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�eoretically, a Kalman �lter is an estimator for what
is called the linear quadratic Gaussian (LQG) problem,
which is the problem of estimating the instantaneous
“state” of a linear dynamic system perturbed by Gaus-
sian white noise, by using measurements linearly related
to the state, but corrupted by Gaussian white noise. �e
resulting estimator is statistically optimal with respect to
any quadratic function of estimation error. R. E. Kalman
introduced the “�lter” in  (Kalman ).
Practically, the Kalman �lter is certainly one of the

greater discoveries in the history of statistical estima-
tion theory, and one of the greatest discoveries in the
twentieth century. It has enabled humankind to do many
things that could not have been done without it, and it
has become as indispensable as silicon in the makeup of
many electronic systems.�e Kalman �lter’s most imme-
diate applications have been for the control of complex
dynamic systems, such as continuous manufacturing pro-
cesses, aircra�, ships, spacecra�, and satellites.
In order to control a dynamic system, one must �rst

know what the system is doing. For these applications, it
is not always possible or desirable to measure every vari-
able that one wants to control.�e Kalman �lter provides
a means for inferring the missing information from indi-
rect (and noisy) measurements. In such situations, the
Kalman �lter is used to estimate the complete state vector
from partial state measurements and is called an observer.
�e Kalman �lter is also used to predict the outcome of
dynamic systems that people are not likely to control, such
as the �ow of rivers during �ood conditions, the trajecto-
ries of celestial bodies, or the prices of traded commodities.
Kalman�ltering is an algorithmmade frommathemat-

ical models. �e Kalman �lter makes it easier to solve a
problem, but it does not solve the problem all by itself. As
with any algorithm, it is important to understand its use
and function before it can be applied e�ectively.

�e Kalman �lter is a recursive algorithm. It has been
called “ideally suited to digital computer implementation,”
in part because it uses a �nite representation of the estima-
tion problem-by a �nite number of variables (Gelb et al.
). It does, however, assume that these variables are
real numbers with in�nite precision. Some of the problems
encountered in its use arise from the distinction between
�nite dimension and �nite information, and the distinc-
tion between �nite and manageable problem sizes.�ese
are all issues on the practical side of Kalman �ltering that
must be considered along with the theory.
It is a complete statistical characterization of an esti-

mation problem.�e Kalman �lter is much more than an
estimator, because it propagates the entire probability dis-
tribution of the variables it is tasked to estimate.�is is a
complete characterization of the current state of knowl-
edge of the dynamic system, including the in�uence of
all past measurements.�ese probability distributions are
also useful for statistical analysis and predictive design of
sensor systems.
In a limited context, the Kalman �lter is a learning

process. It uses a model of the estimation problem that
distinguishes between phenomena (what we are able to
observe), noumena (what is really going on), and the state
of knowledge about the noumena that we can deduce from
the phenomena.�at state of knowledge is represented by
probability distributions. To the extent that those proba-
bility distributions represent knowledge of the real world,
and the cumulative processing of knowledge is learning,
this is a learning process. It is a fairly simple one, but quite
e�ective in many applications. Figure  depicts the essen-
tial subjects forming the foundations for Kalman �ltering
theory. Although this shows Kalman �ltering as the apex
of a pyramid, it is but part of the foundations of another
discipline-modern control theory-and a proper subset of
statistical decision theory (Grewal and Andrews ).
Applications of Kalman �ltering encompass many

�elds. As a tool, the algorithm is used almost exclusively
for estimation and performance analysis of estimators and
as observers for control of a dynamical system. Except for
a few fundamental physical constants, there is hardly any-
thing in the universe that is truly constant. �e orbital
parameters of the asteroid Ceres are not constant, and
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even the “�xed” stars and continents aremoving. Nearly all
physical systems are dynamic to some degree. If we want
very precise estimates of their characteristics over time,
then we must take their dynamics into consideration.
We do not always know the dynamics very precisely.

Given this state of partial ignorance, the best we can do is
express ignorance more precisely-using probabilities.�e
Kalman �lter allows us to estimate the state of such systems
with certain types of randombehavior by using such statis-
tical information. A few examples of common estimation
problems are shown in Table .�e third column lists some
sensor types that we might use to estimate the state of the
corresponding dynamic systems. �e objective of design
analysis is to determine how best to use these sensor types
for a given set of design criteria.�ese criteria are typically
related to estimation accuracy and system cost.
Because the Kalman �lter uses a complete descrip-

tion of the probability distribution of its estimation errors
to determine the optimal �ltering gains, this probability
distribution may be used to assess its performance as a
function of the design parameters of an estimation sys-
tem, such as the types of sensors to be used, the locations
and orientations of the various sensor types with respect to
the system to be estimated, the allowable noise characteris-
tics of the sensors, the pre�ltering methods for smoothing
sensor noise, the data sampling rates for the various sen-
sor types, and the level of model simpli�cation to reduce
implementation requirements.

�is analytical capability of the Kalman �lter enables
system designers to assign “error budgets” to subsystems of
an estimation systemand to trade o� the budget allocations
to optimize cost or other measures of performance while
achieving a required level of estimation accuracy. Further-
more, it acts like an observer by which all the states not
measured by the sensors can be constructed for use in the
control system applications.

Linear Estimation
Linear estimation addresses the problem of estimating the
state of a linear stochastic system by using measurements

or sensor outputs that are linear functions of the state. We
suppose that the stochastic systems can be represented by
the types of plant and measurement models (for contin-
uous and discrete time) shown as equations in Table ,
with dimensions of the vector and matrix quantities.�e
measurement and plant noise vk and wk, respectively, are
assumed to be zero-mean 7Gaussian processes, and the
initial value xo is a Gaussian random variable with known
mean x and known covariance matrix P. Although the
noise sequenceswk and vk are assumed to be uncorrelated,
this restriction can be removed, modifying the estimator
equations accordingly.
A summary of equations for the discrete-time Kalman

estimator are shown in Table , where Qk,Rk are process
and measurement noise covariances, Φk is the state transi-
tion matrix, Hk is the measurement sensitivity matrix, Kk

is the Kalman gain. Pk(−),Pk(+) are covariances before
and a�er measurement updates.

Implementation Methods
�e Kalman �lter’s theoretical performance has been
characterized by the covariance matrix of estimation
uncertainty, which is computed as the solution of a matrix
Riccati di�erential and di�erence equation. A relationship
between optimal deterministic control and optimal esti-
mation problems has been described via the separation
principle.
Soon a�er the Kalman �lter was �rst implemented

on computers, it was discovered that the observed mean-
square estimation errors were o�en much larger than the
values predicted by the covariancematrix, even with simu-
lated data.�e variances of the �lter estimation errors were
observed to diverge from their theoretical values, and the
solutions obtained for the Riccati equations were observed
to have negative variances. Riccati equations should have
positive or zero variances.
Currentwork on theKalman�lter primarily focuses on

development of robust and numerically stable implemen-
tation methods. Numerical stability refers to robustness
against roundo� errors. Numerically stable implementa-
tion methods are called square root �ltering because they
use factors of the covariance matrix of estimation uncer-
tainty or its inverse, called the information matrix.
Numerical solution of the Riccati equation tends to

be more robust against roundo� errors if Cholesky fac-
tors of a symmetrical nonnegative de�nite matrix P is a
matrix C such that CCT = P. Cholesky decomposition
algorithms solve for C that is either upper triangular or
lower triangular. Another method is modi�ed Cholesky
decomposition. Here, algorithms solve for diagonal factors
and either a lower triangular factorL or anupper triangular
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Kalman Filtering. Table  Examples of estimation problems

