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Variousmethods and di�erent (linear or not, simple linear,

or multivariate) models have been adopted in industry to

address the calibration problem. In practice, most of the

models attempt to deal with the simple linear calibration

technique, mostly applied in chemical applications, espe-

cially when some instruments are to be calibrated (exam-

ples include pHmeters, NIR instruments, and establishing

calibration graphs in chromatography).

�e early work of Shukla () put forward the prob-

lem on the real statistical dimensions, and even early on

it was realized that when a non-linear model describes

the phenomenon (Schwartz ), a linear approximation

is eventually adopted. But even so, in the end we come

to a nonlinear function to be estimated as best as possi-

ble (Kitsos and Muller ). When the variance of the

measurement is due to many sources of variability, dif-

ferent techniques are used. Statistical calibration has been

reviewed byOsborn (), who provides a list of pertinent

references; when a robust approach might be appropriate,

see Kitsos and Muller (). Certainly, to consider the

variance constant and to follow a statistical quality con-

trol method (see 7Statistical Quality Control), Hochberg
and Marom () might be helpful, but not in all cases.

For the multivariate case, see the compact book of Brown

(), Brereton (), and for an application Oman and

Wax (). Moreover, di�erent methods have been used

on the development of the calibration problem like cross-

validation (see Clark ).

Next we brie�y introduce the statistical problem and

the optimal design approach is adopted in the sequence to

tackle the problem.

Consider the simple regression model with

n = E(y∣u) = θ + θu u ∈ U = [−, ]

where U is the design space, which can always be trans-

formed to [−, ]. Moreover, the involved error is assumed

to be from the normal distribution with mean zero and

variance σ  > .

�e aim is to estimate the value of u = u given n = C,

i.e.,

u = (C − θ) /θ

which is a nonlinear function of the involved linear param-

eters, as we have already emphasized above.

�e most well-known competitive estimators of u
when y is provided are the so-called “classical predictor”

C (u) = x̄ +
Sxx

Sxy
(ẏ − ȳ)

and the “inverse predictor”

I (u) = ū +
Sxy

Syy
(ẏ − ȳ)

with:

Str =∑(ti − t̄)(ri − r̄)

were by ẏ we mean the average of the possible k obser-

vations taken at the prediction stage (or experimental

condition) and ȳ as usually the average of the collected

values.

�e comparison of C(u) and I(u) is based on the

values of the sample size n and the proportion ∣σ/θ∣ under

the assumption that x belongs to the experimenter area.

One of the merits of C(u) is that when the usual

normal assumption for the errors is imposed, the classical

predictor is the maximum likelihood estimator. Moreover,

C(u) is a consistent estimator while I(u) is inconsistent.

�e I(u) estimation is criticized as it provides a con�-

dence interval that might be the whole real line or, in the

best case, two disjoint semi-in�nite intervals. When ∣σ/θ∣

is small the asymptotic mse (mean square error) of C(u)

is smaller than with the use of I(u), when x does not lie

in the neighborhood of ū.

�e main di�culty is the construction of con�dence

intervals, as the variance of u does not exist. �is pro-

vides food for thought for an optimal design approach

for the calibration problem. To face these di�culties the
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optimal experimental approach is adopted (see Optimum

Experimental Designs, also see Kitsos ).

For the one-stage design we might use of the criterion

functionΦ, eitherD-optimality for (θ, θ) or c-optimality

for estimating u. �e D-optimal design is of interest

because its e�ectiveness can be investigated, as measured

by the c-optimality criterion. Under c-optimality, thanks

to Elfving’s theorem, locally optimal two-point design can

be constructed geometrically. �e criterion that experi-

menters like to use is

minVar(û).

Di�erent approaches have been adopted for this crucial

problem: Bayesian, see Chaloner and Verdinelli (),

Hunter and Lamboy (); structural inference, see

Kalotay ().�ere is a criticism that structural inference

is eventually Bayesian, but this is beyond the scope of this

discussion.

When suitable priors for u are chosen the calibrative

density functions come from the non-central Student with

mean Ba(u) as

Ba(u) = ū +
Syy

r
(ẏ − ȳ)

where r = Syy +∑
k
j (yj − ȳ)


. When k =  the Bayesian es-

timator coincideswith the inverse, namelyBa(u) = I(u).

�e structural approach forms the simple linear model

as a “structural model” and obtains a rather complicated

model, which, again, with k = , coincides with the inverse

regression.

�e nonlinear calibration has attracted classical and

Bayesian approaches, both based on the Taylor expansion

of the nonlinear model.�erefore, calibration is based on

the linear approach of the nonlinear model.
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Introduction
�e Bravais–Pearson linear correlation coe�cient and the

Sarmanov maximal coe�cient are well known statistical
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tools that permit to measure, respectively, correlation (also

called linear dependence) and stochastic dependence of

two suitable random variables X and X de�ned on a

probability space (Ω,A,P). Since these coe�cients just are

the �rst canonical coe�cients obtained from linear and

nonlinear canonical analysis, respectively, it is relevant to

improve them by using all the canonical coe�cients. In

order to give an uni�ed framework for these notions, we

introduce the canonical analysis (CA) of two closed sub-

spaces H and H of a Hilbert space H. �en, a class of

measures of association that admits the aforementioned

coe�cients as particular cases can be constructed.

Canonical Analysis
LetH be a separable real Hilbert space with inner product

and related norm denoted by ⟨⋅, ⋅⟩ and ∥⋅∥ respectively, and

H andH be two closed subspaces ofH.�en we have the

following de�nition that comes from Dauxois and Pousse

().

De�nition  �e canonical analysis (CA) of H and H is

any triple

({ρi}i∈I ,{ f }i∈I ,{g}i∈I),

with Iℓ ⊂ N∗ for ℓ ∈ {, , }, that satis�es:

. �e system { f }i∈I (resp. {g}i∈I ) is an orthonormal

basis of H (resp. H)

. ρ=⟨ f, g⟩=sup{⟨ f , g⟩; ( f , g) ∈H×H, ∥ f ∥= ∥g∥=}

. For any i ∈ I such that i ≥ , one has:

ρi=⟨ fi, gi⟩ = sup{⟨ f , g⟩; ( f , g) ∈ F
⊥
i ×G

⊥
i , ∥ f ∥=∥g∥= }

where Fi = span{ f,⋯, fi−} andGi = span{g,⋯, gi−}.

Conditions for existence of canonical analysis have

been investigated in the aforementioned work. More pre-

cisely, denoting by ΠE the orthogonal projector onto the

closed subspace E of H, a su�cient condition is the com-

pacity of T = ΠHΠH ∣H or, equivalently, that of T =

ΠHΠH ∣H . In this case, we say that we have a compact CA,

and the following proposition holds:

Proposition  Consider a compact CA ({ρi}i∈I ,{ f }i∈I ,

{g}i∈I), of H and H, where the ρi ’s are arranged in

nonincreasing order.�en:

. {ρi }i∈I
is the noincreasing sequence of eigenvalues of T

and T and, for any i ∈ I, one has  ≤ ρi ≤ .

. { f }i∈I (resp. {g}i∈I ) is an orthonormal basis of H
(resp. H) such that, for any i ∈ I, fi (resp. gi) is an

eigenvector of T (resp. T) associated with ρi .

. ∀(i, j) ∈ (I)
, ⟨ fi, gj⟩ = δijρi, ΠH fi = ρigi, ΠHgi =

ρifi.

. { f }i∈I−I (resp. {g}i∈I−I ) is an orthonormal basis of

ker(T) = H ∩H
⊥
 (resp. ker(T) = H ∩H

⊥
 ).

Remark  . �e ρi’s are termed the canonical coe�-

cients. �ey permit to study the relative postions of

each of the preceding subspace with respect to the

other. For instance, the nullity of all these coe�cients

is equivalent to the orthogonality of H and H, and

if one of these subspaces is included into the other

these coe�cients are all equal to . Note that, in this

later case there does not exist a compact CA when the

considered subspaces are in�nite-dimensional ones.

Nevertheless, it is possible to �nd a triple having the

same properties than a compact CA. Such a triple

can be given by (I, ( fi)i∈N∗ , (gi)i∈N∗), where I is the

numerical sequence with all terms equal to , ( fi)i∈N∗
is a orthonormal basis ofH and (gi)i∈N∗ is the previous

system possibly completed with an orthonormal basis

of kerT = H ∩ H
⊥
 so as to obtain an orthonormal

basis of H.

. From the previous notion of CA it is possible to de�ne

a canonical analysis of two subspaces H and H rela-

tively to a third oneH. It is just theCAof the subspaces

H⋅ := (H ⊕ H) ∩ H
⊥
 and H⋅ := (H ⊕ H) ∩

H⊥ . �is CA leads to interesting properties given in

Dauxois et al. (a), and is useful in statistics for

studying conditional independence between random

vectors (see, e.g., Dauxois et al. [b]).

. When X = (X ,⋯,X
p
 )

T
and X = (X,⋯,X

p
 )

T
are

two random vectors such that any X
j

i belongs to L

(P),

their Linear Canonical Analysis (LCA) is the CA of H
and H where Hi = span (Xi ,⋯,X

pi
i ). �e spectral

analysis of T is equivalent to that of V
−
 VV

−
 V,

where Vi (resp. V; resp. V) denotes the covariance

(resp. cross-covariance) operator ofXi (resp.X andX;

resp. X and X). So, it is just the CA of random vec-

tors introduced by Hotelling ().�e �rst canoni-

cal coe�cient is the Bravais–Pearson linear correlation

coe�cient.

. When X and X are arbitrary random variables, their

Nonlinear Canonical Analysis (NLCA) is the CA of H
and H where Hi is the closed subspace of L


(P) con-

sisting in random variables of the form φ(Xi), where φ

is a measurable function valued intoR. In this case, the
�rst canonical coe�cient just is the Sarmanovmaximal

coe�cient.

Measures of Association
Let C be the set of pairs (H,H) of closed subspaces

of a Hilbert space, having a compact CA or being

in�nite-dimensional and such that H ⊂ H or H ⊂

H. We consider an equivalence relation ≃ de�ned on C,

such that (H,H) ≃ (E,E) if there exists a pair (I, I)

of isometries satisfying: I(H) = E, I(H) = E and

∀(x, y) ∈ H × H, < I(x), I(y) >E=< x, y >H , where
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H (resp. E) denotes the separable real Hilbert space which

contains H and H (resp. E and E). We also consider a

preordering relation ⪯ on C, such that (H,H) ⪯ (E,E)

if there exists a pair (E′,E
′
) of closed subspaces satisfying:

E′ ⊂ E, E
′
 ⊂ E and (H,H) ≃ (E′,E

′
).

De�nition  A measure of association r between Hilber-

tian subspaces is any map from a subset Cr of C into [, ]

such that the following conditions are satis�ed:

r(H,H) = r(H,H);

H ⊥ H⇔ r(H,H) = ;

H ⊂ H or H ⊂ H ⇒ r(H,H) = ;

(H,H) ≃ (E,E) ⇒ r(H,H) = r(E,E);

(H,H) ⪯ (E,E) ⇒ r(H,H) ≤ r(E,E).

Remark  . When X = (X ,⋯,X
p
 )

T
and X =

(X,⋯,X
p
 )

T
are two random vectors such that any

X
j

i belongs to L

(P), we obtain a measure of linear

dependence betweenX andX by putting r(X,X) :=

r(H,H) with Hi = span (X

i ,⋯,X

pi
i ). Indeed, from

second axiom given above, r(X,X) =  if and only if

X and X are uncorrelated, that is V = . From the

third one, it is seen that if there exists a linear map A

such that X = AX then r(X,X) = .

. When X and X are arbitrary random variables, con-

sidering Hi = {φ(Xi) /E(φ(Xi)

) < +∞}, a measure

of stochastic dependence of X and X is obtained by

putting r(X,X) := r(H,H). In this case, the above

axioms are closed to the conditions proposed by Rényi

() for good measures of dependence. In particu-

lar, the second axiomgives the equivalence between the

independence ofX andX and the nullity of r(X,X),

and from the third axiom it is seen that for any one

to one and bimeasurable functions f and g, one has

r( f (X), g(X)) = r(X,X).

A class of measures of association can be built by using

symmetric non decreasing functions of canonical coe�-

cients. In what follows, P(N∗
) denotes the set of permu-

tations of N∗
. For σ ∈ P(N∗

) and x = (xn)n ∈ c, we

put xσ = (xσ(n))n and ∣x∣ = (∣xn∣)n. We denote by c
the space of numerical sequences x = (xn)n such that

limn→∞ xn = .

De�nition  A symmetric nondecreasing function (sndf)

is a map Φ from a subset cΦ of c to R+ satisfying:

. For all x ∈ cΦ and σ ∈ P(N∗
), one has xσ ∈ cΦ and

Φ (∣xσ ∣) = Φ (x).

. For all (x, y) ∈ (cΦ)

, if ∀n, ∣xn∣ ≤ ∣yn∣, then Φ (x) ≤

Φ (y).

. �ere exists a nondecreasing function fΦ from R to R
such that : fΦ() = ; ∀u ∈ R, (u, ,⋯) ∈ cΦ and

Φ (u, ,⋯) = fΦ(∣u∣).

We denote by Ψ the map from C to c ∪ {I} such

that Ψ(H,H) is the noincreasing sequence of canonical

coe�cients of H and H.�en we have:

Proposition  LetΦ be a sndf with de�nition domain cΦ ,

and such thatΦ (I) = .�en, themap rΦ = Φ○Ψ is a mea-

sure of association de�ned on the subset CΦ = {(H,H) ∈

C; Ψ(H,H) ∈ cΦ ∪ {I}}.

�is proposition means that a measure of association

between two subspaces is obtained as a function of the

related nonincreasing sequence of canonical coe�cients

through a sndf. Some examples of such measures are:

r(H,H) =  − exp(−
+∞
∑
i=

ρ

i , r,p(H,H))

=

¿
Á
Á
ÁÀ

∑
+∞
i= ρ

p

i

 +∑
+∞
i= ρ

p

i

(p ∈ N∗
), r(H,H)

= max
i≥

∣ρi∣ = ρ.

On the one hand, this class of measures of association

contains all the measures built by using LCA of random

vectors (see Cramer and Nicewander (), Lin (),

Dauxois and Nkiet (b)). On the other hand, when

H and H are the subspaces considered in the second

assertion of Remark , r just is the Sarmanov maximal

coe�cient. In this case, estimation of the coe�cients from

NLCA and, therefore, the related measures of associations

can be obtained from approximation based on step func-

tions or B-spline functions, and from sampling. Using this

approach, a class of independence tests that admits the chi-

squared test of independence as particular case, have been

be proposed (see Dauxois and Nkiet ()).

Cross References
7Canonical Correlation Analysis
7Multivariate Data Analysis: An Overview
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Introduction
Canonical correlation analysis (CCA) is one of the

most general multivariate statistical analysis methods (see

7Multivariate Statistical Analysis). To introduce CCA,
consider two sets of variables, denoted A and B for ease

of reference (e.g., Raykov and Marcoulides ). Let A

consist of p members collected in the vector x, and let B
consist of q members placed in the vector y (p > , q > ).
In an application setting, the variables in either set may or

may not be considered response variables (dependent or

outcome measures) or alternatively independent variables

(predictors, explanatory variables). As an example, Amay

consist of variables that have to do with socioeconomic

status (e.g., income, education, job prestige, etc.), while B

may comprise cognitive functioning related variables (e.g.,

verbal ability, spatial ability, intelligence, etc.).

Consider the correlation matrix R of all variables in

A and B taken together, which has (p + q) ⋅ (p + q − )/

non-duplicated (non-redundant) correlations. Obviously,

even for relatively small p and q, there are many non-

duplicated elements of R. CCA deals with reducing this

potentially quite large number of correlations to a more

manageable group of interrelationship indices that repre-

sent the ways in which variables in A covary with vari-

ables in B, i.e., the interrelationships among these two sets

of variables. More speci�cally, the purpose of CCA is to

obtain a small number of derived variables (measures)

from those in A on the one hand, and from those in B on

the other, which show high correlations across the two sets

(e.g., Johnson and Wichern ).�at is, a main goal of

CCA is to “summarize” the correlations between variables

in set A and those in set B into a much smaller number

of corresponding linear combinations of them, which in

a sense are representative of those correlations. With this

feature, CCA can be used as a method for () examining

independence of two sets of variables (viz. A and B), ()

data reduction, and () preliminary analyses for a series of

subsequent statistical applications.

Achieving this goal is made feasible through the fol-

lowing steps (cf. Raykov and Marcoulides ). First, a

linear combination Z of the variables x in A is sought, as
is a linear combinationW of the variables y in B, such that
their correlation ρ, = Corr(Z,W) is the highest possible

across all choices of combination weights for W and Z
(see next section for further details). Call Z and W the

�rst pair of canonical variates, and ρ, the �rst canonical

correlation. In the next step, another linear combination

Z of variables in A is found and a linear combination

W of variables in B, with the following property: their

correlation ρ, = Corr(Z,W) is the highest possible

under the assumption of Z and W being uncorrelated

with the variables in the �rst combination pair, Z andW.

Z and W are referred to as the second pair of canonical

variates, and ρ, as the second canonical correlation.�is

process can be continued until t pairs of canonical variates

are obtained, where t = min(p, q) being the smaller of p

and q. While in many applications t may be fairly large,

it is o�entimes the case that only up to the �rst two or

three pairs of canonical variates are really informative (see

following section). If all canonical correlations are then

uniformly weak and close to zero, A and B can be con-

sidered largely (linearly) unrelated. Otherwise, one could

claim that there is some (linear) interrelationship between

variables in A with those in B. Individual scores on the

canonical variates can next be computed and used as val-

ues on new variables in subsequent analyses.�ese scores

may be attractive then, since they capture the essence of the

cross-set variable interrelationships.

Procedure
To begin a CCA, two linear combinations Z = a′ x and
W = b′ y are correspondingly sought from the variables
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in A and in B, such that ρ, = Corr(Z,W) is at its maxi-

mal possible value across all possible choices of a

and b


.

Consider the covariance matrix S of the entire set of p + q

variables in A and B:

S =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

S S

S S

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where S is the covariance matrix of the p variables in

A, S that of the q variables in B, S that of the q vari-

ables in B with the p in A, and S denotes the covariance

matrix of the p variables in A with the q measures in B. It

can be shown (e.g., Johnson and Wichern ) that this

maximum correlation ρ, will be achieved if the following

holds:

. a

is taken as the (generalized) eigenvector per-

taining to the largest solution ρ of the equation

∣SS
−
 S − ρS∣ = , where ∣.∣ denotes determinant,

that is, a

ful�ls the equation (SS

−
 S − ρS) a =

, with ρ being the largest solution of the former

equation.

. b

is the (generalized) eigenvector pertaining to the

largest root of the equation ∣SS
−
 S − πS∣ = ,

that is, b

ful�ls the equation (SS

−
 S − πS)b =

, with the largest π satisfying the former equation.

�e solutions of the two involved determinantal equations

are identical, that is, ρ = π, and the positive square

root of the largest of them equals ρ() = π() = ρ, =

Corr(Z,W), the maximal possible correlation between

a linear combination of variables in A with a linear com-

bination of those in B. �en Z = a′ x and W = b′ y
represent the �rst canonical variate pair, with this max-

imal correlation, Corr(Z,W), being the �rst canonical

correlation.

As a next step, the second canonical variate pair is fur-

nished as a linear combination of the variables in A, using

the eigenvector pertaining to the second largest solution

of ∣SS
−
 S − ρS∣ =  on the one hand, and a linear

combination of the B variables using the second largest

solution of ∣SS
−
 S − πS∣ =  on the other hand;

then their correlation is the second canonical correlation.

One continues in the same manner until t = min(p, q)

canonical variate pairs are obtained; the corresponding

canonical correlations are calculated as their interrelation-

ship indices (correlations). From the construction of the

canonical variates follows that they are uncorrelated with

one another:

Cov(Zi,Zj) = Cov(Wi,Wj) = Cov(Zi,Wj)

=  (for all i ≠ j; i, j = , . . . , t).

Interpretation
Even though there are t = min(p, q) canonical variate

pairs and canonical correlations, o�entimes in applications

not all are important for understanding the relationships

among variables in A and B. Statistical tests are available

which help evaluate the importance of canonical variate

pairs and aid a researcher in �nding out how many pairs

could be retained for further analysis. �e tests assume

multivariate normality and examine hypotheses of canon-

ical correlations being  in a given population. �e �rst

test evaluates the null hypothesis that all canonical corre-

lations are . If this hypothesis is rejected, at least the �rst

canonical variate pair is of relevance when trying to under-

stand the interrelationship between the variables in A and

B; more speci�cally, at least the �rst canonical correlation

is not zero in the population.�en the second test exam-

ines the null hypothesis that apart from the �rst canonical

correlation, all remaining ones are ; and so on. If the �rst

tested hypothesis is not rejected, it can be concluded that

A and B are (linearly) unrelated to one another.

A�er completing these tests, and in case at least the

�rst canonical correlation is signi�cant, the next question

may well be how to interpret the canonical variates. To this

end, one can use the correlations of each canonical variate

with variables within its pertinent set.�at is, when try-

ing to interpret Z, one can look at its correlations with

the variables in A. Similarly, when trying to interpretW,

one can examine its correlations with the variables B; and

so on for the subsequent canonical variate pairs and their

members. �e principle to follow thereby, is to interpret

each canonical variate as representing the common fea-

tures of initial variables correlated highly with that variate.

Furthermore, for a given canonical correlation ρi = πi,

its square ρ i can be interpreted as a squared multiple

correlation coe�cient for the regression relating the ith

canonical variate for any of the sets A or B, with the vari-

ables of the other set (B or A, respectively; i = , . . . , t).

With this in mind, ρ i can be viewed as proportion shared

variance between A and B, as captured by the ith canon-

ical variate pair (i = , . . . , t); the square of the �rst

canonical correlation is interpretable as a measure of “set

overlap.”

Similarly to principal components and factors, canoni-

cal variates can be used to obtain individual subject scores

on them. �ey can be used in subsequent analyses, e.g.,

as scores on explanatory variables. Like principal com-

ponents, the units of a canonical variate may not be

meaningful. It is stressed that canonical variates are not

latent variables, but instead share the same observed sta-

tus as manifest (recorded) variables, since they are linear

combinations of the latter.
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Relationship to Discriminant
Function Analysis
It can be shown (Tatsuoka ) that with k >  groups

discriminant function analysis (DFA) is identical to CCA

using additionally de�ned variables D,D, . . . ,Dk− as

comprising set A, while the original explanatory (predic-

tor) variables, say x = (x, x, . . . , xp)
′
, are treated as set

B. �ese 7dummy variables D,D, . . . ,Dk− are de�ned
in exactly the same way they would be for purposes of

regression analysis with categorical predictors. If one then

performs a CCA with these sets A and B, the results will

be identical to those obtained with a DFA on the origi-

nal variables x. Speci�cally, the �rst canonical variate for
B will equal the �rst discriminant function; the second

canonical variate for B will equal the second discriminant

function, etc.�e test for signi�cance of the canonical cor-

relations is then a test for signi�cance of discriminant func-

tions, and the number of signi�cant such functions and of

canonical correlations is the same. Further, each consecu-

tive eigenvalue for the discriminant criterion, vi, is related

to a corresponding generalized eigenvalue (determinantal

equation root) ρi : vi =
ρ i

 − ρ i
(i = , , . . . , r; Johnson

and Wichern ). Testing the signi�cance of discrimi-

nant functions is thus equivalent to testing signi�cance of

canonical correlations.

Generality of Canonical Correlation
Analysis
CCA is a very general multivariate statistical method that

uni�es a number of analytic approaches. �e canonical

correlation concept generalizes the notion of bivariate cor-

relation that is a special case of the former for p= q= 

variables.�e multiple correlation coe�cient of main rel-

evance in regression analysis is also a special case of

canonical correlation, which is obtained when the set A

consists of p =  variable – the response measure – and

the set B consists of q variables that are the predictors

(explanatory variables) in the pertinent regression model.

�e multiple correlation coe�cient is then identical to the

�rst canonical correlation. �ird, since various uni- and

multivariate ANOVA designs can be obtained as appropri-

ate special cases of regression analysis, these designs and

corresponding ANOVAs can be seen as special cases of

canonical correlation analysis. Also, as indicated in the pre-

ceding section, discriminant function analysis is a special

case of CCA as well. (Since DFA is a “reverse” MANOVA

– e.g., Raykov and Marcoulides  – one can alterna-

tively see the latter also as a special case of CCA.) Hence,

canonical correlation analysis is a very generalmultivariate

analysis method, which subsumes a number of others that

are widely used in statistical applications.
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Statistics has changed over the last decades from being

a discipline that primarily studied ways to characterize

randomness and variation to a discipline that emphasizes

the importance of data in the explanation of phenomenon

and in problem solving. While statisticians routinely use

mathematics and computer programming languages as key
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tools in their work, they usually also function as an impor-

tant data-driven decision maker within their application

domain. Consequently, a statistician must have a genuine

curiosity about the subject domain they work within, and

furthermore, must have strong collaborative and commu-

nication skills in order successfully interact with the many

colleagues they will encounter and rely on for information.

As the world becomes more quantitative through the

data revolution, more professions and businesses depend

on data and on the understanding and analyses of these

data. Data are not simply numbers. Data contain infor-

mation that needs to be understood and interpreted. As

a result, statisticians are much more than bean counters

or number crunchers.�ey possess skills to �nd needles

in haystacks and to separate noise from signal. �ey are

able to translate a problem or question into a framework

that enables data collection and data analysis to provide

meaningful insights that can lead to practical conclusions.

Loosely speaking there is a spectrum of statisticians

that ranges from very applied on one end to very theoret-

ical on the other end. Applied statisticians skillfully select

and implement an appropriate statistical methodology to

solve a problem.�ey are a statistician who has a problem

and is looking for a solution.�eoretical statisticians are

interested in trying to expand the toolkit of applied statis-

ticians by generalizing or creating new methods that are

capable of solving new problems or solving existing prob-

lems more e�ciently.�ey are statisticians who might get

motivated by a problem someone else encountered in prac-

tice, but who then abstract the problem asmuch as possible

so that their solution has as broad an impact as possible.

Most statisticians are not planted �rmly on either end of

this spectrum, but instead �nd themselves moving around

and adapting to the particular challenge they are facing.

Another way to loosely categorize statisticians is in

terms of industrial (or government) versus academic statis-

ticians. Academic statisticians are primarily involved with

innovative research and the teaching of statistics classes.

Aside from Statistics departments, there are many alter-

native departments for academic statisticians including

Mathematics, Economics, Business, Sociology and Psy-

chology. Research goals for an academic statistician vary

with their interests, and also depend on their emphasis

toward either applied or theoretical research. In addition,

the University at which they work can emphasize either a

teaching or researchmission that further dictates the quan-

tity and type of research they engage in. In any case, it

is a primary responsibility of an academic statistician to

publish papers in leading statistics journals to advance the

�eld. Teaching responsibilities can include introductory

Statistics for undergraduate non-majors, core statistical

theory and methods classes for Statistics majors and in

many cases advanced graduate-level Statistics classes for

students pursuing an MS and/or PhD degree in Statistics.

Industrial statisticians are frequently focused on prob-

lems that have some bearing on the company’s business.

In some large companies there may be a fundamental

research group that operates more like an academic envi-

ronment, but in recent years the number and size of these

groups are diminishing as corporations are more squarely

focused on their bottom lines. Industrial statisticians are

expected to assimilate the company culture and add value

to the projects they work on that goes well beyond the

contributions that their statistical skills alone enable.�ey

might, for example, become project managers and even

technical managers where their organizational, motiva-

tional, and leadership skills become important assets to the

company.

Many statisticians engage in statistical consulting,

either as their primary vocation or as a part-time endeavor.

Academic statisticians, for example, o�en have opportu-

nities to lend their data analysis and quantitative problem

solving skills to government and industry clients, and can

contribute to litigation cases as an expert consultant or

even an expert witness. Consultants must have exception-

ally strong communication skills to be able to translate the

interpretation of their �ndings into the language of the

client. In the same way, they have to be able to elicit infor-

mation from their clients that will ensure the e�cacy of

their data analyses. Industrial statisticians o�en function

as internal consultants to the company they work for.�is

is particularly true in large companies where there can be a

group of statisticians that serve as a shared central resource

for the entire company.

�e following alphabetical list is meant to provide an

appreciation of the diversity of �elds where statisticians are

gainfully employed: Agriculture, Archaeology, Astronomy,

Biology, Chemistry, Computer Science, Demography, Eco-

nomics, Ecology, Education, Engineering, Epidemiology,

Finance, Forestry, Genetics, Health Sciences, Insurance,

Law, Manufacturing, Medicine, National Defense,

Pharmacology, Physics, Psychology, Public Health, Safety,

Sociology, Sports, Telecommunications, and Zoology. To

be more speci�c, consider the following brief descriptions

of work and employment of statisticians in the following

�elds:

Medicine
Florence Nightingale was not only a historic �gure because

of what she brought to the profession of nursing, but

she was also a pioneering �gure in the use of statistics.

Statistical work in medicine involves designing studies
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and analyzing their data to determine if new (or exist-

ing) drugs, medical procedures and medical devices are

safe and e�ective. Statisticians �nd careers at pharma-

ceutical companies, medical research centers and govern-

mental agencies concerned with drugs, public health and

medicine.

Ecology
Research laboratories, commercial �rms and government

environmental agencies employ statisticians to evaluate the

environmental impact of air, water and soil pollutants.

Statisticians also work with government lawyers to ana-

lyze the impact (false positive or false negative) of proposed

federal or state pollution tests and regulations.

Market Research
Statisticians analyze consumer demand for products and

services, analyze the e�ectiveness of various types of adver-

tising, and analyze the economic risk of satisfying con-

sumer demand for products and services.

Manufacturing
�e success ofmanufacturing industries such as aerospace,

electronics, automobile, chemical or other product pro-

ducing industries depends, at least in part, on the e�-

ciency of production and the quality and reliability of

their products. Statistical techniques and models are used

for predicting inventory needs, improving production

�ow, quality control, reliability prediction and improve-

ment, and development of product warranty plans. �e

Deming Prize, named a�er the proli�c statistician W.

Edwards Deming, was established in  and is annually

awarded to companies that make major advances in qual-

ity improvement.�eMalcolmBaldridgeNational Quality

Award, named a�er Malcolm Baldridge who served as

the United States Secretary of Commerce under President

Regan, was established in  and is annually awarded to

U.S. organizations for performance excellence.

