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Margin of error is a term that probably originated in the
popular reporting of results of »public opinion polls but
has made its way into more professional usage. It usu-
ally represents half of the length of a confidence interval
(most usually a 95% confidence interval, though it could
in theory be any confidence interval) for a proportion or
percentage, calculated under the assumption of simple ran-
dom sampling. The sample value of the proportion, p, is
used as an estimate of the population proportion 7, and
the standard error (se) is estimated as \/p(1 - p)/n. Then
a 95% confidence interval is given as p +1.96x se and the
margin of error is 1.96 x se. For example, if an opinion
poll gives a result of 40% of 900 respondents in favor of
a proposition (a proportion of .40), then the estimated se
of the proportion is /(0.4 x 0.6)/900 = .016 and that
is expressed as 1.6 percentage points. Then the margin of
error would be presented as 1.96 x 1.6 = 3.2 percentage
points.

The fact that the margin of error is often reported in the
popular press represents progress from a time when sample
results were not qualified at all by notions of sample-to-
sample variability. Such reporting, however, is frequently
subject to misinterpretation, though reporters often cau-
tion against such misinterpretation. First, like the con-
fidence interval, the margin of error does not represent
anything about the probability that the results are close to
truth. A 95% confidence interval merely says that, with the
procedure as carried out repeatedly by drawing a sample
from this population, 95% of the time the stated interval
would cover the true population parameter. There is no
information whether this current interval does or does not
cover the population parameter and similarly the margin
of error gives no information whether it covers the true
population percentage. Second, the procedure assumes
simple random sampling, but frequently the sampling for
a survey is more complicated than that and hence the

standard error calculated under the assumption of simple
random sampling is an underestimate. Third, the margin of
error is frequently calculated for the sample as a whole, but
when interest centers on a subgroup of respondents (e.g.,
the percentage of females who prefer a particular candi-
date) the sample size is smaller and a fresh margin of error
should be calculated for the subgroup, though it frequently
is not. And finally, and perhaps most importantly, there is
a tendency to assume that the margin of error takes into
account all possible “errors” when in fact it deals only with
sampling error. Nonsampling errors, such as noncoverage,
nonresponse, or inaccurate responses are not taken into
account via a confidence interval or the margin of error
and may indeed be of much larger magnitude than the
sampling error measured by the standard error.
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Definition

Suppose that we have vectors of random variables [v,w] =
[Vis V2, s v Wi .., w;] in R Denote as the joint
density function: fi,w, which obeys: fi,w(v,w) > 0 and
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S [ faw(vsw)dvy .. dvidwy .. .dwp = 1. Then the
probability of the set [Ay, By ] is given by

P(A"’BW):f"'fA . Sow (v, w)dvdw.

The marginal density f, is obtained as

fr(v) = f_:...[:ﬁ,w(v,w)dwl...dwl

The marginal probability of the set A, is then obtained as,

P(AV):f...fAva(v)dv.

We have assumed that the random variables are continu-
ous. When they are discrete, integrals are substituted by
sums. We proceed to present an important application of
marginal probabilities for measuring the probability of a
model.

Measuring the Evidence in Favor of a
Model

In Statistics, a parametric model, is denoted as f (x1, . . . , Xx|
01,...,0k), where x = (x1,...,x,) is the vector of n obser-
vations and 6 = (6y,. .., Ox) is the vector of k parameters.
For instance we may have n = 15 observations normally
distributed and the vector of parameters is (61,6,) the
location and scale respectively, denoted by fyorma(x|6) =
Iy \/%62 exp (—%(xi - 91)2)'

Assume now that there is reason to suspect that the
location is zero. As a second example, it may be suspected
that the sampling model which usually has been assumed
Normally distributed, is instead a Cauchy, feaucny (X]0) =
1Y ﬂ%zm The first problem is a hypothesis test

2

denoted by

H0:91=0VSH1:61¢0,

and the second problem is a model selection problem:

My 5fNarmal VS M; :fCuuchy'

How to measure the evidence in favor of Hy or Mj?
Instead of maximized likelihoods as it is done in traditional
statistics, in »Bayesian statistics the central concept is the
evidence or marginal probability density

mi(x) = [ f(xl6y)7(6;)6),

where j denotes either model or hypothesis j and 7(6)
denotes the prior for the parameters under model or
hypothesis j.

Marginal probabilities embodies the likelihood of a
model or hypothesis in great generality and can be claimed
it is the natural probabilistic quantity to compare models.

Marginal Probability of a Model

Once the marginal densities of the model j, forj =1,...,]
models have been calculated and assuming the prior model
probabilities P(M;),j = 1,....,] with X/ P(M;) = 1 then,
using Bayes Theorem, the marginal probability of a model
P(M;|x) can be calculated as,

m; (x) - P(M;)
Yty mi(x) - P(M;)
We have then the following formula for any two models or
hypotheses:

P(Mjlx) =

P(Mj[x)
P(Mix)

_ P(M))
P(M;)

m;(x)
m,‘(X) ’

or in words: Posterior Odds equals Prior Odds times Bayes
Factor, where the Bayes Factor of M; over M,; is

B - M),
m,(x)
Jeffreys (1961).

In contrast to »p-values, which have interpretations
heavily dependent on the sample size n, and its defini-
tion is not the same as the scientific question, the posterior
probabilities and Bayes Factors address the scientific ques-
tion: “how probable is model or hypothesis j as compared
with model or hypothesis i?,” and the interpretation is the
same for any sample size, Berger and Pericchi (2001). Bayes
Factors and Marginal Posterior Model Probabilities have
several advantages, like for example large sample consis-
tency, that is as the sample size grows the Posterior Model
Probability of the sampling model tends to one. Further-
more, if the goal is to predict future observations y it is not
necessary to select one model as the predicting model since
we may predict by the so called Bayesian Model Averaging,
which if quadratic loss is assumed, the optimal predictor
takes the form,

~—

Yf|X

] x P(M,|x)
j=1

where E[ j] is the expected value of a future obser-
vation under the model or hypothesis M;.

Intrinsic Priors for Model Selection and
Hypothesis Testing

Having said some of the advantages of the marginal prob-
abilities of models, the question arises: how to assign the
conditional priors 7(8;)? In the two examples above which
priors are sensible to use? The problem is ot a simple one
since it is not possible to use the usual Uniform priors since
then the Bayes Factors are undetermined. To solve this
problem with some generality, Berger and Pericchi (1996)
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introduced the concepts of Intrinsic Bayes Factors and
Intrinsic Priors. Start by splitting the sample in two sub-
samples x = [x(1),x(-1)] where the training sample x(1) is as
small as possible such thatforj=1, ...,J : 0 <m;(x(l)) < co.
Thus starting with an improper prior 7" (;), which does
not integrate to one (for example the Uniform), by using
the minimal training sample x(1), all the conditional prior
densities 7(6;[x(1)) become proper. So we may form the
Bayes Factor using the training sample x(1) as

m; (x( - Dx(1))

m; (x(-1)[x(1))

This however depends on the particular training sample
x(I). So some sort of average of Bayes Factor is necessary.
In Berger and Pericchi (1996) it is shown that the average
should be the arithmetic average. It is also found a theo-
retical prior that is an approximation to the procedure just
described as the sample size grows. This is called an Intrin-
sic Prior. In the examples above: (i) in the normal case,

B;i(x(1)) =

assuming for simplicity that the variance is known and
6% = 1 then it turns out that the Intrinsic Prior is Normal
centered at the null hypothesis 8; = 0 and with variance 2.
On the other hand in the Normal versus Cauchy example,
it turns out that the improper prior 7(61,60;) = 1/0; is
the appropriate prior for comparing the models. For other
examples of Intrinsic Priors see for instance, Berger and
Pericchi (1996a,b, 2001), and Moreno et al. (1998).
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Marine science is a wide field of research, including
hydrography, chemistry, biological oceanography and fish-
ery science. One may consider that the longer-term aspects
of global warming and issues with pollution monitoring
are the most critical statistical modeling issues. Somewhat
subjectively, the next in line are probably issues which
relate to the sustainable use of marine resources, com-
monly called fishery science. Statistics enters all of the
above subfields but the most elaborate models have been
developed for fishery science and aspects of these will
mainly be described here. Within marine research it was
quite common up through about 1980 to use models of
the biological processes set up using differential equations,
but had no error component and basically transformed
observed data through an arbitrary computational mech-
anism into desired measures of population size, growth,
yield potential and so forth (Baranov 1918; Beverton and
Holt 1957; Gulland 1965).

Data in fishery science are quite noisy for several rea-
sons. One source of variation is measurement error and
one should expect considerable variability in data which
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are almost always collected indirectly. Thus one cannot
observe the marine community through simple popula-
tion measurements but only with surveys (bottom trawl,
divers etc) or sampling of catch, both of which will provide
measures which only relate indirectly to the corresponding
stock parameters, are often biased and always quite vari-
able. The second source of variation is due to the biological
processes themselves, all of which have natural variation.
A typical such process is the recruitment process, i.e., the
production of a new yearclass by the mature component
of the stock in question. Even for biology, this process is
incredibly variable and it is quite hard to extract meaning-
ful signals out of the noise. Unfortunately this process is the
single most important process with regard to sustainable
utilization (Beverton and Holt 1957, 1993).

As is to be expected, noisy input data will lead to
variation in estimates of stock sizes, productivity and pre-
dictions (Patterson et al. 2001). As is well-known to statis-
ticians, it is therefore important not only to obtain point
estimates but also estimates of variability. In addition to
the general noise issue, fisheries data are almost never i.i.d.
and examples show how ignoring this can easily lead to
incorrect estimates of stock size, state of utilization and
predictions (Myers and Cadigan 1995).

Bayesian approaches have been used to estimate stock
sizes (Patterson 1999). A particular virtue of Bayesian anal-
ysis in this context is the potential to treat natural mor-
tality more sensibly than in other models. The natural
mortality rate, M, is traditionally treated as a constant in
parametric models and it turns out that this is very hard
to estimate unless data are quite exceptional. Thus, M is
commonly assumed to be a known constant and different
values are tested to evaluate the effect of different assump-
tions. The Bayesian approach simply sets a prior on the
natural mortality like all other parameters and the resulting
computations extend all the way into predictions. Other
methods typically encounter problems in the prediction
phase where it is difficult to encompass the uncertainty in
M in the estimate of prediction uncertainty.

One approach to extracting general information on
difficult biological parameters is to consider several stocks
and even several species. For the stock-recruit question it
is clear when many stocks are considered that the typi-
cal behavior is such that the stock tend to produce less at
low stock sizes, but this signal can rarely be seen for indi-
vidual stocks. Formalizing such analyses needs to include
parameters (as random effects) for each stock and com-
bining them reduces the noise enough to provide patterns
which otherwise could not be seen (see e.g., Myers et al.
1999).

In addition to the overall view of sustainable use of
resources, many smaller statistical models are commonly

considered. For example, one can model growth alone,
typically using a nonlinear model, sometimes incor-
porating environmental effects and/or random effects
(Miller 1992; Taylor and Stefansson 1999; Brandao et al.
2004; Gudmundsson 2005).

Special efforts have been undertaken to make the use
of nonlinear and/or random effects models easier for the
user (Skaug 2002; Skaug and Fournier 2006). Although
developed for fishery science, these are generic C++-based
model-building languages which undertake automatic dif-
ferentiation transparently to the user (Fournier 1996).

Most of the above models have been developed for
“data-rich” scenarios but models designed for less infor-
mative data sets abound. Traditionally these include simple
models which were non-statistical and were simply a static
model of equilibrium catch but a more time-series orien-
tated approach was set up by Collie and Sissenwine (1983).
In some cases these simple population models have been
extended to formal random effects models (Conser 1991;
Trenkel 2008).

At the other extreme of the complexity scale, several
multispecies models have been developed, some of which
are formal statistical models (Taylor et al. 2007), though
most are somewhat ad-hoc and do not take a statisti-
cal approach (Helgason and Gislason 1979; Fulton et al.
2005; Pauly et al. 2000). Simple mathematical descriptions
of species interactions are not sufficient here since it is
almost always essential to take into account spatial vari-
ation in species overlap, different nursery and spawning
areas and so forth. For these reasons a useful multispecies
model needs to take into account multiple areas, migra-
tion and maturation along with several other processes
(Stefansson and Palsson 1998). To become statistical mod-
els, these need to be set up in the usual statistical man-
ner with likelihood functions, parameters to be formally
estimated, methods to estimate uncertainty and take into
account the large number of different data sources available
through appropriate weighting or comparisons (Richards
1991; Stefansson 1998, 2003).

In the year 2010, the single most promising venue
of further research concerns the use of random effects
in nonlinear fisheries models. Several of these have been
described by Venables and Dichmont (2004) and some
examples go a few decades back in time as seen above,
often in debated implementations (de Valpine and Hilborn
2005). How this can be implemented in the context of
complex multispecies models remains to be seen.
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Introduction

Suppose that 7 is a probability measure on the probability
space (S,.A), h is a measurable function from § — R, and
one is interested in the calculation of the expectation

h:/hdn

assuming that the integral exists. In many problems, espe-
cially when the sample space S is multivariate or when the
normalizing constant of 7 is not easily calculable, finding
the value of this integral is not feasible either by numerial
methods of integration (such as the method of quadrature)
or by classical Monte Carlo methods (such as the method
of rejection sampling). In such instances, it is usually possi-
ble to find & by Markov chain Monte Carlo, or MCMC for
short, a method that stems from Metropolis et al. (1953)
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in connection with work related to the hydrogen bomb
project. It found early and wide use in computational sta-
tistical mechanics and quantum field theory where it was
used to sample the coordinates of a point in phase space.
Applications and developments of this method in statis-
tics, in particular for problems arising in »Bayesian statis-
tics, can be traced to Hastings (1970), Geman and Geman
(1984), Tanner and Wong (1987) and Gelfand and Smith
(1990).

The idea behind MCMC is to generate a sequence of
draws {y®,¢ > 0} that follow a Markov chain (see
»Markov Chains) with the property that the unique invari-
ant distribution of this Markov chain is the target distribu-
tion 7. Then, after ignoring the first ny draws to remove the
effect of the initial value 1//(0), the sample

{W(”()Jrl)’ . w(”(l+M)}

for M large, is taken as an approximate sample from 7 and
h estimated by the sample average

M
MY Ry ™)

g=1

Laws of large numbers for Markov chains show that

SIRA o (k)
MY (o) / hdn
g=1

as the simulation sample size M goes to infinity (Tierney
1994; Chib and Greenberg 1995; Chen et al. 2000; Liu 2001;
Robert and Casella 2004).

A key reason for the interest in MCMC methods is
that, somewhat surprisingly, it is straightforward to con-
struct one or more Markov chains whose limiting invariant
distribution is the desired target distribution. A leading
method is the Metropolis-Hasting (M-H) method.

Metropolis-Hastings method
In the Metropolis—Hastings method, as the Hastings (1970)
extension of the Metropolis et al. (1953) method is called,
the Markov chain simulation is constructed by a recursive
two step process.

Let 77(y) be a probabiliy measure that is dominated by
a sigma-finite measure y. Let the density of 7 with respect
to u be denoted by p(-). Let q(v,y") denote a condi-
tional density for y' given v with respect to y. This density
q(y,-) is referred to as the proposal or candidate generat-
ing density. Then, the Markov chain in the M-H algorithm
is constructed in two steps as follows.

Step 1 Sample a proposal value 1//Jr from q(l//(g ), V)
and calculate the quantity (the acceptance probability or the
probability of move)

T T
min[%ﬂ it p(v)a(y,v'") > 0;

a(yy') =
1 otherwise .
Step 2 Set
g0 2 | with proba(y®,yh)

v with prob1- a(y®,y")

If the proposal value is rejected then the next sam-
pled value is taken to be the current value which means
that when a rejection occurs the current value is repeated
and the chain stays at the current value. Given the new
value, the same two step process is repeated and the whole
process iterated a large number of times.

Given the form of the acceptance probability & (v, y")
it is clear that the M-H algorithm does not require knowl-
edge of the normalizing constant of p(-). Furthermore,
if the proposal density satisfies the symmetry condition
q(w,v") = q(y',v), the acceptance probability reduces
to p(v")/p(w); hence, if p(y') > p(v), the chain moves
to y', otherwise it moves to y' with probability given by
p(¥")/p(w). The latter is the algorithm originally pro-
posed by Metropolis et al. (1953).

A full expository discussion of this algorithm, along
with a derivation of the method from the logic of reversibil-
ity, is provided by Chib and Greenberg (1995).

The M-H method delivers variates from 7 under quite
general conditions. A weak requirement for a law of large
numbers for sample averages based on the M-H output
involve positivity and continuity of g(y,y") for (y,y")
and connectedness of the support of the target distribution.
In addition, if 7 is bounded then conditions for ergod-
icity, required to establish the central limit theorem (see
»Central Limit Theorems), are satisfied (Tierney 1994).

It is important that the proposal density be chosen to
ensure that the chain makes large moves through the sup-
port of the invariant distribution without staying at one
place for many iterations. Generally, the empirical behav-
ior of the M-H output is monitored by the autocorrelation
time of each component of y defined as

{Hzf pks},

s=1

where pi; is the sample autocorrelation at lag s for the
kth component of y, and by the acceptance rate which
is the proportion of times a move is made as the sam-
pling proceeds. Because independence sampling produces
an autocorrelation time that is theoretically equal to one,
one tries to tune the M-H algorithm to get values close to
one, if possible.
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Different proposal densities give rise to specific ver-
sions of the M-H algorithm, each with the correct invariant
distribution 7. One family of candidate-generating densi-
ties is given by q(y,v') = q(v' — ¥). The candidate y' is
thus drawn according to the process ¥' = ¥ + z, where z
follows the distribution g, and is referred to as the random
walk M-H chain. The random walk M-H chain is perhaps
the simplest version of the M-H algorithm and is quite
popular in applications. One has to be careful, however, in
setting the variance of z because if it is too large it is possi-
ble that the chain may remain stuck at a particular value for
many iterations while if it is too small the chain will tend
to make small moves and move inefficiently through the
support of the target distribution. Hastings (1970) consid-
ers a second family of candidate-generating densities that
are given by the form q(y,y') = q(y’). Proposal values
are thus drawn independently of the current location .

In applications when the dimension of v is large it is
usually necessary to construct the Markov chain simula-
tion by first grouping the variables y into smaller blocks.
Suppose that two blocks are adequate and that y is writ-
ten as (y,,y,), with y, € Qi ¢ % . In that case the
M-H algorithm requires the specification of two proposal
densities,

q (%»Wﬂ‘l’z) 5 q2 (Wp‘//;h/’])’

one for each block y,, where the proposal density g; may
depend on the current value of the remaining block. Also,
define

p(vihw,) o (vl wlv,) 1}

T .
a (v, ¥ ly,) = min ;
(vowilvs) {P(V’vu’z)ql(V’pW“V’z)

and

p (v vd) @ (vhvslv,) 1}
(o) g (v vilv,) [

as the probability of move for block y, conditioned on the
other block. Then, one cycle of the algorithm is completed
by updating each block using a M-H step with the above
probability of move, given the most current value of the
other block.

@ ('/’2”/’;"/’1) = min{

A special case of the multiple-block M-H method is the
Gibbs sampling method which was introduced by Geman
and Geman (1984) in the context of image-processing and
broadened for use in Bayesian problems by Gelfand and

Smith (1990). To describe this algorithm, suppose that
the parameters are grouped into two blocks (v, y,) and
each block is sampled according to the full conditional
distribution of block vy,

p(wilyy) s p(w,lyy)

defined as the conditional distribution under 7 of y, given
the other block. In parallel with the multiple-block M-H
algorithm, the most current value of the other block is
used in sampling the full conditional distribution. Deriva-
tion of these full conditional distributions is usually quite
simple since, by »Bayes’ theorem, each full conditional is
proportional to p(y,, ¥, ), the joint distribution of the two
blocks. In addition, the introduction of latent or auxiliary
variables can sometimes simplify the calculation and sam-
pling of the full conditional distributions. Albert and Chib
(1993) develop such an approach for the Bayesian analysis
of categorical response data.

Concluding Remarks

Some of the recent theoretical work on MCMC methods
is related to the question of the rates of convergence (Cai
2000; Fort et al. 2003; Jarner and Tweedie 2003; Douc
et al. 2007) and in the development of adaptive MCMC
methods (Atchade and Rosenthal; Andrieu and Moulines
2005; 2006).

The importance of MCMC methods in statistics and
in particular Bayesian statistics cannot be overstated. The
remarkable growth of Bayesian thinking over the last
20 years was made possible largely by the innovative use of
MCMC methods. Software programs such as WINBUGS
and the various MCMC packages in R have contributed
to the use of MCMC methods in applications across the
sciences and social sciences (Congdon 2006) and these
applications are likely to continue unabated.
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Introduction
Markov chains, which comprise Markov chains and
»Markov processes, have been successfully applied in
areas as divers as biology, finance, manufacturing, telecom-
munications, physics and transport planning, and even for
experts it is impossible to have an overview on the full
richness of Markovian theory. Roughly speaking, Markov
chains are used for modeling how a system moves from
one state to another at each time point. Transitions are
random and governed by a conditional probability distri-
bution which assigns a probability to the move into a new
state, given the current state of the system. This depen-
dence represents the memory of the system. A basic exam-
ple of a Markov chain is the so-called random walk defined
as follows. Let X; € N, for ¢ € N, be a sequence of random
variables with initial value X, = 0. Furthermore assume
that P(Xe = Xe+1Xe 2 1) = p = 1-P(Xps1 = Xe—1|X; 2 1).
The sequence X = {X; : t € N} is an example of a Markov
chain (for a detailed definition see below) and the aspects
of X one is usually interested in in Markov chain theory is
(i) whether X returns to 0 in a finite number of steps (this
holds for 0 < p < 1/2), (ii) the expected number of steps
until the chain returns to 0 (which is finite for 0 < p < 1/2),
and (iii) the limiting behavior of X;.

In the following we present some realistic examples.
A useful model in modeling infectious diseases assumes
that there are four possible states: Susceptible (S), Infected
(1), Immune (A), Dead (R). Possible transitions are from
Stol, SorR;fromIto A or R; from A to A or R; from R
to R only. The transitions probabilities, from S to I, S to R
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and the loop S to S, must sum to one and can depend on
characteristics of the individuals modeled, like age, gender,
life style, etc. All individuals start in S, and move at each
time unit (say a day). Given observations of the sequence
of visited states (called trajectory) for a sample of individu-
als, with their personal characteristics, one can estimate the
transition probabilities, by »logistic regression, for exam-
ple. This model assumes that the transition probability at
time ¢ from one state A to state B, only depends on the
state A, and not on the trajectory that lead to A. This might
not be realistic, as for example a perdurance in the dis-
eased state I over many days, could increase the probability
of transition to R. It is possible to model a system with
longer memory, and thus leave the simplest setting of a
Markov Chain (though one can formulate such a model
still as a Markov Chain over a more complex state space
which includes the length of stay in the current state). A
second example refers to finance. Here we follow the daily
value in Euro of a stock. The state space is continuous,
and one can model the transitions from state x Euro to y
Euro with an appropriate Normal density with mean x — y.
The time series of the value of the stock might well show
a longer memory, which one would typically model with
some autoregressive terms, leading to more complex pro-
cess again. As a further example, consider the set of all
web pages on the Internet as the state space of a giant
Markov chain, where the user clicks from one page to
the next, according to a transition probability. A Markov
Chain has been used to model such a process. The tran-
sitions from the current web page to the next web page
can be modeled as a mixture of two terms: with proba-
bility A the user follows one of the links present in the
current web page and among these uniformly; with prob-
ability 1 — X the user chooses another web page at random
among all other ones. Typically A = 0.85. Again, one could
discuss how correct the assumption is, that only the current
web page determines the transition probability to the next
one. The modeler has to critically validate such hypoth-
esis before trusting results based on the Markov Chain
model, or chains with higher order of memory. In general
a stochastic process has the Markov property if the prob-
ability to enter a state in the future is independent of the
states visited in the past given the current state. Finally,
Markov Chain Monte Carlo (MCMC) algorithms (see
» Markov Chain Monte Carlo) are Markov chains, where
at each iteration, a new state is visited according to a tran-
sition probability that depends on the current state. These
stochastic algorithm are used to sample from a distribu-
tion on the state space, which is the marginal distribution
of the chain in the limit, when enough iterations have been
performed.

In the literature the term Markov processes is used
for Markov chains for both discrete- and continuous time
cases, which is the setting of this paper. Standard textbooks
on Markov chains are Kijima (1997), Meyn and Tweedie
(1993), Nummelin (1984), Revuz (1984). In this paper we
follow (Tosifescu 1980) and use the term ‘Markov chain’ for
the discrete time case and the term ‘Markov process’ for
the continuous time case. General references on Markov
chains are Feller (1968), Gilks et al. (1995), Haeggstroem
(2002), Kemeny and Snell (1960), Seneta (1973).

Discrete Time Markov Chains

Consider a sequence of random variables X = {X; : t €
N} defined on a common underlying probability space
(Q, F,P) with state discrete space (S,S), i.e., X; is F - S-
measurable for ¢ € N. The defining property of a Markov
chain is that the distribution of X1 depends on the past
only through the immediate predecessor X;, i.e., given
Xo, X1, ...,X; it holds that

P(Xe41 = x[Xo = x0, X1 = x1,. .. Xp1 = -1, X¢ = )
= ]P(XHI = X|Xt = )/)>

where x,y and all other x; are element of the given state
space S. If P(X¢11 = x|X¢ = y) does not depend on t,
the chain is called homogenous and it is called inhomoge-
neous otherwise. Provided that § is at most countable, the
transition probabilities of a homogeneous Markov Chain
are given by P = (px,)sxs, where px, = P(Xi1 =
y|X: = x) is the probability of a transition from x to
y. The matrix P is called the one-step transition proba-
bility matrix of the Markov chain. For the introductory
»random walk example the transition matrix is given by
Piit1 = P pii-1 = p -1, for i > Lpor =1 and oth-
erwise zero, for i € Z. The row sums are one and the
k-th power of the transition matrix represent the proba-
bility to move between states in k time units.

In order to fully define a Markov Chain it is necessary
to assign an initial distribution y = (P(Xo = s) : s € S).
The marginal distribution at time ¢ can then be computed,
for example, as

P(X, =x) = S pOP(Xo = 5),

se§

where ps(;) denotes the s, x element of the t-th power of the
transition matrix. Note that given an initial distribution y
and a transition matrix P, the distribution of the Markov
chain X is uniquely defined.

A Markov chain is said to be aperiodic if for each pair
of states 7, ] the greatest common divisor of the set of all ¢

such that p(t)

i > 0 is one. Note that the random walk in
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our introductory example fails to be aperiodic as any path
from starting in 0 and returning there has a length that is
a multiple of 2.

A distribution (7;
distribution of P if

i € §) is called a stationary

P = 7.

A key topic in Markov chain theory is the study of the lim-
iting behavior of X. Again, with initial distribution y, X has
limiting distribution v for initial distribution y if

tl_l)rg uP' =v. )
Note that any limiting distribution is a stationary distri-
bution. A case of particular interest is that when X has
a unique stationary distribution, which is then also the
unique limiting distribution and thus describes the limit
behavior of the Markov chain. If P fails to be aperiodic,
then the limit in (1) may not exists and should be replaced
by the Cesaro limit

1 t
lim—ZyPk:v,

t—oo [ =1

which always exists for finite Markov chains.

A Markov chain is called ergodic if the limit in (1) is
independent of the initial distribution. Consequently, an
ergodic Markov chain has a unique limiting distribution
and this limiting distribution is also a stationary distri-
bution, and since any stationary distribution is a limiting
distribution it is also unique.

A Markov chain is called irreducible if for any pair of
states i,j € S, there exists a path from i to j that X will
follow with positive probability. In words, any state can be
reached from any other state with positive probability. An
irreducible Markov chain is called recurrent if the number
of steps from a state i to the first visit of a state j, denoted by
7;, is almost surely finite for all 4,j € S, and it is called pos-
itive recurrent if E[ 7;;] < oo for at least one i € S. Note that
for p = 1/2 the random walk is recurrent and for p < 1/2 it
is positive recurrent.

The terminology developed so far allows to present the
main result of Markov chain theory: Any aperiodic, irre-
ducible and positive recurrent Markov chain P possesses a
unique stationary distribution 77 which is the unique prob-
ability vector solving 7P = 7 (and which is also the unique
limiting distribution). This »ergodic theorem is one of the
central results and it has been established in many vari-
ations and extensions, see the references. Also, efficient
algorithms for computing 7 have been a focus of research
as for Markov chains on large state-spaces computing 7 is
a non-trivial task.

An important topic of the statistics of Markov chains
is to estimate the (one-step) transition probabilities. Con-
sider a discrete time, homogeneous Markov chain with
finite state space S = {1,2,...,m}, observed at time points
0,1,2,...,T on the trajectory so,s2,$2,...,sr. We wish to
estimate the transition probabilities p; ; by maximum like-
lihood. The likelihood is

'T-1
IFD(X() = So) H P(Xt = St+1|Xy = St)
t=0

m m
=P(Xo =s0) [T pi™”
i=1 j=1

where k(i, ) is the number of transitions from i to j in the
observed trajectory. Ignoring the initial factor, the maxi-
mum likelihood estimator of p;; is found to be equal to
bij = %, where k(i,-) is the number of transitions
out from state i. Standard likelihood asymptotic applies,
despite the data are dependent, as k(i,-) — oo, which will
happen if the chain is ergodic. The asymptotic variance of
the maximum likelihood estimates can be approximated
as var(pi;) ~ pij(1 — pij)/k(i,-). The covariances are
zero, except cov(pij, pij) ~ —pijpij/k(i,-) for j # j. If
the trajectory is short, the initial distribution should be
considered. A possible model is to use the stationary dis-
tribution 7(so ), which depend on the unknown transition
probabilities. Hence numerical maximization is needed to
obtain the maximum likelihood estimates. In certain med-
ical applications, an alternative asymptotic regime can be
of interest, when many (k) short trajectories are observed,
and k — oo. In this case the initial distribution cannot be
neglected.

Markov Chains and Markov Processes

Let {X; : t > 0} denote the (continuous time) Markov
process on state space (S,S) with transition matrix P(t),
ie.,

(P(t))ij = IP(XHS :j‘Xs = l), s>0, i4,jeSs.
Under some mild regularity conditions is holds that the
generator matrix Q, defined as

d

—| P(t)=Q,

gl T =Q
exists for P(t). The stationary distribution of a Markov
process can be found as the unique probability 7 that solves
mQ = 0, see Anderson (1991). A generator matrix Qis called
uniformizable with rate y if 4 = sup;|q;| < co. While
any finite dimensional generator matrix is uniformizable
a classical example of a Markov process on denumerable
state space that fails to have this property is the M/M/co
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queue. Note that if Q is uniformizable with rate y, then Q
is uniformizable with rate # for any # > p. Let Q be uni-
formizable with rate ¢ and introduce the Markov chain P,
as follows

[Pu]ij = qij/u P4

L+qifu i=j @
for i,j € S, or, in shorthand notation,
Py=1+ lQ,
¢
then it holds that
P(t)=e* i %(P,‘)”, £>0. (3)
n=0 M

Moreover, the stationary distribution of P, and P(¢) coin-
cide. The Markov chain X, = {X,’f in> 0} with transition
probability matrix Py, is called the sampled chain. The rela-
tionship between X" and &), can be expressed as follows.
Let N,(t) denote a Poisson process (see »Poisson Pro-
cesses) with rate g, then X’;]F( 0 and X; are equal in dis-
tribution for all t > 0. From the above it becomes clear that
the analysis of the stationary behavior of a (uniformizable)
continuous time Markov chain reduces to that of a discrete
time Markov chain.
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The class of Markov Processes is characterized by a special
stochastic dependence known as the Markov Dependence
that was introduced in 1907 by A.A. Markov while extend-
ing in a natural way the concept of stochastic independence
that will preserve, for example, the asymptotic proper-
ties of sums of random variables such as the law of large
numbers. One of his first applications of this dependence
was in investigation of the way the vowels and consonants
alternate in literary works in the Russian literature. This
dependence that Markov introduced, dealt with what we
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call today a discrete-parameter Markov Chain with a finite
number of states, and it can be stated as follows: a sequence
{Xu; n=12,...} of real-valued random variables given
on a probability space (Q,F,P), each taking on a finite
number of values, satisfies

P[Xn+1 = xn+1‘X1:X2> cee >Xn] = P[Xn-H = xn+1|Xn]- @

Roughly speaking, (1) states that any prediction of X,+1
knowing

X1, X0,.. ., Xn,

can be achieved by using X,, alone.

This concept was further extended (as shown in what
follows), for the continuous-parameter Markov processes by
AN. Kolmogorov in 1931. Further essential developments
in the theory of continuous-parameter Markov Processes
were due to W. Feller, J.L. Doob, G.A. Hunt, and E.B.
Dynkin.

In order to introduce a continuous-parameter Markov
Process, one needs the following setting. Let T =
[0, +00) c R be the parameter set of the process, referred to
in the sequel as time, where R denotes the one-dimensional
Euclidean space; let X = {X;, F;, t € T} be the process
given on the probability space (Q,F,P) that takes values
in a topological space (S, &), where & is a Borel field of
S, that is, a o-field generated by open sets in S. The pro-
cess X is adapted to the increasing family {F;, t € T} of
o-fields of F, where Fy contains all P-null sets. All X;’s are
&-measurable. Here, X; is adapted to F; means that all ran-
dom events related to X; are contained in JF; for every value
t of the parameter of the process, that is, X; is Fi-measurable
in addition of being €-measurable. In order to describe the
Markov dependence for the process X, the following two
o-fields are needed: V¢, t € T, F'*' = ¢({X;, s € [0,]})
and "™ = ¢({X,, s € [t,+00)}). Here, the past and
the future are relative to the instant ¢ that is considered
as the present. Now the process X = {X;,F;, t € T} is
called a Markov Process if and only if one of the following
equivalent conditions is satisfied:

(i) Vt, teT, Ae F, Be F".
P(A N B|X,) = P(A|X,)P(B|X,).
(ii) Vt, te T, Be F"re .,
P(B|F,) = P(BX,).
(iii) Vt, te€T, Ae Fy:
P (A[F) = P(A]X:).

2

Observe that (ii) in (2) is the analog of (1) stating
that the probability of an event in the future of the Markov
process X depends only on the probability of the present

state of the process and it is independent of the past his-
tory of the process. There are numerous phenomena occur-
ring in physical sciences, social sciences, econometrics,
the world of finance, to name just a few, that can all be
modelled by Markov processes. Among Markov processes
there is a very important subclass of the so-called strong
Markov processes. This proper subclass of Markov pro-
cesses is obtained by randomizing the parameter of the
process. This randomization of the parameter leads to the
so-called optional times of the process and the Markov
property (2) is replaced by the strong Markov property,
where in (2) deterministic time ¢ is replaced by an optional
time of the process. The most important example of a
strong Markov process is the Brownian Motion Process (see
»Brownian Motion and Diffusions) that models the phys-
ical phenomenon known as the Brownian Movement of
particles. Another important class of processes — Diffu-
sion processes, are strong Markov Processes with continuous
paths.

One of the most important properties of Markov pro-
cesses is that times between transitions from one state to
another, are random variables that are conditionally inde-
pendent of each other given the successive states being visited,
and each such sojourn time has an exponential distribution
with the parameter dependent on the state being visited. This
property coupled with the property that successive states
visited by the process form a Markov chain (see »Markov
Chains), clearly describe the structure of a Markov pro-
cess. Other important examples of Markov processes are
»Poisson processes, Compound Poisson processes, The
»Random Walk, Birth and Death processes, to men-
tion just a few. The last mentioned class of Markov pro-
cesses has many applications in biology, »demography,
and »queueing theory.

For further details and proofs of all facts men-
tioned here, a reader may consult the enclosed list of
references.
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The martingale central limit theorem (MCLT) links the
notions of martingales and the Lindeberg-Feller classical
central limit theorem (CLT, see »Central Limit Theorems)
for independent summands.

Perhaps the greatest achievement of modern proba-
bility is the unified theory of limit results for sums of
independent random variables, such as the law of large
numbers, the central limit theorem, and the law of the
iterated logarithm. In comparison to the classical strong
law of large numbers, the classical CLT says something
also about the rate of this convergence. We recall the CLT
for the case of independent, but not necessarily identically
distributed random variables. Suppose that {X;, i > 1} is
a sequence of zero-mean independent random variables
such that Var[X,] = 0p < 00, n>1.LetS, = ¥, X;, n> 1
and set Var[S,] = s. If the Lindeberg condition holds, i.e.,
i E[Xi g pes,) ]

7

— Qasn — oo, foralle > 0, and

S

1¢; denoting the indicator function, then =~ 2N (0,1),
Sn

where N(0,1) denotes the standard normal random

variable.

Limit theorems have applicability far beyond the
corresponding results for sums of independent random
variables. Namely, since sums of independent random
variables centered at their expectations have a specific
dependence structure (i.e., are martingales), there is inter-
est in extending the results to sums of dependent random
variables.

In order to define martingales and state the MCLT
attributed to Brown (1971), one needs the following setting.

Let (Q, F, P) be a probability space and let {F,,, n > 0}
be an increasing sequence of o-fields of F sets.

Definition1 A sequence {Y,, n > 0} of random variables
on Q) is said to be a martingale with respect to {F, n > 0}
if (1) Y, is measurable with respect to Fy, (2) E|Y4| < oo,
and (3) E[Y|Fu] = Ym as. forallm < n, m, n> 0.

In order to highlight the dependence structure of
the underlying random variables, one should note that
condition (3) is weaker than independence since it
cannot be deduced which structure conditional higher-
order moments may have given the past. The mathematical
theory of martingales may be regarded as an extension
of the independence theory, and it too has its origins in
limit results, beginning with Bernstein (1927) and Lévy’s
(1935) early central limit theorems. These authors intro-
duced the martingale in the form of consecutive sums with
a view to generalizing limit results for sums of indepen-
dent random variables. However, it was the subsequent
work of Doob, including the proof of the celebrated mar-
tingale convergence theorem, that completely changed the
direction of the subject, and his book (Doob 1953), popu-
larly called in academia the Holy Bible for stochastic pro-
cesses, has remained a major influence for nearly three
decades.

The main result that follows applies the CLT to
sequences of random variables that are martingales. If
{Sn, Fa.} is a martingale, it seems natural to replace
Var[S,] in the CLT by the sum of conditional variances.
Secondly, the norming by 1/n is very restrictive. For a
sequence of independent, but not identically distributed
random variables, it seems appropriate to norm by a dif-
ferent constant, and for a sequence of dependent random
variables norming by another random variable should be
considered. The limit theory for martingales essentially
covers that for the categories of processes with indepen-
dent increments and »Markov processes. Using stochastic
processes that are martingales for analyzing limit results,
one has at their disposal all the machinery from martin-
gale theory. This reason makes martingales considerably
attractive for inference purposes. A standard reference on
martingales is Williams (1991).

Theorem 1 Let {S,, Fu, n > 1} be a zero-mean mar-
tingale with So = 0, whose increments have finite variance.
Write

Vi= znjE[Xﬂf,»,l], and

i=1

n
Sn = in’
i=1

sn=E[Vi]=E[S3]. o
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If
n
2
VE g > E[Xi1gx, ses,y ]
2l oand e 0 ()
Sn Sh

asn — oo, for all e > 0, and 10} denoting the indicator

function, then
S
= 2 N (o), ®
Sn

where N(0,1) denotes the standard normal random

variable.

Roughly speaking, (3) says that the sum of martingale
differences, when scaled appropriately, is approximately
normally distributed provided the conditional variances
are sufficiently well behaved. The theorem seems relevant
in any context in which conditional expectations, given
the past, have a simple and possibly explicit form. Var-
ious results on sums of independent random variables
in fact require only orthogonality of the increments, i.e.,
E [X,-Xj] =0, i # j, and this property holds for martingales
whose increments have finite variance. The MCLT reduces
to the sufficiency part of the standard Lindeberg-Feller
result in the case of independent random variables.

The interpretation of V,, is highlighted and particularly
interesting for inference purposes. Let X, X,... be a
sequence of observations of a stochastic process whose
distribution depends on a (single) parameter 6, and
let L,(0) be the likelihood function associated with
Xi, Xa,.... Under very mild conditions, score func-
tions S, =0dlogL,(6)/d0 form a martingale whose con-
ditional variance V; =1,(6) is a generalized form of
the standard Fisher information, as shown in Hall and
Heyde (1980). Namely, suppose that the likelihood func-
tion L(0) is differentiable with respect to 6 and that
Eg[0logL(6)/96] < co.

Let 6 be a true parameter vector. We have

Sy = M - in(g),
a0 i=1

0
xi(0) = E[logLi(H) —logLi—1(6)],
and thus Eg[x;(0)|Fi-1] = 0 a.s., so that {S,, Fy, n > 1}

is a square-integrable martingale. Set V= > Eg
i=1

[xf(9)| ]—'H]. The quantity V; reduces to the standard
Fisher information I,(0) in the case where the observa-
tions {X;j, i > 1} are independent random variables. If the
behavior of V; is very erratic, then so is that of S,,, and it
may not be possible to obtain a CLT.

So, if we have a reasonably large sample, we can assume
that estimators obtained from estimating functions that are

martingales, have an approximately normal distribution,
which can be used for testing and constructing confidence
intervals. A standard reference for the more general theory
of martingale estimating functions is Serensen (1999).
Billingsley (1961), and independently Ibragimov (1963),
proved the central limit theorem for martingales with sta-
tionary and ergodic differences. For such martingales the
conditional variance V, is asymptotically constant, i.e.,
Vi

> 2, 1. Brown (1971) showed that the first part of condi-

S}’!
tion (2) and not stationarity or ergodicity is crucial for such

aresult to hold. Further extensions in view of other central
limit theorems for double arrays are based on Dvoretzky
(1970) and McLeish (1974), where limit results employ a
double sequence schema {X,,,j, 1<j<kp<oo,n2 1} and
Ky
furnish conditions for the row sums S, = ZX,,,,— to con-
=1
verge in distributions to a mixture of normejtl distributions
with means zero. A large variety of negligibility assump-
tions have been made about differences X, ; during the for-
mulation of martingale central limit theorems. The classic
condition of negligibility in the theory of sums of inde-
pendent random variables asks the X,,; to be uniformly
asymptotically negligible.

A comprehensive review on mainly one-dimensional
martingales can be found in Helland (1982). Multivari-
ate versions of the central limit theorem for martingales
satisfying different conditions or applicable to different
frameworks, can be found in Hutton and Nelson (1984),
Serensen (1991), Kiichler and Serensen (1999), Crimaldi
and Pratelli (2005), and Hubalek and Posedel (2007).

Cross References
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The fundamental theorem of asset pricing (The term fun-
damental theorem of asset pricing was introduced in Dybvig
and Ross [1987]. It is used for theorems establishing the
equivalence of an economic modeling condition such as
no-arbitrage to the existence of the mathematical modeling
condition existence of equivalent martingale measures.)
links the martingale property of (discounted) asset price
processes under a particular class of probability measures
to the ‘fairness’ (in this context no arbitrage condition) of
financial markets. In elementary models one such result
is In an arbitrage-free complete financial market model,
there exists a unique equivalent martingale measure, see e.g.,
Bingham and Kiesel (2004).

So despite martingales have been around for more than
three and a half centuries they are still at the forefront
of applied mathematics and have not lost their original

motivation of describing the notion of fairness in games
of chance. The Oxford English Dictionary lists under the
word martingale (we refer to Mansuy [2009] for a inter-
esting account of the etymology of the word): A system of
gambling which consists in doubling the stake when losing
in order to recoup oneself (1815).

Indeed, the archetype of a martingale is the capital of a
player during a fair gambling game, where the capital stays
“constant on average”; a supermartingale is “decreasing on
average,” and models an unfavourable game; a submartin-
gale is “increasing on average,” and models a favorable
game.

Gambling games have been studied since time immemo-
rial — indeed, the Pascal-Fermat correspondence of 1654
which started the subject was on a problem (de Méré’s
problem) related to gambling. The doubling strategy above
has been known at least since 1815. The term “martingale”
in our sense is due to J. Ville (1910-1989) in his thesis
in 1939. Martingales were studied by Paul Lévy (1886-
1971) from 1934 on (see obituary Loéve (1973)) and by
J.L. Doob (1910-2004) from 1940 on. The first systematic
exposition was Doob (1953). Nowadays many very read-
able accounts exist, see Neveu (1975), Williams (1991) and
Williams (2001).

Martingales are of central importance in any mod-
elling framework which uses »stochastic processes, be
it in discrete or continuous time. The concept has been
central to the theory of stochastic processes, stochas-
tic analysis, in mathematical statistics, information the-
ory, and in parts of mathematical physics, see Kallenberg
(1997) and Meyer (2009) for further details. The Martin-
gale gambling insight ‘You can’t beat the system’ estab-
lishes properties of martingale transforms and lays the
foundation of stochastic integrals, @ksendal (1998). Mar-
tingale stopping results establish optimality criteria which
help develop optimal strategies for decision problems
(and exercising financial options), see Chow (1971) and
Shiryaev (2007).

We can here only give a few fundamental definitions
and results and point to the vast literature for many more
exiting results.

For the definition, let I be a suitable (discrete or con-
tinuous) index set and assume that an index ¢ is always
taken from I. Given a stochastic basis (Q,F,IP,[F =
{F:}) (where the filtration IF models the flow of informa-
tion) we call a process X = (X;) a martingale relative to

({F:}, IP) if

(i) Xisadapted (to {F:}).
(i) IE|Xi| < oo forall z.

(iii) Fors < twehave [E[X/|F] =X, IP-a.s.
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X is a supermartingale if in place of (ii)
E[X|F]<Xs IP-as;

X is a submartingale if in place of (iii)
E[X:|F]>X; IP-a.s.

Basic examples are the mean-zero »random walk: S, =
> Xi, with X; independent, where for IE(X;) = 0 S, is a
martingale (submartingales: positive mean; supermartin-
gale: negative mean) and stock prices: Sy = So(i-+-(, with {;
independent positive r.vs with existing first moment. (See
Williams (1991) and Williams (2001) for many more exam-
ples). In continuous time the central example is that of
Brownian motion, see Revuz and Yor (1991), Karatzas and
Shreve (1991), which of course is a central process for many
branches of probability (see also »Brownian Motion and
Diffusions).

Now think of a gambling game, or series of speculative
investments, in discrete time. There is no play at time 0;
there are plays at times n = 1,2,.. ., and

AXy =Xy — Xua1

represents our net winnings per unit stake at play n. Thus
if X, is a martingale, the game is “fair on average”

Call a process C = (Cy),2; predictable if C, is Fy-1-
measurable for all n > 1. Think of C, as your stake on
play n (Co is not defined, as there is no play at time 0).
Predictability says that you have to decide how much to
stake on play n based on the history before time n (i.e., up
to and including play # — 1). Your winnings on game 7 are
CuAXy = Cu(Xy — Xn—1). Your total (net) winnings up to
time 7 are

n n
Yy = ) GelXy = 3 Cr(Xk = Xin)-
k=1 k=1
This constitutes the Martingale transform of X by C.

The central theorem for betting and applications in
finance says that “You can’t beat the system!” i.e., if X is a
martingale then the martingale transform is a martingale
(under some mild regularity conditions on C). So in the
martingale case, predictability of C means we can't fore-
see the future (which is realistic and fair). So we expect to
gain nothing - as we should, see e.g., Neveu (1975). Like-
wise one can analyze different strategies to stop the game,
then Doob’s stopping time principle reassures that it is not
possible to beat the system, see e.g., Williams (2001).

Martingale transforms were introduced and studied
by Burkholder (1966). They are the discrete analogs of
stochastic integrals and dominate the mathematical the-
ory of finance in discrete time, see Shreve (2004), just
as stochastic integrals dominate the theory in continu-
ous time, see Harrison and Pliska (1981). The various links

between mathematical finance and martingale theory are
discussed in Musiela and Rutkowski (2004) and Karatzas
and Shreve (1998).

Martingale-convergence results are among the most
important results in probability (arguably in mathemat-
ics). Hall and Heyde (1980) and Chow (1988) are excellent
sources, but Doob (1953) lays the foundations. Martingale
techniques play a central role in many parts of probability,
consult Rogers (1994), Revuz and Yor (1991), Karatzas and
Shreve (1991) or Kallenberg (1997) for excellent accounts.
Martingales appear in time series theory and sequential
analysis, see Lai (2009) and Hamilton (1994).

About the Author

Riidiger Kiesel holds the chair of energy trading and
financial services (sponsored by the Stifterverband fiir die
Deutsche Wissenschaft and RWE Supply & Trading; the
first such chair in Europe). Previously, he was Professor
and Head of the Institute of Financial Mathematics at Ulm
University. Kiesel also holds guest professorships at the
London School of Economics and the Centre of Mathe-
matical Applications at the University of Oslo. His main
research areas are currently risk management for power
utility companies, design and analysis of credit risk models,
valuation and hedging of derivatives (interest-rate, credit-
and energy-related), methods of risk transfer and structur-
ing of risk (securitization), and the stochastic modelling
of financial markets using Lévy-type processes. He is on
the editorial board of the Journal of Energy Markets and
co-author (with Nicholas H. Bingham) of the Springer
Finance monograph Risk-Neutral Valuation: Pricing and
Hedging of Financial Derivatives (2nd edition, 2004).

Cross References

»Brownian Motion and Diffusions

»Central Limit Theorems

»Khmaladze Transformation

»Martingale Central Limit Theorem

» Point Processes

»Radon-Nikodym Theorem

» Statistical Inference for Stochastic Processes
» Statistics and Gambling

»Stochastic Processes

»Stochastic Processes: Applications in Finance and
Insurance

»Stochastic Processes: Classification

References and Further Reading

Bingham N, Kiesel R (2004) Risk-Neutral valuation: pricing and
hedging of financial derivatives, 2nd edn. Springer, London
Burkholder DL (1966) Martingale transforms. Ann Math Stat

37:1494-1504



Mathematical and Statistical Modeling of Global Warming

781

Chow YS, Teicher H (1988) Probability theory: independence, inter-
changeability, martingales, 2nd edn. Springer, New York

Chow YS, Robbins H, Siegmaund D (1971) Great expectations: the
theory of optimal stopping. Houghton Mifflin, Boston

Doob JL (1953) Stochastic processes. Wiley, New York

Dybvig PH, Ross SA (1987) Arbitrage. In: Milgate M, Eatwell J,
Newman P (eds) The new palgrave: dictionary of economics.
Macmillan, London

Hall P, Heyde CC (1980) Martingale limit theory and applications.
Academic, New York

Hamilton JD (1994) Time series analysis. Princeton University Press,
Princeton

Harrison JM, Pliska SR (1981) Martingales and stochastic inte-
grals in the theory of continuous trading. Stoch Proc Appl 11:
215-260

Kallenberg O (1997) Foundations of probability. Springer, New York

Karatzas I, Shreve S (1991) Brownian motion and stochastic calculus,
2nd edn, Ist edn 1988. Springer, Berlin

Karatzas I, Shreve S (1998) Methods of mathematical finance.
Springer, New York

Lai TL (2009) Martingales in sequential analysis and time series,
1945-1985. Electron J Hist Probab Stat 5

Loéve M (1973) Paul Lévy (1886-1971), obituary. Ann Probab 1:1-18

Mansuy R (2009) The origins of the word ‘martingale’. Electron J
Hist Probab Stat 5

Meyer P-A (2009) Stochastic processes from 1950 to the present.
Electron ] Hist Probab Stat 5

Musiela M, Rutkowski M (2004) Martingale methods in financial
modelling, 2nd edn. Springer, Heidelberg

Neveu J (1975) Discrete-parameter martingales. North-Holland,
Amsterdam

Qksendal B (1998) Stochastic differential equations: an introduction
with applications, 5th edn. Springer, Berlin

Revuz D, Yor M (1991) Continuous martingales and Brownian
motion. Springer, New York

Rogers L, Williams D (1994) Diffusions, Markov processes and
martingales. Volume 1: foundations, 2nd edn. Wiley, Chichester

Shiryaev AN (2007) Optimal stopping rules, 3rd edn. Springer,
Berlin

Shreve S (2004) Stochastic calculus for finance I: the binomial asset
pricing model. Springer, New York

Williams D (1991) Probability with martingales. Cambridge Univer-
sity Press, Cambridge

Williams D (2001) Weighing the odds. Cambridge University Press,
Cambridge

' Mathematical and Statistical
Modeling of Global Warming

CHRris P. Tsokos
Distinguished University Professor
University of South Florida, Tampa, FL, USA

Introduction
Do we scientifically understand the concept of “Global
Warming”? A very basic definition of “Global Warm-

ing” is an increase in temperature at the surface of the
earth supposedly caused by the greenhouse effect, car-
bon dioxide, CO; (greenhouse gas). The online encyclo-
pedia, Wikipedia, defines the phenomenon of “GLOBAL
WARMING? as the increase in the average temperature of
the earth’s near surface air and oceans in the recent decades
and its projected continuation.

For the past 3 years this has been a media chaos: pro
and concerned skeptics. The Intergovernmental Panel of
the United States on Climate Change (IPCC) - “Climate
Change 2007” claimed that the following are some of the
causes of Global Warming;:

e Increase in temperature — Increase in sea level
e Unpredictable pattern in rainfall

e Increase in extreme weather events

e Increase in river flows

o Etc.

Furthermore, the award winning documentary nar-
rated by Vice President Gore strongly supports the IPCC
findings. However, the ABC news program 20/20 “Give
Me a Break,” raises several questions and disputes the pro-
cess by which IPCC stated their findings. A number of
professional organizations, the American Meteorological
Society, American Geographical Union, AAAS, supported
the subject matter. The U.S. National Academics blame
global warming on human activities.

The concerned skeptics raise several points of inter-
est concerning Global Warming. Great Britain’s Channel
4 Documentary entitled “The Great Global Warming Swin-
dle” disputes several of the aspects of Vice President former
documentary. NASA scientists reveal through their scien-
tific experiments and studies that the increase in atmo-
spheric temperature is due to the fact that sea spots are
hotter than previously thought. Their findings are also
reported by the Danish National Space Center, DNSC, on
similar investigations conducted by NASA. DNSC stated
that there is absolutely nothing we can do to correct this
situation. Times Washington Bureau Chief, Bill Adair, states
that “Global Warming has been called the most dire issue
facing the planet and yet, if you are not a scientist, it can
be difficult to sort out the truth.” The Wall Street Journal in
a leading article “Global Warming is 300-year-old News,”
stated that “the various kind of evidence examined by the
National Research Council, NRC, led it to conclude that the
observed disparity between the surface and atmospheric
temperature trends during the 20-year period is probably
at least partially real” It further stated that “uncertainties
in all aspects exist- cannot draw any conclusion concerning
Global Warming” However, the NRC study concluded with
an important statement that “major advances in scientific
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methods will be necessary before these questions on Global
Warming can be resolved”

Furthermore, the temperature increase that we are
experiencing are infinitesimal, during the past 100 years -
the mean global surface air temperature increased by
approximately 1.3°F (0.32°F). Dr. Thomas G. Moore,
Senior Fellow at the Hoover Institute at Stanford Uni-
versity, in his article entitled “Climate of Fear: Why We
Shouldn’t Worry About Global Warming” is not concerned
with such small changes in temperatures. Furthermore, in
his interview with Newsweek, he said more people die from
cold than from warmth and an increase of a few degrees
could prevent thousands of deaths.

It is well known that carbon dioxide, CO;, and sur-
face/atmospheric temperatures are the primary cause of
“GLOBAL WARMING? Jim Verhult, Perspective Editor,
St. Petersburg Times, writes, “carbon dioxide is invisible —
no color, no odor, no taste. It puts out fires, puts the fizz
in seltzer and it is to plants what oxygen is to us. It’s hard
to think of it as a poison” The U.S.A. is emitting approx-
imately 5.91221 billion metric tons of CO; in the atmo-
sphere, which makes us the world leader; however, by the
end of 2007, the Republic of China became the new leader.
Temperatures and CO; are related in that as CO, emis-
sions increase, the gasses start to absorb too much sunlight
and this interaction warms up the globe. Thus, the rise in
temperature and the debate of “GLOBAL WARMING?”

While working on the subject matter, an article
appeared on the front page of the St. Petersburg Times
on January 23, 2007. This article, entitled “Global Warm-
ing: Meet your New Adversary, was written by David
Adams. The highlight of this article was a section called
“By the Numbers,” which stated some information con-
cerning the continental United States: 2006 hottest year;
U.S. top global warming polluter; 20% increase of CO,
since 1990; 15% of CO; emissions by 2020; 78 number of
days U.S. fire season has increased; and 200 million people
that will be displaced due to global warming. Our data for
the continental U.S. does not support the first four statis-
tics, we have no data for the fifth, and the sixth is quite
hypothetical. The final assertion, with “0” representing the
number of federal bills passed by the Congress to cap
America’s global warming pollution. Thus, it is very impor-
tant that we perform sophisticated statistical analysis and
modeling to fully understand the subject matter. Also, very
recently, the Supreme Court of the U.S,, in one of its most
important environmental decisions, ruled that the Envi-
ronmental Protection Agency (EPA) has the authority to
regulate the greenhouse gases that contribute to global cli-
mate changes unless it can provide a scientific basis for its
refusal.

We believe that a contributing factor in creating these
controversies among scientists (and this is passed onto
the policymakers and the media) is a lack of precise
and accurate statistical analysis and modeling of histor-
ical data with an appropriate degree of confidence. The
problem of “GLOBAL WARMING” is very complex with a
very large number of contributing entities with significant
interactions. The complexity of the subject matter can
be seen in the attached diagram “A Schematic View”
(Fig. 1). We believe that statisticians/mathematicians can
help to create a better understanding of the subject prob-
lem that hopefully will lead to the formulation of legislative
policies.

Thus, to scientifically make an effort to understand
“Global Warming,” we must study the marriage of CO; and
atmosphere temperature, individually and together, using
available historical data. Here we shall briefly present some
parametric statistical analysis, forecasting models for CO,
and atmospheric temperature, T, along with a differential
equation, that give the rate of change of CO; as a function
of time. Scientists can utilize these preliminary analysis
and models to further the study of Global Warming. Addi-
tional information can be found in Tsokos (2007a, b), and
Tsokos 2008b.

Atmospheric Temperature, T,
Here we shall utilize historical temperature data recorded
in the Continental United States from 1895 to 2007, to
parametrically identify the probability density of the sub-
ject data and to develop a forecasting model to predict
short and long term values of T,.

The probability density function, pdf, of T, is the three-
parameter lognormal pdf. It is given by

exp{—%[ln(t—@)—y]z} o .
>

(t-0)ovzr ’0"”(;

1

where y, 0 and 0, are the scale, shape and location param-
eters, respectively.

For the given T, data the maximum likelihood estima-
tion of population parameter, y, o and 6 are ji = 3.59,6 =
0.019 and 6 = 0.195. Thus, the actual pdf that we will be
working with is given by

f(tu,0,0) =

exp {- ! [In(t - 0.195) -2.59]’}

1
t; A,é,fr = 2
J(8:4.9,6) (t-0.195) - 0.019/27

, £2>0.195.

)

Having identified the pdf that probabilistically charac-
terizes the behavior of the atmospheric T,, we can obtain
the expected value of T,, all the useful basic statistics along
with being able to obtain confidence limits on the true Tj.
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Such a pdf should be applicable in other countries around
the world.

The subject data, T,, is actually a stochastic realization
and is given as nonstationary time series. The development
of the multiplicative seasonal autoregressive integrated
moving average, ARIMA model is defined by

@, (B)$(1-B)*(1- B) xi = 0,(B)To(B)er,  (3)

where p is the order of the autoregressive process; d is the
order of regular differencing; q is the order of the moving
average process; P is the order of the seasonal autoregres-
sive process; D is the order of the seasonal differencing; Q
is the order of the seasonably moving average process; and
s refers to the seasonal period, and

$p(B) = (1- $1B— ¢2B” — -+ — ¢,B°)

G‘Z(B) = (1_61B—92B2—..._6qB‘1)
(DP(BS) =1- q)lBS — CDZBZS e (DPBPS
FQ(BS) = 1_ 1—‘IBS - l"szs —_ .. — I‘QBQS'

The developing process of (3) using the actual data is com-
plicated and here we present the final useful form of the
model. The reader is referred to Shih and Tsokos (2007,
2009) for details.

The estimated forecasting model for the atmospheric
data is given by
)ACt =1.0941x:-1 — 0.057x:—2 — 0.0371x:—3 + 0.9954x;_1»
—1.0891x;-13 + 0.0567x;_14 + 0.0369x¢_15
+ 0.0046x:—24 + 0.0895x;_25 — 0.0004x:_2¢
+ 0.0017x¢—27 — 0.9861¢et_1 — 0.974211 &1
+0.9607¢13. (4)
The mean of the residuals, 7, the variance, S,2, the stan-
dard deviation, S, standard error, SE, and the mean square

error, MSE, are presented below for one unit of time ahead
forecasting.

—0.008512476 | 4.331902 | 2.081322 | 0.05673052 | 4.328756

These numerical results give an indication of the qual-
ity of the developed model.

Carbon Dioxide, CO,

The other most important entity in Global Warming is
CO;. The complexity of CO; in the atmosphere is illus-
trated by the schematic diagram that was introduced. To
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better understand CO;, we need to probabilistically deter-
mine the best probability distribution, pdf, that charac-
terizes its behavior. Presently, scientists working on the
subject matter make the assumption that CO; in the atmo-
sphere follows the classical Gaussian pdf and that is not
the best possible fit of the actual data and could lead to
misleading decisions. The actual data that we are using was
collected in the Island of Hawaii/Mauna Loa from 1990 to
2004. Through goodness-of-fit statistical testing, the best
fit of the CO, data that we can study its behavior probabilis-
tically is the three-parameter Weibull pdf. The cumulative
three-parameter Weibull probability distribution is given
by

F(x) :l—exp{—("%)a}, y<x<00,6>0,>0 (5)

where a, 8, and y are the shape, scale, and location param-
eter. The nth moment, mean and variance are given by

my =P T(1+2), u=pr(1+ l) and ¢” = ﬁzr(l+g)—‘u,
(24 o o

respectively, where T’ is the gamma function. The approx-
imate maximum likelihood estimates of the true parame-
ters, a, § and y for the Hawaii data are given by

& = 2108, f =17.092, and = 349.6.
Thus, the cumulative pdf that we can use to probabilis-

tically characterize the CO, behavior and answer related
questions is given by:

F(x)=1-exp {— (“349‘6)2.108}. (6)

17.092

For additional details of the subject area see Shih and
Tsokos (2009).

Here we present a forecasting model of CO; in the atmo-
sphere. Having such a model will allow us to accurately
predict the amount of CO; in the atmosphere, and make
appropriate decisions as needed. The actual CO, data as
a function of time results in a nonstationary time series.
For details in the development of this model, see Shih and
Tsokos (2009). The best forecasting model that we devel-
oped is an ARIMA model with second order autoregressive
process, with a first order moving average process and a

12-month seasonal effect. Its final form is given by

COZA = 0.6887x;-1 + 0.1989x;2 + 0.1124x;_3 + 1.0759x;-12
—0.74097x¢-13 — 0.213997x¢-14 — 0.12093x¢-15
—0.0683x¢-24 + 0.047038x¢—25 + 0.013585x¢_26
+0.00768x;-27 — 0.00076x;-36 + 0.005234x;_37
+0.0015116x;-38 + 0.00085x; -39 — 0.8787¢;_15.

A similar statistical model can be developed for CO, emis-
sion, Shih and Tsokos (2009).

The main attributable variables in CO; in the atmosphere
are:

E: CO, emission (fossil fuel combination)

D: Deforestation and destruction

R: Terrestrial plant respiration

S: Respiration

O: the flux from oceans to atmosphere

P: terrestrial photosynthesis

A: the flux from atmosphere to oceans

B: Burial of organic carbon and limestone carbon

One important question that we would like to know is
the rate of change of CO; as a function of time. The general
form of the differential equation of the subject matter is of
the form:

d(CO,)
dt

=f(E,D,R,S,0,P,A,B)
or

CO,, = f(E+D+R+S+(OfA)fPfB)dt.
Here, B, P and R are constants, thus

COZA =f(kEE+kDD+kRR+ksS+kO_A(O—A)
+ kpP — kBB)dt.

Using the available data we can estimate the functional
analytical form of all the attributable variables that appear
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in the integrand. Thus, the final working form of CO; in
the atmosphere is given by

1
kp{~593503t + 2.4755 x 10°¢ 1200 }
+kp(10730.5¢ + 0.01625t%)

t t
+ks{ = 0.132(1995 + —)* +1054.4(1995 + — )’
CO, = 12 27

—315462(1995 + é)z +3x10%)

+Ka-0{42.814t — 4.2665¢

+0.0967¢°} — kp [ Pdt — kg [ Bdt

Having a workable form of the differential equation, we can
develop the necessary algorithm to track the influence the
attributable variables will have in estimating the change of
rate of CO; as a function of time.

Conclusion

Finally, is the “Global Warming” phenomenon real? Yes.
However, it is not as urgent as some environmentalists
claim. For example, our statistical analytical models pre-
dict that in the next 10 years, 2019, we will have an increase
of carbon dioxide in the atmosphere in the continental U.S.
of approximately 7%. In developing a strategic legislative
plan, we must address the economic impact it will have in
our society. In our present global economic crisis, intro-
ducing legislation to address Global Warming issues will
present additional critical economic problems. In a global
context we must consider about 155 economic develop-
ing countries that have minimal to no strategic plans in
effect that collect the necessary information that addresses
the subject matter in their country. Furthermore, we have
approximately 50 undeveloped countries that have mini-
mum understanding about the concept of global warm-
ing. Thus, talking about developing global strategies and
policies about “Global Warming” is quite premature.
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In field experiments we design the field plots. In case
we find one or more observations missing due to natural
calamity or destroyed by a pest or eaten by animals, it is
cumbersome to estimate the missing value or values as in
field trials it is practically impossible to repeat the exper-
iment under identical conditions. So we have no option
except to make best use of the data available. Yates (1933)
suggested a method: “Substitute x for the missing value and
then choose x so as to minimize the error sum of squares.”