Application Dynamic system Sensor types

Process control Chemical plant Pressure, temperature, flow rate, gas analyzer

Flood prediction River system Water level, rain gauge, weather radar

Tracking Spacecraft Radar, imaging system

Navigation Ships Sextant

Aircraft, missiles Log

Smart bombs Gyroscope

Automobiles Accelerometer

Golf carts Global Positioning System (GPS) receiver

Satellites GPS receiver

Space shuttle GPS receiver, Inertial Navig. Systems (INS)

Kalman Filtering. Table  Linear plant and measurement models

Model Continuous time Discrete time

Plant x(t) = F(t)x(t) +w(t) xk = Φk−xk− +wk−

Measurement z(t) = H(t)x(t) + v(t) zk = Hkxk + vk
Plant noise E⟨w(t)⟩ = 

E⟨w(t)wT(s)⟩ = δ(t − s)Q(t)

E⟨wk⟩ = 

E ⟨wkwT
i ⟩ = ∆(k − i)Qk

Observation noise E⟨v(t)⟩ = 

E⟨v(t)vT(s)⟩ = δ(t − s)R(t)

E⟨vk⟩ = 

E ⟨vkvTi ⟩ = ∆(k − i)Rk

(Linear model) Symbol Dimensions Symbol Dimensions

Dimensions of vectors and matrices x,w n ×  Φ,Q n × n

z, v ℓ ×  H ℓ × n

R ℓ × ℓ ∆, δ Scalar

factorU such that P = UDuU
T = LDLL

T whereDL andDu

are diagonal factors with nonnegative diagonal elements.
Another implementation method uses square root infor-
mation �lters that use a symmetric product factorization of
the informationmatrix P−. Another implementation with
improved numerical properties is the “sigmaRho �lter.”
Individual terms of the covariance matrix can be inter-
preted as Pij = σiσjρij where Pij is the ijth of the covariance
matrix, σi is the standard deviation of the estimate of the
ith state component, and ρij is the correlation coe�cient
between ith and jth state component (Grewal and Kain
).

Alternative Kalman �lter implementations use these
factors of the covariance matrix (or its inverse) in three
types of �lter operations: () temporal updates, () obser-
vation updates, and () combined updates (temporal and
observation).�e basic algorithm methods used in these
alternative Kalman �lter implementations fall into four
general categories. �e �rst three of these categories are
concerned with decomposing matrices into triangular fac-
tors and maintaining the triangular form of the factors
through all the Kalman �ltering operation.�e fourth cat-
egory includes standardmatrix operations (multiplication,
inversion, etc.) that have been specialized for triangular
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Kalman Filtering. Table  Discrete-time Kalman filter equations

System dynamic model xk = Φk−xk− +wk−, wk ∼ N(,Qk)

Measurement model zk = Hkxk = vk , vk ∼ N(, Rk)

Initial conditions E⟨x⟩ = x̂, E ⟨̃xx̃T⟩ = P

Independence assumption E ⟨wkvTj ⟩ =  for all k and j

State estimate extrapolation x̂k(−) = Φk−x̂k−(+)

Error covariance extrapolation Pk(−) = Φk−Pk−(+)ΦT
k− + Qk−

State estimate observational update x̂(+) = x̂k(−) + Kk[zk − Hk x̂k(−)]

Error covariance update Pk(+) = [I − KkHk]Pk(−)

Kalman gain matrix Kk = Pk(−)HT
k [HkPk(−)HT

k + Rk]
−

matrices.�ese implementation methods have succeeded
where the conventional Kalman �lter implementations
have failed (Grewal and Andrews ).
Even though uses are being explored in virtually every

discipline, research is particularly intense on successful
implementation of Kalman �ltering to global position-
ing systems (GPS), inertial navigation systems (INS), and
guidance and navigation. GPS is a satellite-based system
that has demonstrated unprecedented levels of position-
ing accuracy, leading to its extensive use in both military
and civil arenas. �e central problem for GPS receivers
is the precise estimation of position, velocity, and time,
based on noisy observations of satellite signals.�is pro-
vides an ideal setting for the use of Kalman �ltering. GPS
technology is used in automobile, aircra�, missiles, ships,
agriculture, and surveying. Currently, the Federal Aviation
Agency (FAA) is sponsoring research on the development
of wide-area augmentation system (WAAS) for precision
landing and navigation of commercial aircra� (Grewal
et al. ).
Kalman �lters are used in bioengineering, tra�c sys-

tems, photogrammetry, and myriad process controls.�e
Kalman �lter is observer, parameter identi�er in model-
ing, predictor, �lter, and smoother in a wide variety of
applications. It has become integral to twenty-�rst century
technology (Grewal and Kain ; Grewal et al. ).
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�e Kaplan-Meier estimator estimates the distribution
function of a lifetime T based on a sample of randomly
right censored observations. In survival analysis the life-
time T is a nonnegative random variable describing the
time until a certain event of interest happens. In medical
applications examples of such events are the time till death
of a patient su�ering from a speci�c disease, the time till
recovery of a disease a�er the start of the treatment, or the
time till remission a�er the curing of a patient. A typical
di�culty in survival analysis is that the observationsmight
be incomplete. For example, when studying the time till
death of a patient with a speci�c disease, the patient might
die from another cause. As a consequence the lifetime of
this patient is not observed, and is only known to be larger
than the time till the patient was “censored” by the other
cause of death. Such a type of censoring mechanism is
called right randomcensorship.Other areas of applications
in which one encounters this type of data are reliability in
industry and analysis of duration data in economics, to just
name a few.
Let T,T,⋯,Tn denote n independent and identically

distributed random variables, all having the same distri-
bution as the lifetime T. Denote by F(t) = P{T ≤ t} the
cumulative distribution function ofT. Due to the right ran-
dom censoring, the lifetime T might be censored by a cen-
soring time C, having cumulative distribution function G.
Associated at each lifetime Ti there is a censoring time Ci.
Under a right random censorship model the observations
consist of the pairs

(Zi, δi) where Zi = min(Ti,Ci) and
δi = I{Ti ≤ Ci} i = ,⋯,n.

�e indicator random variable δ = I{T ≤ C} takes value 
when the lifetime T is observed, and is  when the cen-
soring time is observed instead. A crucial assumption in
this model is that the lifetime Ti (also o�en called sur-
vival time) is independent of the censoring time Ci for all
individuals. An observation (Zi, δi) is called uncensored
when δi =  and hence the survival time Ti for individ-
ual i has been observed. When δi =  the observed time
is the censoring time Ci and one only has the incomplete
observation that Ti > Ci.
Kaplan and Meier () studied how to estimate the

survival function S(t) =  − F(t) = P{T > t}, based

on observations (Z, δ),⋯, (Zn, δn) from n patients.�e
estimation method does not make any assumptions about
a speci�c form of the cumulative distribution functions F
and G, and is therefore a nonparametric estimate. When
there are no tied observations the estimate is de�ned as

Ŝ(t)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
j:Z( j)≤t

( n − j

n − j + 
)

δ( j)

if t < Z(n)

 if t ≥ Z(n),

where Z() ≤ Z()⋯ ≤ Z(n) denote the ordered Zi’s, and
δ(i) is the indicator variable associated with Z(i). In case of
a tie between a censored and an uncensored observation,
the convention is that the uncensored observation hap-
pened just before the censored observation. An equivalent
expression, for t < Z(n), is

Ŝ(t) = ∏
j:Z(j)≤t

( −
δ( j)

n − j + 
).