Actuarial Sciences
Actuarial statisticians use Mathematics and Statistics to

assess the risk of insurance and �nancial portfolios. Statis-

tical methods are used, for example, to determine a wide

variety of appropriate insurance premiums (e.g., home-

owner, life, automobile, �ood, etc.) and to manage invest-

ment and pension funds.

Safety
Statisticians are employed by many businesses and agen-

cies to model safety concerns and to estimate and pre-

dict the probability of occurrence of these safety concerns.

Nuclear power plants, national defense agencies and air-

lines are just a fewof the businesses that statistically analyze

safety risks.

Telecommunications
�e reliability of voice and data networks is paramount

to a telecommunication company’s revenue and their

brand name image. Statisticians work collaboratively with

engineers to model alternative design architectures and

choose the most cost-e�ective design that minimizes

customer-perceived downtime. Statisticians working in

telecommunication companies frequently shi� into new

technology areas to keep up with the vastly changing land-

scape of high-tech companies.

�e authors have found that their careers in statistics

involve work that is usually very interesting, o�en involves

new ideas and learning experiences, and can de�nitely

bring value to problem solving.

For more information on careers in statistics consult

www.amstat.org or e-mail asainfo@amstat.org.
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Introduction
�e basic aim of a case-control study is to investigate the

association between a disease (or some other condition

of interest) and potential risk factors by drawing sepa-

rate samples of “cases” (people with the disease, say) and

“controls” (people at risk of developing the disease). Let Y

denote a binary response variable which can take values

Y = , corresponding to a case, or Y = , corresponding

to a control, and let x be a vector of explanatory variables
or covariates. Our aim is to �t a binary regression model

to explain the probabilistic behavior of Y as a function of

the observed values of the explanatory variables recorded

in x. We focus particularly on the logistic regression
model (see 7Logistic Regression),

logit{pr(Y ∣ x; β)} = log{
pr(Y =  ∣ x; β)
pr(Y =  ∣ x; β)

}

= β + xTβ

, ()

since this makes the analysis of case-control data par-

ticularly simple and is the model of choice in most

applications.

In principle, themost straightforwardway of obtaining

data from which to build regression models for pr(Y ∣ x)
would be to use a prospective sampling design. Here

covariate information is ascertained for a cohort of indi-

viduals who are then tracked through time until the end

of the study when whether they have contracted the dis-

ease (Y = ) or not (Y = ) is recorded. With prospec-

tive sampling designs, observation proceeds from covari-

ates (explanatory variables) to response, corresponding

to the logic underlying the modelling. With case-control

sampling, the order is reversed, with data collection

proceeding from response to covariates. �e parameter

β

in Model () can still be estimated, however. Con-

sider the simplest situation of a single binary covari-

ate taking values x =  or x = . Using Bayes

�eorem, Corn�eld () showed that the prospective

odds ratio,
pr(Y=∣x=)
pr(Y=∣x=)/

pr(Y=∣x=)
pr(Y=∣x=) , can be expressed as

pr(x=∣Y=)
pr(x=∣Y=)/

pr(x=∣Y=)
pr(x=∣Y=) , which only involves quantities that

can be estimated directly from case-control data. Corn-

�eld also pointed out that the relative risk, pr(Y =  ∣

x = )/pr(Y =  ∣ x = ), which is usually of more

interest, is approximated well by the odds ratio if the dis-

ease is rare. If the overall probability of a case can be

estimated from other sources, then this can be combined

with the relative risk to give estimates of the absolute risk

of disease for exposed (x = ) and non-exposed (x =

) groups. All this extends immediately to general β

,

all of whose components represent individual log odds

ratios.

Types of Case-Control Studies
�ere are twobroad types of case-control study, population-

based and matched, corresponding to two di�erent ways

of controlling for confounding variables. In the simplest

form of population-based sampling sampling, random

samples are drawn independently from the case- and

control-subpopulations of a real, �nite target population

or cohort. Covariate information, x, is then ascertained
for sampled individuals. Fitting logistic model () is par-

ticularly simple here. Following earlier work for discrete

covariates, Prentice andPyke () showed thatwe can get

valid inferences about β

by running the case-control data

through a standard logistic regression program designed

for prospective data.�e intercept β, which is needed if

we want to estimate the absolute risk for given values of

the covariates, is completely confounded with the relative

sampling rates of cases and controls but can be recovered

using additional information such as the �nite population

totals of cases and controls.

Prentice and Pyke extended this to strati�ed case-

control sampling, where the target population is �rst split

into strata on the basis of variables known for the whole

population and separate case-control samples are drawn

from each stratum. Again we get valid inferences about

all the other coe�cients by running the data through a

prospective logistic regression program, provided that we
introduce a separate intercept for each stratum into our

model. Otherwise standard logistic programs need to be

modi�ed slightly to produce valid inferences (Scott andh
Wild ).

In designing a population-based study, it is impor-

tant to make sure that the controls really are drawn from

the same population, using the same protocols, as the

cases. Increasingly, controls are selected using modern

sample survey techniques, involving multi-stage sampling

and varying selection probabilities, to help ensure this.�e

modi�cations needed to handle these complications are

surveyed in Scott and Wild ().

In a matched case-control study, each case is individ-

ually matched with one or more controls. �is could be

regarded as an limiting case of a strati�ed study with the
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strata so �nely de�ned that each stratum includes only

a single case. If we introduce an extra intercept for each

matched set, then we can no longer use a simple logis-

tic program since the plethora of parameters will lead to

inconsistent parameter estimates. Instead we need to carry

out a conditional analysis. More speci�cally, suppose that

there areM controls in the jth matched set and model ()

is replaced by logit{pr(Y ∣ x; β)} = βj + xTβ

for these

observations. �en the conditional probability that the

covariates xj are those of the case and (xj, . . . , xjM) are
those of theM controls, given the set ofM+ covariates can

be expressed in the form exp (xTjβ) /∑
M+
m= exp (x

T
jmβ


),

which does not involve the intercept terms. Inferences

about β

can then bemade from the conditional likelihood

obtained when we combine these terms over all matched

sets. With pair matching (M = ), this likelihood is identi-

cal to a simple logistic regression on the di�erence between

the paired covariates.

More sophisticated designs, including incidence den-

sity sampling, nested case-control studies and case-

cohort studies, that can handle complications such as

time-varying covariates and 7survival data are discussed
in other chapters in this volume.

Discussion
Case-control sampling is a cost-reduction device. If we

could a�ord to collect data on the whole �nite popula-

tion or cohort, then we would do so.�ere many practical

di�culties that need to be overcome to run a successful

case-control study; a good account of these is given in

Breslow (). Despite this, the case-control study in its

various forms is one of the most common designs in

health research. In fact, Breslow and Day () described

such studies as “perhaps the dominant form of analytical

research in epidemiology” and since that time the rate of

appearance of papers reporting on case-control studies has

gone up by a factor of more than . �ese designs are

also used in other �elds, sometimes under other names. In

econometrics, for example, the descriptor “choice-based”

is used (see Manski and McFadden ()).

�ere are several reasons for the popularity of case-

control studies. �e �rst is the simplicity of the logistic

analysis outlined above. �e other two reasons concern

e�ciency: time e�ciency and statistical e�ciency. �e

former comes from being able to use historical informa-

tion immediately rather than having to follow individuals

through time and then wait to observe an outcome as

in a prospective study. �e �rst chapter of Breslow and

Day () has a good discussion of the attendant risks.

�e gain in statistical e�ciency can be huge. For example,

suppose that we have a condition that a�ects only  individ-

ual in  on average and we wish to investigate the e�ect

of an exposure that a�ects % of people. In this situation

a case-control study with equal numbers of cases and con-

trols has the same power for detecting a small increase in

risk as a prospective study with approximately �ve times as

many subjects. If the condition a�ects only one individual

in  then the prospective study would need  times as

many subjects!
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Introduction
A categorical variable consists of a set of non-overlapping

categories. Categorical data are counts for those categories.

�e measurement scale is ordinal if the categories exhibit a

natural ordering, such as opinion variables with categories

from “strongly disagree” to “strongly agree.”�e measure-

ment scale is nominal if there is no ordering.�e types of

possible analysis depend on the measurement scale.

When the subjects measured are cross-classi�ed on

two or more categorical variables, the table of counts for

the various combinations of categories is a contingency

table.�e information in a contingency table can be sum-

marized and further analyzed through appropriate mea-

sures of association and models. A standard reference on

association measures is Goodman and Kruskal ().

Most studies distinguish between one ormore response

variables and a set of explanatory variables.When themain

focus is on the association and interaction structure among

a set of response variables, such as whether two variables

are conditionally independent given values for the other

variables, log-linear models are useful. More commonly,

research questions focus on e�ects of explanatory vari-

ables on a categorical response variable. Logistic regression

models (see 7Logistic Regression) are then of particular
interest. For binary (success-failure) response variables,

they describe the logit, which is log[P(Y = )/P(Y = )],

using

log[P(Y = )/P(Y = )] = a + βx + βx +⋯ + βpxp

where Y is the binary response variable and x, . . . , xp the

set of the explanatory variables. For a nominal response Y

with J categories, the model simultaneously describes

log[P(Y = )/P(Y = J)],

log[P(Y = )/P(Y = J)], . . . , log[P(Y = J − )/P(Y = J)].

For ordinal responses, a popular model uses explanatory

variables to predict a logit de�ned in terms of a cumulative

probability (McCullagh ),

log[P(Y ≤ j)/P(Y > j)], j = , , . . . , J − .

For categorical data, the binomial (see 7Binomial Distri-
bution) and multinomial distributions (see 7Multinomial

Distribution) play the central role that the normal does

for quantitative data. Models for categorical data assuming

the binomial or multinomial were uni�ed with standard

regression and 7analysis of variance (ANOVA) models

for quantitative data assuming normality through the

introduction by Nelder and Wedderburn () of the

generalized linear model (GLM, see 7Generalized Linear
Models). �is very wide class of models can incorporate

data assumed to come from any of a variety of standard

distributions (such as the normal, binomial, and Poisson).

�e GLM relates a function of the mean (such as the log

or logit of the mean) to explanatory variables with a linear

predictor.

Contingency Tables
Two categorical variables are independent if the probabil-

ity of response in any particular category of one variable

is the same for each category of the other variable. �e

most well-known result on two-way contingency tables is

the test of the null hypothesis of independence, introduced

by Karl Pearson in . If X and Y are two categorical

variables with I and J categories respectively, then their

cross-classi�cation leads to a I × J table of observed fre-

quencies n = (nij). Under this hypothesis, the expected

cell frequencies equal mij = nπi⋅π⋅j, i = , . . . , I, j = , . . . , J,

where n is the total sample size (n = ∑i,j nij) and πi⋅(π⋅j)

is the ith row ( jth column) marginal of the underlying

probabilities matrix π = (πij). �en the corresponding

maximum likelihood (ML) estimates equal m̂ij = npi⋅p⋅j =
ni⋅n⋅j

n
, where pij denotes the sample proportion in cell (i, j).

�e hypothesis of independence is tested throughPearson’s

chi-squared statistic

χ

=
∑i,j(nij − m̂ij)



m̂ij
. ()

�e P-value is the right-tail probability above the observed

χ value.�e distribution of χ under the null hypothesis is

approximated by a χ(I−)(J−), provided that the individual

expected cell frequencies are not too small.When a contin-

gency table has ordered row or column categories (ordinal

variables), specialized methods can take advantage of that

ordering.

More generally, models can be formulated that are

more complex than independence, and expected frequen-

cies mij can be estimated under the constraint that the

model holds. If m̂ij are the correspondingmaximum likeli-

hood estimates, then, to test the hypothesis that the model

holds, we can use the Pearson statistic () or the statis-

tic that results from the standard statistical approach of
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conducting a likelihood-ratio test, which has test statistic

G

= ∑

i,j

nij ln(
nij

m̂ij
). ()

Independence between the classi�cation variablesX and Y

(i.e.,mij = nπi⋅π⋅j, for all i and j) can be expressed in terms

of a log-linear model as

log(mij) = λ + λ
X
i + λ

Y
j , i = , . . . , I, j = , . . . , J.

�e more general model that allows association between

the variables is

log(mij) = λ + λ
X
i + λ

Y
j + λ

XY
ij , i = , . . . , I, j = , . . . , J.

()

Log-linear models describe the way the categorical vari-

ables and their association in�uence the count in each

cell of the contingency table. �ey can be consid-

ered as a discrete analogue of ANOVA. �e two-factor

interaction terms relate to odds ratios describing the

association.

Associations can be modeled through simpler associa-

tion models.�e simplest such model, the linear-by-linear

associationmodel, is relevant when both classi�cation vari-

ables are ordinal. It replaces the interaction term λ XYij
by the product ϕµiνj, where µi and νj are known scores

assigned to the row and column categories respectively.

�is model is

log(mij) = λ+ λ
X
i + λ

Y
j + ϕµiνj, i = , . . . , I, j = , . . . , J.

()

More general models treat one or both sets of scores as

parameters.

�e special case of square I × I contingency tables with

the same categories for the rows and the columns occurs

with matched-pairs data. For example, such tables occur

in the study of rater agreement and in the analysis of social

mobility. A condition of particular interest for such data is

marginal homogeneity, that πi⋅ = π⋅i, i = , . . . , I. For the

 ×  case of binary matched pairs, the test comparing the

margins using the chi-squared statistic (n − n)

/(n +

n) is calledMcNemar’s test.

�e models for two-way tables extend to higher

dimensions. �e various models available vary in terms

of the complexity of the association and interaction

structure.

Inference and Software
Standard statistical packages, such as SAS,R, and SPSS,

are well suited for analyzing categorical data, mainly using

maximum likelihood for inference. For SAS, a variety of

codes are presented and discussed in the Appendix of

Agresti (), and see also Stokes et al. (). For R,

see the on-line manual of �ompson (). Bayesian

analysis of categorical data can be carried out through

WinBUGS (http://wlww.mrc-bsu.cam.ac.uk/bugs/winbugs
/contents.shtml).

�e standard reference on log-linear models is Bishop

et al. (). For logistic regression,Hosmer andLemeshow

() is popular. A more comprehensive book dealing

with categorical data analysis using various types ofmodels

and analyses is Agresti (), with Agresti () focusing

on ordinal data.
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From their inception, causal systems models (more com-

monly known as structural-equations models) have been

accompanied by graphical representations or path dia-

grams that provide compact summaries of qualitative

assumptions made by the models.�ese diagrams can be

reinterpreted as probability models, enabling use of graph

theory in probabilistic inference, and allowing easy deduc-

tion of independence conditions implied by the assump-

tions. �ey can also be used as a formal tool for causal

inference, such as predicting the e�ects of external inter-

ventions. Given that the diagram is correct, one can see

whether the causal e�ects of interest (target e�ects, or

causal estimands) can be estimated from available data, or

what additional observations are needed to validly estimate

those e�ects. One can also see how to represent the e�ects

as familiar standardized e�ect measures.�e present arti-

cle gives an overview of: () components of causal graph

theory; () probability interpretations of graphical models;

and () methodologic implications of the causal and prob-

ability structures encoded in the graph, such as sources of

bias and the data needed for their control.

Introduction
From their inception in the early twentieth century, causal

models (more commonly known as structural-equations

models) were accompanied by graphical representations

or path diagrams that provided compact summaries of

qualitative assumptions made by the models. Figure  pro-

vides a graph that would correspond to any system of �ve

equations encoding these assumptions:

. independence of A and B

. direct dependence of C on A and B

. direct dependence of E on A and C

. direct dependence of F on C and

. direct dependence of D on B,C, and E

�e interpretation of “direct dependence” was kept

rather informal and usually conveyed by causal intuition,

for example, that the entire in�uence of A on F is “medi-

ated” by C.

By the s it was recognized that these diagrams

could be reinterpreted formally as probability models,

enabling use of graph theory in probabilistic inference,

and allowing easy deduction of independence conditions

implied by the assumptions (Pearl ). By the s it

was further recognized that these diagrams could also be

used as tools for guiding causal and counterfactual infer-

ence (Pearl , ; Pearl and Robins ; Spirtes et al.

) and for illustrating sources of bias and their rem-

edy in empirical research (Greenland et al. ;Greenland

, ; Robins ; Greenland and Brumback ;

Cole and Hernán ; Hernán et al. ; Jewell ;

Pearl ; Glymour and Greenland ). Given that the

graph is correct, one can see whether the causal e�ects of

interest (target e�ects, or causal estimands) can be esti-

mated from available data, or what additional observations

are needed to validly estimate those e�ects. One can also

see how to represent the e�ects as familiar standardized

e�ect measures.

�e present article gives an overview of: () compo-

nents of causal graph theory; () probability interpreta-

tions of graphical models; and () methodologic implica-

tions of the causal and probability structures encoded in

the graph, such as sources of bias and the data needed for

their control. See7Causation and Causal Inference for dis-
cussion of de�nitions of causation and statistical models

for causal inference.

Graphical Models and Causal Diagrams
Basics of Graph Theory
As be�tting a well developed mathematical topic, graph

theory has an extensive terminology that, once mastered,

provides access to a number of elegant results which may

be used to model any system of relations.�e term depen-

dence in a graph, usually represented by connectivity, may

refer to mathematical, causal, or statistical dependencies.

�e connectives joining variables in the graph are called

arcs, edge, or links, and the variables are also called nodes

or vertices. Two variables connected by an arc are adjacent

or neighbors and arcs that meet at a variable are also adja-

cent. If the arc is an arrow, the tail (starting) variable is the

parent and the head (ending) variable is the child. In causal

diagrams, an arrow represents a “direct e�ect” of the par-

ent on the child, although this e�ect is direct only relative

https://home.comcast.net/~lthompson221/Splusdiscrete2.pdf
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Causal Diagrams. Fig.  E ← C → D is open, E → A → C ←
B→ D is closed

to a certain level of abstraction, in that the graph omits any

variables that might mediate the e�ect.

A variable that has no parent (such asA and B in Fig. )

is exogenous or external, or a root or source node, and is

determined only by forces outside of the graph; otherwise

it is endogenous or internal. A variable with no children

(such as D in Fig. ) is a sink or terminal node. �e set

of all parents of a variable X (all variables at the tail of an

arrow pointing intoX) is denoted pa[X]; in Fig. , pa[D] =

{B,C,E}.

A pathor chain is a sequence of adjacent arcs. A directed

path is a path traced out entirely along arrows tail-to-head.

If there is a directed path from X to Y , X is an ancestor of

Y and Y is a descendant of X. In causal diagrams, directed

paths represent causal pathways from the starting variable

to the ending variable; a variable is thus o�en called a cause

of its descendants and an e�ect of its ancestors. In a directed

graph the only arcs are arrows, and in an acyclic graph there

is no feedback loop (directed path from a variable back to

itself).�erefore, a directed acyclic graph or DAG is a graph

with only arrows for edges and no feedback loops (i.e., no

variable is its own ancestor or its own descendant).

A variable intercepts a path if it is in the path (but not

at the ends); similarly, a set of variables S intercepts a path

if it contains any variable intercepting the path. Variables

that intercept directed paths are intermediates ormediators

on the pathway. A variable is a collider on the path if the

path enters and leaves the variable via arrowheads (a term

suggested by the collision of the arrows at the variable).

Note that being a collider is relative to a path; for exam-

ple in Fig. , C is a collider on the path A → C ← B → D

and a noncollider on the path A → C → D. Nonetheless,

it is common to refer to a variable as a collider if it is a

collider along any path (i.e., if it has more than one par-

ent). A path is open or unblocked at noncolliders and closed

or blocked at colliders; hence a path with no collider (like

E ← C ← B → D) is open or active, while a path with a

collider (like E ← A→ C ← B→ D) is closed or inactive.

Some authors use a bidirectional arc (two-headed

arrow,↔) to represent the assumption that two variables

share ancestors that are not shown in the graph; A ↔ B

then means that there is an unspeci�ed variable U with

directed paths to both A and B (e.g., A← U → B).

Interpretations of Graphs
Depending on assumptions used in its construction,

graphical relations may be given three distinct levels of

interpretation: probabilistic, causal, and functional. We

now brie�y describe these levels, providing further details

in later sections.

�e probabilistic interpretation requires the weakest

set of assumptions. It treats the diagram as a carrier of

conditional independencies constraints on the joint dis-

tribution of the variables in the graph. To serve in this

capacity, the parents pa[X] of each variable X in the dia-

gram are chosen so as to render X independent of all its

nondescendants, given pa[X]. When this condition holds,

we say that the the diagram is compatible with the joint

distribution. In Fig. , for example, variable E is assumed

to be independent of its nondescendants {B,D,F} given

its parents pa[E] = {A,C}. We will see that compatibility

implies many additional independencies (e.g., E and F are

independent givenC) that could be read from the diagram

by tracing its paths. In real-life problems, compatibility

arises if each parent–child family {X, pa[X]} represents a

stochastic process by which nature determines the prob-

ability of the child X as a function of the parents pa[X],

independently of values previously assigned to variables

other than the parents.

To use diagrams for causal inference, we must assume

that the direction of the arrows correspond to the structure

of the causal processes generating the data. More specif-

ically, the graph becomes a causal diagram if it encodes

the assumption that for each parent–child family, the con-

ditional probability Pr(x∣pa[X]) would remain the same

regardless of whether interventions take place on vari-

ables not involving {X, pa[X]}, even if they are ancestors

or descendants of X. In Fig. , for example, the condi-

tional probability P(C∣A,B) is assumed to remain invari-

ant under manipulation of the consequences of C, i.e., E,F

or D. A causal DAG represents a complete causal struc-

ture, in that all sources of causal dependence are explained

by causal links; in particular, it is assumed that all com-

mon (shared) causes of variables in the graph are also in

the graph, so that all exogenous variables (root nodes) are

causally independent (although they may be unobserved).

If we assume further that the arrows represent func-

tional relationships, namely processes by which nature

assigns a de�nite value to each internal node, the diagram

can then be used to process counterfactual information

and display independencies among potential outcomes
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(including counterfactual variables) (Pearl , Chap. ).

We will describe such structural diagrams and potential

outcomes below.

Control: Manipulation Versus Conditioning
�e word “control” is used throughout science, but with

a variety of meanings that are important to distinguish.

In experimental research, to control a variable C usually

means tomanipulate or set its value. In observational stud-

ies, however, to control C (or more precisely, to control

for C) more o�en means to condition on C, usually by

stratifying on C or by entering C in a regression model.

�e two processes are very di�erent physically and have

very di�erent representations and implications (Pearl ;

Greenland et al. ).

If a variable X is in�uenced by a researcher, a realistic

causal diagram would need an ancestor R of X to repre-

sent this in�uence. In the classical experimental case in

which the researcher alone determines X,R and X would

be identical. In human trials, however, R more o�en rep-

resents just an intention to treat (with the assigned level of

X), leaving X to be in�uenced by other factors that a�ect

compliance with the assigned treatment R. In either case, R

might be a�ected by other variables in the graph. For exam-

ple, if the researcher uses age to determine assignments (an

age-biased allocation), agewould be a parent ofR. Ordinar-

ily however R would be exogenous, as when R represents a

randomized allocation.

In contrast, by de�nition in an observational study

there is no such variable R representing the researcher’s

in�uence on X. Conditioning is o�en used as a substitute

for experimental control, in the hopes that with su�cient

conditioning,X will be independent of uncontrolled in�u-

ences. Conditioning on a variable C closes open paths that

pass through C. However, if C is a collider, conditioning

on C opens paths that were blocked by C or by an ancestral

collider A. In particular, conditioning on a variable may

open a path even if it is not on the path, as with F in Figs. 

and .

To illustrate conditioning in a graph, we will redraw

the graph to surround conditioned variables with square

brackets (conditioned variables are o�en circled instead).

We may now graphically determine the status of paths

a�er conditioning by regarding the path open at colliders

that are bracketed or have bracketed descendants, open at

unbracketed noncolliders, and closed elsewhere. Figure 

shows Fig.  a�er conditioning on C, from which we see

that the E−D paths E ← C ← B→ D and E ← A→ C → D

have been blocked, but the path E ← A→ C ← B→ D has

been opened.Werewe to condition onF but notC, no open

Causal Diagrams. Fig.  Conditional onC, E ← C → D is closed
but E → A→ C ← B→ D is open

Causal Diagrams. Fig.  Conditional on F, E ← C → D and E →
A→ C ← B→ D are both open

path would be blocked, but the path E ← A→ C ← B→ D

would again be opened.

�e opening of paths at conditioned colliders re�ect

the fact that we should expect two unconditionally inde-

pendent causesA and B become dependent if we condition

on their consequences, which in Fig.  areC and F. To illus-

trate, suppose A and B are binary indicators (i.e., equal to 

or ), marginally independent, andC = A+B.�en among

persons with C = , some will have A = , B =  and some

will have A = , B =  (because other combinations pro-

duce C ≠ ).�us when C = , A and B will exhibit perfect

negative dependence: A =  − B for all persons with C = .

�e distinction between manipulation and condition-

ing is brought to the fore when considering the notion of

“holding a variable constant.” Conditioning on a variable

X means that we choose to narrow the scope of discus-

sion to those situations only where X attains a given value,

regardless of how that value is attained. Manipulating X

means that we physically intervene and set X to a given

value, sayX = x.�e di�erence can be profound. For exam-

ple, in cancer screening, conditioning on the absence of

lighters and matches in the home lowers dramatically the

probability of �nding lung cancer, because restricting our

attention to those who do not have these tools for smok-

ing is tantamount to examining nonsmokers. In contrast,

removing lighters and matches from people’s homes dur-

ing the screening will not lower the probability of �nding

lung cancer, since any lung cancers present will be unaf-

fected by this act. Likewise, conditional on a low barom-

eter reading we will have a lower probability of rain than
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unconditionally, but setting the barometer to a low read-

ing (e.g., by pushing its needle down) will have no e�ect

on the weather.

Graphical Representation of Manipulation
One way of representing manipulation in the graph is to

simulate the act of setting X to a constant, or the imme-

diate implications of that act. If prior to intervention the

probability ofX is in�uenced by its parents via P(x∣pa[X]),

such in�uence no longer exists under an intervention that

is made without reference to the parents or other variables.

In that case, physically setting X at x dislodges X from the

in�uence of its parents and subjects it to a new in�uence

that keeps its value at X = x regardless of the values taken

by other variables.�is can be represented by cutting out

all arrows pointing to X and thus creating a new graph, in

which X is an exogenous (root) node, while keeping the

rest of the graph (with its associated conditional probabil-

ities) intact. For example, setting C to a constant in Fig. ,

will render E and D independent, because all E − D paths

will be blocked by such intervention, including E ← A →

C ← B → D, even though the latter path would be opened

by conditioning on C. On the other hand, manipulating F

but not C would leave all E−D paths intact, and the E−D

association will therefore remain unaltered.

Assuming the graph is correct, graphical represen-

tation of interventions by deleting arrows enables us

to compute post-intervention distributions from pre-

intervention distributions (Pearl , , ; Spirtes

et al. ; Lauritzen ) for a wide variety of inter-

ventions, including those that have side e�ects or that are

conditioned upon other variables in the graph (Pearl ,

pp. , ). Nonetheless, “holding X constant” does not

always correspond to a physically feasible manipulation,

not even conceptually. Consider systolic blood pressure

(SBP) as a cause of stroke (Y). It is easy to “hold SBP con-

stant” in the sense of conditioning on each of its observed

values. But what does it mean to “hold SBP constant”

in the manipulative sense? �ere is only one condition

under which SBP is constant: Death, when it stays put

at zero. Otherwise, SBP is �uctuating constantly in some

strictly positive range in response to posture, activity, and

so on. Furthermore, no one knows how to in�uence SBP

except by interventions Rwhich have side e�ects on stroke

(directed paths from R to Y that do not pass through SBP).

Yet these side e�ects vary dramatically with intervention

(e.g., there are vast di�erences between exercise versus

medication side e�ects).

On the other hand, consider the problem of estimat-

ing the causal e�ect of SBP on the rate of blood �ow in a

given blood vessel. At this physiological level of discussion

we can talk about the e�ect on blood �ow of “changing SBP

from level s to level s′,” without specifying any mechanism

for executing that change.We know frombasic physics that

the blood �ow in a vessel depends on blood pressure, ves-

sel diameter, blood viscosity, and so on; and we can ask

what the blood �ow would be if the blood pressure were to

change from s to s′ while the other factors remained at their

ambient values. Comparing the results from conditioning

on SBP = s versus conditioning on SBP = s′ would

not give us the desired answer because these conditioning

events would entail di�erent distributions for the causes

(ancestors) of SBP, some of which might also a�ect those

determinants of �ow which we wish held constant when

comparing.

Wemay thus conclude that there are contexts in which

it makes no practical sense to speak of “holding X con-

stant” via manipulation. In these contexts, manipulation of

a given variable X can only be represented realistically by

an additional node R representing an actual intervention,

which may have side e�ects other than those intended or

desired. On the other hand, such an R node will be redun-

dant ifX itself is amenable to directmanipulation. For such

an X, manipulation can be represented by removing the

arrows ending inX which correspond to e�ects overridden

by the manipulation (Pearl , , ; Spirtes et al.

; Lauritzen ). When X is completely randomized

or held constant physically, this corresponds to removing

all arrows into X.

�e phrase “holding X constant” may also be mean-

ingful when X is not directly manipulable. In these cases,

we may still be able to estimate a causal e�ect of X if we

can �nd an instrumental variable Z (a variable that is asso-

ciated with X but not with any uncontrolled confounding

variable U, and Z has no e�ect on Y except through X).

Although the operational meaning of these e�ects is not

immediately apparent when direct manipulation of X free

of side e�ects is not conceivable, estimation of these e�ects

can help judge proposed interventions that a�ect Y via

e�ects on X.

Separation
�e intuition of closing and opening paths by condition-

ing is captured by the concept of “separation” which will

be de�ned next. We say that a path is blocked by a set S if

the path contains either an arrow-emitting node that is in

S, or a collider that is outside S and has no descendant in S.

Two variables (or sets of variables) in the graph are

d-separated (or just separated) by a set S if, a�er condi-

tioning on S, there is no open path between them. �us

S d-separates X from Y if S blocks all paths from X to

Y . In Fig. , {A,C} d-separates E from B, but {C} does
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not (because conditioning on C alone results in Fig. , in

which E and B are connected via the open path A). In

a causal DAG, pa[X] d-separates X from every variable

that is not a�ected by X (i.e., not a descendant of X).�is

feature of DAGs is sometimes called the “Markov condi-

tion,” expressed by saying the parents of a variable “screen

o�” the variable from everything but its e�ects. �us in

Fig.  pa[E] = {A,C}, which d-separates E from B but

not from D.