Actually, the substituted value does not recover the best
information, however, it gives the best estimate according
to a criterion based on the least square method. For the

randomized block experiment
P+qQ-T
= %) 1)
(r-1(q-1

where

p = number of treatments;

q = number of blocks;

P = total of all plots receiving the same treatment as
the missing plot;

Q = total of all plots in the same block as the missing
plot; and
T = total of all plots.

For the Latin Square Design, the corresponding formula is

_p(Pr+Pc+P)-2T
- (p-D(g-D

)

where

p = number of rows or columns of treatments;

P, = total of row containing the missing plot;

P. = total of column containing the missing plot;

P; = total of treatment contained in the missing plot;
and

T = grand total.

In case more than one plot yields are missing, we sub-
stitute the average yield of available plots in all except one
of these and substitute x in this plot. We estimate x by Yate’s
method and use this value to estimate the yields of other
plots one by one.

Next we discuss the maximum entropy method. If
X1,X2,...,Xn are known yields and x is the missing yield.
We obtain the maximum entropy estimate refer to Kapur
and Kesavan (1992) for x by maximizing:

n

"2 T8 o lg . ()
T+x T+x T+x T+x
Thus we get
x= [xl Pos xﬁ]7 4)
where T = > x;.

The value glivlen by (4) is called maximum entropy mean of
X1, X2, « > Xne

Similarly, if two values x and y are missing, x and y are
determined from

k=[x xﬁ”]ﬁ)’, )
L
j/:[xf‘x’zcz...x’nc”]ﬂx. (6)
The solution of (5) and (6) is
1
k=p=[q"x . x| 7)

Hence all the missing values have the same estimate and
this does not change if the missing values are estimated one
by one.

There are three following drawbacks of the estimate
given by (4)
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(1) % is rather unnatural. In fact % is always greater than
arithmetic mean of x1, x2, ..., Xs.

(2) If two values are missing, the maximum entropy esti-
mated for each is the same as given by (7).

(3) This is not very useful for estimating missing values in
design of experiments.

The first drawback can be overcome by using general-
ized measure of entropy instead of Shannon entropy. If we
use Burg’s measure given by

B(P) = > logpi. (8)

i=1
Then we get the estimate

po Xt X )
n
In fact we choose a value %, which is as equal to
X1,X2,...,Xn as possible and so we maximize a measure
of equality. Since there are many measures of equality,
therefore our estimate will also depend on the measure of
equality we choose.
The second drawback can be understood by consider-
ing the fact that the information theoretic estimate for a
missing value depends on:

(a) The information available to us
(b) The purpose for which missing value is to be used.

As for the third drawback, according to the principle
of maximum entropy, we should use all the information
given to us and avoid scrupulously using any information
not given to us. In design of experiments, we are given
information about the structure of the design, which we are
not using this knowledge in estimating the missing values.
Consequently, the estimate is not accurate; however, infor-
mation theoretic model defined and studied by Hooda and
Kumar (2005) can be applied to estimate the missing value
x;j in contingency tables. Accordingly, the value x;; is to be
chosen to minimize the measure of dependence D.
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Mean, median and mode indicate central point of distri-
bution or data set. Let Py denotes distribution of a random
variable X. Any reasonable rule O = O(Px) indicating a
point O to be the center of Px should satisfy the following
postulates:

AlIfP(a<X<b)=1thena<O(Px)<b
A2 O(Px4c) = O(Px)+c forany constant ¢ [transitivity]
A3 O(Px) = cO(Px) for any constant ¢ [homogeneity]

The mean is a synonym of the first moment, i.e. the
expected value EX. For a continuous random variable X it
may be expressed in terms of density function f(x), as the
integral EX = [ xf(x)dx. In discrete case it is defined
as the sum of type EX = Y, xip;, where x; is a possible
value of X, i € I, while p; = P(X = x;) is its probability.
The mean fulfils all the above postulates and, moreover, an
extra condition
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AME(X - EX)* <E(X - ¢)* foranyce R

It is worth to add that mean may not exist.

The median Me = Me(X) is a scalar « defined by con-
ditions Px(X < «) > 3 and Px(X > «) > 1.In terms
of the cumulative distribution function F = Fx it means
that F(a) > 1 and limys F(a) < 1. In particular, if X
is continuous with density f, then the desired conditions
reduces to [ f(x)dx > 1 and [ f(x)dx > 1. In dis-

crete case it can be expressed in the form Z pi 2 3
{ix;<a}

1
and Z pi > —. The median also satisfies the conditions
{izx;>a} 2
Al — A3 and, moreover

AMeE|X — MeX| < E|X — | foranyceR.

The mode Mo = Mo(X) of a random variable X is
defined in terms of its density function f (continuos case)
or its probability mass function p; = P(X = x;) (discrete
case). Namely, Me(X) = argmaxf(x), or is an element x
in the set of possible values {x; : i € I} that P(X = x) =
max{p; : i € I'}. The mode also satisfies the conditions Al -
A3.Tt is worth to add that mode may not be unique. There
exist bimodal and multimodal distributions. Moreover the
set of possible modes may be interval.

In the context of data set, represented by a sequence
x = (x1,...,x) of observations, the postulates A1 — A3
may be reformulated as follows:

S10(xi,...,xi,) = O(x1,...,x,) for any permutation
i1, ..,ip of the indices 1,...,n

S2 min{x1,...,xn} < O(X1,...,Xn) < max{Xi,...,Xn}

S3O(x1+¢...,xn+¢)=0(x1,...,%n) +¢

S40(cx1,. .. cxn) = cO(x1,. .., Xn).

In this case the mean, median and mode are defined as
follows.

The mean of the data x = (x1,...,%, ), denoted usually
by X, is the usual arithmetic average x = % Y. xi. The mean
not only satisfies all conditions SI — $4 but also possesses
the property

SM YL (xi—%)* <Y (xi—c)? forallce R

Now let us arrange the elements of the sequence x
(x1,...,Xx) in the not decreasing order x;] < X1 < ... <
X[n]- The median of the data set x = (x1,...,x,) is defined
by the formula

X[ u21]s if nis odd

% (x[ﬂ] +x[ﬂ+1]) if n is even.

The median satisfies the conditions S1 — $S4 and, more-
over,

SMe Y7, |xi — Me(x)| < X0, |xi — c| forallc e R.

The mode of the data x = (xi,...,x,), denoted by
Mo(x), is the value in the set that occurs most often.
For instance if x = (73,18,24,9,3,18) then x 1=
(3,7.9,13,18,18,24). For such data Me(x) = x4 = 13 and
Mo(x) =18.

It is worth to add that the mean is very sensitive for
outlying observations.
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Introduction

Mean, median and mode are three statistical measures
commonly used to summarize data sets. They are known
by the common name average. In its broadest sense, an
average is simply any single value that is representative of
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many numbers. Averages are also called measures of cen-
tral tendency because an average is usually located near the
center of the data set. Some examples: average age of the
players of a cricket team, average reaction time of a par-
ticular chemical, average amount spent by a customer in a
shopping mall, etc.

The Mean

The mean, also known as arithmetic mean, is the most
widely used average and is defined as the sum of the obser-
vations divided by the number of observations. The for-
mula for computing mean is: X = (D x)/n, where x is
the symbol for mean (pronounced “x-bar”), x is the sym-
bol for variable, > x is the sum of observations (i.e., the
sum of the values of the variable x) and # is the number
of observations.

Although, there are also other kinds of means (such
as the »harmonic mean and the »geometric mean), the
arithmetic mean is by far the most popular. For this rea-
son, the word arithmetic is rarely used in practice and we
simply refer to the “mean”

Example1 The ages (in weeks) of five babies are 5, 9, 8, 6
and 10. Find the mean.

L. - 1
Solution: The mean of the set is given by x = > "x =
n

5+49+8+6+10 38
=2 =76 weeks.

5
Calculation of Mean for Discrete Frequency Distribution
Sometimes, it is convenient to represent the data in form
of a frequency distribution. In such cases the formula for

meanis: X = Z—J;f ,wheref is the frequency, > f is the sum

of the frequencies, Y. fx is the sum of each observation
multiplied by its frequency.

Example 2 Data for numbers of children in 35 families
are given below. Find the mean.

No. of children (x): 0 1 2 3 4

Frequency (f): 2 9 11 8 5
Solution:

x 0 1 2 3 4

f 2 9 11 8 5 > f=35

fx 0 9 22 24 20 S fx=75

%J;C = 2 = 2.1 children per family.

The mean x =

Calculation of Mean for Grouped Frequency Distribution

It is not possible to calculate exact mean in grouped
frequency distribution, because some information is lost
when the data are grouped. So, only an approximate value
of mean is obtained based on the assumption that all obser-
vations in a class interval occur at the midpoint (x,, ) of that
interval. Thus, the formula of Example 2 can be used after
replacing x by x,.

Example 3 The following is the distribution of the num-
ber of fish caught by 50 fishermen in a village. Find the
mean number of fish caught by a fisherman.

No. of fish caught: | 11-15 | 16-20 | 21-25 | 26-30
No. of fishermen: 12 14 13 1
Solution:
No. of fish Midpoint
caught (xm) f fxm
11-15 13 12 156
16-20 18 14 252
21-25 23 13 299
26-30 28 1 308
D =50 | > fxm=1015
Therefore, the mean is X = sz;m = % = 20.3 fish per
fisherman.
Weighted Mean

When weights (measures of relative importance) are
assigned to observations, weighted means are used. If an
observation x is assigned a weight w, the weighted mean is

given by X = > wx/> w.
The Median

The median is another kind of average. It is defined as the
centre value when the data are arranged in order of magni-
tude. Thus, the median is a value such that 50% of the data
are below median and 50% are above median.

Calculation of Median for Raw Data

The observations are first arranged in ascending order of
magnitude. If there are n observations, the median is

1. The value of the [(n +1)/2]th observation, when n is
odd.

2. The mean of the [n/2]th and [(n/2) + 1]th observa-
tions, when n is even.
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Example 4 Find the median for the following data set:
l6, 32, 20, 13, 13, 24, 10.
Solution: Arranging the data in ascending order we have

10, 13, 13, 16, 20, 24, 32.

n+1

Here, n=7, which is odd. Therefore, median =
7+1

th scorez%th score=4th score=16.

Example 5 Find the median for the data:

17, 18, 26, 30, 19, 24, 20, 22, 29, 25.

Solution: Here, n = 10, which is even. Arranging the data
in ascending order we have

17, 18, 19, 20, 22, 24, 25, 26, 29, 30.
. 1|n n
Therefore, median = B [Eth score + (EH) th score]
1(10 10
== [—th score + (— + 1) th score]
2102 2
1
=3 [5th score + 6th score]
1
= [2+24]=23.

Calculation of Median for Discrete Frequency Distribution
The same basic formulae as used for raw data are used, but
cumulative frequencies are calculated for convenience of
locating the observations at specific numbers.

Example 6 Data for the number of books purchased by
28 customers are given below. Find the median.

No. of books (x): 1 2 3 4
No. of customers (f) : 5 9 8 6
Solution:
No. of books (x) 1 2 3 4
No. of customers ( f) 5 9 8 6
Cumulative frequency (c.f.) 5 14 22 28

Here n = ) f = 28 (even). Therefore,

1128 28
- |:—th score + (— + 1) th score]
212 2

median

1 1

3 [14th score + 15th score] = 5[2 +3]=25
Calculation of Median for Grouped Frequency Distribution
In a grouped distribution, exact median cannot be

obtained because some information is lost in grouping.

Here, we first locate the median class and then obtain an
estimate of the median by the formula:

(Zf‘ ) i

where, 11,1, are the lower and upper boundaries of the

median = I +

median class, f is the frequency of the median class, n is the
sum of all frequencies and c is the cumulative frequency of
the class immediately preceding the median class.

Example 7 Find the median for the data of Example 3
above.

Solution: Construct a table for class boundaries and cumu-
lative frequencies:

Class Class boundaries f cf.

11-15 10.5-15.5 12 12

16-20 15.5-20.5 14 26

21-25 20.5-25.5 13 39

26-30 25.5-30.5 1 50
n =50

Here, n/2 = 25. The median will lie in the class having
cumulative frequency (c.f.) justlarger than 25. The median
class is 16-20. Thus, [} = 15.5, [, =20.5, ¢=12, f = 14.

Hence, median = 15.5 + (25 — 12 ) x5=155+4.64 =
20.14.

The Mode

The mode is the most frequent value i.e., the value that has
the largest frequency. A major drawback of mode is that a
data set may have more than one mode or no mode at all.
Also the mode may not always be a central value as in the
Example 8(a) below.

Example 8 Find mode in the following data sets:

(2)5,5,6,7,7,8,8,9,9,9,9.
(b) 12, 14, 15, 15, 15, 19, 19, 19, 20, 20.
(¢) 11, 15, 16, 19, 21, 23, 26, 27, 29, 30.

Solution

(a) One mode at 9, (b) Two modes at 15 and 19, (c) No
mode as each value occurs only once. For grouped fre-
quency distribution, the mode can be estimated by taking
the mid-point of the modal class corresponding to the
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largest frequency. One advantage of mode is that it can be
calculated for both kinds of data, qualitative and quantita-
tive, whereas mean and median can be calculated for only
quantitative data. E.g., A group consists of five Hindus, six
Muslims and nine Christians. Here, Christianity is most
frequent and so it is the mode of this data set.

Remarks 1If a distribution is symmetrical then mean =
median = mode. For skewed distributions a thumb rule
(though not without exceptions) is that if the distribution
is skewed to the right then mean > median > mode and the
inequalities are reversed if the distribution is skewed to the
left.

To sum up, there is no general rule to determine which
average is most appropriate for a given situation. Each of
them may be better under different situations. Mean is the
most widely used average followed by median. The median
is better when the data set includes »outliers or is open
ended. Mode is simple to locate and is preferred for finding
the most popular item e.g. most popular drink or the most
common size of shoes etc.
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Theories and applications that use Mean Residual Life
(MRL) extend across a myriad of helpful fields, while

the methods differ considerably from one application to
the next. Accelerated stress testing, fuzzy set engineer-
ing modeling, mixtures, insurance assessment of human
life expectancy, maintenance and replacement of bridges,
replacement of safety significant components in power
plants, and evaluation of degradation signals in systems are
just a few examples of applications of MRL function analy-
sis. Note that MRL is also called “expected remaining life,”
plus other phrase variations. For a random lifetime X, the
MRL is the conditional expectation E(X — ¢|X > t), where
t > 0. The MRL function can be simply represented with
the reliability function R(t) = P(X > t) = 1— F(t) as:

fR(x)dx

t

R(1)

where R(t) > 0 for e(t) to be well defined. When R(0) =1
and t = 0, the MRL equals the average lifetime. When
R(t) = 0, then e(¢) is defined to be 0. The empirical MRL
is calculated by substituting either the standard empirical
estimate of R(t) or, when censoring occurs, by substitut-
ing the Kaplan-Meier estimate of R(t) (see »Kaplan-Meier

e(t) =E(X-t|X>t) =

Estimator). To use the Kaplan-Meier estimate when the
final observation is censored requires a modification to
define the empirical reliability function as eventually 0.

The reliability function can also be represented as a
function of the MRL as:

R(t) = (Z(((;)))exp_f"[[ﬂ(b]dx.

Note that the MRL function can exist, while the hazard
rate function might not exist, or vice versa, the hazard
rate function can exist while the MRL function might not.
Compare Guess and Proschan (1988) plus Hall and Wellner
(1981) for comments. When both functions exist, and the
MRL function is differentiable, the hazard rate function is
a function of the MRL:

1+e'(t)
e(t)
where €’(t) is the first derivative of the MRL function.
The breadth of applications for the MRL function is

astounding. As examples, Chiang (1968) and Deevey (1947)
cite the use of the MRL for annuities via expected life tables

h(t) =

(see »Life Table) in ancient Roman culture. Bhattacharjee
(1982) suggests how to use the MRL to decide when to
sell an item that has maintenance costs, which has copi-
ous natural applications, such as to real estate. Steele (2006)
and Guess et al. (2006) illustrate a confidence interval for
the range of values where one MRL function dominates
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another and use it to reveal an opportunity to increase
the profitability of a process that manufactures engineered
medium density fiberboard. See also the insightful results
on MRL functions of mixtures, »order statistics, and
coherent systems from Navarro and Hernandez (2008).
Another topic of extensive research over the years is testing
classes of MRL functions. For more on those tests, see ref-
erences in Hollander and Proschan (1984), Hollander and
Wolfe (1999) or Anis et al. (2004), for example. A brief list
of other MRL papers, among many wide-ranging papers
available, includes Peiravi and Dehqanmongabadi (2008),
Zhao and Elsayed (2005), Bradley and Gupta (2003), Asadi
and Ebrahimi (2000), Oakes and Dasu (1990), Berger et al.
(1988), Guess and Park (1988), and Guess et al. (1986). We
would recommend many other useful papers, but space
severely limits our list.

While we do not give a complete inventory, note that
R packages like evd, ismev, and locfit possess capabili-
ties such as MRL plotting and/or computing the MRL for
censored data; compare Shaffer et al. (2008). Another free-
ware, Dataplot, the software for the NIST website, does
a MRL plot, but calls it a “conditional mean exceedance”
plot, see Heckert and Filliben (2003). For-profit statisti-
cal software, such as JMP, MINITAB, PASW (formerly
SPSS), SAS, etc., can be appropriately utilized for comput-
ing the MRL, using the basic formulas above (PASW and
others use the phrase “life tables,” which often contain a
column for MRL). Pathak et al. (2009) illustrate the use
of MATLAB for computing several different lifetime data
functions including the MRL. Steele (2006) computes MRL
via Maple.

Cross References

»Conditional Expectation and Probability
»Hazard Ratio Estimator

»Kaplan-Meier Estimator

»Life Expectancy

»Life Table
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Foundations of Probability: Fields and
Sigma-Fields

Since Kolmogorov’s axioms, Probability theory is a legiti-
mate part of Mathematics, with foundations that belong to
Measure theory. Although a traditional probabilist works
solely with countably additive measures on sigma fields,
the concepts of countable additivity and infinite models are
by no means natural. As Kolmogorov [1956 p. 15] points
out, “... in describing any observable random process we
can obtain only finite fields of probability. Infinite fields of
probability occur only as idealized models of real random
processes.”

To build a probability model, we need first to have a
non-empty set Q which is interpreted as a set of all possible
outcomes of a statistical experiment. Then we define which
subsets of Q will be assigned a probability. The family F of
all such subsets has to satisfy

1 QeF,
(2) BeF = B' e F,
(3) B;,BeF = BiUB, e F,

and then we say that F is a field. If (3) is replaced by
stronger requirement

(3’) Bi,B,, ... € F = UB,‘ eF
i=1
then we say that F is a sigma field.

The family P(Q) of all subsets of Q) is a field, and it is
the largest field that can be made of subsets of Q) — it clearly
contains all other possible fields. The smallest such field is
Fo = {§, Q}; it is a subset of any other field.

The intersection of any family of fields is again a field.
The union of a family of fields need not be a field. Both
statements hold for sigma-fields, too.

Given a collection A of subsets of (), the intersection
of all fields (sigma-fields) that contain A is called a field
(sigma-field) generated by A.

Having a non-empty set Q) and a field F of its subsets, a
finitely additive probability measure is a function P : F —
R such that

(@) P(Q)=1
(b) P(A) >0foreveryAeF.

(¢) P(AuB) = P(A) + P(B) whenever A,B € F and
A N B = § (finite additivity).

If (c) is replaced by the condition of countable additivity

(¢) For any countable collection Aj, A, ... of sets in F,
such that A; N A; = § for any A; # A; and such that
A1 UA, U € F (the latter condition is needless if F
is a sigma-field):

+o00 +oo
P(U A,v) = > P(A)
i=1 i=1

then P is called (a countably additive) probability mea-
sure, or just probability. The triplet (Q,F,P) is called a
probability space. By Carathéodory extension theorem, any
countably additive probability measure P defined on a field
F extends uniquely to a countably additive probability
measure on the sigma field generated by F; hence, if P
is countably additive, we may always assume that F is a
sigma-field.

Aset Bc Qis called a null set if B c A for some A € F
with P(A) = 0. Let A/ be a collection of all null sets in
(Q,F,P).If N c F, the sigma-field F is called complete.
For any sigma-field F there exists a complete sigma-field
F, called a completion of F, and defined as the sigma field
generated by F U N.

A general positive measure y is a set function defined
on (Q,F) with values in Ry U {+00}, which satisfies (b),
(c) or (), and u(@) = 0. If u(Q) < +oo, the measure is
called finite and can be normalized to a probability mea-
sureby P(A) = u(A)/u(Q) forall A € F.If Q can be rep-
resented as a countable union of measurable sets of finite
measure, then a measure is called sigma-finite. The most
commonly used measure in Mathematics is the Lebesgue
measure A on R, with the property that \([a,b]) = b —a
for any a < b. This measure is not finite, as A(R) = +oo,
but it is sigma-finite.

If there exists a countable set S ¢ Q such that u(S') =
0, the measure yu is called discrete. Unless the measure is
discrete, the sigma-field F is usually taken to be strictly
smaller than P(Q), to ensure that it will be possible to
assign some value of the measure to each set in F. This is
motivated by existence of non-measurable sets in R (sets
that cannot be assigned any value of Lebesgue measure).
Non-measurable sets cannot be effectively constructed and
their existence is a consequence of Axiom of Choice [see
Solovay (1970)]. The described construction of a probabil-
ity space ensures that a probability can be assigned to all
sets of interest.
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The countable (vs. finite) additivity has a role to exclude
from consideration measures that are too complicated, and
also to enable applicability of fundamental theorems (for
details on finitely additive measures see Yosida and Hewitt
(1952)). Within axioms (a)-(b)-(c), the countable additivity
is equivalent to continuity of probability, a property that can
be described in two dual (equivalent) forms:

+o00o
L IfA1cAzc---c...,thenP(UA,,): lim P(An);
n=1 n—+oo

+oo
2. IfA;oAy>--> ...,thenP(ﬂAn) = lim P(A,);
n—+oo

n=1

Random Variables and Their
Distributions

Let (Q, F, P) be a probability space (usually called abstract
probability space). Let X be a mapping from Q) to some
other space S. A purpose of introducing such mappings
can be twofold. First, in some simple models like tossing
a coin, we prefer to have a numerical model that can also
serve as a model for any experiment with two outcomes.
Hence, instead of Q = {H, T}, we can think of S = {0,1}
as a set of possible outcomes, which are in fact labels for
any two outcomes in a real world experiment. Second, in
large scale models, we think of Q) as being a set of possi-
ble states of a system, but to study the whole system can be
too difficult task, so by mapping we wish to isolate one or
several characteristics of Q).

While Q can be a set without any mathematical struc-
ture, S is usually a set of real numbers, a set in R, or a
set of functions. To be able to assign probabilities to events
of the form {w € Q | X(w) € B} = X '(B), we have to
define a sigma-field B on S, that will accommodate all sets
B of interest. If S is a topological space, usual choices are
for BB to be generated by open sets in S (Borel sigma-field),
or to be generated by all sets of the form f~'(U), where
U c Sisan open set and f is a continuous function § = R
(Baire sigma-field). Since for any continuous f and open U,
the set f'(U) is open, the Baire field is a subset of corre-
sponding Borel field. In metric spaces (and, in particular,
in R?, d > 1) the two sigma fields coincide.

A mapping X : Q — Siscalled (Q,F) - (S,B) -
measurable if X"'(B) e F for any B € B. The term ran-
dom variable is reserved for such a mapping in the case
when S is a subset of R. Otherwise, X can have values in
R?, when it is called a random vector, or in some functional
space, when it is called a random process, where trajectories
X(w) = f(w,-) depend on a numerical argument usu-
ally interpreted as time, or a random field if trajectories are

functions of arguments that are not numbers. In general, X
can be called a random element.

The central issue in a study of random elements is the
probability measure y = px induced by X on the space
(S,B) by ux(B) = P(X"'(B)), B € B, which is called the
probability distribution of X. In fact, X is considered to be
defined by its distribution; the mapping by itself is not of
interest in Probability. In this way, each random element
X is associated with two probability triplets: (Q, F, P) and
(8, B, ). If a model considers only random variables that
map Q into S, then the first triplet can be discarded, or
more formally, (Q, F, P) can be identified with (S, B, ).

The collection of sets {X '(B)}pep is a sigma-field
contained in F, which is called a sigma-field generated by
X, in notation ¢(X). It is considered in applications as
a complete information about X, as it contains all rele-
vant events in Q) from whose realizations we may deduce
whether or not X € B, for any B € B. In particular, if B
contains all singletons {x}, then we know the value of X.

If there is another sigma-field G such that
0(X) ¢ G c F, then we say that X is G-measurable. In
particular, if X is 0(U)-measurable, where U is another
random element and if ¢(X) contains all sets of the form
X7'({s}), s € S, then X is a function of U.

The definition of a sigma-field does not provide any
practical algorithm that can be used to decide whether or
not a particular set belongs to a sigma field. For example,
suppose that we have a Borel sigma-filed 8 on some topo-
logical space S, and we need to know whether or not B € 15,
for a given B c S. Then we need to either produce a for-
mula that shows how to get B as a result of countably many
unions, intersections and complements starting with open
and closed sets, or to prove that such a formula does not
exist. This is rarely obvious or straightforward, and some-
times it can require a considerable work. In cases when
we want to show that a certain family of sets belongs to a
given sigma-fields, the Dynkin’s so-called “m — A theorem”
is very useful. A collection C of subsets of a set S is called a
n-system if A e C,BeC == AnBelC.lItiscalleda\-
system if it has the following three properties: (1) S € C; (2)
A,BeCand Bc A = A\B € C; (3) For any sequence
of sets A, € C with A, c A, (increasing sets), it holds
that 373" A, € C. Then we have the following.

Dynkin’s 7 — X Theorem Let A be a 7-system, B a
\-system and A c B. Then 0 (A) c B.

Integration
Let X be a random variable that maps (Q,F,P) into
(R,B,u), where R is the set of reals, B is a Borel
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sigma-algebra and y is the distribution of X. The expec-
tation of X is defined as

EX:fQX(w)dP(w):/Rxdy(x),

provided the integrals exist in the Lebesgue sense. By the
construction of Lebesgue integral, E X exists if and only
if E |X] exists; in that case we say that X is integrable. To
emphasize that the expectation is with respect to measure
P, the notation EpX can be used.

Let f be a measurable function R — R (in R we
assume the Borel sigma-field if not specified otherwise).
Then f(X) is again a random variable, that is, the mapping
w e f(X(w))is (Q,F) - (R, B) -measurable, and

EF(X) = [ F(X(@)dP(0) = [ f(x)du(),

if the integral on the right hand side exists, and then we
say that f is integrable. Expectations can be defined in the
same way in more general spaces of values of f or X, for
instance in R%,d > 1 or in any normed vector space.

Radon-Nikodym Theorem Suppose that P and Q are
positive countably additive and sigma-finite measures (not
necessarily probabilities) on the same space (Q, F). We
say that P is absolutely continuous with respect to Q (in
notation P <« Q) if P(B) = 0 for all B ¢ F with Q(B) = 0.

If P « Q, then there exists a non-negative measurable
function f such that

P(A):/(;IA(w)f(w)dQ(a)), and
[ s(@3dp(@) = [ glo)(@)aQ).

for any measurable g. The function f is called a Radon-
Nikodym derivative, in notation f = g—g, and it is Q-almost
surely unique.

If Q is the Lebesgue measure and P a probability mea-
sure on R, then the function f is called a density of P
or of a corresponding random variable with the distribu-
tion P; distributions P on R that are absolutely continuous
with respect to Lebesgue measure are called continuous
distributions.

If both P and Q are probabilities and P < Q, then
the »Radon-Nikodym theorem yields that there exists a
random variable A > 0 with EqA = 1such that

P(A) = EQIAA and EPX = EQXA
for any random variable X.
Cross References

» Axioms of Probability
»Foundations of Probability

»Probability Theory: An Outline
»Radon-Nikodym Theorem
»Random Variable

»Stochastic Processes

References and Further Reading

Kolmogorov AN (1956) Foundations of the theory of probability,
2nd English edn. Chelsea, New York

Solovay RM (1970) A model of set-theory in which every set of reals
is Lebesgue measurable. Ann Math Second Ser 92:1-56

Yosida K, Hewitt E (1952) Finitely additive measures. Trans Am Math
Soc 72:46-66

|
Measurement Error Models

ALEXANDER KUKUSH

Professor

National Taras Shevchenko University of Kyiv,
Kyiv, Ukraine

A (nonlinear) measurement error model (MEM) consists
of three parts: (1) a regression model relating an observable
regressor variable z and an unobservable regressor variable
& (the variables are independent and generally vector val-
ued) to a response variable y, which is considered here to
be observable without measurement errors; (2) a measure-
ment model relating the unobservable £ to an observable
surrogate variable x; and (3) a distributional model for &.

Parts of MEM

The regression model can be described by a conditional dis-
tribution of y given (z, {) and given an unknown param-
eter vector 6. As usual this distribution is represented by
a probability density function f(y|z, & 6) with respect to
some underlying measure on the Borel o-field of R. We
restrict our attention to distributions that belong to the
exponential family, i.e., we assume f to be of the form

fOlz & B, ¢) = exp (m_(pc(") + a(y,sv)) @
with

n=1n(z&p). ()

Here f is the regression parameter vector, ¢ a scalar dis-
persion parameter such that 6 = (ﬁT, (p)T, and a,¢, and 7
are known functions. This class comprises the class of gen-
eralized linear models, where 17 = n(Bo+2" B +&"B¢), B =

(Bo, BL.BY)" .
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The classical measurement model assumes that the
observed variable x differs from the latent & by a measure-
ment error variable § that is independent of z, £, and y:

x=E+0 3)

with E§ = 0. Here we assume that § ~ N(0, X5) with X
known. The observable data are independent realizations
of the model (x;,5:), i=1...,n.

Under the Berkson measurement model, the latent vari-
able & differs from the observed x by a centered measure-
ment error § that is independent of z, x, and y:

E=x+9. (4)

Thus, the values of x are fixed in advance, whereas the
unknown true values, &, are fluctuating.

The distributional model for & either states that the &
are unknown constants (functional case) or that & is a ran-
dom variable (structural case) with a distribution given by
a density h(&; y), where y is a vector of nuisance parame-
ters describing the distribution of &. In the structural case,
we typically assume that

&~ N(pgp Z¢), ®)

although sometimes it is assumed that & follows a mixture
of normal distributions. In the sequel, for the structural
case we assume y to be known. If not, it can often be esti-
mated in advance (i.e., pre-estimated) without considering
the regression model and the data y;. For example, if ¢ is
normal, then y; and X; can be estimated by x and Sy - X5,
respectively, where x and S, are the empirical mean vec-
tor and the empirical covariance matrix of the data x;,
respectively.

The goal of measurement error modeling is to obtain
nearly unbiased estimates of the regression parameter by
fitting a model for y in terms of (z,x). Attainment of this
goal requires careful analysis. Substituting x for & in the
model (1) - (2), but making no adjustments in the usual
fitting methods for this substitution, leads to estimates that
are biased, sometimes seriously.

In the structural case, the regression calibration (RC)
estimator can be constructed by substituting E(£|x) for
unobservable &. In both functional and structural cases,
another, the simulation-extrapolation (SIMEX) estimator,
becomes very popular. These estimators are not consistent
in general, although they often reduce the bias signifi-
cantly; see Carroll et al. (2006).

Polynomial and Poisson Model
We mention two important examples of the classical MEM
(1) - (3) where for simplicity the latent variable is scalar and

the observable regressor z is absent. The polynomial model
is given by

y:ﬁo+ﬁ1€+...+ﬂk5k+e,

where e ~ N (0, af) and ¢ is independent of &. Here
k T 1 2
=2 B e(n) = ns
r=0

and ¢ = 052. Both cases are possible: (a) the measure-
ment error variance d; is known and (b) the ratio 6Z/0} is
known; for the latter case see Shklyar (2008). In the partic-
ular case of k = 1, we obtain the linear model; an overview
of methods in this MEM is given in Cheng and Van Ness
(1999).

In the loglinear Poisson model we have y ~ Po()\) with

N =exp(Bo + Bi1€); then 5 =logh, c¢() =€",and ¢ = L

Methods of Consistent Estimation in
Classical MEM

Now, we deal with the general model (1) - (3). We dis-
tinguish between two types of estimators, functional and
structural. The latter makes use the distribution of &, which
therefore must be given, at least up to the unknown param-
eter, vector . The former does not need the distribution of
& and works even when £ is not random (functional case).

If the variable £ were observable, one could estimate 8 (and
also ¢) by the method of maximum likelihood (ML). The
corresponding likelihood score function for f8 is given by

V(2 E B @) = alogf(ya;f;ﬁ,sv) _ y—;(n)%.

We want to construct an unbiased estimating function
for f3 in the observed variables. For this purpose, we need
to find functions g and g, of z, x, and f8 such that

o8 = (2

2:,5]:8—17 T

op’

E[gi(z,xB) E[g:(z %)
Then

ve(nzx ) = y21(2, % B) — g2(2, % B)

is termed the corrected score function. The Corrected Score
(CS) estimator ¢ of 8 is the solution to

n
> we(yizinxis fc) = 0.
Pt

The functions g; and g> do not always exist. Stefanski (1989)
gives the conditions for their existence and shows how to
find them if they exist. The CS estimator is consistent in
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both functional and structural cases. It was first proposed
by Stefanski (1989) and Nakamura (1990).

An alternative functional method, particularly adapted
to »generalized linear models, is the conditional score
method; see Stefanski and Carroll (1987).

The conditional mean and conditional variance of y given
(2, &) are, respectively,

E(yz, &) = m™ (2. & B) = (1), V()2 &)
=v"(z.&B) = 9" (1).

Then the conditional mean and conditional variance of y
given the observable variables are

m(z,x; ) = E(ylz,x) = E[m" (2, & )],
v(z,xB) = V(lz,x) = V[m" (2,§ B)|x]
+E[v' (2, &B)|x].

For the quasi-likelihood (QL) estimator, we construct
the quasi-score function

10m(z,x; 3)
p

Here we drop the parameter ¢ considering it to be known.
We also suppress the nuisance parameter y in the argument
of the functions m and v, although m and v depend on y.
Indeed, in order to compute m and v, we need the con-
ditional distribution of & given x, which depends on the
distribution of & with its parameter y. For instance, assume
(5) where the elements of y; and X; make up the compo-
nents of the parameter vector y. Then &x ~ N(u(x), T)
with

va(zxp) = [y —m(zxp)]v(zxB)"

W(x) = pg+ (g + 25) 7 (- ),
T= 25— 25(25 + 25)_125.

The QL estimator /_);Q of f3 is the solution to
> wo(yinzixis c) = 0.
i=1

The equation has a unique solution for large #, but it may
have multiple roots if # is not large. Heyde and Morton
(1998) develop methods to deal with this case.

Maximum likelihood is based on the conditional joint
density of x,y given z. Thus, while QL relies only on
the error-free mean and variance functions, ML relies on
the whole error-free model distribution. Therefore, ML is
more sensitive than QL with respect to a potential model
misspecification because QL is always consistent as long as

at least the mean function (along with the density of &) has
been correctly specified. In addition, the likelihood func-
tion is generally much more difficult to compute than the
quasi-score function. This often justifies the use of the rel-
atively less efficient QL instead of the more efficient ML
method.

For CSand QL, [3 is asymptotically normal with asymptotic
covariance matrix (ACM) X¢ and X, respectively. In the
structural model, it is natural to compare the relative effi-
ciencies of ﬁc and B by comparing their ACMs. In case
there are no nuisance parameters, it turns out that

2c22q (6)

in the sense of the Loewner order for symmetric matri-
ces. Moreover, under mild conditions the strict inequality
holds.

These results hold true if the nuisance parameters y are
known. If, however, they have to be estimated in advance,
(6) need not be true anymore. For the Poisson and poly-
nomial structural models, Kukush et al. (2007) prove that
(6) still holds even if the nuisance parameters are pre-
estimated. Recently Kukush et al. (2009) have shown that
QL can be modified so that, in general, X¢c > Xq; for this
purpose the y must be estimated together with § and not
in advance.

Estimation in Berkson Model
Now, we deal with the model (1), (2), and (4). Substituting
x for £ in the regression model (1) - (2) is equivalent to RC.
Therefore, it leads to estimates with a typically small bias.
A more precise method is ML. The conditional joint
density of x and y given z has a simpler form compared
with the classical MEM. That is why ML is more reliable in
the Berkson model.

Nonparametric Estimation

We mention two nonparametric problems overviewed in
Carroll et al. (2006), Ch. 12: the estimation of the density
p of a random variable ¢, and the nonparametric estima-
tion of a regression function f, both when £ is measured
with error. In these problems under normally distributed
measurement error, the best mean squared error of an
estimator of p(xo) or f(xo) converges to 0 at a rate no
faster than the exceedingly slow rate of logarithmic order.
However, under a more heavy-tailed measurement error,
estimators can perform well for a reasonable sample size.
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Broadly defined, measurement of economic progress
focuses on quantitative analysis of the standard of living
or quality of life and their determinants. The analysis con-
cerns many elements of the standard living such as its
material components, human capital, including education
and health, inequality and other factors [see, among others,
Barro and Sala-i Martin (2004), Howitt and Weil (2008),
Steckel (2008), and references therein].

Theoretical foundation for empirical analysis of deter-
minants of economic growth is provided by the Solow
growth model. The human capital-augmented version of
the model with the Cobb-Douglas production function
[see Mankiw et al. (1992)] assumes that, for country i
at time ¢, the aggregate output Y;(t) satisfies Y;(t) =
Ki(8)“Hi ()P (Ai(£)Li(£)) P, where K;(t) is physical
capital, H;(t) is human capital, L;(t) is labor supply and
A;i(t) is a productivity parameter (the efficiency level of
each worker or the level of technology). The variables L
and A are assumed to obey L;(t) = L;(0)e™ and A(t) =
A(0)e¥', where n; and g are, respectively, the population
growth rate and the rate of technological progress. Physical
and human capital are assumed to follow continuous-time
accumulation equations dK; () /dt = sk;Y;(t)—8K;(t) and
dH;(t)/dt = su,;Yi(t) — 8H(t) with the depreciation rate &
and the savings rates sk,; and sy,;. Under the above assump-
tions, the growth model leads to the regressions y; = a9 +
a1logyi(0) +azlog(ni+g+98) +aslogsk,; +aslog sy, +€i,
where y; = (logyi(t) —logyi(0))/t is the growth rate of
output per worker y;(t) = Y;(t)/Li(t) between time 0
and ¢ [see, among others, Barro and Sala-i Martin (2004),
Durlauf et al. (2005)]. Cross-country growth regressions
typically include additional regressors Z; and focus on esti-
mating models in the form y; = aX; + bZ; + ¢;, where
a = (ao,al,...,a4) € RS, b = (b1,b2,..., bm) € Rm,
the components of X; = (11logyi(0),log(n; + g +
8),logsk i, logsm,;)’ are the growth determinants in the
Solow model and Z; €R™ is the vector of growth determi-
nants outside the Solow growth theory.

The statistical analysis of economic progress and its
determinants presents a number of challenges due to
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the necessity of using proxy measures and corresponding
weights for different components of the standard of liv-
ing and factors affecting it. The material standard of living
is typically measured as per capita Gross Domestic Prod-
uct (GDP) adjusted for changes in price levels. Proxies for
education and human capital used in growth economics
include school-enrollment rates at the secondary and pri-
mary levels, literacy rates, average years of secondary and
higher schooling and outcomes on internationally compa-
rable examinations. Many works in the literature have also
used student-teacher ratios as a measure of quality of edu-
cation. The two most widely used measures of health are
life expectancy at birth or age 1 and average height used asa
proxy for nutritional conditions during the growing years.

Barro (1991) and Barro and Sala-i Martin (2004) find
that the growth rate of real per capita GDP is positively
related to initial human capital, including education and
health, proxied by school-enrollment rates, upper-level
schooling and life expectancy and negatively related to the
initial level of real per capita GDP. The results in Barro
(1991) also indicate statistically significant negative effects
of political instability (measured using the number of rev-
olutions and coups per year and the number of political
assassinations per million population per year) on growth.
Other factors used in the analysis in Barro (1991) and Barro
and Sala-i Martin (2004) include fertility and the ratio of
real government consumption to real GDP (with statis-
tically significant negative effects on growth), investment
ratio, inflation rate as well as proxies for market distortions,
maintenance of the rule of law, measures for democracy,
international openness, the terms of trade, indicators for
economic systems and countries in sub-Saharian Africa
and Latin America and other variables.

A number of works in theoretical and empirical growth
economics have focused on the development and analysis
of performance of models with endogenous technological
progress. Many recent studies have also studied the factors
that lead to the observed differences in the determinants
of economic growth in different countries, including cap-
ital components, technology and efficiency. In particular,
several works have emphasized the role of geographical
differences, cultural factors, economic policies and insti-
tutions as fundamental causes of the differences in growth
determinants (Howitt and Weil 2008).

Statistical study of economic growth determinants is
complicated by relatively small samples of available obser-
vations, measurement errors in key variables, such as
GDP, heterogeneity in observations and estimated param-
eters, dependence in data and large number of potential
growth regressors under analysis. Related issues in the
analysis of economic growth concern difficulty of causal

interpretation of estimation results, robustness of the con-
clusions to alternative measures of variables in the analysis,
and open-endedness of growth theories that imply that
several key factors matter for growth at the same time.
Levine and Renelt (1992) focus on the analysis of robust-
ness of conclusions obtained using cross-country growth
regressions. They propose assessing the robustness of the
variable Z of interest using the variation of the coeffi-
cient b in cross-country regressions y; = aX; + bZ; +
cV; + ¢;, where X; is the vector of variables that always
appear in the regressions (e.g., the investment share of
GDP, initial level of income, a proxy for the initial level
of human capital such as the school enrollment rate, and
the rate of population growth in country i), and V; is a
vector of additional control variables taken from the pool
of variables available. Departing from the extreme bounds
approach in Levine and Renelt (1992) that requires the
estimate of the coefficient of interest b to be statistically
significant for any choice of control variables V, several
recent works [see Sala-i Martin et al. (2004), Ch. 12 in
Barro and Sala-i Martin (2004), and references therein]
propose alternative less stringent procedures to robustness
analysis. Several recent works on the analysis of economic
growth and related areas emphasize importance of models
incorporating disasters and crises and probability distribu-
tions generating »outliers and extreme observations, such
as those with heavy-tailed and power-law densities [see
Barro (1991), Gabaix (2009) and Ibragimov (2009)].
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The measurement and comparison of uncertainty associ-
ated with a random phenomenon have been a problem
attracting a lot of researchers in Science and Engineer-
ing over the last few decades. Given a system whose exact
description is unknown its »entropy is the amount of
information needed to exactly specify the state of the
system. The Shannon’s entropy, introduced by Shannon
(1948), has been extensively used in literature as a
quantitative measure of uncertainty. If A, A,,...,A, are
mutually exclusive events, with respective probabilities
PLP2s - - - Pn> the Shannon’s entropy is defined as

n
H,(P) == pilogpi. o))

i=1
Earlier development in this area was centered on char-
acterizing the Shannon’s entropy using different sets of
postulates. The classic monographs by Ash (1965), Aczel
and Daroczy (1975) and Behra (1990) review most of the
works on this aspect. Another important aspect of interest
is that of identifying distributions for which the Shan-
non’s entropy is maximum subject to certain restrictions on

the underlying random variable. Depending on the con-
ditions imposed, several maximum entropy distributions
have been derived. For instance, if X is a random variable
in the support of the set of non-negative real numbers, the
maximum entropy distribution under the condition that
the arithmetic men is fixed is the exponential distribution.
The book by Kapur (1989) covers most of the results in this
area.

For a continuous non-negative random variable X with
probability density function f (x) the continuous analogue
of (1) takes the form

H(f) =~ [~ f(x)logf(x)dx. @

Several modifications of the Shannon’s entropy has
been proposed and extensively studied. Renyi (1961) define
the entropy of order « as

) >pi
Ha(P)zﬁlog%,aﬂ,wo (3)

_ ;Pi

where P = (Py,.....Py) is such that p; > 0, and Y p; = 1.

i—1
As a — 1, (3) reduces to (1). Khinchin (1957) general-
ized the Shannon’s entropy by choosing a convex function
¢(.), with ¢(1) = 0 and defined the measure

Ho(f)=- [ fmelfoldx. @)

Nanda and Paul (2006) studied (4) for two particular
choices of ¢ in the form

HE(f) - ﬁ [1— A afﬂ(x)dx] (5)

and

[y

where the support of f is the set of non-negative reals and
B > 0with f # 1. As B — 1, (5) and (6) reduces to the
Shannon’ entropy given in (2).

Recently Rao et al. (2004) introduced cumulative resid-
ual entropy defined by

E(X) = - /0 “ F(x) log F(x)dx

which is proposed as an alternative measure of uncer-

H(N) = 1 |tog [ 1) ©

tainty based on the cumulative survival function F(x)=
P(X > x). For various properties and applications of this
measure we refer to Rao (2005) and Asadi and Zohrevand
(2007).
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There are several other concepts closely related
to the Shannon’s entropy. Kullback and Leibler (1951)
defines the directed divergence (also known as rela-
tive entropy or cross entropy) between two distributions

P=(p1,p2,....pn) and Q=(q1,q2,-..,qn) with
pi>qi > OZPi = ZQi =1
i=1 i=1
as
Du(P,Q) = p 1og1ql )
i=1

Kannappan and Rathie (1973) and Mathai and Rathie
(1975) have obtained characterization results based on cer-
tain postulates which naturally leads to (7). The continuous
analogue of (7) turns out to be

f&) 4
o™

where f(x) and g(x) are probability density functions
corresponding to two probability measures P and Q.

D(fg) = [ ftog ®)

The concept of affinity between two distributions was
introduced and studied in a series of works by Matusita
[see Matusita (1961)]. This measure has been widely used as
auseful tool for discrimination among distributions. Affin-
ity is symmetric in distributions and has direct relationship
with error probability when classification or discrimina-
tion is concerned. For two discrete distributions P and Q
considered above the Matusita’s affinity (Mathai and Rathie
1975) between P and Q is defined as

8(P,Q) = (pigi)”*. )
i=1

If X and Y are non-negative random variables and if f(x)
and g(x) are the corresponding probability density func-
tions, the affinity between f and g takes the form

8(f.8) = f

0(f,g) lies between 0 and 1.
Majernik (2004) has shown that

H(f.g)=2[1-4(f.¢)]

where H( f,g) is the Hellinger’s distance defined by

H(f9) = [ [VAG - Ve[ dv ay

Affinity is a special case of the Chernoff distance con-
sidered in Akahira (1996) defined by

f(x)g(x)dx (10)

C(F,G) = -log [ff“(x)glf‘xdx] ,O0<a<l  (12)

1
It may be noticed that when a« = = (12) reduces to

—logd (f,g),where 8 (f,g) is the affinity defined in (10).
The concept of inaccuracy was introduced by
Kerridge (1961). Suppose that an experimenter asserts that

the probability for the th eventuality is g; whereas the true
probability is p;, then the inaccuracy of the observer, as
proposed by Kerridge, can be measured by

1(P,Q) = - Zpi log g (13)
i1

where P and Q are two discrete probability distributions,
considered earlier.

Nath (1968) extended the Kerridges concept to the
continuous situation. If F(x) is the actual distribution
function corresponding to the observations and G(x) is
the distribution assigned by the experimenter and f (x) and

g(x) are the corresponding density functions the inaccu-

racy measure is defined as

1(F,G) = - /(;af(x) log g(x)dx. (14)

This measure has extensively been used as a useful tool for
measurement of error in experimental results. In express-
ing statements about probabilities of various events in an
experiment, two kinds of errors are possible: one result-
ing from the lack of enough information or vagueness in
experimental results and the other from incorrect infor-
mation. In fact, (14) can be written as

f&) 4

o™
(15)

1(F,G) = f f(x)logf(x)dx + f f(x)log——=

The first term on the right side of (15) represents the
error due to uncertainty which is the Shannon’s entropy
while the second term is the Kullback-Leibler measure,
defined in (8) representing the error due to wrongly spec-
ifying the distribution as G(x). In this sense the measure
of inaccuracy can accommodate the error due to lack of
information as well as that due to incorrect information.

In many practical situations, complete data may not be
observable due to various reasons. For instance, in lifetime
studies the interest may be on the life time of a unit after
a specified time, say t. If X is the random variable repre-
senting the life time of a component the random variable
of interest is X — #|X > t. Ebrahimi (1996) defines the resid-
ual entropy function as the Shannon’s entropy associated
with the residual life distribution, namely

SO
H(f=- [ T gF()F<t>>o 16)
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In terms of the hazard rate h(x) = ===, (16) can also be

f()
F(x)

written as
H(ft) =1- —— [T rogh(vax. @)
F(t) Jt

Ebrahimi points out that (16) can be used as a potential
measure of stability of components in the reliability con-
text. The problem of ordering life time distributions using
this concept has been addressed in Ebrahimi and Kirmani
(1996). Belzunce et al. (2004) has shown that the resid-
ual entropy function determines the distributions uniquely
if H(f,t) is increasing in t. Characterization of probabil-
ity distributions using the functional form of the residual
entropy function have been the theme addressed in Nair
and Rajesh (1998), Sankaran and Gupta (1999), Asadi and
Ebrahimi (2000) and Abraham and Sankaran (2005).

Recently Nanda and Paul (2006) has extended the def-
inition of the Renyi entropy defined by (5) and (6) to the
truncated situation. It is established that under certain con-
ditions the Renyi’s residual entropy function determines
the distribution uniquely. They have also looked into the
problem of characterization of probability distributions
using the same.

Ebrahimi and Kirmani (1996) has modified the defi-
nition of the Kullback-Leibler measure to the truncated
situation to accommodate the current age of a system.
Recently Smitha et al. (2008) have extended the definition
of affinity to the truncated situation and has obtained char-
acterization results for probability distributions under the
assumption of proportional hazard model. Nair and Gupta
(2007) extended the definition of the measure of inaccu-
racy to the truncated situation and has characterized the
generalized Pareto distributions using the functional form
of the inaccuracy measure.
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Agreement in repeated assessments is a fundamental
requirement for quality of data from assessments on
»rating scales. Scale assessments produce ordinal data, the
ordered categories representing only a rank order of the
intensity of a particular variable and not a numerical value
in a mathematical sense, even when the assessments are
numerically labeled.

The main quality concepts of scale assessments are reli-
ability and validity. Reliability refers to the extent to which
repeated measurements of the same object yield the same
result, which means agreement. In intra-rater reliability
studies the agreement in test-retest assessments is evalu-
ated. Inter-rater reliability refers to the level of agreement
between two raters judging the same object.

The percentage agreement (PA) in assessments is the
basic agreement measure and is also called overall agree-
ment or raw agreement. When PA < 100% the reasons for
disagreement can be evaluated by a statistical approach by
Svensson that takes account of the rank-invariant proper-
ties of ordinal data. The approach makes it possible to iden-
tify and measure systematic disagreement, when present,
separately from disagreement caused by individual vari-
ability in assessments. Different frequency distributions
of the two sets of ordinal assessments indicate that the
two assessments disagree systematically regarding the use
of the scale categories. When higher categories are more
frequently used in one set of assessments, X, than in the
other, Y, there is a systematic disagreement in position.

The measure Relative Position, RB estimates the param-
eter of a systematic disagreement in position defined by
y=P(X<Y)-P(Y <X).

A systematic disagreement in how the two assessments
are concentrated to the scale categories is measured by the
Relative Concentration, RC, estimating the parameter of a
systematic shift in concentration § = P(X;, < Yy < Xj,) -
P(Yll <Xk < le)~

The measure of individual variability, the relative

rank variance, 0 < RV < 1 is defined RV =

655 U[ RO _ (Y>]

i=1j=1

where R is the mean aug-

mented rank of the observations in the ijth cell of an m x m
square contingency table according to the assessments X.

In the aug-rank approach R,( y )1 (X) and RZ(YI)] < R(Y).
RV = 0 means that the observed dlsagreement is com-
pletely explained by the measures of systematic disagree-
ment. In that case the two sets of aug-ranks are equal and
the paired distribution is the rank-transformable pattern of
agreement (see »Ranks).

The advantage of separating the observed disagree-
ment in the components of systematic and individual
disagreements is that it is possible to improve the rat-
ing scales and/or the users of the scale. Systematic dis-
agreement is population based and reveals a system-
atic change in conditions between test-.retest assessments
or that raters interpret the scale categories differently.
Large individual variability is a sign of poor quality of
the rating scale as it allows for uncertainty in repeated
assessments.

The Cohen’s coefficient kappa (x) is a commonly
used measure of agreement adjusted for the chance
expected agreement. There are limitations with kappa.
The maximum level of kappa, « = 1, requires equally
skilled raters, in other words lack of systematic disagree-
ment (bias). The value of weighted kappa depends on the
choice of weights, and the weighting procedure ignores the
rank-invariant properties of ordinal data. The kappa value
increases when the number of categories decreases, and
depends also on how the observations are distributed on
the different categories, the prevalence. Therefore kappa
values from different studies are not comparable.

The calculations of Cronbach’s alfa and other so-
called reliability coefficients are based on the assumption
of quantitative, normally distributed data, which is not
achievable in data from rating scales.

There is also a widespread misuse of correlation in
reliability studies. The correlation coefficient measures the
degree of association between two variables and does not
measure the level of agreement, see Fig. 1. The PA is 12%,
and the observed disagreement is mainly explained by a
systematic disagreement in position. The negative RP value
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A. The observed pattern

B. The rank-transformable
pattern of agreement

>< C, | C, | Cs| C, | total >< C, | C,| Cs| C, | total
C, 1] 1 2 C, 2| 2
Cs 2 | 2|14 18 Cs 1 17| 18
C, |1 |1 ]11] 3] 16 C, 16 16
C, |2 |8 |3 ] 1] 14 c, | 3| 11 14

total 3 11 (17 | 19 50 3 11 | 17 | 19 50

Measures of Agreement. Fig. 1 The frequency distribution of 50 pairs of assessments on a scale with four ordered categories,

G < G < G < G4 and the corresponding rank-transformable pattern of agreement, defined by the marginal distributions

(—0.48) and the constructed RTPA shows that the assess-
ments Y systematically used a lower category than did X.
A slight additional individual variability, RV = 0.08 is
observed. The Spearman rank-order correlation coefficient
is 0.66 in A and 0.97 in B, ignoring the fact that the assess-
ments are systematically biased and unreliable. The same
holds for the coefficient kappa (-0.14).

About the Author
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Let X and Y be continuous random variables with joint
distribution function (DF) H and marginal DFs F and G.
Three well-known measures of dependence are

1. Pearson’s correlation:
1

0x0y
1

ox0y

Cov(X,Y)

[ [ ) = F)G0) ldxdy

where oy, 0, and Cov(X, Y) are the standard deviations
and covariance of X and Y, respectively
2. Spearmans correlation: s=12 % [% [H(x,y) -

p

F(x)G(y)]dF (x)dG(),
3. Kendalls correlation: =4 (% [ H(x,y)dH
(xy) -1

Pearson correlation measures the strength of linear
relationship between X and Y and has well-studied the-
oretical properties. However, it can be unduly influenced
by »outliers, unequal variances, non-normality, and non-
linearity. Spearman’s correlation reflects the monotone
association between X and Y and measures the correla-
tion between F(X) and G(Y). Kendall’s correlation is the
probability of concordance minus the probability of dis-
cordance. Spearman’s and Kendall’s correlations remain
invariant under a monotone transformation. However,
Pearson’s correlation remains only invariant under a loca-
tion and scale change.

Using the probability integral transformations u =
F(x) and v = G(y), the copula (see also »Copulas) of X
and Y is defined as C(u, v) = H(F'(u), G™'(v)). Hence,

! /I;[C(uv) —uv]dF ' (u)dG™' (v),

0x0y

s=12 []I;[C(u, v) — uv]dudv,
=4 //1; C(u,v)dC(u,v) -1

where I? is the unit square. Schweizer and Wolff (1981) note
that C(u, v) — uv is the signed volume between the surface
z = C(u,v) and Z = uv (the independence copula).

p:
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Copula representation of p clearly shows its depen-
dence on the marginal distributions. Therefore, it is not
a measure of nonparametric dependence. Daniels (1950)
shows that -1 < 37 — 2s < 1. Nelsen (1991) studies the
relationship between s and 7 for several families of cop-
ulas and Fredricks and Nelsen (2007) show that the ratio
/s approaches 2/3 as H approaches independence.

Hoeftding (1940) and Frechét (1951) show that for all
(x,y) € R? the joint DF is bounded: Hi(x,y) < H(x,y) <
H,(x,y) where Hi(x,y) = max(0,F(x) + G(y) — 1) and
H,(x,y) = min(F(x),G(y)) are distribution functions.
Perfect negative correlation is obtained when H, is con-
centrated on the line F(x) + G(y) = 1 whereas perfect
positive correlation is obtained when H> is concentrated
on the line F(x) = G(y). In fact, Ho(x,y) = F(x)G(y)
for all (x,y) € R* reflects independence of X and Y. Let
Ci(x,y) = max(0,u + v — 1), Co(x,y) = min(u,v) and
Co(x,y) denote the Frechét lower, upper and indepen-
dence copulas, respectively. Similarly, Ci(u,v) < C(u,v) <
Ca(u,v).

Using Hoeffding lemma (1948)

Cov(x.¥) = [ [ T[H(xp) - F)G() Jdxdy,

one can show p;1 < p < p; where p; and p; are the
correlation coeflicients associated with H; and H,, respec-
tively. Depending on the marginal distributions the range
of p may be much smaller than |p| < 1. For example,
for the bivariate log-normal distribution with unit vari-
ances, one can show p € (-0.368,1). Lancaster (1958)
uses Chebyshev-Hermite polynomial to obtain the corre-
lation coefficient of transformed bivariate random vectors.
Freeman and Modarres (2005) obtain the form of the
correlation after a »Box-Cox transformation.

Moran (1967) states that the necessary and sufficient
conditions for p to assume extreme values of +1 and —1are

1. X £aY + b for constants

2. F(p+x) = 1- F(u - x) where y is the mean of
X. Normal, uniform, double exponential and logistic
distributions satisfy these conditions

Rényi (1959) considers a set of conditions that a
symmetric nonparametric measure of dependence should
satisfy. Schweizer and Wolff (1981) note that Rényi’s con-
ditions are too strong and suggest that any suitably nor-
malized distance measure such as the L, distance provides
a symmetric measure of nonparametric dependence. They
show that these distances, according to a modified set of
Rényi conditions, enjoy many useful properties. Let L, =
(Kp [, |C(,v) — uvfPdudv)'/? where K, is chosen such
that L, remains in (0,1). We have

L L =12, |C(u,v) — uv|dudy
1/2
2. Ly=(90 [,(C(u,v) — uv)’dudy

3. Loo =4 Sup p |C(u,v) — uv|

In fact Hoeffding (1948) and Blum et al. (1961) base a
nonparametric test of independence between X and Y on
Loo. Modarres (2007) studies several tests of independence,
including a measure based on the likelihood of cut-points.
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De-noising a time series, that is a sequence of observations
of a variable measured at equidistant points in time, or an
image, that is a rectangular array of pixels, is a common
task nowadays. The objective is to extract a varying level
(a “signal”) representing the path followed by the time
series or the true image which is overlaid by irrelevant
noise.

Linear filters like moving averages are computationally
simple and eliminate normal noise efficiently. However,
their output is heavily affected by strongly deviating obser-
vations (called »outliers, spikes or impulses), which can be
caused for instance by measurement artifacts. Moreover,
linear filters do not preserve abrupt changes (also called
step changes or jumps) in the signal or edges in an image.
Tukey (1977) suggests median filters, also called running
medians, for these purposes.

We focus on the time series setting in the following.
Let y1,...,yn be observations of a variable at equidistant
points in time. De-noising these data for extraction of
the time-varying mean level underlying these data (the
signal) can be accomplished by moving a time window
YVicks--+>Yts- - > Vesk Of length n = 2k + 1 through the series
for estimation of the level y; in the center of the window.
Whereas a moving average calculates the arithmetic aver-
age of the data in the time window for this, a running
median uses the median of these values. If the window
width is fixed throughout, we get estimates of the levels
Uk+1> - - - » Nk at instances not very close to the start or the
end of the time series. The levels at the start or the end of
the time series can be estimated for instance by extrapo-
lation of the results from the first and last window or by
adding the first and the last observed value a sufficient
number of times.

Figure 1 depicts observations of the arterial blood pres-
sure of a patient in intensive care measured once a minute,
as well as the outputs of a moving average and a running
median, both with window width n = 11. The moving aver-
age is strongly affected by a few measurement artifacts, and
it smooths the sudden increase at t = 60. The running
median eliminates the spikes and preserves the shift.

200 - o Arterial pressure
— Running median
--- Moving average
(]
= 150 - °
<
>
100

T T T T T T T
0 20 40 60 80 100 120

Median Filters and Extensions. Fig.1 Measurements of the
arterial blood pressure of a patient and outputs of a running
median and a moving average, both with window width n = 11

A possible disadvantage of running medians is that
they implicitly rely on the assumption that the level is
almost constant within each time window. While increas-
ing the window width improves the reduction of noise if
the signal is locally constant, this is no longer the case in
trend periods. Davies et al. (2004) investigate application
of robust regression to a moving time window to improve
the approximation of trends in the presence of »outliers.
Many further refinements of robust filters for signal extrac-
tion from time series or images and different rules for
choosing a (possibly locally adaptive) window width from
the data have been suggested in the literature. See Gather
et al. (2006) for an overview on robust signal extraction
from time series.
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Statistical science plays an important role in medical
research. Indeed a major part of the key to the progress
in medicine from the 17th century to the present day has
been the collection and valid interpretation of empirical
evidence provided by the application of statistical methods
to medical studies. And during the last few decades, the
use of statistical techniques in medical research has grown
more rapidly than in any other field of application. Indeed,
some branches of statistics have been especially stimulated
by their applications in medical investigations, notably
the analysis of »survival data (see, for example, Collett
2003). But why has statistics (and statisticians) become so
important in medicine? Some possible answers are:

e Medical practice and medical research generate large
amounts of data. Such data can be full of uncertainty
and variation and extracting the “signal,” i.e. the sub-
stantive medical message in the data, form the ‘noise’
is usually anything but trivial.

e Medical research often involves asking questions that
have strong statistical overtones, for example: ‘How
common is a particular disease?’; ‘Which people have
the greatest chance of contracting some condition or
other?’; “‘What is the probability that a patient diag-
nosed with breast cancer will survive more than five
years?’

o The evaluation of competing treatments or preventa-
tive measures relies heavily on statistical concepts in
both the design and analysis phase.

In a short article such as this it is impossible to cover
all areas of medicine in which statistical methodology is
of particular importance and so we shall concentrate on
only three namely, clinical trials, imaging and molecular
biology. (For a more comprehensive account of the use of
statistics in medicine see Everitt and Palmer (2010)).

Clinical Trials

If a doctor claims that a certain type of psychotherapy
will cure patients of their depression, or that taking large
doses of vitamin C can prevent and even cure the common
cold, how should these claims be assessed? What sort of
evidence do we need to decide that claims made for the

efficacy of clinical treatments are valid? One thing is cer-
tain: We should not rely either on the views of ‘experts’
unless they provide sound empirical evidence (measure-
ments, observations, i.e., data) to support their views, nor
should we credit the anecdotal evidence of people who
have had the treatment and, in some cases, been ‘miracu-
lously’ cured. (And it should be remembered that the plural
of anecdote is not evidence.) Such ‘wonder’ treatments,
which are often exposed as ineffectual when exposed to
more rigorous examination, are particularly prevalent for
those complaints for which conventional medicine has lit-
tle to offer (see the discussion of alternative therapies in
Chapter 13 of Everitt 2008).

There is clearly a need for some form of carefully con-
trolled procedure for determining the relative effects of
different treatments and this need has been met in the
20th and 21st centuries by the development of the clinical
trial, a medical experiment designed to evaluate which (if
any) of two or more treatments is the more effective. The
quintessential components of a clinical trial, the use of a
control group and, in particular the use of »randomization
as a way of allocating participants in the trial to treat-
ment and control groups, were laid down in the first half
of the 20th century. The randomization principle in clin-
ical trials was indeed perhaps the greatest contribution
made by arguably the greatest statistician of the 20th cen-
tury, Sir Ronald Aylmer Fisher. Randomization achieves
the following:

e It provides an impartial method, free of personal bias,
for the assignment of participants to treatment and
control groups. This means that treatment compar-
isons will not be invalidated by the way the clinician
might chose to allocate the participants if left to his or
her own judgment.

e It tends to balance treatment groups in terms of extra-
neous factors that might influence the outcome of
treatment, even in terms of those factors the investi-
gator may be unaware of.

Nowadays some 9,000-10,000 clinical trials are under-
taken in all areas of medicine form the treatment of acne
to the prevention of cancer and the randomized controlled
clinical trial is perhaps the outstanding contribution of
statistics to 20th century medical research. And in the 21st
century statisticians have applied themselves to develop-
ing methods of analysis for such trials that can deal with
the difficult problems of patient drop-out, the longitudinal
aspects of most trials and the variety of measurement types
used in such trials (see Everitt and Pickles 2004).
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Imaging
Examples of medical imaging systems include conven-
tional radiology (X-rays), positron-emission tomography
(PET), magnetic resonance imaging (MRI) and functional
magnetic resonance imaging (fMRI). A significant advan-
tage often claimed for medical imaging is its ability to
visualize structures or processes in the patient without the
need for intrusive procedures, for example, surgery; but
this may also be a disadvantage and the question that may
need to be asked is how well do the conclusions from an
imaging experiment correspond to the physical properties
that might have been found from an intrusive procedure?
Imaging studies generate large amounts of data and a
host of statistical techniques have been employed to ana-
lyze such data and to extract as much information as pos-
sible from what is in many cases very ‘noisy’ data. Autore-
gressive models, linear mixed effects models, finite mixture
models and Gaussian random field theory have all been
applied to mixture data with varying degrees of success.
Some important references are Besag (1986), Silverman
etal. (1990) and Lange (2003).