In case of n complete observations, δ(i) =  for all indi-
viduals, and the Kaplan-Meier estimate reduces to Sn(t) =
−#{ j : Zj ≤ t}/n, i.e., oneminus the empirical cumulative
distribution function. �e latter estimate is a decreasing
step function with downward jumps of size /n at each
observation Zj = Tj.
Suppose now that there are tied observations, and that

there are only r distinct observations. Denote by Z() ≤
Z() ≤ Z(r) the r ordered di�erent observations, and by
dj the number of times that Z(j) has been observed.�en,
for t < Z(r), the Kaplan-Meier estimate is de�ned as

∏
j:Z( j)≤t

( −
dj

nj
)

δ( j)

,

where nj denotes the number of individuals in the sample
that are at risk at time point Z( j), i.e., the set of individ-
uals that are still “alive” just before the time point Z( j).
�e Kaplan-Meier estimate is also called the product-limit
estimate.
In studies of life tables (see 7Life Table), the actuar-

ial estimate for the survival function was already around
much earlier. One of the �rst references for the product-
limit estimate, obtained as a limiting case of the actuarial
estimate, is Bähmer ().

�e Kaplan-Meier estimate of the survival function
S =  − F is a decreasing step function, which jumps at
the uncensored observations but remains constant when
passing a censored observation. In contrast to the empir-
ical estimate Sn based on a complete sample of size n, the
sizes of the jumps are random.
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�e construction of the Kaplan-Meier estimate Ŝ(t)
also has a very simple interpretation due to Efron ().
�e mass /n that is normally attached to each observation
in the empirical estimate for S, is now for a censored obser-
vation redistributed equally over all observations that are
larger than the considered one.
Kaplan andMeier () give the maximum likelihood

derivation of the product-limit estimate and discuss mean
and variance properties of it. An estimate for the vari-
ance of Ŝ(t)was already established byGreenwood ().
Greenwood’s formula estimates the variance of Ŝ(t) by

V̂ar (̂S(t)) = (̂S(t)) ∑
j:Z(j)≤t

dj

nj(nj − dj)
.

�is estimate can be used to construct con�dence intervals.
�e theoretical properties of the Kaplan-Meier esti-

mate have been studied extensively. For example, weak
convergence of the process

√
n (̂S(t) − S(t)) to a Gaussian

process was established by Breslow and Crowley (),
and uniform strong consistency of the Kaplan-Meier
estimate was proven by Winter et al. ().

�e Kaplan-Meier estimate is implemented in most
statistical so�ware packages, and is a standard statistical
tool in survival analysis.
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Introduction
When two (or more) observers are independently classify-
ing items or observations into the same set of k mutually
exclusive and exhaustive categories, it may be of interest
to use a measure that summarizes the extent to which the
observers agree in their classi�cations.�e Kappa coe�-
cient �rst proposed by Cohen () is one such measure.
In order to de�ne this measure, let pij be the propor-

tion of items assigned to category i by Observer  and
to category j by Observer . Furthermore, let pi+ be the
proportion of items assigned to category i by Observer 
and p+j the proportion of items assigned to category j by
Observer . If these proportions or sample probabilities are
represented in terms of a two-way contingency table with
k rows and k columns, then pij becomes the probability in
the cell corresponding to row i and column j. With row i

being the same as column i for i = , . . . , k, the diagonal of
this table with probabilities pii (i = , . . . , k) represents the
agreement probabilities, whereas the o�-diagonal entries
represent the disagreement probabilities.

�e observed probability of agreement Pao =
k

∑
i=
pii

could, of course, be used as an agreement measure. How-
ever, since there may be some agreement between the two
observers based purely on chance, it seems reasonable that
a measure of interobserver agreement should also account
for the agreement expected by chance. By de�ning chance-

expected agreement probability as Pac =
k

∑
i=
pi+p+i and

based on independent classi�cations between the two
observers, Cohen () introduced the Kappa coe�-
cient as

K = Pao − Pac

 − Pac
()

where K ≤ , with K =  in the case of perfect agreement,
K =  when the observed agreement probability equals
that due to chance, and K <  if the observed agreement
probability is less than the chance-expected one.
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Kappa can alternatively be expressed in terms of the
observed probability of disagreement Pdo and the chance-
expected probability of disagreement Pdc as

K =  − Pdo

Pdc

; Pdo =
k

∑
i=

k

∑
j=

i≠j

pij, Pdc =
k

∑
i=

k

∑
j=

i≠j

pi+p+j ()

�e form of K in () is the most frequently used one. How-
ever, it should be pointed out that the normalization used
in (), i.e., using the dominator  − Pac such that K ≤ , is
not unique. In fact, there are in�nitely many such normal-
izations.�us, for any given marginal probability distribu-
tions {pi+} and {p+j}, one could, for example, instead of

the denominator in (), use
k

∑
i=

( 

pα
i+ +



pα
+i)

/α
− Pac for

any real value of α. For α → −∞, this alternative denomi-

nator would become
k

∑
i=
min{pi+, p+i} − Pac. No such non-

uniqueness issue would arise by using the form of K in
().�is K also has the simple interpretation of being the
proportional di�erence between the chance and observed
disagreement probabilities, i.e., the relative extent to which
Pdo is less than Pdc.

Weighted Kappa
In the case when the k >  categories are ordinal, or
also possibly in some cases involving nominal categories,
some disagreements may be considered more serious than
others. Consequently, the weighted Kappa (Kw)was intro-
duced (Cohen ). In terms of the set of nonnegative
agreement weights vij ∈ [, ] and disagreement weights
wij ∈ [, ] for all i and j, Kw can be de�ned as

Kw =

k

∑
i=

k

∑
j=
vijpij −

k

∑
i=

k

∑
j=
vijpi+p+j

 −
k

∑
i=

k

∑
j=
vijpi+p+j

()

=  −

k

∑
i=

k

∑
j=
wijpij

k

∑
i=

k

∑
j=
wijpi+p+j

()

where wij =  − vij,wij = wji for all i and j, and wij = 
for all i = j. Of course, when wij is the same for all i ≠ j,
Kw reduces to K in () – (). From (), which seems to be
the most intuitive and preferred form of Kw, it is clear that
Kw ≤ , with Kw =  if, and only if, pij =  for all i ≠ j

(i.e., if all disagreement cells have zero probability),Kw = 
under independence (i.e., pij = pi+p+j for all i and j), and
Kw may also take on negative values. Unless there are par-
ticular justi�cations to the contrary, themost logical choice

of weights would seem to be wij = ∣i − j∣/(k − ) or wij =
(i − j)/(k − ) for all i and j.

Specific Category Kappa
Besides measuring the overall agreement between two
observers, it may be of interest to determine their extent
of agreement on speci�c categories. As �rst proposed by
Spitzer et al. () (see also (Fleiss et al. )), suchmea-
surement required the original k × k table to be collapsed
into  ×  tables, one for each speci�c category.�us, to
measure the agreement on a speci�c category s, the orig-
inal k × k table would need to be collapsed into a  × 
table with one category being the original s category and
the other category being “all others”.�e agreement mea-
surement Ks was then obtained by computing the value of
K in () based on the collapsed  ×  table.
As an alternative way of obtaining the agreement Ks

on the speci�c category s, without the need to collapse the
original k×k table, Kvålseth () proposed the speci�c –
category Kappa as

Ks =
pss − ps+p+s
ps − ps+p+s

, ps =
ps+ + p+s


()

�e Ks can alternatively be expressed as

Ks =  −
∑∑

Ds

pij

∑∑
Ds

pi+p+j
()

where∑∑
Ds

denotes the summation over all disagreement

cells for category s, i.e.,

Ds = {(s, j) for all j ≠ s and (i, s) for all i ≠ s} ()

From (), Ks is the proportional di�erence between the
chance - expected disagreement and the observed dis-
agreement for the speci�c category s. Note that K in ()
and () are weighted arithmetic means of Ks in () and (),
respectively, for s = , . . . , k, with the weights being based
on the denominators in () – ().
When Ks is expressed as in (), an extension to the

case when disagreements should be unequally weighted is
rather obvious.�us, for disagreement weights wij ∈ [, ]
for all i and j, with wij =  for all i = j, the follow-
ing weighted speci�c – category Kappa has been proposed
(Kvålseth ):

Kws =  −
∑∑

Ds

wijpij

∑∑
Ds

wijpi+p+j
()

whereDs is the set of disagreement cells in ().Whenwij is
the same for all (i, j) ∈ Ds, () reduces to (). Note also that
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Kw in () is a weighted arithmetic mean of the Kws for s =
, . . . , k, with the weights based on the denominator in ().