In a probability graph, d-separation of X and Y by

S implies that X and Y are independent given S in any

distribution compatible with graph. In a causal diagram,

d-separation of X and Y by S implies additionally that

manipulation of X will not alter the distribution of Y if

the variables in S are held constant physically (assum-

ing this can be done). More generally, the distribution of

Y will remain unaltered by manipulation of X if we can

hold constant physically a set S that intercepts all directed

paths from X to Y , even if S does not d-separate X and Y .

�is is so because only descendants of X can be a�ected

by manipulation of X. In sharp contrast, conditioning on

X may change the probabilities of X’s ancestors; hence

the stronger condition of d-separation by S is required to

insure that conditioning on X does not alter the distribu-

tion of Y given S.

Statistical Interpretations and
Applications
Earlier we de�ned the notion of compatibility between a

joint probability distribution for the variables in a graph

and the graph itself. It can be shown that compatibility

is logically equivalent to requiring that two sets of vari-

ables are independent given S whenever S separates them

in the graph. Moreover these conditional independencies

constitute the only testable implications of a causal model

speci�ed by the diagram (Pearl , p. ).�us, given

compatibility, two sets of variables will be independent in

the distribution if there is no open path between them in

the graph.

Many special results follow for distributions compat-

ible with a DAG. For example, if in a DAG, X is not an

ancestor of any variable in a set T, then T and X will

be independent given pa[X]. A distribution compatible

with a DAG thus can be reduced to a product of factors

Pr(x∣pa[X]), with one factor for each variable X in the

DAG; this is sometimes called the “Markov factorization”

for theDAG.WhenX is a treatment, this condition implies

the probability of treatment is fully determined by the par-

ents ofX, pa[X]. Algorithms are available for constructing

DAGs that are compatible with a given distribution (Pearl

, pp. –).

Some of the most important constraints imposed by a

graphical model on a compatible distribution correspond

to the independencies implied by absence of open paths;

e.g., absence of an openpath fromA toB in Fig.  constrains

A and B to be marginally independent (i.e., independent if

no strati�cation is done). Nonetheless, the converse does

not hold; i.e., presence of an open path allows but does not

imply dependency. Independence may arise through can-

cellation of dependencies; as a consequence even adjacent

variables may be marginally independent; e.g., in Fig. , A

and E could be marginally independent if the dependen-

cies through paths A → E and A → C → E cancelled each

other.�e assumption of faithfulness, discussed below, is

designed to exclude such possibilities.

Bias and Confounding
Usually, the usage of terms like “bias,” “confounding” and

related concepts refer to dependencies that re�ect more

than just the e�ect under study. To capture these notions

in a causal graph, we say that an open path between X and

Y is a biasing path if it is not a directed path.�e associa-

tion of X with Y is then unbiased for the e�ect of X on Y

if the only open paths from X to Y are the directed paths.

Similarly, the dependence of Y on X is unbiased given S if,

a�er conditioning on S, the open paths between X and Y

are exactly (only and all) the directed paths in the start-

ing graph. In such a case we say S is su�cient to block bias

in the X − Y dependence, and is minimally su�cient if no

proper subset of S is su�cient.

Informally, confounding is a source of bias arising from

causes of Y that are associated with but not a�ected by

X (see 7Confounding).�us we say an open nondirected
path from X to Y is a confounding path if it ends with an

arrow into Y . Variables that intercept confounding paths

between X and Y are confounders. If a confounding path is

present, we say confounding is present and that the depen-

dence of Y on X is confounded. If no confounding path is

present we say the dependence is unconfounded, in which

case the only open paths from X to Y through a parent of

Y are directed paths. Similarly, the dependence of Y on

X is unconfounded given S if, a�er conditioning on S, the

only open paths between X and Y through a parent of Y

are directed paths.

An unconfounded dependency may still be biased due

to nondirected open paths that do not end in an arrow

into Y . �ese paths can be created when one conditions

on a descendant of both X and Y , or a descendant of a

variable intercepting a directed path from X to Y (Pearl

, p. ).�e resulting bias is called Berksonian bias,

a�er its discoverer Joseph Berkson (Rothman et al. ).

Most epidemiologists call this type of bias “selection bias”

(Rothman et al. ) while computer scientists refer to
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it as “explaining away” (Pearl ). Nonetheless, some

writers (especially in econometrics) use “selection bias” to

refer to confounding, while others call any bias created by

conditioning “selection bias”.

Consider a set of variables S that contains no e�ect

(descendant) of X or Y . S is su�cient to block confound-

ing if the dependence of Y on X is unconfounded given S.

“No confounding” thus corresponds to su�ciency of the

empty set. A su�cient S is called minimally su�cient to

block confounding if no proper subset of S is su�cient.

�e initial exclusion from S of descendants of X or Y in

these de�nitions arises �rst, because conditioning on X-

descendants can easily block directed (causal) paths that

are part of the e�ect of interest, and second, because con-

ditioning on X or Y descendants can unblock paths that

are not part of the X − Y e�ect, and thus create new

bias.

�ese considerations lead to a graphical criterion

called the back-door criterion which identi�es sets S that

are su�cient to block bias in the X − Y dependence (Pearl

, ). A back-door path from X to Y is a path that

begins with a parent ofX (i.e., leavesX from a “back door”)

and ends at Y . A set S then satis�es the back-door criterion

with respect to X and Y if S contains no descendant of X

and there are no open back-door paths from X to Y a�er

conditioning on S.

In a unconditional DAG, the following properties hold

(Pearl , ; Spirtes et al. ; Glymour and Green-

land ):

. All biasing paths are back-door paths.

. �e dependence of Y on X is unbiased whenever there

are no open back-door paths from X to Y .

. If X is exogenous, the dependence of any Y on X is

unbiased.

. All confounders are ancestors of either x or of y.

. A back-door path is open if and only if it contains a

common ancestor of X and Y .

. If S satis�es the back-door criterion, then S is su�cient

to block X − Y confounding.

�ese conditions do not extend to conditional DAGs

like Fig. . Also, although pa[X] always satis�es the back-

door criterion and hence is su�cient in a DAG, it may be

far from minimal su�cient. For example, there is no con-

founding and hence no need for conditioning whenever X

separates pa[X] fromY (i.e., whenever the only open paths

from pa[X] to Y are through X).

As a �nal caution, we note that the biases dealt with

by the above concepts are only confounding and selection

biases. To describe biases due to measurement error and

model-form misspeci�cation, further nodes representing

mismeasured or misspecifed variables must be introduced

(Glymour and Greenland ).

Estimation of Causal Effects
Suppose now we are interested in the e�ect of X on Y in

a causal DAG, and we assume a probability model com-

patible with the DAG. �en, given a su�cient set S, the

only source of association between X and Y within strata

of S will be the directed paths from X to Y . Hence the net

e�ect of X = x vs. X = x on Y when S = s is de�ned

as Pr(y∣x, s) − Pr(y∣x, s), the di�erence in risks of Y = y

at X = x and X = x. Alternatively one may use another

e�ect measure such as the risk ratio Pr(y∣x, s)/Pr(y∣x, s).

A standardized e�ect is a di�erence or ratio of weighted

averages of these stratum-speci�c Pr(y∣x, s) over S, using

a common weighting distribution. �e latter de�nition

can be generalized to include intermediate variables in S

by allowing the weighting distribution to causally depend

on X. Furthermore, given a set Z of intermediates along

all directed paths from X to Y and identi�cation of the

X − Z and Z − Y e�ects, one can produce formulas for the

X − Y e�ect as a function of the X − Z and Z − Y e�ects

(“front-door adjustment” (Pearl , )).

�e above form of standardized e�ect is identical to

the forms derived under other types of causal models, such

as potential-outcome models (see 7Causation and Causal
Inference). In those models, the outcome Y of each unit is

replaced by a vector of outcomesY containing components

Yx, where Yx represents the outcome when X = x is the

treatment given. When S is su�cient, some authors (Pearl

) go so far as to identify the Pr(y∣x, s) with the distri-

bution of potential outcomes Yx given S, thereby creating

a structural model for the potential outcomes. If the graph

is based on functional rather than probabilistic relation-

ships between parents and children, this identi�cation can

also model unit-based counterfactuals Yx(u) for any pair

(X,Y), where u is a unit index or a vector of exogeneous

variables characterizing the units.

�ere have been objections to this identi�cation on

the grounds that not all variables in the graph can

be manipulated, and that potential-outcome models do

not apply to nonmanipulable variables. �e objection

loses force when X is an intervention variable, however.

In that case, su�ciency of a set S implies that the

marginal potential-outcome distribution Pr(Yx = y)

equals ∑s Pr(y∣x, s)Pr(s), which is the risk of Y = y given

X = x standardized to the S distribution.

In fact, su�ciency of S implies the stronger condi-

tion of strong ignorability given S, which says that X and

the vector Y of potential outcomes are independent given

S. In particular, strong ignorability given S follows if S
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satis�es the back-door criterion, or if X is randomized

given S. Nonetheless, for the equation Pr(Yx = y) =

∑s Pr(y∣x, s)Pr(s) it su�ces that X be independent of each

component potential outcome Yx given S, a condition

sometimes called weak ignorability given S.

Identification of Effects and Biases
To check su�ciency and identify minimally su�cient sets

of variables given a graph of the causal structure, one need

only see whether the open paths from X to Y a�er con-

ditioning are exactly the directed paths from X to Y in

the starting graph. Mental e�ort may then be shi�ed to

evaluating the reasonableness of the causal independen-

cies encoded by the graph, some of which are re�ected

in conditional independence relations. �is property of

graphical analysis facilitates the articulation of necessary

background knowledge for estimating e�ects, and eases

teaching of algebraically di�cult identi�cation conditions.

As an example, spurious sample associations may arise

if each variable a�ects selection into the study, even if those

selection e�ects are independent. �is phenomenon is a

special case of the collider-strati�cation e�ect illustrated

earlier. Its presence is easily seen by starting with a DAG

that includes a selection indicator F =  for those selected,

 otherwise, as well as the study variables, then noting that

we are always forced to examine associations within the

F =  stratum (i.e., by de�nition, our observations stratify

on selection). �us, if selection (F) is a�ected by multi-

ple causal pathways, we should expect selection to create

or alter associations among the variables.

Figure  displays a situation common in randomized

trials, in which the net e�ect of E on D is unconfounded,

despite the presence of an uncontrolled cause U of D.

Unfortunately, a common practice in health and social

sciences is to stratify on (or otherwise adjust for) an inter-

mediate variable F between a cause E and e�ect D, and

then claim that the estimated (F-residual) association rep-

resents that portion of the e�ect of E on D not mediated

through F. In Fig.  this would be a claim that, upon strati-

fying on the collider F, the E−D association represents the

direct e�ect of E on D. Figure  however shows the graph

conditional on F, in which we see that there is now an open

path from E to D through U, and hence the residual E −D

association is confounded for the direct e�ect of E on D.

�e E − D confounding by U in Fig.  can be seen as

arising from the confounding of the F − D association by

U in Fig. . In a similar fashion, conditioning on C in Fig. 

opens the confounding path throughA,C, and B as seen in

Fig. ; this path can be seen as arising from the confound-

ing of the C−E association by A and the C−D association

by B in Fig. . In both examples, further strati�cation on

Causal Diagrams. Fig.  E → F → D is open, E → F ← U → D is
closed

Causal Diagrams. Fig.  Conditional on F, E → F → D is closed
but E → F ← U → D is open

either A or B blocks the created path and thus removes the

new confounding.

Bias from conditioning on a collider or its descendant

has been called “collider bias” (Greenland ; Glymour

and Greenland ). Starting from a DAG, there are two

distinct forms of this bias: Confounding induced in the

conditional graph (Figs. , , and ), and Berksonian bias

from conditioning on an e�ect of X and Y . Both biases can

in principle be removed by further conditioning on certain

variables along the biasing paths from X to Y in the con-

ditional graph. Nonetheless, the starting DAG will always

display ancestors of X or Y that, if known, could be used

remove confounding; in contrast, no variable need appear

or even exist that could be used to remove Berksonian bias.

Figure  also provides a schematic for estimating the

F −D e�ect, as in randomized trials in which E represents

assignment to or encouragement toward treatment F. In

this case E acts as an instrumental variable (or instrument),

a variable associated with F such that every open path

from E toD includes an arrow pointing into F (Pearl ;

Greenland ;Glymour andGreenland ). Although

the F−D e�ect is not generally estimable, using the instru-

ment E one can put bounds on confounding of the F − D

association, or use additional assumptions that render the

e�ect of F on D estimable.

Questions of Discovery
While deriving statistical implications of graphical models

is uncontroversial, algorithms that claim to discover causal

(graphical) structures from observational data have been



Causal Diagrams C 

hChhhhhh

subject to strong criticism (Freedman and Humphreys

; Robins and Wasserman ). A key assumption in

certain “discovery” algorithms is a converse of compati-

bility called faithfulness Spirtes et al. . A compatible

distribution is faithful to the graph (or stable Pearl ())

if for all X,Y , and S, X and Y are independent given S only
when S separatesX andY (i.e., the distribution contains no

independencies other than those implied by graphical sep-

aration). Faithfulness implies that minimal su�cient sets

in the graph will also be minimal for consistent estimation

of e�ects. Nonetheless, there are real examples of near can-

cellation (e.g., when confounding obscures a real e�ect),

whichmake faithfulness questionable as a routine assump-

tion. Fortunately, faithfulness is not needed for the uses of

graphical models discussed here.

Whether or not one assumes faithfulness, the gener-

ality of graphical models is purchased with limitations on

their informativeness. Causal diagrams show whether the

e�ects can be estimated from the given information, and

can be extended to indicate e�ect direction when that is

monotone VanderWeele and Robins ;. Nonetheless,

the nonparametric nature of the graphs implies that para-

metric concepts like e�ect-measure modi�cation (hetero-

geneity of arbitrary e�ect measures) cannot be displayed

by the basic graphical theory. Similarly, the graphs may

imply that several distinct conditionings are minimal suf-

�cient (e.g., both {A,C} and {B,C} are su�cient for the

ED e�ect in Fig. ), but o�er no further guidance on

which to use. Open paths may suggest the presence of an

association, but that association may be negligible even if

nonzero. Because association transmitted by an open path

may become attenuated as the length of the path increases,

there is o�en good reason to expect certain phenomena

(such as the conditional E−D confounding shown in Figs.

,  and ) to be small in practical terms.

Further Readings
Full technical details of causal diagrams and their rela-

tion to causal inference can be found in the books

by Pearl () and Spirtes et al. (). A compact

survey is given in Pearl (). Less technical reviews

geared toward health scientists include Greenland et al.

(), Greenland and Brumback (), and Glymour

and Greenland ().
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In the health sciences, de�nitions of cause and e�ect have

not been tightly bound with methods for studying causa-

tion. Indeed,many approaches to causal inference require

no de�nition, leaving users to imagine causality however

they prefer. As Sir Austin Bradford Hill said in his famous

article on causation: “I have no wish. . .to embark upon

a philosophical discussion of the meaning of ‘causation”’

(Hill ). Without a formal de�nition of causation, an

association is distinguished as causal only by having been

identi�ed as such based on external and largely subject-

matter considerations, such as those Hill put forth.

Nonetheless, beneath most treatments of causation in

the health sciences, one may discern a class of de�nitions

built around the ideas of counterfactuals or potential out-

comes.�ese ideas have a very long history and form the

foundation of most current statistical methods for causal

inference. �us, the present article will begin with these

de�nitions and the methods they entail. It will then turn

methods that explicitly presume no de�nition of causation

but rather begin with an idea of what a causal associa-

tion should look like (perhaps derived from subject-matter

judgments, including consideration of possible counter-

factuals), and employ statistical methods to estimate those

associations.

Counterfactuals and Potential Outcomes
Skeptical that induction in general and causal infer-

ence in particular could be given a sound logical basis,

David Hume nonetheless captured the foundation of the

potential-outcome approach when he wrote

7 We may define a cause to be an object, followed by
another, . . .where, if the first object had not been, the sec-
ond had never existed.

(Hume , p. )

A key aspect of this view of causation is its counterfactual

element: It refers to how a certain outcome event (the “sec-

ond object,” or e�ect) would not have occurred if, contrary

to fact, an earlier event (the “�rst object,” or cause) had not

occurred. In this regard, it is no di�erent from conven-

tional statistics, which refers to samples that might have

occurred, but did not.�is counterfactual view of causa-

tion was adopted by numerous philosophers and scientists

a�er Hume (e.g., Mill ; Fisher ; Cox ; Simon

and Rescher ; MacMahon and Pugh ; Stalnaker

; Lewis ).

�e development of this view into a statistical theory

with methods for causal inference is recounted by Rubin

(), Greenland et al. (), Greenland (), and

Pearl ().�e earliest such theories were developed in

the s by Fisher, Neyman, and others for the analysis

of randomized experiments and are today widely recog-

nized under the heading of potential-outcome models of

causation (also known in engineering as destructive-testing

models). Suppose we wish to study the e�ect of an inter-

vention variable X on a subsequent outcome variable Y

de�ned on an observational unit or a population; for exam-

ple, X could be the daily dose regimen for a drug in a clini-

cal trial, and Y could be survival time. Given X has poten-

tial values x, . . . , xJ (e.g., drug doses), we suppose that

there is a list of potential outcomes y = (y(x), . . . , y(xJ))
′

such that if X = xj then Y = y(xj).�e list y thus exhibits
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the correspondence between treatments, interventions, or

actions (the X values) and outcomes or responses (the Y

values) for the unit, and so is sometimes called a response

schedule (Berk ). A simpler and common notation has

y = (y, . . . , yJ)
′
, with Yj denoting the random variable

“outcome when treated with X = xj.”

Under this model, assignment of a unit to a treatment

level xj is a choice of which potential outcome y(xj) from

the list y to attempt to observe. It is ordinarily assumed
that the assignments made for other units do not a�ect

the outcomes of another unit, although there are exten-

sions of the model to include between-unit interactions,

as in contagious outcomes (Halloran and Struchiner ).

Regardless of the X assignment, the remaining potential

outcomes are treated as existing pre-treatment covariates

on which data are missing (Rubin , ). Because at

most one of the J potential outcomes is observed per unit,

the remaining potential outcomes can be viewed as miss-

ing data, and causal inference can thus be seen as a special

case of inference with missing data.

To say that intervention xi causally a�ects Y relative to

intervention xj means that y(xi) ≠ y(xj), i.e., X “matters”

for Y for the unit. �e sharp (or strong) null hypothesis

is that y(x) is constant over x within units.�is hypoth-

esis states that changing X would not a�ect the Y of any

unit, i.e., y(xi) = y(xj) for every unit and every xi and

xj; it forms the basis of exact 7permutation tests such as
7Fisher’s exact test (Greenland ).�e e�ect of inter-
vention xi relative to xj on a unit may be measured by the

di�erence in potential outcomes y(xi) − y(xj). If the out-

come is strictly positive (like life expectancy or mortality

risk), it could instead bemeasured by the ratio y(xi)/y(xj).

Because we never observe two potential outcomes

on a unit, we can only estimate population averages of

the potential outcomes. We do this by observing average

outcomes in di�erently exposed groups and substituting

those observations for the average potential outcomes in

the group of interest – a perilous process whenever the

observed exposure groups are atypical of the population of

interest with respect to other risk factors for the outcome

(Maldonado and Greenland ) (see Confounding and

Confounder Control).

A more subtle problem is that only for di�erence mea-

sures will the population e�ect (the di�erence of average

potential outcomes) equal the population average e�ect

(the average di�erence of potential outcomes). Hence the

average of the di�erences y(xi)− y(xj) in the population is

o�en called the average causal e�ect (ACE) (Angrist et al.

). For some popular measures of e�ect, such as rate

ratios and odds ratios, the population e�ect may not even

equal any average of individual e�ects (Greenland ,

; Greenland et al. ).

�e theory extends to probabilistic outcomes by

replacing the y(xj) by probability functions pj(y)

(Greenland ; Robins ; Greenland et al. ).

�e theory also extends to continuous X by allowing the

potential-outcome list y to contain the potential outcome
y(x) or px(y) for every possible value x of X. Both exten-

sions are embodied in Pearl’s notation for intervention

e�ects, in which px(y) becomes P(Y = y∣set[X = x]) or

P(Y = y∣do[X = x]) (Pearl , ). Finally, the the-

ory extends to complex longitudinal data structures by

allowing the treatments to be di�erent event histories or

processes (Robins , ).

From Randomized to Observational
Inference
Potential outcomes were developed part of a design-based

strategy for causal inference in which 7randomization
provided the foundation for inference. Indeed, before the

s, the model was o�en referred to as “the randomiza-

tion model,” even though the causal concepts within it do

not hinge on randomization (e.g., Wilk ; Copas ).

It thus seems that the early strong linkage of potential out-

comes to randomized designs de�ected consideration of

the model for observational research. In the s, how-

ever, a number of philosophers used counterfactuals to

build general foundations for causal analysis (e.g., Simon

and Rescher ; Stalnaker ; Lewis ). Similar

informal ideas can be found among epidemiologists of

the era (e.g., MacMahon and Pugh ), and conceptual

models subsuming counterfactuals began to appear shortly

therea�er (e.g., Miettinen ; Rothman ; Hamilton

).

�e didactic value of these models was quickly appar-

ent in the clari�cation they brought to ideas of strength

of e�ect, synergy, and antagonism (MacMahon and Pugh

; Rothman ; see also Rothman et al. , Chaps. 

and ). Most importantly, the models make clear distinc-

tions between causal and statistical relations: Causal rela-

tions refer to relations of treatments to potential outcomes

within treated units, whereas statistical relations refer asso-

ciations of treatments with actual outcomes across units

(Rothman et al. , Chap. ). Consequently, the mod-

els have aided in distinguishing confounding from col-

lapsibility (Greenland and Robins ; Greenland et al.

), synergy from statistical interaction (Greenland and

Poole ), and causation probabilities from attributable

fractions (Greenland et al. ; Greenland and Robins

).

�e conceptual clari�cation also stimulated develop-

ment of statistical methods for observational

studies. Rubin (, ) and his colleagues extended

statistical machinery based on potential outcomes from
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the experimental setting to observational data analysis,

leading, for example, to propensity-scoring and inverse-

probability-of-treatment methods for confounder adjust-

ment (Rosenbaum ; Hirano et al. ), as well as new

insights into analysis of trials with noncompliance (Angrist

et al. ) and separation of direct and indirect e�ects

(Robins and Greenland , ; Frangakis and Rubin

; Kaufman et al. ). In many cases, such insights

have led tomethodologic re�nements and better-informed

choices among existing methods. In the longitudinal-data

setting, potential-outcome modeling has led to entirely

newmethodologies for analysis of time-varying covariates

and outcomes, including g-estimation andmarginal struc-

tural modeling (Robins , ; Robins et al. , ,

).

A serious caution arises, however, when it is not clear

that the counterfactual values for X (treatments other than

the actual one) represent physical possibilities or even

unambiguous states of nature. A classic example is gender

(biological sex). Although people speak freely of gender

(male vs. female) as cause of heart disease, given a partic-

ular man, it is not clear what it would mean for that man

to have been a woman instead. Do we mean that the man

cross-dressed and lived with a female identity his entire

life? Or that he received a sex-change operation a�er birth?

Or that the zygote from which he developed had its male

chromosome replaced by a female chromosome?

Potential-outcome models bring to light such ambigu-

ities in everyday causal language but do not resolve them

(Greenland a; Hernán ). Some authors appear

to insist that use of the models be restricted to situations

in which ambiguities are resolved, so that X must repre-

sent an intervention variable, i.e., a precise choice among

treatment actions or decisions (Holland ).Many appli-

cations do not meet this restriction, however, and some

go so far as to confuse outcomes (Y) with treatments

(X), which can lead to nonsense results. Examples include

estimates of mortality a�er “cause removal,” e.g., removal

of all lung-cancer deaths. Sensible interpretation of any

e�ect estimate requires asking what intervention on a unit

could have given the unit a value of X (here, lung-cancer

death) other than the one that was observed, and what

the side e�ects that intervention would have. One can-

not remove all lung-cancer deaths by smoking cessation.

A treatment with a % cure rate might do so but need

not guarantee the same subsequent lifespan as if the cancer

never occurred. If such questions cannot be given at least

a speculative answer, the estimates of the impact of cause

removal cannot be expected to provide valid information

for intervention and policy purposes (Greenland a).

More sweeping criticisms of potential-outcomemodels

are given by Dawid (), for example, that the dis-

tribution of the full potential-outcome vector Y (i.e.,
the joint distribution of the Y(x), . . . ,Y(xJ)) cannot be

nonparametrically identi�ed by randomized experiments.

Nonetheless, as the discussants point out, the practical

implication of these criticisms are not clear, because the

marginal distributions of the separate potential outcomes

Y(xj) are nonparametrically identi�able, and known

mechanisms of action may lead to identi�cation of their

joint distribution as well.

Canonical Inference
Before the extension of potential outcomes to observa-

tional inference, the only systematic approach to causal

inference in epidemiology was the informal comparison of

observations to characteristics expected of causal relations.

Perhaps, themostwidely cited of such approach is based on

Hill’s considerations (Hill ), which are discussed criti-

cally in numerous sources (e.g., Koepsell and Weiss ;

Phillips andGoodman ; Rothman et al. , Chap. )

as well as by Hill himself.

�e canonical approach usually leaves terms like

“cause” and “e�ect” as unde�ned concepts around which

the self-evident canons are built, much like axioms are

built around concepts like “set” and “is an element of ” in

mathematics. Only proper temporal sequence (cause must

precede e�ect) is a necessary condition for a cause–e�ect

relation to hold. �e remaining considerations are more

akin to diagnostic symptoms or signs of causation – that is,

they are properties an association is assumedmore likely to

exhibit if it is causal than if it is not (Hill ; Susser ,

). Furthermore, some of these properties (like speci-

�city and dose response) apply only under speci�c causal

models (Weiss , ).

�us, the canonical approach makes causal inference

more closely resemble clinical judgment than experimen-

tal science, although experimental evidence is listed among

the considerations (Hill ; Rothman et al. , Chap. ;

Susser ). Some of the considerations (such as temporal

sequence, association, dose response or predicted gradi-

ent, and speci�city) are empirical signs and thus subject

to conventional statistical analysis. Others (such as plau-

sibility) refer to prior belief, and thus (as with disease

symptoms) require elicitation, the same process used to

construct priors for Bayesian analysis.

�e canonical approach is widely accepted in health

sciences, subject to many variations in detail. Nonetheless,

it has been criticized for its incompleteness and informal-

ity, and the consequent poor �t it a�ords to the deductive
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or mathematical approaches familiar to classic science and

statistics (Rothman et al. , Chap. ). Although there

have been some interesting attempts to reinforce or rein-

terpret certain canons as empirical predictions of causal

hypotheses (e.g., Susser ; Weed ; Weiss , ;

Rosenbaum ), there is no generally accepted mapping

of the entire canonical approach into a coherent statistical

methodology; one simply uses standard statistical tech-

niques to test whether empirical canons are violated. For

example, if the causal hypothesis linking X to Y predicts a

strictly increasing trend inY withX, a test of this statistical

predictionmay serve as a statistical criterion for determin-

ing whether the hypothesis fails the dose-response canon.

Such usage falls squarely in the falsi�cationist/frequentist

tradition of the twentieth-century statistics, but leaves

unanswered most of the policy questions that drive causal

research; this gap led to the development of methodologic

modeling or bias analysis.

Bias Analysis
In the second half of the twentieth-century, a more rig-

orous approach to observational studies emerged in the

wake of major policy controversies such as those concern-

ing cigarette smoking and lung cancer (e.g., Corn�eld et al.

).�is approach begins with the idea that, conditional

on some su�cient set of confounders Z, there is a popu-

lation association or relation between X and Y that is the

target of inference. In other words, the Z-strati�ed asso-

ciations are presumed to accurately re�ect the e�ect of X

on Y in that population stratum, however “e�ect” may be

de�ned. Estimates of this presumably causal association

are then the e�ect estimates.

Observational and analytic shortcomings bias or dis-

tort these estimates: Units may be selected for observa-

tion in a nonrandom fashion; stratifying on additional

unmeasured covariates U may be essential for the X-Y

association to approximate a causal e�ect; inappropriate

covariates may be entered into the analysis; components

of X or Y or Z may not be adequately measured; and so

on. In methodologic modeling or bias analysis, one mod-

els these shortcomings. In e�ect, one attempts to model

the design and execution of the study, including features

(such as selection biases and measurement errors) beyond

investigator control. �e process is thus a natural exten-

sion to observational studies of the design-based paradigm

in experimental and survey statistics. For further details,

see BIAS MODELING or the overviews by Greenland

(b, ).

Structural Equations and Causal
Diagrams
Paralleling the development of potential-outcome mod-

els, an entirely di�erent approach causal analysis arose

in observational research in economics and related �elds.

Like methodologic modeling, this structural-equations

approach does not begin with a formal de�nition of

cause and e�ect, but instead develops models to re�ect

assumed causal associations, from which empirical (and

hence testable) associations may be derived. Like most

of statistics before the s, structural-equations meth-

ods were largely limited to normal linear models to

derive statistical inferences. Because these models bear

no resemblance to typical epidemiologic data, this limi-

tation may in part explain the near absence of structural

equations from epidemiology, despite their ubiquity in

social-science methodology. From their inception, how-

ever, causal system models have been accompanied by

graphical representations or path diagrams that provided

compact summaries of qualitative assumptions made by

the structural model; see 7Causal Diagrams for a review.

Conclusion
Di�erent approaches to causal inference represent separate

historical streams rather than distinct methodologies, and

can be blended in various ways.�e result of anymodeling

exercise is simply one more input to informal judgments

about causal relations, which may be guided by canonical

considerations. Insights and innovations in any approach

can thus bene�t the entire process of causal inference, espe-

cially when that process is seen as part of a larger context.

Other traditions or approaches (some perhaps yet to be

imagined)may contribute to the process. It thus seems safe

to say that no one approach or blend is a complete solu-

tion to the problem of causal inference, and that the topic

remains one rich with open problems and opportunities

for innovation.
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Basic Concepts on Censored Data
In industrial and clinical experiments, there aremany situ-

ations inwhich units (or subjects) are lost or removed from

experimentation before the event of interest occurs. �e

experimentermay not always obtain complete information

on the time to the event of interest for all experimental

units or subjects. Data obtained from such experiments

are called censored data. Censoring is one of the distin-

guishing features of lifetime data. Censoring can be either

unintentional due to accidental breakage or an individual

under study drops out or intentional in which the removal

of units or subjects is pre-planned, or both. Censoring

restricts our ability to observe the time-to-event and it is

a source of di�culty in statistical analysis.