Molecular Biology
Molecular biology is the branch of biology that studies
the structure and function of biological macromolecules
of a cell and especially their genetic role. A central goal of
molecular biology is to decipher the genetic information
and understand the regulation of protein synthesis and
interaction in the cellular process. Advances in biotechnol-
ogy have allowed the cloning and sequencing of DNA and
the massive amounts of data generated have given rise to
the new field of »bioinformatics which deals with the anal-
ysis of such data. A variety of statistical methods have been
used in this area; for example, hidden Markov models have
been used to model dependencies in DNA sequences and
for gene finding (see Schliep et al. 2003) and data mining
techniques (see »Data Mining), in particular, cluster anal-
ysis (see, for example, Everitt et al. 2010) have been used to
identify sets of genes according to their expression in a set
of samples, and to cluster samples (see »Cluster Sampling)
into homogeneous groups (see Toh and Honimoto 2002).
Statistical methods are an essential part of all medi-
cal studies and increasingly sophisticated techniques now
often get a mention in papers published in the medical lit-
erature. Some of these have been mentioned above but oth-
ers which are equally important are Bayesian modeling (see
Congdon 2001) and generalized estimating equations (see
Everitt and Pickles 2004). In these days of evidence-based
medicine (Sackett et al. 1996), collaboration between med-
ical researchers and statisticians is essential to the success
of almost all research in medicine.
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Historical Background

The term statistics has at least three, related, meanings. It
may refer to data in raw form, or to summaries thereof,
or to the analysis of uncertainty associated with data. The
phrase medical statistics, therefore, may reasonably be
applied to the specialization to medical science of any of
these understandings of statistics.

Raw medical statistics date back at least to the London
Bills of Mortality, collected weekly between 1603 and 1836
in order to provide an early warning of plague. The early
demographic work of John Graunt (1620-1674) was based
on these Bills. The summaries of vital statistics under-
taken by William Farr (1807-1883), working at the General
Registry Office of England and Wales, became the basis
of many important health reforms. However, the found-
ing editors of the journal Statistics in Medicine described
modern medical statistics as “the deployment of the ideas,
principles and methods of statistics to stimulate deeper
understanding in medicine” (Colton et al. 1982), empha-
sizing the third understanding of the term.

The history of the link between statistics and medicine
includes key figures in the development of statistics
itself. For example, Arbuthnot (1667-1753) and Bernoulli
(1700-1782), often cited in the early use of significance
tests, were each qualified in both mathematics and in
medicine. Many individuals have contributed to the emer-
gence of medical statistics as a scientific discipline in its
own right. The French writers, Pinel (1745-1826), Louis
(1787-1872) and Gavarret (1809-1890) and the Danish
physician, Heiberg (1868-1963) provided early impetus.
Subsequently, Pearl (1879-1940) and Greenwood (1880-
1949) established research programmes in medical statis-
tics in the USA and the UK respectively. In 1937, Hill (1897-
1991) published the highly influential book, Principles of
Medical Statistics, Hill (1937), of which twelve editions
were published over the next 55 years. Two other impor-
tant contributions of Hill were arguably the first modern
randomized clinical trial on the effect of streptomycin in
tuberculosis, and his discussion of criteria for causality
in epidemiological studies. A useful source for informa-
tion on the history of medical statistics is the Lind Library
[http://www.jameslindlibrary.org].

The Nature of Medical Statistics

Much activity in medical statistics is necessarily collabo-
rative. Over the course of a career, statisticians engaged in
medical research are likely to work closely with physicians,
nurses, laboratory scientists and other specialists. Com-
munication across disciplines can present challenges but,
in addition to its scientific merit, also frequently stimu-
lates worthwhile methodological and theoretical research.
Further, since medical research often raises ethical issues,
these too must be considered by medical statisticians. Hill
(1936) stressed that the statistician “cannot sit in an arm-
chair, remote and Olympian, comfortably divesting him-
self of all ethical responsibility”

A dominant characteristic of the statistical meth-
ods arising in medical statistics is that they must make
allowance for known variability. Comparisons of groups
should adjust for systematic discrepancies between groups,
for instance in terms of demographics. This has been
reflected for many years by the high profile given to regres-
sion methodology, which allows multiple explanatory vari-
ables to be incorporated. A more recent manifestation is
in the monitoring of medical performance, where qual-
ity control procedures developed for industrial application
have been modified to allow for predictable heterogeneity
in medical outcomes (Grigg et al. 2003).

lllustrative Methodological
Developments
In 1984, Cox identified three important periods in the
development of modern statistical methodology. The first
was linked to developments in agriculture, the second to
industrial applications, and the third to medical research.
Developments linked to medical research flourished in the
1970s; where earlier statistical methodology placed par-
ticular emphasis on normally distributed data, there was
a need for methods more suited to survival (or time-
to-event) and categorical data. A distinguished example of
the former is Cox’s own pioneering paper (Cox 1972), pre-
senting a semiparametric regression model for »survival
data that did not require full specification of an underly-
ing survival distribution. In addition, and in contrast to
virtually all other regression methods then available, this
model allowed the incorporation of explanatory variables
that varied over time. A wealth of subsequent extensions
to this already very general methodology followed, many
facilitated by Aalen’s (1978) reformulation of the problem
in a counting process framework [see also Andersen et al.
(1993)].

An important application of statistical models for cate-
gorical data was to »case- control studies. These epidemio-
logical investigations of the relationship between a disease
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D and exposure E, a possible risk factor, involve sepa-
rate sampling of diseased and disease-free groups, from
which information on E and other disease risk factors is
obtained. Binary »logistic regression would seem to pro-
vide a natural tool for the analysis of these studies, but for
the fact that it focuses on pr(D|E) whereas the sampling
is from the distribution pr(E|D). Building on a series of
earlier papers, Prentice and Pyke (1979) established how a
prospective logistic regression model for pr(D|E) could be
used with case-control data to provide valid estimates of
the odds-ratio parameters. This rapidly became the stan-
dard methodology for the analysis of case-control studies
(Breslow 1996).

Study Design

The design of medical studies is also a major area of
activity for medical statisticians. The paradigmatic design
is perhaps the Phase III clinical trial, of which a key
aspect is often randomized treatment assignment. While
»randomization can provide a basis for statistical infer-
ence, its primary motivation in trials is to enable state-
ments of causality, critical for Phase III trials where the aim
is to establish treatment efficacy. Nevertheless, the need
for, and methods of, randomization continue to generate
discussion, since randomization can be seen to sacrifice
potential individual advantage for collective gain. Other
design questions arise in Phase I trials that establish the
tolerability of treatments and basic pharmacokinetics, and
Phase II trials aimed at finding potentially efficacious treat-
ments or dosages.

For ethical reasons, ongoing monitoring of data during
a clinical trial is often needed, and this has been an area
of methodological investigation within medical statistics
since the pioneering work of Armitage (1975) (a compre-
hensive discussion may be found in Jennison and Turnbull
(2000)). There is also an increasing role for statisticians
on formal committees that monitor trial data and safety,
where their expertise is combined with that of physicians,
ethicists, and community representatives to ensure the
ethical conduct of trials more generally.

In the 1980s, two important variations on the stan-
dard case-control design emerged, namely case-cohort
studies (Prentice 1986) and two stage case-control designs
(Breslow and Cain 1988); both have proved very useful
in epidemiology. Epidemiological cohorts where individ-
uals are followed to observe disease incidence, or clinical
cohorts for which information on patients with specified
conditions is collected routinely - both usually imple-
mented over long periods of time — also continue to present
design and analysis challenges to the medical statistician.

More Recent Topics of Interest

Typically, medical studies are conducted not only to
discover statistical associations, but also in the hopes of
suggesting interventions that could benefit individuals or
populations. This has led to a preference for investigations
incorporating randomization or multiple waves of obser-
vation, based on the idea that cause should precede effect.
Randomized or not, information gathered repeatedly on
the same subjects is known as longitudinal data, and its
analysis has become a major subdiscipline within medi-
cal statistics. Two distinct approaches to longitudinal data
analysis have risen to prominence: likelihood-based mod-
els (incorporating both classical and Bayesian schools of
thought) and estimating-equation techniques.

A consequence of this emphasis on studies monitor-
ing subjects over several months (or even years) has been
an increased awareness that data, as collected, are often
quite different from what was intended at the design stage.
This may be due to subjects refusing treatment, or choos-
ing an alternate therapy, or dropping out of the investi-
gations altogether. Likelihood approaches to longitudinal
data may be extended to incorporate an explicit model
for the observation process (Henderson et al. 2000), while
estimating equations can be modified with subject- or
observation-specific weights (Robins et al. 1995) to account
for departures from the study design. Non-compliance,
dynamic treatment regimes, and incomplete data are all
areas of active methodological research within medical
statistics.

Two other major areas of current interest are meta-
analysis and genetic or genomic applications. Meta-
analysis is often taken to refer to the technical aspects of
combining information from different studies that address
the same research question, although the term is some-
times used to describe the more general systematic review,
which includes broader issues such as study selection.
Study heterogeneity is an important aspect of »meta-
analysis that the statistician must address. The size and
complexity of genetic and genomic data present major
statistical and computational challenges, notably due to
hypothesis test multiplicity.

Conclusion

Medicine remains a major area of application driving
methodological research in statistics, and the demand
for medical statisticians is considerable. A comprehensive
introduction to the area can be found in Armitage et al.
(2002) and a less technical introduction is Matthews and
Farewell (2007).
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Introduction

Given several studies on the same topic, a meta-analysis
synthesizes the information in them so as to obtain a more
precise result. The proper procedure of conducting a sys-
tematic review of literature, the selection of which studies
to include and the issues of publication bias and other pos-
sible biases are important aspects not covered here and we
refer the interested reader to Cooper and Hedges (1994)
and Higgins and Green (2008). We assume all studies
estimate the same effect, which is often a comparison of
outcomes for control and treatment groups via clinical tri-
als. Examples for two binomial samples with parameters
(n1,p1), (n2,p2) are the risk difference p1 — p», relative risk
p2/p1 and odds ratio { p2/(1 — p2)}/{p1/(1 — p1)}. Other
examples comparing normal samples are the difference in
means Y — pa, or effect sizes such as the standardized mean
difference, or Cohens-d d = (y1—p2) /o from Cohen (1988),
where ¢ is an assumed common variance, and Glass’s
g = (u1—p2) /o1 from Glass (1976), where o7’ is the variance
of the control group.
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Traditional Meta-Analysis Methodology
We are given K independent studies, in which the
estimated effects ék based on N observations are
asymptotically normal such that 0y is for large enough
Ny approximately normally distributed with mean 6y and
variance a,?/Nk. This is denoted ék ~ AN (Gk, a,f/Nk) for
each k = 1,...,K. Examples satisfying the above assump-
tions are the risk difference, the log-relative risk, the log-
odds ratio and the Cohen’s-d. The goal is to combine the
estimators 6 in some way so as to estimate a represen-
tative 0 for all K studies, or even more ambitiously, for
all potential studies of this type. Thus there is the concep-
tual question of how to define a representative 0, and the
inferential problem of how to find a confidence interval
for it.

Note that for each individual study, one can already
form large sample confidence intervals for individual 6y,
k=1,...,K.For known oy, a100(1- )% large-sample con-

fidence interval for 6y is [ Ly, Uy ] = [ék - zl,a/zak/Nl/z, 0,

+zl—uc/20'k/N]1/2:|> where z;=®7'(B) is the B quantile
of the standard normal distribution. If oy is unknown,
and there exists estimators 6; with dx/or — 1 in
probability as Ny — oo, then the same can be said for

[Li Ux] = [ék - Zlfa/zﬁk/Nl/Z) Ox + Zlfa/zék/Nllg/z] .

Unequal Fixed Effects Model (UFEM)

Standard meta-analysis proceeds by choosing a weight wy
for each study and combines the estimated §; through
weighted means. If we interpret 0y as the true effect for
the study k and if this effect is of interest in its own right,
then the following definition can be adopted. Consider a
representative effect for the K studies defined by 6,, =
Yk wkOk/W with W = 37, w;. This weighted effect is the
quantity that we want to estimate by meta-analysis. There is
a good dose of arbitraryness in this procedure, because the
weighted effect does not necessarily have a readily inter-
preted meaning. An exception occurs if the weights are all
equal to one, in which case 0,, is simply the average of the
study effects.

The weights are, however, often chosen to be propor-
tional to the reciprocals of the variances in order to give
more weight to 0, that are estimated more accurately.
If this is the choice, it follows that wy = Ni/of and
0, = ¥, wibi/W satisfies 8,, ~ AN(6,,, W). Therefore
a100(1 — «)% large-sample confidence interval for 6,, is
given by [L, U] = [0, - Z1—a)2 w20, + Z1a/2 w2,

In practice the weights usually need to be estimated,
(wk by Wy and W by W=%  Wk), but a large sample con-
fidence interval for 0,, can be obtained by substituting 0;,
for 6, and W for W in the above interval.

Fixed Effects Model (FEM)

When statisticians speak of the fixed effects model they
usually mean equal fixed effects which makes the very
strong assumption that all 6 = 6. This has the appeal of
simplicity. The UFEM just described includes the FEM as
aspecial case. In particular the target parameter 8,, reduces
to 0, = 0 and thus becomes a meaningful quantity no
matter what weights are chosen.

However, one of the preferred choices still uses the
weights inversely proportional to the variance, because in
this case >, wkék /W has the smallest asymptotic vari-
ance amongst all unbiased (for 0) linear combinations of
the individual study estimators of 6. The same confidence
interval given above for 0,, is used for 8. The methodology
for the UFEM and FEM models is the same, but the target
parameter 0,, of the UFEM has a different interpretation.

Random Effects Model (REM)

The REM assumes that the true effects 6y, k =1,...,K are
the realized values of sampling from a normal population
with mean 6 and variance y* for some unknown inter-
study variance y*, and further that the above results for
the UFEM are all conditional on the given 0y, k =1,...,K.
The justification for this assumption is that the K studies
are a ‘random sample’ of all possible studies on this topic.
Inference for 6 can now be interpreted as saying something
about the larger population of possible studies.

Formally, the REM assumes 6,...,0x are a sam-
ple from N(6,y*), with both parameters unknown; and
ék|9k ~ AN(Gk,a,f/Nk) for each k. If the conditional
distribution of ék, given 0, were exactly normal, then
the wunconditional distribution of 6, would be exactly
b, ~ N (9, Y2+ o} /Nk). However, in general the uncon-
ditional distributions are only asymptotically normal 0y ~
AN (9, y: + o} /Nk) . It is evident that one needs an esti-
mate §° of y* in order to use the inverse variance weights
approach described earlier, and this methodology will be
described below.

Qualitative Grounds

If one assumes the K studies are a random sample from
a larger population of potential studies and that the true
effects 0 are each N(6,y?) then 6 is the target effect, and
y* is a measure of inter-study variability of the effect. In
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this case choose the REM. If there is reason to believe that
the 8 are different, but not the result of random sampling,
then use the UFEM. In this case, it may be possible to
explain a good part of the variation in the effects 8y by
meta-regression. The differences between the studies can
sometimes be captured by variables that describe the cir-
cumstances of each study and by regressing the 6 on such
variables, these differences can be explained and corrected.
Meta-regression may thus turn a UFEM into a FEM. In
both models, the target is 0, = Y, wi0r/W. If there is
reason to believe all 8; = 6, (the homogeneous case), use
the FEM with target 0. For the FEM and UFEM inferential
conclusions only apply to the K studies.

Quantitative Grounds

It is clear that if y*> = 0 in the REM, or all 8; = 6
in the UFEM, one obtains the FEM. It is a special case
of both. One way to test the null hypothesis of homo-
geneity (all 0 = 0) is to use Cochrans Q, defined by
Q = > wk(ék - éw)z , where wy are the inverse vari-
ance weights and 6, = ¥, wibx/W. One can show that

Trial Drug Placebo
Martens (1995) 1/23 17/22
Martorana (1984) 8/21 1719
Schaeffer (1982) 2/15 4/13
Scheckler (1982) 1/20 8/21
Nicolle (1989) 0/11 10/13
Rugendorff (1987) 4/18 13/17
Stamm (1980) 113 5/6
Bailey (1971) 3/25 15/25
Gower (1975) 1/20 13/23
Stamm (1980) 113 5/7
Stappleton (1990) 2/16 9/11

under the null hypothesis of homogeneity, and when each
0y is normally distributed, Q ~ y%_;, so a level « test of
homogeneity rejects when Q > y&_;1_q- Further, under the
UFEM model, the statistic Q has a non-central chisquared
distribution Q ~ yx_;(A), where X\ = ¥, wi (0 — 0,)%
This result and others allowing for the weaker assumption
Ox ~ AN (Ok, of N k) and estimated weights are derived in
Sect. 24.1, Kulinskaya et al. (2008). In the asymptotic case,
the y* distributions are only approximate. Testing for het-
erogeneity is strongly discouraged in Higgins and Green
(2008) in favor of the quantification of inherently present
heterogeneity.

Inference for the REM

Let M, = Y, w}, for inverse variance weights wy, and a =
M; — Mz /M;. It can be shown that for this model E[Q] =
K — 1+ ay*. This “justifies” the DerSimonian and Laird
(1986) estimator $7,; = {Q — (K —1)}*/a, where {...}*
means set the quantity in brackets equal to 0 if it is nega-
tive and otherwise leave it. Using this estimator and O ~
AN (0, Y+ w[l),we have new weights wj, = (y2 + w;l)_1

Confidence intervals

T T T
-1 0 1

Meta-Analysis. Fig. 1 The data of eleven independent studies of antibiotic treatment to prevent recurrent urinary tract infection
are presented in this forest plot. The confidence intervals for the individual studies are shown on the right-hand side. The lozenge
at the bottom shows the combined confidence interval, the result of the meta-analysis
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and estimator 0* = ¥, wi0/W* ~ AN(6,{W*}7),
where W* = ¥, w;. In practice wj, is usually estimated by
wp =1/ ()912)L + ﬁ/,:l) . Anotherestimator of y* is proposed
in Biggerstaff and Tweedie (1997).

In some cases there is information regarding the K studies
which may explain the inter-study variance. In this case
the estimated effects 0 can be considered as responses to
be regressed on explanatory variables xi, . . ., xp, also called
moderators. Thus one has yi = Bo + Buxg + -+« + BpXip +€k»
where yy is the estimated effect ék (or a transformed effect),
and ¢y is the random error in the kth study, k = 1,...,K.
Weighted least squares (with known or estimated weights)
can be used to estimate the coefficients. When the variance
stabilizing transformation is applied to estimated effects,
generalized linear models techniques (see »Generalized
Linear Models) with Gaussian family of distributions can
be used, see Chap. 14 of Kulinskaya et al. (2008).

As illustration, consider a series of 11 studies of antibiotic
treatment to prevent recurrent urinary tract infection. The
sources of the data, the data themselves, and the confidence
intervals are shown in Fig. 1. These studies are part of those
reviewed by Albert et al. (2004) and have been discussed
in Chap. 19 (p. 158) of Kulinskaya et al. (2008). The total
sample sizes range from N =19 to N = 50. The parameter
of interest is the risk difference p; — p> between the placebo
group and the treated groups. The studies show a more or
less strong benefit of the treatment, while the meta-analysis
gives a fairly convincing result. This depiction of results is
known as a forest plot.

Additional Literature

The traditional approach is general, only requiring asymp-
totically normal effects and estimates for the weights. How-
ever the methodology is overly simple, because it assumes
known weights, when in fact they usually need to be esti-
mated. Recent studies indicate that typical sample sizes are
woefully inadequate in order for the approximations that
assume known weights to be reliable (Malzahn et al. 2000;
Viechtbauer 2007). One way of overcoming this problem
is to employ variance stabilization of the estimated effects
before applying the traditional approach, see Kulinskaya
et al. (2008). For further reading we recommend the clas-
sical work Hedges and Olkin (1985), as well as the recent
books Bohning et al. (2008), Borenstern et al. (2009),
Hartung et al. (2008) and Whitehead (2002).
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We are here concerned with the comparison of the perfor-
mance to two or more measurement devices or procedures.
At its simplest, a method comparison study involves the
measurement of a given characteristic on a sample of sub-
jects or specimens by two different methods. One possible
question is then whether measurements taken by the two
different methods are interchangeable. Another is whether
one of the two methods is more or less precise than the
other. A third, more difficult task, is to calibrate one set
of fallible measurements (using Device A, for example)
against another set of fallible measurements produced by
device B. A potentially-serious problem in all of these
situations is the possibility that the measurement errors

arsing from the use of these two devices may be corre-
lated. A slightly more complicated study involves replica-
tion of each of the sets of measurements taken using the
two different procedures or devices, usually carried out
on the naive assumption that the measurement errors of
the within-device replicates will be uncorrelated and that
replication will enable the investigator to obtain an unbi-
ased estimate of the instruments’ precisions (based on the
standard deviations of the replicates).

Let’s return to the simplest situation — measurement of
a given characteristic on a sample of subjects by two dif-
ferent methods that are assumed to provide independent
measurement errors. Are the two methods interchange-
able? How closely do the measurements agree with each
other? Is this agreement good enough for all our practi-
cal purposes? A method suggested by Bland and Altman
(1986) is to determine limits of agreement. One simply sub-
tracts the measurement arising from one method from the
corresponding measurement using the other. The average
of these differences tells us about the possibility of relative
bias (and the so-called Bland-Altman plot - a graph of the
difference against the average of the two measurements —
may tell us that the bias is changing with the amount of the
characteristic being measured, but it is not 100% fool-proof
since a relationship between the difference between and the
average of the two measures may arise from differences in
the instruments’ precisions). The standard deviation of the
differences tells us about the variability of the difference
of the two measurement errors. The 95% limits of agree-
ment are simply defined as the range of differences between
the 2.5th and 975th percentiles or, assuming normality,
approximately two standard deviations either side of the
mean. If the measurement errors for the two methods are
positively correlated then the variability of the differences
will be less than one would expect if they were uncorre-
lated and the limits of agreement will be too small. If the
measurement methods use different scales (comparison of
temperatures in °C and °F, for example) then this sim-
ple procedure will break down and the limits of agreement
will fail to tell the investigator that the two methods are
interchangeable (after suitable rescaling).

One might be tempted to plot results using one of the
methods (in °F, for example) against the other (in °C)
and carry out a simple regression to calibrate one against
the other. But the hitch is that both methods are sub-
ject to error (the classical errors-in-variables problem) and
the estimate of the regression coeflicient would be biased
(attenuated towards zero). If one knows the ratio of the
variances of the measurement errors for the two methods
then it is possible to use orthogonal regression, widely-
known as Deming’s regression, to solve the problem. The
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catch is that one does not normally have an unbiased esti-
mate of the ratio of these two variances - the problem again
arising from the lack of independence (i.e., correlation) of
any replicate measures used to determine these variances
(Carroll and Ruppert 1996).

A third relatively simple approach is to look for and
make use of an instrumental variable (IV) through IV
or »two-stage least squares (2SLS) regression methods.
Here we need a variable (not necessarily a third measure-
ment of the characteristic, but it may be) that is reasonably
highly correlated with the characteristic being measured
but can be justifiably assumed to be uncorrelated with the
associated measurement errors. If we label the measure-
ments using the two methods as X and Y, and the corre-
sponding values of the instrumental variable as Z, then the
instrumental variable estimator of the slope of Y on X is
given by the ratio Cov(Y,Z)/Cov(X,Z) - see Dunn (2004,
2007). From here it’s a relatively simple move into factor
analysis models for data arising from the comparison of
three or methods (Dunn 2004).

Statistical analyses for the data arising from more
the informative designs, with more realistic measure-
ment models (heteroscedasticity of measurement errors,
for example), is beyond the scope of this article but the
methods are described in considerable detail in Dunn
(2004). The methods typically involve software developed
for covariance structure modelling. Analogous methods
for the comparison of binary measurements (diagnostic
tests) can also be found in Dunn (2004).
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The method of moments is a technique for estimating the
parameters of a statistical model. It works by finding val-
ues of the parameters that result in a match between the
sample moments and the population moments (as implied
by the model). This methodology can be traced back to
Pearson (1894) who used it to fit a simple mixture model.
It is sometimes regarded as a poor cousin of maximum
likelihood estimation since the latter has superior theoret-
ical properties in many settings. Nonetheless, the method
of moments and generalizations thereof continue to be of
use in practice for certain (challenging) types of estimation
problem because of their conceptual and computational
simplicity.

Consider a statistical model defined in terms of a
parameter vector § = (91,...,9p)T. We denote by py =
E[X*] the kth moment about zero of a random variable X
generated by our model. This moment will be a function
of 0, and so we will write y; = pr(6) to emphasize this
dependence.

Suppose that we have a (univariate) random sample
X1, ..., X, from the model, which we want to use to esti-
mate the components of 0. From this we can compute
the kth sample moment, i = n™' " X¥. The rationale
for the method of moments is that the sample moments
are natural estimators of the corresponding model-based
moments, and so a good estimate of 8 will reproduce these
observed moments. In practice it is usual (although not
essential) to use moments of the lowest possible orders
in order to obtain parameter estimates. The method of
moments estimator @ is hence defined to be the solution
of the system of equations

ue(0) = k=12,...,q
where g is the smallest integer for which this system has a
unique solution.

Asan example, suppose that X, . . ., X, are drawn from
a »gamma distribution with shape parameter « and scale
parameter f8. Then y; = aff and 2 = a(a + 1)B* The
method of moments estimators & and ﬁ therefore satisfy
the pair of equations

<%

=
I

=
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Solving these we obtain

£2 )
g > and /gzLA Y
Ha— B #

Method of moments estimators are, in general, consistent.
To see this, note that the (weak) law of large numbers
ensures that the sample moments converge in probabil-
ity to their population counterparts. It then follows that
if ux(0) is a continuous function of 0 for k = 1,...,9
then the method of moments estimators will converge
in probability to their true values. However, method of
moments estimators are less efficient than maximum likeli-
hood estimators, at least in cases where standard regularity
conditions hold and the two estimators differ. Further-
more, unlike maximum likelihood estimation, the method
of moments can produce infeasible parameter estimates in
practice. For example, if X, ..., X, are drawn from a uni-
form distribution (see »Uniform Distribution in Statistics)
on [0, 8] then the method of moments estimator is 6 = 2X,
but this estimate is infeasible if max{X;} > 2X.

Despite the theoretical advantages of maximum like-
lihood estimation, the method of moments remains an
important tool in many practical situations. One reason
for this is that method of moments estimates are straight-
forward to compute, which is not always the case for
maximum likelihood estimates. (For example, the max-
imum likelihood estimators for the gamma distribution
parameters considered above are only available implicitly
as the solution to the non-linear likelihood equations.)
Furthermore, estimation by the method of moments does
not require knowledge of the full data generating process.
This has led to various extensions of the basic method
of moments that can be applied in complex modeling
situations.

One such extension is the generalized method of
moments Hansen (1982) which is a type of generalized
estimating equation methodology, widely used in econo-
metrics. This technique works by utilizing sample and
population moment conditions (or “orthogonality condi-
tions”) of the statistical model, and can provide estimates
of parameters of interest in a model even when other model
parameters remain unspecified. Another useful extension
is the simulated method of moments (e.g., Gelman 1995).
This technique can be employed when the model is so
complex that neither the density function for the data nor
the theoretical moments are available in closed form. It
therefore provides a means of fitting micro-simulation and
mechanistic stochastic models (Diggle and Gratton 1984).
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The term minimum variance unbiased refers to a property
of statistical decision rules.

Idea. Any statistical experiment may be perceived as
a random channel transforming a deterministic quantity
0 (parameter) into a random quantity X (observation).
Point estimation is a reverse process of regaining 6 from
X according to a rule 6 = 8(X) called estimator. Formally,
estimator is a function from the set X, of possible values
of X, into the set ®, of possible values of 6. As a measure
of imprecision of such estimator one can use the function
R5(0) = Eg(8(X) — 0)* called the Mean Squared Error. It
may be rewritten in the form

vargd(X) + [b(0)]*, where b(0) = Egd(X) — 6
is the bias of §.
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If b(A) = 0 for all § then 6 = §(X) is said to be unbi-
ased. Minimizing the MSE among the unbiased estimators
reduces to minimizing its variance. Any estimator Jy real-
izing this minimum (if such exists) is said to be a minimum
variance unbiased estimator (MVUE). Searching for such
estimator or verifying whether it is a MVUE needs some
special statistical tools.

Example1 (Urn problem). An urn contains N balls, where
any ball is black or white, while the number 6 of black balls
is unknown. To search 6 we draw without replacement n
balls. Let k be the number of black balls in the sample.
Estimate 6.

A potential number X of black balls in the sample has
the hypergeometric distribution (see »Hypergeometric
Distribution and Its Application in Statistics) taking values
k with probabilities

()¢:)

if ke[max(0,n - N+6),

™)
Py(X =k) =po = min(n, )] (1)
0 otherwise.
Since EX = ”—I\?, the rule 8 = %X is an unbiased esti-

mator of 6. This is, formally, not acceptable unless # is a
divisor of N, because 8 takes values outside the parameter
set. Thus one can seek for an acceptable unbiased estimator.
According to the formula (1) we get

1, ifk=0
Pok = .
0, otherwise,
and
NI;n’ lf k =0
Pk = %, ifk=1
0, otherwise.

Thus any unbiased estimator 8 = 0(X) must satisfy the
conditions 6(X) = 0if X = 0 and Nif X = 1. Therefore the
desired estimator exists if and only if 7 is a divisor on N.

Basic Concepts. Let X = (Xj,...,X,) be a random
vector, interpreted as a potential observation in a statisti-
cal experiment. Assume that distribution P of the vector
belongs to a family P = {Pg : 6 € ®}, where 0 is an
unknown parameter identifying P. Thereafter by distribu-
tion we shall mean density or probability mass function.
Any potential estimator of 6 is a function T = ¢(X) called
a statistic. If T involves the entire information on 6 then
one can reduce the problem by considering only these
estimators which depends on X through T.

We say that a statistic T is sufficient for 6 if the
conditional probability Pg(X/T) does not depend on 6.
Determining a sufficient statistic directly from this defi-
nition may be a laborious task. It may be simplified by
the well known Fisher-Neyman factorization criterion.
A statistic T = #(X) is sufficient for 0, if and only if,
Py may be presented in the form Py(x) = go[t(x)]h(6).
A sufficient statistic T is minimal if it is a function of any
other sufficient statistic. In particular, the vector statistic
T = [t(X),...,t%(X)] in so called exponential family
Py(x) = C(0) exp[ 31, Qi(0)t(x)] h(x), for 6 € ©, is
sufficient.

We say that a statistic T is complete if for any (mea-
surable) function f the condition Eof(T) = 0 for all
6 implies that P[f(T) = 0] = L It is known that any
complete sufficient statistic (if exists) is minimal but a min-
imal sufficient statistic may not be complete. Moreover the
above sufficient statistic in the exponential family distri-
butions is complete providing ® contains a k-dimensional
rectangle.

Now let us consider a family of densities {p(x,0) :
6 € ®}, where © is an open interval of a real line, satisfying
some regularity conditions. Function I = I(6) defined by

dlogp(X,0) 1% . . .
the formula I(0) = E [%] is said to be Fisher
information.

Advanced Tools. Let X = (X;,...,X,) be a random
vector with a distribution P belonging to a family P = {Py :
0 € ®} and let T = t(X) be a sufficient statistic for 6. In
searching MVUE’s one can use the following results.

» Rao-Blackwell theorem: If U = u(X) is an unbiased
estimator of a parametric function g(0) then the condi-
tional expectation E[ U/ T] is also unbiased and its variance
is not greater than var(U).

Lehmann-Scheffé theorem: If T is, moreover, com-
plete then any statistic #(T') is a MVUE of its expectation.
This MVUE is unique (with probability 1).

Rao-Cramer inequality: Let {p(x,0) : 0 € ®}, where
O is an open interval of a real line, be a family of densities
satisfying some regularity conditions, such that I(8) > 0
for all 6. Then for any statistic U = u(X) the inequality
varg(U) > 1(% is met.

It is worth to add that the equality in the Rao-Cramer
inequality is attained if and only if the family P of dis-
tributions is exponential. However this condition is not
necessary for existing a MVUE,; for instance, if Xi,..., X,
are i.i.d. according to the normal law N (oc 3, 1). In this case
9a* | 18" | 6

the attainable minimum variance is =~ + =3 + > while
1 _ 9a’
(0) = n °
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Example 2 (Bernoulli trials). Let Xj,...,X, be indepen-
dent and identically distributed zero-one distributions
with probability P(X; = 1) = 0, where 0 is unknown for
i=1,...,n. In this case the family P = {Pg : 6 € (0,1)} is
exponential with complete sufficient statistic X = & Zi Xi.
Since EX = 0, the statistic X is the unique MVUE of 6.
In this case the Fisher information takes the form I(0) =
ﬁ while varg (X) = w. Thus the lower bound ﬁ
in the Rao-Cramer inequality is attained. It is worth to
note that, similarly as in Example 1, this unique MVUE
takes, with positive probability, the values 0 and 1, which
lie outside the parameter set (0,1) .

Minimum Variance Invariant Unbiased Estimator.
If distribution of the observation vector depends on sev-
eral parameters, some of them may be out of our interest
and play the role of nuisance parameters. Such a situation
occurs, for instance, in linear models. In this case the class
of all unbiased estimators is usually too large for handle.
Then we may seek for an estimator which is invariant with
respect to a class of transformations of observations or its
variance does not depend on the nuisance parameters. An
estimator minimizing variance in such a reduced class is
called a minimum variance invariant unbiased estimator.

About the Author
For biography see the entry »Random Variable.
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Introduction

Because of the advent of high speed computers statistics
has become more visible. Almost any discipline has an
element of statistics in it. In fact one cannot publish in most
journals when the statistics used or misused is not stated.
Newspapers, magazines, etc are now awash with one form
or other of “statistics” Now it is fashionable to take data,
shove it into a computer and come out with nice tables,
graphs and »p-values. Clearly such practices are a gross
»misuse of statistics and do a disservice to the subject.
There is no wonder we are in the company of “lies, damned
lies and statistics”

So What Is Statistics?
There are several definitions of statistics, some not so
flattering:

1. The American heritage dictionary says: Statistics is the
mathematics of collection, organization and interpre-
tation of numerical data.

2. Brase and Brase, in their beginning level statistics text-
book define statistics as the science of how to collect,
organize, analyze and interpret numerical information
from data.

3. Evan Esar says statistics is the only science that enables
different experts using the same figures to draw differ-
ent conclusions.

The first two capture the essence of statistics. Ms. Esar cap-
tures the abuse that is possible. However, these definitions
do not capture the true essence of statistics and that is:
to make a deduction in the face of uncertainty. The true
essence of statistics is captured when it is stated that statis-
tics is the science that tells whether something we observe
can be generalized or applied to a new or different but sim-
ilar situation (the author of this statement is unknown).
That is I observe a group of people in a community and
found that 20% have cancer, can I generalized to say that
the cancer rate in that community is 20%? Of course not
without first saying how the sample was observed. The
other definitions come into play then. I need to know how
the data was collected/observed, how it was organized,
analyzed, and then the interpretation.
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In this author’s opinion most of the problems, misun-
derstandings and misrepresentations in statistics originate
from the observation - collection process. Invariably the
data is observed/collected before thought is put in what to
do with it. So therefore the inference which is finally made
does not take account of how the data was observed in the
first. Maybe in the everyday sense it is natural to observe
first and then ask what to do with the data observed. How-
ever in complex tasks the research questions need to be
asked first. Then thought put into how to collect the rel-
evant data, organize and analyze it and make the inference
supporting the research question or refuting it. Hence in
large scale work, effort should be put in the “how to col-
lect” the data stage. If this is done, only the relevant data
will be collected, and there will be savings on resources,
time and money.

In most instances the way data is collected, the data
type collected determines the types of analysis that can be
carried out. Data collection is an expensive, time consum-
ing activity. It is unfortunate that lots of time and effort
are wasted on collecting data only to find out that the
data is not useful or the exercise could have been done
in an easier and cheaper manner. Should 50 experiments
be performed or can 10 be sufficient? Unfortunately more
data does not necessarily equate to more valid or better
results. In fact the opposite could be the case. Hence the
design of the experiment or data collection, the estimation
of the necessary sample sizes taking into consideration the
error, precision and last but not least the use to which the
results will be put, such as, will the results be generalized,
should be well thought out at the very beginning of the
study.

Another area where statistics has a bad name is the
pictorial representation of results. The saying goes that “a
picture is worth a thousand words.” Simple clear graphs can
help bring out the important aspects of the study. However

My program
b PROGRAM

Rival program

there is room for abuse. More often than not attention is
not paid to the scale of the graph. For example in compar-
ing two teaching programs, what impression is graph (a)
conveying? Are our students actually better? It is the duty
of statisticians to point out at every opportunity the pitfalls
that need to be avoided when reading graphs.

With the advent of fast computers computations that
were near impossible or would take ages to accomplish a
few years ago, now takes only seconds of computer time.
Coupled with this is the fact that there are very good
and easy to use software. Are computers taking the place
of statisticians, especially applied statisticians? There is a
lot more to data analysis than calculations. The computer
is there to remove the drudgery out of number crunch-
ing. What calculations to perform, that is what analysis to
do and foremost, the check of the validity of assumption
under which the procedures are valid, is the domain of the
statistician.

Conclusion

In my view statistics is simply whether one can general-
ize ones observation to a different or future situation. The
difficulty is how the “observation” was obtained - data
collection - and the generalization made - summarized,
analyzed and interpreted. In all these the expert input of a
statistician is invaluable.
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Statistics as an academic discipline is widely held as a sci-
ence that is related to experiments and the quantification
of uncertainty. This is true, but if used without caution,
statistics can add more uncertainty to an already murky
problem. A rich source on this topic would be “How to
Lie with Statistics Turns Fifty,” a 56-page Special Section of
Statistical Science (2005, p. 205-260).

Misuses of statistics at a non-technical level can be

roughly grouped in the following three categories, often
with the three types of misuses feeding each other in a
complicated, dynamic fashion.

1.

Data Quality: A complete statistical project consists of
the following components: (a) data collection, (b) data
preprocessing, (c) data exploration, (d) data analysis
and statistical modeling, and (e) summary report. The
process is not entirely linear and often goes from one
middle step back to another, and roughly 60-95% of
the project effort is needed on data quality to ensure
that the entire process will not go off the rails.

In their 2005 article, “How to Lie with Bad Data,”
De Veaux and Hand pointed out that “Data can be bad
in an infinite variety of ways.” This is not an exaggera-
tion. Fortunately, statistical design of experiments and
survey methodology, if done right, are capable of pro-
ducing data with high-quality. In the real world, the
problem is that the majority of data are collected in
non-controlled environments without much statistical
guidance. Consequently, data might have been cor-
rupted, distorted, wrong-headed, ill-defined, and with
loads of missing values - the list goes on forever. De
Veaux and Hand (2005) provided suggestions on how
to detect data errors and how to improve data quality.
The suggestions are very useful for practitioners.

In journals and real-world applications, statisti-
cal reports often shine with tremendous amounts of
energy on exotic models but with questionable effort
(and insufficient details) on data quality. Statistics as
a science is supposed to provide a guiding light for
research workers and decision-makers. Without good
data, exotic statistical models are unlikely to help. The
situation is like a person who is nearly blinded by

2.

cataracts and tries to sharpen the lenses for better
vision. The effort will be futile unless an operation is
conducted to take away the clouding.

A related note on data quality is the »outliers and
unusual numbers in the data. Resistant and robust sta-
tistical procedures are often used to handle this kind of
problem. But if the data was not collected in controlled
experiments, then the efforts are mostly misguided.
Furthermore, outliers often are the most interesting
numbers that may reveal surprising features of the
study. Blind applications of »robust statistics thus can
be counterproductive if not altogether misleading.
Statistical tests and »p-values: A continuing source of
mistake is the confusing of statistical significance with
practical significance. Mathematically, if the sample size
increases indefinitely, then the power of the statistical
test will increase as well. Consequently, even a tiny dif-
ference between observed and the predicted values can
be statistically highly significant. Certain large scale
examples regarding the confusion of practical signifi-
cance are discussed in Wang (1993, pp. 1-2,117-119, 128).
Other cautions on the misuse of statistical tests can be
found in Freedman et al. (2007) and in the “What Can
Go Wrong” sections of De Veaux et al. (2009, pp. 523,
549, 570, 604-605, 634-635, 662-663, 708) which dis-
cuss “no peeking at the data” and other caveats on the
tests of significance.

Freedman (2008a) further pointed out a potential
problem in research journals when publications are
“driven by the search for significance” The problem
can be rather acute when research grants or academic
careers hinge on publications. In short, researchers
may conduct many tests, ignore contradictory results
and only submit findings that meet the 5% cutoff.
A possibility to deal with this problem, according to
Freedman (2008a), is a journal requirement to docu-
ment search efforts in the research process.

Statistical Inference of Cause-and-Effect: Causal infer-
ence is a foundation of science and is indeed a very
tricky business. As an example, Aristotle maintained
that cabbages produce caterpillars daily - a well-known
assertion only to be refuted by controlled experiments
carried out by Francesco Redi in 1668. For new comers
to the field of statistics, it may be baffling that much
of the practice of modern statistics is still Aristotelian
in nature. For instance, a rough estimate indicates
that in clinical research, “80% of observational studies
fail to replicate or the initial effects are much smaller
on retest” (Young et al. 2009; a la Ioannidis 2005).
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Freedman (2008a) further discussed the related con-
troversies and a diverse set of large-scale contradictory
studies. The problem should be a concern to the statis-
tical community as our trade is indeed widely used. For
example, in the study of coronary heart disease, there
are more than 3,600 statistical articles published each
year (Ayres 2007, p. 92), and this is only the tip of the
iceberg.

A potential problem with statistical causality is
the use of regression models, directed graphs, path
analysis, structural equations, and other law-like rela-
tionships. Take the example of regression; on a
two-dimensional scatterplot, it is easy to see that math-
ematically it does not matter whether we put a variable
on the left or the right of the equation. Any software
package would produce the estimates of the slope and
the intercept, plus a host of diagnostic statistics that
often says the model is an excellent fit. Compounding
the problem of causal inference, a third variable may be
the reason behind the phenomenon as displayed by the
scatterplot. For instance, a scatterplot can be drawn to
show that the incidence of polio (Y-variable) increases
when soft-drink sales (X-variable) increases, but in
fact a lurking variable (warm weather) is the driving
force behind the rise (Freedman et al. 1978, p. 137).

The problem quickly turns worse in higher-
dimensional spaces. Try the following example in a
regression class: draw 20 or 30 right triangles and then
measure the values of (X;,X»,Y), with X;,X, being
the adjacent sides of the 90° angle. The Pythagorean
Theorem says that Y = \/X;*> + X;*. In an experiment
(Wang 1993, p. 73-77), students of regression came up
with all kinds of equations with R* of 96-99.93%. The
equations all passed stringent tests of diagnostic statis-
tics, but none of them comes close to the Pythagorean
equation. A further twist makes the problem statisti-
cally intractable when the legs of the triangles are not
orthogonal (Wang 1993, p. 77-78).

For causal inference, the misgivings of statistical
models happen not only in the observational stud-
ies, but also in the analysis of experimental data.
In an in-depth discussion, Freedman (2008b) exam-
ined the »Kaplan-Meier estimator and proportional-
hazards models which are frequently used to analyze
data from randomized controlled experiments. Specifi-
cally, Freedman investigated journal papers on the effi-
cacy of screening for lung cancer (New England Journal
of Medicine), the impact of negative religious feelings
on survival (Archives of Internal Medicine), and the
efficacy of hormone replacement therapy (New Eng-
land Journal of Medicine and Journal of the American

Medical Association). Freedman discussed reverse cau-
sation plus a host of other issues such as measurements,
omitted variables, and the justification of the mod-
els. Freedman concluded that “the models are rarely
informative,” that “as far as the model is concerned,
the »randomization is irrelevant,” that “randomization
does not justify the model,” and that it “is a mistake” to
apply the models in the first place.

In yet another example, Freedman (2008c) investi-
gated »logistic regression in the experimental setting
for drawing conclusions on cause-and-effect. Again,
Freedman noted that the model is not justified by
randomization. He further questioned “Why would
the logit specification be correct rather than the pro-
bit — or anything else? What justifies the choice of
covariates? Why are they exogenous? If the model is
wrong, what is EZ supposed to be estimating?” Further-
more, in a summary of a vast variety of investigations,
Freedman (2008a) concluded that “Experimental data
are frequently analyzed through the prism of models.
This is a mistake”

Taken together, Freedman et al. (1978, 1991, 1998,
2007), Freedman (2005, 2008a, b, c¢), Wang (1993,
p- 72-79), and a very long list of references all indicate
that sophisticated statistical models are often detached
from the underlying mechanism that generated the
data. In other words, many law-like equations pro-
duced by statistical models are as structure-less as
Amoeba Regression (Wang 1993) and need to be viewed
with caution. This is indeed a big disappointment to
countless researchers who spend their lives on statis-
tical models (see, e.g., Pearl 2009, p. 100), but this is a
truth that we have to face.

Nevertheless, the models should be treasured for a num-
ber of reasons. To begin with, recall Newton’s theory on
celestial mechanics. The story is well-known and is rele-
vant to statistical modeling in the following ways: (1) The
Newtonian theory relies on observational studies, yet its
prediction accuracy rivals most of the tightly controlled
experiments. In other words, there is nothing wrong with
observational studies, as long as they are accurate and they
are consistent in subsequent studies. (2) Statistical models
represent the intellectual accomplishment of the statisti-
cal community that may one day produce useful results
on both experimental data and observational studies. His-
tory is the witness that ivory tower research often produces
surprising results decades or hundreds of years later. And
when the model is correct, the consequences can be enor-
mous. Take the example of proportional-hazards model,
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even Freedman (2008b, p. 116) acknowledged that “Pre-
cise measures of the covariates are not essential” and that if
the model “is right or close to right, it works pretty well”
(3) If used for descriptive or exploratory purposes, fancy
statistical models may indeed reveal unexpected features
in the data. For certain examples on non-parametric struc-
tural equations and counterfactual analysis, see references
in Pearl (2009). For another example on hot spot detection,
see Wang et al. (2008).

As a matter of fact, in the past 15 years or so, statis-
tical models have taken a new life in the realm of »data
mining, predictive modeling, and statistical learning (see,
e.g., Wang et al. 2008). In these applications, the con-
cerns are not cause-and-effect or the specific mechanism
that generates the data. Instead, the focus is the predic-
tion accuracy that can be measured by profit, false positive,
false negative, and by other criteria to assess the model
utility. This is a sharp departure from causation to pre-
diction. The great news is that the new applications have
been ranked by the 2001 MIT Technology Review as one of
the ten emerging technologies that will change the world -
and it is arguable that the successes of this new technology
will eventually feedback to traditional statistics for other
breakthroughs. In fact, countless examples with ingenious
twists have already happened (see, e.g., Ayres 2007). It is a
triumph of statistical models.

A cautionary note is that statistical learning and the
new breed of predictive modeling can easily go wrong and
misinformation can propagate with unprecedented speed
in the modern age of internet blogging and social net-
works. Newcomers to the field should consult, for exam-
ples, “Top 10 Data Mining Mistakes” (Elder 2009) and
“Myths and Pitfalls of Data Mining” (Khabaza 2009). For
unsupervised learning, one may want to read “The Practice
of Cluster Analysis” (Kettenring, 2006) and “A Perspec-
tive on Cluster Analysis” (Kettenring 2008). For super-
vised learning, given a dozen or thousands of predictors,
statistical tools are frequently used to generate predictor
importance scores, but these scores are often wildly differ-
ent from one algorithm to the next (see e.g., Wang et al.
2008, Sect. 4).

For yet another example, a model such as a Neural
Network may produce higher profit and higher predic-
tion accuracy than other tools, yet the model may also
be more volatile in repeated uses and hence pose consid-
erable hazards in the long run. »Sensitivity analysis and
similar techniques are thus needed to prevent misleading
conclusions (see, e.g., Wang et al. 2009).

The hallmark of empirical science is its replicabil-
ity. Much of the current statistical practice, unfortunately,
does not really meet this criterion. Just look at how many

authors are unwilling to disclose their data and how many
journals are unwilling to archive the datasets and the code
(see also Freedman, 2008a, c). Exceptions include Amer-
ican Economic Review, American Economic Journals and
Science.

Data disclosure reduces the cost of research and cost
of replicating results. It also deters unprofessional conduct
and improves collective findings of the research commu-
nity. Certain online journals (see e.g., http://www.bentley.
edu/csbigs/csbigs-vl-nl.cfm) post both the research arti-
cle and the data side-by-side. If more journals are willing
to make available the datasets used in their publications,
the situation of misuse and misconduct of statistics will be
greatly improved.
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The notion of mixed membership arises naturally in the
context of multivariate data analysis (see »Multivariate
Data Analysis: An Overview) when attributes collected
on individuals or objects originate from a mixture of dif-
ferent categories or components. Consider, for example,
an individual with both European and Asian ancestry
whose mixed origins correspond to a statement of mixed
membership: “1/4 European and 3/4 Asian ancestry.” This
description is conceptually very different from a proba-
bility statement of “25% chance of being European and

75% chance of being Asian”. The assumption that individ-
uals or objects may combine attributes from several basis
categories in a stochastic manner, according to their pro-
portions of membership in each category, is a distinctive
feature of mixed membership models. In most applica-
tions, the number and the nature of the basis categories,
as well as individual membership frequencies, are typically
considered latent or unknown. Mixed membership mod-
els are closely related to latent class and finite »mixture
models in general. Variants of these models have recently
gained popularity in many fields, from genetics to com-
puter science.

Early Developments

Mixed membership models arose independently in at least
three different substantive areas: medical diagnosis and
health, genetics, and computer science. Woodbury et al.
(1978) proposed one of the earliest mixed membership
models in the context of disease classification, known as
the Grade of Membership or GoM model. The work of
Woodbury and colleagues on the GoM model is summa-
rized in the volume Statistical Applications Using Fuzzy Sets
(Manton et al. 1994).

Pritchard et al. (2000) introduced a variant of the
mixed membership model which became known in genet-
ics as the admixture model for multilocus genotype data
and produced remarkable results in a number of applica-
tions. For example, in a study of human population struc-
ture, Rosenberg et al. (2002) used admixture models to
analyze genotypes from 377 autosomal microsatellite loci
in 1,056 individuals from 52 populations. Findings from
this analysis indicated a typology structure that was very
close to the “traditional” five main racial groups.

Among the first mixed membership models developed
in computer science and machine learning for analyz-
ing words in text documents were a multivariate analy-
sis method named Probabilistic Latent Semantic Analysis
(Hofmann 2001) and its random effects extension by Blei
et al. (2003a, b). The latter model became known as Latent
Dirichlet Allocation (LDA) due to the imposed Dirichlet
distribution assumption for the mixture proportions. Vari-
ants of LDA model in computer science are often referred
to as unsupervised generative topic models. Blei et al. (2003a,
b) and Barnard et al. (2003) used LDA to combine different
sources of information in the context of analyzing complex
documents that included words in main text, photographic
images, and image annotations. Erosheva et al. (2004) ana-
lyzed words in abstracts and references in bibliographies
from a set of research reports published in the Proceed-
ing of the National Academy of Sciences (PNAS), exploring
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an internal mixed membership structure of articles and
comparing it with the formal PNAS disciplinary classifi-
cations. Blei and Lafferty (2007) developed another mixed
membership model replacing the Dirichlet assumption
with a more flexible logistic normal distribution for the
mixture proportions. Mixed membership developments
in machine learning have spurred a number of applica-
tions and further developments of this class of models
in psychology and cognitive sciences where they became
known as topic models for semantic representations (Grif-
fiths et al. 2007).

Basic Structure

The basic structure of a mixed membership model fol-
lows from the specification of assumptions at the popula-
tion, individual, and latent variable levels, and the choice
of a sampling scheme for generating individual attributes
(Erosheva et al. 2004). Variations in these assumptions
can provide us with different mixed membership mod-
els, including the GoM, admixture, and generative topic
models referred to above.

Assume K basis subpopulations. For each subpopula-
tion k = 1,...,K, specify f(x;|0%), a probability distribu-
tion for attribute x;, conditional on a vector of parameters
0. Denote individual-level membership score vector by
A = (A1,...,Ak), representing the mixture proportions in
each subpopulation. Given A, the subject-specific condi-
tional distribution for jth attribute is

Pr(xA) = S Aef (316)-

In addition, assume that attributes x; are independent,
conditional on membership scores. Assume membership
scores, the latent variables, are random realizations from
some underlying distribution D, parameterized by a.
Finally, specify a sampling scheme by picking the num-
ber of observed distinct attributes, J, and the number of
independent replications for each attribute, R.

Combining these assumptions, the marginal probabil-

ORI

R
ity of observed responses { yeon ,x,r)} ’ given model
r=

parameters « and 0, is

Pr({xfr),...,xﬁr)}R ) |0c,6)

B f (j ﬁi/\kf(xj(r)l%)) dD.(1). (1)

J

In general, the number of observed attributes need
not be the same across subjects, and the number of

replications need not be the same across attributes. In addi-
tion, instead of placing a probability distribution on mem-
bership scores, some mixed membership model variants
may treat latent variables as fixed but unknown constants.
Finally, other extensions can be developed by specifying
further dependence structures among sampled individu-
als or attributes that may be driven by particular data forms
as, e.g., in relational or network data (Airoldi et al. 2008b;
Chang and Blei 2010; Xing et al. 2010).

Estimation

A number of estimation methods have been developed for
mixed membership models that are, broadly speaking, of
two types: those that treat membership scores as fixed and
those that treat them as random. The first group includes
the numerical methods introduced by Hofmann (2001),
and joint maximum likelihood type methods described
in Manton et al. (1994) and Cooil and Varki (2003), and
related likelihood approaches in Potthoff et al. (2000) and
Varki et al. (2000). The statistical properties of the esti-
mators in these approaches, such as consistency, identi-
fiability, and uniqueness of solutions, are yet to be fully
understood (Haberman 1995) - empirical evidence sug-
gests that the likelihood function is often multi-modal
and can have bothersome ridges. The second group uses
Bayesian hierarchical structure for direct computation of
the posterior distribution, e.g., with Gibbs sampling based
on simplified assumptions (Pritchard et al. 2000; Grif-
fiths and Steyvers 2004) or with fully Bayesian MCMC
sampling (Erosheva 2003). Variational methods used by
Blei et al. (2003a, b), or expectation-propagation meth-
ods developed by Minka and Lafferty (2002), can be used
to approximate the posterior distribution. The Bayesian
hierarchical methods solve some of the statistical and com-
putational problems, and variational methods in particular
scale well for higher dimensions. Many other aspects of
working with mixed membership models remain as open
challenges, e.g., dimensionality selection (Airoldi et al.
2008a).

Relationship to Other Methods of
Multivariate Analysis

It is natural to compare mixed membership models with
other latent variable methods, and, in particular, with fac-
tor analysis and latent class models (Bartholomew and
Knott 1999). For example, the GoM model for binary out-
comes can be thought of as a constrained factor analy-
sis model: E(x|A) = A\, where x is a column-vector of
observed attributes x = (x1,...,%), A = (A1,...,Ax) isa
column-vector of factor (i.e., membership) scores, and A is
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a J x K matrix of factor loadings. The respective constraints
in this factor model are A'Ix = 1 and Alx = Ik, where Ik is
a K-dimensional vector of 1s.

Mixed membership models can also address objec-
tives similar to those in »Correspondence Analysis and
Multidimensional Scaling methods for contingency tables.
Thus, one could create a low-dimensional map from a
contingency table data and graphically examine member-
ship scores (representing table rows or individuals) in the
convex space defined by basis or extreme profiles (repre-
senting columns or attributes) to address questions such
as whether some table rows have similar distribution over
the table columns categories.

Finally, there is a special relationship between the sets
of mixed membership and latent class models, where each
set of models can be thought of as a special case of the other.
Manton et al. (1994) and Potthoff et al. (2000) described
how GoM model can be thought of as an extension of latent
class models. On the other hand, Haberman (1995) first
pointed out that GoM model can be viewed as a special
case of latent class models. The fundamental representa-
tion theorem of equivalence between mixed membership
and population-level mixture models clarifies this nonin-
tuitive relationship (Erosheva et al. 2007).
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Introduction

Mixture distributions are convex combinations of “compo-
nent” distributions. In statistics, these are standard tools
for modeling heterogeneity in the sense that different ele-
ments of a sample may belong to different components.
However, they may also be used simply as flexible instru-
ments for achieving a good fit to data when standard
distributions fail. As good software for fitting mixtures
is available, these play an increasingly important role in
nearly every field of statistics.

It is convenient to explain finite mixtures (i.e., finite
convex combinations) as theoretical models for cluster
analysis (see »Cluster Analysis: An Introduction), but of
course the range of applicability is not at all restricted to
the clustering context. Suppose that a feature vector X is
observed in a heterogeneous population, which consists
of k homogeneous subpopulations, the “components” It
is assumed that for i = 1,...,k, X is distributed in the
i-th component according to a (discrete or continuous)
density f(x, 6;) (the “component density”), and all com-
ponent densities belong to a common parametric family
{f(x,0), 6 € @}, the “component model” The relative
proportion of the i-th component in the whole popula-
tion is pi, p1 + -+ + px = 1. Now suppose that an item
is drawn randomly from the population. Then it belongs
to the i-th component with probability p;, and the con-
ditional probability that X falls in some set A is Pr(X «
A | 6), calculated from the density f (x, 6;). Consequently,
the marginal probability is

Pr(XeA|P)=piPr(XeA|6)+-+px Pr(XeA|6)
with density
f(x P) =pif(x 61) + -+ pif (%, 6k), ®

a “simple finite mixture” with parameter P = ((p1,...,px),
(61,...,6x)). The components p; of P are called “mix-
ing weights,” the 6; “component parameters” For fixed
k, let Py be the set of all vectors P of this type, with 6;
€ ® and nonnegative mixing weights summing up to one.
Then Py parameterizes all mixtures with not more than k
components. If all mixing weights are positive and com-
ponent densities are different, then k is the exact number
of components. The set of all simple finite mixtures is
parameterized by Pg ., the union of all Py.

This model can be extended in various ways. For
example, all component densities may contain additional
common parameters (variance parameters, say), they may
depend on covariables (mixtures of regression models),
and also the mixing weights may depend on covariables.
Mixtures of time series models are also considered. Here I
shall concentrate on simple mixtures, as all relevant con-
cepts can be explained very easily in this setting. These
need not be finite convex combinations; there is an alter-
native and more general definition of simple mixtures:
Observe that the parameter P can be considered as a dis-
crete probability distribution on ® which assigns prob-
ability mass p; to the parameter 6;. Then Eq. 1 is an
integral with respect to this distribution, and if £ is an
arbitrary probability distribution on ®, a mixture can be

defined by

fo 8= [ f(x 6)d5(6). @

It can be considered as the distribution of a two-stage
experiment: First, choose a parameter 6 according to the
distribution &, then choose x according to f (x, 0). Here, &
is called a “mixing distribution,” and mixture models of this
type can be parameterized over every set E of probability
distributions on ®.

In statistical applications of mixture models, a non-
trivial key issue is identifiability, meaning that different
parameters describe different mixtures. In a trivial sense,
models parameterized over vectors P are never identifi-
able: All vectors that correspond to the same probability
distribution on ® describe the same mixture model. For
example, any permutation of the sequence of components
leaves the mixing distribution unchanged, or components
may be added with zero mixing weights. Therefore iden-
tifiability can only mean that parameters that correspond
to different mixing distributions describe different mix-
ture models. However, also in this sense identifiability
is often violated. For example, the mixture of two uni-
form distributions with supports [0, 0.5] and [0.5, 1] and
equal mixing weights is the uniform distribution with sup-
port [0, 1]. On the other hand, finite mixtures of many
standard families (normal, Poisson, ...) are identifiable,
see for example Titterington et al. (1985). Identifiabil-
ity of mixtures of regression models has been treated
among others by Hennig (2000). A standard general ref-
erence for finite mixture models is McLachlan and Peel
(2000).

Statistical Problems
Consider a mixture model with parameter # (vector or
probability measure). In the simplest case, one has i.i.d.
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data xi,...,x, from f(x, 1), from which one wants to
gain information about #. Typical questions are estima-
tion of (parameters of) #, or mixture diagnostics: Is there
strong evidence for a mixture (in contrast to homogene-
ity in the sense that # is concentrated at some single
parameter 8)? What is the (minimum) number of mixture
components?

A variety of techniques has been developed. The data
provide at least implicitly an estimate of the mixture, and
Egs. 1 and 2 show that mixture and mixing distribution are
related by a linear (integral) equation. Approximate solu-
tion techniques have been applied for obtaining estimators,
and moment estimators have been developed on basis of
this structure. Distance estimators exhibit nice proper-
ties. Traditionally, mixture diagnostics has been handled
by graphical methods. More recent approaches for esti-
mation and diagnostics are based on Bayesian or likeli-
hood techniques; likelihood methods will be addressed
below. Although Bayesian methods have some advan-
tages over likelihood methods, they are not straightfor-
ward (for example, usually no “natural” conjugate pri-
ors are available, therefore posteriors are simulated using
MCMC. Choice of “noninformative” priors is not obvi-
ous, as improper priors usually lead to improper pos-
teriors. Nonidentifiability of P causes the problem of
“label switching”). A nice reference for Bayesian methods
is Frithwirth-Schnatter (2006).

Let me close this section with a short discussion of
robustness. Robustness with respect to »outliers is treated
by Hennig (2004). Another problem is that mixture models
are extremely nonrobust with respect to misspecification of
the component model. Estimating the component model
in a fully nonparametric way is of course not possible,
but manageable alternatives are for example mixtures of
log-concave distributions. Let me point out, however, that
issues like nonrobustness and nonidentifiability only cause
problems if the task is to interpret the model parameters
somehow. If the aim is only to obtain a better data fit, one
need not worry about them.

Likelihood Methods

In the above setting, I(n) = log(f(x1, 7)) + -+ +
log(f(xn, 1)) is the log likelihood function. It may have
some undesirable properties: First, the log likelihood is
often unbounded. For example, consider mixtures of nor-
mals. If the expectation of one component is fixed at some
data point and the variance goes to zero, the likelihood
goes to infinity. Singularities usually occur at the bound-
ary of the parameter space. Second, the likelihood function
is usually not unimodal, although this depends on the

parameterization. For example, if the parameter is a prob-
ability distribution as in Eq. 2 and if the parameter space &
is a convex set (with respect to the usual linear combina-
tion of measures), the log likelihood function is concave.
If it is bounded, there is a nice theory of “nonparamet-
ric likelihood estimation” (Lindsay 1995), and “the” “non-
parametric maximum likelihood estimator” is in some
sense uniquely defined and can be calculated numerically
(Bohning 2000; Schlattmann 2009).

Nonparametric methods, however, work in low dimen-
sional component models, whereas “parametric” estima-
tion techniques like the Expectation-Maximization (EM)
method work in nearly any dimensional. The EM is a local
maximizer for mixture likelihoods in Pk. Here the mix-
ture likelihood is usually multimodal; moreover, it can be
very flat. Analytic expressions for likelihood maxima usu-
ally do not exist, they have to be calculated numerically.
On the other hand, even for unbounded likelihoods, it is
known from asymptotic theory, that the simple heuristics
of searching for a large local maximum in the interior of
the parameter space may lead to reasonable estimators.
However, one must be aware that there exist “spurious”
large local maxima that are statistically meaningless. More-
over, except from simple cases, there is no manageable
asymptotics for likelihood ratio.

Some of the problems of pure likelihood approaches
can be overcome by considering penalized likelihoods.
However, here one has the problem of choosing a penal-
ization parameter. Moreover, the EM algorithm is a basic
tool for a number of estimation problems, and it has a very
simple structure for simple finite mixtures. Therefore it will
be outlined in the next section.

EM Algorithm

The EM algorithm is a local maximization technique for
the log likelihood in Py. It starts from the complete-data
log-likelihood. Suppose that for observation x; the (fic-
tive) component membership is known. It is defined by a
vector z; € R* with zij = 1, if x; belongs to j-th compo-
nent, and zero elsewhere. As a random variable Z;, it has
a »multinomial distribution with parameters k, pi, . . ., pk.
Then the complete data likelihood and log likelihood of
P, respectively, are Lc(P) = [l H;‘:l(pjf(x,-, 0;))%
and L(P) = log(L(P)) = XL ¥ zlogp +
S S zi logf (xi, 6)).

The EM needs a starting value Py, and then proceeds
as an iteration between an “E-step” and an “M-step” until
“convergence.” The first E-step consists in calculating the
conditional expectation Ep, (Ic(P) | x1,. .., %) of I.(P) for
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arbitrary P, given the data, under Py. As the only random-
ness is in the z;;, we obtain

n k
EPU(IC(P) |X1, - ,Xn) = Z Z Tj(xi|Po)logpj

i=1 j=1
n k

+ Z ZT]‘(Xi|P0)logf(xi’ 01)’

i1 j=1
where

pif (xi, 6))
f(xi> Po)

is the conditional probability that the i-th observation
belongs to component j, given the data, with respect to Py.

