthermore,
if the proposal density satis�es the symmetry condition
q(ψ,ψ′) = q(ψ′,ψ), the acceptance probability reduces
to p(ψ′)/p(ψ); hence, if p(ψ′) ≥ p(ψ), the chain moves
to ψ′, otherwise it moves to ψ′ with probability given by
p(ψ′)/p(ψ). �e latter is the algorithm originally pro-
posed by Metropolis et al. ().
A full expository discussion of this algorithm, along

with a derivation of themethod from the logic of reversibil-
ity, is provided by Chib and Greenberg ().

�e M-H method delivers variates from π under quite
general conditions. A weak requirement for a law of large
numbers for sample averages based on the M-H output
involve positivity and continuity of q(ψ,ψ′) for (ψ,ψ′)
and connectedness of the support of the target distribution.
In addition, if π is bounded then conditions for ergod-
icity, required to establish the central limit theorem (see
7Central Limit�eorems), are satis�ed (Tierney ).
It is important that the proposal density be chosen to

ensure that the chain makes large moves through the sup-
port of the invariant distribution without staying at one
place for many iterations. Generally, the empirical behav-
ior of the M-H output is monitored by the autocorrelation
time of each component of ψ de�ned as

{ + 
M

∑
s=

ρks},

where ρks is the sample autocorrelation at lag s for the
kth component of ψ, and by the acceptance rate which
is the proportion of times a move is made as the sam-
pling proceeds. Because independence sampling produces
an autocorrelation time that is theoretically equal to one,
one tries to tune the M-H algorithm to get values close to
one, if possible.
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Di�erent proposal densities give rise to speci�c ver-
sions of theM-H algorithm, eachwith the correct invariant
distribution π. One family of candidate-generating densi-
ties is given by q(ψ,ψ′) = q(ψ′ − ψ).�e candidate ψ′ is
thus drawn according to the process ψ′ = ψ + z, where z
follows the distribution q, and is referred to as the random
walk M-H chain.�e random walk M-H chain is perhaps
the simplest version of the M-H algorithm and is quite
popular in applications. One has to be careful, however, in
setting the variance of z because if it is too large it is possi-
ble that the chainmay remain stuck at a particular value for
many iterations while if it is too small the chain will tend
to make small moves and move ine�ciently through the
support of the target distribution. Hastings () consid-
ers a second family of candidate-generating densities that
are given by the form q(ψ,ψ′) = q(ψ′). Proposal values
are thus drawn independently of the current location ψ.

Multiple-Block M-H
In applications when the dimension of ψ is large it is
usually necessary to construct the Markov chain simula-
tion by �rst grouping the variables ψ into smaller blocks.
Suppose that two blocks are adequate and that ψ is writ-
ten as (ψ,ψ), with ψk ∈ Ωk ⊆ R

dk . In that case the
M-H algorithm requires the speci�cation of two proposal
densities,

q (ψ,ψ
†
 ∣ψ) ; q (ψ,ψ

†
 ∣ψ),

one for each block ψk, where the proposal density qk may
depend on the current value of the remaining block. Also,
de�ne

α (ψ,ψ
†
 ∣ψ) = min

⎧⎪⎪
⎨
⎪⎪⎩

p (ψ† ,ψ) q (ψ† ,ψ∣ψ)

p(ψ,ψ)q (ψ,ψ
†
 ∣ψ)

, 
⎫⎪⎪
⎬
⎪⎪⎭

and

α (ψ,ψ
†
 ∣ψ) = min

⎧⎪⎪
⎨
⎪⎪⎩

p (ψ,ψ
†
) q (ψ† ,ψ∣ψ)

p(ψ,ψ)q (ψ,ψ
†
 ∣ψ)

, 
⎫⎪⎪
⎬
⎪⎪⎭

,

as the probability of move for block ψk conditioned on the
other block.�en, one cycle of the algorithm is completed
by updating each block using a M-H step with the above
probability of move, given the most current value of the
other block.

Gibbs Sampling
A special case of the multiple-block M-H method is the
Gibbs sampling method which was introduced by Geman
and Geman () in the context of image-processing and
broadened for use in Bayesian problems by Gelfand and

Smith (). To describe this algorithm, suppose that
the parameters are grouped into two blocks (ψ,ψ) and
each block is sampled according to the full conditional
distribution of block ψk,

p(ψ∣ψ) ; p(ψ∣ψ)

de�ned as the conditional distribution under π ofψk given
the other block. In parallel with the multiple-block M-H
algorithm, the most current value of the other block is
used in sampling the full conditional distribution. Deriva-
tion of these full conditional distributions is usually quite
simple since, by 7Bayes’ theorem, each full conditional is
proportional to p(ψ,ψ), the joint distribution of the two
blocks. In addition, the introduction of latent or auxiliary
variables can sometimes simplify the calculation and sam-
pling of the full conditional distributions. Albert and Chib
() develop such an approach for the Bayesian analysis
of categorical response data.

Concluding Remarks
Some of the recent theoretical work on MCMC methods
is related to the question of the rates of convergence (Cai
; Fort et al. ; Jarner and Tweedie ; Douc
et al. ) and in the development of adaptive MCMC
methods (Atchade and Rosenthal; Andrieu and Moulines
; ).

�e importance of MCMC methods in statistics and
in particular Bayesian statistics cannot be overstated.�e
remarkable growth of Bayesian thinking over the last
 years was made possible largely by the innovative use of
MCMC methods. So�ware programs such as WINBUGS
and the various MCMC packages in R have contributed
to the use of MCMC methods in applications across the
sciences and social sciences (Congdon ) and these
applications are likely to continue unabated.
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Introduction
Markov chains, which comprise Markov chains and
7Markov processes, have been successfully applied in
areas as divers as biology, �nance,manufacturing, telecom-
munications, physics and transport planning, and even for
experts it is impossible to have an overview on the full
richness of Markovian theory. Roughly speaking, Markov
chains are used for modeling how a system moves from
one state to another at each time point. Transitions are
random and governed by a conditional probability distri-
bution which assigns a probability to the move into a new
state, given the current state of the system. �is depen-
dence represents the memory of the system. A basic exam-
ple of aMarkov chain is the so-called randomwalk de�ned
as follows. Let Xt ∈ N, for t ∈ N, be a sequence of random
variables with initial value X = . Furthermore assume
thatP(Xt+ = Xt+∣Xt ≥ ) = p = −P(Xt+ = Xt−∣Xt ≥ ).
�e sequence X = {Xt : t ∈ N} is an example of a Markov
chain (for a detailed de�nition see below) and the aspects
of X one is usually interested in in Markov chain theory is
(i) whether X returns to  in a �nite number of steps (this
holds for  ≤ p ≤ /), (ii) the expected number of steps
until the chain returns to  (which is �nite for  ≤ p < /),
and (iii) the limiting behavior of Xt .
In the following we present some realistic examples.

A useful model in modeling infectious diseases assumes
that there are four possible states: Susceptible (S), Infected
(I), Immune (A), Dead (R). Possible transitions are from
S to I, S or R; from I to A or R; from A to A or R; from R
to R only.�e transitions probabilities, from S to I, S to R
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and the loop S to S, must sum to one and can depend on
characteristics of the individualsmodeled, like age, gender,
life style, etc. All individuals start in S, and move at each
time unit (say a day). Given observations of the sequence
of visited states (called trajectory) for a sample of individu-
als, with their personal characteristics, one can estimate the
transition probabilities, by 7logistic regression, for exam-
ple.�is model assumes that the transition probability at
time t from one state A to state B, only depends on the
state A, and not on the trajectory that lead to A.�is might
not be realistic, as for example a perdurance in the dis-
eased state I overmany days, could increase the probability
of transition to R. It is possible to model a system with
longer memory, and thus leave the simplest setting of a
Markov Chain (though one can formulate such a model
still as a Markov Chain over a more complex state space
which includes the length of stay in the current state). A
second example refers to �nance. Here we follow the daily
value in Euro of a stock. �e state space is continuous,
and one can model the transitions from state x Euro to y
Euro with an appropriate Normal density with mean x− y.
�e time series of the value of the stock might well show
a longer memory, which one would typically model with
some autoregressive terms, leading to more complex pro-
cess again. As a further example, consider the set of all
web pages on the Internet as the state space of a giant
Markov chain, where the user clicks from one page to
the next, according to a transition probability. A Markov
Chain has been used to model such a process.�e tran-
sitions from the current web page to the next web page
can be modeled as a mixture of two terms: with proba-
bility λ the user follows one of the links present in the
current web page and among these uniformly; with prob-
ability  − λ the user chooses another web page at random
among all other ones. Typically λ = .. Again, one could
discuss how correct the assumption is, that only the current
web page determines the transition probability to the next
one. �e modeler has to critically validate such hypoth-
esis before trusting results based on the Markov Chain
model, or chains with higher order of memory. In general
a stochastic process has the Markov property if the prob-
ability to enter a state in the future is independent of the
states visited in the past given the current state. Finally,
Markov Chain Monte Carlo (MCMC) algorithms (see
7Markov Chain Monte Carlo) are Markov chains, where
at each iteration, a new state is visited according to a tran-
sition probability that depends on the current state.�ese
stochastic algorithm are used to sample from a distribu-
tion on the state space, which is the marginal distribution
of the chain in the limit, when enough iterations have been
performed.

In the literature the term Markov processes is used
for Markov chains for both discrete- and continuous time
cases, which is the setting of this paper. Standard textbooks
on Markov chains are Kijima (), Meyn and Tweedie
(), Nummelin (), Revuz (). In this paper we
follow (Iosifescu ) and use the term ‘Markov chain’ for
the discrete time case and the term ‘Markov process’ for
the continuous time case. General references on Markov
chains are Feller (), Gilks et al. (), Haeggstroem
(), Kemeny and Snell (), Seneta ().

Discrete Time Markov Chains
Consider a sequence of random variables X = {Xt : t ∈
N} de�ned on a common underlying probability space
(Ω,F ,P)with state discrete space (S,S), i.e., Xt isF −S-
measurable for t ∈ N.�e de�ning property of a Markov
chain is that the distribution of Xt+ depends on the past
only through the immediate predecessor Xt , i.e., given
X,X, . . . ,Xt it holds that

P(Xt+ = x∣X = x,X = x, . . .Xt− = xt−,Xt = y)
= P(Xt+ = x∣Xt = y),

where x, y and all other xi are element of the given state
space S. If P(Xt+ = x∣Xt = y) does not depend on t,
the chain is called homogenous and it is called inhomoge-
neous otherwise. Provided that S is at most countable, the
transition probabilities of a homogeneous Markov Chain
are given by P = (px,y)S×S, where px,y = P(Xt+ =

y∣Xt = x) is the probability of a transition from x to
y. �e matrix P is called the one-step transition proba-
bility matrix of the Markov chain. For the introductory
7random walk example the transition matrix is given by
pi,i+ = p, pi,i− = p − , for i ≥ , po, =  and oth-
erwise zero, for i ∈ Z. �e row sums are one and the
k-th power of the transition matrix represent the proba-
bility to move between states in k time units.
In order to fully de�ne a Markov Chain it is necessary

to assign an initial distribution µ = (P(X = s) : s ∈ S).
�e marginal distribution at time t can then be computed,
for example, as

P(Xt = x) =∑
s∈S
p(t)s,x P(X = s),

where p(t)s,x denotes the s, x element of the t-th power of the
transition matrix. Note that given an initial distribution µ
and a transition matrix P, the distribution of the Markov
chain X is uniquely de�ned.
A Markov chain is said to be aperiodic if for each pair

of states i, j the greatest common divisor of the set of all t
such that p(t)ij >  is one. Note that the random walk in
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our introductory example fails to be aperiodic as any path
from starting in  and returning there has a length that is
a multiple of .
A distribution (πi : i ∈ S) is called a stationary

distribution of P if
πP = π.

A key topic in Markov chain theory is the study of the lim-
iting behavior ofX. Again, with initial distribution µ,X has
limiting distribution ν for initial distribution µ if

lim
t→∞

µPt = ν. ()

Note that any limiting distribution is a stationary distri-
bution. A case of particular interest is that when X has
a unique stationary distribution, which is then also the
unique limiting distribution and thus describes the limit
behavior of the Markov chain. If P fails to be aperiodic,
then the limit in () may not exists and should be replaced
by the Cesaro limit

lim
t→∞


t

t

∑
k=
µPk = ν,

which always exists for �nite Markov chains.
A Markov chain is called ergodic if the limit in () is

independent of the initial distribution. Consequently, an
ergodic Markov chain has a unique limiting distribution
and this limiting distribution is also a stationary distri-
bution, and since any stationary distribution is a limiting
distribution it is also unique.
A Markov chain is called irreducible if for any pair of

states i, j ∈ S, there exists a path from i to j that X will
follow with positive probability. In words, any state can be
reached from any other state with positive probability. An
irreducible Markov chain is called recurrent if the number
of steps from a state i to the �rst visit of a state j, denoted by
τi,j, is almost surely �nite for all i, j ∈ S, and it is called pos-
itive recurrent if E[τi,i] <∞ for at least one i ∈ S. Note that
for p = / the random walk is recurrent and for p < / it
is positive recurrent.

�e terminology developed so far allows to present the
main result of Markov chain theory: Any aperiodic, irre-
ducible and positive recurrent Markov chain P possesses a
unique stationary distribution π which is the unique prob-
ability vector solving πP = π (and which is also the unique
limiting distribution).�is7ergodic theorem is one of the
central results and it has been established in many vari-
ations and extensions, see the references. Also, e�cient
algorithms for computing π have been a focus of research
as for Markov chains on large state-spaces computing π is
a non-trivial task.

An important topic of the statistics of Markov chains
is to estimate the (one-step) transition probabilities. Con-
sider a discrete time, homogeneous Markov chain with
�nite state space S = {, , . . . ,m}, observed at time points
, , , . . . ,T on the trajectory s, s, s, . . . , sT . We wish to
estimate the transition probabilities pi,j by maximum like-
lihood.�e likelihood is

P(X = s)
′T−
∏
t=

P(Xt = st+∣Xy = st)

= P(X = s)
m

∏
i=

m

∏
j=
pk(i,j)i,j

where k(i, j) is the number of transitions from i to j in the
observed trajectory. Ignoring the initial factor, the maxi-
mum likelihood estimator of pi,j is found to be equal to
p̂i,j =

k(i,j)
k(i,⋅) , where k(i, ⋅) is the number of transitions

out from state i. Standard likelihood asymptotic applies,
despite the data are dependent, as k(i, ⋅) → ∞, which will
happen if the chain is ergodic.�e asymptotic variance of
the maximum likelihood estimates can be approximated
as var(p̂i,j) ∼ p̂i,j( − p̂i,j)/k(i, ⋅). �e covariances are
zero, except cov(p̂i,j, p̂i,j′) ∼ −p̂i,jp̂i,j′/k(i, ⋅) for j ≠ j′. If
the trajectory is short, the initial distribution should be
considered. A possible model is to use the stationary dis-
tribution π(s), which depend on the unknown transition
probabilities. Hence numerical maximization is needed to
obtain the maximum likelihood estimates. In certain med-
ical applications, an alternative asymptotic regime can be
of interest, when many (k) short trajectories are observed,
and k → ∞. In this case the initial distribution cannot be
neglected.

Markov Chains and Markov Processes
Let {Xt : t ≥ } denote the (continuous time) Markov
process on state space (S,S) with transition matrix P(t),
i.e.,

(P(t))ij = P(Xt+s = j∣Xs = i), s ≥ , i, j ∈ S.

Under some mild regularity conditions is holds that the
generator matrix Q, de�ned as

d
dt

∣
t=
P(t) = Q,

exists for P(t). �e stationary distribution of a Markov
process can be found as the unique probability π that solves
πQ = , seeAnderson (). A generatormatrixQ is called
uniformizable with rate µ if µ = supj ∣qjj∣ < ∞. While
any �nite dimensional generator matrix is uniformizable
a classical example of a Markov process on denumerable
state space that fails to have this property is the M/M/∞
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queue. Note that if Q is uniformizable with rate µ, then Q
is uniformizable with rate η for any η > µ. Let Q be uni-
formizable with rate µ and introduce the Markov chain Pµ
as follows

[Pµ]ij =
⎧⎪⎪
⎨
⎪⎪⎩

qij/µ i /= j
 + qii/µ i = j,

()

for i, j ∈ S, or, in shorthand notation,

Pµ = I +

µ
Q,

then it holds that

P(t) = e−µt
∞
∑
n=

(µt)n

n!
(Pµ)n, t ≥ . ()

Moreover, the stationary distribution of Pµ and P(t) coin-
cide.�e Markov chain Xµ = {Xµn : n ≥ } with transition
probability matrix Pµ is called the sampled chain.�e rela-
tionship between X and Xµ can be expressed as follows.
Let Nµ(t) denote a Poisson process (see 7Poisson Pro-
cesses) with rate µ, then XµNµ(t) and Xt are equal in dis-
tribution for all t ≥ . From the above it becomes clear that
the analysis of the stationary behavior of a (uniformizable)
continuous timeMarkov chain reduces to that of a discrete
time Markov chain.
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�e class of Markov Processes is characterized by a special
stochastic dependence known as the Markov Dependence
that was introduced in  by A.A. Markov while extend-
ing in a natural way the concept of stochastic independence
that will preserve, for example, the asymptotic proper-
ties of sums of random variables such as the law of large
numbers. One of his �rst applications of this dependence
was in investigation of the way the vowels and consonants
alternate in literary works in the Russian literature. �is
dependence that Markov introduced, dealt with what we
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call today a discrete-parameter Markov Chain with a �nite
number of states, and it can be stated as follows: a sequence
{Xn; n = , , . . . } of real-valued random variables given
on a probability space (Ω,F , P), each taking on a �nite
number of values, satis�es

P[Xn+ = xn+∣X,X, . . . ,Xn] = P[Xn+ = xn+∣Xn]. ()

Roughly speaking, () states that any prediction of Xn+
knowing

X,X, . . . ,Xn,

can be achieved by using Xn alone.
�is concept was further extended (as shown in what

follows), for the continuous-parameter Markov processes by
A.N. Kolmogorov in . Further essential developments
in the theory of continuous-parameter Markov Processes
were due to W. Feller, J.L. Doob, G.A. Hunt, and E.B.
Dynkin.
In order to introduce a continuous-parameter Markov

Process, one needs the following setting. Let T ≡

[,+∞)⊂R be the parameter set of the process, referred to
in the sequel as time, whereRdenotes the one-dimensional
Euclidean space; let X = {Xt , Ft , t ∈ T} be the process
given on the probability space (Ω,F , P) that takes values
in a topological space (S ,E), where E is a Borel �eld of
S , that is, a σ-�eld generated by open sets in S .�e pro-
cess X is adapted to the increasing family {Ft , t ∈ T} of
σ-�elds ofF , whereF contains all P-null sets. All Xt ’s are
E-measurable. Here,Xt is adapted toFt means that all ran-
dom events related to Xt are contained in Ft for every value
t of the parameter of the process, that is, Xt isFt-measurable
in addition of being E-measurable. In order to describe the
Markov dependence for the process X, the following two
σ-�elds are needed: ∀t, t ∈ T, F pastt = σ({Xs, s ∈ [, t]})
and F futuret = σ({Xs, s ∈ [t,+∞)}). Here, the past and
the future are relative to the instant t that is considered
as the present. Now the process X = {Xt ,Ft , t ∈ T} is
called aMarkov Process if and only if one of the following
equivalent conditions is satis�ed:

(i) ∀t, t ∈ T, A ∈ Ft , B ∈ F futuret :
P(A ∩ B∣Xt) = P(A∣Xt)P(B∣Xt).

(ii) ∀t, t ∈ T, B ∈ F futuret :
P(B∣Ft) = P(B∣Xt).

(iii) ∀t, t ∈ T, A ∈ Ft :

P (A∣F futuret ) = P(A∣Xt).

()

Observe that (ii) in () is the analog of () stating
that the probability of an event in the future of the Markov
process X depends only on the probability of the present

state of the process and it is independent of the past his-
tory of the process.�ere are numerous phenomena occur-
ring in physical sciences, social sciences, econometrics,
the world of �nance, to name just a few, that can all be
modelled by Markov processes. Among Markov processes
there is a very important subclass of the so-called strong
Markov processes. �is proper subclass of Markov pro-
cesses is obtained by randomizing the parameter of the
process.�is randomization of the parameter leads to the
so-called optional times of the process and the Markov
property () is replaced by the strong Markov property,
where in () deterministic time t is replaced by an optional
time of the process. �e most important example of a
strongMarkov process is the BrownianMotion Process (see
7Brownian Motion and Di�usions) that models the phys-
ical phenomenon known as the Brownian Movement of
particles. Another important class of processes – Di�u-
sion processes, are strong Markov Processes with continuous
paths.
One of the most important properties of Markov pro-

cesses is that times between transitions from one state to
another, are random variables that are conditionally inde-
pendent of each other given the successive states being visited,
and each such sojourn time has an exponential distribution
with the parameter dependent on the state being visited.�is
property coupled with the property that successive states
visited by the process form a Markov chain (see 7Markov
Chains), clearly describe the structure of a Markov pro-
cess. Other important examples of Markov processes are
7Poisson processes, Compound Poisson processes, �e
7Random Walk, Birth and Death processes, to men-
tion just a few. �e last mentioned class of Markov pro-
cesses has many applications in biology, 7demography,
and 7queueing theory.
For further details and proofs of all facts men-

tioned here, a reader may consult the enclosed list of
references.
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Martingale Central Limit Theorem
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�e martingale central limit theorem (MCLT) links the
notions of martingales and the Lindeberg–Feller classical
central limit theorem (CLT, see7Central Limit�eorems)
for independent summands.
Perhaps the greatest achievement of modern proba-

bility is the uni�ed theory of limit results for sums of
independent random variables, such as the law of large
numbers, the central limit theorem, and the law of the
iterated logarithm. In comparison to the classical strong
law of large numbers, the classical CLT says something
also about the rate of this convergence. We recall the CLT
for the case of independent, but not necessarily identically
distributed random variables. Suppose that {Xi, i ≥ } is
a sequence of zero-mean independent random variables
such thatVar[Xn] = σ n <∞, n ≥ . Let Sn = ∑ni= Xi, n ≥ 
and setVar[Sn] = sn. If the Lindeberg condition holds, i.e.,
∑
n
i= E[Xi {∣Xi ∣≥єsn}]

sn
Ð→  as n → ∞, for all є > , and

{.} denoting the indicator function, then
Sn
sn

D
Ð→ N(, ),

where N(, ) denotes the standard normal random
variable.
Limit theorems have applicability far beyond the

corresponding results for sums of independent random
variables. Namely, since sums of independent random
variables centered at their expectations have a speci�c
dependence structure (i.e., are martingales), there is inter-
est in extending the results to sums of dependent random
variables.
In order to de�ne martingales and state the MCLT

attributed to Brown (), one needs the following setting.

Let (Ω, F , P) be a probability space and let {Fn, n ≥ }
be an increasing sequence of σ-�elds of F sets.

De�nition  A sequence {Yn, n ≥ } of random variables
on Ω is said to be a martingale with respect to {Fn, n ≥ }
if () Yn is measurable with respect to Fn, () E∣Yn∣ < ∞,
and () E[Yn∣Fm] = Ym a.s. for all m < n, m, n ≥ .

In order to highlight the dependence structure of
the underlying random variables, one should note that
condition () is weaker than independence since it
cannot be deduced which structure conditional higher-
ordermomentsmay have given the past.�emathematical
theory of martingales may be regarded as an extension
of the independence theory, and it too has its origins in
limit results, beginning with Bernstein () and Lévy’s
() early central limit theorems. �ese authors intro-
duced themartingale in the form of consecutive sums with
a view to generalizing limit results for sums of indepen-
dent random variables. However, it was the subsequent
work of Doob, including the proof of the celebrated mar-
tingale convergence theorem, that completely changed the
direction of the subject, and his book (Doob ), popu-
larly called in academia the Holy Bible for stochastic pro-
cesses, has remained a major in�uence for nearly three
decades.

�e main result that follows applies the CLT to
sequences of random variables that are martingales. If
{Sn, Fn} is a martingale, it seems natural to replace
Var[Sn] in the CLT by the sum of conditional variances.
Secondly, the norming by /n is very restrictive. For a
sequence of independent, but not identically distributed
random variables, it seems appropriate to norm by a dif-
ferent constant, and for a sequence of dependent random
variables norming by another random variable should be
considered. �e limit theory for martingales essentially
covers that for the categories of processes with indepen-
dent increments and 7Markov processes. Using stochastic
processes that are martingales for analyzing limit results,
one has at their disposal all the machinery from martin-
gale theory. �is reason makes martingales considerably
attractive for inference purposes. A standard reference on
martingales is Williams ().

�eorem  Let {Sn, Fn, n ≥ } be a zero-mean mar-
tingale with S = , whose increments have �nite variance.
Write

Sn =
n

∑
i=
Xi, Vn =

n

∑
i=
E [Xi ∣Fi−] , and

sn = E [V

n] = E [S


n] . ()
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If

Vn
sn

P
Ð→  and

n

∑
i=
E [Xi {∣Xi ∣≥єsn}]

sn
P
Ð→  ()

as n → ∞, for all є > , and {.} denoting the indicator
function, then

Sn
sn

D
Ð→ N(, ), ()

where N(, ) denotes the standard normal random
variable.

Roughly speaking, () says that the sum of martingale
di�erences, when scaled appropriately, is approximately
normally distributed provided the conditional variances
are su�ciently well behaved.�e theorem seems relevant
in any context in which conditional expectations, given
the past, have a simple and possibly explicit form. Var-
ious results on sums of independent random variables
in fact require only orthogonality of the increments, i.e.,
E[XiXj] = , i ≠ j, and this property holds for martingales
whose increments have �nite variance.�e MCLT reduces
to the su�ciency part of the standard Lindeberg–Feller
result in the case of independent random variables.

�e interpretation ofVn is highlighted and particularly
interesting for inference purposes. Let X, X, . . . be a
sequence of observations of a stochastic process whose
distribution depends on a (single) parameter θ, and
let Ln(θ) be the likelihood function associated with
X, X, . . . . Under very mild conditions, score func-
tions Sn = ∂ logLn(θ)/∂θ form a martingale whose con-
ditional variance Vn = In(θ) is a generalized form of
the standard Fisher information, as shown in Hall and
Heyde (). Namely, suppose that the likelihood func-
tion L(θ) is di�erentiable with respect to θ and that
Eθ[∂ logL(θ)/∂θ] <∞.
Let θ be a true parameter vector. We have

Sn =
∂ logLn(θ)

∂θ
=

n

∑
i=
xi(θ),

xi(θ) =
∂
∂θ

[logLi(θ) − logLi−(θ)],

and thus Eθ[xi(θ)∣Fi−] =  a.s., so that {Sn, Fn, n ≥ }

is a square-integrable martingale. Set Vn =
n

∑
i=
Eθ

[xi (θ)∣Fi−] . �e quantity Vn reduces to the standard
Fisher information In(θ) in the case where the observa-
tions {Xi, i ≥ } are independent random variables. If the
behavior of Vn is very erratic, then so is that of Sn, and it
may not be possible to obtain a CLT.
So, if we have a reasonably large sample, we can assume

that estimators obtained from estimating functions that are

martingales, have an approximately normal distribution,
which can be used for testing and constructing con�dence
intervals. A standard reference for themore general theory
of martingale estimating functions is Sørensen ().
Billingsley (), and independently Ibragimov (),

proved the central limit theorem for martingales with sta-
tionary and ergodic di�erences. For such martingales the
conditional variance Vn is asymptotically constant, i.e.,
Vn
sn

P
Ð→ . Brown () showed that the �rst part of condi-

tion () and not stationarity or ergodicity is crucial for such
a result to hold. Further extensions in view of other central
limit theorems for double arrays are based on Dvoretzky
() and McLeish (), where limit results employ a
double sequence schema {Xn,j,  ≤ j ≤ kn <∞, n ≥ } and

furnish conditions for the row sums Sn =
kn
∑
j=
Xn,j to con-

verge in distributions to a mixture of normal distributions
with means zero. A large variety of negligibility assump-
tions have beenmade about di�erencesXn,j during the for-
mulation of martingale central limit theorems.�e classic
condition of negligibility in the theory of sums of inde-
pendent random variables asks the Xn,j to be uniformly
asymptotically negligible.
A comprehensive review on mainly one-dimensional

martingales can be found in Helland (). Multivari-
ate versions of the central limit theorem for martingales
satisfying di�erent conditions or applicable to di�erent
frameworks, can be found in Hutton and Nelson (),
Sørensen (), Küchler and Sørensen (), Crimaldi
and Pratelli (), and Hubalek and Posedel ().

Cross References
7Central Limit�eorems
7Markov Processes
7Martingales
7Statistical Inference for Stochastic Processes

References and Further Reading
Bernstein S () Sur l’extension du théorèmelimite du calcul des

probabilitiés aux sommes de quantités dépendantes. Math Ann
:–

Billingsley P () The Lindeberg-Lévy theorem for martingales.
Proc Am Math Soc :–

Brown BM () Martingale central limit theorems. Ann Math Stat
:–

Chow YS, Teicher H () Probability theory, rd edn. Springer,
New York

Crimaldi I, Pratelli L () Convergence results for multivariate
martingales. Stoch Proc Appl ():–

Doob JL () Stochastic processes. Wiley, New York



Martingales M 

M

Dvoretzky A () Asymptotic normality for sums of dependent
random variables. Proceedings of the Sixth Berkeley Sympo-
sium on Statistics and Probability. pp –

Hall P, Heyde CC () Martingale limit theory and its application.
Academic, New York

Helland IS () Central limit theorems for martingales with dis-
crete or continuous time. Scand J Stat :–

Hubalek F, Posedel P () Asymptotic analysis for a simple explicit
estimator in Barndorff-Nielsen and Shephard stochastic volatil-
ity models. Thiele Research Report –

Hutton JE, Nelson PI () A mixing and stable central limit theo-
rem for continuous time martingales. Technical Report No. ,
Kansas State University, Kansas

Ibragimov IA () A central limit theorem for a class of dependent
random variables. Theor Probab Appl :–

Küchler U, Sørensen M () A note on limit theorems for multi-
variate martingales. Bernoulli ():–

Lévy P () Propriétés asymptotiques des sommes de vari-
ables aléatoires enchainées. Bull Sci Math (series ):–,
–

McLeish DL () Dependent Central Limit Theorems and invari-
ance principles. Ann Probab :–

Sørensen M () Likelihood methods for diffusions with jumps. In:
Prabhu NU, Basawa IV (eds) Statistical inference in stochastic
processes. Marcel Dekker, New York, pp –

Sørensen M () On asymptotics of estimating functions. Brazil-
ian J Probab Stat :–

Williams D () Probability with martingales. Cambridge Univer-
sity Press, Cambridge

Martingales

Rüdiger Kiesel
Professor, Chair for energy trading and �nancial services
Universität Duisburg-Essen, Duisburg, Germany

�e fundamental theorem of asset pricing (�e term fun-
damental theoremof asset pricingwas introduced inDybvig
and Ross []. It is used for theorems establishing the
equivalence of an economic modeling condition such as
no-arbitrage to the existence of themathematicalmodeling
condition existence of equivalent martingale measures.)
links the martingale property of (discounted) asset price
processes under a particular class of probability measures
to the ‘fairness’ (in this context no arbitrage condition) of
�nancial markets. In elementary models one such result
is In an arbitrage-free complete �nancial market model,
there exists a unique equivalentmartingalemeasure, see e.g.,
Bingham and Kiesel ().
So despitemartingales have been around formore than

three and a half centuries they are still at the forefront
of applied mathematics and have not lost their original

motivation of describing the notion of fairness in games
of chance. �e Oxford English Dictionary lists under the
word martingale (we refer to Mansuy [] for a inter-
esting account of the etymology of the word): A system of
gambling which consists in doubling the stake when losing
in order to recoup oneself ().
Indeed, the archetype of a martingale is the capital of a

player during a fair gambling game, where the capital stays
“constant on average”; a supermartingale is “decreasing on
average,” and models an unfavourable game; a submartin-
gale is “increasing on average,” and models a favorable
game.
Gambling games have been studied since time immemo-

rial – indeed, the Pascal–Fermat correspondence of 
which started the subject was on a problem (de Méré’s
problem) related to gambling.�e doubling strategy above
has been known at least since .�e term “martingale”
in our sense is due to J. Ville (–) in his thesis
in . Martingales were studied by Paul Lévy (–
) from  on (see obituary Loève ()) and by
J.L. Doob (–) from  on.�e �rst systematic
exposition was Doob (). Nowadays many very read-
able accounts exist, see Neveu (), Williams () and
Williams ().
Martingales are of central importance in any mod-

elling framework which uses 7stochastic processes, be
it in discrete or continuous time. �e concept has been
central to the theory of stochastic processes, stochas-
tic analysis, in mathematical statistics, information the-
ory, and in parts of mathematical physics, see Kallenberg
() and Meyer () for further details.�e Martin-
gale gambling insight ‘You can’t beat the system’ estab-
lishes properties of martingale transforms and lays the
foundation of stochastic integrals, Øksendal (). Mar-
tingale stopping results establish optimality criteria which
help develop optimal strategies for decision problems
(and exercising �nancial options), see Chow () and
Shiryaev ().
We can here only give a few fundamental de�nitions

and results and point to the vast literature for many more
exiting results.
For the de�nition, let I be a suitable (discrete or con-

tinuous) index set and assume that an index t is always
taken from I. Given a stochastic basis (Ω,F , IP, IF =

{Ft}) (where the �ltration IF models the �ow of informa-
tion) we call a process X = (Xt) a martingale relative to
({Ft}, IP) if

(i) X is adapted (to {Ft}).
(ii) IE ∣Xt ∣ <∞ for all t.
(iii) For s ≤ t we have IE[Xt ∣Fs] = Xs IP − a.s..
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X is a supermartingale if in place of (ii)

IE[Xt ∣Fs] ≤ Xs IP − a.s.;

X is a submartingale if in place of (iii)

IE[Xt ∣Fs] ≥ Xs IP − a.s..

Basic examples are themean-zero7randomwalk: Sn =
∑Xi, with Xi independent, where for IE(Xi) =  Sn is a
martingale (submartingales: positive mean; supermartin-
gale: negativemean) and stock prices: Sn = Sζ⋯ζn with ζi
independent positive r.vs with existing �rst moment. (See
Williams () andWilliams () for manymore exam-
ples). In continuous time the central example is that of
Brownian motion, see Revuz and Yor (), Karatzas and
Shreve (), which of course is a central process formany
branches of probability (see also 7Brownian Motion and
Di�usions).
Now think of a gambling game, or series of speculative

investments, in discrete time. �ere is no play at time ;
there are plays at times n = , , . . ., and

∆Xn := Xn − Xn−

represents our net winnings per unit stake at play n.�us
if Xn is a martingale, the game is “fair on average.”
Call a process C = (Cn)∞n= predictable if Cn is Fn−-

measurable for all n ≥ . �ink of Cn as your stake on
play n (C is not de�ned, as there is no play at time ).
Predictability says that you have to decide how much to
stake on play n based on the history before time n (i.e., up
to and including play n − ). Your winnings on game n are
Cn∆Xn = Cn(Xn − Xn−). Your total (net) winnings up to
time n are

Yn =
n

∑
k=
Ck∆Xk =

n

∑
k=
Ck(Xk − Xk−).

�is constitutes theMartingale transform of X by C.
�e central theorem for betting and applications in

�nance says that “You can’t beat the system!,” i.e., if X is a
martingale then the martingale transform is a martingale
(under some mild regularity conditions on C). So in the
martingale case, predictability of C means we can’t fore-
see the future (which is realistic and fair). So we expect to
gain nothing – as we should, see e.g., Neveu (). Like-
wise one can analyze di�erent strategies to stop the game,
then Doob’s stopping time principle reassures that it is not
possible to beat the system, see e.g., Williams ().
Martingale transforms were introduced and studied

by Burkholder (). �ey are the discrete analogs of
stochastic integrals and dominate the mathematical the-
ory of �nance in discrete time, see Shreve (), just
as stochastic integrals dominate the theory in continu-
ous time, see Harrison and Pliska ().�e various links

between mathematical �nance and martingale theory are
discussed in Musiela and Rutkowski () and Karatzas
and Shreve ().
Martingale-convergence results are among the most

important results in probability (arguably in mathemat-
ics). Hall and Heyde () and Chow () are excellent
sources, but Doob () lays the foundations. Martingale
techniques play a central role in many parts of probability,
consult Rogers (), Revuz and Yor (), Karatzas and
Shreve () or Kallenberg () for excellent accounts.
Martingales appear in time series theory and sequential
analysis, see Lai () and Hamilton ().
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Introduction
Do we scienti�cally understand the concept of “Global
Warming”? A very basic de�nition of “Global Warm-

ing” is an increase in temperature at the surface of the
earth supposedly caused by the greenhouse e�ect, car-
bon dioxide, CO (greenhouse gas). �e online encyclo-
pedia, Wikipedia, de�nes the phenomenon of “GLOBAL
WARMING” as the increase in the average temperature of
the earth’s near surface air and oceans in the recent decades
and its projected continuation.
For the past  years this has been a media chaos: pro

and concerned skeptics. �e Intergovernmental Panel of
the United States on Climate Change (IPCC) – “Climate
Change ” claimed that the following are some of the
causes of Global Warming:

● Increase in temperature – Increase in sea level
● Unpredictable pattern in rainfall
● Increase in extreme weather events
● Increase in river �ows
● Etc.

Furthermore, the award winning documentary nar-
rated by Vice President Gore strongly supports the IPCC
�ndings. However, the ABC news program / “Give
Me a Break,” raises several questions and disputes the pro-
cess by which IPCC stated their �ndings. A number of
professional organizations, the American Meteorological
Society, American Geographical Union, AAAS, supported
the subject matter. �e U.S. National Academics blame
global warming on human activities.

�e concerned skeptics raise several points of inter-
est concerning Global Warming. Great Britain’s Channel
 Documentary entitled “�e Great Global Warming Swin-
dle” disputes several of the aspects of Vice President former
documentary. NASA scientists reveal through their scien-
ti�c experiments and studies that the increase in atmo-
spheric temperature is due to the fact that sea spots are
hotter than previously thought. �eir �ndings are also
reported by the Danish National Space Center, DNSC, on
similar investigations conducted by NASA. DNSC stated
that there is absolutely nothing we can do to correct this
situation.TimesWashington Bureau Chief, Bill Adair, states
that “Global Warming has been called the most dire issue
facing the planet and yet, if you are not a scientist, it can
be di�cult to sort out the truth.”�eWall Street Journal in
a leading article “Global Warming is -year-old News,”
stated that “the various kind of evidence examined by the
National Research Council, NRC, led it to conclude that the
observed disparity between the surface and atmospheric
temperature trends during the -year period is probably
at least partially real.” It further stated that “uncertainties
in all aspects exist- cannot draw any conclusion concerning
GlobalWarming.” However, theNRC study concludedwith
an important statement that “major advances in scienti�c
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methodswill be necessary before these questions onGlobal
Warming can be resolved.”
Furthermore, the temperature increase that we are

experiencing are in�nitesimal, during the past  years –
the mean global surface air temperature increased by
approximately .○F (.○F). Dr. �omas G. Moore,
Senior Fellow at the Hoover Institute at Stanford Uni-
versity, in his article entitled “Climate of Fear: Why We
Shouldn’tWorryAboutGlobalWarming” is not concerned
with such small changes in temperatures. Furthermore, in
his interviewwithNewsweek, he saidmore people die from
cold than from warmth and an increase of a few degrees
could prevent thousands of deaths.
It is well known that carbon dioxide, CO, and sur-

face/atmospheric temperatures are the primary cause of
“GLOBAL WARMING.” Jim Verhult, Perspective Editor,
St. Petersburg Times, writes, “carbon dioxide is invisible –
no color, no odor, no taste. It puts out �res, puts the �zz
in seltzer and it is to plants what oxygen is to us. It’s hard
to think of it as a poison.”�e U.S.A. is emitting approx-
imately . billion metric tons of CO in the atmo-
sphere, which makes us the world leader; however, by the
end of , the Republic of China became the new leader.
Temperatures and CO are related in that as CO emis-
sions increase, the gasses start to absorb toomuch sunlight
and this interaction warms up the globe.�us, the rise in
temperature and the debate of “GLOBALWARMING.”
While working on the subject matter, an article

appeared on the front page of the St. Petersburg Times
on January , .�is article, entitled “Global Warm-
ing: Meet your New Adversary,” was written by David
Adams. �e highlight of this article was a section called
“By the Numbers,” which stated some information con-
cerning the continental United States:  hottest year;
U.S. top global warming polluter; % increase of CO
since ; % of CO emissions by ;  number of
days U.S. �re season has increased; and  million people
that will be displaced due to global warming. Our data for
the continental U.S. does not support the �rst four statis-
tics, we have no data for the ��h, and the sixth is quite
hypothetical.�e �nal assertion, with “” representing the
number of federal bills passed by the Congress to cap
America’s global warming pollution.�us, it is very impor-
tant that we perform sophisticated statistical analysis and
modeling to fully understand the subject matter. Also, very
recently, the Supreme Court of the U.S., in one of its most
important environmental decisions, ruled that the Envi-
ronmental Protection Agency (EPA) has the authority to
regulate the greenhouse gases that contribute to global cli-
mate changes unless it can provide a scienti�c basis for its
refusal.

We believe that a contributing factor in creating these
controversies among scientists (and this is passed onto
the policymakers and the media) is a lack of precise
and accurate statistical analysis and modeling of histor-
ical data with an appropriate degree of con�dence. �e
problem of “GLOBALWARMING” is very complex with a
very large number of contributing entities with signi�cant
interactions. �e complexity of the subject matter can
be seen in the attached diagram “A Schematic View”
(Fig. ). We believe that statisticians/mathematicians can
help to create a better understanding of the subject prob-
lem that hopefully will lead to the formulation of legislative
policies.

�us, to scienti�cally make an e�ort to understand
“GlobalWarming,” wemust study themarriage ofCO and
atmosphere temperature, individually and together, using
available historical data. Here we shall brie�y present some
parametric statistical analysis, forecasting models for CO
and atmospheric temperature, Ta along with a di�erential
equation, that give the rate of change of CO as a function
of time. Scientists can utilize these preliminary analysis
andmodels to further the study of GlobalWarming. Addi-
tional information can be found in Tsokos (a, b), and
Tsokos b.

Atmospheric Temperature, Ta
Here we shall utilize historical temperature data recorded
in the Continental United States from  to , to
parametrically identify the probability density of the sub-
ject data and to develop a forecasting model to predict
short and long term values of Ta.

�e probability density function, pdf, ofTa is the three-
parameter lognormal pdf. It is given by

f (t; µ, θ, σ) =
exp{− 


[ ln(t − θ) − µ]}

(t − θ)σ
√
π

, t ≥ θ, σ , µ > ,

()
where µ, σ and θ, are the scale, shape and location param-
eters, respectively.
For the given Ta data the maximum likelihood estima-

tion of population parameter, µ, σ and θ are µ̂ = ., σ̂ =

. and θ̂ = ..�us, the actual pdf that we will be
working with is given by

f (t; µ̂, θ̂, σ̂)=
exp{− 


[ ln(t − .)− .]}

(t − .) ⋅ .
√
π

, t ≥ ..

()
Having identi�ed the pdf that probabilistically charac-

terizes the behavior of the atmospheric Ta, we can obtain
the expected value of Ta, all the useful basic statistics along
with being able to obtain con�dence limits on the true Ta.
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View”

Such a pdf should be applicable in other countries around
the world.

�e subject data, Ta, is actually a stochastic realization
and is given as nonstationary time series.�e development
of the multiplicative seasonal autoregressive integrated
moving average, ARIMA model is de�ned by

Φp(Bs)ϕ( − B)d( − Bs)Dxt = θq(B)ΓQ(Bs)εt , ()

where p is the order of the autoregressive process; d is the
order of regular di�erencing; q is the order of the moving
average process; P is the order of the seasonal autoregres-
sive process; D is the order of the seasonal di�erencing; Q
is the order of the seasonably moving average process; and
s refers to the seasonal period, and

ϕp(B) = ( − ϕB − ϕB −⋯ − ϕpBp)
θq(B) = ( − θB − θB −⋯ − θqBq)
ΦP(Bs) =  −ΦBs −ΦBs −⋯ −ΦPBPs

ΓQ(Bs) =  − ΓBs − ΓBs −⋯ − ΓQBQs.

�e developing process of () using the actual data is com-
plicated and here we present the �nal useful form of the
model. �e reader is referred to Shih and Tsokos (,
) for details.

�e estimated forecasting model for the atmospheric
data is given by

x̂t = .xt− − .xt− − .xt− + .xt−
− .xt− + .xt− + .xt−
+ .xt− + .xt− − .xt−
+ .xt− − .εt− − .Γεt−
+ .εt−. ()

�e mean of the residuals, r, the variance, S r , the stan-
dard deviation, Sr , standard error, SE, and themean square
error,MSE, are presented below for one unit of time ahead
forecasting.

r S 
r Sr SE MSE

−. . . . .

�ese numerical results give an indication of the qual-
ity of the developed model.

Carbon Dioxide, CO
Parametric Analysis
�e other most important entity in Global Warming is
CO. �e complexity of CO in the atmosphere is illus-
trated by the schematic diagram that was introduced. To
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better understand CO, we need to probabilistically deter-
mine the best probability distribution, pdf, that charac-
terizes its behavior. Presently, scientists working on the
subject matter make the assumption that CO in the atmo-
sphere follows the classical Gaussian pdf and that is not
the best possible �t of the actual data and could lead to
misleading decisions.�e actual data that we are using was
collected in the Island of Hawaii/Mauna Loa from  to
.�rough goodness-of-�t statistical testing, the best
�t of theCO data thatwe can study its behavior probabilis-
tically is the three-parameter Weibull pdf.�e cumulative
three-parameter Weibull probability distribution is given
by

F(x) =  − exp{− (
x − γ

β
)

α
}, γ ≤ x <∞, δ > , β >  ()

where α, β, and γ are the shape, scale, and location param-
eter.�e nth moment, mean and variance are given by

mn = βnΓ(+ n
α
), µ = βΓ(+ 

α
) and σ  = βΓ(+ 

α
)− µ,

respectively, where Γ is the gamma function.�e approx-
imate maximum likelihood estimates of the true parame-
ters, α, β and γ for the Hawaii data are given by

α̂ = ., β̂ = ., and γ̂ = ..

�us, the cumulative pdf that we can use to probabilis-
tically characterize the CO behavior and answer related
questions is given by:

F(x) =  − exp{− (
x − .
.

)
.

}. ()

For additional details of the subject area see Shih and
Tsokos ().

Forecasting Model of CO
Here we present a forecasting model of CO in the atmo-
sphere. Having such a model will allow us to accurately
predict the amount of CO in the atmosphere, and make
appropriate decisions as needed. �e actual CO data as
a function of time results in a nonstationary time series.
For details in the development of this model, see Shih and
Tsokos ().�e best forecasting model that we devel-
oped is anARIMAmodel with second order autoregressive
process, with a �rst order moving average process and a

-month seasonal e�ect. Its �nal form is given by

CÔA = .xt− + .xt− + .xt− + .xt−
− .xt− − .xt− − .xt−
− .xt− + .xt− + .xt−
+ .xt− − .xt− + .xt−
+ .xt− + .xt− − .εt−.

A similar statistical model can be developed for CO emis-
sion, Shih and Tsokos ().

A Differential Equation of CO in the
Atmosphere
�e main attributable variables in CO in the atmosphere
are:

E: CO emission (fossil fuel combination)
D: Deforestation and destruction
R: Terrestrial plant respiration
S: Respiration
O: the �ux from oceans to atmosphere
P: terrestrial photosynthesis
A: the �ux from atmosphere to oceans
B: Burial of organic carbon and limestone carbon

One important question that we would like to know is
the rate of change ofCO as a function of time.�e general
form of the di�erential equation of the subject matter is of
the form:

d(CO)
dt

= f (E,D,R, S,O,P,A,B)

or

COA = ∫ (E +D + R + S + (O − A) − P − B)dt.

Here, B,P and R are constants, thus

COA = ∫ (kEE + kDD + kRR + kSS + kO−A(O − A)

+ kPP − kBB)dt.

Using the available data we can estimate the functional
analytical form of all the attributable variables that appear
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in the integrand.�us, the �nal working form of CO in
the atmosphere is given by

CO =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kE{−t + . × e
− 

 }

+kD(.t + .t)

+kS{ − .( +
t

)

+ .( + t


)


−( + t

)

+  × t}

+KA−O{.t − .t

+.t} − kP ∫ Pdt − kB ∫ Bdt

.

Having aworkable formof the di�erential equation, we can
develop the necessary algorithm to track the in�uence the
attributable variables will have in estimating the change of
rate of CO as a function of time.

Conclusion
Finally, is the “Global Warming” phenomenon real? Yes.
However, it is not as urgent as some environmentalists
claim. For example, our statistical analytical models pre-
dict that in the next  years, , we will have an increase
of carbon dioxide in the atmosphere in the continental U.S.
of approximately %. In developing a strategic legislative
plan, we must address the economic impact it will have in
our society. In our present global economic crisis, intro-
ducing legislation to address Global Warming issues will
present additional critical economic problems. In a global
context we must consider about  economic develop-
ing countries that have minimal to no strategic plans in
e�ect that collect the necessary information that addresses
the subject matter in their country. Furthermore, we have
approximately  undeveloped countries that have mini-
mum understanding about the concept of global warm-
ing. �us, talking about developing global strategies and
policies about “Global Warming” is quite premature.
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Maximum Entropy Method for
Estimation of Missing Data
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In �eld experiments we design the �eld plots. In case
we �nd one or more observations missing due to natural
calamity or destroyed by a pest or eaten by animals, it is
cumbersome to estimate the missing value or values as in
�eld trials it is practically impossible to repeat the exper-
iment under identical conditions. So we have no option
except to make best use of the data available. Yates ()
suggested amethod: “Substitute x for themissing value and
then choose x so as to minimize the error sum of squares.”
Actually, the substituted value does not recover the best

information, however, it gives the best estimate according
to a criterion based on the least square method. For the
randomized block experiment

x =
pP + qQ − T
(p − ) (q − )

, ()

where

p = number of treatments;
q = number of blocks;
P = total of all plots receiving the same treatment as
the missing plot;

Q = total of all plots in the same block as the missing
plot; and

T = total of all plots.

For the Latin Square Design, the corresponding formula is

x =
p (Pr + Pc + Pt) − T

(p − ) (q − )
, ()

where

p = number of rows or columns of treatments;
Pr = total of row containing the missing plot;
Pc = total of column containing the missing plot;
Pt = total of treatment contained in the missing plot;

and
T = grand total.

In case more than one plot yields are missing, we sub-
stitute the average yield of available plots in all except one
of these and substitute x in this plot.We estimate x by Yate’s
method and use this value to estimate the yields of other
plots one by one.
Next we discuss the maximum entropy method. If

x, x, . . . , xn are known yields and x is the missing yield.
We obtain the maximum entropy estimate refer to Kapur
and Kesavan () for x by maximizing:

−
n

∑
i=

xi
T + x

log
xi
T + x

−
x

T + x
log

x
T + x

. ()

�us we get

x̂ = [xx x
x
 . . . x

xn
n ]


T , ()

where T =
n

∑
i=
xi.

�e value given by () is called maximum entropy mean of
x, x, . . . , xn.
Similarly, if two values x and y are missing, x and y are

determined from

x̂ = [xx x
x
 . . . x

xn
n ]



T + y , ()

ŷ = [xx x
x
 . . . x

xn
n ]



T + x . ()

�e solution of () and () is

x̂ = ŷ = [xx x
x
 . . . x

xn
n ]



T . ()

Hence all the missing values have the same estimate and
this does not change if themissing values are estimated one
by one.

�ere are three following drawbacks of the estimate
given by ()
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() x̂ is rather unnatural. In fact x̂ is always greater than
arithmetic mean of x, x, . . . , xn.

() If two values are missing, the maximum entropy esti-
mated for each is the same as given by ().

() �is is not very useful for estimating missing values in
design of experiments.

�e �rst drawback can be overcome by using general-
ized measure of entropy instead of Shannon entropy. If we
use Burg’s measure given by

B(P) =
n

∑
i=
log pi. ()

�en we get the estimate

x̂ =
x + x + . . . + xn

n
= x. ()

In fact we choose a value x̂, which is as equal to
x, x, . . . , xn as possible and so we maximize a measure
of equality. Since there are many measures of equality,
therefore our estimate will also depend on the measure of
equality we choose.

�e second drawback can be understood by consider-
ing the fact that the information theoretic estimate for a
missing value depends on:

(a) �e information available to us
(b) �e purpose for which missing value is to be used.

As for the third drawback, according to the principle
of maximum entropy, we should use all the information
given to us and avoid scrupulously using any information
not given to us. In design of experiments, we are given
information about the structure of the design, whichwe are
not using this knowledge in estimating the missing values.
Consequently, the estimate is not accurate; however, infor-
mation theoretic model de�ned and studied byHooda and
Kumar () can be applied to estimate the missing value
xij in contingency tables. Accordingly, the value xij is to be
chosen to minimize the measure of dependence D.
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Professor
Maria Curie-Skłodowska University, Lublin, Poland
University of Rzeszów, Rzeszów, Poland

Mean, median and mode indicate central point of distri-
bution or data set. Let PX denotes distribution of a random
variable X. Any reasonable rule O = O(PX) indicating a
pointO to be the center of PX should satisfy the following
postulates:

A If P(a ≤ X ≤ b) =  then a ≤ O(PX) ≤ b
AO(PX+c) = O(PX)+c for any constant c [transitivity]
AO(PcX) = cO(PX) for any constant c [homogeneity]

�e mean is a synonym of the �rst moment, i.e. the
expected value EX. For a continuous random variable X it
may be expressed in terms of density function f (x), as the
integral EX = ∫

+∞
−∞ xf (x)dx. In discrete case it is de�ned

as the sum of type EX = ∑i xipi, where xi is a possible
value of X, i ∈ I, while pi = P(X = xi) is its probability.
�e mean ful�ls all the above postulates and, moreover, an
extra condition
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AM E(X − EX) ≤ E(X − c) for any c ∈ R

It is worth to add that mean may not exist.
�e median Me = Me(X) is a scalar α de�ned by con-

ditions PX(X ≤ α) ≥ 
 and PX(X ≥ α) ≥ 

 . In terms
of the cumulative distribution function F = FX it means
that F(α) ≥ 

 and limx↑α F(α) ≤ 
 . In particular, if X

is continuous with density f , then the desired conditions
reduces to ∫

α
−∞ f (x)dx ≥


 and ∫

∞
α f (x)dx ≥ 

 . In dis-

crete case it can be expressed in the form ∑
{i:xi≤α}

pi ≥



and ∑
{i:xi≥α}

pi ≥


.�emedian also satis�es the conditions

A − A and, moreover

AMe E ∣X −MeX∣ ≤ E ∣X − c∣ for any c ∈ R.

�e mode Mo = Mo(X) of a random variable X is
de�ned in terms of its density function f (continuos case)
or its probability mass function pi = P(X = xi) (discrete
case). Namely,Me(X) = argmax f (x), or is an element x
in the set of possible values {xi : i ∈ I} that P(X = x) =

max{pi : i ∈ I}.�e mode also satis�es the conditionsA−
A. It is worth to add that mode may not be unique.�ere
exist bimodal and multimodal distributions. Moreover the
set of possible modes may be interval.
In the context of data set, represented by a sequence

x = (x, . . . , xn) of observations, the postulates A − A
may be reformulated as follows:

SO(xi , . . . , xin) = O(x, . . . , xn) for any permutation
i, .., in of the indices , . . . ,n

Smin{x, . . . , xn} ≤ O(x, . . . , xn) ≤ max{x, . . . , xn}
SO(x + c, . . . , xn + c) = O(x, . . . , xn) +c
SO(cx, . . . , cxn) = cO(x, . . . , xn).

In this case the mean, median and mode are de�ned as
follows.

�e mean of the data x = (x, . . . , xn), denoted usually
by x, is the usual arithmetic average x = 

n ∑ xi.�e mean
not only satis�es all conditions S − S but also possesses
the property

SM∑ni=(xi − x)

≤ ∑

n
i=(xi − c)

 for all c ∈ R.

Now let us arrange the elements of the sequence x =

(x, . . . , xn) in the not decreasing order x[] ≤ x[] ≤ . . . ≤
x[n].�e median of the data set x = (x, . . . , xn) is de�ned
by the formula

Me(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x[ n+ ], if n is odd


 (x[ n ] + x[ n +]) if n is even.

�e median satis�es the conditions S − S and, more-
over,

SMe∑ni= ∣xi −Me(x)∣ ≤ ∑
n
i= ∣xi − c∣ for all c ∈ R.

�e mode of the data x = (x, . . . , xn), denoted by
Mo(x), is the value in the set that occurs most o�en.
For instance if x = (, , , , , , ) then x ↑=

(, , , , , , ). For such dataMe(x) = x[] =  and
Mo(x) = .
It is worth to add that the mean is very sensitive for

outlying observations.

About the Author
For biography see the entry 7Random Variable.

Cross References
7Asymptotic Relative E�ciency in Estimation
7Expected Value
7Geometric Mean
7Harmonic Mean
7Mean, Median, Mode: An Introduction
7Random Variable
7Robust Statistical Methods
7Sampling Distribution
7Skewness

References and Further Reading
Cramér H () Mathematical methods of statistics. Princeton

University Press, Princeton
Joag-Dev K () MAD property of median. A simple proof. Am

Stat :–
Prokhorov AW (a) Expected value. In: Vinogradov IM

(ed) Mathematical encyclopedia, vol . Soviet Encyclopedia,
Moscow, pp – (in Russian)

Prokhorov AW (b) Mode. In: Vinogradov IM (ed) Mathemat-
ical encyclopedia, vol . Soviet Encyclopedia, Moscow p 
(in Russian)

Mean, Median, Mode: An
Introduction
S. N. Gupta
University of South Paci�c, Suva, Fiji

Introduction
Mean, median and mode are three statistical measures
commonly used to summarize data sets.�ey are known
by the common name average. In its broadest sense, an
average is simply any single value that is representative of
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many numbers. Averages are also called measures of cen-
tral tendency because an average is usually located near the
center of the data set. Some examples: average age of the
players of a cricket team, average reaction time of a par-
ticular chemical, average amount spent by a customer in a
shopping mall, etc.

The Mean
�e mean, also known as arithmetic mean, is the most
widely used average and is de�ned as the sum of the obser-
vations divided by the number of observations. �e for-
mula for computing mean is: x̄ = (∑x)/n, where x̄ is
the symbol for mean (pronounced “x-bar”), x is the sym-
bol for variable, ∑x is the sum of observations (i.e., the
sum of the values of the variable x) and n is the number
of observations.
Although, there are also other kinds of means (such

as the 7harmonic mean and the 7geometric mean), the
arithmetic mean is by far the most popular. For this rea-
son, the word arithmetic is rarely used in practice and we
simply refer to the “mean.”

Example  �e ages (in weeks) of �ve babies are , , , 
and . Find the mean.

Solution: �e mean of the set is given by x̄ =

n
∑x =

 +  +  +  + 


=


= . weeks.

Calculation of Mean for Discrete Frequency Distribution
Sometimes, it is convenient to represent the data in form
of a frequency distribution. In such cases the formula for

mean is: x̄ = ∑
fx

∑ f
, where f is the frequency,∑ f is the sum

of the frequencies, ∑ fx is the sum of each observation
multiplied by its frequency.

Example  Data for numbers of children in  families
are given below. Find the mean.

No. of children (x):     

Frequency ( f ):     

Solution:

x     

f      ∑ f = 

fx      ∑ fx = 

�e mean x̄ = ∑
fx

∑ f
=



= . children per family.

Calculation of Mean for Grouped Frequency Distribution
It is not possible to calculate exact mean in grouped
frequency distribution, because some information is lost
when the data are grouped. So, only an approximate value
ofmean is obtained based on the assumption that all obser-
vations in a class interval occur at themidpoint (xm) of that
interval.�us, the formula of Example  can be used a�er
replacing x by xm.

Example  �e following is the distribution of the num-
ber of �sh caught by  �shermen in a village. Find the
mean number of �sh caught by a �sherman.

No. of �sh caught: – – – –

No. of �shermen:    

Solution:

No. of �sh Midpoint
caught (xm) f fxm

–   

–   

–   

–   

∑ f =  ∑ f xm = 

�erefore, the mean is x̄ = ∑
f xm
∑ f

=



= . �sh per

�sherman.
Weighted Mean
When weights (measures of relative importance) are
assigned to observations, weighted means are used. If an
observation x is assigned a weight w, the weighted mean is
given by x̄ =∑wx/∑w.

The Median
�e median is another kind of average. It is de�ned as the
centre value when the data are arranged in order of magni-
tude.�us, the median is a value such that % of the data
are below median and % are above median.
Calculation of Median for Raw Data
�e observations are �rst arranged in ascending order of
magnitude. If there are n observations, the median is

. �e value of the [(n + )/]th observation, when n is
odd.

. �e mean of the [n/]th and [(n/) + ]th observa-
tions, when n is even.
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Example  Find the median for the following data set:

, , , , , , .

Solution: Arranging the data in ascending order we have

, , , , , , .

Here, n= , which is odd. �erefore, median =
n + 


th score=  + 

th score=th score=.

Example  Find the median for the data:

, , , , , , , , , .

Solution: Here, n = , which is even. Arranging the data
in ascending order we have

, , , , , , , , , .

�erefore, median= 

[
n

th score + (

n

+) th score]

=


[


th score + (



+ ) th score]

=


[th score + th score]

=


[ + ] = .

Calculation of Median for Discrete Frequency Distribution
�e same basic formulae as used for raw data are used, but
cumulative frequencies are calculated for convenience of
locating the observations at speci�c numbers.

Example  Data for the number of books purchased by
 customers are given below. Find the median.

No. of books (x):    

No. of customers ( f ) :    

Solution:

No. of books (x)    

No. of customers ( f )    

Cumulative frequency (c.f .)    

Here n =∑ f =  (even).�erefore,

median = 

[


th score + (



+ ) th score]

=


[th score + th score] = 


[ + ] = .

Calculation of Median for Grouped Frequency Distribution
In a grouped distribution, exact median cannot be
obtained because some information is lost in grouping.

Here, we �rst locate the median class and then obtain an
estimate of themedian by the formula:

median = l +
(
n

− c)

f
(l − l)

where, l, l are the lower and upper boundaries of the
median class, f is the frequency of themedian class, n is the
sum of all frequencies and c is the cumulative frequency of
the class immediately preceding the median class.

Example  Find the median for the data of Example 
above.
Solution: Construct a table for class boundaries and cumu-
lative frequencies:

Class Class boundaries f c.f .

– .–.  

– .–.  

– .–.  

– .–.  

n = 

Here, n/ = . �e median will lie in the class having
cumulative frequency (c.f .) just larger than .�emedian
class is –.�us, l = ., l = ., c = , f = .

Hence, median = . + (
 − 


) ×  = . + . =
..

The Mode
�emode is the most frequent value i.e., the value that has
the largest frequency. A major drawback of mode is that a
data set may have more than one mode or no mode at all.
Also the mode may not always be a central value as in the
Example (a) below.

Example  Find mode in the following data sets:

(a) , , , , , , , , , , .

(b) , , , , , , , , , .

(c) , , , , , , , , , .

Solution
(a) One mode at , (b) Two modes at  and , (c) No
mode as each value occurs only once. For grouped fre-
quency distribution, the mode can be estimated by taking
the mid-point of the modal class corresponding to the
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largest frequency. One advantage of mode is that it can be
calculated for both kinds of data, qualitative and quantita-
tive, whereas mean and median can be calculated for only
quantitative data. E.g., A group consists of �ve Hindus, six
Muslims and nine Christians. Here, Christianity is most
frequent and so it is the mode of this data set.

Remarks If a distribution is symmetrical then mean =
median = mode. For skewed distributions a thumb rule
(though not without exceptions) is that if the distribution
is skewed to the right thenmean >median >mode and the
inequalities are reversed if the distribution is skewed to the
le�.
To sum up, there is no general rule to determine which

average is most appropriate for a given situation. Each of
them may be better under di�erent situations. Mean is the
most widely used average followed bymedian.�emedian
is better when the data set includes 7outliers or is open
ended.Mode is simple to locate and is preferred for �nding
the most popular item e.g. most popular drink or the most
common size of shoes etc.

Cross References
7Geometric Mean
7Harmonic Mean
7Mean Median and Mode
7Skewness
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�eories and applications that use Mean Residual Life
(MRL) extend across a myriad of helpful �elds, while

the methods di�er considerably from one application to
the next. Accelerated stress testing, fuzzy set engineer-
ing modeling, mixtures, insurance assessment of human
life expectancy, maintenance and replacement of bridges,
replacement of safety signi�cant components in power
plants, and evaluation of degradation signals in systems are
just a few examples of applications of MRL function analy-
sis. Note that MRL is also called “expected remaining life,”
plus other phrase variations. For a random lifetime X, the
MRL is the conditional expectation E(X − t∣X > t), where
t ≥ .�e MRL function can be simply represented with
the reliability function R(t) = P(X > t) =  − F(t) as:

e(t) = E(X − t∣X > t) =

∞
∫
t
R(x)dx

R(t)

where R(t) >  for e(t) to be well de�ned. When R() = 
and t = , the MRL equals the average lifetime. When
R(t) = , then e(t) is de�ned to be .�e empirical MRL
is calculated by substituting either the standard empirical
estimate of R(t) or, when censoring occurs, by substitut-
ing the Kaplan-Meier estimate ofR(t) (see7Kaplan-Meier
Estimator). To use the Kaplan-Meier estimate when the
�nal observation is censored requires a modi�cation to
de�ne the empirical reliability function as eventually .

�e reliability function can also be represented as a
function of the MRL as:

R(t) = (
e()
e(t)

) exp− ∫
t
 [ 

e(x) ]dx .