�e possible values of Ks and Kws range from  (when
the disagreement probabilities for category s are all zero),
through  (under the independence psj = ps+p+j for
all j and pis = pi+p+s for all i), and to negative values
when observed disagreement exceeds chance - expected
disagreement for category s.

Conditional and Asymmetric Kappa
Light () considered the agreement between two
observers for only those items (observations) thatObserver
 assigned to category i, with the conditional Kappa de�ned
as

K
(i)
∣ =

pii/pi+ − p+i
 − p+i

()

�is measure can also be expressed as

K
(i)
∣ =  −

k

∑
j=
j≠i

pij

k

∑
j=
j≠i

pi+p+j

()

which immediately suggests the following weighted form
(Kvålseth ):

K
(i)
∣,w =  −

k

∑
j=
j≠i

wijpij

k

∑
j=
j≠i

wijpi+p+j

()

Whereas K in () – () and Kw in () – () treat the two
observers equivalently, i.e., these measures are e�ectively
symmetric, asymmetric versions of Kappa may be de�ned
in terms of the weighted means of the measures in () –
() as

K∣ =
k

∑
i=

pi+K
(i)
∣ , K∣,w =

k

∑
i=

pi+K
(i)
∣,w ()

Such measures as in () may be appropriate if Observer 
is to be designated as the “standard” against which clas-
si�cations by Observer  are to be compared (Kvålseth
).

Statistical Inferences
Consider now that the above Kappa coe�cients are esti-
mates (and estimators) based on sample probabilities (pro-
portions) pij = nij/N for i = , . . . , k and j = , . . . , k and

sample sizeN =
k

∑
i=

k

∑
j=
nij, with {πij} being the correspond-

ing population probabilities. It may then be of interest to
make statistical inferences, especially con�dence - interval
construction, about the corresponding {πij} – based pop-
ulation coe�cients or measures. Such approximate infer-
ences can bemade based on the delta method (Bishop et al.
).
Consequently, under multinomial sampling and when

N is reasonably large, the various Kappa coe�cients intro-
duced above are approximately normally distributed with
means equal to the corresponding population coe�cients
andwith variances that can be determined as follows. Since
thoseKappa coe�cients can all be expressed in terms ofKw

in () by special choices among the set of weights {wij}, it is
su�cient to determine the variance of (the estimator) Kw.
For instance, in the case of Ks in () and Kws in (), one
can simply set wij =  in () for all cells that do not belong
to Ds in ().�us, the estimated variance of Kw has been
given in (Kvålseth ) as

Var(Kw) = (NFw)
−{

k

∑
i=

k

∑
j=

pijE

ij

− [Kw − ( − Fw)( − Kw)] } (a)

where

Eij =  − wij − ( − wi+ − w+j)( − Kw) (b)

wi+ =
k

∑
j=

wijp+j, w+j =
k

∑
i=

wijpi+, Fw =
k

∑
i=

k

∑
j=

wijpi+p+j.

(c)
Note that Fw is the dominator of Kw in ().

Example As an example of this inference procedure, con-
sider the (�ctitious) probabilities (proportions) in Table .
In the case of category , e.g., it follows from () or ()

and Table  that the interobserver agreement K = ..

Kappa Coefficient of Agreement. Table  Results from two
observers’ classifications with three categories

Observer 

Observer     Total

 . . . .

 . . . .

 . . . .

Total . . . .
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If, however, the categories in Table  are ordinal and the
weights wij = ∣i − j∣/(k − ) are used, it is found from () –
() and Table , with D consisting of the cells (,), (,),
(,), and (,), that Kw = .. Similarly, K = .,K =
., Kw = ., and Kw = ., whereas, from () – (),
K = . and Kw = ..
In order to construct a con�dence interval for the pop-

ulation equivalent of Kw, () can be used by (a) setting
wij =  for those cells that do not belong to D in (), i.e.,
the cells (,), (,), (,) and (,) and (b) replacing Kw

and Fw with Kws and Fws (the denominator of Kws).�us,
with Kw = − ./. = . (and Fw = .),
it is found from (b) – (c) that E = ., E =
., . . . ,E = . so that, from (a), if the data in
Table  are based on sample size N = , it is found that
Var(Kw) = .. Consequently, an approximate %
con�dence interval for the population equivalent of Kw

becomes . ± .
√
., or (., .). By compari-

son, setting w = w = w = w =  and all other wij = ,
it is found in (Kvålseth ) that a % con�dence inter-
val for the population equivalent of the unweighted K is
(., .).

Concluding Comment
While the overall Kappa and its weighted form in () – ()
are themost popularmeasures of interobserver agreement,
they are not without some criticism or controversy. In
particular, they depend strongly on the marginal distribu-
tions {pi+} and {p+j} so that, when those distributions
are highly uneven (non-uniform), values of Kappa tend
to be unreasonably small. Also, since the pii (i = , . . . , k)
are included in the marginal distributions, the agreement
probabilities enter into both the overall probability of
agreement as observed and as expected by chance.

About the Author
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Kendall’s Tau

Llukan Puka
Professor
University of Tirana, Tirana, Albania

Kendall’s Tau is a nonparametric measure of the degree of
correlation. It was introduced by Maurice Kendall in 
(Kendall ).
Kendall’s Taumeasures the strength of the relationship

between two ordinal level variables. Together with Spear-
man’s rank correlation coe�cient, they are two widely
accepted measures of rank correlations and more popular
rank correlation statistics.
It is required that the two variables, X and Y ,

are paired observations. �en, provided both variables
are at least ordinal, it would be possible to calculate
the correlation between them. In general, application
of the product-moment correlation coe�cient is limited
by the requirement that the trend must be linear. A less
restrictive measure of correlation is based on the proba-
bilistic notion that the correlation between variablesX and
Y is strong if on average, there is a high probability that an
increase in X will be accompanied by an increase in Y (or
decrease in Y).�en the only limitation imposed on the
trend line is that it should be either continually increasing
or continually decreasing.
One of the properties of coe�cients that adopt this

notion of correlation, like Kendall’s Tau coe�cient, is that
the de�nition of the correlation depends only on the ranks
of the data values and not on the numerical values. To this
end, they can be applied either to data from scaled variables
that has been converted to ranks, or to ordered categorical
variables.
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Formula for Calculation of Kendall’s Tau
Coefficient, (Hollander and Wolfe )
For any sample of n paired observations of a bivariate vari-

ables (X,Y), there are m = n(n − )


possible comparisons
of points (Xi,Yi) and (Xj,Yj). A pair of observation data
set (Xi,Yi), (Xj,Yj) is called concordant if Xj − Xi and
Yj −Yi has the same sign. Otherwise, if they have opposite
signs, the pair is called discordant. If Xi = Xj, or Yi = Yj or
both, the comparison is called a “tie.” Ties are not counted
as concordant or discordant.
If C is the number of pairs that are concordant and D

is the number of pairs that are discordant, then the value
Tau of Kendall’s Tau is

Tau = C −D

m

�e quantity S = C −D is known as Kendall S. A predomi-
nance of concordant pairs resulting in a large positive value
of S indicates a strong positive relationship between X and
Y ; a predominance of discordant pairs resulting in a large
negative value of S indicates a strong negative relationship
between X and Y .