In the following M-step, Ep, (Ic(P) | x1, . . ., Xn ) is max-
imized with respect to P. As it is the sum of terms depend-
ing on the mixing weights and on the parameters only,
respectively, both parts can be maximized separately. It
is easily shown that the maximum in the p; is achieved
for pj(l) = (1/n) ¥ 1j(xi|Po),j = 1,...,n. For compo-
nent densities from exponential families, similar simple
solutions exist for the 0;, therefore both the E-step and
the M-step can be carried out here analytically. It can be
shown that (1) the log-likelihood is not decreasing during
the iteration of the EM, and (2) that under some regu-
larity conditions it converges to a stationary point of the
likelihood function. However, this may also be a saddle
point.

It remains to define the stopping rule and the starting
point(s). Both are crucial, and the reader is referred to the

7j(xi|Po) = Prp, (Zj = 1| x;) =

literature. There are also techniques that prevent from con-
vergence to singularities or spurious maxima. A final nice
issue of the EM is that it yields a simple tool for classifica-
tion of data points: If P is an estimator, then 7;(x;|P) is the
posterior probability that x; belongs to class j with respect
to the “prior” P. The Bayesian classification rule assigns
observation i to the class j that maximizes 7;(x;|P), and the
7j(xi|P) measure the plausibility of such a clustering.

Number of Components, Testing and
Asymptotics

Even if one has an estimator in each Py from the EM,
the question is how to assess the number of components
(i.e., how to choose k). Usually information criteria like
AIC and BIC are recommended. An alternative is to per-
form a sequence of tests of k against k + 1 components, for
k=12....

There are several tests for homogeneity, i.e., for the
“component model’, as for example goodness of fit or dis-
persion score tests. For testing ko against k; components, a
likelihood ratio test may be performed. However, the usual

x*-asymptotics fails, so critical values have to be simu-
lated. Moreover, the distribution of the test statistic usually
depends on the specific parameter under the null hypoth-
esis. Therefore some sort of bootstrap (see »Bootstrap
Methods) is needed, and as estimators have to be calcu-
lated numerically, likelihood ratio tests are computation-
ally intensive.

Let me close with some remarks on asymptotics.
Whereas »asymptotic normality of estimators is guaran-
teed under some conditions, the usual asymptotics for the
likelihood ratio test fails. The reason is that under the
null hypothesis, the parameter Py is on the boundary of
the parameter space, it is not identifiable and the Fisher
information matrix in Py is singular. There is an asymp-
totic theory under certain restrictive assumptions, but it is
usually hard to calculate critical values from it.
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Introduction

In applications there are usually several models for describ-
ing a population from a given sample of observations and
one is thus confronted with the problem of model selec-
tion. For example, different distributions can be fitted to
a given sample of univariate observations; in polynomial
regression one has to decide which degree of the polyno-
mial to use; in multivariate regression one has to select
which covariates to include in the model; in fitting an
autoregressive model to a stationary time series one must
choose which order to use.

When the set of models under consideration is nested,
as is the case in polynomial regression, the fit of the model
to the sample improves as the complexity of the model (e.g.,
the number of parameters) increases but, at some stage,
its fit to the population deteriorates. That is because the
model increasingly moulds itself to the features of the sam-
ple rather than to the “true model,” namely the one that
characterizes the population. The same tendency occurs
even if the models are not nested; increasing the complex-
ity eventually leads to deterioration. Thus model selection
needs to take both goodness of the fit and the complexity
of the competing models into account.

Reference books on model selection include Linhart
and Zucchini (1986), Burnham and Anderson (2002),
Miller (2002), Claeskens and Hjort (2008). An introduc-
tory article is Zucchini (2000).

Information Criteria - Frequentist
Approach

The set of models considered for selection can be thought
of as approximating models which, in general, will differ
from the true model. The answer to the question “Which
approximation is best?” depends, of course, on how we
decide to measure the quality of the fit. Using the Kullback-
Leibler distance for this leads to the popular »Akaike
Information Criterion (AIC, Akaike 1973):

AIC(M) = 2log(L(8)) - 2p,

where M is the model, L the likelihood, and 0 the max-
imum likelihood estimator of the vector of the model’s

p parameters. The first term of the AIC measures the fit
of the model to the observed sample; the fit improves as
the number of parameters in the model is increased. But
improving the fit of the model to the sample does not nec-
essarily improve its fit to the population. The second term
is a penalty term that compensates for the complexity of
the model. One selects the model that maximizes the AIC.
Note, however, that in much of the literature the AIC is
defined as minus the above expression, in which case one
selects the model that minimizes it.

A model selection criterion is a formula that allows
one to compare models. As is the case with the AIC,
such criteria generally comprise two components: one that
quantifies the fit to the data, and one that penalizes com-
plexity. Examples include Mallows’ C,, criterion for use in
»linear regression models, Takeuchi’s model-robust infor-
mation criterion TIC, and refinements of the AIC such as
the ‘corrected AIC’ for selection in linear regression and
autoregressive time series models, the network informa-
tion criterion NIC, which is a version of AIC that can be
applied to model selection in »neural networks, and the
generalized information criterion GIC for use with influ-
ence functions. Several of these criteria have versions that
are applicable in situations where there are outlying obser-
vations, leading to robust model selection criteria; other
extensions can deal with missing observations.

Alternative related approaches to model selection that
do not take the form of an information criterion are boot-
strap (see, e.g., Zucchini 2000) and cross-validation. For the
latter the idea is to partition the sample in two parts: the
calibration set, that is used to fit the model, and the vali-
dation sample, that is used to assess the fit of the model, or
the accuracy of its predictions. The popular “leave-one-out
cross-validation” uses only one observation in the valida-
tion set, but each observation has a turn at comprising the
validation set. In a model selection context, we select the
model that gives the best results (smallest estimation or
prediction error) averaged over the validation sets. As this
approach can be computationally demanding, suggestions
have been made to reduce the computational load. In “five-
fold cross-validation” the sample is randomly split in five
parts of about equal size. One of the five parts is used as
validation set and the other four parts as the calibration set.
The process is repeated until each of the five sets is used as
validation set.

Bayesian Approach

The Bayesian regards the models available for selection as
candidate models rather than approximating models; each
of them has the potential of being the true model. One
begins by assigning to each of them a prior probability,
P(M), that it is the true model and then, using »Bayes’
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theorem, computes the posterior probability of it being
o P(Data |M)P(M)

P(Data)
The model with the highest posterior probability is
selected. The computation of P(Data|M) and P( Data)
can be very demanding and usually involves the use
of Markov chain Monte Carlo (MCMC) methods (see
»Markov Chain Monte Carlo) because, among other
things, one needs to ‘integrate out’” the distribution of the
parameters of M (see e.g., Wasserman 2000).

Under certain assumptions and approximations (in
particular the Laplace approximation), and taking all can-
didate models as a priori equally likely to be true, this leads
to the Bayesian Information Criterion (BIC), also known
as the Schwarz criterion (Schwarz 1978):

BIC(M) = 2log(L(8)) - plog(n),

P(M|Data) =

where 7 is the sample size and p the number of unknown
parameters in the model. Note that although the BIC is
based on an entirely different approach it differs from the
AIC only in the penalty term.

The difference between the frequentist and Bayesian
approaches can be summarized as follows. The former
addresses the question “Which model is best, in the sense
of least wrong?” and the latter the question “Which model
is most likely to be true?”.

The Deviance Information Criterion (Spiegelhalter
et al. 2002) is an alternative Bayesian method for model
selection. While explicit formulae are often difficult to
obtain, its computation is simple for situations where
MCMC simulations are used to generate samples from a
posterior distribution.

The principle of minimum description length (MDL)
is also related to the BIC. This method tries to measure
the complexity of the models and selects the model that is
the least complex. The MDL tries to minimize the sum of
the description length of the model, plus the description
length of the data when fitted to the model. Minimizing
the description length of the data corresponds to maximiz-
ing the log likelihood of the model. The description length
of the model is not uniquely defined but, under certain
assumptions, MDL reduces to BIC, though this does not
hold in general (Rissanen 1996). Other versions of MDL
come closer to approximating the full Bayesian posterior
P(M]) Data. See Griinwald (2007) for more details.

Selecting a Selection Criterion

Different selection criteria often lead to different selec-
tions. There is no clear-cut answer to the question of which
criterion should be used. Some practitioners stick to a sin-
gle criterion; others take account of the orderings indicated

by two or three different criteria (e.g., AIC and BIC) and
then select the one that leads to the model which seems
most plausible, interpretable or simply convenient in the
context of the application.

An alternative approach is to tailor the criterion to the
particular objectives of the study; i.e., to construct it in such
away that selection favors the model that best estimates the
quantity of interest. The Focussed Information Criterion
(FIC, Claeskens and Hjort 2003) is designed to do this; it
is based on the premise that a good estimator has a small
mean squared error (MSE). The FIC is constructed as an
estimator of the MSE of the estimator of the quantity of
interest. The model with the smallest value of the FIC is
the best.

Issues such as consistency and efficiency can also play
a role in the decision regarding which criterion to use.
An information criterion is called consistent if it is able to
select the true model from the candidate models, as the
sample size tends to infinity. In a weak version, this holds
with probability tending to one; for strong consistency, the
selection of the true model is almost surely. It is impor-
tant to realize that the notion of consistency only makes
sense in situations where one can assume that the true
model belongs to the set of models available for selection.
Thus will not be the case in situations in which researchers
“believe that the system they study is infinitely compli-
cated, or there is no way to measure all the important
variables” (McQuarrie and Tsai 1998). The BIC is a consis-
tent criterion, as is the Hannan-Quinn criterion that uses
loglog(n) instead of log(#) in the penalty term.

An information criterion is called efficient if the ratio of
the expected mean squared error (or expected prediction
error) under the selected model and the expected mean
squared error (or expected prediction error) under its the-
oretical minimizer converges to one in probability. For a
study of the efficiency of a model selection criterion, we
do not need to make the assumption that the true model
is one of the models in the search list. The AIC, corrected
AIC, and Mallows’s C,, are examples of efficient criteria. It
can be shown that the BIC and the Hannan-Quinn crite-
rion are not efficient. This is an observation that holds in
general: consistency and efficiency cannot occur together.

Model Selection in High Dimensional
Models

In some applications, e.g., in radiology and biomedical
imaging, the number of unknown parameters in the model
is larger than the sample size, and so classical model selec-
tion procedures (e.g., AIC, BIC) fail because the parame-
ters cannot be estimated using the method of maximum
likelihood. For these so-called high-dimensional models
regularized or penalized methods have been suggested in
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the literature. The popular Lasso estimator, introduced by
Tibshirani (1996), adds an I; penalty for the coefficients in
the estimation process. This has as a particular advantage
that it not only can shrink the coeflicients towards zero,
but also sets some parameters equal to zero, which cor-
responds to variable selection. Several extensions to the
basic Lasso exist, and theoretical properties include con-
sistency under certain conditions. The Dantzig selector
(Candes and Tao 2008) is another type of method for use
with high-dimensional models.

Post-model Selection Inference

Estimators that are obtained in a model that has been
selected by means of a model selection procedure, are
referred to as estimators-post-selection or post-model-
selection estimators. Since the data are used to select the
model, the selected model that one works with, is ran-
dom. This is the main cause of inferences to be wrong
when ignoring model selection and pretending that the
selected model had been given beforehand. For example,
by ignoring the fact that model selection has taken place,
the estimated variance of an estimator is likely to be too
small, and confidence and prediction intervals are likely to
be too narrow. Literature on this topic includes Potscher
(1991), Hjort and Claeskens (2003), Shen et al. (2004), Leeb
and Potscher (2005).

Model selection can be regarded as the special case
of model averaging in which the selected model takes on
the weight one and all other models have weight zero.
However, regarding it as such does not solve the prob-
lem because selection depends on the data, and so the
weights in the estimator-post-selection are random. This
results in non-normal limiting distributions of estimators-
post-selection, and requires adjusted inference techniques
to take the randomness of the model selection process
into account. The problem of correct post-model selection
inference has yet to be solved.

About the Authors

Walter Zucchini previously held the Chair of Statistics
at the University of Cape Town. He is a Fellow of the
Royal Statistical Society and the Royal Society of South
Africa. He is Past President of the South African Statistical
Association (1992) and Editor of the South African Statis-
tical Journal (1986-1989). He was awarded the “Herbert
Sichel Medaille” of the South African Statistical Associa-
tion (2008), and the Shayle Searle Visiting Fellowship in
Statistics, Victoria University, New Zealand (2008). Walter
Zucchini is the co-author of the text Model Selection (with
H. Linhart, Wiley 1986).

Gerda Claeskens is Professor at the Faculty of Busi-
ness and Economics of the K.U. Leuven (Belgium). She
is Elected member of the International Statistical Institute
and recipient of the Noether Young Scholar Award (2004)
“for outstanding achievements and contributions in non-
parametric statistics” She is the author of more than 40
papers and of the book Model selection and model averaging
(with N.L. Hjort, Cambridge University Press, 2008). Cur-
rently she is Associate editor of the Journal of the American
Statistical Association, of Biometrika, and of the Journal of
Nonparametric Statistics.

Georges Nguefack-Tsague is lecturer of Biostatistics
in the Department of Public Health at the University
of Yaounde I, Cameroon. He is head of the Biostatistics
Unit and deputy speaker of the Master Program in Pub-
lic Health. He was awarded a Lichtenberg Scholarship for
his PhD studies, which he completed at the University of
Goettingen (Germany). The title of his PhD thesis was
Estimating and Correcting the Effects of Model Selection
Uncertainty. He was teaching assistant (2001-2003) in the
Department of Statistics and Econometrics at the Univer-
sity Carlos IIT of Madrid (Spain). Other awards included
a Belgium Ministry of External Affairs (MSc) Scholarship
and a Cameroon Ministry of Economy and Finance (MA)
Scholarship.

Cross References

» Akaike’s Information Criterion

» Akaike’s Information Criterion: Background, Derivation,
Properties, and Refinements

»Bayesian Statistics

»Bayesian Versus Frequentist Statistical Reasoning
»Bootstrap Methods

»C, Statistic

»Exponential and Holt-Winters Smoothing
»Kullback-Leibler Divergence

»Marginal Probability: Its Use in Bayesian Statistics as
Model Evidence

»Markov Chain Monte Carlo

»Sensitivity Analysis

»Statistical Evidence

»Structural Time Series Models

»Time Series

References and Further Reading

Akaike H (1973) Information theory and an extension of the maxi-
mum likelihood principle. In: Petrov B, Csaki F (eds) Second
international symposium on information theory, Akadémiai
Kiado, Budapest, pp 267-281

Burnham PK, Anderson DR (2002) Model selection and multimodel
inference: a practical information-theoretic approach, 2nd edn.
Springer, New York



Model-Based Geostatistics

833

Candes E, Tao T (2008) The Dantzig selector: statistical estimation
when p is much larger than n. Ann Stat 35:2313-2351

Claeskens G, Hjort NL (2003) The focussed information criterion
(with discussion). ] Am Stat Assoc 98:900-916

Claeskens G, Hjort NL (2008) Model selection and model averaging.
Cambridge University Press, Cambridge

Griinwald P (2007) The minimum description length principle. MIT
Press, Boston

Hjort NL, Claeskens G (2003) Frequentist model average estimators
(with discussion). ] Am Stat Assoc 98:879-899

Leeb H, Pétscher BM (2005) Model selection and inference: fact and
fiction. Economet Theor 21:21-59

Linhart H, Zucchini W (1986) Model selection. Wiley, New York

McQuarrie ADR, Tsai CL (1998) Regression and time series model
selection. World Scientific, River Edge

Miller AJ (2002) Subset selection in regression, 2nd edn. Chapman
and Hall/CRC, Boca Raton

Potscher BM (1991) Effects of model selection on inference.
Economet Theor 7:163-185

Rissanen JJ (1996) Fisher information and stochastic complexity.
IEEE Trans Inform Theory 42:40-47

Schwarz G (1978) Estimating the dimension of a model. Ann Stat
6:461-464

Shen X, Huang HC, Ye J (2004) Inference after model selection.
J Am Stat Assoc 99:751-762

Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002)
Bayesian measures of model complexity and fit (with discus-
sion). ] Roy Stat Soc B 64:583-639

Tibshirani R (1996) Regression shrinkage and selection via the lasso.
J Roy Stat Soc B 58(1):267-288

Wasserman L (2000) Bayesian model selection and model averaging.
J Math Psychol 44:92-107

Zucchini W (2000) An introduction to model selection. ] Math
Psychol 44:41-61

! Model-Based Geostatistics

HaNNEs Kaziankal, JURGEN Pz’
1University of Technology, Vienna, Austria
2Professor, Head

University of Klagenfurt, Klagenfurt, Austria

Stochastic Models for Spatial Data

Diggle and Ribeiro (2007) and Mase (2010) describe geo-
statistics as a branch of spatial statistics that deals with
statistical methods for the analysis of spatially referenced
data with the following properties. Firstly, values Y;, i =
L,...,n,are observed at a discrete set of sampling locations
x; within some spatial region S c R d > 2. Secondly,
each observed value Y; is either a measurement of, or is sta-
tistically related to, the value of an underlying continuous
spatial phenomenon, Z (x), at the corresponding sampling
location x;. The term model-based geostatistics refers to

geostatistical methods that rely on a stochastic model. The
observed phenomenon is viewed as a realization of a con-
tinuous stochastic process in space, a so-called random
field.

Such a random field Z (x) is fully determined by spec-
ifying all multivariate distributions, i.e., P(Z (x1) < zi,.. .,
Z(xn) < zy) for arbitrary n € N and x1,...,x, € S.
Since a full characterization of a random field is usu-
ally hopeless, the mean function m (x) = E(Z(x)) and
the covariance function K (x;,x;) = Cov(Z (xi),Z (x;))
play a prominent role. Thereby, m (x) represents the trend
while K (x;,x;) defines the dependence structure of the
random field. It is typical that the assumption of weak
(second-order) isotropy is made about the random field,
i.e., its mean function is constant and its covariance
function K (x1,x,) depends on x; and x, only through
h = |x1—x2,, where ||.|, denotes the Euclidean dis-
tance. In this case K is called an isotropic autocovariance

function. The covariance function is directly related to
smoothness properties of the random field such as mean
square continuity and differentiability. A widely used para-
metric family of isotropic autocovariance functions is the
Matern family

K

9, 2k3h
Kpog(h)=c*|(1-9 —_—
Uﬁ( ) o ( 2)+ 2K_1F (K) 91
2% h
K:K b
o)

where K, denotes the modified Bessel function of order
% >0, 91 > 0 is a called the “range parameter” controlling
how fast the covariance decays as the distance h gets large,
9, € [0,1] is called the “nugget parameter” and describes
a measurement error, o> controls the variance and 6 =
(91,92, k) denotes the vector of correlation parameters.
The parameter x controls the smoothness of the corre-
sponding process. A thorough mathematical introduction
to the theory of random fields is given in Stein (1999) and
Yaglom (1987).

The most important geostatistical model is the linear
Gaussian model

Yi=f(a) B+Z(x), i=L...n, M

where Z (x) is a weakly isotropic zero-mean Gaussian ran-
dom field with autocovariance function K, g, f is a vec-
tor of location-dependent explanatory variables and g =
Bis---» ,BP)T is the vector of regression parameters. The
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likelihood function for the linear Gaussian model is
_n -1 1
p(Y|B.0%0)=(2n) 2 |0°Ze| exp{—ﬁ (Y -FB)"
%y (Y -FB) } ,

where Xy denotes the correlation matrix, F is the design
matrix and ¥ = (Y1,...,Y,)" is the vector of observa-
tions. The maximum likelihood estimates for  and ¢ in
the linear Gaussian model are

B= (FTEQIF)% F's,'Y, @)
&= (z-¥h)" %' (2 B). 3)

Plugging these estimates into the log-likelihood, we arrive
at the so-called profiled log-likelihood, which just contains
the parameters 0

N 1
logp (Y| B,6,0) = —g (log (2m) +1) —  log |
n A2
- Elog (0 )

To obtain § we have to maximize the latter equation for 6
numerically. Note that this maximization problem is a lot
simpler than the maximization of the complete likelihood
where B and o are additional unknowns, especially when
p is large. Spatial prediction, which is often the goal in
geostatistics, is performed based on the estimated parame-
ters. The plug-in predictive distribution for the value of the
random field at an unobserved location x is Gaussian

Yol ¥,6%,0 ~ N (K"K 'Y +5"B,6% - k'K 'k + 675"

(FTK_IF)_I s) , (4)

where K = 6°%;,s = f (x0)~F 'K 'k,k = Cov(Z,Z (%)),
Z=(Z(x1),....Z(xa))".

Weak isotropy is a rather strong assumption and envi-
ronmental processes are typically not direction indepen-
dent but show an anisotropic behavior. A popular exten-
sion to isotropic random fields is to consider random fields
that become isotropic after a linear transformation of the
coordinates (Schabenberger and Gotway 2005). This spe-
cial variant of anisotropy is called geometric anisotropy.
Let Z; (x) be an isotropic random field on R with auto-
covariance function K; and mean y. For the random
field Z(x) = Z (Tx), where T € R we get that
E(Z (x)) = pandthe corresponding autocovariance func-
tion is Cov (Z (x1),Z (x2)) = Ki (||T (%1 —x2) Hz) When
correcting for geometric anisotropy we need to revert the

coordinate transformation. Z (T’lx) has the same mean
as Z (x) but isotropic autocovariance function K;. When
correcting for stretching and rotation of the coordinates we
have

1 0 cosg ~—sing

T =

0 A sing cosg
Here, A and ¢ are called the anisotropy ratio and anisotropy
angle, respectively. All the models that we consider in
this chapter can be extended to account for geometric

anisotropy by introducing these two parameters.

Bayesian Kriging
The first steps towards Bayesian modeling and prediction
in geostatistics were made by Kitanidis (1986) and Omre
(1987) who developed a Bayesian version of universal krig-
ing. One of the advantages of the Bayesian approach,
besides its ability to deal with the uncertainty about the
model parameters, is the possibility to work with only a few
measurements. Assume a Gaussian random field model in
the form of the form Eq. 1 with known covariance matrix
K but unknown parameter vector . From Bayesian analy-
sis we know that it is natural to assume a prior of the form
B ~N (mb, o? Vb) for B, where V), is a positive semidefi-
nite matrix. It can be shown that the posterior distribution
for B is

BlZ~N(B.o’Vy),
where B = Vi‘ (ozFTK%Z-k V;lmb) and Vi‘ = (O'ZFT
K'F+ V;l)_l. The predictive distribution of Z (xo) is
also Gaussian and given by
Z(x0)| Z~N (kTK_IZ +s' B0’ — k'K 'k+ ostVBs) ,
where F, s and k are defined as in Section “»Stochastic
Models for Spatial Data” From the above representa-
tion of the Bayesian kriging predictor it becomes clear
that Bayesian kriging bridges the gap between simple
and universal kriging. We get simple kriging in case
of complete knowledge of the trend, which corresponds
to V, = 0, whereas we get the universal kriging
predictor if we have no knowledge of B (V,' = 0
in the sense that the smallest eigenvalue of V; con-
verges to infinity). Interestingly, the Bayesian universal
kriging predictor has a smaller or equal variance than
the classical universal kriging predictor (see Eq. 4) since
(FTK_1F+ cr_ngl)_1 < (FTK_IF)_I, where < denotes
the Loewner partial ordering.



Model-Based Geostatistics

835

Bayesian universal kriging is not fully Bayesian because
K is assumed known. Diggle and Ribeiro (2007) summa-
rize the results for a fully Bayesian analysis of Gaussian
random field models of the form Eq. 1, where K,z g = 0%,
and 9 is the range parameter of an isotropic autocorrela-
tion function model.

Transformed Gaussian Kriging
Probably the most simple way to extend the Gaussian ran-
dom field model is to assume that a differentiable transfor-
mation of the original random field, Z; (x) = g(Z (x)), is
Gaussian. The mean of the transformed field is unknown
and parameterized by B, E(Z (x)) = f(x)" . If we
assume that the transformation function g and the covari-
ance function K of Y (x) are known, the optimal predictor
for Z (xo) can be derived using the results from Section
“»Stochastic Models for Spatial Data”. However, in prac-
tice neither K nor g is known and we have to estimate them
from the data.

A family of one-parameter transformation functions g,
that is widely used in statistics is the so-called Box-Cox
family

A
e, A0,

a(2) =

log(z), A=0.

The »Box-Cox transformation is valid for positive-valued
random fields and is able to model moderately skewed,
unimodal data.

The likelihood of the data Y in the transformed Gaus-
sian model can be written as

p(Y] ) = u(¥) (2) " [o? 2o exp | 55 (01 (V)
FB)" 55" (1 (Y) - FB)],

where, ® = (B, 0, UZ,/\), J1(Y) is the determinant of the
Jacobian of the transformation, g (Y) = (g2 (Y1),...,
£ (Y,)) and A is the transformation parameter. De
Oliveira et al. (1997) point out that the interpretation of
changes with the value of A, and the same is true for the
covariance parameters o> and 6, to a lesser extent though.
To estimate the parameters A and 0, we make use of the
profile likelihood approach that we have already encoun-
tered in Section “»Stochastic Models for Spatial Data”, For
fixed values of A and 0, the maximum likelihood estimates
for B and o” are given by Egs. 2 and 3 with Y replaced by
£ (Y). Again, the estimates for A and @ cannot be written
in closed form and must be found numerically by plugging
B and 62 in the likelihood for numerical maximization.

The estimated parameters © are subsequently used for
spatial prediction. To perform a plug-in prediction we
make use of the conditional distribution of the Gaussian
variable Yo | Y,® and back-transform it to the original
scale by g;'. A Bayesian approach to spatial prediction
in the transformed Gaussian model is proposed in De
Oliveira et al. (1997).

The copula-based geostatistical model (Kazianka and
Pilz 2009) also works with transformations of the marginal
distributions of the random field and is a generalization of
transformed Gaussian kriging. In this approach all multi-
variate distributions of the random field are described by
a copula (Sempi 2010) and a family of univariate marginal
distributions. Due to the additional flexibility introduced
by the choice of the copula and of the marginal distribu-
tion, these models are able to deal with extreme observa-
tions and multi-modal data.

Generalized Linear Geostatistical Models
»Generalized linear models (McCullagh and Nelder 1989)
provide a unifying framework for regression modeling of
both continuous and discrete data. Diggle and Ribeiro
(2007) extend the classical generalized linear model to
what they call the generalized linear geostatistical model
(GLGM). The responses Yj, i = 1,.. ., n, corresponding to
location x; are assumed to follow a family of univariate dis-
tributions indexed by their expectation, y;, and to be con-
ditionally independent given Z = (Z (x1),...,Z(x4)).
The y; are specified through

h(w)=f (%) B+Z(x:),

where Z (x) is a Gaussian random field with autocovari-
ance function Ky and h is a pre-defined link function.
The two most frequently applied GLGM:s are the Poisson
log-linear model, where Y; is assumed to follow a Poisson
distribution and the link function is the logarithm, and the
binomial logistic-linear model, where Y; is assumed to fol-
low a Bernoulli distribution with probability u; = p (x;)
and h (u;) = log(p(xi)/ (1-p(xi))). These models are
suitable for representing spatially referenced count data
and binary data, respectively.

Since maximum likelihood estimation of the parame-
ters is difficult, a Markov chain Monte Carlo (Robert and
Casella 2004) approach (see »Markov Chain Monte Carlo)
is proposed to sample from the posteriors of the model
parameters as well as from the predictive distributions at
unobserved locations xo. The algorithm proceeds by sam-
plingfromZ| Y, B, 0, from 0| Z and from | Z, Y with the
help of Metropolis-Hastings updates. At iteration t +1 and
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actual sample (Z', 0", ', Z" (x0)), perform the following
steps:

e Update Z. For i = 1,...,n, sample a new proposal
Z' (x;) from the conditional Gaussian distribution
p(Z(xi)| 0,2%;), where Z'; denotes Z' = (Z' (x1),
...»Z"(x,)) with its ith element removed. Accept
7' (x:) with probability r = min {1, pls 7 () }

e Update 6. Sample a new proposal 8’ from a proposal
distribution J (0| 0’). Accept the new proposal with

T p(z*'10")1(6"0")
probability » = min {1, DTN [

e Update B. Sample a new proposal B’ from a proposal
distribution J (ﬁ| ﬁt) Accept the new proposal with
. n,i.p(mzm(x,),ﬁ’)f(ﬁ’\ﬁ’)}
> TT p (Y 2% (%), B') (B B)
e Draw a sample Z'*' (x¢) from the conditional Gaus-
sian distribution Z (x0) | Z'*, 8"*".

probability » = min {

If point predictions for Z (xo ) are needed, the Monte Carlo
approximation to the expected value of Z (x9) | Y can be
used, i.e, E(Z (x0)| Y) ~ 5 Y M 7' (x0), where M is the
number of simulations.
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Count models are a subset of discrete response regression
models. Count data are distributed as non-negative inte-
gers, are intrinsically heteroskedastic, right skewed, and
have a variance that increases with the mean. Example
count data include such situations as length of hospital stay,
the number of a certain species of fish per defined area in
the ocean, the number of lights displayed by fireflies over
specified time periods, or the classic case of the number
of deaths among Prussian soldiers resulting from being
kicked by a horse during the Crimean War.

»Poisson regression is the basic model from which a
variety of count models are based. It is derived from the
Poisson probabilitymassfunction,whichcanbeexpressedas

e_tiA’ (i’,’/\,‘)y‘

f(yi;li):il , y=0,1,2,...; 4>0 (1)
yi:

with y; as the count response, A; as the predicted count
or rate parameter, and t; the area or time in which counts
enter the model. When A; is understood as applying to
individual counts without consideration of size or time,
ti = 1. When t; > 1, it is commonly referred to as an
exposure, and is modeled as an offset.

Estimation of the Poisson model is based on the log-
likelihood parameterization of the Poisson probability dis-
tribution, which is aimed at determining parameter values
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making the data most likely. In exponential family form it
is given as:

Luisyi) = i;{yz' In(p:) - i — In(yi) }, )

where y; is typically used to symbolize the predicted counts
in place of A;. Equation 2, or the deviance function based
on it, is used when the Poisson model is estimated as a
generalized linear model (GLM) (see »Generalized Lin-
ear Models). When estimation employs a full maximum
likelihood algorithm, y; is expressed in terms of the linear
. ’ .
predictor, x' 8. As such it appears as

ui = exp(xiB). 3)

In this form, the Poisson log-likelihood function is
expressed as

L(Biys) - i{yiw) —exp(xif) ~ (i)}, (@)

A key feature of the Poisson model is the equality of
the mean and variance functions. When the variance of
a Poisson model exceeds its mean, the model is termed
overdispersed. Simulation studies have demonstrated that
overdispersion is indicated when the Pearson y* dispersion
is greater than 1.0 (Hilbe 2007). The dispersion statistic
is defined as the Pearson y* divided by the model resid-
ual degrees of freedom. Overdispersion, common to most
Poisson models, biases the parameter estimates and fit-
ted values. When Poisson overdispersion is real, and not
merely apparent (Hilbe 2007), a count model other than
Poisson is required.

Several methods have been used to accommodate Pois-
son overdispersion. Two common methods are quasi-
Poisson and negative binomial regression. Quasi-Poisson
models have generally been understood in two distinct
manners. The traditional manner has the Poisson vari-
ance being multiplied by a constant term. The second,
employed in the glm() function that is downloaded by
default when installing R software, is to multiply the stan-
dard errors by the square root of the Pearson disper-
sion statistic. This method of adjustment to the variance
has traditionally been referred to as scaling. Using R’s
quasipoisson() function is the same as what is known
in standard GLM terminology as the scaling of standard
errors.

The traditional negative binomial model is a Poisson-
gamma mixture model with a second ancillary or
heterogeneity parameter, a. The mixture nature of the vari-
ance is reflected in its form, y; + apu’, or wi(1l + au;).
The Poisson variance is y;, and the two parameter gamma
variance is ;> /v. v is inverted so that « = 1/v, which allows

for a direct relationship between y;, and v. As a Poisson-
gamma mixture model, counts are Poisson distributed as
they enter into the model. « is the shape (gamma) of the
manner counts enter into the model as well as a measure
of the amount of Poisson overdispersion in the data.

The negative binomial probability mass function (see
»Geometric and Negative Binomial Distributions) may be
formulated as

fOispia) = (yi:/l/fl_l)

/(1 + au) ' (apif 1+ au))), (5)

with a log-likelihood function specified as

wa’“*é{yfln(lf:;,)—(;)lnuwf)

+In F(yi + é) -InT(yi +1) - lnr(;)}.
(6)
In terms of u = exp(x’B), the parameterization employed
for maximum likelihood estimation, the negative binomial
log-likelihood appears as

1) -3 foan (2B (1)
In (1+ o exp (x,'ﬁ))
+1n1"(yi + é) -InT(y;i +1) —lnl"(;)}.

™)

This form of negative binomial has been termed NB2,
due to the quadratic nature of its variance function. It
should be noted that the NB2 model reduces to the Pois-
son when o = 0. When a = 1, the model is geometric,
taking the shape of the discrete correlate of the contin-
uous negative exponential distribution. Several fit tests
exist that evaluate whether data should be modeled as
Poisson or NB2 based on the degree to which « differs
from 0.

When exponentiated, Poisson and NB2 parameter esti-
mates may be interpreted as incidence rate ratios. For
example, given a random sample of 1,000 patient observa-
tions from the German Health Survey for the year 1984,
the following Poisson model output explains the years
expected number of doctor visits on the basis of gender
and marital status, both recorded as binary (1/0) variables,
and the continuous predictor, age.
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Female 1.516855 0.054906 1n.51 0.000 1.41297 1.628378
Married 0.8418408 0.0341971 -4.24 0.000 0.7774145 0.9116063
Age 1.018807 0.0016104 1n.79 0.000 1.015656 1.021968

The estimates may be interpreted as

» Females are expected to visit the doctor some 50% more
times during the year than males, holding marital status
and age constant.

Married patients are expected to visit the doctor some
16% fewer times during the year than unmarried patients,
holding gender and age constant.

For a one year increase in age, the rate of visits to
the doctor increases by some 2%, with marital status and
gender held constant.

It is important to understand that the canonical form
of the negative binomial, when considered as a GLM, is
not NB2. Nor is the canonical negative binomial model,
NB-C, appropriate to evaluate the amount of Poisson
overdispersion in a data situation. The NB-C parameteri-
zation of the negative binomial is directly derived from the
negative binomial log-likelihood as expressed in Eq. 6. As
such, the link function is calculated as In(au/(1 + au)).
The inverse link function, or mean, expressed in terms of
*'Bis 1/(a(exp(~x'B) = 1)).

When estimated as a GLM, NB-C can be amended to
NB2 form by substituting In(u) and exp(x’f) respectively
for the two above expressions. Additional amendments
need to be made to have the GLM-estimated NB2 dis-
play the same parameter standard errors as are calculated
using full maximum likelihood estimation. The NB-C log-
likelihood, expressed in terms of y, is identical to that of
the NB2 function. However, when parameterized as x,
the two differ, with the NB-C appearing as

L(Byia) = il{yi(x,-m + (1/a) In(1 - exp(xif))

+InT(yi +1/a) —InT(yi +1) - InT(1/a)}
(8)

The NB-C model better fits certain types of count data
than NB2, or any other variety of count model. However,
since its fitted values are not on the log scale, comparisons
cannot be made to Poisson or NB2.

The NB2 model, in a similar manner to the Poisson,
can also be overdispersed if the model variance exceeds
its nominal variance. In such a case one must attempt to
determine the source of the extra correlation and model it
accordingly.

The extra correlation that can exist in count data, but
which cannot be accommodated by simple adjustments to
the Poisson and negative binomial algorithms, has stim-
ulated the creation of a number of enhancements to the
two base count models. The differences in these enhanced
models relates to the attempt of identifying the various
sources of overdispersion.

For instance, both the Poisson and negative binomial
models assume that there exists the possibility of having
zero counts. If a given set of count data excludes that possi-
bility, the resultant Poisson or negative binomial model will
likely be overdispersed. Modifying the loglikelihood func-
tion of these two models in order to adjust for the non-zero
distribution of counts will eliminate the overdispersion,
if there are no other sources of extra correlation. Such
models are called, respectively, zero-truncated Poisson and
zero-truncated negative binomial models.

Likewise, if the data consists of far more zero counts
that allowed by the distributional assumptions of the Pois-
son or negative binomial models, a zero-inflated set of
models may need to be designed. Zero-inflated models are
»mixture models, with one part consisting of a 1/0 binary
response model, usually a »logistic regression, where the
probability of a zero count is estimated in difference to a
non-zero-count. A second component is generally com-
prised of a Poisson or negative binomial model that esti-
mates the full range of count data, adjusting for the overlap
in estimated zero counts. The point is to (1) determine the
estimates that account for zero counts, and (2) to estimate
the adjusted count model data.

Hurdle models are another type mixture model
designed for excessive zero counts. However, unlike the
zero-inflated models, the hurdle-binary model estimates
the probability of being a non-zero count in comparison to
a zero count; the hurdle-count component is estimated on
the basis of a zero-truncated count model. Zero-truncated,
zero-inflated, and hurdle models all address abnormal
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Modeling Count Data. Table 1 Models to adjust for violations
of Poisson/NB distributional assumptions

1: no zeros Zero-truncated models (ZTP; ZTNB)

2: excessive zeros | Zero-inflated (ZIP; ZINB; ZAP; ZANB);
hurdle models

3: truncated Truncated count models

4: censored Econometric and survival censored
count models

5: panel GEE; fixed, random, and mixed effects
count models

6: separable Sample selection, finite mixture models

7:two-responses | Bivariate count models

8: other Quantile, exact, and Bayesian count

models

Modeling Count Data. Table 2 Methods to directly adjust the
variance (from Hilbe 2007)

0:pu Poisson

1 u () Quasi-Poisson; scaled SE; robust SE
2u(1+ ) Linear NB (NBT1)

3u(l+p) Geometric

4u(T+ap) Standard NB (NB2); quadratic NB
S5:u(1+ (av)p) Heterogeneous NB (NH-H)
6:u(1+ ap’) Generalized NB (NB-P)

7:V[RIV' Generalized estimating equations

zero-count situations, which violate essential Poisson and
negative binomial assumptions.

Other violations of the distributional assumptions of
Poisson and negative binomial probability distributions
exist. Table 1 below summarizes major types of violations
that have resulted in the creation of specialized count
models.

Alternative count models have also been constructed
based on an adjustment to the Poisson variance function, y.
We have previously addressed two of these. Table 2 pro-
vides a summary of major types of adjustments.

Three texts specifically devoted to describing the the-
ory and variety of count models are regarded as the stan-
dard resources on the subject. Other texts dealing with
discrete response models in general, as well as texts on gen-
eralized linear models (see Generalized Linear Models),
also have descriptions of many of the models mentioned
in this article.
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L. J. Savage (1980) and others understood the importance
of better computational tools for utilizing Bayesian insights
data in real life applications long ago. Such computational
tools and software are now available that use subjective
(or soft) data as well as quantitative (or hard) data. But
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despite the availability of new tools and buildup of mas-
sive databases, the increased complexity and integration of
economic and other systems involving people poses a sig-
nificant challenge to a solely statistical driven view of the
system. More importantly, evidence suggests that relying
solely on standard statistical models is inadequate to rep-
resent real life systems effectively for management insights
and decisions.

Unpredictability characterizes most real life systems
due to non-linear relationships and multiple time-delayed
feedback loops between interconnected elements. Senge
(1990) describes it as dynamic complexity — ‘situations
where the cause and effect are subtle, and the effects
over time of interventions are not obvious” As a result,
such systems are unsuitable for quantitative “only” repre-
sentations without some subjective expert views. System
Dynamics models offer a helpful alternative to model-
ing randomness that is based on hard data and soft data
that models a real world system; see for example Sterman
(2000) and his references.

According to , Forrester (1980) three types of data
are required to develop the foundation of an effective
model: numerical, written and mental data; compare, also,
Sterman (2000) discussion on these points. In most cases,
however, only a small fraction of the data needed to model
a real world system may be available in the form of numer-
ical data. Perhaps, the most important data to build a
model, namely the mental data, is difficult to represent
only numerically. But due to heavy influence of quantita-
tive bias in model development, some modelers disregard
key qualitative information in favor of information that
can be estimated statistically. Sterman (2000) considers
this reasoning counterintuitive and counterproductive in
practice with realistic systems. He states that “omitting
structures and variables known to be important because
numerical data are unavailable is actually less scientific and
less accurate than using your best judgment to estimate
their values.” This is in line with Forrester’s views (1961)
asserting that, “to omit such variables is equivalent to say-
ing they have zero effect - probably the only value that is
known to be wrong!” A suitable approach in such cases is
to iteratively improve the accuracy and reliability of data by
leveraging deeper insights into the system and interaction
between various variables over time, along with sensitivity
analysis of various contingencies.

A key to understanding a dynamic real world system
is to identify and study the causal loops (or sub-systems)
of the system. An analysis of the structure-behavior rela-
tionship in a model can uncover causal loops that are pri-
marily responsible for the observed behavior of the model,
i.e., identify the “dominant” loop. The dominant loop is

the most influential structure in determining the overall
behavior of a system depending on the specific conditions
of a system. It is possible for any loop to be the dominant
loop at a point in time but then as conditions change the
same loop can be displaced by another loop as the dom-
inant loop in a different time frame. Due to the shifting
dominance of the loops in determining system perfor-
mance over time, it is necessary that a system is explored
to isolate the interactions between the variables that form
various causal loops. Clearly, collecting such information
is challenging on many fronts. First, the sheer volume of
data required to map a real world system is a challenge; sec-
ondly, this kind of information is often qualitative in nature
(mental, experiential or judgment) and hence not easy to
capture; and thirdly, the information keeps changing over
time.

Viewing system performance as a series of connected
dominant loop behaviors is a fundamentally different way
to study a system. In effect, this point of view suggests that
it may not be possible or necessary to find the “one best”
single representation to describe the system’s performance
over time. Instead, we can now treat the system as a com-
posite structure that may be formed by the amalgamation
of a number of different sub representations that collec-
tively describe the system performance. This perspective
alleviates the unnecessary difficulty that is imposed on a
single representation to capture the logic of possibly dis-
connected patterns. Indeed, this approach has its own chal-
lenges in terms of how to superimpose the various patterns
to model reality.

Note both Bayesian and System Dynamics have very
helpful roles to play in the analysis of real life systems that
do not yield easily to purely hard data or classical mod-
els. Accordingly, one can consider an integrated approach
where a Bayesian model provides specific input to a Sys-
tem Dynamics model to complement the capabilities of the
two approaches. A System Dynamics model enhanced by
Bayesian inference will allow modelers to iteratively incor-
porate various data types into a comprehensive model and
study the behavior of a system over time. This approach
allows for the inclusion of both hard data and soft data into
the model. Since the modeling process is iterative, the sub-
jective views can be augmented or replaced with hard data
as such information is acquired and improved over time.
When appropriate data are available, it can be used as input
to the System Dynamics model of various contingencies,
such as “fear” curves, “hope” curves, or mixtures of them
from a Bayesian perspective. When such data are not avail-
able, varied contingencies can still be incorporated as sub-
jective expert views, but with the advantage that sensitivity
analyses can be done to measure the impact on the system
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performance over time under different assumptions. One
can test better which subjective views might lead to more
realistic insights using a system dynamic model. Software
that helps in such modeling includes Vensim, Powersim,
and ithink; compare Sterman (2000).
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»Survival Data are measurements in time from a well
defined origin until a particular event occurs. The event
is usually death (e.g., lifetime from birth to death), but it
could also be a change of state (e.g., occurrence of a disease
or time to failure of an electrical component).

Of central importance to the study of risk is the proba-
bility that a system will perform and maintain its function
(remain in a state) during a specified time interval (0, t).
Let F(t) = P(T < t) be the cumulative distribution func-
tion for the probability that a system fails before time ¢ and
conversely R(t) = 1 - F(t) be the survival function for
the system. Data from survival studies are often censored
(the system has not failed during the study) so that survival
times are larger than censored survival times. For exam-
ple, if the response variable is the lifetime of an individual
(or component), then the censored data are represented
as (yi,d;) where the indicator variable § is equal to 1 if
the event occurred during the study, and 0 if the event
occurred after the study; ie, t; = y;if §; = land t; > y;
if 8; = 0. Further, if f(¢)dt is the probability of failure in

the infinitesimal interval (t,t + dt), then rate of a failure
among items that have survived to time t is

ey - L0 _ A R()

R(t)  dt o

The function h(t) is called the hazard function and is the
conditional probability of failure, conditioned upon sur-
vival up to time ¢. The log likelihood function of (y;, 8;) is

InL=46;Inf(yi) + (1-68)InR(y:), (2)

and the cumulative hazard rate is

H(r) = fo "n(x)dx. 3)

The survival rate, R(t), is equivalent to R(t) = exp(-H(t)).

Examining the hazard function, it follows that

1. If h(t) increases with age, H(t) is an increasing failure
rate. This would be the case for an object that wears out
over time.

2. If h(t) decreases with age, H(t) is a decreasing fail-
ure rate. Examples of these phenomena include infant
mortality and burn-in periods for engines.

3. If h(t) is constant with age, H(t) is a constant failure
rate. In this situation failure time does not depend on
age.

Note that 4(t) is a conditional probability density func-
tion since it is the proportion of items in service that fail per
unit time. This differs from the probability density function

f(t), which is the proportion of the initial number of items
that fail per unit time.

Distributions for failure times are often determined in
terms of their hazard function. The exponential distribu-
tion function has a constant hazard function. The lognor-
mal distribution function with standard deviation greater
than 1 has a hazard function that increases for small ¢, and
then decreases. The lognormal hazard function for stan-
dard deviation less than 1 has maximum at ¢ = 0 and is
often used to describe length of time for repairs (rather
than modeling times to failure).

The »Weibull distribution is often used to describe
failure times. Its hazard function depends on the shape
parameter m. The hazard function decreases when m < 1,
increases when m > 1 and is constant when m = 1. Appli-
cations for this model include structured components in
a system that fails when the weakest components fail, and
for failure experiences that follow a bathtub curve. A bath-
tub failure time curve (convex function) has three stages:
decreasing (e.g., infant mortality), constant (e.g., useful
region), and increasing (e.g., wear out region). This curve
is formed by changing m over the three regions. The basic
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Modeling Survival Data. Table 1 Basic probability functions used to model survival data

Exponential F(t) =1-exp(-At) A>0 A

Weibull F(t) =1-exp(-At™) A>0 mA
Gumbel F(t) =1-exp(-m(exp(At) -1)) A,m>0 mA exp(At)
Gompertz F(t) =1-exp (%(1 - exp(/\t))) A,m>0 mexp(At)

Nonparametric

IPiecewise constant rates of change

Z)Lil{t,'_1 <t< l’,‘}

i=1

b _Mei Beey —1_
Kaplan-Meier F(t) =1 Zt(1

d,' di
)

ri(tisr — t;)

“Nelson-Aalen

Ao -3 (1-9)

i
t<t li

“The time axis is split into intervals such that t; < t, < ... < t, resulting in a non-continuous hazard function with jumps at the interval end points.

The notation I{A} is 1if an event occurs in interval A, and is zero otherwise.

*The set t; < ... < t, are the ordered event times where r; are the number of individuals at risk at time t; and d; are the total number of individuals

either experiencing the event or were censored at time t;.

‘The Nelson-Aalen statistic is an estimate of the cumulative hazard rate. It is based on the Poisson distribution.

probability functions used to model »survival data are in
Table 1. These distributions are left skewed with support
on (0, co) for continuous distributions and support on the
counting numbers (0, n] for discrete distributions.

Nonparametric approaches have also been developed
for estimating the survival function. A first approach might
be the development of an empirical function such as:

Number of individuals with event times > ¢

R(t) = . (4)

Number of individuals in the data set

Unfortunately, this estimate requires that there are no
censored observations. For example, an individual whose
survival time is censored before time t cannot be used
when computing the empirical function at t. This issue
is addressed by introducing the »Kaplan-Meier estima-
tor [see Kaplan and Meier (1958)]. Further, the variance
of the Kaplan-Meier statistic can be estimated and con-
fidence intervals can be constructed based on the normal
distribution. Closely related to the Kaplan-Meier estimator
is the Nelson—Aalen estimator (Nelson 1972; Aalen 1978) of
the cumulative hazard rate function. The estimated vari-
ance and confidence interval can also be computed for this
function.

Although the models already discussed assume that
the occurrences of hazards are independent and identi-
cally distributed, often there are known risk factors such

as environmental conditions and operating characteristics
that affect the quality of a system.

In many problems a researcher is not only interested
in the probability of survival, but how a set of explana-
tory variables affect the survival rate. Cox (1972) proposed
the proportional hazard model that allows for the pres-
ence of covariates and the partial likelihood estimation
procedure for estimating the parameters in the model. The
proportional hazard model is of the form:

A(t12) = Lo(t) exp(Z' B) ®)

where

Ao(t) is the hazard function of unspecified shape
(the subscript 0 implies all covariates are zero at time t).

Z is a vector of risk factors measured on each
individual.

B is a vector of parameters describing the relative
risk associated with the factors.

A(t|Z) is the hazard function at time ¢ conditioned
on the covariates.

The proportional hazard model is semi-parametric
because no assumptions are made about the base hazard
function but the effect of the risk factors is assumed to be
linear on the log of the hazard function; i.e., Ao(#) is an
infinite dimensional parameter and f3 is finite dimensional.
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The proportionality assumption implies that if an indi-
vidual has a risk of an event twice that of another individ-
ual, then the level of risk will remain twice as high for all
time. The usual application of the model is to study the
effect of the covariates on risk when absolute risk is less
important. For example, consider a system where two types
of actions can be taken, let

1  if the high risk action is taken

0 if the low risk action is taken

and let § be the relative risk associated with Z. The relative
risk of the two types of actions is computed from the hazard
ratio:
Atz=1)
AMtlz=0)

the instantaneous risk conditioned on survival at time .
In this problem the model describes relative risks and
removes the effect of time. In a more general context, the
ratio of hazards is the difference of covariates assuming the
intercept is independent of time.

In many applications Ao (t) is unknown and cannot be
estimated from the data. For example, the proportional
hazard model is often used in credit risk modeling for
corporate bonds based on interest rates and market con-
ditions. A nonparametric estimation procedure for the
conditional proportional hazard function is based on the
exponential regression model:

exp 5, (6)

Miz) _
Ao(t) -

where the underlying survival function is estimated with a
Kaplan-Meier estimator, a measure of time until failure.
If, however, the absolute risk is also important (usually
in prediction problems), then the Nelson—-Aalen estimate
is preferred over the Kaplan-Meier estimator. The state
space time series model [see Commandeur and Koopman
(2007)] is useful for predicting risk over time and by using

exp(Z'p)

the Kalman Filter, can also include time varying covariates.

The proportional hazard model assumes event times
are independent, conditioned on the covariates. The
»frailty model relaxes this assumption by allowing for the
presence of unknown covariates (random effects model).
In this model event times are conditionally independent
when values are given for the frailty variable. A frailty
model that describes unexplained heterogeneity resulting
from unobserved risk factors has a hazard function of the
form

Az (£) = wido(t) exp (/B ) )

where

Tj; is the time to failure (event) j for individual i,
and

wij; is the frailty variable.

In this model the frailty variable is constant over
time, is shared by subjects within a subgroup, and acts
multiplicatively on the hazard rates of all members of the
subgroup. The two sources of variation for this model are:

1. Individual random variation described by the hazard
function.
2. Group variation described by the frailty variable.

The log likelihood function, Eq. 2, for this model can be
expressed in simple form if the hazard function has a Gom-
pertz distribution and the frailty variable has a »gamma
distribution. Other commonly used distributions for the
frailty variable are the gamma, compound Poisson, and
the lognormal. Estimators for situations where the likeli-
hood function does not have an explicit representation are
derived from the penalized partial likelihood function or
from algorithms such as EM or Gibbs sampling.

Survival models have also been extended to multivari-
ate conditional frailty survival functions. In the univariate
setting, frailty varies from individual to individual whereas
in the multivariate setting, frailty is shared with individu-
als in a subgroup. Consider, for example, the multivariate
survival function conditioned on the frailty variable w:

s(ty ..o telw) = exp[ = w(Ai(h), ..., Ak(%))], (8)

where A;(t;) is the cumulative hazard rate for group i. By
integrating over w, the survival function is:

5(1’1,. . .,i’k) = Eexp [ — W(A1(l’1),.. .,Ak(i’k))], 9)

the Laplace transform of w. Because of the simplicity
of computing derivatives from the Laplace transform,
this method is often used to derive frailty distributions.
The most often assumed distributions are those from the
gamma family. See Hougaard (2008) for a complete dis-
cussion on modeling multivariate survival data.

Conclusion

This paper presents a discussion for analyzing and model-
ing time series survival data. The models are then extended
to include covariates primarily based upon regression
modeling, and finally generalized to include multivariate
models. Current research is focused on the development
of multivariate time series models for survival data.
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Introduction

Developing models for integer-valued time series has
received increasing attention in the past two decades.
Integer-valued time series are useful in modeling depen-
dent count data. They are also useful in the simulation of
dependent discrete random variables with specified distri-
bution and correlation structure.

Lawrance and Lewis (1977) and Gaver and Lewis (1980)
were the first authors to construct autoregressive processes
with non-Gaussian marginals. This has essentially moti-
vated all the research on integer-valued time series. The
present review is far from being exhaustive. Our focus is on
models for Z, -valued first-order autoregressive processes
INAR(1). We will consider five approaches which are based
on “thinning” for developing these models.

First construction
To introduce integer-valued autoregressive moving aver-
age processes, McKenzie (1986, 1988) and Al-Osh and
Alzaid (1987) used the binomial thinning operator ® of
Steutel and van Harn (1979). The operation © is defined
as follows: if X is a Z,—valued random variable (rv) and
a € (0,1), then

X

aOX=>Y,

i=1
where {Y;} is a sequence of i.i.d. Bernoulli(a) rv's inde-
pendent of X. A sequence {X,} is said to be an INAR(1)
process if for any n € Z,

X, = a0 Xp_1+ €ns ¢))

where © is as in (1) and {e,} is a sequence of i.id.
Z,—valued rv's such that ¢, is independent of 1 @ X,
and the thinning # ® X,,-1 is performed independently for
each n. McKenzie (1986) constructed stationary Geometric
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and Negative Binomial INAR(1) processes and Al-Osh and
Alzaid (1987) and independently McKenzie (1988) studied
the Poisson INAR(1) process.

Second Construction
Du and Li (1991) generalized the model (1) by introducing
the INAR(p) process

P
Xo= 3 60 Xoi + e, @)

i=1
where all the thinning processes are independent and for
j<mn,

cov(Xj,eq) = 0.

They proved that (2) has a unique stationary Z, —valued
solution {X,},., if the roots of

P .
D Y L)
i=1

are inside the unit circle. The main feature of the work
of Du and Li (1991) is that it allows for models whose
autocorrelation function (ACF) mimics that of the Normal
ARIMA models.

Latour (1998) generalized Du and Li (1991) model by
introducing the general INAR(p) process (GINAR(p)),

P
Xn = Z“i o Xy—i + &n,

i=1

where
X—i

ajoX, ;= Z Y,»(n’i)
i=1

{Yj("’j )} is a sequence of nonnegative i.i.d.rv’s indepen-
dent of the X’s with finite mean «; > 0,j = 1,2,...,p
and finite variance 8; and the innovation, &, is assumed to
have a finite mean y. and finite variance o2, Latour (1998)
proved the existence of a stationary GINAR(p) process if
Zle «; < 1. He also showed that a stationary GINAR(p)
process, centered around its mean yy, admits a standard
AR(p) representation with the spectral density

Ux Zl;l [’)J' + 082
N=——"2L"  Ae[-mn],
F@) 27| (exp(-ik)) 2 [ ]

where

p .
a(t) =1- ajt’.
j=

Third Construction
In the third approach the INAR(1) stationary time series
model takes the form

Xn = An (Xn—ls 7]) + &ns (3)

where {e,} are iid.r.v’s from the same family as the
marginal distribution of {X,, } and A, (X,-1, 1) isarandom
contraction operation performed on X,_; which reduces
it by the “amount #” Let Gg(;1;) be the distribution
of Zj,i = 1,2 and assume that Z; and Z, are indepen-
dent and Gg(sM) * Go(5A2) = Gg(s A1 + Az), where
* is the convolution operator. Let G(:;x,A1,12) be the
conditional distribution of Z; given Z; + Z, = x. The
distribution of the random operator A(X, %) given X =
x, is defined as G(+x,74, (1—17)A). The distribution of
A(X, 1) is Gg(+;n1) when the distribution of X is Gg(+; 1).
Now, if the distributions of Xy and & are respectively
Go(sA)and Gy(+; (1- %) A), then {X, } of (3) is stationary
with marginal distribution Gg(+; 1). This construction was
employed by Al-Osh and Alzaid (1991) for the Binomial
marginal and Alzaid and Al-Osh (1993) for the Generalized
Poisson marginal. This construction was generalized to the
case when X is infinitely divisible by Joe (1996) and to
the case when Xj is in the class of Exponential Dispersion
Models by Jorgensen and Song (1998).

Fourth Construction

This construction is based on the expectation thinning
operator K(#)® of Zhu and Joe (2003). The expectation
thinning operator K(#)® is defined as follows: if X is a
Z—valued rvand 7 € (0,1), then

K(n)®X=> Ki(n),

i=1

where K;(#) are i.i.d.rv.’s and the family {K(a) : 0 <
a < 1} is self-generalized, i.e, E{K() ® X|X =x} = nx
and K(") ® K(n1) = K(y%"). The corresponding INAR(1)
stationary time series model takes the form

X, £ K(1) ® Xt +€(7) = gKi(ﬂ) +e(n).

The marginal distribution of X, must be generalized
discrete self-decomposable with respect to K, that is,
Py, (z)/Px,(Px(a)(z)) must be a proper probability gen-
erating function (PGF) for every « € [0,1]. The ACF at lagk
is p(k) = #*. The expectation thinning K(#)® governs
the serial dependence. Several families of self-generalized
r.v.’s {K(n)} are known and the corresponding station-
ary distributions of {X,} are overdispersed with respect
to Poisson (e.g., Generalized Poisson, Negative Binomial,
Poisson-Inverse Gaussian). When a marginal distribution
is possible for more than one self-generalized family then
different {K(#)} lead to differing amounts of conditional
heteroscedasticity.
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Fifth Construction

The fifth approach makes use of the thinning operator ® £
of van Harn et al. (1982) and van Harn and Steutel (1993)
which is defined as follows. Let F := (F;, ¢ > 0) be a con-
tinuous composition semigroup of PGF’s such that F;(0) #
L6 = 8(F) =-InF{(1) > 0,Fp;(z) = z. and Foo_(2) = L
The infinitesimal generator U of F is given for |z| < 1 by

BO 2 oti) -2,

UG = f,
where a is a constant and H(z) = Y, hnz" is a PGF of a

Z. valued rv with by = 0 and H'(1) < 1. For a Z, valued rv
Xandn € (0,1)

X
norX=>Y,
i=1
where {Y;} is a sequence of i.i.d.r.v.’s independent of X
with common PGF F_y,, , € F. The corresponding F —first
order integer-valued autoregressive (F—INAR(1)) model
takes the form

Xn =1 0OF Xn-1+ €n, (4)

where {&,} is a sequence of i.i.d. Z; valued rv’s such that
&, is independent of 1 ® £ X,,— and the thinning 70 7 X,
is performed independently for each n. Note that {X,} is
a Markov chain (see » Markov Chains). In terms of PGF’s
(4) reads

Px,(2) = Px,_,(F-1n(2))Pe(2). (5)

A distribution on Z; with PGF P(z) is F-self-
decomposable (van Harn et al. (1982)) if for any ¢ there
exists a PGF P¢(z) such

P(z) = P(Fi(z))P:(z).

Aly and Bouzar (2005) proved that any F-self-decompo
sable distribution can arise as the marginal distribution
of a stationary F—INAR(1) model. On assuming that the
second moments of each of H(-), ¢ and X, are finite for
any n > 0, Aly and Bouzar (2005) proved that (1) the
regression of X, on X,_1 is linear, (2) the variance of
X, given X, is linear, (3) the ACF atlag k, p(X;—, Xn) =
1% \/V(X,_x)/V(X,). Moreover, if {X,} is stationary,
then p(k) = p(X,4 Xa) = 1"

We consider some important stationary time series
models based on the composition semigroup

@—@1_
EO () =1- -0 122)
0+60(1-e)(1-2)
0=1-60,0<6<1

,£20,]2] <1,

of van Harn et al. (1982). Note that when 6 = 0, Ft(o) (2) =
1-e¢ " + ¢ 'z and the corresponding thinning is the Bino-
mial thinning of Steutel and van Harn (1979). In this case
(4) becomes

Px(z) = Px(1-n+ nz)P:(2). (6)

Particular INAR(1) of (6) are the Poisson (Al-Osh and
Alzaid 1987; McKenzie 1988), the Geometric and the Neg-
ative Binomial (McKenzie 1986), the Mittag-Leffler (Pil-
lai and Jayakumar 1995) and the discrete Linnik (Aly
and Bouzar 2000). Particular INAR(1) time series models
when 0 < 0 < 1are the Geometric, the Negative Binomial
and the Poisson Geometric (Aly and Bouzar 1994) and the
Negative Binomial (Al-Osh and Aly 1992).

Remarks

We mention some methods of parameter estimation. The
most direct approach is using moment estimation based on
the Yule-Walker equations. The conditional least squares
method with some modifications, e.g., a two-stage proce-
dure, in order to be able to estimate all the parameters (see,
for example, Brannds and Quoreshi 2004) may be used. Joe
and Zhu (2006) used the method of maximum likelihood
after using a recursive method to calculate the probabil-
ity mass function of the innovation. Neal and Subba Rao
(2007) used the MCMC approach for parameter estima-
tion. For additional references on parameter estimation
we refer to Briannds (1994), Jung and Tremayne (2006),
Silva and Silva (2009) and the references contained therein.
Finally, we note that Hall and Scotto (2006) studied the
extremes of integer-valued time series.
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Moderate Deviations

Consider the familiar simple set up for the central
limit theorem (CLT, see »Central Limit Theorems). Let
Xi1,X5,... be independently and identically distributed
real random variables with common distribution function
F(x).Let Y, =+(Xi+ - +X,),n=1,2,.... Suppose that

[ xF(dx) =0, / x*F(dx) =1 (0]
Then the central limit theorem states that
4
N

where @ (x) = \/127 [*_exp(~t*/2)dt and a > 0.

In other words, the CLT gives an approximation to the

P> )~ 20 o) @

two-sided deviation of size ﬁ of Y,, and the approxima-
tion is a number in (1/2,1). Deviations of the this type are
called ordinary deviations.

However, one needs to study deviations larger than
ordinary deviations to understand finer properties of the
distributions of Y, and to approximate expectations of
other functions of Y,. Thus a deviation of magnitude A,
will be called a excessive deviation if n\2 — oo. In the
particular case of A, = A where A is a constant, it is
called a large deviation (see also »Large Deviations and
Applications).
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The following, due to Cramér (1938), Chernoff (1952),
Bahadur and Rao (1960), etc., is a classical result on large
deviations. Let

/ exp (tx)F(dx) < oo for t in some neighborhood of 0.

(3)
Then
~log (1> 1)  ~I(1) @
where
I(A) = sup(tA - log ¢(t)) (5)

and 0 < I(1) < oo. This result is usually read as “the
probability of large deviations tends to zero exponen-
tially” For sequences of random variables { Y, } distributed
in more general spaces like R*,C([0,1]), D([0,1]), etc.
(i.e., »stochastic processes), there is no preferred direction
for deviations. The appropriate generalization of the large
deviation result (4) is the large deviation principle, which
states that for all Borel sets A

_1(AY) s@nilogP(Yn cA)<-IA)  (6)

where A%, A denote the interior and closure of A, and

I(A) = %relgl(/\) (7)

for some function I(1) whose level sets {1 : I(1) < K} are
compact for K < oo. The function I(x) is called the large
deviation rate function.

When the moment generating function condition (3)
holds, Cramér (1938) has further shown that

2

P(¥a| > L) ~ —2 exp(‘”)‘") (®)
2mnA2 2

when n1} - 0and nd2 - oo. This excludes large devi-

ations (A, = A), but it gives a rate for the probability (and

not just the logarithm of the probability) of a class of exces-

sive deviations and is therefore called a strong excessive

deviation result.

Rubin and Sethuraman (1965a) called deviations A,
with A, = ¢/ 10% where c is a constant as moderate devia-
tions. Moderate deviations found their first applications in
Bayes risk efficiency which was introduced in Rubin and
Sethuraman (1965b). Cramér’s result in (8) reduces to

logn ) 2 n_cz /2
n c\/2mlogn

and holds under the moment generating function con-

dition (3). Rubin and Sethuraman (1965a) showed that

P(|Yy| > ¢ )

the moderate deviation result (9) holds under the weaker
condition

E(|X1|CZ+2+8) < oo forsome § > 0. (10)

They also showed that when (9) holds we have

E(|X1|Cz+2_6) < oo for all § > 0. (11)

Slastnikov (1978) showed that the strong moderate devia-
tion result (9) if and only if

lim £ (log(t)) " 2p(IX)| > £) =0.  (12)

Since (8) was called a strong excessive deviation result,
we should call (9) as a strong moderate deviation result.
Analogous to the logarithmic large deviation result (4) is
the logarithmic moderate deviation result which states that

1 lOg(}’l) -/2

log P(|Y,] > e\ [ =22y ~
foa(oy 1 PYl [2E)
which may be the only possible result for more complicated

random variables { Y, } than are not means of i.i.d. random
variables,

(13)

For random variables {Y,} which take values in
RK,C([0,1]), D([0,1)] etc., we can, under some condi-
tions, establish the moderate deviation principle which
states

1 n

tog(m) "\ Tog(m)

- J(A%) <lim, YocA)<-J(A)

(14)
where J(A) = infyea J(x) for some function J(x) whose
level sets are compact. The function J(x) is then called the
moderate deviation rate function. This is analogous to the
large deviation principle (6).