Note that the MRL function can exist, while the hazard
rate function might not exist, or vice versa, the hazard
rate function can exist while the MRL function might not.
CompareGuess andProschan () plusHall andWellner
() for comments. When both functions exist, and the
MRL function is di�erentiable, the hazard rate function is
a function of the MRL:

h(t) =
 + e ′(t)
e(t)

where e′(t) is the �rst derivative of the MRL function.
�e breadth of applications for the MRL function is

astounding.As examples, Chiang () andDeevey ()
cite the use of theMRL for annuities via expected life tables
(see 7Life Table) in ancient Roman culture. Bhattacharjee
() suggests how to use the MRL to decide when to
sell an item that has maintenance costs, which has copi-
ous natural applications, such as to real estate. Steele ()
and Guess et al. () illustrate a con�dence interval for
the range of values where one MRL function dominates
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another and use it to reveal an opportunity to increase
the pro�tability of a process that manufactures engineered
medium density �berboard. See also the insightful results
on MRL functions of mixtures, 7order statistics, and
coherent systems from Navarro and Hernandez ().
Another topic of extensive research over the years is testing
classes of MRL functions. For more on those tests, see ref-
erences in Hollander and Proschan (), Hollander and
Wolfe () or Anis et al. (), for example. A brief list
of other MRL papers, among many wide-ranging papers
available, includes Peiravi and Dehqanmongabadi (),
Zhao and Elsayed (), Bradley andGupta (), Asadi
and Ebrahimi (), Oakes and Dasu (), Berger et al.
(), Guess and Park (), and Guess et al. (). We
would recommend many other useful papers, but space
severely limits our list.
While we do not give a complete inventory, note that

R packages like evd, ismev, and loc�t possess capabili-
ties such as MRL plotting and/or computing the MRL for
censored data; compare Sha�er et al. (). Another free-
ware, Dataplot, the so�ware for the NIST website, does
a MRL plot, but calls it a “conditional mean exceedance”
plot, see Heckert and Filliben (). For-pro�t statisti-
cal so�ware, such as JMP, MINITAB, PASW (formerly
SPSS), SAS, etc., can be appropriately utilized for comput-
ing the MRL, using the basic formulas above (PASW and
others use the phrase “life tables,” which o�en contain a
column for MRL). Pathak et al. () illustrate the use
of MATLAB for computing several di�erent lifetime data
functions including theMRL. Steele () computesMRL
via Maple.
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Foundations of Probability: Fields and
Sigma-Fields
Since Kolmogorov’s axioms, Probability theory is a legiti-
mate part of Mathematics, with foundations that belong to
Measure theory. Although a traditional probabilist works
solely with countably additive measures on sigma �elds,
the concepts of countable additivity and in�nitemodels are
by no means natural. As Kolmogorov [ p. ] points
out, “. . . in describing any observable random process we
can obtain only �nite �elds of probability. In�nite �elds of
probability occur only as idealized models of real random
processes.”
To build a probability model, we need �rst to have a

non-empty set Ω which is interpreted as a set of all possible
outcomes of a statistical experiment.�en we de�ne which
subsets of Ω will be assigned a probability.�e familyF of
all such subsets has to satisfy

() Ω ∈ F ,
() B ∈ F Ô⇒ B′ ∈ F ,
() B,B ∈ F Ô⇒ B ∪ B ∈ F ,

and then we say that F is a �eld. If () is replaced by
stronger requirement

(’) B,B, . . . ∈ F Ô⇒
∞
⋃
i=
Bi ∈ F

then we say that F is a sigma �eld.
�e family P(Ω) of all subsets of Ω is a �eld, and it is

the largest �eld that can bemade of subsets of Ω – it clearly
contains all other possible �elds.�e smallest such �eld is
F = {/, Ω}; it is a subset of any other �eld.

�e intersection of any family of �elds is again a �eld.
�e union of a family of �elds need not be a �eld. Both
statements hold for sigma-�elds, too.
Given a collection A of subsets of Ω, the intersection

of all �elds (sigma-�elds) that contain A is called a �eld
(sigma-�eld) generated byA.
Having a non-empty set Ω and a �eldF of its subsets, a

�nitely additive probability measure is a function P : F →
R+ such that

(a) P(Ω) = .
(b) P(A) ≥  for every A ∈ F .

(c) P(A ∪ B) = P(A) + P(B) whenever A,B ∈ F and
A ∩ B = / (�nite additivity).

If (c) is replaced by the condition of countable additivity

(c’) For any countable collection A,A, . . . of sets in F ,
such that Ai ∩ Aj = / for any Ai ≠ Aj and such that
A ∪A ∪⋯ ∈ F (the latter condition is needless ifF
is a sigma-�eld):

P(
+∞
⋃
i=
Ai) =

+∞
∑
i=
P(Ai)

then P is called (a countably additive) probability mea-
sure, or just probability. �e triplet (Ω,F ,P) is called a
probability space. By Carathéodory extension theorem, any
countably additive probabilitymeasure P de�ned on a �eld
F extends uniquely to a countably additive probability
measure on the sigma �eld generated by F ; hence, if P
is countably additive, we may always assume that F is a
sigma-�eld.
A set B ⊂ Ω is called a null set if B ⊂ A for some A ∈ F

with P(A) = . Let N be a collection of all null sets in
(Ω,F ,P). IfN ⊂ F , the sigma-�eld F is called complete.
For any sigma-�eld F there exists a complete sigma-�eld
F̄ , called a completion ofF , and de�ned as the sigma �eld
generated by F ∪N .
A general positive measure µ is a set function de�ned

on (Ω,F) with values in R+ ∪ {+∞}, which satis�es (b),
(c) or (c’), and µ(/) = . If µ(Ω) < +∞, the measure is
called �nite and can be normalized to a probability mea-
sure by P(A) = µ(A)/µ(Ω) for all A ∈ F . If Ω can be rep-
resented as a countable union of measurable sets of �nite
measure, then a measure is called sigma-�nite. �e most
commonly used measure in Mathematics is the Lebesgue
measure λ on R, with the property that λ([a, b]) = b − a
for any a < b.�is measure is not �nite, as λ(R) = +∞,
but it is sigma-�nite.
If there exists a countable set S ⊂ Ω such that µ(S′) =

, the measure µ is called discrete. Unless the measure is
discrete, the sigma-�eld F is usually taken to be strictly
smaller than P(Ω), to ensure that it will be possible to
assign some value of the measure to each set in F .�is is
motivated by existence of non-measurable sets in R (sets
that cannot be assigned any value of Lebesgue measure).
Non-measurable sets cannot be e�ectively constructed and
their existence is a consequence of Axiom of Choice [see
Solovay ()].�e described construction of a probabil-
ity space ensures that a probability can be assigned to all
sets of interest.
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�e countable (vs. �nite) additivity has a role to exclude
from considerationmeasures that are too complicated, and
also to enable applicability of fundamental theorems (for
details on �nitely additive measures see Yosida and Hewitt
()).Within axioms (a)-(b)-(c), the countable additivity
is equivalent to continuity of probability, a property that can
be described in two dual (equivalent) forms:

. If A ⊂ A ⊂ ⋯ ⊂ . . ., then P(
+∞
⋃
n=
An) = lim

n→+∞
P(An);

. If A ⊃ A ⊃ ⋯ ⊃ . . ., then P(
+∞
⋂
n=
An) = lim

n→+∞
P(An);

Random Variables and Their
Distributions
Let (Ω,F ,P) be a probability space (usually called abstract
probability space). Let X be a mapping from Ω to some
other space S. A purpose of introducing such mappings
can be twofold. First, in some simple models like tossing
a coin, we prefer to have a numerical model that can also
serve as a model for any experiment with two outcomes.
Hence, instead of Ω = {H,T}, we can think of S = {, }
as a set of possible outcomes, which are in fact labels for
any two outcomes in a real world experiment. Second, in
large scale models, we think of Ω as being a set of possi-
ble states of a system, but to study the whole system can be
too di�cult task, so by mapping we wish to isolate one or
several characteristics of Ω.
While Ω can be a set without any mathematical struc-

ture, S is usually a set of real numbers, a set in Rd, or a
set of functions. To be able to assign probabilities to events
of the form {ω ∈ Ω ∣ X(ω) ∈ B} = X−(B), we have to
de�ne a sigma-�eld B on S, that will accommodate all sets
B of interest. If S is a topological space, usual choices are
for B to be generated by open sets in S (Borel sigma-�eld),
or to be generated by all sets of the form f −(U), where
U ⊂ S is an open set and f is a continuous function S ↦ R
(Baire sigma-�eld). Since for any continuous f and openU,
the set f −(U) is open, the Baire �eld is a subset of corre-
sponding Borel �eld. In metric spaces (and, in particular,
in Rd, d ≥ ) the two sigma �elds coincide.
A mapping X : Ω ↦ S is called (Ω,F) − (S,B) –

measurable if X−(B) ∈ F for any B ∈ B.�e term ran-
dom variable is reserved for such a mapping in the case
when S is a subset of R. Otherwise, X can have values in
Rd, when it is called a random vector, or in some functional
space, when it is called a random process, where trajectories
X(ω) = f (ω, ⋅) depend on a numerical argument usu-
ally interpreted as time, or a random �eld if trajectories are

functions of arguments that are not numbers. In general,X
can be called a random element.

�e central issue in a study of random elements is the
probability measure µ = µX induced by X on the space
(S,B) by µX(B) = P(X−(B)), B ∈ B, which is called the
probability distribution of X. In fact, X is considered to be
de�ned by its distribution; the mapping by itself is not of
interest in Probability. In this way, each random element
X is associated with two probability triplets: (Ω,F ,P) and
(S,B, µ). If a model considers only random variables that
map Ω into S, then the �rst triplet can be discarded, or
more formally, (Ω,F ,P) can be identi�ed with (S,B, µ).

�e collection of sets {X−(B)}B∈B is a sigma-�eld
contained in F , which is called a sigma-�eld generated by
X, in notation σ(X). It is considered in applications as
a complete information about X, as it contains all rele-
vant events in Ω from whose realizations we may deduce
whether or not X ∈ B, for any B ∈ B. In particular, if B
contains all singletons {x}, then we know the value of X.
If there is another sigma-�eld G such that

σ(X) ⊂ G ⊂ F , then we say that X is G-measurable. In
particular, if X is σ(U)-measurable, where U is another
random element and if σ(X) contains all sets of the form
X−({s}), s ∈ S, then X is a function of U.

�e de�nition of a sigma-�eld does not provide any
practical algorithm that can be used to decide whether or
not a particular set belongs to a sigma �eld. For example,
suppose that we have a Borel sigma-�led B on some topo-
logical space S, and we need to knowwhether or not B ∈ B,
for a given B ⊂ S.�en we need to either produce a for-
mula that shows how to get B as a result of countably many
unions, intersections and complements starting with open
and closed sets, or to prove that such a formula does not
exist.�is is rarely obvious or straightforward, and some-
times it can require a considerable work. In cases when
we want to show that a certain family of sets belongs to a
given sigma-�elds, the Dynkin’s so-called “π − λ theorem”
is very useful. A collection C of subsets of a set S is called a
π-system if A ∈ C,B ∈ C Ô⇒ A ∩ B ∈ C. It is called a λ-
system if it has the following three properties: () S ∈ C; ()
A,B ∈ C and B ⊂ A Ô⇒ A/B ∈ C; () For any sequence
of sets An ∈ C with An ⊂ An+ (increasing sets), it holds
that∑+∞

i= An ∈ C.�en we have the following.

Dynkin’s π − λ �eorem Let A be a π-system, B a
λ-system andA ⊂ B.�en σ(A) ⊂ B.

Integration
Let X be a random variable that maps (Ω,F ,P) into
(R,B, µ), where R is the set of reals, B is a Borel
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sigma-algebra and µ is the distribution of X. �e expec-
tation of X is de�ned as

EX = ∫
Ω
X(ω)dP(ω) = ∫

R
xdµ(x),

provided the integrals exist in the Lebesgue sense. By the
construction of Lebesgue integral, E X exists if and only
if E ∣X∣ exists; in that case we say that X is integrable. To
emphasize that the expectation is with respect to measure
P, the notation EPX can be used.
Let f be a measurable function R → R (in R we

assume the Borel sigma-�eld if not speci�ed otherwise).
�en f (X) is again a random variable, that is, the mapping
ω ↦ f (X(ω)) is (Ω,F) − (R,B) -measurable, and

E f (X) = ∫
Ω
f (X(ω))dP(ω) = ∫

R
f (x)dµ(x),

if the integral on the right hand side exists, and then we
say that f is integrable. Expectations can be de�ned in the
same way in more general spaces of values of f or X, for
instance in Rd,d >  or in any normed vector space.

Radon-Nikodym �eorem Suppose that P and Q are
positive countably additive and sigma-�nite measures (not
necessarily probabilities) on the same space (Ω,F). We
say that P is absolutely continuous with respect to Q (in
notation P << Q) if P(B) =  for all B ∈ F with Q(B) = .
If P ≪ Q, then there exists a non-negative measurable

function f such that

P(A) = ∫
Ω
IA(ω)f (ω)dQ(ω), and

∫
Ω
g(ω)dP(ω) = ∫

Ω
g(ω)f (ω)dQ(ω),

for any measurable g. �e function f is called a Radon-
Nikodym derivative, in notation f = dP

dQ , and it is Q-almost
surely unique.
If Q is the Lebesgue measure and P a probability mea-

sure on R, then the function f is called a density of P
or of a corresponding random variable with the distribu-
tion P; distributions P onR that are absolutely continuous
with respect to Lebesgue measure are called continuous
distributions.
If both P and Q are probabilities and P ≪ Q, then

the 7Radon-Nikodym theorem yields that there exists a
random variable Λ ≥  with EQΛ =  such that

P(A) = EQIAΛ and EPX = EQXΛ

for any random variable X.
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A (nonlinear) measurement error model (MEM) consists
of three parts: () a regression model relating an observable
regressor variable z and an unobservable regressor variable
ξ (the variables are independent and generally vector val-
ued) to a response variable y, which is considered here to
be observable without measurement errors; () ameasure-
ment model relating the unobservable ξ to an observable
surrogate variable x; and () a distributional model for ξ.

Parts of MEM
�e regression model can be described by a conditional dis-
tribution of y given (z, ξ) and given an unknown param-
eter vector θ. As usual this distribution is represented by
a probability density function f (y∣z, ξ; θ) with respect to
some underlying measure on the Borel σ-�eld of R. We
restrict our attention to distributions that belong to the
exponential family, i.e., we assume f to be of the form

f (y∣z, ξ; β, φ) = exp(
yη − c(η)

φ
+ a(y, φ)) ()

with
η = η(z, ξ; β). ()

Here β is the regression parameter vector, φ a scalar dis-
persion parameter such that θ = (βT , φ)T , and a, c, and η
are known functions.�is class comprises the class of gen-
eralized linearmodels, where η = η(β+zTβz+ξTβξ), β =

(β, βTx , βTξ )
T .
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�e classical measurement model assumes that the
observed variable x di�ers from the latent ξ by a measure-
ment error variable δ that is independent of z, ξ, and y:

x = ξ + δ ()

with Eδ = . Here we assume that δ ∼ N(, Σδ) with Σδ
known.�e observable data are independent realizations
of the model (xi, yi), i = , . . . ,n.
Under the Berkson measurement model, the latent vari-

able ξ di�ers from the observed x by a centered measure-
ment error δ that is independent of z, x, and y:

ξ = x + δ. ()

�us, the values of x are �xed in advance, whereas the
unknown true values, ξ, are �uctuating.

�e distributional model for ξ either states that the ξ
are unknown constants (functional case) or that ξ is a ran-
dom variable (structural case) with a distribution given by
a density h(ξ; γ), where γ is a vector of nuisance parame-
ters describing the distribution of ξ. In the structural case,
we typically assume that

ξ ∼ N(µξ , Σξ), ()

although sometimes it is assumed that ξ follows a mixture
of normal distributions. In the sequel, for the structural
case we assume γ to be known. If not, it can o�en be esti-
mated in advance (i.e., pre-estimated) without considering
the regression model and the data yi. For example, if ξ is
normal, then µξ and Σξ can be estimated by x and Sx − Σδ ,
respectively, where x and Sx are the empirical mean vec-
tor and the empirical covariance matrix of the data xi,
respectively.

�e goal of measurement error modeling is to obtain
nearly unbiased estimates of the regression parameter β by
�tting a model for y in terms of (z, x). Attainment of this
goal requires careful analysis. Substituting x for ξ in the
model () – (), but making no adjustments in the usual
�ttingmethods for this substitution, leads to estimates that
are biased, sometimes seriously.
In the structural case, the regression calibration (RC)

estimator can be constructed by substituting E(ξ∣x) for
unobservable ξ. In both functional and structural cases,
another, the simulation-extrapolation (SIMEX) estimator,
becomes very popular.�ese estimators are not consistent
in general, although they o�en reduce the bias signi�-
cantly; see Carroll et al. ().

Polynomial and Poisson Model
Wemention two important examples of the classical MEM
() – () where for simplicity the latent variable is scalar and

the observable regressor z is absent.�e polynomial model
is given by

y = β + βξ + ... + βkξ
k
+ ε,

where ε ∼ N (, σ ε ) and ε is independent of ξ. Here

η =
k

∑
r=

βrξr , c(η) =



η,

and φ = σ ε . Both cases are possible: (a) the measure-
ment error variance σ δ is known and (b) the ratio σ ε /σ δ is
known; for the latter case see Shklyar (). In the partic-
ular case of k = , we obtain the linear model; an overview
of methods in this MEM is given in Cheng and Van Ness
().
In the loglinear Poisson model we have y ∼ Po(λ) with

λ = exp(β + βξ); then η = log λ, c(η) = eη , and φ = .

Methods of Consistent Estimation in
Classical MEM
Now, we deal with the general model () – (). We dis-
tinguish between two types of estimators, functional and
structural.�e lattermakes use the distribution of ξ, which
thereforemust be given, at least up to the unknown param-
eter, vector γ.�e former does not need the distribution of
ξ and works even when ξ is not random (functional case).

Functional Method: Corrected Score
If the variable ξwere observable, one could estimate β (and
also φ) by the method of maximum likelihood (ML).�e
corresponding likelihood score function for β is given by

ψ(y, z, ξ; β, φ) =
∂ log f (y∣z, ξ; β, φ)

∂β
=
y − c′(η)

φ
∂η
∂β
.

We want to construct an unbiased estimating function
for β in the observed variables. For this purpose, we need
to �nd functions g and g of z, x, and β such that

E[g(z, x; β)∣z, ξ] =
∂η
∂β
, E[g(z, x; β)∣z, ξ] = c′(η)

∂η
∂β
.

�en

ψC(y, z, x; β) = yg(z, x; β) − g(z, x; β)

is termed the corrected score function.�eCorrected Score
(CS) estimator β̂C of β is the solution to

n

∑
i=

ψC(yi, zi, xi; β̂C) = .

�e functions g and g do not always exist. Stefanski ()
gives the conditions for their existence and shows how to
�nd them if they exist.�e CS estimator is consistent in
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both functional and structural cases. It was �rst proposed
by Stefanski () and Nakamura ().
An alternative functionalmethod, particularly adapted

to 7generalized linear models, is the conditional score
method; see Stefanski and Carroll ().

Structural Methods: Quasi-Likelihood and
Maximum Likelihood
�e conditional mean and conditional variance of y given
(z, ξ) are, respectively,

E(y∣z, ξ) = m∗(z, ξ; β) = c′(η), V(y∣z, ξ)
= v∗(z, ξ; β) = φc′′(η).

�en the conditional mean and conditional variance of y
given the observable variables are

m(z, x; β) = E(y∣z, x) = E[m∗(z, ξ; β)∣x],
v(z, x; β) = V(y∣z, x) = V[m∗(z, ξ; β)∣x]

+ E[v∗(z, ξ; β)∣x].

For the quasi-likelihood (QL) estimator, we construct
the quasi-score function

ψQ(y, z, x; β) = [y −m(z, x; β)]v(z, x; β)−
∂m(z, x; β)

∂β
.

Here we drop the parameter φ considering it to be known.
We also suppress the nuisance parameter γ in the argument
of the functions m and v, although m and v depend on γ.
Indeed, in order to compute m and v, we need the con-
ditional distribution of ξ given x, which depends on the
distribution of ξ with its parameter γ. For instance, assume
() where the elements of µξ and Σξ make up the compo-
nents of the parameter vector γ.�en ξ∣x ∼ N(µ(x),T)
with

µ(x) = µξ + Σξ(Σξ + Σδ)
−
(x − µξ),

T = Σδ − Σδ(Σξ + Σδ)
−Σδ .

�e QL estimator β̂Q of β is the solution to
n

∑
i=

ψQ(yi, zi, xi; β̂C) = .

�e equation has a unique solution for large n, but it may
have multiple roots if n is not large. Heyde and Morton
() develop methods to deal with this case.
Maximum likelihood is based on the conditional joint

density of x, y given z. �us, while QL relies only on
the error-free mean and variance functions, ML relies on
the whole error-free model distribution.�erefore, ML is
more sensitive than QL with respect to a potential model
misspeci�cation because QL is always consistent as long as

at least the mean function (along with the density of ξ) has
been correctly speci�ed. In addition, the likelihood func-
tion is generally much more di�cult to compute than the
quasi-score function.�is o�en justi�es the use of the rel-
atively less e�cient QL instead of the more e�cient ML
method.

Efficiency Comparison
ForCS andQL, β̂ is asymptotically normal with asymptotic
covariance matrix (ACM) ΣC and ΣQ, respectively. In the
structural model, it is natural to compare the relative e�-
ciencies of β̂C and β̂Q by comparing their ACMs. In case
there are no nuisance parameters, it turns out that

ΣC ≥ ΣQ ()

in the sense of the Loewner order for symmetric matri-
ces. Moreover, under mild conditions the strict inequality
holds.

�ese results hold true if the nuisance parameters γ are
known. If, however, they have to be estimated in advance,
() need not be true anymore. For the Poisson and poly-
nomial structural models, Kukush et al. () prove that
() still holds even if the nuisance parameters are pre-
estimated. Recently Kukush et al. () have shown that
QL can be modi�ed so that, in general, ΣC ≥ ΣQ; for this
purpose the γ must be estimated together with β and not
in advance.

Estimation in Berkson Model
Now, we deal with the model (), (), and (). Substituting
x for ξ in the regressionmodel () – () is equivalent to RC.
�erefore, it leads to estimates with a typically small bias.
A more precise method is ML. �e conditional joint

density of x and y given z has a simpler form compared
with the classical MEM.�at is whyML is more reliable in
the Berkson model.

Nonparametric Estimation
We mention two nonparametric problems overviewed in
Carroll et al. (), Ch. : the estimation of the density
ρ of a random variable ξ, and the nonparametric estima-
tion of a regression function f , both when ξ is measured
with error. In these problems under normally distributed
measurement error, the best mean squared error of an
estimator of ρ(x) or f (x) converges to  at a rate no
faster than the exceedingly slow rate of logarithmic order.
However, under a more heavy-tailed measurement error,
estimators can perform well for a reasonable sample size.
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Broadly de�ned, measurement of economic progress
focuses on quantitative analysis of the standard of living
or quality of life and their determinants.�e analysis con-
cerns many elements of the standard living such as its
material components, human capital, including education
andhealth, inequality and other factors [see, among others,
Barro and Sala-i Martin (), Howitt and Weil (),
Steckel (), and references therein].

�eoretical foundation for empirical analysis of deter-
minants of economic growth is provided by the Solow
growth model. �e human capital-augmented version of
the model with the Cobb-Douglas production function
[see Mankiw et al. ()] assumes that, for country i
at time t, the aggregate output Yi(t) satis�es Yi(t) =

Ki(t)αHi(t)β
(Ai(t)Li(t))−α−β , where Ki(t) is physical

capital, Hi(t) is human capital, Li(t) is labor supply and
Ai(t) is a productivity parameter (the e�ciency level of
each worker or the level of technology). �e variables L
and A are assumed to obey Li(t) = Li()eni t and A(t) =

A()egt , where ni and g are, respectively, the population
growth rate and the rate of technological progress. Physical
and human capital are assumed to follow continuous-time
accumulation equationsdKi(t)/dt = sK ,iYi(t)−δKi(t) and
dHi(t)/dt = sH,iYi(t)−δH(t)with the depreciation rate δ
and the savings rates sK ,i and sH,i. Under the above assump-
tions, the growth model leads to the regressions γi = a +
a log yi()+a log(ni +g+ δ)+a log sK ,i +a log sH,i +єi,
where γi = (log yi(t) − log yi())/t is the growth rate of
output per worker yi(t) = Yi(t)/Li(t) between time 
and t [see, among others, Barro and Sala-i Martin (),
Durlauf et al. ()]. Cross-country growth regressions
typically include additional regressorsZi and focus on esti-
mating models in the form γi = aXi + bZi + єi, where
a = (a, a, ..., a) ∈ R, b = (b, b, ..., bm) ∈ Rm,
the components of Xi = (, log yi(), log(ni + g +

δ), log sK ,i, log sH,i)′ are the growth determinants in the
Solow model and Zi ∈Rm is the vector of growth determi-
nants outside the Solow growth theory.

�e statistical analysis of economic progress and its
determinants presents a number of challenges due to



Measurement of Economic Progress M 

M

the necessity of using proxy measures and corresponding
weights for di�erent components of the standard of liv-
ing and factors a�ecting it.�e material standard of living
is typically measured as per capita Gross Domestic Prod-
uct (GDP) adjusted for changes in price levels. Proxies for
education and human capital used in growth economics
include school-enrollment rates at the secondary and pri-
mary levels, literacy rates, average years of secondary and
higher schooling and outcomes on internationally compa-
rable examinations. Many works in the literature have also
used student-teacher ratios as a measure of quality of edu-
cation.�e two most widely used measures of health are
life expectancy at birth or age  and average height used as a
proxy for nutritional conditions during the growing years.
Barro () and Barro and Sala-i Martin () �nd

that the growth rate of real per capita GDP is positively
related to initial human capital, including education and
health, proxied by school-enrollment rates, upper-level
schooling and life expectancy and negatively related to the
initial level of real per capita GDP. �e results in Barro
() also indicate statistically signi�cant negative e�ects
of political instability (measured using the number of rev-
olutions and coups per year and the number of political
assassinations per million population per year) on growth.
Other factors used in the analysis in Barro () and Barro
and Sala-i Martin () include fertility and the ratio of
real government consumption to real GDP (with statis-
tically signi�cant negative e�ects on growth), investment
ratio, in�ation rate aswell as proxies formarket distortions,
maintenance of the rule of law, measures for democracy,
international openness, the terms of trade, indicators for
economic systems and countries in sub-Saharian Africa
and Latin America and other variables.
A number of works in theoretical and empirical growth

economics have focused on the development and analysis
of performance of models with endogenous technological
progress. Many recent studies have also studied the factors
that lead to the observed di�erences in the determinants
of economic growth in di�erent countries, including cap-
ital components, technology and e�ciency. In particular,
several works have emphasized the role of geographical
di�erences, cultural factors, economic policies and insti-
tutions as fundamental causes of the di�erences in growth
determinants (Howitt and Weil ).
Statistical study of economic growth determinants is

complicated by relatively small samples of available obser-
vations, measurement errors in key variables, such as
GDP, heterogeneity in observations and estimated param-
eters, dependence in data and large number of potential
growth regressors under analysis. Related issues in the
analysis of economic growth concern di�culty of causal

interpretation of estimation results, robustness of the con-
clusions to alternativemeasures of variables in the analysis,
and open-endedness of growth theories that imply that
several key factors matter for growth at the same time.
Levine and Renelt () focus on the analysis of robust-
ness of conclusions obtained using cross-country growth
regressions.�ey propose assessing the robustness of the
variable Z of interest using the variation of the coe�-
cient b in cross-country regressions γi = aXi + bZi +
cVi + єi, where Xi is the vector of variables that always
appear in the regressions (e.g., the investment share of
GDP, initial level of income, a proxy for the initial level
of human capital such as the school enrollment rate, and
the rate of population growth in country i), and Vi is a
vector of additional control variables taken from the pool
of variables available. Departing from the extreme bounds
approach in Levine and Renelt () that requires the
estimate of the coe�cient of interest b to be statistically
signi�cant for any choice of control variables V, several
recent works [see Sala-i Martin et al. (), Ch.  in
Barro and Sala-i Martin (), and references therein]
propose alternative less stringent procedures to robustness
analysis. Several recent works on the analysis of economic
growth and related areas emphasize importance of models
incorporating disasters and crises and probability distribu-
tions generating 7outliers and extreme observations, such
as those with heavy-tailed and power-law densities [see
Barro (), Gabaix () and Ibragimov ()].
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Measurement of Uncertainty
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�e measurement and comparison of uncertainty associ-
ated with a random phenomenon have been a problem
attracting a lot of researchers in Science and Engineer-
ing over the last few decades. Given a system whose exact
description is unknown its 7entropy is the amount of
information needed to exactly specify the state of the
system. �e Shannon’s entropy, introduced by Shannon
(), has been extensively used in literature as a
quantitative measure of uncertainty. If A,A, . . . ,An are
mutually exclusive events, with respective probabilities
p, p, . . . , pn, the Shannon’s entropy is de�ned as

Hn(P) = −
n

∑
i=
pi log pi. ()

Earlier development in this area was centered on char-
acterizing the Shannon’s entropy using di�erent sets of
postulates. �e classic monographs by Ash (), Aczel
and Daroczy () and Behra () review most of the
works on this aspect. Another important aspect of interest
is that of identifying distributions for which the Shan-
non’s entropy ismaximumsubject to certain restrictions on

the underlying random variable. Depending on the con-
ditions imposed, several maximum entropy distributions
have been derived. For instance, if X is a random variable
in the support of the set of non-negative real numbers, the
maximum entropy distribution under the condition that
the arithmetic men is �xed is the exponential distribution.
�e book by Kapur () covers most of the results in this
area.
For a continuous non-negative random variableX with

probability density function f (x) the continuous analogue
of () takes the form

H( f ) = −∫
∞

−∞
f (x) log f (x)dx. ()

Several modi�cations of the Shannon’s entropy has
been proposed and extensively studied. Renyi () de�ne
the entropy of order α as

Hα(P) =

 − α

log

n

∑
i=
pα
i

n

∑
i=
pi
, α ≠ , α >  ()

where P = (P,. . . . . .Pn) is such that pi ≥ , and
n

∑
i−
pi = .

As α → , () reduces to (). Khinchin () general-
ized the Shannon’s entropy by choosing a convex function
φ(.), with φ() =  and de�ned the measure

Hφ( f ) = −∫
∞

−∞
f (x)φ[ f (x)]dx. ()

Nanda and Paul () studied () for two particular
choices of φ in the form

Hβ
 ( f ) =


β − 

[ − ∫
α


f β

(x)dx] ()

and

Hβ
 ( f ) =


 − β

⎡
⎢
⎢
⎢
⎢
⎣

log
∞

∫


f β
(x)dx

⎤
⎥
⎥
⎥
⎥
⎦

()

where the support of f is the set of non-negative reals and
β >  with β ≠ . As β → , () and () reduces to the
Shannon’s entropy given in ().
Recently Rao et al. () introduced cumulative resid-

ual entropy de�ned by

E(X) = −∫
∞


F(x) logF(x)dx

which is proposed as an alternative measure of uncer-
tainty based on the cumulative survival function F(x)=
P(X > x). For various properties and applications of this
measure we refer to Rao () and Asadi and Zohrevand
().

http://www.dictionaryofeconomics.com/article?id=pde2008_H000191
http://www.dictionaryofeconomics.com/article?id=pde2008_H000191
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�ere are several other concepts closely related
to the Shannon’s entropy. Kullback and Leibler ()
de�nes the directed divergence (also known as rela-
tive entropy or cross entropy) between two distributions
P = (p, p, . . . , pn) and Q= (q, q, . . . , qn) with

pi, qi ≥ 
n

∑
i=
pi =

n

∑
i=
qi = 

as

Dn(P,Q) =
n

∑
i=
pi log

pi
qi
. ()

Kannappan and Rathie () and Mathai and Rathie
() have obtained characterization results based on cer-
tain postulates which naturally leads to ().�e continuous
analogue of () turns out to be

D( f , g) = ∫
α

−∞
f (x) log

f (x)
g(x)

dx ()

where f (x) and g(x) are probability density functions
corresponding to two probability measures P and Q.

�e concept of a�nity between two distributions was
introduced and studied in a series of works by Matusita
[seeMatusita ()].�ismeasure has beenwidely used as
a useful tool for discrimination amongdistributions. A�n-
ity is symmetric in distributions and has direct relationship
with error probability when classi�cation or discrimina-
tion is concerned. For two discrete distributions P and Q
considered above theMatusita’s a�nity (Mathai andRathie
) between P and Q is de�ned as

δ(P,Q) =
n

∑
i=

(piqi)/. ()

If X and Y are non-negative random variables and if f (x)
and g(x) are the corresponding probability density func-
tions, the a�nity between f and g takes the form

δ( f , g) = ∫
∞



√
f (x)g(x)dx ()

δ( f , g) lies between  and .
Majernik () has shown that

H( f , g) = [ − δ( f , g)]

where H( f , g) is the Hellinger’s distance de�ned by

H( f , g) = ∫
∞


[
√
f (x) −

√
g(x)]


dx. ()

A�nity is a special case of the Cherno� distance con-
sidered in Akahira () de�ned by

C(F,G) = − log [∫ f α
(x)g−αdx] ,  < α < . ()

It may be noticed that when α =


() reduces to

− log δ ( f , g) , where δ ( f , g) is the a�nity de�ned in ().
�e concept of inaccuracy was introduced by

Kerridge (). Suppose that an experimenter asserts that
the probability for the ith eventuality is qi whereas the true
probability is pi, then the inaccuracy of the observer, as
proposed by Kerridge, can be measured by

(P,Q) = −
n

∑
i=
pi log qi ()

where P and Q are two discrete probability distributions,
considered earlier.
Nath () extended the Kerridge’s concept to the

continuous situation. If F(x) is the actual distribution
function corresponding to the observations and G(x) is
the distribution assigned by the experimenter and f (x) and
g(x) are the corresponding density functions the inaccu-
racy measure is de�ned as

(F,G) = −∫
α


f (x) log g(x)dx. ()

�is measure has extensively been used as a useful tool for
measurement of error in experimental results. In express-
ing statements about probabilities of various events in an
experiment, two kinds of errors are possible: one result-
ing from the lack of enough information or vagueness in
experimental results and the other from incorrect infor-
mation. In fact, () can be written as

(F,G) = −∫
∞


f (x) log f (x)dx +∫

∞


f (x) log

f (x)
f (x)

dx.

()

�e �rst term on the right side of () represents the
error due to uncertainty which is the Shannon’s entropy
while the second term is the Kullback–Leibler measure,
de�ned in () representing the error due to wrongly spec-
ifying the distribution as G(x). In this sense the measure
of inaccuracy can accommodate the error due to lack of
information as well as that due to incorrect information.
In many practical situations, complete data may not be

observable due to various reasons. For instance, in lifetime
studies the interest may be on the life time of a unit a�er
a speci�ed time, say t. If X is the random variable repre-
senting the life time of a component the random variable
of interest is X− t∣X > t. Ebrahimi () de�nes the resid-
ual entropy function as the Shannon’s entropy associated
with the residual life distribution, namely

H( f , t) = −∫
∞

t

f (x)
F(t)

log
f (x)
F(x)

,F(t) > . ()
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In terms of the hazard rate h(x) =
f (x)
F(x)

, () can also be

written as

H( f , t) =  −

F(t) ∫

∞

t
f (x) logh(x)dx. ()

Ebrahimi points out that () can be used as a potential
measure of stability of components in the reliability con-
text.�e problem of ordering life time distributions using
this concept has been addressed in Ebrahimi and Kirmani
(). Belzunce et al. () has shown that the resid-
ual entropy function determines the distributions uniquely
if H( f , t) is increasing in t. Characterization of probabil-
ity distributions using the functional form of the residual
entropy function have been the theme addressed in Nair
and Rajesh (), Sankaran and Gupta (), Asadi and
Ebrahimi () and Abraham and Sankaran ().
Recently Nanda and Paul () has extended the def-

inition of the Renyi entropy de�ned by () and () to the
truncated situation. It is established that under certain con-
ditions the Renyi’s residual entropy function determines
the distribution uniquely.�ey have also looked into the
problem of characterization of probability distributions
using the same.
Ebrahimi and Kirmani () has modi�ed the de�-

nition of the Kullback–Leibler measure to the truncated
situation to accommodate the current age of a system.
Recently Smitha et al. () have extended the de�nition
of a�nity to the truncated situation and has obtained char-
acterization results for probability distributions under the
assumption of proportional hazardmodel. Nair and Gupta
() extended the de�nition of the measure of inaccu-
racy to the truncated situation and has characterized the
generalized Pareto distributions using the functional form
of the inaccuracy measure.
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Measures of Agreement

Elisabeth Svensson
Örebro University, Örebro, Sweden

Agreement in repeated assessments is a fundamental
requirement for quality of data from assessments on
7rating scales. Scale assessments produce ordinal data, the
ordered categories representing only a rank order of the
intensity of a particular variable and not a numerical value
in a mathematical sense, even when the assessments are
numerically labeled.

�emain quality concepts of scale assessments are reli-
ability and validity. Reliability refers to the extent to which
repeated measurements of the same object yield the same
result, which means agreement. In intra-rater reliability
studies the agreement in test-retest assessments is evalu-
ated. Inter-rater reliability refers to the level of agreement
between two raters judging the same object.

�e percentage agreement (PA) in assessments is the
basic agreement measure and is also called overall agree-
ment or raw agreement. When PA < % the reasons for
disagreement can be evaluated by a statistical approach by
Svensson that takes account of the rank-invariant proper-
ties of ordinal data.�e approachmakes it possible to iden-
tify and measure systematic disagreement, when present,
separately from disagreement caused by individual vari-
ability in assessments. Di�erent frequency distributions
of the two sets of ordinal assessments indicate that the
two assessments disagree systematically regarding the use
of the scale categories. When higher categories are more
frequently used in one set of assessments, X, than in the
other, Y , there is a systematic disagreement in position.

�e measure Relative Position, RP, estimates the param-
eter of a systematic disagreement in position de�ned by
γ = P(X < Y) − P(Y < X).
A systematic disagreement in how the two assessments

are concentrated to the scale categories is measured by the
Relative Concentration, RC, estimating the parameter of a
systematic shi� in concentration δ = P(Xl < Yk < Xl) −
P(Yl < Xk < Yl).

�e measure of individual variability, the relative
rank variance,  ≤ RV ≤  is de�ned RV =

n

m

∑
i=

m

∑
j=
xij[R

(X)
ij − R(Y)ij ]


where R(X)ij is the mean aug-

mented rank of the observations in the ijth cell of anm×m
square contingency table according to the assessments X.
In the aug-rank approach R(X)i,j− < R

(X)
i,j and R

(Y)
i−,j < R

(Y)
i,j .

RV =  means that the observed disagreement is com-
pletely explained by the measures of systematic disagree-
ment. In that case the two sets of aug-ranks are equal and
the paired distribution is the rank-transformable pattern of
agreement (see 7Ranks).

�e advantage of separating the observed disagree-
ment in the components of systematic and individual
disagreements is that it is possible to improve the rat-
ing scales and/or the users of the scale. Systematic dis-
agreement is population based and reveals a system-
atic change in conditions between test-.retest assessments
or that raters interpret the scale categories di�erently.
Large individual variability is a sign of poor quality of
the rating scale as it allows for uncertainty in repeated
assessments.

�e Cohen’s coe�cient kappa (κ) is a commonly
used measure of agreement adjusted for the chance
expected agreement. �ere are limitations with kappa.
�e maximum level of kappa, κ = , requires equally
skilled raters, in other words lack of systematic disagree-
ment (bias).�e value of weighted kappa depends on the
choice of weights, and the weighting procedure ignores the
rank-invariant properties of ordinal data.�e kappa value
increases when the number of categories decreases, and
depends also on how the observations are distributed on
the di�erent categories, the prevalence. �erefore kappa
values from di�erent studies are not comparable.

�e calculations of Cronbach’s alfa and other so-
called reliability coe�cients are based on the assumption
of quantitative, normally distributed data, which is not
achievable in data from rating scales.

�ere is also a widespread misuse of correlation in
reliability studies.�e correlation coe�cient measures the
degree of association between two variables and does not
measure the level of agreement, see Fig. .�e PA is %,
and the observed disagreement is mainly explained by a
systematic disagreement in position.�e negative RP value
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A. The observed pattern B. The rank-transformable
pattern of agreement

X C1 C2 C3 C4 total X total
Y Y

C4 1 1 2 2 2

C3 2 2 14 18 1 17 18

C2 1 1 11 3 16 16 16

C1 2 8 3 1 14 3 11 14

total 3 11 17 19 50 3 11 17 19 50

C1 C2 C3 C4

C4

C3

C2

C1

Measures of Agreement. Fig.  The frequency distribution of  pairs of assessments on a scale with four ordered categories,
C < C < C < C and the corresponding rank-transformable pattern of agreement, defined by the marginal distributions

(−.) and the constructed RTPA shows that the assess-
ments Y systematically used a lower category than did X.
A slight additional individual variability, RV = . is
observed.�e Spearman rank-order correlation coe�cient
is . in A and . in B, ignoring the fact that the assess-
ments are systematically biased and unreliable.�e same
holds for the coe�cient kappa (−.).
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Let X and Y be continuous random variables with joint
distribution function (DF) H and marginal DFs F and G.
�ree well-known measures of dependence are

. Pearson’s correlation:

ρ =


σXσY
Cov(X,Y)

=


σXσY ∫
∞

−∞
∫

∞

−∞
[H(x, y) − F(x)G(y)]dxdy

where σx, σy andCov(X,Y) are the standard deviations
and covariance of X and Y , respectively

. Spearman’s correlation: s=  ∫
∞
−∞ ∫

∞
−∞[H(x, y) −

F(x)G(y)]dF(x)dG(y),
. Kendall’s correlation: τ =  ∫

∞
−∞ ∫

∞
−∞H(x, y)dH

(x, y)− 

Pearson correlation measures the strength of linear
relationship between X and Y and has well-studied the-
oretical properties. However, it can be unduly in�uenced
by 7outliers, unequal variances, non-normality, and non-
linearity. Spearman’s correlation re�ects the monotone
association between X and Y and measures the correla-
tion between F(X) and G(Y). Kendall’s correlation is the
probability of concordance minus the probability of dis-
cordance. Spearman’s and Kendall’s correlations remain
invariant under a monotone transformation. However,
Pearson’s correlation remains only invariant under a loca-
tion and scale change.
Using the probability integral transformations u =

F(x) and v = G(y), the copula (see also 7Copulas) of X
and Y is de�ned as C(u, v) = H(F−(u),G−(v)). Hence,

ρ =


σXσY ∫∫I
[C(u, v) − uv]dF−(u)dG−(v),

s = ∫∫
I
[C(u, v) − uv]dudv,

τ = ∫∫
I
C(u, v)dC(u, v) − 

where I is the unit square. Schweizer andWol� () note
that C(u, v)− uv is the signed volume between the surface
z = C(u, v) and Z = uv (the independence copula).
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Copula representation of ρ clearly shows its depen-
dence on the marginal distributions. �erefore, it is not
a measure of nonparametric dependence. Daniels ()
shows that − ≤ τ − s ≤ . Nelsen () studies the
relationship between s and τ for several families of cop-
ulas and Fredricks and Nelsen () show that the ratio
τ/s approaches / as H approaches independence.
Hoe�ding () and Frechét () show that for all

(x, y) ∈ R the joint DF is bounded: H(x, y) ≤ H(x, y) ≤
H(x, y) where H(x, y) = max(,F(x) + G(y) − ) and
H(x, y) = min(F(x),G(y)) are distribution functions.
Perfect negative correlation is obtained when H is con-
centrated on the line F(x) + G(y) =  whereas perfect
positive correlation is obtained when H is concentrated
on the line F(x) = G(y). In fact, H(x, y) = F(x)G(y)
for all (x, y) ∈ R re�ects independence of X and Y . Let
C(x, y) = max(,u + v − ), C(x, y) = min(u, v) and
C(x, y) denote the Frechét lower, upper and indepen-
dence copulas, respectively. Similarly, C(u, v) ≤ C(u, v) ≤
C(u, v).
Using Hoe�ding lemma ()

Cov(X,Y) = ∫
∞

−∞
∫

∞

−∞
[H(x, y) − F(x)G(y)]dxdy,

one can show ρ ≤ ρ ≤ ρ where ρ and ρ are the
correlation coe�cients associated withH andH, respec-
tively. Depending on the marginal distributions the range
of ρ may be much smaller than ∣ρ∣ ≤ . For example,
for the bivariate log-normal distribution with unit vari-
ances, one can show ρ ∈ (−., ). Lancaster ()
uses Chebyshev-Hermite polynomial to obtain the corre-
lation coe�cient of transformed bivariate random vectors.
Freeman and Modarres () obtain the form of the
correlation a�er a 7Box-Cox transformation.
Moran () states that the necessary and su�cient

conditions for ρ to assume extreme values of + and− are

. X d
= aY + b for constants

. F(µ + x) =  − F(µ − x) where µ is the mean of
X. Normal, uniform, double exponential and logistic
distributions satisfy these conditions

Rényi () considers a set of conditions that a
symmetric nonparametric measure of dependence should
satisfy. Schweizer and Wol� () note that Rényi’s con-
ditions are too strong and suggest that any suitably nor-
malized distance measure such as the Lp distance provides
a symmetric measure of nonparametric dependence.�ey
show that these distances, according to a modi�ed set of
Rényi conditions, enjoy many useful properties. Let Lp =
(Kp ∫∫I ∣C(u, v) − uv∣

pdudv)/p where Kp is chosen such
that Lp remains in (, ). We have

. L =  ∫∫I ∣C(u, v) − uv∣dudv

. L = ( ∫∫I(C(u, v) − uv)
dudv)

/

. L∞ =  Sup I ∣C(u, v) − uv∣

In fact Hoe�ding () and Blum et al. () base a
nonparametric test of independence between X and Y on
L∞.Modarres () studies several tests of independence,
including a measure based on the likelihood of cut-points.
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De-noising a time series, that is a sequence of observations
of a variable measured at equidistant points in time, or an
image, that is a rectangular array of pixels, is a common
task nowadays.�e objective is to extract a varying level
(a “signal”) representing the path followed by the time
series or the true image which is overlaid by irrelevant
noise.
Linear �lters like moving averages are computationally

simple and eliminate normal noise e�ciently. However,
their output is heavily a�ected by strongly deviating obser-
vations (called7outliers, spikes or impulses), which can be
caused for instance by measurement artifacts. Moreover,
linear �lters do not preserve abrupt changes (also called
step changes or jumps) in the signal or edges in an image.
Tukey () suggests median �lters, also called running
medians, for these purposes.
We focus on the time series setting in the following.

Let y, . . . , yN be observations of a variable at equidistant
points in time. De-noising these data for extraction of
the time-varying mean level underlying these data (the
signal) can be accomplished by moving a time window
yt−k, . . . , yt , . . . , yt+k of length n = k+  through the series
for estimation of the level µt in the center of the window.
Whereas a moving average calculates the arithmetic aver-
age of the data in the time window for this, a running
median uses the median of these values. If the window
width is �xed throughout, we get estimates of the levels
µk+, . . . , µN−k at instances not very close to the start or the
end of the time series.�e levels at the start or the end of
the time series can be estimated for instance by extrapo-
lation of the results from the �rst and last window or by
adding the �rst and the last observed value a su�cient
number of times.
Figure  depicts observations of the arterial blood pres-

sure of a patient in intensive care measured once a minute,
as well as the outputs of a moving average and a running
median, both with window width n = .�e moving aver-
age is strongly a�ected by a fewmeasurement artifacts, and
it smooths the sudden increase at t = . �e running
median eliminates the spikes and preserves the shi�.
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Median Filters and Extensions. Fig.  Measurements of the
arterial blood pressure of a patient and outputs of a running
median and a moving average, both with window width n = 

A possible disadvantage of running medians is that
they implicitly rely on the assumption that the level is
almost constant within each time window. While increas-
ing the window width improves the reduction of noise if
the signal is locally constant, this is no longer the case in
trend periods. Davies et al. () investigate application
of robust regression to a moving time window to improve
the approximation of trends in the presence of 7outliers.
Many further re�nements of robust �lters for signal extrac-
tion from time series or images and di�erent rules for
choosing a (possibly locally adaptive) window width from
the data have been suggested in the literature. See Gather
et al. () for an overview on robust signal extraction
from time series.
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Statistical science plays an important role in medical
research. Indeed a major part of the key to the progress
in medicine from the th century to the present day has
been the collection and valid interpretation of empirical
evidence provided by the application of statistical methods
to medical studies. And during the last few decades, the
use of statistical techniques in medical research has grown
more rapidly than in any other �eld of application. Indeed,
some branches of statistics have been especially stimulated
by their applications in medical investigations, notably
the analysis of 7survival data (see, for example, Collett
). But why has statistics (and statisticians) become so
important in medicine? Some possible answers are:

● Medical practice and medical research generate large
amounts of data. Such data can be full of uncertainty
and variation and extracting the “signal,” i.e. the sub-
stantive medical message in the data, form the ‘noise’
is usually anything but trivial.

● Medical research o�en involves asking questions that
have strong statistical overtones, for example: ‘How
common is a particular disease?’; ‘Which people have
the greatest chance of contracting some condition or
other?’; ‘What is the probability that a patient diag-
nosed with breast cancer will survive more than �ve
years?’

● �e evaluation of competing treatments or preventa-
tive measures relies heavily on statistical concepts in
both the design and analysis phase.

In a short article such as this it is impossible to cover
all areas of medicine in which statistical methodology is
of particular importance and so we shall concentrate on
only three namely, clinical trials, imaging and molecular
biology. (For a more comprehensive account of the use of
statistics in medicine see Everitt and Palmer ()).

Clinical Trials
If a doctor claims that a certain type of psychotherapy
will cure patients of their depression, or that taking large
doses of vitamin C can prevent and even cure the common
cold, how should these claims be assessed? What sort of
evidence do we need to decide that claims made for the

e�cacy of clinical treatments are valid? One thing is cer-
tain: We should not rely either on the views of ‘experts’
unless they provide sound empirical evidence (measure-
ments, observations, i.e., data) to support their views, nor
should we credit the anecdotal evidence of people who
have had the treatment and, in some cases, been ‘miracu-
lously’ cured. (And it should be remembered that the plural
of anecdote is not evidence.) Such ‘wonder’ treatments,
which are o�en exposed as ine�ectual when exposed to
more rigorous examination, are particularly prevalent for
those complaints for which conventional medicine has lit-
tle to o�er (see the discussion of alternative therapies in
Chapter  of Everitt ).

�ere is clearly a need for some form of carefully con-
trolled procedure for determining the relative e�ects of
di�erent treatments and this need has been met in the
th and st centuries by the development of the clinical
trial, a medical experiment designed to evaluate which (if
any) of two or more treatments is the more e�ective.�e
quintessential components of a clinical trial, the use of a
control group and, in particular the use of7randomization
as a way of allocating participants in the trial to treat-
ment and control groups, were laid down in the �rst half
of the th century.�e randomization principle in clin-
ical trials was indeed perhaps the greatest contribution
made by arguably the greatest statistician of the th cen-
tury, Sir Ronald Aylmer Fisher. Randomization achieves
the following:

● It provides an impartial method, free of personal bias,
for the assignment of participants to treatment and
control groups. �is means that treatment compar-
isons will not be invalidated by the way the clinician
might chose to allocate the participants if le� to his or
her own judgment.

● It tends to balance treatment groups in terms of extra-
neous factors that might in�uence the outcome of
treatment, even in terms of those factors the investi-
gator may be unaware of.

Nowadays some ,–, clinical trials are under-
taken in all areas of medicine form the treatment of acne
to the prevention of cancer and the randomized controlled
clinical trial is perhaps the outstanding contribution of
statistics to th century medical research. And in the st
century statisticians have applied themselves to develop-
ing methods of analysis for such trials that can deal with
the di�cult problems of patient drop-out, the longitudinal
aspects ofmost trials and the variety ofmeasurement types
used in such trials (see Everitt and Pickles ).
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Imaging
Examples of medical imaging systems include conven-
tional radiology (X-rays), positron-emission tomography
(PET), magnetic resonance imaging (MRI) and functional
magnetic resonance imaging (fMRI). A signi�cant advan-
tage o�en claimed for medical imaging is its ability to
visualize structures or processes in the patient without the
need for intrusive procedures, for example, surgery; but
this may also be a disadvantage and the question that may
need to be asked is how well do the conclusions from an
imaging experiment correspond to the physical properties
that might have been found from an intrusive procedure?
Imaging studies generate large amounts of data and a

host of statistical techniques have been employed to ana-
lyze such data and to extract as much information as pos-
sible from what is in many cases very ‘noisy’ data. Autore-
gressivemodels, linearmixed e�ectsmodels, �nitemixture
models and Gaussian random �eld theory have all been
applied to mixture data with varying degrees of success.
Some important references are Besag (), Silverman
et al. () and Lange ().

Molecular Biology
Molecular biology is the branch of biology that studies
the structure and function of biological macromolecules
of a cell and especially their genetic role. A central goal of
molecular biology is to decipher the genetic information
and understand the regulation of protein synthesis and
interaction in the cellular process. Advances in biotechnol-
ogy have allowed the cloning and sequencing of DNA and
the massive amounts of data generated have given rise to
the new �eld of7bioinformatics which deals with the anal-
ysis of such data. A variety of statistical methods have been
used in this area; for example, hiddenMarkovmodels have
been used to model dependencies in DNA sequences and
for gene �nding (see Schliep et al. ) and data mining
techniques (see7Data Mining), in particular, cluster anal-
ysis (see, for example, Everitt et al. ) have been used to
identify sets of genes according to their expression in a set
of samples, and to cluster samples (see7Cluster Sampling)
into homogeneous groups (see Toh and Honimoto ).
Statistical methods are an essential part of all medi-

cal studies and increasingly sophisticated techniques now
o�en get a mention in papers published in the medical lit-
erature. Some of these have beenmentioned above but oth-
erswhich are equally important are Bayesianmodeling (see
Congdon ) and generalized estimating equations (see
Everitt and Pickles ). In these days of evidence-based
medicine (Sackett et al. ), collaboration betweenmed-
ical researchers and statisticians is essential to the success
of almost all research in medicine.
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Historical Background
�e term statistics has at least three, related, meanings. It
may refer to data in raw form, or to summaries thereof,
or to the analysis of uncertainty associated with data.�e
phrase medical statistics, therefore, may reasonably be
applied to the specialization to medical science of any of
these understandings of statistics.
Raw medical statistics date back at least to the London

Bills of Mortality, collected weekly between  and 
in order to provide an early warning of plague.�e early
demographic work of John Graunt (–) was based
on these Bills. �e summaries of vital statistics under-
taken byWilliam Farr (–), working at the General
Registry O�ce of England and Wales, became the basis
of many important health reforms. However, the found-
ing editors of the journal Statistics in Medicine described
modern medical statistics as “the deployment of the ideas,
principles and methods of statistics to stimulate deeper
understanding in medicine” (Colton et al. ), empha-
sizing the third understanding of the term.

�e history of the link between statistics and medicine
includes key �gures in the development of statistics
itself. For example, Arbuthnot (–) and Bernoulli
(–), o�en cited in the early use of signi�cance
tests, were each quali�ed in both mathematics and in
medicine. Many individuals have contributed to the emer-
gence of medical statistics as a scienti�c discipline in its
own right. �e French writers, Pinel (–), Louis
(–) and Gavarret (–) and the Danish
physician, Heiberg (–) provided early impetus.
Subsequently, Pearl (–) and Greenwood (–
) established research programmes in medical statis-
tics in theUSA and theUK respectively. In , Hill (–
) published the highly in�uential book, Principles of
Medical Statistics, Hill (), of which twelve editions
were published over the next  years. Two other impor-
tant contributions of Hill were arguably the �rst modern
randomized clinical trial on the e�ect of streptomycin in
tuberculosis, and his discussion of criteria for causality
in epidemiological studies. A useful source for informa-
tion on the history of medical statistics is the Lind Library
[http://www.jameslindlibrary.org].

The Nature of Medical Statistics
Much activity in medical statistics is necessarily collabo-
rative. Over the course of a career, statisticians engaged in
medical research are likely to work closely with physicians,
nurses, laboratory scientists and other specialists. Com-
munication across disciplines can present challenges but,
in addition to its scienti�c merit, also frequently stimu-
lates worthwhile methodological and theoretical research.
Further, since medical research o�en raises ethical issues,
these too must be considered by medical statisticians. Hill
() stressed that the statistician “cannot sit in an arm-
chair, remote and Olympian, comfortably divesting him-
self of all ethical responsibility.”
A dominant characteristic of the statistical meth-

ods arising in medical statistics is that they must make
allowance for known variability. Comparisons of groups
should adjust for systematic discrepancies between groups,
for instance in terms of demographics. �is has been
re�ected for many years by the high pro�le given to regres-
sionmethodology, which allowsmultiple explanatory vari-
ables to be incorporated. A more recent manifestation is
in the monitoring of medical performance, where qual-
ity control procedures developed for industrial application
have been modi�ed to allow for predictable heterogeneity
in medical outcomes (Grigg et al. ).

Illustrative Methodological
Developments
In , Cox identi�ed three important periods in the
development of modern statistical methodology.�e �rst
was linked to developments in agriculture, the second to
industrial applications, and the third to medical research.
Developments linked to medical research �ourished in the
s; where earlier statistical methodology placed par-
ticular emphasis on normally distributed data, there was
a need for methods more suited to survival (or time-
to-event) and categorical data. A distinguished example of
the former is Cox’s own pioneering paper (Cox ), pre-
senting a semiparametric regression model for 7survival
data that did not require full speci�cation of an underly-
ing survival distribution. In addition, and in contrast to
virtually all other regression methods then available, this
model allowed the incorporation of explanatory variables
that varied over time. A wealth of subsequent extensions
to this already very general methodology followed, many
facilitated by Aalen’s () reformulation of the problem
in a counting process framework [see also Andersen et al.
()].
An important application of statistical models for cate-

gorical data was to7case- control studies.�ese epidemio-
logical investigations of the relationship between a disease

http://www.jameslindlibrary.org
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D and exposure E, a possible risk factor, involve sepa-
rate sampling of diseased and disease-free groups, from
which information on E and other disease risk factors is
obtained. Binary 7logistic regression would seem to pro-
vide a natural tool for the analysis of these studies, but for
the fact that it focuses on pr(D∣E) whereas the sampling
is from the distribution pr(E∣D). Building on a series of
earlier papers, Prentice and Pyke () established how a
prospective logistic regressionmodel for pr(D∣E) could be
used with case-control data to provide valid estimates of
the odds-ratio parameters.�is rapidly became the stan-
dard methodology for the analysis of case-control studies
(Breslow ).

Study Design
�e design of medical studies is also a major area of
activity for medical statisticians.�e paradigmatic design
is perhaps the Phase III clinical trial, of which a key
aspect is o�en randomized treatment assignment. While
7randomization can provide a basis for statistical infer-
ence, its primary motivation in trials is to enable state-
ments of causality, critical for Phase III trials where the aim
is to establish treatment e�cacy. Nevertheless, the need
for, and methods of, randomization continue to generate
discussion, since randomization can be seen to sacri�ce
potential individual advantage for collective gain. Other
design questions arise in Phase I trials that establish the
tolerability of treatments and basic pharmacokinetics, and
Phase II trials aimed at �nding potentially e�cacious treat-
ments or dosages.
For ethical reasons, ongoingmonitoring of data during

a clinical trial is o�en needed, and this has been an area
of methodological investigation within medical statistics
since the pioneering work of Armitage () (a compre-
hensive discussionmay be found in Jennison and Turnbull
()). �ere is also an increasing role for statisticians
on formal committees that monitor trial data and safety,
where their expertise is combined with that of physicians,
ethicists, and community representatives to ensure the
ethical conduct of trials more generally.
In the s, two important variations on the stan-

dard case-control design emerged, namely case-cohort
studies (Prentice ) and two stage case-control designs
(Breslow and Cain ); both have proved very useful
in epidemiology. Epidemiological cohorts where individ-
uals are followed to observe disease incidence, or clinical
cohorts for which information on patients with speci�ed
conditions is collected routinely – both usually imple-
mented over long periods of time – also continue to present
design and analysis challenges to the medical statistician.

More Recent Topics of Interest
Typically, medical studies are conducted not only to
discover statistical associations, but also in the hopes of
suggesting interventions that could bene�t individuals or
populations.�is has led to a preference for investigations
incorporating randomization or multiple waves of obser-
vation, based on the idea that cause should precede e�ect.
Randomized or not, information gathered repeatedly on
the same subjects is known as longitudinal data, and its
analysis has become a major subdiscipline within medi-
cal statistics. Two distinct approaches to longitudinal data
analysis have risen to prominence: likelihood-based mod-
els (incorporating both classical and Bayesian schools of
thought) and estimating-equation techniques.
A consequence of this emphasis on studies monitor-

ing subjects over several months (or even years) has been
an increased awareness that data, as collected, are o�en
quite di�erent from what was intended at the design stage.
�is may be due to subjects refusing treatment, or choos-
ing an alternate therapy, or dropping out of the investi-
gations altogether. Likelihood approaches to longitudinal
data may be extended to incorporate an explicit model
for the observation process (Henderson et al. ), while
estimating equations can be modi�ed with subject- or
observation-speci�cweights (Robins et al. ) to account
for departures from the study design. Non-compliance,
dynamic treatment regimes, and incomplete data are all
areas of active methodological research within medical
statistics.
Two other major areas of current interest are meta-

analysis and genetic or genomic applications. Meta-
analysis is o�en taken to refer to the technical aspects of
combining information from di�erent studies that address
the same research question, although the term is some-
times used to describe the more general systematic review,
which includes broader issues such as study selection.
Study heterogeneity is an important aspect of 7meta-
analysis that the statistician must address. �e size and
complexity of genetic and genomic data present major
statistical and computational challenges, notably due to
hypothesis test multiplicity.

Conclusion
Medicine remains a major area of application driving
methodological research in statistics, and the demand
for medical statisticians is considerable. A comprehensive
introduction to the area can be found in Armitage et al.
() and a less technical introduction is Matthews and
Farewell ().
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Introduction
Given several studies on the same topic, a meta-analysis
synthesizes the information in them so as to obtain a more
precise result.�e proper procedure of conducting a sys-
tematic review of literature, the selection of which studies
to include and the issues of publication bias and other pos-
sible biases are important aspects not covered here and we
refer the interested reader to Cooper and Hedges ()
and Higgins and Green (). We assume all studies
estimate the same e�ect, which is o�en a comparison of
outcomes for control and treatment groups via clinical tri-
als. Examples for two binomial samples with parameters
(n, p), (n, p) are the risk di�erence p − p, relative risk
p/p and odds ratio { p/( − p)}/{ p/( − p)}. Other
examples comparing normal samples are the di�erence in
means µ− µ, or e�ect sizes such as the standardized mean
di�erence, or Cohen’s-d d = (µ−µ)/σ fromCohen (),
where σ  is an assumed common variance, and Glass’s
g = (µ−µ)/σ fromGlass (), where σ  is the variance
of the control group.
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Traditional Meta-Analysis Methodology
We are given K independent studies, in which the
estimated e�ects θ̂k based on Nk observations are
asymptotically normal such that θ̂k is for large enough
Nk approximately normally distributed with mean θk and
variance σ k /Nk.�is is denoted θ̂k ∼ AN (θk, σ k /Nk) for
each k = , . . . ,K. Examples satisfying the above assump-
tions are the risk di�erence, the log-relative risk, the log-
odds ratio and the Cohen’s-d.�e goal is to combine the
estimators θ̂k in some way so as to estimate a represen-
tative θ for all K studies, or even more ambitiously, for
all potential studies of this type.�us there is the concep-
tual question of how to de�ne a representative θ, and the
inferential problem of how to �nd a con�dence interval
for it.

Confidence Intervals for Effects
Note that for each individual study, one can already
form large sample con�dence intervals for individual θk,
k= , . . . ,K. For known σk, a (−α)% large-sample con-
�dence interval for θk is [Lk,Uk]= [θ̂k − z−α/σk/N

/
k , θ̂k

+ z−α/σk/N
/
k ] , where zβ =Φ−(β) is the β quantile

of the standard normal distribution. If σk is unknown,
and there exists estimators σ̂k with σ̂k/σk →  in
probability as Nk→∞, then the same can be said for
[Lk,Uk]= [θ̂k − z−α/ σ̂k/N

/
k , θ̂k + z−α/ σ̂k/N

/
k ] .

Unequal Fixed Effects Model (UFEM)
Standard meta-analysis proceeds by choosing a weight wk
for each study and combines the estimated θ̂k through
weighted means. If we interpret θk as the true e�ect for
the study k and if this e�ect is of interest in its own right,
then the following de�nition can be adopted. Consider a
representative e�ect for the K studies de�ned by θw =

∑k wkθk/W with W = ∑j wj. �is weighted e�ect is the
quantity that wewant to estimate bymeta-analysis.�ere is
a good dose of arbitraryness in this procedure, because the
weighted e�ect does not necessarily have a readily inter-
preted meaning. An exception occurs if the weights are all
equal to one, in which case θw is simply the average of the
study e�ects.

�e weights are, however, o�en chosen to be propor-
tional to the reciprocals of the variances in order to give
more weight to θk that are estimated more accurately.
If this is the choice, it follows that wk = Nk/σ k and
θ̂w = ∑k wk θ̂k/W satis�es θ̂w ∼ AN(θw,W−

).�erefore
a ( − α)% large-sample con�dence interval for θw is
given by [L,U] = [θ̂w − z−α/W−/, θ̂w + z−α/W−/

].

In practice the weights usually need to be estimated,
(wk by ŵk andW by Ŵ = ∑k ŵk), but a large sample con-
�dence interval for θw can be obtained by substituting θ̂ŵ
for θ̂w and Ŵ forW in the above interval.

Fixed Effects Model (FEM)
When statisticians speak of the �xed e�ects model they
usually mean equal �xed e�ects which makes the very
strong assumption that all θk = θ.�is has the appeal of
simplicity.�e UFEM just described includes the FEM as
a special case. In particular the target parameter θw reduces
to θw = θ and thus becomes a meaningful quantity no
matter what weights are chosen.
However, one of the preferred choices still uses the

weights inversely proportional to the variance, because in
this case ∑k wk θ̂k/W has the smallest asymptotic vari-
ance amongst all unbiased (for θ) linear combinations of
the individual study estimators of θ.�e same con�dence
interval given above for θw is used for θ.�e methodology
for the UFEM and FEMmodels is the same, but the target
parameter θw of the UFEM has a di�erent interpretation.

Random Effects Model (REM)
�e REM assumes that the true e�ects θk, k = , . . . ,K are
the realized values of sampling from a normal population
with mean θ and variance γ for some unknown inter-
study variance γ, and further that the above results for
the UFEM are all conditional on the given θk, k = , . . . ,K.
�e justi�cation for this assumption is that the K studies
are a ‘random sample’ of all possible studies on this topic.
Inference for θ can now be interpreted as saying something
about the larger population of possible studies.
Formally, the REM assumes θ, . . . , θK are a sam-

ple from N(θ, γ), with both parameters unknown; and
θ̂k∣θk ∼ AN (θk, σ k /Nk) for each k. If the conditional
distribution of θ̂k, given θk, were exactly normal, then
the unconditional distribution of θ̂k would be exactly
θ̂k ∼ N (θ, γ + σ k /Nk) . However, in general the uncon-
ditional distributions are only asymptotically normal θ̂k ∼
AN (θ, γ + σ k /Nk) . It is evident that one needs an esti-
mate γ̂ of γ in order to use the inverse variance weights
approach described earlier, and this methodology will be
described below.

Choosing between Fixed and Random Effects
Models
Qualitative Grounds
If one assumes the K studies are a random sample from
a larger population of potential studies and that the true
e�ects θk are each N(θ, γ) then θ is the target e�ect, and
γ is a measure of inter-study variability of the e�ect. In
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this case choose the REM. If there is reason to believe that
the θk are di�erent, but not the result of random sampling,
then use the UFEM. In this case, it may be possible to
explain a good part of the variation in the e�ects θk by
meta-regression. �e di�erences between the studies can
sometimes be captured by variables that describe the cir-
cumstances of each study and by regressing the θ̂k on such
variables, these di�erences can be explained and corrected.
Meta-regression may thus turn a UFEM into a FEM. In
both models, the target is θw = ∑k wkθk/W. If there is
reason to believe all θk = θ, (the homogeneous case), use
the FEMwith target θ. For the FEM and UFEM inferential
conclusions only apply to the K studies.