Censoring can occur at either end (single censoring)

or at both ends (double censoring). If the event of inter-

est is only known to be occured before a certain time, it is

called le� censoring.�e term “le� censored” implies that

the event of interest is to the le� of the observed time point.

�e most common case of censoring is right censoring, in

which the exact time to the event of interest is not observed

and it is only known to be occured a�er a certain time.

Di�erent types of right censoring schemes are discussed in

the subsequent section. For interval censoring, the event of

interest is only known to be occurred in a given time inter-

val.�is type of data frequently comes from experiments

where the items under test are not constantly monitored,

for example, the patients in a clinical trial have periodic

follow-up and events of interest occur in between two con-

secutive follow-ups. Note that le� censoring is a special

case of interval censoring where the starting time for the

interval is zero.
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For life-testing experiments where the event of inter-

est is the failure of the item on test, two common rea-

sons for pre-planned censoring are saving the total time

on test and reducing the cost associated with the experi-

ment because failure implies unit’s destruction which can

be costly. When budget and/or facility constraints are in

place, suitable censoring scheme can be used to control the

time spent and the cost of the experiment. Nevertheless,

censored data usually will reduce the e�cient of statisti-

cal inference compare to complete data. �erefore, it is

desirable to develop censoring scheme which can balance

between (i) total time spent for the experiment; (ii) num-

ber of units used in the experiment; and (iii) the e�cient of

statistical inference based on the results of the experiment.

Different Types of Censoring Schemes
Suppose n units are placed on a life-testing experiment.

Further, supposeX,X,⋯,Xn denote the lifetimes of these

n units taken from a population with lifetime distribution

function F(x; θ) and density function f (x; θ), where θ is

an unknown parameter(s) of interest. Let X:n ≤ ⋯ ≤ Xn:n
denote the corresponding ordered lifetimes observed from

the life-test. Some commonly used censoring schemes are

discussed in the following.

Type-I Censoring
Suppose it is planned that the life-testing experiment will

be terminated at a pre-�xed time T. �en, only the fail-

ures until time T will be observed.�e data obtained from

such a restrained life-test will be referred to as a Type-I

censored sample. It is also called time-censoring since the

experimental time is �xed. Note that the number of failures

observed here is random and, in fact, has a Binomial(n,

F(T; θ)) distribution. Figure  shows a schematic represen-

tation of a Type-I censored life-test withm = . Inferential

procedures based on Type-I censored samples have been

discussed extensively in the literature; see, for example,

Cohen () and Balakrishnan and Cohen ().

Type-I censoring scheme has the advantage that the

experimental time is controlled to be at most T while it

has the disadvantage that the e�ective sample size can turn

out to be a very small number (even equal to zero) so that

usual statistical inference procedures will not be applicable

or they will have low e�ciency.

Type-II Censoring
Suppose it is planned that the life-testing experiment will

be terminated as soon as the mth (where m is pre-�xed)

failure is observed.�en, only the �rst m failures out of n

units under test will be observed.�e data obtained from

such a restrained life-test will be referred to as a Type-

II censored sample. In contrast to Type-I censoring, the

number of failures observed is �xed (viz., m) while the

duration of the experiment is random (viz.,Xm:n). Figure 

shows a schematic representation of a Type-II censored

life-test with m = . Inferential procedures based on Type-

II censored samples have been discussed extensively in the
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literature; see, for example, Nelson (), Cohen (),

and Balakrishnan and Cohen ().

Type-II censoring scheme has the advantage that the

number of observed failures is �xed to bem which ensure

reasonable information is available for statistical inference.

However, it has the disadvantage that the experimental

time is random and it can be large.

Progressive Censoring
Both the conventional Type-I and Type-II censoring

schemes do not have the �exibility of allowing removal of

units at points other than the terminal point of the experi-

ment.�is restricts our ability to observe extreme failures

which may lead to ine�cient statistical inference if we are

interested in the behavior of the upper tail of the lifetime

distribution. For this reason, a more general censoring

scheme called progressive censoring has been introduced.

�e censored life-testing experiments described above can

be extended to situationswherein censoring occurs inmul-

tiple stages. Data arising from such life-tests are referred

to as progressively censored data. Naturally, progressive

censoring can be introduced in both Type-I and Type-II

forms.

For example, a progressive Type-II censored life-

testing experiment will be carried out in the following

manner. Prior to the experiment, a numberm < n is deter-

mined and the censoring scheme (R,R, . . . ,Rm) with

Rj >  and
m

∑
j=
Rj + m = n is speci�ed. During the exper-

iment, j-th failure is observed and immediately a�er the

failure, Rj functioning items are removed from the test.We

denote the m completely observed (ordered) lifetimes by

X
(R ,R ,. . .,Rm)
j:m:n , j = , , . . . ,m, which are the observed pro-

gressively Type-II right censored sample. Figure  shows

a schematic representation of a progressively Type-II cen-

sored life-test with m = . Notice that the conven-

tional Type-II censoring scheme is a special case of a

progressive Type-II censoring scheme when Ri = , for

i = , . . . ,m− andRm = n−m. Similarly, progressive Type-

I censoring scheme can be introduced in a similar manner.

Inferential procedures based on progressively Type-II cen-

sored samples have been discussed in the literature; see, for

example, Balakrishnan and Aggarwala () and Balakr-

ishnan () for excellent reviews on the literatures on

this topic.

Hybrid Censoring
Asmentioned previously, both Type-I and Type-II censor-

ing schemes have some shortcomings. To keep away from

these shortcomings, hybrid censoring schemes combining

Type-I and Type-II censoring schemes have been pro-

posed. Speci�cally, if the experiment is terminated at T∗ =

min{Xm:n,T}, where m and T are pre-�xed prior to the

experiment, then the censoring scheme is called Type-I

hybrid censoring scheme; if the experiment is terminated

at T∗ = max{Xm:n,T}, then the censoring scheme is

called Type-II hybrid censoring scheme. We can see that

both Type-I and Type-II hybrid censoring schemes try to

balance between the advantages and disadvantages of con-

ventional Type-I and Type-II censoring schemes. Hybrid

censoring schemes has been studied extensively in the lit-

erature, onemay refer Epstein (), Draper andGuttman

(), Gupta and Kundu (), and Childs et al. (,

), Kundu () for details. In recent years, the idea

of hybrid censoring has been generalized to progressive

censoring, for discussions on di�erent types of hybrid

progressive censoring schemes, see, for example, Kundu

and Joarder (), Banerjee and Kundu (), Ng et al.

() and Lin et al. ().
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Introduction
A census usually refers to a complete count by a national

government of the population, with the population further

de�ned by demographic, social or economic characteris-

tics, for example, age, sex, ethnic background, marital sta-

tus, and income. National governments also conduct other

types of censuses, particularly of economic activity. An

economic census collects information on the number and

characteristics of farms, factories, mines, or businesses.

Most countries of the world conduct population cen-

suses at regular intervals. By comparing the results of

successive censuses, analysts can see whether the popula-

tion is growing, stable, or declining, both in the country

as a whole and in particular geographic regions. �ey

can also identify general trends in the characteristics of

the population. Because censuses aim to count the entire

population of a country, they are very expensive and elab-

orate administrative operations and thus are conducted

relatively infrequently. �e United States and the United

Kingdom, for example, conduct a population census every

 years (a decennial census), and Canada conducts one

every  years (a quinquennial census). Economic censuses

are generally conducted on a di�erent schedule from the

population census.

Censuses of population usually try to count everyone

in the country as of a �xed date, o�en known as Cen-

sus Day. Generally, governments collect the information

by sending a 7questionnaire in the mail or a census taker
to every household or residential address in the country.

�e recipients are instructed to complete the questionnaire

and send it back to the government, which processes the

answers. Trained interviewers visit households that do not

respond to the questionnaire and individuals without mail

service, such as the homeless or those living in remote

areas.

History
Censuses have been taken since ancient times by emper-

ors and kings trying to assess the size and strength of

their realms.�ese early censuses were conducted sporad-

ically, generally to levy taxes or for military conscription.

Clay tablet fragments from ancient Babylon indicate that

a census was taken there as early as  BCE to estimate

forthcoming tax revenues.�e ancient Chinese, Hebrews,

Egyptians, and Greeks also conducted censuses. However,

enumerations did not take place at regular intervals until

the Romans began to count of the population in theRepub-

lic and later the empire. Among the Romans the censuswas

usually a count of the male population and assessment of

property value. It was used mainly for dra�ing men into

military service and for taxing property.

A�er the fall of the Roman Empire in the ��h century

CE, census taking disappeared for several hundred years

in the West.�e small feudal communities of the Middle
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Ages had neither the mechanisms nor the need for cen-

suses. However, in  William the Conqueror ordered

the compilation of the census-like Domesday Book, a

record of English landowners and their holdings. From the

data given in this survey, which was made to determine

revenues due to the king, historians have reconstructed the

social and economic conditions of the times.

�e modern census dates from the seventeenth cen-

tury, when European powers wanted to determine the suc-

cess of their overseas colonies.�us the British crown and

the British Board of Trade ordered repeated counts of the

colonial American population in the seventeenth and eigh-

teenth centuries, starting in the s in Virginia.�e �rst

true census in modern times was taken in New France,

France’s North American empire, beginning in .�e

rise of democratic governments resulted in a new feature

of the census process:�e  census of the United States

was the �rst to have its Constitution require a census and

periodic reapportionment of its House of Representatives

on the basis of the decennial census results. Sweden began

to conduct censuses in the mid-eighteenth century, and

England and Wales instituted a regular decennial census

in . During the nineteenth century and the �rst half of

the twentieth century, the practice of census taking spread

throughout the world. India conducted its �rst national

census in , under British rule. China’s �rst modern

census, in , counted  million people.

�e United Nations encourages all countries to con-

duct a population count through a census or popula-

tion registration system. It also promotes adoption of

uniform standards and census procedures. �e United

Nations Statistical O�ce compiles reports on worldwide

population.

Uses of Census Information
Governments use census information in almost all aspects

of public policy. In some countries, the population census

is used to determine the number of representatives each

area within the country is legally entitled to elect to the

national legislature.�e Constitution of the United States,

for example, provides that seats in the House of Represen-

tatives should be apportioned to the states according to the

number of their inhabitants. Each decade, Congress uses

the population count to determine how many seats each

state should have in the House and in the electoral col-

lege, the body that nominally elects the president and vice

president of the United States. �is process is known as

reapportionment. States frequently use population census

�gures as a basis for allocating delegates to the state legis-

latures and for redrawing district boundaries for seats in

the House, in state legislatures, and in local legislative dis-

tricts. In Canada, census population data are similarly used

to apportion seats among the provinces and territories in

the House of Commons and to draw electoral districts.

Governments at all levels – such as cities, counties,

provinces, and states – �nd population census informa-

tion of great value in planning public services because the

census tells how many people of each age live in di�er-

ent areas. �ese governments use census data to deter-

mine how many children an educational system must

serve, to allocate funds for public buildings such as schools

and libraries, and to plan public transportation systems.

�ey can also determine the best locations for new roads,

bridges, police departments, �re departments, and services

for the elderly.

Besides governments, many others use census data.

Private businesses analyze population and economic

census data to determine where to locate new factories,

shoppingmalls, or banks; to decide where to advertise par-

ticular products; or to compare their own production or

sales against the rest of their industry. Community orga-

nizations use census information to develop social ser-

vice programs and child-care centers. Censuses make a

huge variety of general statistical information about soci-

ety available to researchers, journalists, educators, and the

general public.

Conducting a Census
Most nations create a permanent national statistical agency

to take the census. In the United States, the Bureau of the

Census (Census Bureau), an agency of the Department of

Commerce, conducts the national population census and

most economic censuses. In Canada, the Census Division

of Statistics Canada is responsible for taking censuses.

Conducting a census involves four major stages. First,

the census agency plans for the census and determines

what information it will collect. Next, it collects the infor-

mation by mailing questionnaires and conducting per-

sonal interviews. �en the agency processes and ana-

lyzes the data. Finally, the agency publishes the results to

make them available to the public and other government

agencies.

Planning the Census
Census agencies must begin planning for a census years in

advance. One of the most important tasks is to determine

what questions will appear on the census questionnaire.

Census agencies usually undertake a lengthy public review

process to determine the questions to be asked.�ey con-

duct public meetings, consider letters and requests from

the general public, and consult with other government

agencies and special advisory committees. In the United

States, census questionsmust be approved byCongress and
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the O�ce of Management and Budget. In Canada, ques-

tions must be approved by the governor-general on the

recommendations of the Cabinet.

�e questions included on census forms vary from

nation to nation depending on the country’s particular

political and social history and current conditions. Most

censuses request basic demographic information, such as

the person’s name, age, sex, educational background, occu-

pation, and marital status. Many censuses also include

questions about a person’s race, ethnic or national origin,

and religion. Further questions may ask the person’s place

of birth; relationship to the head of the household; citi-

zenship status; the individual’s or the family’s income; the

type of dwelling the household occupies; and the language

spoken in the household.

Questions that are routine in one nation may be seen

as quite controversial in another, depending on the history

of the country.�e United States census does not ask about

religious a�liation because such a question is considered

a violation of the First Amendment right to freedom of

religion or an invasion of privacy. Other nations, such as

India, do collect such information. Questions on the num-

ber of children born to a woman were quite controversial

in China in recent years because of government e�orts

to limit families to having only one child. In the United

States, asking a question on income was considered con-

troversial in  when it was �rst asked. It is no longer

considered as objectionable. Questions change in response

to public debate about the state of society. For example,

Americans wanted to know which households had radios

in , and the census introduced questions on housing

quality in . Canadians have recently begun to ask cen-

sus questions on disability status and on the unpaid work

done in the home.

Besides determining the content of the census, cen-

sus agencies must make many other preparations. Sta�ng

is a major concern for census agencies because censuses

in most countries require a huge number of temporary

workers to collect and process data. Consequently, cen-

sus agencies must begin recruiting and training workers

months or years in advance. For example, the U.S. Census

Bureau had to �ll , temporary, short-term positions

to conduct the  census. In order to hire and retain

enough sta�, it had to recruit nearly threemillion job appli-

cants.�e majority of temporary workers are hired to go

door-to-door to interview households that do not respond

to the census questionnaire. In some countries, govern-

ment employees at a local level, such as schoolteachers, are

asked to help conduct the count.

Prior to any census, a census agency must develop an

accurate list of addresses and maps to ensure that every-

one is counted.�e U.S. Census Bureau obtains addresses

primarily from the United States Postal Service and from

previous census address lists. It also works closely with

state, local, and tribal governments to compile accurate

lists. Finally, census agencies o�en conduct an extensive

marketing campaign beforeCensusDay to remind the gen-

eral population about the importance of responding to the

census.�is campaign may involve paid advertising, dis-

tributing materials by direct mail, promotional events, and

encouraging media coverage of the census.

Collecting the Information
Until relatively recently, population censuses were taken

exclusively through personal interviews.�e government

sent enumerators (interviewers) to each household in the

country. �e enumerators asked the head of the house-

hold questions about each member of the household and

entered the person’s responses on the census question-

naire. �e enumerator then returned the responses to

the government. Today, many censuses are conducted

primarily through self-enumeration, which means that

people complete their own census questionnaire. Self-

enumeration reduces the cost of a census to the govern-

ment because fewer enumerators are needed to conduct

interviews. In addition, the procedure provides greater pri-

vacy to the public and generally improves the accuracy

of responses, because household members can take more

time to think over the questions and consult their personal

records.

Nevertheless, census operations still require hiring

very large numbers of temporary enumerators to con-

duct address canvassing in advance of a mail census and

to retrieve forms from non responding households and

check on vacant units. Other nations continue to conduct

censuses partially or totally through direct enumeration.

Some, such as Turkey, require people to stay home on

Census Day to await the census taker.

Census agencies make a special e�ort to count peo-

ple who may not receive a questionnaire by mail or who

have no permanent address. For example, the U.S. Census

Bureau sends census takers to interview people at homeless

shelters, soup kitchens, mobile food vans, campgrounds,

fairs, and carnivals. It consults with experts to �ndmigrant

and seasonal farmworkers. Finally, the agency distributes

census questionnaires to people living in group quarters,

such as college dormitories, nursing homes, hospitals, pris-

ons and jails, halfway houses, youth hostels, convents and

monasteries, and women’s shelters.

�e level of detail on the complete count census varies

by country, particularly a�er the development of prob-

ability survey techniques in the s. In the United

States, for example, until the  census, most households

received a “short form,” a brief set of questions on basic
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characteristics such as name, age, sex, racial or ethnic back-

ground, marital status, and relationship to the household

head. But from the mid-twentieth century until , a

smaller sample of households received the “long form,”

with many additional detailed questions. �ese included

questions about the individual’s educational background,

income, occupation, language knowledge, veteran status,

and disability status as well as housing-related questions

about the value of the individual’s home, the number of

rooms and bedrooms in it, and the year the structure

was built. �ese “long form” questions have been col-

lected in the American Community Survey since the early

s, and thus are no longer asked on the U.S. Census in

.

Processing and Analysis of Data
For most of the th century in the United States and

Canada, census data were tabulated and compiled by hand,

without the aid of machines. Manual processing was very

slow, and some �gures were obsolete by the time they were

published.�e invention of mechanical tabulating devices

in the late nineteenth century made processing of the data

much faster and improved the accuracy of the results. For

example, in , the U.S. Census Bureau will scan the

data from  + million paper questionnaires, and capture

the responses using optical character recognition so�ware.

Once in electronic form, the data can be analyzed and

turned into statistics. Unreadable or ambiguous responses

are checked by census clerks and manually keyed into the

computer.

Publication of Results
U.S. and Canadian censuses publish only general statisti-

cal information and keep individual responses con�den-

tial. By law, the U.S. Census Bureau and Statistics Canada

are prohibited from releasing individual responses to any

other government agency or to any individual or busi-

ness. Census workers in both countries must swear under

oath that they will keep individual responses con�dential.

Employees who violate this policy face amonetary �ne and

possible prison term. If an individual’s personal data were

not kept con�dential, people might refuse to participate in

the census for fear that their personal information would

be made public or used by the government to track their

activities. In the United States, individual census responses

are stored at the National Archives. A�er  years, the

original forms are declassi�ed and opened to the pub-

lic.�ese original responses are frequently used by people

researching the history of their families or constructing

genealogies. In Canada, census responses from  and

later are stored at Statistics Canada. Micro�lmed records

of census responses from  and earlier are stored at the

National Archives of Canada; these are the only individual

census responses currently available for public use.

Until the s, census agencies published their results

in large volumes of numeric tables – sometimes num-

bering in the hundreds of volumes. Today, the majority

of census data is distributed electronically, both in tabu-

lated form, and through anonymized public use microdata

samples.

Problems in Census Taking and Issues for
the Future
Censuses provide important information about the pop-

ulation of a country. But they can become embroiled in

political or social controversy simply by reporting infor-

mation. Complaints about the census generally involve

concerns about the accuracy of the count, the propriety of

particular questions, and the uses towhich the data are put.

All censuses contain errors of various kinds. Some peo-

ple and addresses are missed. People maymisunderstand a

question or fail to answer all the questions. Census o�cials

have developed elaborate procedures to catch and correct

errors as the data are collected, but some errors remain. For

example, the  U.S. census missed . million people

and mistakenly counted . million people, according to

Census Bureau estimates.�e latter �gure included people

counted more than once, �ctitious people listed on forms,

and fabrications by enumerators. Such errors undermine

the credibility of the census as a mechanism for allocating

seats in legislative bodies and government funds.

In recent years, developments in statistical analysis

have made it possible to measure the accuracy of censuses.

Census results may be compared with population infor-

mation from other sources, such as the records of births,

deaths, andmarriages in vital statistics. Census o�cials can

also determine the level of accuracy of the count by con-

ducting a second, sample count called a post-enumeration

survey or post-censal survey. In this technique, census sta�

knock on the door of each housing unit in selected blocks

around the country, regardless of whether the housing unit

was on the master address list. �e sta� member deter-

mines whether the household was counted in the census.

By comparing the results from this survey with the cen-

sus records, census o�cials can estimate howmany people

from each geographic region were missed in the original

census count. Some nations, such as Canada and Australia,

have begun to adjust the census results for omissions and

other errors.

Concerns about the con�dentiality of the census repre-

sent another source of data error. Censuses require public

understanding, support, and cooperation to be successful.

Concerns about government interference with private life
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can prevent people from cooperating with what is essen-

tially a voluntary counting process. People may be sus-

picious of giving information to a government agency or

may object that particular census questions invade their

privacy. When public trust is lacking, people may not

participate. In some nations, past census controversies

have led to the elimination of the national census. Dur-

ing World War II (–), for example, the German

Nazi forces occupying�e Netherlands used the country’s

census records and population registration data to identify

Jews for detention, removal, and extermination.�is use

ultimately undermined the legitimacy of the census a�er

World War II. In�e Netherlands, the legacy of the Nazi

era was one of the major justi�cations to end census tak-

ing. �e Netherlands took its last regular census in 

and now collects population information through other

mechanisms.

Many nations are currently exploring alternatives to or

major modernizations of the traditional population cen-

sus. France, for example, has recently implemented a con-

tinuous measurement population counting system. �e

United States is exploring the use of administrative records

and electronic methods of data collection to replace the

mail enumeration in .
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Introduction
One of the objectives of statistical inference is to draw con-

clusions about some parameter, like the mean or the vari-

ance of a (possibly conceptual) population of interest based
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on the information obtained in a sample conveniently

selected therefrom. For practical purposes, estimates of

these parameters must be coupled with statistical proper-

ties and except in the most simple cases, exact properties

are di�cult to obtain and onemust rely on approximations.

It is quite natural to expect estimators to be consistent, but

it is even more important that their (usually mathemati-

cally complex) exact sampling distribution be adequately

approximated by a simpler one, such as the normal or the

χ distribution, for which tables or computational algo-

rithms are available. Here we are not concerned with the

convergence of the actual sequence of statistics {Tn} to

some constant or random variable T as n → ∞, but with

the convergence of the corresponding distribution func-

tions {Gn} to some speci�c distribution function F.�is

is known as weak convergence and for simplicity, we write

Tn
D
Ð→ F. Although this is the weakest mode of stochastic

convergence, it is very important for statistical applica-

tions, since the related limiting distribution function F

may generally be employed in the construction of approx-

imate con�dence intervals for and signi�cance tests about

the parameters of interest. In this context, central limit

theorems (CLT) are used to show that statistics expressed

as sums of the underlying random variables, conveniently

standardized, are asymptotically normally distributed, i.e.,

converge weakly to the normal distribution.�ey may be

proved under di�erent assumptions regarding the original

distributions.

�e simplest CLT states that the (sampling) distri-

bution of the sample mean of independent and identi-

cally distributed (i.i.d) random variables with �nite sec-

ond moments may be approximated by a normal distri-

bution. Although the limiting distribution is continuous,

the underlying distribution may even be discrete. CLT

are also available for independent, but not identically dis-

tributed (e.g., with di�erent means and variances) under-

lying random variables, provided some (relatively mild)

assumptions hold for their moments.�e Liapounov CLT

and the Lindeberg-Feller CLT are useful examples. Further

extensions cover cases of dependent random underlying

variables; in particular, the Hájek-Šidak CLT is extremely

useful in regression analysis, where as the sample size

increases, the response variables form a triangular array in

which for each row (i.e., for given n), they are independent

but this is not true among rows (i.e., for di�erent values

of n). Extensions to cover cases where the underlying ran-

dom variables have more complex (e.g., martingale-type)

dependence structures are also available. When dealing

with partial sum or empirical distributional processes, we

must go beyond the �nite-dimensional case and assume

some compactness conditions to obtain suitable results,

wherein the so-called weak invariance principles play an

important role.

Different Versions of the Central Limit
Theorem
Wenowpresent (without proofs) themost commonly used

versions of the CLT. Details and a list of related references

may be obtained in Sen et al. ().

�eorem  (Classical CLT) Let {Xk, k ≥ } be a sequence

of i.i.d. random variables such that

. E(Xk) = µ.

. Var(Xk) = σ  <∞.

Also, let Zn = (Tn−nµ)/(σ
√
n)where Tn = ∑

n
k= Xk.�en,

Zn
D
Ð→ N (, ).

In practice, this result implies that for large n, the distribu-

tion of the sample mean Xn = Tn/nmay be approximated

by a normal distribution with mean µ and variance σ /n.

An interesting special case occurs when the underlying

variables Xk have Bernoulli distributions with probability

of success π. Here the expected value and the variance ofXk
are π and π( − π), respectively. It follows that the large-

sample distribution of the sample proportion, pn = Tn/n

may be approximated by aN [π, π( − π)/n] distribution.

�is result is known as the De Moivre–Laplace CLT.

An extension of�eorem  to cover the case of sums of

independent, but not identically distributed random vari-

ables requires additional assumptions on the moments of

the underling distributions. In this direction, we consider

the following result.

�eorem  (Liapounov CLT) Let {Xk, k ≥ } be a

sequence of independent random variables such that

. E(Xk) = µk.

. ν
(k)
+δ

= E(∣Xk−µk∣
+δ

) <∞, k ≥  for some  < δ ≤ .

Also let Tn = ∑
n
k= Xk, Var(Xk) = σ k , τn = ∑

n
k= σ k , Zn =

(Tn −∑
n
k= µk) /τn and ρn = τ

−(+δ)
n ∑

n
k= ν

(k)
+δ
.�en, if

limn→∞ ρn = , it follows that Zn
D
Ð→ N (, ).

�is as well as other versions of the CLT may also

be extended to the multivariate case by referring to the

Cramér-Wold �eorem, which essentially states that the

asymptotic distribution of the multivariate statistic under
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investigation may be obtained by showing that every lin-

ear combination of its components follows an asymptotic

normal distribution. Given a sequence {Xn,n ≥ } of ran-
dom vectors in Rp, with mean vectors µn and covariance
matrices Σn, n ≥ , to show that n−/∑ni=(Xi − µi)

D
Ð→

Np(,Σ) with Σ = limn→∞ n
−
∑
n
i= Σi, one generally

proceeds according to the following strategy:

. Use one of the univariate CLT to show that for every

�xed λ ∈ Rp, n−/∑ni= λ′(Xi− µi)
D
Ð→ N (, γ)with

γ = limn→∞ n
−λ′ (∑ni= Σi) λ.

. Use the Cramér-Wold�eorem to complete the proof.

As an example we have:

�eorem  (Multivariate version of the Liapounov CLT)

Let {Xn,n ≥ } be a sequence of random vectors in

Rp with mean vectors µn and �nite covariance matrices
Σn,n ≥ , such that max≤i≤nmax≤j≤p E(∣Xij − µij∣

+δ
) <

∞ for some  < δ < , and Σ = limn→∞ n
−
∑
n
i= Σi exists.

�en n−/∑
n
i=(Xi − µi)

D
Ð→ Np(,Σ).

In the original formulation, Liapounov used δ = , but even

the existence of ν
(k)
+δ
,  < δ ≤  is not a necessary condition,

as we may see from the following theorem.

�eorem  (Lindeberg-Feller CLT) Let {Xk, k ≥ } be a

sequence of independent random variables satisfying

. E(Xk) = µk.

. Var(Xk) = σ k <∞.

Also, let Tn = ∑
n
k= Xk, τn = ∑

n
k= σ k and Zn = ∑

n
k= Ynk

where Ynk = (Xk − µk)/τn and consider the following

additional conditions:

. Uniform asymptotic negligibility (UAN): max≤k≤n
(σ k /τn)→  as n→∞.

. Asymptotic normality: Zn
D
Ð→ N (, ).

. Lindeberg-Feller (uniform integrability):

∀ε > , 
τn

n

∑
k=

E[(Xk − µk)I(∣Xk − µk ∣ > ετn)]→  as n→∞,

where I(A) denotes the indicator function.

�en, (A) and (B) hold simultaneously if and only if (C)

holds.

Condition (A) implies that the random variables Ynk are

in�nitesimal, i.e., that max≤k≤n P(∣Ynk∣ > ε) →  as n →

∞ for every ε > , or, in other words, that the random

variables Ynk,  ≤ k ≤ n, are uniformly in k, asymptotically

in n, negligible.

When the underlying random variables under consid-

eration are bounded, i.e., when P(a ≤ Xk ≤ b) =  for some

�nite scalars a < b, it follows that a necessary and su�cient

condition for Zn
D
Ð→ N (, ) is that τn →∞ as n→∞.

Up to this point we have devoted attention to the weak

convergence of sequences of statistics {Tn,n ≥ } con-

structed from independent underlying random variables

X,X, . . .. We consider now some extensions of the CLT

where such restriction may be relaxed. �e �rst of such

extensions holds for sequences of (possibly dependent)

random variables which may be structured as a double

array of the form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X, X, ⋯, Xk

X, X, ⋯, Xk

⋮ ⋮ ⋱ ⋮

Xn, Xn, ⋯, Xnkn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the Xnk are row-wise independent.�e case where

kn = n, n ≥ , is usually termed a triangular array of

random variables.�is result is very useful in the �eld of

7order statistics.

�eorem  (Double array CLT) Let the random variables

{Ynk,  ≤ k ≤ kn,n ≥ } where kn → ∞ as n → ∞ be such

that for each n, {Ynk,  ≤ k ≤ kn} are independent.�en

. {Ynk,  ≤ k ≤ kn,n ≥ } is an in�nitesimal system of

random variables, i.e., satis�es the UAN condition.

. Zn = ∑
kn
k= Ynk

D
Ð→ N (, ).

hold simultaneously, if and only if, for every ε > , as n→∞

the following two conditions hold

.
kn

∑
k=
P(∣Ynk∣ > ε)→ .

.
kn

∑
k=

{ ∫
{∣y∣≤ε}

ydP(Ynk ≤ y)

− [ ∫
{∣y∣≤ε}

ydP(Ynk ≤ x)]



}→ .