�e denominator m is a normalizing coe�cient such
that the Kendall’s Tau coe�cient can assume values
between − and +: − ≤ Tau ≤ .

�e interpretation of Kendall’s Tau value is similar as
for the other correlation coe�cients: when the value is +,
then the two rankings are the same (the concordance
between two variables is perfect); when the value is −,
the discordance is perfect (the ranking of one of vari-
ables is reverse to the other); and �nally any other value
between − and + is interpreted as a sign of the level
of relationship, a positive relationship (Kendall’s Tau > ,
both variables increase together), or a negative relationship
(Kendall’s Tau < , the rank of one variable increases, the
other one decreases); the value  is an indication for non
relationship.
If there are a large number of ties, then the dominator

has to be corrected by
√

(m − nx)(m − ny)where nx is the
number of ties involving X and ny is the number of ties
involving Y .
For inferential purposes, Kendall’s Tau coe�cient

is used to test the hypothesis that X and Y are
independent, Tau= , against one of the alternatives:
Tau ≠ , Tau > , Tau < . Critical values are tabulated,
Daniel (), Abdi ().�e problem of ties is consid-
ered also by Sillitto (), Burr ().
In large samples, the statistic

 × Kendall’s Tau ×
√
n(n − )

√
(n + )

has approximately a normal distribution with mean  and
standard deviation , and therefore can be used as a test
statistic for testing the null hypothesis of zero correlation.
It can be used also to calculate the con�dence intervals
(Noether ).

Kendall’s Tau and Spearman’s Rho
Kendall’s Tau is equivalent to Spearman’s Rho, with regard
to the underlying assumptions. But they di�er in their
underlying logic and also computational formulas are quite
di�erent. �e relationship between the two measures is
given by

− ≤ {( × Kendall’s Tau) − ( × Spearman’s Rho)} ≤ +.

�eir values are very similar in most cases, and when dis-
crepancies occur, it is probably safer to interpret the lower
value.More importantly, Kendall’sTau and Spearman’sRho
imply di�erent interpretations. Spearman’s Rho is consid-
ered as the regular Pearson’s correlation coe�cient in terms
of the proportion of variability accounted for, whereas
Kendall’s Tau represents a probability, i.e., the di�erence
between the probabilities that the observed data are in the
same order versus the probability that the observed data
are not in the same order.

�e distribution of Kendall’s Tau has better statistical
properties. In most of the situations, the interpretations of
Kendall’s Tau and Spearman’s rank correlation coe�cient
are very similar and thus invariably lead to the same infer-
ences. In fact neither statistics has any advantage in being
easier to apply (since both are freely available in statistical
packages) or easier to interpret. However Kendall’s statis-
tics structure is much simpler than that of the Spearman
coe�cient and has the advantage that it can be extended to
explore the in�uence of a third variable on the relationship.

�ere are two di�erent variations of Kendall’s Tau that
make adjustment for ties: Tau b and Tau c.�ese measures
di�er only as to how tied ranks are handled.

Kendall’s Tau-b
Kendall’s Tau-b is a nonparametric measure of correlation
for ordinal or ranked variables that take ties into account.
�e sign of the coe�cient indicates the direction of the
relationship, and its absolute value indicates the strength,
with larger absolute values indicating stronger relation-
ships. Possible values ranges from − to .�e calculation
formula for Kendall’s Tau-b is given by the following:

Tau − b = C −D√
(C +D + X)(C +D + Y)

whereX is the number of pairs tied only on theX variable,
Y is the number of pairs tied only on theY variable.When
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there are no ties, the values of Kendall’s Tau and Kendall’s
Tau b are identical.

�e Kendall’s Tau-b has properties similar to the prop-
erties of the Spearman Rho. Because it does estimate a pop-
ulation parameter, many statisticians prefer the Kendall’s
Tau-b to the Spearman rank correlation coe�cient.

Kendall’s Tau-c
Kendall’s Tau-c, is a variant of Tau-b used for situations
of unequal-sized sets of ordered categories. It equals the
excess of concordant over discordant pairs, multiplied by a
term representing an adjustment for the size of the table. It
is also called Kendall–Stuart Tau-c (or Stuart’s Tau-c) and
is calculated by formula

Tau − c = m × (C −D)
n(m − )

wherem is the smaller of the number of rows and columns,
and n is the sample size.
Kendall’s Tau-b and Kendall’s Tau-c are superior to

other measures of ordinal correlation when a test of
signi�cance is required.
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Background
Consider the problem of testing the null hypothesis that a
set of random variables Xi, i = , . . . ,n, is a random sample
from a speci�ed continuous distribution function (d.f.) F.
Under the null hypothesis, the empirical d.f.

Fn(x) =

n

n

∑
i=

I{Xi ≤ x}

must “agree” with F. One way to measure this agreement
is to use omnibus test statistics from the empirical process
(see 7Empirical Processes)

vn(x) =
√
n(Fn(x) − F(x)).

�e time transformed uniform empirical process

un(t) = vn(x), t = F(x)

is an empirical process based on random variables Ui =
F(Xi), i = , . . . ,n, that are uniformly distributed on
[, ] under the null hypothesis. Hence, although the
construction of un depends on F, the null distribu-
tion of this process does not depend on F any more
(Kolmogorov (), Doob ()). From this sprang a
principle, universally accepted in goodness of �t test-
ing theory, that one should choose tests of the above
hypothesis based on statistics A(vn,F) which can be rep-
resented as statistics B(un) just from un. Any such statis-
tic, like, for example, weighted Cramér-von Mise statistics
∫ vn(x)α(F(x))dF(x), or Kolmogorov-Smirnov statistics
maxx ∣vn(x)∣/α(F(x)), will have a null distribution free
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from F, and hence this distribution can be calculated once
and used for many di�erent F – still a very desirable prop-
erty in present times, in spite of great advantages in com-
putational power. It is called the distribution free property
of the test statistic.
However, as �rst clari�ed by Gikhman () and Kac

et al. (), this property is lost even asymptotically as
soon as one is �tting a family of parametric d.f.’s. More pre-
cisely, suppose one is given a parametric family of d.f.’s Fθ ,
θ a k-dimensional Euclidean parameter, and one wishes to
test the hypothesis that Xi, i = , . . . ,n, is a random sam-
ple from some Fθ . Denoting θ̂n a n/-consistent estimator
of θ, the relevant process here is the parametric empirical
process

v̂n(x)=
√
n(Fn(x) − F

θ̂n
(x)).

To describe the e�ect of estimation of θ on v̂n, let Ḟθ(x) =
∂Fθ(x)/∂θ and yT denote the transpose of a k-vector y.
Under simple regularity conditions,

v̂n(x) =
√
n(Fn(x) − F

θ̂n
(x))

= vn(x) − Ḟθ(x)T
√
n(θ̂n − θ) + oP().

If additionally, for a k-vector of square integrable func-
tions ψ,

√
n(θ̂n − θ) = ∫ ψdvn + oP(),

then v̂n converges weakly to a mean zero Gaussian pro-
cess v̂, di�erent from the weak limit of vn, with a covari-
ance function that depends on the unknown parameter
θ via Fθ and ψ in a complicated fashion (Durbin (),
Khmaladze ()). Critical values of any test based on
this process are di�cult to �nd even for large samples.
�us the goodness of �t testing theory was in danger of
being fragmented into large number of particular cases and
becoming computationally heavy and complex.