Following the paper of Rubin and Sethuraman (1965a),
there is a vast literature on moderate deviations for a large
class of random variables {Y} } that arise in a multitude of
contexts. The asymptotic distribution of { Y, } can be more
general than Gaussian. We will give just a brief summary
below.

We stated the definition of two-sided moderate devi-
ations and quoted Slastnikov’s necessary and sufficient
condition. One can also consider one-sided moderate
deviations results and the necessary and sufficient condi-
tions are slightly different and these are given in Slastnikov
(1978). Without assuming 4 priori that the mean and vari-
ance of the i.i.d. random variables X;,X, ... are 0 and 1
respectively, one can ask for necessary and sufficient con-
ditions for moderate deviations. This problem has been
completely addressed in Amosova (1979). Another variant
of moderate deviations has been studied in Davis (1968).
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The case where {Y,} is the sum of triangular arrays
of independent random variables or a U-statistic were
begun in Rubin and Sethuraman (1965). Ghosh (1974)
studied moderate deviations for sums of m-dependent
random variables. Michel (1974) gave results on rates of
convergence in the strong moderate deviation result (9).
Gut (1980) considered moderate deviations for random
variables with multiple indices. Dembo (1996) considered
moderate deviations for »martingales.

Moderate deviations in general topological spaces with
applications in Statistical Physics and other areas can be
found in Borovkov and Mogulskii (1978), (1980), Deo and
Babu (1981), De Acosta (1992), Liming (1995), Djellout and
Guillin (2001).
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Moderating and mediating variables, or simply modera-
tors and mediators, are related but distinct concepts in
both general statistics and its application in psychol-
ogy. A moderating variable is a variable that affects the
relationship between two other variables. This effect is
usually referred to as an interaction. The simplest case of an
interaction can occur in »analysis of variance (ANOVA).
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Moderating and Mediating Variables in Psychological Research. Fig. 1 The main effect of one categorical variable on a continu-
ous dependent variable (left-hand panel), and how it is moderated by the third categorical variable (right-hand panel)

For example, we tested whether there is a significant differ-
ence in the level of anxiety (as measured with an appropri-
ate standardized psychological test) between married and
unmarried participants (i.e., variable marital status). The
effect was not statistically significant. However, when we
enter the third variable — gender (female/male) - it appears
that, on average, unmarried males are significantly more
anxious than married males, while for females the effect is
the reverse. Figure 1 represents the results from two mod-
els described above. In the left-hand panel, we can see that,
on average, there are no differences between married and
unmarried participants in the level of anxiety. From the
right-hand panel, we can conclude that gender moderates
the effect of marital status on the level of anxiety: married
males and unmarried females are significantly less anxious
than the other two groups (unmarried males and married
females).

We can generalize the previous example to more com-
plex models, with two independent variables having more
than just two levels for comparison, or even with more than
two independent variables. If all variables in the model
are continuous variables, we would apply multiple regres-
sion analysis, but the phenomenon of a moderating effect
would remain the same, in essence. For example, we con-
firmed a positive relationship between the hours of learning
and the result in an assessment test. Yet, music loudness
during learning can moderate test results. We can imag-
ine this as if a hand on the volume knob of an amplifier

rotates clockwise and turns the volume up, students get all
the worse results the longer they learn. Depending on the
music volume level, the relationship between the hours of
learning and the knowledge assessment changes continu-
ously. This outcome is presented in Fig. 2. On the left-hand
side, we can observe a positive influence of the hours of
learning on the results in the assessment test, while on the
right-hand side, we can see how music loudness moderates
this relationship.

The general linear form with one dependent, one inde-
pendent, and one moderating variable is as
follows:

Y= ﬁo +‘31X1 +ﬁ2X2 +[33(X1 XXz) + &,

where f33 evaluates the interaction between X; and X>.

Mediating variables typically emerge in multiple
regression analysis, where the influence of some indepen-
dent variable (predictor) on the dependent variable (crite-
rion) is not direct, but mediated through the third variable.
For example, the correlation between ageing and the num-
ber of work accidents in the car industry appears to be
strong and negative. Nevertheless, the missing link in this
picture is work experience: it affects injury rate, and is itself
affected by the age of worker.

In regression modeling, one can distinguish between
complete mediation and incomplete mediation. In practice,
if the effects of ageing on the number of work injuries
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decile values for the moderator variable

would not differ statistically from zero when work experi-
ence is included in the model, then mediation is complete.
Otherwise, if this effect still exists (in the statistical sense),
then mediation is incomplete. Complete and incomplete
mediation are presented in Fig. 3.

In principle, a mediating variable flattens the effect of
an independent variable on the dependent variable. The
opposite phenomenon would occur if the mediator vari-
able would increase the effect. This is called suppression. It
is a controversial concept in statistical theory and practice,
but contemporary applied approaches take a more neutral
position, and consider that suppression may provide better
insights into the relationships between relevant variables.

The simplest case of linear regression with one depen-
dent, one independent, and one mediating variable is
defined by the following equations:

Y:ﬂ0+/31X+81
M:y0+)/1X+£2
Y = Bo + BiX + foM + e,

where of particular interest are f3;, which is called the
total effect, and B, named the direct effect. If suppression
does not take place, which would occur if B{ > fi, then
we can continue the analysis with a standard regression
model. First, we ascertain whether mediation is complete
or incomplete, depending on whether the direct effect

drops to zero (B{ ~ 0). The most important step in
the analysis is the inference about the indirect effect, or the
amount of mediation. It is defined as the reduction in the
effect of the initial variable on the model outcome (B; - f31).
In simple hierarchical regression models, the difference of
the coeflicients is exactly the same as the product of the
effect of the independent variable on the mediating vari-
able multiplied by the effect of the mediating variable on
the dependent variable. In the general case, this equality
only approximately holds.

Mediation and moderation can co-occur in statisti-
cal models. This is often the case in psychology. Mediated
moderation takes place when the independent variable is
actually an interaction (X = X4 x X3p). Thus, the media-
tor acts between interacting variables (X4 and X3p) and the
dependent variable (Y). For example, the effect of inter-
acting variable hours of learning and music loudness on
the dependent variable result in an assessment test can be
mediated by the importance of the test, as rated by the par-
ticipants. Conversely, moderated mediation is realized in
two forms: (a) the effect of the independent variable on
the mediator is affected by a moderator (y; varies; as if the
effect of ageing on work experience is moderated by a par-
ticular personality trait, like H. J. Eysenck’s Neuroticism), or
(b) a moderator may interact with the mediating variable
(B2 varies; as if the work experience and the level of anxiety
would interact and mediate between ageing and number of
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X > M > Y

Moderating and Mediating Variables in Psychological
Research. Fig. 3 Schematic representation of a complete medi-
ation effect (panel a, upper), and an incomplete mediation effect
(panel b, lower)

work accidents). If moderated mediation exists, inference
about its type must be given.

Finally, special attention is required in moderation
and mediation analyses since both can be influenced by
»multicollinearity, which makes estimates of regression
coeflicients unstable. In addition, in an analysis with a
moderating term - i.e., an interaction effect — the product
of the variables can be strongly related to either the inde-
pendent or the moderating variable, or both of them. If two
variables are collinear, one of them can be centred to its
mean. In this way, half of its value will become negative,
and consequently, collinearity will decrease. Another pos-
sibility is to regress the independent variable with a mod-
erator or mediator, and then to use the residuals or unex-
plained values, of the independent variable in the main
analysis. Thus, the independent variable will be orthogonal
to the moderating or mediating variable, with zero correla-
tion, which will bring collinearity under control. However,
in applying the previous two remedies, and others that
are available, one must choose a conservative approach.
The risk of emphasizing, or even inventing, what is not
present in the data ought to be as little as possible. In any
circumstances, the ultimate way of securing more reliable
estimates is simply to obtain enough data.
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The moment generating function (mgf) of a real valued
random variable X with distribution F(x) = P(X < x) is
defined by

Mx(1) = E[¢*] = / ¢ dF(x). 1)
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For distributions with a density function f = F', My can
also be interpreted as a (two-sided) Laplace transform of
f- In order that My exists and is finite for ¢ € (—a,a) and
some a > 0, all moments y; = E [Xj] must be finite and
such that " u;#//j! is a convergent series. We then have

Mx() = 3. E2¢ @
j=o0 J:
so that
0 d
pj =My’ (0) = @MX(f) le=0 3)

which explains the name moment generating function. A
counter example where My does not exist in any open
neighborhood of the origin is the Cauchy distribution,
since there even y is not defined. The lognormal distribu-
tion is an example where all 4; are finite but the series in (2)
does not converge. In cases where X > 0 and Mx(t) = oo
for t # 0, the mgf of —X may be used (see e.g., Severini
(2005) for further results). Related to My are the char-
acteristic function ¢x(t) = Mx(it) and the probability
generating function Hx(z) = E(z") for which Mx(t) =
Hx(e'). Note however that, in contrast to My, ¢x(t) =
E[exp(itX)] always exists. A furhter important function
is the cumulant generating function Kx(t) = log Mx(t)
which can be written as power series

0 e
Kx(t) = ¢ (4)
=1 J

where «; are cumulants. The first two cumulants are x; =
4 = E(X) and k; = ¢* = var(X). In contrast to the raw
moments 4, higher order cumulants x; (j > 3) do not
depend on the location y and scale 0. For vector valued
random variables X = (Xi,..,X;)" € R¥, My is defined
in an analogous manner by Mx(t) = E[exp(t'X)] =

E [exp (Z}‘:I thj)]. This implies
izt o .
e Mx(0) = E[X[X} x| )

at{lalf . ati"

and corresponding expressions for joint cumulants as

derivatives of Kx. In particular,

2

8@89

Kx(0) = cov(Xi, X;). (6)

An important property is uniqueness: if Mx(t) exists and
is finite in an open interval around the origin, then there is
exactly one distribution function with this moment gen-
erating function. For instance, if x; = 0 for j > 3, then
X € R is normally distributed with expected value y = «;

Moment Generating Function. Table 1 Mx(t) for some
important distributions

Binomial with n trials, success [q+pe']”
probabilityp =1-¢q
Geometric distribution with pet (1-ge')™

success probabilityp =1-q

Poisson with expected value A exp[A(ef -1)]

t—1(b _ a)—1 (etb _ eta)

Uniform on [a, b]

Normal N(y, %) exp (ut + J0°t2)

Multivariate Normal N(g, Z) exp (u't + 3t'St)

(1-2t)":
(-~

Chi-square x;

Exponential with expected value

1—1
Cauchy distribution not defined
and variance 0° = k;. The moment generating func-

tion is very practical when handling sums of indepen-
dent random variables. If X and Y are independent with
existing moment generating function, then Mx,y(t) =
Mx(t)My(t) (and vice versa). For the cumulant generat-
ing function this means Kx+y(t) = Kx(t) + Ky(t). For
limit theorems, the following result is useful: Let X, be
a sequence of random variables with moment generating
functions My, (t) which converge to the moment gener-
ating function Mx(t) of a random variable X. Then X,
converges to X in distribution. This together with the addi-
tivity property of the cumulant generating function can be
used for a simple proof of the central limit theorem (see
»Central Limit Theorems).

The empirical counterparts of Mx, Kx and ¢x,

defined by

ma(t) =17 exp(X,), )
i=1

kn(t) = logm,(t) and ¢,.(t) = logm,(it), are often use-
ful for statistical inference. For instance, testing the null
hypothesis that X and Y are independent can be done by
testing Mx+y = MxMy or ¢x.y = px@y (see e.g., Csorgd
1985; Feuerverger 1987). Testing normality of a random
sample X, ..., X,, is the same as testing H, : 0°/0t’Kx(t) =
0 (see Ghosh 1996; Fang et al. 1998). For further appli-
cations of empirical moment and cumulant generating
functions see e.g., Csorgé (1982, 1986), Epps et al. (1982),
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Feuerverger (1989), Feuerverger and McDunnough (1984),
Knight and Satchell (1997), Ghosh and Beran (2000, 2006).
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Monte Carlo methods are now an essential part of the
statistician’s toolbox, to the point of being more familiar

to graduate students than the measure theoretic notions
upon which they are based! We recall in this note some
of the advances made in the design of Monte Carlo tech-
niques towards their use in Statistics, referring to Robert
and Casella (2004, 2010) for an in-depth coverage.

The Basic Monte Carlo Principle and Its
Extensions

The most appealing feature of Monte Carlo methods [for a
statistician] is that they rely on sampling and on probability
notions, which are the bread and butter of our profession.
Indeed, the foundation of Monte Carlo approximations is
identical to the validation of empirical moment estimators
in that the average

1 T
T ;h(xt)> xe ~ f(x), 1

is converging to the expectation E[1(X)] when T goes to
infinity. Furthermore, the precision of this approximation
is exactly of the same kind as the precision of a statistical
estimate, in that it usually evolves as O(\/T). Therefore,
once a sample xi,...,x7 is produced according to a dis-
tribution density f, all standard statistical tools, including
bootstrap (see »Bootstrap Methods), apply to this sample
(with the further appeal that more data points can be pro-
duced if deemed necessary). As illustrated by Fig. 1, the
variability due to a single Monte Carlo experiment must be
accounted for, when drawing conclusions about its output
and evaluations of the overall variability of the sequence
of approximations are provided in Kendall et al. (2007).
But the ease with which such methods are analyzed and
the systematic resort to statistical intuition explain in part
why Monte Carlo methods are privileged over numerical
methods.

The representation of integrals as expectations
Ef[h(X)] is far from unique and there exist therefore
many possible approaches to the above approximation.
This range of choices corresponds to the importance sam-
pling strategies (Rubinstein 1981) in Monte Carlo, based on
the obvious identity

Ef[h(X)] = Eg[R(X)f (X)/¢(X)]

provided the support of the density g includes the support
of f. Some choices of g may however lead to appallingly
poor performances of the resulting Monte Carlo estimates,
in that the variance of the resulting empirical average
may be infinite, a danger worth highlighting since often
neglected while having a major impact on the quality of
the approximations. From a statistical perspective, there
exist some natural choices for the importance function
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Monte Carlo Methods in Statistics. Fig. 1 Monte Carlo evaluation (1) of the expectation E[X3/(1 + X2 + X*)] as a function of the
number of simulation when X ~ A'(u,1) using (left) one simulation run and (right) 100 independent runs for (top) y = 0 and

(bottom) u = 2.5

g, based on Fisher information and analytical approxima-
tions to the likelihood function like the Laplace approxi-
mation (Rue et al. 2008), even though it is more robust to
replace the normal distribution in the Laplace approxima-
tion with a ¢ distribution. The special case of Bayes factors
(Andrieu et al. 2005) (Andrieu et al. 2005)

Bu(x) = [ f:60)m0(0)d0 / [ sloymo)as,

which drive Bayesian testing and model choice, and of their
approximation has led to a specific class of importance
sampling techniques known as bridge sampling (Chen et al.
2000) where the optimal importance function is made
of a mixture of the posterior distributions corresponding
to both models (assuming both parameter spaces can be
mapped into the same ®). We want to stress here that
an alternative approximation of marginal likelihoods rely-
ing on the use of harmonic means (Gelfand and Dey 1994;
Newton and Raftery 1994) and of direct simulations from
a posterior density has repeatedly been used in the liter-
ature, despite often suffering from infinite variance (and

thus numerical instability). Another potentially very effi-
cient approximation of Bayes factors is provided by Chib’s
(1995) representation, based on parametric estimates to the
posterior distribution.

MCMC Methods

Markov chain Monte Carlo (MCMC) methods (see
»Markov Chain Monte Carlo) have been proposed many
years (Metropolis et al. 1953) before their impact in Statis-
tics was truly felt. However, once Gelfand and Smith (1990)
stressed the ultimate feasibility of producing a Markov
chain (see »Markov Chains) with a given stationary dis-
tribution f, either via a Gibbs sampler that simulates
each conditional distribution of f in its turn, or via a
Metropolis-Hastings algorithm based on a proposal q(y|x)
with acceptance probability [for a move from x to y]

min {Lf(y)q(xly) /f (x)4(Ix) },

then the spectrum of manageable models grew immensely
and almost instantaneously.
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Due to parallel developments at the time on graphical
and hierarchical Bayesian models, like generalized linear
mixed models (Zeger and Karim 1991), the wealth of mul-
tivariate models with available conditional distributions
(and hence the potential of implementing the Gibbs sam-
pler) was far from negligible, especially when the avail-
ability of latent variables became quasi universal due to
the slice sampling representations (Damien et al. 1999;
Neal 2003). (Although the adoption of Gibbs samplers has
primarily taken place within »Bayesian statistics, there is
nothing that prevents an artificial augmentation of the data
through such techniques.)

For instance, if the density f(x) oc exp(-x*/2)/(1 +
x* + x*) is known up to a normalizing constant, f is
the marginal (in x) of the joint distribution g(x,u) o<
exp(—x*/2)I(u(1 + x* + x*) < 1), when u is restricted
to (0,1). The corresponding slice sampler then consists in
simulating

U\X:x~Z/{(0,1/(1+x2 +xY))

and
X|U = u~NQO,DI1+x" +x* <1/u),

the later being a truncated normal distribution. As shown
by Fig. 2, the outcome of the resulting Gibbs sampler per-
fectly fits the target density, while the convergence of the
expectation of X> under f has a behavior quite comparable
with the iid setting.

While the Gibbs sampler first appears as the natural
solution to solve a simulation problem in complex models
if only because it stems from the true target f, as exhib-
ited by the widespread use of BUGS (Lunn et al. 2000),
which mostly focus on this approach, the infinite vari-
ations offered by the Metropolis—Hastings schemes offer
much more efficient solutions when the proposal g(y|x)
is appropriately chosen. The basic choice of a random
walk proposal (see »Random Walk) q(y|x) being then a
normal density centered in x) can be improved by exploit-
ing some features of the target as in Langevin algorithms
(see Andrieu et al. 2005 Sect. 7.8.5) and Hamiltonian or
hybrid alternatives (Duane et al. 1987; Neal 1999) that build
upon gradients. More recent proposals include particle
learning about the target and sequential improvement of
the proposal (Douc et al. 2007; Rosenthal 2007; Andrieu
et al. 2010). Fig. 3 reproduces Fig. 2 for a random walk
Metropolis—-Hastings algorithm whose scale is calibrated
towards an acceptance rate of 0.5. The range of the con-
vergence paths is clearly wider than for the Gibbs sampler,
but the fact that this is a generic algorithm applying to
any target (instead of a specialized version as for the Gibbs
sampler) must be borne in mind.

Another major improvement generated by a statistical
imperative is the development of variable dimension gen-
erators that stemmed from Bayesian model choice require-
ments, the most important example being the reversible
jump algorithm in Green (1995) which had a significant
impact on the study of graphical models (Brooks et al.
2003).

Some Uses of Monte Carlo in Statistics

The impact of Monte Carlo methods on Statistics has not
been truly felt until the early 1980s, with the publication
of Rubinstein (1981) and Ripley (1987), but Monte Carlo
methods have now become invaluable in Statistics because
they allow to address optimization, integration and explo-
ration problems that would otherwise be unreachable. For
instance, the calibration of many tests and the derivation
of their acceptance regions can only be achieved by simu-
lation techniques. While integration issues are often linked
with the Bayesian approach - since Bayes estimates are
posterior expectations like

[ h(6)7(6]x) d6

and Bayes tests also involve integration, as mentioned ear-
lier with the Bayes factors, and optimization difficulties
with the likelihood perspective, this classification is by
no way tight — as for instance when likelihoods involve
unmanageable integrals — and all fields of Statistics, from
design to econometrics, from genomics to psychometry
and environmics, have now to rely on Monte Carlo approx-
imations. A whole new range of statistical methodologies
have entirely integrated the simulation aspects. Examples
include the bootstrap methodology (Efron 1982), where
multilevel resampling is not conceivable without a com-
puter, indirect inference (Gouriéroux et al. 1993), which
construct a pseudo-likelihood from simulations, MCEM
(Cappé and Moulines 2009), where the E-step of the EM
algorithm is replaced with a Monte Carlo approximation,
or the more recent approximated Bayesian computation
(ABC) used in population genetics (Beaumont et al. 2002),
where the likelihood is not manageable but the underlying
model can be simulated from.

In the past fifteen years, the collection of real problems
that Statistics can [afford to] handle has truly undergone
a quantum leap. Monte Carlo methods and in particu-
lar MCMC techniques have forever changed the empha-
sis from “closed form” solutions to algorithmic ones,
expanded our impact to solving “real” applied problems
while convincing scientists from other fields that statisti-
cal solutions were indeed available, and led us into a world
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f(x) o< exp(=x%/2)/(1 + x* + x*) against the true density for a scale of 1.2 corresponding to an acceptance rate of 0.5; (right)

range of convergence of the approximation to E;[X3] = 0 against the number of iterations using 100 independent runs of the
Metropolis—Hastings sampler, along with a single Metropolis—Hastings run

where “exact” may mean “simulated” The size of the data
sets and of the models currently handled thanks to those
tools, for example in genomics or in climatology, is some-
thing that could not have been conceived 60 years ago,
when Ulam and von Neumann invented the Monte Carlo
method.
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Introduction

The Three Doors Problem, or Monty Hall Problem, is famil-
iar to statisticians as a paradox in elementary probabil-
ity theory often found in elementary probability texts
(especially in their exercises sections). In that context it
is usually meant to be solved by careful (and elemen-
tary) application of »Bayes’ theorem. However, in different
forms, it is much discussed and argued about and written
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about by psychologists, game-theorists and mathemati-
cal economists, educationalists, journalists, lay persons,
blog-writers, wikipedia editors.

In this article I will briefly survey the history of the
problem and some of the approaches to it which have been
proposed. My take-home message to you, dear reader, is
that one should distinguish two levels to the problem.

There is an informally stated problem which you could
pose to a friend at a party; and there are many concrete ver-
sions or realizations of the problem, which are actually the
result of mathematical or probabilistic or statistical mod-
eling. This modeling often involves adding supplementary
assumptions chosen to make the problem well posed in the
terms of the modeler. The modeler finds those assumptions
perfectly natural. His or her students are supposed to guess
those assumptions from various key words (like: “indistin-
guishable,” “unknown”) strategically placed in the problem
re-statement. Teaching statistics is often about teaching
the students to read the teacher’s mind. Mathematical
(probabilistic, statistical) modeling is, unfortunately, often
solution driven rather than problem driven.

The very same criticism can, and should, be leveled at
this very article! By cunningly presenting the history of
The Three Doors Problem from my rather special point of
view, I have engineered complex reality so as to convert
the Three Doors Problem into an illustration of my personal
Philosophy of Science, my Philosophy of Statistics.

This means that I have re-engineered the Three Doors
Problem into an example of the point of view that Applied
Statisticians should always be wary of the lure of Solution-
driven Science. Applied Statisticians are trained to know
Applied Statistics, and are trained to know how to con-
vert real world problems into statistics problems. That is
fine. But the best Applied Statisticians know that Applied
Statistics is not the only game in town. Applied Statisticians
are merely some particular kind of Scientists. They know
lots about modeling uncertainty, and about learning from
more or less random data, but probably not much about
anything else. The Real Scientist knows that there is not a
universal disciplinary approach to every problem. The Real
Statistical Scientist modestly and persuasively and realisti-
cally offers what his or her discipline has to offer in synergy
with others.

To summarize, we must distinguish between:

(0) the Three-Doors-Problem Problem [sic], which is to
make sense of some real world question of a real
person.

(1) alarge number of solutions to this meta-problem, i.e.,
the many Three-Doors-Problem Problems, which are

competing mathematizations of the meta-problem (0).

Each of the solutions at level (1) can well have a number of
different solutions: nice ones and ugly ones; correct ones
and incorrect ones. In this article, I will discuss three level
(1) solutions, i.e., three different Monty Hall problems; and
try to give three short correct and attractive solutions.

Now read on. Be critical, use your intellect, don't
believe anything on authority, and certainly not on mine.
Especially, don’t forget the problem at meta-level (-1), not
listed above.

Cest la vie.

Starting Point

I shall start not with the historical roots of the prob-
lem, but with the question which made the Three Doors
Problem famous, even reaching the front page of the
New York Times.

Marilyn vos Savant (a woman allegedly with the high-
est IQ in the world) posed the Three Door Problem or
Monty Hall Problem in her “Ask Marilyn” column in Parade
magazine (September 1990:16), as posed to her by a corre-
spondent, a Mr. Craig Whitaker. It was, quoting vos Savant
literally, the following:

» Suppose you're on a game show, and you're given the choice
of three doors: Behind one door is a car; behind the others,
goats. You pick a door, say No. 1, and the host, who knows
what's behind the doors, opens another door, say No. 3, which
has a goat. He then says to you, “Do you want to pick door
No. 2?” Is it to your advantage to switch your choice?

Apparently, the problem refers to a real American TV quiz-
show, with a real presenter, called Monty Hall.

The literature on the Monty Hall Problem is enormous.
At the end of this article I shall simply list two references
which for me have been especially valuable: a paper by Jeff
Rosenthal (2008) and a book by Jason Rosenhouse (2009).
The latter has a huge reference list and discusses the pre-
and post-history of vos Savant’s problem.

Briefly regarding the pre-history, one may trace the
problem back through a 1975 letter to the editor in the
journal The American Statistician by biostatistician Steve
Selkin, to a problem called The Three Prisoners Problem
posed by Stephen Gardner in his Mathematical Games col-
umn in Scientific American in 1959, and from there back
to Bertrands Box Problem in his 1889 text on Probability
Theory. The internet encyclopediawikipedia. orgdis-
cussion pages (in many languages) are a fabulous though
every-changing resource. Almost everything that I write
here was learnt from those pages.

Despite making homage here to the two cited authors
Rosenthal (2008) and Rosenhouse (2009) for their won-
derful work, I emphasize that I strongly disagree with
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both Rosenhouse (“the canonical problem”) and Rosenthal
(“the original problem”) on what the essential Monty Hall
problem is. I am more angry with certain other authors,
who will remain nameless but for the sake of argument
I'll just call Morgan et al. for unilaterally declaring in The
American Statistician in 1981 their Monty Hall problem to
be the only possible sensible problem, for calling everyone
who solved different problems stupid, and for getting an
incorrect theorem (I refer to their result about the situa-
tion when we do not know the quiz-master’s probability
of opening a particular door when he has a choice, and
put a uniform prior on this probability.) published in the
peer-reviewed literature.

Deciding unilaterally (Rosenhouse 2009) that a cer-
tain formulation is canonical is asking for a schism and
for excommunication. Calling a particular version original
(Rosenthal 2008) is asking for a historical contradiction.
In view of the pre-history of the problem, the notion is not
well defined. Monty Hall is part of folk-culture, culture is
alive, the Monty Hall problem is not owned by a particular
kind of mathematician who looks at such a problem from
a particular point of view, and who adds for them “natural”
extra assumptions which merely have the role of allowing
their solution to work. Presenting any “canonical” or “orig-
inal” Monty Hall problem together with a solution, is an
example of solution driven science — you have learnt a clever
trick and want to show that it solves lots of problems.

Three Monty Hall Problems

I will concentrate on three different particular Monty Hall
problems. One of them (Q-0) is simply to answer the ques-
tion literally posed by Marilyn vos Savant, “would you
switch?”. The other two (Q-1, Q-2) are popular mathema-
tizations, particularly popular among experts or teachers
of elementary probability theory: one asks for the uncon-
ditional probability that “always switching” would gets the
car, the other asks for the conditional probability given the
choices made so far. Here they are:

Q-0: Marilyn vos Savant’s (or Craig Whitaker’s) question
“Is it to your advantage to switch?”

Q-1: A mathematician’s question “What is the uncondi-

tional probability that switching gives the car?”

A mathematician’s question “What is the conditional

probability that switching gives the car, given every-

thing so far?”

Q-2:

The free, and freely editable, internet encyclopedia Wikipe
dia is the scene of a furious debate as to which mathema-
tization Q-1 or Q-2 is the right starting point for answer-
ing the verbal question Q-0 (to be honest, many of the
actors claim another “original” question as the original

question). Alongside that, there is a furious debate as to
which supplementary conditions are obviously implicitly
being made. For each protagonist in the debate, those are
the assumptions which ensure that his or her question
has a unique and nice answer. My own humble opinion is
“neither Q-1 nor Q-2, though the unconditional approach
comes closer” I prefer Q-0, and I prefer to see it as a ques-
tion of game theory for which, to my mind, [almost] no
supplementary conditions need to be made.

Here I admit that I will suppose that the player knows
game-theory and came to the quiz-show prepared. I will
also suppose that the player wants to get the Cadillac while
Monty Hall, the quizmaster, wants to keep it.

My analysis below of both problems Q-1 and Q-2 yields
the good answer “2/3” under minimal assumptions, and
almost without computation or algebraic manipulation.
I will use Israeli (formerly Soviet Union) mathematician
Boris Tsirelson’s proposal on Wikipedia talk pages to use
symmetry to deduce the conditional probability from the
unconditional one. (Boris graciously gave me permission
to cite him here, but this should not be interpreted to mean
that anything written here also has his approval).

You, the reader, may well prefer a calculation using
Bayes’ theorem, or a calculation using the definition of
conditional probability; I think this is a matter of taste.

I finally use a game-theoretic point of view, and von
Neumanns minimax theorem, to answer the question
Q-0 posed by Marilyn vos Savant, on the assumptions just
stated.

Let the three doors be numbered in advance 1, 2, and 3.
I add the universally agreed (and historically correct) addi-
tional assumptions: Monty Hall knows in advance where
the car is hidden, Monty Hall always opens a door revealing
a goat.

Introduce four random variables taking values in the
set of door-numbers {1,2,3}:

the quiz-team hides the Car (a Cadillac) behind door C,
the Player chooses door P,

the Quizmaster (Monty Hall) opens door Q,

Monty Hall asks the player if she'ld like to Switch to
door S.

LR v

Because of the standard story of the Monty Hall show, we
certainly have:

Q # P, the quizmaster always opens a door different to the
player’s first choice,

Q # C, opening that door always reveals a goat,

S # P, the player is always invited to switch to another door,
S # Q, no player wants to go home with a goat.
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It does not matter for the subsequent mathematical analy-
sis whether probabilities are subjective (Bayesian) or objec-
tive (frequentist); nor does it matter whose probabilities
they are supposed to be, at what stage of the game. Some
writers think of the player’s initial choice as fixed. For them,
P is degenerate.

I simply merely down some mathematical assumptions
and deduce mathematical consequences of them.

Solution to Q-1: Unconditional Chance
That Switching Wins
By the rules of the game and the definition of S, if P + C
then § = C, and vice-versa. A “switcher” would win the car
if and only if a “stayer” would lose it. Therefore:

IfPr(P = C) = 1/3 then Pr(S = C) = 2/3, since

the two events are complementary.

Solution to Q-2: Probability Car is Behind
Door 2 Given You Chose Door 1, Monty
Hall Opened 3

First of all, suppose that P and C are uniform and inde-
pendent, and that given (P, C), suppose that Q is uniform
on its possible values (unequal to those of P and of C). Let
S be defined as before, as the third door-number different
from P and Q. The joint law of C, P, Q, S is by this definition
invariant under renumberings of the three doors. Hence
Pr(S = C|P = x,Q = y) is the same for all x # y. By the law
of total probability, Pr(S = C) (which is equal to 2/3 by
our solution to Q-1) is equal to the weighted average of all
Pr(S=C|P=xQ=y),x +y¢€ {1,2,3}. Since the latter are
all equal, all these six conditional probabilities are equal to
their average 2/3.

Conditioning on P = x, say, and letting y and y denote
the remaining two door numbers, we find the following
corollary:

Now take the door chosen by the player as fixed, P = 1,
say. We are to compute Pr(S=C|Q=3). Assume that all
doors are equally likely to hide the car and assume that
the quizmaster chooses completely at random when he has
a choice. Without loss of generality we may as well pre-
tend that P was chosen in advance completely at random.
Now we have embedded our problem into the situation just
solved, where P and C are uniform and independent.

» If P = 1is fixed, C is uniform, and Q is symmetric, then
“switching gives car” is independent of quizmaster’s choice,
hence

Pr(S=ClQ=3) = Pr(§=C|Q=2") = Pr(S=C) = 2/3.

Some readers may prefer a direct calculation. Using Bayes’
theorem in the form “posterior odds equal prior odds times

likelihoods” is a particularly efficient way to do this. The
probabilities and conditional probabilities below are all
conditional on P = 1, or if your prefer with P = 1.

We have uniform prior odds

Pr(C=1):Pr(C=2):Pr(C=3) =1:1:1

The likelihood for C, the location of the car, given data
Q = 3, is (proportional to) the discrete density function of
Q given C (and P)

Pr(Q=3|C=1):Pr(Q=3|C=2):
Pr(Q=3|C=3) = %:1:0.

The posterior odds are therefore proportional to the likeli-
hood. It follows that the posterior probabilities are

Pr(Q=3|C=1)= % Pr(Q=3|C=2) = %
Pr(Q=3|C=3)=0.

Answer to Marilyn Vos Savant’s Q-0:
Should You Switch Doors?

Yes. Recall, You only know that Monty Hall always opens
a door revealing a goat. You didn't know what strategy
the quiz-team and quizmaster were going to use for their
choices of the distribution of C and the distribution of
Q given P and C, so naturally (since you know elemen-
tary Game Theory) you had picked your door uniformly
at random. Your strategy of choosing C uniformly at ran-
dom guarantees that Pr(C = P) = 1/3 and hence that
Pr(§=C) =2/3.

It was easy for you to find out that this combined
strategy, which T'll call “symmetrize and switch,” is your
so-called minimax strategy.

On the one hand, “symmetrize and switch” guaran-
tees you a 2/3 (unconditional) chance of winning the car,
whatever strategy used by the quizmaster and his team.

On the other hand, if the quizmaster and his team use
their “symmetric” strategy “hide the car uniformly at ran-
dom and toss a fair coin to open a door if there is choice”,
then you cannot win the car with a better probability
than 2/3.

The fact that your “symmetrize and switch” strategy
gives you “at least” 2/3, while the quizmaster’s “symmetry”
strategy prevents you from doing better, proves that these
are the respective minimax strategies, and 2/3 is the game-
theoretic value of this two-party zero-sum game. (Mini-
max strategies and the accompanying “value” of the game
exist by virtue of John von Neumann’s (1929) minimax
theorem for finite two-party zero-sum games).

There is not much point for you in worrying about
your conditional probability of winning conditional on
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your specific initial choice and the specific door opened
by the quizmaster, say doors 1 and 3 respectively. You don’t
know this conditional probability anyway, since you don’t
know the strategy used by quiz-team and the quizmaster.
(Even though you know probability theory and game the-
ory, they maybe don’t). However, it is maybe comforting
to learn, by easy calculation, that if the car is hidden uni-
formly at random, then your conditional probability can-
not be smaller than 1/2. So in that case at least, it certainly
never hurts to switch door.

Discussion

Above I tried to give short clear mathematical solutions
to three mathematical problems. Two of them were prob-
lems of elementary probability theory, the third is a prob-
lem of elementary game theory. As such, it involves not
much more than elementary probability theory and the
beautiful minimax theorem of John von Neumann (1928).
That a finite two-party zero-sum game has a saddle-point,
or in other words, that the two parties in such a game
have matching minimax strategies (if »randomization is
allowed), is not obvious. It seems to me that probabilists
ought to know more about game theory, since every ordi-
nary non-mathematician who hears about the problem
starts to wonder whether the quiz-master is trying to cheat
the player, leading to an infinite regress: if I know that he
knows that I know that....

I am told that the literature of mathematical economics
and of game theory is full of Monty Hall examples, but no-
one can give me a nice reference to a nice game-theoretic
solution of the problem. Probably game-theorists like to
keep their clever ideas to themselves, so as to make money
from playing the game. Only losers write books explaining
how the reader could make money from game theory.

It would certainly be interesting to investigate more
complex game-theoretic versions of the problem. If we take
Monty Hall as a separate player to the TV station, and
note that TV ratings are probably helped if nice players
win while annoying players lose, we leave elementary game
theory and must learn the theory of Nash equilibria.

Then there is a sociological or historical question: who
“owns” the Monty Hall problem? I think the answer is
obvious: no-one. A beautiful mathematical paradox, once
launched into the real world, lives it own life, it evolves, it
is re-evaluated by generation after generation. This point
of view actually makes me believe that Question 0: would
you switch is the right question, and no further infor-
mation should be given beyond the fact that you know
that the quizmaster knows where the car is hidden, and
always opens a door exhibiting a goat. Question 0 is a ques-
tion you can ask a non-mathematician at a party, and if

they have not heard of the problem before, they’ll give the
wrong answer (or rather, one of the two wrong answers:
no because nothing is changed, or it doesn’t matter because
its now 50-50). My mother, who was one of Turing’s com-
puters at Bletchley Park during the war, but who had had
almost no schooling and in particular never learnt any
mathematics, is the only person I know who immediately
said: switch, by immediate intuitive consideration of the
100-door variant of the problem. The problem is a paradox
since you can next immediately convince anyone (except
lawyers, as was shown by an experiment in Nijmegen), that
their initial answer is wrong.

The mathematizations Questions 1 and 2 are not (in
my humble opinion!) the Monty Hall problem; they are
questions which probabilists might ask, anxious to show
off Bayes’ theorem or whatever. Some people intuitively try
to answer Question 0 via Questions 1 and 2; that is natural,
I do admit. And sometimes people become very confused
when they realize that the answer to Question 2 can only be
given its pretty answer “2/3” under further conditions. It is
interesting how in the pedagogical mathematical literature,
the further conditions are as it were held under your nose,
e.g., by saying “three identical doors,” or replacing Marilyn’s
“say, door 1” by the more emphatic “door 17

It seems to me that adding into the question explic-
itly the remarks that the three doors are equally likely to
hide the car, and that when the quizmaster has a choice
he secretly tosses a fair coin to decide, convert this beauti-
ful paradox into a probability puzzle with little appeal any
more to non experts.

It also converts the problem into one version of
the three prisoner’s paradox. The three prisoners prob-
lem is isomorphic to the conditional probabilistic three
doors problem. I always found it a bit silly and not
very interesting, but possibly that problem too should be
approached from a sophisticated game theoretic point of
view.

By the way, Marilyn vos Savant’s original question is
semantically ambiguous, though this might not be noticed
by a non-native English speaker. Are the mentioned door
numbers, huge painted numbers on the front of the doors
a priori, or are we just for convenience naming the doors by
the choices of the actors in our game a posteriori. Marilyn
stated in a later column in Parade that she had origi-
nally been thinking of the latter. However, her own offered
solutions are not consistent with a single unambiguous for-
mulation. Probably she did not find the difference very
interesting.

This little article contains nothing new, and only almost
trivial mathematics. It is a plea for future generations to
preserve the life of The True Monty Hall paradox, and not
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let themselves be misled by probability purists who say
“you must compute a conditional probability”
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In 1954, A.M. Mood developed the square rank test for dis-
persion known as Mood test. It is based on the sum of
squared deviations of the ranks of one sample from the
mean rank of the combined samples. The null hypothesis
is that there is no difference in spread against the alterna-
tive hypothesis that there is some difference. The Mood test
assumes that location remains the same. It is assumed that
differences in scale do not cause a difference in location.
The samples are assumed to be drawn from continuous
distributions.

In two-sample scale tests, the population distributions
are usually assumed to have the same location with dif-
ferent spreads. However, Neave and Worthington (1988)
cautioned that tests for difference in scale could be severely
impaired if there is a difference in location as well.

In a two-sample problem composed of X = {x1,x2,.. .,
Xm} with distribution F(X) and Y = {y,y2,...,¥n}
with distribution G(Y), arrange the combined samples in

ascending order of magnitude and rank all the N = m + n
observations from 1 (smallest) to N (largest). Let W be the
sum of squares of the deviations of one of the samples’ (say
X)) ranks from the mean rank of the combined samples,

" +n+1)\?
W:Z(”*&) )
i=1 2

where r; is the rank of the i™ X observation. The table
of exact critical values can be found in Odiase and
Ogbonmwan (2008).

Under the null hypothesis (F = G), the layout of the
ranks of the combined samples is composed of N inde-
pendent and identically distributed random variables, and
hence conditioned on the observed data set, the mean and
variance of W are m(N?~1) /12 and mn(N+1) (N*-4) /180,
respectively. The large sample Normal approximation of
W is
W m(N? 1)

12

mn(N +1)(N? - 4) '
V 180

The efficiency of the two-sample Mood test against the

. .. 15
normal alternative to the null hypothesis is 7 2 76%.
T

A Monte Carlo study of several nonparametric test
statistics to obtain the minimum sample size require-
ment for large sample approximation was carried out
by Fahoome (2002). Adopting Bradley’s (1978) liberal
criterion of robustness, Fahoome (2002) recommends
the asymptotic approximation of the Mood test when
min(m,n) = 5 for the level of significance « = 0.05
and min(m,n) = 23 for « = 0.01. However, Odiase and
Ogbonmwan (2008) generated the exact distribution of the
Mood test statistics by the permutation method and there-
fore provided the table of exact critical values at different
levels of significance.

The idea of a general method of obtaining an exact test
of significance originated with Fisher (1935). The essential
feature of the method is that all the distinct permutations
of the observations are considered, with the property that
each permutation is equally likely under the hypothesis to
be tested.
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This notion plays a key role in testing statistical hypotheses.
Testing is a two-decision statistical problem.

Case Study

A producer of hydraulic pumps applies plastic gaskets pur-
chased from a deliverer. The gaskets are supplied in batches
of 5,000. Since the cost of repairing a pump found to be
faulty is far higher than the cost of the gasket itself, each
batch is subject to testing. Not only the testing is costly
but also any gasket used in the process is practically dam-
aged. Thus the producer decides to verify 50 gaskets taken
randomly from each batch.

Assume the deliverer promised that the fraction of
defective gaskets would not exceed 5%. Suppose 4 defec-
tive gaskets were disclosed in a sample of size 50. Is this
enough to reject the batch? The situation is illustrated by
the following table

Good + Type | Error

Bad Type Il Error +

Since the decision is taken on the basis of a random
variable (the number of defective gaskets), the quality of
test may be expressed in terms of the probabilities of these
two errors. We would like to minimize these probabili-
ties simultaneously. However, any decrease of one of these
probabilities causes increase of the second one. Conse-
quences of these two errors should also be taken into
consideration. Similarly as in law, one presumes that the
tested hypothesis is true. Thus the probability of the error
of the first type should be under control. Theory of testing
statistical hypotheses, regarding these postulates, was for-
malized in 1933 by Neyman and Pearson.

Neyman-Pearson Theory

Let X be a random variable (or: random vector) taking
values in a sample space (X,.A) with a distribution P
belonging to a class P = {Pg : 6 € ®) and let ® be a
proper subset of ®. We are interested in deciding, on the
basis of observation X, whether 8 € ®¢ (decision dy) or not
(decision ds).

Any statement of the form H : 6 € @ is called a statisti-
cal hypothesis. We consider also the alternative hypothesis
K : 0 ¢ O ie, 8 € ®\ @p. A criterion of reject-
ing H (called a test) may be assigned by a critical region
S € X, according to the rule: reject H if X € S and accept
otherwise.

When performing a test one may arrive at the correct
decision, or one may commit one of two errors: rejecting
H when it is true or accepting when it is false. The upper
bound of the probability Py (do(X)) for all € @ is called
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the size while the function 3(6) = Py (do) for 6 € ©\ 0y is
called the power function of the test.

The general principle in Neyman-Pearson theory is
to find such a procedure that maximizes $(6) for all
0 € O\0) under assumption that Py(do(X)) < «a
(significance level) for all 8 € ©g. Any such test (if
exists) is called to be uniformly most powerful (UMP).
The well known Neyman-Pearson fundamental lemma
(see »Neyman-Pearson Lemma) states that for any two-
element family of densities or mass probabilities { fo,fi }
such test always exists and it can be expressed by the like-

lihood ratio r(x) = 22’3 . In this case the power function 8
reduces to a scalar and the word uniformly is redundant.

It is worth to add that in the continuous case the size of
the UMP test coincides with its significance level. However,
it may not be true in the discrete case. The desired equal-
ity can be reached by considering the randomized decision
rules represented by functions ¢ = ¢(x), taking values in
the interval [0,1] and interpreted as follows:

“If X = x then reject H with probability ¢(x)
and accept it with probability 1 — ¢(x)”

The size of the MP randomized test coincides with its
significance level and its power may be greater than for the
nonrandomized one. According to the Neyman-Pearson
lemma, the randomized MP test has the form

L, if pi(x) > kpo(x)
¢(x) =1 y, if pi(x) = kpo(x
0, if pi(x)<kpo(x

for some k induced by the significance level. If y = 0 then
it is non-randomized.

One-Side Hypothesis and Monotone
Likelihood Ratio
In practical situations distribution of the observation vec-
tor depends on one or more parameters and we make use of
composite hypotheses 0 € @ against 0 € ® \ @y. Perhaps
one of the simple situations of this type is testing one-side
hypothesis 6 < 0y or 6 > 0y in a scalar parameter family
of distributions.

We say that a family of densities { fy : 6 € ®} has mono-
tone likelihood ratio if there exists a statistic T = #(X) such
that for any 6 < 6’ the ratio 13 5 2 monotone function

(x)

of T. It appears that for testigg a hypothesis H : 6 < 0,

against K : 6 > 6 in such a family of densities there exists
a UMP test of the form

1 whenT(x)>C
y whenT(x)=C
0 when T(x) < C.

¢(x) =

An important class of families with monotone likeli-
hood ratio are one-parameter exponential families with
densities of type fy(x) = C(0)e?PT®h(x). In a dis-
crete case with integer parameter instead the monono-

Pryi(x)
Py(x)

tonity condition it suffices to verify that the ratio
is a monotone function of T for all k.

Example 1 (Testing expectation in a simple sample from
normal distribution with known variance). Let X, ..., X,, be
independent and identically distributed. Random variables
with distribution N (g, 0*), where o is known. Consider
the hypothesis H : 4 < po under the alternative K : y > po.
The family of distributions has a monotone likelihood ratio
with respect to the statistic T = Z; X;. Therefore there
exists a UMP test which rejects Hif ) X;. is too large.

Example2 (Statistical control theory). From a great num-
ber (N) of elements with an unknown number D of defec-
tive ones we draw without replacement a sample of size n.
Then the potential number X of defective elements in the
sample has the hypergeometric distribution

(G2
o

ifmax(0,n+D-N) <

Pp(X=x)= x < min(n, D)
0, otherwise.
One can verify that
0 ifx=n+D-N
P x )
p+1( ): Dle—D—j”, ifn+D+1-N<x<D
Pp(x) N-D  Dtl-x !
) ifx=D+1

is a monotone function of x. Therefore there exists a UMP
test for the hypothesis H : D < Dy against K : D > D,
which rejects H if x is too large.

Invariant and Unbiased Tests

If distribution of the observation vector depends on sev-
eral parameters, some of them may be out of our interest
and play the role of nuisance parameters. Such a situation
occurs, for instance, in testing linear hypotheses. In this
case the class of all unbiased estimators is usually too large
for handle. Then we may seek for a test with maximum
power in a class of tests which are invariant with respect to
some transformations of observations or their powers do
not depend on the nuisance parameters. This is called the
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most powerful invariant test. The class of tests under con-
sideration may be also reduced by unbiasedness condition.
A member of this class with maximum power is then called
the most powerful unbiased test. The standard tests for lin-
ear hypotheses in a linear normal model are most powerful
in each of these classes.

About the Author
For biography see the entry »Random Variable.
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A moving average is a time series constructed by taking
averages of several sequential values of another time series.
It is a type of mathematical convolution. If we represent the
original time series by y1,. .., yn, then a two-sided moving
average of the time series is given by

a= 2k+1z}’t+p t=k+Lk+2,....,n-k

j=—k

Thus zx41, . . . » 2,—x forms a new time series which is based

on averages of the original time series, {y;}. Similarly, a

one-sided moving average of {y; } is given by

L
k+

M»

z¢ = Vi t=k+Lk+2,...,n

]
o

J

More generally, weighted averages may also be used. Mov-
ing averages are also called running means or rolling aver-
ages. They are a special case of “filtering”, which is a general
process that takes one time series and transforms it into
another time series.

The term “moving average” is used to describe this pro-
cedure because each average is computed by dropping the
oldest observation and including the next observation. The
averaging “moves” through the time series until z; is com-
puted at each observation for which all elements of the
average are available.

Note that in the above examples, the number of data
points in each average remains constant. Variations on
moving averages allow the number of points in each aver-
age to change. For example, in a cumulative average, each
value of the new series is equal to the sum of all previous
values.

Moving averages are used in two main ways: Two-
sided (weighted) moving averages are used to “smooth” a
time series in order to estimate or highlight the underlying
trend; one-sided (weighted) moving averages are used as
simple forecasting methods for time series. While moving
averages are very simple methods, they are often build-
ing blocks for more complicated methods of time series
smoothing, decomposition and forecasting.

Smoothing Using Two-Sided Moving
Averages

It is common for a time series to consist of a smooth
underlying trend observed with error:

ye=f(t) +e,
where f(t) is a smooth and continuous function of ¢ and
{&:} is a zero-mean error series. The estimation of f(t) is
known as smoothing, and a two-sided moving average is
one way of doing so:

t=k+Lk+2,...,n-k.

f()_2k+1 Z)’tﬂ)

The idea behind using moving averages for smooth-
ing is that observations which are nearby in time are also
likely to be close in value. So taking an average of the points
near an observation will provide a reasonable estimate of
the trend at that observation. The average eliminates some
of the randomness in the data, leaving a smooth trend
component.
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Moving averages do not allow estimates of f(¢) near
the ends of the time series (in the first k and last k periods).
This can cause difficulties when the trend estimate is used
for forecasting or analyzing the most recent data.

Each average consists of 2k+1 observations. Sometimes
this is known as a (2k + 1) MA smoother. The larger the
value of k, the flatter and smoother the estimate of f(¢)
will be. A smooth estimate is usually desirable, but a flat
estimate is biased, especially near the peaks and troughs in
f(t). When ¢, is a white noise series (i.e., independent and
identically distributed with zero mean and variance o),
the bias is given by E[f(x)] - f(x) ~ L f”(x)k(k +1) and
the variance by V[ f(x)] ~ 02/(2k +1). So there is a trade-
off between increasing bias (with large k) and increasing
variance (with small k).

Centered Moving Averages

The simple moving average described above requires an
odd number of observations to be included in each aver-
age. This ensures that the average is centered at the middle
of the data values being averaged. But suppose we wish to
calculate a moving average with an even number of obser-
vations. For example, to calculate a 4-term moving average,
the trend at time ¢ could be calculated as

f(t —05) = (=2 + yr—1 + ye + yi1) /4
or _f(t +0.5) = (Yim1 + Y + Yea1 + Yia2) [4

That is, we could include two terms on the left and one on
the right of the observation, or one term on the left and two
terms on the right, and neither of these is centered on ¢. If
we now take the average of these two moving averages, we
obtain something centered at time ¢.

[((Ve—2 + Y1+ ye + yi1) [4]
1
E [(}’t—l + Yt t Y1 +)’t+2)/4]

O U SV S
= Syt—z 4}/:—1 4yt 4yt+18}/t+2

So a 4 MA followed by a 2 MA gives a centered moving
average, sometimes written as 2 x 4 MA. This is also a
weighted moving average of order 5, where the weights
for each period are unequal. In general, a 2 x m MA
smoother is equivalent to a weighted MA of order m + 1
with weights 1/m for all observations except for the first
and last observations in the average, which have weights
1/(2m).

Centered moving averages are examples of how a mov-
ing average can itself be smoothed by another moving
average. Together, the smoother is known as a double mov-
ing average. In fact, any combination of moving averages
can be used together to form a double moving average. For
example, a 3 x 3 moving average is a 3 MA of a 3 MA.

Moving Averages. Table 1 Weight functions a; for some common weighted moving averages

3 MA 333 333

5MA 200 200 200

2 x12MA .083 .083 .083 .083 .083 .083 .042

3x3MA 333 222 an

3x5MA .200 200 133 .067

S15 MA 231 209 144 .066 .009 -.016 -.019 -.009

S21 MA an 163 134 .037 .051 .017 -.006 -.014 -.014 -.009 -.003
H5 MA .558 294 -.073

H9 MA 330 267 119 -.010 —-.041

H13 MA 240 214 147 .066 .000 -.028 -.019

H23 MA 148 138 122 .097 .068 .039 .013 -.005 -.015 -.016 -.0n -.004

S, Spencer’s weighted moving average.
H, Henderson’s weighted moving average.
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Moving Averages with Seasonal Data

If the centered 4 MA was used with quarterly data, each
quarter would be given equal weight. The weight for the
quarter at the ends of the moving average is split between
the two years. It is this property that makes 2 x 4 MA very
useful for estimating a trend in the presence of quarterly
seasonality. The seasonal variation will be averaged out
exactly when the moving average is computed. A slightly
longer or a slightly shorter moving average will still retain
some seasonal variation. An alternative to a 2 x 4 MA for
quarterly data is a 2 x 8 or 2 x 12 which will also give equal
weights to all quarters and produce a smoother fit than the
2 x4 MA. Other moving averages tend to be contaminated
by the seasonal variation.

More generally, a 2 x (km) MA can be used with data
with seasonality of length m where k is a small positive
integer (usually 1 or 2). For example, a 2 x 24 MA may
be used for estimating a trend in monthly seasonal data
(where m = 12).

Weighted Moving Averages

A weighted k-point moving average can be written as

k

F(6) =3 apusy.

=k

For the weighted moving average to work properly, it is
important that the weights sum to one and that they are
symmetric, that is a; = a_;. However, we do not require
that the weights are between 0 and 1. The advantage of
weighted averages is that the resulting trend estimate is
much smoother. Instead of observations entering and leav-
ing the average abruptly, they can be slowly downweighted.
There are many schemes for selecting appropriate weights.
Kendall et al. (1983, Chap. 46) give details.

Some sets of weights are widely used and have been
named after their proposers. For example, Spencer (1904)
proposed a 5 x 4 x 4 MA followed by a weighted 5-term
moving average with weights ag = 1, a1 = a_; = 3/4, and
a, = a—; = —3/4. These values are not chosen arbitrarily,
but because the resulting combination of moving averages
can be shown to have desirable mathematical properties.
In this case, any cubic polynomial will be undistorted
by the averaging process. It can be shown that Spencer’s
MA is equivalent to the 15-point weighted moving aver-
age whose weights are —.009, —.019, —.016, .009, .066, .144,
.209, .231, .209, .144, .066, .009, —.016, —.019, and —.009.
Another Spencer’s MA that is commonly used is the 21-
point weighted moving average. Hendersons weighted
moving averages are also widely used, especially as part
of seasonal adjustment methods (Ladiray and Quenneville

2001). The set of weights is known as the weight function.
Table 1 shows some common weight functions. These are
all symmetric, so a-; = a;.

Weighted moving averages are equivalent to kernel
regression when the weights are obtained from a kernel
function. For example, we may choose weights using the
quartic function

. 212 . .
QUik) = {1-[j/(k+D]*} for—kéjék,
0 otherwise.
Then a; is set to Q(j, k) and scaled so the weights sum to
one. That is,

Forecasting Using One-Sided Moving
Averages

A simple forecasting method is to average the last few
observed values of a time series. Thus

. 1 ¢
Yirht = mj;))’f—j

provides a forecast of y;.j, given the data up to time ¢.

As with smoothing, the more observations included in
the moving average, the greater the smoothing effect. A
forecaster must choose the number of periods (k + 1) in a
moving average. When k = 0, the forecast is simply equal to
the value of the last observation. This is sometimes known
as a “naive” forecast.

An extremely common variation on the one-sided
moving average is the exponentially weighted moving
average. This is a weighted average, where the weights
decrease exponentially. It can be written as

t—1

Yetht = Zajyf*j
j=0

where a; = A(1 — LY. Then, for large ¢, the weights
will approximately sum to one. An exponentially weighted
moving average is the basis of simple exponential smooth-
ing. It is also used in some process control methods.

Moving Average Processes
A related idea is the moving average process, which is a
time series model that can be written as

yr=er— Ore1 — Orera — - — Oge1-g,

where {e;} is a white noise series. Thus, the observed series
yt, is a weighted moving average of the unobserved e;
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series. This is a special case of an Autoregressive Moving
Average (or ARMA) model and is discussed in more detail
in the entry »Box-Jenkins Time Series Models. An impor-
tant difference between this moving average and those con-
sidered previously is that here the moving average series is
directly observed, and the coefficients 61,..., 0, must be
estimated from the data.
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One of the assumptions of the standard regression model
y = XpB+eis that there is no exact linear relationship among
the explanatory variables, or equivalently, that the matrix
X of explanatory variables has a full rank. The problem of
multicollinearity occurs if two or more explanatory vari-
ables are linearly dependent, or near linearly dependent
(including the variable x4 = [1,1,---,1], which generates a
constant term). There are two types of multicollinearity:
perfect and near multicollinearity.

Perfect multicollinearity occurs if at least two explana-
tory variables are linearly dependent. In that case, the
determinant of matrix X'X equals zero (the X'X matrix

is singular), and therefore ordinary least squares (OLS)
estimates of regression parameters 8’ = (o, B1, -+ fx)

B 00y - K)o
det(X'X)

are not unique. This type of multicollinearity is rare, but
may occur if the regression model includes qualitative
explanatory variables, whose effect is taken into account
by »dummy variables. Perfect multicollinearity occurs
in a regression model with an intercept, if the number
of dummy variables for each qualitative variable is not
less than the number of groups of this variable. Perfect
multicollinearity can easily be revealed. A more difficult
problem is near or imperfect multicollinearity. This prob-
lem arises if at least two regressors are highly intercorre-
lated. In that case, det(X'X) =~ 0, the matrix X'X is ill
conditioned, and therefore the estimated parameters are
numerically imprecise. Furthermore, since the covariance
matrix of estimated parameters is calculated by the for-
mula Cov(f) = 6%(X’X) ™", the variances and covariances
of the estimated parameters will be large. Large standard
errors SE( /3]) =0,y /(X’X)j;1 imply that empirical ¢-ratios
(tj = ﬁj /SE ([3])) could be insignificant, which may lead
to an incorrect conclusion that some explanatory vari-
ables have to be omitted from the regression model. Also,
large standard errors make interval parameter estimates
imprecise.

Imperfect multicollinearity often arises in the time
series regression model (see »Time Series Regression),
especially in data involving economic time series, while
variables over time tend to move in the same direction.

The simplest way to detect serious multicollinearity
problems is to analyze variances of estimated parameters,
which are calculated with the following formula:

)
5 2 -1 g
var(Bj) = o (X'X)j;' = .

n

;(xij -%)* (I—Rf)

where Rjz is the coefficient of determination in the regres-
sion, variable x; is the dependent, and the remaining x’s
are explanatory variables. If variable x; is highly corre-
lated with other regressors, Rjz will be large (near to 1),

and therefore the variance of ﬁj will be large. There are
some measures of multicollinearity included in standard
statistical software: the variance inflation factor (VIF), tol-
erance (TOL), condition number (CN), and condition
indices (CI). VIF and TOL are calculated with the follow-
ing formulas:

1 2

j=12-k TOL=——=1-R;.

VIF; = =
VIF;

1
_n2
1 R].
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The multicollinearity problem is serious if Rjz > 0.8,
consequently if VIF; > 5, or equivalently if TOL; < 0.2.

More sophisticated measures of multicollinearity are
condition number, CN, and condition indices, CI;, based
on the use of eigenvalues of the X'X matrix. CN is the
square root of the ratio of the largest eigenvalue to the
smallest eigenvalue, and CI;, i = 1,2, .. ., k, are square roots
of the ratio of the largest eigenvalue to each individual
eigenvalue. These measures, which are calculated with the
formulas

/\max

CN = CIl; =

Amin /\i
are measures of sensitivity of parameter estimates to small
changes in data. Some authors, such as Belsley et al. (1980),
suggested that a condition index of 30-100 indicates mod-
erate to strong multicollinearity.

Several solutions have been suggested to rectify
the multicollinearity problem. Some are the following:
(1) increasing the sample size to reduce multicollinearity,
as multicollinearity is a problem of the sample, and not
the population; (2) dropping one or more variables sus-
pected of causing multicollinearity; (3) transforming data
as the first differences AX; = X; — X;—1 or ratios X;/X;—1 ¢ =
2,3,...,n to eliminate linear or exponential trends;
(4) ridge regression (see »Ridge and Surrogate Ridge
Regressions); and (5) principal component regression.

The problem of multicollinearity is approached differ-
ently by econometricians depending on their research goal.
If the goal is to forecast future values of the dependent
variable, based on the determined regression model, the
problem of multicollinearity is neglected. In all other cases,
this problem is approached more rigorously.
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Some clustering problems cannot be appropriately solved
with classical clustering algorithms because they require
optimization over more than one criterion. In general,
solutions optimal according to each particular criterion are
not identical. Thus, the problem arises of how to find the
best solution satisfying as much as possible all criteria con-
sidered. In this sense the set of Pareto efficient clusterings
was defined: a clustering is Pareto efficient if it cannot be
improved on any criterion without sacrificing some other
criterion.

A multicriteria clustering problem can be approached
in different ways:

e By reduction to a clustering problem with a single cri-
terion obtained as a combination of the given criteria;

e By constrained clustering algorithms where a selected
criterion is considered as the clustering criterion and
all others determine the constraints;

e By direct algorithms: Hanani (1979) proposed an algo-
rithm based on the dynamic clusters method using the
concept of the kernel, as a representation of any given
criterion. Ferligoj and Batagelj (1992) proposed modi-
fied relocation algorithms and modified agglomerative
hierarchical algorithms.

Usual Clustering Problems

Cluster analysis (known also as classification and taxon-
omy) deals mainly with the following general problem:
given a set of units, U, determine subsets, called clusters,
C, which are homogeneous and/or well separated accord-
ing to the measured variables (e.g., Sneath and Sokal 1973;
Hartigan 1975; Gordon 1981). The set of clusters forms a
clustering. This problem can be formulated as an optimiza-
tion problem:

Determine the clustering C* for which

P(C*) = réleigP(C)

where C is a clustering of a given set of units, U, ® is the
set of all feasible clusterings and P : ® — R a criterion
function.

As the set of feasible clusterings is finite a solution
of the clustering problem always exists. Since this set is
usually large it is not easy to find an optimal solution.
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A Multicriteria Clustering Problem

In a multicriteria clustering problem (®, Py, P,,. .., P;) we
have several criterion functions P;,t = 1,...,k over the
same set of feasible clusterings ®, and our aim is to deter-
mine the clustering C € @ in such a way that

P/(C) »min, t=1,...,k

In the ideal case, we are searching for the dominant set of
clusterings. The solution Cy is the dominant solution if for
each solution C € @ and for each criterion P;, it holds that

Pi(Co) < Pi(C), t=1,....k

Usually the set of dominant solutions is empty. Therefore,
the problem arises of finding a solution to the problem that
is as good as is possible according to each of the given cri-
teria. Formally, the Pareto-efficient solution is defined as
follows:

For C;,Cy € @, solution C; dominates solution C; if
and only if

Pt(Cl) SPt(Cz), t=1...,k

and foratleastonei € 1,.. .,k the strict inequality P;(C;) <
P;i(Cy) holds. We denote the dominance relation by <.
< is a strict partial order. The set of Pareto-efficient solu-
tions, II, is the set of minimal elements for the dominance
relation:

M={Ce®:-3C" cd:C <C}

In other words, the solution C* € ® is Pareto-efficient if
there exists no other solution C € ® such that

P(C) <P(C"), t=1,...,k

with strict inequality for at least one criterion. A Pareto-
clustering is a Pareto-efficient solution of the multicriteria
clustering problem (Ferligoj and Batagelj 1992).

Since the optimal clusterings for each criterion are
Pareto-efficient solutions the set IT is not empty. If the set
of dominant solutions is not empty then it is equal to the
set of Pareto-efficient solutions.

Multicriteria clustering problems can be approached as a
multicriteria optimization problem, that has been treated
by several authors (e.g., Chankong and Haimes 1983;
Ferligoj and Batagelj 1992). In the clustering case, we are
dealing with discrete multicriteria optimization (the set of
feasible solutions is finite), which means that many very
useful theorems in the field of multicriteria optimization
do not hold, especially those which require convexity. It
was proven that if, for each of the given criteria, there is

a unique solution, then the minimal number of Pareto-
efficient solutions to the given multicriteria optimization
problem equals the number of different minimal solutions
of the single criterion problems.

Although several strategies haven been proposed for
solving multicriteria optimization problems explicitly, the
most common is the conversion of the multicriteria opti-
mization problem to a single criterion problem.

The multicriteria clustering problem can be approached
efficiently by using direct algorithms. Two types of direct
algorithms are known: a version of the relocation algo-
rithm, and the modified agglomerative (hierarchical) algo-
rithms (Ferligoj and Batagelj 1992).

Modified Relocation Algorithm

The idea of the modified relocation algorithm for solv-
ing the multicriteria clustering problem follows from the
definition of a Pareto-efficient clustering. The solutions
obtained by the proposed procedure can be only local
Pareto clusterings. Therefore, the basic procedure should be
repeated many times (at least hundreds of times) and the
obtained solutions should be reviewed. An efficient review
of the obtained solutions can be systematically done with
an appropriate metaprocedure with which the true set of
Pareto clusterings can be obtained.

Modified Agglomerative Hierarchical Approach
Agglomerative hierarchical clustering algorithms usually
assume that all relevant information on the relationships
between the # units from the set I/ is summarized by a
symmetric pairwise dissimilarity matrix D = [dj]. In
the case of multicriteria clustering we assume we have k
dissimilarity matrices D',t = 1,...,k, each summarizing
all relevant information obtained, for example, in the k
different situations. The problem is to find the best hier-
archical solution which satisfies as much as is possible all k
dissimilarity matrices.