Quantitative Grounds
It is clear that if γ =  in the REM, or all θk = θ
in the UFEM, one obtains the FEM. It is a special case
of both. One way to test the null hypothesis of homo-
geneity (all θk = θ) is to use Cochran’s Q, de�ned by
Q = ∑k wk(θ̂k − θ̂w) , where wk are the inverse vari-
ance weights and θ̂w = ∑k wk θ̂k/W. One can show that

under the null hypothesis of homogeneity, and when each
θ̂k is normally distributed, Q ∼ χK−, so a level α test of
homogeneity rejectswhenQ ≥ χK−,−α . Further, under the
UFEMmodel, the statistic Q has a non-central chisquared
distribution Q ∼ χK−(λ), where λ = ∑k wk(θk − θw).
�is result and others allowing for the weaker assumption
θk ∼ AN (θk, σ k /Nk) and estimated weights are derived in
Sect. ., Kulinskaya et al. (). In the asymptotic case,
the χ distributions are only approximate. Testing for het-
erogeneity is strongly discouraged in Higgins and Green
() in favor of the quanti�cation of inherently present
heterogeneity.

Inference for the REM
Let Mr = ∑k w

r
k for inverse variance weights wk, and a =

M −M/M. It can be shown that for this model E[Q] =
K −  + aγ. �is “justi�es” the DerSimonian and Laird
() estimator γ̂DL = {Q − (K − )}+/a, where {. . . }+

means set the quantity in brackets equal to  if it is nega-
tive and otherwise leave it. Using this estimator and θ̂k ∼
AN (θ, γ + w−k ), we have newweightsw∗k = (γ + w−k )

−
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Meta-Analysis. Fig.  The data of eleven independent studies of antibiotic treatment to prevent recurrent urinary tract infection
are presented in this forest plot. The confidence intervals for the individual studies are shown on the right-hand side. The lozenge
at the bottom shows the combined confidence interval, the result of the meta-analysis
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and estimator θ̂∗ = ∑k w
∗
k θ̂k/W∗

∼ AN(θ,{W∗
}
−
),

whereW∗
= ∑k w

∗
k . In practice w

∗
k is usually estimated by

ŵ∗k = / (γ̂DL + ŵ
−
k ) . Anotherestimator of γ is proposed

in Biggersta� and Tweedie ().

Meta-Regression
In some cases there is information regarding the K studies
which may explain the inter-study variance. In this case
the estimated e�ects θ̂k can be considered as responses to
be regressed on explanatory variables x, . . . , xp, also called
moderators.�us one has yk = β + βxk + ⋅ ⋅ ⋅ + βpxkp + єk,
where yk is the estimated e�ect θ̂k (or a transformed e�ect),
and єk is the random error in the kth study, k = , . . . ,K.
Weighted least squares (with known or estimated weights)
can be used to estimate the coe�cients.When the variance
stabilizing transformation is applied to estimated e�ects,
generalized linear models techniques (see 7Generalized
Linear Models) with Gaussian family of distributions can
be used, see Chap.  of Kulinskaya et al. ().

Example
As illustration, consider a series of  studies of antibiotic
treatment to prevent recurrent urinary tract infection.�e
sources of the data, the data themselves, and the con�dence
intervals are shown in Fig. .�ese studies are part of those
reviewed by Albert et al. () and have been discussed
in Chap.  (p. ) of Kulinskaya et al. ().�e total
sample sizes range from N =  to N = .�e parameter
of interest is the risk di�erence p−p between the placebo
group and the treated groups.�e studies show a more or
less strong bene�t of the treatment, while themeta-analysis
gives a fairly convincing result.�is depiction of results is
known as a forest plot.

Additional Literature
�e traditional approach is general, only requiring asymp-
totically normal e�ects and estimates for theweights.How-
ever the methodology is overly simple, because it assumes
known weights, when in fact they usually need to be esti-
mated. Recent studies indicate that typical sample sizes are
woefully inadequate in order for the approximations that
assume known weights to be reliable (Malzahn et al. ;
Viechtbauer ). One way of overcoming this problem
is to employ variance stabilization of the estimated e�ects
before applying the traditional approach, see Kulinskaya
et al. (). For further reading we recommend the clas-
sical work Hedges and Olkin (), as well as the recent
books Böhning et al. (), Borenstern et al. (),
Hartung et al. () and Whitehead ().
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Method Comparison Studies
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We are here concerned with the comparison of the perfor-
mance to two ormoremeasurement devices or procedures.
At its simplest, a method comparison study involves the
measurement of a given characteristic on a sample of sub-
jects or specimens by two di�erent methods. One possible
question is then whether measurements taken by the two
di�erent methods are interchangeable. Another is whether
one of the two methods is more or less precise than the
other. A third, more di�cult task, is to calibrate one set
of fallible measurements (using Device A, for example)
against another set of fallible measurements produced by
device B. A potentially-serious problem in all of these
situations is the possibility that the measurement errors

arsing from the use of these two devices may be corre-
lated. A slightly more complicated study involves replica-
tion of each of the sets of measurements taken using the
two di�erent procedures or devices, usually carried out
on the naïve assumption that the measurement errors of
the within-device replicates will be uncorrelated and that
replication will enable the investigator to obtain an unbi-
ased estimate of the instruments’ precisions (based on the
standard deviations of the replicates).
Let’s return to the simplest situation – measurement of

a given characteristic on a sample of subjects by two dif-
ferent methods that are assumed to provide independent
measurement errors. Are the two methods interchange-
able? How closely do the measurements agree with each
other? Is this agreement good enough for all our practi-
cal purposes? A method suggested by Bland and Altman
() is to determine limits of agreement. One simply sub-
tracts the measurement arising from one method from the
corresponding measurement using the other.�e average
of these di�erences tells us about the possibility of relative
bias (and the so-called Bland-Altman plot – a graph of the
di�erence against the average of the two measurements –
may tell us that the bias is changing with the amount of the
characteristic beingmeasured, but it is not % fool-proof
since a relationship between the di�erence between and the
average of the two measures may arise from di�erences in
the instruments’ precisions).�e standard deviation of the
di�erences tells us about the variability of the di�erence
of the two measurement errors.�e % limits of agree-
ment are simply de�ned as the range of di�erences between
the .th and .th percentiles or, assuming normality,
approximately two standard deviations either side of the
mean. If the measurement errors for the two methods are
positively correlated then the variability of the di�erences
will be less than one would expect if they were uncorre-
lated and the limits of agreement will be too small. If the
measurement methods use di�erent scales (comparison of
temperatures in ○C and ○F, for example) then this sim-
ple procedure will break down and the limits of agreement
will fail to tell the investigator that the two methods are
interchangeable (a�er suitable rescaling).
One might be tempted to plot results using one of the

methods (in ○F, for example) against the other (in ○C)
and carry out a simple regression to calibrate one against
the other. But the hitch is that both methods are sub-
ject to error (the classical errors-in-variables problem) and
the estimate of the regression coe�cient would be biased
(attenuated towards zero). If one knows the ratio of the
variances of the measurement errors for the two methods
then it is possible to use orthogonal regression, widely-
known as Deming’s regression, to solve the problem.�e

www.cochrane-handbook.org
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catch is that one does not normally have an unbiased esti-
mate of the ratio of these two variances – the problem again
arising from the lack of independence (i.e., correlation) of
any replicate measures used to determine these variances
(Carroll and Ruppert ).
A third relatively simple approach is to look for and

make use of an instrumental variable (IV) through IV
or 7two-stage least squares (SLS) regression methods.
Here we need a variable (not necessarily a third measure-
ment of the characteristic, but it may be) that is reasonably
highly correlated with the characteristic being measured
but can be justi�ably assumed to be uncorrelated with the
associated measurement errors. If we label the measure-
ments using the two methods as X and Y, and the corre-
sponding values of the instrumental variable as Z, then the
instrumental variable estimator of the slope of Y on X is
given by the ratio Cov(Y,Z)/Cov(X,Z) – see Dunn (,
). From here it’s a relatively simple move into factor
analysis models for data arising from the comparison of
three or methods (Dunn ).
Statistical analyses for the data arising from more

the informative designs, with more realistic measure-
ment models (heteroscedasticity of measurement errors,
for example), is beyond the scope of this article but the
methods are described in considerable detail in Dunn
().�e methods typically involve so�ware developed
for covariance structure modelling. Analogous methods
for the comparison of binary measurements (diagnostic
tests) can also be found in Dunn ().
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Methods of Moments Estimation

Martin L. Hazelton
Chair of Statistics
Massey University, Palmerston North, New Zealand

�e method of moments is a technique for estimating the
parameters of a statistical model. It works by �nding val-
ues of the parameters that result in a match between the
sample moments and the population moments (as implied
by the model). �is methodology can be traced back to
Pearson () who used it to �t a simple mixture model.
It is sometimes regarded as a poor cousin of maximum
likelihood estimation since the latter has superior theoret-
ical properties in many settings. Nonetheless, the method
of moments and generalizations thereof continue to be of
use in practice for certain (challenging) types of estimation
problem because of their conceptual and computational
simplicity.
Consider a statistical model de�ned in terms of a

parameter vector θ = (θ, . . . , θp)T. We denote by µk =

E[Xk] the kth moment about zero of a random variable X
generated by our model.�is moment will be a function
of θ, and so we will write µk = µk(θ) to emphasize this
dependence.
Suppose that we have a (univariate) random sample

X, . . . ,Xn from the model, which we want to use to esti-
mate the components of θ. From this we can compute
the kth sample moment, µ̂k = n−∑ni= X

k
i .�e rationale

for the method of moments is that the sample moments
are natural estimators of the corresponding model-based
moments, and so a good estimate of θ will reproduce these
observed moments. In practice it is usual (although not
essential) to use moments of the lowest possible orders
in order to obtain parameter estimates. �e method of
moments estimator θ̂ is hence de�ned to be the solution
of the system of equations

µk(θ) = µ̂k k = , , . . . , q

where q is the smallest integer for which this system has a
unique solution.
As an example, suppose thatX, . . . ,Xn are drawn from

a 7gamma distribution with shape parameter α and scale
parameter β. �en µ = αβ and µ = α(α + )β. �e
method of moments estimators α̂ and β̂ therefore satisfy
the pair of equations

α̂β̂ = µ̂
α̂(α̂ + )β̂ = µ̂.
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Solving these we obtain

α̂ =
µ̂

µ̂ − µ̂
and β̂ =

µ̂ − µ̂
µ̂

.

Method of moments estimators are, in general, consistent.
To see this, note that the (weak) law of large numbers
ensures that the sample moments converge in probabil-
ity to their population counterparts. It then follows that
if µk(θ) is a continuous function of θ for k = , . . . , q
then the method of moments estimators will converge
in probability to their true values. However, method of
moments estimators are less e�cient thanmaximum likeli-
hood estimators, at least in cases where standard regularity
conditions hold and the two estimators di�er. Further-
more, unlike maximum likelihood estimation, the method
of moments can produce infeasible parameter estimates in
practice. For example, if X, . . . ,Xn are drawn from a uni-
formdistribution (see7UniformDistribution in Statistics)
on [, θ] then themethod ofmoments estimator is θ̂ = X̄,
but this estimate is infeasible if max{Xi} > X̄.
Despite the theoretical advantages of maximum like-

lihood estimation, the method of moments remains an
important tool in many practical situations. One reason
for this is that method of moments estimates are straight-
forward to compute, which is not always the case for
maximum likelihood estimates. (For example, the max-
imum likelihood estimators for the gamma distribution
parameters considered above are only available implicitly
as the solution to the non-linear likelihood equations.)
Furthermore, estimation by the method of moments does
not require knowledge of the full data generating process.
�is has led to various extensions of the basic method
of moments that can be applied in complex modeling
situations.
One such extension is the generalized method of

moments Hansen () which is a type of generalized
estimating equation methodology, widely used in econo-
metrics. �is technique works by utilizing sample and
population moment conditions (or “orthogonality condi-
tions”) of the statistical model, and can provide estimates
of parameters of interest in amodel evenwhenothermodel
parameters remain unspeci�ed. Another useful extension
is the simulated method of moments (e.g., Gelman ).
�is technique can be employed when the model is so
complex that neither the density function for the data nor
the theoretical moments are available in closed form. It
therefore provides a means of �ttingmicro-simulation and
mechanistic stochastic models (Diggle and Gratton ).
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Minimum Variance Unbiased

Czesław Stępniak
Professor
Maria Curie-Skłodowska University, Lublin, Poland
University of Rzeszów, Rzeszów, Poland

�e term minimum variance unbiased refers to a property
of statistical decision rules.
Idea. Any statistical experiment may be perceived as

a random channel transforming a deterministic quantity
θ (parameter) into a random quantity X (observation).
Point estimation is a reverse process of regaining θ from
X according to a rule θ̂ = δ(X) called estimator. Formally,
estimator is a function from the set X , of possible values
of X, into the set Θ, of possible values of θ. As a measure
of imprecision of such estimator one can use the function
Rδ(θ) = Eθ(δ(X) − θ) called the Mean Squared Error. It
may be rewritten in the form

varθ δ(X) + [b(θ)], where b(θ) = Eθ δ(X) − θ
is the bias of δ.
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If b(θ) =  for all θ then θ̂ = δ(X) is said to be unbi-
ased.Minimizing the MSE among the unbiased estimators
reduces to minimizing its variance. Any estimator δ real-
izing this minimum (if such exists) is said to be aminimum
variance unbiased estimator (MVUE). Searching for such
estimator or verifying whether it is a MVUE needs some
special statistical tools.
Example  (Urn problem). An urn containsN balls, where
any ball is black or white, while the number θ of black balls
is unknown. To search θ we draw without replacement n
balls. Let k be the number of black balls in the sample.
Estimate θ.
A potential number X of black balls in the sample has

the hypergeometric distribution (see 7Hypergeometric
Distribution and Its Application in Statistics) taking values
k with probabilities

Pθ(X = k) = pθ ,k =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(θ
k)(

N−θ
n−k )

(Nn )
if k ∈ [max(,n −N + θ),
min(n, θ)] ()

 otherwise.

Since EX = nθ
N , the rule θ̂ = N

n X is an unbiased esti-
mator of θ.�is is, formally, not acceptable unless n is a
divisor of N, because θ̂ takes values outside the parameter
set.�us one can seek for an acceptable unbiased estimator.
According to the formula () we get

p,k =
⎧⎪⎪
⎨
⎪⎪⎩

, if k = 
, otherwise,

and

p,k =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

N−n
N , if k = 
n
N , if k = 
, otherwise.

�us any unbiased estimator θ̂ = θ̂(X)must satisfy the
conditions θ̂(X) =  if X =  and Nn if X = .�erefore the
desired estimator exists if and only if n is a divisor on N.
Basic Concepts. Let X = (X, . . . ,Xn) be a random

vector, interpreted as a potential observation in a statisti-
cal experiment. Assume that distribution P of the vector
belongs to a family P = {Pθ : θ ∈ Θ}, where θ is an
unknown parameter identifying P.�erea�er by distribu-
tion we shall mean density or probability mass function.
Any potential estimator of θ is a function T = t(X) called
a statistic. If T involves the entire information on θ then
one can reduce the problem by considering only these
estimators which depends on X through T.

We say that a statistic T is su�cient for θ if the
conditional probability Pθ(X/T) does not depend on θ.
Determining a su�cient statistic directly from this de�-
nition may be a laborious task. It may be simpli�ed by
the well known Fisher-Neyman factorization criterion.
A statistic T = t(X) is su�cient for θ, if and only if,
Pθ may be presented in the form Pθ(x) = gθ[t(x)]h(θ).
A su�cient statistic T is minimal if it is a function of any
other su�cient statistic. In particular, the vector statistic
T = [t(X), . . . , tk(X)] in so called exponential family
Pθ(x) = C(θ) exp [∑

k
j= Qj(θ)tj(x)]h(x), for θ ∈ Θ, is

su�cient.
We say that a statistic T is complete if for any (mea-

surable) function f the condition Eθ f (T) =  for all
θ implies that P[ f (T) = ] = . It is known that any
complete su�cient statistic (if exists) isminimal but amin-
imal su�cient statistic may not be complete. Moreover the
above su�cient statistic in the exponential family distri-
butions is complete providing Θ contains a k-dimensional
rectangle.
Now let us consider a family of densities {p(x, θ) :

θ ∈ Θ}, whereΘ is an open interval of a real line, satisfying
some regularity conditions. Function I = I(θ) de�ned by

the formula I(θ) = E [ ∂ log p(X,θ)∂θ ]

is said to be Fisher

information.
Advanced Tools. Let X = (X, . . . ,Xn) be a random

vectorwith a distributionP belonging to a familyP = {Pθ :
θ ∈ Θ} and let T = t(X) be a su�cient statistic for θ. In
searching MVUE’s one can use the following results.

7Rao-Blackwell theorem: If U = u(X) is an unbiased
estimator of a parametric function g(θ) then the condi-
tional expectationE[U/T] is also unbiased and its variance
is not greater than var(U).
Lehmann-Sche�é theorem: If T is, moreover, com-

plete then any statistic h(T) is a MVUE of its expectation.
�is MVUE is unique (with probability ).
Rao-Cramer inequality: Let {p(x, θ) : θ ∈ Θ}, where

Θ is an open interval of a real line, be a family of densities
satisfying some regularity conditions, such that I(θ) > 
for all θ.�en for any statistic U = u(X) the inequality
varθ(U) ≥ 

I(θ) is met.
It is worth to add that the equality in the Rao-Cramer

inequality is attained if and only if the family P of dis-
tributions is exponential. However this condition is not
necessary for existing a MVUE; for instance, if X, . . . ,Xn
are i.i.d. according to the normal lawN (α


 , ). In this case

the attainable minimum variance is α
n + α

n + 
n while


I(θ) =

α
n .
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Example  (Bernoulli trials). Let X, . . . ,Xn be indepen-
dent and identically distributed zero-one distributions
with probability P(Xi = ) = θ, where θ is unknown for
i = , . . . ,n. In this case the family P = {Pθ : θ ∈ (, )} is
exponential with complete su�cient statistic X = 

n∑i Xi.
Since EX = θ, the statistic X is the unique MVUE of θ.
In this case the Fisher information takes the form I(θ) =
n

θ(−θ) while varθ(X) =
θ(−θ)
n .�us the lower bound 

I(θ)
in the Rao-Cramer inequality is attained. It is worth to
note that, similarly as in Example , this unique MVUE
takes, with positive probability, the values  and , which
lie outside the parameter set (, ) .
Minimum Variance Invariant Unbiased Estimator.

If distribution of the observation vector depends on sev-
eral parameters, some of them may be out of our interest
and play the role of nuisance parameters. Such a situation
occurs, for instance, in linear models. In this case the class
of all unbiased estimators is usually too large for handle.
�en we may seek for an estimator which is invariant with
respect to a class of transformations of observations or its
variance does not depend on the nuisance parameters. An
estimator minimizing variance in such a reduced class is
called a minimum variance invariant unbiased estimator.

About the Author
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Misuse and Misunderstandings of
Statistics
Atsu S. S. Dorvlo
Professor
Sultan Qaboos University, Muscat, Sultanate of Oman

Introduction
Because of the advent of high speed computers statistics
has become more visible. Almost any discipline has an
element of statistics in it. In fact one cannot publish inmost
journals when the statistics used or misused is not stated.
Newspapers, magazines, etc are now awash with one form
or other of “statistics”. Now it is fashionable to take data,
shove it into a computer and come out with nice tables,
graphs and 7p-values. Clearly such practices are a gross
7misuse of statistics and do a disservice to the subject.
�ere is no wonder we are in the company of “lies, damned
lies and statistics.”

So What Is Statistics?
�ere are several de�nitions of statistics, some not so
�attering:

. �e American heritage dictionary says: Statistics is the
mathematics of collection, organization and interpre-
tation of numerical data.

. Brase and Brase, in their beginning level statistics text-
book de�ne statistics as the science of how to collect,
organize, analyze and interpret numerical information
from data.

. Evan Esar says statistics is the only science that enables
di�erent experts using the same �gures to draw di�er-
ent conclusions.

�e �rst two capture the essence of statistics. Ms. Esar cap-
tures the abuse that is possible. However, these de�nitions
do not capture the true essence of statistics and that is:
to make a deduction in the face of uncertainty. �e true
essence of statistics is captured when it is stated that statis-
tics is the science that tells whether something we observe
can be generalized or applied to a new or di�erent but sim-
ilar situation (the author of this statement is unknown).
�at is I observe a group of people in a community and
found that % have cancer, can I generalized to say that
the cancer rate in that community is %? Of course not
without �rst saying how the sample was observed. �e
other de�nitions come into play then. I need to know how
the data was collected/observed, how it was organized,
analyzed, and then the interpretation.
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In this author’s opinion most of the problems, misun-
derstandings and misrepresentations in statistics originate
from the observation – collection process. Invariably the
data is observed/collected before thought is put in what to
do with it. So therefore the inference which is �nally made
does not take account of how the data was observed in the
�rst. Maybe in the everyday sense it is natural to observe
�rst and then ask what to do with the data observed. How-
ever in complex tasks the research questions need to be
asked �rst.�en thought put into how to collect the rel-
evant data, organize and analyze it and make the inference
supporting the research question or refuting it. Hence in
large scale work, e�ort should be put in the “how to col-
lect” the data stage. If this is done, only the relevant data
will be collected, and there will be savings on resources,
time and money.
In most instances the way data is collected, the data

type collected determines the types of analysis that can be
carried out. Data collection is an expensive, time consum-
ing activity. It is unfortunate that lots of time and e�ort
are wasted on collecting data only to �nd out that the
data is not useful or the exercise could have been done
in an easier and cheaper manner. Should  experiments
be performed or can  be su�cient? Unfortunately more
data does not necessarily equate to more valid or better
results. In fact the opposite could be the case. Hence the
design of the experiment or data collection, the estimation
of the necessary sample sizes taking into consideration the
error, precision and last but not least the use to which the
results will be put, such as, will the results be generalized,
should be well thought out at the very beginning of the
study.
Another area where statistics has a bad name is the

pictorial representation of results.�e saying goes that “a
picture is worth a thousandwords.” Simple clear graphs can
help bring out the important aspects of the study. However

there is room for abuse. More o�en than not attention is
not paid to the scale of the graph. For example in compar-
ing two teaching programs, what impression is graph (a)
conveying? Are our students actually better? It is the duty
of statisticians to point out at every opportunity the pitfalls
that need to be avoided when reading graphs.
With the advent of fast computers computations that

were near impossible or would take ages to accomplish a
few years ago, now takes only seconds of computer time.
Coupled with this is the fact that there are very good
and easy to use so�ware. Are computers taking the place
of statisticians, especially applied statisticians? �ere is a
lot more to data analysis than calculations.�e computer
is there to remove the drudgery out of number crunch-
ing. What calculations to perform, that is what analysis to
do and foremost, the check of the validity of assumption
under which the procedures are valid, is the domain of the
statistician.

Conclusion
In my view statistics is simply whether one can general-
ize ones observation to a di�erent or future situation.�e
di�culty is how the “observation” was obtained – data
collection – and the generalization made – summarized,
analyzed and interpreted. In all these the expert input of a
statistician is invaluable.
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Misuse of Statistics

ChamontWang
Professor
�e College of New Jersey, Ewing, NJ, USA

Statistics as an academic discipline is widely held as a sci-
ence that is related to experiments and the quanti�cation
of uncertainty. �is is true, but if used without caution,
statistics can add more uncertainty to an already murky
problem. A rich source on this topic would be “How to
Lie with Statistics Turns Fi�y,” a -page Special Section of
Statistical Science (, p. –).
Misuses of statistics at a non-technical level can be

roughly grouped in the following three categories, o�en
with the three types of misuses feeding each other in a
complicated, dynamic fashion.

. Data Quality: A complete statistical project consists of
the following components: (a) data collection, (b) data
preprocessing, (c) data exploration, (d) data analysis
and statistical modeling, and (e) summary report.�e
process is not entirely linear and o�en goes from one
middle step back to another, and roughly –% of
the project e�ort is needed on data quality to ensure
that the entire process will not go o� the rails.
In their  article, “How to Lie with Bad Data,”

De Veaux and Hand pointed out that “Data can be bad
in an in�nite variety of ways.”�is is not an exaggera-
tion. Fortunately, statistical design of experiments and
survey methodology, if done right, are capable of pro-
ducing data with high-quality. In the real world, the
problem is that the majority of data are collected in
non-controlled environments without much statistical
guidance. Consequently, data might have been cor-
rupted, distorted, wrong-headed, ill-de�ned, and with
loads of missing values – the list goes on forever. De
Veaux and Hand () provided suggestions on how
to detect data errors and how to improve data quality.
�e suggestions are very useful for practitioners.
In journals and real-world applications, statisti-

cal reports o�en shine with tremendous amounts of
energy on exotic models but with questionable e�ort
(and insu�cient details) on data quality. Statistics as
a science is supposed to provide a guiding light for
research workers and decision-makers. Without good
data, exotic statistical models are unlikely to help.�e
situation is like a person who is nearly blinded by

cataracts and tries to sharpen the lenses for better
vision.�e e�ort will be futile unless an operation is
conducted to take away the clouding.
A related note on data quality is the 7outliers and

unusual numbers in the data. Resistant and robust sta-
tistical procedures are o�en used to handle this kind of
problem. But if the data was not collected in controlled
experiments, then the e�orts are mostly misguided.
Furthermore, outliers o�en are the most interesting
numbers that may reveal surprising features of the
study. Blind applications of 7robust statistics thus can
be counterproductive if not altogether misleading.

. Statistical tests and 7p-values: A continuing source of
mistake is the confusing of statistical signi�cance with
practical signi�cance.Mathematically, if the sample size
increases inde�nitely, then the power of the statistical
test will increase as well. Consequently, even a tiny dif-
ference between observed and the predicted values can
be statistically highly signi�cant. Certain large scale
examples regarding the confusion of practical signi�-
cance are discussed inWang (, pp. –, –, ).
Other cautions on the misuse of statistical tests can be
found in Freedman et al. () and in the “What Can
Go Wrong” sections of De Veaux et al. (, pp. ,
, , –, –, –, ) which dis-
cuss “no peeking at the data” and other caveats on the
tests of signi�cance.
Freedman (a) further pointed out a potential

problem in research journals when publications are
“driven by the search for signi�cance.” �e problem
can be rather acute when research grants or academic
careers hinge on publications. In short, researchers
may conduct many tests, ignore contradictory results
and only submit �ndings that meet the % cuto�.
A possibility to deal with this problem, according to
Freedman (a), is a journal requirement to docu-
ment search e�orts in the research process.

. Statistical Inference of Cause-and-E�ect: Causal infer-
ence is a foundation of science and is indeed a very
tricky business. As an example, Aristotle maintained
that cabbages produce caterpillars daily – awell-known
assertion only to be refuted by controlled experiments
carried out by Francesco Redi in . For new comers
to the �eld of statistics, it may be ba�ing that much
of the practice of modern statistics is still Aristotelian
in nature. For instance, a rough estimate indicates
that in clinical research, “% of observational studies
fail to replicate or the initial e�ects are much smaller
on retest” (Young et al. ; a la Ioannidis ).
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Freedman (a) further discussed the related con-
troversies and a diverse set of large-scale contradictory
studies.�e problem should be a concern to the statis-
tical community as our trade is indeedwidely used. For
example, in the study of coronary heart disease, there
are more than , statistical articles published each
year (Ayres , p. ), and this is only the tip of the
iceberg.
A potential problem with statistical causality is

the use of regression models, directed graphs, path
analysis, structural equations, and other law-like rela-
tionships. Take the example of regression; on a
two-dimensional scatterplot, it is easy to see thatmath-
ematically it does not matter whether we put a variable
on the le� or the right of the equation. Any so�ware
package would produce the estimates of the slope and
the intercept, plus a host of diagnostic statistics that
o�en says the model is an excellent �t. Compounding
the problem of causal inference, a third variablemay be
the reason behind the phenomenon as displayed by the
scatterplot. For instance, a scatterplot can be drawn to
show that the incidence of polio (Y-variable) increases
when so�-drink sales (X-variable) increases, but in
fact a lurking variable (warm weather) is the driving
force behind the rise (Freedman et al. , p. ).

�e problem quickly turns worse in higher-
dimensional spaces. Try the following example in a
regression class: draw  or  right triangles and then
measure the values of (X,X,Y), with X,X being
the adjacent sides of the ○ angle. �e Pythagorean
�eorem says that Y =

√
X  + X  . In an experiment

(Wang , p. –), students of regression came up
with all kinds of equations with R of –.%.�e
equations all passed stringent tests of diagnostic statis-
tics, but none of them comes close to the Pythagorean
equation. A further twist makes the problem statisti-
cally intractable when the legs of the triangles are not
orthogonal (Wang , p. –).
For causal inference, the misgivings of statistical

models happen not only in the observational stud-
ies, but also in the analysis of experimental data.
In an in-depth discussion, Freedman (b) exam-
ined the 7Kaplan-Meier estimator and proportional-
hazards models which are frequently used to analyze
data from randomized controlled experiments. Speci�-
cally, Freedman investigated journal papers on the e�-
cacy of screening for lung cancer (NewEngland Journal
of Medicine), the impact of negative religious feelings
on survival (Archives of Internal Medicine), and the
e�cacy of hormone replacement therapy (New Eng-
land Journal of Medicine and Journal of the American

Medical Association). Freedman discussed reverse cau-
sation plus a host of other issues such asmeasurements,
omitted variables, and the justi�cation of the mod-
els. Freedman concluded that “the models are rarely
informative,” that “as far as the model is concerned,
the7randomization is irrelevant,” that “randomization
does not justify the model,” and that it “is a mistake” to
apply the models in the �rst place.
In yet another example, Freedman (c) investi-

gated 7logistic regression in the experimental setting
for drawing conclusions on cause-and-e�ect. Again,
Freedman noted that the model is not justi�ed by
randomization. He further questioned “Why would
the logit speci�cation be correct rather than the pro-
bit – or anything else? What justi�es the choice of
covariates? Why are they exogenous? If the model is
wrong, what is β̂ supposed to be estimating?” Further-
more, in a summary of a vast variety of investigations,
Freedman (a) concluded that “Experimental data
are frequently analyzed through the prism of models.
�is is a mistake.”
Taken together, Freedman et al. (, , ,

), Freedman (, a, b, c), Wang (,
p. –), and a very long list of references all indicate
that sophisticated statistical models are o�en detached
from the underlying mechanism that generated the
data. In other words, many law-like equations pro-
duced by statistical models are as structure-less as
Amoeba Regression (Wang ) and need to be viewed
with caution. �is is indeed a big disappointment to
countless researchers who spend their lives on statis-
tical models (see, e.g., Pearl , p. ), but this is a
truth that we have to face.

Nevertheless, the models should be treasured for a num-
ber of reasons. To begin with, recall Newton’s theory on
celestial mechanics. �e story is well-known and is rele-
vant to statistical modeling in the following ways: ()�e
Newtonian theory relies on observational studies, yet its
prediction accuracy rivals most of the tightly controlled
experiments. In other words, there is nothing wrong with
observational studies, as long as they are accurate and they
are consistent in subsequent studies. () Statistical models
represent the intellectual accomplishment of the statisti-
cal community that may one day produce useful results
on both experimental data and observational studies. His-
tory is the witness that ivory tower research o�en produces
surprising results decades or hundreds of years later. And
when the model is correct, the consequences can be enor-
mous. Take the example of proportional-hazards model,
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even Freedman (b, p. ) acknowledged that “Pre-
cise measures of the covariates are not essential” and that if
the model “is right or close to right, it works pretty well.”
() If used for descriptive or exploratory purposes, fancy
statistical models may indeed reveal unexpected features
in the data. For certain examples on non-parametric struc-
tural equations and counterfactual analysis, see references
in Pearl (). For another example on hot spot detection,
see Wang et al. ().
As a matter of fact, in the past  years or so, statis-

tical models have taken a new life in the realm of 7data
mining, predictive modeling, and statistical learning (see,
e.g., Wang et al. ). In these applications, the con-
cerns are not cause-and-e�ect or the speci�c mechanism
that generates the data. Instead, the focus is the predic-
tion accuracy that can bemeasured by pro�t, false positive,
false negative, and by other criteria to assess the model
utility. �is is a sharp departure from causation to pre-
diction.�e great news is that the new applications have
been ranked by the MIT Technology Review as one of
the ten emerging technologies that will change the world –
and it is arguable that the successes of this new technology
will eventually feedback to traditional statistics for other
breakthroughs. In fact, countless examples with ingenious
twists have already happened (see, e.g., Ayres ). It is a
triumph of statistical models.
A cautionary note is that statistical learning and the

new breed of predictive modeling can easily go wrong and
misinformation can propagate with unprecedented speed
in the modern age of internet blogging and social net-
works. Newcomers to the �eld should consult, for exam-
ples, “Top  Data Mining Mistakes” (Elder ) and
“Myths and Pitfalls of Data Mining” (Khabaza ). For
unsupervised learning, onemaywant to read “�e Practice
of Cluster Analysis” (Kettenring, ) and “A Perspec-
tive on Cluster Analysis” (Kettenring ). For super-
vised learning, given a dozen or thousands of predictors,
statistical tools are frequently used to generate predictor
importance scores, but these scores are o�en wildly di�er-
ent from one algorithm to the next (see e.g., Wang et al.
, Sect. ).
For yet another example, a model such as a Neural

Network may produce higher pro�t and higher predic-
tion accuracy than other tools, yet the model may also
be more volatile in repeated uses and hence pose consid-
erable hazards in the long run. 7Sensitivity analysis and
similar techniques are thus needed to prevent misleading
conclusions (see, e.g., Wang et al. ).

�e hallmark of empirical science is its replicabil-
ity. Much of the current statistical practice, unfortunately,
does not really meet this criterion. Just look at how many

authors are unwilling to disclose their data and how many
journals are unwilling to archive the datasets and the code
(see also Freedman, a, c). Exceptions include Amer-
ican Economic Review, American Economic Journals and
Science.
Data disclosure reduces the cost of research and cost

of replicating results. It also deters unprofessional conduct
and improves collective �ndings of the research commu-
nity. Certain online journals (see e.g., http://www.bentley.
edu/csbigs/csbigs-v-n.cfm) post both the research arti-
cle and the data side-by-side. If more journals are willing
to make available the datasets used in their publications,
the situation of misuse and misconduct of statistics will be
greatly improved.
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�e notion of mixed membership arises naturally in the
context of multivariate data analysis (see 7Multivariate
Data Analysis: An Overview) when attributes collected
on individuals or objects originate from a mixture of dif-
ferent categories or components. Consider, for example,
an individual with both European and Asian ancestry
whose mixed origins correspond to a statement of mixed
membership: “/ European and / Asian ancestry.”�is
description is conceptually very di�erent from a proba-
bility statement of “% chance of being European and

% chance of being Asian”.�e assumption that individ-
uals or objects may combine attributes from several basis
categories in a stochastic manner, according to their pro-
portions of membership in each category, is a distinctive
feature of mixed membership models. In most applica-
tions, the number and the nature of the basis categories,
as well as individual membership frequencies, are typically
considered latent or unknown. Mixed membership mod-
els are closely related to latent class and �nite 7mixture
models in general. Variants of these models have recently
gained popularity in many �elds, from genetics to com-
puter science.

Early Developments
Mixedmembership models arose independently in at least
three di�erent substantive areas: medical diagnosis and
health, genetics, and computer science. Woodbury et al.
() proposed one of the earliest mixed membership
models in the context of disease classi�cation, known as
the Grade of Membership or GoM model. �e work of
Woodbury and colleagues on the GoM model is summa-
rized in the volume Statistical Applications Using Fuzzy Sets
(Manton et al. ).
Pritchard et al. () introduced a variant of the

mixed membership model which became known in genet-
ics as the admixture model for multilocus genotype data
and produced remarkable results in a number of applica-
tions. For example, in a study of human population struc-
ture, Rosenberg et al. () used admixture models to
analyze genotypes from  autosomal microsatellite loci
in , individuals from  populations. Findings from
this analysis indicated a typology structure that was very
close to the “traditional” �ve main racial groups.
Among the �rst mixed membership models developed

in computer science and machine learning for analyz-
ing words in text documents were a multivariate analy-
sis method named Probabilistic Latent Semantic Analysis
(Hofmann ) and its random e�ects extension by Blei
et al. (a, b).�e latter model became known as Latent
Dirichlet Allocation (LDA) due to the imposed Dirichlet
distribution assumption for themixture proportions. Vari-
ants of LDA model in computer science are o�en referred
to asunsupervised generative topicmodels. Blei et al. (a,
b) and Barnard et al. () used LDA to combine di�erent
sources of information in the context of analyzing complex
documents that includedwords inmain text, photographic
images, and image annotations. Erosheva et al. () ana-
lyzed words in abstracts and references in bibliographies
from a set of research reports published in the Proceed-
ing of the National Academy of Sciences (PNAS), exploring
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an internal mixed membership structure of articles and
comparing it with the formal PNAS disciplinary classi�-
cations. Blei and La�erty () developed another mixed
membership model replacing the Dirichlet assumption
with a more �exible logistic normal distribution for the
mixture proportions. Mixed membership developments
in machine learning have spurred a number of applica-
tions and further developments of this class of models
in psychology and cognitive sciences where they became
known as topic models for semantic representations (Grif-
�ths et al. ).

Basic Structure
�e basic structure of a mixed membership model fol-
lows from the speci�cation of assumptions at the popula-
tion, individual, and latent variable levels, and the choice
of a sampling scheme for generating individual attributes
(Erosheva et al. ). Variations in these assumptions
can provide us with di�erent mixed membership mod-
els, including the GoM, admixture, and generative topic
models referred to above.
Assume K basis subpopulations. For each subpopula-

tion k = , . . . ,K, specify f (xj∣θkj), a probability distribu-
tion for attribute xj, conditional on a vector of parameters
θkj. Denote individual-level membership score vector by
λ = (λ, . . . , λK), representing the mixture proportions in
each subpopulation. Given λ, the subject-speci�c condi-
tional distribution for jth attribute is

Pr(xj∣λ) = ∑k λkf (xj∣θkj).

In addition, assume that attributes xj are independent,
conditional on membership scores. Assume membership
scores, the latent variables, are random realizations from
some underlying distribution Dα , parameterized by α.
Finally, specify a sampling scheme by picking the num-
ber of observed distinct attributes, J, and the number of
independent replications for each attribute, R.
Combining these assumptions, the marginal probabil-

ity of observed responses {x(r) , . . . , x
(r)
J }

R

r=
, given model

parameters α and θ, is

Pr ({x(r) , . . . , x
(r)
J }

R

r=
∣α, θ)

= ∫
⎛

⎝

J

∏
j=

R

∏
r=

K

∑
k=

λk f (x
(r)
j ∣θkj)

⎞

⎠
dDα(λ). ()

In general, the number of observed attributes need
not be the same across subjects, and the number of

replications need not be the same across attributes. In addi-
tion, instead of placing a probability distribution on mem-
bership scores, some mixed membership model variants
may treat latent variables as �xed but unknown constants.
Finally, other extensions can be developed by specifying
further dependence structures among sampled individu-
als or attributes thatmay be driven by particular data forms
as, e.g., in relational or network data (Airoldi et al. b;
Chang and Blei ; Xing et al. ).

Estimation
A number of estimation methods have been developed for
mixed membership models that are, broadly speaking, of
two types: those that treat membership scores as �xed and
those that treat them as random.�e �rst group includes
the numerical methods introduced by Hofmann (),
and joint maximum likelihood type methods described
in Manton et al. () and Cooil and Varki (), and
related likelihood approaches in Pottho� et al. () and
Varki et al. (). �e statistical properties of the esti-
mators in these approaches, such as consistency, identi-
�ability, and uniqueness of solutions, are yet to be fully
understood (Haberman ) – empirical evidence sug-
gests that the likelihood function is o�en multi-modal
and can have bothersome ridges.�e second group uses
Bayesian hierarchical structure for direct computation of
the posterior distribution, e.g., with Gibbs sampling based
on simpli�ed assumptions (Pritchard et al. ; Grif-
�ths and Steyvers ) or with fully Bayesian MCMC
sampling (Erosheva ). Variational methods used by
Blei et al. (a, b), or expectation-propagation meth-
ods developed by Minka and La�erty (), can be used
to approximate the posterior distribution. �e Bayesian
hierarchicalmethods solve some of the statistical and com-
putational problems, and variationalmethods in particular
scale well for higher dimensions. Many other aspects of
working with mixed membership models remain as open
challenges, e.g., dimensionality selection (Airoldi et al.
a).

Relationship to Other Methods of
Multivariate Analysis
It is natural to compare mixed membership models with
other latent variable methods, and, in particular, with fac-
tor analysis and latent class models (Bartholomew and
Knott ). For example, the GoM model for binary out-
comes can be thought of as a constrained factor analy-
sis model: E(x∣λ) = Aλ, where x is a column-vector of
observed attributes x = (x, . . . , xJ)′, λ = (λ, . . . , λK)′ is a
column-vector of factor (i.e., membership) scores, andA is
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a J×Kmatrix of factor loadings.�e respective constraints
in this factor model are λ′IK =  and AIK = IK , where IK is
a K-dimensional vector of s.
Mixed membership models can also address objec-

tives similar to those in 7Correspondence Analysis and
Multidimensional Scaling methods for contingency tables.
�us, one could create a low-dimensional map from a
contingency table data and graphically examine member-
ship scores (representing table rows or individuals) in the
convex space de�ned by basis or extreme pro�les (repre-
senting columns or attributes) to address questions such
as whether some table rows have similar distribution over
the table columns categories.
Finally, there is a special relationship between the sets

of mixed membership and latent class models, where each
set ofmodels can be thought of as a special case of the other.
Manton et al. () and Pottho� et al. () described
howGoMmodel can be thought of as an extension of latent
class models. On the other hand, Haberman () �rst
pointed out that GoM model can be viewed as a special
case of latent class models. �e fundamental representa-
tion theorem of equivalence between mixed membership
and population-level mixture models clari�es this nonin-
tuitive relationship (Erosheva et al. ).
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Introduction
Mixture distributions are convex combinations of “compo-
nent” distributions. In statistics, these are standard tools
for modeling heterogeneity in the sense that di�erent ele-
ments of a sample may belong to di�erent components.
However, they may also be used simply as �exible instru-
ments for achieving a good �t to data when standard
distributions fail. As good so�ware for �tting mixtures
is available, these play an increasingly important role in
nearly every �eld of statistics.
It is convenient to explain �nite mixtures (i.e., �nite

convex combinations) as theoretical models for cluster
analysis (see 7Cluster Analysis: An Introduction), but of
course the range of applicability is not at all restricted to
the clustering context. Suppose that a feature vector X is
observed in a heterogeneous population, which consists
of k homogeneous subpopulations, the “components.” It
is assumed that for i = , . . . , k, X is distributed in the
i-th component according to a (discrete or continuous)
density f (x, θ i) (the “component density”), and all com-
ponent densities belong to a common parametric family
{ f (x, θ), θ ∈ Θ}, the “component model.” �e relative
proportion of the i-th component in the whole popula-
tion is pi, p + ⋅ ⋅ ⋅ + pk = . Now suppose that an item
is drawn randomly from the population.�en it belongs
to the i-th component with probability pi, and the con-
ditional probability that X falls in some set A is Pr (X ∈

A ∣ θ i), calculated from the density f (x, θ i). Consequently,
the marginal probability is

Pr (X ∈ A ∣ P) = p Pr (X ∈ A ∣ θ)+⋅ ⋅ ⋅+pk Pr (X ∈ A ∣ θk)

with density

f (x, P) = pf (x, θ) + ⋅ ⋅ ⋅ + pkf (x, θk), ()

a “simple �nite mixture” with parameter P = ((p, . . . , pk),
(θ, . . . , θk)). �e components pi of P are called “mix-
ing weights,” the θ i “component parameters.” For �xed
k, let Pk be the set of all vectors P of this type, with θ i
∈ Θ and nonnegative mixing weights summing up to one.
�en Pk parameterizes all mixtures with not more than k
components. If all mixing weights are positive and com-
ponent densities are di�erent, then k is the exact number
of components. �e set of all simple �nite mixtures is
parameterized by P�n, the union of all Pk.

�is model can be extended in various ways. For
example, all component densities may contain additional
common parameters (variance parameters, say), they may
depend on covariables (mixtures of regression models),
and also the mixing weights may depend on covariables.
Mixtures of time series models are also considered. Here I
shall concentrate on simple mixtures, as all relevant con-
cepts can be explained very easily in this setting. �ese
need not be �nite convex combinations; there is an alter-
native and more general de�nition of simple mixtures:
Observe that the parameter P can be considered as a dis-
crete probability distribution on Θ which assigns prob-
ability mass pi to the parameter θ i. �en Eq.  is an
integral with respect to this distribution, and if ξ is an
arbitrary probability distribution on Θ, a mixture can be
de�ned by

f (x, ξ) = ∫
Θ
f (x, θ)dξ(θ) . ()

It can be considered as the distribution of a two-stage
experiment: First, choose a parameter θ according to the
distribution ξ, then choose x according to f (x, θ). Here, ξ
is called a “mixing distribution,” andmixturemodels of this
type can be parameterized over every set Ξ of probability
distributions on Θ.
In statistical applications of mixture models, a non-

trivial key issue is identi�ability, meaning that di�erent
parameters describe di�erent mixtures. In a trivial sense,
models parameterized over vectors P are never identi�-
able: All vectors that correspond to the same probability
distribution on Θ describe the same mixture model. For
example, any permutation of the sequence of components
leaves the mixing distribution unchanged, or components
may be added with zero mixing weights.�erefore iden-
ti�ability can only mean that parameters that correspond
to di�erent mixing distributions describe di�erent mix-
ture models. However, also in this sense identi�ability
is o�en violated. For example, the mixture of two uni-
form distributions with supports [, .] and [., ] and
equal mixing weights is the uniform distribution with sup-
port [, ]. On the other hand, �nite mixtures of many
standard families (normal, Poisson, ...) are identi�able,
see for example Titterington et al. (). Identi�abil-
ity of mixtures of regression models has been treated
among others by Hennig (). A standard general ref-
erence for �nite mixture models is McLachlan and Peel
().

Statistical Problems
Consider a mixture model with parameter η (vector or
probability measure). In the simplest case, one has i.i.d.
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data x, . . . , xn from f (x, η), from which one wants to
gain information about η. Typical questions are estima-
tion of (parameters of) η, or mixture diagnostics: Is there
strong evidence for a mixture (in contrast to homogene-
ity in the sense that η is concentrated at some single
parameter θ)? What is the (minimum) number of mixture
components?
A variety of techniques has been developed.�e data

provide at least implicitly an estimate of the mixture, and
Eqs.  and  show that mixture andmixing distribution are
related by a linear (integral) equation. Approximate solu-
tion techniques have been applied for obtaining estimators,
and moment estimators have been developed on basis of
this structure. Distance estimators exhibit nice proper-
ties. Traditionally, mixture diagnostics has been handled
by graphical methods. More recent approaches for esti-
mation and diagnostics are based on Bayesian or likeli-
hood techniques; likelihood methods will be addressed
below. Although Bayesian methods have some advan-
tages over likelihood methods, they are not straightfor-
ward (for example, usually no “natural” conjugate pri-
ors are available, therefore posteriors are simulated using
MCMC. Choice of “noninformative” priors is not obvi-
ous, as improper priors usually lead to improper pos-
teriors. Nonidenti�ability of Pk causes the problem of
“label switching”). A nice reference for Bayesian methods
is Frühwirth-Schnatter ().
Let me close this section with a short discussion of

robustness. Robustness with respect to 7outliers is treated
byHennig (). Another problem is thatmixturemodels
are extremely nonrobustwith respect tomisspeci�cation of
the component model. Estimating the component model
in a fully nonparametric way is of course not possible,
but manageable alternatives are for example mixtures of
log-concave distributions. Let me point out, however, that
issues like nonrobustness and nonidenti�ability only cause
problems if the task is to interpret the model parameters
somehow. If the aim is only to obtain a better data �t, one
need not worry about them.

Likelihood Methods
In the above setting, l(η) = log( f (x, η)) + ⋅ ⋅ ⋅ +

log( f (xn, η)) is the log likelihood function. It may have
some undesirable properties: First, the log likelihood is
o�en unbounded. For example, consider mixtures of nor-
mals. If the expectation of one component is �xed at some
data point and the variance goes to zero, the likelihood
goes to in�nity. Singularities usually occur at the bound-
ary of the parameter space. Second, the likelihood function
is usually not unimodal, although this depends on the

parameterization. For example, if the parameter is a prob-
ability distribution as in Eq.  and if the parameter space Ξ
is a convex set (with respect to the usual linear combina-
tion of measures), the log likelihood function is concave.
If it is bounded, there is a nice theory of “nonparamet-
ric likelihood estimation” (Lindsay ), and “the” “non-
parametric maximum likelihood estimator” is in some
sense uniquely de�ned and can be calculated numerically
(Böhning ; Schlattmann ).
Nonparametricmethods, however, work in lowdimen-

sional component models, whereas “parametric” estima-
tion techniques like the Expectation-Maximization (EM)
method work in nearly any dimensional.�e EM is a local
maximizer for mixture likelihoods in Pk. Here the mix-
ture likelihood is usually multimodal; moreover, it can be
very �at. Analytic expressions for likelihood maxima usu-
ally do not exist, they have to be calculated numerically.
On the other hand, even for unbounded likelihoods, it is
known from asymptotic theory, that the simple heuristics
of searching for a large local maximum in the interior of
the parameter space may lead to reasonable estimators.
However, one must be aware that there exist “spurious”
large localmaxima that are statisticallymeaningless.More-
over, except from simple cases, there is no manageable
asymptotics for likelihood ratio.
Some of the problems of pure likelihood approaches

can be overcome by considering penalized likelihoods.
However, here one has the problem of choosing a penal-
ization parameter. Moreover, the EM algorithm is a basic
tool for a number of estimation problems, and it has a very
simple structure for simple �nitemixtures.�erefore it will
be outlined in the next section.

EM Algorithm
�e EM algorithm is a local maximization technique for
the log likelihood in Pk. It starts from the complete-data
log-likelihood. Suppose that for observation xi the (�c-
tive) component membership is known. It is de�ned by a
vector zi ∈ Rk with zij = , if xi belongs to j-th compo-
nent, and zero elsewhere. As a random variable Zi, it has
a 7multinomial distribution with parameters k, p, . . . , pk.
�en the complete data likelihood and log likelihood of
P, respectively, are Lc(P) = ∏

n
i=∏

k
j=( pj f (xi, θ j))zij

and lc(P) = log(Lc(P)) = ∑
n
i=∑

k
j= zij log pj +

∑
n
i=∑

k
j= zij log f (xi, θ j).

�e EM needs a starting value P, and then proceeds
as an iteration between an “E-step” and an “M-step” until
“convergence.”�e �rst E-step consists in calculating the
conditional expectation EP(lc(P) ∣ x, . . . , xn) of lc(P) for
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arbitrary P, given the data, under P. As the only random-
ness is in the zij, we obtain

EP(lc(P) ∣ x, . . . , xn) =
n

∑
i=

k

∑
j=

τj(xi∣P) log pj

+
n

∑
i=

k

∑
j=

τj(xi∣P) log f (xi, θ j),

where

τj(xi∣P) = PrP(Zij =  ∣ xi) =
pjf (xi, θ j)
f (xi, P)

is the conditional probability that the i-th observation
belongs to component j, given the data, with respect to P.
In the following M-step, EP(lc(P) ∣ x, . . . , xn) is max-

imized with respect to P. As it is the sum of terms depend-
ing on the mixing weights and on the parameters only,
respectively, both parts can be maximized separately. It
is easily shown that the maximum in the pj is achieved
for p()j = (/n)∑ni= τj(xi∣P), j = , . . . ,n. For compo-
nent densities from exponential families, similar simple
solutions exist for the θ j, therefore both the E-step and
the M-step can be carried out here analytically. It can be
shown that () the log-likelihood is not decreasing during
the iteration of the EM, and () that under some regu-
larity conditions it converges to a stationary point of the
likelihood function. However, this may also be a saddle
point.
It remains to de�ne the stopping rule and the starting

point(s). Both are crucial, and the reader is referred to the
literature.�ere are also techniques that prevent from con-
vergence to singularities or spurious maxima. A �nal nice
issue of the EM is that it yields a simple tool for classi�ca-
tion of data points: If P̂ is an estimator, then τj(xi∣P̂) is the
posterior probability that xi belongs to class j with respect
to the “prior” P̂. �e Bayesian classi�cation rule assigns
observation i to the class j that maximizes τj(xi∣P̂), and the
τj(xi∣P̂)measure the plausibility of such a clustering.

Number of Components, Testing and
Asymptotics
Even if one has an estimator in each Pk from the EM,
the question is how to assess the number of components
(i.e., how to choose k). Usually information criteria like
AIC and BIC are recommended. An alternative is to per-
form a sequence of tests of k against k +  components, for
k = ,  . . . .

�ere are several tests for homogeneity, i.e., for the
“component model”, as for example goodness of �t or dis-
persion score tests. For testing k against k components, a
likelihood ratio test may be performed. However, the usual

χ-asymptotics fails, so critical values have to be simu-
lated. Moreover, the distribution of the test statistic usually
depends on the speci�c parameter under the null hypoth-
esis. �erefore some sort of bootstrap (see 7Bootstrap
Methods) is needed, and as estimators have to be calcu-
lated numerically, likelihood ratio tests are computation-
ally intensive.
Let me close with some remarks on asymptotics.

Whereas 7asymptotic normality of estimators is guaran-
teed under some conditions, the usual asymptotics for the
likelihood ratio test fails. �e reason is that under the
null hypothesis, the parameter P is on the boundary of
the parameter space, it is not identi�able and the Fisher
information matrix in P is singular. �ere is an asymp-
totic theory under certain restrictive assumptions, but it is
usually hard to calculate critical values from it.
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Introduction
In applications there are usually severalmodels for describ-
ing a population from a given sample of observations and
one is thus confronted with the problem of model selec-
tion. For example, di�erent distributions can be �tted to
a given sample of univariate observations; in polynomial
regression one has to decide which degree of the polyno-
mial to use; in multivariate regression one has to select
which covariates to include in the model; in �tting an
autoregressive model to a stationary time series one must
choose which order to use.
When the set of models under consideration is nested,

as is the case in polynomial regression, the �t of the model
to the sample improves as the complexity of themodel (e.g.,
the number of parameters) increases but, at some stage,
its �t to the population deteriorates. �at is because the
model increasinglymoulds itself to the features of the sam-
ple rather than to the “true model,” namely the one that
characterizes the population. �e same tendency occurs
even if the models are not nested; increasing the complex-
ity eventually leads to deterioration.�us model selection
needs to take both goodness of the �t and the complexity
of the competing models into account.
Reference books on model selection include Linhart

and Zucchini (), Burnham and Anderson (),
Miller (), Claeskens and Hjort (). An introduc-
tory article is Zucchini ().

Information Criteria – Frequentist
Approach
�e set of models considered for selection can be thought
of as approximating models which, in general, will di�er
from the true model.�e answer to the question “Which
approximation is best?” depends, of course, on how we
decide tomeasure the quality of the �t. Using the Kullback-
Leibler distance for this leads to the popular 7Akaike
Information Criterion (AIC, Akaike ):

AIC(M) =  log(L(θ̂)) − p,

where M is the model, L the likelihood, and θ̂ the max-
imum likelihood estimator of the vector of the model’s

p parameters. �e �rst term of the AIC measures the �t
of the model to the observed sample; the �t improves as
the number of parameters in the model is increased. But
improving the �t of the model to the sample does not nec-
essarily improve its �t to the population.�e second term
is a penalty term that compensates for the complexity of
the model. One selects the model that maximizes the AIC.
Note, however, that in much of the literature the AIC is
de�ned as minus the above expression, in which case one
selects the model that minimizes it.
A model selection criterion is a formula that allows

one to compare models. As is the case with the AIC,
such criteria generally comprise two components: one that
quanti�es the �t to the data, and one that penalizes com-
plexity. Examples include Mallows’ Cp criterion for use in
7linear regression models, Takeuchi’s model-robust infor-
mation criterion TIC, and re�nements of the AIC such as
the ‘corrected AIC’ for selection in linear regression and
autoregressive time series models, the network informa-
tion criterion NIC, which is a version of AIC that can be
applied to model selection in 7neural networks, and the
generalized information criterion GIC for use with in�u-
ence functions. Several of these criteria have versions that
are applicable in situations where there are outlying obser-
vations, leading to robust model selection criteria; other
extensions can deal with missing observations.
Alternative related approaches to model selection that

do not take the form of an information criterion are boot-
strap (see, e.g., Zucchini ) and cross-validation. For the
latter the idea is to partition the sample in two parts: the
calibration set, that is used to �t the model, and the vali-
dation sample, that is used to assess the �t of the model, or
the accuracy of its predictions.�e popular “leave-one-out
cross-validation” uses only one observation in the valida-
tion set, but each observation has a turn at comprising the
validation set. In a model selection context, we select the
model that gives the best results (smallest estimation or
prediction error) averaged over the validation sets. As this
approach can be computationally demanding, suggestions
have beenmade to reduce the computational load. In “�ve-
fold cross-validation” the sample is randomly split in �ve
parts of about equal size. One of the �ve parts is used as
validation set and the other four parts as the calibration set.
�e process is repeated until each of the �ve sets is used as
validation set.

Bayesian Approach
�e Bayesian regards the models available for selection as
candidate models rather than approximating models; each
of them has the potential of being the true model. One
begins by assigning to each of them a prior probability,
P(M), that it is the true model and then, using 7Bayes’
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theorem, computes the posterior probability of it being
so:

P(M∣Data) =
P(Data ∣M)P(M)

P(Data )
.

�e model with the highest posterior probability is
selected. �e computation of P(Data ∣M) and P(Data )
can be very demanding and usually involves the use
of Markov chain Monte Carlo (MCMC) methods (see
7Markov Chain Monte Carlo) because, among other
things, one needs to ‘integrate out’ the distribution of the
parameters ofM (see e.g., Wasserman ).
Under certain assumptions and approximations (in

particular the Laplace approximation), and taking all can-
didate models as a priori equally likely to be true, this leads
to the Bayesian Information Criterion (BIC), also known
as the Schwarz criterion (Schwarz ):

BIC(M) =  log(L(θ̂)) − p log(n),

where n is the sample size and p the number of unknown
parameters in the model. Note that although the BIC is
based on an entirely di�erent approach it di�ers from the
AIC only in the penalty term.

�e di�erence between the frequentist and Bayesian
approaches can be summarized as follows. �e former
addresses the question “Which model is best, in the sense
of least wrong?” and the latter the question “Which model
is most likely to be true?”.

�e Deviance Information Criterion (Spiegelhalter
et al. ) is an alternative Bayesian method for model
selection. While explicit formulae are o�en di�cult to
obtain, its computation is simple for situations where
MCMC simulations are used to generate samples from a
posterior distribution.

�e principle of minimum description length (MDL)
is also related to the BIC. �is method tries to measure
the complexity of the models and selects the model that is
the least complex.�e MDL tries to minimize the sum of
the description length of the model, plus the description
length of the data when �tted to the model. Minimizing
the description length of the data corresponds tomaximiz-
ing the log likelihood of the model.�e description length
of the model is not uniquely de�ned but, under certain
assumptions, MDL reduces to BIC, though this does not
hold in general (Rissanen ). Other versions of MDL
come closer to approximating the full Bayesian posterior
P(M∣) Data. See Grünwald () for more details.

Selecting a Selection Criterion
Di�erent selection criteria o�en lead to di�erent selec-
tions.�ere is no clear-cut answer to the question of which
criterion should be used. Some practitioners stick to a sin-
gle criterion; others take account of the orderings indicated

by two or three di�erent criteria (e.g., AIC and BIC) and
then select the one that leads to the model which seems
most plausible, interpretable or simply convenient in the
context of the application.
An alternative approach is to tailor the criterion to the

particular objectives of the study, i.e., to construct it in such
away that selection favors themodel that best estimates the
quantity of interest. �e Focussed Information Criterion
(FIC, Claeskens and Hjort ) is designed to do this; it
is based on the premise that a good estimator has a small
mean squared error (MSE).�e FIC is constructed as an
estimator of the MSE of the estimator of the quantity of
interest. �e model with the smallest value of the FIC is
the best.
Issues such as consistency and e�ciency can also play

a role in the decision regarding which criterion to use.
An information criterion is called consistent if it is able to
select the true model from the candidate models, as the
sample size tends to in�nity. In a weak version, this holds
with probability tending to one; for strong consistency, the
selection of the true model is almost surely. It is impor-
tant to realize that the notion of consistency only makes
sense in situations where one can assume that the true
model belongs to the set of models available for selection.
�us will not be the case in situations in which researchers
“believe that the system they study is in�nitely compli-
cated, or there is no way to measure all the important
variables” (McQuarrie and Tsai ).�e BIC is a consis-
tent criterion, as is the Hannan-Quinn criterion that uses
log log(n) instead of log(n) in the penalty term.
An information criterion is called e�cient if the ratio of

the expected mean squared error (or expected prediction
error) under the selected model and the expected mean
squared error (or expected prediction error) under its the-
oretical minimizer converges to one in probability. For a
study of the e�ciency of a model selection criterion, we
do not need to make the assumption that the true model
is one of the models in the search list.�e AIC, corrected
AIC, and Mallows’s Cp are examples of e�cient criteria. It
can be shown that the BIC and the Hannan-Quinn crite-
rion are not e�cient.�is is an observation that holds in
general: consistency and e�ciency cannot occur together.

Model Selection in High Dimensional
Models
In some applications, e.g., in radiology and biomedical
imaging, the number of unknown parameters in themodel
is larger than the sample size, and so classical model selec-
tion procedures (e.g., AIC, BIC) fail because the parame-
ters cannot be estimated using the method of maximum
likelihood. For these so-called high-dimensional models
regularized or penalized methods have been suggested in
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the literature.�e popular Lasso estimator, introduced by
Tibshirani (), adds an l penalty for the coe�cients in
the estimation process.�is has as a particular advantage
that it not only can shrink the coe�cients towards zero,
but also sets some parameters equal to zero, which cor-
responds to variable selection. Several extensions to the
basic Lasso exist, and theoretical properties include con-
sistency under certain conditions. �e Dantzig selector
(Candes and Tao ) is another type of method for use
with high-dimensional models.

Post-model Selection Inference
Estimators that are obtained in a model that has been
selected by means of a model selection procedure, are
referred to as estimators-post-selection or post-model-
selection estimators. Since the data are used to select the
model, the selected model that one works with, is ran-
dom. �is is the main cause of inferences to be wrong
when ignoring model selection and pretending that the
selected model had been given beforehand. For example,
by ignoring the fact that model selection has taken place,
the estimated variance of an estimator is likely to be too
small, and con�dence and prediction intervals are likely to
be too narrow. Literature on this topic includes Pötscher
(), Hjort and Claeskens (), Shen et al. (), Leeb
and Pötscher ().
Model selection can be regarded as the special case

of model averaging in which the selected model takes on
the weight one and all other models have weight zero.
However, regarding it as such does not solve the prob-
lem because selection depends on the data, and so the
weights in the estimator-post-selection are random.�is
results in non-normal limiting distributions of estimators-
post-selection, and requires adjusted inference techniques
to take the randomness of the model selection process
into account.�e problem of correct post-model selection
inference has yet to be solved.
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Stochastic Models for Spatial Data
Diggle and Ribeiro () and Mase () describe geo-
statistics as a branch of spatial statistics that deals with
statistical methods for the analysis of spatially referenced
data with the following properties. Firstly, values Yi, i =
, . . . ,n, are observed at a discrete set of sampling locations
xi within some spatial region S ⊂ Rd, d ≥ . Secondly,
each observed valueYi is either ameasurement of, or is sta-
tistically related to, the value of an underlying continuous
spatial phenomenon,Z (x), at the corresponding sampling
location xi. �e term model-based geostatistics refers to

geostatistical methods that rely on a stochastic model.�e
observed phenomenon is viewed as a realization of a con-
tinuous stochastic process in space, a so-called random
�eld.
Such a random �eld Z (x) is fully determined by spec-

ifying all multivariate distributions, i.e., P(Z (x) ≤ z, . . . ,
Z (xn) ≤ zn) for arbitrary n ∈ N and x, . . . , xn ∈ S .
Since a full characterization of a random �eld is usu-
ally hopeless, the mean function m (x) = E (Z (x)) and
the covariance function K (xi, xj) = Cov (Z (xi) ,Z (xj))
play a prominent role.�ereby,m (x) represents the trend
while K (xi, xj) de�nes the dependence structure of the
random �eld. It is typical that the assumption of weak
(second-order) isotropy is made about the random �eld,
i.e., its mean function is constant and its covariance
function K (x, x) depends on x and x only through
h = ∥x − x∥, where ∥.∥ denotes the Euclidean dis-
tance. In this case K is called an isotropic autocovariance
function. �e covariance function is directly related to
smoothness properties of the random �eld such as mean
square continuity and di�erentiability. A widely used para-
metric family of isotropic autocovariance functions is the
Matern family

Kσ  ,θ (h) = σ 
⎛

⎝
( − ϑ) +

ϑ
κ−Γ (κ)

⎛

⎝

κ

 h

ϑ
⎞

⎠

κ

Kκ
⎛

⎝

κ

 h

ϑ
⎞

⎠

⎞

⎠
,

where Kκ denotes the modi�ed Bessel function of order
κ > , ϑ >  is a called the “range parameter” controlling
how fast the covariance decays as the distance h gets large,
ϑ ∈ [, ] is called the “nugget parameter” and describes
a measurement error, σ  controls the variance and θ =

(ϑ, ϑ, κ) denotes the vector of correlation parameters.
�e parameter κ controls the smoothness of the corre-
sponding process. A thorough mathematical introduction
to the theory of random �elds is given in Stein () and
Yaglom ().

�e most important geostatistical model is the linear
Gaussian model

Yi = f (xk)
T β + Z (xi) , i = , . . . ,n, ()

where Z (x) is a weakly isotropic zero-meanGaussian ran-
dom �eld with autocovariance function Kσ  ,θ , f is a vec-
tor of location-dependent explanatory variables and β =

(β, . . . , βp)T is the vector of regression parameters. �e
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likelihood function for the linear Gaussian model is

p (Y ∣ β, σ , θ) = (π)−
n
 ∣σ Σθ ∣

−  exp{−

σ 

(Y − Fβ)T

Σ−θ (Y − Fβ)} ,

where Σθ denotes the correlation matrix, F is the design
matrix and Y = (Y, . . . ,Yn)T is the vector of observa-
tions.�e maximum likelihood estimates for β and σ  in
the linear Gaussian model are

β̂ = (FTΣ−θ F)
−
FTΣ−θ Y, ()

σ̂  =

n
(Z − Fβ̂)

T
Σ−θ (Z − Fβ̂) . ()

Plugging these estimates into the log-likelihood, we arrive
at the so-called pro�led log-likelihood, which just contains
the parameters θ

log p (Y ∣ β̂, σ̂ , θ) = −
n

(log (π) + ) −



log ∣Σθ ∣

−
n

log (σ̂ ) .