Linear regression and related models pose special

problems since the underlying random variables are not

identically distributed and in many cases, the exact func-

tional form of their distributions is not completely spec-

i�ed. Least-squares methods (see 7Least Squares) are
attractive under these conditions, since they may be

employed in a rather general setup. In this context, the fol-

lowing CLT speci�es su�cient conditions on the explana-

tory variables such that the distributions of the least

squares estimators of the regression parameters may be

approximated by normal distributions.
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�eorem  (Hájek-Šidak CLT) Let {Yn,n ≥ } be a

sequence of i.i.d. random variables with mean µ and �nite

variance σ ; let {xn,n ≥ } be a sequence of real vec-

tors xn = (xn, . . . , xnn)
′.�en if Noether’s condition holds,

i.e., if

max
≤i≤n

[x

ni/

n

∑
i=
x

ni]→  as n→∞,

holds, it follows that

Zn = [
n

∑
i=
xni(Yni − µ)]/[σ


n

∑
i=
x

ni]

/
D
Ð→ N (, ).

As an illustration, consider the simple linear regression

model (see 7Simple Linear Regression)

yni = α + βxni + eni, i = , . . . ,n,

where yni and xni represent observations of the response

and explanatory variables, respectively, α and β are the

parameters of interest and the eni correspond to uncor-

related random errors with mean  and variance σ .�e

least squares estimators of β and α are respectively β̂n =

∑
n
i=(xni − xn)(yni − yn)/∑

n
i=(xni − xn)


and α̂n = yn −

β̂nxn where xn and yn correspond to the sample means

of the explanatory and response variables. Irrespectively

of the form of underlying distribution of eni, we may use

standard results to show that α̂n and β̂n are unbiased

and have variances given by σ  [∑
n
i= x


ni/∑

n
i=(xni − xn)


]

and σ  [∑
n
i=(xni − xn)


]
−
, respectively. Furthermore, the

covariance between α̂n and β̂n is −σ xn/∑
n
i=(xni − xn)


.

When the underlying distribution of eni is normal, we may

show that (α̂n, β̂n) follows a bivariate normal distribution.

If Noether’s condition holds and both xn and n
−
∑
n
i=(xni−

xn)

converge to �nite constants as n→∞, wemay use the

Hájek-Šidak CLT and the Cramér-Wold�eorem to con-

clude that the same bivariate normal distribution speci�ed

above serves as an approximation of the true distribution

of (α̂n, β̂n), whatever the form of the distribution of eni,

provided that n is su�ciently large.

�e results may also be generalized to cover alter-

native estimators obtained by means of generalized and

weighted least-squares procedures as well as via robust

M-estimation procedures. �ey may also be extended to

generalized linear and nonlinear models. Details may be

obtained in Sen et al. (), for example.

It is still possible to relax further the independence

assumption on the underlying random variables.�e fol-

lowing theorems constitute examples ofCLT for dependent

random variables having a martingale (or reverse martin-

gale) structure. For further details, the reader is referred to

Loynes (), Brown (), Dvoretzky (), orMcLeish

().

�eorem  (Martingale CLT) Consider a sequence

{Xk, k ≥ } of random variables satisfying

. E(Xk) = .

. E (Xk) = σ k <∞.

. E{Xk∣X, . . . ,Xk−} = , X = .

Also let Tn = ∑
n
k= Xk, τn = ∑

n
k= σ k , v


k =

E (Xk ∣X, . . . ,Xk−) and w

n = ∑

n
k= v


k. If

. wn/τn
P
Ð→  as n→∞.

. ∀ε > , τ−n ∑
n
k= E[Xk I(∣Xk∣ > ετn)]→  as n→∞

(Lindeberg-Feller condition),

then the sequence {Xk, k ≥ } is in�nitesimal and Zn =

Tn/τn
D
Ð→ N (, ).

Note that the terms vk are random variables since they

depend on X, . . . ,Xk−; condition (A) essentially states

that all the information about the variability in the Xk is

contained in X, . . . ,Xk−. Also note that {Tn,n ≥ } is a

zero mean martingale (See also7Martingale Central Limit
�eorem.)

�eorem (ReverseMartingale CLT)Consider a sequence

{Tk, k ≥ } of random variables such that

E(Tn∣Tn+,Tn+, . . .) = Tn+ and E(Tn) = ,

i.e., {Tk, k ≥ } is a zero mean reverse martingale. Assume

that E (Tn) < ∞ and let Yk = Tk − Tk+, k ≥ , vk =

E (Yk ∣Tk+,Tk+, . . . ) and w

n = ∑

∞
k=n v


k. If

. wn/E (wn)
a.s.
Ð→ .

. w−n
∞
∑
k=n

E[Yk I(∣Yk∣ > εwn)∣Tk+,Tk+, . . .]
P
Ð→ ,

ε >  or w−n
∞
∑
k=n
Yk

a.s.
Ð→ ,

it follows that Tn/
√

E (wn)
D
Ð→ N (, ).

Rates of Convergence to Normality
In the general context discussed above, a question of both

theoretical and practical interest concerns the speed with

which the convergence to the limiting normal distribution

takes place. Although there are no simple answers to this

question, the following result may be useful.

�eorem  (Berry-Esséen) Let {Xn,n ≥ } be a sequence

of i.i.d. random variables with E(X) = µ, Var(X) =

σ  and suppose that E(∣X − µ∣
+δ

) = ν+δ < ∞ for
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some  < δ ≤ . Also let Tn = ∑
n
i= Xi and F(n)(x) =

P [(Tn − nµ)/ (σ
√
n) ≤ x], x ∈ R.�en there exist a con-

stant C such that

∆n = sup
x∈R

∣F(n)(x) −Φ(x)∣ ≤ C
ν+δn

−δ/

σ +δ

whereΦ denotes the standard normal distribution function.

�e reader is referred to Feller () for details. Berry

() proved the result for δ =  and Esséen () showed

thatC ≥ .. Although the exact value of the constantC

is not known, many authors have proposed upper bounds.

In particular, van Beeck () showed that C ≤ .

and more recently, Shevtsova () concluded that C ≤

..�e usefulness of the theorem, however, is limited,

since the rates of convergence attained are not very sharp.

Alternatively, the rates of convergence of the sequence

of distribution functions F(n) to Φ or of the density func-

tions f(n) (when they exist) to φ (the density function of the

standard normal distribution) may be assessed by Gram-

Charlier or Edgeworth expansions as discussed in Cramér

(), for example. Although this second approach might

o�er a better insight to the problem of evaluating the rate

of convergence to normality than that provided by the

former, it requires the knowledge of the moments of the

parent distribution and, thus, is less useful in practical

applications.

Convergence of Moments
Given that weak convergence has been established, a ques-

tion of interest is whether the moments (e.g., mean and

variance) of the statistics under investigation converge to

the moments of the limiting distribution. Although the

answer is negative in general, an important theorem, due

to Cramér, indicates conditions under which the result is

true.�e reader is referred to Sen et al. () for details.

Asymptotic Distributions of Statistics not
Expressible as Sums of Random Variables
�e Slustky theorem is a handy tool to prove weak con-

vergence of statistics that may be expressed as the sum,

product or ratio of two terms, the �rst known to con-

verge weakly to some distribution and the second known

to converge in probability to some constant. As an exam-

ple, consider independent and identically distributed ran-

dom variables Y, . . . ,Yn with mean µ and variance σ .

Since the corresponding sample standard deviation S con-

verges in probability to σ and the distribution of Y may be

approximated by aN (µ, σ /n) distribution, we may apply

Slutsky’s theorem to show that the large-sample distribu-

tion of
√
n Y/S = (

√
n Y/σ) × (σ/S) may be approxi-

mated by a N (µ, ) distribution. �is allows us to con-

struct approximate con�dence intervals for and tests of

hypotheses about µ using the standard normal distribu-

tion. A similar approachmay be employed to the Bernoulli

example by noting that pn is a consistent estimator of π.

An important application of Slutky’s�eorem relates

to statistics that can be decomposed as a sum of a term

for which some CLT holds and a term that converges in

probability to . Assume, for example, that the variables Yi
have a �nite fourth central moment γ and write the sample

variance as

S

= [n/(n − )]{n

−
n

∑
i=

[(Yi − µ)

− σ


/n]

+ [σ

−

n

∑
i=

(Y − µ)

]} .

Since the �rst term within the {} brackets is known to

converge weakly to a normal distribution by the CLT and

the second term converges in probability to , we con-

clude that the distribution of S may be approximated by

a N (σ , γ/n) distribution. �is is the basis of the pro-

jection results suggested by Hoe�ding () and exten-

sively explored by Jurečkova and Sen () to obtain

large-sample properties of 7U-statistics as well as of more
general classes of estimators.

Another convenient technique to obtain the

asymptotic distributions of many (smooth) functions of

asymptotically normal statistics is the Delta-method: if g

is a locally di�erentiable function of a statistic Tn whose

distribution may be approximated (for large samples) by

aN (µ, τ) distribution, then the distribution of the statis-

tic g(Tn)may be approximated by aN{g(µ), [g′(µ)]τ}

distribution, where g′(µ) denotes the �rst derivative of g

computed at µ. Suppose that we are interested in estimat-

ing the odds of a failed versus pass response, i.e., π/(− π)

in an exam based on a sample of n students. A straight-

forward application of the De Moivre Laplace CLT may

be used to show that the estimator of π, namely, k/n,

where k is the number of students that failed the exam,

follows an approximate N [π, π( − π)/n] distribution.

Taking g(x) = x/( − x), we may use the Delta-method

to show that the distribution of the sample odds k/(n − k)

may be approximated by a N{π/( − π), π/[n( − π)]}

distribution.�is type of result has further applications in

variance-stabilizing transformations used in cases (as the

above example) where the variance of the original statistic

depends on the parameter it is set to estimate.
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For some important cases, like the Pearson χ-statistic

or more general quadratic forms Q = Q(µ) = (Y −
µ)tA(Y − µ) where Y is a p-dimensional random vector
with mean vector µ and covariance matrix V and A is a p-
dimensional square matrix of full rank, the (multivariate)

Delta-methodmay not be employed because the derivative

of Q computed at µ is null. If A converges to an inverse of
V, a useful result known as theCochran theorem, states that
the distribution of Qmay be approximated by a χ instead

of a normal distribution. In fact, the theorem holds even if

A is not of full rank, but converges to a generalized inverse
of V.�is is important for applications in categorical data.

�e CLT also does not hold for extreme order statis-

tics like the sample minimum or maximum; depending

on some regularity conditions on the underlying random

variables, the distribution of such statistics, conveniently

normalized, may be approximated by one of three types

of distributions, namely the extreme value distributions of

the �rst, second or third type, which, in this context, are the

only possible limiting distributions as shown byGnedenko

().

Central Limit Theorems for Stochastic
Processes
Empirical distribution functions and7order statistics have
important applications in nonparametric regression mod-

els, resampling methods like the 7jackknife and bootstrap
(see 7Bootstrap Methods), sequential testing as well as in
Survival and Reliability analysis. In particular it serves as

the basis for the well known goodness-of-�t Kolmogorov-

Smirnov and Cramér-von Mises statistics and for L- and

R-estimators like trimmed orWinsorized means. Given the

sample observations Y, . . . ,Yn assumed to follow some

distribution function F and a real number y, the empirical

distribution function is de�ned as

Fn(y) = n
−

n

∑
i=
I(Yi ≤ y)

where I(Yi ≤ y) is an indicator function assuming the

value  if Yi ≤ y and , otherwise. It is intimately related to

the order statistics,Yn: ≤ Yn: ≤ . . . ≤ Yn:n whereYn: is the

smallest among Y, . . . ,Yn, Yn: is the second smallest and

so on. For each �xed sample, Fn is a distribution function

when considered as a function of y. For every �xed y, when

considered as a function of Y, . . . ,Yn, Fn(y) is a random

variable; in this context, since the I(Yi ≤ y), i = , . . . ,n,

are independent and identically distributed zero-one val-

ued random variables, we may apply the classical CLT to

conclude that for each �xed y the distribution of Fn(y)may

be approximated by aN{F(y),F(y)[−F(y)]/n}distribu-

tion provided that n is su�ciently large. In fact, using stan-

dard asymptotic results, we may show that given any �nite

numberm of points y, . . . , ym, the distribution function of

the vector [Fn(y), . . . ,Fn(ym)]may be approximated by a

multivariate normal distribution function.�is property is

known as convergence of �nite-dimensional distributions.

On the other hand, Fn − F = {Fn(y) − F(y)∶ y ∈ R}

is a random function de�ned on the set of real numbers,

and, hence, to study its various properties we may need

more than the results considered so far. Note that as the

sample size n increases, so does the cardinality of the set

of order statistics used to de�ne the empirical distribu-

tion function and we may not be able to approximate this

n-dimensional joint distribution by anm-dimensional one

unless some further tightness or compactness conditions

are imposed on the underlying distributions. �is is the

basis of the weak invariance principles necessary to show

the convergence of empirical and other 7stochastic pro-
cesses to Brownian bridge or Brownian motion processes.

An outline of the rationale underlying these results follows.

Let t = F(y) and W
n(t) =

√
n[Gn(t) − t], t ∈

(, ) where Gn(t) = Fn[F
−
(t)] = Fn(y) with F

−
(x) =

inf{y : F(y) > x}, so that {W
n(t), t ∈ (, )} is a stochas-

tic process with E [W
n(t)] =  and E [W

n(s)W

n(t)] =

min(s, t) − st,  ≤ s, t ≤ . Using the multivariate ver-

sion of the CLT we may show that as n → ∞, for all

m ≥ , given  ≤ t ≤ . . . ≤ tm ≤ , the vector W
nm =

[W
n(t), . . . ,W


n(tm)]

D
Ð→ [W

(t), . . . ,W

(tm)] =

W
m where W

m follows a Nm(, Γm) distribution with
Γm denoting a positive de�nite matrix with elements
min(ti, tj) − titj, i, j = , . . . ,m.

Now, de�ne a stochastic process {Z(t), t ∈ (, )}

with independent and homogeneous increments such that,

for every  ≤ s < t ≤ , the di�erence Z(t) − Z(s)

follows a N (, t − s) distribution. �en, it follows that

E[Z(s)Z(t)] = min(s, t). �is process is known as a

standardBrownianmotion or standardWiener process. Fur-

thermore, lettingW
(t) = Z(t)−tZ(),  ≤ t ≤ , it follows

that {W
(t), t ∈ (, )} is also a Gaussian stochastic

process such that E[W
(t)] =  and E[W

(s)W
(t)] =

min(s, t) − st,  ≤ s, t ≤ .�en for all m ≥ , given  ≤

t ≤ . . . ≤ tm ≤ , the vectorW
m = [W

(t), . . . ,W

(tm)]

also follows a Nm(, Γm) distribution. Since W
() =

W
() =  with probability , this process is called a tied

down Wiener process or Brownian bridge.

Using the Kolmogorov maximal inequality, we may

show that {W
n(t), t ∈ (, )} is tight and referring to

standard results in weak convergence of probability mea-

sures, we may conclude that {W
n(t), t ∈ (, )}

D
Ð→
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{W
(t), t ∈ (, )}. Details and extensions to statistical

functionals may be obtained in Jurečkova and Sen ()

among others.
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Chaotic modeling is a term used to express the repre-

sentation of the state of a system or a process by using

chaotic models or tools developed in the chaotic litera-

ture and the related scienti�c context. In the following we

present the main elements of the chaotic modeling includ-

ing chaotic terms, di�erential and di�erence equations and

main theorems (Skiadas ).

Chaos is a relatively new science mainly developed

during last decades with the use of computers and super-

computers. It touches almost all the scienti�c �elds. How-

ever, the basic elements can be found at the end of the

nineteenth century and the attempts to solve the famous

three-body problem by Henri Poincaré (). Although

he succeeded to solve only the special case when the three

bodies move in the same plane, he could explore the main

characteristics of the general three-body problem and to

see the unpredictability of the resulting paths in space. In

other words he could realize the main characteristic of
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Chaotic Modelling. Fig.  The Lorenz attractor (xyz view)

Chaotic Modelling. Fig.  Autocatalytic attractor and chaotic
oscillations

a chaotic process that very small changes in initial con-

ditions have signi�cant impact to the future states of a

system.

�is was veri�ed by Edwin Lorenz in  with his

work on modeling the atmospheric changes. He reduced

the Navier-Stokes equations, used to express �uid �ows,

to a system of three nonlinear coupling di�erential equa-

tions and performed simulations in a computer trying to

model the weather changes. He surprisingly found that

the system was very sensitive to small changes of ini-

tial conditions thus making the forecasts of the future

weather unpredictable. Famous are the forms of his sim-

ulated paths that look like a butter�y with open wings.�e

three-dimensional model which he proposed has the form

(σ , r and b are parameters):

ẋ = −σx + σy, ẏ = −xz + rx − y, ż = xy − bz.

�e famous Lorenz attractor also known as the butter�y

attractor is illustrated in Fig. .

Several years later Rössler () proposed a simpler

three-dimensional model including only one nonlinear

term thus verifying the assumption that a set of simple

di�erential equations with only one nonlinear term may

express chaotic behavior.�e Rössler system is the follow-

ing (e, f andm are parameters):

ẋ = −y − z, ẏ = x − ez, ż = f + xz −mz.

It can be veri�ed that the number of chaotic parameters

is equal to the number of the equations.

Chemical chaotic oscillations where observed by

Belousov () and later on by Zhabotinsky () when

they where working with chemical autocatalytic reactions.

�e Nobel Prize in chemistry () was awarded to Pri-

gogine for his work on dynamics of dissipative systems (see

Prigogine ) including themathematical representation

of autocatalytic reactions. A simple autocatalytic reaction

is expressed by the following set of three di�erential equa-

tions:

ẋ = (


 + k
+m) (k+z)−xy


−x, ẏ =

xy + x − y

e
, ż = y−z

�is model is illustrated in Fig. ; the parameters set

are: e = ., k = .,m = ..

�e use of computing power gave rise to the explo-

ration of chaos in astronomy and astrophysics. Apaper that

in�uenced much the future developments of the chaotic

applications was due to Hénon and Heiles in . �ey

had predicted chaos in Hamiltonian systems that could

apply to astronomy and astrophysics. Few years before

George Contopoulos () had also found chaotic behav-

ior when he explored the paths of stars in a galaxy.�at

it was most important was that they had shown that the

computer experiments had much more to show than sim-

ply verify the results coming from the mathematical for-

mulations. Hidden and unexplored scienti�c �elds would

emerge by the use of computers.

It was found that chaos could emerge from a system

of three or more di�erential equations with at list one

nonlinear term.�is comes from the Poincaré–Bendixson

theorem which states that a two dimensional system of

nonlinear equations may have a regular behavior.

Another theorem is the famous KAM theorem from

the initials of the names of Kolmogorov, Arnold and

Moser.�is theoremapplies to dynamical systems andmay

explain the stability or not of these systems to small per-

turbations. It is interesting that the chaotic forms could be

quite stable as it happens for vortex and tornados.

However, the main scienti�c discovery on chaos came

only in  by Michel Feigenbaum when he found that

the simple logistic map could produce a chaotic sequence.

Feigenbaum tried a di�erence equation instead of the dif-

ferential equations that where used in the previous works

on chaos.�at is di�erent is that chaos can emerge even
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from only one di�erence equation with at list one non-

linear term.�is is because a di�erence equation de�nes

a recurrence scheme which is a set of numerous equa-

tions in which every equation uses the outcomes from the

preceding one.�e complexity resulting from a nonlinear

di�erence equation is large and it can be measured with a

power law of the number of iterations.

In the logistic model a mapping into itself is de�ned by

the di�erence equation and gives rise to period doubling

bifurcations and chaos for a speci�c range of the chaotic

parameter. �e logistic map is of the form: xn+ = bxn
( − xn), where b is the chaotic parameter and xn is the

chaotic function (see a (xn+, xn) diagram of the Logistic

model in Fig. ; b = .).

For the logistic map as also for other maps there exists

the bifurcation diagram. �is is a diagram, usually two

dimensional, de�ning the bifurcation points with respect

to the chaotic parameter or parameters (see Fig. ).

�e chaoticmodeling has also to dowith strange attrac-

tors by means forms in space that have a great detail and

complexity.�ese forms can arise in nature and also can be

simulated fromchaotic equations. A very interesting future

of a chaotic attractor is that for a variety of initial condi-

tions the chaotic system leads the �nal results or solutions

to a speci�c area, the strange or chaotic attractor.

Chaos may also arise from a set of two or more di�er-

ence equations with at least one nonlinear term.�e most

popular model is the Hénon () model given by:

xn+ = yn +  − ax

n , yn+ = bxn.

�e Jacobian determinant of this model is:

det J =

RRRRRRRRRRRRRRRRRR

∂xn+

∂xn

∂yn+

∂xn
∂xn+

∂yn

∂yn+

∂yn

RRRRRRRRRRRRRRRRRR

= −b.

�e system is stable for  < b < . When b =  the system is

area preserving, but it is unstable.

Chaotic Modelling. Fig.  The logistic model

Chaotic Modelling. Fig.  The bifurcation diagram

Chaotic Modelling. Fig.  A carpet-like form

An alternative of theHénonmap is provided by the follow-

ing cosine model:

xn+ = byn + a cos(xn) − a + , yn+ = xn. �is map

provides a carpet-like form (see Fig. ) for b = − and

a = −..

Very many cases in nature have to do with delays.�is

mathematically can be modeled by a delay di�erential or

di�erence equation. Simpler is to use di�erence equations

to express delay cases. An example is the transformation

of the previous Hénon map to the corresponding delay

di�erence equation of the form:

xn+ = bxn− +  − ax

n .

�is delay di�erential equation has the same proper-

ties of the Hénon map. In general modeling delays leads to

di�erential or di�erence equations which produce oscilla-

tions and may produce chaos for appropriate selection of

the parameters. One of the �rst proposed chaotic models

including delays is the famousMackey-Glass () model

regarding oscillation and chaos in physiological control

systems.

Ikeda found his famous attractor in  (see Fig. ;

parameters a = , b = ., c = . and d = ) when he

was experimenting on the light transmitted by a ring cavity

system.�e equations’ set is:

xn+ = a + b(xn cos(φn) − yn sin(φn)),

yn+ = b(xn sin(φn) + yn cos(φn)),
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Chaotic Modelling. Fig.  The Ikeda attractor

Chaotic Modelling. Fig.  Chaotic rotating forms

where the rotation angle is: φn = c −
d

 + x n + y

n

�e last formof di�erence equations express a rotation-

translation phenomenon and can give very interesting

chaotic forms (see Skiadas ). Figure  illustrates such a

casewhere the rotation angle follows an inverse low regard-

ing the distance r from the origin: φn =
c√

x n + y n
=
c

r
.

A chaotic bulge is located in the central part followed by

elliptic trajectories in the outer part (the parameters are:

a = . and b = c = ).

Other interesting aspects of chaotic modeling are

found in numerous publications regarding control of chaos

with applications in various �elds.

Chaotic mixing and chaotic advection have also stud-

ied with chaotic models as well as economic and social

systems.
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Characteristic Functions
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Characteristic functions play an outstanding role in the the-

ory of probability and mathematical statistics (Ushakov

). �e characteristic function (c.f.) of a probability

distribution function (d.f.) is the Fourier–Stieltjes trans-

form of the d.f. More precisely, if F is a probability d.f. on

d-dimensional real spaceRd (d ≥ ), then its c.f. is a complex

function ϕ : Rd → C such that for any t = (t, . . . , td) ∈ R
d
,

ϕ(t) = ∫
Rd
e
i∑dj= tjxj dF(x, . . . , xd) :=

= ∫
Rd
cos

⎛

⎝

d

∑
j=
tjxj

⎞

⎠
dF(x, . . . , xd)

+ i∫
Rd
sin

⎛

⎝

d

∑
j=
tjxj

⎞

⎠
dF(x, . . . , xd),

where the integrals are Lebesgue–Stieltjes integrals with

respect to d.f. F.

If X = (X, . . . ,Xd) is a d-dimensional random vector,

then c.f. ϕ = ϕX associated to X is the c.f. of its d.f. F = FX.
Hence

ϕX(t) = E [e
i∑dj= tjXj] , t = (t, . . . , td) ∈ R

d
. ()

Particularly, c.f. ϕ = ϕX : R → C of a random variable (r.v.)

X is equal to

ϕ(t) = E[eitX], t ∈ R.

Examples of c.f.s of some r.v.s are in Table .

C.f.s have many good properties (see Table ). One of

the most important properties of c.f.s is that there is a one-

to-one correspondence between d.f.s and their c.f.s, which

is a consequence of the Lévy inversion formula (see Chow

and Teicher  or Feller ). Since it is usually sim-

pler to manipulate with c.f.s than with corresponding d.f.s,

Characteristic Functions. Table  Characteristic functions of
some univariate probability distributions

Distribution Density f(x) c.f. ϕ(t)
Degenerate at c eitc

Binomial (n
x
)px( − p)n−x (peit +  − p)n

Poisson e−λ λx

x!
exp{λ(eit − )}

Normal 
σ
√

π
exp{− (x−µ)

σ } eiµt−σt
/

Symmetric uniform
over (−θ, θ) 

θ

sin θt
θt

Gamma 
Γ(α)βα x

α−e−x/β ( − itβ)−α

Cauchy
α

π(α
+x
) e−α∣t∣

Characteristic Functions. Table  List of properties of
characteristic functions ϕX(t) given by () (the list follows one
from Ferguson ())

() ϕX(t) exists for all t ∈ Rd and is continuous.

() ϕX(Ø) =  and ∣ϕx(t)∣ ≤  for all t ∈ Rd .

() For a scalar a, ϕaX(t) = ϕX(at).

() For a matrix A and a vector c,
ϕAX+c(t) = eit

τ c ⋅ ϕX(Aτt).

() For X and Y independent, ϕX+Y(t) = ϕX(t)ϕY(t).

() If E ∣X∣ <∞,
.
ϕX(t) exists and is continuous and

.
ϕX(Ø) = iE Xτ .

() If E[∣X∣] <∞,
..
ϕX(t) exists and is continuous and

..
ϕX(Ø) = −E[XXτ].

() If P(X = c) =  for a vector c, ϕX(t) = eit
τ c.

() If X is normal r. vec. with µ = E X and cov(X) = Σ,
ϕX(t) = exp{itτµ − 


tτΣt}.

this property makes c.f.s useful in proving many theorems

on probability distributions. For example, it can be proved

that the components of a random vector X = (X, . . . ,Xd)

are independent r.v.s if and only if

(∀t, . . . , td ∈ R) ϕX(t, . . . , td)

= ϕX(t) ⋅ ϕX(t) . . . ϕXd(td).

Moreover, since for any independent r.v.s X,X, . . . ,Xn,

c.f. of their sum Sn = X + . . . + Xn is equal to the prod-

uct of their c.f.s, to obtain the d.f. of Sn, it is usually easier
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to �nd the c.f. of their sum and to apply the Lévy inversion

formula than to �nd the convolution of their d.f.s.

Another very important property of c.f.s comes from

the continuity theorem (seeChowandTeicher  or Feller

): r.v.s Xn, n ≥ , with corresponding c.f.s ϕn, n ≥ ,

converge in law to a r.v. X with c.f. ϕ if and only if c.f.s ϕn,

n ≥ , converge to ϕ pointwise. For example, this property

makes proving 7central limit theorems easier if not only
possible.

C.f.s have been important tools in developing theo-

ries of in�nite divisible and particularly stable distributions

(e.g., see Feller ; Chow and Teicher ).
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Chebyshev’s Inequality

Gerold Alsmeyer

Professor

Institut für Mathematische Statistik, Münster, Germany

Chebyshev’s inequality is one of the most common inequal-

ities used in probability theory to bound the tail probabil-

ities of a random variable X having �nite variance σ  =

VarX. It states that

P(∣X − µ∣ ≥ t) ≤
σ 

t
for all t > , ()

where µ = EX denotes the mean of X. Of course, the
given bound is of use only if t is bigger than the standard

deviation σ . Instead of proving () we will give a proof of

the more generalMarkov’s inequality which states that for

any nondecreasing function g : [,∞) → [,∞) and any

nonnegative random variable Y

P(Y ≥ t) ≤
E g(Y)
g(t)

for all t > . ()

Indeed, choosing Y = ∣X − µ∣ and g(x) = x gives ().�e

proof of Markov’s inequality is very easy: For any t > ,

P(Y ≥ t) = ∫ {Y≥t}dP ≤ ∫
{Y≥t}

g(Y)

g(t)
dP ≤

E g(X)
g(t)

.

Plainly, () provides us with the same bound σ t− for the

one-sided tail probability P(X − µ > t), but in this case

an improvement is obtained by the following considera-

tion: For any c ≥ , we infer fromMarkov’s inequality with

g(x) = x

P(X − µ ≥ t) = P(X − µ + c ≥ t + c) ≤
E(X − µ + c)

(t + c)

=
σ  + c

(t + c)
.

�e right-hand side becomes minimal at c = σ /t giving

the one-sided tail bound

P(X − µ > t) ≤
σ 

σ  + t
for all t > , ()

sometimes called Cantelli’s inequality.

Although Chebyshev’s inequality may produce only a

rather crude bound its advantage lies in the fact that it

applies to any random variable with �nite variance. More-

over, within the class of all such random variables the

bound is indeed tight because, if X has a symmetric dis-

tribution on {−a, , a} with P(X = ±a) = /(a) and

P(X = ) =  − /a for some a > , then µ = , σ  = 

and

P(∣X∣ ≥ a) = P(∣X∣ = a) =


a
,

which means that equality holds in () for t = a.

On the other hand, tighter bounds can be obtained

when imposing additional conditions on the consid-

ered distributions. On such example is the following

Vysočanskĭı-Petunı̄n inequality for random variables X

with an unimodal distribution:

P(∣X − µ∣ ≥ t) ≤
σ 

t
for all t >

√
/ σ , ()

�is improves () by a factor / for su�ciently large t.

One of the most common applications of Chebyshev’s

inequality is the weak law of large numbers (WLLN). Sup-

pose we are given a sequence (Sn)n≥ of real-valued ran-

dom variables with independent incrementsX,X, ... such

that µn := EXn and σ n := VarXn are �nite for all n ≥ .

De�ning

mn := E Sn =
n

∑
k=
µk and s


n := VarSn =

n

∑
k=

σ

k
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and assumingMarkov’s condition

lim
n→∞

sn

n
=  ()

we infer by making use of () that, for any є > ,

P(∣
Sn −mn

n
∣ ≥ є) ≤

sn

єn
→  as n→∞

and therefore

Sn −mn

n
→  in probability. (WLLN)

�is result applies particularly to the case of i.i.d. X,X, ...