One approach to solving the multicriteria clustering
problem combines the given dissimilarity matrices (at each
step) into a composed matrix. This matrix D = [dj;] can,
for example, be defined as follows:

d,-j:max(dfj;tzl,...,k)

d,-j:min(dt t:L...,k)

ij>

k k
¢
dij =D oudi , D=1
=1 =1
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Following this approach, one of several decision rules
(e.g., pessimistic, optimistic, Hurwicz, Laplace) for mak-
ing decisions under uncertainty (Chankong and Haimes
1983) can be used at the composition and selection step of
the agglomerative procedure.

Conclusion

The multicriteria clustering problem can be treated with
the proposed approaches quite well if only a few hundreds
units are analysed. New algorithms have to be proposed for
large datasets.
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Basic Definitions

The field variously described as multicriteria decision mak-
ing (MCDM) or multicriteria decision analysis or aid
(MCDA) is that branch of operational research/mana-
gement science (OR/MS) that deals with the explicit
modeling of multiple conflicting goals or objectives in
management decision making. Standard texts in OR/MS
typically do include identification of objectives (often
stated as plural) as a key step in the decision-making pro-
cess, but the ensuing discussion appears to assume that
such objectives are easily aggregated into a single measure
of achievement which can formally be optimized. The field
of MCDA, however, arose from a recognition that system-
atic and coherent treatment of multiple objectives requires
structured decision support to ensure that all interests are
kept in mind and that an informed balance is achieved.
See, for example, the discussions and associated references
in Chap. 2 of Belton and Stewart (2002) and Chap. 1 of
Figueira et al. (2005).

The starting point of MCDA is the identification of
the critical criteria according to which potential courses
of action (choices, policies, strategies) may be compared
and evaluated. In this sense, each criterion is a partic-
ular point of view or consideration according to which
preference orders on action outcomes can (more-or-less)
unambiguously be specified. Examples of such criteria may
include issues such as investment costs, job creation, levels
of river pollution etc., as well as more subjective crite-
ria such as aesthetic appeal. With careful selection of the
criteria, preference ordering according to each could be
essentially self-evident apart from some fuzziness around
the concept equality of performance.

Selection of criteria is a profound topic in its own right,
but is perhaps beyond the scope of the present article.
Some discussion may be found in Keeney and Raiffa (1976);
Keeney (1992); Belton and Stewart (2010). In essence, the
analyst needs to ensure that values and aspirations of the
decision maker(s) have been fully captured by the chosen
criteria, while still retaining a manageably small number of
criteria (typically, one strives for not much more than 15 or
25 criteria in most applications). Care needs to be taken not
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to double-count issues, and that preference orders can be
understood on each criterion independently of the others.
Suppose then that say m criteria have been defined as
above. For any specified course of action, say a € < (the
set of all possible actions), we define z;(a) to be a mea-
sure of performance of a according to the perspective of
criterion i, for i = 1,...,m. The scaling at this stage is not
important, the only requirement being that action a is pre-
ferred to action b in terms of criterion i (a >; b) if and only
ifzi(a) > zi(b) +¢; for some tolerance parameter ;. Apart
from the brief comments in the final section, we assume
that these measures of performance are non-stochastic.
The primary aim of MCDA is to support the deci-
sion maker in aggregating the single-criterion preferences
into an overall preference structure, in order to make a
final selection which best satisfies all criteria, or to select a
reduced subset of <7 for further discussion and evaluation.
It is important to recognize that this aggregation phase
contains fundamentally subjective elements, namely the
value judgments and tradeoffs provided by the decision
maker. We shall briefly review some of the support pro-
cesses which are used. A comprehensive overview of these
approaches may be found in Figueira et al. (2005).

Methods of Multicriteria Analysis

It is important to recognize that two distinct situations may
arise in the context described above, and that these may
lead to broadly different forms of analysis:

e Discrete choice problems: In this case, &/ consists of
a discrete set of options, e.g., alternative locations for
a power station. The discrete case arises typically at
the level of high level strategic choices, within which
many of the criteria may require subjective evaluation
of alternatives.

e Multiobjective optimization problems: These problems
are often defined in mathematical programming terms,
i.e., an option will be defined in terms of a vector of
decision variables, say x € X c R”". The measures
of performance for each criterion typically need to
be defined quantitatively in terms of functions f;(x)
mapping R" — R for each i.

The methods adopted can be characterized in two
ways:

e By the underlying paradigm for modeling human pref-
erences (preference modeling);

e By the stage of the analysis at which the decision mak-
ers’ judgments are brought into play (timing of prefer-
ence statements).

We deal with each of these in turn.

At least four different paradigms can be identified.

1. Value scoring or utility methods: The approach is
first to re-scale the performance measures z;(a) so as
to be commensurate in some way, typically by means
of transformation through a partial value function,
say vi(z;). This rescaling needs to ensure that equal-
sized intervals in the transformed scale represent the
same importance to the decision maker (in terms of
trade-offs with other criteria) irrespective of where
they occur along the scale. Relatively mild assump-
tions (under conditions of deterministic performance
measures) imply that an overall value of a can be mod-
eled additively, i.e, as V(a) = Y12, wivi(zi(a)). The
assessment of the partial values and weights (w;) may
be carried out by direct assessment (e.g., Dyer 2005),
indirectly such as by the analytic hierarchy process
approach (Saaty 2005), or by learning from previous
choices (Siskos et al. 2005).

2. Metric methods: In this approach, some form of goal

or aspiration is specified (by the decision maker) for
each criterion, say G; for each i. A search (discrete
or by mathematical optimization) is then conducted
to find the option for which the performance lev-
els zi(a),z2(a),...,zm(a) approach the goal levels
G1, Gz, . .., G as closely as possible. Typically, L, L,
or Lo, metrics are used to define closeness, with pro-
vision for differential weighting of criteria. Differences
do also arise in terms of whether over-achievement of
goals adds additional benefits or not. Such approaches
are termed (generalized) goal programming, and
are reviewed in Lee and Olson; Wierzbicki (1999;
1999). Goal programming is primarily applied in the
context of the multiobjective optimization class of
model.

3. Outranking methods: These methods consider action

alternatives pairwise in terms of their performance
levels on all criteria, in order to extract the level of
evidence in the data provided by the performance
measures which either support (are concordant with)
or oppose (are discordant with) a conclusion that the
one action is better than the other. These consider-
ations generate partial rankings of the actions, or at
least a classification of the actions into ordered pref-
erence classes. Descriptions of different outranking
approaches may be found in Part III of Figueira et al.
(2005).

4. Artificial intelligence: Greco et al. (2005) describe

how observed choices by the decision maker(s) can
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be used to extract decision rules for future multicri-
teria decisions, without explicit or formal preference
modeling along the lines described above.

Three possible stages of elicitation of values and pref-
erences from the decision maker may be recognized as
described below (although in practice no one of these is
used completely in isolation).

1. Elicitation prior to analysis of options: In this app-
roach, a complete model of the decision maker pref-
erences is constructed from a sequence of responses
to questions about values, trade-offs, relative impor-
tance, etc. The resulting model is then applied to the
elements of <7 in order to select the best alternative or a
shortlist of alternatives. This approach is perhaps most
often used with value scoring methods, in which a sim-
ple and transparent preference model (e.g., the additive
value function) is easily constructed and applied.

2. Interactivemethods:Hereatentative preferencemodel,
incomplete in many ways, is used to generate a small
number of possible choices which are presented to the
decision maker, who may either express strong pref-
erences for some or dislike of others. On the basis of
these stated preferences, models are refined and a new
set of choices generated. Even in the prior elicitation
approach, some degree of interaction of this nature
will occur, where in the application of value scoring
or outranking approaches to discrete choice problems,
results will inevitably be fed back to decision mak-
ers for reflection on the value judgements previously
specified. However, itis especially with continuous mul-
tiobjective optimization problems that the interaction
becomes firmly designed and structured into the pro-
cess. See Chap.5of Miettinen (1999) foracomprehensive
coverage of such structured interaction.

3. Posterior value judgements: If each performance

measure is to be maximized, then an action a is said
to dominate action b if z;(a) > zj(b) for all crite-
ria, with strict inequality for at least one criterion.
With discrete choice problems, the removal of domi-
nated actions from ¢/ may at times reduce the set of
options to such a small number that no more analy-
sis is necessary — decision makers can make a holistic
choice. In some approaches to multiobjective opti-
mization (see also Miettinen 1999), a similar attempt
is made to compute the “efficient frontier,” i.e., the
image in criterion space of all non-dominated options,
which can be displayed to the decision maker for a
holistic choice. In practice, however, this approach is
restricted to problems with two or three criteria only

which can be displayed graphically (although there
have been attempts at graphical displays for slightly
higher dimensionality problems).

Stochastic MCDA

As indicated at the start, we have focused on deterministic
problems, i.e., in which a fixed (even if slightly “fuzzy”) per-
formance measure z; (a) can beassociated with each action-
criterion combination. However, there do of course exist
situations in which each z;(a) will be a random variable.

The introduction of stochastic elements into the mul-
ticriteria decision making problem introduces further
complications. Attempts have been made to adapt value
scoring methods to be consistent with the von Neumann/
Morgenstern axioms of expected utility theory, to link mul-
ticriteria decision analysis with scenario planning, and to
treat probabilities of achieving various critical outcomes as
separate “criteria” Discussion of these extensions is beyond
the scope of space available for this short article, but a
review is available in Stewart (2005).
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»Multidimensional scaling (MDS) is a family of methods
that optimally map proximity indices of objects into
distances between points of a multidimensional space with
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Multidimensional Scaling. Fig. 1 MDS configuration for coun-
try similarity data

a given dimensionality (usually two or three dimensions).
The main purpose for doing this is to visualize the data
so that the user can test structural hypotheses or discover
patterns “hidden” in the data.

Historically, MDS began as a psychological model for
judgments of (dis)similarity. A typical example of this early
era is the following. Wish (1971) was interested to find out
how persons generate overall judgments on the similar-
ity of countries. He asked a sample of subjects to assess
each pair of twelve countries with respect to their global
similarity. For example, he asked “How similar are Japan
and China?”, offering a 9-point answer scale from “very
dissimilar” to “very similar” for the answer. On purpose,
“there were no instructions concerning the characteris-
tics on which these similarity judgments were to be made;
this was information to discover rather than to impose”
(Kruskal and Wish 1978:30). The resulting numerical rat-
ings were averaged over subjects, and then mapped via
MDS into the distances among 12 points of a Euclidean
plane. The resulting MDS configuration (Fig. 1) was inter-
preted to show that the ratings were essentially generated
from two underlying dimensions.

As an MDS model, Wish (1971) used ordinal MDS, the
most popular MDS model. It maps the proximities of the n
objects (§;;) into distances dj; of the n x m configuration
X such that their ranks are optimally preserved. Hence,
assuming that the §;s are dissimilarities, the function
f ¢ 8 — dij(X) is monotone so that f : §; < Sy —
dij(X) < du(X), for all pairs (i,j) and (k,I) for which
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data are given. Missing data impose no constraints onto
the distances.

Another popular MDS model is interval MDS, where
f 8 » a+b-0; = dij(X). This model assumes that
the data are given on an interval scale. Hence, both 4 and
b(+ 0) can be chosen arbitrarily. In particular, they can be
chosen such that the re-scaled proximities are equal to the
distances of a given MDS configuration X.

A second facet of an MDS model is the distance func-
tion that it uses. In psychology, the family of Minkow-
ski distances has been studied extensively as a model of
judgment. Minkowski distances can be expressed by the
formula

m 1p
4P (X) = (Zl Ixia - xjal’) P21 O

Setting p = 1 results in the city-block metric, setting p = 2
in the Euclidean distance. If p grows, dj; is quickly dom-
inated by its largest intra-dimensional difference (out of
the a = 1,...,m dimensions). Such metrics supposedly
explain fast and frugal (dis)similarity judgments. The city-
block metric, in contrast, models careful judgments with
important consequences for the individual. When MDS is
used for exploratory purposes, however, only p = 2 should
be used, because all other choices imply geometries with
non-intuitive properties.

The fit of the MDS representation to the data can be
seen from its Shepard diagram. For our country-similarity
example, this is shown in Fig. 2. The plot exhibits how the
data are related to the distances. It also shows the mono-
tone regression line. The vertical scatter of the points about
this regression line corresponds to the model’s loss or mis-
fit. It is measured as 3., ; e = Yiei(dij(X) ~£(8;))? forall
points i und j. The f (8i;)’s here are disparities, i.e., proxim-
ities that are re-scaled using all admissible transformations
of the chosen scale level to optimally approximate the cor-
responding distances of the MDS configuration X. The
optimization is done by ordinal or linear regression (or,
generally, by regression of type f) so that f(J;) = Eij (X).
In order to obtain an interpretable measure of model mis-
fit, the error sum is normed to yield the standard MDS loss
function

Stress = \/Z(dij(x) *Eij)z/ Z df](X) 2

i<j i<j

A perfect MDS solution has a Stress of zero. In this
case, the distances of the MDS solution correspond per-
fectly to the disparities. For the above example, we get
Stress = 0.19. Evaluating if this is an acceptably low value is
complex. A minimum criterion is that the observed Stress
value should be clearly smaller than the Stress that results

Distances/disparities

Averaged similarity ratings

Multidimensional Scaling. Fig.2 Shepard diagram of MDS
solution in Fig. 1

for random data. Other criteria (such as the number of
points (1), the number of missing data, the restrictiveness
of the MDS model, or the dimensionality of the MDS space
(m)), but also the interpretability of the solution have to
be taken into account. Indeed, it may be true that Stress
is high but the configuration is nevertheless stable over
replications of the data. This case can result if the data
have a large random error component. MDS, then, acts
as a data smoother that irons out the error in the distance
representation.

MDS methods allow one to utilize many different
proximity measures. One example is direct judgments of
similarity or dissimilarity as in the example given above.
Another example are intercorrelations of test items over
a sample of persons. A third example are co-occurrence
coefficients that assess how often an event X is observed
together with another event Y.

MDS is also robust against randomly distributed miss-
ing data. Computer simulations show that some 80% of the
proximities may be missing, provided the data contain lit-
tle error and the number of points (#) is high relative to the
dimensionality of the MDS space (m). The data can also be
quite coarse and even dichotomous.

A popular variety of MDS is Individual Differences Scal-
ing or INDscAL (Carroll and Chang 1970). Here, we have
N different proximity matrices, one for each of N per-
sons. The idea of the model is that these proximities can



Multidimensional Scaling

877

be explained by individually stretching or compressing
a common MDS space along a fixed set of dimensions.
That is,

4 (X) = Zwu (o - 22wV 20, ()

where k = 1,...,N. The weight wgk) is interpreted as the
salience of dimension a for individual k. Carroll and Wish
(1974) used INDscAL on the overall similarity ratings of
different individuals for a set of countries, similar to the
data discussed above. What they find is that one group
of persons (“doves”) pays much attention to economic
development, while the other group (“falcons”) emphasizes
almost only political alignment of the countries with the
West. Note, though, that these interpretations depend on
the norming of X. A more transparent way to analyze such
data is to scale each individual’s data matrix by itself, and
then proceed by Procrustean fittings of the various solu-
tions to each other, followed by finding optimal dimen-
sions for an INDSCAL-type weighting model (Lingoes and
Borg 1978).

A second popular variety of MDS is Unfolding. The pro-
totypical data for this model are preference ratings of a
set of persons for a set of objects. These data are mapped
into distances between person-points and object-points
in a “joint” space. The person-points are interpreted as
“ideal” points that express the persons’ points of maximal
preference in the object space.

MDS solutions can be interpreted in different ways.
The most popular approach is interpreting dimensions, but
this is just a special case of interpreting regions. Regions
are partitions of the MDS space which sort its points into
subgroups that are equivalent in terms of substance. A sys-
tematic method for that purpose is facet theory (Borg
and Shye 1995), an approach that offers methods to cross-
classify the objects into substantively meaningful cells of
a Cartesian product. The facets used for these classifica-
tions induce, one by one, partitions into the MDS space if
they are empirically valid. The facets themselves are often
based on theoretical considerations, but they can also be
attributes that the objects possess by construction. Figure 3
shows an example. Here, (symmetrized) confusion prob-
abilities of 36 Morse signals are represented as distances
of a 2-dimensional MDS configuration. The space is parti-
tioned by dashed lines into five regions that contain signals
with only short beeps (coded as I’s); signals with more short
than long (coded as 2s) beeps; etc. The solid lines cut the
space into ten regions that each contain signals with equal
duration (0.15 seconds to 0.95 seconds).
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Multidimensional Scaling. Fig. 3 Exploratory MDS for confu-
sion probabilities of 36 Morse signals
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Multidimensional Scaling. Fig. 4 Confirmatory MDS for the

Morse signals, enforcing linearized regions

The solution in Fig. 3 is found by exploratory
ordinal MDS. There also exist various methods for
confirmatory MDS that impose additional external con-
straints onto the MDS model. Figure 4 shows an example
of an ordinal MDS with the additional constraint X=YC,
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where Y is a 36 x 2 matrix of composition and dura-
tion codes, respectively, assigned to the 36 Morse sig-
nals; C is an unknown matrix of weights that re-scales
Y’s columns monotonically. The confirmatory MDS pro-
cedure optimally represents the proximities in the sense
of ordinal MDS while satisfying X=YC. The resulting con-
figuration linearizes the regions of the MDS configuration
which makes the solution easier to interpret. Provided its
Stress is still acceptable, this is the preferred MDS rep-
resentation, because it reflects a clear law of formation
that is more likely to be replicable than an ad-hoc system
of regions. Many alternative side constraints are conceiv-
able. For example, an obvious modification is to require
that C is diagonal. This enforces an orthogonal lattice of
partitioning lines onto the solution in Fig. 4.

Many computer programs exist for doing MDS (for an
overview, see Borg and Groenen (2005)). All large statis-
tics packages offer MDS modules. One of the most flexible
programs is PROXSCAL, one of the two MDS modules in
Spss. The Spss package also offers PREEScAL, a powerful
program for unfolding. For R, De Leeuw and Mair (2009)
have written a comprehensive MDS program called Sma-
coF which can be freely downloaded from http://CRAN.R-
project.org.
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»Multidimensional scaling (MDS), also called perceptual
mapping, is based on the comparison of objects (persons,
products, companies, services, ideas, etc.). The purpose
of MDS is to identify the relationships between objects
and to represent them in geometrical form. MDS is a set
of procedures that allows the researcher to map distances
between objects in a multidimensional space into a lower-
dimensional space in order to show how the objects are
related.

MDS was introduced by Torgerson (1952). It has its
origins in psychology where it was used to understand
respondents’ opinions on similarities or dissimilarities
between objects. MDS is also used in marketing, man-
agement, finance, sociology, information science, political
science, physics, biology, ecology, etc. For example, it can
be used to understand the perceptions of respondents, to
identify unrecognized dimensions, for segmentation anal-
ysis, to position different brands, to position companies,
and so on (for descriptions of various examples, see Borg
and Groenen 2005 and Hair et al. 2010).

MDS starts from the proximities between the objects
that express the similarity between them. There are differ-
ent types of MDS: metric MDS (the similarities data are
quantitative; input and output matrices are metric) and
nonmetric MDS (the similarities data are qualitative; input
matrix is nonmetric).

The steps involved in conducting MDS consist of
problem formulation, selection of MDS procedure, deter-
mination of the number of dimensions, interpretation, and
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validation. Problem formulation includes several tasks.
First, the objectives of MDS should be identified. The
nature of the variables to be included in MDS should be
specified. Also, an appropriate number of variables should
be chosen as the number of variables influences the result-
ing solution. The selection of MDS procedure depends
on the nature of the input data (metric or nonmetric).
Nonmetric MDS procedures assume that the input data
is ordinal, but the resulting output is metric. Metric MDS
procedures assume that both input and output data are
metric. MDS procedures estimate the relative position of
each object in a multidimensional space. The researcher
must decide on a number of dimensions. The objective is
to achieve an MDS solution that best fits the data in the
smallest number of dimensions. Though the fit improves
as the number of dimensions increases, the interpreta-
tion becomes more complicated. The interpretation of the
dimensions and the configuration require subjective judg-
ment, including some elements of judgment on the part of
both the researcher and the respondent. The objectives of
MDS are not achieved if an appropriate interpretation is
lacking. Ultimately, the researcher must consider the qual-
ity of the MDS solution. (For detailed descriptions of MDS
steps, see Cox and Cox 2001, Hair et al. 2010, and Kruskal
and Wish 1978.)

To apply MDS, the distances between objects must
first be calculated. The Euclidean distance is the most
commonly used distance measure. The distance between

\ / Z(XAi - xBi)Z-
i=1

MDS begins with a matrix (n x n) consisting of the

distances between objects. From the calculated dis-

tances, a graph showing the relationship among objects is

constructed.

The graphical representation used in MDS is a per-
ceptual map, also called a spatial map. It represents the
respondent’s perceptions of objectives and shows the rela-
tive positioning of all analyzed objects. Let us suppose that
there are five objects, A, B, C, D, and E. If objects A and
B are judged by the respondents as most similar in com-
parison to all other pairs of objects (AC, AD, AE, BC, BD,
etc.), the MDS procedures will position the objects A and

objects A and B is given by dap =

B so that their distance is smaller than the distance of any
other two objects. A perceptual map is constructed in two
or more dimensions. In a two-dimensional map, objects
are represented by points on a plane. In the case of a higher
number of dimensions, graphical representation becomes
more complicated.

MDS can be conducted at the individual or group
level. At the individual level, perceptual maps should be
constructed on a respondent-by-respondent base. At the

group level, the average judgment of all respondents within
a group should be established and the perceptual maps of
one or more groups constructed.

Statistical packages such as statistical analysis system
(SAS), statistical package for the social sciences (SPSS),
Stata, and STATISTICA are suitable for MDS.

Methods closely related to MDS are factor analysis
(see »Factor Analysis and Latent Variable Modelling),
»correspondence analysis, and cluster analysis (see Borg
and Groenen 2005, Hair et al. 2010; see also the entry
»Cluster Analysis: An Introduction).
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Multilevel Analysis, Hierarchical Linear
Models

The term “Multilevel Analysis” is mostly used interchange-
ably with “Hierarchical Linear Modeling,” although strictly
speaking these terms are distinct. Multilevel Analysis may
be understood to refer broadly to the methodology of
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research questions and data structures that involve more
than one type of unit. This originated in studies involv-
ing several levels of aggregation, such as individuals and
counties, or pupils, classrooms, and schools. Starting with
Robinson’s (1950) discussion of the ecological fallacy, where
associations between variables at one level of aggregation
are mistakenly regarded as evidence for associations at a
different aggregation level (see Alker 1969, for an extensive
review), this led to interest in how to analyze data including
several aggregation levels. This situation arises as a matter
of course in educational research, and studies of the con-
tributions made by different sources of variation such as
students, teachers, classroom composition, school organi-
zation, etc., were seminal in the development of statistical
methodology in the 1980s (see the review in Chap. 1 of de
Leeuw and Meijer 2008). The basic idea is that studying
the simultaneous effects of variables at the levels of stu-
dents, teachers, classrooms, etc., on student achievement
requires the use of regression-type models that comprise
error terms for each of those levels separately; this is simi-
lar to mixed effects models studied in the traditional linear
models literature such as Scheffé (1959).

The prototypical statistical model that expresses this
is the Hierarchical Linear Model, which is a mixed effects
regression model for nested designs. In the two-level
situation - applicable, e.g., to a study of students in class-
rooms - it can be expressed as follows. The more detailed
level (students) is called the lower level, or level 1; the
grouping level (classrooms) is called the higher level, or
level 2. Highlighting the distinction with regular regression
models, the terminology speaks of units rather than cases,
and there are specific types of unit at each level. In our
example, the level-1 units, students, are denoted by i and
the level-2 units, classrooms, by j. Level-1 units are nested
in level-2 units (each student is a member of exactly one
classroom) and the data structure is allowed to be unbal-
anced, such that j runs from 1to N while i runs, for a given
j»from 1to n;. The basic two-level hierarchical linear model
can be expressed as

r 4
Y= [30 + Zﬁh Xhij + Uoj + Z Uhj Zpij + Rij; (1a)
h=1 h=1

or, more succinctly, as
Y=XB+Z U+R. (1b)

Here Yj; is the dependent variable, defined for level-1 unit i
within level-2 unit j; the variables x;;; and zy; are the
explanatory variables. Variables R;; are residual terms, or
error terms, at level 1, while Uy; for h = 0,...,p are resid-
ual terms, or error terms, at level 2. In the case p = 0 this

is called a random intercept model, for p > 1it is called a
random slope model. The usual assumption is that all R;;
and all vectors U; = (Uy;, ..., Upy;) are independent, R;;
having a normal NV (0,¢%) and U; having a multivariate
normal N,41(0, T) distribution. Parameters 3, are regres-
sion coefficients (fixed effects), while the Uj; are random
effects. The presence of both of these makes (1) into a
mixed linear model. In most practical cases, the variables
with random effects are a subset of the variables with fixed
effects (x4;; = zp;j for h < p; p < r), but this is not necessary.

More Than Two Levels

This model can be extended to a three- or more-level
model for data with three or more nested levels by includ-
ing random effects at each of these levels. For example, for
a three level structure where level-3 units are denoted by
k=1,...,M,level-2 unitsbyj = 1,..., Nk, and level-1 units
byi=1,...,n;, the model is

r p
Yiik = Bo+ . B Xnijk + Uoji + Y. Unji Znijk + Vok
h=1 h=1

q
+ > Vik Whijk + Rijge (2)
h=1

where the Upx are the random effects at level 2, while the
Vi are the random effects atlevel 3. An example is research
into outcome variables Yjj; of students (i) nested in class-
rooms () nested in schools (k), and the presence of error
terms at all three levels provides a basis for testing effects
of pupil variables, classroom or teacher variables, as well as
school variables.

The development both of inferential methods and of
applications was oriented first to this type of nested mod-
els, but much interest now is given also to the more gen-
eral case where the restriction of nested random effects
is dropped. In this sense, multilevel analysis refers to
methodology of research questions and data structures
that involve several sources of variation - each type of units
then refers to a specific source of variation, with or without
nesting. In social science applications this can be fruitfully
applied to research questions in which different types of
actor and context are involved; e.g., patients, doctors, hos-
pitals, and insurance companies in health-related research;
or students, teachers, schools, and neighborhoods in edu-
cational research. The word “level” then is used for such a
type of units. Given the use of random effects, the most nat-
ural applications are those where each “level” is associated
with some population of units.
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Longitudinal Studies

A special area of application of multilevel models is lon-
gitudinal studies, in which the lowest level corresponds
to repeated observations of the level-two units. Often the
level-two units are individuals, but these may also be
organizations, countries, etc. This application of mixed
effects models was pioneered by Laird and Ware (1982). An
important advantage of the hierarchical linear model over
other statistical models for longitudinal data is the possi-
bility to obtain parameter estimates and tests also under
highly unbalanced situations, where the number of obser-
vations per individual, and the time points where they
are measured, are different between individuals. Another
advantage is the possibility of seamless integration with
nesting if individuals within higher-level units.

Model Specification

The usual considerations for model specification in linear
models apply here, too, but additional considerations arise
from the presence in the model of the random effects and
the data structure being nested or having multiple types
of unit in some other way. An important practical issue
is to avoid the ecological fallacy mentioned above; i.e., to
attribute fixed effects to the correct level. In the original
paper by Robinson (1950), one of the examples was about
the correlation between literacy and ethnic background as
measured in the USA in the 1930s, computed as a corre-
lation at the individual level, or at the level of averages
for large geographical regions. The correlation was .203
between individuals, and .946 between regions, illustrat-
ing how widely different correlations at different levels of
aggregation may be.

Consider a two-level model (1) where variable X; with
values xy;; is defined as a level-1 variable - literacy in Robin-
son’s example. For “level-2 units” we also use the term
“groups”” To avoid the ecological fallacy, one will have to
include a relevant level-2 variable that reflects the compo-
sition of the level-2 units with respect to variable X;. The
mostly used composition variable is the group mean of Xj,

1 &
Xij=— leij-

nj iz
The usual procedure then is to include xy;; as well as X
among the explanatory variables with fixed effects. This
allows separate estimation of the within-group regression
(the coefficient of x1;;) and the between-group regression
(the sum of the coefficients of x1;; and X1 7).

In some cases, notably in many economic studies (see
Greene 2003), researchers are interested especially in the
within-group regression coefficients, and wish to control
for the possibility of unmeasured heterogeneity between

the groups. If there is no interest in the between-group
regression coefficients one may use a model with fixed
effects for all the groups: in the simplest case this is

.
Yij = Bo+ 3 Buxnij +yj + Ry ®)
h=1
The parameters y; (which here have to be restricted, e.g.,
to have a mean 0 in order to achieve identifiability) then
represent all differences between the level-two units, as far
as these differences apply as a constant additive term to all
level-1 units within the group. For example in the case of
longitudinal studies where level-2 units are individuals and
alinear model is used, this will represent all time-constant
differences between individuals. Note that (3) is a linear
model with only one error term.
Model (1) implies the distribution

Y~ N, (XB,ZTZ +0°I).

Generalizations are possible where the level-1 residual
terms R;; are not i.i.d.; they can be heteroscedastic, have
time-series dependence, etc. The specification of the vari-
ables Z having random effects is crucial to obtain a well-
fitting model. See Chap. 9 of Snijders and Bosker (1999),
Chap. 9 of Raudenbush and Bryk (2002), and Chap. 3 of de
Leeuw and Meijer (2008).

Inference

A major reason for the take-off of multilevel analysis in
the 1980s was the development of algorithms for maxi-
mum likelihood estimation for unbalanced nested designs.
The EM algorithm (Dempster et al. 1981), Iteratively
Reweighted Least Squares (Goldstein 1986), and Fisher
Scoring (Longford 1987) were applied to obtain ML esti-
mates for hierarchical linear models. The MCMC imple-
mentation of Bayesian procedures has proved very useful
for a large variety of more complex multilevel models, both
for non-nested random effects and for generalized linear
mixed models; see Browne and Draper (2000) and Chap. 2
of de Leeuw and Meijer (2008).

Hypothesis tests for the fixed coefficients 8, can be car-
ried out by Wald or Likelihood Ratio tests in the usual way.
For testing parameters of the random effects, some care
must be taken because the estimates of the random effect
variances 7}, (the diagonal elements of T) are not approx-
imately normally distributed if 7, = 0. Tests for these
parameters can be based on estimated fixed effects, using
least squares estimates for U, in a specification where
these are treated as fixed effects (Bryk and Raudenbush
2002, Chap. 3); based on appropriate distributions of the
log likelihood ratio; or obtained as score tests (Berkhof and
Snijders 2001).
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The Multinomial distribution arises as a model for the fol-
lowing experimental situation. An experiment or “trial” is
carried out and the outcome occurs in one of k mutually
exclusive categories with probabilities p;,i = 1,2,. .., k. For
example, a person may be selected at random from a popu-
lation of size N and their ABO blood phenotype recorded
as A, B, AB, or O (k = 4). If the trial is repeated n times
such that the trials are mutually independent, and if x; is
the frequency of occurrence in the ith category, then the
joint probability function of the x; is

Pl(xl,xl,. . .,xk) =

X1 X X
x1!x2!~--xk!pllpzzmpkk’
where Y¥ | x; = nand X, p; = 1. This would be the cor-
rect probability function for the genetics example if further
people were chosen with replacement. In practice, sam-
pling is without replacement and the correct distribution
is the multivariate hypergeometric, a difficult distribution
to deal with. Fortunately, all is not lost, as when the sam-
pling fraction f = n/N is small enough (say less than 0.1

or preferably less than 0.05), the Multinomial distribution
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is a good approximation and is used extensively in genetics
(e.g., Greenwood and Seber 1992). We note that when k = 2
we have the »Binomial distribution. Also the terms of P;
can be obtained by expanding (p1 + p2 + - + px)"-
Various properties of the Multinomial distribution can
be derived using extensive algebra. However, they are more
readily obtained by noting that any subset of a multino-
mial distribution is also Multinomial. We simply group the
categories relating to the remaining variables into a single
category. For example x; will have a Binomial distribu-
tion as there are just two categories, the ith and the rest
combined. Hence the mean and variance of x; are

E(x;) = np; and var(x;) = npiqi,

where g; = 1 - p;. Also, if we combine the ith and jth cate-
gory and then combine the rest into single category, we see
that x; + x; is Binomial with probability parameter p; + p;
and variance n(p; + pj) (1 - p; — p;). Hence the covariance
of x; and x; is

cov(x;, xj) = %[Var(xi +x5) —var(x;) — var(x;) ] = —npip;.

Another useful result that arises in comparing proportions
piand p; in a »questionnaire is

var(x; — xj) = var(x;) + var(x;) — 2cov(x;, xj)
= nlpi+pj — (pi =)’ M

It should be noted that the Multinomial distribution
given above is a “singular” distribution as the random vari-
ables satisfy the linear constraint ¥, x; = n, which leads
to a singular variance-covariance matrix. We can instead
use the “nonsingular” version

n!
Py(x1,%2, .« ., Xp1) =
xﬂxﬂ---(n—Zf;llx,-)!
XX n->¥" %
Xpypyp T

We note that the joint »moment generating function of x
is
M(t) = (pletl +p2€t2 + .. -i—pk,letk*1 +pk)n,

which can also be used to derive the above properties of
the Multinomial distribution as well as the »asymptotic
normality properties described next.

Let p; = xi/n be the usual estimate of p;. Given the
vectors p = (Pp1,p2,....px1) and p = (p1.p2s- .- pr)’s
then the mean of p is p and its variance-covariance matrix
is n7'V, where V = (diagp — pp’) and diag p is a diag-
onal matrix with diagonal elements p, ps,. .. px—1. In the
same way that a Binomial random variable is asymptot-
ically normal for large n, \/n(p — p) is asymptotically

multivariate Normal with mean vector 0 and variance-
covariance matrix V. If V™! is the inverse of V, then V™! =
nt ((diag p)+ p,:llk_l'lk_l), where 1;_; isa column k—1
ones (cf. Seber, 2008, 15.7). From the properties of the
multivariate Normal distribution (cf. Seber 2008, 20.25),

- npi)*

k
- IV—l A _ (-xi 2
n(p-p)'V (p-p) Z} - )

will be asymptotically distributed as the »Chi-square dis-
tribution with k—1 degrees of freedom. If we use the singu-
lar version and include xy to expand V to V, we can obtain
the result more quickly using a generalized inverse (cf.
Seber, 2008, 20.29b using A = V; = (diag (p/,px)’) 7).
This link with the Chi-square distribution forms the basis
of a number of tests involving the Multinomial distribution
mentioned below.

We see that P;(-) above can be regarded conceptually
as a nonsingular distribution for the x; (i = 1,2,...,k)
with probabilities 77;, but conditional on Zf;l x; = n with
pi = mi/ XX, mi. It therefore follows that the joint distri-
bution of any subset of multinomial variables conditional
on their sum is also multinomial. For example, the distri-
bution of x; and x, given x; + x2 = n is Binomial with
probability parameter pi/(p1 + p2). We get a similar result
in ecology where we have a population of plants divided up
into k areas with x; in the ith area being distributed as the
Poisson distribution with mean ;. If the x; are mutually
independent, then the joint distribution of the x; condi-
tional on the sum Y%, x; is Multinomial with probabilities
pi =il i .

The last topic I want to consider briefly is inference
for the multinomial distribution. Estimating p; by p; =
xi/n, using the normal approximation, and applying (1),
we can obtain a confidence interval for any particular p; or
any particular difference p; — p;. Simultaneous confidence
interval procedures are also available for all the p; or all
differences using the Bonferroni method. We can also test
P =p, using (2).

A common problem is testing the hypothesis Hop
p = p(0), where p is a known function of some unknown
t-dimensional parameter 6 (e.g., the genetics example
above). This can be done using a derivation like the one
that led to (2) above, giving the so-called “goodness of fit”
statistic, but with p replaced by p(8). Here 8, the maxi-
mum likelihood estimate of 6, is asymptotically Normal so
that p() is also asymptotically Normal. Under Ho, it can
be shown that the test statistic is approximately Chi-square
with degrees of freedom now k —1 - ¢.

One application of the above is to the theory of con-
tingency tables. We have an r x ¢ table of observations x;;
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(i=12...,17 =12,...,c) and pj; is the probability of
falling in the (4,j)th category. Treating the whole array as a
single Multinomial distribution, one hypothesis of interest
is Ho : pij = aifSj, where Y.i_; a; = 1 and Z;:l Bi =11In
this hypothesis of row and column independence, we have
0’ = (an,...ar-1,B1,. .., Be1) with maximum likelihood
estimates &; = R;/n and ﬁj = ¢j/n, where r; is the ith row
sum of the table and ¢; the jth column sum. The statistic for
the test of independence is therefore

Z’: ZC: (xi —.r,vcj/n) ’ 3)

which, under Hy, is approximately Chi-square with rc—1-
(r-=1)=(c-1) = (r—1)(c—1) degrees of freedom. If the
rows of the 7 x ¢ table now represents r independent Multi-
nomial distributions with Y5, p = 1fori = 1,2,...,r,
then the hypothesis that the distributions are identical is
Ho : pjj = yjfori=12,...,r, where 3.7, y; = 1. Pooling
the common distributions, the maximum likelihood esti-
mate of y; is §; = ¢j/n so that the term np,-j(é) becomes
r;P; and the test statistic for testing homogeneity turns out
to be the same as (3) with the same degrees of freedom.

The above chi-squared tests are not particularly pow-
erful and need to be backed up with various confidence
interval procedures. Other asymptotically equivalent tests
are the likelihood ratio test and the so-called “score”
(Lagrange multiplier) test. Log linear models can also be
used. For further properties of the Multinomial distribu-
tion see Johnson et al. (1997, Chap. 35) and asymptotic
background theory for the chi-squared tests is given by
Bishop et al. (1975, Chap. 14). More recent developments
are given by Agresti (2002).
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» ‘“Life is more complicated when you have three uncongenial
models involved.”

The Multi-Party Inference Reality
Much of the statistical inference literature uses the famil-
iar framework of “God’s model versus my model” That
is, an unknown model, “God’s model,” generates our data,
and our job is to infer this model or at least some of
its characteristics (e.g., moments, distributional shape) or
implications (e.g., prediction). We first postulate one or
several models, and then use an array of estimation, test-
ing, selection, and refinement methods to settle on a model
that we judge to be acceptable — according to some sensi-
ble criterion, hopefully pre-determined - for the inference
goals at hand, even though we almost never can be sure that
our chosen model resembles God’s model in critical ways.
Indeed, philosophically even the existence of God’s model
is not a universally accepted concept, just as theologically
the existence of God is not an unchallenged notion.
Whether one does or does not adopt the notion of
God’s model, it is repeatedly emphasized in the literature
that to select a reasonable model, an iterative process is
necessary and hence multiple models are typically consid-
ered (e.g., see Box and Tiao 1973, Chap. 1; Gelman and
Meng 1996). By multiple models we mean multiple sets of
mathematically quantifiable assumptions (hence, not nec-
essarily parametric models), which are compatible within
each set but not across different sets. Indeed, if they are
not incompatible across different sets then one is simply
postulating a larger model; see McCullagh (2002). In this
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sense we automatically take a “monotheistic” point of view
that there is only one God’s model; we assume God’s model
contains no self-contradiction (or at least none detectable
by a human modeler). However, we do not go so far as to
suggest that the modeler can always embed everything into
one model, e.g., as in Bayesian model averaging, because
contrasting models sometimes is as useful as, if not more
so than, combining models.

Whereas many models may be entertained, the com-
monly accepted paradigm involves only two parties: the
(hypothetical) God, and “me” - the modeler. Unfortu-
nately, reality is far more complicated. To explain the com-
plication, we must distinguish the modeler’s data from
God’s data. The modeler’s data are the data available
to the modeler, whereas God’s data are the realizations
from God’s model that the modeler’s data were collected
to approximate. Whereas any attempt to mathematically
define such concepts is doomed to fail, it is useful to
distinguish the two forms of data because the approxima-
tion process introduces an additional inference party (or
parties).

For example, in the physical sciences, the modeler’s
data typically are results of a series of pre-processing
steps to deal with limitations or irregularities in recording
God’s data (e.g., discarding “outliers” (see »Outliers); re-
calibration to account for instrument drift), and typically
the modeler at best only has partial information about this
process. For the social and behavioral sciences, some vari-
ables are not even what we normally think they are, such
as responses to a questionnaire survey. Rather, they are
so-called “constructed variables,” typically from a deter-
ministic algorithm converting a set of answers to an index
that indicates, say, whether a subject is considered to suf-
fer major depression. The algorithm is often a black box,
and in some cases it is pitch black because the modeler is
not even informed of what variables were used as inputs
to produce the output. In the context of public-use data
files, virtually all data sets contain imputations of some
sort (see »Imputation) because of non-responses or other
forms of missing data (e.g., missingness by design such as
with matrix sampling), which means someone has “fixed
the holes” in the data before they reach the modeler.

In all these examples, the key issue is not that there
is data pre-processing step per se, but rather that during
the journey from God’s data to modeler’s data, a set of
assumptions has been introduced. There is no such thing
as “assumption-free” pre-processing; any attempt to make
the data “better” or “more usable” implies that a judg-
ment has been made. Under the God-vs.-me paradigm,
this intermediate “data cleaning” process has to be con-
sidered either as part of God’s model, or of the modeler’s

model, or of both by somehow separating aspects of the
process (e.g., one could argue that a refused answer to an
opinion question is an opinion itself, whereas a refusal
to an income question is a non-response). Regardless of
how we conceptualize, we find ourselves in an extremely
muddy - if not hopeless - situation. For example, if aspects
of this intermediate process are considered to be part of
God’s model, then the modeler’s inference is not just about
God’s model but also about someone else’s assumptions
about it. If we relegate the pre-processing to the modeler’s
model, then the modeler will need good information on
the process. Whereas there has been an increasing empha-
sis on understanding the entire mechanism that leads to
the modeler’s data, the reality is that for the vast majority
of real-life data sets, especially large-scale ones, it is sim-
ply impossible to trace back how the data were collected or
pre-processed. Indeed, many such processes are nowhere
documented, and some are even protected by confidential-
ity constraints (e.g., confidential information may be used
for imputation by a governmental agency).

This intermediate “data cleaning” process motivates
the multi-party inference paradigm. The term is self-
explanatory: we acknowledge that there is more than one
party involved in reaching the final inference. The key dis-
tinction between the multi-party paradigm and the God-
vs.-me paradigm is not that the former involves more
sets of assumptions, i.e., models — indeed under the latter
we still almost always (should) consider multiple mod-
els. Rather, in the multi-party paradigm, we explicitly
acknowledge the sequential nature of the parties” involve-
ment, highlighted by how the intermediate party’s assump-
tions impact the final inference, because typically they are
necessarily incompatible with the modeler’s assumptions,
due both to the parties’ having access to different amounts
of information and to their having different objectives.

This situation is most vividly demonstrated by mul-
tiple imputation inference (Rubin 1987), where the inter-
mediate party is the imputer. (There is often more than
one intermediate party even in the imputation context,
but the case of a single imputer suffices to reveal major
issues.) In such a setting, the concept of congeniality (Meng
1994) is critical. In a nutshell, congeniality means that the
imputation model and the analysis model are compati-
ble for the purposes of predicting the missing data. In
real life, this typically is not the case, even if the imputer
and analyst are the same entity, because of the differ-
ent aims of imputation (where one wants to use as many
variables as possible even if causal directions are incor-
rectly specified) and of analysis (where one may be only
interested in a subset of variables with specified causal
directions). The next section demonstrates the importance
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of recognizing uncongeniality, which directly affects the
validity of the final inferences. The concept of unconge-
niality was originally defined and has thus far been inves-
tigated in the context of multiple imputation inference, the
most well-studied case of multi-party inference. However,
its general implication is broad: to reach valid inference
when more than one party is involved, we must consider
the incompatibility/uncongeniality among their assump-
tions/models, even if each party has made assumptions
that are consistent with God’s model and has carried out
its task in the best possible way given the information
available at the time.

Uncongeniality in Multiple Imputation
Inference
A common method for dealing with non-response in sur-
veys and incomplete data in general is imputation (Little
and Rubin 2002). Briefly, imputation is a prediction of the
missing data from a posited (not necessarily parametric)
model pr(Yimis| Yops ), where Y5 denotes the missing data
and Y, the observed data. The trouble with single impu-
tation, however sophisticated, is that the resulting data set
cannot be analyzed in the same way as would an authen-
tic complete data set, without sacrificing the validity of the
inference. Multiple imputation (MI; Rubin 1987) attempts
to circumvent this problem by providing multiple predic-
tions from pr(Yimis| Yops ), thereby permitting, via genuine
replications, a direct assessment of uncertainties due to
imputation.

Specifically, in the MI framework, we draw inde-

pendently m times from pr(Ymis|Yops), resulting in m
completed-data sets: Yc(f,z, = {ngs, YV(HQ} £=1...,m
Suppose our complete-data analysis can be summarized by
a point estimator é( Yeom) and an associated variance esti-
mator U(Ycom ), where Yo denotes { Yiis, Yops - The MI
inference procedure consists of the following steps:

Step 1: Perform m complete-data analyses as if each Yc(f%
were real data:

0, 59( C(f,z,) and U, = U( C(f,z,) £=1,...,m.
Step 2: Use Rubin’s Combining Rules:

A

- 1
0., ndTm:Um+(1+—)Bm,
m

M=

Om =

1
m

S
Il

1
where
1 m

Z Ug andBm = — Z (95— Gm)(Gg— Om)

m o m-=1 3

U =

are respectively the within-imputation variance and the
between-imputation variance, to reach the MI inference
{B,n, T}, with T,, the variance estimator of ,,.

The justification of Rubin’s combining rules is most
straightforward under strict congeniality, which means
that both the analyst and the imputer use (effectively)
Bayesian models, and their Bayesian models are compat-
ible. That is, we assume:

(I) 'The complete-data analysis procedure can be embed-
ded into a Bayesian model, with

é(Ycom) = EA(6|Ycom) and U(Ycom) = VA(9|Ycom))

where the subscript A indexes expectation with
respect to the embedded analysis model;

(II) The imputer’s model and the (embedded) analysis
model are the same for the purposes of predicting
missing data:

PI(Ymis‘Yobs) = PA(Ymis|Yobs):
Yomis (but the given Yops).

for all

Then for 8,, as m — oo, we have

éoo =E;s [é(ycom)‘Yobs]
< by (I) = [EA(echom)|Yobs]
< by (H) =Ex [EA(6|Ycom)|Yobs] EA(9|Y0175)'

That is, the MI estimator 8, simply is a consistent (Monte
Carlo) estimator of the posterior mean under the analyst’s
model based on the observed data Y. The critical role of
(IT) is also vivid in establishing the validity of Ty = U +
(1+m™")Byy as m — oco:

Ueo + Boo = E{[U(Yeom)|Yops] + Vi[0(Yeom )| Yops]

<by (I) > = E1[Va(0|Yeom)|Yobs]
+VI[E4(0|Ycom)|Yobs]

<by (I1) >=Ea[Va(0|Yeom)|Yobs]

+Va [EA(0|Ywm)|Yobs] = VA(6|Yobs)-
Therefore, as m — o0, {Om, T} reproduces the pos-
terior mean and posterior variance under the analyst’s
model given Y,;, because Ooo = E4(0|Y,ps) and Teo =
Va ( 6' Yobs ) .

When congeniality fails, either because the analyst’s
procedure does not correspond to any Bayesian model or
because the corresponding Bayesian model is incompat-
ible with the imputer’s model, the MI variance estimator
T,. can overestimate or underestimate the variance of Gm
even as m — oco. However, depending on the relationships
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among God’s model, the analyst’s model and the imputer’s
model, we may still reach valid inference under unconge-
niality. For example, under the assumption that the ana-
lyst’s complete-data procedure is self-efficient (Meng 1994),
if God’s model is nested in the analyst’s model, which in
turn is nested in the imputer’s model, then the MI confi-
dence interval based on {0ec, Teo } is valid (asymptotically
with respect to the size of the observed data). However, the
MI estimator 0. may not be as efficient as the analyst’s
estimator (e.g., MLE) directly based on the observed data,
because the additional assumptions built into the analysis
model are not used by the imputer. But this comparison
is immaterial when the analyst is unable to analyze the
observed data directly, and therefore multiple imputation
inference is needed (see »Multiple Imputation).

However, the situation becomes more complicated if
we assume God’s model is nested in the imputer’s model,
which in turn is nested in the analyst's model. In such cases,
itis possible to identify situations where the multiple impu-
tation interval estimator is conservative in its own right,
yet it is narrower than analyst’s interval estimator (with the
correct nominal coverage) directly based on the observed
data (Xie and Meng 2010). This seemingly paradoxical phe-
nomenon is due to the fact the imputer has introduced
“secret” model assumptions into the MI inference, making
it more efficient than the analyst’s inference directly based
on the observed data, which does not benefit from the
imputer’s assumptions. At the same time, since the analyst’s
complete-data procedure {H(Yeom), U(Yeom)} is deter-
mined irrespective of the imputer’s model, the imputer’s
secret assumption introduces uncongenality, which leads
to the conservativeness of the MI interval. However, this is
not to suggest that MI tends to be conservative, but rather
to demonstrate the impact of imputation models on the MI
inference and hence to provide practical guidelines on how
to regulate the imputation models.

Even more complicated are situations where the ana-
lyst's and imputer’s models do not nest, or where at least
one of them does not contain God’s model as a sub-model.
Consequences of such are virtually undetermined at the
present time, but one thing is clear. These complications
remind us the importance of recognizing the multi-party
inference paradigm, because the God-vs.-me paradigm
sweeps all of them under the rug, or more precisely buries
our heads in the sand, leaving our posteriors exposed
without proper coverage.
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Multiplicity Issues

Statistical evidence is obtained by rejecting the null
hypothesis at a “small” prespecified significance level «,
say 0.05 or 0.01, which is an acceptable level of probabil-
ity of the type I error (the error of rejecting the “true” null
hypothesis). If we have a family of multiple hypotheses in
a confirmatory experiment and test them simultaneously
at each level «, the overall or familywise type I error rate
(FWER), i.e., the probability of rejecting at least one “true”
null hypothesis in the family, may inflate and exceed «,
even if there exist no treatment differences. We call such
inflation of the FWER a multiplicity issue.

Usually there may be some correlation structure
between test statistics, and the inflation of the FWER
might not be so remarkable. However, if we have multi-
ple hypotheses to be tested for confirmatory purpose, we
should adjust for multiplicity so as to control the FWER
within «. This is called multiplicity adjustment. Testing
procedures for multiplicity adjustment are called multiple
comparison procedures (MCPs) or more generally multiple
testing procedures (MTPs).

Multiplicity issues may arise in (1) multiple treatments
(multiple comparisons), (2) multiple response variables
(multiple endpoints), (3) multiple time points (longitu-
dinal analysis), (4) multiple subgroups (subgroup analy-
sis), and (5) multiple looks (interim analysis with group
sequential methods or adaptive designs).

Hereafter we mainly concentrate on the multiple treat-
ment comparisons, i.e., multiple comparisons in a tradi-
tional sense.

Multiple Comparisons

In a two group comparison of treatments A and B on their
response means y4 and yp, we have just one null hypothe-
sis Ho : ya = pp to be tested and there is no need to adjust
for multiplicity. However, when we compare three treat-
ment groups, e.g., there are three treatments A, B and C,
we may typically want to compare their means pairwisely,
i.e., pa vs U, pa vs yc and pp vs gc. Then there are three
test hypotheses to be adjusted for multiplicity; namely, we
need multiple comparison procedures.

All Pairwise Comparisons

The method to exactly control the FWER by adjusting
the critical value in the above “all” pairwise comparisons
is called Tukey’s method (or Tukey’s multiple comparison
test). The method was developed for equal sample sizes,
but even if the sample sizes are different between groups,
the same critical value could be used conservatively, and
such a method is known as the Tukey-Kramer method.
The nonparametric version of Tukey’s method is called the
Steel-Dwass test.

Comparisons with a Control

The above three treatment example may have a structure
that A and B are two (high and low) doses of a drug and
C is a placebo (zero-dose). Then main interest in a formal
analysis may be focused on the comparisons between each
active dose and the placebo, i.e., ya vs pc and pp vs pc.
This type of multiple comparison on treatment means can
be performed by Dunnetts method (or Dunnett’s multiple
comparison test), and the common reference C is called
a control or control group. The nonparametric version of
Dunnetts method is called Steels test.

If we assume the monotonicity of response means, such
as ya > pp > pc or pa < pp < fc, then in the compari-
son with a control, we can apply the Williams test, which
is more powerful than Dunnett’s test when the monotone
dose-response relationship holds. The nonparametric ver-
sion of the Williams test is known as the Shirley-Williams
test.

Any Contrast Comparisons

More generally in a k(> 3) treatment comparison, various
hypotheses on any contrasts, such as, Zf-;l cipti = 0 where
Zle ci = 0, can be tested using Scheffe’s method to con-
trol the FWER. For all pairwise comparisons or compar-
isons with a control, Scheffe’s method is not recommended
because it is “too” conservative in such cases. A nonpara-
metric version of the Scheffe type multiple comparison
method can be easily constructed.
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Fixed Number of Comparisons

When the number of comparisons is fixed, the Bonfer-
roni method (or Dunn’s method) is simpler and easier to
apply. The method only adjusts the significance level to
a/m for each single test, where m is the number of inter-
ested comparisons. It is known that the method controls
the FWER because the well-known Bonferroni inequality,
Pr (UL Ei) < X1, Pr(E;) holds, where E; is an event to
reject hypothesis H;. In the above three treatment exam-
ple, the Bonferroni method could be applied with m = 3
for Tukey-type, and with m = 2 for Dunnett-type multiple
comparisons, although it might be rather conservative.

Stepwise Procedures

All the methods described above (except the Williams test)
are called “simultaneous tests” or “single step tests”, because
none of tests considered are affected by the results of oth-
ers, and statistical testing for each hypothesis can be done
simultaneously or in a single step manner. They control
the FWER and can be used to easily construct the corre-
sponding simultaneous confidence intervals, but there is
some tradeoff in that they have a low statistical power in
compensation for controlling the FWER.

Recently, more powerful test procedures than single
step or simultaneous test procedures have been developed
and become popular. Most of them are based on the closed
testing procedure (CTP) proposed by Marcus, Peritz and
Gabriel (1976) and they have a stepwise property in their
nature. CTPs give a very general scheme of stepwise MCPs
(or MTPs).

Closed Testing Procedures (CTPs)

Suppose that we have a family of m null hypotheses
F={H\,H,,...,Hy}tobetestedandletN = {1,2,...,m}
be an index set that indicates the set of hypotheses consid-
ered. Then there are 2" — 1 possible intersections of null
hypotheses H;. We denote a set or family of such intersec-
tion hypotheses by G = {H; = M;e;Hi : I S N, I # ¢},
where @ is an empty set and each intersection hypothesis
H; means that all hypotheses H;,i € I hold simultane-
ously and thus H; represents one possibility of the “true”
null hypothesis. Because we do not know which Hj is true,
a given MCP (or MTP) should control the FWER under
any H;. This is called a strong control of the FWER. If we
control the FWER only under the complete or global null
hypothesis, Hy = Ny Hi, it is called a weak control of the
FWER.

CTPs are testing procedures in which each elementary
hypothesis Hi,i = 1,...,m, is rejected only if all the inter-
section hypotheses including H;, i.e., all Hy = Njer Hppi €l
are rejected by the size « test. It is easily shown that any

CTP controls the FWER in a strong sense. The procedure
is equivalent to a test that starts with the test of complete
null hypothesis Hy at level & and then proceeds in a step-
wise manner that any intersection hypothesis Hy, I c N,
is tested at level « only if all the intersection hypotheses
Hj = Ny Hi which imply Hy, i.e., ] 2 1, are rejected.

Some well known stepwise methods for the Tukey type
multiple comparisons, e.g., Fisher’s protected LSD (least
significant difference) test, the Newman-Keuls test, and
Duncan’s multiple range test, control the FWER only in a
weak sense, and should not be used. Instead, we can use the
Tukey-Welsch method and Peritz’s method. Also the step-
down Dunnett method can be applied for the Dunnett type
comparisons. They are CTPs and control the FWER in a
strong sense. Note that the Williams test is also a CTP.

Modified Bonferroni Procedures (MBPs)
Modified Bonferroni procedures (MBPs) are extensions
of the classical Bonferroni procedure, which use the
Bonferroni’s or similar criterion to test the intersection
hypotheses H; in CTPs. They use only individual p-values
for multiplicity adjustment and are easy to apply. Holm,
Hochberg, Hommel and Rom procedures are some of typical
MBPs.

Gatekeeping Procedures (GKPs)

Most recently the new methods called the gatekeeping pro-
cedures (GKPs) have been rapidly developed. GKPs utilize
the order and logical relationship between hypotheses or
families of hypotheses and construct a MTP satisfying
these relationships. They are usually based on CTPs and
control the FWER in a strong sense. They include serial
GKP, parallel GKP, tree GKP, and truncated GKP, etc. GKPs
are especially useful for multiple endpoints and various
combination structures of multiple comparisons, multiple
endpoints and other multiplicities.
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A General Multiple Comparisons Problem
In this note, we examine a general multiple comparisons
testing problem from a Bayesian viewpoint. Suppose we
observe independent random samples from I normally
distributed populations with equal variances. The goal of
our problem is to determine which pairs of groups have
equal means.
Write

{Xy} | {ui}, 0" ~ indep N (s 0”). 1)

We are interested in testing H*?) : , = u,, for each (a, b);
atotal of I(I —1)/2 distinct, but related hypotheses. A typ-
ical frequentist test is based on the decision rule of accept
H when

X — Xa| < Qap. )

The overall error rate is the probability of falsely rejecting
any of the true hypotheses in the set {H (@.b) } The deter-
mination of Q, in (2) depends on how the overall error
rate is to be controlled. A classical book featuring this mul-
tiple comparisons problem in detail is Schefté (1959). For
an applied review, see, for example, Kutner et al. (2004)
or Montgomery (2008). A modern theoretical treatment
is offered by Christensen (2002).

An overview to multiple comparisons under the
Bayesian framework is given by Berry and Hochberg
(1999). Westfall et al. (1997) consider the preceding prob-
lem of controlling the overall error rate from a Bayesian
perspective. Here, our main focus is to show how a
Bayesian approach can offer a logically pleasing interpre-
tation of multiple comparisons testing.

A major point of difficulty to multiple comparisons
procedures based on an accept / reject H (@:b) philosophy
is illustrated by a case where one decides to accept 1 = y2
and p = p3, but reject y1 = ps. Such an outcome is possi-
ble under decision rule (2), but an interpretation is difficult
to provide since the overall decision is not logically consis-
tent. Employing a Bayesian philosophy, we may restate the
goal of the problem as quantifying the evidence from the
data in favor of each hypothesis H (@b),

To implement this philosophy, we will require a mea-
sure of prior/posterior belief in H (@b, represented by
point mass probabilities. The construction of prior prob-
abilities over the set of hypotheses {H (“’b)} must account
for the fact that the collection does not consist of mutu-
ally exclusive events. For example, H?) true (u; = y2)
may occur with H®% true (s = y3) or with H®?) false
(p2 # p3). One cannot develop a prior by comparing
relative beliefs in each of the pairwise hypotheses. Fur-
thermore, certain combinations of hypotheses in the set

{H <“’h)} represent impossibilities. For example, the event

with H true (p1 = u2), H® true (ps = ps), H®
false (p1 # p3) should be assigned zero probability.

Allowable decisions can be reached through the forma-
tion of equal mean clusters among the I populations. For
example, the clustering i = p2, p3 = y4 implies H (1.2)
true, H** true, and all others false. Designating a cluster-
ing of equal means will define a model nested within (1).
When two or more means are taken as equal, we merely
combine all relevant samples into one. The smaller model
is of the same form as (1), only for I' < I. The problem
can now be stated in terms of Bayesian »model selec-
tion, where each allowable combination of hypotheses will
correspond to a candidate model.

We provide a short review of Bayesian model selec-
tion in the general setting using the notation of Neath
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and Cavanaugh (1997). Let Y, denote the observed data.
Assume that Y, is to be described using a model M
selected from a set of candidate models {M;,...,Mp}.
Assume that each M is uniquely parameterized by 6y, an
element of the parameter space @ (k). In the multiple com-
parisons problem, the class of candidate models consists
of all possible mean clusterings. Each candidate model is
, 1) and the
common variance o, with the individual means restricted

parameterized by the mean vector p = (y,. ..

by the model-defined clustering of equalities. That is, each
model determines a corresponding parameter space where
particular means are taken as equal.

Let L(60k|Yn) denote the likelihood for Y, based on
M. Let n(k), k=1,...,L, denote a discrete prior over
the models M, ..., M. Let g(0x|k) denote a prior on 6y
given the model M. Applying Bayes’ Theorem, the joint
posterior of M and 0 can be written as

(k)g(Oklk)L(Ok|Yn)
h(Yn) ’

f(k) 6I<|Yn) =

where h(Y,) denotes the marginal distribution of Y,,.
The posterior probability on My is given by

2(K|Yn) = h(Y,) (k) f@ o SOOL(OK ) i ()

The integral in (3) requires numerical methods or
approximation techniques for its computation. Kass and
Raftery (1995) provide a discussion of the various alterna-
tives. An attractive option is one based upon the popular
Bayesian information criterion (Schwarz 1978). Define

By = —2InL(6x|Y,) + dim(6y) In(n),

where 0, denotes the maximum likelihood estimate
obtained by maximizing L(6x|Y,) over @(k). It can be
shown under certain nonrestrictive regularity conditions
(Cavanaugh and Neath 1999) that

exp(—B/2) .
Y1 exp(~By/2)

The advantages to computing the posterior model

(k|Yn) ~ (4)

probabilities as (4) include computational simplicity and
a direct connection with a popular and well-studied cri-
terion for Bayesian model selection. The justification of
approximation (4) is asymptotic for the general case of
prior g(0k|k), but Kass and Wasserman (1995) argue how
the approximation holds under a noninformative prior on
0k even for moderate and small sample sizes.

Regardless of which technique is used for computing
(k|Y,), we compute the probability on hypothesis H(**)
by summing over the probabilities on those models for

which ps = pp. This gives a nice approach to determin-
ing the evidence in favor of each of the pairwise equalities.
The probability approach to presenting results for multi-
ple comparisons testing provides more information than
merely an accept/ reject decision and is free of the potential
contradictions alluded to earlier.

Example

We illustrate the Bayesian approach to multiple compar-
isons testing using data from Montgomery (2008). The
I = 5 groups correspond to different cotton blends.
Five fabric specimens are tested for each blend. The
response measurements reflect tensile strength (in pounds
per square inch). See Table 1 for the data and summary
statistics. For ease of notation, treatments are identified in
ascending order of the observed sample means.

A glance at the data suggests a potentially strong clus-
tering of 1, p2 and a clustering to a lesser degree among
U3, pa, 4s. We shall see how these notions can be quantified
by computing Bayesian posterior probabilities on the pair-
wise equalities. The top five most likely pairwise equalities
are displayed in Table 2.

The hypothesis g1 = y; is well-supported by the data
(P[H®®] ~ .8), as was suspected. There is also some
evidence in favor of y3 = ys (P[H®"] ~ .6) and a non-
negligible probability of us = us (P[H*>] > 1). Yet,
there is good evidence against u3 = us (P[H®>] < .02).

Consider the clustering among s, y4, 4s. Tukey’s mul-
tiple comparison procedure gives a critical range of Q =
5.37. A pair of means is deemed equal only if the cor-
responding sample difference is less than Q in magni-
tude. One reaches the decision of accept y3 = pa4, accept
Ua = us, but reject u3 = ps. This decision is not logi-
cally consistent and is lacking any probabilistic detail. The
proposed Bayesian approach bridges this probabilistic gap

Multiple Comparisons Testing from a Bayesian Perspective.
Table 1 Data for example

1 7,7911,15 9.8 335
2 7,00,11,11,15 10.8 2.86
3 12,12,17,18,18 154 313
4 14,18,18,19,19 17.6 2.07
5 19,19,22,23,25 21.6 2.61
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Multiple Comparisons Testing from a Bayesian Perspective.
Table 2 Probabilities of pairwise equalities

=2 7976
U3 = Ua .6015
Ha = s 1200
W2 = Y3 .0242
us = s .0191

and provides a nice presentation for multiple comparisons.
Bayesian inference has an advantage over traditional fre-
quentist approaches to multiple comparisons in that degree
of belief is quantified. One can avoid illogical conclusions
which arise from an accept/reject decision process.

For computing details and continued analysis on this
example, see Neath and Cavanaugh (2006).
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Multiple Imputation and Combining
Estimates

Missing data substantially complicates the statistical anal-
ysis of data. A common approach to circumvent the
problem of analyzing a data set with missing data is to
replace/impute the missing values by some estimates or
auxiliary values. Subsequently, the data are then analyzed
as if they would have been complete. While it is often
straightforward to get a point estimate 6 for a quantity
or parameter of interest, 6, an estimate for the variance
of 0 is typically difficult to obtain, since the uncertainty
due to the imputed values is not reflected correctly. This is
exactly where multiple imputation (Rubin 1978, 1996) steps
in: by creating several datasets by imputing several values
for each missing position in the dataset, multiple impu-
tation tries to reflect the uncertainty due to the imputed
values. Note, that this uncertainty is additional to the usual
uncertainty arising from the sampling process. Finally, the
estimate 0 is computed for each of the completed datasets
and these estimates are then combined into a single esti-
mate for 6. In the following we give the algorithmic scheme
for computing the combined point estimate and an esti-
mated covariance matrix of it, that is, we directly address
the case of a vector valued parameter 6. Strategies on how
proper imputations can be created are discussed in the next
paragraph.