To obtain θ̂ we have to maximize the latter equation for θ
numerically. Note that this maximization problem is a lot
simpler than the maximization of the complete likelihood
where β and σ  are additional unknowns, especially when
p is large. Spatial prediction, which is o�en the goal in
geostatistics, is performed based on the estimated parame-
ters.�e plug-in predictive distribution for the value of the
random �eld at an unobserved location x is Gaussian

Y ∣ Y , σ̂ , θ̂ ∼ N (kTK−Y + sT β̂, σ̂  − kTK−k + σ̂ sT

(FTK−F)
−
s) , ()

whereK = σ̂ Σθ̂ , s = f (x)−FTK−k, k = Cov (Z,Z (x)),
Z = (Z (x) , . . . ,Z (xn))T .
Weak isotropy is a rather strong assumption and envi-

ronmental processes are typically not direction indepen-
dent but show an anisotropic behavior. A popular exten-
sion to isotropic random �elds is to consider random �elds
that become isotropic a�er a linear transformation of the
coordinates (Schabenberger and Gotway ).�is spe-
cial variant of anisotropy is called geometric anisotropy.
Let Z (x) be an isotropic random �eld on Rd with auto-
covariance function K and mean µ. For the random
�eld Z (x) = Z (Tx), where T ∈ Rd×d, we get that
E (Z (x)) = µ and the corresponding autocovariance func-
tion is Cov (Z (x) ,Z (x)) = K (∥T (x − x)∥). When
correcting for geometric anisotropy we need to revert the

coordinate transformation. Z (T−x) has the same mean
as Z (x) but isotropic autocovariance function K. When
correcting for stretching and rotation of the coordinates we
have

T− =
⎛
⎜
⎜
⎝

 

 λ

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

cos φ − sin φ

sin φ cos φ

⎞
⎟
⎟
⎠

.

Here, λ and φ are called the anisotropy ratio and anisotropy
angle, respectively. All the models that we consider in
this chapter can be extended to account for geometric
anisotropy by introducing these two parameters.

Bayesian Kriging
�e �rst steps towards Bayesian modeling and prediction
in geostatistics were made by Kitanidis () and Omre
() who developed a Bayesian version of universal krig-
ing. One of the advantages of the Bayesian approach,
besides its ability to deal with the uncertainty about the
model parameters, is the possibility toworkwith only a few
measurements. Assume a Gaussian random �eld model in
the form of the form Eq.  with known covariance matrix
K but unknown parameter vector β. From Bayesian analy-
sis we know that it is natural to assume a prior of the form
β ∼ N (mb, σ Vb) for β, where Vb is a positive semide�-
nite matrix. It can be shown that the posterior distribution
for β is

β ∣ Z ∼ N (β̃, σ V β̃) ,

where β̃ = V β̃ (σ FTK−Z +V−
b mb) and V β̃ = (σ FT

K−F +V−
b )

−. �e predictive distribution of Z (x) is
also Gaussian and given by

Z (x) ∣ Z ∼ N (kTK−Z + sT β̃, σ  − kTK−k + σ sTV β̃s) ,

where F, s and k are de�ned as in Section “7Stochastic
Models for Spatial Data”. From the above representa-
tion of the Bayesian kriging predictor it becomes clear
that Bayesian kriging bridges the gap between simple
and universal kriging. We get simple kriging in case
of complete knowledge of the trend, which corresponds
to Vb = , whereas we get the universal kriging
predictor if we have no knowledge of β (V−b = 
in the sense that the smallest eigenvalue of Vb con-
verges to in�nity). Interestingly, the Bayesian universal
kriging predictor has a smaller or equal variance than
the classical universal kriging predictor (see Eq. ) since
(FTK−F + σ−V−

b )
−

⪯ (FTK−F)−, where ⪯ denotes
the Loewner partial ordering.
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Bayesian universal kriging is not fully Bayesian because
K is assumed known. Diggle and Ribeiro () summa-
rize the results for a fully Bayesian analysis of Gaussian
random�eldmodels of the formEq. , whereKσ  ,θ = σ Σϑ
and ϑ is the range parameter of an isotropic autocorrela-
tion function model.

Transformed Gaussian Kriging
Probably the most simple way to extend the Gaussian ran-
dom �eld model is to assume that a di�erentiable transfor-
mation of the original random �eld, Z (x) = g (Z (x)), is
Gaussian.�e mean of the transformed �eld is unknown
and parameterized by β, E (Z (x)) = f (x)T β. If we
assume that the transformation function g and the covari-
ance function K of Y (x) are known, the optimal predictor
for Z (x) can be derived using the results from Section
“7Stochastic Models for Spatial Data”. However, in prac-
tice neitherK nor g is known andwe have to estimate them
from the data.
A family of one-parameter transformation functions gλ

that is widely used in statistics is the so-called Box-Cox
family

gλ (z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

zλ−
λ , λ ≠ ,

log (z) , λ = .

�e 7Box-Cox transformation is valid for positive-valued
random �elds and is able to model moderately skewed,
unimodal data.

�e likelihood of the data Y in the transformed Gaus-
sian model can be written as

p (Y ∣ Θ) = Jλ(Y) (π)
− n ∣σ Σθ ∣

−  exp [−

σ 

(gλ(Y)−

Fβ)T Σ−θ (gλ (Y) − Fβ)] ,

where, Θ = (β, θ, σ , λ), Jλ(Y) is the determinant of the
Jacobian of the transformation, gλ (Y) = (gλ (Y) , . . . ,
gλ (Yn)) and λ is the transformation parameter. De
Oliveira et al. () point out that the interpretation of β
changes with the value of λ, and the same is true for the
covariance parameters σ  and θ, to a lesser extent though.
To estimate the parameters λ and θ, we make use of the
pro�le likelihood approach that we have already encoun-
tered in Section “7Stochastic Models for Spatial Data”. For
�xed values of λ and θ, the maximum likelihood estimates
for β and σ  are given by Eqs.  and  with Y replaced by
gλ (Y). Again, the estimates for λ and θ cannot be written
in closed form andmust be found numerically by plugging
β̂ and σ̂  in the likelihood for numerical maximization.

�e estimated parameters Θ̂ are subsequently used for
spatial prediction. To perform a plug-in prediction we
make use of the conditional distribution of the Gaussian
variable Y ∣ Y , Θ̂ and back-transform it to the original
scale by g−λ . A Bayesian approach to spatial prediction
in the transformed Gaussian model is proposed in De
Oliveira et al. ().

�e copula-based geostatistical model (Kazianka and
Pilz ) also works with transformations of themarginal
distributions of the random �eld and is a generalization of
transformed Gaussian kriging. In this approach all multi-
variate distributions of the random �eld are described by
a copula (Sempi ) and a family of univariate marginal
distributions. Due to the additional �exibility introduced
by the choice of the copula and of the marginal distribu-
tion, these models are able to deal with extreme observa-
tions and multi-modal data.

Generalized Linear Geostatistical Models
7Generalized linear models (McCullagh and Nelder )
provide a unifying framework for regression modeling of
both continuous and discrete data. Diggle and Ribeiro
() extend the classical generalized linear model to
what they call the generalized linear geostatistical model
(GLGM).�e responses Yi, i = , . . . ,n, corresponding to
location xi are assumed to follow a family of univariate dis-
tributions indexed by their expectation, µi, and to be con-
ditionally independent given Z = (Z (x) , . . . ,Z (xn)).
�e µi are speci�ed through

h (µi) = f (xi)T β + Z (xi) ,

where Z (x) is a Gaussian random �eld with autocovari-
ance function Kθ and h is a pre-de�ned link function.
�e two most frequently applied GLGMs are the Poisson
log-linear model, where Yi is assumed to follow a Poisson
distribution and the link function is the logarithm, and the
binomial logistic-linear model, where Yi is assumed to fol-
low a Bernoulli distribution with probability µi = p (xi)
and h (µi) = log (p (xi) / ( − p (xi))).�ese models are
suitable for representing spatially referenced count data
and binary data, respectively.
Since maximum likelihood estimation of the parame-

ters is di�cult, a Markov chain Monte Carlo (Robert and
Casella ) approach (see7MarkovChainMonteCarlo)
is proposed to sample from the posteriors of the model
parameters as well as from the predictive distributions at
unobserved locations x.�e algorithm proceeds by sam-
pling fromZ ∣ Y , β, θ, from θ ∣ Z and from β ∣ Z,Y with the
help of Metropolis-Hastings updates. At iteration t +  and



 M Modeling Count Data

actual sample (Zt , θ t , βt ,Zt (x)), perform the following
steps:

● Update Z. For i = , . . . ,n, sample a new proposal
Z′ (xi) from the conditional Gaussian distribution
p (Z (xi) ∣ θ t ,Zt−i), where Z

t
−i denotes Z

t
= (Zt (x) ,

. . . ,Zt (xn)) with its ith element removed. Accept

Z′ (xi) with probability r = min{,
p(Yi ∣ βt ,Z′(xi))
p(Yi ∣ βt ,Zt(xi))}.

● Update θ. Sample a new proposal θ′ from a proposal
distribution J (θ ∣ θ t). Accept the new proposal with

probability r = min{, p(Z
t+ ∣ θ′)J(θ t ∣ θ′)

p(Zt+ ∣ θ t)J(θ′∣ θ t)}.

● Update β. Sample a new proposal β′ from a proposal
distribution J (β ∣ βt). Accept the new proposal with

probability r = min{, ∏
n
i= p(Yi ∣ Z

t+(xi),β′)J(βt ∣ β′)
∏n
i= p(Yi ∣ Zt+(xi),βt)J(β′∣ βt)}

● Draw a sample Zt+ (x) from the conditional Gaus-
sian distribution Z (x) ∣ Zt+, θ t+.

If point predictions for Z (x) are needed, theMonte Carlo
approximation to the expected value of Z (x) ∣ Y can be
used, i.e., E (Z (x) ∣ Y) ≈ 

M ∑
M
t= Z

t
(x), whereM is the

number of simulations.
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Count models are a subset of discrete response regression
models. Count data are distributed as non-negative inte-
gers, are intrinsically heteroskedastic, right skewed, and
have a variance that increases with the mean. Example
count data include such situations as length of hospital stay,
the number of a certain species of �sh per de�ned area in
the ocean, the number of lights displayed by �re�ies over
speci�ed time periods, or the classic case of the number
of deaths among Prussian soldiers resulting from being
kicked by a horse during the Crimean War.

7Poisson regression is the basic model from which a
variety of count models are based. It is derived from the
Poissonprobabilitymassfunction,whichcanbeexpressedas

f (yi; λi) =
e−ti λi(tiλi)yi

yi!
, y = , , , . . . ; µ >  ()

with yi as the count response, λi as the predicted count
or rate parameter, and ti the area or time in which counts
enter the model. When λi is understood as applying to
individual counts without consideration of size or time,
ti = . When ti > , it is commonly referred to as an
exposure, and is modeled as an o�set.
Estimation of the Poisson model is based on the log-

likelihood parameterization of the Poisson probability dis-
tribution, which is aimed at determining parameter values
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making the data most likely. In exponential family form it
is given as:

L(µi; yi) =
n

∑
i=

{yi ln(µi) − µi − ln(yi!)}, ()

where µi is typically used to symbolize the predicted counts
in place of λi. Equation , or the deviance function based
on it, is used when the Poisson model is estimated as a
generalized linear model (GLM) (see 7Generalized Lin-
ear Models). When estimation employs a full maximum
likelihood algorithm, µi is expressed in terms of the linear
predictor, x′β. As such it appears as

µi = exp(xiβ). ()

In this form, the Poisson log-likelihood function is
expressed as

L(β; yi) =
n

∑
i=

{yi(xiβ) − exp(xiβ) − ln(yi!)}. ()

A key feature of the Poisson model is the equality of
the mean and variance functions. When the variance of
a Poisson model exceeds its mean, the model is termed
overdispersed. Simulation studies have demonstrated that
overdispersion is indicatedwhen the Pearson χ dispersion
is greater than . (Hilbe ). �e dispersion statistic
is de�ned as the Pearson χ divided by the model resid-
ual degrees of freedom. Overdispersion, common to most
Poisson models, biases the parameter estimates and �t-
ted values. When Poisson overdispersion is real, and not
merely apparent (Hilbe ), a count model other than
Poisson is required.
Severalmethods have been used to accommodate Pois-

son overdispersion. Two common methods are quasi-
Poisson and negative binomial regression. Quasi-Poisson
models have generally been understood in two distinct
manners. �e traditional manner has the Poisson vari-
ance being multiplied by a constant term. �e second,
employed in the glm() function that is downloaded by
default when installing R so�ware, is to multiply the stan-
dard errors by the square root of the Pearson disper-
sion statistic. �is method of adjustment to the variance
has traditionally been referred to as scaling. Using R’s
quasipoisson() function is the same as what is known
in standard GLM terminology as the scaling of standard
errors.

�e traditional negative binomial model is a Poisson-
gamma mixture model with a second ancillary or
heterogeneity parameter, α.�emixture nature of the vari-
ance is re�ected in its form, µi + αµ i , or µi( + αµi).
�e Poisson variance is µi, and the two parameter gamma
variance is µ i /ν. ν is inverted so that α = /ν, which allows

for a direct relationship between µi, and ν. As a Poisson-
gamma mixture model, counts are Poisson distributed as
they enter into the model. α is the shape (gamma) of the
manner counts enter into the model as well as a measure
of the amount of Poisson overdispersion in the data.

�e negative binomial probability mass function (see
7Geometric and Negative Binomial Distributions) may be
formulated as

f (yi; µi, α) = (
yi + /α − 
/α − 

)

(/( + αµi))/α
(αµi/( + αµi))

y
i , ()

with a log-likelihood function speci�ed as

L(µi; yi, α)=
n
∑
i=

{yi ln ( αµi
+αµi

) − ( α ) ln( + αµi)

+ ln Γ(yi + 
α ) − ln Γ(yi + ) − ln Γ(


α )}.

()
In terms of µ = exp(x′β), the parameterization employed
formaximum likelihood estimation, the negative binomial
log-likelihood appears as

L(β; yi, α) =
n

∑
i=

{yi ln (
α exp (x′iβ)

 + α exp (x′iβ)
) − (


α
)

ln ( + α exp (x′iβ))

+ ln Γ(yi +

α
) − ln Γ(yi + ) − ln Γ(


α
)}.

()

�is form of negative binomial has been termed NB,
due to the quadratic nature of its variance function. It
should be noted that the NB model reduces to the Pois-
son when α = . When α = , the model is geometric,
taking the shape of the discrete correlate of the contin-
uous negative exponential distribution. Several �t tests
exist that evaluate whether data should be modeled as
Poisson or NB based on the degree to which α di�ers
from .
When exponentiated, Poisson andNB parameter esti-

mates may be interpreted as incidence rate ratios. For
example, given a random sample of , patient observa-
tions from the German Health Survey for the year ,
the following Poisson model output explains the years
expected number of doctor visits on the basis of gender
and marital status, both recorded as binary (/) variables,
and the continuous predictor, age.
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Docvis IRR OIM std. err. z P > ∣z∣ [% Conf. interval]

Female . . . . . .

Married . . −. . . .

Age . . . . . .

�e estimates may be interpreted as

7 Females are expected to visit the doctor some % more
times during the year than males, holding marital status
and age constant.

Married patients are expected to visit the doctor some
% fewer times during the year than unmarried patients,
holding gender and age constant.

For a one year increase in age, the rate of visits to
the doctor increases by some %, with marital status and
gender held constant.

It is important to understand that the canonical form
of the negative binomial, when considered as a GLM, is
not NB. Nor is the canonical negative binomial model,
NB-C, appropriate to evaluate the amount of Poisson
overdispersion in a data situation.�e NB-C parameteri-
zation of the negative binomial is directly derived from the
negative binomial log-likelihood as expressed in Eq. . As
such, the link function is calculated as ln(αµ/( + αµ)).
�e inverse link function, or mean, expressed in terms of
x′β, is /(α(exp(−x′β) − )).
When estimated as a GLM, NB-C can be amended to

NB form by substituting ln(µ) and exp(x′β) respectively
for the two above expressions. Additional amendments
need to be made to have the GLM-estimated NB dis-
play the same parameter standard errors as are calculated
using full maximum likelihood estimation.�e NB-C log-
likelihood, expressed in terms of µ, is identical to that of
the NB function. However, when parameterized as x′β,
the two di�er, with the NB-C appearing as

L(β; yi, α) =
n

∑
i=

{yi(xiβ) + (/α) ln( − exp(xiβ))

+ ln Γ(yi + /α) − ln Γ(yi + ) − ln Γ(/α)}
()

�e NB-C model better �ts certain types of count data
than NB, or any other variety of count model. However,
since its �tted values are not on the log scale, comparisons
cannot be made to Poisson or NB.

�e NB model, in a similar manner to the Poisson,
can also be overdispersed if the model variance exceeds
its nominal variance. In such a case one must attempt to
determine the source of the extra correlation and model it
accordingly.

�e extra correlation that can exist in count data, but
which cannot be accommodated by simple adjustments to
the Poisson and negative binomial algorithms, has stim-
ulated the creation of a number of enhancements to the
two base count models.�e di�erences in these enhanced
models relates to the attempt of identifying the various
sources of overdispersion.
For instance, both the Poisson and negative binomial

models assume that there exists the possibility of having
zero counts. If a given set of count data excludes that possi-
bility, the resultant Poisson or negative binomialmodelwill
likely be overdispersed. Modifying the loglikelihood func-
tion of these twomodels in order to adjust for the non-zero
distribution of counts will eliminate the overdispersion,
if there are no other sources of extra correlation. Such
models are called, respectively, zero-truncated Poisson and
zero-truncated negative binomial models.
Likewise, if the data consists of far more zero counts

that allowed by the distributional assumptions of the Pois-
son or negative binomial models, a zero-in�ated set of
models may need to be designed. Zero-in�ated models are
7mixture models, with one part consisting of a / binary
response model, usually a 7logistic regression, where the
probability of a zero count is estimated in di�erence to a
non-zero-count. A second component is generally com-
prised of a Poisson or negative binomial model that esti-
mates the full range of count data, adjusting for the overlap
in estimated zero counts.�e point is to () determine the
estimates that account for zero counts, and () to estimate
the adjusted count model data.
Hurdle models are another type mixture model

designed for excessive zero counts. However, unlike the
zero-in�ated models, the hurdle-binary model estimates
the probability of being a non-zero count in comparison to
a zero count; the hurdle-count component is estimated on
the basis of a zero-truncated countmodel. Zero-truncated,
zero-in�ated, and hurdle models all address abnormal
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Modeling Count Data. Table  Models to adjust for violations
of Poisson/NB distributional assumptions

Response Example models

: no zeros Zero-truncated models (ZTP; ZTNB)

: excessive zeros Zero-inflated (ZIP; ZINB; ZAP; ZANB);
hurdle models

: truncated Truncated count models

: censored Econometric and survival censored
count models

: panel GEE; fixed, random, and mixed effects
count models

: separable Sample selection, finite mixture models

: two-responses Bivariate count models

: other Quantile, exact, and Bayesian count
models

Modeling Count Data. Table  Methods to directly adjust the
variance (from Hilbe )

Variance function Example models

: µ Poisson

: µ(Φ) Quasi-Poisson; scaled SE; robust SE

: µ( + α) Linear NB (NB)

: µ( + µ) Geometric

: µ( + αµ) Standard NB (NB); quadratic NB

: µ( + (αν)µ) Heterogeneous NB (NH-H)

: µ( + αµρ) Generalized NB (NB-P)

: V[R]V′ Generalized estimating equations

zero-count situations, which violate essential Poisson and
negative binomial assumptions.
Other violations of the distributional assumptions of

Poisson and negative binomial probability distributions
exist. Table  below summarizes major types of violations
that have resulted in the creation of specialized count
models.
Alternative count models have also been constructed

based on an adjustment to the Poisson variance function, µ.
We have previously addressed two of these. Table  pro-
vides a summary of major types of adjustments.

�ree texts speci�cally devoted to describing the the-
ory and variety of count models are regarded as the stan-
dard resources on the subject. Other texts dealing with
discrete responsemodels in general, as well as texts on gen-
eralized linear models (see Generalized Linear Models),
also have descriptions of many of the models mentioned
in this article.

About the Author
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L. J. Savage () and others understood the importance
of better computational tools for utilizing Bayesian insights
data in real life applications long ago. Such computational
tools and so�ware are now available that use subjective
(or so�) data as well as quantitative (or hard) data. But
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despite the availability of new tools and buildup of mas-
sive databases, the increased complexity and integration of
economic and other systems involving people poses a sig-
ni�cant challenge to a solely statistical driven view of the
system. More importantly, evidence suggests that relying
solely on standard statistical models is inadequate to rep-
resent real life systems e�ectively for management insights
and decisions.
Unpredictability characterizes most real life systems

due to non-linear relationships and multiple time-delayed
feedback loops between interconnected elements. Senge
() describes it as dynamic complexity – “situations
where the cause and e�ect are subtle, and the e�ects
over time of interventions are not obvious.” As a result,
such systems are unsuitable for quantitative “only” repre-
sentations without some subjective expert views. System
Dynamics models o�er a helpful alternative to model-
ing randomness that is based on hard data and so� data
that models a real world system; see for example Sterman
() and his references.
According to , Forrester () three types of data

are required to develop the foundation of an e�ective
model: numerical, written and mental data; compare, also,
Sterman () discussion on these points. In most cases,
however, only a small fraction of the data needed to model
a real world systemmay be available in the form of numer-
ical data. Perhaps, the most important data to build a
model, namely the mental data, is di�cult to represent
only numerically. But due to heavy in�uence of quantita-
tive bias in model development, some modelers disregard
key qualitative information in favor of information that
can be estimated statistically. Sterman () considers
this reasoning counterintuitive and counterproductive in
practice with realistic systems. He states that “omitting
structures and variables known to be important because
numerical data are unavailable is actually less scienti�c and
less accurate than using your best judgment to estimate
their values.” �is is in line with Forrester’s views ()
asserting that, “to omit such variables is equivalent to say-
ing they have zero e�ect - probably the only value that is
known to be wrong!” A suitable approach in such cases is
to iteratively improve the accuracy and reliability of data by
leveraging deeper insights into the system and interaction
between various variables over time, along with sensitivity
analysis of various contingencies.
A key to understanding a dynamic real world system

is to identify and study the causal loops (or sub-systems)
of the system. An analysis of the structure-behavior rela-
tionship in a model can uncover causal loops that are pri-
marily responsible for the observed behavior of the model,
i.e., identify the “dominant” loop. �e dominant loop is

the most in�uential structure in determining the overall
behavior of a system depending on the speci�c conditions
of a system. It is possible for any loop to be the dominant
loop at a point in time but then as conditions change the
same loop can be displaced by another loop as the dom-
inant loop in a di�erent time frame. Due to the shi�ing
dominance of the loops in determining system perfor-
mance over time, it is necessary that a system is explored
to isolate the interactions between the variables that form
various causal loops. Clearly, collecting such information
is challenging on many fronts. First, the sheer volume of
data required tomap a real world system is a challenge; sec-
ondly, this kind of information is o�en qualitative in nature
(mental, experiential or judgment) and hence not easy to
capture; and thirdly, the information keeps changing over
time.
Viewing system performance as a series of connected

dominant loop behaviors is a fundamentally di�erent way
to study a system. In e�ect, this point of view suggests that
it may not be possible or necessary to �nd the “one best”
single representation to describe the system’s performance
over time. Instead, we can now treat the system as a com-
posite structure that may be formed by the amalgamation
of a number of di�erent sub representations that collec-
tively describe the system performance. �is perspective
alleviates the unnecessary di�culty that is imposed on a
single representation to capture the logic of possibly dis-
connected patterns. Indeed, this approach has its own chal-
lenges in terms of how to superimpose the various patterns
to model reality.
Note both Bayesian and System Dynamics have very

helpful roles to play in the analysis of real life systems that
do not yield easily to purely hard data or classical mod-
els. Accordingly, one can consider an integrated approach
where a Bayesian model provides speci�c input to a Sys-
temDynamicsmodel to complement the capabilities of the
two approaches. A System Dynamics model enhanced by
Bayesian inference will allowmodelers to iteratively incor-
porate various data types into a comprehensive model and
study the behavior of a system over time. �is approach
allows for the inclusion of both hard data and so� data into
the model. Since the modeling process is iterative, the sub-
jective views can be augmented or replaced with hard data
as such information is acquired and improved over time.
When appropriate data are available, it can be used as input
to the System Dynamics model of various contingencies,
such as “fear” curves, “hope” curves, or mixtures of them
from a Bayesian perspective.When such data are not avail-
able, varied contingencies can still be incorporated as sub-
jective expert views, but with the advantage that sensitivity
analyses can be done to measure the impact on the system
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performance over time under di�erent assumptions. One
can test better which subjective views might lead to more
realistic insights using a system dynamic model. So�ware
that helps in such modeling includes Vensim, Powersim,
and ithink; compare Sterman ().
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7Survival Data are measurements in time from a well
de�ned origin until a particular event occurs. �e event
is usually death (e.g., lifetime from birth to death), but it
could also be a change of state (e.g., occurrence of a disease
or time to failure of an electrical component).
Of central importance to the study of risk is the proba-

bility that a system will perform and maintain its function
(remain in a state) during a speci�ed time interval (, t).
Let F(t) = P(T ≤ t) be the cumulative distribution func-
tion for the probability that a system fails before time t and
conversely R(t) =  − F(t) be the survival function for
the system. Data from survival studies are o�en censored
(the system has not failed during the study) so that survival
times are larger than censored survival times. For exam-
ple, if the response variable is the lifetime of an individual
(or component), then the censored data are represented
as (yi, δi) where the indicator variable δ is equal to  if
the event occurred during the study, and  if the event
occurred a�er the study; i.e., ti = yi if δi =  and ti > yi
if δi = . Further, if f (t)dt is the probability of failure in

the in�nitesimal interval (t, t + dt), then rate of a failure
among items that have survived to time t is

h(t) =
f (t)
R(t)

=
−d lnR(t)
dt

. ()

�e function h(t) is called the hazard function and is the
conditional probability of failure, conditioned upon sur-
vival up to time t.�e log likelihood function of (yi, δi) is

lnL = δi ln f (yi) + ( − δi) lnR(yi), ()

and the cumulative hazard rate is

H(t) = ∫
t


h(x)dx. ()

�e survival rate,R(t), is equivalent toR(t) = exp(−H(t)).
Examining the hazard function, it follows that

. If h(t) increases with age,H(t) is an increasing failure
rate.�is would be the case for an object that wears out
over time.

. If h(t) decreases with age, H(t) is a decreasing fail-
ure rate. Examples of these phenomena include infant
mortality and burn-in periods for engines.

. If h(t) is constant with age, H(t) is a constant failure
rate. In this situation failure time does not depend on
age.

Note that h(t) is a conditional probability density func-
tion since it is the proportion of items in service that fail per
unit time.�is di�ers from the probability density function
f (t), which is the proportion of the initial number of items
that fail per unit time.
Distributions for failure times are o�en determined in

terms of their hazard function.�e exponential distribu-
tion function has a constant hazard function.�e lognor-
mal distribution function with standard deviation greater
than  has a hazard function that increases for small t, and
then decreases. �e lognormal hazard function for stan-
dard deviation less than  has maximum at t =  and is
o�en used to describe length of time for repairs (rather
than modeling times to failure).

�e 7Weibull distribution is o�en used to describe
failure times. Its hazard function depends on the shape
parameter m.�e hazard function decreases when m < ,
increases when m >  and is constant when m = . Appli-
cations for this model include structured components in
a system that fails when the weakest components fail, and
for failure experiences that follow a bathtub curve. A bath-
tub failure time curve (convex function) has three stages:
decreasing (e.g., infant mortality), constant (e.g., useful
region), and increasing (e.g., wear out region).�is curve
is formed by changing m over the three regions.�e basic
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Modeling Survival Data. Table  Basic probability functions used to model survival data

Parametric

Name Cumulative distribution function Hazard function

Exponential F(t) =  − exp(−λt) λ >  λ

Weibull F(t) =  − exp(−λtm) λ >  mλ

Gumbel F(t) =  − exp(−m(exp(λt) − )) λ, m >  mλ exp(λt)

Gompertz F(t) =  − exp (
m

λ
( − exp(λt))) λ, m >  m exp(λt)

Nonparametric

aPiecewise constant rates of change
n

∑
i=

λiI{ti− < t < ti}

bKaplan–Meier
∧
F(t) =  − π

ti≤t
( −

di

ri
)

di

ri(ti+ − ti)

cNelson–Aalen
∧
H(t) =∑

ti≤t
( −

di

ri
)

aThe time axis is split into intervals such that t < t < . . . < tn resulting in a non-continuous hazard function with jumps at the interval end points.
The notation I{A} is  if an event occurs in interval A, and is zero otherwise.
bThe set ti ≤ . . . ≤ tn are the ordered event times where ri are the number of individuals at risk at time ti and di are the total number of individuals
either experiencing the event or were censored at time ti .
cThe Nelson-Aalen statistic is an estimate of the cumulative hazard rate. It is based on the Poisson distribution.

probability functions used to model 7survival data are in
Table . �ese distributions are le� skewed with support
on (,∞) for continuous distributions and support on the
counting numbers (,n] for discrete distributions.
Nonparametric approaches have also been developed

for estimating the survival function. A �rst approachmight
be the development of an empirical function such as:

R̂(t) =
Number of individuals with event times ≥ t
Number of individuals in the data set

. ()

Unfortunately, this estimate requires that there are no
censored observations. For example, an individual whose
survival time is censored before time t cannot be used
when computing the empirical function at t. �is issue
is addressed by introducing the 7Kaplan–Meier estima-
tor [see Kaplan and Meier ()]. Further, the variance
of the Kaplan–Meier statistic can be estimated and con-
�dence intervals can be constructed based on the normal
distribution. Closely related to the Kaplan-Meier estimator
is theNelson–Aalen estimator (Nelson ; Aalen ) of
the cumulative hazard rate function. �e estimated vari-
ance and con�dence interval can also be computed for this
function.
Although the models already discussed assume that

the occurrences of hazards are independent and identi-
cally distributed, o�en there are known risk factors such

as environmental conditions and operating characteristics
that a�ect the quality of a system.
In many problems a researcher is not only interested

in the probability of survival, but how a set of explana-
tory variables a�ect the survival rate. Cox () proposed
the proportional hazard model that allows for the pres-
ence of covariates and the partial likelihood estimation
procedure for estimating the parameters in the model.�e
proportional hazard model is of the form:

λ(t∣Z) = λ(t) exp(ZTβ) ()

where
λ(t) is the hazard function of unspeci�ed shape

(the subscript  implies all covariates are zero at time t).
Z is a vector of risk factors measured on each

individual.
β is a vector of parameters describing the relative

risk associated with the factors.
λ(t∣Z) is the hazard function at time t conditioned

on the covariates.
�e proportional hazard model is semi-parametric

because no assumptions are made about the base hazard
function but the e�ect of the risk factors is assumed to be
linear on the log of the hazard function; i.e., λ(t) is an
in�nite dimensional parameter and β is �nite dimensional.
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�e proportionality assumption implies that if an indi-
vidual has a risk of an event twice that of another individ-
ual, then the level of risk will remain twice as high for all
time. �e usual application of the model is to study the
e�ect of the covariates on risk when absolute risk is less
important. For example, consider a systemwhere two types
of actions can be taken, let

Z =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

 if the high risk action is taken

 if the low risk action is taken

and let β be the relative risk associated with Z.�e relative
risk of the two types of actions is computed from the hazard
ratio:

λ(t∣Z = )
λ(t∣Z = )

= exp β, ()

the instantaneous risk conditioned on survival at time t.
In this problem the model describes relative risks and
removes the e�ect of time. In a more general context, the
ratio of hazards is the di�erence of covariates assuming the
intercept is independent of time.
In many applications λ(t) is unknown and cannot be

estimated from the data. For example, the proportional
hazard model is o�en used in credit risk modeling for
corporate bonds based on interest rates and market con-
ditions. A nonparametric estimation procedure for the
conditional proportional hazard function is based on the
exponential regression model:

λ(t∣Z)
λ(t)

= exp(ZTβ)

where the underlying survival function is estimated with a
Kaplan–Meier estimator, a measure of time until failure.
If, however, the absolute risk is also important (usually

in prediction problems), then the Nelson–Aalen estimate
is preferred over the Kaplan–Meier estimator. �e state
space time series model [see Commandeur and Koopman
()] is useful for predicting risk over time and by using
the Kalman Filter, can also include time varying covariates.

�e proportional hazard model assumes event times
are independent, conditioned on the covariates. �e
7frailty model relaxes this assumption by allowing for the
presence of unknown covariates (random e�ects model).
In this model event times are conditionally independent
when values are given for the frailty variable. A frailty
model that describes unexplained heterogeneity resulting
from unobserved risk factors has a hazard function of the
form

λTji(t) = wjiλ(t) exp (Z
T
i β
i
) ()

where
Tji is the time to failure (event) j for individual i,

and
wji is the frailty variable.

In this model the frailty variable is constant over
time, is shared by subjects within a subgroup, and acts
multiplicatively on the hazard rates of all members of the
subgroup.�e two sources of variation for this model are:

. Individual random variation described by the hazard
function.

. Group variation described by the frailty variable.

�e log likelihood function, Eq. , for this model can be
expressed in simple form if the hazard function has aGom-
pertz distribution and the frailty variable has a 7gamma
distribution. Other commonly used distributions for the
frailty variable are the gamma, compound Poisson, and
the lognormal. Estimators for situations where the likeli-
hood function does not have an explicit representation are
derived from the penalized partial likelihood function or
from algorithms such as EM or Gibbs sampling.
Survival models have also been extended to multivari-

ate conditional frailty survival functions. In the univariate
setting, frailty varies from individual to individual whereas
in the multivariate setting, frailty is shared with individu-
als in a subgroup. Consider, for example, the multivariate
survival function conditioned on the frailty variable w:

s(t, . . . , tk∣w) = exp [ − w(Λ(t), . . . ,Λk(tk))], ()

where Λi(ti) is the cumulative hazard rate for group i. By
integrating over w, the survival function is:

s(t, . . . , tk) = E exp [ − w(Λ(t), . . . ,Λk(tk))], ()

the Laplace transform of w. Because of the simplicity
of computing derivatives from the Laplace transform,
this method is o�en used to derive frailty distributions.
�e most o�en assumed distributions are those from the
gamma family. See Hougaard () for a complete dis-
cussion on modeling multivariate survival data.

Conclusion
�is paper presents a discussion for analyzing and model-
ing time series survival data.�emodels are then extended
to include covariates primarily based upon regression
modeling, and �nally generalized to include multivariate
models. Current research is focused on the development
of multivariate time series models for survival data.
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Emad-Eldin A. A. Aly
Professor
Kuwait University, Safat, Kuwait

Introduction
Developing models for integer-valued time series has
received increasing attention in the past two decades.
Integer-valued time series are useful in modeling depen-
dent count data.�ey are also useful in the simulation of
dependent discrete random variables with speci�ed distri-
bution and correlation structure.
Lawrance and Lewis () andGaver and Lewis ()

were the �rst authors to construct autoregressive processes
with non-Gaussian marginals. �is has essentially moti-
vated all the research on integer-valued time series. �e
present review is far frombeing exhaustive. Our focus is on
models for Z+-valued �rst-order autoregressive processes
INAR().Wewill consider �ve approacheswhich are based
on “thinning” for developing these models.

First construction
To introduce integer-valued autoregressive moving aver-
age processes, McKenzie (, ) and Al-Osh and
Alzaid () used the binomial thinning operator ⊙ of
Steutel and van Harn (). �e operation ⊙ is de�ned
as follows: if X is a Z+−valued random variable (rv) and
α ∈ (, ), then

α ⊙ X =
X

∑
i=
Yi,

where {Yi} is a sequence of i.i.d. Bernoulli(α) rv′s inde-
pendent of X. A sequence {Xn} is said to be an INAR()
process if for any n ∈ Z,

Xn = α ⊙ Xn− + εn, ()

where ⊙ is as in () and {εn} is a sequence of i.i.d.
Z+−valued rv′s such that εn is independent of η ⊙ Xn−
and the thinning η⊙Xn− is performed independently for
each n.McKenzie () constructed stationaryGeometric
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andNegative Binomial INAR() processes andAl-Osh and
Alzaid () and independently McKenzie () studied
the Poisson INAR() process.

Second Construction
Du and Li () generalized the model () by introducing
the INAR(p) process

Xn =
p

∑
i=

αi ⊙ Xn−i + εn, ()

where all the thinning processes are independent and for
j < n,

cov(Xj, εn) = .

�ey proved that () has a unique stationary Z+−valued
solution {Xn}n∈Z if the roots of

λp −
p

∑
i=

αiλp−i = 

are inside the unit circle. �e main feature of the work
of Du and Li () is that it allows for models whose
autocorrelation function (ACF)mimics that of the Normal
ARIMAmodels.
Latour () generalized Du and Li () model by

introducing the general INAR(p) process (GINAR(p)),

Xn =
p

∑
i=

αi ○ Xn−i + εn,

where

αi ○ Xn−i =
Xn−i
∑
i=
Y(n,i)
i

{Y(n,j)
j } is a sequence of nonnegative i.i.d.rv’s indepen-

dent of the X’s with �nite mean αj > , j = , , . . . , p
and �nite variance βj and the innovation, εn, is assumed to
have a �nite mean µε and �nite variance σ ε . Latour ()
proved the existence of a stationary GINAR(p) process if
∑
p
j= αj < . He also showed that a stationary GINAR(p)
process, centered around its mean µX , admits a standard
AR(p) representation with the spectral density

f (λ) =
µX∑

p
j= βj + σ ε

π ∣α (exp(−iλ))∣
, λ ∈ [−π, π],

where

α(t) =  −
p

∑
j=

αjtj.

Third Construction
In the third approach the INAR() stationary time series
model takes the form

Xn = An(Xn−, η) + εn, ()

where {εn} are i.i.d.r.v.’s from the same family as the
marginal distribution of {Xn} andAn(Xn−, η) is a random
contraction operation performed on Xn− which reduces
it by the “amount η.” Let Gθ(⋅; λi) be the distribution
of Zi, i = ,  and assume that Z and Z are indepen-
dent and Gθ(⋅; λ) ∗ Gθ(⋅; λ) = Gθ(⋅; λ + λ), where
∗ is the convolution operator. Let G(⋅; x, λ, λ) be the
conditional distribution of Z given Z + Z = x. �e
distribution of the random operator A(X, η) given X =

x, is de�ned as G(⋅; x, ηλ, ( − η) λ). �e distribution of
A(X, η) isGθ(⋅; ηλ)when the distribution ofX isGθ(⋅; λ).
Now, if the distributions of X and ε are respectively
Gθ(⋅; λ) andGθ(⋅; ( − η) λ), then {Xn} of () is stationary
with marginal distributionGθ(⋅; λ).�is construction was
employed by Al-Osh and Alzaid () for the Binomial
marginal andAlzaid andAl-Osh () for theGeneralized
Poissonmarginal.�is construction was generalized to the
case when X is in�nitely divisible by Joe () and to
the case when X is in the class of Exponential Dispersion
Models by Jørgensen and Song ().

Fourth Construction
�is construction is based on the expectation thinning
operator K(η)⊛ of Zhu and Joe (). �e expectation
thinning operator K(η)⊛ is de�ned as follows: if X is a
Z+−valued rv and η ∈ (, ), then

K(η)⊛ X =
X

∑
i=
Ki(η),

where Ki(η) are i.i.d.r.v.’s and the family {K(α) :  ≤

α ≤ } is self-generalized, i.e., E {K(η)⊛ X ∣X = x} = ηx
and K(η′)⊛K(η) = K(ηη′).�e corresponding INAR()
stationary time series model takes the form

Xn
d
= K(η)⊛ Xn− + є(η) =

Xn−
∑
i=
Ki(η) + є(η).

�e marginal distribution of Xn must be generalized
discrete self-decomposable with respect to K, that is,
PXn(z)/PXn(PK(α)(z)) must be a proper probability gen-
erating function (PGF) for every α ∈ [, ].�e ACF at lagk
is ρ(k) = ηk. �e expectation thinning K(η)⊛ governs
the serial dependence. Several families of self-generalized
r.v.’s {K(η)} are known and the corresponding station-
ary distributions of {Xn} are overdispersed with respect
to Poisson (e.g., Generalized Poisson, Negative Binomial,
Poisson-Inverse Gaussian). When a marginal distribution
is possible for more than one self-generalized family then
di�erent {K(η)} lead to di�ering amounts of conditional
heteroscedasticity.



 M Models for Z+-Valued Time Series Based on Thinning

Fifth Construction
�e ��h approach makes use of the thinning operator⊙F
of van Harn et al. () and van Harn and Steutel ()
which is de�ned as follows. Let F := (Ft , t ≥ ) be a con-
tinuous composition semigroup of PGF’s such that Ft() ≠
, δ = δ(F) = − lnF′() > ,F+(z) = z. and F∞−(z) = .
�e in�nitesimal generator U of F is given for ∣z∣ ≤  by

U(z) = lim
t→+

Ft(z) − z
t

= a{H(z) − z} ,

where a is a constant and H(z) = ∑∞
n= hnz

n is a PGF of a
Z+ valued rv with h =  andH′() ≤ . For a Z+ valued rv
X and η ∈ (, )

η ⊙F X =
X

∑
i=
Yi,

where {Yi} is a sequence of i.i.d.r.v.’s independent of X
with common PGF F− ln η ∈ F .�e correspondingF−�rst
order integer-valued autoregressive (F−INAR()) model
takes the form

Xn = η ⊙F Xn− + εn, ()

where {εn} is a sequence of i.i.d. Z+ valued rv’s such that
εn is independent of η⊙F Xn− and the thinning η⊙F Xn−
is performed independently for each n. Note that {Xn} is
a Markov chain (see 7Markov Chains). In terms of PGF’s
() reads

PXn(z) = PXn−(F− ln η(z))Pε(z). ()

A distribution on Z+ with PGF P(z) is F-self-
decomposable (van Harn et al. ()) if for any t there
exists a PGF Pt(z) such

P(z) = P(Ft(z))Pt(z).

Aly and Bouzar () proved that any F-self-decompo
sable distribution can arise as the marginal distribution
of a stationary F−INAR() model. On assuming that the
second moments of each of H(⋅), ε and Xn are �nite for
any n ≥ , Aly and Bouzar () proved that () the
regression of Xn on Xn− is linear, () the variance of
Xn given Xn− is linear, () the ACF at lag k, ρ(Xn−k,Xn) =
ηδk√V(Xn−k)/V(Xn). Moreover, if {Xn} is stationary,
then ρ(k) = ρ(Xn−k,Xn) = ηδk.
We consider some important stationary time series

models based on the composition semigroup

F(θ)
t (z) =  −

θe−θ t
( − z)

θ + θ( − e−θ t)( − z)
, t ≥ , ∣z∣ ≤ ,

θ =  − θ,  ≤ θ < 

of van Harn et al. (). Note that when θ = , F()t (z) =
 − e−t + e−tz and the corresponding thinning is the Bino-
mial thinning of Steutel and van Harn (). In this case
() becomes

PX(z) = PX( − η + ηz)Pε(z). ()

Particular INAR() of () are the Poisson (Al-Osh and
Alzaid ; McKenzie ), the Geometric and the Neg-
ative Binomial (McKenzie ), the Mittag-Le�er (Pil-
lai and Jayakumar ) and the discrete Linnik (Aly
and Bouzar ). Particular INAR() time series models
when  < θ <  are the Geometric, the Negative Binomial
and the Poisson Geometric (Aly and Bouzar ) and the
Negative Binomial (Al-Osh and Aly ).

Remarks
We mention some methods of parameter estimation.�e
most direct approach is usingmoment estimation based on
the Yule-Walker equations. �e conditional least squares
method with some modi�cations, e.g., a two-stage proce-
dure, in order to be able to estimate all the parameters (see,
for example, Brännäs andQuoreshi )may be used. Joe
and Zhu () used the method of maximum likelihood
a�er using a recursive method to calculate the probabil-
ity mass function of the innovation. Neal and Subba Rao
() used the MCMC approach for parameter estima-
tion. For additional references on parameter estimation
we refer to Brännäs (), Jung and Tremayne (),
Silva and Silva () and the references contained therein.
Finally, we note that Hall and Scotto () studied the
extremes of integer-valued time series.

About the Author
Dr Emad-Eldin A. A. Aly is a Professor since  at the
Department of Statistics and Operations Research, Kuwait
University, Kuwait. He was the Chair of the Department
(–), and the Vice Dean for Academic A�airs
of the Faculty of Graduate Studies, Kuwait University
(–). He was a Faculty member at �e Univer-
sity of Alberta, Edmonton, Alberta, Canada (–)
and the Chair of the Department of Statistics and Applied
Probability,�e University of Alberta (–). He has
authored and co-authored more than  papers. He was an
Associate Editor of the Journal of Nonparametric Statistics.
He was awarded (jointly with Professor A. Alzaid of King
SaudUniversity) the Kuwait Prize of theKuwait Foun-
dation for the Advancement of Sciences for his research in
Mathematical Statistics.



Moderate Deviations M 

M

Cross References
7Box–Jenkins Time Series Models
7Generalized Quasi-Likelihood (GQL) Inferences
7Time Series

References and Further Reading
Al-Osh MA, Aly E-EAA () First order autoregressive time series

with negative binomial and geometric marginals. Commun
Statist Theory Meth :–

Al-Osh MA, Alzaid A () First order integer-valued autoregres-
sive (INAR()) process. J Time Ser Anal :–

Al-Osh MA, Alzaid A () Binomial autoregressive moving aver-
age models. Commun Statist Stochastic Models :–

Aly E-EAA, Bouzar N () Explicit stationary distributions for
some Galton Watson processes with immigration. Commun
Statist Stochastic Models :–

Aly E-EAA, Bouzar N () On geometric infinite divisibility and
stability. Ann Inst Statist Math :–

Aly E-EAA, Bouzar N () Stationary solutions for integer-valued
autoregressive processes. Int J Math Math Sci :–

Alzaid AA, Al-Osh MA () Some autoregressive moving average
processes with generalized Poisson marginal distributions. Ann
Inst Statist Math :–

Brännäs K () Estimation and testing in integer-valued AR()
models. Ume

○
a Economic Studies No. 

Brännäs K, Quoreshi AMMS () Integer-valued moving aver-
age modeling of the number of transactions in stocks. Ume

○
a

Economic Studies No. 
Du JG, Li Y () The integer-valued autoregressive INAR(p)

model. J Time Ser Anal :–
Gaver DP, Lewis PAW () First-order autoregressive gamma

sequences and point processes. Adv Appl Probab :–
Hall A, Scotto MG () Extremes of periodic integer-valued

sequences with exponential type tails Revstat :–
Joe H () Time series models with univariate margins in the

convolution-closed infinitely divisible class. J Appl Probab
:–

Jørgensen B, Song PX-K () Stationary time series models with
exponential dispersion model margins. J Appl Probab :–

Jung RC, Tremayne AR () Binomial thinning models for integer
time series. Statist Model :–

Latour A () Existence and stochastic structure of a non-negative
integer-valued autoregressive process. J Time Ser Anal :–


Lawrance AJ, Lewis PAW () An exponential moving average
sequence and point process, EMA(). J Appl Probab :–

McKenzie E () Autoregressive-moving average processes with
negative binomial and geometric marginal distributions. Adv
Appl Probab :–

McKenzie E () Some ARMA models for dependent sequences of
Poisson counts. Adv Appl Probab :–

Neal P, Subba Rao T () MCMC for integer valued ARMA
Models. J Time Ser Anal :–

Pillai RN, Jayakumar K () Discrete Mittag-Leffler distributions.
Statist Probab Lett :–

Silva I, Silva ME () Parameter estimation for INAR processes
based on high-order statistics. Revstat :–

Steutel FW, van Harn K () Discrete analogues of self-
decomposability and stability. Ann Probab :–

van Harn K, Steutel FW () Stability equations for processes with
stationary independent increments using branching processes
and Poisson mixtures. Stochastic Process Appl :–

van Harn K, Steutel FW, Vervaat W () Self-decomposable dis-
crete distributions and branching processes. Z Wahrsch Verw
Gebiete :–

Zhu R, Joe H () A new type of discrete self-decomposability
and its application to continuous-time Markov processes for
modelling count data time series. Stochastic Models :–

Zhu R, Joe H () Modelling count data time series with Markov
processes based on binomial thinning. J Time Ser Anal :
–

Moderate Deviations

Jayaram Sethuraman
Robert O. Lawton Distinguished Professor, Professor
Emeritus
Florida State University, Tallahassee, FL, USA

Moderate Deviations
Consider the familiar simple set up for the central
limit theorem (CLT, see 7Central Limit �eorems). Let
X,X, . . . be independently and identically distributed
real random variables with common distribution function
F(x). Let Yn = 

n (X +⋯ + Xn),n= , , . . . . Suppose that

∫ xF(dx) = ,∫ xF(dx) = l ()

�en the central limit theorem states that

P(∣Yn∣ >
a

√
n
)→ [ −Φ(a)] ()

where Φ(x) = √
π ∫

x
−∞ exp (−t


/)dt and a > .

In other words, the CLT gives an approximation to the
two-sided deviation of size a√

n of Yn and the approxima-
tion is a number in (/, ). Deviations of the this type are
called ordinary deviations.
However, one needs to study deviations larger than

ordinary deviations to understand �ner properties of the
distributions of Yn and to approximate expectations of
other functions of Yn.�us a deviation of magnitude λn
will be called a excessive deviation if nλn → ∞. In the
particular case of λn = λ where λ is a constant, it is
called a large deviation (see also 7Large Deviations and
Applications).
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�e following, due to Cramér (), Cherno� (),
Bahadur and Rao (), etc., is a classical result on large
deviations. Let

∫ exp (tx)F(dx) <∞ for t in someneighborhoodof .
()

�en

n
logP(∣Yn∣ > λ)→ −I(λ) ()

where
I(λ) = sup

t
(tλ − log ϕ(t)) ()

and  < I(λ) ≤ ∞. �is result is usually read as “the
probability of large deviations tends to zero exponen-
tially.” For sequences of random variables {Yn} distributed
in more general spaces like Rk,C([, ]),D([, ]), etc.
(i.e.,7stochastic processes), there is no preferred direction
for deviations.�e appropriate generalization of the large
deviation result () is the large deviation principle, which
states that for all Borel sets A

− I(A) ≤ limn

n
logP(Yn ∈ A) ≤ −I(A) ()

where A,A denote the interior and closure of A, and

I(A) = inf
λ∈A
I(λ) ()

for some function I(λ)whose level sets {λ : I(λ) ≤ K} are
compact for K < ∞.�e function I(x) is called the large
deviation rate function.
When the moment generating function condition ()

holds, Cramér () has further shown that

P(∣Yn∣ > λn) ∼


√
πnλn

exp(
−nλn


) ()

when nλn →  and nλn → ∞.�is excludes large devi-
ations (λn = λ), but it gives a rate for the probability (and
not just the logarithm of the probability) of a class of exces-
sive deviations and is therefore called a strong excessive
deviation result.
Rubin and Sethuraman (a) called deviations λn

with λn = c
√
log n
n where c is a constant asmoderate devia-

tions. Moderate deviations found their �rst applications in
Bayes risk e�ciency which was introduced in Rubin and
Sethuraman (b). Cramér’s result in () reduces to

P(∣Yn∣ > c

√
logn
n

) ∼


c
√
π logn

n−c
/ ()

and holds under the moment generating function con-
dition (). Rubin and Sethuraman (a) showed that

the moderate deviation result () holds under the weaker
condition

E(∣X∣c
++δ

) <∞ for some δ > . ()

�ey also showed that when () holds we have

E(∣X∣c
+−δ

) <∞ for all δ > . ()

Slastnikov () showed that the strong moderate devia-
tion result () if and only if

lim
t→∞

t+c(log(t))−(+c)/P(∣X∣ > t) = . ()

Since () was called a strong excessive deviation result,
we should call () as a strong moderate deviation result.
Analogous to the logarithmic large deviation result () is
the logarithmic moderate deviation result which states that


log(n)

logP(∣Yn∣ ≥ c

√
log(n)
n

) ∼ n−c
/ ()

whichmay be the only possible result formore complicated
random variables {Yn} than are notmeans of i.i.d. random
variables,
For random variables {Yn} which take values in

Rk,C([, ]),D([, )] etc., we can, under some condi-
tions, establish the moderate deviation principle which
states

− J(A) ≤ limn


log(n)
P(

√
n

log(n)
Yn ∈ A) ≤ −J(A)

()
where J(A) = inf x∈A J(x) for some function J(x) whose
level sets are compact.�e function J(x) is then called the
moderate deviation rate function.�is is analogous to the
large deviation principle ().
Following the paper of Rubin and Sethuraman (a),

there is a vast literature on moderate deviations for a large
class of random variables {Yn} that arise in a multitude of
contexts.�e asymptotic distribution of {Yn} can be more
general than Gaussian. We will give just a brief summary
below.
We stated the de�nition of two-sided moderate devi-

ations and quoted Slastnikov’s necessary and su�cient
condition. One can also consider one-sided moderate
deviations results and the necessary and su�cient condi-
tions are slightly di�erent and these are given in Slastnikov
(). Without assuming á priori that the mean and vari-
ance of the i.i.d. random variables X,X . . . are  and 
respectively, one can ask for necessary and su�cient con-
ditions for moderate deviations. �is problem has been
completely addressed in Amosova (). Another variant
of moderate deviations has been studied in Davis ().
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�e case where {Yn} is the sum of triangular arrays
of independent random variables or a U-statistic were
begun in Rubin and Sethuraman (). Ghosh ()
studied moderate deviations for sums of m-dependent
random variables. Michel () gave results on rates of
convergence in the strong moderate deviation result ().
Gut () considered moderate deviations for random
variables with multiple indices. Dembo () considered
moderate deviations for 7martingales.
Moderate deviations in general topological spaces with

applications in Statistical Physics and other areas can be
found in Borovkov and Mogulskii (), (), Deo and
Babu (), De Acosta (), Liming (), Djellout and
Guillin ().
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Research
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Moderating and mediating variables, or simply modera-
tors and mediators, are related but distinct concepts in
both general statistics and its application in psychol-
ogy. A moderating variable is a variable that a�ects the
relationship between two other variables. �is e�ect is
usually referred to as an interaction.�e simplest case of an
interaction can occur in 7analysis of variance (ANOVA).
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For example, we tested whether there is a signi�cant di�er-
ence in the level of anxiety (as measured with an appropri-
ate standardized psychological test) between married and
unmarried participants (i.e., variable marital status).�e
e�ect was not statistically signi�cant. However, when we
enter the third variable – gender (female/male) – it appears
that, on average, unmarried males are signi�cantly more
anxious than married males, while for females the e�ect is
the reverse. Figure  represents the results from two mod-
els described above. In the le�-hand panel, we can see that,
on average, there are no di�erences between married and
unmarried participants in the level of anxiety. From the
right-hand panel, we can conclude that gender moderates
the e�ect of marital status on the level of anxiety: married
males and unmarried females are signi�cantly less anxious
than the other two groups (unmarried males and married
females).
We can generalize the previous example to more com-

plex models, with two independent variables having more
than just two levels for comparison, or evenwithmore than
two independent variables. If all variables in the model
are continuous variables, we would apply multiple regres-
sion analysis, but the phenomenon of a moderating e�ect
would remain the same, in essence. For example, we con-
�rmed a positive relationship between the hours of learning
and the result in an assessment test. Yet, music loudness
during learning can moderate test results. We can imag-
ine this as if a hand on the volume knob of an ampli�er

rotates clockwise and turns the volume up, students get all
the worse results the longer they learn. Depending on the
music volume level, the relationship between the hours of
learning and the knowledge assessment changes continu-
ously.�is outcome is presented in Fig. . On the le�-hand
side, we can observe a positive in�uence of the hours of
learning on the results in the assessment test, while on the
right-hand side, we can see howmusic loudnessmoderates
this relationship.

�e general linear form with one dependent, one inde-
pendent, and one moderating variable is as
follows:

Y = β + βX + βX + β(X × X) + ε,

where β evaluates the interaction between X and X.
Mediating variables typically emerge in multiple

regression analysis, where the in�uence of some indepen-
dent variable (predictor) on the dependent variable (crite-
rion) is not direct, but mediated through the third variable.
For example, the correlation between ageing and the num-
ber of work accidents in the car industry appears to be
strong and negative. Nevertheless, the missing link in this
picture is work experience: it a�ects injury rate, and is itself
a�ected by the age of worker.
In regression modeling, one can distinguish between

complete mediation and incomplete mediation. In practice,
if the e�ects of ageing on the number of work injuries
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would not di�er statistically from zero when work experi-
ence is included in the model, then mediation is complete.
Otherwise, if this e�ect still exists (in the statistical sense),
then mediation is incomplete. Complete and incomplete
mediation are presented in Fig. .
In principle, a mediating variable �attens the e�ect of

an independent variable on the dependent variable. �e
opposite phenomenon would occur if the mediator vari-
able would increase the e�ect.�is is called suppression. It
is a controversial concept in statistical theory and practice,
but contemporary applied approaches take a more neutral
position, and consider that suppressionmay provide better
insights into the relationships between relevant variables.

�e simplest case of linear regression with one depen-
dent, one independent, and one mediating variable is
de�ned by the following equations:

Y = β + βX + ε
M = γ + γX + ε
Y = β′ + β′X + βM + ε,

where of particular interest are β, which is called the
total e�ect, and β′, named the direct e�ect. If suppression
does not take place, which would occur if β′ > β, then
we can continue the analysis with a standard regression
model. First, we ascertain whether mediation is complete
or incomplete, depending on whether the direct e�ect

drops to zero (β′ ≈ ). �e most important step in
the analysis is the inference about the indirect e�ect, or the
amount of mediation. It is de�ned as the reduction in the
e�ect of the initial variable on themodel outcome (β−β′).
In simple hierarchical regression models, the di�erence of
the coe�cients is exactly the same as the product of the
e�ect of the independent variable on the mediating vari-
able multiplied by the e�ect of the mediating variable on
the dependent variable. In the general case, this equality
only approximately holds.
Mediation and moderation can co-occur in statisti-

cal models.�is is o�en the case in psychology.Mediated
moderation takes place when the independent variable is
actually an interaction (X = XA × XB).�us, the media-
tor acts between interacting variables (XA and XB) and the
dependent variable (Y). For example, the e�ect of inter-
acting variable hours of learning and music loudness on
the dependent variable result in an assessment test can be
mediated by the importance of the test, as rated by the par-
ticipants. Conversely, moderated mediation is realized in
two forms: (a) the e�ect of the independent variable on
the mediator is a�ected by a moderator (γ varies; as if the
e�ect of ageing on work experience is moderated by a par-
ticular personality trait, likeH. J. Eysenck’sNeuroticism), or
(b) a moderator may interact with the mediating variable
(β varies; as if the work experience and the level of anxiety
would interact and mediate between ageing and number of
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work accidents). If moderated mediation exists, inference
about its type must be given.
Finally, special attention is required in moderation

and mediation analyses since both can be in�uenced by
7multicollinearity, which makes estimates of regression
coe�cients unstable. In addition, in an analysis with a
moderating term – i.e., an interaction e�ect – the product
of the variables can be strongly related to either the inde-
pendent or themoderating variable, or both of them. If two
variables are collinear, one of them can be centred to its
mean. In this way, half of its value will become negative,
and consequently, collinearity will decrease. Another pos-
sibility is to regress the independent variable with a mod-
erator or mediator, and then to use the residuals or unex-
plained values, of the independent variable in the main
analysis.�us, the independent variable will be orthogonal
to themoderating ormediating variable, with zero correla-
tion, which will bring collinearity under control. However,
in applying the previous two remedies, and others that
are available, one must choose a conservative approach.
�e risk of emphasizing, or even inventing, what is not
present in the data ought to be as little as possible. In any
circumstances, the ultimate way of securing more reliable
estimates is simply to obtain enough data.
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�e moment generating function (mgf) of a real valued
random variable X with distribution F(x) = P(X ≤ x) is
de�ned by

MX(t) = E [etX] = ∫ etxdF(x). ()
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For distributions with a density function f = F′, MX can
also be interpreted as a (two-sided) Laplace transform of
f . In order that MX exists and is �nite for t ∈ (−a, a) and
some a > , all moments µj = E [Xj] must be �nite and
such that∑ µjtj/j! is a convergent series. We then have

MX(t) =
∞
∑
j=

µj
j!
tj ()

so that

µj =M
(j)
X () =

dj

dtj
MX(t) ∣t= ()

which explains the name moment generating function. A
counter example where MX does not exist in any open
neighborhood of the origin is the Cauchy distribution,
since there even µ is not de�ned.�e lognormal distribu-
tion is an example where all µj are �nite but the series in ()
does not converge. In cases where X >  andMX(t) = ∞
for t ≠ , the mgf of −X may be used (see e.g., Severini
() for further results). Related to MX are the char-
acteristic function ϕX(t) = MX(it) and the probability
generating function HX(z) = E(zX) for which MX(t) =

HX(et). Note however that, in contrast to MX , ϕX(t) =

E [exp(itX)] always exists. A furhter important function
is the cumulant generating function KX(t) = logMX(t)
which can be written as power series

KX(t) =
∞
∑
j=

κj
j!
tj ()

where κj are cumulants.�e �rst two cumulants are κ =
µ = E(X) and κ = σ  = var(X). In contrast to the raw
moments µj, higher order cumulants κj (j ≥ ) do not
depend on the location µ and scale σ . For vector valued
random variables X = (X, ...,Xk)′ ∈ Rk, MX is de�ned
in an analogous manner by MX(t) = E [exp (t′X)] =

E [exp (∑kj= tjXj)].�is implies

∂j+j+⋯+jk

∂tj ∂t
j
 ⋅ ⋅ ⋅ ∂t

jk


MX() = E [X
j
 X

j
 ⋅ ⋅ ⋅ X

jk
k ] ()

and corresponding expressions for joint cumulants as
derivatives of KX . In particular,

∂

∂ti∂tj
KX() = cov(Xi,Xj). ()

An important property is uniqueness: ifMX(t) exists and
is �nite in an open interval around the origin, then there is
exactly one distribution function with this moment gen-
erating function. For instance, if κj =  for j ≥ , then
X ∈ R is normally distributed with expected value µ = κ

Moment Generating Function. Table  MX(t) for some
important distributions

Distribution MX(t)

Binomial with n trials, success
probability p =  − q

[q + pet]n

Geometric distribution with
success probability p =  − q

pet ( − qet)−

Poisson with expected value λ exp [λ (et − )]

Uniform on [a, b] t−(b − a)− (etb − eta)

Normal N(µ, σ) exp (µt + 

σt)

Multivariate Normal N(µ, Σ) exp (µ′t + 


t′Σt)

Chi-square χ
k ( − t)−

k


Exponential with expected value
λ−

( − tλ−)−

Cauchy distribution not defined

and variance σ  = κ. �e moment generating func-
tion is very practical when handling sums of indepen-
dent random variables. If X and Y are independent with
existing moment generating function, then MX+Y(t) =

MX(t)MY(t) (and vice versa). For the cumulant generat-
ing function this means KX+Y(t) = KX(t) + KY(t). For
limit theorems, the following result is useful: Let Xn be
a sequence of random variables with moment generating
functions MXn(t) which converge to the moment gener-
ating function MX(t) of a random variable X. �en Xn
converges toX in distribution.�is together with the addi-
tivity property of the cumulant generating function can be
used for a simple proof of the central limit theorem (see
7Central Limit�eorems).

�e empirical counterparts of MX , KX and ϕX ,
de�ned by

mn(t) = n−
n

∑
i=
exp(tXi), ()

kn(t) = logmn(t) and φn(t) = logmn(it), are o�en use-
ful for statistical inference. For instance, testing the null
hypothesis that X and Y are independent can be done by
testingMX+Y ≡ MXMY or φX+Y ≡ φXφY (see e.g., Csörgő
; Feuerverger ). Testing normality of a random
sample X, ...,Xn is the same as testing Ho : ∂/∂tKX(t) ≡
 (see Ghosh ; Fang et al. ). For further appli-
cations of empirical moment and cumulant generating
functions see e.g., Csörgő (, ), Epps et al. (),
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Feuerverger (), Feuerverger andMcDunnough (),
Knight and Satchell (), Ghosh and Beran (, ).
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Monte Carlo Methods in Statistics
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Monte Carlo methods are now an essential part of the
statistician’s toolbox, to the point of being more familiar

to graduate students than the measure theoretic notions
upon which they are based! We recall in this note some
of the advances made in the design of Monte Carlo tech-
niques towards their use in Statistics, referring to Robert
and Casella (, ) for an in-depth coverage.

The Basic Monte Carlo Principle and Its
Extensions
�e most appealing feature of Monte Carlo methods [for a
statistician] is that they rely on sampling and on probability
notions, which are the bread and butter of our profession.
Indeed, the foundation of Monte Carlo approximations is
identical to the validation of empirical moment estimators
in that the average


T

T

∑
t=
h(xt), xt ∼ f (x), ()

is converging to the expectation Ef [h(X)] when T goes to
in�nity. Furthermore, the precision of this approximation
is exactly of the same kind as the precision of a statistical
estimate, in that it usually evolves as O(

√
T).�erefore,

once a sample x, . . . , xT is produced according to a dis-
tribution density f , all standard statistical tools, including
bootstrap (see 7Bootstrap Methods), apply to this sample
(with the further appeal that more data points can be pro-
duced if deemed necessary). As illustrated by Fig. , the
variability due to a singleMonte Carlo experimentmust be
accounted for, when drawing conclusions about its output
and evaluations of the overall variability of the sequence
of approximations are provided in Kendall et al. ().
But the ease with which such methods are analyzed and
the systematic resort to statistical intuition explain in part
why Monte Carlo methods are privileged over numerical
methods.

�e representation of integrals as expectations
Ef [h(X)] is far from unique and there exist therefore
many possible approaches to the above approximation.
�is range of choices corresponds to the importance sam-
pling strategies (Rubinstein ) inMonte Carlo, based on
the obvious identity

Ef [h(X)] = Eg[h(X)f (X)/g(X)]

provided the support of the density g includes the support
of f . Some choices of g may however lead to appallingly
poor performances of the resultingMonte Carlo estimates,
in that the variance of the resulting empirical average
may be in�nite, a danger worth highlighting since o�en
neglected while having a major impact on the quality of
the approximations. From a statistical perspective, there
exist some natural choices for the importance function
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Monte Carlo Methods in Statistics. Fig.  Monte Carlo evaluation () of the expectation E[X/( + X + X)] as a function of the
number of simulation when X ∼ N (µ, ) using (left) one simulation run and (right)  independent runs for (top) µ =  and
(bottom) µ = .

g, based on Fisher information and analytical approxima-
tions to the likelihood function like the Laplace approxi-
mation (Rue et al. ), even though it is more robust to
replace the normal distribution in the Laplace approxima-
tion with a t distribution.�e special case of Bayes factors
(Andrieu et al. ) (Andrieu et al. )

B(x) = ∫
Θ
f (x∣θ)π(θ)dθ/∫

Θ
f (x∣θ)π(θ)dθ,

which drive Bayesian testing andmodel choice, and of their
approximation has led to a speci�c class of importance
sampling techniques known as bridge sampling (Chen et al.
) where the optimal importance function is made
of a mixture of the posterior distributions corresponding
to both models (assuming both parameter spaces can be
mapped into the same Θ). We want to stress here that
an alternative approximation of marginal likelihoods rely-
ing on the use of harmonic means (Gelfand and Dey ;
Newton and Ra�ery ) and of direct simulations from
a posterior density has repeatedly been used in the liter-
ature, despite o�en su�ering from in�nite variance (and

thus numerical instability). Another potentially very e�-
cient approximation of Bayes factors is provided by Chib’s
() representation, based on parametric estimates to the
posterior distribution.