�en mn = nµ and s

n = nσ  where µ := EX and σ  :=

VarX. In this case, Chebyshev’s inequality further gives,

for all є, β > , that

∑
n≥

P(∣
Sn − nµ

n
∣ ≥ є log

β
n) ≤ ∑

n≥

σ 

єn logβ n
< ∞

and thus, by invoking the Borel-Cantelli lemma (see

7Borel–Cantelli Lemma and Its Generalizations),

Sn − nµ

n logβ n
→  a.s. for all β >  ()

�is is not quite the strong law of large numbers

(β = ) but gets close to it. In fact, in order for this to

derive, a stronger variant of Chebyshev’s inequality, called

Kolmogorov’s inequality,may be employedwhich states that

P(max
≤k≤n

∣Sk −mk∣ ≥ t) ≤
sn

t
for all t > 

under the same independence assumptions stated above

for the WLLN. Notice the similarity to Chebyshev’s

inequality in that only Sn − mn has been replaced with

max≤k≤n(Sk −mk) while retaining the bound.

Let us �nally note that, if X has mean µ, median m

and �nite variance σ , then the one-sided version () of

Chebyshev’s inequality shows that

P(X − µ ≥ σ) ≤



and P(X − µ ≤ −σ) ≤




,

in otherwords, themedian ofX is alwayswith one standard

deviation of it mean.

Bibliographical notes: () dates back to Chebyshev’s

original work (Chebyshev ), but is nowadays found in

any standard textbook on probability theory, like (Feller

).�e latter contains also a proof of the one-sided ver-

sion () which di�ers from the one given here. () for uni-

modal distributions is taken fromVysočanskĭı and Petunı̆n

(), see also Sellke and Sellke (). For multivariate

extensions of Chebyshev’s inequality see Olkin and Pratt

() and Monhor ().
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Chemometrics

Rolf Sundberg

Professor of Mathematical Statistics

Stockholm University, Stockholm, Sweden

�e role of statistics in chemistry is over a century old,

going back to the Guinness brewery chemist and exper-

imenter Gosset, more well-known under the pseudonym

“Student.” For his applications, he was in need of small-

sample statistical methods. Until the s, chemistry

methods and instruments were typically univariate, but in

that decade analytical chemistry and some other branches

of chemistry had to start handling data of multivariate

character. For example, instead ofmeasuring light intensity

at only a single selected wavelength, instruments became

available that could measure intensities at several di�erent

wavelengths at the same time.�e instrumental capacity

rapidly increased, and the multivariate spectral dimen-

sion soon exceeded the number of chemical samples anal-

ysed (the “n < p” problem). In parallel, other chemists

worked with Quantitative Structure–Activity Relation-

ships (QSAR), where they tried to explain and predict

biological activity or similar properties of a molecule from
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a large number of structural physical-chemical character-

istics of the molecule, but having an empirical data set of

only a moderate number of di�erent molecules. Gener-

ally, as soon as multivariate data are of high dimension, we

must expect near collinearities among the variables, and

when n < p, there are necessarily exact collinearities.�ese

were some of the problems faced, long before statisticians

got used to n < p in genomics, proteomics etc.�is was

the birth of the �eld of chemometrics, a name coined by

SvanteWold to characterize these research and application

activities.

A standard de�nition of Chemometrics would be of

type “�e development and use of mathematical and

statistical methods for applications in chemistry,” with

more weight on statistical than mathematical. Another

characterization, formulated by Wold, is that the aim of

chemometrics is to provide methods for

● How to get chemically relevant information out of

measured chemical data

● How to get it into data

● How to represent and display this information

and that in order to achieve this, chemometrics is heav-

ily dependent on statistics, mathematics and computer

science. �e �rst task is much concerned with analysis

of dependencies and relationships (regression, calibration,

discrimination, etc.) within a multivariate framework,

because complex chemical systems are by necessity mul-

tidimensional. �e second task is largely represented by

experimental design, both classical and newer, where

chemometrics has contributed the idea of design in latent

factors (principal variates). For representation of high-

dimensional data, projection on a low-dimensional latent

variable space is the principal tool.Using diagrams in latent

factors fromPCAor other dimension-reducingmethods is

also a way of displaying the information found.

Another type of de�nition, o�en quoted, is that

“Chemometrics is what chemometricians do.”�is is not

only to laugh at. A vital part of chemometrics is con-

nected with chemistry, but the methods developed might

be and are applied in quite di�erent �elds, where the

data analysis problems are similar, such as metabolomics,

food science, sensometrics, and image analysis.�is could

motivate to distinguish chemometrics and chemomet-

ric methods, where the latter could as well be described

as statistical methods originally inspired by problems in

chemistry.

A statistician’s look at the contents of Journal of Chemo-

metrics for the period – ( papers) showed

that regression and calibration dominated, covering a

third of the contents. Much of this was on regularized

regression methods, such as PCR (Principal Components

Regression) and PLSR (Partial Least Squares Regression).

Other statistical areas represented were multiway methods

(where each observation is a matrix or an even higher-

dimensional array, see Smilde et al. ), classi�cation

(discrimination and clustering), multivariate statistical

process control, and occasionally other areas, for example

experimental design, wavelets, genetic algorithms.

A di�erence between chemometrics and biomet-

rics (7biostatistics) is that chemometricians are mostly
chemists by principal education, with more or less of

additional statistical education, whereas biometricians are

typically statisticians by education. �is has had several

consequences for chemometrics. Statistical methods are

sometimes reinvented. Metods are sometimes proposed

without a theoretical underpinning.�e popular method

of partial least squares (see 7Partial Least Squares Regres-
sion Versus Other Methods) is a good such example,

nowadays relatively well understood, but proposed and

advocated as a computational algorithm, that was widely

regarded with suspicion among statisticians.�us there is

o�en a role for theoretical statistical studies to achieve a

deeper understanding of the chemometric methods and

their properties, not least to reveal how various suggested

methods relate to each others.
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Two journals are devoted to chemometrics, started in /
Journal of Chemometrics. John Wiley & Sons.

Chemometrics and Intelligent Laboratory Systems. Elsevier.

There are several introductions to chemometrics written for

chemists, not listed here. Not all of them are satisfactory in their

more statistical parts.

Chernoff Bound

Herman Chernoff

Professor Emeritus

Harvard University, Cambridge, MA, USA

�e Cherno� Bound, due toHerman Rubin, states that ifX

is the average of n independent observations on a random

variable X with mean µ < a then, for all t,

P(X > a) ≤ [E(e
t(X−a)

)]
n
.

�e proof which follows shortly is a simple application of

theMarkov inequality that states that for a positive random

variable Y ,P(Y ≥ b) ≤ E(Y)/b, for b > .�e Cherno�

bound was a step in the early development of the impor-

tant �eld “Large Deviation�eory.” It became prominent

among computer scientists because of its usefulness in

Information�eory.

�e Markov inequality is derived from the fact that for

b > ,

E(Y) = ∫ ydF(Y) ≥ ∫
∞

b
ydF(y) ≥ bP(Y ≥ b)

where F is the cumulative distribution of Y .

We observe that

E(e
nt(X−a)

) = [E(e
t(X−a)

)]
n

and hence P(ent(X−a) ≥ ) is less than or equal to the

bound. �is implies the Cherno� bound for t > . For

t ≤  the inequality is automatically satis�ed because the

bound is at least one.�at follows form the fact that the

7moment generating function M(t) = E(etZ) is convex

withM() = ,M′
() = E(Z) and E(X − a) < .

�e prominence of the bound is due to a natural incli-

nation to extend beyond its proper range of applicability.

�e Central Limit �eorem (see 7Central Limit �eo-
rems), for which an informal statement is that X is approx-

imately normally distributed with mean µ = E(X) and

variance σ /n where σ is the standard deviation of X. For

large deviations (see7Large Deviations and Applications),

or many standard deviations from the mean, the theorem

implies that the probability of exceeding awould approach

zero, but a naive interpretation would state that this prob-

ability would be approximately exp(−na/)(πna)−/

and could be seriously wrong.

In , for a special problem of testing a simple

hypothesis versus a simple alternative using a statistic of

the form X where X could take on a few integer values,

I realized that the normal approximation was inappropri-

ate. I derived (Cherno� ), for a > E(X),

n
−
logP(X > a)→ inf

t
E(e

t(X−a)
)

which was, as far as I know, the �rst application of Large

Deviation�eory to Statistical Inference.�is result was

used to de�ne a measure of information useful for exper-

imental design and to show that the Kullback-Leibler

information numbers (Kullback and Leibler ; Cher-

no� ) measure the exponential rate at which one

error probability approaches zero when the other is held

constant.

At the time I was informed of Cramér’s () ear-

lier elegant derivation ofmore encompassing results, using

exponentially tilted distributions. Cramér dealt with devi-

ations which were not limited to those of order square

root of n standard deviations, but required a condition that

excluded the case which I needed, where the range of X

was amultiple of the integers. Blackwell andHodges ()

later dealt with that case.

One of my colleagues, Herman Rubin, claimed that

he could derive my results more simply, and when I chal-

lenged him, he produced the upper bound that I included

in my manuscript. At the time the proof seemed so trivial,

that I did not mention that it was his. I made two seri-

ous errors. First, the inequality is stronger than the upper

limit implied bymy result, and therefore deserves mention

of authorship even though the derivation is simple. Sec-

ond, because I was primarily interested in the exponential

rate at which the probability approached zero, it did not

occur tome that this trivially derived bound could become

prominent.

About the Author
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Chernoff Faces
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�e graphical representation of two dimensional vari-

ables is rather straightforward. �ree dimensional vari-

ables presents more of a challenge, but dealing with higher

dimensions is much more di�cult. Two methods using

pro�les and stars su�ers froma confusion ofwhich variable

is represented when the dimensionality is greater than six.

�e method called “Cherno� Faces” (Cherno� )

involves a computer program which draws a caricature

of a face when given  numbers between  and .�ese

numbers correspond to features of the face.�us one may

represent the length of the nose, another curvature of the

mouth, and a third the size of the eyes. If we have  dimen-

sional data, we can adjoin  constants to get points in 

dimensional space, each represented by a face. As the point

moves in  dimensional space the face changes.

�e method was developed in response to a problem

in cluster analysis (see 7Cluster Analysis: An Introduc-
tion).�ere are many methods proposed to do clustering.

It seems that an appropriate method should depend on

the nature of the data, which is di�cult to comprehend

without visualization. �e grouping of faces which look

alike serves as a preliminary method of clustering and of

recognizing which features are important in the clustering.

In the two original applications of the method, the sci-

entists involved claimed that the implementationwas lucky

because the features which were most important were rep-

resented respectively by the size of the eyes and the shape

of the face, both of which are prominent features. I claimed

that it did not matter which features were selected for the

various variables and challenged the scientists to select an

alternative choice of features for the variables to degrade

the e�ect of the faces. �eir candidate choices had little

degradation e�ect.

To test the conjecture that the choice of variables would

have no e�ect, Rizvi and I carried out an experiment

(Cherno� and Rizvi ).Of course it is clear that the con-

jecture cannot be absolutely sound, since the position of

the pupils in the eyes cannot be detected if the eyes are

small and other features interact similarly. However we set

up an experiment where subjects were supposed to cluster

 faces into two groups of approximately  each.�e faces

were generated from two six dimensional 7multivariate
normal distributions with means δ units apart, in Maha-

lanobis distance, and identity covariance matrix. �ese

data were then subjected to a linear transformation to

an -dimensional space, and  feature selections were

made at random. �e subjects were given three cluster-

ing problem. For the �rst δ was so large that there was

no problem recognizing the clusters.�at was a practice

problem to train the students in the experiment. For the

other two problems two choices of δ were made to estab-

lish greater di�culty in separating the two distributions.

�e result of this experiment was that when the error rate

in clustering varies from % to %, the typical random

permutations could change the error rate by a proportion

which decreases from % to %.

Originally, Faces were designed to serve to understand

which variables were important and which interacted with

each other. Once such relations are understood, analytic

methods could be used to probe further. In many appli-

cations, Faces could also be used to comprehend data

where the roles of the various factors were well under-

stood. For example, in business applications, a smiling face

could indicate that some aspect of the business was doing

well. With training of the users, such applications could be

useful in providing a quick and easy comprehension of a

moderately complicated system. For example, one could

use a face to represent the many meters an airplane pilot

watches, so that he could be alerted when the face begins

to look strange.�e method of stars could also serve such

a function.

Jacob () used faces to represent �ve particular

scales of the Minnesota Multiphasic Personality Inventory

(MMPI).�e scales representedHypochondriasis,Depres-

sion, Paranoia, Schizophrenia and Hypomania. Realizing

that training a psychologist to recognize a smiling face

as belonging to a depressed patient would be di�cult, he

developed an innovative approach to selecting features for

the �ve scales. He presented a random selection of faces
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to some psychologists and asked them to rate these faces

on theMMPI scales.�en he used regression techniques to

decide how the numerical values of an MMPI scale should

be translated into features of the face, so that the face pre-

sented to a psychologist would resemble that of a person

with those scaled values.�is would facilitate the process

of training psychologists to interpret the faces.

�e method of Faces handles many dimensions well.

For more than  variables, one could use a pair of faces. It

does not deal so well with a large number of faces unless

we have a time series in which they appear in succes-

sion. In that case they can be used to detect changes in

characteristics of important complicated systems.

It seems that face recognition among humans is han-

dled by a di�erent part of the brain than that handling

other geometrical data and humans are sensitive to very

small changes in faces. Also, it seems that cartoons and

caricatures of faces are better remembered than realistic

representations.

Before the computer revolution, graphical representa-

tions, such as nomograms, could be used to substitute for

accurate calculations.�e Faces are unlikely to be useful

for calculation purposes.
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Chernoff-Savage Theorem
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Hodges and Lehmann () conjectured in  that the

nonparametric competitor to the t-test, the Fisher-Yates-

Terry-Hoe�ding or c test (Terry ), was as e�cient as

the t-test for normal alternatives and more e�cient for

nonnormal alternatives.

To be more precise, we assume that we have two large

samples, of sizesm and n with N = m+ n, from two distri-

butions which are the same except for a translation param-

eter which di�ers by an amount δ. To test the hypothesis

that δ =  against one sided alternatives, we use a test

statistic of the form

TN = m
−

N

∑
i=
ENizNi

where zNi is one or zero depending on whether the ith

smallest of the N observations is from the �rst or the sec-

ond sample. For example the Wilcoxon test is of the above

form with ENi = i/N. It was more convenient to represent

the test in the form

TN = ∫
∞

−∞
JN[HN(x)]dFm(x).

where Fm and Gn are the two sample cdf ’s, λN = m/N and

HN = λNFm + ( − λN)Gn.�ese two forms are equivalent

when ENi = JN(i/N).

�e proof of the conjecture required two arguments.

One was the 7asymptotic normality of T when δ /= .

�e Cherno�-Savage theorem (Cherno� and Savage )

establishes the asymptotic normality, under appropriate

regularity conditions on JN , satis�ed by c, using an argu-

ment where Fm and Gn are approximated by continu-

ous time 7Gaussian Processes, and the errors due to the
approximation are shown to be relatively small.

�e second argument required a variational result

using the Pitman measure of local e�cacy of the test of

δ = , which may be calculated as a function of the under-

lying distribution. For distributions with variance , the

e�ciency of the test relative to the t-test is minimized with

a value of  for the normal distribution. It follows that the

c test is as e�cient as the t-test for normal translation

alternatives and more e�cient for nonnormal translation

alternatives.
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He moved to M.I.T. in , where he founded the Statis-

tics Center. Since  he has been in the Department

of Statistics at Harvard. He retired from Harvard in .

Professor Cherno� was President of the Institute of Math-

ematical Statistics (–) and is an Elected mem-

ber of both the American Academy of Arts and Sciences

and the National Academy of Sciences. He has been hon-

ored for his contributions in many ways. He is a recipi-

ent of the Townsend Harris Medal and Samuel S. Wilks

Medal “for outstanding research in large sample theory

and sequential analysis, for extensive service to scholarly

societies and on government panels, for e�ectiveness and

popularity as a teacher, and for his continuing impact on

the theory of statistics and its applications in diverse dis-

ciplines” (). He was named Statistician of the Year,

Boston Chapter of the ASA (). He holds four hon-

orary doctorates. Professor Cherno� is the co-author, with

LincolnMoses, of a classic text, now a Dover Reprint, enti-

tled Elementary Decision�eory. He is also the author of

the SIAM monograph  entitled Sequential Analysis and

Optimal Design. �e book Recent Advances in Statistics

(MH Rizvi, J Rustagi and D Siegmund (Eds.), Academic

Press, New York, ) published in honor of his th

birthday in  contained papers in the �elds where his

in�uence as a researcher and teacher has been strong:

design and sequential analysis, optimization and con-

trol, nonparametrics, large sample theory and statistical

graphics.
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�e chi-square distribution is one of the most important

continuous probability distributions with many uses in

statistical theory and inference. According to O. Sheynin

(), Ernst Karl Abbe obtained it in ,Maxwell formu-

lated it for three degrees of freedom in , and Boltzman

discovered the general expression in . Lancaster ()

ascertained that Bienaymé derived it as early as in .

However, their derivations “had no impact on the progress

of the mainstream statistics” (R. L. Plackett , p. )
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since chi-square is not only a distribution, but also a statis-

tic and a test procedure, all ofwhich arrived simultaneously

in the seminal paper written by Karl Pearson in .

Let n ≥  be a positive integer. We say that a ran-

dom variable (r.v.) has χ (chi-square, χ is pronounced ki

as in kind) distribution with n degrees of freedom (d.f.) if

it is absolutely continuous with respect to the Lebesgue

measure with density:

f (x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

 if x ≤ 

Γ ( n

)
−

−n/xn/−e−x/ if x > 

where Γ denotes the Gamma function.

Figure  shows some of the densities.

Hence, the χ-distribution (with n d.f.) is equal to the

Γ - distribution with the parameters (n/, ), that is, with

the mean and variance equal to n and n respectively.

�e χ-distribution is closely connected with the nor-

mal distribution. It turns out that the sample variance S of

a random sample from a normally distributed population

has, up to the constant, the χ – sample distribution. More

precisely, if X, . . . ,Xn are independent and identically

distributed normal r.v.s with the population variance σ ,

then

n − 

σ 
⋅ S

=


σ 
((X − X)


+ . . . + (Xn − X)


)

=


σ 
(X


 + X


 + ⋅ ⋅ ⋅ + X


n − nX


)

is a χ-distributed r.v. with n −  d.f. (see e.g., Shorack

). �is is a consequence of a more general property

of the normality (Feller ). For example, let X be an
n-dimensional standard normal vector, that is, a random

vector X = (X, . . . ,Xn) such that its components X, . . .,

Xn are independent and normally distributed with mean

and variance equal to  and  respectively.�en the square

of the Euclidean norm of X, ∣X∣ = X + . . . + X

n, is

χ-distributed with n d.f. If means of the components of

X are non-zero, then ∣X∣ has non-central χ-distribution

with n d.f. and non-centrality parameter equal to the square

of the mean of X. In this generality, χ-distribution is

the central χ-distribution, that is, a χ-distribution with

non-centrality parameter equal to .

In statistics, many test statistics have a χ or asymp-

totic χ-distribution. For example, goodness of �t χ-tests

are based on the so-called Pearson’s χ-statistics or general

χ-statistics that have, under appropriate null-hypothesis,

asymptotic χ-distributions; �e Friedman test statistic

and likelihood ratio tests are also based on asymptotically

χ-distributed test statistic (see Ferguson ). Generally,

appropriately normalized quadratic forms of normal (and

asymptotic normal) statistics have χ (and asymptotic χ)

distributions.

Non-central χ-distributions are used for calculating

the power function of tests based on quadratic forms of

normal or asymptotic normal statistics.
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Drawbacks and Improvements

Vassiliy Voinov

, Mikhail Nikulin




Professor

Kazakhstan Institute of Management, Economics and

Strategic Research, Almaty, Kazakhstan

Professor

University of Victor Segalen, Bordeaux, France

�e famous chi-squared goodness-of-�t test was discov-

ered by Karl Pearson in . If the partition of a sample

space is such that observations are grouped over r disjoined
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intervals ∆i, and denoting νi observed frequencies and

npi(θ) expected that correspond to amultinomial scheme,

the Pearson’s sum is written

χ

= X


n(θ) =

r

∑
i=

(νi − npi(θ))

npi(θ)
= VT(θ)V(θ), ()

where V(θ) is a vector with components vi(θ)=(νi −

npi(θ))(npi(θ))−/, i=, . . . , r. If the number of

observations n → ∞, the statistic () for a simple null

hypothesis, specifying the true value of θ, will follow

chi-squared probability distribution with r −  degrees of

freedom.

Until , Pearson believed that the limit distribution

of his chi-squared statistic would be the same if unknown

parameters of the null hypothesis were replaced by esti-

mates based on a sample (Stigler (), p. ). Stigler

noted that this major error of Pearson “has le� a posi-

tive and lasting impression upon the statistical world.” It

would be better to rephrase this sentence as follows: “has

le� a positive (because it inspired the further development

of the theory of chi-squared test) and lasting ‘negative’

impression”. Fisher () clearly showed that the number

of degrees of freedom of the Pearson’s test must be reduced

by the number of parameters estimated by a sample.�e

Fisher’s result is true if and only if parameters are estimated

by grouped data (minimizing Pearson’s chi-squared sum,

usingmultinomial maximum likelihood estimates (MLEs)

for grouped data, or by any other asymptotically equivalent

procedure).

Nowadays, the Pearson’s test with unknown param-

eters replaced by grouped data estimates θ̂n is known

as Pearson-Fisher test Xn(θ̂n). Cherno� and Lehmann

() showed that replacing unknown parameters in ()

by their maximum likelihood estimates based on non-

grouped data would dramatically change the limit distri-

bution. In this case, it will follow a distribution that in

general depends on unknown parameters and, hence, can-

not be used for testing. What is di�cult to understand for

those who apply chi-squared tests is that an estimate is a

realization of a random variable with its own probability

distribution and that a particular estimate can be too far

from the actual unknown value of a parameter or param-

eters. �is misunderstanding is rather typical for those

who apply both parametric and non-parametric tests for

compound hypotheses.

Roy () extended Cherno� and Lehmann’s result

to the case of random grouping intervals. Molinari ()

derived the limit distribution of Pearson’s sum if moment

type estimates (MMEs) based on raw data are used. Like

the case of MLEs it depends on unknown parameters.

�us, a problem of deriving a test statistic, where limit-

ing distribution will not depend on parameters, is aroused.

Dahiya and Gurland () showed that for location and

scale families with properly chosen random cells, the limit

distribution of Pearson’s summay not depend on unknown

parameters but on the null hypothesis. Being distribution-

free, such tests can be used in practice, but for each spe-

ci�c null distribution one has to evaluate corresponding

critical values. So, two ways of constructing distribution-

free Pearson’s type tests are to use proper estimates of

unknown parameters (e.g., based on grouped data), or to

use specially constructed grouping intervals. Another pos-

sible way is to modify the Pearson’s sum such that its limit

probability distribution would not depend on unknowns.

Nikulin (), using a very general theoretical approach

(nowadays known as Wald’s method (see Moore )),

solved the problem in full for any continuous probability

distribution if one will use random cells based on pre-

determined probabilities to fall into a cell with random

boundaries depending on e�cient estimates (MLEs or

best asymptotically normal (BAN) estimates) of unknown

parameters. Rao andRobson (), using amuch less gen-

eral heuristic approach, con�rmed the result of Nikulin

for a particular case of exponential family of distributions.

Formally their result fully coincides with that of Nikulin

()

Y

n(θ̂n) = X


n(θ̂n) +VT(θ̂n)B(J − Jg)

−BTV(θ̂n), ()

where J and Jg = BTB are Fisher information matrices
for non-grouped and grouped data correspondingly, and

B is a matrix with elements bij = √
pi(θ)

∂pi(θ)
∂θ j
, i = , . . . , r,

j = , . . . , s.�e statistic () can be presented also as (Moore

and Spruill ())

Y

n(θ̂n) = VT(θ̂n)(I − BJ−BT)−V(θ̂n). ()

�e statistic () or (), suggested �rst by Nikulin (a)

for testing the normality, will be referred to subsequently as

Nikulin-Rao-Robson (NRR) test. Nikulin () assumed

that only asymptotically e�cient estimates of unknown

parameters (e.g., MLEs based on non-grouped data or

BAN estimates) are used for testing. Singh (), Spruill

(), and Lemeshko et al. () showed that the NRR

test is asymptotically optimal in some sense.�is optimal-

ity is not surprising because the second termof () depends

on the di�erence between Fisher’s matrices for grouped

and non-grouped data that possibly takes the informa-

tion lost in full (Voinov ()). Dzhaparidze and Nikulin

() generalized Fisher’s idea to improve any
√
n- con-

sistent estimator to make it asymptotically as e�cient as
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MLE.�is gives the followingway of chi-squared testmod-

i�cation: improve an estimator �rst and then use the NRR

statistic. Since this way is not simple computationally, it

is worth considering other modi�cations. At this point it

is important to note that the NRR test is very suitable for

describing censored data (Habib and�omas ()).

Dzhaparidze and Nikulin () proposed a modi�ca-

tion of the standard Pearson’s statistic valid for any square

root of n consistent estimate θ̃n of an unknown parame-

ter Un(θ̃n) = VT(θ̃n)B(BTB)−BTV(θ̃n). �is test (the

DN test), like the asymptotically equivalent Pearson-Fisher

one, is not powerful for equiprobable cells (McCulloch

(), Voinov et al. ()) but it can be rather power-

ful if an alternative hypothesis is speci�ed and one uses

the Neyman-Pearson classes for data grouping. Having

generalized the idea of Dzhaparidze and Nikulin (),

Singh () suggested a generalization of the RRN test ()

valid for any
√
n - consistent estimator θ̃n of an unknown

parameter Qs (θ̃n) = VT∗(θ̃n)(I − BJ−BT)− V∗(θ̃n),

where V∗(θ̃n) = V(θ̃n) − BJ−W(θ̃n), and W(θ̃n) =

√
n

n

∑
i=

∂ ln f (Xi ,θ)
∂θ

∣θ=θ̃n
.

A uni�ed large-sample theory of general chi-squared

statistics for tests of �t was developed by Moore and

Spruill (). Moore (), based uponWald’s approach,

formulated a general recipe for constructing modi�ed

chi-squared tests for any square root of n consistent esti-

mator that actually is a generalization of Nikulin’s idea. He

was �rst to show that a resulting Wald’s quadratic form

does not depend on the way of limit covariance matrix of

generalized frequencies inverting.

Hsuan and Robson () showed that a modi�ed

statistic will not be the same as () in the case of moment

type estimates (MMEs) of unknown parameters. �ey

succeeded in deriving the limit covariance matrix for

generalized frequencies and proved the theorem that a

corresponding Wald’s quadratic form will follow in the

limit the chi-squared distribution. Hsuan and Robson

provided the test statistic explicitly for the exponential

family of distributions, when MMEs coincide with MLEs,

thus con�rming the already known result ofNikulin ().

Hsuan and Robson have not derived the general modi�ed

test based on MMEs θ̄n explicitly. �is was done later

by Mirvaliev (). Taking into account the input of

Hsuan and Robson, andMirvaliev, this test will be referred

to subsequently as the Hsuan-Robson-Mirvaliev (HRM)

statistic

Y

n(θ̄n) = X


n(θ̄n) + R


n(θ̄n) −Q


n(θ̄n). ()

Explicit expressions for quadratic forms Rn(θ̄n) and

Qn(θ̄n) are given, e.g., in Voinov et al. (). �e

approach, based on Wald’s transformation, was also

used by Bol’shev and Mirvaliev (), Nikulin and

Voinov (), Voinov and Nikulin (), and by

Chichagov () forminimumvariance unbiased estima-

tors (MVUEs).

It is important to mention two types of decomposi-

tions of classical and modi�ed chi-squared tests.�e �rst

way decomposes a modi�ed test on a sum of the classi-

cal Pearson’s test and a correcting term that makes the

test chi-squared distributed being distribution free in the

limit (Nikulin ()). A much more important decompo-

sition was �rst suggested by McCulloch () (see also

Mirvaliev ()). �is is a decomposition of a test on

a sum of the DN statistic and an additional quadratic

form being asymptotically independent on the DN statis-

tic. Denoting W
n(θ) = VT(θ)B(BTB)−BTV(θ) and

Pn(θ) = VT(θ)B(J − Jg)
−BTV(θ) the decomposition of

the NRR statistic () in case of MLEs will be Yn(θ̂n) =

Un(θ̂n)+(W
n(θ̂) + Pn(θ̂n)) , whereU


n(θ̂n) is asymptot-

ically independent on (W
n(θ̂) + Pn(θ̂n)), and onW


n(θ̂).

�e decomposition of the HRM statistic () is Yn(θ̄n) =

Un(θ̄n) + (W
n(θ̄) + Rn(θ̄n) −Q


n(θ̄n)) , where U


n(θ̄n)

is asymptotically independent on (W
n(θ̄) + Rn(θ̄n) −Q


n

(θ̄n)), but is asymptotically correlated withW

n(θ̄).

�e decomposition of a modi�ed chi-squared test on a

sum of the DN statistic and an additional term is of impor-

tance because the DN test based on non-grouped data

is asymptotically equivalent to the Pearson-Fisher’s (PF)

statistic for grouped data.Hence, that additional term takes

into account the Fisher’s information lost due to group-

ing. Later it was shown (Voinov et al. ()) that the DN

part, like the PF test, is (for equiprobable cells, for exam-

ple) insensitive to some alternative hypothesis in case of

equiprobable cells (�xed or random) and would be sensi-

tive to it for, e.g., non-equiprobable two Neyman-Pearson

classes. For equiprobable cells this suggests using the dif-

ference between themodi�ed statistic and theDNpart that

will be the most powerful statistic in case of equiprobable

cells (McCulloch (), Voinov et al. ()). It became

clear that the way of sample space partitioning essentially

in�uences power of a test.

Ronald Fisher () was the �rst to note that “in some

cases it is possible to separate the contributions to χ made

by the individual degrees of freedom, and so to test the

separate components of a discrepancy.” Cochran ()

wrote “that the usual χ tests are o�en insensitive, and

do not indicate signi�cant results when the null hypothe-

sis is actually false” and suggested to “use a single degree

of freedom, or a group of degrees of freedom, from the

total χ,” to obtainmore powerful and appropriate test.�e
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problem of implementing the idea of Fisher and Cochran

was that decompositions of Pearson’s sum and modi�ed

test statistics were not known at that time. Anderson ()

(see also Boero et al. ()) was possibly the �rst who

to decompose the Pearson’s χ for a simple null hypoth-

esis into a sum of independent χ random variables in

case of equiprobable grouping cells. A parametric decom-

position of Pearson’s χ in case of non-equiprobable cells

based on ideas of Mirvaliev () was obtained by Voinov

et al. () in an explicit form. At the same time Voinov

et al. () presented parametric decompositions of NRR

and HRM statistics. Voinov () and Voinov and Pya

() introduced vector-valued goodness-of-�t tests that,

in some cases, can provide a gain in power for speci�ed

alternatives.
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�e term “chi-square” refers both to a statistical distribu-

tion and to a hypothesis testing procedure that produces

a statistic that is approximately distributed as the 7chi-
square distribution. In this entry the term is used in its

second sense.