Algorithm for inference under multiple imputation

1. Create m imputed datasets.

2. For each imputed dataset, j = 1,...,m, compute the
point estimate QY = 9V and its corresponding esti-
mated (probably asymptotic) covariance matrix U =
Cov(6WD). Usually, the “MI”-paradigm (Schafer 1999)
assumes that Q¥ is asymptotically normal.

3. The multiple-imputation point estimate for 6 is then

oL QN () B IR S WY0) 1
Q- 2005240 0
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4. The estimated covariance matrix of Q consists of
two components, the within-imputation covariance
and the between-imputation covariance. The within-
imputation covariance U is given by

m . 1 m e A

S U = — 3 Cov(9). )
m

The between-imputation covariance B is given by

m
B= ;Z(Q(J)_a) (Q(j)—a)T, (3)

m-—1 i
where T means the transposed vector, i.e. B is a
quadratic matrix where the dimensions are equal to the
length of the vector 6. Now we can combine the two
estimates to the total variance T which is our estimated

covariance matrix of Q:

T=Cov(Q) =U+ (1+m™")B. (4)

5. A problem is that while the distribution of T 2 (6-Q)
can be approximated by a t-distribution with v degrees
of freedom,

U 2

in the scalar case, the same is not trivial for the vector
valued case, see Schafer (1997).

Approaches to Create Multiple
Imputations

So far we have discussed how MI works in principal and
how the estimates for the completed datasets can be com-
bined. Now we address how the imputations can be gener-
ated. We assume a missing data process that is ignorable.
This relates essentially to a missing at random mechanism
(MAR) plus the assumption that the parameters of the data
model and the parameters of the missing data process are
distinct (in likelihood inference this means that the com-
bined parameter space is the product of the two parameter
spaces, in a Bayesian analysis this means roughly that the
prior distributions are independent). We note, that exten-
sions to the case of nonignorable data situations are pos-
sible (although in general this is not easy), especially if
one uses a Bayesian approach. The following subsections
cannot reflect the whole research which has been done in
the past. They only represent a small number of methods
selected by the authors.

Let D° be the observed data and D™ the missing part of a
dataset D, with D = (D°®, D™*). Then, m proper multiple

imputations can be obtained via the predictive posteriori
distribution of the missing data given the observed data

p(DmileobS) _ fp(DmiS|Dobs;6) P(0|Dob5) 46 (6)

or an approximation thereof. Note, that p(6|D°®*) denotes
the posteriori distribution of 0. Typically, two distinct
approaches are considered to generate multiple imputa-
tions from (6): joint modeling and fully conditional mod-
eling. The first approach assumes that the data follow a
specific multivariate distribution, e.g. D ~ N(y, 2). Under
a Bayesian framework draws from p(D™*|D°™) can be
either generated directly (in some trivial cases) or sim-
ulated via suitable algorithms (in most cases) such as
the IP-algorithm (see, e.g., Schafer [1997]). The second
approach specifies an individual conditional distribution
p(Dj|D-j, 0;) for each variable D; € D and creates imputa-
tions as draws from these univariate distributions. It can be
shown that the process of iteratively drawing and updating
the imputed values from the conditional distributions can
be viewed as a Gibbs sampler, that converges to draws from
the (theoretical) joint distribution (if it exists). Further dis-
cussions and details on these issues can be found, e.g., in
Drechsler and Rissler (2008) and the references therein.

An additional important remark refers to the fact that
the imputations are called improper if we only draw impu-
tations from

p(Dmi5|Dobs’ é)’

where 8 is a reasonable point estimate of 6 (such as max-
imum likelihood, posterior mode or posterior mean), see
also section “Other Pragmatic Approaches”. That is why the
above mentioned IP algorithm always includes the P-Step
which samples also a new value of 8 from p(8]D°™*) before
using this value to create a new imputed data set.

Another method to create proper multiple imputations is
the so-called ABB (Approximate Bayesian Bootstrap). We
refer the reader to Litte and Rubin (2002, Chap. 5.4).

If the EM (Expectation-Maximization) algorithm is applied
to an incomplete dataset, then a common problem is that
only a point estimate (maximum likelihood estimate) is
generated, but not an estimated (co-)variance matrix of
this estimate. A typical approach to handle that issue corre-
sponds to the use of the bootstrap (see »Bootstrap Meth-
ods) to create multiple imputations which then can be used
to calculate such an estimate as shown in section “Multiple
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Imputation and Combining Estimates”. The following steps
are repeated forj=1,...,m:

1 Draw a bootstrap sample DY from the data with
replacement (including all data, complete and incom-
plete) with the same sample size as the original data.
Obtain the maximum likelihood estimate §) from the
EM algorithm applied to DY),

2 U(s;e): 09 to create an imputed dataset jfrom p(D™*|D°";
oY’).

Since Rubin introduced the MI paradigm in the late 1970s,
there have been proposed several more or less ad-hoc
methods to create multiple imputations that do not rely
directly on random draws of the predictive posteriori
distribution (6). A common approach refers to types of
regression imputation (see, e.g., Little and Rubin [2002]),
whereby missing values are replaced by predicted values
from a regression of the missing item on the items observed
based upon the subsample of the complete cases. This
may be interpreted as an approximation to p(D™*|D°"; )
from (6) with the simple constraint, that the uncertainty
due to estimation of 6 is not sufficiently reflected and
hence p(0|D°®) is apparently neglected. As an approach
to consider this source of uncertainty anyhow and gen-
erate pragmatic multiple imputations (PMI), one might
add an stochastic error to the imputation value and/or
draw a random value from the conditional estimated dis-
tribution resulting from the prediction of the regression.
Further extensions on regression imputation, e.g. the use of
flexible nonparametric models and a recursive algorithm
(GAMRI, Generalized Additive Model based Recursive
Imputation), are discussed in Schomaker et al. (2010). Of
course, the combination of values form different single
imputation procedures might be seen as another type of
PMI as well. Various strategies, such as nearest neighbor
imputation (Chen and Shao 2000), Hot Deck imputations
(Little and Rubin 2002) and others can be used for that
approach.

We recommend to create proper multiple imputations
based on the predictive posteriori distribution of the miss-
ing data given the observed data. As mentioned in section
“Software”, a variety of statistical software packages nowa-
days provide fast and reliable tools to create proper multi-
ple imputations even for users with less statistical expertise
in missing-data-procedures. In situations where numerical

algorithms fail to do so (sparse data, small datasets) prag-
matic multiple imputations can be seen as a first approach
to model imputation uncertainty.

Problems and Extensions

A number of problems arise along with multiple imputa-
tion procedures. Often they are not exclusively related to
multiple imputation but to the general problem of mis-
specification in statistical models. If, e.g., the data model
is misspecified because it assumes independent observa-
tions on the sampling units, but the observations are tem-
porally or/and spatially correlated, also the results based
on MI may become erroneous. An additional problem
is »model selection in general, especially if it is applied
on high dimensional data. Also fully Bayesian inference,
which often takes a lot of time for one specific model,
is often too time consuming to be realistically applied to
such problems. The same applies to model averaging (Fre-
quentist or Bayesian) which may be thought of being an
alternative to model selection.

Software

Recent years have seen the emergence on software that
not only allows for valid inference with multiple imputa-
tion but also enables users with less statistical expertise to
handle missing-data problems. We shortly introduce two
packages that highlight the important progresses that lately
have been made in easy-to-use Open-Source-Software. A
broader description, discussion and comparison on MI-
software can be found in Horton and Kleinman (2007).

e Amelia II (Honaker et al. 2008) is a package
strongly related to the statistical Software R (R Devel-
opment Core Team 2009) and performs proper multi-
ple imputations by using an new, bootstrapping-based
EM-algorithm that is both fast and reliable. All impu-
tations are created via the amelia () function. For
valid inference the quantities of the m imputed data
sheets can be combined (i) in R using the zelig ()
command of Zelig (Imai et al. 2006), (ii) by hand
using (1) and (4), respectively, or (iii) in separate soft-
ware such as SAS, Stata etc. The Amelia II Software
(named after the famous “missing” pilot Amelia Mary
Earhart) is exceedingly attractive as it provides many
useful options, such as the analysis of time-series data,
the specification of priors on individual missing cell
values, the handling of ordinal and nominal variables,
the choice of suitable transformations and other use-
ful tools. For further details see King et al. (2001) and
Honaker and King (2010).
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e MICE (Multiple Imputations by Chained Equations,
van Buuren and Oudshoorn (2007)) is another package
provided for R and S-Plus. It implements the chained
equation approach proposed from van Buuren et al.
(1999), where proper multiple imputations are gen-
erated via Fully Conditional Specification and Gibbs
Sampling. The imputation step is carried out using the
mice () function. As bugs of earlier versions seem
to be removed, the MICE software can be attractive
especially to the advanced user since he/she may spec-
ify his/her own imputation functions without much
additional effort.
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In the theory and practice of statistical inference, mul-
tiple decision problems are encountered in many exper-
imental situations. The classical methods for analyzing
data customarily employ hypothesis testing in most situa-
tions. In such cases, when the hypothesis is rejected, one
wants to know on which of a number of possible ways
the actual situations fit our goal. If in the formulation of
the problem, we consider only two decisions (reject or
not reject the hypothesis), we will not only neglect to dif-
ferentiate between certain alternative decisions but may
also be using an inappropriate acceptance region for the
hypothesis. Moreover, the traditional approach to hypoth-
esis testing problems is not formulated in a way to answer
the experimenter’s question, namely, how to identify the
hypothesis that satisfies the goal. Furthermore, when per-
forming a test one may commit one of two errors: rejecting
the hypothesis when it is true or accepting it when it is
false. Unfortunately, when the number of observations is
given, both probabilities cannot be controlled simultane-
ously by the classical approach (Lehmann 1959). Kiefer
(1977) gave an example to show that for some sample
values an appropriate test does not exhibit any detailed
data-dependent measure of conclusiveness that conveys
our strong feeling in favor of the alternative hypothesis. To
enforce Kiefer’s point, Schaafsma (1969) pointed out the
Neyman-Pearson formulation is not always satisfactory
and reasonable (Gupta and Huang 1981).

In the preceding paragraphs, we have discussed various
difficulties associated with the hypothesis testing formula-
tion. Thus, there arises the need for a modification of this
theory and for alternative ways to attack such problems.
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The approach in terms of Walds decision theory
(1950) provides an effective tool to overcome the above-
mentioned difficulties in some reasonable ways. Actually,
the problems of hypothesis testing can be formulated as
general multiple decision problems. To this end, we first
define that the space A of actions of the statistician consists
of a finite number (k > 2) of elements, A = (a1, a2, .. ., ax).
In practice, there are two distinct types of multiple deci-
sion problems. In one the parameter space © is partitioned
into k subsets @1, @3, ..., @y, according to the increasing
value of a real-valued function r(8), 8 € ©. The action a;
is preferred if 8 € ®;. This type of multiple decision prob-
lem is called monotone. This approach has been studied by
Karlin and Rubin (1956) and Brown et al. (1976). For exam-
ple, in comparing two treatments with means 6, and 6,
an experimenter may have only a finite number of actions
available, among these the experimenter might have pref-
erence based on the magnitudes of the differences of the
means 0 — 0;: A particular case occurs when one may
choose from the three alternatives:

1. Prefer treatment 1 over treatment 2
2. Prefer treatment 2 over treatment 1
3. No preference (Ferguson 1967)

Another important class of multiple decision problems
arises — selection problems where the treatments are clas-
sified into a superior category (the selected items) and
an inferior one. In general, selection problems have been
treated under several different formulations (Gupta and
Panchapakesan 1979).

Recently, the modification of the classical hypothesis
testing is considered the null hypothesis and several alter-
native hypotheses. Some multiple decision procedures are
proposed to test the hypotheses. Under controlling the type
I error, the type II error is the probability of incorrect deci-
sion. The type I and type II errors are given, the sample
size can be determined. In general, on€’s interest is not just
testing Ho against the global alternative. Formulating the
problem as one of choosing a subset of a set of alternatives
has been studied (Lin and Huang 2007).
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Probability and Single Stage Sampling
In probability sampling each unit in the finite population of
interest has a known, non-zero, chance of selection, ;. In
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single stage sampling the units in the sample, s, are selected
directly from the population and information is obtained
from them. For example, the finite population of interest
may consist of businesses and a sample of businesses is
selected. In these cases the population units and sampling
units are the same. To obtain a single stage sample a sam-
pling frame consisting of a list of the population units and
means of contacting them are usually required. Simple ran-
dom sampling (SRS) can be used, in which each possible
sample of a given size has the same chance of selection. SRS
leads to each unit in the population having the same chance
of selection and is an equal probability selection method
(EPSEM). Other EPSEMs are available. A probability sam-
pling method does not need to be an EPSEM. Aslong as the
selection probabilities are known it is possible to produce
an estimator that is design unbiased, that is unbiased over
repeated sampling. For example the »Horvitz-Thompson

estimator of the population total can be used, Ty = Zni_l Yi.
i€.

Stratification is often used, in which the po;l)lsllation
is divided into strata according to the values of auxiliary
variables known for all population units. An independent
sample is then selected from each stratum. The selection
probabilities may be the same in each stratum, but often
they are varied to give higher sampling rates in strata
that are more heterogeneous and/or cheaper to enumerate.
Common stratification variables are geography, size and
type, for example industry of a business.

Cluster and Multistage Sampling

Instead of selecting a sample of population units directly
it may be more convenient to select sampling units which
are groups that contain several population units. The sam-
pling unit and the population unit differ. The groups are
called Primary Sampling Units (PSUs). If we select all pop-
ulation units from each selected PSU we have »cluster
sampling. If we select a sample of the units in the selected
PSUs we have multistage sampling. Each population unit
must be uniquely associated with only one PSU through
coverage rules. These methods are often used when there
is some geographical aspect to the sample selection and
there are significant travel costs involved in collecting data
and/or when there is no suitable population list of the pop-
ulation units available. A common example of a PSU is a
household, which contains one or more people (Clark and
Steel 2002). Another common example is area sampling
(see Kish 1963, Chap. 9).

In a multistage sample the sample is selected in stages,
the sample units at each stage being sampled from the
larger units chosen at the previous stage. At each succes-
sive stage smaller sampling units are defined within those

selected at the previous stage and further selections are
made within each of them. At each stage a list of units from
which the selections are to be made is required only within
units selected at the previous stage.

For example, suppose we wish to select a sample of vis-
itors staying overnight in the city of Wollongong. No list
of such people exists, but if we confine ourselves to people
staying in hotels or motels then it would be possible to con-
struct a list of such establishments. We could then select
a sample of hotels and motels from this list and select all
guests from the selected establishments, in which case we
have a cluster sample. It would probably be better to select
a sample from the guests in each selected establishment
allowing selection of more establishments, in which case
we have a multi-stage sampling scheme. The probability of
a particular guest being selected in the sample is the prod-
uct of the probability of the establishment being selected
and the probability the guest is selected given the estab-
lishment is selected. Provided the selection of establish-
ments and guests within selected establishments is done
using probability sampling, the sampling method is a valid
probability sample. It would also be worthwhile stratifying
according to the size of the establishment and its type.

Cluster and multistage sampling are used because a
suitable sampling frame of population units does not exist
but a list of PSUs does, or because they are less costly
than a single stage sample of the same size in terms of
population units. In multistage sampling the probability a
population unit is selected is the probability the PSU con-
taining the unit is selected multiplied by the conditional
probability that the unit is selected given that the PSU it is
in is selected.

Cluster and multistage sampling are often cheaper and
more convenient than other methods but there is usually
an increase in standard errors for the same sample size in
terms of number of finally selected population units. It is
important that the estimation of sampling error reflects the
sample design used (See Lohr 1999, Chap. 9).

In many situations, the problems of compiling lists of
population units and travel between selected population
units are present even within selected PSUs. Consideration
is then given to selecting the sample of population units
within a selected PSU by grouping the population units
into second stage units, a sample of which is selected. The
population units are then selected from selected second
stage units. This is called three-stage sampling. This pro-
cess can be continued to any number of stages. The set of
all selected population units in a selected PSU is called an
ultimate cluster.

Multistage sampling is very flexible since many aspects
of the design have to be chosen including the number of
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stages and, for each stage, the unit of selection, the method
of selection and number of units selected. Stratification
and ratio or other estimation techniques may be used. This
flexibility means that there is large scope for meeting the
demands of a particular survey in an efficient way.

For a multistage sample the sampling variance of an
estimator of a mean or total has a component arising from
each stage of selection. The contribution of a stage of selec-
tion is determined by the number of units selected at that
stage and the variation between the units at that stage,
within the units at the next highest level. The precise for-
mula depends on the selection and estimation methods
used (See Lohr 1999, Chaps. 5-6; Cochran 1977, Chaps. 9,
9A, 10-11; Kish 1963, Chaps. 5-7, 9-10).

If PSUs vary appreciably in size then it can be useful to
control the impact of this variation using ratio estimation
or Probability Proportional to Size (PPS) sampling using
the number of units in the PSU. For two-stage sampling a
common design involves PPS selection of PSUs and selec-
tion of an equal number of units in each selected PSU. This
gives each population unit the same chance of selection,
which is usually a sensible feature for a sample of people,
and an equal workload within each selected PSU, which
has operational benefits. The first stage component of vari-
ance is determined by the variation of the PSU means. To
use PPS sampling we need to know the population size of
each PSU in the population. For ratio estimation we only
need to know the total population size.

Optimal Design in Multistage Sampling
One of the main problems in designing multistage samples
is to determine what size sample within selected PSUs to
take to optimally balance cost and sampling error. In a two
stage sampling scheme in which m PSUs are to be selected
and the average number of units selected in each PSU is n
the sampling variance is minimized for fixed sample size
when n = 1, since then the sample includes the largest
number of PSUs. However, costs will be minimized when
as few PSUs as possible are selected. Costs and variances
are pulling in opposite directions and we must try to opti-
mally balance them. In a two-stage sample several types
of costs can be distinguished: overhead costs, costs associ-
ated with the selection of PSUs and costs associated with
the selection of 2nd stage units. This leads to specifying a
cost function of the form

Co + Cim + Comn.

For some of the common two-stage sampling and estima-
tion methods used in practice the variance of the estimator

of total or mean can be written as

2 2
2V V.
Vo + —— + =,
mn

For fixed cost the variance is minimized by choosing

_ C V2
n=7\|—=—-5.
C V2

The optimum choice of 7 thus depends on the ratios of
costs and variances. As the first stage costs increase rela-
tive to the second stage costs the optimum 7 increase, so
we are led to a more clustered sample. As the second stage
component of variance increases relative to the first stage
we are also led to a more clustered design.

The optimum value of 7 can be expressed in terms

2
of the measure of homogeneity § = %, as
Vie+V,

_ C1-6 _
n=4/ C—lT As § increases the optimal choice of n
2

decreases. For example if C;/C, = 10 and § = 0.05 then
the optimal # = 14. To determine the optimal choice of 71
we only need to obtain an idea of the ratio of first stage to
second stage cost coeflicients and 6.
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Suppose that we have an outcome variable, a single contin-
uous covariate X, and a suitable regression model relating
them. Our starting point is the straight line model, X
(for simplicity, we suppress the constant term, o). Often
a straight line is an adequate description of the relation-
ship, but other models must be investigated for possible
improvements in fit. A simple extension of the straight
line is a power transformation model, B X?. The latter
model has often been used by practitioners in an ad hoc
way, utilising different choices of p. Royston and Altman
(1994) formalize the model slightly by calling it a first-
degree fractional polynomial or FP1 function. The power
p is chosen from a pragmatically chosen restricted set
S={-2,-1,-05,0,0.5,1,2,3}, where X° denotes log X.

As with polynomial regression, extension from one-
term FP1 functions to the more complex and flexi-
ble two-term FP2 functions follows immediately. Instead
of fiX' + B2X?, FP2 functions with powers (pi,p2) are
defined as i X*' + B,X** with p; and p, taken from S. If
p1 = p2 Royston and Altman proposed i1 X' + B> X?' log X,
a so-called repeated-powers FP2 model.

For a more formal definition, we use the nota-
tion from Royston and Sauerbrei (2008). An FP1 func-
tion or model is defined as ¢1 (X,p) = o + piX?,
the constant (o) being optional and context-specific.
For example, B is usually included in a normal-errors
regression model but is always excluded from a Cox
proportional-hazards model. An FP2 transformation of
X with powers p = (p1,p2), or when p1 = p;
with repeated powers p = (p1, p1) is the vector XP with

(XPr, xP2), pL#p2
(X, X" logX), pi1=p2

XP — X(Pl»Pz) —

An FP2 function (or model) with parameter vector
B=(B1,B2)" and powers p is @2 (X,p) =fo + XPB.
With the set S of powers as just given, there are
8 FP1 transformations, 28 FP2 transformations with
distinct powers (p1 # p2) and 8 FP2 transformations with

equal powers (p; = p>). The best fit among the combina-
tions of powers from S is defined as that with the highest
likelihood.

The general definition of an FPm function with powers
p = (p1 < - < pm) is conveniently written as a recurrence
relation. Let iy (X) = 1and po = 0. Then

o (X,p) = o + X8 = fo + 3 iy (X)
j=1

whereforj=1,...,m

XP, pi-1#pj

By (X) =
J hji1 (X)logX, pj-1 =p;

For example, for m = 2 and p = (-1,2) we have
h(X) = X, hy(X) = X2 For p = (2,2) we have
hi (X) = X%, hy (X) = X*log X.

Figure 1 shows some FP2 curves, chosen to indicate
the flexibility available with a few pairs of powers (p1, p2).
The ability to fit a variety of curve shapes, some of which
have asymptotes or which have both a sharply rising or
falling portion and a nearly flat portion, to real data is a
particularly useful practical feature of FP2 functions.

Function Selection Procedure (FSP)
Choosing the best FP1 or FP2 function by mininizing the
deviance (minus twice the maximized log likelihood) is
straightforward. However, having a sensible default func-
tion is important for increasing the parsimony, stability
and general usefulness of selected functions. In most of the
algorithms implementing FP modelling, the default func-
tion is linear — arguably, a natural choice. Therefore, unless
the data support a more complex FP function, a straight
line model is chosen. There are occasional exceptions;
for example, in modelling time-varying regression coeffi-
cients in the Cox model, Sauerbrei et al. (2007a) chose a
default time transformation of log ¢ rather than ¢.

It is assumed in what follows that the null distribu-
tion of the difference in deviances between an FPm and
an FP(m —1) model is approximately central y* on two
degrees of freedom. Justification of this result is given in
Sect. 4.9.1 of Royston and Sauerbrei (2008) and supported
by simulation results (Ambler and Royston 2001).

For FP model selection, Royston and Sauerbrei (2008)
proposed using the following closed test procedure
(although other procedures are possible). It runs as follows:

1. Test the best FP2 model for X at the « significance level
against the null model using four d.f. If the test is not
significant, stop, concluding that the effect of X is “not
significant” at the « level. Otherwise continue.
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Multivariable Fractional Polynomial Models. Fig. 1 Examples of FP2 curves for different powers (p1, p2)

2. Test the best FP2 for X against a straight line at the
a level using three d.f. If the test is not significant,
stop, the final model being a straight line. Otherwise
continue.

3. Test the best FP2 for X against the best FP1 at the o
level using two d.f. If the test is not significant, the final
model is FP1, otherwise the final model is FP2. End of
procedure.

The test at step 1 is of overall association of the out-
come with X. The test at step 2 examines the evidence for
non-linearity. The test at step 3 chooses between a simpler
or more complex non-linear model. Before applying the
procedure, the analyst must decide on the nominal P-value
() and on the degree (m) of the most complex FP model
allowed. Typical choices are a = 0.05 and FP2 (m = 2).

Multivariable Fractional Polynomial
(MFP) Procedure

In many studies, a relatively large number of predictors is
available and the aim is to derive an interpretable multi-
variable model which captures the important features of
the data: the stronger predictors are included and plausible
functional forms are found for continuous variables.

As a pragmatic strategy to building such models, a sys-
tematic search for possible non-linearity (provided by the
FSP) is added to a backward elimination (BE) procedure.
For arguments to combine FSP with BE, see Royston and
Sauerbrei (2008). The extension is feasible with any type of
regression model to which BE is applicable. Sauerbrei and

Royston (1999) called it the multivariable fractional poly-
nomial (MFP) procedure, or simply MFP. Using MFP suc-
cessfully requires only general knowledge about building
regression models.

The nominal significance level is the main tuning
parameter required by MFP. Actually, two significance lev-
els are needed: «; for selecting variables with BE, and a»
for comparing the fit of functions within the FSP. Often,
a1 = ay is a good choice. A degree greater than 2 (m > 2) is
rarely if ever needed in a multivariable context. Since the
model is derived data-dependently, parameter estimates
are likely to be somewhat biased.

As with any multivariable selection procedure checks
of the underlying assumptions and of the influence
of single observations are required and may result
in model refinement. To improve robustness of FP
models in the univariate and multivariable context
Royston and Sauerbrei (2007) proposed a preliminary
transformation of X. The transformation shifts the origin
of X and smoothly pulls in extreme low and extreme high
values towards the center of the distribution. The transfor-
mation is linear in the central bulk of the observations.

If available, subject-matter knowledge should replace
data-dependent model choice. Only minor modifications
are required to incorporate various types of subject-matter
knowledge into MFP modelling. For the discussion of a
detailed example, see Sauerbrei and Royston (1999).

For model-building by selection of variables and func-
tional forms for continuous predictors, MFP has several
advantages over spline-based models (the most important
alternatives). For example, MFP models exhibit fewer
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artefacts in fitted functions, and are more transportable,
mathematically concise and generally more useful than
spline models (Royston and Sauerbrei 2008; Sauerbrei et al.
2007b). Residual analysis with spline models may be used
to check whether the globally defined functions derived
by MFP analysis have missed any important local features
in the functional form for a given continuous predictor
(Binder and Sauerbrei 2010).

Recommendations for practitioners of MFP modelling
are given in Royston and Sauerbrei (2008) and Sauerbrei
et al. (2007b).

Extensions of MFP to Investigate for
Interactions

MFP was developed to select main effects of predictors on
the outcome. If a variable X, explains (at least partially)
the relationship between a predictor X; and the outcome
Y then confounding is present. Another important issue is
interaction between two or more predictors in a multivari-
able model. An interaction between X; and X; is present if
X, modifies the relationship between X; and the outcome.
That means that the effect of X; is different in subgroups
determined by X;. Extensions of MFP have been proposed
to handle two-way interactions involving at least one con-
tinuous covariate (Royston and Sauerbrei 2004). Higher
order interactions, which typically play a role in factorial
experiments, are a further extension, but not one that has
yet been considered in the FP context.

To investigate for a possible interaction between a con-
tinuous predictor and two treatment arms in a randomized
controlled trial, the multivariable fractional polynomial
interaction (MFPI) procedure was introduced (Royston
and Sauerbrei 2004). In a first step, the FP class is used
to model the prognostic effect of the continuous variable
separately in the two treatment arms, usually under some
restrictions such as the same power terms in each arm.
In a second step, a test for the equality of the prognos-
tic functions is conducted. If significant, an interaction is
present and the difference between two functions estimates
the influence of the prognostic factor on the effect of treat-
ment. The difference function is called a treatment effect
function (and should be plotted). For interpretation, it is
important to distinguish between the two cases of a prede-
fined hypothesis and of searching for hypotheses (Royston
and Sauerbrei 2004, 2008).

For more than two groups, extensions to investigate
continuous by categorical interactions are immediate. Fur-
thermore, MFPI allows investigation of treatment-covariate
interactions in models with or without adjustment for
other covariates. The adjustment for other covariates
enables the use of the procedure in observational studies,

where the multivariable context is more important than in
an RCT.

Continuous-by-continuous interactions are important
in observational studies. A popular approach is to assume
linearity for both variables and test the multiplicative term
for significance. However, the model may fit poorly if
one or both of the main effects is non-linear. Royston
and Sauerbrei (2008, Chap. 7) introduced an extension of
MFPI, known as MFPIgen, in which products of selected
main effect FP functions are considered as candidates for
an interaction between a pair of continuous variables. Sev-
eral continuous variables are usually available, and a test of
interaction is conducted for each such pair. If more than
one interaction is detected, interactions are added to the
main-effects model in a step-up manner.

The MFPT(ime) algorithm (Sauerbrei et al. 2007a)
combines selection of variables and of the functional
form for continuous variables with determination of time-
varying effects in a Cox proportional hazards model for
»survival data. A procedure analogous to the FSP was sug-
gested for investigating whether the effect of a variable
varies in time, i.e., whether a time-by-covariate interaction
is present.

Further Contributions to Fractional
Polynomial Modelling

Methods based on fractional polynomials have been
reported recently, aiming to improve or extend the mod-
elling of continuous covariates in various contexts. For
example, Faes et al. (2007) applied model averaging to frac-
tional polynomial functions to estimate a safe level of expo-
sure; Lambert et al. (2005) considered time-dependent
effects in regression models for relative survival; and Long
and Ryoo (2010) used FPs to model non-linear trends in
longitudinal data. For further topics and references, see
Sect. 11.3 of Royston and Sauerbrei (2008).
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ANOVA (»analysis of variance) tests whether mean differ-
ences among groups on a single DV (dependent variable)
are likely to have occurred by chance. MANOVA (multi-
variate analysis of variance) tests whether mean differences
among groups on a combination of DVs are likely to have
occurred by chance. For example, suppose a researcher
is interested in the effect of different types of treatment
(the IV; say, desensitization, relaxation training, and a
waiting-list control) on anxiety. In ANOVA, the researcher
chooses one measure of anxiety from among many. With
MANOVA, the researcher can assess several types of anx-
iety (say, test anxiety, anxiety in reaction to minor life
stresses, and so-called free-floating anxiety). After random
assignment of participants to one of the three treatments
and a subsequent period of treatment, participants are
measured for test anxiety, stress anxiety, and free-floating
anxiety. Scores on all three measures for each participant
serve as DVs. MANOVA is used to ask whether a combi-
nation of the three anxiety measures varies as a function
of treatment. (MANOVA is statistically identical to dis-
criminant analysis. The difference between the techniques
is one of emphasis. MANOVA emphasizes the mean dif-
ferences and statistical significance of differences among
groups. Discriminant analysis (see »Discriminant Analy-
sis: An Overview, and »Discriminant Analysis: Issues and
Problems) emphasizes prediction of group membership
and the dimensions on which groups differ.)

MANOVA developed in the tradition of ANOVA. Tra-
ditionally, MANOVA is applied to experimental situa-
tions where all, or at least some, IVs are manipulated
and participants are randomly assigned to groups, usu-
ally with equal cell sizes. The goal of research using
MANOVA is to discover whether outcomes, as reflected by
the DVs, are changed by manipulation (or other action) of
the IVs.

In MANOVA, a new DV is created from the set of DV's
that maximizes group differences. The new DV is a linear
combination of measured DVs, combined so as to separate
the groups as much as possible. ANOVA is then performed
on the newly created DV. As in ANOVA, hypotheses about
means are tested by comparing variances between means
relative to variances in scores within groups-hence multi-
variate analysis of variance.

In factorial or more complicated MANOVA, a different
linear combination of DVs is formed for each IV and
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interaction. If gender of participant is added to type of
treatment as a second I'V, one combination of the three DVs
maximizes the separation of the three treatment groups,
a second combination maximizes separation of women
and men, and a third combination maximizes separation
of the six cells of the interaction. Further, if an IV has
more than two levels, the DVs can be recombined in yet
other ways to maximize the separation of groups formed
by comparisons.

MANOVA has a number of advantages over ANOVA.
First, by measuring several DVs instead of only one, the
researcher improves the chance of discovering what it is
that changes as a result of different IVs and their interac-
tions. For instance, desensitization may have an advantage
over relaxation training or waiting-list control, but only on
test anxiety; the effect is missed in ANOVA if test anxiety
is not chosen as the DV. A second advantage of MANOVA
over a series of ANOVAs (one for each DV) is protec-
tion against inflated Type I error due to multiple tests of
(likely) correlated DVs. (The linear combinations them-
selves are usually of interest in discriminant analysis, but
not in MANOVA.)

Another advantage of MANOVA is that, under cer-
tain, probably rare conditions, it may reveal differences not
shown in separate ANOVAs (Maxwell 2001). Such a sit-
uation is shown in Fig. 1 for a one-way design with two
levels. In this figure, the axes represent frequency distribu-
tions for each of two DVs, Y1 and Y,. Notice that from the
point of view of either axis, the distributions are sufficiently
overlapping that a mean difference might not be found in
ANOVA. The ellipses in the quadrant, however, represent
the distributions of Y; and Y, for each group separately.
When responses to two DVs are considered in combina-
tion, group differences become apparent. Thus, MANOVA,
which considers DVs in combination, may occasionally be
more powerful than separate ANOVAs.

The goal in MANOVA is to choose a small number of
DVs where each DV is related to the IV, but the DV’ are
not related to each other. Good luck. In the usual situation
there are correlations among the DV, resulting in some
ambiguity in interpretation of the effects of IVs on any
single DV and loss of power relative to ANOVA. Figure 2
shows a set of hypothetical relationships between a single
IV and four DVs. DVlis highly related to the IV and shares
some variance with DV2 and DV3. DV2 is related to both
DV1 and DV3 and shares very little unique variance with
the IV. DV3 is somewhat related to the IV, but also to all of
the other DVs. DV4 is highly related to the IV and shares
only a little bit of variance with DV3. Thus, DV2 is com-
pletely redundant with the other DVs, and DV3 adds only
a bit of unique variance to the set. (However, DV2 might
be useful as a covariate if that use is conceptually viable

Y

Y

Multivariate Analysis of Variance (MANOVA). Fig.1 Advant-
age of MANOVA, which combines DVs, over ANOVA. Each axis
represents a DV; frequency distributions projected to axes
show considerable overlap, while ellipses, showing DVs in
combination, do not

Multivariate Analysis of Variance (MANOVA). Fig.2 Hypothe-
tical relationships among a single IV and four DVs

because it reduces the total variances in DVs 1 and 3 that
are not overlapping with the IV.)

Although computing procedures and programs for
MANOVA and MANCOVA are not as well developed as
for ANOVA and ANCOVA, there is in theory no limit
to the generalization of the model. The usual questions
regarding main effects of IVs, interactions among IVs,
importance of DVs, parameter estimates (marginal and
cell means), specific comparisons and trend analysis (for
IVs with more than two levels), effect sizes of treatments,
and effects of covariates, if any, are equally interesting with
MANOVA as with ANOVA. There is no reason why all
types of designs - one-way, factorial, repeated measures,
nonorthogonal, and so on - cannot be extended to research
with several DVs.

For example, multivariate analysis of covariance
(MANCOVA) is the multivariate extension of ANCOVA.
MANCOVA asks if there are statistically significant mean
differences among groups after adjusting the newly created
DV for differences on one or more covariates. To extend
the example, suppose that before treatment participants are
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pretested on test anxiety, minor stress anxiety, and free-
floating anxiety; these pretest scores are used as covariates
in the final analysis. MANCOVA asks if mean anxiety on
the composite score differs in the three treatment groups,
after adjusting for preexisting differences in the three types
of anxieties.

MANOVA is also a legitimate alternative to repeated-
measures ANOVA in which differences between pairs of
responses to the levels of the within-subjects IV are simply
viewed as separate DVs.

Univariate analyses are also useful following a
MANOVA or MANCOVA. For example, if DVs can be
prioritized, ANCOVA is used after MANOVA (or MAN-
COVA) in Roy-Bargmann stepdown analysis where the
goal is to assess the contributions of the various DVs to
a significant effect (Bock 1971; Bock and Haggard 1968).
One asks whether, after adjusting for differences on higher-
priority DVs serving as covariates, there is any significant
mean difference among groups on a lower-priority DV.
That is, does a lower-priority DV provide additional sep-
aration of groups beyond that of the DVs already used?
In this sense, ANCOVA is used as a tool in interpret-
ing MANOVA results. Results of stepdown analysis are
reported in addition to individual ANOVAs.

However, MANOVA is a substantially more com-
plicated analysis than ANOVA because there are sev-
eral important issues to consider. MANOVA has all of
the complications of ANOVA (e.g., homogeneity of vari-
ance; equality of sample sizes within groups; absence of
»outliers; power, cf. Woodward et al. 1990; normality of
sampling distributions, independence of errors) and sev-
eral more besides (homogeneity of variance-covariance
matrices; multivariate normality, cf. Mardia 1971 and Seo
et al. 1995; linearity, absence of »multicollinearity and sin-
gularity; and choice among statistical criteria, cf. Olson
1979). These are not impossible to understand or test prior
to analysis, but they are vital to an honest analysis.

Comprehensive statistical software packages typically
include programs for MANOVA. The major SPSS mod-
ule is GLM, however the older MANOVA module remains
available through syntax and includes Roy-Bargmann
stepdown analysis as an option. NCSS and SYSTAT have
specific MANOVA modules, whereas SAS provides analy-
sis of MANOVA through its GLM module. Analysis is also
available through BMDP4YV, STATA, and Statistica.

For more information about MANOVA, see Chaps. 7
and 8 of Tabachnick and Fidell (2007).
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Most business problems involve many variables. Managers
look at multiple performance measures and related metrics
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when making decisions. Consumers evaluate many char-
acteristics of products or services in deciding which to
purchase. Multiple factors influence the stocks a broker
recommends. Restaurant patrons consider many factors in
deciding where to dine. As the world becomes more com-
plex, more factors influence the decisions managers and
customers make. Thus, increasingly business researchers,
as well as managers and customers, must rely on more
sophisticated approaches to analyzing and understanding
data.

Analysis of data has previously involved mostly uni-
variate and bivariate approaches. Univariate analysis
involves statistically testing a single variable, while bivari-
ate analysis involves two variables. When problems involve
three or more variables they are inherently multidimen-
sional and require the use of multivariate data analysis.
For example, managers trying to better understand their
employees might examine job satisfaction, job commit-
ment, work type (part-time vs. full-time), shift worked
(day or night), age and so on. Similarly, consumers
comparing supermarkets might look at the freshness and
variety of produce, store location, hours of operation,
cleanliness, prices, courtesy and helpfulness of employ-
ees, and so forth. Managers and business researchers need
multivariate statistical techniques to fully understand such
complex problems.

Multivariate data analysis refers to all statistical meth-
ods that simultaneously analyze multiple measurements
on each individual respondent or object under investiga-
tion. Thus, any simultaneous analysis of more than two
variables can be considered multivariate analysis. Multi-
variate data analysis is therefore an extension of univariate
(analysis of a single variable) and bivariate analysis (cross-
classification, correlation, and simple regression used to
examine two variables).

Figure 1 displays a useful classification of statistical
techniques. Multivariate as well as univariate and bivari-
ate techniques are included to help you better understand
the similarities and differences. As you can see at the top,
we divide the techniques into dependence and interdepen-
dence depending on the number of dependent variables.
If there is one or more dependent variables a technique is
referred to as a dependence method. That is, we have both
dependent and independent variables in our analysis. In
contrast, when we do not have a dependent variable we
refer to the technique as an interdependence method. That
is, all variables are analyzed together and our goal is to form
groups or give meaning to a set of variables or respondents.

The classification can help us understand the differ-
ences in the various statistical techniques. If a research
problem involves association or prediction using both

techniques on the left side of the diagram is appro-
priate. The choice of a particular statistical technique
depends on whether the dependent variable is metric
or nonmetric, and how many dependent variables are
involved. With a nonmetric, ordinally measured depen-
dent we would use the Spearman correlation. With a non-
metric, nominal dependent variable we use discriminant
analysis (see »Discriminant Analysis: An Overview, and
»Discriminant Analysis: Issues and Problems), conjoint
analysis or »logistic regression. On the other hand, if
our dependent variable is metric, we can use correlation,
regression, ANOVA or MANOVA, canonical correlation,
and conjoint analysis (the statistical technique of conjoint
analysis can be formulated to handle both metric and non-
metric variables). The various statistical techniques are
defined in Fig. 2. For more information on multivariate
statistical techniques see Hair et al. (2010).

Concluding Observations

Today multivariate data analysis is being used by most
medium and large sized businesses, and even some small
businesses. Also, most business researchers rely on mul-
tivariate analysis to better understand their data. Thus,
in today’s business environment it’s just as important to
understand the relationship between variables, which often
requires multivariate analysis, as it is to gather the infor-
mation in the first place. The importance of multivariate
statistical methods that help us to understand relationships
has increased dramatically in recent years. What can we
expect in the future as applications of multivariate data
analysis expand: (1) data will continue to increase expo-
nentially, (2) data quality will improve as will data cleaning
techniques and data maintenance, (3) data analysis tools
will be more powerful and easier to use, and (4) there will
be many more career opportunities involving examining
and interpreting data using multivariate data analysis.
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Multivariate Data Analysis: An Overview. Fig.1 Classification of statistical techniques

ANOVA - ANOVA stands for analysis of variance. It is used to examine statistical differences between the means
of two or more groups. The dependent variable is metric and the independent variable(s) is nonmetric. One-way
ANOVA has a single non-metric independent variable and two-way ANOVA can have two or more non-metric
independent variables. ANOVA is bivariate while MANOVA is the multivariate extension of ANOVA.

Bivariate Regression - this is a type of regression that has a single metric dependent variable and a single
metric independent variable.

Cluster Analysis - this type of analysis enables researchers to place objects (e.g., customers, brands, products)
into groups so that objects within the groups are similar to each other. At the same time, objects in any particular
group are different from objects in all other groups.

Correlation - correlation examines the association between two metric variables. The strength of the asso-
ciation is measured by the correlation coefficient. Canonical correlation analyzes the relationship between
multiple dependent and multiple independent variables, most often using metric measured variables.
Conjoint Analysis - this technique enables researchers to determine the preferences individuals have for
various products and services, and which product features are valued the most.

Discriminant Analysis — enables the researcher to predict group membership using two or more metric
dependent variables. The group membership variable is a non-metric dependent variable.

Factor Analysis - this technique is used to summarize the information from a large number of variables into
a much smaller number of variables or factors. This technique is used to combine variables whereas cluster
analysis is used to identify groups with similar characteristics.

Logistic Regression — logistic regression is a special type of regression that involves a non-metric dependent
variable and several metric independent variables.

Multiple Regression - this type of regression has a single metric dependent variable and several metric
independent variables.

MANOVA - same technique as ANOVA but it can examine group differences across two or more metric
dependent variables at the same time.

Perceptual Mapping - this approach uses information from other statistical techniques (e.g., multidimensional
scaling) to map customer perceptions of products, brands, companies, and so forth.

Multivariate Data Analysis: An Overview. Fig. 2 Definitions of statistical techniques
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The multivariate normal distribution is a generalization
of the familiar univariate normal or Gaussian distribution

(Hogg et al. 2005; Miller and Miller 1999) to p > 2 dimen-
sions. Just as with its univariate counterpart, the impor-
tance of the multivariate normal distribution emanates
from a number of its useful properties, and especially
from the fact that, according to the central limit theorem
(Anderson 2003; Johnson and Wichern 2007) under cer-
tain regularity conditions, sum of random variables gener-
ated from various (likely unknown) distributions tends to
behave as if its underlying distribution were multivariate
normal.

The need for generalization to the multivariate dis-
tribution naturally arises if we simultaneously investigate
more than one quantity of interest. In that case, single
observation (result of an experiment) is not value of a
single variable, but the set of p values of p > 2 random
variables. Therefore, we deal with p x 1 random vector
X and each single observation becomes p x 1 vector x
of single realizations of p random variables under exam-
ination. All these variables have their particular expected
values that jointly constitute p x 1 mean vector u, which
is expected value of random vector X. Since analysis of
collective behaviour of several quantities must take into
account their mutual correlations, in multivariate analysis
we also define p x p variance-covariance matrix

T = cov(X) = E[(X— u) (X~ M)T]

o1 012 e U]p
021 022 ... O

= , @
O'pl (TPZ e OPP

where o;; are covariances between ith and jth component
of X and o;; are variances of ith variable (more commonly
denoted 01-2). This matrix is symmetric because o;; = o0j;
and it is assumed to be positive definite.

Conceptually, the development of multivariate normal
distribution starts from the univariate probability density
function of a normal random variable X with the mean y
and variance 0°. Common notation is X ~ N(y, o”) and
probability density function (pdf) of X is

1 _(X—M)z 1 _l(x—l/‘)2

o

\V2mno? \V2mo?
1 1,
= e 2" ;—00 < x < +0o. 2)

Variable Z is so-called standard normal variable or z-
score and it represents the square of the distance from
a single observation (measurement) x to the population
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Multivariate Normal Distributions. Fig. 1 Bivariate normal distribution with: left - o1 = 0, p = 0; right - 01 = 02,p = 0,75

mean y, expressed in standard deviation units. It is this dis-
tance that directly generalizes to p > 2 dimensions, because
in the univariate case we can write

(x;//l)Zz (x—‘u)(az)fl(x—#), 3)

and in the multivariate case, by analogy, we have the Maha-
lanobis distance (Johnson and Wichern 2007) expressed as

(x-u) 27 (x-p). 4)

The multivariate normal probability density function
is obtained (Anderson 2003; Hogg et al. 2005; John-
son and Wichern 2007) by replacing (3) by (4) in the
density function (2) and substituting the normalizing
constant by (27) #/%|g|/%, so that the p-dimensional
normal probability density for the random vector X =
(X1, Xa, ..., X,  is

_ 1 —-X-p) 27 (X-p) /2
f(X) - (Zﬂ)P/2|2|1/ze (5)

where x; € (—o0,00) and i = 1,2,..., p. Again analogously
to the univariate case, we write X ~ N, (g, Z).

As an example, consider bivariate (p = 2) distribution
in terms of the individual parameters p1, 2, 67 = ou1, 05 =
02 and 013 = 021. If we also introduce correlation coefficient
p = piz = corr(X1,X2) = 013/ (01 - 02), density (5) becomes

1 exp{ 1 [(xl—m)Z
2no102+/1 — p? 2(1-p?) 01

+(x2—[42)2_2px1—//llxz—[lz:l}. )

02 01 02

flxx2) =

Formula (6) clearly indicates certain important general
properties of multivariate normal distributions. First of all,
if random variables X; and X, are uncorrelated, i.e., p = 0,
it immediately follows that their joint density (6) can be
factored as the product of two univariate normal densi-
ties of the form of (2). Since f (x1,x2) factors as f(x1,x2) =
f(x1) - f(x2), it follows that if X; and X, are uncorre-
lated, they are also statistically independent. This is a direct
consequence of the general (p > 2) multivariate normal
property that uncorrelated variables are independent and
have marginal distributions univariate normal. However,
converse is not necessarily true for both of these state-
ments and requires caution. Independent normal variables
certainly are uncorrelated (this is true for any distribu-
tion anyway), but marginal distributions may be univari-
ate normal without the joint distribution being multivari-
ate normal. Similarly, marginally normal variables can be
uncorrelated without being independent (Anderson 2003;
Miller and Miller 1999).

Several other general properties of multivariate normal
distribution are easier to conceive by studying the bivari-
ate normal surface defined by (6) and illustrated in Fig. 1.
Obviously, the bivariate (as well as multivariate) proba-
bility density function has a maximum at (g1, p2). Next,
any intersection of this surface and a plane parallel to
the z-axis has the shape of an univariate normal distribu-
tion, indicating that marginal distributions are univariate
normal.

Finally, any intersection of this surface and a plane
parallel to the x1x; plane is an ellipse called contour of
constant probability density. In the special case when vari-
ables are uncorrelated (independent) and o1 = 0, (Fig. 1
- left), contours of constant probability density are circles
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and it is customary to refer to the corresponding joint
density as a circular normal density. When variables are
uncorrelated, but oy # 02, contours are ellipses whose
semi-axes are parallel to the x;,x; axes of the coordinate
system. In the presence of correlation, probability density
concentrates along the line (Fig. 1 - right) determined by
the coefficient of correlation and variances of variables,
so the contours of constant probability density are ellipses
rotated in a plane parallel to x;x, plane (Anderson 2003;
Miller and Miller 1999). All these properties are valid in
p-dimensional spaces (p > 2) as well.

Here is the list of most important properties of the
multivariate normal distribution (Anderson 2003; Johnson
and Wichern 2007; Rao 2002).

1. Let X be arandom vector X ~ N, (g, X) and a an arbi-
trary p x 1 vector. Then the linear combination a’X =
aXi+a:Xo+. .. +a,X, is distributed as N(a’ p,a” a).
In words, any linear combination of jointly normal ran-
dom variables is normally distributed. Converse is also
true: if a’ X is ~ N(a’ u,a” Za) for every a, then X ~
N,y (s, %).

2. Generalization of property 1: Let X be a random vector
X ~ Ny(@, ) and let us form g linear combinations
AX, where A is an arbitrary g x p matrix. Then it is true
that AX ~ N, (Au, AZA"). Similarly, for any vector of
constants d we have X +d ~ N, (u +d, X).

3. All subsets of variables constituting X ~ N, (¢, X) are
(multivariate) normally distributed.

4. Multivariate normal g; x 1 and ¢, x 1 vectors X; and
X, are independent if and only if they are uncor-
related, ie, cov(X1,X2) = 0 (a q1 x g2 matrix of
Z€108).

5. If multivariate normal ¢q; x 1 and g, x 1 vectors X; and
X, are independent and distributed as Ny (g, Z11) and
Ng2(p,, Z22), respectively, then (g1 + g2) x 1 vector

[X{ XI]" has multivariate normal distribution

X1 [,ll 211 0
~ qu+"12 >
X, U, 0 X
6. Let X;,X;,...,X, be mutually independent random

vectors that are all multivariate normally distributed,
each having its particular mean, but all having the same
covariance matrix X, i.e., Xj ~ NP(.”;’ ¥). Linear com-

bination of these vectors Vi = aX; + Xz + ... +
n n

cn Xy is distributed as Np (Z Cil)s (Z CJZ) Z) . More-
Jj=1 Jj=1

over, similarly to property 5, Vi and some other linear
combination V, = b X; + 02Xy + ... + b, X, are

jointly multivariate normally distributed with covari-
ance matrix

(En: CJZ) z  (blo)z

j=1

(b7e)E (z b}) s
j=1

Thus, if b”¢ = 0, i.e., vectors b and ¢ are orthogonal, it

follows that V; and V are independent and vice versa.

7. All conditional distributions are multivariate normal.

Formally, let X; and X, be any two subsets of a mul-

tivariate normal vector X ~ N,(u,X) with g =

u, 5o Xn X

#, Yo Zx

ditional distribution of Xj, given a fixed X, = x, is
multivariate normal with

,and |X5;| > 0. The con-

mean(Xy[x2) = p, + T35 (% — #,) and cov(Xi|x2)
= 3 - 222

8. Generalized distance (x — u) 27! (x — ) of observa-
tions x of a vector X ~ N,(g,X) from the mean p
has a chi squared distribution with p degrees of freedom
denoted Xé-

9. With X;,X;,...,X, as a set of n observations from
a (multivariate) normal population with mean g and
covariance X, we have the following results:

(a) Xis distributed as N, (p, (1/n)X)

(b) (n — 1)S has a Wishart distribution; with n — 1
degrees of freedom

(c) X and S are independent.
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In the statistical analysis of data one is often confronted
with observations that “appear to be inconsistent with the
remainder of that set of data” (Barnett and Lewis 1994).
Although such observations (the »outliers) have been the
subject of numerous investigations, there is no general
accepted formal definition of outlyingness. Nevertheless,
the outliers describe abnormal data behavior, i.e., data that
are deviating from the natural data variability (see, e.g.,
Pefia and Prieto 2001, Filzmoser 2004, and Filzmoser et al.
2008 for a discussion).

Sometimes outliers can grossly distort the statistical
analysis, while at other times their influence may not
be as noticeable. Statisticians have accordingly developed
numerous algorithms for the detection and treatment of
outliers, but most of these methods were developed for
univariate data sets. They are based on the estimation of
location and scale, or on quantiles of the data. Since in a
univariate sample outliers may be identified as an excep-
tionally large or small value, a simple plot of the data, such
as scatterplot, stem-and-leaf plot, and QQ-plot can often
reveal which points are outliers.

In contrast, for multivariate data sets the problem of
outliers identification gives challenges that do not occur

with univariate data since there is no simple concept
of ordering the data. Furthermore, the multivariate case
introduces a different kind of outlier, a point that is not
extreme component wise but departs from the prevail-
ing pattern of correlation structure. This departs causes
that the observations appear as univariate outliers in some
direction not easily identifiable. In this context, to detect
an observation as possible outlier not only the distance
from the centroid of the data is important but also the
data shape. Also, as Gnanadesikan and Kettenring (1972)
pointed out the visual detection of multivariate outliers is
virtually impossible because the outliers do not “stick out
on the end”

Since most standard multivariate analysis techniques
rely on the assumption of normality, in 1963, Wilks pro-
posed identifying sets of outliers of size j from {1,2, . ..,n},
in normal multivariate data, by checking the minimum
values of the ratios [A(py|/|A], where [A(p)| is the internal
scatter of a modified sample in which the set of observa-
tions I of size j has been deleted and |A| is the internal
scatter of the complete sample. For j = 1 this method

is equivalent to the classical way to declare a multivari-
ate observation as a possible outlier by using the squared
Mahalanobis’ distance defined as

MD} (xi,t,V) = ((xi - ) 'V (x; - 1))/

where t is the estimated multivariate location and V the
estimated scatter matrix. Usually t is the multivariate arith-
metic mean, the centroid, and V the sample covariance
matrix. Mahalanobis’ distance identifies observations that
lie far away from the center of the data cloud, giving less
weight to variables with large variances or to groups of
highly correlated variables. For a p-multivariate normally
distributed data MDj (x;, t, V) converge to Xf,, a chi-square
distribution with p degree of freedom. Points with large
MD; = MD?(x;,t, V), compared with some X12> quantile,
are then considered outliers. Hence, to evaluate multivari-
ate normality one may plot the ordered MD%i) against the
expected order statistics of the »chi-square distribution
with sample quantiles )(12,[(1.71 /2)/2] = 4qi where g; (i =
1,...,n) is the 100(i — 1/2)/n sample quantile of )(f,. The
plotted points (MD;),q;) should be close to a line, so
the points far from the line are potential outliers. Formal
tests for multivariate outliers are considered by Barnett and
Lewis (1994).

Clearly, the Mahalanobis distance relies on classical
location and scatter estimators. The presence of outliers
may distort arbitrarily the values of these estimators and
render meaningless the results. This is particularly acute
when there are several outliers forming a cluster, because
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they will move the arithmetic mean toward them and
inflate the classical tolerance ellipsoid in their direction.
So this approach suffers from the masking and swamp-
ing effects by which multiple outliers do not have a large
MD#. A solution to this problem is well known in »robust
statistics: t and V have to be estimated in a robust manner,
where the expression “robust’means resistance against the
influence of outlying observations. Thus, the “robustified”
ordered Mahalanobis distances, RMD%i) may be plotted to
locate extreme outliers. This is the approach considered by
Becker and Gather (2001), Filzmoser (2004), and Hardin
and Rocke (2005) who studied outlier identification rules
adapted to the sample size using different location and
scatter robust estimators.

For a review on some of the robust estimators for loca-
tion and scatter introduced in the literature see Maronna
et al. (2006). The minimum covariance determinant
(MCD) estimator - the procedure is due to Rousseeuw
(1984) - is probably most frequently used in practice, partly
because a computationally fast algorithm has been devel-
opped (Rousseeuw and Van Driessen 1999). The MCD
estimator also benefits from the availability of software
implementation in different languages, including R, S-Plus,
Fortran, Matlab, and SAS. For these reasons the MCD esti-
mator had gained much popularity, not only for outliers
identification but also as an ingredient of many robust
multivariate techniques.

Other currently popular multivariate outlier detec-
tion methods fall under projection pursuit techniques,
originally proposed by Kruskal (1969). Projection pursuit
searches for “interesting” linear projections of multivari-
ate data sets, where a projection is deemed interesting if
it minimizes or maximizes a projection index (typically a
scale estimator). Therefore, the goal of projection pursuit
methods is to find suitable projections of the data in which
the outliers are readily apparent and may thus be down-
weighted to yield a estimator, which in turn can be used
to identify the outliers. Since they do not assume the data
to originate from a particular distribution but only search
for useful projections, projection pursuit procedures are
not affected by non-normality and can be widely applied
in diverse data situations. The penalty for such freedom
comes in the form of increased computational burden,
since it is not clear which projections should be examined.
An exact method would require to test over all possible
directions.

The most well-known outlier identification method
based upon the projection pursuit concept is the Stahel-
Donoho (Stahel 1981; Donoho 1982) estimator. This was
the first introduced high-breakdown and affine equivariant
estimator of multivariate location and scatter that became

better known after Maronna and Yohai (1995) published
an analysis of it. It is based on a measure of the outlying-
ness of data points, which is obtained by projecting the
observation on univariate directions. The Stahel-Donoho
estimator then computes a weighted mean and covariance
matrix, with weights inverse proportional to the outlying-
ness. This outlyingness measure is based upon the projec-
tion pursuit idea that if a point is a multivariate outlier,
there must be some one-dimensional projection of the data
in which this point is a univariate outlier. Using a partic-
ular observation as a reference point, the Stahel-Donoho
algorithm determines which directions have optimal val-
ues for a pair of robust univariate location/scale estimators
and then uses these estimators to assign weights to the
other points. One way of reducing the computational cost
of the Stahel-Donoho estimator is to reduce the number
of projections that need to be examined.

In this direction, Pefia and Prieto (2001) proposed a
method, the Kurtosisl, which involves projecting the data
onto a set of 2p directions. These directions are chosen
to maximize and minimize the kurtosis coefficient of the
data along them. A small number of outliers would cause
heavy tails and lead to a larger kurtosis coefficient, while a
larger number of outliers would start introducing bimodal-
ity and decrease the kurtosis coefficient. Viewing the data
along projections that have maximum and minimum kur-
tosis values would therefore seem to display the outliers in
a more recognizable representation.

For a much more detailed overview about outliers see
Barnett and Lewis (1994) and also Rousseeuw et al. (2006)
for a review on robust statistical methods and outlier
detection.
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Developments »in multivariate statistical analysis have
genesis in the parametrics surrounding the multivariate
normal distribution (see »Multivariate Normal Distribu-
tions) in the continuous case while the product multinomial
law dominates in discrete multivariate analysis. Charac-
terizations of multi-normal distributions have provided
a wealth of rigid mathematical tools leading to a very
systematic evolution of mathematical theory laying down
the foundation of multivariate statistical methods. Inter-
nal multivariate analyses comprising of principal compo-
nent models, canonical correlation and factor analysis are
all based on appropriate invariance structures that exploit
the underlying linearity of the interrelation of different
characteristics, without depending much on underlying

normality, and these tools are very useful in many areas
of applied research, such as sociology, psychology, eco-
nomics, and agricultural sciences. In the recent past, there
has been a phenomenal growth of multivariate analysis in
medical studies, clinical trials and »bioinformatics, among
others. The role of multinormality is being scrutinized
increasingly in these contexts.

External  multivariate analyses pertaining to
»multivariate analysis of variance (MANOVA) and covari-
ance (MANOCOVA), classification and discrimination,
among others, have their roots in the basic assumption
of multinormal distribution, providing some optimal, or
at least desirable, properties of statistical inference proce-
dures. Such optimal statistical procedures generally exist
only when the multinormality assumption holds. Yet, in
real life applications, the postulation of multinormality
may not be tenable in a majority of cases. Whereas in the
univariate case, there are some other distributions, some
belonging to the so-called exponential family of densities
and some not, for which exact statistical inference can be
drawn, often being confined to suitable subclass of statis-
tical procedures. In the multivariate case, alternatives to
multinormal distributions are relatively few and lack gen-
erality. As such, almost five decades ago, it was strongly felt
that statistical procedures should be developed to bypass
the stringent assumption of multinormality; this is the
genesis of multivariate nonparametrics.

Whereas the classical normal theory likelihood based
multivariate analysis exploited affine invariance, leading
to some optimality properties, it has some shortcomings
too. Affine invariance makes sense only when the differ-
ent characteristics or variates are linearly combinable in
a meaningful way. Further, such parametric procedures
are quite vulnerable to even small departures from the
assumed multinormality. Thus, they are generally nonro-
bust even in a local sense. Moreover, in many applications,
different characteristics are recorded on different units and
often on a relative scale (viz., ranking of n individuals on
some multivariate traits) where linearly combinability may
not be compatible. Rather, it is more important to have
coordinatewise invariance under arbitrary strictly mono-
tone transformations - a feature that favors ranks over
actual measurements. Multivariate rank procedures have
this basic advantage of invariance under coordinatewise
arbitrary strictly monotone transformations, not neces-
sarily linear. Of course, this way the emphasis on affine
invariance is sacrificed, albeit, there are affine-invariant
rank procedures too (see Oja 2010).

The basic difference between univariate and multi-
variate rank procedures is that for suitable hypothesis of
invariance, in the univariate case, such procedures are gen-
uinely distribution-free, whereas in the multivariate case,
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even the hypothesis of invariance holds, these tests are usu-
ally conditionally distribution-free. This feature, known as
the rank-permutation principle, was initially developed by
Chatterjee and Sen (1964) and in a more general frame-
work, compiled and reported in Puri and Sen (1971), the
first text in multivariate nonparametrics. During the past
four decades, a phenomenal growth of research litera-
ture in multivariate nonparametrics has taken place; spe-
cific entries in the Encyclopedia of Statistical Science and
Encyclopedia of Biostatistics (both published from Wiley-
Interscience, New York) provide detailed accounts of these
developments.

In the recent past, high-dimensional low sample size
(HDLSS) problems have cropped up in diverse fields of
application. In this setup, the dimension is generally far
larger than the number of sample observations, and hence,
standard parametric procedures are untenable; nonpara-
metrics fare much better. This is a new frontier of multi-
variate nonparametrics and there is a tremendous scope
of prospective research with deep impact on fruitful appli-
cations. »Data mining (or knowledge discovery and data
mining) and statistical learning algorithms also rest on
multivariate nonparametrics to a greater extent. Bioin-
formatics and environmetrics problems also involve such
nonstandard multivariate nonparametric procedures. In
a micro-array data model, an application of multivariate
rank methods has been thoroughly explored in Sen (2008).
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ican Statistical Association for his significant contributions
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two international journals: Sequential Analysis (1982) and
Statistics and Decisions (1983). Currently, he is the Chief
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“Professor Sen’s pioneering contributions have touched
nearly every area of statistics. He is the first person who, in
joint collaboration with Professor S. K. Chatterjee, devel-
oped multivariate rank tests as well as time-sequential
nonparametric methods. He is also the first person who
carried out in-depth research in sequential nonparamet-
rics culminating in his now famous Wiley book Sequential
Nonparametrics: Invariance Principles and Statistical Infer-
ence and STAM monograph” (Malay Ghosh and Michael J.
Schell, A Conversation with Pranab Kumar Sen, Statistical
Science, Volume 23, Number 4 (2008), 548-564.
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Multivariate reduced-rank regression is a way of constrain-
ing the multivariate linear regression model so that the
rank of the regression coefficient matrix has less than full
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rank. Without the constraint, multivariate linear regres-
sion has no true multivariate content.

To see this, suppose we have a random r-vector X
= (Xi,...,Xr)" of predictor (or input) variables with
mean vector g, and covariance matrix Zxx, and a random
s-vector Y = (Y3,..., Ys)" of response (or output) variables
with mean vector u, and covariance matrix Zyy. Suppose
that the (r+s)-vector Z = (X', Y")" has ajoint distribution
with mean vector and covariance matrix,

u Xxx Xxy
Yy = . Xz = )
Hy Xyx Zyy

respectively, where we assume that Xxx and Zyy are both
nonsingular. Now, consider the classical multivariate linear
regression model,

sx1 g1 sXrrxl sx1

Y=p+0 X+ &, 2)
where Y depends linearly on X, p is the overall mean vec-
tor, @ is the multivariate regression coefficient matrix, and
& is the error term. In this model, g and ® are unknown
and are to be estimated. The least-squares estimator of
(u, ©) is given by

(0*,0%) =arg r’r}ig)lE{(Y—y—@X)(Y—y—@)X)T}, (3)

where
p=py-© uy, O =TyxExx. ()

In (3), the expectation is taken over the joint distribution of
(X", Y")". The minimum achieved is Zyy — ZyxZxxZxy-
The (s x r)-matrix ®* is called the (full-rank) regres-
sion coefficient matrix. This solution is identical to that
obtained by performing a sequence of s ordinary least-
squares multiple regressions. For the jth such multiple
regression, Y; is regressed on the r-vector X, where j =
1,2,...,s. Suppose the minimizing regression coefficient
vectors are the r-vectors ﬁf, j = 12,...,s. Arranging
the coefficient vectors as the columns, (B;,..., B ), of an
(r x s)-matrix, and then transposing the result, it follows
from (4) that

©" = (Bi.....B;)". 5)
Thus, multivariate linear regression is equivalent to just
carrying out a sequence of multiple regressions. This is why
multivariate regression is often confused with multiple
regression.

Now, rewrite the multivariate linear model as

sx1l gx1  sxrrxl sx1

Y= +CX+¢, (6)
where the rank constraint is

rank(C) =t < min(r,s). (7)

Equations (6) and (7) form the multivariate reduced-rank
regression model. When the rank condition (7) holds,
there exist two (nonunique) full-rank matrices A and B,
where A is an (s x t)-matrix and B is a (¢ x r)-matrix, such
that

SXr SXt txr

C=A B. (8)
The multivariate reduced-rank regression model can now
be written as

sx1 gx]  Sxttxrrxl sx1

Y=p+ABX+¢£. 9)

The rank condition has been embedded into the regression
model. The goal is to estimate g, A, and B (and, hence, C).