MCMC Methods
Markov chain Monte Carlo (MCMC) methods (see
7Markov Chain Monte Carlo) have been proposed many
years (Metropolis et al. ) before their impact in Statis-
tics was truly felt. However, onceGelfand and Smith ()
stressed the ultimate feasibility of producing a Markov
chain (see 7Markov Chains) with a given stationary dis-
tribution f , either via a Gibbs sampler that simulates
each conditional distribution of f in its turn, or via a
Metropolis–Hastings algorithmbased on a proposal q(y∣x)
with acceptance probability [for a move from x to y]

min{, f (y)q(x∣y)/f (x)q(y∣x)},

then the spectrum of manageable models grew immensely
and almost instantaneously.
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Due to parallel developments at the time on graphical
and hierarchical Bayesian models, like generalized linear
mixed models (Zeger and Karim ), the wealth of mul-
tivariate models with available conditional distributions
(and hence the potential of implementing the Gibbs sam-
pler) was far from negligible, especially when the avail-
ability of latent variables became quasi universal due to
the slice sampling representations (Damien et al. ;
Neal ). (Although the adoption of Gibbs samplers has
primarily taken place within 7Bayesian statistics, there is
nothing that prevents an arti�cial augmentation of the data
through such techniques.)
For instance, if the density f (x) ∝ exp(−x/)/( +

x + x) is known up to a normalizing constant, f is
the marginal (in x) of the joint distribution g(x,u) ∝

exp(−x/)I(u( + x + x) ≤ ), when u is restricted
to (, ).�e corresponding slice sampler then consists in
simulating

U∣X = x ∼ U(, /( + x + x))

and
X∣U = u ∼ N (, )I( + x + x ≤ /u),

the later being a truncated normal distribution. As shown
by Fig. , the outcome of the resulting Gibbs sampler per-
fectly �ts the target density, while the convergence of the
expectation of X under f has a behavior quite comparable
with the iid setting.
While the Gibbs sampler �rst appears as the natural

solution to solve a simulation problem in complex models
if only because it stems from the true target f , as exhib-
ited by the widespread use of BUGS (Lunn et al. ),
which mostly focus on this approach, the in�nite vari-
ations o�ered by the Metropolis–Hastings schemes o�er
much more e�cient solutions when the proposal q(y∣x)
is appropriately chosen. �e basic choice of a random
walk proposal (see 7Random Walk) q(y∣x) being then a
normal density centered in x) can be improved by exploit-
ing some features of the target as in Langevin algorithms
(see Andrieu et al.  Sect. ..) and Hamiltonian or
hybrid alternatives (Duane et al. ; Neal ) that build
upon gradients. More recent proposals include particle
learning about the target and sequential improvement of
the proposal (Douc et al. ; Rosenthal ; Andrieu
et al. ). Fig.  reproduces Fig.  for a random walk
Metropolis–Hastings algorithm whose scale is calibrated
towards an acceptance rate of .. �e range of the con-
vergence paths is clearly wider than for the Gibbs sampler,
but the fact that this is a generic algorithm applying to
any target (instead of a specialized version as for the Gibbs
sampler) must be borne in mind.

Another major improvement generated by a statistical
imperative is the development of variable dimension gen-
erators that stemmed fromBayesianmodel choice require-
ments, the most important example being the reversible
jump algorithm in Green () which had a signi�cant
impact on the study of graphical models (Brooks et al.
).

Some Uses of Monte Carlo in Statistics
�e impact of Monte Carlo methods on Statistics has not
been truly felt until the early s, with the publication
of Rubinstein () and Ripley (), but Monte Carlo
methods have now become invaluable in Statistics because
they allow to address optimization, integration and explo-
ration problems that would otherwise be unreachable. For
instance, the calibration of many tests and the derivation
of their acceptance regions can only be achieved by simu-
lation techniques.While integration issues are o�en linked
with the Bayesian approach – since Bayes estimates are
posterior expectations like

∫ h(θ)π(θ∣x)dθ

and Bayes tests also involve integration, as mentioned ear-
lier with the Bayes factors, and optimization di�culties
with the likelihood perspective, this classi�cation is by
no way tight – as for instance when likelihoods involve
unmanageable integrals – and all �elds of Statistics, from
design to econometrics, from genomics to psychometry
and environmics, have now to rely onMonte Carlo approx-
imations. A whole new range of statistical methodologies
have entirely integrated the simulation aspects. Examples
include the bootstrap methodology (Efron ), where
multilevel resampling is not conceivable without a com-
puter, indirect inference (Gouriéroux et al. ), which
construct a pseudo-likelihood from simulations, MCEM
(Cappé and Moulines ), where the E-step of the EM
algorithm is replaced with a Monte Carlo approximation,
or the more recent approximated Bayesian computation
(ABC) used in population genetics (Beaumont et al. ),
where the likelihood is not manageable but the underlying
model can be simulated from.
In the past ��een years, the collection of real problems

that Statistics can [a�ord to] handle has truly undergone
a quantum leap. Monte Carlo methods and in particu-
lar MCMC techniques have forever changed the empha-
sis from “closed form” solutions to algorithmic ones,
expanded our impact to solving “real” applied problems
while convincing scientists from other �elds that statisti-
cal solutions were indeed available, and led us into a world
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Monte Carlo Methods in Statistics. Fig.  (left) Gibbs sampling approximation to the distribution f(x)∝ exp(−x/)/(+x+x)
against the true density; (right) range of convergence of the approximation to Ef [X] =  against the number of iterations using
 independent runs of the Gibbs sampler, along with a single Gibbs run
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Monte Carlo Methods in Statistics. Fig.  (left) Random walk Metropolis–Hastings sampling approximation to the distribution
f(x) ∝ exp(−x/)/( + x + x) against the true density for a scale of . corresponding to an acceptance rate of .; (right)
range of convergence of the approximation to Ef [X] =  against the number of iterations using  independent runs of the
Metropolis–Hastings sampler, along with a single Metropolis–Hastings run

where “exact” may mean “simulated.”�e size of the data
sets and of the models currently handled thanks to those
tools, for example in genomics or in climatology, is some-
thing that could not have been conceived  years ago,
when Ulam and von Neumann invented the Monte Carlo
method.
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Introduction
�e�ree Doors Problem, orMonty Hall Problem, is famil-
iar to statisticians as a paradox in elementary probabil-
ity theory o�en found in elementary probability texts
(especially in their exercises sections). In that context it
is usually meant to be solved by careful (and elemen-
tary) application of7Bayes’ theorem.However, in di�erent
forms, it is much discussed and argued about and written



Monty Hall Problem : Solution M 

M

about by psychologists, game-theorists and mathemati-
cal economists, educationalists, journalists, lay persons,
blog-writers, wikipedia editors.
In this article I will brie�y survey the history of the

problem and some of the approaches to it which have been
proposed. My take-home message to you, dear reader, is
that one should distinguish two levels to the problem.

�ere is an informally stated problem which you could
pose to a friend at a party; and there aremany concrete ver-
sions or realizations of the problem, which are actually the
result of mathematical or probabilistic or statistical mod-
eling.�is modeling o�en involves adding supplementary
assumptions chosen tomake the problemwell posed in the
terms of themodeler.�emodeler �nds those assumptions
perfectly natural. His or her students are supposed to guess
those assumptions from various key words (like: “indistin-
guishable,” “unknown”) strategically placed in the problem
re-statement. Teaching statistics is o�en about teaching
the students to read the teacher’s mind. Mathematical
(probabilistic, statistical) modeling is, unfortunately, o�en
solution driven rather than problem driven.

�e very same criticism can, and should, be leveled at
this very article! By cunningly presenting the history of
�e�ree Doors Problem from my rather special point of
view, I have engineered complex reality so as to convert
the�ree Doors Problem into an illustration ofmy personal
Philosophy of Science, my Philosophy of Statistics.

�is means that I have re-engineered the�ree Doors
Problem into an example of the point of view that Applied
Statisticians should always be wary of the lure of Solution-
driven Science. Applied Statisticians are trained to know
Applied Statistics, and are trained to know how to con-
vert real world problems into statistics problems. �at is
�ne. But the best Applied Statisticians know that Applied
Statistics is not the only game in town.Applied Statisticians
are merely some particular kind of Scientists.�ey know
lots about modeling uncertainty, and about learning from
more or less random data, but probably not much about
anything else.�e Real Scientist knows that there is not a
universal disciplinary approach to every problem.�e Real
Statistical Scientist modestly and persuasively and realisti-
cally o�ers what his or her discipline has to o�er in synergy
with others.
To summarize, we must distinguish between:

() the �ree-Doors-Problem Problem [sic], which is to
make sense of some real world question of a real
person.

() a large number of solutions to thismeta-problem, i.e.,
the many�ree-Doors-Problem Problems, which are
competingmathematizations of themeta-problem ().

Each of the solutions at level () can well have a number of
di�erent solutions: nice ones and ugly ones; correct ones
and incorrect ones. In this article, I will discuss three level
() solutions, i.e., three di�erent Monty Hall problems; and
try to give three short correct and attractive solutions.
Now read on. Be critical, use your intellect, don’t

believe anything on authority, and certainly not on mine.
Especially, don’t forget the problem at meta-level (−), not
listed above.
C’est la vie.

Starting Point
I shall start not with the historical roots of the prob-
lem, but with the question which made the�ree Doors
Problem famous, even reaching the front page of the
New York Times.
Marilyn vos Savant (a woman allegedly with the high-

est IQ in the world) posed the �ree Door Problem or
MontyHall Problem in her “AskMarilyn” column inParade
magazine (September :), as posed to her by a corre-
spondent, aMr. CraigWhitaker. It was, quoting vos Savant
literally, the following:

7 Suppose you’re on a game show, and you’re given the choice

of three doors: Behind one door is a car; behind the others,

goats. You pick a door, say No. , and the host, who knows

what’s behind the doors, opens another door, say No. , which

has a goat. He then says to you, “Do you want to pick door

No. ?” Is it to your advantage to switch your choice?

Apparently, the problem refers to a real AmericanTVquiz-
show, with a real presenter, called Monty Hall.

�e literature on theMontyHall Problem is enormous.
At the end of this article I shall simply list two references
which for me have been especially valuable: a paper by Je�
Rosenthal () and a book by Jason Rosenhouse ().
�e latter has a huge reference list and discusses the pre-
and post-history of vos Savant’s problem.
Brie�y regarding the pre-history, one may trace the

problem back through a  letter to the editor in the
journal �e American Statistician by biostatistician Steve
Selkin, to a problem called �e �ree Prisoners Problem
posed by StephenGardner in hisMathematical Games col-
umn in Scienti�c American in , and from there back
to Bertrand’s Box Problem in his  text on Probability
�eory.�e internet encyclopediawikipedia.org dis-
cussion pages (in many languages) are a fabulous though
every-changing resource. Almost everything that I write
here was learnt from those pages.
Despite making homage here to the two cited authors

Rosenthal () and Rosenhouse () for their won-
derful work, I emphasize that I strongly disagree with
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both Rosenhouse (“the canonical problem”) andRosenthal
(“the original problem”) on what the essential Monty Hall
problem is. I am more angry with certain other authors,
who will remain nameless but for the sake of argument
I’ll just call Morgan et al. for unilaterally declaring in�e
American Statistician in  their Monty Hall problem to
be the only possible sensible problem, for calling everyone
who solved di�erent problems stupid, and for getting an
incorrect theorem (I refer to their result about the situa-
tion when we do not know the quiz-master’s probability
of opening a particular door when he has a choice, and
put a uniform prior on this probability.) published in the
peer-reviewed literature.
Deciding unilaterally (Rosenhouse ) that a cer-

tain formulation is canonical is asking for a schism and
for excommunication. Calling a particular version original
(Rosenthal ) is asking for a historical contradiction.
In view of the pre-history of the problem, the notion is not
well de�ned. Monty Hall is part of folk-culture, culture is
alive, the Monty Hall problem is not owned by a particular
kind of mathematician who looks at such a problem from
a particular point of view, and who adds for them “natural”
extra assumptions which merely have the role of allowing
their solution to work. Presenting any “canonical” or “orig-
inal” Monty Hall problem together with a solution, is an
example of solution driven science – you have learnt a clever
trick and want to show that it solves lots of problems.

Three Monty Hall Problems
I will concentrate on three di�erent particular Monty Hall
problems. One of them (Q-) is simply to answer the ques-
tion literally posed by Marilyn vos Savant, “would you
switch?”.�e other two (Q-, Q-) are popular mathema-
tizations, particularly popular among experts or teachers
of elementary probability theory: one asks for the uncon-
ditional probability that “always switching” would gets the
car, the other asks for the conditional probability given the
choices made so far. Here they are:

Q-: Marilyn vos Savant’s (or CraigWhitaker’s) question
“Is it to your advantage to switch?”

Q-: A mathematician’s question “What is the uncondi-
tional probability that switching gives the car?”

Q-: Amathematician’s question “What is the conditional
probability that switching gives the car, given every-
thing so far?”

�e free, and freely editable, internet encyclopediaWikipe
dia is the scene of a furious debate as to which mathema-
tization Q- or Q- is the right starting point for answer-
ing the verbal question Q- (to be honest, many of the
actors claim another “original” question as the original

question). Alongside that, there is a furious debate as to
which supplementary conditions are obviously implicitly
being made. For each protagonist in the debate, those are
the assumptions which ensure that his or her question
has a unique and nice answer. My own humble opinion is
“neither Q- nor Q-, though the unconditional approach
comes closer.” I prefer Q-, and I prefer to see it as a ques-
tion of game theory for which, to my mind, [almost] no
supplementary conditions need to be made.
Here I admit that I will suppose that the player knows

game-theory and came to the quiz-show prepared. I will
also suppose that the player wants to get the Cadillac while
Monty Hall, the quizmaster, wants to keep it.
My analysis below of both problemsQ- andQ- yields

the good answer “/” under minimal assumptions, and
almost without computation or algebraic manipulation.
I will use Israeli (formerly Soviet Union) mathematician
Boris Tsirelson’s proposal on Wikipedia talk pages to use
symmetry to deduce the conditional probability from the
unconditional one. (Boris graciously gave me permission
to cite him here, but this should not be interpreted tomean
that anything written here also has his approval).
You, the reader, may well prefer a calculation using

Bayes’ theorem, or a calculation using the de�nition of
conditional probability; I think this is a matter of taste.
I �nally use a game-theoretic point of view, and von

Neumann’s minimax theorem, to answer the question
Q- posed by Marilyn vos Savant, on the assumptions just
stated.
Let the three doors be numbered in advance , , and .

I add the universally agreed (and historically correct) addi-
tional assumptions: Monty Hall knows in advance where
the car is hidden,MontyHall always opens a door revealing
a goat.
Introduce four random variables taking values in the

set of door-numbers {, , }:

C: the quiz-teamhides theCar (aCadillac) behinddoorC,
P: the Player chooses door P,
Q: the Quizmaster (Monty Hall) opens door Q,
S: Monty Hall asks the player if she’ld like to Switch to
door S.

Because of the standard story of the Monty Hall show, we
certainly have:

Q ≠ P, the quizmaster always opens a door di�erent to the
player’s �rst choice,
Q ≠ C, opening that door always reveals a goat,
S ≠ P, the player is always invited to switch to another door,
S ≠ Q, no player wants to go home with a goat.
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It does not matter for the subsequent mathematical analy-
sis whether probabilities are subjective (Bayesian) or objec-
tive (frequentist); nor does it matter whose probabilities
they are supposed to be, at what stage of the game. Some
writers think of the player’s initial choice as �xed. For them,
P is degenerate.
I simplymerely down somemathematical assumptions

and deduce mathematical consequences of them.

Solution to Q-: Unconditional Chance
That Switching Wins
By the rules of the game and the de�nition of S, if P ≠ C
then S = C, and vice-versa. A “switcher” would win the car
if and only if a “stayer” would lose it.�erefore:
If Pr(P = C) = / then Pr(S = C) = /, since
the two events are complementary.

Solution to Q-: Probability Car is Behind
Door  Given You Chose Door , Monty
Hall Opened 
First of all, suppose that P and C are uniform and inde-
pendent, and that given (P,C), suppose that Q is uniform
on its possible values (unequal to those of P and of C). Let
S be de�ned as before, as the third door-number di�erent
from P andQ.�e joint law ofC,P,Q, S is by this de�nition
invariant under renumberings of the three doors. Hence
Pr(S = C∣P = x,Q = y) is the same for all x ≠ y. By the law
of total probability, Pr(S = C) (which is equal to / by
our solution to Q-) is equal to the weighted average of all
Pr(S = C∣P = x,Q = y), x ≠ y ∈ {, , }. Since the latter are
all equal, all these six conditional probabilities are equal to
their average /.
Conditioning on P = x, say, and letting y and y′ denote

the remaining two door numbers, we �nd the following
corollary:
Now take the door chosen by the player as �xed, P ≡ ,

say. We are to compute Pr(S=C∣Q= ). Assume that all
doors are equally likely to hide the car and assume that
the quizmaster chooses completely at random when he has
a choice. Without loss of generality we may as well pre-
tend that P was chosen in advance completely at random.
Nowwe have embedded our problem into the situation just
solved, where P and C are uniform and independent.

7 If P ≡  is fixed, C is uniform, and Q is symmetric, then

“switching gives car” is independent of quizmaster’s choice,

hence

Pr(S = C∣Q = ) = Pr(S = C∣Q = ′) = Pr(S = C) = /.

Some readers may prefer a direct calculation. Using Bayes’
theorem in the form “posterior odds equal prior odds times

likelihoods” is a particularly e�cient way to do this.�e
probabilities and conditional probabilities below are all
conditional on P = , or if your prefer with P ≡ .
We have uniform prior odds

Pr(C = ) : Pr(C = ) : Pr(C = ) =  :  : .

�e likelihood for C, the location of the car, given data
Q = , is (proportional to) the discrete density function of
Q given C (and P)

Pr(Q = ∣C = ) : Pr(Q = ∣C = ) :

Pr(Q = ∣C = ) =


:  : .

�e posterior odds are therefore proportional to the likeli-
hood. It follows that the posterior probabilities are

Pr(Q = ∣C = ) =


, Pr(Q = ∣C = ) =



,

Pr(Q = ∣C = ) = .

Answer to Marilyn Vos Savant’s Q-:
Should You Switch Doors?
Yes. Recall, You only know that Monty Hall always opens
a door revealing a goat. You didn’t know what strategy
the quiz-team and quizmaster were going to use for their
choices of the distribution of C and the distribution of
Q given P and C, so naturally (since you know elemen-
tary Game�eory) you had picked your door uniformly
at random. Your strategy of choosing C uniformly at ran-
dom guarantees that Pr(C = P) = / and hence that
Pr(S = C) = /.
It was easy for you to �nd out that this combined

strategy, which I’ll call “symmetrize and switch,” is your
so-called minimax strategy.
On the one hand, “symmetrize and switch” guaran-

tees you a / (unconditional) chance of winning the car,
whatever strategy used by the quizmaster and his team.
On the other hand, if the quizmaster and his team use

their “symmetric” strategy “hide the car uniformly at ran-
dom and toss a fair coin to open a door if there is choice”,
then you cannot win the car with a better probability
than /.

�e fact that your “symmetrize and switch” strategy
gives you “at least” /, while the quizmaster’s “symmetry”
strategy prevents you from doing better, proves that these
are the respective minimax strategies, and / is the game-
theoretic value of this two-party zero-sum game. (Mini-
max strategies and the accompanying “value” of the game
exist by virtue of John von Neumann’s () minimax
theorem for �nite two-party zero-sum games).

�ere is not much point for you in worrying about
your conditional probability of winning conditional on
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your speci�c initial choice and the speci�c door opened
by the quizmaster, say doors  and  respectively. You don’t
know this conditional probability anyway, since you don’t
know the strategy used by quiz-team and the quizmaster.
(Even though you know probability theory and game the-
ory, they maybe don’t). However, it is maybe comforting
to learn, by easy calculation, that if the car is hidden uni-
formly at random, then your conditional probability can-
not be smaller than /. So in that case at least, it certainly
never hurts to switch door.

Discussion
Above I tried to give short clear mathematical solutions
to three mathematical problems. Two of them were prob-
lems of elementary probability theory, the third is a prob-
lem of elementary game theory. As such, it involves not
much more than elementary probability theory and the
beautiful minimax theorem of John von Neumann ().
�at a �nite two-party zero-sum game has a saddle-point,
or in other words, that the two parties in such a game
have matching minimax strategies (if 7randomization is
allowed), is not obvious. It seems to me that probabilists
ought to know more about game theory, since every ordi-
nary non-mathematician who hears about the problem
starts to wonder whether the quiz-master is trying to cheat
the player, leading to an in�nite regress: if I know that he
knows that I know that....
I am told that the literature ofmathematical economics

and of game theory is full of Monty Hall examples, but no-
one can give me a nice reference to a nice game-theoretic
solution of the problem. Probably game-theorists like to
keep their clever ideas to themselves, so as to make money
from playing the game. Only losers write books explaining
how the reader could make money from game theory.
It would certainly be interesting to investigate more

complex game-theoretic versions of the problem. If we take
Monty Hall as a separate player to the TV station, and
note that TV ratings are probably helped if nice players
winwhile annoying players lose, we leave elementary game
theory and must learn the theory of Nash equilibria.

�en there is a sociological or historical question: who
“owns” the Monty Hall problem? I think the answer is
obvious: no-one. A beautiful mathematical paradox, once
launched into the real world, lives it own life, it evolves, it
is re-evaluated by generation a�er generation.�is point
of view actually makes me believe that Question : would
you switch is the right question, and no further infor-
mation should be given beyond the fact that you know
that the quizmaster knows where the car is hidden, and
always opens a door exhibiting a goat. Question  is a ques-
tion you can ask a non-mathematician at a party, and if

they have not heard of the problem before, they’ll give the
wrong answer (or rather, one of the two wrong answers:
no because nothing is changed, or it doesn’t matter because
it’s now –). My mother, who was one of Turing’s com-
puters at Bletchley Park during the war, but who had had
almost no schooling and in particular never learnt any
mathematics, is the only person I know who immediately
said: switch, by immediate intuitive consideration of the
-door variant of the problem.�e problem is a paradox
since you can next immediately convince anyone (except
lawyers, as was shown by an experiment inNijmegen), that
their initial answer is wrong.

�e mathematizations Questions  and  are not (in
my humble opinion!) the Monty Hall problem; they are
questions which probabilists might ask, anxious to show
o� Bayes’ theorem or whatever. Some people intuitively try
to answer Question  via Questions  and ; that is natural,
I do admit. And sometimes people become very confused
when they realize that the answer toQuestion  can only be
given its pretty answer “/” under further conditions. It is
interesting how in the pedagogicalmathematical literature,
the further conditions are as it were held under your nose,
e.g., by saying “three identical doors,” or replacingMarilyn’s
“say, door ” by the more emphatic “door .”
It seems to me that adding into the question explic-

itly the remarks that the three doors are equally likely to
hide the car, and that when the quizmaster has a choice
he secretly tosses a fair coin to decide, convert this beauti-
ful paradox into a probability puzzle with little appeal any
more to non experts.
It also converts the problem into one version of

the three prisoner’s paradox. �e three prisoners prob-
lem is isomorphic to the conditional probabilistic three
doors problem. I always found it a bit silly and not
very interesting, but possibly that problem too should be
approached from a sophisticated game theoretic point of
view.
By the way, Marilyn vos Savant’s original question is

semantically ambiguous, though this might not be noticed
by a non-native English speaker. Are the mentioned door
numbers, huge painted numbers on the front of the doors
a priori, or are we just for convenience naming the doors by
the choices of the actors in our game a posteriori. Marilyn
stated in a later column in Parade that she had origi-
nally been thinking of the latter. However, her own o�ered
solutions are not consistent with a single unambiguous for-
mulation. Probably she did not �nd the di�erence very
interesting.

�is little article contains nothing new, and only almost
trivial mathematics. It is a plea for future generations to
preserve the life of�e True Monty Hall paradox, and not
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let themselves be misled by probability purists who say
“youmust compute a conditional probability.”
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In , A.M.Mood developed the square rank test for dis-
persion known as Mood test. It is based on the sum of
squared deviations of the ranks of one sample from the
mean rank of the combined samples.�e null hypothesis
is that there is no di�erence in spread against the alterna-
tive hypothesis that there is some di�erence.�eMood test
assumes that location remains the same. It is assumed that
di�erences in scale do not cause a di�erence in location.
�e samples are assumed to be drawn from continuous
distributions.
In two-sample scale tests, the population distributions

are usually assumed to have the same location with dif-
ferent spreads. However, Neave and Worthington ()
cautioned that tests for di�erence in scale could be severely
impaired if there is a di�erence in location as well.
In a two-sample problem composed of X = {x, x, . . . ,

xm} with distribution F(X) and Y = {y, y, . . . , yn}
with distribution G(Y), arrange the combined samples in

ascending order of magnitude and rank all the N = m + n
observations from  (smallest) to N (largest). LetW be the
sum of squares of the deviations of one of the samples’ (say
X) ranks from the mean rank of the combined samples,

W =
m

∑
i=

(ri −
m + n + 


)

,

where ri is the rank of the ith X observation. �e table
of exact critical values can be found in Odiase and
Ogbonmwan ().
Under the null hypothesis (F = G), the layout of the

ranks of the combined samples is composed of N inde-
pendent and identically distributed random variables, and
hence conditioned on the observed data set, the mean and
variance ofW arem(N−)/ andmn(N+)(N−)/,
respectively. �e large sample Normal approximation of
W is

W −
m(N − )


√
mn(N + )(N − )



.

�e e�ciency of the two-sample Mood test against the
normal alternative to the null hypothesis is 

π
≅ %.

A Monte Carlo study of several nonparametric test
statistics to obtain the minimum sample size require-
ment for large sample approximation was carried out
by Fahoome (). Adopting Bradley’s () liberal
criterion of robustness, Fahoome () recommends
the asymptotic approximation of the Mood test when
min(m,n) =  for the level of signi�cance α = .
and min(m,n) =  for α = .. However, Odiase and
Ogbonmwan () generated the exact distribution of the
Mood test statistics by the permutation method and there-
fore provided the table of exact critical values at di�erent
levels of signi�cance.

�e idea of a general method of obtaining an exact test
of signi�cance originated with Fisher ().�e essential
feature of the method is that all the distinct permutations
of the observations are considered, with the property that
each permutation is equally likely under the hypothesis to
be tested.
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�is notion plays a key role in testing statistical hypotheses.
Testing is a two-decision statistical problem.

Case Study
A producer of hydraulic pumps applies plastic gaskets pur-
chased from a deliverer.�e gaskets are supplied in batches
of ,. Since the cost of repairing a pump found to be
faulty is far higher than the cost of the gasket itself, each
batch is subject to testing. Not only the testing is costly
but also any gasket used in the process is practically dam-
aged.�us the producer decides to verify  gaskets taken
randomly from each batch.
Assume the deliverer promised that the fraction of

defective gaskets would not exceed %. Suppose  defec-
tive gaskets were disclosed in a sample of size . Is this
enough to reject the batch?�e situation is illustrated by
the following table

Batch/decision Accept Reject

Good + Type I Error

Bad Type II Error +

Since the decision is taken on the basis of a random
variable (the number of defective gaskets), the quality of
test may be expressed in terms of the probabilities of these
two errors. We would like to minimize these probabili-
ties simultaneously. However, any decrease of one of these
probabilities causes increase of the second one. Conse-
quences of these two errors should also be taken into
consideration. Similarly as in law, one presumes that the
tested hypothesis is true.�us the probability of the error
of the �rst type should be under control.�eory of testing
statistical hypotheses, regarding these postulates, was for-
malized in  by Neyman and Pearson.

Neyman-Pearson Theory
Let X be a random variable (or: random vector) taking
values in a sample space (X ,A) with a distribution P
belonging to a class P = {Pθ : θ ∈ Θ) and let Θ be a
proper subset of Θ. We are interested in deciding, on the
basis of observationX, whether θ ∈ Θ (decision d) or not
(decision d).
Any statement of the formH : θ ∈ Θ is called a statisti-

cal hypothesis. We consider also the alternative hypothesis
K : θ ∉ Θ, i.e., θ ∈ Θ ∖ Θ. A criterion of reject-
ing H (called a test) may be assigned by a critical region
S ⊆ X , according to the rule: reject H if X ∈ S and accept
otherwise.
When performing a test one may arrive at the correct

decision, or one may commit one of two errors: rejecting
H when it is true or accepting when it is false.�e upper
bound of the probability Pθ(d(X)) for all θ ∈ Θ is called
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the sizewhile the function β(θ) = Pθ(d) for θ ∈ Θ∖Θ is
called the power function of the test.

�e general principle in Neyman-Pearson theory is
to �nd such a procedure that maximizes β(θ) for all
θ ∈ Θ/Θ under assumption that Pθ(d(X)) ≤ α
(signi�cance level) for all θ ∈ Θ. Any such test (if
exists) is called to be uniformly most powerful (UMP).
�e well known Neyman-Pearson fundamental lemma
(see 7Neyman-Pearson Lemma) states that for any two-
element family of densities or mass probabilities { f, f}
such test always exists and it can be expressed by the like-
lihood ratio r(x) = f(x)

f(x) . In this case the power function β
reduces to a scalar and the word uniformly is redundant.
It is worth to add that in the continuous case the size of

theUMP test coincideswith its signi�cance level. However,
it may not be true in the discrete case.�e desired equal-
ity can be reached by considering the randomized decision
rules represented by functions ϕ = ϕ(x), taking values in
the interval [, ] and interpreted as follows:

“If X = x then reject H with probability ϕ(x)
and accept it with probability  − ϕ(x)”

�e size of the MP randomized test coincides with its
signi�cance level and its power may be greater than for the
nonrandomized one. According to the Neyman-Pearson
lemma, the randomized MP test has the form

ϕ(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

, if p(x) > kp(x)
γ, if p(x) = kp(x
, if p(x) < kp(x

for some k induced by the signi�cance level. If γ =  then
it is non-randomized.

One-Side Hypothesis and Monotone
Likelihood Ratio
In practical situations distribution of the observation vec-
tor depends on one ormore parameters andwemake use of
composite hypotheses θ ∈ Θ against θ ∈ Θ ∖Θ. Perhaps
one of the simple situations of this type is testing one-side
hypothesis θ ≤ θ or θ ≥ θ in a scalar parameter family
of distributions.
We say that a family of densities{ fθ : θ ∈ Θ}hasmono-

tone likelihood ratio if there exists a statistic T = t(X) such
that for any θ < θ′ the ratio fθ′(x)fθ(x) is a monotone function
of T. It appears that for testing a hypothesis H : θ ≤ θ

against K : θ > θ in such a family of densities there exists
a UMP test of the form

ϕ(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 when T(x) > C
γ when T(x) = C
 when T(x) < C.

An important class of families with monotone likeli-
hood ratio are one-parameter exponential families with
densities of type fθ(x) = C(θ)eQ(θ)T(x)h(x). In a dis-
crete case with integer parameter instead the monono-
tonity condition it su�ces to verify that the ratio Pk+(x)

Pk(x)
is a monotone function of T for all k.

Example  (Testing expectation in a simple sample from
normal distributionwith known variance). LetX, ...,Xn be
independent and identically distributed. Randomvariables
with distribution N(µ, σ ), where σ  is known. Consider
the hypothesisH : µ ≤ µ under the alternativeK : µ > µ.
�e family of distributions has amonotone likelihood ratio
with respect to the statistic T = ∑

n
i= Xi.�erefore there

exists a UMP test which rejects H if∑
n
i= Xi. is too large.

Example  (Statistical control theory). Froma great num-
ber (N) of elements with an unknown number D of defec-
tive ones we draw without replacement a sample of size n.
�en the potential number X of defective elements in the
sample has the hypergeometric distribution

PD(X = x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(DX)(
N−D
n−x )

(Nn)
, if max(,n+D−N) <

x < min(n,D)
, otherwise.

.

One can verify that

PD+(x)
PD(x)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

, if x = n +D −N
D+
N−D

N−D−n+x
D+−x , if n +D +  −N ≤ x ≤ D

∞ if x = D + 

is a monotone function of x.�erefore there exists a UMP
test for the hypothesis H : D ≤ D against K : D > D,
which rejects H if x is too large.

Invariant and Unbiased Tests
If distribution of the observation vector depends on sev-
eral parameters, some of them may be out of our interest
and play the role of nuisance parameters. Such a situation
occurs, for instance, in testing linear hypotheses. In this
case the class of all unbiased estimators is usually too large
for handle. �en we may seek for a test with maximum
power in a class of tests which are invariant with respect to
some transformations of observations or their powers do
not depend on the nuisance parameters.�is is called the
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most powerful invariant test.�e class of tests under con-
siderationmay be also reduced by unbiasedness condition.
Amember of this class withmaximumpower is then called
themost powerful unbiased test.�e standard tests for lin-
ear hypotheses in a linear normalmodel aremost powerful
in each of these classes.
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Moving Averages
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A moving average is a time series constructed by taking
averages of several sequential values of another time series.
It is a type ofmathematical convolution. If we represent the
original time series by y, . . . , yn, then a two-sided moving
average of the time series is given by

zt =


k + 

k

∑
j=−k
yt+j, t = k + , k + , . . . ,n − k.

�us zk+, . . . , zn−k forms a new time series which is based
on averages of the original time series, {yt}. Similarly, a

one-sided moving average of {yt} is given by

zt =

k + 

k

∑
j=
yt−j, t = k + , k + , . . . ,n.

More generally, weighted averages may also be used. Mov-
ing averages are also called running means or rolling aver-
ages.�ey are a special case of “�ltering”, which is a general
process that takes one time series and transforms it into
another time series.

�e term “moving average” is used to describe this pro-
cedure because each average is computed by dropping the
oldest observation and including the next observation.�e
averaging “moves” through the time series until zt is com-
puted at each observation for which all elements of the
average are available.
Note that in the above examples, the number of data

points in each average remains constant. Variations on
moving averages allow the number of points in each aver-
age to change. For example, in a cumulative average, each
value of the new series is equal to the sum of all previous
values.
Moving averages are used in two main ways: Two-

sided (weighted) moving averages are used to “smooth” a
time series in order to estimate or highlight the underlying
trend; one-sided (weighted) moving averages are used as
simple forecasting methods for time series. While moving
averages are very simple methods, they are o�en build-
ing blocks for more complicated methods of time series
smoothing, decomposition and forecasting.

Smoothing Using Two-Sided Moving
Averages
It is common for a time series to consist of a smooth
underlying trend observed with error:

yt = f (t) + εt ,

where f (t) is a smooth and continuous function of t and
{εt} is a zero-mean error series.�e estimation of f (t) is
known as smoothing, and a two-sided moving average is
one way of doing so:

f̂ (t) =


k + 

k

∑
j=−k
yt+j, t = k + , k + , . . . ,n − k.

�e idea behind using moving averages for smooth-
ing is that observations which are nearby in time are also
likely to be close in value. So taking an average of the points
near an observation will provide a reasonable estimate of
the trend at that observation.�e average eliminates some
of the randomness in the data, leaving a smooth trend
component.
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Moving averages do not allow estimates of f (t) near
the ends of the time series (in the �rst k and last k periods).
�is can cause di�culties when the trend estimate is used
for forecasting or analyzing the most recent data.
Each average consists of k+ observations. Sometimes

this is known as a (k + ) MA smoother.�e larger the
value of k, the �atter and smoother the estimate of f (t)
will be. A smooth estimate is usually desirable, but a �at
estimate is biased, especially near the peaks and troughs in
f (t). When εt is a white noise series (i.e., independent and
identically distributed with zero mean and variance σ ),
the bias is given by E[f̂ (x)] − f (x) ≈ 

 f
′′
(x)k(k + ) and

the variance by V[ f̂ (x)] ≈ σ /(k+ ). So there is a trade-
o� between increasing bias (with large k) and increasing
variance (with small k).

Centered Moving Averages
�e simple moving average described above requires an
odd number of observations to be included in each aver-
age.�is ensures that the average is centered at the middle
of the data values being averaged. But suppose we wish to
calculate a moving average with an even number of obser-
vations. For example, to calculate a -termmoving average,
the trend at time t could be calculated as

f̂ (t − .) = (yt− + yt− + yt + yt+)/
or f̂ (t + .) = (yt− + yt + yt+ + yt+)/

�at is, we could include two terms on the le� and one on
the right of the observation, or one term on the le� and two
terms on the right, and neither of these is centered on t. If
we now take the average of these two moving averages, we
obtain something centered at time t.

f̂ (t)=


[(yt− + yt− + yt + yt+)/]

+


[(yt− + yt + yt+ + yt+)/]

=


yt− +



yt− +



yt +



yt+


yt+

So a  MA followed by a  MA gives a centered moving
average, sometimes written as  ×  MA. �is is also a
weighted moving average of order , where the weights
for each period are unequal. In general, a  × m MA
smoother is equivalent to a weighted MA of order m + 
with weights /m for all observations except for the �rst
and last observations in the average, which have weights
/(m).
Centeredmoving averages are examples of how amov-

ing average can itself be smoothed by another moving
average. Together, the smoother is known as a double mov-
ing average. In fact, any combination of moving averages
can be used together to form a double moving average. For
example, a  ×  moving average is a  MA of a  MA.

Moving Averages. Table  Weight functions aj for some common weighted moving averages

Name a a a a a a a a a a a a

 MA . .

 MA . . .

 ×  MA . . . . . . .

 ×  MA . . .

 ×  MA . . . .

S MA . . . . . −. −. −.

S MA . . . . . . −. −. −. −. −.

H MA . . −.

H MA . . . −. −.

H MA . . . . . −. −.

H MA . . . . . . . −. −. −. −. −.

S, Spencer’s weighted moving average.
H, Henderson’s weighted moving average.
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Moving Averages with Seasonal Data
If the centered  MA was used with quarterly data, each
quarter would be given equal weight. �e weight for the
quarter at the ends of the moving average is split between
the two years. It is this property that makes  ×  MA very
useful for estimating a trend in the presence of quarterly
seasonality. �e seasonal variation will be averaged out
exactly when the moving average is computed. A slightly
longer or a slightly shorter moving average will still retain
some seasonal variation. An alternative to a  ×  MA for
quarterly data is a ×  or ×  which will also give equal
weights to all quarters and produce a smoother �t than the
×MA. Other moving averages tend to be contaminated
by the seasonal variation.
More generally, a  × (km)MA can be used with data

with seasonality of length m where k is a small positive
integer (usually  or ). For example, a  ×  MA may
be used for estimating a trend in monthly seasonal data
(wherem = ).

Weighted Moving Averages
A weighted k-point moving average can be written as

f̂ (t) =
k

∑
j=−k
ajyt+j.

For the weighted moving average to work properly, it is
important that the weights sum to one and that they are
symmetric, that is aj = a−j. However, we do not require
that the weights are between  and . �e advantage of
weighted averages is that the resulting trend estimate is
much smoother. Instead of observations entering and leav-
ing the average abruptly, they can be slowly downweighted.
�ere are many schemes for selecting appropriate weights.
Kendall et al. (, Chap. ) give details.
Some sets of weights are widely used and have been

named a�er their proposers. For example, Spencer ()
proposed a  ×  ×  MA followed by a weighted -term
moving average with weights a = , a = a− = /, and
a = a− = −/.�ese values are not chosen arbitrarily,
but because the resulting combination of moving averages
can be shown to have desirable mathematical properties.
In this case, any cubic polynomial will be undistorted
by the averaging process. It can be shown that Spencer’s
MA is equivalent to the -point weighted moving aver-
age whose weights are −., −., −., ., ., .,
., ., ., ., ., ., −., −., and −..
Another Spencer’s MA that is commonly used is the -
point weighted moving average. Henderson’s weighted
moving averages are also widely used, especially as part
of seasonal adjustment methods (Ladiray and Quenneville

).�e set of weights is known as the weight function.
Table  shows some common weight functions.�ese are
all symmetric, so a−j = aj.
Weighted moving averages are equivalent to kernel

regression when the weights are obtained from a kernel
function. For example, we may choose weights using the
quartic function

Q( j, k) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{ − [ j/(k + )]} for −k ≤ j ≤ k;
 otherwise.

�en aj is set to Q(j, k) and scaled so the weights sum to
one.�at is,

aj =
Q( j, k)
k

∑
i=−k
Q(i, k)

. ()

Forecasting Using One-Sided Moving
Averages
A simple forecasting method is to average the last few
observed values of a time series.�us

ŷt+h∣t =

k + 

k

∑
j=
yt−j

provides a forecast of yt+h given the data up to time t.
As with smoothing, the more observations included in

the moving average, the greater the smoothing e�ect. A
forecaster must choose the number of periods (k + ) in a
moving average.When k = , the forecast is simply equal to
the value of the last observation.�is is sometimes known
as a “naïve” forecast.
An extremely common variation on the one-sided

moving average is the exponentially weighted moving
average. �is is a weighted average, where the weights
decrease exponentially. It can be written as

ŷt+h∣t =
t−
∑
j=
ajyt−j

where aj = λ( − λ)j. �en, for large t, the weights
will approximately sum to one. An exponentially weighted
moving average is the basis of simple exponential smooth-
ing. It is also used in some process control methods.

Moving Average Processes
A related idea is the moving average process, which is a
time series model that can be written as

yt = et − θet− − θet− − ⋅ ⋅ ⋅ − θqet−q,

where {et} is a white noise series.�us, the observed series
yt , is a weighted moving average of the unobserved et
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series.�is is a special case of an Autoregressive Moving
Average (or ARMA)model and is discussed in more detail
in the entry7Box-Jenkins Time Series Models. An impor-
tant di�erence between thismoving average and those con-
sidered previously is that here the moving average series is
directly observed, and the coe�cients θ, . . . , θq must be
estimated from the data.
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One of the assumptions of the standard regression model
y = Xβ+ε is that there is no exact linear relationship among
the explanatory variables, or equivalently, that the matrix
X of explanatory variables has a full rank.�e problem of
multicollinearity occurs if two or more explanatory vari-
ables are linearly dependent, or near linearly dependent
(including the variable x′ = [, ,⋯, ] , which generates a
constant term). �ere are two types of multicollinearity:
perfect and near multicollinearity.
Perfect multicollinearity occurs if at least two explana-

tory variables are linearly dependent. In that case, the
determinant of matrix X′X equals zero (the X′X matrix

is singular), and therefore ordinary least squares (OLS)
estimates of regression parameters β′ = (β, β,⋯, βk)

β̂ = (X′X)−X′y =
adj(X′X)
det(X′X)

⋅ X′y

are not unique.�is type of multicollinearity is rare, but
may occur if the regression model includes qualitative
explanatory variables, whose e�ect is taken into account
by 7dummy variables. Perfect multicollinearity occurs
in a regression model with an intercept, if the number
of dummy variables for each qualitative variable is not
less than the number of groups of this variable. Perfect
multicollinearity can easily be revealed. A more di�cult
problem is near or imperfect multicollinearity.�is prob-
lem arises if at least two regressors are highly intercorre-
lated. In that case, det(X′X) ≈ , the matrix X′X is ill
conditioned, and therefore the estimated parameters are
numerically imprecise. Furthermore, since the covariance
matrix of estimated parameters is calculated by the for-
mula Cov(β̂) = σ̂ (X′X)−, the variances and covariances
of the estimated parameters will be large. Large standard
errors SE(β̂j) = σ̂

√
(X′X)−jj imply that empirical t-ratios

(tj = β̂j/SE (β̂j)) could be insigni�cant, which may lead
to an incorrect conclusion that some explanatory vari-
ables have to be omitted from the regression model. Also,
large standard errors make interval parameter estimates
imprecise.
Imperfect multicollinearity o�en arises in the time

series regression model (see 7Time Series Regression),
especially in data involving economic time series, while
variables over time tend to move in the same direction.

�e simplest way to detect serious multicollinearity
problems is to analyze variances of estimated parameters,
which are calculated with the following formula:

var(β̂j) = σ (X′X)−jj =
σ̂ 

n

∑
i=

(xij − x̄j) ⋅ ( − Rj )
,

where R j is the coe�cient of determination in the regres-
sion, variable xj is the dependent, and the remaining x’s
are explanatory variables. If variable xj is highly corre-
lated with other regressors, R j will be large (near to ),
and therefore the variance of β̂j will be large. �ere are
some measures of multicollinearity included in standard
statistical so�ware: the variance in�ation factor (VIF), tol-
erance (TOL), condition number (CN), and condition
indices (CI). VIF and TOL are calculated with the follow-
ing formulas:

VIFj =


 − Rj
j = , ,⋯, k TOLj =


VIFj

=  − Rj .
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�e multicollinearity problem is serious if R j > .,
consequently if VIFj > , or equivalently if TOLj < ..
More sophisticated measures of multicollinearity are

condition number, CN, and condition indices, CIi, based
on the use of eigenvalues of the X′X matrix. CN is the
square root of the ratio of the largest eigenvalue to the
smallest eigenvalue, andCIi, i = , , . . . , k, are square roots
of the ratio of the largest eigenvalue to each individual
eigenvalue.�ese measures, which are calculated with the
formulas

CN =

√
λmax
λmin

CIi =

√
λmax

λi
i = , ,⋯, k,

are measures of sensitivity of parameter estimates to small
changes in data. Some authors, such as Belsley et al. (),
suggested that a condition index of – indicates mod-
erate to strong multicollinearity.
Several solutions have been suggested to rectify

the multicollinearity problem. Some are the following:
() increasing the sample size to reduce multicollinearity,
as multicollinearity is a problem of the sample, and not
the population; () dropping one or more variables sus-
pected of causing multicollinearity; () transforming data
as the �rst di�erences ∆Xt = Xt −Xt− or ratios Xt/Xt− t =
, , . . . ,n to eliminate linear or exponential trends;
() ridge regression (see 7Ridge and Surrogate Ridge
Regressions); and () principal component regression.

�e problem of multicollinearity is approached di�er-
ently by econometricians depending on their research goal.
If the goal is to forecast future values of the dependent
variable, based on the determined regression model, the
problem ofmulticollinearity is neglected. In all other cases,
this problem is approached more rigorously.
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Some clustering problems cannot be appropriately solved
with classical clustering algorithms because they require
optimization over more than one criterion. In general,
solutions optimal according to each particular criterion are
not identical.�us, the problem arises of how to �nd the
best solution satisfying as much as possible all criteria con-
sidered. In this sense the set of Pareto e�cient clusterings
was de�ned: a clustering is Pareto e�cient if it cannot be
improved on any criterion without sacri�cing some other
criterion.
A multicriteria clustering problem can be approached

in di�erent ways:

● By reduction to a clustering problem with a single cri-
terion obtained as a combination of the given criteria;

● By constrained clustering algorithms where a selected
criterion is considered as the clustering criterion and
all others determine the constraints;

● By direct algorithms: Hanani () proposed an algo-
rithm based on the dynamic clusters method using the
concept of the kernel, as a representation of any given
criterion. Ferligoj and Batagelj () proposed modi-
�ed relocation algorithms and modi�ed agglomerative
hierarchical algorithms.

Usual Clustering Problems
Cluster analysis (known also as classi�cation and taxon-
omy) deals mainly with the following general problem:
given a set of units, U , determine subsets, called clusters,
C, which are homogeneous and/or well separated accord-
ing to the measured variables (e.g., Sneath and Sokal ;
Hartigan ; Gordon ). �e set of clusters forms a
clustering.�is problem can be formulated as an optimiza-
tion problem:
Determine the clustering C∗ for which

P(C∗) = min
C∈Φ

P(C)

where C is a clustering of a given set of units, U , Φ is the
set of all feasible clusterings and P : Φ → R a criterion
function.
As the set of feasible clusterings is �nite a solution

of the clustering problem always exists. Since this set is
usually large it is not easy to �nd an optimal solution.
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A Multicriteria Clustering Problem
In a multicriteria clustering problem (Φ,P,P, . . . ,Pk) we
have several criterion functions Pt , t = , . . . , k over the
same set of feasible clusterings Φ, and our aim is to deter-
mine the clustering C ∈ Φ in such a way that

Pt(C)→ min, t = , . . . , k.

In the ideal case, we are searching for the dominant set of
clusterings.�e solution C is the dominant solution if for
each solution C ∈ Φ and for each criterion Pt , it holds that

Pt(C) ≤ Pt(C), t = , . . . , k.

Usually the set of dominant solutions is empty.�erefore,
the problem arises of �nding a solution to the problem that
is as good as is possible according to each of the given cri-
teria. Formally, the Pareto-e�cient solution is de�ned as
follows:
For C,C ∈ Φ , solution C dominates solution C if

and only if

Pt(C) ≤ Pt(C), t = , . . . , k,

and for at least one i ∈ , . . . , k the strict inequality Pi(C) <
Pi(C) holds. We denote the dominance relation by ≺.
≺ is a strict partial order.�e set of Pareto-e�cient solu-
tions, Π, is the set of minimal elements for the dominance
relation:

Π = {C ∈ Φ : ¬∃C′ ∈ Φ : C′ ≺ C}

In other words, the solution C∗ ∈ Φ is Pareto-e�cient if
there exists no other solution C ∈ Φ such that

Pt(C) ≤ Pt(C∗), t = , . . . , k,

with strict inequality for at least one criterion. A Pareto-
clustering is a Pareto-e�cient solution of the multicriteria
clustering problem (Ferligoj and Batagelj ).
Since the optimal clusterings for each criterion are

Pareto-e�cient solutions the set Π is not empty. If the set
of dominant solutions is not empty then it is equal to the
set of Pareto-e�cient solutions.

Solving Discrete Multicriteria Optimization
Problems
Multicriteria clustering problems can be approached as a
multicriteria optimization problem, that has been treated
by several authors (e.g., Chankong and Haimes ;
Ferligoj and Batagelj ). In the clustering case, we are
dealing with discrete multicriteria optimization (the set of
feasible solutions is �nite), which means that many very
useful theorems in the �eld of multicriteria optimization
do not hold, especially those which require convexity. It
was proven that if, for each of the given criteria, there is

a unique solution, then the minimal number of Pareto-
e�cient solutions to the given multicriteria optimization
problem equals the number of di�erent minimal solutions
of the single criterion problems.
Although several strategies haven been proposed for

solving multicriteria optimization problems explicitly, the
most common is the conversion of the multicriteria opti-
mization problem to a single criterion problem.

Direct Multicriteria Clustering Algorithms
�e multicriteria clustering problem can be approached
e�ciently by using direct algorithms. Two types of direct
algorithms are known: a version of the relocation algo-
rithm, and themodi�ed agglomerative (hierarchical) algo-
rithms (Ferligoj and Batagelj ).

Modified Relocation Algorithm
�e idea of the modi�ed relocation algorithm for solv-
ing the multicriteria clustering problem follows from the
de�nition of a Pareto-e�cient clustering. �e solutions
obtained by the proposed procedure can be only local
Pareto clusterings.�erefore, the basic procedure should be
repeated many times (at least hundreds of times) and the
obtained solutions should be reviewed. An e�cient review
of the obtained solutions can be systematically done with
an appropriate metaprocedure with which the true set of
Pareto clusterings can be obtained.

Modified Agglomerative Hierarchical Approach
Agglomerative hierarchical clustering algorithms usually
assume that all relevant information on the relationships
between the n units from the set U is summarized by a
symmetric pairwise dissimilarity matrix D = [dij]. In
the case of multicriteria clustering we assume we have k
dissimilarity matrices Dt , t = , . . . , k, each summarizing
all relevant information obtained, for example, in the k
di�erent situations.�e problem is to �nd the best hier-
archical solution which satis�es as much as is possible all k
dissimilarity matrices.
One approach to solving the multicriteria clustering

problem combines the given dissimilaritymatrices (at each
step) into a composed matrix.�is matrix D = [dij] can,
for example, be de�ned as follows:

dij = max (dtij; t = , . . . , k)

dij = min (dtij; t = , . . . , k)

dij =
k

∑
t=

αtdtij ,
k

∑
t=

αt = 
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Following this approach, one of several decision rules
(e.g., pessimistic, optimistic, Hurwicz, Laplace) for mak-
ing decisions under uncertainty (Chankong and Haimes
) can be used at the composition and selection step of
the agglomerative procedure.

Conclusion
�e multicriteria clustering problem can be treated with
the proposed approaches quite well if only a few hundreds
units are analysed. New algorithms have to be proposed for
large datasets.
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Basic Definitions
�e �eld variously described asmulticriteria decision mak-
ing (MCDM) or multicriteria decision analysis or aid
(MCDA) is that branch of operational research/mana-
gement science (OR/MS) that deals with the explicit
modeling of multiple con�icting goals or objectives in
management decision making. Standard texts in OR/MS
typically do include identi�cation of objectives (o�en
stated as plural) as a key step in the decision-making pro-
cess, but the ensuing discussion appears to assume that
such objectives are easily aggregated into a single measure
of achievement which can formally be optimized.�e �eld
of MCDA, however, arose from a recognition that system-
atic and coherent treatment of multiple objectives requires
structured decision support to ensure that all interests are
kept in mind and that an informed balance is achieved.
See, for example, the discussions and associated references
in Chap.  of Belton and Stewart () and Chap.  of
Figueira et al. ().

�e starting point of MCDA is the identi�cation of
the critical criteria according to which potential courses
of action (choices, policies, strategies) may be compared
and evaluated. In this sense, each criterion is a partic-
ular point of view or consideration according to which
preference orders on action outcomes can (more-or-less)
unambiguously be speci�ed. Examples of such criteriamay
include issues such as investment costs, job creation, levels
of river pollution etc., as well as more subjective crite-
ria such as aesthetic appeal. With careful selection of the
criteria, preference ordering according to each could be
essentially self-evident apart from some fuzziness around
the concept equality of performance.
Selection of criteria is a profound topic in its own right,

but is perhaps beyond the scope of the present article.
Somediscussionmay be found inKeeney andRai�a ();
Keeney (); Belton and Stewart (). In essence, the
analyst needs to ensure that values and aspirations of the
decision maker(s) have been fully captured by the chosen
criteria, while still retaining amanageably small number of
criteria (typically, one strives for not muchmore than  or
 criteria inmost applications). Care needs to be taken not
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to double-count issues, and that preference orders can be
understood on each criterion independently of the others.
Suppose then that say m criteria have been de�ned as

above. For any speci�ed course of action, say a ∈ A (the
set of all possible actions), we de�ne zi(a) to be a mea-
sure of performance of a according to the perspective of
criterion i, for i = , . . . ,m.�e scaling at this stage is not
important, the only requirement being that action a is pre-
ferred to action b in terms of criterion i (a ≻i b) if and only
if zi(a) > zi(b)+ єi for some tolerance parameter єi. Apart
from the brief comments in the �nal section, we assume
that these measures of performance are non-stochastic.

�e primary aim of MCDA is to support the deci-
sion maker in aggregating the single-criterion preferences
into an overall preference structure, in order to make a
�nal selection which best satis�es all criteria, or to select a
reduced subset ofA for further discussion and evaluation.
It is important to recognize that this aggregation phase
contains fundamentally subjective elements, namely the
value judgments and tradeo�s provided by the decision
maker. We shall brie�y review some of the support pro-
cesses which are used. A comprehensive overview of these
approaches may be found in Figueira et al. ().

Methods of Multicriteria Analysis
It is important to recognize that two distinct situationsmay
arise in the context described above, and that these may
lead to broadly di�erent forms of analysis:

● Discrete choice problems: In this case, A consists of
a discrete set of options, e.g., alternative locations for
a power station. �e discrete case arises typically at
the level of high level strategic choices, within which
many of the criteria may require subjective evaluation
of alternatives.

● Multiobjective optimization problems:�ese problems
are o�en de�ned inmathematical programming terms,
i.e., an option will be de�ned in terms of a vector of
decision variables, say x ∈ X ⊂ Rn. �e measures
of performance for each criterion typically need to
be de�ned quantitatively in terms of functions fi(x)
mapping Rn → R for each i.

�e methods adopted can be characterized in two
ways:

● By the underlying paradigm formodeling human pref-
erences (preference modeling);

● By the stage of the analysis at which the decision mak-
ers’ judgments are brought into play (timing of prefer-
ence statements).

We deal with each of these in turn.

Preference Modeling
At least four di�erent paradigms can be identi�ed.

. Value scoring or utility methods: �e approach is
�rst to re-scale the performance measures zi(a) so as
to be commensurate in some way, typically by means
of transformation through a partial value function,
say vi(zi). �is rescaling needs to ensure that equal-
sized intervals in the transformed scale represent the
same importance to the decision maker (in terms of
trade-o�s with other criteria) irrespective of where
they occur along the scale. Relatively mild assump-
tions (under conditions of deterministic performance
measures) imply that an overall value of a can be mod-
eled additively, i.e., as V(a) = ∑

m
i= wivi(zi(a)). �e

assessment of the partial values and weights (wi) may
be carried out by direct assessment (e.g., Dyer ),
indirectly such as by the analytic hierarchy process
approach (Saaty ), or by learning from previous
choices (Siskos et al. ).

. Metric methods: In this approach, some form of goal
or aspiration is speci�ed (by the decision maker) for
each criterion, say Gi for each i. A search (discrete
or by mathematical optimization) is then conducted
to �nd the option for which the performance lev-
els z(a), z(a), . . . , zm(a) approach the goal levels
G,G, . . . ,Gm as closely as possible. Typically, L, L,
or L∞ metrics are used to de�ne closeness, with pro-
vision for di�erential weighting of criteria. Di�erences
do also arise in terms of whether over-achievement of
goals adds additional bene�ts or not. Such approaches
are termed (generalized) goal programming, and
are reviewed in Lee and Olson; Wierzbicki (;
). Goal programming is primarily applied in the
context of the multiobjective optimization class of
model.

. Outrankingmethods:�ese methods consider action
alternatives pairwise in terms of their performance
levels on all criteria, in order to extract the level of
evidence in the data provided by the performance
measures which either support (are concordant with)
or oppose (are discordant with) a conclusion that the
one action is better than the other. �ese consider-
ations generate partial rankings of the actions, or at
least a classi�cation of the actions into ordered pref-
erence classes. Descriptions of di�erent outranking
approaches may be found in Part III of Figueira et al.
().

. Arti�cial intelligence: Greco et al. () describe
how observed choices by the decision maker(s) can
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be used to extract decision rules for future multicri-
teria decisions, without explicit or formal preference
modeling along the lines described above.

Timing of Preference Statements
�ree possible stages of elicitation of values and pref-
erences from the decision maker may be recognized as
described below (although in practice no one of these is
used completely in isolation).

. Elicitation prior to analysis of options: In this app-
roach, a complete model of the decision maker pref-
erences is constructed from a sequence of responses
to questions about values, trade-o�s, relative impor-
tance, etc.�e resulting model is then applied to the
elements ofA in order to select the best alternative or a
shortlist of alternatives.�is approach is perhaps most
o�en used with value scoringmethods, in which a sim-
ple and transparent preferencemodel (e.g., the additive
value function) is easily constructed and applied.

. Interactivemethods:Hereatentativepreferencemodel,
incomplete in many ways, is used to generate a small
number of possible choices which are presented to the
decision maker, who may either express strong pref-
erences for some or dislike of others. On the basis of
these stated preferences, models are re�ned and a new
set of choices generated. Even in the prior elicitation
approach, some degree of interaction of this nature
will occur, where in the application of value scoring
or outranking approaches to discrete choice problems,
results will inevitably be fed back to decision mak-
ers for re�ection on the value judgements previously
speci�ed.However, it is especiallywithcontinuousmul-
tiobjective optimization problems that the interaction
becomes �rmly designed and structured into the pro-
cess.SeeChap.ofMiettinen()foracomprehensive
coverage of such structured interaction.

. Posterior value judgements: If each performance
measure is to be maximized, then an action a is said
to dominate action b if zi(a) ≥ zi(b) for all crite-
ria, with strict inequality for at least one criterion.
With discrete choice problems, the removal of domi-
nated actions from A may at times reduce the set of
options to such a small number that no more analy-
sis is necessary – decision makers can make a holistic
choice. In some approaches to multiobjective opti-
mization (see also Miettinen ), a similar attempt
is made to compute the “e�cient frontier,” i.e., the
image in criterion space of all non-dominated options,
which can be displayed to the decision maker for a
holistic choice. In practice, however, this approach is
restricted to problems with two or three criteria only

which can be displayed graphically (although there
have been attempts at graphical displays for slightly
higher dimensionality problems).

Stochastic MCDA
As indicated at the start, we have focused on deterministic
problems, i.e., inwhich a �xed (even if slightly “fuzzy”) per-
formancemeasurezi(a)canbeassociatedwitheachaction-
criterion combination. However, there do of course exist
situations in which each zi(a) will be a random variable.

�e introduction of stochastic elements into the mul-
ticriteria decision making problem introduces further
complications. Attempts have been made to adapt value
scoring methods to be consistent with the von Neumann/
Morgenstern axioms of expected utility theory, to linkmul-
ticriteria decision analysis with scenario planning, and to
treat probabilities of achieving various critical outcomes as
separate “criteria.”Discussion of these extensions is beyond
the scope of space available for this short article, but a
review is available in Stewart ().
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7Multidimensional scaling (MDS) is a family of methods
that optimally map proximity indices of objects into
distances between points of amultidimensional space with
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a given dimensionality (usually two or three dimensions).
�e main purpose for doing this is to visualize the data
so that the user can test structural hypotheses or discover
patterns “hidden” in the data.
Historically, MDS began as a psychological model for

judgments of (dis)similarity. A typical example of this early
era is the following. Wish () was interested to �nd out
how persons generate overall judgments on the similar-
ity of countries. He asked a sample of subjects to assess
each pair of twelve countries with respect to their global
similarity. For example, he asked “How similar are Japan
and China?”, o�ering a -point answer scale from “very
dissimilar” to “very similar” for the answer. On purpose,
“there were no instructions concerning the characteris-
tics on which these similarity judgments were to be made;
this was information to discover rather than to impose”
(Kruskal and Wish :).�e resulting numerical rat-
ings were averaged over subjects, and then mapped via
MDS into the distances among  points of a Euclidean
plane.�e resulting MDS con�guration (Fig. ) was inter-
preted to show that the ratings were essentially generated
from two underlying dimensions.
As an MDS model, Wish () used ordinal MDS, the

most popular MDSmodel. It maps the proximities of the n
objects (δij) into distances dij of the n × m con�guration
X such that their ranks are optimally preserved. Hence,
assuming that the δij’s are dissimilarities, the function
f : δij → dij(X) is monotone so that f : δij < δkl →
dij(X) ≤ dkl(X), for all pairs (i, j) and (k, l) for which
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data are given. Missing data impose no constraints onto
the distances.
Another popular MDS model is interval MDS, where

f : δij → a + b ⋅ δij = dij(X). �is model assumes that
the data are given on an interval scale. Hence, both a and
b(≠ ) can be chosen arbitrarily. In particular, they can be
chosen such that the re-scaled proximities are equal to the
distances of a given MDS con�guration X.
A second facet of an MDS model is the distance func-

tion that it uses. In psychology, the family of Minkow-
ski distances has been studied extensively as a model of
judgment. Minkowski distances can be expressed by the
formula

d(p)ij (X) = (
m

∑
a=

∣xia − xja∣p)
/p
, p ≥ . ()

Setting p =  results in the city-block metric, setting p = 
in the Euclidean distance. If p grows, dij is quickly dom-
inated by its largest intra-dimensional di�erence (out of
the a = , . . . ,m dimensions). Such metrics supposedly
explain fast and frugal (dis)similarity judgments.�e city-
block metric, in contrast, models careful judgments with
important consequences for the individual. When MDS is
used for exploratory purposes, however, only p =  should
be used, because all other choices imply geometries with
non-intuitive properties.

�e �t of the MDS representation to the data can be
seen from its Shepard diagram. For our country-similarity
example, this is shown in Fig. .�e plot exhibits how the
data are related to the distances. It also shows the mono-
tone regression line.�e vertical scatter of the points about
this regression line corresponds to the model’s loss or mis-
�t. It ismeasured as∑i<j e


ij = ∑i<j(dij(X)−f (δij)), for all

points i und j.�e f (δij)’s here are disparities, i.e., proxim-
ities that are re-scaled using all admissible transformations
of the chosen scale level to optimally approximate the cor-
responding distances of the MDS con�guration X. �e
optimization is done by ordinal or linear regression (or,
generally, by regression of type f ) so that f (δij) = d̂ij(X).
In order to obtain an interpretable measure of model mis-
�t, the error sum is normed to yield the standardMDS loss
function

Stress =
√

∑
i<j

(dij(X) − d̂ij)/∑
i<j
dij(X). ()

A perfect MDS solution has a Stress of zero. In this
case, the distances of the MDS solution correspond per-
fectly to the disparities. For the above example, we get
Stress = .. Evaluating if this is an acceptably low value is
complex. A minimum criterion is that the observed Stress
value should be clearly smaller than the Stress that results
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Multidimensional Scaling. Fig.  Shepard diagram of MDS
solution in Fig. 

for random data. Other criteria (such as the number of
points (n), the number of missing data, the restrictiveness
of theMDSmodel, or the dimensionality of theMDS space
(m)), but also the interpretability of the solution have to
be taken into account. Indeed, it may be true that Stress
is high but the con�guration is nevertheless stable over
replications of the data. �is case can result if the data
have a large random error component. MDS, then, acts
as a data smoother that irons out the error in the distance
representation.
MDS methods allow one to utilize many di�erent

proximity measures. One example is direct judgments of
similarity or dissimilarity as in the example given above.
Another example are intercorrelations of test items over
a sample of persons. A third example are co-occurrence
coe�cients that assess how o�en an event X is observed
together with another event Y.
MDS is also robust against randomly distributed miss-

ing data. Computer simulations show that some % of the
proximities may be missing, provided the data contain lit-
tle error and the number of points (n) is high relative to the
dimensionality of theMDS space (m).�e data can also be
quite coarse and even dichotomous.
Apopular variety ofMDS is IndividualDi�erences Scal-

ing or Indscal (Carroll and Chang ). Here, we have
N di�erent proximity matrices, one for each of N per-
sons.�e idea of the model is that these proximities can
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be explained by individually stretching or compressing
a common MDS space along a �xed set of dimensions.
�at is,

d(k)ij (X) =

¿
Á
ÁÀ

m

∑
a=
w(k)
a (xia − xja),w(k)

a ≥ , ()

where k = , . . . ,N.�e weight w(k)
a is interpreted as the

salience of dimension a for individual k. Carroll and Wish
() used Indscal on the overall similarity ratings of
di�erent individuals for a set of countries, similar to the
data discussed above. What they �nd is that one group
of persons (“doves”) pays much attention to economic
development, while the other group (“falcons”) emphasizes
almost only political alignment of the countries with the
West. Note, though, that these interpretations depend on
the norming of X. Amore transparent way to analyze such
data is to scale each individual’s data matrix by itself, and
then proceed by Procrustean �ttings of the various solu-
tions to each other, followed by �nding optimal dimen-
sions for an Indscal-type weighting model (Lingoes and
Borg ).
A secondpopular variety ofMDS isUnfolding.�e pro-

totypical data for this model are preference ratings of a
set of persons for a set of objects.�ese data are mapped
into distances between person-points and object-points
in a “joint” space. �e person-points are interpreted as
“ideal” points that express the persons’ points of maximal
preference in the object space.
MDS solutions can be interpreted in di�erent ways.