Pearson’s Chi-Square
�e original chi-square test, o�en known as Pearson’s chi-

square, dates from papers by Karl Pearson in the earlier

s.�e test serves both as a “goodness-of-�t” test, where

the data are categorized along one dimension, and as a test

for the more common “contingency table,” in which cate-

gorization is across two or more dimensions. Voinov and

Nikulin, this volume, discuss the controversy over the cor-

rect form for the goodness of �t test.�is entry will focus

on the lack of agreement about tests on contingency tables.

In  the Vermont State legislature approved a bill

authorizing civil unions.�e vote can be broken down by

gender to produce the following table, with the expected

frequencies given in parentheses.�e expected frequencies

are computed as Ri ×Cj/N, where Ri and Cj represent row

and column marginal totals and N is the grand total.

Vote

Yes No Total

Women


(.)


(.)


Men


(.)


(.)


Total   

�e standard Pearson chi-square statistic is de�ned as

χ

=∑∑

(Oij − Eij)


Eij
=

( − .)


.
+⋯

+
( − .)



.
= .

where i and j index the rows and columns of the table. (For

the goodness-of-�t test we simply drop the subscript j.)

�e resulting test statistic from the formula on the le� is

approximately distributed as χ on (r − )(c − ) degrees

of freedom.�e probability of χ ≥ . on  df = .,

so we can reject the null hypothesis that voting behavior

is independent of gender. (Pearson originallymisidenti�ed

the degrees of freedom, Fisher corrected him, though Pear-

son long refused to recognize the error, and Pearson and

Fisher were enemies for the rest of their lives.)

Likelihood Ratio Chi-Square
Pearson’s chi-square statistic is not the only chi-square test

that we have.�e likelihood ratio chi-square builds on the

likelihood of the data under the null hypothesis relative to

the maximum likelihood. It is de�ned as

G

= ∑Oij log(

Oij

Eij
) = [ ln(



.
) +  ln(



.
)

+  ln(


.
) +  ln(



.
)]

= .
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�is result is slightly larger than the Pearson chi-square

of .. One advantage of the likelihood ratio chi-square

is that G for a large dimensional table can be neatly

decomposed into smaller components. �is cannot be

done exactly with Pearson’s chi-square, and G is the usual

statistic for log-linear analyses. As sample sizes increase the

two chi-square statistics converge.

Small Expected Frequencies
Probably no one would object to the use of the Pear-

son or likelihood ratio chi-square tests for our example.

However, the chi-square statistic is only approximated

by the chi-square distribution, and that approximation

worsens with small expected frequencies. When we have

very small expected frequencies, the possible values of the

chi-square statistic are quite discrete. For example, for a

table with only four observations in each row and col-

umn, the only possible values of chi-square are , , and

. It should be clear that a continuous chi-square dis-

tribution is not a good match for a discrete distribution

having only three values.�e general rule is that the small-

est expected frequency should be at least �ve. However

Cochran (), who is generally considered the source of

this rule, acknowledged that the number “” seems to be

chosen arbitrarily.

Yates proposed a correction to the formula for chi-

square to bring it more in line with the true probability.

However, givenmodern computing alternatives, Yates’ cor-

rection is much less necessary and should be replaced by

more exact methods.

For situations in which we do not satisfy Cochran’s rule

about small expected frequencies, the obvious question

concerns what we should do instead.�is is an issue over

which there has been considerable debate. One of the most

common alternatives is Fisher’s Exact Test (see below), but

even that is controversial for many designs.

Alternative Research Designs
�ere are at least four di�erent research designs that will

lead to data forming a contingency table. One design

assumes that all marginal totals are �xed. Fisher’s famous

“tea-tasting” study had four cups of tea with milk added

�rst and fourwithmilk added second (row totals are �xed).

�e taster had to assign four cups to each guessed order

of pouring, �xing the column totals.�e underlying prob-

ability model is hypergeometric, and Fisher’s exact test

() is ideally suited to this design and gives an exact

probability.�is test is reported by most so�ware for  × 

tables, though it is not restricted to the  ×  case.

Alternatively we could �x only one set of marginals,

as in our earlier example. Every replication of that exper-

iment would include  women and  men, although

the vote totals could vary.�is design is exactly equivalent

to comparing the proportion of “yes” votes for men and

women, and it is based on the7binomial distribution.�e
square of a z-test on proportions would be exactly equal

to the resulting chi-square statistic. One alternative analy-

sis for this design would be to generate all possible tables

with those row marginals and compute the percentage of

obtained chi-square statistics that are as extreme as the

statistic obtained from the actual data. Alternatively, some

authorities recommend the use of a mid-p value, which

sums the probability of all tables less likely than the one we

obtained, plus half of the probability of the tablewe actually

obtained.

For a di�erent design, suppose that we had asked 

Vermont citizens to record their opinion on civil unions.

In this case neither the Gender nor Vote totals would be

�xed, only the total sample size. �e underlying proba-

bility model would be multinomial. Pearson’s chi-square

test would be appropriate, but a more exact test would be

obtained by taking all possible tables (or, more likely, a

very large number of randomly generated tables) with 

observations and calculating chi-square for each.Again the

probability value would be the proportion of tables with

more extreme outcomes than the actual table. And, again,

we could compute a mid-p probability instead.

Finally, suppose that we went into college classrooms

and asked the students to vote. In this case not even the

total sample size is �xed.�e underlying probabilitymodel

here is Poisson.

Computer scripts written in R are available for each

modelwith a �xed total sample size at http://www.uvm.edu

/
~
dhowell/StatPages/chi-square-alternatives.html

Summary
Based on a large number of studies of the analysis of con-

tingency tables, the current recommendation would be to

continue to use the standard Pearson chi-square test when-

ever the expected cell frequencies are su�ciently large.

�ere seems to be no problem de�ning large as “at least

.” With small expected frequencies 7Fisher’s Exact Test
seems to perform well regardless of the sampling plan,

but 7randomization tests adapted for the actual research
design, as described above, will give a somewhat more

exact solution. RecentlyCampbell () carried out a very

large sampling study on  ×  tables comparing di�er-

ent chi-square statistics under di�erent sample sizes and

di�erent underlying designs. He found that across all sam-

pling designs, a statistic suggested by Karl Pearson’s son

Egon Pearson worked best in most situations.�e statis-

tic is de�ned as χ
N

N −  . (For the justi�cation for that
adjustment see Campbell’s paper.) Campbell found that as

http://www.uvm.edu/~dhowell/StatPages/chi-square-alternatives.html
http://www.uvm.edu/~dhowell/StatPages/chi-square-alternatives.html
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long as the smallest expected frequency was at least one,

the adjusted chi-square held the Type I error rate at very

nearly α. When the smallest expected frequency fell below

, Fisher’s Exact Test did best.
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�e χ statistic was developed by Karl Pearson () as a

means to compare an obtained distribution of scores with

a theoretical distribution of scores. While it is sometimes

still employed as a univariate goodness of �t test, other

statistics, such as the 7Kolmogorov–Smirnov test and,
where the theoretical distribution is normal, the Shapiro–

Wilk test, are now more o�en used for that purpose.

�e chi-square statistic on n degrees of freedom is

de�ned as

χ

n =

n

∑
i=
z

i =∑

(Y − µ)

σ 
,

where zi is normally distributed with mean zero and stan-

dard deviation one (Winkler andHayes , pp. –).

If one were repeatedly to draw samples of oneY score from

a normally distributed population, transform that score

to a standard z score, and then square that z score, the

resulting distribution of squared z scores would be a χ

distribution on one degree of freedom. If one were repeat-

edly to draw samples of three scores, standardize, square,

and sum them, the resulting distribution would be χ on

three degrees of freedom. Because the χ statistic is so

closely related to the normal distribution, it is also closely

related to other statistics that are related to the normal

distribution, such as t and F.

One simple application of the χ statistic is to test the

null hypothesis that the variance of a population has a spec-

i�ed value (Winkler and Hayes , pp. –; Wuen-

sch ). From the de�nition of the sample variance,

s =
∑(Y −M)
N −  , where Y is a score,M is the sample mean,

and N is the sample size, the corrected sum of squares

∑(Y −M)

= (N − )s. Substituting this expression for

∑(Y − µ) in the de�ning formula yields χ =
(N − )s

σ 
.

To test the hypothesis that an observed sample came from

a population with a particular variance, one simply divides

the sample sum of squares, (N − )s, by the hypothesized

variance. �e resulting χ is evaluated on N −  degrees

of freedom, with a two-tailed p value for nondirectional

hypotheses and a one-tailed p for directional hypotheses.

One can also compute a con�dence interval for

the population variance (Winkler and Hayes , pp.

–; Wuensch ). For a ( − α)% con�dence

interval for the population variance, compute:

(N − )s

b
and

(N − )s

a

where a and b are the α/ and (− α/) fractiles of the chi

square distribution on (N − )df . It should be noted that

these procedures are not very robust to their assumption

that the population is normally distributed.

When one states that he or she has conducted a “chi-

square test,” that test is most o�en a “one-way chi-square

test” or a “two-way chi-square test” (Howell , pp.

–). �e one-way test is a univariate goodness of �t

test. For each of k groups one has an observed frequency

(O) and a theoretical frequency (E), the latter being

derived from the theoretical model being tested.�e test
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statistic is χ = ∑
(O − E)
E

on k− degrees of freedom.�e

appropriate p value is one-tailed, upper-tailed, for nondi-

rectional hypotheses. When k = , one should make a

“correction for continuity”:

χ

=∑

(∣O − E∣ − .)

E
.

�e two-way chi-square test is employed to test the null

hypothesis that two categorical variables are independent

of one another.�e datamay be represented as an r×c con-

tingency table, where r is the number of rows (levels of one

categorical variable) and c is the number of columns (levels

of the other categorical variable). For each cell in this table

two frequencies are obtained, the observed frequency (O)

and the expected frequency (E).�e expected frequencies

are those which would be expected given the marginal fre-

quencies if the row variable and the column variable were

independent of each other.�ese expected frequencies are

easily calculated from themultiplication rule of probability

under the assumption of independence. For each cell, the

expected frequency is (RiCj/N), where Ri is the marginal

total for all cells in the same row, Cj is the marginal total

for all cells in the same column, and N is the total sam-

ple size.�e χ is computed exactly as with the one-way

chi-square and is evaluated on (r − )(c − ) degrees of

freedom, with an upper-tailed p value for nondirectional

hypotheses. Although statistical so�ware o�en provides a

χ with a correction for continuity when there are only two

rows and two columns, almost always the uncorrected χ

is more appropriate (Camilli and Hopkins ).

It is not unusual to see the two-way chi-square inappro-

priately employed (Howell , pp. –). Most o�en

this is a result of having counted some observations more

than once or having not counted some observations at all.

Each case should be counted once and only one. Statisti-

cal so�ware will o�en provide a warning if one or more of

the cells has a low expected frequency.�e primary con-

sequence of low expected frequencies is low power. Even

with quite small expected frequencies, actual Type I error

rates do not deviate much from the nominal level of alpha

(Camilli and Hopkins ).

�e results of a two-way chi-square test are com-

monly accompanied by an estimate of themagnitude of the

association between the two categorical variables. When

the contingency table is  × , an odds ratio and/or the

phi coe�cient (Pearson r between the two dichotomous

variables) may be useful. With larger contingency tables

Cramer’s phi statistic may be useful.

�e chi-square statistic is also employed in many other

statistical procedures, only a few of which will be men-

tioned here.�eCochran-Mantel-Haenszel χ is employed

to test the hypothesis that there is no relationship between

rows and columns when you average across two or more

levels of a third variable.�e Breslow-Day χ is employed

to test the hypothesis that the odds ratios do not di�er

across levels of a third variable. Likelihood ratio chi-square

is employed in the log-linear analysis of multidimensional

contingency tables, where it can be employed to test the

di�erence between twomodels, where one is nested within

the other. Likewise, in 7logistic regression, chi-square can
be employed to test the e�ect of removing one or more of

the predictors from the model. In discriminant function

analysis, chi-squaremay be employed to approximate the p

value associated with the obtained value of Wilks’ lambda.

A chi-square statistic can be employed to test the null

hypothesis that k Pearson correlation coe�cients are iden-

tical. Chi-square is also used to approximate the p value

in the Kruskal-Wallis ANOVA and the Friedman ANOVA.

Many more uses of the chi-square statistic could be cited.
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In recent years, in addition to advances in methodology,

the number of clinical trials conducted and published has

greatly increased. Clinical trials, in particular, blinded, ran-

domized, controlled comparative clinical trials, are widely

recognized as the most scienti�c and reliable method

for evaluating the e�ectiveness of therapies and promot-

ing a culture of evidence-based medicine (Tukey ;

Byar et al. ; Zelen ; Cowan ; Byar ; Royall

; Smith ).

�e �rst modern clinical trial is generally considered

to be the treatment of pulmonary tuberculosis with strep-

tomycin conducted by the UK Medical Research Coun-

cil (MRC) and published in British Medical Journal in

 (MRC ; Pocock ; Ederer ; Day ).

However, there is still some controversy surrounding this

claim as some authors refer to the study with the common

cold vaccine conducted by Diehl et al. () as the �rst

modern trial (Hart , ; Gill ). �e design of

the streptomycin trial included blinding,7randomization,
and control groups as fundamental elements of the clin-

ical trial. �e trial included a total of  patients from

seven centers, who were assigned to either “streptomycin

and bed-rest” (S case) or “bed-rest” (C case) groups, by a

process involving a statistical series based on random sam-

pling numbers drawn up for each sex and each center and

sealed envelopes.�e e�cacy of streptomycin was evalu-

ated based upon the examination of patient X-ray �lms by

three experts consisting of one clinician and two radiol-

ogists.�e decision of whether or not the treatment was

e�ective wasmade by themajority based on independently

reached conclusions by each expert, who were also blinded

as to which treatment the patient had received.�e strep-

tomycin trial also included Sir Austin Bradford Hill who

served as the trial statistician. Hill was recognized as the

world’s leading medical statistician and popularized the

use of statistical methods in clinical trials, and who also

attempted to improve the quality of their implementation

and evaluation by publishing a series of  articles in�e

Lancet in  (Hill et al. ).

With the success of the streptomycin trial, the MRC

and Hill continued with further blinded, randomized,

controlled comparative clinical trials (Ederer ; Days

): for example, chemotherapy of pulmonary tubercu-

losis in young adults (MRC ), an antihistaminic drug

in the prevention and treatment of the commoncold (MRC

), the use of cortisone and aspirin in the treatment of

early cases of rheumatoid arthritis (MRC , ), and

an anticoagulant to treat cerebrovascular disease (Hill et al.

). In United States, the �rst randomized controlled

trail started in  and was the US National Institute of

Health study of the adrenocorticotropic hormone, corti-

sone and aspirin in the treatment of rheumatic heart dis-

ease in children (Rheumatics Fever Working Party ).

Presently, a huge number of randomized controlled clini-

cal trials are being conducted worldwide, with the number

of clinical trials steadily increasing each year.

Although now commonplace, the fundamental ele-

ments of clinical trials, such as blinding, randomization,

and control groups, did not just suddenly appear in the

second quarter of the twentieth century. Evidence exists

that a comparative concept for evaluating therapeutic e�-

cacy with control groups has been known since ancient

times (Ederer ; Day ). For example, Lilienfeld

() and Slotki () cited the description of a nutri-

tional experiment using a control group in the Book of

Daniel from the Old Testament:

7 .: Among these were some from Judah: Daniel, Hana-
niah, Mishael and Azariah. . . .: But Daniel resolved not to
defile himself with the royal food and wine, and he asked
the chief official for permission not to defile himself this
way. . . . .: Daniel then said to the guard whom the chief
official had appointed over Daniel, Hananiah, Mishael and
Azariah. .: Please test your servants for ten days; Give
us nothing but vegetables to eat and water to drink. .:
Then compare our appearance with that of the young men
who eat the royal food, and treat your servants in accor-
dance with what you see. .: So he agreed to this and
tested them for ten days. .: At the end of the ten days
they looked healthier and better nourished than any of the
young men who ate the royal food. . So the guard took
away their choice food and the wine they were to drink and
gave them vegetables instead.

�e above description is part of a story dating fromapprox-

imately  BCwhenDaniel was taken captive by the ruler

of Babylonia, Nebuchadnezzar. In order to refrain from

eating royal meals containing meat (perhaps pork) and

wine o�ered by Nebuchadnezzar, Daniel proposed a com-

parative evaluation and was rewarded when his test group

fared better than the royal food group. Although it is di�-

cult to con�rm the accuracy of the account, it is clear that

the comparative concept already existed when the Book

of Daniel was written around  BC. In particular, it is
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remarkable that the passage from the Book of Daniel men-

tioned not only the choice of a control group but the use of a

concurrent control group. Unfortunately, this fundamental

concept was not widely practiced until the latter half of the

twentieth century (Ederer ; Day ).

Much later than the Book of Daniel, in the eighteenth

and nineteenth centuries, there were some epoch-making

clinical researches that formed the basis of the method-

ology used in current clinical trials. Before the modern

clinical trial of the treatment of pulmonary tuberculosis

with streptomycin mentioned above (Pocock ; Ederer

; Day ), the most famous historical example of a

planned, controlled clinical trial involved six dietary treat-

ments for scurvy on board a British ship. �e trial was

conducted by the ship’s surgeon, James Lind, who was

appalled by the ravages of scurvy which had claimed the

lives of three quarters of the crew during the circumnav-

igation of the world by British admiral, George Anson

(Lind ; Bull ; Pocock ; Mosteller ; Ederer

; Day ). In , Lind conducted a comparative

trial to establish the most promising “cure” for patients

with scurvy using twelve individuals who had very simi-

lar symptoms on board the Salisbury. In addition to one

common dietary supplement given to all of the patients, he

assigned each of six pairs one of the following six dietary

supplements:

. Six spoonfuls of vinegar

. A half-pint of sea water

. A quart of cider

. Seventy-�ve drops of vitriol elixir

. Two oranges and one lemon

. Nutmeg

�ose patients who received the two oranges and one

lemon were cured within approximately  days and were

able to help nurse the other patients. Apart from the

patients who improved somewhat a�er receiving the cider,

Lind observed that the other remedieswere ine�ective.�e

reason for the success of Lind’s trial was likely due to his

knowledge of previous work by James Lancaster (Purchas

), who had served three teaspoons of lemon juice each

day to sailors su�ering from scurvy during the �rst expe-

dition to India sent by the East India Company in 

(Mosteller ). Unfortunately, however, the British Navy

did not supply lemon juice to its sailors until , although

conclusive results concerning the e�cacy of such treat-

ment had already been obtained much earlier (Bull ;

Mosteller ).

�e use of statistical concepts in clinical trials was

also advocated earlier than the streptomycin trials. For

example, Pierre Simon Laplace, a French mathemati-

cian and astronomer, mentioned the use of probability

theory to determine the best treatment for the cure of

a disease (Laplace ; Hill et al. ). Also, Pierre-

Charles-Alexandre Louis, a French physician and pathol-

ogist, discussed the use of a “numerical method” for

the assessment of treatments by constructing comparable

groups of patients with similar degrees of a disease, i.e.,

to compare “like with like” (Louis ; Ederer ; Day

). Unfortunately, these suggestions were not earnestly

acted upon until the streptomycin trial because in the eigh-

teenth and nineteenth centuries, the investigators were

more involved with the practice of medicine and less

versed in the use of probability theory since saving patients’

life was considered more important rather than collecting

data from the aspect of ethics (Bull ; Hill et al. ).

Here, the history and development of clinical trials was

very brie�y traced. More detailed aspects of the history

of clinical trials can be found in articles by Bull (),

Armitage (, ), Lilienfeld (), Pocock (),

Meinert (), Gail (), Ederer () andDay ().
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Clinical Trials: An Overview

Hiroyuki Uesaka

Osaka University, Osaka, Japan

A clinical trial is one type of clinical research where a pro-

cedure or drug is intentionally administered outside the

realm of standardmedical practice to human subjects with

the aim of studying its e�ect on the human body. �is

includes medications, operations, psychotherapy, physio-

therapy, rehabilitation, nursing, restricted diets, and the

use of medical devices. �e comparative study of two

or more treatments, involving the random assignment of

treatments to patients, is considered a clinical trial even if

the study includes approved drugs ormedical devices.�is

means that a clinical trial is an experiment which includes

human subjects. It is necessary to distinguish clinical trials

from observational studies which collect outcomes when

executing a study treatment as an ordinary treatment.

Since clinical trials include human subjects, the ethi-

cal aspects, i.e., the rights, safety and well-being of indi-

vidual research subjects, should take precedence over all

other interests at all stages, from the planning of clinical

trials to the reporting of results. Such ethical principles

for clinical research are in accordance with the Declara-

tion of Helsinki, “Ethical Principles for Medical Research

Involving Human Subjects,” issued by the World Medical

Association (). In conducting a clinical trial, the study

protocol should clearly describe the plan and content of

the trial.�e protocol must also be reviewed and approved

by the ethics committee. Furthermore, the Declaration of

Helsinki states:�e protocol should contain a statement of

the ethical considerations involved and indicate how the

principles in the above declaration have been addressed.

To protect the safety, well-being and rights of the human

subjects participating in the trial, the Declaration indicates

that potential subjects must be adequately informed of all



Clinical Trials: An Overview C 

C

relevant aspects of the study which include aims, meth-

ods, the anticipated bene�ts and potential risks of the study

and any discomfort that participation may entail. And it

states: �e potential subjects must be informed of their

right to refuse to participate in the study or to withdraw

consent to participate at any timewithout reprisal.�e vol-

untary agreement of a subject to participate a�er su�cient

details have been provided is called informed consent. It is

also recommended that the clinical trial be registered in a

publicly accessible database, and the results from the trial

should be made publicly available, regardless of whether

the results are positive or negative.

Clinical trials for a new drug application, when they

are conducted in the EU, Japan and/or the United States of

America, must meet the requirements of the “Good Clin-

ical Practice” (GCP) guideline (ICH Steering Committee

).�e GCP guideline is a uni�ed standard provided

by the Europe, Japan and the United States in the frame-

work of the International Conference on Harmonization

of Technical Requirements for Registration of Pharma-

ceuticals for Human Use [http://www.ich.org/].�e GCP

guideline provides protection for the safety, well-being and

human rights of subjects in clinical trials in accordance

with the Declaration of Helsinki.�e GCP guideline also

requires that people appointed by the sponsor, the so-

called monitors, verify that the rights and well-being of

all human subjects are being protected, that the reported

trial data are accurate, complete, and veri�able from source

documents, and that the conduct of the trial is in compli-

ance with the currently approved protocol/amendment(s),

with the GCP, and with the applicable regulatory require-

ment(s).�is is referred to as trial monitoring in the GCP.

In planning a clinical trial, a protocol must be pre-

pared, including descriptions of the trial justi�cation, trial

objectives, study treatments, the population to be studied

as de�ned by the study inclusion and exclusion crite-

ria, test treatments and treatment procedures, observed

variables and observation procedures, speci�cation of

variables to assess treatment e�ect, collection of safety

information, prohibited concomitantmedications, discon-

tinuation criteria for individual subjects, the number of

subjects planned to be enrolled and the justi�cation for

such, statistical methods to be employed, data collection,

quality control and quality assurance (ICH Steering Com-

mittee ). A case report form (CRF) should be prepared

as well.�e CRF is a document designed to record all of

the required information to be reported according to the

protocol. A�er a trial, a so-called clinical study report is

prepared (ICH Steering Committee ). �is is a doc-

ument which contains clinical and statistical descriptions

of the methods, rationale, results and analyzes of a speci�c

clinical trial fully integrated into a single report. Clinical

trials are conducted as collaborative activities involving

many specialists, such as investigators, nurses, diagnostic

testing specialists and other collaborators. Furthermore,

regulators are involved in new drug applications. �ere-

fore, the protocol, CRF and clinical study report should be

clearly and accurately documented to be easily understood

by those involved in the trial and by those who will make

use of the trial results.

Clinical trials can be classi�ed into several types

depending on various features (ICH Steering Committee

; ICH Steering Committee ). First, a trail can be

controlled or uncontrolled, this being determined by the

presence of a control group. A controlled trial is a trial to

compare the study treatment(s) with a control treatment

that is either the current standard treatment, best support-

ive care, placebo, or some other treatment; an uncontrolled

trial involves giving the same treatment to all of the sub-

jects participating in the trial.�e second feature involves

the objective of a trial, either exploratory or con�rma-

tory. A clinical trial that aims to generate or identify a

research topic, or provide information to determine the

speci�cs of a trial method is called an exploratory trial. A

con�rmatory trial is de�ned as an adequately controlled

trial where hypotheses which were derived from earlier

research or theoretical considerations are stated in advance

and evaluated. Furthermore, a con�rmatory trial generally

includes three types of comparisons: a superiority trial, a

non-inferiority trial, and an equivalence trial. A superior-

ity trial is used to show the superiority of a test treatment

over a control. A non-inferiority trial is designed to show

that the e�cacy or safety of the study treatment is no worse

than that of the control. An equivalence trial serves to

demonstrate that the test treatment is neither better nor

worse than the control. �e third aspect involves distin-

guishing between a pragmatic and an explanatory trial

(Gent and Sackett ; Schwartz and Lellouch ).�e

objective of a pragmatic trial is to con�rm e�ectiveness of

the test treatment for those subjects who are assigned to

the test treatment. An explanatory trial serves to establish a

biological action for the treatment. Finally, the fourth char-

acteristic focuses on the di�erence between a single- and

a multi-center trial. �e single-center trial is conducted

by a single investigator, and the multi-center trial is co-

conducted by multiple investigators at multiple study sites.

Recently, many multi-center trials have been planned and

conducted across not only a single country but also two

or more countries. Such a multi-center trial is called a

multinational trial.

http://www.ich.org/
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�e clinical development of a new drug advances in

stages (ICH Steering Committee ). A safety trial is exe-

cuted �rst to determine the maximum dose that can be

safely administered to a subject. In most safety trials of

the �rst use of a new drug in humans, the subjects are

healthy volunteers. Administration of the study treatment

begins from a dosage expected to be safe enough for nor-

mal healthy volunteers, and then the dosage is increased in

stages.�e pharmacokinetic pro�le is usually examined in

the same trial. Pharmacokinetics investigates the process

of drug disposition which usually consists of absorption,

distribution, metabolism and excretion.�is stage is called

Phase I.�e next stage is to determine the dosage range

that can be safely administered to patients and at which

su�cient e�ectiveness can be expected. �e dosage that

will be used in clinical treatment as well as the dose inter-

vals are also clari�ed at this stage.�is is called the Phase

II. In the third stage, the e�cacy and safety of the study

treatment is con�rmed in the target patient population.

�is stage is referred to as Phase III.�e dose and dosage

regimen which are con�rmed to be e�cacious and safe in

phase III are then submitted to the regulatory authority

to obtain marketing authorization of the new drug. A�er

marketing authorization is obtained, the drug becomes

widely used for clinical treatment. �is stage is called

Phase IV. During the phase III trials many restrictions are

imposed to ensure the safety of the participating subjects.

�ese include the necessity of physical examinations, col-

lection of patient anamneses, regulation of concomitant

medications, and clearly de�ned test treatment adminis-

tration periods. However, in phase IV such restrictions

are relaxed and the approved study treatment can be used

by various patients under diverse conditions. �erefore,

because the number of patients who are administered the

newly approved drug increases rapidly, with patients o�en

using the drug for very long times according to their dis-

ease condition, there is a real concern about harmful e�ects

that have not been anticipated.�erefore, an investigation

to clarify the safety and e�ectiveness of the treatment in

daily life, an observational study, a large-scale trial, or a

long-term trial, is conducted. Moreover, a clinical trial to

compare the newly approved drug with other medicines

that have been approved for the same indication may also

be conducted.

�e result of the trial should be scienti�cally valid.

Clinical trial results are intended to be applied to a tar-

get population de�ned by inclusion and exclusion criteria

for a given trial.�e enrolled subjects should be a random

sample from the target population so that the trial results

can be applied to the target population. However a trial is

conducted in a limited number of medical sites, and not

all candidate subjects give informed consent. �erefore,

whether or not the trial result can be generalized to the

target population will depend on the study protocol and

the actual execution procedure. Accordingly, it is prefer-

able to execute the trial in a variety of medical institutions

with a wide range of patients corresponding to the diver-

sity of the target population to improve the possibility of

generalizing to the target population. A controlled trial

usually estimates the di�erence in response to treatments

between treatment groups. As described above, the clin-

ical trial participants are not a random sample of the

target population. �erefore the true mean di�erence in

the study population (all subjects who participate in the

trial) will be estimated.�is is accomplished by dividing

the study population into two or more treatment groups

which are assigned to di�erent treatments, and then com-

paring themeans of response to treatment between groups.

�e estimated mean di�erence is usually di�erent from

this true value. When random allocation of treatment to

subjects is used, it is assumed that the departure from

the true di�erence is probabilistic or random error. How-

ever, there is the possibility of systematic error due to the

execution procedure of the trial. �is systematic error is

called bias (ICH Steering Committee ).�e execution

of treatment, evaluation of results, and/or subjects’ reac-

tions can be in�uenced if the people involved in a trial,

such as investigators, relevant clinical sta� or subjects, are

aware ofwhich treatment is assigned to subjects.�erefore,

masking (blinding) and randomization are used to prevent

participants from knowing which treatment is being allo-

cated towhich subjects.�ere are several levels of blinding:

double-blind, single-blind, observer-blind and open-label.

In a double-blind study neither the subjects, nor the inves-

tigator, nor any of the relevant clinical trial sta� know who

belongs to which treatment group. In a single-blind study

only treatment assignments are unknown to the subjects or

investigator and relevant clinical sta�. In an observer-blind

study treatment assignments are unknown to the observers

who assess the subjects’ conditions. In an open-label study

treatment assignments are known to both investigators and

subjects.

One of the typical methods of treatment assignment

is to assign only one treatment to each subject, and then

to compare the e�ects of the treatments between subject

groups.�is method is referred to as parallel group design.