Khmaladze Transformation
To overcome this shortcoming, Khmaladze devised a
transformation of v̂n whose asymptotic null distribution
under the parametric null hypothesis is distribution free
while at the same time this transformed process stays in
one-to-one correspondence with the process v̂n without
the loss of any “statistical information.”
To describe this transformation, let fθ denote density

of Fθ and ψθ = ∂ log fθ/∂θ and let v denote the limit in
distribution of empirical process vn. Equip the process v̂
with �ltration H = {Hx,−∞ < x < ∞}, where each
σ-�eld Hx = σ{v(y), y ≤ x, ∫ ψθdv} is generated not
only by the “past" of v but also ∫ ψθdv, which contains a

“little bit of a future" as well.�is �ltration is not an intrin-
sic part of the testing problem as it is usually formulated
in statistics. Nevertheless, Khmaladze () suggested to
use it, because then it is natural to speak about martingale
part {w,H} of the resulting semi-martingale {v̂,H}. Let
hTθ (x) = (,ψθ(x)) be “extended" score function and let
Γx,θ be covariance matrix of ∫x hθdv.�en this martingale
part has the form

w(x) = v(x) − ∫
x

hθ(y)Γ−y,θ ∫
y
hθdv dFθ(y). ()

�e change of time t = Fθ(x)will transform it to a standard
Brownianmotion (see7BrownianMotion andDi�usions)
on [, ] – a convenient limiting process, with the distri-
bution independent from Fθ .�e substitution of v̂n in ()
produces a version of empirical process wn, which, basi-
cally, is the Khmaladze transform (KhT hence forth). It
was shown to possess the following asymptotic proper-
ties: it will not change, regardless of which function ψ, or
which estimator θ̂n, was used in v̂n; it stays in one-to-one
correspondence with v̂n, if θ̂n is the maximum likelihood
estimator; and also the centering of empirical distribution
function Fn in empirical process is unnecessary. Hence, the
�nal form of KhT for parametric hypothesis is

wn,θ(x) =
√
n [Fn(x) − ∫

x

hθ(y)Γ−y,θ ∫
y
hθdFn dFθ(y)] .

If the hypothesis is true, a�er time transformation t =
Fθ(x), the processes wn,θ and w

n,θ̂n
converge weakly to

standard Brownian motion. Consequently a class of tests
based on time transformed w

n,θ̂n
are asymptotically distri-

bution free.
A slightly di�erent point of view on wn,θ is that its

increment

dwn,θ(x) =
√
n [dFn(x) − hθ(x)Γ−x,θ ∫

x
hθdFn dFθ(x)]

is (normalized) di�erence between dFn(x) and its linear
regression on Fn(x) and ∫x hθdFn.
If θ is known, i.e., if the hypothesis is simple, then wn,θ

reduces to what is called in the theory of empirical pro-
cesses the basic martingale (see, e.g., Shorack and Wellner
()).
It is well known that the analog of Kolmogorov test

is not distribution free when �tting a multivariate d.f.
Khmaladze (, ) developed an analog of KhT in this
case also, using the notion of so called scanning martin-
gales.
Tsigroshvili (), and in some cases Khmaladze and

Koul (), show that the KhT is well de�ned even if the
matrix Γx,θ is not of full rank.
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Some power properties of tests based on thew
n,θ̂n
were

investigated in a number of publications, including Janssen
& Ünlü (), Koul and Sakhanenko () and Nikitin
().

�e speci�c form of wn,θ and the practicality of its
use for some particular parametric families was studied,
e.g., in Koul and Sakhanenko () and Haywood and
Khmaladze ().

KhT for Counting Processes
IfN(t), t ≥ , is a point process (see7Point Processes) then
Aalen () used an appropriate �ltration and the cor-
responding random intensity function λ(t) to create the
martingale

M(t) = N(t) − ∫
t


λ(s)ds.

�is in turn gave rise to broad and successful theory, espe-
cially in survival analysis with randomly censored obser-
vations, as explained in the monograph by Andersen et al.
(). However, if the λ = λθ depends on unspeci�ed
parameter, which needs to be estimated usingN itself, then
the process M̂(t) is not a martingale any more and su�ers
from the same problems as the process v̂n.
Again, by including the estimator θ̂ in the �l-

tration used, the KhT for M̂(t) was constructed in
Maglaperidze et al. (), Nikabadze and Stute (),
and later in O’Quigley (), Sun et al. () and
Scheike and Martinussen ().

KhT in Regression
�e transformation was taken into new direction of the
quantile regression problems in Koenker and Xiao (),
where some additional problems were resolved.�e prac-
ticality of the approach was demonstrated by the so�-
ware, created by Roger Koenker and his colleagues. Recent
extension to the case of autoregression is presented in
discussion paper Koenker and Xiao ().
In the classical mean regression set up with covariateX

and response Y , Y = µ(X) + є, where error є is indepen-
dent of X, Eє = , and µ(x) = E(Y ∣X = x). Let (Xi,Yi),
i = ,⋯,n, be a random sample from this model.
Here the two testing problems are of interest. One is

the goodness-of-�t of an error d.f. and the second is the
problem of lack-of-�t of a parametric regression function
mθ(x). In parametric regression model, tests for the �rst
problem are based on the residual empirical process ν̂n(x)
of the residuals є̂i = Yi − m

θ̂n
(Xi), i = ,⋯,n, where

θ̂n is a n/-consistent estimator of θ. Khmaladze and

Koul () develops the KhT of v̂n. Similar results were
obtained for nonparametric regression models in Khmal-
adze andKoul (). It is shown, somewhat unexpectedly,
that in nonparametric regression models, KhT not only
leads to an asymptotically distribution free process, but
also tests based on it have larger power than the tests based
on ν̂n with non-parametric residuals Yi − m̂n(Xi).
Tests of lack-of-�t are typically based on the partial

sum processes of the form
n

∑
i=

g(є̂i)I{Xi ≤ x},

for some known function g. However, again their limiting
distribution depend on the formof the regression function,
on the estimator θ̂n used and on the particular value of the
parameter. Starting with Stute et al. () this tradition
was changed andKhTwas introduced for these partial sum
processes, which again, led to the process converging to
standard Brownian motion. Khmaladze and Koul ()
studied the analog of KhT for partial sum process when
design variable is multi-dimensional.
Extension to some time series models are discussed in

Koul and Stute (), Bai () and Koul (). Koul
and Song (, , ), Dette and Hetzler (,
) illustrate use of KhT in some other problems in the
context of interval censored data, Berkson measurement
error regression models and �tting a parametric model to
the conditional variance function.
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Applications of Statistics are frequently concernedwith the
question of whether two sets of data come from the same
distribution function, or, alternatively, of whether a prob-
abilistic model is adequate for a data set. As an example,
someone might be interested in evaluating the quality of
a computer random numbers generator, by testing if the
sample is uniformly distributed. A test like that is gener-
ally called a goodness-of-�t test. Examples of it are the χ

test and the Kolmogorov-Smirnov test.
Generally given a sample X = x, x, . . . , xn− and a

probability distrbution function P(x) the target would be
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to test the Null Hypothesis H that P is the sample’s dis-
tribution function. When testing with two data sets the
Null Hypothesis H states that they both have the same
distribution functions.

�e choice of a statistical test must take into account at
least two factors: () whether the data is continuous or dis-
crete, () and if the comparison to be performed uses two
data sets or a one set against a �tting probability model.
Testing that a set of computer generated pseudo-random
real numbers follows a uniformly distributed model is an
example of testing a continuous data set against a proba-
bilistic model, while comparing the amount of Vitamin C
in two di�erent brands of orange juice would �t a compar-
ison of two continuous data sets.