Let T be a positive-definite symmetric (s x s)-matrix of
weights. The weighted least-squares estimates of (p, A, B)
are

(u",A",B") = arg‘lllnil};E{(Y—y—ABX)TF(Y—y—ABX)}

(10)
where
p* =py—ABpy 11
A" =Ty (12)
B* = VT EyxEy, (13)
and V = (vi,...,v;) isan (s x t)-matrix, where the jth col-

umn, vj, is the eigenvector corresponding to the jth largest
eigenvalue, 1}, of the (s x s) symmetric matrix,

ISy Sk T, (14)

The multivariate reduced-rank regression coefficient matrix
C with rank ¢ is, therefore, given by

t
C* = r—1/2 (Z VjV}) FI/ZEYX}:}}(. (15)
j=1

The minimum achieved is tr{ZyyT} — Z]t-zl \j.

The main reason that multivariate reduced-rank
regression is so important is that it contains as spe-
cial cases the classical statistical techniques of »principal
component analysis, canonical variate and correlation
analysis (see »Discriminant Analysis: An Overview, and
»Discriminant Analysis: Issues and Problems), linear dis-
criminant analysis, exploratory factor analysis, multiple
correspondence analysis, and other linear methods of ana-
lyzing multivariate data. It is also closely related to arti-
ficial neural network models and to cointegration in the
econometric literature.

For example, the special cases of principal compo-
nent analysis, canonical variate and correlation analysis,
and linear discriminant analysis are given by the follow-
ing choices: For principal component analysis, set X = Y
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and T' = I for canonical variate and correlation anal-
ysis, set T = Xyy; for linear discriminant analysis, use
the canonical-variate analysis choice of T and set Y to be
a vector of binary variables whose component values (0
or 1) indicate the group or class to which an observation
belongs. Details of these and other special cases can be
found in Izenman (2008). If the elements of X7 in (1) are
unknown, as will happen in most practical problems, they
have to be estimated using sample data on Z.

The relationships between multivariate reduced-rank
regression and the classical linear dimensionality reduc-
tion techniques become more interesting when the meta-
parameter ¢ is unknown and has to be estimated. The value
of t is called the effective dimensionality of the multivariate
regression (Izenman 1980). Estimating ¢ is equivalent to the
classical problems of determining the number of princi-
pal components to retain, the number of canonical variate
to retain, or the number of linear discriminant functions
necessary for classification purposes. Graphical methods
for estimating f include the scree plot, the rank trace plot,
and heatmap plots. Formal hypothesis tests have also been
developed for estimating ¢.

When the number of variables is greater than the num-
ber of observations, some adjustments to the results have to
be made to ensure that Xxx and Zyy can be inverted. One
simple way of doing this is to replace Xxx by Zxx + JI,
and to replace Zyy by Zyy + «I; as appropriate, where
0 > 0 and « > 0. Other methods, including regularization,
banding, tapering, and thresholding, have been studied for
estimating large covariance matrices and can be used here
as appropriate.

The multivariate reduced-rank regression model can
also be developed for the case of nonstochastic (or fixed)
predictor variables.

The multivariate reduced-rank regression model has its
origins in Anderson (1951), Rao (1964, 1965), and Brillinger
(1969), and its name was coined by Izenman (1972, 1975).
For the asymptotic distribution of the estimated reduced-
rank regression coefficient matrix, see Anderson (1999),
who gives results for both the random-X and fixed-X
cases. Additional references are the monographs by van der
Leeden (1990) and Reinsel and Velu (1998).
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Classical multivariate statistical methods concern models,
distributions and inference based on the Gaussian dis-
tribution. These are the topics in the first textbook for
mathematical statisticians by T. W. Anderson that was pub-
lished in 1958 and that appeared as a slightly expanded
3rd edition in 2003. Matrix theory and notation is used
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there extensively to efficiently derive properties of the mul-
tivariate Gaussian or the Wishart distribution, of princi-
pal components, of canonical correlation and discrimi-
nant analysis (see »Discriminant Analysis: An Overview,
and »Discriminant Analysis: Issues and Problems) and of
the general multivariate linear model in which a Gaus-
sian response vector variable Y, has linear least-squares
regression on all components of an explanatory vector
variable Y},

In contrast, many methods for analyzing sets of
observed variables have been developed first within spe-
cial substantive fields and some or all of the models in
a given class were justified in terms of probabilistic and
statistical theory much later. Among them are factor anal-
ysis (see »Factor Analysis and Latent Variable Modelling),
path analysis, »structural equation models, and mod-
els for which partial-least squares estimation have been
proposed. Other multivariate techniques such as cluster
analysis (see »Cluster Analysis: An Introduction) and
»multidimensional scaling have been often used, but the
result of such an analysis cannot be formulated as a hypoth-
esis to be tested in a new study and satisfactory theoretical
justifications are still lacking.

Factor analysis was proposed by psychologist
C. Spearman (1904), (1926) and, at the time, thought of as
a tool for measuring human intelligence. Such a model has
one or several latent variables. These are hidden or unob-
served and are to explain the observed correlations among
aset of observed variables, called items in that context. The
difficult task is to decide how many and which of a possi-
bly large set of items to include into a model. But, given
a set of latent variables, a classical factor analysis model
specifies for a joint Gaussian distribution mutual indepen-
dence of the observed variables given the latent variables.
This can be recognized to be one special type of a graphi-
cal Markov model; see Cox and Wermuth (1996), Edwards
(2000), Lauritzen (1996), Whittaker (1990).

Path analysis was developed by geneticist S. Wright
(1923), (1934) for systems of linear dependence of variables
with zero mean and unit variance. He used what we now
call directed acyclic graphs to represent hypotheses of how
the variables he was studying could have been generated.
He compared correlations implied for missing edges in the
graph with corresponding observed correlations to test the
goodness of fit of such a hypothesis.

By now it is known, under which condition for these
models in standardized Gaussian variables, maximum-
likelihood estimates of correlations coincide with Wright’s
estimates via path coefficients. The condition on the graph
is simple: there should be no three-node-two-edge sub-
graph of the following kind o— o <—o. Then, the
directed acyclic graph is said to be decomposable and

captures the same independences as the concentration
graph obtained by replacing each arrow by an undirected
edge. In such Gaussian concentration graph models, esti-
mated variances are matched to the observed variances so
that estimation of correlations and variances is equivalent
to estimation of covariances and variances.

Wright’s method of computing implied path coef-
ficients by “tracing paths” has been generalized via a
so-called separation criterion. This criterion, given by
Geiger, Verma and Pearl (1990), permits to read off a
directed acyclic graph all independence statements that
are implied by the graph. The criterion takes into account
that not only ignoring (marginalizing over) variables might
destroy an independence, but also conditioning on com-
mon responses may render two formerly independent
variables to be dependent. In addition, the separation
criterion holds for any distribution generated over the
graph.

The separation criterion for directed acyclic graphs has
been translated into conditions for the presence of edge-
inducing paths in the graph; see Marchetti and Wermuth
(2009). Such an edge-inducing path is also association-
inducing in the corresponding model, given some mild
conditions on the graph and on the distributions gener-
ated over it; see Wermuth (2010). In the special case of only
marginalizing over linearly related variables, these induced
dependences coincide with the path-tracing results given
by Wright provided the directed acyclic graph model is
decomposable and the variables are standardized to have
zero means and unit variances. This applies not only
to Gaussian distributions but also to special distribu-
tions of symmetric binary variables; see Wermuth et al.
(2009).

Typically however, directed acyclic graph models are
defined for unstandardized random variables of any type.
Then, most dependences are no longer appropriately repre-
sented by linear regression coefficients or correlations, but
maximum-likelihood estimates of all measures of depen-
dence can still be obtained by separately maximizing each
univariate conditional distribution, provided only that its
parameters are variation-independent from parameters of
distributions in the past.

Structural equation models, developed in economet-
rics, can be viewed as another extension of Wright's path
analyses. The result obtained by T. Haavelmo (1943) gave
an important impetus. For his insight that separate lin-
ear least-squares estimation may be inappropriate for
equations having strongly correlated residuals, Haavelmo
received a Nobel prize in 1989. It led to a class of models
defined by linear equations with correlated residuals and
to responses called endogenous. Other variables condi-
tioned on and considered to be predetermined were named
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exogenous. Vigorous discussions of estimation methods
for structural equations occurred during the first few
Berkeley symposia on mathematical statistics and proba-
bility from 1945 to 1965.

Path analysis and structural equation models were
introduced to sociological research via the work by O.D.
Duncan (1966,1975). Applications of structural equa-
tion models in psychological and psychometric research
resulted from cooperations between A. Goldberger and
K. Joreskog; see Goldberger (1971,1972) and J6reskog (1973,
1981). The methods became widely used once a corre-
sponding computer program for estimation and tests was
made available; see also Kline (2010).

In 1962, A. Zellner published his results on seem-
ingly unrelated regressions. He points out that two sim-
ple regression equations are not separate if the two
responses are correlated and that two dependent endoge-
nous variables need to be considered jointly and require
simultaneous estimation methods. These models are now
recognized as special cases of both linear structural equa-
tions and of multivariate regression chains, a subclass of
graphical Markov models; see Cox and Wermuth (1993),
Drton (2009), Marchetti and Lupparelli (2010).

But it was not until 40 years later, that a maximum-
likelihood solution for the Gaussian distribution in four
variables, split into a response vector Y, and vector vari-
able Y}, was given and an example of a poorly fitting data
set with very few observations for which the likelihood
equations have two real roots; see Drton and Richardson
(2004). For well-fitting data and reasonably large sample
sizes, this is unlikely to happen; see Sundberg (2010). For
such situations, a close approximation to the maximum-
likelihood estimate has been given in closed form for the
seemingly unrelated regression model, exploiting that it is
a reduced model to the covering model that has closed-
form maximum-likelihood estimates, the general linear
model of Y, given Y}; see Wermuth et al. (2006), Cox and
Wermuth (1990).

For several discrete random variables of equal stand-
ing, i.e, without splits into response and explanatory
variables, maximum-likelihood estimation was developed
under different conditional independence constraints in a
path-breaking paper by M. Birch (1963). This led to the
formulation of general log-linear models, which were stud-
ied intensively among others by Haberman (1974), Bishop
et al. (1975), Sundberg (1975) and by L. Goodman, as sum-
marized in a book of his main papers on this topic, pub-
lished in 1978. His work was motivated mainly by research
questions from the social and medical sciences.

For several Gaussian variables of equal standing, two
different approaches to reducing the number of parameters
in a model, were proposed at about the same time. T. W.

Anderson put structure on the covariances, the moment
parameters of a joint Gaussian distribution and called the
resulting models, hypotheses linear in covariances; see
Anderson (1973), while A. P. Dempster put structure on the
canonical parameters with zero constraints on concentra-
tions, the off-diagonal elements of the inverse of a covari-
ance matrix, and called the resulting models covariance
selection models; see Dempster (1972).

Nowadays, log-linear models and covariance selection
models are viewed as special cases of concentration graph
models and zero constraints on the covariance matrix
of a Gaussian distribution as special cases of covariance
graph models. Covariance and concentration graph mod-
els are graphical Markov models with undirected graphs
capturing independences. A missing edge means marginal
independence in the former and conditional indepen-
dence given all remaining variables in the latter; see also
Wermuth and Lauritzen (1990), Wermuth and Cox (1998),
(2004), Wermuth (2010).

The largest known class of Gaussian models that is
in common to structural equation models and to graph-
ical Markov models are the recursive linear equations
with correlated residuals. These include linear summary
graph models of Wermuth (2010), linear maximal ancestral
graph of Richardson and Spirtes (2002), linear multivari-
ate regression chains, and linear directed acyclic graph
models. Deficiencies of some formulations start to be dis-
covered by using algebraic methods. Identification is still
an issue to be considered for recursive linear equations
with correlated residuals, since so far only necessary or
sufficient conditions are known but not both. Similarly,
maximum-likelihood estimation still needs further explo-
ration; see Drton et al. (2009).

For several economic time series, it became possible
to judge whether such fluctuating series develop neverthe-
less in parallel, that is whether they represent cointegrating
variables because they have a common stochastic trend.
Maximum-likelihood analysis for cointegrating variables,
formulated by Johansen (1988, 2009), has led to many
important applications and insights; see also Hendry and
Nielsen (2007).

Algorithms and corresponding programs are essential
for any widespread use of multivariate statistical meth-
ods and for successful analyses. In particular, iterative
proportional fitting, formulated by Bishop (1964) for log-
linear models, and studied further by Darroch and Ratcliff
(1972), was adapted to concentration graph models for
CG (conditional Gaussian)-distributions (Lauritzen and
Wermuth 1989) of mixed discrete and continuous variables
by Frydenberg and Edwards (1989).

The EM (expectation-maximization)-algorithm of
Dempster et al. (1977) was adapted to Gaussian directed
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acyclic graph models with latent variables by Kiiveri (1987)
and to discrete concentration graph models with missing
observation by Lauritzen (1995).

With the TM-algorithm of Edwards and Lauritzen
(2001), studied further by Sundberg (2002), maximum-
likelihood estimation became feasible for all chain graph
models called blocked concentration chains in the case
these are made up of CG (conditional Gaussian)-
regressions (Lauritzen and Wermuth 1989).

For multivariate regression chains of discrete ran-
dom varijables, maximum-likelihood estimation has now
been related to the multivariate logistic link function by
Marchetti and Lupparelli (2010), where these link func-
tions provide a common framework and corresponding
algorithm for »generalized linear models, which include
among others linear, logistic and probit regressions as spe-
cial cases; see McCullagh and Nelder (1989), Glonek and
McCullagh (1995).

Even in linear models, estimation may become diffi-
cult when some of the explanatory variables are almost
linear functions of others, that is if there is a prob-
lem of »multicollinearity. This appears to be often the
case in applications in chemistry and in the environmen-
tal sciences. Thus, in connection with consulting work
for chemists, Hoerl and Kennard (1970) proposed the
use of ridge-regression (see »Ridge and Surrogate Ridge
Regressions) instead of linear least-squares regression.
This means for regressions of vector variable Y on X, to
add to X"X some positive constant k along the diagonal
before matrix inversion to give as estimator § = (kI +
x'x)xTy.

Both ridge-regression and partial-least-squares, (see
»Partial Least Squares Regression Versus Other Meth-
ods) proposed as an estimation method in the presence
of latent variables by Wold (1980), have been recognized
by Bjorkstrom and Sundberg (1999) to be shrinkage esti-
mators and as such special cases of Tykhonov (1963)
regularization.

More recently, a number of methods have been sug-
gested which combine adaptive skrinkage methods with
variable selection. A unifying approach which includes
the least-squares estimator, shrinkage estimators and var-
ious combinations of variable selection and shrinkage has
recently been given via a least squares approximation by
Wang and Leng (2007). Estimation results depend nec-
essarily on the chosen formulations and the criteria for
shrinking dependences and for selecting variables.

Many more specialized algorithms and programs have
been made available within the open access programming
environment R, also those aiming to analyze large numbers
of variables for only few observed individuals. It remains

to be seen, whether important scientific insights will be
gained by their use.
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Origins and Uses

Multivariate distributions (MDs) are defined on finite-
dimensional spaces. Origins trace to early studies of
»multivariate normal distributions as models for depen-
dent chance observations (Adrian 1808; Bravais 1846;
Dickson 1886; Edgeworth 1892; Galton 1889; Gauss 1823;
Helmert 1868; Laplace 1811; Pearson 1896; Plana 1813;
Schols 1875; Spearman 1904; Student 1908); for two
and three dimensions in Bravais (1846) and Schols
(1875); and for finite dimensions in Edgeworth (1892)
and Gauss (1823), advancing such now-familiar con-
cepts as regression and partial correlation. Let Y =
[Y1,...,Y5] designate chance observations; in pharma-
cology as systolic (Y;) and diastolic (Y>) pressures,
pulse rate (Y3), and gross (Y4) and fine (Ys) motor
skills. Strengths of materials may register moduli of elas-
ticity (Y1) and of rupture (Y), specific gravity (Y3),
coeflicient of linear expansion (Y4), and melting point
(Ys). A complete probabilistic description of each vector
observation entails the joint distribution of [Yi,..., Ys].

A sample of n such k-vectors, arranged as rows, yields a
random matrix Y = [Yj] of order (nxk), its distribution
supporting much of »multivariate statistical analysis.

Beyond modeling chance outcomes, MDs describe
probabilistic features of data-analytic operations, to
include statistical inference, decision theory (see »Decision
Theory: An Introduction, and »Decision Theory: An
Overview), and other evidentiary analyses. In infer-
ence the frequentist seeks joint distributions (1) of mul-
tiparameter estimates, and (2) of statistics for testing
multiple hypotheses, both parametric and nonparamet-
ric. Such distributions derive from observational mod-
els. Similarly, multiparameter Bayesian methods require
MDs in modeling prior, contemporary, and posterior dis-
tributions for the parameters. In addition, MDs serve
to capture dependencies owing to repeated measure-
ments on experimental subjects. MDs derive from other
distributions through transformations, projections, con-
ditioning, convolutions, extreme values, mixing, com-
pounding, truncating, and censoring. Specifically, exper-
iments modeled conditionally in a random environ-
ment yield unconditional distributions as mixtures; see
Everitt and Hand (1981), Lindsay (1995), McLachlan and
Basford (1988), and Titterington et al. (1985). Random
processes, to include such concepts as stationarity, are
characterized through MDs as their finite-dimensional
projections. Beyond probability, MD-theory occasionally
supports probabilistic proofs for purely mathematical the-
orems. In short, MDs arise throughout statistics, applied
probability, and beyond, and their properties are essential
to understanding those fields.

In what follows R¥, RX, F,,.x, Si, and S respectively
designate Euclidean k-space, its positive orthant, the real
(nxk) matrices, the real symmetric (kx k) matrices, and
their positive definite varieties. Special arrays are I, the
(kxk) identity, and the diagonal matrix Diag(ay,.. ., ax).
The transpose, inverse, trace, and determinant of A € Fy,
are A’, A", tr(A), and | A |, with @’ = [ay,...,a;] as the
transpose of @ € R¥. For Y € R* random, its expected vec-
tor, dispersion matrix, and law of distribution are E(Y) €
R¥, V(Y) € S}, and L£(Y). Abbreviations include pdf,
pmf, cdf, and chf, for probability density, probability mass,
cumulative distribution, and »characteristic functions,
respectively.

Some Properties

MDs merit scrutiny at several levels. At one extreme are
weak assumptions on existence of low-order moments,
as in Gauss-Markov theory. At the other extremity are
rigidly parametric models, having MDs of specified func-
tional forms to be surveyed subsequently. In between are
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spherical distributions on R” having density f(x) or
characteristic function &(t); see Chmielewski (1981)

Normal f(x) = crexp(—x'x/2) N, (0,15)
Pearson Typell |f(x) = ¢a(1-x'x)?"" y>1
Pearson Type VIl | f(x) = c3(1+ x'x)7" y>n/2
Student t f(x) = ca(1+v7'x'x)~("#M/2 1 3 positive
integer
Cauchy f(x) = cs(1+x'x)~ ("D Student t
v=1
Scale mixtures |f(x) = ¢ce G(t) acdf
[t exp(—«'x/2t)dG(t)
Stable laws E(t) = crexp[y(t't)*/?] O<a<
2;y>0

classes of MDs exhibiting such common structural features
as symmetry or unimodality, giving rise to semiparametric
models of note. Of particular relevance are derived distri-
butions that are unique to all members of an underlying
class.

Specifically, distributions on F,,« in the class {L,, x(®,
I,X);¢ € @} have pdfs as given in Table 3. Here
® ¢ F,. comprise location parameters; I' € S, and
¥ e S{ are scale parameters; ¢(-) is a function on
Sf; and 277 is a factor of X7\, These distributions are
invariant for T = I, in that £L(Y - ®) = L(Q(Y -
®)) for every real orthogonal matrix Q(n x n). A sub-
class, taking ¢(A) = wy(tr(A)), with y defined on
[0,00), is S, x(®,T, %) as in Table 3. Here independence
among rows of Y = [y,,...,y,]" and multinormality are
linked: If L(Y) € S,x(0©,I,,%), then {y,...,y,} are
mutually independent if and only if Y is matrix nor-
mal, namely N, x(0,1,,Z) on F,x; see James (1954).
A further subclass on R”, with k = 1 and £(1x1) =1, are
the elliptical distributions on R", namely, {S,(0,T,y);y €
WV}, with location-scale parameters (0,T) and the typical
P FO) = [T y((y - 6)T(y - 0)). The fore-
going all contain multivariate normal and heavy-tailed
Cauchy models as special cases, and all have served as
observational models in lieu of multivariate normality. In
particular, {S,(6,1,,v);y € ¥} often serve as semipara-
metric surrogates for N, (0,I,) in univariate samples, and
{L,x(©,T,%); ¢ € D} in the analysis of multivariate data.
Examples from {S, (0,1, v);y € ¥V} are listed in Table 1,

cross-referenced as in Chmielewski (1981) to well-known
distributions on R'.

Inferences built on these models often remain exact as
for normal models, certifying their use as semiparametric
surrogates. This follows from the invariance of stipulated
derived distributions as in Jensen and Good (1981). Fur-
ther details, for their use as observational models on R
and I, for catalogs of related and derived distributions,
and for the robustness of various inferential procedures,
are found in Cambanis et al. (1981), Chmielewski (1981),
Devlin et al. (1976), Fang and Anderson (1990), Fang et al.
(1990), Fang and Zhang (1990), James (1954), and Kariya
and Sinha (1989). Regarding {L, x(®,T,%); pc @} and its
extensions, see Dawid (1977), Dempster (1969), and Jensen
and Good (1981). These facts bear heavily on the robustness
and validity of normal-theory procedures for use with non-
normal data, including distributions having heavy tails.
The cited distributions all exhibit symmetries, including
symmetries under reflections. Considerable recent work
addresses skewed MDs, often resulting from truncation;
see Arnold and Beaver (2000), for example.

Properties of distributions on R' often extend
nonuniquely to the case of MDs. Concepts of unimodal-
ity on R are developed in Dharmadhikari and Joag-Dev
(1988), some enabling a sharpening of joint Chebyshev
bounds. Stochastic ordering on R' likewise admits a mul-
tiplicity of extensions. These in turn support useful proba-
bility inequalities on R¥ as in Tong (1980), many pertaining
to distributions cited here. Let u(-) and v(-) be probabil-
ity measures on R, and Cy the compact convex sets in
R* symmetric under reflection about 0 R*. The con-
centration ordering (Birnbaum 1948) on R! is extended
in Sherman (1904): u(-) is said to be more peaked about
0 ¢ R than v(-) if and only if u(A) > v(A) for every
A€Cy. Specifically, let Ps (+;¥) and Pq (- ) be probability
measures for S, (0, X, ) and S,(0,Q,y). Then a neces-
sary and sufficient condition that Py (+; ) should be more
peaked about 0 than Pq (- ), is that (Q-X) € S}, suffi-
ciency in Fefferman et al. (1972), necessity in Jensen (1984).
Similar orderings apply when both (X, y) are allowed to
vary (Jensen 1984), extending directly to include distri-
butions in {S,x(0,T,Z,y);y¥ € ¥}. Numerous further
notions of stochastic orderings for MDs are treated in
Shaked and Shanthikumar (2007).

Interest in MDs often centers on their dependencies.
A burgeoning literature surrounds »copulas, expressing
a joint distribution function in terms of its marginals,
together with a finite-dimensional parameter quantifying
the degree of dependence; see Nelsen (1998) for example.
Further concepts of dependence, including notions rooted
in the geometry of R, are developed in Joe (1997).
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The Basic Tools

Let (Q,®, P) be a probability space, Q an event set,  a
field of subsets of ), and P a probability measure. Given a
set X9, an ¥o-valued random element is a measurable map-
ping X(w) from Q to ¥o, multivariate when ¥, is finite-
dimensional, as R, its cdf then given by F(xi,...,xc) =
Plw: Xi(w) < x1,...,Xk(w) < xi). To each cdf corre-
sponds a Px on (R*, ¥y, Px) and conversely, with 8y as
a field of subsets of R*. Moreover, {Px = P, + a;P; +
asPs;a; > 0,a1 + az +as = 1} decomposes as a mix-
ture: Py assigns positive probability to the mass points of
Pyx; P, is absolutely continuous with respect to Lebesgue
(volume) measure on (R¥,Bx,-); and P; is purely singu-
lar. Corresponding to {Pi, P, Ps} are cdfs {F\,F2,Fs} :
F; has a mass function (pmf) p(x1,...,xx) = P(Xi =
X1,...,Xg = xx), giving jumps of F at its mass points; F»

hasa pdf fo(x1,...,x¢) = ﬁFz(xl, .

all {xi,...,x¢}. The marginal cdf of X/ = [X1,...,X;]
is F1(x1,...,%) = F(xX1,...,%r,00,...,00). With X; =
[Xr+15. .., Xx] and x5 = [xr41,. . ., xx ], the conditional pmf
for L(Xi | x2), given that {X = x,}, is pra(x1,..., %) =
% with p2 (%41, ..., %) as the marginal pmf for
X>. A similar expression holds for P, in terms of the joint
and marginal pdfs f(xi,...,xx) and fo(xr41,...,%k). As
noted, F; is discrete and F, absolutely continuous, pure
types to warrant their separate cataloging in the literature.
On the other hand, P; is singular on a set in R* having
Lebesgue measure zero, often illustrated as a linear sub-
space. In contrast, Pz is known to originate in practice
through pairs (X, Y) as in Olkin and Tate (1961), such that
X is multinomial and £(Y | X = x) is multivariate nor-
mal. Related studies are reported in a succession of articles
including the recent (Bedrick et al. 2000).

The study of MDs draws heavily on the calculus of R¥.
Distributions not expressible in closed form may admit
series expansions, asymptotic expansions of Cornish-
Fisher and Edgeworth types, or large-sample approxima-
tions via central limit theory. Accuracy of the latter is
gauged through Berry-Esséen bounds on rates of con-
vergence, as developed extensively in Bhattacharya and
Ranga Rao (1976) under moments of order greater than 2.
Moreover, the integral transform pairs of Fourier, Laplace,
and Mellin, including chfs on R¥, are basic. Elemen-
tary operations in the space of transforms carry back
to the space of distributions through inversion. Affine
data transformations are intrinsic to the use of chfs of
MDs, as treated extensively in Lukacs and Laha (1964).
On the other hand, Mellin transforms couple nicely with
such nonlinear operations as powers, products, and quo-

., xy) for almost

tients of random variables, as treated in Epstein (1948)

and Subrahmaniam (1970) and subsequently. In addition,
functions generating joint moments, cumulants, factorial
moments, and probabilities are used routinely. Projection
methods determine distributions on R completely, via the
one-dimensional distributions of every linear function. To
continue, a property is said fo characterize a distribution if
unique to that distribution. A general treatise is Kagan et al.
(1973), including reference to some MDs reviewed here.

We next undertake a limited survey of continuous and
discrete MDs encountered with varying frequencies in
practice. Developments are cited for random vectors and
matrices. Continuing to focus on semiparametric mod-
els, we identify those distributions derived and unique
to underlying classes of models, facts not widely acces-
sible otherwise. The principal reference for continuous
MDs is the encyclopedic (Kotz et al. 2000), coupled with
monographs on multivariate normal (Tong 1990) and Stu-
dent t (Kotz and Nadarajah 2004) distributions. For dis-
crete MDs, encyclopedic accounts are archived in Johnson
et al. (1997) and Patil and Joshi (1968).

Continuous Distributions

Central to classical *multivariate statistical analysis* are
{Nux(0,1,,%);n>k} for L(Y), and the essential derived
distribution £L(W) = Wi(n, 2, A), with W = Y'Y, as non-
central Wishart having n degrees of freedom, scale matrix
¥, and noncentrality matrix A = ©'®, with central pdf as
in Table 3.

Vector distributions. 'There are two basic types.
Let [Yi,...,Yx] be multivariate normal with means
[@15. - -> k], unit variances, and correlation matrix R(k x
k). A Type I t distribution is that of {T; = Y;/S$;1<j<k}
such that £(vS*) = y*(v) independently of [Y1,..., Y;].
Its central pdf is listed in Table 2. To continue, suppose
that § = [S;;] and L(vS) = Wi(v,R), independently of
[Y1,...,Yx]. A Type II t distribution is that of {T; =
Y;/Sjj;1<j<k}. Both types are central if and only if {y =
-+ = Uy = 0}. These distributions arise in multiple compar-
isons, in the construction of rectangular confidence sets
for means, in the Bayesian analysis of multivariate nor-
mal data, and in various multistage procedures. For further
details see Kotz et al. (2000) and Tong (1990).

More generally, if £(Xi,..., Xk, Z1,...,2Zy) =Sa(0,T)
with 0" = [p1,..., px, 0,...,0] and T = Diag(R,1,), then
with v§? = (Z12 +...4+72 ), the central distribution of
{T; = X;/S$;1<j<k} is Type I multivariate ¢ for all dis-
tributions in {S,(0,T,y); ¥ € ¥} as structured. Multiple
comparisons using {T1,. .., Tk} under normality thus are
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Multivariate Statistical Distributions. Table 2 Standard pdfs for some continuous distributions on R

Student t ki [1+v7'(t— )’ R (t - ;4)]’“”‘)/2 teRK
Dirichlet ko (1= Shup) o~ hu ™ {0<u <1zhy <1}
Inv. Dirichlet kgnfvj“"_l/ﬂ + xky ]2 {0< v < ooja = Zhay
| W -wX ‘= 0 k4wai(V_k_1)/2H,v<,(w,- = Wj)e_%(sz') {W1 > > Wi > O}

T (m—k—1
|S1-£Sq|=0 ksIIke? ('" )Hf(z,+1)—(m+">/zn,«<,(e,«—e,) {&1>- >8>0}

Multivariate Statistical Distributions. Table 3 Standard pdfs for some continuous distributions on R¥

Npk(©,T, %) xiexp[-1tr(Y-0)'T(Y-0)2™] Y €Fpxk
Lox(®,T,%) K T3 |2]7% ¢(273 (Y-0)'T-(Y-0)X ) Y€y, pe®
Sok(©,T,X) x5 T2 [Z]7% w(tr(Y-0)'T~'(Y - ©)2) won [0,00)
Wishart xa |W|C*D72 exp(~Trwz ) WeS;
Gamma Hsu (1940) Ks |W|(—kD/2 g(371WE2) $ed, WeS;
Gamma Lukacs and Laha (1964) ke |[W|" exp(~trwz ™) A>0,WeS}
Matric T K7 | Ix — v T |~ (4072 TeF,
Dirichlet K ITK | W | Ci=k=D/2| I — sk | (vo=k=1)/2 f(Wh,..., W)
Inv. Dirichlet 1oITK | V;|Cimk=D2 1y 4 sk | (rr=k=1)/2 f(Vi,..., Vi)

exact in level for linear models having spherical errors

(Jensen 1979). Similarly, if £(Y) = S,x(0®,I,,X) with  Vector Distributions. Extract Diag(Wu,..., Wi) from

parameters @ = [6,...,0]’, 8 € RY; if X; = n'/?¥; with
{Y; = (Yij + - + Yyj)/m1<j<k}; and if § is the sam-
ple dispersion matrix; then the central distribution of

T; :Xj/Sjl;;lgjsk
L(Y) in {S,x(0,1,,Z,y);v € ¥}. Noncentral distri-
butions generally depend on the particular distribution
S4(0,T) or S, 4(0,1,,%).

Matric T distributions. Let Y and W be independent,
L(Y)=N,x(0,1,, Z) and L(W) = Wi (v, %) such that v >
koandlet T =YW~ : using any factorization W~ Tof Wl
Then £(T) is matric t with pdf as in Table 3. Alternatively,
consider X’ = [Y’, Z'] with distribution S,, 4 (0, I,,, £) such
that n = r + v and v > k, and again let T = YW™3 but
now with W = Z'Z. These variables arise from distributions
Snk(0,I,,X) in the same manner as for N,x(0,1,,X).
Then T has a matric t distribution for every distribution
L(Y) in {S,x(0,1,,%,v); v e ¥}. This property transfers
directly to L(ATB) as in Dickey (1967) with A and B
nonsingular.

} is Type II multivariate ¢ for every

W = [Wj;]. Their joint distributions arise in the analysis
of nonorthogonal designs, in time-series, in multiple com-
parisons, in the analysis of multidimensional contingency
tables, in extensions of Friedman's y* test in two-way data
based on ranks, and elsewhere. There is a gamma distri-
bution on R for diagonals of the matrix Gamma (Lukacs

and Laha 1964) of Table 3; k-variate y* when W is Wishart;

see Kibble (1941) for k = 2; and a k-variate exponen-
tial distribution for the case n = 2. Rayleigh distributions

1 1 1
£ (Wi Wi W,
signals from noise (Miller 1975); more general such dis-
tributions are known (Jensen 1970a); as are more general

) on R¥ support the detection of

x* distributions on R* having differing marginal degrees
of freedom (Jensen 1970b). Densities here are typically
intractable, often admitting multiple series expansions in
special functions. Details are given in Kotz et al. (2000). As
n— oo, the y* and Rayleigh distributions on R are multi-
normal in the limit, for central and noncentral cases alike,
whereas for fixed n, the limits as noncentrality parameters
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grow again are multivariate normal (Jensen 1969). Alterna-
tive approximations, through normalizing Wilson-Hilferty
transformations, are given in Jensen (1976) and Jensen and
Solomon (1994).

Matric distributions. Let L(Y) € L, x(0,1,, 3%, ¢) with
n > k; the pdf of W = Y'Y is given in Table 3 under
Gamma (Hsu 1940) as in that reference. The pdf under
Gamma (Lukacs and Laha 1964), with A > 0, reduces to
that of a scaled Wishart matrix when 21 is an integer. The
noncentral Wishart pdf with A # 0 admits series expan-
sions in special polynomials. Moreover, as n — oo, for
fixed A its limit distribution is multinormal, and for fixed
n, its »asymptotic normality attains as the noncentral-
ity parameters grow in a specified manner (Jensen 1976).
Wishart matrices arise in matrix normal samples, e.g., as
scaled sample dispersion matrices, and otherwise through-
out multivariate distribution theory. Parallel remarks apply
for Gamma (Hsu 1940) of Table 3 when the underlying
observational model belongs to {L,x(®,1,,%,¢); ¢ € O}.

If X and Y are independent gamma variates having a com-
mon scale, then U = X/(X + Y) and V = X/Y have
beta and inverted beta distributions, respectively, the scaled
Snedecor-Fisher F specializing from the latter. This section
treats vector and matrix versions of these.

Vector distributions. Let {Z,...,Z} be independent
gamma variates with common scale and the shape param-
eters {ao,...,ax}, and let T = (Zy + --- + Z;). Then
the joint distribution of {U; = Zj/T;1<j<k} is the k-
dimensional Dirichlet distribution D(ay, . .., a) with pdf
as given in Table 2. An important special case is that
{aj = vj/2;0<j <k} with {vo,..., v} as positive integers
and with {Zo,...,Z;} as independent y* variates. How-
ever, in this case neither X,2 nor independence is required.
For if y = [y,¥),-. ..y €R" with {y; e R";0<j<k}
and n = vo + -+ + v such that £(y) = S.(0,1,), then
{U] :y;yj/T;lngk}, but now with T = yjy, + ¥y, +
- + 1Y} has the distribution D(vo/2,v1/2,. .., vk/2) for
all such £(y) €{Su(0,1,,,v);y € ¥}.

The inverted Dirichlet is that of {V; = Zj/Zo;1<j <k},
with {Zo,...,Z} as before, having pdf as listed in Table 2.
The scaled {V; = voZ;j/vjZo;1<j<k} then have a mul-
tivariate F distribution whenever {a; = v;/2;0<j<k}
with {vo,...,vk} as positive integers. This arises in the
»analysis of variance in conjunction with ratios of inde-
pendent mean squares to a common denominator (Finney
1941). As before, neither y* nor independence is required in
the latter; take {V] = voy;yj/vjy(')yo;lgjsk} with L(y) €
{84(0,1,,y); ye¥} as for Dirichlet distributions.

Matric distributions. Take {So,...,Sx} in S} as inde-
pendent Wishart matrices with {£(S;) = Wi(v},Z);
vi > k0<j<k}. Let T = S + - + S8 and
{W; = T738;T"%1<j<k}. A matric Dirichlet distribu-
tion (Olkin and Rubin 1964), taking the lower triangu-
lar square root, has pdf as listed in Table 3, such that
W; and (Ik - Z{‘W]) are positive definite, and vr = vo +
-+ + v Neither independence nor the Wishart character
is required. If instead Y = [¥g,¥/,..., Y] € Fyupo 1 =
Vo + - + Vi, ¥j 2 k, and {Sj = Yj'lﬁ;j = 0,1,...,k},then
for L(Y) = S,,x(0,1,,X),invariance properties assure that
f(Wy,...,Wy) is identical to that given in Table 3, for
every distribution £(Y) in {S,x(0,1,, Z,v); ye¥}.

An inverted matric Dirichlet distribution (Olkin and
Rubin 1964) takes {So,S1,...,Sk} as before, and defines
{V} = S;%SjS;% 31<j< k} using the symmetric root of So.
Its pdf f(Vi,..., Vi) is known allowing S¢ to be noncen-
tral. The central pdf is given in Table 3. The special case k=1
is sometimes called a Type II multivariate beta distribution.
Again neither independence nor the Wishart character
is required. To see this, again take {S j=YY;0< jSk}
as for matric Dirichlet distributions, and conclude that
f(Wi,..., Vi), as in Table 3, is identical for every £(Y) in
{Snk(0, 1,2, v);ye¥}.

Topics in multivariate statistics, to include reduction
by invariance, tests for hypotheses regarding dispersion
parameters, and the study of energy levels in physical sys-
tems, all entail the latent roots of random matrices. Sup-
pose that L(W) = Wi(v,X), and consider the ordered
roots {w; >...>w; >0} of | W — wX |= 0. Their joint
pdf is listed in Table 2. On occasion ratios of these roots
are required, including simultaneous inferences for dis-
persion parameters, for which invariance in distribution
holds. For if W = Y'Y, then the joint distributions of ratios
of the roots of | W — wX | = 0 are identical for all £L(Y) €
{S$uk(0,1,,Z,y); we ¥} such that n> k.

To continue, consider So and S; as independent
Wishart matrices having Wi(vo,X) and Wi (v, X, A),
respectively. Then central (A = 0) and noncentral joint
distributions of the roots of | S | — £S¢ |= 0 are known, as
given in Table 2 for the case A = 0. An invariance result
holds for the central case. For if Y = [YO' , Yl']' with n
vo + v such that vo > k and v; > k, S¢ = Yy Y and S,
Y/ Y1, then by invariance the latent root pdf f(€i,..., &)
is the same for all £(Y) in {L,x(0,1,,%,¢) : ¢ € O}, as
given in Table 3.
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Multivariate Statistical Distributions. Table 4 Some discrete multivariate compound distributions

Bivariate binomial n Poisson Papageorgiou (1983) bivariate Poisson
(n, 7701, 7110, 7T11)

Multinomial (m,...,7ms) Dirichlet Johnson et al. (1997) s-variate negative
(n,m, ..., 7s) and Patil and Joshi (1968) hypergeometric
Multinomial n Logarithmic Patil and Joshi (1968) s-variate modified
(nm, ..., 7s) series logarithmic series
Multinomial n Negative Patil and Joshi (1968) s-variate negative
(n,m, ..., 7s) binomial multinomial
Multinomial n Poisson Patil and Joshi (1968) multiple Poisson
(n,m,...,7s)

Multiple Poisson u Gamma Patil and Joshi (1968) s-variate negative
(uhy, ..., uks) multinomial
Multiple Poisson (M. As) Multinormal Steyn (1976) s-variate Poisson—
My eeiAs) normal

Multiple Poisson u Rectangular Patil and Joshi (1968) s—variate Poisson—
{Ai=a+(f-a)u on (0,1) rectangular
Multivariate Poisson u Gamma Patil and Joshi (1968) s-variate negative
(udq, uhyy, ... Ud2s) binomial

Negative multinomial (m,...,ms) Dirichlet Johnson et al. (1997) s-variate negative
(k,m,..., ms) Patil and Joshi (1968) multinomial-Dirichlet
Convolution of (P1re i k) Multivariate Kotz and Johnson (1983) numbers judged
multinomials hypergeometric defective of k types
Prreeer Y2, B0y, 05) in lot inspection

Numerous other continuous multivariate distributions are
known; a compendium is offered in Kotz et al. (2000).
Multivariate versions of Burr distributions arise through
gamma mixtures of independent Weibull distributions.
Various multivariate exponential distributions are known;
some properties and examples are found on specializing
multivariate Weibull distributions. Various multivariate
stable distributions, symmetric and asymmetric, are char-
acterized through the structure of their chfs, as are types
of symmetric MDs surveyed earlier. Multivariate extreme-
value distributions are treated in Kotz et al. (2000), with
emphasis on the bivariate case. The Beta-Stacy distribu-
tions yield a multivariate Weibull distribution as a special
case. Multivariate Pareto distributions have their origins
in econometrics. Multivariate logistic distributions model
binary data in the analysis of quantal responses. Properties

of chf's support a bivariate distribution having normal and
gamma marginals (Kibble 1941).

A guided tour is given with special reference to Johnson
et al. (1997) and Patil and Joshi (1968). Inequalities for
selected multivariate discrete distributions are offered in
Jogdeo and Patil (1975).

The outcome of a random experiment is classified as hav-
ing or not having each of s attributes {A,...,A}. If
{X1,..., X} are the numbers having these attributes in n
independent trials, then theirs is a multivariate binomial
distribution with parameters

{7‘[,‘ = PI'(A,‘),T[,‘]‘ = PI'(A,‘A]'), ey TT120s
=Pr(A1As ... As);1€[L,2,. . s]si#j+k+ ...}
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where 1 takes successive values {i,j,k, . ..}. The »binomial
»distribution B(n, 7) obtains at s = 1. For bivariate bino-
mial distributions see Hamdan (1972), Hamdan and Al-
Bayyati (1971), and Hamdan and Jensen (1976). The limit as
n— oo and 7 — 0 such that nw — A is Poisson, the dis-
tribution of “rare events” More generally, as n — co and
m;— 0, such that {n@,- —A;,n0 g Aija S NI — /\12.5},
where {0, 0j,. ..} are specified functions of {m;, myj,.. .},
then the limit of the multivariate binomial distribution is
multivariate Poisson.

Suppose that independent trials are continued until
exactly k trials exhibit none of the s attributes. The joint
distribution of the numbers {Yi,..., Y} of occurrences
of {A1,...,As} during these trials is a multivariate Pascal
distribution.

To continue, let {Ao, ..., A} be exclusive and exhaus-
tive outcomes having probabilities {7, ..., 7}, with {0<
mi < Limy + -+ + 7, = 1}. The numbers {X;,...,X;}
of occurrences of {Aj,...,A;} in n independent tri-
als have the wmultinomial distribution with parameters
(n,m,...,m). If independent trials are repeated until Ao
occurs exactly k times, the numbers of occurrences of
{A1,..., A} during these trials have a negative multino-
mial distribution with parameters (k, 71, . . ., 7).

In a multiway contingency table an outcome is classi-
fied according each of k criteria having the exclusive and
exhaustive classes {Ajo, Ai1,...Ais3i = 1,...,k}. If in n
independent trials {Xj,. .., Xis;;i = 1,...,k} are the num-
bers occurring in {Aj,...,Ais;3i = 1,...,k}, then their
joint distribution is called a multivariate multinomial dis-
tribution (also multivector multinomial). These are the
joint distributions of marginal sums of the contingency
table, to include the k-variate binomial distribution when
{s1=s2==s=1}.

A collection of N items consists of s + 1 types: Ny of type
Ao, Ni of type Ay, ..., N; of type A, with N = No + -+ +
N;. Random samples are taken from this collection. If n
items are drawn without replacement, the joint distribu-
tion of the numbers of items of types {A1,...,A} isa
multivariate hypergeometric distribution with parameters
(n,N,N1,...,N ). With replacement, their distribution is
multinomial with parameters (1, Ni/N,...,Ns/N).

If successive items are drawn without replacement until
exactly k items of type Ao are drawn, then the num-
bers of types {Ai,...,As} thus drawn have a multivari-
ate inverse hypergeometric distribution with parameters
(k,N,N1,...,N ).

To continue, sampling proceeds in two stages. First, m
items are drawn without replacement, giving {xi,...,x;}

items of types {Ai,...,As}. Without replacing the first
sample, n additional items are drawn without replacement
at the second stage, giving {Y1,...,Ys} items of types
{A1,...,As}. The conditional distribution of (Y3,..., Ys),
given that {Xi = x1,..., X, = x5}, is a multivariate negative
hypergeometric distribution.

Further classes of discrete multivariate distributions are
identified by types of their pmfs. Some arise through trun-
cation and limits. If [Xj, ..., X ] has the s—variate negative
multinomial distribution with parameters (k, m,...,7;),
then the conditional distribution of [X;,...,X;], given
that [Xi,...,X] # [0,...,0], converges as k — 0 to the
s—variate logarithmic series distribution with parameters
(61,...,65) where {6; = 1 - m;3i = 1,...,s}. See Patil
and Joshi (1968) for details. A modified multivariate log-
arithmic series distribution arises as a mixture, on n, of the
multinomial distribution with parameters (n, 71, ..., 7;),
where the mixing distribution is a logarithmic series dis-
tribution (Patil and Joshi 1968).

A class of distributions with parameters (0,...,0;) €

©, derived from convergent power series, has pmfs of
a(xp,...x;) 07 0%

the form p(xi,...,xs) = Tt
0,1,2,...;i = 1,...,s}. The class of such distributions,
called multivariate power series distributions, contains
the s-variate multinomial distribution with parameters
(n,m,...,7); the s-variate logarithmic series distribu-
tion with parameters (0,...,0;); the s-variate negative
multinomial distribution with parameters (k, 71, ..., 7;);
and others. See Patil and Joshi (1968) for further proper-
ties. Other discrete multivariate distributions are described
next.

for {x; =

A typical Borel-Tanner distribution refers to the number of
customers served before a queue vanishes for the first time.
If service in a single-server queue begins with r customers
of type I and s of type II with different arrival rates and ser-
vice needs for each type, then the joint distribution of the
numbers served is the bivariate Borel-Tanner distribution
as in Shenton and Consul (1973).

In practice compound distributions often arise from
an experiment undertaken in a random environment;
the compounding distribution then describes variation of
parameters of the model over environments. Numerous
bivariate and multivariate discrete distributions have been
obtained through compounding, typically motivated by
the structure of the problem at hand. Numerous examples
are cataloged in references Johnson et al. (1997) and Patil
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and Joshi (1968); examples are listed in Table 4 from those
and other sources.
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Statistical process control (SPC) includes the use of
statistical techniques and tools, such as »control charts, to
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monitor change in a process. These are typically applied
separately to each process variable of interest. Statistical
process control procedures help provide an answer to the
question: “Is the process in control?” When an out-of-
control event is identified as a signal in a control chart, pro-
cedures often are available for locating the specific process
variables that are the cause of the problem.

In multivariate statistical process control (MVSPC),
multivariate statistical control procedures are used to
simultaneously monitor many process variables that are
interrelated and form a correlated set that move together
(see Mason and Young 2002). The relationships that exist
between and among the variables of the multivariate pro-
cess are used in developing the procedure. Assume that
the observation vectors obtained from a process are inde-
pendent random variables that can be described by a mul-
tivariate normal distribution (see »Multivariate Normal
Distributions) with a mean vector and a covariance matrix.
Any change in the mean vector and/or the covariance
matrix of this distribution is considered an out-of-control
situation and should be detectible with an appropriate
multivariate control chart.

Implementation of a multivariate control procedure
is usually divided into two parts: Phase I and Phase II.
Phase I includes the planning, development, and con-
struction phase. In this phase, the practitioner studies
the process in great detail. Preliminary data are collected
under good operational conditions and examined for sta-
tistical control and other potential problems. The major
problems include statistical »outliers, variable collineari-
ties, and autocorrelated observations, i.e., time-dependent
observations. After statistical control of the preliminary
data is established, the data is used as the process his-
tory and referred to as the historical data set (HDS). If
the parameters of the process are unknown, parameter
estimates of the mean vector and covariance matrix are
obtained from the data of the HDS for use in monitoring
the process.

Phase II is the monitoring stage. In this phase, new
observations are examined in order to determine if the pro-
cess has deviated from the in-control situation specified
by the HDS. Note that, in MVSPC, deviations from the
HDS can occur through a mean vector change, a covari-
ance matrix change, or both a mean vector and covariance
matrix change in the process. In certain situations a change
in one parameter can also induce a change in the other
parameter.

Process control is usually determined by examining a
control statistic based on the observed value of an indi-
vidual observation and/or a statistic related to a ratio-
nal subgroup (i.e., sample) of the observations such as

the sample mean. Easy monitoring is accomplished by
charting the value of the multivariate control statistic on
a univariate chart. Depending on the charted value of
this statistic, one can determine if control is being main-
tained or if the process has moved to an out-of-control
situation.

For detecting both large and small shifts in the mean
vector, there are three popular multivariate control chart
methods. An implicit assumption when using these charts
is that the underlying population covariance matrix is con-
stant over the time period of interest. Various forms of
»Hotelling's T° statistic are generally chosen when the
detection of large mean shifts is of interest (e.g., see Mason
and Young 2002). For detecting small shifts in the pro-
cess mean, the multivariate exponential weighted moving
average (MEWMA) statistic (e.g., see Lowry et al. 1992)
or the multivariate cumulative sum (MCUSUM) statis-
tic (e.g., Woodall and Ncube 1985) can be utilized. These
statistics each have advantages and disadvantages, and they
can be used together or separately.

All of the above procedures were developed under the
assumption that the data are independent and follow a
multivariate normal distribution. Autocorrelated data can
present a serious problem for both the MCUSUM and
MEWMA statistics, but seems to have lesser influence on
the behavior of the T statistic. A main reason for the influ-
ence of autocorrelation on the MEWMA and MCUSUM
statistics is that both of them are dependent on a subset of
past-observed observation vectors, whereas the T statistic
depends only on the present observation.

A related problem in MVSPC is monitoring shifts in
the covariance matrix for a multivariate normal process
when the mean vector is assumed to be stable. A useful
review of procedures for monitoring multivariate process
variability is contained in Yeh et al. (2006). The methods
for detecting large shifts in the covariance matrix include
charts based on the determinant of the sample covariance
matrix (Djauhari 2005), while the methods for detect-
ing small shifts include charts based on a likelihood-ratio
EWMA statistic (Yeh et al. 2004) and on related EWMA-
type statistics (Yeh et al. 2003). A recent charting method
that is applicable in monitoring the change in covariance
matrix for a multivariate normal process is based on a form
of Wilks’ ratio statistic (Wilks 1963). It consists of taking
the ratio of the determinants of two estimators of the pro-
cess covariance matrix (Mason et al. 2009). One estimator
is obtained using the HDS and the other estimator is com-
puted using an augmented data set consisting of the newest
observed sample and the HDS. The Wilks’ chart statistic is
particularly helpful when the number of variables is large
relative to the sample size.
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Current attention in the MVSPC literature is focused
on procedures that simultaneously monitor both the mean
vector and the covariance matrix in a multivariate process
(e.g., see Reynolds and Cho 2006 or Chen et al. 2005).
These charts are based on EWMA procedures and can
be very useful in detecting small-to-moderate changes in
a process. Several papers also exist that present useful
overviews of MVSPC (e.g., see Woodall and Montgomery
1999 and Bersimis et al. 2007). These papers are valu-
able for their insights on the subject and their extensive
reference lists.
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Multivariate statistical simulation comprises the computer
generation of multivariate probability distributions for use
in statistical investigations. These investigations may be
robustness studies, calibrations of small sample behavior of
estimators or confidence intervals, power studies, or other
Monte Carlo studies. The distributions to be generated may
be continuous, discrete or a combination of both types.
Assuming that the n-dimensional distributions have inde-
pendent components, the problem of variate generation
is reduced to simulating from univariate distributions for
which, fortunately, there is a vast literature (Devroye 1986;
LEculer 2010; and international standard ISO 28640, for
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example). Thus, the real challenge of multivariate statisti-
cal simulation is in addressing the dependence structure of
the multivariate distributions.

For a few situations, the dependence structure is read-
ily accommodated from a generation standpoint. Con-
sider the usual n-dimensional multivariate normal dis-
tribution (see »Multivariate Normal Distributions) with
mean vector y and covariance matrix X. For a positive
definite covariance matrix, there exists a lower triangular
(Cholesky) decomposition LL' = Z. Assuming a source
of independent univariate normal variates to occupy the
vector X, the random vector Y = L X + y has the desired
multivariate normal distribution. Having been able to gen-
erate multivariate normal random vectors, component-
wise transformations provide the capability to generate the
full Johnson translation system (1949a), of which the log-
normal distribution may be the most familiar. In using
the multivariate Johnson system, it is possible to spec-
ify the covariance matrix of the transformed distribution.
Some researchers transform the multivariate normal dis-
tribution without noting the severe impact on the covari-
ance matrix of the transformed distribution. This oversight
makes it difficult to interpret the results of simulation stud-
ies involving the Johnson translation system (see Johnson
1987 for further elaboration).

In expanding to distributions beyond the Johnson
translation system, it is natural to consider generalizations
of the normal distribution at the core of this system. The
exponential power distribution with density function f (x)
proportional to exp(—|x|™) is a natural starting point since
it includes the double exponential distribution (7 = 1),
the normal distribution (7 = 2) and the uniform dis-
tribution in the limit (7 — oo0) and is easy to simulate
(Johnson 1979). A further generalization of the exponen-
tial power distribution amenable to variance reduction
simulation designs was developed by Johnson, Beckman
and Tietjen (1980) who noted that the normal distribution
arises as the product of ZU where Z is distributed as the
square root of a chi-squared(3) distribution and is inde-
pendent of U which is uniform on the interval (-1, 1). Their
generalization occurs by considering arbitrary degrees of
freedom and powers other than 0.5. Since by Khintchine’s
unimodality theorem, any unimodal distribution can be
represented as such a product there are many possibilities
that could be pursued for other constructions ultimately
for use in multivariate simulation contexts.

Multivariate distribution families are appealing for
simulation purposes. A useful extension of the Johnson
translation system has been developed by Jones and
Pewsey (2009). The family is defined implicitly via the
equation

Z = sinh[§sinh ™ (X, ) — €]

where Z has the standard normal distribution, X5 . has a
sinh-arcsinh distribution, ¢ is a skewness parameter and
0 relates to the tail weight of the distribution. This family
of distributions is attractive for use in Monte Carlo stud-
ies, since it includes the normal distribution as a special
intermediate (non-limiting) case and covers a variety of
skewness and tailweight combinations. Extensions of the
Jones-Pewsey family to the multivariate case can follow the
approach originally taken by Johnson (1949b), with adap-
tations by Johnson et al. (1982) to better control impacts of
the covariance structure and component distributions.

Variate generation for multivariate distributions is
readily accomplished (at least, in principle) for a specific
multivariate distribution provided certain conditional dis-
tributions are identified. Suppose X is a random vector
to be generated. A direct algorithm is to first generate
X as the marginal distribution of the first component of
X, say x;. Second, generate from the conditional distri-
bution of X, given X; = x; to obtain x;. Third, generate
from the conditional distribution X3 given, X; = x; and
X> = x; and then continue until all n components have
been generated. This conditional distribution approach
converts the multivariate generation problem into a series
of univariate generation problems. For cases in which the
conditional distributions are very complicated or not par-
ticularly recognizable, there may be alternative formulae
for generation, typically involving a transformation to n+1
or more independent random variables. Examples include
a multivariate Cauchy distribution and the multivariate
Burr-Pareto-logistic distributions (see Johnson 1987).

The general challenge in multivariate statistical simula-
tion is to incorporate the dependence structure as it exists
in a particular distribution. As noted earlier, the multi-
variate normal distribution is particularly convenient since
dependence is introduced to independent normal com-
ponents through appropriate linear transformations. Fur-
ther transformations to the components of the multivariate
normal distribution give rise to skewed, light tailed or
heavy tailed marginal distributions while retaining some
semblance of the dependence structure. An important
approach to grappling with the dependence structure is to
recognize that marginal distributions are not terribly rel-
evant in that the components can be transformed to the
uniform distribution via U; = F;(X;), where F; is the dis-
tribution function of X;. In other words, in comparing
multivariate distributions, the focus can be on the trans-
formed distribution having uniform marginal’s. This mul-
tivariate distribution is known as a “copula” Examining the
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»copulas associated with the Burr, Pareto and logistic dis-
tributions led Cook and Johnson to recognize the essential
similarity of these three multivariate distributions. A very
useful introduction to copulas is Nelsen (2006) while Gen-
est and MacKay (1986) deserve credit for bringing copulas
to the attention of the statistical community.

This entry does not cover all possible distributions or
families of distributions that could be considered for use
in multivariate simulation studies. Additional possibilities
(most notably elliptically contoured distributions) are
reviewed in Johnson (1987).

About the Author
For biography see the entry »Statistical Aspects of Hurri-
cane Modeling and Forecasting.

Cross References

»Copulas

» Monte Carlo Methods in Statistics

» Multivariate Normal Distributions
» Multivariate Statistical Distributions

References and Further Reading

Cook RD, Johnson ME (1981) A family of distributions for modelling
non-elliptically symmetric multivariate data. Technometrics
28:123-131

Devroye L (1986) Non-uniform variate generation. Springer,
New York. Available for free pdf download at http://cg.scs.
carleton.ca/~luc/mbookindex.html

Genest C, MacKay R] (1986) The joy of copulas: bivariate distribu-
tions with uniform marginals. Am Stat 40:280-283

International Standard 28640 (2010) Random variate generation
methods. International Standards Organization (to appear),
Geneva

Johnson ME (1987) Multivariate statistical simulation. Wiley,
New York

Johnson ME (1979) Computer generation of the exponential power
distribution. J Stat Comput Sim 9:239-240

Johnson ME, Beckman RJ, Tietjen GL (1980) A new family of prob-
ability distributions with applications to monte carlo studies.
JASA 75:276-279

Johnson ME, Ramberg JS, Wang C (1982) The johnson transla-
tion system in monte carlo studies. Commun Stat Comput Sim
11:521-525

Johnson NL (1949a) Systems of frequency curves generated by
methods of translation. Biometrika 36:149-176

Johnson NL (1949b) Bivariate distributions based on simple trans-
lation systems. Biometrika 36:297-304

Jones MC, Pewsey A (2009) Sinh-arcsinh distributions. Biometrika
96:761-780

LEculer P (2010) Non-uniform random variate generation. Encyclo-
pedia of statistical science. Springer, New York

Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer,
New York

' Multivariate Techniques:
Robustness

Mia HUBERT', PETER J. ROUSSEEUW?

!Associate Professor

Katholieke Universiteit Leuven, Leuven, Belgium
%Senior Researcher

Renaissance Technologies, New York, NY, USA

The usual multivariate analysis techniques include loca-
tion and scatter estimation, »principal component anal-
ysis, factor analysis (see »Factor Analysis and Latent Vari-
able Modelling), discriminant analysis (see »Discriminant
Analysis: An Overview, and »Discriminant Analysis:
Issues and Problems), »canonical correlation analysis,
multiple regression and cluster analysis (see »Cluster
Analysis: An Introduction). These methods all try to
describe and discover structure in the data, and thus rely
on the correlation structure between the variables. Classi-
cal procedures typically assume normality (i.e. gaussian-
ity) and consequently use the sample mean and sample
covariance matrix to estimate the true underlying model
parameters.

Below are three examples of multivariate settings used
to analyze a data set with »n objects and p variables, form-
ing an n x p data matrix X = (x1,...,x,)" with x; =
(xit>- . .»xip)" the ith observation.

1. »Hotelling’s T* statistic for inference about the center
of the (normal) underlying distribution is based on the
sample mean X = Y1, x; and the sample covariance
matrix Sy = -5 YL (x; — &) (xi — &)

2. Classical principal component analysis (PCA) uses
the eigenvectors and eigenvalues of S, to construct a
smaller set of uncorrelated variables.

3. In the multiple regression setting, also a response vari-
able y = (y1,...,yu)" is measured. The goal of linear
regression is to estimate the parameter 8 = (B0, )" =
(Bo, P1s- - > By)’ relating the response variable and the
predictor variables in the model

Yi= ﬁo + ﬁlx,-l + -+ ﬁpxip + &;.

The least squares slope estimator can be written as

P -1 . 1 - -

Brs = Sxsy with sy = 5 ¥ (i - y)(xi - X)

the cross-covariance vector. The intercept is given by

N _ Al

Bo =y - Brs*.

These classical estimators often possess optimal prop-
erties under the Gaussian model assumptions, but they
can be strongly affected by even a few »outliers. Outliers
are data points that deviate from the pattern suggested by
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the majority of the data. Outliers are more likely to occur
in datasets with many observations and/or variables, and
often they do not show up by simple visual inspection.
When the data contain nasty outliers, typically two things
happen:

o The multivariate estimates differ substantially from the
“right” answer, defined here as the estimates we would
have obtained without the outliers.

e The resulting fitted model does not allow to detect the
outliers by means of their residuals, Mahalanobis dis-
tances, or the widely used “leave-one-out” diagnostics.

The first consequence is fairly well-known (although
the size of the effect is often underestimated). Unfortu-
nately the second consequence is less well-known, and
when stated many people find it hard to believe or paradox-
ical. Common intuition says that outliers must “stick out”
from the classical fitted model, and indeed some of them
do so. But the most harmful types of outliers, especially if
there are several of them, may affect the estimated model
so much “in their direction” that they are now well-fitted
by it.

Once this effect is understood, one sees that the follow-
ing two problems are essentially equivalent:

e Robust estimation: find a “robust” fit, which is similar
to the fit we would have found without the outliers.
e Outlier detection: find all the outliers that matter.

Indeed, a solution to the first problem allows us, as a
by-product, to identify the outliers by their deviation from
the robust fit. Conversely, a solution to the second prob-
lem would allow us to remove or downweight the outliers
followed by a classical fit, which yields a robust estimate.

It turns out that the more fruitful approach is to solve
the first problem and to use its result to answer the second.
This is because from a combinatorial viewpoint it is more
feasible to search for sufficiently many “good” data points
than to find all the “bad” data points.

Many robust multivariate estimators have been con-
structed by replacing the empirical mean and covariance
matrix with a robust alternative. Currently the most pop-
ular estimator for this purpose is the Minimum Covari-
ance Determinant (MCD) estimator (Rousseeuw 1984).
The MCD method looks for the & observations (out of n)
whose classical covariance matrix has the lowest possible
determinant. The raw MCD estimate of location is then the
average of these h points, whereas the raw MCD estimate
of scatter is a multiple of their covariance matrix. Based on
these raw estimates one typically carries out a reweighting
step, yielding the reweighted MCD estimates (Rousseeuw
and Van Driessen 1999).

The MCD location and scatter estimates are affine
equivariant, which means that they behave properly under
affine transformations of the data. Computation of the
MCD is non-trivial, but can be performed efficiently
by means of the FAST-MCD algorithm (Rousseeuw and
Van Driessen 1999) which is available in standard SAS,
S-Plus, and R.

A useful measure of robustness is the finite-sample
breakdown value (Donoho and Huber 1983; Hampel et al.
1986). The breakdown value is the smallest amount of con-
tamination that can have an arbitrarily large effect on the
estimator. The MCD estimates of multivariate location and
scatter have breakdown value » (n — h)/n. The MCD has
its highest possible breakdown value of 50% when h =
[(n + p +1)/2]. Note that no affine equivariant estimator
can have a breakdown value above 50%.

Another measure of robustness is the influence func-
tion (Hampel et al. 1986), which measures the effect on an
estimator of adding a small mass of data in a specific place.
The MCD has a bounded influence function, which means
that a small contamination at any position can only have a
small effect on the estimator (Croux and Haesbroeck 1999).

In regression, a popular estimator with high break-
down value is the Least Trimmed Squares (LTS) estima-
tor (Rousseeuw 1984; Rousseeuw and Van Driessen 2006).
The LTS is the fit that minimizes the sum of the 4 small-
est squared residuals (out of n). Other frequently used
robust estimators include S-estimators (Rousseeuw and
Yohai 1984) and MM-estimators (Yohai 1987), which can
achieve a higher finite-sample efficiency than the LTS.

Robust multivariate estimators have been used to
robustify the Hotelling T? statistic (Willems et al. 2002),
PCA (Croux and Haesbroeck 2000; Salibian-Barrera et al.
2006), multiple regression with one or several response
variables (Rousseeuw et al. 2004; Agull6 et al. 2008), dis-
criminant analysis (Hawkins and McLachlan 1997; Hubert
and Van Driessen 2004; Croux and Dehon 2001), factor
analysis (Pison et al. 2003), canonical correlation (Croux
and Dehon 2002), and cluster analysis (Hardin and Rocke
2004).

Another important group of robust multivariate meth-
ods are based on projection pursuit (PP) techniques.
They are especially useful when the dimension p of
the data is larger than the sample size n, in which
case the MCD 1is no longer well-defined. Robust PP
methods project the data on many univariate direc-
tions and apply robust estimators of location and scale
(such as the median and the median absolute devia-
tion) to each projection. Examples include the Stahel-
Donoho estimator of location and scatter (Maronna and
Yohai 1995) and generalizations (Zuo et al. 2004), robust
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PCA (Li and Chen 1985; Croux and Ruiz-Gazen 2005;
Hubert et al. 2002; Boente et al. 2006), discriminant
analysis (Pires 2003), canonical correlation (Branco et al.
2005), and outlier detection in skewed data (Brys et al.
2005; Hubert and Van der Veeken 2008). The hybrid
ROBPCA method (Hubert et al. 2005; Debruyne and
Hubert 2009) combines PP techniques with the MCD and
has led to the construction of robust principal compo-
nent regression (Hubert and Verboven 2003), partial least
squares (Hubert and Vanden Branden 2003), and classi-
fication for high-dimensional data (Vanden Branden and
Hubert 2005).

A more extensive description of robust multivariate
methods and their applications can be found in (Hubert
et al. 2008; Hubert and Debruyne 2010).
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