�emost popular approach is interpreting dimensions, but
this is just a special case of interpreting regions. Regions
are partitions of the MDS space which sort its points into
subgroups that are equivalent in terms of substance. A sys-
tematic method for that purpose is facet theory (Borg
and Shye ), an approach that o�ers methods to cross-
classify the objects into substantively meaningful cells of
a Cartesian product. �e facets used for these classi�ca-
tions induce, one by one, partitions into the MDS space if
they are empirically valid.�e facets themselves are o�en
based on theoretical considerations, but they can also be
attributes that the objects possess by construction. Figure 
shows an example. Here, (symmetrized) confusion prob-
abilities of  Morse signals are represented as distances
of a -dimensional MDS con�guration.�e space is parti-
tioned by dashed lines into �ve regions that contain signals
with only short beeps (coded as ’s); signalswithmore short
than long (coded as ’s) beeps; etc.�e solid lines cut the
space into ten regions that each contain signals with equal
duration (. seconds to . seconds).
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Multidimensional Scaling. Fig.  Exploratory MDS for confu-
sion probabilities of  Morse signals

1 1>2 1=2 2>1 2

95
85

75
65

55
45

35
25

15
05

12

2111 2121

211

1

1121
221

1111

11

1222

212

1211

22

21

222
1221

2212

121
111

2

112

1112

122

2112
2122

2211

12222

1122211122

11112

11111

21111

22111

22211 22221
22222

Multidimensional Scaling. Fig.  Confirmatory MDS for the
Morse signals, enforcing linearized regions

�e solution in Fig.  is found by exploratory
ordinal MDS. �ere also exist various methods for
con�rmatory MDS that impose additional external con-
straints onto the MDS model. Figure  shows an example
of an ordinal MDS with the additional constraint X=YC,
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where Y is a  ×  matrix of composition and dura-
tion codes, respectively, assigned to the  Morse sig-
nals; C is an unknown matrix of weights that re-scales
Y’s columns monotonically. �e con�rmatory MDS pro-
cedure optimally represents the proximities in the sense
of ordinal MDS while satisfying X=YC.�e resulting con-
�guration linearizes the regions of the MDS con�guration
which makes the solution easier to interpret. Provided its
Stress is still acceptable, this is the preferred MDS rep-
resentation, because it re�ects a clear law of formation
that is more likely to be replicable than an ad-hoc system
of regions. Many alternative side constraints are conceiv-
able. For example, an obvious modi�cation is to require
that C is diagonal. �is enforces an orthogonal lattice of
partitioning lines onto the solution in Fig. .
Many computer programs exist for doing MDS (for an

overview, see Borg and Groenen ()). All large statis-
tics packages o�er MDSmodules. One of the most �exible
programs is Proxscal, one of the two MDS modules in
Spss.�e Spss package also o�ers Prefscal, a powerful
program for unfolding. For R, De Leeuw and Mair ()
have written a comprehensive MDS program called Sma-
cofwhich can be freely downloaded fromhttp://CRAN.R-
project.org.
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7Multidimensional scaling (MDS), also called perceptual
mapping, is based on the comparison of objects (persons,
products, companies, services, ideas, etc.). �e purpose
of MDS is to identify the relationships between objects
and to represent them in geometrical form. MDS is a set
of procedures that allows the researcher to map distances
between objects in a multidimensional space into a lower-
dimensional space in order to show how the objects are
related.
MDS was introduced by Torgerson (). It has its

origins in psychology where it was used to understand
respondents’ opinions on similarities or dissimilarities
between objects. MDS is also used in marketing, man-
agement, �nance, sociology, information science, political
science, physics, biology, ecology, etc. For example, it can
be used to understand the perceptions of respondents, to
identify unrecognized dimensions, for segmentation anal-
ysis, to position di�erent brands, to position companies,
and so on (for descriptions of various examples, see Borg
and Groenen  and Hair et al. ).
MDS starts from the proximities between the objects

that express the similarity between them.�ere are di�er-
ent types of MDS: metric MDS (the similarities data are
quantitative; input and output matrices are metric) and
nonmetricMDS (the similarities data are qualitative; input
matrix is nonmetric).

�e steps involved in conducting MDS consist of
problem formulation, selection of MDS procedure, deter-
mination of the number of dimensions, interpretation, and

http://CRAN.R-project.org.
http://CRAN.R-project.org.
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validation. Problem formulation includes several tasks.
First, the objectives of MDS should be identi�ed. �e
nature of the variables to be included in MDS should be
speci�ed. Also, an appropriate number of variables should
be chosen as the number of variables in�uences the result-
ing solution. �e selection of MDS procedure depends
on the nature of the input data (metric or nonmetric).
Nonmetric MDS procedures assume that the input data
is ordinal, but the resulting output is metric. Metric MDS
procedures assume that both input and output data are
metric. MDS procedures estimate the relative position of
each object in a multidimensional space. �e researcher
must decide on a number of dimensions.�e objective is
to achieve an MDS solution that best �ts the data in the
smallest number of dimensions.�ough the �t improves
as the number of dimensions increases, the interpreta-
tion becomes more complicated.�e interpretation of the
dimensions and the con�guration require subjective judg-
ment, including some elements of judgment on the part of
both the researcher and the respondent.�e objectives of
MDS are not achieved if an appropriate interpretation is
lacking. Ultimately, the researcher must consider the qual-
ity of theMDS solution. (For detailed descriptions of MDS
steps, see Cox and Cox , Hair et al. , and Kruskal
and Wish .)
To apply MDS, the distances between objects must

�rst be calculated. �e Euclidean distance is the most
commonly used distance measure.�e distance between

objects A and B is given by dAB =

√
v

∑
i=

(xAi − xBi).

MDS begins with a matrix (n × n) consisting of the
distances between objects. From the calculated dis-
tances, a graph showing the relationship among objects is
constructed.

�e graphical representation used in MDS is a per-
ceptual map, also called a spatial map. It represents the
respondent’s perceptions of objectives and shows the rela-
tive positioning of all analyzed objects. Let us suppose that
there are �ve objects, A, B, C, D, and E. If objects A and
B are judged by the respondents as most similar in com-
parison to all other pairs of objects (AC, AD, AE, BC, BD,
etc.), the MDS procedures will position the objects A and
B so that their distance is smaller than the distance of any
other two objects. A perceptual map is constructed in two
or more dimensions. In a two-dimensional map, objects
are represented by points on a plane. In the case of a higher
number of dimensions, graphical representation becomes
more complicated.
MDS can be conducted at the individual or group

level. At the individual level, perceptual maps should be
constructed on a respondent-by-respondent base. At the

group level, the average judgment of all respondents within
a group should be established and the perceptual maps of
one or more groups constructed.
Statistical packages such as statistical analysis system

(SAS), statistical package for the social sciences (SPSS),
Stata, and STATISTICA are suitable for MDS.
Methods closely related to MDS are factor analysis

(see 7Factor Analysis and Latent Variable Modelling),
7correspondence analysis, and cluster analysis (see Borg
and Groenen , Hair et al. ; see also the entry
7Cluster Analysis: An Introduction).
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Multilevel Analysis, Hierarchical Linear
Models
�e term “Multilevel Analysis” is mostly used interchange-
ably with “Hierarchical LinearModeling,” although strictly
speaking these terms are distinct. Multilevel Analysis may
be understood to refer broadly to the methodology of
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research questions and data structures that involve more
than one type of unit. �is originated in studies involv-
ing several levels of aggregation, such as individuals and
counties, or pupils, classrooms, and schools. Starting with
Robinson’s () discussion of the ecological fallacy, where
associations between variables at one level of aggregation
are mistakenly regarded as evidence for associations at a
di�erent aggregation level (see Alker , for an extensive
review), this led to interest in how to analyze data including
several aggregation levels.�is situation arises as a matter
of course in educational research, and studies of the con-
tributions made by di�erent sources of variation such as
students, teachers, classroom composition, school organi-
zation, etc., were seminal in the development of statistical
methodology in the s (see the review in Chap.  of de
Leeuw and Meijer ). �e basic idea is that studying
the simultaneous e�ects of variables at the levels of stu-
dents, teachers, classrooms, etc., on student achievement
requires the use of regression-type models that comprise
error terms for each of those levels separately; this is simi-
lar to mixed e�ects models studied in the traditional linear
models literature such as Sche�é ().

�e prototypical statistical model that expresses this
is the Hierarchical Linear Model, which is a mixed e�ects
regression model for nested designs. In the two-level
situation – applicable, e.g., to a study of students in class-
rooms – it can be expressed as follows.�e more detailed
level (students) is called the lower level, or level ; the
grouping level (classrooms) is called the higher level, or
level .Highlighting the distinctionwith regular regression
models, the terminology speaks of units rather than cases,
and there are speci�c types of unit at each level. In our
example, the level- units, students, are denoted by i and
the level- units, classrooms, by j. Level- units are nested
in level- units (each student is a member of exactly one
classroom) and the data structure is allowed to be unbal-
anced, such that j runs from  toN while i runs, for a given
j, from  to nj.�e basic two-level hierarchical linearmodel
can be expressed as

Yij = β +
r

∑
h=

βh xhij +Uj +
p

∑
h=
Uhj zhij + Rij; (a)

or, more succinctly, as

Y = X β + Z U + R. (b)

Here Yij is the dependent variable, de�ned for level- unit i
within level- unit j; the variables xhij and zhij are the
explanatory variables. Variables Rij are residual terms, or
error terms, at level , while Uhj for h = , . . . , p are resid-
ual terms, or error terms, at level . In the case p =  this

is called a random intercept model, for p ≥  it is called a
random slope model. �e usual assumption is that all Rij
and all vectors Uj = (Uj, . . . ,Upj) are independent, Rij
having a normal N (, σ ) and Uj having a multivariate
normalNp+(,T) distribution. Parameters βh are regres-
sion coe�cients (�xed e�ects), while the Uhj are random
e�ects. �e presence of both of these makes () into a
mixed linear model. In most practical cases, the variables
with random e�ects are a subset of the variables with �xed
e�ects (xhij = zhij for h ≤ p; p ≤ r), but this is not necessary.

More Than Two Levels
�is model can be extended to a three- or more-level
model for data with three or more nested levels by includ-
ing random e�ects at each of these levels. For example, for
a three level structure where level- units are denoted by
k = , . . . ,M, level- units by j = , . . . ,Nk, and level- units
by i = , . . . ,nij, the model is

Yijk = β +
r

∑
h=

βh xhijk +Ujk +
p

∑
h=
Uhjk zhijk + Vk

+

q

∑
h=
Vhk whijk + Rijk, ()

where the Uhjk are the random e�ects at level , while the
Vhk are the randome�ects at level . An example is research
into outcome variables Yijk of students (i) nested in class-
rooms ( j) nested in schools (k), and the presence of error
terms at all three levels provides a basis for testing e�ects
of pupil variables, classroom or teacher variables, as well as
school variables.

�e development both of inferential methods and of
applications was oriented �rst to this type of nested mod-
els, but much interest now is given also to the more gen-
eral case where the restriction of nested random e�ects
is dropped. In this sense, multilevel analysis refers to
methodology of research questions and data structures
that involve several sources of variation – each type of units
then refers to a speci�c source of variation, with or without
nesting. In social science applications this can be fruitfully
applied to research questions in which di�erent types of
actor and context are involved; e.g., patients, doctors, hos-
pitals, and insurance companies in health-related research;
or students, teachers, schools, and neighborhoods in edu-
cational research.�e word “level” then is used for such a
type of units. Given the use of randome�ects, themost nat-
ural applications are those where each “level” is associated
with some population of units.
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Longitudinal Studies
A special area of application of multilevel models is lon-
gitudinal studies, in which the lowest level corresponds
to repeated observations of the level-two units. O�en the
level-two units are individuals, but these may also be
organizations, countries, etc. �is application of mixed
e�ectsmodels was pioneered by Laird andWare (). An
important advantage of the hierarchical linear model over
other statistical models for longitudinal data is the possi-
bility to obtain parameter estimates and tests also under
highly unbalanced situations, where the number of obser-
vations per individual, and the time points where they
are measured, are di�erent between individuals. Another
advantage is the possibility of seamless integration with
nesting if individuals within higher-level units.

Model Specification
�e usual considerations for model speci�cation in linear
models apply here, too, but additional considerations arise
from the presence in the model of the random e�ects and
the data structure being nested or having multiple types
of unit in some other way. An important practical issue
is to avoid the ecological fallacy mentioned above; i.e., to
attribute �xed e�ects to the correct level. In the original
paper by Robinson (), one of the examples was about
the correlation between literacy and ethnic background as
measured in the USA in the s, computed as a corre-
lation at the individual level, or at the level of averages
for large geographical regions. �e correlation was .
between individuals, and . between regions, illustrat-
ing how widely di�erent correlations at di�erent levels of
aggregation may be.
Consider a two-level model () where variable X with

values xij is de�ned as a level- variable – literacy in Robin-
son’s example. For “level- units” we also use the term
“groups.” To avoid the ecological fallacy, one will have to
include a relevant level- variable that re�ects the compo-
sition of the level- units with respect to variable X.�e
mostly used composition variable is the group mean of X,

x̄.j =

nj

nj

∑
i=
xij.

�e usual procedure then is to include xij as well as x̄.j
among the explanatory variables with �xed e�ects. �is
allows separate estimation of the within-group regression
(the coe�cient of xij) and the between-group regression
(the sum of the coe�cients of xij and x̄.j).
In some cases, notably in many economic studies (see

Greene ), researchers are interested especially in the
within-group regression coe�cients, and wish to control
for the possibility of unmeasured heterogeneity between

the groups. If there is no interest in the between-group
regression coe�cients one may use a model with �xed
e�ects for all the groups: in the simplest case this is

Yij = β +
r

∑
h=

βh xhij + γj + Rij. ()

�e parameters γj (which here have to be restricted, e.g.,
to have a mean  in order to achieve identi�ability) then
represent all di�erences between the level-two units, as far
as these di�erences apply as a constant additive term to all
level- units within the group. For example in the case of
longitudinal studies where level- units are individuals and
a linear model is used, this will represent all time-constant
di�erences between individuals. Note that () is a linear
model with only one error term.
Model () implies the distribution

y ∼ Np (X β, Z TZ’ + σ I) .

Generalizations are possible where the level- residual
terms Rij are not i.i.d.; they can be heteroscedastic, have
time-series dependence, etc.�e speci�cation of the vari-
ables Z having random e�ects is crucial to obtain a well-
�tting model. See Chap.  of Snijders and Bosker (),
Chap.  of Raudenbush and Bryk (), and Chap.  of de
Leeuw and Meijer ().

Inference
A major reason for the take-o� of multilevel analysis in
the s was the development of algorithms for maxi-
mum likelihood estimation for unbalanced nested designs.
�e EM algorithm (Dempster et al. ), Iteratively
Reweighted Least Squares (Goldstein ), and Fisher
Scoring (Longford ) were applied to obtain ML esti-
mates for hierarchical linear models.�e MCMC imple-
mentation of Bayesian procedures has proved very useful
for a large variety ofmore complexmultilevelmodels, both
for non-nested random e�ects and for generalized linear
mixed models; see Browne and Draper () and Chap. 
of de Leeuw and Meijer ().
Hypothesis tests for the �xed coe�cients βh can be car-

ried out byWald or Likelihood Ratio tests in the usual way.
For testing parameters of the random e�ects, some care
must be taken because the estimates of the random e�ect
variances τhh (the diagonal elements of T) are not approx-
imately normally distributed if τhh = . Tests for these
parameters can be based on estimated �xed e�ects, using
least squares estimates for Uhj in a speci�cation where
these are treated as �xed e�ects (Bryk and Raudenbush
, Chap. ); based on appropriate distributions of the
log likelihood ratio; or obtained as score tests (Berkhof and
Snijders ).



 M Multinomial Distribution

About the Author
Professor Snijders is Elected Member of the European
Academy of Sociology () and Elected Correspon-
dent of the Royal Netherlands Academy of Arts and Sci-
ences (). He was awarded the Order of Knight of the
Netherlands Lion (). Professor SnijderswasChairman
of the Department of Statistics, Measurement�eory, and
Information Technology, of the University of Groningen
(–). He has supervised  Ph.D. students. He has
been associate editor of various journals, and Editor of Sta-
tistica Neerlandica (–). Currently he is co-editor
of Social Networks, Associate editor of Annals of Applied
Statistics, and Associate editor of Journal of Social Struc-
ture. Professor Snijders has (co-)authored about  refer-
eed papers and several books, includingMultilevel analysis.
An introduction to basic and advanced multilevel modeling.
(with Bosker, R.J., London etc.: Sage Publications, ). In
, he was awarded an honorary doctorate in the Social
Sciences from the University of Stockholm.

Cross References
7Bayesian Statistics
7Cross Classi�ed and Multiple Membership Multilevel
Models
7Mixed Membership Models
7Moderating and Mediating Variables in Psychological
Research
7Nonlinear Mixed E�ects Models
7Research Designs
7Statistical Analysis of Longitudinal and Correlated Data
7Statistical Inference in Ecology

References and Further Reading
To explore current research activities and to obtain information

training materials etc., visit the website www.cmm.bristol.ac.uk.
There is also an on-line discussion group at www.jiscmail.ac.uk/
lists/multilevel.html.

There is a variety of textbooks, such as Goldstein (), Longford
(), Raudenbush and Bryk (), and Snijders and Bosker
(). A wealth of material is contained in de Leeuw and Meijer
().

Alker HR () A typology of ecological fallacies. In: Dogan M,
Rokkan S (eds) Quantitative ecological analysis in the social
sciences. MIT Press, Cambridge, pp –

Berkhof J, Snijders TAB () Variance component testing in mul-
tilevel models. J Educ Behav Stat :–

Browne WJ, Draper D () Implementation and performance
issues in the Bayesian and likelihood fitting of multilevel mod-
els. Computational Stat :–

de Leeuw J, Meijer E () Handbook of multilevel analysis.
Springer, New York

Dempster AP, Rubin DB, Tsutakawa RK () Estimation in covari-
ance components models. J Am Stat Assoc :–

Goldstein H () Multilevel mixed linear model analysis using
iterative generalized least squares. Biometrika :–

Goldstein H () Multilevel statistical models, rd edn. Edward
Arnold, London

Greene W () Econometric analysis, th edn. Prentice Hall,
Upper Saddle River

Laird NM, Ware JH () Random-effects models for longitudinal
data. Biometrics :–

Longford NT () A fast scoring algorithm for maximum like-
lihood estimation in unbalanced mixed models with nested
random effects. Biometrika :–

Longford NT () Random coefficient models. Oxford University
Press, New York

Raudenbush SW, Bryk AS () Hierarchical linear models: appli-
cations and data analysis methods, nd edn. Sage, Thousand
Oaks

Robinson WS () Ecological correlations and the behavior of
individuals. Am Sociol Rev :–

Scheffé H () The analysis of variance. Wiley, New York
Snijders TAB, Bosker RJ () Multilevel analysis: an introduction

to basic and advanced multilevel modeling. Sage, London

Multinomial Distribution
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�e Multinomial distribution arises as a model for the fol-
lowing experimental situation. An experiment or “trial” is
carried out and the outcome occurs in one of k mutually
exclusive categories with probabilities pi, i = , , . . . , k. For
example, a personmay be selected at random from a popu-
lation of size N and their ABO blood phenotype recorded
as A, B, AB, or O (k = ). If the trial is repeated n times
such that the trials are mutually independent, and if xi is
the frequency of occurrence in the ith category, then the
joint probability function of the xi is

P(x, x, . . . , xk) =
n!

x!x!⋯xk!
px p

x
 ⋯p

xk
k ,

where ∑ki= xi = n and ∑
k
= pi = .�is would be the cor-

rect probability function for the genetics example if further
people were chosen with replacement. In practice, sam-
pling is without replacement and the correct distribution
is the multivariate hypergeometric, a di�cult distribution
to deal with. Fortunately, all is not lost, as when the sam-
pling fraction f = n/N is small enough (say less than .
or preferably less than .), the Multinomial distribution
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is a good approximation and is used extensively in genetics
(e.g., Greenwood and Seber ).We note that when k = 
we have the 7Binomial distribution. Also the terms of P
can be obtained by expanding (p + p +⋯ + pk)n.
Various properties of theMultinomial distribution can

be derived using extensive algebra. However, they aremore
readily obtained by noting that any subset of a multino-
mial distribution is alsoMultinomial.We simply group the
categories relating to the remaining variables into a single
category. For example xi will have a Binomial distribu-
tion as there are just two categories, the ith and the rest
combined. Hence the mean and variance of xi are

E(xi) = npi and var(xi) = npiqi,

where qi =  − pi. Also, if we combine the ith and jth cate-
gory and then combine the rest into single category, we see
that xi + xj is Binomial with probability parameter pi + pj
and variance n(pi + pj)( − pi − pj). Hence the covariance
of xi and xj is

cov(xi, xj) =


[var(xi + xj)− var(xi)− var(xj)] = −npipj.

Another useful result that arises in comparing proportions
pi and pj in a 7questionnaire is

var(xi − xj) = var(xi) + var(xj) − cov(xi, xj)
= n[pi + pj − (pi − pj)]. ()

It should be noted that the Multinomial distribution
given above is a “singular” distribution as the random vari-
ables satisfy the linear constraint ∑ki= xi = n, which leads
to a singular variance-covariance matrix. We can instead
use the “nonsingular” version

P(x, x, . . . , xk−) =
n!

x!x!⋯ (n −∑k−i= xi)!

× px p
x
 ⋯p

n−∑k−i= xi
k .

We note that the joint 7moment generating function of x
is

M(t) = (pet + pet +⋯ + pk−e
tk− + pk)

n,

which can also be used to derive the above properties of
the Multinomial distribution as well as the 7asymptotic
normality properties described next.
Let p̂i = xi/n be the usual estimate of pi. Given the

vectors p̂ = (p̂, p̂, . . . , p̂k−)′ and p = (p, p, . . . , pk−)′,
then the mean of p̂ is p and its variance-covariance matrix
is n−V , where V = (diag p − pp′) and diag p is a diag-
onal matrix with diagonal elements p, p, . . . pk−. In the
same way that a Binomial random variable is asymptot-
ically normal for large n,

√
n(p̂ − p) is asymptotically

multivariate Normal with mean vector  and variance-
covariance matrix V . If V− is the inverse of V , then V−

=

n− ((diag p)− + p−k k−
′k−), where k− is a column k−

ones (cf. Seber, , .). From the properties of the
multivariate Normal distribution (cf. Seber , .),

n(p̂ − p)′V−
(p̂ − p) =

k

∑
i=

(xi − npi)

npi
()

will be asymptotically distributed as the 7Chi-square dis-
tribution with k− degrees of freedom. If we use the singu-
lar version and include xk to expandV toVk, we can obtain
the result more quickly using a generalized inverse (cf.
Seber, , .b using A = V−

k = (diag (p′, pk)′)−).
�is link with the Chi-square distribution forms the basis
of a number of tests involving theMultinomial distribution
mentioned below.
We see that P(⋅) above can be regarded conceptually

as a nonsingular distribution for the xi (i = , , . . . , k)
with probabilities πi, but conditional on ∑ki= xi = n with
pi = πi/∑ki= πi. It therefore follows that the joint distri-
bution of any subset of multinomial variables conditional
on their sum is also multinomial. For example, the distri-
bution of x and x given x + x = n is Binomial with
probability parameter p/(p + p). We get a similar result
in ecology where we have a population of plants divided up
into k areas with xi in the ith area being distributed as the
Poisson distribution with mean µi. If the xi are mutually
independent, then the joint distribution of the xi condi-
tional on the sum∑ki= xi is Multinomial with probabilities
pi = µi/∑kj= µj.

�e last topic I want to consider brie�y is inference
for the multinomial distribution. Estimating pi by p̂i =

xi/n, using the normal approximation, and applying (),
we can obtain a con�dence interval for any particular pi or
any particular di�erence pi − pj. Simultaneous con�dence
interval procedures are also available for all the pi or all
di�erences using the Bonferroni method. We can also test
p = p using ().
A common problem is testing the hypothesis H :

p = p(θ), where p is a known function of some unknown
t-dimensional parameter θ (e.g., the genetics example
above). �is can be done using a derivation like the one
that led to () above, giving the so-called “goodness of �t”
statistic, but with p replaced by p(θ̂). Here θ̂, the maxi-
mum likelihood estimate of θ, is asymptotically Normal so
that p(θ̂) is also asymptotically Normal. Under H, it can
be shown that the test statistic is approximately Chi-square
with degrees of freedom now k −  − t.
One application of the above is to the theory of con-

tingency tables. We have an r × c table of observations xij
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(i = , , . . . , r; j = , , . . . , c) and pij is the probability of
falling in the (i, j)th category. Treating the whole array as a
single Multinomial distribution, one hypothesis of interest
is H : pij = αiβj, where ∑ri= αi =  and ∑cj= βj = . In
this hypothesis of row and column independence, we have
θ′ = (α, . . . αr−, β, . . . , βc−) with maximum likelihood
estimates α̂i = Ri/n and β̂j = cj/n, where ri is the ith row
sum of the table and cj the jth column sum.�e statistic for
the test of independence is therefore

r

∑
i=

c

∑
j=

(xi − ricj/n)

ricj/n
, ()

which, underH, is approximately Chi-square with rc− −
(r − ) − (c − ) = (r − )(c − ) degrees of freedom. If the
rows of the r×c table now represents r independentMulti-
nomial distributions with ∑cj= pij =  for i = , , . . . , r,
then the hypothesis that the distributions are identical is
H : pij = γj for i = , , . . . , r, where ∑cj= γj = . Pooling
the common distributions, the maximum likelihood esti-
mate of γj is γ̂j = cj/n so that the term npij(θ̂) becomes
riγ̂j and the test statistic for testing homogeneity turns out
to be the same as () with the same degrees of freedom.

�e above chi-squared tests are not particularly pow-
erful and need to be backed up with various con�dence
interval procedures. Other asymptotically equivalent tests
are the likelihood ratio test and the so-called “score”
(Lagrange multiplier) test. Log linear models can also be
used. For further properties of the Multinomial distribu-
tion see Johnson et al. (, Chap. ) and asymptotic
background theory for the chi-squared tests is given by
Bishop et al. (, Chap. ). More recent developments
are given by Agresti ().
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7 “Life is more complicated when you have three uncongenial

models involved.”

The Multi-Party Inference Reality
Much of the statistical inference literature uses the famil-
iar framework of “God’s model versus my model.” �at
is, an unknown model, “God’s model,” generates our data,
and our job is to infer this model or at least some of
its characteristics (e.g., moments, distributional shape) or
implications (e.g., prediction). We �rst postulate one or
several models, and then use an array of estimation, test-
ing, selection, and re�nementmethods to settle on amodel
that we judge to be acceptable – according to some sensi-
ble criterion, hopefully pre-determined – for the inference
goals at hand, even thoughwe almost never can be sure that
our chosen model resembles God’s model in critical ways.
Indeed, philosophically even the existence of God’s model
is not a universally accepted concept, just as theologically
the existence of God is not an unchallenged notion.
Whether one does or does not adopt the notion of

God’s model, it is repeatedly emphasized in the literature
that to select a reasonable model, an iterative process is
necessary and hence multiple models are typically consid-
ered (e.g., see Box and Tiao , Chap. ; Gelman and
Meng ). By multiple models we mean multiple sets of
mathematically quanti�able assumptions (hence, not nec-
essarily parametric models), which are compatible within
each set but not across di�erent sets. Indeed, if they are
not incompatible across di�erent sets then one is simply
postulating a larger model; see McCullagh (). In this
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sense we automatically take a “monotheistic” point of view
that there is only one God’smodel; we assumeGod’smodel
contains no self-contradiction (or at least none detectable
by a human modeler). However, we do not go so far as to
suggest that themodeler can always embed everything into
one model, e.g., as in Bayesian model averaging, because
contrasting models sometimes is as useful as, if not more
so than, combining models.
Whereas many models may be entertained, the com-

monly accepted paradigm involves only two parties: the
(hypothetical) God, and “me” – the modeler. Unfortu-
nately, reality is far more complicated. To explain the com-
plication, we must distinguish the modeler’s data from
God’s data. �e modeler’s data are the data available
to the modeler, whereas God’s data are the realizations
from God’s model that the modeler’s data were collected
to approximate. Whereas any attempt to mathematically
de�ne such concepts is doomed to fail, it is useful to
distinguish the two forms of data because the approxima-
tion process introduces an additional inference party (or
parties).
For example, in the physical sciences, the modeler’s

data typically are results of a series of pre-processing
steps to deal with limitations or irregularities in recording
God’s data (e.g., discarding “outliers” (see 7Outliers); re-
calibration to account for instrument dri�), and typically
the modeler at best only has partial information about this
process. For the social and behavioral sciences, some vari-
ables are not even what we normally think they are, such
as responses to a questionnaire survey. Rather, they are
so-called “constructed variables,” typically from a deter-
ministic algorithm converting a set of answers to an index
that indicates, say, whether a subject is considered to suf-
fer major depression.�e algorithm is o�en a black box,
and in some cases it is pitch black because the modeler is
not even informed of what variables were used as inputs
to produce the output. In the context of public-use data
�les, virtually all data sets contain imputations of some
sort (see 7Imputation) because of non-responses or other
forms of missing data (e.g., missingness by design such as
with matrix sampling), which means someone has “�xed
the holes” in the data before they reach the modeler.
In all these examples, the key issue is not that there

is data pre-processing step per se, but rather that during
the journey from God’s data to modeler’s data, a set of
assumptions has been introduced.�ere is no such thing
as “assumption-free” pre-processing; any attempt to make
the data “better” or “more usable” implies that a judg-
ment has been made. Under the God-vs.-me paradigm,
this intermediate “data cleaning” process has to be con-
sidered either as part of God’s model, or of the modeler’s

model, or of both by somehow separating aspects of the
process (e.g., one could argue that a refused answer to an
opinion question is an opinion itself, whereas a refusal
to an income question is a non-response). Regardless of
how we conceptualize, we �nd ourselves in an extremely
muddy – if not hopeless – situation. For example, if aspects
of this intermediate process are considered to be part of
God’s model, then the modeler’s inference is not just about
God’s model but also about someone else’s assumptions
about it. If we relegate the pre-processing to the modeler’s
model, then the modeler will need good information on
the process. Whereas there has been an increasing empha-
sis on understanding the entire mechanism that leads to
the modeler’s data, the reality is that for the vast majority
of real-life data sets, especially large-scale ones, it is sim-
ply impossible to trace back how the data were collected or
pre-processed. Indeed, many such processes are nowhere
documented, and some are even protected by con�dential-
ity constraints (e.g., con�dential information may be used
for imputation by a governmental agency).

�is intermediate “data cleaning” process motivates
the multi-party inference paradigm. �e term is self-
explanatory: we acknowledge that there is more than one
party involved in reaching the �nal inference.�e key dis-
tinction between the multi-party paradigm and the God-
vs.-me paradigm is not that the former involves more
sets of assumptions, i.e., models – indeed under the latter
we still almost always (should) consider multiple mod-
els. Rather, in the multi-party paradigm, we explicitly
acknowledge the sequential nature of the parties’ involve-
ment, highlighted by how the intermediate party’s assump-
tions impact the �nal inference, because typically they are
necessarily incompatible with the modeler’s assumptions,
due both to the parties’ having access to di�erent amounts
of information and to their having di�erent objectives.

�is situation is most vividly demonstrated by mul-
tiple imputation inference (Rubin ), where the inter-
mediate party is the imputer. (�ere is o�en more than
one intermediate party even in the imputation context,
but the case of a single imputer su�ces to reveal major
issues.) In such a setting, the concept of congeniality (Meng
) is critical. In a nutshell, congeniality means that the
imputation model and the analysis model are compati-
ble for the purposes of predicting the missing data. In
real life, this typically is not the case, even if the imputer
and analyst are the same entity, because of the di�er-
ent aims of imputation (where one wants to use as many
variables as possible even if causal directions are incor-
rectly speci�ed) and of analysis (where one may be only
interested in a subset of variables with speci�ed causal
directions).�e next section demonstrates the importance
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of recognizing uncongeniality, which directly a�ects the
validity of the �nal inferences. �e concept of unconge-
niality was originally de�ned and has thus far been inves-
tigated in the context of multiple imputation inference, the
most well-studied case of multi-party inference. However,
its general implication is broad: to reach valid inference
when more than one party is involved, we must consider
the incompatibility/uncongeniality among their assump-
tions/models, even if each party has made assumptions
that are consistent with God’s model and has carried out
its task in the best possible way given the information
available at the time.

Uncongeniality in Multiple Imputation
Inference
A common method for dealing with non-response in sur-
veys and incomplete data in general is imputation (Little
and Rubin ). Brie�y, imputation is a prediction of the
missing data from a posited (not necessarily parametric)
model pI(Ymis∣Yobs), where Ymis denotes the missing data
and Yobs the observed data.�e trouble with single impu-
tation, however sophisticated, is that the resulting data set
cannot be analyzed in the same way as would an authen-
tic complete data set, without sacri�cing the validity of the
inference. Multiple imputation (MI; Rubin ) attempts
to circumvent this problem by providing multiple predic-
tions from pI(Ymis∣Yobs), thereby permitting, via genuine
replications, a direct assessment of uncertainties due to
imputation.
Speci�cally, in the MI framework, we draw inde-

pendently m times from pI(Ymis∣Yobs), resulting in m
completed-data sets: Y(ℓ)

com = {Yobs,Y
(ℓ)
mis} , ℓ = , . . . ,m.

Suppose our complete-data analysis can be summarized by
a point estimator θ̂(Ycom) and an associated variance esti-
mator U(Ycom), where Ycom denotes {Ymis,Yobs}.�e MI
inference procedure consists of the following steps:

Step : Perform m complete-data analyses as if each Y(ℓ)
com

were real data:

θ̂ℓ ≡ θ̂ (Y(ℓ)
com) , and Uℓ ≡ U (Y(ℓ)

com) , ℓ = , . . . ,m.

Step : Use Rubin’s Combining Rules:

θ̄m =

m

m

∑
ℓ=

θ̂ℓ , and Tm = Ūm + ( +

m

)Bm,

where

Ūm =

m

m

∑
ℓ=
Uℓ and Bm =


m − 

m

∑
ℓ=

(θ̂ℓ − θ̄m)(θ̂ℓ − θ̄m)⊺

are respectively the within-imputation variance and the
between-imputation variance, to reach the MI inference
{θ̄m,Tm}, with Tm the variance estimator of θ̄m.

�e justi�cation of Rubin’s combining rules is most
straightforward under strict congeniality, which means
that both the analyst and the imputer use (e�ectively)
Bayesian models, and their Bayesian models are compat-
ible.�at is, we assume:

(I) �e complete-data analysis procedure can be embed-
ded into a Bayesian model, with

θ̂(Ycom) = EA(θ∣Ycom) and U(Ycom) = VA(θ∣Ycom),

where the subscript A indexes expectation with
respect to the embedded analysis model;

(II) �e imputer’s model and the (embedded) analysis
model are the same for the purposes of predicting
missing data:

PI(Ymis∣Yobs) = PA(Ymis∣Yobs), for all
Ymis (but the given Yobs).

�en for θ̄m asm→∞, we have

θ̄∞ = EI [θ̂(Ycom)∣Yobs]

< by (I) > = EI [EA(θ∣Ycom)∣Yobs]

< by (II) > = EA [EA(θ∣Ycom)∣Yobs] = EA(θ∣Yobs).

�at is, the MI estimator θ̄m simply is a consistent (Monte
Carlo) estimator of the posterior mean under the analyst’s
model based on the observed data Yobs.�e critical role of
(II) is also vivid in establishing the validity of Tm = Ūm +
( +m−)Bm asm→∞:

Ū∞ + B∞ = EI[U(Ycom)∣Yobs] +VI[θ̂(Ycom)∣Yobs]

< by (I) > = EI[VA(θ∣Ycom)∣Yobs]

+VI[EA(θ∣Ycom)∣Yobs]

< by (II) >= EA[VA(θ∣Ycom)∣Yobs]

+VA[EA(θ∣Ycom)∣Yobs] = VA(θ∣Yobs).

�erefore, as m → ∞, {θ̄m,Tm} reproduces the pos-
terior mean and posterior variance under the analyst’s
model given Yobs, because θ̄∞ = EA(θ∣Yobs) and T∞ =

VA(θ∣Yobs).
When congeniality fails, either because the analyst’s

procedure does not correspond to any Bayesian model or
because the corresponding Bayesian model is incompat-
ible with the imputer’s model, the MI variance estimator
Tm can overestimate or underestimate the variance of θ̂m
even asm →∞. However, depending on the relationships
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among God’s model, the analyst’s model and the imputer’s
model, we may still reach valid inference under unconge-
niality. For example, under the assumption that the ana-
lyst’s complete-data procedure is self-e�cient (Meng ),
if God’s model is nested in the analyst’s model, which in
turn is nested in the imputer’s model, then the MI con�-
dence interval based on {θ̄∞,T∞} is valid (asymptotically
with respect to the size of the observed data). However, the
MI estimator θ̄∞ may not be as e�cient as the analyst’s
estimator (e.g., MLE) directly based on the observed data,
because the additional assumptions built into the analysis
model are not used by the imputer. But this comparison
is immaterial when the analyst is unable to analyze the
observed data directly, and therefore multiple imputation
inference is needed (see 7Multiple Imputation).
However, the situation becomes more complicated if

we assume God’s model is nested in the imputer’s model,
which in turn is nested in the analyst’smodel. In such cases,
it is possible to identify situationswhere themultiple impu-
tation interval estimator is conservative in its own right,
yet it is narrower than analyst’s interval estimator (with the
correct nominal coverage) directly based on the observed
data (Xie andMeng ).�is seemingly paradoxical phe-
nomenon is due to the fact the imputer has introduced
“secret” model assumptions into the MI inference, making
it more e�cient than the analyst’s inference directly based
on the observed data, which does not bene�t from the
imputer’s assumptions. At the same time, since the analyst’s
complete-data procedure {θ̂(Ycom),U(Ycom)} is deter-
mined irrespective of the imputer’s model, the imputer’s
secret assumption introduces uncongenality, which leads
to the conservativeness of the MI interval. However, this is
not to suggest that MI tends to be conservative, but rather
to demonstrate the impact of imputationmodels on theMI
inference and hence to provide practical guidelines on how
to regulate the imputation models.
Even more complicated are situations where the ana-

lyst’s and imputer’s models do not nest, or where at least
one of them does not contain God’s model as a sub-model.
Consequences of such are virtually undetermined at the
present time, but one thing is clear. �ese complications
remind us the importance of recognizing the multi-party
inference paradigm, because the God-vs.-me paradigm
sweeps all of them under the rug, or more precisely buries
our heads in the sand, leaving our posteriors exposed
without proper coverage.
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Multiplicity Issues
Statistical evidence is obtained by rejecting the null
hypothesis at a “small” prespeci�ed signi�cance level α,
say . or ., which is an acceptable level of probabil-
ity of the type I error (the error of rejecting the “true” null
hypothesis). If we have a family of multiple hypotheses in
a con�rmatory experiment and test them simultaneously
at each level α, the overall or familywise type I error rate
(FWER), i.e., the probability of rejecting at least one “true”
null hypothesis in the family, may in�ate and exceed α,
even if there exist no treatment di�erences. We call such
in�ation of the FWER amultiplicity issue.
Usually there may be some correlation structure

between test statistics, and the in�ation of the FWER
might not be so remarkable. However, if we have multi-
ple hypotheses to be tested for con�rmatory purpose, we
should adjust for multiplicity so as to control the FWER
within α. �is is called multiplicity adjustment. Testing
procedures for multiplicity adjustment are called multiple
comparison procedures (MCPs) or more generally multiple
testing procedures (MTPs).
Multiplicity issues may arise in () multiple treatments

(multiple comparisons), () multiple response variables
(multiple endpoints), () multiple time points (longitu-
dinal analysis), () multiple subgroups (subgroup analy-
sis), and () multiple looks (interim analysis with group
sequential methods or adaptive designs).
Herea�er we mainly concentrate on the multiple treat-

ment comparisons, i.e., multiple comparisons in a tradi-
tional sense.

Multiple Comparisons
In a two group comparison of treatments A and B on their
response means µA and µB, we have just one null hypothe-
sisH : µA = µB to be tested and there is no need to adjust
for multiplicity. However, when we compare three treat-
ment groups, e.g., there are three treatments A,B and C,
we may typically want to compare their means pairwisely,
i.e., µA vs µB, µA vs µC and µB vs µC.�en there are three
test hypotheses to be adjusted for multiplicity; namely, we
need multiple comparison procedures.

All Pairwise Comparisons
�e method to exactly control the FWER by adjusting
the critical value in the above “all” pairwise comparisons
is called Tukey’s method (or Tukey’s multiple comparison
test). �e method was developed for equal sample sizes,
but even if the sample sizes are di�erent between groups,
the same critical value could be used conservatively, and
such a method is known as the Tukey-Kramer method.
�e nonparametric version of Tukey’s method is called the
Steel-Dwass test.

Comparisons with a Control
�e above three treatment example may have a structure
that A and B are two (high and low) doses of a drug and
C is a placebo (zero-dose).�en main interest in a formal
analysis may be focused on the comparisons between each
active dose and the placebo, i.e., µA vs µC and µB vs µC.
�is type of multiple comparison on treatment means can
be performed by Dunnett’s method (or Dunnett’s multiple
comparison test), and the common reference C is called
a control or control group. �e nonparametric version of
Dunnett’s method is called Steel’s test.
If we assume themonotonicity of responsemeans, such

as µA ≥ µB ≥ µC or µA ≤ µB ≤ µC, then in the compari-
son with a control, we can apply the Williams test, which
is more powerful than Dunnett’s test when the monotone
dose-response relationship holds.�e nonparametric ver-
sion of the Williams test is known as the Shirley-Williams
test.

Any Contrast Comparisons
More generally in a k(≥ ) treatment comparison, various
hypotheses on any contrasts, such as, ∑ki= ciµi =  where
∑
k
i= ci = , can be tested using Sche�e’s method to con-
trol the FWER. For all pairwise comparisons or compar-
isons with a control, Sche�e’s method is not recommended
because it is “too” conservative in such cases. A nonpara-
metric version of the Sche�e type multiple comparison
method can be easily constructed.
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Fixed Number of Comparisons
When the number of comparisons is �xed, the Bonfer-
roni method (or Dunn’s method) is simpler and easier to
apply. �e method only adjusts the signi�cance level to
α/m for each single test, where m is the number of inter-
ested comparisons. It is known that the method controls
the FWER because the well-known Bonferroni inequality,
Pr (⋃mi= Ei) ≤ ∑

m
i= Pr(Ei) holds, where Ei is an event to

reject hypothesis Hi. In the above three treatment exam-
ple, the Bonferroni method could be applied with m = 
for Tukey-type, and withm =  for Dunnett-type multiple
comparisons, although it might be rather conservative.

Stepwise Procedures
All themethods described above (except theWilliams test)
are called “simultaneous tests” or “single step tests”, because
none of tests considered are a�ected by the results of oth-
ers, and statistical testing for each hypothesis can be done
simultaneously or in a single step manner. �ey control
the FWER and can be used to easily construct the corre-
sponding simultaneous con�dence intervals, but there is
some tradeo� in that they have a low statistical power in
compensation for controlling the FWER.
Recently, more powerful test procedures than single

step or simultaneous test procedures have been developed
and become popular. Most of them are based on the closed
testing procedure (CTP) proposed by Marcus, Peritz and
Gabriel () and they have a stepwise property in their
nature. CTPs give a very general scheme of stepwiseMCPs
(orMTPs).

Closed Testing Procedures (CTPs)
Suppose that we have a family of m null hypotheses
F = {H,H, . . . ,Hm} to be tested and letN = {, , . . . ,m}

be an index set that indicates the set of hypotheses consid-
ered.�en there are m −  possible intersections of null
hypotheses Hi. We denote a set or family of such intersec-
tion hypotheses by G = {HI = ⋂i∈I Hi : I ⊆ N, I ≠ /},
where / is an empty set and each intersection hypothesis
HI means that all hypotheses Hi, i ∈ I hold simultane-
ously and thus HI represents one possibility of the “true”
null hypothesis. Because we do not know whichHI is true,
a given MCP (or MTP) should control the FWER under
any HI .�is is called a strong control of the FWER. If we
control the FWER only under the complete or global null
hypothesis, HN = ⋂i∈N Hi, it is called a weak control of the
FWER.
CTPs are testing procedures in which each elementary

hypothesis Hi, i = , . . . ,m, is rejected only if all the inter-
section hypotheses includingHi, i.e., allHI = ⋂j∈I Hj, i ∈ I,
are rejected by the size α test. It is easily shown that any

CTP controls the FWER in a strong sense.�e procedure
is equivalent to a test that starts with the test of complete
null hypothesis HN at level α and then proceeds in a step-
wise manner that any intersection hypothesis HI , I ⊂ N,
is tested at level α only if all the intersection hypotheses
HJ = ⋂i∈J Hi which imply HI , i.e., J ⊃ I, are rejected.
Some well known stepwise methods for the Tukey type

multiple comparisons, e.g., Fisher’s protected LSD (least
signi�cant di�erence) test, the Newman-Keuls test, and
Duncan’s multiple range test, control the FWER only in a
weak sense, and should not be used. Instead, we can use the
Tukey-Welsch method and Peritz’s method. Also the step-
down Dunnett method can be applied for the Dunnett type
comparisons. �ey are CTPs and control the FWER in a
strong sense. Note that the Williams test is also a CTP.

Modified Bonferroni Procedures (MBPs)
Modi�ed Bonferroni procedures (MBPs) are extensions
of the classical Bonferroni procedure, which use the
Bonferroni’s or similar criterion to test the intersection
hypotheses HI in CTPs.�ey use only individual p-values
for multiplicity adjustment and are easy to apply. Holm,
Hochberg,Hommel and Rom procedures are some of typical
MBPs.

Gatekeeping Procedures (GKPs)
Most recently the new methods called the gatekeeping pro-
cedures (GKPs) have been rapidly developed. GKPs utilize
the order and logical relationship between hypotheses or
families of hypotheses and construct a MTP satisfying
these relationships. �ey are usually based on CTPs and
control the FWER in a strong sense. �ey include serial
GKP, parallel GKP, treeGKP, and truncatedGKP, etc.GKPs
are especially useful for multiple endpoints and various
combination structures of multiple comparisons, multiple
endpoints and other multiplicities.
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A General Multiple Comparisons Problem
In this note, we examine a general multiple comparisons
testing problem from a Bayesian viewpoint. Suppose we
observe independent random samples from I normally
distributed populations with equal variances.�e goal of
our problem is to determine which pairs of groups have
equal means.
Write

{Xij} ∣ {µi} , σ  ∼ indep N (µi, σ ) . ()

We are interested in testingH(a,b) : µa = µb for each (a, b);
a total of I(I − )/ distinct, but related hypotheses. A typ-
ical frequentist test is based on the decision rule of accept
H(a,b) when

∣Xb − Xa∣ ≤ Qa,b. ()

�e overall error rate is the probability of falsely rejecting
any of the true hypotheses in the set {H(a,b)

}.�e deter-
mination of Qa,b in () depends on how the overall error
rate is to be controlled. A classical book featuring this mul-
tiple comparisons problem in detail is Sche�é (). For
an applied review, see, for example, Kutner et al. ()
or Montgomery (). A modern theoretical treatment
is o�ered by Christensen ().
An overview to multiple comparisons under the

Bayesian framework is given by Berry and Hochberg
(). Westfall et al. () consider the preceding prob-
lem of controlling the overall error rate from a Bayesian
perspective. Here, our main focus is to show how a
Bayesian approach can o�er a logically pleasing interpre-
tation of multiple comparisons testing.
A major point of di�culty to multiple comparisons

procedures based on an accept / reject H(a,b) philosophy
is illustrated by a case where one decides to accept µ = µ
and µ = µ, but reject µ = µ. Such an outcome is possi-
ble under decision rule (), but an interpretation is di�cult
to provide since the overall decision is not logically consis-
tent. Employing a Bayesian philosophy, we may restate the
goal of the problem as quantifying the evidence from the
data in favor of each hypothesis H(a,b).
To implement this philosophy, we will require a mea-

sure of prior/posterior belief in H(a,b), represented by
point mass probabilities.�e construction of prior prob-
abilities over the set of hypotheses {H(a,b)

}must account
for the fact that the collection does not consist of mutu-
ally exclusive events. For example, H(,) true (µ = µ)
may occur with H(,) true (µ = µ) or with H(,) false
(µ ≠ µ). One cannot develop a prior by comparing
relative beliefs in each of the pairwise hypotheses. Fur-
thermore, certain combinations of hypotheses in the set
{H(a,b)

} represent impossibilities. For example, the event

with H(,) true (µ = µ), H(,) true (µ = µ), H(,)

false (µ ≠ µ) should be assigned zero probability.
Allowable decisions can be reached through the forma-

tion of equal mean clusters among the I populations. For
example, the clustering µ = µ, µ = µ implies H(,)

true,H(,) true, and all others false. Designating a cluster-
ing of equal means will de�ne a model nested within ().
When two or more means are taken as equal, we merely
combine all relevant samples into one.�e smaller model
is of the same form as (), only for I′ < I. �e problem
can now be stated in terms of Bayesian 7model selec-
tion, where each allowable combination of hypotheses will
correspond to a candidate model.
We provide a short review of Bayesian model selec-

tion in the general setting using the notation of Neath
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and Cavanaugh (). Let Yn denote the observed data.
Assume that Yn is to be described using a model Mk
selected from a set of candidate models {M, . . . ,ML}.
Assume that eachMk is uniquely parameterized by θk, an
element of the parameter space Θ(k). In themultiple com-
parisons problem, the class of candidate models consists
of all possible mean clusterings. Each candidate model is
parameterized by themean vector µ = (µ, . . . , µI) and the
common variance σ , with the individual means restricted
by the model-de�ned clustering of equalities.�at is, each
model determines a corresponding parameter space where
particular means are taken as equal.
Let L(θk∣Yn) denote the likelihood for Yn based on

Mk. Let π(k), k= , . . . ,L, denote a discrete prior over
the models M, . . . ,ML. Let g(θk∣k) denote a prior on θk
given the model Mk. Applying Bayes’�eorem, the joint
posterior ofMk and θk can be written as

f (k, θk∣Yn) =
π(k)g(θk∣k)L(θk∣Yn)

h(Yn)
,

where h(Yn) denotes the marginal distribution of Yn.
�e posterior probability onMk is given by

π(k∣Yn) = h(Yn)−π(k)∫
Θ(k)

g(θk∣k)L(θk∣Yn)dθk. ()

�e integral in () requires numerical methods or
approximation techniques for its computation. Kass and
Ra�ery () provide a discussion of the various alterna-
tives. An attractive option is one based upon the popular
Bayesian information criterion (Schwarz ). De�ne

Bk = − lnL(θ̂k∣Yn) + dim(θk) ln(n),

where θ̂k denotes the maximum likelihood estimate
obtained by maximizing L(θk∣Yn) over Θ(k). It can be
shown under certain nonrestrictive regularity conditions
(Cavanaugh and Neath ) that

π(k∣Yn) ≈
exp(−Bk/)

∑
L
l= exp(−Bl/)

. ()

�e advantages to computing the posterior model
probabilities as () include computational simplicity and
a direct connection with a popular and well-studied cri-
terion for Bayesian model selection. �e justi�cation of
approximation () is asymptotic for the general case of
prior g(θk∣k), but Kass and Wasserman () argue how
the approximation holds under a noninformative prior on
θk even for moderate and small sample sizes.
Regardless of which technique is used for computing

π(k∣Yn), we compute the probability on hypothesis H(a,b)

by summing over the probabilities on those models for

which µa = µb.�is gives a nice approach to determin-
ing the evidence in favor of each of the pairwise equalities.
�e probability approach to presenting results for multi-
ple comparisons testing provides more information than
merely an accept / reject decision and is free of the potential
contradictions alluded to earlier.

Example
We illustrate the Bayesian approach to multiple compar-
isons testing using data from Montgomery (). �e
I =  groups correspond to di�erent cotton blends.
Five fabric specimens are tested for each blend. �e
response measurements re�ect tensile strength (in pounds
per square inch). See Table  for the data and summary
statistics. For ease of notation, treatments are identi�ed in
ascending order of the observed sample means.
A glance at the data suggests a potentially strong clus-

tering of µ, µ and a clustering to a lesser degree among
µ, µ, µ.We shall see how these notions can be quanti�ed
by computing Bayesian posterior probabilities on the pair-
wise equalities.�e top �ve most likely pairwise equalities
are displayed in Table .

�e hypothesis µ = µ is well-supported by the data
(P[H(,)

] ≈ .), as was suspected. �ere is also some
evidence in favor of µ = µ (P[H(,)

] ≈ .) and a non-
negligible probability of µ = µ (P[H(,)

] > .). Yet,
there is good evidence against µ = µ (P[H(,)

] < .).
Consider the clustering among µ, µ, µ. Tukey’s mul-

tiple comparison procedure gives a critical range of Q =

.. A pair of means is deemed equal only if the cor-
responding sample di�erence is less than Q in magni-
tude. One reaches the decision of accept µ = µ, accept
µ = µ, but reject µ = µ. �is decision is not logi-
cally consistent and is lacking any probabilistic detail.�e
proposed Bayesian approach bridges this probabilistic gap

Multiple Comparisons Testing from a Bayesian Perspective.
Table  Data for example

Group
(cotton blend)

Response
(tensile strength
in lb/in)

Sample
mean Sample s.d.

 ,,,, . .

 ,,,, . .

 ,,,, . .

 ,,,, . .

 ,,,, . .
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Multiple Comparisons Testing from a Bayesian Perspective.
Table  Probabilities of pairwise equalities

Hypothesis Posterior

µ = µ .

µ = µ .

µ = µ .

µ = µ .

µ = µ .

and provides a nice presentation formultiple comparisons.
Bayesian inference has an advantage over traditional fre-
quentist approaches tomultiple comparisons in that degree
of belief is quanti�ed. One can avoid illogical conclusions
which arise from an accept/reject decision process.
For computing details and continued analysis on this

example, see Neath and Cavanaugh ().
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Multiple Imputation

ChristianHeumann
Ludwig-Maximilian University, Munich, Germany

Multiple Imputation and Combining
Estimates
Missing data substantially complicates the statistical anal-
ysis of data. A common approach to circumvent the
problem of analyzing a data set with missing data is to
replace/impute the missing values by some estimates or
auxiliary values. Subsequently, the data are then analyzed
as if they would have been complete. While it is o�en
straightforward to get a point estimate θ̂ for a quantity
or parameter of interest, θ, an estimate for the variance
of θ̂ is typically di�cult to obtain, since the uncertainty
due to the imputed values is not re�ected correctly.�is is
exactly wheremultiple imputation (Rubin , ) steps
in: by creating several datasets by imputing several values
for each missing position in the dataset, multiple impu-
tation tries to re�ect the uncertainty due to the imputed
values. Note, that this uncertainty is additional to the usual
uncertainty arising from the sampling process. Finally, the
estimate θ̂ is computed for each of the completed datasets
and these estimates are then combined into a single esti-
mate for θ. In the followingwe give the algorithmic scheme
for computing the combined point estimate and an esti-
mated covariance matrix of it, that is, we directly address
the case of a vector valued parameter θ. Strategies on how
proper imputations can be created are discussed in the next
paragraph.

Algorithm for inference under multiple imputation

. Createm imputed datasets.
. For each imputed dataset, j = , . . . ,m, compute the
point estimate Q(j)

= θ̂(j) and its corresponding esti-
mated (probably asymptotic) covariance matrixU(j)

=

Ĉov(θ̂( j)
). Usually, the “MI”-paradigm (Schafer )

assumes that Q(j) is asymptotically normal.
. �e multiple-imputation point estimate for θ is then

Q =

m

m

∑
j=
Q(j)

=

m

m

∑
j=

θ̂(j). ()
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. �e estimated covariance matrix of Q consists of
two components, the within-imputation covariance
and the between-imputation covariance. �e within-
imputation covariance U is given by

U =

m

m

∑
j=
U(j)

=

m

m

∑
j=
Ĉov(θ̂(j)

). ()

�e between-imputation covariance B is given by

B =


m − 

m

∑
j=

(Q(j)
−Q) (Q(j)

−Q)
T
, ()

where T means the transposed vector, i.e. B is a
quadraticmatrix where the dimensions are equal to the
length of the vector θ. Now we can combine the two
estimates to the total variance T which is our estimated
covariance matrix of Q:

T = Ĉov(Q) = U + ( +m−)B. ()

. A problem is that while the distribution of T−

 (θ−Q)

can be approximated by a t-distribution with ν degrees
of freedom,

ν = (m − ) [ +
U

 +m−B
]



, ()

in the scalar case, the same is not trivial for the vector
valued case, see Schafer ().

Approaches to Create Multiple
Imputations
So far we have discussed how MI works in principal and
how the estimates for the completed datasets can be com-
bined. Now we address how the imputations can be gener-
ated. We assume a missing data process that is ignorable.
�is relates essentially to a missing at random mechanism
(MAR) plus the assumption that the parameters of the data
model and the parameters of the missing data process are
distinct (in likelihood inference this means that the com-
bined parameter space is the product of the two parameter
spaces, in a Bayesian analysis this means roughly that the
prior distributions are independent). We note, that exten-
sions to the case of nonignorable data situations are pos-
sible (although in general this is not easy), especially if
one uses a Bayesian approach.�e following subsections
cannot re�ect the whole research which has been done in
the past.�ey only represent a small number of methods
selected by the authors.

MI from Parametric Bayesian Models
LetDobs be the observed data andDmis themissing part of a
dataset D, with D = (Dobs,Dmis).�en,m proper multiple

imputations can be obtained via the predictive posteriori
distribution of the missing data given the observed data

p(Dmis∣Dobs) = ∫ p(Dmis∣Dobs; θ) p(θ∣Dobs) dθ ()

or an approximation thereof. Note, that p(θ∣Dobs) denotes
the posteriori distribution of θ. Typically, two distinct
approaches are considered to generate multiple imputa-
tions from (): joint modeling and fully conditional mod-
eling. �e �rst approach assumes that the data follow a
speci�c multivariate distribution, e.g. D ∼ N(µ, Σ). Under
a Bayesian framework draws from p(Dmis∣Dobs) can be
either generated directly (in some trivial cases) or sim-
ulated via suitable algorithms (in most cases) such as
the IP-algorithm (see, e.g., Schafer []). �e second
approach speci�es an individual conditional distribution
p(Dj∣D−j, θ j) for each variable Dj ∈ D and creates imputa-
tions as draws from these univariate distributions. It can be
shown that the process of iteratively drawing and updating
the imputed values from the conditional distributions can
be viewed as a Gibbs sampler, that converges to draws from
the (theoretical) joint distribution (if it exists). Further dis-
cussions and details on these issues can be found, e.g., in
Drechsler and Rässler () and the references therein.
An additional important remark refers to the fact that

the imputations are called improper if we only draw impu-
tations from

p(Dmis∣Dobs, θ̃),

where θ̃ is a reasonable point estimate of θ (such as max-
imum likelihood, posterior mode or posterior mean), see
also section “Other Pragmatic Approaches”.�at is why the
above mentioned IP algorithm always includes the P-Step
which samples also a new value of θ from p(θ∣Dobs) before
using this value to create a new imputed data set.

Nonparametric Methods
Another method to create proper multiple imputations is
the so-called ABB (Approximate Bayesian Bootstrap). We
refer the reader to Litte and Rubin (, Chap. .).

Bootstrap EM
If the EM(Expectation-Maximization) algorithm is applied
to an incomplete dataset, then a common problem is that
only a point estimate (maximum likelihood estimate) is
generated, but not an estimated (co-)variance matrix of
this estimate. A typical approach to handle that issue corre-
sponds to the use of the bootstrap (see 7Bootstrap Meth-
ods) to createmultiple imputations which then can be used
to calculate such an estimate as shown in section “Multiple
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Imputation andCombining Estimates”.�e following steps
are repeated for j = , . . . ,m:

 Draw a bootstrap sample D(j) from the data with
replacement (including all data, complete and incom-
plete) with the same sample size as the original data.
Obtain themaximum likelihood estimate θ̂(j) from the
EM algorithm applied to D(j).

 Use θ̂(j) to create an imputed dataset j from p(Dmis∣Dobs;
θ̂(j)

).

Other Pragmatic Approaches
Since Rubin introduced the MI paradigm in the late s,
there have been proposed several more or less ad-hoc
methods to create multiple imputations that do not rely
directly on random draws of the predictive posteriori
distribution (). A common approach refers to types of
regression imputation (see, e.g., Little and Rubin []),
whereby missing values are replaced by predicted values
froma regression of themissing itemon the items observed
based upon the subsample of the complete cases. �is
may be interpreted as an approximation to p(Dmis∣Dobs; θ)
from () with the simple constraint, that the uncertainty
due to estimation of θ is not su�ciently re�ected and
hence p(θ∣Dobs) is apparently neglected. As an approach
to consider this source of uncertainty anyhow and gen-
erate pragmatic multiple imputations (PMI), one might
add an stochastic error to the imputation value and/or
draw a random value from the conditional estimated dis-
tribution resulting from the prediction of the regression.
Further extensions on regression imputation, e.g. the use of
�exible nonparametric models and a recursive algorithm
(GAMRI, Generalized Additive Model based Recursive
Imputation), are discussed in Schomaker et al. (). Of
course, the combination of values form di�erent single
imputation procedures might be seen as another type of
PMI as well. Various strategies, such as nearest neighbor
imputation (Chen and Shao ), Hot Deck imputations
(Little and Rubin ) and others can be used for that
approach.

Proper Versus Pragmatic Multiple
Imputation
We recommend to create proper multiple imputations
based on the predictive posteriori distribution of the miss-
ing data given the observed data. As mentioned in section
“So�ware”, a variety of statistical so�ware packages nowa-
days provide fast and reliable tools to create proper multi-
ple imputations even for users with less statistical expertise
inmissing-data-procedures. In situations where numerical

algorithms fail to do so (sparse data, small datasets) prag-
matic multiple imputations can be seen as a �rst approach
to model imputation uncertainty.

Problems and Extensions
A number of problems arise along with multiple imputa-
tion procedures. O�en they are not exclusively related to
multiple imputation but to the general problem of mis-
speci�cation in statistical models. If, e.g., the data model
is misspeci�ed because it assumes independent observa-
tions on the sampling units, but the observations are tem-
porally or/and spatially correlated, also the results based
on MI may become erroneous. An additional problem
is 7model selection in general, especially if it is applied
on high dimensional data. Also fully Bayesian inference,
which o�en takes a lot of time for one speci�c model,
is o�en too time consuming to be realistically applied to
such problems.�e same applies to model averaging (Fre-
quentist or Bayesian) which may be thought of being an
alternative to model selection.

Software
Recent years have seen the emergence on so�ware that
not only allows for valid inference with multiple imputa-
tion but also enables users with less statistical expertise to
handle missing-data problems. We shortly introduce two
packages that highlight the important progresses that lately
have been made in easy-to-use Open-Source-So�ware. A
broader description, discussion and comparison on MI-
so�ware can be found in Horton and Kleinman ().

● Amelia II (Honaker et al. ) is a package
strongly related to the statistical So�ware R (R Devel-
opment Core Team ) and performs proper multi-
ple imputations by using an new, bootstrapping-based
EM-algorithm that is both fast and reliable. All impu-
tations are created via the amelia() function. For
valid inference the quantities of the m imputed data
sheets can be combined (i) in R using the zelig()
command of Zelig (Imai et al. ), (ii) by hand
using () and (), respectively, or (iii) in separate so�-
ware such as SAS, Stata etc. �e Amelia II So�ware
(named a�er the famous “missing” pilot Amelia Mary
Earhart) is exceedingly attractive as it provides many
useful options, such as the analysis of time-series data,
the speci�cation of priors on individual missing cell
values, the handling of ordinal and nominal variables,
the choice of suitable transformations and other use-
ful tools. For further details see King et al. () and
Honaker and King ().
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● MICE (Multiple Imputations by Chained Equations,
van Buuren andOudshoorn ()) is another package
provided for R and S-Plus. It implements the chained
equation approach proposed from van Buuren et al.
(), where proper multiple imputations are gen-
erated via Fully Conditional Speci�cation and Gibbs
Sampling.�e imputation step is carried out using the
mice() function. As bugs of earlier versions seem
to be removed, the MICE so�ware can be attractive
especially to the advanced user since he/she may spec-
ify his/her own imputation functions without much
additional e�ort.
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Multiple Statistical Decision
Theory

Deng-YuanHuang
Professor
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In the theory and practice of statistical inference, mul-
tiple decision problems are encountered in many exper-
imental situations. �e classical methods for analyzing
data customarily employ hypothesis testing in most situa-
tions. In such cases, when the hypothesis is rejected, one
wants to know on which of a number of possible ways
the actual situations �t our goal. If in the formulation of
the problem, we consider only two decisions (reject or
not reject the hypothesis), we will not only neglect to dif-
ferentiate between certain alternative decisions but may
also be using an inappropriate acceptance region for the
hypothesis. Moreover, the traditional approach to hypoth-
esis testing problems is not formulated in a way to answer
the experimenter’s question, namely, how to identify the
hypothesis that satis�es the goal. Furthermore, when per-
forming a test onemay commit one of two errors: rejecting
the hypothesis when it is true or accepting it when it is
false. Unfortunately, when the number of observations is
given, both probabilities cannot be controlled simultane-
ously by the classical approach (Lehmann ). Kiefer
() gave an example to show that for some sample
values an appropriate test does not exhibit any detailed
data-dependent measure of conclusiveness that conveys
our strong feeling in favor of the alternative hypothesis. To
enforce Kiefer’s point, Schaafsma () pointed out the
Neyman–Pearson formulation is not always satisfactory
and reasonable (Gupta and Huang ).
In the preceding paragraphs, we have discussed various

di�culties associated with the hypothesis testing formula-
tion.�us, there arises the need for a modi�cation of this
theory and for alternative ways to attack such problems.
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�e approach in terms of Wald’s decision theory
() provides an e�ective tool to overcome the above-
mentioned di�culties in some reasonable ways. Actually,
the problems of hypothesis testing can be formulated as
general multiple decision problems. To this end, we �rst
de�ne that the spaceA of actions of the statistician consists
of a �nite number (k ≥ ) of elements,A = ⟨a, a, . . . , ak⟩.
In practice, there are two distinct types of multiple deci-
sion problems. In one the parameter space Θ is partitioned
into k subsets Θ, Θ, . . . , Θk, according to the increasing
value of a real-valued function r(θ), θ ∈ Θ.�e action ai
is preferred if θ ∈ Θi.�is type of multiple decision prob-
lem is calledmonotone.�is approach has been studied by
Karlin and Rubin () and Brown et al. (). For exam-
ple, in comparing two treatments with means θ and θ,
an experimenter may have only a �nite number of actions
available, among these the experimenter might have pref-
erence based on the magnitudes of the di�erences of the
means θ − θ: A particular case occurs when one may
choose from the three alternatives:

. Prefer treatment  over treatment 
. Prefer treatment  over treatment 
. No preference (Ferguson )

Another important class of multiple decision problems
arises – selection problems where the treatments are clas-
si�ed into a superior category (the selected items) and
an inferior one. In general, selection problems have been
treated under several di�erent formulations (Gupta and
Panchapakesan ).
Recently, the modi�cation of the classical hypothesis

testing is considered the null hypothesis and several alter-
native hypotheses. Some multiple decision procedures are
proposed to test the hypotheses.Under controlling the type
I error, the type II error is the probability of incorrect deci-
sion. �e type I and type II errors are given, the sample
size can be determined. In general, one’s interest is not just
testing H against the global alternative. Formulating the
problem as one of choosing a subset of a set of alternatives
has been studied (Lin and Huang ).
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Multistage Sampling

David Steel
Professor, Director of Centre for Statistical and Survey
Methodology
University of Wollongong, Wollongong, NSW, Australia

Probability and Single Stage Sampling
In probability sampling each unit in the �nite population of
interest has a known, non-zero, chance of selection, πi. In
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single stage sampling the units in the sample, s, are selected
directly from the population and information is obtained
from them. For example, the �nite population of interest
may consist of businesses and a sample of businesses is
selected. In these cases the population units and sampling
units are the same. To obtain a single stage sample a sam-
pling frame consisting of a list of the population units and
means of contacting them are usually required. Simple ran-
dom sampling (SRS) can be used, in which each possible
sample of a given size has the same chance of selection. SRS
leads to each unit in the population having the same chance
of selection and is an equal probability selection method
(EPSEM). Other EPSEMs are available. A probability sam-
plingmethod does not need to be anEPSEM.As long as the
selection probabilities are known it is possible to produce
an estimator that is design unbiased, that is unbiased over
repeated sampling. For example the 7Horvitz-�ompson
estimator of the population total can be used, T̂y =∑

i∈s
π−i yi.