�e χ test was designed to test discrete data sets
against a probability model. However, it could be applied
in the test of the computer random numbers generator by
discretising the sample. Given the set X = x, x, . . . , xn−
of generated numbers, a set of k intervals (bins)

(−∞, z), (z, z), . . . , (zk−,∞)

could be used to de�ne a discrete function

Xj = i, when xj ∈ (zi−, zi).

Kolmogorov () and Smirnov () proved a result,
also Schmid (), that is the basis for a much more
e�cient goodness-of-�t test when continuous data is
involved.�e test starts with the de�nition of a function
FX,n(x) that gives the fraction of points xi, i ∈ (, . . . ,n−),
in a sample X that are below x as follows (E.W. Dijkstra’s
uniform notation for quanti�ers is used, with # i : P(xi)
denoting the number of elements in the set satisfying the
property P(xi), for all possible i.):

FX,n(x) =
#i : xi ≤ x

n

Assuming that another sample Y = y, y, . . . , ym− is
given, then its function can be de�ned:

FY ,m(y) =
#i : yi ≤ y

m

And any statistic could be used to measure the dif-
ference between X and Y , by measuring the di�erence
between FX,n(x) and FY ,m(x). Even the area between the
curves de�ned by these functions could be used. �e
Kolmogorov-Smirnov distance, is de�ned as the maxi-
mum absolute value of the di�erence between FX,n(x) and
FY ,m(x) for all possible values of x:

D = max x : −∞ < x <∞ : FX,n(x) − FY ,m(x)

In a test trying to �t one sample with a probabilis-
tic model de�ned by the function P(x), the distance, also
called Kolmogorov-Smirnov statistic, would be de�ned as

D = max x : −∞ < x <∞ : FX,n(x) − P(x)

�e distribution of the Kolmogorov-Smirnov statistic
in the case of a Null Hypothesis test can be computed,
giving a signi�cance level for the observed value. For that
purpose, let D⋆ be the following function of the observed
value:

D
⋆(d) = [

√
ne + . + ./

√
ne]d

In the de�nition of D⋆, the quantity ne is de�ned as
follows:

● ne is the number of points in the sample, when doing a
one-sample test.

● ne = n∗m
n+m , in the case of a two-sample test, with n and

m being the sizes of the samples.

�e signi�cance level can then be computed using the
function Q below (Stephens ):

Q(d) = 
∞
∑
i=

(−)i−e−i
d

Given a d, computed by the Kolmogorov-Smirnov dis-
tance, the signi�cance level of d, which comes to be the
probability that the null hypotheses (that the two distribu-
tions are the same) is invalid, is given by

Probability(D > d) = Q(D⋆(d))

�e Kolmogorov-Smirnov test o�ers several advan-
tages over the χ test:

● It can be applied to continuous data.
● �e distribution of its statistic is invariant under
re-parametrisation and it can be easily implemented by
computers.

● It can be extended to multivariate data.

Several statistics packages implement theKolmogorov-
Smirnov test.�e package R (Crawley ), freely avail-
able (So�ware and documentation from http://www.r-
project.org) for most operating systems, o�ers a
Kolmogorov-Smirnov test in the function ks.test.
Adapting goodness-of-�t tests to multivariate data is

considered a challenge. In particular, tests based on bin-
ning su�er from what has been described as the “curse
of multi-dimensionality”: the multi-dimensional space is
essentially empty and binning tests tend to be ine�ective
even with large data sets.
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Peacock in (Peacock ) introduced an extension
of the Kolmogorov-Smirnov test to multivariate data.
�e idea consists in taking into account the distribu-
tion function of the two samples in all possible order-
ings, d −  orderings when d dimensional data is being
considered. Given n points, in a two-dimensional space,
Peacock proposed to compute the distribution functions
in the n quadrants of the plane de�ned by all pairs
(xi, yi), xi and yi being coordinates of all points of two
given samples. �is gives an algorithm of Ω(n) com-
plexity. Fasano e Franceschini introduced in (Fasano
and Franceschini ) an approximation of the Pea-
cock’s test that computes the statistic over all quadrants
centred in each point of the given samples. �eir test
can be computed in time Ω(n). Lopes et alii intro-
duced an algorithm (Available, under GPL license, from
http://www.inf.ufes.br/ raul/cern.dks.tar.bz) based on
range-counting trees that computes this last statistic in
O(n lgn), which is a lower-bound for the test (Lopes et al.
).
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Kullback-Leibler divergence (Kullback and Leibler )
is an information-based measure of disparity among
probability distributions. Given distributions P and Q

de�ned over X, with Q absolutely continuous with respect
to P, the Kullback-Leibler divergence of Q from P is
the P-expectation of − log{P/Q}. So, DKL(P,Q) =
−∫

X
log(Q(x)/P(x))dP.�is quantity can be seen as the

di�erence between the cross-entropy for Q on P, H(P,Q) =
−∫

X
log(Q(x))dP, and the self-entropy (Shannon ) of

P, H(P) = H(P,P) = −∫
X
log(P(x))dP. Since H(P,Q)

is the P-expectation of the number of bits of information,
beyond those encoded in Q, that are needed to identify
points in X, DKL(P,Q) = H(P) −H(P,Q) is the expected
di�erence, from the perspective of P, between the informa-
tion encoded in P and the information encoded in Q.

DKL has a number of features that make it plausible as
a measure of probabilistic divergence. Here are some of its
key properties:

Premetric. DKL(P,Q) ≥ , with identity if and only if
P = Q a.e. with respect to P.

Convexity. DKL(P,Q) is convex in both P and Q.

Chain Rule. Given joint distributions P(x, y) and
Q(x, y), de�ne the KL-divergence conditional on x as
DKL(P(y∣x),Q(y∣x)) = ∫

X
DKL(P(y∣x),Q(y∣x))dPx

where Px is P’s x-marginal.�en,
DKL(P(x, y),Q(x, y))
= DKL(Px,Qx) +DKL(P(y∣x), Q(y∣x)).

Independence. When X and Y are independent in both
P and Q the Chain Rule assumes the simple form
DKL(P(x, y),Q(x, y)) = DKL(Px,Qx) + DKL(Py,Qy),
which re�ects the well-known idea that independent
information is additive.

It should be emphasized that KL-divergence is not a
genuine metric: it is not symmetric and fails the trian-
gle inequality. �us, talk of Kullback-Leibler “distance”
is misleading. While one can create a symmetric diver-
gence measure by setting D∗KL(P,Q)= /DKL(P,Q)+ /
DKL(Q,P), this still fails the triangle inequality.

�ere is a close relationship between KL-divergence
and a number of other statistical concepts. Consider, for
example, mutual information. Given a joint distribution
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P(x, y) on X × Y with marginals PX and PY , the mutual
information of X and Y with respect to P is de�ned as
IP(X,Y) = −∫

X×Y log(P(x, y)/[PX(x) ⋅ PY(y)])dP. If we
let P�(x, y) = PX(x) ⋅ PY(y) be the factorization of P, then
IP(X,Y) = D(P,P�). �us, according to KL-divergence,
mutual information measures the dissimilarity of a joint
distribution from its factorization.