Strati�cation is o�en used, in which the population
is divided into strata according to the values of auxiliary
variables known for all population units. An independent
sample is then selected from each stratum.�e selection
probabilities may be the same in each stratum, but o�en
they are varied to give higher sampling rates in strata
that are more heterogeneous and/or cheaper to enumerate.
Common strati�cation variables are geography, size and
type, for example industry of a business.

Cluster and Multistage Sampling
Instead of selecting a sample of population units directly
it may be more convenient to select sampling units which
are groups that contain several population units.�e sam-
pling unit and the population unit di�er.�e groups are
called Primary Sampling Units (PSUs). If we select all pop-
ulation units from each selected PSU we have 7cluster
sampling. If we select a sample of the units in the selected
PSUs we have multistage sampling. Each population unit
must be uniquely associated with only one PSU through
coverage rules.�ese methods are o�en used when there
is some geographical aspect to the sample selection and
there are signi�cant travel costs involved in collecting data
and/or when there is no suitable population list of the pop-
ulation units available. A common example of a PSU is a
household, which contains one or more people (Clark and
Steel ). Another common example is area sampling
(see Kish , Chap. ).
In a multistage sample the sample is selected in stages,

the sample units at each stage being sampled from the
larger units chosen at the previous stage. At each succes-
sive stage smaller sampling units are de�ned within those

selected at the previous stage and further selections are
made within each of them. At each stage a list of units from
which the selections are to bemade is required only within
units selected at the previous stage.
For example, suppose we wish to select a sample of vis-

itors staying overnight in the city of Wollongong. No list
of such people exists, but if we con�ne ourselves to people
staying in hotels ormotels then it would be possible to con-
struct a list of such establishments. We could then select
a sample of hotels and motels from this list and select all
guests from the selected establishments, in which case we
have a cluster sample. It would probably be better to select
a sample from the guests in each selected establishment
allowing selection of more establishments, in which case
we have a multi-stage sampling scheme.�e probability of
a particular guest being selected in the sample is the prod-
uct of the probability of the establishment being selected
and the probability the guest is selected given the estab-
lishment is selected. Provided the selection of establish-
ments and guests within selected establishments is done
using probability sampling, the sampling method is a valid
probability sample. It would also be worthwhile stratifying
according to the size of the establishment and its type.
Cluster and multistage sampling are used because a

suitable sampling frame of population units does not exist
but a list of PSUs does, or because they are less costly
than a single stage sample of the same size in terms of
population units. In multistage sampling the probability a
population unit is selected is the probability the PSU con-
taining the unit is selected multiplied by the conditional
probability that the unit is selected given that the PSU it is
in is selected.
Cluster and multistage sampling are o�en cheaper and

more convenient than other methods but there is usually
an increase in standard errors for the same sample size in
terms of number of �nally selected population units. It is
important that the estimation of sampling error re�ects the
sample design used (See Lohr , Chap. ).
In many situations, the problems of compiling lists of

population units and travel between selected population
units are present even within selected PSUs. Consideration
is then given to selecting the sample of population units
within a selected PSU by grouping the population units
into second stage units, a sample of which is selected.�e
population units are then selected from selected second
stage units.�is is called three-stage sampling.�is pro-
cess can be continued to any number of stages.�e set of
all selected population units in a selected PSU is called an
ultimate cluster.
Multistage sampling is very �exible since many aspects

of the design have to be chosen including the number of
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stages and, for each stage, the unit of selection, the method
of selection and number of units selected. Strati�cation
and ratio or other estimation techniques may be used.�is
�exibility means that there is large scope for meeting the
demands of a particular survey in an e�cient way.
For a multistage sample the sampling variance of an

estimator of a mean or total has a component arising from
each stage of selection.�e contribution of a stage of selec-
tion is determined by the number of units selected at that
stage and the variation between the units at that stage,
within the units at the next highest level.�e precise for-
mula depends on the selection and estimation methods
used (See Lohr , Chaps. –; Cochran , Chaps. ,
A, –; Kish , Chaps. –, –).
If PSUs vary appreciably in size then it can be useful to

control the impact of this variation using ratio estimation
or Probability Proportional to Size (PPS) sampling using
the number of units in the PSU. For two-stage sampling a
common design involves PPS selection of PSUs and selec-
tion of an equal number of units in each selected PSU.�is
gives each population unit the same chance of selection,
which is usually a sensible feature for a sample of people,
and an equal workload within each selected PSU, which
has operational bene�ts.�e �rst stage component of vari-
ance is determined by the variation of the PSU means. To
use PPS sampling we need to know the population size of
each PSU in the population. For ratio estimation we only
need to know the total population size.

Optimal Design in Multistage Sampling
One of themain problems in designingmultistage samples
is to determine what size sample within selected PSUs to
take to optimally balance cost and sampling error. In a two
stage sampling scheme in whichm PSUs are to be selected
and the average number of units selected in each PSU is n
the sampling variance is minimized for �xed sample size
when n = , since then the sample includes the largest
number of PSUs. However, costs will be minimized when
as few PSUs as possible are selected. Costs and variances
are pulling in opposite directions and we must try to opti-
mally balance them. In a two-stage sample several types
of costs can be distinguished: overhead costs, costs associ-
ated with the selection of PSUs and costs associated with
the selection of nd stage units.�is leads to specifying a
cost function of the form

C + Cm + Cmn.

For some of the common two-stage sampling and estima-
tionmethods used in practice the variance of the estimator

of total or mean can be written as

V 
 +

V 


m
+
V 


mn
.

For �xed cost the variance is minimized by choosing

n =

¿
Á
ÁÀC
C
V 

V 

.

�e optimum choice of n thus depends on the ratios of
costs and variances. As the �rst stage costs increase rela-
tive to the second stage costs the optimum n increase, so
we are led to a more clustered sample. As the second stage
component of variance increases relative to the �rst stage
we are also led to a more clustered design.

�e optimum value of n can be expressed in terms

of the measure of homogeneity δ =
V 


V 
 + V 


, as

n =

√
C
C
 − δ

δ
. As δ increases the optimal choice of n

decreases. For example if C/C =  and δ = . then
the optimal n = . To determine the optimal choice of n
we only need to obtain an idea of the ratio of �rst stage to
second stage cost coe�cients and δ.
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Fractional Polynomial Models
Suppose that we have an outcome variable, a single contin-
uous covariate X, and a suitable regression model relating
them. Our starting point is the straight line model, βX
(for simplicity, we suppress the constant term, β). O�en
a straight line is an adequate description of the relation-
ship, but other models must be investigated for possible
improvements in �t. A simple extension of the straight
line is a power transformation model, βXp. �e latter
model has o�en been used by practitioners in an ad hoc
way, utilising di�erent choices of p. Royston and Altman
() formalize the model slightly by calling it a �rst-
degree fractional polynomial or FP function.�e power
p is chosen from a pragmatically chosen restricted set
S = {−,−,−., , ., , , }, where X denotes logX.
As with polynomial regression, extension from one-

term FP functions to the more complex and �exi-
ble two-term FP functions follows immediately. Instead
of βX + βX, FP functions with powers (p, p) are
de�ned as βXp + βXp with p and p taken from S. If
p = p Royston and Altman proposed βXp +βXp logX,
a so-called repeated-powers FP model.
For a more formal de�nition, we use the nota-

tion from Royston and Sauerbrei (). An FP func-
tion or model is de�ned as φ (X, p) = β + βXp,
the constant (β) being optional and context-speci�c.
For example, β is usually included in a normal-errors
regression model but is always excluded from a Cox
proportional-hazards model. An FP transformation of
X with powers p = (p, p), or when p = p
with repeated powers p = (p, p) is the vector Xp with

Xp = X(p ,p) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Xp ,Xp) , p ≠ p

(Xp ,Xp logX) , p = p

An FP function (or model) with parameter vector
β = (β, β)T and powers p is φ (X,p) = β + Xpβ.
With the set S of powers as just given, there are
 FP transformations,  FP transformations with
distinct powers (p ≠ p) and  FP transformations with

equal powers (p = p).�e best �t among the combina-
tions of powers from S is de�ned as that with the highest
likelihood.

�e general de�nition of an FPm function with powers
p = (p ≤ ⋯ ≤ pm) is conveniently written as a recurrence
relation. Let h (X) =  and p = .�en

φm (X,p) = β + Xpβ = β +
m

∑
j=

βjhj (X)

where for j = , . . . ,m

hj (X) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Xpj , pj− ≠ pj
hj− (X) logX, pj− = pj

For example, for m =  and p = (−, ) we have
h (X) = X−, h (X) = X. For p = (, ) we have
h (X) = X, h (X) = X logX.
Figure  shows some FP curves, chosen to indicate

the �exibility available with a few pairs of powers (p, p).
�e ability to �t a variety of curve shapes, some of which
have asymptotes or which have both a sharply rising or
falling portion and a nearly �at portion, to real data is a
particularly useful practical feature of FP functions.

Function Selection Procedure (FSP)
Choosing the best FP or FP function by mininizing the
deviance (minus twice the maximized log likelihood) is
straightforward. However, having a sensible default func-
tion is important for increasing the parsimony, stability
and general usefulness of selected functions. Inmost of the
algorithms implementing FP modelling, the default func-
tion is linear – arguably, a natural choice.�erefore, unless
the data support a more complex FP function, a straight
line model is chosen. �ere are occasional exceptions;
for example, in modelling time-varying regression coe�-
cients in the Cox model, Sauerbrei et al. (a) chose a
default time transformation of log t rather than t.
It is assumed in what follows that the null distribu-

tion of the di�erence in deviances between an FPm and
an FP(m − ) model is approximately central χ on two
degrees of freedom. Justi�cation of this result is given in
Sect. .. of Royston and Sauerbrei () and supported
by simulation results (Ambler and Royston ).
For FP model selection, Royston and Sauerbrei ()

proposed using the following closed test procedure
(although other procedures are possible). It runs as follows:

. Test the best FPmodel forX at the α signi�cance level
against the null model using four d.f. If the test is not
signi�cant, stop, concluding that the e�ect of X is “not
signi�cant” at the α level. Otherwise continue.
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Multivariable Fractional Polynomial Models. Fig.  Examples of FP curves for different powers (p, p)

. Test the best FP for X against a straight line at the
α level using three d.f. If the test is not signi�cant,
stop, the �nal model being a straight line. Otherwise
continue.

. Test the best FP for X against the best FP at the α
level using two d.f. If the test is not signi�cant, the �nal
model is FP, otherwise the �nal model is FP. End of
procedure.

�e test at step  is of overall association of the out-
come with X.�e test at step  examines the evidence for
non-linearity.�e test at step  chooses between a simpler
or more complex non-linear model. Before applying the
procedure, the analyst must decide on the nominal P-value
(α) and on the degree (m) of the most complex FP model
allowed. Typical choices are α = . and FP (m = ).

Multivariable Fractional Polynomial
(MFP) Procedure
In many studies, a relatively large number of predictors is
available and the aim is to derive an interpretable multi-
variable model which captures the important features of
the data: the stronger predictors are included and plausible
functional forms are found for continuous variables.
As a pragmatic strategy to building such models, a sys-

tematic search for possible non-linearity (provided by the
FSP) is added to a backward elimination (BE) procedure.
For arguments to combine FSP with BE, see Royston and
Sauerbrei ().�e extension is feasible with any type of
regression model to which BE is applicable. Sauerbrei and

Royston () called it the multivariable fractional poly-
nomial (MFP) procedure, or simply MFP. Using MFP suc-
cessfully requires only general knowledge about building
regression models.

�e nominal signi�cance level is the main tuning
parameter required byMFP. Actually, two signi�cance lev-
els are needed: α for selecting variables with BE, and α
for comparing the �t of functions within the FSP. O�en,
α = α is a good choice. A degree greater than  (m > ) is
rarely if ever needed in a multivariable context. Since the
model is derived data-dependently, parameter estimates
are likely to be somewhat biased.
As with any multivariable selection procedure checks

of the underlying assumptions and of the in�uence
of single observations are required and may result
in model re�nement. To improve robustness of FP
models in the univariate and multivariable context
Royston and Sauerbrei () proposed a preliminary
transformation of X.�e transformation shi�s the origin
of X and smoothly pulls in extreme low and extreme high
values towards the center of the distribution.�e transfor-
mation is linear in the central bulk of the observations.
If available, subject-matter knowledge should replace

data-dependent model choice. Only minor modi�cations
are required to incorporate various types of subject-matter
knowledge into MFP modelling. For the discussion of a
detailed example, see Sauerbrei and Royston ().
For model-building by selection of variables and func-

tional forms for continuous predictors, MFP has several
advantages over spline-based models (the most important
alternatives). For example, MFP models exhibit fewer
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artefacts in �tted functions, and are more transportable,
mathematically concise and generally more useful than
splinemodels (Royston and Sauerbrei ; Sauerbrei et al.
b). Residual analysis with spline models may be used
to check whether the globally de�ned functions derived
by MFP analysis have missed any important local features
in the functional form for a given continuous predictor
(Binder and Sauerbrei ).
Recommendations for practitioners of MFPmodelling

are given in Royston and Sauerbrei () and Sauerbrei
et al. (b).

Extensions of MFP to Investigate for
Interactions
MFP was developed to select main e�ects of predictors on
the outcome. If a variable X explains (at least partially)
the relationship between a predictor X and the outcome
Y then confounding is present. Another important issue is
interaction between two or more predictors in a multivari-
able model. An interaction between X and X is present if
X modi�es the relationship between X and the outcome.
�at means that the e�ect of X is di�erent in subgroups
determined by X. Extensions of MFP have been proposed
to handle two-way interactions involving at least one con-
tinuous covariate (Royston and Sauerbrei ). Higher
order interactions, which typically play a role in factorial
experiments, are a further extension, but not one that has
yet been considered in the FP context.
To investigate for a possible interaction between a con-

tinuous predictor and two treatment arms in a randomized
controlled trial, the multivariable fractional polynomial
interaction (MFPI) procedure was introduced (Royston
and Sauerbrei ). In a �rst step, the FP class is used
to model the prognostic e�ect of the continuous variable
separately in the two treatment arms, usually under some
restrictions such as the same power terms in each arm.
In a second step, a test for the equality of the prognos-
tic functions is conducted. If signi�cant, an interaction is
present and the di�erence between two functions estimates
the in�uence of the prognostic factor on the e�ect of treat-
ment.�e di�erence function is called a treatment e�ect
function (and should be plotted). For interpretation, it is
important to distinguish between the two cases of a prede-
�ned hypothesis and of searching for hypotheses (Royston
and Sauerbrei , ).
For more than two groups, extensions to investigate

continuous by categorical interactions are immediate. Fur-
thermore,MFPI allows investigation of treatment-covariate
interactions in models with or without adjustment for
other covariates. �e adjustment for other covariates
enables the use of the procedure in observational studies,

where the multivariable context is more important than in
an RCT.
Continuous-by-continuous interactions are important

in observational studies. A popular approach is to assume
linearity for both variables and test the multiplicative term
for signi�cance. However, the model may �t poorly if
one or both of the main e�ects is non-linear. Royston
and Sauerbrei (, Chap. ) introduced an extension of
MFPI, known as MFPIgen, in which products of selected
main e�ect FP functions are considered as candidates for
an interaction between a pair of continuous variables. Sev-
eral continuous variables are usually available, and a test of
interaction is conducted for each such pair. If more than
one interaction is detected, interactions are added to the
main-e�ects model in a step-up manner.

�e MFPT(ime) algorithm (Sauerbrei et al. a)
combines selection of variables and of the functional
form for continuous variables with determination of time-
varying e�ects in a Cox proportional hazards model for
7survival data. A procedure analogous to the FSP was sug-
gested for investigating whether the e�ect of a variable
varies in time, i.e., whether a time-by-covariate interaction
is present.

Further Contributions to Fractional
Polynomial Modelling
Methods based on fractional polynomials have been
reported recently, aiming to improve or extend the mod-
elling of continuous covariates in various contexts. For
example, Faes et al. () appliedmodel averaging to frac-
tional polynomial functions to estimate a safe level of expo-
sure; Lambert et al. () considered time-dependent
e�ects in regression models for relative survival; and Long
and Ryoo () used FPs to model non-linear trends in
longitudinal data. For further topics and references, see
Sect. . of Royston and Sauerbrei ().
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Multivariate Analysis of Variance
(MANOVA)
Barbara G. Tabachnick, Linda S. Fidell
California State University, Northridge, CA, USA

ANOVA (7analysis of variance) tests whethermean di�er-
ences among groups on a single DV (dependent variable)
are likely to have occurred by chance. MANOVA (multi-
variate analysis of variance) tests whethermean di�erences
among groups on a combination of DVs are likely to have
occurred by chance. For example, suppose a researcher
is interested in the e�ect of di�erent types of treatment
(the IV; say, desensitization, relaxation training, and a
waiting-list control) on anxiety. In ANOVA, the researcher
chooses one measure of anxiety from among many. With
MANOVA, the researcher can assess several types of anx-
iety (say, test anxiety, anxiety in reaction to minor life
stresses, and so-called free-�oating anxiety). A�er random
assignment of participants to one of the three treatments
and a subsequent period of treatment, participants are
measured for test anxiety, stress anxiety, and free-�oating
anxiety. Scores on all three measures for each participant
serve as DVs. MANOVA is used to ask whether a combi-
nation of the three anxiety measures varies as a function
of treatment. (MANOVA is statistically identical to dis-
criminant analysis.�e di�erence between the techniques
is one of emphasis. MANOVA emphasizes the mean dif-
ferences and statistical signi�cance of di�erences among
groups. Discriminant analysis (see 7Discriminant Analy-
sis: An Overview, and 7Discriminant Analysis: Issues and
Problems) emphasizes prediction of group membership
and the dimensions on which groups di�er.)
MANOVA developed in the tradition of ANOVA. Tra-

ditionally, MANOVA is applied to experimental situa-
tions where all, or at least some, IVs are manipulated
and participants are randomly assigned to groups, usu-
ally with equal cell sizes. �e goal of research using
MANOVA is to discover whether outcomes, as re�ected by
the DVs, are changed by manipulation (or other action) of
the IVs.
InMANOVA, a new DV is created from the set of DVs

that maximizes group di�erences.�e new DV is a linear
combination of measured DVs, combined so as to separate
the groups asmuch as possible. ANOVA is then performed
on the newly created DV. As in ANOVA, hypotheses about
means are tested by comparing variances between means
relative to variances in scores within groups-hence multi-
variate analysis of variance.
In factorial ormore complicatedMANOVA, a di�erent

linear combination of DVs is formed for each IV and
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interaction. If gender of participant is added to type of
treatment as a second IV, one combination of the threeDVs
maximizes the separation of the three treatment groups,
a second combination maximizes separation of women
and men, and a third combination maximizes separation
of the six cells of the interaction. Further, if an IV has
more than two levels, the DVs can be recombined in yet
other ways to maximize the separation of groups formed
by comparisons.
MANOVA has a number of advantages over ANOVA.

First, by measuring several DVs instead of only one, the
researcher improves the chance of discovering what it is
that changes as a result of di�erent IVs and their interac-
tions. For instance, desensitization may have an advantage
over relaxation training or waiting-list control, but only on
test anxiety; the e�ect is missed in ANOVA if test anxiety
is not chosen as the DV. A second advantage of MANOVA
over a series of ANOVAs (one for each DV) is protec-
tion against in�ated Type I error due to multiple tests of
(likely) correlated DVs. (�e linear combinations them-
selves are usually of interest in discriminant analysis, but
not in MANOVA.)
Another advantage of MANOVA is that, under cer-

tain, probably rare conditions, it may reveal di�erences not
shown in separate ANOVAs (Maxwell ). Such a sit-
uation is shown in Fig.  for a one-way design with two
levels. In this �gure, the axes represent frequency distribu-
tions for each of two DVs, Y and Y. Notice that from the
point of view of either axis, the distributions are su�ciently
overlapping that a mean di�erence might not be found in
ANOVA.�e ellipses in the quadrant, however, represent
the distributions of Y and Y for each group separately.
When responses to two DVs are considered in combina-
tion, group di�erences become apparent.�us,MANOVA,
which considers DVs in combination, may occasionally be
more powerful than separate ANOVAs.

�e goal in MANOVA is to choose a small number of
DVs where each DV is related to the IV, but the DVs are
not related to each other. Good luck. In the usual situation
there are correlations among the DVs, resulting in some
ambiguity in interpretation of the e�ects of IVs on any
single DV and loss of power relative to ANOVA. Figure 
shows a set of hypothetical relationships between a single
IV and four DVs. DVis highly related to the IV and shares
some variance with DV and DV. DV is related to both
DV and DV and shares very little unique variance with
the IV. DV is somewhat related to the IV, but also to all of
the other DVs. DV is highly related to the IV and shares
only a little bit of variance with DV.�us, DV is com-
pletely redundant with the other DVs, and DV adds only
a bit of unique variance to the set. (However, DV might
be useful as a covariate if that use is conceptually viable

Y1

Y2

Multivariate Analysis of Variance (MANOVA). Fig.  Advant-
age of MANOVA, which combines DVs, over ANOVA. Each axis
represents a DV; frequency distributions projected to axes
show considerable overlap, while ellipses, showing DVs in
combination, do not

IV

DV4

DV3
DV2

DV1

Multivariate Analysis of Variance (MANOVA). Fig.  Hypothe-
tical relationships among a single IV and four DVs

because it reduces the total variances in DVs  and  that
are not overlapping with the IV.)
Although computing procedures and programs for

MANOVA and MANCOVA are not as well developed as
for ANOVA and ANCOVA, there is in theory no limit
to the generalization of the model. �e usual questions
regarding main e�ects of IVs, interactions among IVs,
importance of DVs, parameter estimates (marginal and
cell means), speci�c comparisons and trend analysis (for
IVs with more than two levels), e�ect sizes of treatments,
and e�ects of covariates, if any, are equally interesting with
MANOVA as with ANOVA. �ere is no reason why all
types of designs - one-way, factorial, repeated measures,
nonorthogonal, and so on - cannot be extended to research
with several DVs.
For example, multivariate analysis of covariance

(MANCOVA) is the multivariate extension of ANCOVA.
MANCOVA asks if there are statistically signi�cant mean
di�erences among groups a�er adjusting the newly created
DV for di�erences on one or more covariates. To extend
the example, suppose that before treatment participants are
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pretested on test anxiety, minor stress anxiety, and free-
�oating anxiety; these pretest scores are used as covariates
in the �nal analysis. MANCOVA asks if mean anxiety on
the composite score di�ers in the three treatment groups,
a�er adjusting for preexisting di�erences in the three types
of anxieties.
MANOVA is also a legitimate alternative to repeated-

measures ANOVA in which di�erences between pairs of
responses to the levels of the within-subjects IV are simply
viewed as separate DVs.
Univariate analyses are also useful following a

MANOVA or MANCOVA. For example, if DVs can be
prioritized, ANCOVA is used a�er MANOVA (or MAN-
COVA) in Roy-Bargmann stepdown analysis where the
goal is to assess the contributions of the various DVs to
a signi�cant e�ect (Bock ; Bock and Haggard ).
One askswhether, a�er adjusting for di�erences on higher-
priority DVs serving as covariates, there is any signi�cant
mean di�erence among groups on a lower-priority DV.
�at is, does a lower-priority DV provide additional sep-
aration of groups beyond that of the DVs already used?
In this sense, ANCOVA is used as a tool in interpret-
ing MANOVA results. Results of stepdown analysis are
reported in addition to individual ANOVAs.
However, MANOVA is a substantially more com-

plicated analysis than ANOVA because there are sev-
eral important issues to consider. MANOVA has all of
the complications of ANOVA (e.g., homogeneity of vari-
ance; equality of sample sizes within groups; absence of
7outliers; power, cf. Woodward et al. ; normality of
sampling distributions, independence of errors) and sev-
eral more besides (homogeneity of variance-covariance
matrices; multivariate normality, cf. Mardia  and Seo
et al. ; linearity, absence of7multicollinearity and sin-
gularity; and choice among statistical criteria, cf. Olson
).�ese are not impossible to understand or test prior
to analysis, but they are vital to an honest analysis.
Comprehensive statistical so�ware packages typically

include programs for MANOVA. �e major SPSS mod-
ule is GLM, however the olderMANOVAmodule remains
available through syntax and includes Roy-Bargmann
stepdown analysis as an option. NCSS and SYSTAT have
speci�c MANOVAmodules, whereas SAS provides analy-
sis of MANOVA through its GLMmodule. Analysis is also
available through BMDPV, STATA, and Statistica.
For more information about MANOVA, see Chaps. 

and  of Tabachnick and Fidell ().
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Most business problems involve many variables. Managers
look atmultiple performancemeasures and relatedmetrics
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when making decisions. Consumers evaluate many char-
acteristics of products or services in deciding which to
purchase. Multiple factors in�uence the stocks a broker
recommends. Restaurant patrons consider many factors in
deciding where to dine. As the world becomes more com-
plex, more factors in�uence the decisions managers and
customers make.�us, increasingly business researchers,
as well as managers and customers, must rely on more
sophisticated approaches to analyzing and understanding
data.
Analysis of data has previously involved mostly uni-

variate and bivariate approaches. Univariate analysis
involves statistically testing a single variable, while bivari-
ate analysis involves two variables.When problems involve
three or more variables they are inherently multidimen-
sional and require the use of multivariate data analysis.
For example, managers trying to better understand their
employees might examine job satisfaction, job commit-
ment, work type (part-time vs. full-time), shi� worked
(day or night), age and so on. Similarly, consumers
comparing supermarkets might look at the freshness and
variety of produce, store location, hours of operation,
cleanliness, prices, courtesy and helpfulness of employ-
ees, and so forth. Managers and business researchers need
multivariate statistical techniques to fully understand such
complex problems.
Multivariate data analysis refers to all statistical meth-

ods that simultaneously analyze multiple measurements
on each individual respondent or object under investiga-
tion. �us, any simultaneous analysis of more than two
variables can be considered multivariate analysis. Multi-
variate data analysis is therefore an extension of univariate
(analysis of a single variable) and bivariate analysis (cross-
classi�cation, correlation, and simple regression used to
examine two variables).
Figure  displays a useful classi�cation of statistical

techniques. Multivariate as well as univariate and bivari-
ate techniques are included to help you better understand
the similarities and di�erences. As you can see at the top,
we divide the techniques into dependence and interdepen-
dence depending on the number of dependent variables.
If there is one or more dependent variables a technique is
referred to as a dependence method.�at is, we have both
dependent and independent variables in our analysis. In
contrast, when we do not have a dependent variable we
refer to the technique as an interdependence method.�at
is, all variables are analyzed together and our goal is to form
groups or givemeaning to a set of variables or respondents.

�e classi�cation can help us understand the di�er-
ences in the various statistical techniques. If a research
problem involves association or prediction using both
dependent and independent variables, one of the dependence

techniques on the le� side of the diagram is appro-
priate. �e choice of a particular statistical technique
depends on whether the dependent variable is metric
or nonmetric, and how many dependent variables are
involved. With a nonmetric, ordinally measured depen-
dent we would use the Spearman correlation. With a non-
metric, nominal dependent variable we use discriminant
analysis (see 7Discriminant Analysis: An Overview, and
7Discriminant Analysis: Issues and Problems), conjoint
analysis or 7logistic regression. On the other hand, if
our dependent variable is metric, we can use correlation,
regression, ANOVA or MANOVA, canonical correlation,
and conjoint analysis (the statistical technique of conjoint
analysis can be formulated to handle bothmetric and non-
metric variables). �e various statistical techniques are
de�ned in Fig. . For more information on multivariate
statistical techniques see Hair et al. ().

Concluding Observations
Today multivariate data analysis is being used by most
medium and large sized businesses, and even some small
businesses. Also, most business researchers rely on mul-
tivariate analysis to better understand their data. �us,
in today’s business environment it’s just as important to
understand the relationship between variables, which o�en
requires multivariate analysis, as it is to gather the infor-
mation in the �rst place.�e importance of multivariate
statisticalmethods that help us to understand relationships
has increased dramatically in recent years. What can we
expect in the future as applications of multivariate data
analysis expand: () data will continue to increase expo-
nentially, () data quality will improve as will data cleaning
techniques and data maintenance, () data analysis tools
will be more powerful and easier to use, and () there will
be many more career opportunities involving examining
and interpreting data using multivariate data analysis.
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Multivariate Data Analysis: An Overview. Fig.  Classification of statistical techniques

ANOVA – ANOVA stands for analysis of variance. It is used to examine statistical differences between the means
of two or more groups. The dependent variable is metric and the independent variable(s) is nonmetric. One-way
ANOVA has a single non-metric independent variable and two-way ANOVA can have two or more non-metric
independent variables. ANOVA is bivariate while MANOVA is the multivariate extension of ANOVA.
Bivariate Regression – this is a type of regression that has a single metric dependent variable and a single
metric independent variable.
Cluster Analysis – this type of analysis enables researchers to place objects (e.g., customers, brands, products)
into groups so that objects within the groups are similar to each other. At the same time, objects in any particular
group are different from objects in all other groups.
Correlation – correlation examines the association between two metric variables. The strength of the asso-
ciation is measured by the correlation coefficient. Canonical correlation analyzes the relationship between
multiple dependent and multiple independent variables, most often using metric measured variables.
Conjoint Analysis – this technique enables researchers to determine the preferences individuals have for
various products and services, and which product features are valued the most.
Discriminant Analysis – enables the researcher to predict group membership using two or more metric
dependent variables. The group membership variable is a non-metric dependent variable.
Factor Analysis – this technique is used to summarize the information from a large number of variables into
a much smaller number of variables or factors. This technique is used to combine variables whereas cluster
analysis is used to identify groups with similar characteristics.
Logistic Regression – logistic regression is a special type of regression that involves a non-metric dependent
variable and several metric independent variables.
Multiple Regression – this type of regression has a single metric dependent variable and several metric
independent variables.
MANOVA – same technique as ANOVA but it can examine group differences across two or more metric
dependent variables at the same time.
Perceptual Mapping – this approach uses information from other statistical techniques (e.g., multidimensional
scaling) to map customer perceptions of products, brands, companies, and so forth.

Multivariate Data Analysis: An Overview. Fig.  Definitions of statistical techniques
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�e multivariate normal distribution is a generalization
of the familiar univariate normal or Gaussian distribution

(Hogg et al. ; Miller and Miller ) to p ≥  dimen-
sions. Just as with its univariate counterpart, the impor-
tance of the multivariate normal distribution emanates
from a number of its useful properties, and especially
from the fact that, according to the central limit theorem
(Anderson ; Johnson and Wichern ) under cer-
tain regularity conditions, sum of random variables gener-
ated from various (likely unknown) distributions tends to
behave as if its underlying distribution were multivariate
normal.

�e need for generalization to the multivariate dis-
tribution naturally arises if we simultaneously investigate
more than one quantity of interest. In that case, single
observation (result of an experiment) is not value of a
single variable, but the set of p values of p ≥  random
variables. �erefore, we deal with p ×  random vector
X and each single observation becomes p ×  vector x
of single realizations of p random variables under exam-
ination. All these variables have their particular expected
values that jointly constitute p ×  mean vector µ, which
is expected value of random vector X. Since analysis of
collective behaviour of several quantities must take into
account their mutual correlations, in multivariate analysis
we also de�ne p × p variance-covariance matrix

Σ = cov(X) = E [(X − µ)(X − µ)T]

=

⎡
⎢
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⎥
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⎥
⎦

, ()

where σij are covariances between ith and jth component
of X and σii are variances of ith variable (more commonly
denoted σ i ). �is matrix is symmetric because σij = σji
and it is assumed to be positive de�nite.
Conceptually, the development of multivariate normal

distribution starts from the univariate probability density
function of a normal random variable X with the mean µ
and variance σ . Common notation is X ∼ N(µ, σ ) and
probability density function (pdf) of X is

f (x) =


√
πσ 

e
− (x − µ)

σ =


√
πσ 

e
− 

( x − µ

σ
)


=


√
πσ 

e
− 

z ;−∞ < x < +∞. ()

Variable Z is so-called standard normal variable or z-
score and it represents the square of the distance from
a single observation (measurement) x to the population
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Multivariate Normal Distributions. Fig.  Bivariate normal distribution with: left - σ = σ, ρ = ; right - σ = σ, ρ = , 

mean µ, expressed in standard deviation units. It is this dis-
tance that directly generalizes to p ≥  dimensions, because
in the univariate case we can write

(
x − µ

σ
)

= (x − µ)(σ )−(x − µ), ()

and in themultivariate case, by analogy, we have theMaha-
lanobis distance (Johnson andWichern ) expressed as

(x − µ)TΣ−(x − µ). ()

�e multivariate normal probability density function
is obtained (Anderson ; Hogg et al. ; John-
son and Wichern ) by replacing () by () in the
density function () and substituting the normalizing
constant by (π)−p/∣Σ∣−/, so that the p-dimensional
normal probability density for the random vector X =

[X,X, . . . ,Xp]T is

f (x) =


(π)p/∣Σ∣/
e−(x−µ)TΣ−(x−µ)/ ()

where xi ∈ (−∞,∞) and i = , , . . . , p. Again analogously
to the univariate case, we write X ∼ Np(µ,Σ).
As an example, consider bivariate (p = ) distribution

in terms of the individual parameters µ, µ, σ  = σ, σ  =
σ and σ = σ. If we also introduce correlation coe�cient
ρ = ρ = corr(X,X) = σ /(σ ⋅ σ), density () becomes

f (x, x) =


πσσ
√
 − ρ

exp{−


( − ρ)
[(
x − µ

σ
)


+(
x − µ

σ
)

− ρ

x − µ
σ

x − µ
σ

]} . ()

Formula () clearly indicates certain important general
properties of multivariate normal distributions. First of all,
if random variables X and X are uncorrelated, i.e., ρ = ,
it immediately follows that their joint density () can be
factored as the product of two univariate normal densi-
ties of the form of (). Since f (x, x) factors as f (x, x) =
f (x) ⋅ f (x), it follows that if X and X are uncorre-
lated, they are also statistically independent.�is is a direct
consequence of the general (p ≥ ) multivariate normal
property that uncorrelated variables are independent and
have marginal distributions univariate normal. However,
converse is not necessarily true for both of these state-
ments and requires caution. Independent normal variables
certainly are uncorrelated (this is true for any distribu-
tion anyway), but marginal distributions may be univari-
ate normal without the joint distribution being multivari-
ate normal. Similarly, marginally normal variables can be
uncorrelated without being independent (Anderson ;
Miller and Miller ).
Several other general properties ofmultivariate normal

distribution are easier to conceive by studying the bivari-
ate normal surface de�ned by () and illustrated in Fig. .
Obviously, the bivariate (as well as multivariate) proba-
bility density function has a maximum at (µ, µ). Next,
any intersection of this surface and a plane parallel to
the z-axis has the shape of an univariate normal distribu-
tion, indicating that marginal distributions are univariate
normal.
Finally, any intersection of this surface and a plane

parallel to the xx plane is an ellipse called contour of
constant probability density. In the special case when vari-
ables are uncorrelated (independent) and σ = σ (Fig. 
- le�), contours of constant probability density are circles
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and it is customary to refer to the corresponding joint
density as a circular normal density. When variables are
uncorrelated, but σ ≠ σ, contours are ellipses whose
semi-axes are parallel to the x, x axes of the coordinate
system. In the presence of correlation, probability density
concentrates along the line (Fig.  - right) determined by
the coe�cient of correlation and variances of variables,
so the contours of constant probability density are ellipses
rotated in a plane parallel to xx plane (Anderson ;
Miller and Miller ). All these properties are valid in
p-dimensional spaces (p > ) as well.
Here is the list of most important properties of the

multivariate normal distribution (Anderson ; Johnson
and Wichern ; Rao ).

. Let X be a random vector X ∼ Np(µ,Σ) and a an arbi-
trary p ×  vector.�en the linear combination aTX =

aX+aX+ . . .+apXp is distributed asN(aTµ, aTΣa).
Inwords, any linear combination of jointly normal ran-
dom variables is normally distributed. Converse is also
true: if aTX is ∼ N(aTµ, aTΣa) for every a, then X ∼

Np(µ,Σ).
. Generalization of property : LetX be a random vector
X ∼ Np(µ,Σ) and let us form q linear combinations
AX, whereA is an arbitrary q×pmatrix.�en it is true
that AX ∼ Nq(Aµ,AΣAT). Similarly, for any vector of
constants d we have X + d ∼ Np(µ + d,Σ).

. All subsets of variables constituting X ∼ Np(µ,Σ) are
(multivariate) normally distributed.

. Multivariate normal q ×  and q ×  vectors X and
X are independent if and only if they are uncor-
related, i.e., cov(X,X) =  (a q × q matrix of
zeros).

. If multivariate normal q ×  and q ×  vectors X and
X are independent and distributed asNq(µ,Σ) and
Nq(µ,Σ), respectively, then (q + q) ×  vector
[XT XT ]T has multivariate normal distribution

⎡
⎢
⎢
⎢
⎢
⎢
⎣

X

X

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∼ Nq+q
⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

µ

µ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎢
⎢
⎣

Σ 

 Σ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

.

. Let X,X, . . . ,Xn be mutually independent random
vectors that are all multivariate normally distributed,
each having its particularmean, but all having the same
covariance matrix Σ, i.e., Xj ∼ Np(µj,Σ). Linear com-
bination of these vectors V = cX + cX + . . . +

cnXn is distributed as Np (
n
∑
j=
cjµj,(

n
∑
j=
cj )Σ) . More-

over, similarly to property , V and some other linear
combination V = bX + bX + . . . + bnXn are

jointly multivariate normally distributed with covari-
ance matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
n
∑
j=
cj )Σ (bTc)Σ

(bTc)Σ (
n
∑
j=
bj )Σ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

�us, if bTc = , i.e., vectors b and c are orthogonal, it
follows thatV andV are independent and vice versa.

. All conditional distributions are multivariate normal.
Formally, let X and X be any two subsets of a mul-
tivariate normal vector X ∼ Np(µ,Σ) with µ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

µ

µ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Σ Σ

Σ Σ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and ∣Σ∣ > .�e con-

ditional distribution of X, given a �xed X = x, is
multivariate normal with

mean(X∣x) = µ + ΣΣ
−
(x − µ) and cov(X∣x)

= Σ − ΣΣ−Σ.

. Generalized distance (x − µ)TΣ−(x − µ) of observa-
tions x of a vector X ∼ Np(µ,Σ) from the mean µ
has a chi squared distribution with p degrees of freedom
denoted χp.

. With X,X, . . . ,Xn as a set of n observations from
a (multivariate) normal population with mean µ and
covariance Σ, we have the following results:
(a) X is distributed as Np(µ, (/n)Σ)
(b) (n − )S has a Wishart distribution; with n − 
degrees of freedom

(c) X and S are independent.
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In the statistical analysis of data one is o�en confronted
with observations that “appear to be inconsistent with the
remainder of that set of data” (Barnett and Lewis ).
Although such observations (the 7outliers) have been the
subject of numerous investigations, there is no general
accepted formal de�nition of outlyingness. Nevertheless,
the outliers describe abnormal data behavior, i.e., data that
are deviating from the natural data variability (see, e.g.,
Peña and Prieto , Filzmoser , and Filzmoser et al.
 for a discussion).
Sometimes outliers can grossly distort the statistical

analysis, while at other times their in�uence may not
be as noticeable. Statisticians have accordingly developed
numerous algorithms for the detection and treatment of
outliers, but most of these methods were developed for
univariate data sets.�ey are based on the estimation of
location and scale, or on quantiles of the data. Since in a
univariate sample outliers may be identi�ed as an excep-
tionally large or small value, a simple plot of the data, such
as scatterplot, stem-and-leaf plot, and QQ-plot can o�en
reveal which points are outliers.
In contrast, for multivariate data sets the problem of

outliers identi�cation gives challenges that do not occur

with univariate data since there is no simple concept
of ordering the data. Furthermore, the multivariate case
introduces a di�erent kind of outlier, a point that is not
extreme component wise but departs from the prevail-
ing pattern of correlation structure. �is departs causes
that the observations appear as univariate outliers in some
direction not easily identi�able. In this context, to detect
an observation as possible outlier not only the distance
from the centroid of the data is important but also the
data shape. Also, as Gnanadesikan and Kettenring ()
pointed out the visual detection of multivariate outliers is
virtually impossible because the outliers do not “stick out
on the end.”
Since most standard multivariate analysis techniques

rely on the assumption of normality, in , Wilks pro-
posed identifying sets of outliers of size j from {, , . . . ,n},
in normal multivariate data, by checking the minimum
values of the ratios ∣A(I)∣/∣A∣, where ∣A(I)∣ is the internal
scatter of a modi�ed sample in which the set of observa-
tions I of size j has been deleted and ∣A∣ is the internal
scatter of the complete sample. For j =  this method
is equivalent to the classical way to declare a multivari-
ate observation as a possible outlier by using the squared
Mahalanobis’ distance de�ned as

MDi (xi, t,V) = ((xi − t)TV−(xi − t))/

where t is the estimated multivariate location and V the
estimated scattermatrix. Usually t is themultivariate arith-
metic mean, the centroid, and V the sample covariance
matrix. Mahalanobis’ distance identi�es observations that
lie far away from the center of the data cloud, giving less
weight to variables with large variances or to groups of
highly correlated variables. For a p-multivariate normally
distributed dataMDi (xi, t,V) converge to χp, a chi-square
distribution with p degree of freedom. Points with large
MDi ≡ MD


i (xi, t,V), compared with some χp quantile,

are then considered outliers. Hence, to evaluate multivari-
ate normality one may plot the orderedMD(i) against the
expected order statistics of the 7chi-square distribution
with sample quantiles χp[(i−/)/] = qi where qi (i =
, . . . ,n) is the (i − /)/n sample quantile of χp.�e
plotted points (MD(i), qi) should be close to a line, so
the points far from the line are potential outliers. Formal
tests formultivariate outliers are considered by Barnett and
Lewis ().
Clearly, the Mahalanobis distance relies on classical

location and scatter estimators. �e presence of outliers
may distort arbitrarily the values of these estimators and
render meaningless the results. �is is particularly acute
when there are several outliers forming a cluster, because
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they will move the arithmetic mean toward them and
in�ate the classical tolerance ellipsoid in their direction.
So this approach su�ers from the masking and swamp-
ing e�ects by which multiple outliers do not have a large
MDi . A solution to this problem is well known in 7robust
statistics: t andV have to be estimated in a robust manner,
where the expression “robust”means resistance against the
in�uence of outlying observations.�us, the “robusti�ed”
ordered Mahalanobis distances, RMD(i) may be plotted to
locate extreme outliers.�is is the approach considered by
Becker and Gather (), Filzmoser (), and Hardin
and Rocke () who studied outlier identi�cation rules
adapted to the sample size using di�erent location and
scatter robust estimators.
For a review on some of the robust estimators for loca-

tion and scatter introduced in the literature see Maronna
et al. (). �e minimum covariance determinant
(MCD) estimator – the procedure is due to Rousseeuw
() – is probablymost frequently used in practice, partly
because a computationally fast algorithm has been devel-
opped (Rousseeuw and Van Driessen ). �e MCD
estimator also bene�ts from the availability of so�ware
implementation in di�erent languages, includingR, S-Plus,
Fortran, Matlab, and SAS. For these reasons theMCD esti-
mator had gained much popularity, not only for outliers
identi�cation but also as an ingredient of many robust
multivariate techniques.
Other currently popular multivariate outlier detec-

tion methods fall under projection pursuit techniques,
originally proposed by Kruskal (). Projection pursuit
searches for “interesting” linear projections of multivari-
ate data sets, where a projection is deemed interesting if
it minimizes or maximizes a projection index (typically a
scale estimator).�erefore, the goal of projection pursuit
methods is to �nd suitable projections of the data in which
the outliers are readily apparent and may thus be down-
weighted to yield a estimator, which in turn can be used
to identify the outliers. Since they do not assume the data
to originate from a particular distribution but only search
for useful projections, projection pursuit procedures are
not a�ected by non-normality and can be widely applied
in diverse data situations. �e penalty for such freedom
comes in the form of increased computational burden,
since it is not clear which projections should be examined.
An exact method would require to test over all possible
directions.

�e most well-known outlier identi�cation method
based upon the projection pursuit concept is the Stahel–
Donoho (Stahel ; Donoho ) estimator. �is was
the �rst introduced high-breakdown and a�ne equivariant
estimator of multivariate location and scatter that became

better known a�er Maronna and Yohai () published
an analysis of it. It is based on a measure of the outlying-
ness of data points, which is obtained by projecting the
observation on univariate directions.�e Stahel–Donoho
estimator then computes a weighted mean and covariance
matrix, with weights inverse proportional to the outlying-
ness.�is outlyingness measure is based upon the projec-
tion pursuit idea that if a point is a multivariate outlier,
theremust be some one-dimensional projection of the data
in which this point is a univariate outlier. Using a partic-
ular observation as a reference point, the Stahel–Donoho
algorithm determines which directions have optimal val-
ues for a pair of robust univariate location/scale estimators
and then uses these estimators to assign weights to the
other points. One way of reducing the computational cost
of the Stahel–Donoho estimator is to reduce the number
of projections that need to be examined.
In this direction, Peña and Prieto () proposed a

method, the Kurtosis, which involves projecting the data
onto a set of p directions. �ese directions are chosen
to maximize and minimize the kurtosis coe�cient of the
data along them. A small number of outliers would cause
heavy tails and lead to a larger kurtosis coe�cient, while a
larger number of outlierswould start introducing bimodal-
ity and decrease the kurtosis coe�cient. Viewing the data
along projections that have maximum and minimum kur-
tosis values would therefore seem to display the outliers in
a more recognizable representation.
For a much more detailed overview about outliers see

Barnett and Lewis () and also Rousseeuw et al. ()
for a review on robust statistical methods and outlier
detection.
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Developments 7in multivariate statistical analysis have
genesis in the parametrics surrounding the multivariate
normal distribution (see 7Multivariate Normal Distribu-
tions) in the continuous casewhile the productmultinomial
law dominates in discrete multivariate analysis. Charac-
terizations of multi-normal distributions have provided
a wealth of rigid mathematical tools leading to a very
systematic evolution of mathematical theory laying down
the foundation of multivariate statistical methods. Inter-
nal multivariate analyses comprising of principal compo-
nent models, canonical correlation and factor analysis are
all based on appropriate invariance structures that exploit
the underlying linearity of the interrelation of di�erent
characteristics, without depending much on underlying

normality, and these tools are very useful in many areas
of applied research, such as sociology, psychology, eco-
nomics, and agricultural sciences. In the recent past, there
has been a phenomenal growth of multivariate analysis in
medical studies, clinical trials and7bioinformatics, among
others. �e role of multinormality is being scrutinized
increasingly in these contexts.
External multivariate analyses pertaining to

7multivariate analysis of variance (MANOVA) and covari-
ance (MANOCOVA), classi�cation and discrimination,
among others, have their roots in the basic assumption
of multinormal distribution, providing some optimal, or
at least desirable, properties of statistical inference proce-
dures. Such optimal statistical procedures generally exist
only when the multinormality assumption holds. Yet, in
real life applications, the postulation of multinormality
may not be tenable in a majority of cases. Whereas in the
univariate case, there are some other distributions, some
belonging to the so-called exponential family of densities
and some not, for which exact statistical inference can be
drawn, o�en being con�ned to suitable subclass of statis-
tical procedures. In the multivariate case, alternatives to
multinormal distributions are relatively few and lack gen-
erality. As such, almost �ve decades ago, it was strongly felt
that statistical procedures should be developed to bypass
the stringent assumption of multinormality; this is the
genesis ofmultivariate nonparametrics.
Whereas the classical normal theory likelihood based

multivariate analysis exploited a�ne invariance, leading
to some optimality properties, it has some shortcomings
too. A�ne invariance makes sense only when the di�er-
ent characteristics or variates are linearly combinable in
a meaningful way. Further, such parametric procedures
are quite vulnerable to even small departures from the
assumed multinormality. �us, they are generally nonro-
bust even in a local sense. Moreover, in many applications,
di�erent characteristics are recorded on di�erent units and
o�en on a relative scale (viz., ranking of n individuals on
somemultivariate traits) where linearly combinability may
not be compatible. Rather, it is more important to have
coordinatewise invariance under arbitrary strictly mono-
tone transformations – a feature that favors ranks over
actual measurements. Multivariate rank procedures have
this basic advantage of invariance under coordinatewise
arbitrary strictly monotone transformations, not neces-
sarily linear. Of course, this way the emphasis on a�ne
invariance is sacri�ced, albeit, there are a�ne-invariant
rank procedures too (see Oja ).

�e basic di�erence between univariate and multi-
variate rank procedures is that for suitable hypothesis of
invariance, in the univariate case, such procedures are gen-
uinely distribution-free, whereas in the multivariate case,
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even the hypothesis of invariance holds, these tests are usu-
ally conditionally distribution-free.�is feature, known as
the rank-permutation principle, was initially developed by
Chatterjee and Sen () and in a more general frame-
work, compiled and reported in Puri and Sen (), the
�rst text in multivariate nonparametrics. During the past
four decades, a phenomenal growth of research litera-
ture in multivariate nonparametrics has taken place; spe-
ci�c entries in the Encyclopedia of Statistical Science and
Encyclopedia of Biostatistics (both published from Wiley-
Interscience, New York) provide detailed accounts of these
developments.
In the recent past, high-dimensional low sample size

(HDLSS) problems have cropped up in diverse �elds of
application. In this setup, the dimension is generally far
larger than the number of sample observations, and hence,
standard parametric procedures are untenable; nonpara-
metrics fare much better.�is is a new frontier of multi-
variate nonparametrics and there is a tremendous scope
of prospective research with deep impact on fruitful appli-
cations. 7Data mining (or knowledge discovery and data
mining) and statistical learning algorithms also rest on
multivariate nonparametrics to a greater extent. Bioin-
formatics and environmetrics problems also involve such
nonstandard multivariate nonparametric procedures. In
a micro-array data model, an application of multivariate
rankmethods has been thoroughly explored in Sen ().
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nonparametric methods. He is also the �rst person who
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Schell, A Conversation with Pranab Kumar Sen, Statistical
Science, Volume , Number  (), –.
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Multivariate Reduced-Rank
Regression
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Multivariate reduced-rank regression is away of constrain-
ing the multivariate linear regression model so that the
rank of the regression coe�cient matrix has less than full
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rank. Without the constraint, multivariate linear regres-
sion has no true multivariate content.
To see this, suppose we have a random r-vector X

= (X, . . . ,Xr)τ of predictor (or input) variables with
mean vector µX and covariance matrix ΣXX , and a random
s-vectorY= (Y, . . . ,Ys)τ of response (or output) variables
with mean vector µY and covariance matrix ΣYY . Suppose
that the (r+s)-vectorZ = (Xτ ,Yτ

)
τ has a joint distribution

with mean vector and covariance matrix,

µZ =
⎛
⎜
⎜
⎝

µX

µY

⎞
⎟
⎟
⎠

, ΣZZ =
⎛
⎜
⎜
⎝

ΣXX ΣXY

ΣYX ΣYY

⎞
⎟
⎟
⎠

, ()

respectively, where we assume that ΣXX and ΣYY are both
nonsingular. Now, consider the classicalmultivariate linear
regression model,

s×
Y =

s×
µ +

s×r
Θ
r×
X +

s×
E , ()

where Y depends linearly on X, µ is the overall mean vec-
tor,Θ is the multivariate regression coe�cient matrix, and
E is the error term. In this model, µ and Θ are unknown
and are to be estimated. �e least-squares estimator of
(µ,Θ) is given by

(µ∗,Θ∗) = arg min
µ,Θ
E{(Y−µ−ΘX)(Y−µ−ΘX)τ

}, ()

where
µ∗ = µY −Θ

∗µX , Θ
∗
= ΣYXΣ−XX . ()

In (), the expectation is taken over the joint distribution of
(Xτ ,Y τ

)
τ .�e minimum achieved is ΣYY − ΣYXΣ−XXΣXY .

�e (s × r)-matrix Θ∗ is called the (full-rank) regres-
sion coe�cient matrix. �is solution is identical to that
obtained by performing a sequence of s ordinary least-
squares multiple regressions. For the jth such multiple
regression, Yj is regressed on the r-vector X, where j =
, , . . . , s. Suppose the minimizing regression coe�cient
vectors are the r-vectors β∗j , j = , , . . . , s. Arranging
the coe�cient vectors as the columns, (β∗ , . . . , β

∗
r ), of an

(r × s)-matrix, and then transposing the result, it follows
from () that

Θ∗ = (β∗ , . . . , β
∗
r )

τ . ()

�us, multivariate linear regression is equivalent to just
carrying out a sequence ofmultiple regressions.�is is why
multivariate regression is o�en confused with multiple
regression.
Now, rewrite the multivariate linear model as

s×
Y =

s×
µ +

s×r
C
r×
X +

s×
E , ()

where the rank constraint is

rank(C) = t ≤ min(r, s). ()

Equations () and () form the multivariate reduced-rank
regression model. When the rank condition () holds,
there exist two (nonunique) full-rank matrices A and B,
whereA is an (s× t)-matrix and B is a (t× r)-matrix, such
that

s×r
C =

s×t
A
t×r
B . ()

�e multivariate reduced-rank regression model can now
be written as

s×
Y =

s×
µ +

s×t
A
t×r
B
r×
X +

s×
E . ()

�e rank condition has been embedded into the regression
model.�e goal is to estimate µ, A, and B (and, hence, C).
Let Γ be a positive-de�nite symmetric (s× s)-matrix of

weights.�e weighted least-squares estimates of (µ,A,B)
are

(µ∗,A∗,B∗) = arg min
µ,A,B

E{(Y−µ−ABX)τΓ(Y−µ−ABX)}

()
where

µ∗ = µY −ABµX ()

A∗ = Γ−/V ()
B∗ = VτΓ/ΣYXΣ−XX , ()

andV = (v, . . . , vt) is an (s× t)-matrix, where the jth col-
umn, vj, is the eigenvector corresponding to the jth largest
eigenvalue, λj, of the (s × s) symmetric matrix,

Γ/ΣYXΣ−XXΣXYΓ
/. ()

�emultivariate reduced-rank regression coe�cientmatrix
C with rank t is, therefore, given by

C∗ = Γ−/
⎛

⎝

t

∑
j=
vjvτ

j
⎞

⎠
Γ/ΣYXΣ−XX . ()

�e minimum achieved is tr{ΣYYΓ} −∑tj= λj.
�e main reason that multivariate reduced-rank

regression is so important is that it contains as spe-
cial cases the classical statistical techniques of 7principal
component analysis, canonical variate and correlation
analysis (see 7Discriminant Analysis: An Overview, and
7Discriminant Analysis: Issues and Problems), linear dis-
criminant analysis, exploratory factor analysis, multiple
correspondence analysis, and other linear methods of ana-
lyzing multivariate data. It is also closely related to arti-
�cial neural network models and to cointegration in the
econometric literature.
For example, the special cases of principal compo-

nent analysis, canonical variate and correlation analysis,
and linear discriminant analysis are given by the follow-
ing choices: For principal component analysis, set X ≡ Y
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and Γ = Is; for canonical variate and correlation anal-
ysis, set Γ = Σ−YY ; for linear discriminant analysis, use
the canonical-variate analysis choice of Γ and set Y to be
a vector of binary variables whose component values (
or ) indicate the group or class to which an observation
belongs. Details of these and other special cases can be
found in Izenman (). If the elements of ΣZZ in () are
unknown, as will happen in most practical problems, they
have to be estimated using sample data on Z.

�e relationships between multivariate reduced-rank
regression and the classical linear dimensionality reduc-
tion techniques become more interesting when the meta-
parameter t is unknown and has to be estimated.�e value
of t is called the e�ective dimensionality of the multivariate
regression (Izenman ). Estimating t is equivalent to the
classical problems of determining the number of princi-
pal components to retain, the number of canonical variate
to retain, or the number of linear discriminant functions
necessary for classi�cation purposes. Graphical methods
for estimating t include the scree plot, the rank trace plot,
and heatmap plots. Formal hypothesis tests have also been
developed for estimating t.
When the number of variables is greater than the num-

ber of observations, some adjustments to the results have to
be made to ensure that ΣXX and ΣYY can be inverted. One
simple way of doing this is to replace ΣXX by ΣXX + δIr
and to replace ΣYY by ΣYY + κIs as appropriate, where
δ >  and κ > . Other methods, including regularization,
banding, tapering, and thresholding, have been studied for
estimating large covariance matrices and can be used here
as appropriate.

�e multivariate reduced-rank regression model can
also be developed for the case of nonstochastic (or �xed)
predictor variables.

�emultivariate reduced-rank regressionmodel has its
origins inAnderson (), Rao (, ), and Brillinger
(), and its name was coined by Izenman (, ).
For the asymptotic distribution of the estimated reduced-
rank regression coe�cient matrix, see Anderson (),
who gives results for both the random-X and �xed-X
cases. Additional references are themonographs by van der
Leeden () and Reinsel and Velu ().
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Classical multivariate statistical methods concern models,
distributions and inference based on the Gaussian dis-
tribution. �ese are the topics in the �rst textbook for
mathematical statisticians by T.W.Anderson that was pub-
lished in  and that appeared as a slightly expanded
rd edition in . Matrix theory and notation is used
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there extensively to e�ciently derive properties of themul-
tivariate Gaussian or the Wishart distribution, of princi-
pal components, of canonical correlation and discrimi-
nant analysis (see 7Discriminant Analysis: An Overview,
and 7Discriminant Analysis: Issues and Problems) and of
the general multivariate linear model in which a Gaus-
sian response vector variable Ya has linear least-squares
regression on all components of an explanatory vector
variable Yb.
In contrast, many methods for analyzing sets of

observed variables have been developed �rst within spe-
cial substantive �elds and some or all of the models in
a given class were justi�ed in terms of probabilistic and
statistical theory much later. Among them are factor anal-
ysis (see7Factor Analysis and Latent Variable Modelling),
path analysis, 7structural equation models, and mod-
els for which partial-least squares estimation have been
proposed. Other multivariate techniques such as cluster
analysis (see 7Cluster Analysis: An Introduction) and
7multidimensional scaling have been o�en used, but the
result of such an analysis cannot be formulated as a hypoth-
esis to be tested in a new study and satisfactory theoretical
justi�cations are still lacking.
Factor analysis was proposed by psychologist

C. Spearman (), () and, at the time, thought of as
a tool for measuring human intelligence. Such a model has
one or several latent variables.�ese are hidden or unob-
served and are to explain the observed correlations among
a set of observed variables, called items in that context.�e
di�cult task is to decide how many and which of a possi-
bly large set of items to include into a model. But, given
a set of latent variables, a classical factor analysis model
speci�es for a joint Gaussian distribution mutual indepen-
dence of the observed variables given the latent variables.
�is can be recognized to be one special type of a graphi-
cal Markov model; see Cox andWermuth (), Edwards
(), Lauritzen (), Whittaker ().
Path analysis was developed by geneticist S. Wright

(), () for systems of linear dependence of variables
with zero mean and unit variance. He used what we now
call directed acyclic graphs to represent hypotheses of how
the variables he was studying could have been generated.
He compared correlations implied for missing edges in the
graph with corresponding observed correlations to test the
goodness of �t of such a hypothesis.
By now it is known, under which condition for these

models in standardized Gaussian variables, maximum-
likelihood estimates of correlations coincide with Wright’s
estimates via path coe�cients.�e condition on the graph
is simple: there should be no three-node-two-edge sub-
graph of the following kind ○ ≻ ○ ≺ ○. �en, the
directed acyclic graph is said to be decomposable and

captures the same independences as the concentration
graph obtained by replacing each arrow by an undirected
edge. In such Gaussian concentration graph models, esti-
mated variances are matched to the observed variances so
that estimation of correlations and variances is equivalent
to estimation of covariances and variances.
Wright’s method of computing implied path coef-

�cients by “tracing paths” has been generalized via a
so-called separation criterion. �is criterion, given by
Geiger, Verma and Pearl (), permits to read o� a
directed acyclic graph all independence statements that
are implied by the graph.�e criterion takes into account
that not only ignoring (marginalizing over) variablesmight
destroy an independence, but also conditioning on com-
mon responses may render two formerly independent
variables to be dependent. In addition, the separation
criterion holds for any distribution generated over the
graph.

�e separation criterion for directed acyclic graphs has
been translated into conditions for the presence of edge-
inducing paths in the graph; see Marchetti and Wermuth
(). Such an edge-inducing path is also association-
inducing in the corresponding model, given some mild
conditions on the graph and on the distributions gener-
ated over it; seeWermuth (). In the special case of only
marginalizing over linearly related variables, these induced
dependences coincide with the path-tracing results given
by Wright provided the directed acyclic graph model is
decomposable and the variables are standardized to have
zero means and unit variances. �is applies not only
to Gaussian distributions but also to special distribu-
tions of symmetric binary variables; see Wermuth et al.
().
Typically however, directed acyclic graph models are

de�ned for unstandardized random variables of any type.
�en,most dependences are no longer appropriately repre-
sented by linear regression coe�cients or correlations, but
maximum-likelihood estimates of all measures of depen-
dence can still be obtained by separately maximizing each
univariate conditional distribution, provided only that its
parameters are variation-independent from parameters of
distributions in the past.
Structural equation models, developed in economet-

rics, can be viewed as another extension of Wright’s path
analyses.�e result obtained by T. Haavelmo () gave
an important impetus. For his insight that separate lin-
ear least-squares estimation may be inappropriate for
equations having strongly correlated residuals, Haavelmo
received a Nobel prize in . It led to a class of models
de�ned by linear equations with correlated residuals and
to responses called endogenous. Other variables condi-
tioned on and considered to be predeterminedwere named
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exogenous. Vigorous discussions of estimation methods
for structural equations occurred during the �rst few
Berkeley symposia on mathematical statistics and proba-
bility from  to .
Path analysis and structural equation models were

introduced to sociological research via the work by O.D.
Duncan (, ). Applications of structural equa-
tion models in psychological and psychometric research
resulted from cooperations between A. Goldberger and
K. Jöreskog; seeGoldberger (, ) and Jöreskog (,
). �e methods became widely used once a corre-
sponding computer program for estimation and tests was
made available; see also Kline ().
In , A. Zellner published his results on seem-

ingly unrelated regressions. He points out that two sim-
ple regression equations are not separate if the two
responses are correlated and that two dependent endoge-
nous variables need to be considered jointly and require
simultaneous estimation methods.�ese models are now
recognized as special cases of both linear structural equa-
tions and of multivariate regression chains, a subclass of
graphical Markov models; see Cox and Wermuth (),
Drton (), Marchetti and Lupparelli ().
But it was not until  years later, that a maximum-

likelihood solution for the Gaussian distribution in four
variables, split into a response vector Ya and vector vari-
able Yb, was given and an example of a poorly �tting data
set with very few observations for which the likelihood
equations have two real roots; see Drton and Richardson
(). For well-�tting data and reasonably large sample
sizes, this is unlikely to happen; see Sundberg (). For
such situations, a close approximation to the maximum-
likelihood estimate has been given in closed form for the
seemingly unrelated regression model, exploiting that it is
a reduced model to the covering model that has closed-
form maximum-likelihood estimates, the general linear
model of Ya given Yb; see Wermuth et al. (), Cox and
Wermuth ().
For several discrete random variables of equal stand-

ing, i.e., without splits into response and explanatory
variables, maximum-likelihood estimation was developed
under di�erent conditional independence constraints in a
path-breaking paper by M. Birch (). �is led to the
formulation of general log-linearmodels, whichwere stud-
ied intensively among others by Haberman (), Bishop
et al. (), Sundberg () and by L. Goodman, as sum-
marized in a book of his main papers on this topic, pub-
lished in . His work was motivated mainly by research
questions from the social and medical sciences.
For several Gaussian variables of equal standing, two

di�erent approaches to reducing the number of parameters
in a model, were proposed at about the same time. T. W.

Anderson put structure on the covariances, the moment
parameters of a joint Gaussian distribution and called the
resulting models, hypotheses linear in covariances; see
Anderson (), while A. P. Dempster put structure on the
canonical parameters with zero constraints on concentra-
tions, the o�-diagonal elements of the inverse of a covari-
ance matrix, and called the resulting models covariance
selection models; see Dempster ().
Nowadays, log-linear models and covariance selection

models are viewed as special cases of concentration graph
models and zero constraints on the covariance matrix
of a Gaussian distribution as special cases of covariance
graph models. Covariance and concentration graph mod-
els are graphical Markov models with undirected graphs
capturing independences. A missing edge means marginal
independence in the former and conditional indepen-
dence given all remaining variables in the latter; see also
Wermuth and Lauritzen (), Wermuth and Cox (),
(), Wermuth ().