�ere is also a connection between KL-divergence and
maximum likelihood estimation. Let lx(θ) = p(x∣θ) be
a likelihood function with parameter θ ∈ Θ, and imag-
ine that enough data has been collected to make a cer-
tain empirical distribution f (x) seem reasonable. In MLE
one o�en hopes to �nd an estimate for θ that maximizes
expected log-likelihood relative to one’s data, i.e., we seek
θˆ = argmaxθEf [log(p(x∣θ)]. To �nd this quantity it
su�ces to minimize the KL-divergence between f (x) and
p(x∣θ )̂ since

argminθ DKL( f , p(⋅∣θ )̂)

= argminθ − ∫
X
f (x) ⋅ log(p(x∣θ )̂/f (x))dx

= argminθ[H( f , f )−H( f , p(⋅∣θ )̂)]
= argmaxθH( f , p(⋅∣θ )̂)
= argmaxθEf [log(p(x∣θ))].

In short, MLE minimizes Kullback-Leibler divergence
from the empirical distribution.
Kullback-Leibler also plays a role in 7model selec-

tion. Indeed, Akaike () uses DKL as the basis for
his “information criterion” (AIC). Here, we imagine an
unknown true distribution P(x) over a sample space X,
and a set Πθ of models each element of which speci�es
a parameterized set of distributions π(x∣θ) over X. �e
models in Πθ are meant to approximate P, and the aim
is to �nd the best approximation in light of data drawn
from P. For each π and θ, DKL(P, π(x∣θ)) measures the
information lost when π(x∣θ) is used to approximate P.
If θ were known, one could minimize information loss
by choosing π to minimize DKL(P, π(x∣θ)). But, since θ

is unknown one must estimate. For each body of data
y and each π, let θ ŷ be the MLE estimate for θ given
y, and consider DKL(P, π(x∣θ ŷ)) as a random variable
of y. Akaike maintained that one should choose the model
that minimizes the expected value of this quantity, so
that one chooses π to minimize Ey[DKL(P, π(x∣θ ŷ))] =
Ey[H(P,P) − H(P, π(⋅∣θ ŷ))].�is is equivalent to max-
imizing EyEx[log(π(x∣θ ŷ))]. Akaike proved that k −
log(lx(θ )̂) is an unbiased estimate of this quantity for
large samples, where θˆ is theMLE estimate of θ and k is the
number of estimated parameters. In this way, some have
claimed, the policy ofminimizingKL-divergence leads one

to value simplicity in models since the “k” term functions
as a kind of penalty for complexity. (see Sober ).

KL-divergence also �gures prominently in Bayesian
approaches experimental design, where it is treated as a
utility function. �e objective in such work is to design
experiments that maximize KL-divergence between the
prior and posterior. �e results of such experiments are
interpreted as having a high degree of informational con-
tent. Lindley () and De Groot () are essential
references here.
Bayesians have also appealed to KL-divergence to pro-

vide a rationale for Bayesian conditioning and related
belief update rules, e.g., the probability kinematics of
Je�rey (). For example, Diaconis and Zabell ()
show that the posterior probabilities prescribed byBayesian
conditioning or by probability kinematics minimize KL-
divergence from the perspective of the prior.�us, in the
sense of information divergence captured by DKL, these
forms of updating introduce the least amount of new
information consistent with the data received.
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Pearson () de�ned β = m/m 
 (where mi is the ith

moment with respect to the mean) to compare other dis-
tributions to the normal distribution, for which β = . He
called η = β −  the “degree of kurtosis” and mentioned
that it “measures whether the frequency towards the mean
is emphasized more or less than that required by the Gaus-
sian law.” In Greek, kurtosmeans convex, and kurtosis had
been previously used to denote curvature both in math-
ematics and medicine. Pearson’s development of the idea
of kurtosis during the years previous to  is examined
by Fiori and Zenga (). “Coe�cient of kurtosis” is the
name usually given to β.
A sample estimator of β is b = (∑(x − x)/n)/s.

Statistical so�ware frequently include an adjusted version
of the estimator of η:

n(n + )
(n − )(n − )(n − )

[∑(x − x)]
s

− (n − )(n − )
(n − )(n − )

.

�e adjustment reduces the bias, at least in the case of
nearly normal distributions. Byers () proved that b ≤
n −  + /(n − ). Simulation results indicate that when
β is large for the population of origin, b will be small on
average if the sample size is small.
Currently the word kurtosis is understood in a broader

sense, not limited to β. Balanda and MacGillivray ()
conclude that kurtosis is best de�ned as “the location- and
scale-free movement of probability mass from the shoul-
ders of a distribution into its center and tails.” which can
be formalized inmany ways. Kurtosis is associated to both,
the center and the tails of a distribution. Kurtosis is invari-
ant under linear transformations or change of units of
the variable. High kurtosis is linked to high concentration
of mass in the center and/or the tails of the distribution.
Heavy tails is a topic of interest in the analysis of �nancial
data.

Several kurtosis measures have been de�ned.
L-kurtosis (Hosking ) is popular in the �eld of hydrol-
ogy.�ere are othermeasures de�ned in terms of distances
between quantiles, ratios of spreadmeasures, comparisons
of sum of distances to the median, and expected values
of functions of the standardized variable other than the
fourth power that corresponds to β.
Ruppert () proposed the use of the in�uence func-

tion to analyze kurtosis measures and points out that even
those de�ned with the intention of measuring peakedness
or tail weight alone, end up measuring both. �ere are
measures that are more sensitive to the tails of the distri-
bution than others: β gives high importance to the tails
because it is de�ned in terms of the fourth power of the
deviations from the mean. For example, the value of β is
. for the uniform distribution and ., ., . and .
for the SU(, δ) distribution with δ = , , , . respec-
tively. For the same distributions, the values of L-kurtosis
are ,.,., . and ..�e upper bound for L-
kurtosis is , while β is unbounded. �e estimator b is
sensitive to 7outliers; one single outlier can dramatically
change its value.
Another approach to the study of kurtosis is the com-

parison of cumulative distribution functions. Van Zwet
() de�ned the convexity criterion (≺S): two symmet-
ric distributions with cumulative distribution functions F
and G are ordered and F ≺S G if G−(F(x)) is convex to
the right of the common point of symmetry. If F ≺S G, the
value of β for F is not larger than its value for G.�e fol-
lowing distributions are ordered according to the convexity
criterion:

U-shaped ≺S Uniform ≺S Normal ≺S Logistic ≺S Laplace.

Some families of distributions are ordered according to
the convexity criterion, with the order associated (either
directly or inversely) to the value of their parameter.
Among those families are beta(α, α), Tukey(λ), Johnson’s
SU(, δ), and the symmetric two-sided power family
TSP(α). Balanda and MacGillivray () de�ned the
spread-spread functions to compare non-necessarily sym-
metric distributions. Additional ordering criteria have
been de�ned. Any new measure of kurtosis that is de�ned
needs to order distributions in agreementwith some order-
ing based ondistribution functions.�e numerical value of
a kurtosis measure can be obtained for most distributions
but not all distributions are ordered according to a CDF
based ordering criterion. For example, the Laplace and
t-Student() distributions have known values for β ( and
 respectively). However, they are not ≺S ordered because
G−(F(x)) is neither convex, nor concave for x > . In par-
ticular, not all the distributions are ordered with respect
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to the normal distribution according to the convexity
criterion; but uniform ≺S unimodal distributions.

�ere are several ways of measuring kurtosis, there is
also more than one way of thinking about peak and tails.
One simple way of visualizing peak and tails in a unimodal
probability distribution is to superimpose, on f (x), a uni-
form density function with the same median and variance
(Kotz and Seier ).
High kurtosis a�ects the behavior of inferential tools.

Van Zwet () proved that, when working with sym-
metric distributions, the median is more e�cient than the
mean as estimator of the center when the distribution has
very high kurtosis.�e variance of the sample variance is
related to β. Simulations indicate that the power of some
tests for the equality of variances diminishes (for small
samples) when the distribution of the variable has high
kurtosis.
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