�e largest known class of Gaussian models that is
in common to structural equation models and to graph-
ical Markov models are the recursive linear equations
with correlated residuals. �ese include linear summary
graphmodels ofWermuth (), linearmaximal ancestral
graph of Richardson and Spirtes (), linear multivari-
ate regression chains, and linear directed acyclic graph
models. De�ciencies of some formulations start to be dis-
covered by using algebraic methods. Identi�cation is still
an issue to be considered for recursive linear equations
with correlated residuals, since so far only necessary or
su�cient conditions are known but not both. Similarly,
maximum-likelihood estimation still needs further explo-
ration; see Drton et al. ().
For several economic time series, it became possible

to judge whether such �uctuating series develop neverthe-
less in parallel, that is whether they represent cointegrating
variables because they have a common stochastic trend.
Maximum-likelihood analysis for cointegrating variables,
formulated by Johansen (, ), has led to many
important applications and insights; see also Hendry and
Nielsen ().
Algorithms and corresponding programs are essential

for any widespread use of multivariate statistical meth-
ods and for successful analyses. In particular, iterative
proportional �tting, formulated by Bishop () for log-
linear models, and studied further by Darroch and Ratcli�
(), was adapted to concentration graph models for
CG (conditional Gaussian)-distributions (Lauritzen and
Wermuth ) ofmixed discrete and continuous variables
by Frydenberg and Edwards ().

�e EM (expectation-maximization)-algorithm of
Dempster et al. () was adapted to Gaussian directed
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acyclic graphmodels with latent variables by Kiiveri ()
and to discrete concentration graph models with missing
observation by Lauritzen ().
With the TM-algorithm of Edwards and Lauritzen

(), studied further by Sundberg (), maximum-
likelihood estimation became feasible for all chain graph
models called blocked concentration chains in the case
these are made up of CG (conditional Gaussian)-
regressions (Lauritzen and Wermuth ).
For multivariate regression chains of discrete ran-

dom variables, maximum-likelihood estimation has now
been related to the multivariate logistic link function by
Marchetti and Lupparelli (), where these link func-
tions provide a common framework and corresponding
algorithm for 7generalized linear models, which include
among others linear, logistic and probit regressions as spe-
cial cases; see McCullagh and Nelder (), Glonek and
McCullagh ().
Even in linear models, estimation may become di�-

cult when some of the explanatory variables are almost
linear functions of others, that is if there is a prob-
lem of 7multicollinearity. �is appears to be o�en the
case in applications in chemistry and in the environmen-
tal sciences. �us, in connection with consulting work
for chemists, Hoerl and Kennard () proposed the
use of ridge-regression (see 7Ridge and Surrogate Ridge
Regressions) instead of linear least-squares regression.
�is means for regressions of vector variable Y on X, to
add to XTX some positive constant k along the diagonal
before matrix inversion to give as estimator β̃ = (kI +
XTX)−XTY .
Both ridge-regression and partial-least-squares, (see

7Partial Least Squares Regression Versus Other Meth-
ods) proposed as an estimation method in the presence
of latent variables by Wold (), have been recognized
by Björkström and Sundberg () to be shrinkage esti-
mators and as such special cases of Tykhonov ()
regularization.
More recently, a number of methods have been sug-

gested which combine adaptive skrinkage methods with
variable selection. A unifying approach which includes
the least-squares estimator, shrinkage estimators and var-
ious combinations of variable selection and shrinkage has
recently been given via a least squares approximation by
Wang and Leng (). Estimation results depend nec-
essarily on the chosen formulations and the criteria for
shrinking dependences and for selecting variables.
Many more specialized algorithms and programs have

been made available within the open access programming
environment R, also those aiming to analyze large numbers
of variables for only few observed individuals. It remains

to be seen, whether important scienti�c insights will be
gained by their use.

About the Author
Dr Nanny Wermuth is Professor of Statistics, at the joint
Department of Mathematical Sciences of Chalmers Tech-
nical University and the University of Gothenburg. She is a
Past President, Institute of Mathematical Statistics (–
) and Past President of the International Biometric
Society (–). In  she was awarded a Max
Planck-Research Prize, jointly with Sir David Cox. She
chaired the Life Science Committee of the International
Statistical Institute (–) and was an Associate edi-
tor of the Journal of Multivariate Analysis (–) and
Bernoulli (–). Professor Wermuth is an Elected
member of the German Academy of Sciences and of the
International Statistical Institute (), an elected Fellow
of the American Statistical Association (), and of the
Institute of Mathematical Statistics (). She is a co-
author (with David R. Cox) of the textMultivariate depen-
dencies: models, analysis and interpretation (Chapman and
Hall, ).

Cross References
7Canonical Correlation Analysis
7Cluster Analysis: An Introduction
7Correspondence Analysis
7Discriminant Analysis: An Overview
7Discriminant Analysis: Issues and Problems
7Factor Analysis and Latent Variable Modelling
7General Linear Models
7Likelihood
7Logistic Regression
7Multidimensional Scaling
7Multidimensional Scaling: An Introduction
7Multivariate Analysis of Variance (MANOVA)
7Multivariate Data Analysis: An Overview
7Multivariate Normal Distributions
7Multivariate Rank Procedures: Perspectives and
Prospectives
7Multivariate Reduced-Rank Regression
7Multivariate Statistical Process Control
7Multivariate Technique: Robustness
7Partial Least Squares Regression Versus Other Methods
7Principal Component Analysis
7R Language
7Ridge and Surrogate Ridge Regressions
7Structural Equation Models



Multivariate Statistical Analysis M 

M

References and Further Reading
Anderson TW () An introduction to multivariate statistical

analysis. Wiley, New York; () rd edn. Wiley, New York
Anderson TW () Asymptotically efficient estimation of covari-

ance matrices with linear structure. Ann Stat :–
Birch MW () Maximum likelihood in three-way contingency

tables. J Roy Stat Soc B :–
Bishop YMM () Multidimensional contingency tables: cell esti-

mates. Ph.D. dissertation, Department of Statistics, Harvard
University

Bishop YMM, Fienberg SE, Holland PW () Discrete multivariate
analysis: theory and practice. MIT Press, Cambridge

Björkström A, Sundberg R () A generalized view on continuum
regression. Scand J Stat :–

Cox DR, Wermuth N () An approximation to maximum-
likelihood estimates in reduced models. Biometrika :–

Cox DR, Wermuth N () Linear dependencies represented by
chain graphs (with discussion). Stat Sci :–; –

Cox DR, Wermuth N () Multivariate dependencies: models,
analysis, and interpretation. Chapman & Hall, London

Darroch JN, Ratcliff D () Generalized iterative scaling for log-
linear models. Ann Math Stat :–

Dempster AP () Covariance selection Biometrics :–
Dempster AP, Laird NM, Rubin DB () Maximum likelihood

from incomplete data via the EM algorithm. J Roy Stat Soc B
:–

Drton M () Discrete chain graph models. Bernoulli :–
Drton M, Richardson TS () Multimodality of the likelihood in

the bivariate seemingly unrelated regression model. Biometrika
:–

Drton M, Eichler M, Richardson TS () Computing maximum
likelihood estimates in recursive linear models. J Mach Learn
Res :–

Duncan OD () Path analysis: sociological examples. Am J Sociol
:–

Duncan OD () Introduction to structural equation models.
Academic, New York

Edwards D () Introduction to graphical modelling, nd edn.
Springer, New York

Edwards D, Lauritzen SL () The TM algorithm for maximising
a conditional likelihood function. Biometrika :–

Frydenberg M, Edwards D () A modified iterative proportional
scaling algorithm for estimation in regular exponential families.
Comput Stat Data Anal :–

Frydenberg M, Lauritzen SL () Decomposition of maximum
likelihood in mixed interaction models. Biometrika :–

Geiger D, Verma TS, Pearl J () Identifying independence in
Bayesian networks. Networks :–

Glonek GFV, McCullagh P () Multivariate logistic models. J Roy
Stat Soc B :–

Goldberger AS () Econometrics and psychometrics: a survey of
communalities. Psychometrika :–

Goldberger AS () Structural equation methods in the social
sciences. Econometrica :–

Goodman LA () Analyzing qualitative/categorical data. Abt
Books, Cambridge

Haberman SJ () The analysis of frequency data. University of
Chicago Press, Chicago

Haavelmo T () The statistical implications of a system of simul-
taneous equations. Econometrica :–; Reprinted in: Hendry

DF, Morgan MS (eds) () The foundations of econometric
analysis. Cambridge University Press, Cambridge

Hendry DF, Nielsen B () Econometric modeling: a likelihood
approach. Princeton University Press, Princeton

Hoerl AE, Kennard RN () Ridge regression. Biased estimation
for non-orthogonal problems. Technometrics :–

Johansen S () Statistical analysis of cointegration vectors. J Econ
Dyn Contr :–; Reprinted in: Engle RF, Granger CWJ
(eds) () Long-run economic relationships, readings in coin-
tegration. Oxford University Press, Oxford, pp –

Johansen S () Cointegration: overview and development. In:
Handbook of financial time series, Andersen TG, Davis R,
Kreiss J-P, Mikosch T (eds), Springer, New York, pp –

Jöreskog KG () A general method for estimating a linear struc-
tural equation system. In: Structural equation models in the
social sciences, Goldberger AS, Duncan OD (eds), Seminar,
New York, pp –

Jöreskog KG () Analysis of covariance structures. Scan J Stat
:–

Kiiveri HT () An incomplete data approach to the analysis of
covariance structures. Psychometrika :–

Kline RB () Principles and practice of structural equation mod-
eling, rd edn. Guilford, New York

Lauritzen SL () The EM-algorithm for graphical association
models with missing data. Comp Stat Data Anal :–

Lauritzen SL () Graphical models. Oxford University Press,
Oxford

Lauritzen SL, Wermuth N () Graphical models for associa-
tion between variables, some of which are qualitative and some
quantitative. Ann Stat :–

Marchetti GM, Lupparelli M () Chain graph models of multi-
variate regression type for categorical data. Bernoulli, to appear
and available on ArXiv, http://arxiv.org/abs/.v

Marchetti GM, Wermuth N () Matrix representations and inde-
pendencies in directed acyclic graphs. Ann Stat :–

McCullagh P, Nelder JA () Generalized linear models, nd edn.
Chapman & Hall/CRC, Boca Raton

Richardson TS, Spirtes P () Ancestral Markov graphical models.
Ann Stat :–

Spearman C () General intelligence, objectively determined and
measured. Am J Psych :–

Spearman C () The abilities of man. Macmillan, New York
Sundberg R () Some results about decomposable (or Markov-

type) models for multidimensional contingency tables: distri-
bution of marginals and partitioning of tests. Scand J Stat
:–

Sundberg R () The convergence rate of the TM algorithm of
Edwards and Lauritzen. Biometrika :–

Sundberg R () Flat and multimodal likelihoods and model lack
of fit in curved exponential families. Scand J Stat, published
online:  June 

Tikhonov AN () Solution of ill-posed problems and the regular-
ization method (Russian). Dokl Akad Nauk SSSR :–

Wang H, Leng C () Unified lasso estimation via least square
approximation. J Am Stat Assoc :–

Wermuth N () Probability distributions with summary graph
structure. Bernoulli, to appear and available on ArXiv, http://
arxiv.org/abs/.

Wermuth N, Cox DR () On association models defined over
independence graphs. Bernoulli :–

http://arxiv.org/abs/1003.3259
http://arxiv.org/abs/1003.3259
http://arxiv.org/abs/0906.2098v2


 M Multivariate Statistical Distributions

Wermuth N, Cox DR () Joint response graphs and separation
induced by triangular systems. J Roy Stat Soc B :–

Wermuth N, Lauritzen SL () On substantive research hypothe-
ses, conditional independence graphs and graphical chain mod-
els (with discusssion). J Roy Stat Soc B :–

Wermuth N, Marchetti GM, Cox DR () Triangular systems for
symmetric binary variables. Electr J Stat :–

Whittaker J () Graphical models in applied multivariate statis-
tics. Wiley, Chichester

Wold HOA () Causality and econometrics. Econometrica
:–

Wold HOA () Model construction and evaluation when theo-
retical knowledge is scarce: theory and application of partial
least squares. In: Evaluation of econometric models, Kmenta J,
Ramsey J (eds), Academic, New York, pp –

Wright S () The theory of path coefficients: a reply to Niles’
criticism. Genetics :–

Wright S () The method of path coefficients. Ann Math Stat
:–

Zellner A () An efficient method of estimating seemingly unre-
lated regressions and tests for aggregation bias. J Am Stat Assoc
:–

Multivariate Statistical
Distributions
Donald R. Jensen
Professor Emeritus
Virginia Polytechnic Institute and State University,
Blacksburg, VA, USA

Origins and Uses
Multivariate distributions (MDs) are de�ned on �nite-
dimensional spaces. Origins trace to early studies of
7multivariate normal distributions as models for depen-
dent chance observations (Adrian ; Bravais ;
Dickson ; Edgeworth ; Galton ; Gauss ;
Helmert ; Laplace ; Pearson ; Plana ;
Schols ; Spearman ; Student ); for two
and three dimensions in Bravais () and Schols
(); and for �nite dimensions in Edgeworth ()
and Gauss (), advancing such now–familiar con-
cepts as regression and partial correlation. Let Y =
[Y, . . . ,Y] designate chance observations; in pharma-
cology as systolic (Y) and diastolic (Y) pressures,
pulse rate (Y), and gross (Y) and �ne (Y) motor
skills. Strengths of materials may register moduli of elas-
ticity (Y) and of rupture (Y), speci�c gravity (Y),
coe�cient of linear expansion (Y), and melting point
(Y). A complete probabilistic description of each vector
observation entails the joint distribution of [Y, . . . ,Y].

A sample of n such k–vectors, arranged as rows, yields a
random matrix Y = [Yij] of order (n×k), its distribution
supporting much of 7multivariate statistical analysis.
Beyond modeling chance outcomes, MDs describe

probabilistic features of data–analytic operations, to
include statistical inference, decision theory (see7Decision
�eory: An Introduction, and 7Decision �eory: An
Overview), and other evidentiary analyses. In infer-
ence the frequentist seeks joint distributions () of mul-
tiparameter estimates, and () of statistics for testing
multiple hypotheses, both parametric and nonparamet-
ric. Such distributions derive from observational mod-
els. Similarly, multiparameter Bayesian methods require
MDs in modeling prior, contemporary, and posterior dis-
tributions for the parameters. In addition, MDs serve
to capture dependencies owing to repeated measure-
ments on experimental subjects. MDs derive from other
distributions through transformations, projections, con-
ditioning, convolutions, extreme values, mixing, com-
pounding, truncating, and censoring. Speci�cally, exper-
iments modeled conditionally in a random environ-
ment yield unconditional distributions as mixtures; see
Everitt and Hand (), Lindsay (), McLachlan and
Basford (), and Titterington et al. (). Random
processes, to include such concepts as stationarity, are
characterized through MDs as their �nite–dimensional
projections. Beyond probability, MD–theory occasionally
supports probabilistic proofs for purely mathematical the-
orems. In short, MDs arise throughout statistics, applied
probability, and beyond, and their properties are essential
to understanding those �elds.
In what follows Rk, Rk+, Fn×k, Sk, and S+k respectively

designate Euclidean k–space, its positive orthant, the real
(n×k) matrices, the real symmetric (k×k) matrices, and
their positive de�nite varieties. Special arrays are Ik, the
(k×k) identity, and the diagonal matrix Diag(a, . . . , ak).
�e transpose, inverse, trace, and determinant of A ∈Fk×k
are A′, A−, tr(A), and ∣ A ∣, with a′ = [a, . . . , ak] as the
transpose of a ∈Rk. For Y ∈Rk random, its expected vec-
tor, dispersion matrix, and law of distribution are E(Y) ∈

Rk, V(Y) ∈ S+k , and L(Y). Abbreviations include pdf ,
pmf , cdf , and chf , for probability density, probability mass,
cumulative distribution, and 7characteristic functions,
respectively.

Some Properties
MDs merit scrutiny at several levels. At one extreme are
weak assumptions on existence of low-order moments,
as in Gauss–Markov theory. At the other extremity are
rigidly parametric models, having MDs of speci�ed func-
tional forms to be surveyed subsequently. In between are
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Multivariate Statistical Distributions. Table  Examples of
spherical distributions on Rn having density f(x) or
characteristic function ξ(t); see Chmielewski ()

Type Density or chf Comments

Normal f(x) = c exp(−x′x/) Nn(, In)

Pearson Type II f(x) = c( − x′x)γ− γ> 

Pearson Type VII f(x) = c( + x′x)−γ γ>n/

Student t f(x) = c( + ν−x′x)−(ν+n)/ ν a positive
integer

Cauchy f(x) = c( + x′x)−(n+)/ Student t
ν = 

Scale mixtures f(x) = c

∫ ∞ t−n/ exp(−x′x/t)dG(t)
G(t) a cdf

Stable laws ξ(t) = c exp[γ(t′t)α/] <α<
; γ>

classes ofMDs exhibiting such common structural features
as symmetry or unimodality, giving rise to semiparametric
models of note. Of particular relevance are derived distri-
butions that are unique to all members of an underlying
class.
Speci�cally, distributions on Fn×k in the class {Ln,k(Θ,

Γ,Σ); ϕ ∈ Φ} have pdf s as given in Table . Here
Θ ∈ Fn×k comprise location parameters; Γ ∈ S+n and
Σ ∈ S+k are scale parameters; ϕ(⋅) is a function on
S+k ; and Σ

−  is a factor of Σ−. �ese distributions are
invariant for Γ = In in that L(Y − Θ) = L(Q(Y −

Θ)) for every real orthogonal matrix Q(n × n). A sub-
class, taking ϕ(A) = ψ(tr(A)), with ψ de�ned on
[,∞), is Sn,k(Θ, Γ,Σ) as in Table . Here independence
among rows of Y = [y, . . . , yn]

′ and multinormality are
linked: If L(Y) ∈ Sn,k(Θ, In,Σ), then {y, . . . , yn} are
mutually independent if and only if Y is matrix nor-
mal, namely Nn,k(Θ, In,Σ) on Fn×k; see James ().
A further subclass on Rn, with k =  and Σ(×) = , are
the elliptical distributions on Rn, namely, {Sn(θ, Γ,ψ);ψ ∈

Ψ}, with location-scale parameters (θ, Γ) and the typical
pdf f (y) = ∣ Γ ∣

−  ψ((y − θ)′Γ−(y − θ)). �e fore-
going all contain multivariate normal and heavy–tailed
Cauchy models as special cases, and all have served as
observational models in lieu of multivariate normality. In
particular, {Sn(θ, In,ψ);ψ ∈ Ψ} o�en serve as semipara-
metric surrogates for Nn(θ, In) in univariate samples, and
{Ln,k(Θ, Γ,Σ); ϕ ∈Φ} in the analysis of multivariate data.
Examples from {Sn(θ, In,ψ);ψ ∈ Ψ} are listed in Table ,

cross-referenced as in Chmielewski () to well-known
distributions on R.
Inferences built on these models o�en remain exact as

for normal models, certifying their use as semiparametric
surrogates.�is follows from the invariance of stipulated
derived distributions as in Jensen and Good (). Fur-
ther details, for their use as observational models on Rk

and Fn×k, for catalogs of related and derived distributions,
and for the robustness of various inferential procedures,
are found in Cambanis et al. (), Chmielewski (),
Devlin et al. (), Fang and Anderson (), Fang et al.
(), Fang and Zhang (), James (), and Kariya
and Sinha (). Regarding {Ln,k(Θ, Γ,Σ); ϕ ∈Φ} and its
extensions, see Dawid (), Dempster (), and Jensen
andGood ().�ese facts bear heavily on the robustness
and validity of normal-theory procedures for usewith non-
normal data, including distributions having heavy tails.
�e cited distributions all exhibit symmetries, including
symmetries under re�ections. Considerable recent work
addresses skewed MDs, o�en resulting from truncation;
see Arnold and Beaver (), for example.
Properties of distributions on R o�en extend

nonuniquely to the case of MDs. Concepts of unimodal-
ity on Rk are developed in Dharmadhikari and Joag-Dev
(), some enabling a sharpening of joint Chebyshev
bounds. Stochastic ordering on R likewise admits a mul-
tiplicity of extensions.�ese in turn support useful proba-
bility inequalities onRk as in Tong (),many pertaining
to distributions cited here. Let µ(⋅) and ν(⋅) be probabil-
ity measures on Rk, and Ck the compact convex sets in
Rk symmetric under re�ection about  ∈ Rk. �e con-
centration ordering (Birnbaum ) on R is extended
in Sherman (): µ(⋅) is said to be more peaked about
 ∈ Rk than ν(⋅) if and only if µ(A) ≥ ν(A) for every
A∈Ck. Speci�cally, let PΣ(⋅;ψ) and PΩ(⋅;ψ) be probability
measures for Sn(,Σ,ψ) and Sn(,Ω,ψ).�en a neces-
sary and su�cient condition that PΣ(⋅;ψ) should be more
peaked about  than PΩ(⋅;ψ), is that (Ω−Σ) ∈ S+n , su�-
ciency in Fe�erman et al. (), necessity in Jensen ().
Similar orderings apply when both (Σ,ψ) are allowed to
vary (Jensen ), extending directly to include distri-
butions in {Sn,k(, Γ,Σ,ψ);ψ ∈ Ψ}. Numerous further
notions of stochastic orderings for MDs are treated in
Shaked and Shanthikumar ().
Interest in MDs o�en centers on their dependencies.

A burgeoning literature surrounds 7copulas, expressing
a joint distribution function in terms of its marginals,
together with a �nite–dimensional parameter quantifying
the degree of dependence; see Nelsen () for example.
Further concepts of dependence, including notions rooted
in the geometry of Rk, are developed in Joe ().
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The Basic Tools
Let (Ω,B,P) be a probability space, Ω an event set, B a
�eld of subsets of Ω, and P a probability measure. Given a
setX, anX–valued randomelement is ameasurablemap-
ping X(ω) from Ω to X, multivariate when X is �nite-
dimensional, as Rk, its cdf then given by F(x, . . . , xk) =

P(ω : X(ω) ≤ x, . . . ,Xk(ω) ≤ x k). To each cdf corre-
sponds a PX on (Rk,Bk,PX) and conversely, with Bk as
a �eld of subsets of Rk. Moreover, {PX = aP + aP +
aP; ai ≥ , a + a + a = } decomposes as a mix-
ture: P assigns positive probability to the mass points of
PX ; P is absolutely continuous with respect to Lebesgue
(volume) measure on (Rk,BX , ⋅); and P is purely singu-
lar. Corresponding to {P,P,P} are cdf s {F,F,F} :
F has a mass function (pmf ) p(x, . . . , xk) = P(X =

x, . . . ,Xk = x k), giving jumps of F at its mass points; F
has a pdf f(x, . . . , xk) = ∂k

∂x⋯∂x k F(x, . . . , xk) for almost
all {x, . . . , xk}. �e marginal cdf of X′ = [X, . . . ,Xr]
is Fm(x, . . . , xr) = F(x, . . . , xr ,∞, . . . ,∞). With X′ =
[Xr+, . . . ,Xk] and x′ = [xr+, . . . , xk], the conditional pmf
for L(X ∣ x), given that {X = x}, is p⋅(x, . . . , xr) =
p(x ,. . .,xk)
p(xr+ ,. . .,xk) with p(xr+, . . . , xk) as the marginal pmf for
X. A similar expression holds for P in terms of the joint
and marginal pdf s f (x, . . . , xk) and f(xr+, . . . , xk). As
noted, F is discrete and F absolutely continuous, pure
types to warrant their separate cataloging in the literature.
On the other hand, P is singular on a set in Rk having
Lebesgue measure zero, o�en illustrated as a linear sub-
space. In contrast, P is known to originate in practice
through pairs (X,Y) as in Olkin and Tate (), such that
X is multinomial and L(Y ∣ X = x) is multivariate nor-
mal. Related studies are reported in a succession of articles
including the recent (Bedrick et al. ).

�e study of MDs draws heavily on the calculus of Rk.
Distributions not expressible in closed form may admit
series expansions, asymptotic expansions of Cornish-
Fisher and Edgeworth types, or large-sample approxima-
tions via central limit theory. Accuracy of the latter is
gauged through Berry–Esséen bounds on rates of con-
vergence, as developed extensively in Bhattacharya and
Ranga Rao () under moments of order greater than .
Moreover, the integral transform pairs of Fourier, Laplace,
and Mellin, including chf s on Rk, are basic. Elemen-
tary operations in the space of transforms carry back
to the space of distributions through inversion. A�ne
data transformations are intrinsic to the use of chf s of
MDs, as treated extensively in Lukacs and Laha ().
On the other hand, Mellin transforms couple nicely with
such nonlinear operations as powers, products, and quo-
tients of random variables, as treated in Epstein ()

and Subrahmaniam () and subsequently. In addition,
functions generating joint moments, cumulants, factorial
moments, and probabilities are used routinely. Projection
methods determine distributions onRk completely, via the
one-dimensional distributions of every linear function. To
continue, a property is said to characterize a distribution if
unique to that distribution. A general treatise is Kagan et al.
(), including reference to some MDs reviewed here.
We next undertake a limited survey of continuous and

discrete MDs encountered with varying frequencies in
practice. Developments are cited for random vectors and
matrices. Continuing to focus on semiparametric mod-
els, we identify those distributions derived and unique
to underlying classes of models, facts not widely acces-
sible otherwise. �e principal reference for continuous
MDs is the encyclopedic (Kotz et al. ), coupled with
monographs on multivariate normal (Tong ) and Stu-
dent t (Kotz and Nadarajah ) distributions. For dis-
crete MDs, encyclopedic accounts are archived in Johnson
et al. () and Patil and Joshi ().

Continuous Distributions
Central to classical ∗multivariate statistical analysis∗ are
{Nn,k(Θ, In,Σ);n>k} for L(Y), and the essential derived
distributionL(W) =Wk(n,Σ,Λ), withW = Y ′Y , as non-
central Wishart having n degrees of freedom, scale matrix
Σ, and noncentrality matrix Λ = Θ′Θ, with central pdf as
in Table .

Student tDistributions
Vector distributions. �ere are two basic types.
Let [Y, . . . ,Yk] be multivariate normal with means
[µ, . . . , µk], unit variances, and correlation matrix R(k ×
k). A Type I t distribution is that of {Tj = Yj/S; ≤ j≤ k}
such that L(νS) = χ(ν) independently of [Y, . . . ,Yk].
Its central pdf is listed in Table . To continue, suppose
that S = [Sij] and L(νS) = Wk(ν,R), independently of
[Y, . . . ,Yk]. A Type II t distribution is that of {Tj =

Yj/Sjj; ≤ j≤ k}. Both types are central if and only if {µ =
⋯ = µk = }.�ese distributions arise inmultiple compar-
isons, in the construction of rectangular con�dence sets
for means, in the Bayesian analysis of multivariate nor-
mal data, and in variousmultistage procedures. For further
details see Kotz et al. () and Tong ().
More generally, ifL(X, . . . ,Xk,Z, . . . ,Zν) = Sn(θ, Γ)

with θ′ = [µ, . . . , µk, , . . . , ] and Γ = Diag(R, Iν), then
with νS = (Z + . . . + Zν) , the central distribution of
{Tj = Xj/S; ≤ j≤ k} is Type I multivariate t for all dis-
tributions in {Sn(θ, Γ,ψ);ψ ∈ Ψ} as structured. Multiple
comparisons using {T, . . . ,Tk} under normality thus are
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Multivariate Statistical Distributions. Table  Standard pdf s for some continuous distributions on Rk

Type Density Comments

Student t k [ + ν−(t − µ)′R−(t − µ)]−(ν+k)/ t ∈Rk

Dirichlet k( − Σk
 uj)α−Πk

 u
αj−
j { ≤ uj ≤ ;Σk

 uj ≤ }

Inv. Dirichlet kΠk
 v

αj−
j /[ + Σk

 vj]α/ { ≤ vj <∞; α = Σk
αj

∣ W − wΣ ∣=  kΠk
 w(ν−k−)/

i Πi<j(wi − wj)e−


(Σk

 wi) {w > ⋯ > wk > }

∣ S  − ℓS  ∣=  kΠk
 ℓ



(m−k−)

i Πk
 (ℓi+)−(m+n)/Πi<j(ℓi−ℓj) {ℓ > ⋯ > ℓk > }

Multivariate Statistical Distributions. Table  Standard pdf s for some continuous distributions on Rk

Type Density Comments

Nn,k(Θ, Γ,Σ) κ exp[− 


tr(Y−Θ)′Γ−(Y−Θ)Σ−] Y ∈Fn×k

Ln,k(Θ, Γ,Σ) κ ∣Γ ∣−
k
 ∣Σ ∣−

n
 ϕ(Σ−


 (Y−Θ)′Γ−(Y−Θ)Σ−


 ) Y ∈Fn×k , ϕ∈Φ

Sn,k(Θ, Γ,Σ) κ ∣Γ ∣−
k
 ∣Σ ∣−

n
 ψ(tr(Y−Θ)′Γ−(Y −Θ)Σ−) ψ on [,∞)

Wishart κ ∣W ∣(ν−k−)/ exp(− 


trWΣ−) W ∈S+k

Gamma Hsu (l) κ ∣W ∣(n−k−)/ ϕ(Σ−

 WΣ−


 ) ϕ∈Φ,W ∈S+k

Gamma Lukacs and Laha () κ ∣W ∣λ− exp(−trWΣ−) λ>,W ∈S+k

Matric T κ ∣Ik − ν−T′T ∣−(ν+r)/ T ∈Fr×k

Dirichlet κΠk
 ∣Wj ∣(νj−k−)/∣Ik − Σk

 Wj ∣(ν−k−)/ f(W, . . . ,Wk)

Inv. Dirichlet κΠk
 ∣Vj ∣(νj−k−)/∣Ik + Σk

 Vj ∣(νT−k−)/ f(V , . . . ,Vk)

exact in level for linear models having spherical errors
(Jensen ). Similarly, if L(Y) = Sn,k(Θ, In,Σ) with
parameters Θ = [θ, . . . , θ]′, θ ∈ Rk; if Xj = n/Ȳj with
{Ȳj = (Yj + ⋯ + Ynj)/n; ≤ j≤ k}; and if S is the sam-
ple dispersion matrix; then the central distribution of

{Tj = Xj/S


jj ; ≤ j≤ k} is Type II multivariate t for every

L(Y) in {Sn,k(, In,Σ,ψ);ψ ∈ Ψ}. Noncentral distri-
butions generally depend on the particular distribution
Sn(θ, Γ) or Sn,k(Θ, In,Σ).
Matric T distributions. Let Y and W be independent,

L(Y) =Nr,k(, Ir ,Σ) andL(W) =Wk(ν,Σ) such that ν ≥
k, and let T = YW−  using any factorizationW−  ofW−.
�enL(T) ismatric t with pdf as in Table . Alternatively,
consider X′ = [Y ′,Z′]with distribution Sn,k(, In,Σ) such
that n = r + ν and ν ≥ k, and again let T = YW−  but
nowwithW =Z′Z.�ese variables arise fromdistributions
Sn,k(, In,Σ) in the same manner as for Nn,k(, In,Σ).
�en T has a matric t distribution for every distribution
L(Y) in {Sn,k(, In,Σ,ψ);ψ ∈Ψ}.�is property transfers
directly to L(ATB) as in Dickey () with A and B
nonsingular.

Gamma Distributions
Vector Distributions. Extract Diag(W, . . . ,Wkk) from
W = [Wij].�eir joint distributions arise in the analysis
of nonorthogonal designs, in time-series, in multiple com-
parisons, in the analysis of multidimensional contingency
tables, in extensions of Friedman’s χ test in two-way data
based on ranks, and elsewhere.�ere is a gamma distri-
bution on Rk+ for diagonals of the matrix Gamma (Lukacs
and Laha ) of  Table ; k–variate χ whenW isWishart;
see Kibble () for k = ; and a k–variate exponen-
tial distribution for the case n = . Rayleigh distributions

L(W


 ,W



, . . . ,W



kk) on Rk+ support the detection of

signals from noise (Miller ); more general such dis-
tributions are known (Jensen a); as are more general
χ distributions on Rk having di�ering marginal degrees
of freedom (Jensen b). Densities here are typically
intractable, o�en admitting multiple series expansions in
special functions. Details are given in Kotz et al. (). As
n→∞, the χ and Rayleigh distributions onRk+ are multi-
normal in the limit, for central and noncentral cases alike,
whereas for �xed n, the limits as noncentrality parameters
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grow again aremultivariate normal (Jensen ). Alterna-
tive approximations, throughnormalizingWilson-Hilferty
transformations, are given in Jensen () and Jensen and
Solomon ().
Matric distributions. Let L(Y) ∈ Ln,k(, In,Σ, ϕ) with

n ≥ k; the pdf of W = Y ′Y is given in Table  under
Gamma (Hsu l) as in that reference. �e pdf under
Gamma (Lukacs and Laha ), with λ > , reduces to
that of a scaled Wishart matrix when λ is an integer.�e
noncentral Wishart pdf with Λ ≠  admits series expan-
sions in special polynomials. Moreover, as n → ∞, for
�xed Λ its limit distribution is multinormal, and for �xed
n, its 7asymptotic normality attains as the noncentral-
ity parameters grow in a speci�ed manner (Jensen ).
Wishart matrices arise in matrix normal samples, e.g., as
scaled sample dispersionmatrices, and otherwise through-
outmultivariate distribution theory. Parallel remarks apply
for Gamma (Hsu l) of Table  when the underlying
observational model belongs to {Ln,k(Θ, In,Σ, ϕ); ϕ ∈ Φ}.

Dirichlet Distributions
If X and Y are independent gamma variates having a com-
mon scale, then U = X/(X + Y) and V = X/Y have
beta and inverted beta distributions, respectively, the scaled
Snedecor-Fisher F specializing from the latter.�is section
treats vector and matrix versions of these.
Vector distributions. Let {Z , . . . ,Z k} be independent

gamma variates with common scale and the shape param-
eters {α , . . . , α k}, and let T = (Z + ⋯ + Zk). �en
the joint distribution of {Uj = Zj/T; ≤ j≤ k} is the k-
dimensional Dirichlet distribution D(α , . . . , α k) with pdf
as given in Table . An important special case is that
{αj = νj/; ≤ j≤ k} with {ν , . . . , ν k} as positive integers
and with {Z , . . . ,Z k} as independent χ variates. How-
ever, in this case neither χ nor independence is required.
For if y = [y′, y

′
, . . . , y

′
k]
′
∈ Rn with {yj ∈ Rνj ; ≤ j≤ k}

and n = ν + ⋯ + νk such that L(y) = Sn(, In), then
{Uj = y′jyj/T; ≤ j≤ k} , but now with T = y′y + y′y +
⋯ + y′kyk, has the distribution D(ν/, ν/, . . . , νk/) for
all such L(y)∈{Sn(, In,ψ);ψ ∈ Ψ}.

�e inverted Dirichlet is that of {Vj = Zj/Z; ≤ j≤ k},
with {Z , . . . ,Z k} as before, having pdf as listed in Table .
�e scaled {Vj = νZj/νjZ; ≤ j≤ k} then have a mul-
tivariate F distribution whenever {αj = νj/; ≤ j≤ k}
with {ν , . . . , ν k} as positive integers. �is arises in the
7analysis of variance in conjunction with ratios of inde-
pendent mean squares to a common denominator (Finney
). As before, neither χ nor independence is required in
the latter; take {Vj = νy′jyj/νjy′y; ≤ j≤ k} with L(y) ∈
{Sn(, In,ψ);ψ ∈Ψ} as for Dirichlet distributions.

Matric distributions. Take {S , . . . , S k} in S+k as inde-
pendent Wishart matrices with {L(S j) = Wk(νj,Σ);
νj ≥ k; ≤ j≤ k}. Let T = S + ⋯ + Sk and
{Wj = T−


 S jT−


 ; ≤ j≤ k}. A matric Dirichlet distribu-

tion (Olkin and Rubin ), taking the lower triangu-
lar square root, has pdf as listed in Table , such that
Wj and (Ik − ΣkWj) are positive de�nite, and νT = ν +
⋯ + νk. Neither independence nor the Wishart character
is required. If instead Y = [Y ′ ,Y ′ , . . . ,Y ′k] ∈ Fn×k, n =
ν + ⋯ + νk, νj ≥ k, and {S j = Y ′j Yj; j = , , . . . , k} , then
forL(Y) = Sn,k(, In,Σ), invariance properties assure that
f (W , . . . ,W k) is identical to that given in Table , for
every distribution L(Y) in {Sn,k(, In,Σ,ψ);ψ ∈Ψ}.
An inverted matric Dirichlet distribution (Olkin and

Rubin ) takes {S , S , . . . , S k} as before, and de�nes

{Vj = S
− 
 S jS

− 
 ; ≤ j≤ k} using the symmetric root of S .

Its pdf f (V, . . . ,Vk) is known allowing S  to be noncen-
tral.�e central pdf is given inTable .�e special case k= 
is sometimes called a Type II multivariate beta distribution.
Again neither independence nor the Wishart character
is required. To see this, again take {S j = Y ′j Yj; ≤ j≤ k}
as for matric Dirichlet distributions, and conclude that
f (V, . . . ,Vk), as in Table , is identical for every L(Y) in
{Sn,k(, In,Σ,ψ);ψ ∈Ψ}.

Distributions of Latent Roots
Topics in multivariate statistics, to include reduction
by invariance, tests for hypotheses regarding dispersion
parameters, and the study of energy levels in physical sys-
tems, all entail the latent roots of random matrices. Sup-
pose that L(W) = Wk(ν,Σ), and consider the ordered
roots {w > . . . > wk > } of ∣ W − wΣ ∣= . �eir joint
pdf is listed in Table . On occasion ratios of these roots
are required, including simultaneous inferences for dis-
persion parameters, for which invariance in distribution
holds. For ifW =Y ′Y , then the joint distributions of ratios
of the roots of ∣W − wΣ ∣ =  are identical for all L(Y) ∈

{Sn,k(, In,Σ,ψ);ψ ∈Ψ} such that n≥ k.
To continue, consider S  and S  as independent

Wishart matrices having Wk(ν,Σ) and Wk(ν,Σ,Λ),
respectively. �en central (Λ = ) and noncentral joint
distributions of the roots of ∣ S  − ℓS  ∣=  are known, as
given in Table  for the case Λ = . An invariance result
holds for the central case. For if Y = [Y ′ ,Y ′ ]

′ with n =
ν + ν such that ν ≥ k and ν ≥ k, S  = Y ′Y and S  =
Y ′ Y, then by invariance the latent root pdf f (ℓ, . . . , ℓk)
is the same for all L(Y) in {Ln,k(, In,Σ, ϕ) : ϕ ∈ Φ}, as
given in Table .
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Multivariate Statistical Distributions. Table  Some discrete multivariate compound distributions

Basic distribution
Mixing
parameters

Compounding
distribution Source

Resulting
distribution

Bivariate binomial
(n, π, π, π)

n Poisson Papageorgiou () bivariate Poisson

Multinomial
(n, π, . . . , π s)

(π, . . . , π s) Dirichlet Johnson et al. ()
and Patil and Joshi ()

s–variate negative
hypergeometric

Multinomial
(n, π, . . . , π s)

n Logarithmic
series

Patil and Joshi () s–variate modified
logarithmic series

Multinomial
(n, π, . . . , π s)

n Negative
binomial

Patil and Joshi () s–variate negative
multinomial

Multinomial
(n, π, . . . , π s)

n Poisson Patil and Joshi () multiple Poisson

Multiple Poisson
(uλ, . . . , uλs)

u Gamma Patil and Joshi () s–variate negative
multinomial

Multiple Poisson
(λ, . . . , λs)

(λ, . . . , λ s) Multinormal Steyn () s–variate Poisson–
normal

Multiple Poisson
{λ i = α + (β − α)u

u Rectangular
on (, )

Patil and Joshi () s–variate Poisson–
rectangular

Multivariate Poisson
(uλ , uλ, . . . , uλ⋅s)

u Gamma Patil and Joshi () s–variate negative
binomial

Negative multinomial
(k, π, . . . , π s)

(π, . . . , π s) Dirichlet Johnson et al. ()
Patil and Joshi ()

s–variate negative
multinomial-Dirichlet

Convolution of
multinomials
(γ, . . . , γk , θ, . . . , θ s)

(γ, . . . , γk) Multivariate
hypergeometric

Kotz and Johnson () numbers judged
defective of k types
in lot inspection

Other Distributions
Numerous other continuous multivariate distributions are
known; a compendium is o�ered in Kotz et al. ().
Multivariate versions of Burr distributions arise through
gamma mixtures of independent Weibull distributions.
Various multivariate exponential distributions are known;
some properties and examples are found on specializing
multivariate Weibull distributions. Various multivariate
stable distributions, symmetric and asymmetric, are char-
acterized through the structure of their chf s, as are types
of symmetric MDs surveyed earlier.Multivariate extreme-
value distributions are treated in Kotz et al. (), with
emphasis on the bivariate case. �e Beta-Stacy distribu-
tions yield a multivariate Weibull distribution as a special
case. Multivariate Pareto distributions have their origins
in econometrics. Multivariate logistic distributions model
binary data in the analysis of quantal responses. Properties

of chf s support a bivariate distribution having normal and
gamma marginals (Kibble ).

Discrete Distributions
A guided tour is given with special reference to Johnson
et al. () and Patil and Joshi (). Inequalities for
selected multivariate discrete distributions are o�ered in
Jogdeo and Patil ().

Binomial, Multinomial, and Related
�e outcome of a random experiment is classi�ed as hav-
ing or not having each of s attributes {A, . . . ,A s}. If
{X, . . . ,X s} are the numbers having these attributes in n
independent trials, then theirs is a multivariate binomial
distribution with parameters

{π i = Pr(Ai), πij = Pr(AiAj), . . . , π⋅s
= Pr(AA . . .As); ı ∈[, , . . . s]; i≠ j≠k≠ . . .}
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where ı takes successive values {i, j, k, . . .}.�e 7binomial
7distribution B(n, π) obtains at s = . For bivariate bino-
mial distributions see Hamdan (), Hamdan and Al-
Bayyati (), andHamdan and Jensen ().�e limit as
n→∞ and π→  such that nπ→ λ is Poisson, the dis-
tribution of “rare events”. More generally, as n→∞ and
π i→ , such that {nθ i→ λ i,nθ ij→ λij, . . . ,nπ⋅s→ λ⋅s},
where {θ i, θ ij, . . .} are speci�ed functions of {π i, πij, . . .},
then the limit of the multivariate binomial distribution is
multivariate Poisson.
Suppose that independent trials are continued until

exactly k trials exhibit none of the s attributes. �e joint
distribution of the numbers {Y, . . . ,Ys} of occurrences
of {A, . . . ,As} during these trials is a multivariate Pascal
distribution.
To continue, let {A , . . . ,A s} be exclusive and exhaus-

tive outcomes having probabilities {π , . . . , π s}, with {<
π i < ; π + ⋯ + πs = }. �e numbers {X, . . . ,X s}
of occurrences of {A , . . . ,A s} in n independent tri-
als have the 7multinomial distribution with parameters
(n, π, . . . , πs). If independent trials are repeated until A
occurs exactly k times, the numbers of occurrences of
{A , . . . ,A s} during these trials have a negative multino-
mial distribution with parameters (k, π, . . . , πs).
In a multiway contingency table an outcome is classi-

�ed according each of k criteria having the exclusive and
exhaustive classes {Aio,Ai, . . .Aisi ; i = , . . . , k}. If in n
independent trials {Xi, . . . ,Xisi ; i = , . . . , k} are the num-
bers occurring in {Ai, . . . ,Aisi ; i = , . . . , k}, then their
joint distribution is called a multivariate multinomial dis-
tribution (also multivector multinomial). �ese are the
joint distributions of marginal sums of the contingency
table, to include the k–variate binomial distribution when
{s = s = ⋯ = sk = }.

Hypergeometric and Related
A collection of N items consists of s +  types: N of type
A, N of type A, . . . , Ns of type As, with N = N + ⋯ +

Ns. Random samples are taken from this collection. If n
items are drawn without replacement, the joint distribu-
tion of the numbers of items of types {A , . . . ,A s} is a
multivariate hypergeometric distribution with parameters
(n,N,N , . . . ,N s).With replacement, their distribution is
multinomial with parameters (n,N/N, . . . ,Ns/N).
If successive items are drawnwithout replacement until

exactly k items of type A are drawn, then the num-
bers of types {A, . . . ,As} thus drawn have a multivari-
ate inverse hypergeometric distribution with parameters
(k,N,N , . . . ,N s).
To continue, sampling proceeds in two stages. First,m

items are drawn without replacement, giving {x, . . . , xs}

items of types {A, . . . ,As}. Without replacing the �rst
sample, n additional items are drawn without replacement
at the second stage, giving {Y, . . . ,Ys} items of types
{A, . . . ,As}.�e conditional distribution of (Y, . . . ,Ys),
given that {X = x, . . . ,Xs = xs}, is amultivariate negative
hypergeometric distribution.

Multivariate Series Distributions
Further classes of discrete multivariate distributions are
identi�ed by types of their pmf s. Some arise through trun-
cation and limits. If [X, . . . ,Xs] has the s–variate negative
multinomial distribution with parameters (k, π, . . . , πs),
then the conditional distribution of [X, . . . ,Xs], given
that [X, . . . ,Xs] ≠ [, . . . , ], converges as k →  to the
s–variate logarithmic series distribution with parameters
(θ, . . . , θs) where {θ i =  − π i; i = , . . . , s}. See Patil
and Joshi () for details. A modi�ed multivariate log-
arithmic series distribution arises as a mixture, on n, of the
multinomial distribution with parameters (n, π, . . . , πs),
where the mixing distribution is a logarithmic series dis-
tribution (Patil and Joshi ).
A class of distributions with parameters (θ, . . . , θs) ∈

Θ, derived from convergent power series, has pmf s of
the form p(x, . . . , xs) =

a(x ,. . .,xs)θx ⋯θxss
f (θ  ,. . .,θ s) for {xi =

, , , . . . ; i = , . . . , s}. �e class of such distributions,
called multivariate power series distributions, contains
the s–variate multinomial distribution with parameters
(n, π, . . . , πs); the s-variate logarithmic series distribu-
tion with parameters (θ, . . . , θs); the s-variate negative
multinomial distribution with parameters (k, π, . . . , πs);
and others. See Patil and Joshi () for further proper-
ties. Other discretemultivariate distributions are described
next.

Other Distributions
A typical Borel-Tanner distribution refers to the number of
customers served before a queue vanishes for the �rst time.
If service in a single-server queue begins with r customers
of type I and s of type II with di�erent arrival rates and ser-
vice needs for each type, then the joint distribution of the
numbers served is the bivariate Borel-Tanner distribution
as in Shenton and Consul ().
In practice compound distributions o�en arise from

an experiment undertaken in a random environment;
the compounding distribution then describes variation of
parameters of the model over environments. Numerous
bivariate and multivariate discrete distributions have been
obtained through compounding, typically motivated by
the structure of the problem at hand. Numerous examples
are cataloged in references Johnson et al. () and Patil
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and Joshi (); examples are listed in Table  from those
and other sources.
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Multivariate Statistical Process
Control

Robert L. Mason, John C. Young
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Lake Charles, LA, USA

Statistical process control (SPC) includes the use of
statistical techniques and tools, such as7control charts, to
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monitor change in a process. �ese are typically applied
separately to each process variable of interest. Statistical
process control procedures help provide an answer to the
question: “Is the process in control?” When an out-of-
control event is identi�ed as a signal in a control chart, pro-
cedures o�en are available for locating the speci�c process
variables that are the cause of the problem.
In multivariate statistical process control (MVSPC),

multivariate statistical control procedures are used to
simultaneously monitor many process variables that are
interrelated and form a correlated set that move together
(see Mason and Young ).�e relationships that exist
between and among the variables of the multivariate pro-
cess are used in developing the procedure. Assume that
the observation vectors obtained from a process are inde-
pendent random variables that can be described by a mul-
tivariate normal distribution (see 7Multivariate Normal
Distributions) with amean vector and a covariancematrix.
Any change in the mean vector and/or the covariance
matrix of this distribution is considered an out-of-control
situation and should be detectible with an appropriate
multivariate control chart.
Implementation of a multivariate control procedure

is usually divided into two parts: Phase I and Phase II.
Phase I includes the planning, development, and con-
struction phase. In this phase, the practitioner studies
the process in great detail. Preliminary data are collected
under good operational conditions and examined for sta-
tistical control and other potential problems. �e major
problems include statistical 7outliers, variable collineari-
ties, and autocorrelated observations, i.e., time-dependent
observations. A�er statistical control of the preliminary
data is established, the data is used as the process his-
tory and referred to as the historical data set (HDS). If
the parameters of the process are unknown, parameter
estimates of the mean vector and covariance matrix are
obtained from the data of the HDS for use in monitoring
the process.
Phase II is the monitoring stage. In this phase, new

observations are examined in order to determine if the pro-
cess has deviated from the in-control situation speci�ed
by the HDS. Note that, in MVSPC, deviations from the
HDS can occur through a mean vector change, a covari-
ance matrix change, or both a mean vector and covariance
matrix change in the process. In certain situations a change
in one parameter can also induce a change in the other
parameter.
Process control is usually determined by examining a

control statistic based on the observed value of an indi-
vidual observation and/or a statistic related to a ratio-
nal subgroup (i.e., sample) of the observations such as

the sample mean. Easy monitoring is accomplished by
charting the value of the multivariate control statistic on
a univariate chart. Depending on the charted value of
this statistic, one can determine if control is being main-
tained or if the process has moved to an out-of-control
situation.
For detecting both large and small shi�s in the mean

vector, there are three popular multivariate control chart
methods. An implicit assumption when using these charts
is that the underlying population covariancematrix is con-
stant over the time period of interest. Various forms of
7Hotelling’s T statistic are generally chosen when the
detection of large mean shi�s is of interest (e.g., see Mason
and Young ). For detecting small shi�s in the pro-
cess mean, the multivariate exponential weighted moving
average (MEWMA) statistic (e.g., see Lowry et al. )
or the multivariate cumulative sum (MCUSUM) statis-
tic (e.g., Woodall and Ncube ) can be utilized.�ese
statistics each have advantages and disadvantages, and they
can be used together or separately.
All of the above procedures were developed under the

assumption that the data are independent and follow a
multivariate normal distribution. Autocorrelated data can
present a serious problem for both the MCUSUM and
MEWMA statistics, but seems to have lesser in�uence on
the behavior of theT statistic. Amain reason for the in�u-
ence of autocorrelation on the MEWMA and MCUSUM
statistics is that both of them are dependent on a subset of
past-observed observation vectors, whereas theT statistic
depends only on the present observation.
A related problem in MVSPC is monitoring shi�s in

the covariance matrix for a multivariate normal process
when the mean vector is assumed to be stable. A useful
review of procedures for monitoring multivariate process
variability is contained in Yeh et al. ().�e methods
for detecting large shi�s in the covariance matrix include
charts based on the determinant of the sample covariance
matrix (Djauhari ), while the methods for detect-
ing small shi�s include charts based on a likelihood-ratio
EWMA statistic (Yeh et al. ) and on related EWMA-
type statistics (Yeh et al. ). A recent charting method
that is applicable in monitoring the change in covariance
matrix for amultivariate normal process is based on a form
of Wilks’ ratio statistic (Wilks ). It consists of taking
the ratio of the determinants of two estimators of the pro-
cess covariance matrix (Mason et al. ). One estimator
is obtained using the HDS and the other estimator is com-
puted using an augmented data set consisting of the newest
observed sample and the HDS.�e Wilks’ chart statistic is
particularly helpful when the number of variables is large
relative to the sample size.
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Current attention in the MVSPC literature is focused
on procedures that simultaneously monitor both the mean
vector and the covariance matrix in a multivariate process
(e.g., see Reynolds and Cho  or Chen et al. ).
�ese charts are based on EWMA procedures and can
be very useful in detecting small-to-moderate changes in
a process. Several papers also exist that present useful
overviews of MVSPC (e.g., see Woodall and Montgomery
 and Bersimis et al. ). �ese papers are valu-
able for their insights on the subject and their extensive
reference lists.

About the Authors
Dr. Robert L. Mason is an Institute Analyst at Southwest
Research Institute in San Antonio, Texas. He was Presi-
dent of the American Statistical Association in , Vice-
President in –, and a Member of its Board of
Directors in –. He is a Fellow of both the Amer-
ican Statistical Association and the American Society for
Quality, and an Elected Member of the International Sta-
tistical Institute. He has been awarded the Founder’s Award
and the Don Owen Award from the American Statisti-
cal Association and the W.J. Youden Award (twice) from
the American Society for Quality. He is on the Editorial
Board of the Journal of Quality Technology, and is an Asso-
ciate Editor of Communications in Statistics. He has pub-
lished over  research papers and coauthored  textbooks
including Statistical Design and Analysis of Experiments
with Applications to Engineering and Science (Wiley, ;
nd ed. ). He also is the coauthor (with JohnC. Young)
of Multivariate Statistical Process Control with Industrial
Applications (ASA-SIAM; ).
Prior to his retirement in , Dr. John C. Young was

Professor of Statistics for  years atMcNeese StateUniver-
sity in Lake Charles, Louisiana. He has published approx-
imately  papers in the statistical, medical, chemical,
and environmental literature, and is coauthor of numerous
book chapters and three textbooks.

Cross References
7Control Charts
7Hotelling’s T Statistic
7Multivariate Normal Distributions
7Outliers
7Statistical Quality Control
7Statistical Quality Control: Recent Advances

References and Further Reading
Bersimis S, Psarakis S, Panaretos J () Multivariate statisti-

cal process control charts: an overview. Qual Reliab Eng Int
:–

Chen G, Cheng SW, Xie H () A new multivariate control chart
for monitoring both location and dispersion. Commun Stat
Simulat :–

Djauhari MA () Improved monitoring of multivariate process
variability. J Qual Technol :–

Lowry CA, Woodall WH, Champ CW, Rigdon SE () A multi-
variate exponentially weighted moving average control chart.
Technometrics :–

Mason RL, Young JC () Multivariate statistical process con-
trol with industrial applications. ASA-SIAM, Philadelphia,
PA

Mason RL, Chou YM, Young JC () Monitoring variation in a
multivariate process when the dimension is large relative to the
sample size. Commun Stat Theory :–

Reynolds MR, Cho GY () Multivariate control charts for mon-
itoring the mean vector and covariance matrix. J Qual Technol
:–

Wilks SS () Multivariate statistical outliers. Sankhya A :
–

Woodall WH, Montgomery DC () Research issues and ideas
in statistical process control. J Qual Technol :–

Woodall WH, Ncube MM () Multivariate CUSUM quality
control procedures. Technometrics :–

Yeh AB, Lin DK, Zhou H, Venkataramani C () A mul-
tivariate exponentially weighted moving average control
chart for monitoring process variability. J Appl Stat :
–

Yeh AB, Huwang L, Wu YF () A likelihood-ratio-based EWMA
control chart for monitoring variability of multivariate normal
processes. IIE Trans :–

Yeh AB, Lin DK, McGrath RN () Multivariate control charts for
monitoring covariance matrix: a review. Qual Technol Quant
Manage :–
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Multivariate statistical simulation comprises the computer
generation of multivariate probability distributions for use
in statistical investigations. �ese investigations may be
robustness studies, calibrations of small sample behavior of
estimators or con�dence intervals, power studies, or other
MonteCarlo studies.�e distributions to be generatedmay
be continuous, discrete or a combination of both types.
Assuming that the n-dimensional distributions have inde-
pendent components, the problem of variate generation
is reduced to simulating from univariate distributions for
which, fortunately, there is a vast literature (Devroye ;
L’Eculer ; and international standard ISO , for
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example).�us, the real challenge of multivariate statisti-
cal simulation is in addressing the dependence structure of
the multivariate distributions.
For a few situations, the dependence structure is read-

ily accommodated from a generation standpoint. Con-
sider the usual n-dimensional multivariate normal dis-
tribution (see 7Multivariate Normal Distributions) with
mean vector µ and covariance matrix Σ. For a positive
de�nite covariance matrix, there exists a lower triangular
(Cholesky) decomposition LL′ = Σ. Assuming a source
of independent univariate normal variates to occupy the
vector X, the random vector Y = L X + µ has the desired
multivariate normal distribution. Having been able to gen-
erate multivariate normal random vectors, component-
wise transformations provide the capability to generate the
full Johnson translation system (a), of which the log-
normal distribution may be the most familiar. In using
the multivariate Johnson system, it is possible to spec-
ify the covariance matrix of the transformed distribution.
Some researchers transform the multivariate normal dis-
tribution without noting the severe impact on the covari-
ancematrix of the transformed distribution.�is oversight
makes it di�cult to interpret the results of simulation stud-
ies involving the Johnson translation system (see Johnson
 for further elaboration).
In expanding to distributions beyond the Johnson

translation system, it is natural to consider generalizations
of the normal distribution at the core of this system.�e
exponential power distribution with density function f (x)
proportional to exp(−∣x∣τ) is a natural starting point since
it includes the double exponential distribution (τ = ),
the normal distribution (τ = ) and the uniform dis-
tribution in the limit (τ → ∞) and is easy to simulate
(Johnson ). A further generalization of the exponen-
tial power distribution amenable to variance reduction
simulation designs was developed by Johnson, Beckman
and Tietjen () who noted that the normal distribution
arises as the product of ZU where Z is distributed as the
square root of a chi-squared() distribution and is inde-
pendent ofU which is uniformon the interval (−, ).�eir
generalization occurs by considering arbitrary degrees of
freedom and powers other than .. Since by Khintchine’s
unimodality theorem, any unimodal distribution can be
represented as such a product there are many possibilities
that could be pursued for other constructions ultimately
for use in multivariate simulation contexts.
Multivariate distribution families are appealing for

simulation purposes. A useful extension of the Johnson
translation system has been developed by Jones and
Pewsey (). �e family is de�ned implicitly via the
equation

Z = sinh[δ sinh−(Xε,δ) − ε]

where Z has the standard normal distribution, Xδ ,ε has a
sinh-arcsinh distribution, ε is a skewness parameter and
δ relates to the tail weight of the distribution.�is family
of distributions is attractive for use in Monte Carlo stud-
ies, since it includes the normal distribution as a special
intermediate (non-limiting) case and covers a variety of
skewness and tailweight combinations. Extensions of the
Jones-Pewsey family to themultivariate case can follow the
approach originally taken by Johnson (b), with adap-
tations by Johnson et al. () to better control impacts of
the covariance structure and component distributions.
Variate generation for multivariate distributions is

readily accomplished (at least, in principle) for a speci�c
multivariate distribution provided certain conditional dis-
tributions are identi�ed. Suppose X is a random vector
to be generated. A direct algorithm is to �rst generate
X as the marginal distribution of the �rst component of
X, say x. Second, generate from the conditional distri-
bution of X given X = x to obtain x. �ird, generate
from the conditional distribution X given, X = x and
X = x and then continue until all n components have
been generated. �is conditional distribution approach
converts the multivariate generation problem into a series
of univariate generation problems. For cases in which the
conditional distributions are very complicated or not par-
ticularly recognizable, there may be alternative formulae
for generation, typically involving a transformation to n+
or more independent random variables. Examples include
a multivariate Cauchy distribution and the multivariate
Burr-Pareto-logistic distributions (see Johnson ).

�e general challenge inmultivariate statistical simula-
tion is to incorporate the dependence structure as it exists
in a particular distribution. As noted earlier, the multi-
variate normal distribution is particularly convenient since
dependence is introduced to independent normal com-
ponents through appropriate linear transformations. Fur-
ther transformations to the components of themultivariate
normal distribution give rise to skewed, light tailed or
heavy tailed marginal distributions while retaining some
semblance of the dependence structure. An important
approach to grappling with the dependence structure is to
recognize that marginal distributions are not terribly rel-
evant in that the components can be transformed to the
uniform distribution via Ui = Fi(Xi), where Fi is the dis-
tribution function of Xi. In other words, in comparing
multivariate distributions, the focus can be on the trans-
formed distribution having uniform marginal’s.�is mul-
tivariate distribution is known as a “copula.” Examining the



 M Multivariate Techniques: Robustness

7copulas associated with the Burr, Pareto and logistic dis-
tributions led Cook and Johnson to recognize the essential
similarity of these three multivariate distributions. A very
useful introduction to copulas is Nelsen () while Gen-
est and MacKay () deserve credit for bringing copulas
to the attention of the statistical community.

�is entry does not cover all possible distributions or
families of distributions that could be considered for use
in multivariate simulation studies. Additional possibilities
(most notably elliptically contoured distributions) are
reviewed in Johnson ().
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�e usual multivariate analysis techniques include loca-
tion and scatter estimation, 7principal component anal-
ysis, factor analysis (see7Factor Analysis and Latent Vari-
ableModelling), discriminant analysis (see7Discriminant
Analysis: An Overview, and 7Discriminant Analysis:
Issues and Problems), 7canonical correlation analysis,
multiple regression and cluster analysis (see 7Cluster
Analysis: An Introduction). �ese methods all try to
describe and discover structure in the data, and thus rely
on the correlation structure between the variables. Classi-
cal procedures typically assume normality (i.e. gaussian-
ity) and consequently use the sample mean and sample
covariance matrix to estimate the true underlying model
parameters.
Below are three examples of multivariate settings used

to analyze a data set with n objects and p variables, form-
ing an n × p data matrix X = (x, . . . , xn)′ with xi =

(xi, . . . , xip)′ the ith observation.

. 7Hotelling’s T statistic for inference about the center
of the (normal) underlying distribution is based on the
sample mean x̄ = ∑

n
i= xi and the sample covariance

matrix Sx = 
n− ∑

n
i=(xi − x̄)(xi − x̄)′.

. Classical principal component analysis (PCA) uses
the eigenvectors and eigenvalues of Sx to construct a
smaller set of uncorrelated variables.

. In the multiple regression setting, also a response vari-
able y = (y, . . . , yn)′ is measured.�e goal of linear
regression is to estimate the parameter θ = (β, β)′ =
(β, β, . . . , βp)′ relating the response variable and the
predictor variables in the model

yi = β + βxi +⋯ + βpxip + εi.

�e least squares slope estimator can be written as
β̂LS = S−x sxy with sxy = 

n− ∑
n
i=(yi − ȳ)(xi − x̄)

the cross-covariance vector.�e intercept is given by
β̂ = ȳ − β̂

′
LSx̄.

�ese classical estimators o�en possess optimal prop-
erties under the Gaussian model assumptions, but they
can be strongly a�ected by even a few 7outliers. Outliers
are data points that deviate from the pattern suggested by
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the majority of the data. Outliers are more likely to occur
in datasets with many observations and/or variables, and
o�en they do not show up by simple visual inspection.
When the data contain nasty outliers, typically two things
happen:

● �e multivariate estimates di�er substantially from the
“right” answer, de�ned here as the estimates we would
have obtained without the outliers.

● �e resulting �tted model does not allow to detect the
outliers by means of their residuals, Mahalanobis dis-
tances, or the widely used “leave-one-out” diagnostics.

�e �rst consequence is fairly well-known (although
the size of the e�ect is o�en underestimated). Unfortu-
nately the second consequence is less well-known, and
when statedmany people �nd it hard to believe or paradox-
ical. Common intuition says that outliers must “stick out”
from the classical �tted model, and indeed some of them
do so. But the most harmful types of outliers, especially if
there are several of them, may a�ect the estimated model
so much “in their direction” that they are now well-�tted
by it.
Once this e�ect is understood, one sees that the follow-

ing two problems are essentially equivalent:

● Robust estimation: �nd a “robust” �t, which is similar
to the �t we would have found without the outliers.

● Outlier detection: �nd all the outliers that matter.

Indeed, a solution to the �rst problem allows us, as a
by-product, to identify the outliers by their deviation from
the robust �t. Conversely, a solution to the second prob-
lem would allow us to remove or downweight the outliers
followed by a classical �t, which yields a robust estimate.
It turns out that the more fruitful approach is to solve

the �rst problem and to use its result to answer the second.
�is is because from a combinatorial viewpoint it is more
feasible to search for su�ciently many “good” data points
than to �nd all the “bad” data points.
Many robust multivariate estimators have been con-

structed by replacing the empirical mean and covariance
matrix with a robust alternative. Currently the most pop-
ular estimator for this purpose is the Minimum Covari-
ance Determinant (MCD) estimator (Rousseeuw ).
�e MCD method looks for the h observations (out of n)
whose classical covariance matrix has the lowest possible
determinant.�e rawMCD estimate of location is then the
average of these h points, whereas the raw MCD estimate
of scatter is a multiple of their covariance matrix. Based on
these raw estimates one typically carries out a reweighting
step, yielding the reweighted MCD estimates (Rousseeuw
and Van Driessen ).

�e MCD location and scatter estimates are a�ne
equivariant, which means that they behave properly under
a�ne transformations of the data. Computation of the
MCD is non-trivial, but can be performed e�ciently
by means of the FAST-MCD algorithm (Rousseeuw and
Van Driessen ) which is available in standard SAS,
S-Plus, and R.
A useful measure of robustness is the �nite-sample

breakdown value (Donoho and Huber ; Hampel et al.
).�e breakdown value is the smallest amount of con-
tamination that can have an arbitrarily large e�ect on the
estimator.�eMCD estimates of multivariate location and
scatter have breakdown value ≈ (n − h)/n.�e MCD has
its highest possible breakdown value of % when h =

[(n + p + )/]. Note that no a�ne equivariant estimator
can have a breakdown value above %.
Another measure of robustness is the in�uence func-

tion (Hampel et al. ), which measures the e�ect on an
estimator of adding a small mass of data in a speci�c place.
�eMCD has a bounded in�uence function, which means
that a small contamination at any position can only have a
small e�ect on the estimator (Croux andHaesbroeck ).
In regression, a popular estimator with high break-

down value is the Least Trimmed Squares (LTS) estima-
tor (Rousseeuw ; Rousseeuw and Van Driessen ).
�e LTS is the �t that minimizes the sum of the h small-
est squared residuals (out of n). Other frequently used
robust estimators include S-estimators (Rousseeuw and
Yohai ) and MM-estimators (Yohai ), which can
achieve a higher �nite-sample e�ciency than the LTS.
Robust multivariate estimators have been used to

robustify the Hotelling T statistic (Willems et al. ),
PCA (Croux and Haesbroeck ; Salibian-Barrera et al.
), multiple regression with one or several response
variables (Rousseeuw et al. ; Agulló et al. ), dis-
criminant analysis (Hawkins andMcLachlan ; Hubert
and Van Driessen ; Croux and Dehon ), factor
analysis (Pison et al. ), canonical correlation (Croux
and Dehon ), and cluster analysis (Hardin and Rocke
).
Another important group of robust multivariate meth-

ods are based on projection pursuit (PP) techniques.
�ey are especially useful when the dimension p of
the data is larger than the sample size n, in which
case the MCD is no longer well-de�ned. Robust PP
methods project the data on many univariate direc-
tions and apply robust estimators of location and scale
(such as the median and the median absolute devia-
tion) to each projection. Examples include the Stahel-
Donoho estimator of location and scatter (Maronna and
Yohai ) and generalizations (Zuo et al. ), robust
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PCA (Li and Chen ; Croux and Ruiz-Gazen ;
Hubert et al. ; Boente et al. ), discriminant
analysis (Pires ), canonical correlation (Branco et al.
), and outlier detection in skewed data (Brys et al.
; Hubert and Van der Veeken ). �e hybrid
ROBPCA method (Hubert et al. ; Debruyne and
Hubert ) combines PP techniques with the MCD and
has led to the construction of robust principal compo-
nent regression (Hubert and Verboven ), partial least
squares (Hubert and Vanden Branden ), and classi-
�cation for high-dimensional data (Vanden Branden and
Hubert ).
A more extensive description of robust multivariate

methods and their applications can be found in (Hubert
et al. ; Hubert and Debruyne ).
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