�e other typical method is the cross-over design where

one subject receives two or more treatments and an intra-

subject comparison of treatments is done. It is necessary to

select an appropriate design because bias can be caused by

the design itself.

A clinical trial is an experiment with human beings as

subjects. It is preferable that the number of subjects be as

small as possible to protect the rights, health and welfare
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of the subjects included in the trial. However, if the objec-

tive of the trial is not achieved, the reason for executing the

trial is lost. �erefore, based on the estimated di�erence

between the treatments, the trial should be designed to

have su�cient precision to either detect such a di�er-

ence if it truly exists, or to conclude that the di�erence

is below a de�nite value based on concrete evidence. For

this purpose, it is necessary to maintain high accuracy

and precision in trials. To ensure the precision of a trial,

it is important to consider the strati�cation of the study

population, to make precise observations, and to secure a

su�cient number of subjects.

�e objective of these trials is to estimate bene�cial and

adverse e�ects, and to con�rmahypothesis about the e�ect

of the study treatment. Even if the e�ect size of the test

treatment is assumed to be of a given size, the true e�ect

size may be less than assumed. When the gap between the

actual and the assumed value is large, the planned number

of subjects might be insu�cient and, in some cases, many

more subjects than originally planned will be needed. In

such cases, a sequential design (Jennison and Turnbull

) and a more advanced adaptive design (Bretz et al.

) would be proposed.
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Medical experiments, o�en called “clinical trials,” are obvi-

ously extremely important for the human race. Here,

we shall brie�y talk, in layman’s language, about some

important aspects of the same which are of great public

interest.

Side Effect of Drugs
�e side e�ects of allopathic drugs are notorious; death

is o�en included in the same. For degenerative diseases

(as opposed to infectious diseases, as in epidemics) it is

not clear to the author whether any serious e�ort is being

made by the pharmaceutical companies to develop drugs

http://www.wma.net/
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which actually cure diseases; the trend seems to be at best

to maintain people on drugs for a long time (even for

the whole life). Mostly, people live under varying forms of

painkiller-surgery regimes.

However, in many institutions (for example, depart-

ments doing research on nutrition) there are people who

are genuinely interested in �nding cures, though o�en

they do not possess the resources they need. Many things,

considered true by the public, are not quite so. Consider

preservatives and other food additives that are legal.�ey

are found in varying quantities in most foods, and many

people do not pay attention to this at all, and consume

unknown amounts each day.�e thought that they have no

side e�ects is based on relatively (time-wise) small exper-

iments and extrapolations there from. It is probably true

that if some food with a particular preservative or a (com-

bination of the same with others) is consumed, it may not

have any noticeable e�ect within a short period. But, the

worry that many thinkers have is whether consuming food

(all the time ignoring preservatives that itmay contain)will

have a disastrous e�ect (like producing cancer, heart attack,

diabetes, stroke, etc.) , , , or  years earlier than it

would have been expected for an additives-free diet. (�e

fact that, now, teenagers and young ones in their twenties

are developing such diseases which, in an earlier age, were

foundmainly among seniors only, is alarming.) A full scale

clinical trial (to study the long term e�ect of preservatives

etc.) will take more than a century, and has not been done.

�us, extrapolations proclaiming that such additives are

safe are based on guess work only, and are not necessarily

scienti�cally sound. We live in an age when shelf life has

become more important than human life.

It is not even clear whether the damage done from side

e�ects and the painkiller-surgery policies is limited to the

increase in the periods of sickness of people, the intensities

of such sickness, and the reduction in the age at death.�e

bigger question is whether there is an e�ect on the progeny,

and for how many generations. We recall that in the pro-

cesses of natural selection in the theory of evolution, only

the �ttest may survive. Clearly, for the human race, only

the policy that promotes the good of the general public

corresponds to being �t for survival.

Contradictory Statements by Opposing
Camps of Medical Researchers
O�en, seemingly good scientists are found to be contra-

dicting each other. For example, there may be a substance

(say, an extract from some herbs) whichmay be claimed by

some nature-cure scientists (based on their experiments)

to positively a�ect some disease (relative to a placebo).

However, some pharmaceutical scientists may claim that

their experiments show that the drug is no better than

the placebo. �is is to say that, o�en in such cases, a

close look may reveal that the two sets of experiments are

not referring to the same situation. To illustrate, the sub-

jects (people, on whom an experiment is done) in the �rst

groupmay be people who just contracted the disease, these

people being randomly assigned the drug or the placebo.

In the second case, the subjects may be people who have

had the disease for some time and have been taking

painkillers. Now, the herbal drug may be quite e�ective on

a body which is in a more primeval and natural state, and

yet not work well in a body which has been corrupted by

the chemicals in the painkiller. Clearly, that would explain

the discrepancy and support the use of the herbal drug

soon a�er the disease begins, simultaneously discourag-

ing the use of painkillers etc. whose primary e�ect is to

temporarily fool the mind into thinking that one is feeling

better. �us, it is necessary to examine a clinical trial

closely rather than take its results on face value.

Large Clinical Trials: Meta-analysis
“Large” clinical trials are o�en touted as being very “infor-

mative.” To illustrate, take the simple case of comparing

two drugs A and B with respect to a placebo C. Now, how

e�ective a drug is for a person may depend upon his or

her constitution. On some people, A may be the best, on

some B, and on others, all the three may be essentially

useless. For me, even though I may not know the reality,

suppose the reality is thatBwould be very e�ective with lit-

tle negative side e�ect,Awould be only somewhat e�ective

but with a large negative side e�ect, and the e�ect of C

would be small (being somewhat positive or somewhat

negative depending on environmental factors). Suppose a

trial is done in Arizona, involving , patients randomly

divided into three equal groups, the result being that A is

e�ective in % (cases in its group), B in %, and C in %

cases. Clearly, here, the drug A wins. But, for me, what is

the value of this information? I really need to know which

drug would be best for me.

Now suppose a similar trial is done in Idaho and in

California, the result for A, B, and C being %, %, %,

and %, %, and % respectively in the two states. Does

this help me in some way or does it simply add to the con-

fusion? �e drugs manufacturer, Mr. Gaines, would like

“meta–analysis” (whose purpose is to combine the results

in a legitimate and meaningful way), because his interest

is in seeing the overall picture so that he can formulate an

appropriate manufacturing policy for his company. How-

ever, the interest of the general public is di�erent from that

of Gaines, because each individual needs to know what is

good for him or her personally.�e individual’s interest, in

a sense, runs counter to 7meta–analysis; he or she would
be more interested in knowing what aspects of a person’s
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health make him or her more receptive to A or B. Instead

of combining the data, more delineation needs to be done.

In other words, one needs to connect the results with vari-

ous features of the subjects and other related factors.�en

we may gain knowledge not only on what proportion of

subjects are positively a�ected by a drug, but what bod-

ily features of people (or the food that they eat, or their

lifestyle, or the environment around them, etc.) lead to this

positive e�ect.

For example, in the above (arti�cial) data, it seems that

A is better in a warm climate and B in cold. Where the cli-

mate is mild, all of them do well, and many people may

recover without much of drugs. If I have been more used

to a cold climate, Bmay be more e�ective onme.With this

knowledge, even though A may turn out to be much bet-

ter than B in the area where I live, B may be better for me

individually.

(�is leads us to the philosophy of statistical inference.

Not only do we need to plan our experiments or investi-

gations properly, we need to be careful in drawing infer-

ences from the data obtained from them. According to the

author, trying to �nd what a bunch of data “says” must

involve in a relevant way the space of applications where

such a �nding will be made use of. Many scholars believe

that, given a set of data, the “information” that the data

contains is a �xed attribute of the data, and the purpose

of inference is to bring out this attribute accurately. �e

author believes that the reason why the inference is sought

(in particular, to what use or application the inference will

be put) is also important, and should have a bearing on

the inference drawn.�is policy will give insight into the

kind of information we need, what should receive more

emphasis, etc. Clinical trials would really gain from this

approach.)

Reducing Side Effects of Drugs
Studies are usually done using a “loss function” which tells

how much “loss” shall we incur by adopting each of a

set of policies. For example, we may have many drugs,

several possible doses of a drug per day, many possible

durations of time over which a drug is to be continued,

etc. For each combination of these factors, the “loss” may

be “the total time of absence from work,” or “the total

�nancial loss incurred because of sickness,” or “the amount

of fever,” or “the blood pressure,” etc. If the loss func-

tion involves only one variable (like “blood pressure”), it

is “uni-dimensional.” But if, many variables are involved

simultaneously (like “blood pressure,” “fever,” “�nancial

loss”), then it is called multi-dimensional. Usually, only

one dimension is used or emphasized (like, “intensity of

fever”).More theory needs to be developed on how towork

with multi-dimensional loss functions.

Besides theory, we also need to develop good quanti-

tative criteria for measuring “healthfulness.”�ere can be

various sectors. For example, we can have one criterion for

the sector of upper digestive track, one for the middle, one

for the colon, one for the respiratory system, one for bone

diseases, one for the joints, one for nerves, one for cancer-

ous growth, and so on. For each sector, the corresponding

criterion will provide a measure of how healthy that sec-

tor is. Suppose we decided to have  such sectors.�en

the loss function will be -dimensional.�e drugs will be

evaluated in each dimension, and the results will also be

combined in various ways. �e side e�ect of a drug in a

particular sector will be caughtmore easily.When the drug

ismarketed, an assessment for each sector can be provided.

Drugs with large e�ect in any sector can be rejected.

Experiments with Many Factors:
Interactions
We make some technical remarks here. A large part

of the �eld of statistical design of multi-factorial scien-

ti�c experiments is concerned with the simplistic situa-

tion when there are either no interactions or the set of

non-negligible interactions is essentially known (though

the values of these interactions and the main e�ects are

not known). However, in medical experiments, we can

have interactions of even very high orders. �us, for the

�eld of multifactor clinical trials, we have to go beyond

Plackett–Burman designs, and orthogonal arrays of small

strength (such as ). �ere is work available on search

theory by the author and others, which would help.

However, further work is needed in that �eld. Indeed, for

vigorous full �edged research on how to cure diseases, the

statistical theory of the design and analysis of multifactor

multi-response experiments need to be developed much

further beyond its current levels. However, the basics of

the same are available in books such as Roy et al. ().

For the reader who wishes to go deeper in the �eld of this

article, some further references are provided below.
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Cluster analysis is the generic name for a variety of mathe-

matical methods for appraising similarities among a set of

objects, where each object is described by measurements

made on its attributes.�e input to a cluster analysis is a

data matrix having t columns, one for each object, and n

rows, one for each attribute.�e (i, j)th element of the data

matrix is the measurement of the ith attribute for the jth

object.�e output from a cluster analysis identi�es groups

of similar objects called clusters. A cluster may contain as

few as one object, because an object is similar to itself.

Applications of cluster analysis are widespread because

the need to assess similarities and dissimilarities among

objects is basic to �elds as diverse as agriculture, geol-

ogy, market research, medicine, sociology, and zoology.

For example, a hydrologist considers as the objects a set

of streams, and for attributes describes each stream with a

list of water quality measures. A cluster analysis of the data

matrix identi�es clusters of streams.�e streams within a

given cluster are similar, and any stream in one cluster is

dissimilar to any stream in another cluster.

�ere are two types of cluster analysis. Hierarchical

cluster analysis is the name of the collection of methods

that produce a hierarchy of clusters in the form of a tree.

�e other type, nonhierarchical cluster analysis, is the name

of the collection of methods that produce the number of

clusters that the user speci�es. For both types, computer

so�ware packages containing programs for the methods

are available.

Let us illustrate the main features of hierarchical clus-

ter analysis with an example where the calculations can be

done by hand because the data matrix is small, �ve objects

and two attributes, consisting of made-up data:

Data matrix

Object

    

Attribute      

     

To perform a hierarchical cluster analysis, we must

specify: () a coe�cient for assessing the similarity between

any two objects, j and k; and () a clustering method for

forming clusters.

For the �rst, let us choose the “Euclidean distance

coe�cient,” ejk.�e smaller its value is, the more similar

objects j and k are. If the value is zero, they are identi-

cal, i.e., maximally similar. For our example with n = 

attributes, ejk is the distance between object j and object k

computedwith the Pythagorean theorem.And for the clus-

teringmethod, let us choose the “UPGMAmethod,” stand-

ing for “unweighted pair-group method using arithmetic

averages.”

At the start of the cluster analysis, each object is con-

sidered to be a separate cluster.�uswith �ve objects, there

are �ve clusters. For the �ve we compute the (−)/ = 
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values of ejk. To demonstrate the calculation of one of

these values, consider object  and object .�e Euclidean

distance e is

e = [( − )

+ ( − )


]
/

= ..

In this manner, we compute the other values and put the

ten in a list, from smallest, indicating the most similar pair

of clusters (objects), to largest, indicating the least similar

pair: e = ., e = ., e = ., e = ., e = .,

e = ., e = ., e = ., e = ., e = ..

�e two most similar clusters,  and , head the list,

as the Euclidean distance between them is the smallest.

�erefore,

Step Merge clusters  and , giving , , (), and  at
the value of e = ..

Next, for the four clusters – , , (), and  – we

obtain the ( − )/ =  values of ejk. �ree of these

values are unchanged by the clustering at step  and can

be transcribed from the above list. �e other three have

to be computed according to the guiding principle of the

UPGMA clusteringmethod. It requires that we average the

values of ejk between clusters, like this:

e() =

/(e + e) =


/(. + .) = .;

e() =

/(e + e) =


/(. + .) = .;

e() =

/(e + e) =


/(. + .) = ..

So, the six ejk values listed in order of increasing distance

are: e = ., e() = ., e = ., e = .,

e() = ., e() = .. It follows that the two most

similar clusters are  and , since the Euclidean distance

between them is the smallest.�erefore,

Step Merge clusters  and , giving , (), and () at
the value of e = ..

Before going to the next clustering step, we note

that step  le� the distance between clusters  and ()

unchanged at e() = ..�e two remaining distances

are calculated according to theUPGMAclusteringmethod

by averaging the values of ejk as follows:

e() =

/(e + e) =


/(. + .) = .;

e()() =

/(e + e + e + e)

=

/(. + . + . + .) = ..

�e list of ejk in increasing distance is now: e() = .,

e() = ., e()() = ..�e twomost similar clusters,

 and () head the list.�erefore,

Step Merge clusters  and (), giving () and ()
at the value of e() = ..

28.0

24.0

20.0

16.0

12.0

8.0

4.0

0.0
3 4 2

Step 1

Step 2

Step 3

Step 4

Tree

Object

E
uc

lid
ea

n 
di

st
an

ce
, e

jk

1 5

Cluster Analysis: An Introduction. Fig.  Tree showing the
hierarchy of similarities between the five objects specified by
the data matrix in the text

At this point there are two clusters: () and ().�e

average Euclidean distance between them is:

e()() =

/(e + e + e + e + e + e)

=

/(. + . + . + . + . + .)

= ..

�e list of ejk has only one value: e()() = ..�ere-

fore,

Step Merge clusters () and (), giving () at
the value of e()() = ..

�e calculations are �nished. With each step, the tree

(Fig. ) has been growing. It summarizes the clustering

steps, e.g., showing that the branches containing cluster

() and cluster  join at an Euclidean distance value of

..

�e tree is a hierarchical ordering of similarities that

begins at the tree’s bottomwhere each object is separate, its

own cluster. As we move to higher levels of ejk, we become

more tolerant and allow clusters to hold more than one

object. When we reach the tree’s top we are completely tol-

erant of the di�erences between objects, and all objects are

considered as one cluster.

Suppose we took the �ve objects in the data matrix and

plotted them on a graph with attribute  as one axis and
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attribute  as the other. We would see that the distances

between the objects suggest clusters that nearly match

those in the tree. However, real applications typically have

many attributes, o�en more than a hundred. In such cases,

the researcher cannot grasp the inter-object similarities by

plotting the objects in the high-dimension attribute space.

Yet cluster analysis will produce a tree that approximates

the inter-object similarities.

A tree is an old and intuitive way of showing a hier-

archy. Witness the tree of life forms, the Linnaean classi�-

cation system. At its bottom is the level of Species, at the

next higher hierarchical level is the Genus, consecutively

followed by levels of Order, Class, Phylum, and Kingdom.

A widely practiced way of creating a classi�cation of

objects is to perform a hierarchical cluster analysis of the

objects. On the tree, draw a line perpendicular across the

tree’s axis, cutting it into branches, i.e., clusters.�e objects

in the clusters de�ne the classes. Details may be found in

Romesburg () and in Sneath and Sokal ().

�ere are several general points to note about hierar-

chical cluster analysis:

. �ere are various coe�cients that can be used to assess

the similarity between clusters. Of these, there are two

types: dissimilarity coe�cients and similarity coe�-

cients.With a dissimilarity coe�cient (as the Euclidean

distance coe�cient is), the smaller its value is, themore

similar the two clusters are. Whereas with a similarity

coe�cient, the larger its value is, the more similar the

two clusters are. An example of a similarity coe�cient

is the Pearson product moment correlation coe�cient.

But whether a dissimilarity coe�cient or a similarity

coe�cient is used, a clustering method at each step

merges the two clusters that are most similar.

. Although the UPGMA clustering method (also called

“average linkage clustering method”) is perhaps most

o�en used in practice, there are other clustering meth-

ods. UPGMA forms clusters based on the average value

of similarity between the two clusters being merged.

Another is the SLINK clustering method, short for

“single linkage” clustering method, and sometimes

called “nearest neighbor” clustering method. When

two clusters are joined by it, their similarity is that of

their most similar pair of objects, one in each clus-

ter. Another is the CLINK clustering method, short for

“complete linkage” clustering method, and sometimes

called “furthest neighbor” clustering method. When

two clusters are joined by it, their similarity is that of

the most dissimilar pair of objects, one in each clus-

ter. Another isWard’s clusteringmethod,which assigns

objects to clusters in such a way that a sum-of-squares

index is minimized.

. �e data in the data matrix may bemeasured on a con-

tinuous scale (e.g., temperature), an ordinal scale (e.g.,

people’s ranked preference for products), or on a nom-

inal scale for unordered classes (e.g., people’s sex coded

as  = female,  =male).

For an illustration of nominal scale measurement,

suppose a military researcher takes a set of aircra� as

the objects, and for their attributes records whether or

not an aircra� can perform various functions. If the jth

aircra� is able to perform the ith function, the (i, j)th

element of the data matrix is coded with a “”; if it is

unable to perform the ith function, it is coded with a

“.” In this way, the data matrix consists of zeroes and

ones. A similarity coe�cient, such as the one named

“the simple matching coe�cient,” gives a numerical

value for the similarity between any two aircra�.�e

cluster analysis produces a tree which shows which of

the aircra� are functionally similar (belong to the same

cluster) and which are functionally dissimilar (belong

to di�erent clusters).

. Whenever the attributes of the data matrix are mea-

sured on a continuous scale, it is sometimes desired to

standardize the data matrix. Standardizing recasts the

units of measurement of the attributes as dimension-

less units. �en the cluster analysis is performed on

the standardized data matrix rather than on the data

matrix.�ere are several alternative ways of standard-

izing (Romesburg ).

. Commercial so�ware packages for performing hierar-

chical cluster analysis include SPSS, SAS, CLUSTAN,

and STATISTICA. Of these, SPSS is representative,

allowing the user a choice of about  simi-

larity/dissimilarity coe�cients and seven clustering

methods.

. In the literature of cluster analysis, certain terms have

synonyms. Among other names for the objects to be

clustered are “cases,” “individuals,” “subjects,” “entities,”

“observations,” “data units,” and “OTU’s” (for “oper-

ational taxonomic units”). Among other names for

the attributes are “variables,” “features,” “descriptors,”

“characters,” “characteristics,” and “properties.” And

among other names for the tree are the “dendrogram”

and the “phenogram.”

In contrast to hierarchical cluster analysis, nonhierarchi-

cal cluster analysis includes those clustering methods that

do not produce a tree.�e so�ware packages mentioned

above have programs for nonhierarchical cluster anal-

ysis. Perhaps the most-used nonhierarchical method is

K-means cluster analysis. For it, the user speci�es k, the

number of clusters wanted, where k is an integer less than

t, the number of objects. So�ware programs for K-means
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cluster analysis usually di�er a bit in their details, but they

execute an iterative process to �nd clusters, which typically

goes like this:

To begin the �rst iteration, the program selects k

objects from the data matrix and uses them as k cluster

seeds.�e selection ismade so that the Euclidean distances

between the cluster seeds is large, which helps insure that

the seeds cover all regions of the attribute space in which

the objects reside.

Next, the program forms tentative clusters by sequen-

tially assigning each remaining object to whichever cluster

seed it is nearest to. As objects are assigned, the cluster

seeds are recomputed andmade to have the attribute values

that are the average of those of the objects in the clus-

ters. Hence, cluster seeds generally change as objects are

tentatively assigned to clusters.

When the �rst iteration is �nished, the resulting cluster

seeds are taken as the k initial seeds to start the second

iteration.�en the process is repeated, sequentially assign-

ing the objects to their nearest cluster seed, and updating

the seeds as the process moves along.

Finally, a�er a number of iterations, when the change

in the cluster seeds is tolerably small from one iteration to

the next, the program terminates.�e k �nal clusters are

composed of the objects associated with the k cluster seeds

from the �nal iteration.

We now turn to the question, “Which is the better

method for �nding clusters – hierarchical cluster analysis

or nonhierarchical cluster analysis?”�e answer depends.

Broadly speaking, researchers like having a choice of a

large variety of similarity/dissimilarity coe�cients, and

like having the similarities among clusters displayed as a

hierarchy in the form of a tree – two features that hier-

archical methods o�er but nonhierarchical methods do

not. However, for hierarchical methods the amount of

computation increases exponentially with the number of

objects. Whereas for nonhierarchical methods the amount

of computation increases less than exponentially because

the methods do not require the calculation of similarities

between all pairs of objects. In any event, all of the so�-

ware packagesmentioned above can handle very large data

matrices for hierarchical methods and for nonhierarchi-

cal methods. For instance, according to the literature that

accompanies CLUSTAN’s hierarchical cluster analysis pro-

gram, the limit to the size of a data matrix that at present

can be processed in a reasonable time on a basic PC is in

the neighborhood of , objects and , attributes.

For more objects than that, CLUSTAN’s nonhierarchi-

cal K-means program can handle as many as a million

objects.

Books that provide detailed accounts of hierarchi-

cal cluster analysis and nonhierarchical cluster analysis

include those by Aldenderfer and Blash�eld (), Everitt

(), and Romesburg ().
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�e quality of statistical inference is dependent not

only on, for example, estimator construction but on the

structure of a population and a sampling scheme too.

For example, let the estimation of total wheat produc-

tion in a population of farms be considered. �e pop-

ulation of farms is divided into clusters corresponding

to villages. �is estimation can be based on the ordi-

nary simple sample or on the cluster sample. Popula-

tion units can be selected to the sample by means of
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several sampling schemes. �e units (i.e., farms) can

be selected to the ordinary sample, or clusters of the

units (i.e., villages) can be drawn to the cluster sam-

ple.�e accuracy of the estimation depends on the sam-

pling scheme and on the intraclass spread of a vari-

able under study (wheat production). When should the

ordinary simple sample be used and when should the

cluster one?

Let us consider a �xed and �nite population case.

�e �xed and �nite population of the size N is denoted

by Ω = {ω, . . . ,ωN} , where ωk is an element (unit) of

the population U. Let us assume that Ω is divided into

G mutually disjoint clusters Ωk (k = , . . . ,G) such that
G

⋃
k=
Ωk = Ω. �e size of a cluster Ωk is denoted by Nk.

So,  ≤ Nk ≤ N and
G

⋃
k=
Nk = N. Let U = {Ω, . . . , ΩG}

be the set of all clusters. �e clusters are called units

(elements) of the set U. �e cluster sample is selected

from the set U and it is denoted by s = {Ωi , . . . , Ωin} .

�e size of s is denoted by n, where  ≤ n ≤ G. Let S be the
set (space) of samples.�e cluster sample is a random one

if it is selected from U according to some sampling design

denoted by P(s), where P(s) ≥  for s ∈ S and∑
s∈S

P(s) = .

Let the inclusion probability of the �rst order be denoted

by πk =∑
{s:k∈s}

P(s), k = , . . . ,G. A random sample is selected

from a population by means of the so-called sampling

scheme, which ful�lls the appropriate sampling design. It

is well known that a sample can be selected according

to previously determined inclusion probabilities of the

�rst order without any explicit de�nition of the sampling

design. �is inference simpli�es our practical research.

Frequently, the inclusion probabilities are determined as

proportional to cluster sizes, so πk ∝ Nk for k = , . . . ,G.

In general, πk ∝ xk, where xk >  is the value of an

auxiliary variable.

Let us note that it is possible to show that the

well-known systematic sampling design is a particular case

of the cluster sampling design. Moreover, the cluster sam-

pling design is a particular case of two (or more) stage

sampling designs.

In general, all known sampling designs and schemes

can be applied to the cluster case.�e examples of sampling

designs and schemes are as follows: the simple cluster sam-

ple of �xed size n, drawn without replacement, is selected

according to the following sampling design: P(s) = /(
G

g
)

for s ∈ S. �e inclusion probability of the �rst order is
πk =

g

G
. �e sampling scheme ful�lling that sampling

design is as follows:�e �rst element (unit) of the set U

is selected to the sample with the probability /G, the next

one with the probability /(G−), the kth element with the

probability /(G − k + ), and so on until the nth element

of the sample.

�e sampling scheme selecting with replacement units

to the sample of �xed size n is as follows: Each element

of U is selected with probabilities equal to pk, where, for

example, pk = xk/∑
i∈U

xi. So, elements are independently

drawn to the sample n times. In this case, the sampling

design is de�ned in a straightforwardmanner. Particularly,

if pk = /G for all k = , . . . ,G, the simple cluster sample

drawn with replacement is selected according to the sam-

pling design P(s) = /Gn. In this case, each element of U

is selected with the probability /G to the sample of size n.

�e so-called Poisson without replacement sampling

scheme is as follows: �e kth unit is selected with the

probability pk,  < pk ≤ , k = , . . . ,G. In this case,

the sample size is not �xed because  ≤ n ≤ G. �ere

exists the so-called conditional without replacement sam-

pling design of a �xed sample size, but unfortunately its

sampling schemes are complicated, see, for example, Tillé

(). Additionally, let us note that the cluster sample can

be useful in the case of estimating the population mean.

It is well known that the precision of a population

mean estimation, performed on the basis of the simple

cluster sample, depends on the so-called intraclass (intr-

acluster) correlation coe�cient, see, for example, Hansen

et al. () or Cochran ().

Let us assume that sizes of clusters are the same and

equal to M and N = GM. �e ordinary variance of the

variable is de�ned by v =


N

G

∑
k=

∑
j∈Ωk

(ykj − y)

, where yk =



N

G

∑
k=

∑
j∈Ωk

ykj is the cluster sample. �e intraclass and the

betweenclass variances are given by the expressions: vw =



G(M − )
G

∑
k=

∑
j∈Ωk

(ykj − yk)

and vb =



G − 
G

∑
k=

(ȳk − ȳ)

,

respectively, where yk =


M
∑
j∈Ωk

ykj. �e intraclass corre-

lation coe�cient is de�ned by the following expression:

rI =


Nv

G

∑
k=

∑
i≠j∈Ωk

∑(yki − y) (ykj − ȳ). �e coe�cient ρ

takes its value from the closed interval [−/(M − ), ].

�e coe�cient rI can be rewritten in the following forms:

rI = (vb − vw/M) /v, rI =  − vw/v or rI = (Mvm/v − )/

(M − ). �e expressions lead to the conclusion that

the intraclaas correlation coe�cient is negative (posi-

tive) when the ordinary variance is smaller (larger) than

the intraclass variance or equivalent if the ordinary vari-

ance is larger (smaller) than the betweenclass variance

divided by M.

Let us note that it is well known that the simple cluster

sample mean is a more accurate estimator of the pop-

ulation mean than the simple sample mean when the
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intraclass correlation coe�cient is negative. So, this leads

to the conclusion that, if only possible, a population should

be clustered in such a way that the intraclass correlation

coe�cient takes the smallest negative value. A more com-

plicated case of unequal cluster sizes was considered, for

example, by Konijn (). In this case, Särndal et al. ()

considered the so-called homogeneity coe�cient, which

is the function of the intraclass variance. On the basis of

the cluster sample, not only the estimation of population

parameters is performed but also testing statistical hypoth-

esis, see, for example, Rao and Scott ().

Cross References
7Adaptive Sampling
7Intraclass Correlation Coe�cient
7Multistage Sampling
7Sample Survey Methods
7Sampling From Finite Populations
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Coe�cient of variation is a relative measure of dispersion

and it may be considered in three di�erent contexts: in

probability, in a data set or in a sample.

In the �rst context it refers to distribution of a random

variable X and is de�ned by the ratio

v =
σ

µ
()

where µ = EX and σ =
√
E(X − EX). It is well de�ned if

EX > . Moreover it is scale-invariant in the sense that cX

has the same v for all positive c.

Data series x = (x, . . . , xn) corresponds to distri-

bution of a random variable X taking values xi with

probabilities pi =
ki
n
, for i = , . . . ,n, where ki is the number

of appearance of xi in the series. In this case the formula

() remains valid if we replace µ by x = 

n ∑i xi and σ by
√



n ∑(xi − x).

If x = (x, . . . , xn) is a sample from a population, then

the coe�cient may be treated as a potential estimator of

the coe�cient of variation v in the whole population. Since


n ∑(xi − x)

is biased estimator of σ  in order to elimi-

nate this bias we use the sample coe�cient of variance in

the form

v=
s

x
, ()

where s =
√



n− ∑(xi − x).

One can ask whether v is normalized, i.e., whether it

takes values in the interval [, ].

In spite of that v iswell de�nedproviding x >  it seems

reasonable to restrict oneself to the nonnegative samples x,

i.e., satisfying the condition xi ≥  for all i and ∑i xi > .

Under this assumption the sample coe�cient () of vari-

ance in the sample takes values in the interval [,
√
n] and

the lower and upper bound is attained.�erefore it is not

normalized.
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Collapsibility in Contingency Tables
Consider the I by J by K contingency table representing

the joint distribution of three discrete variablesX,Y ,Z, the

I by J marginal table representing the joint distribution of

X and Y , and the set of conditional I by J subtables (strata)

representing the joint distributions ofX andY within levels
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Collapsibility. Table  Trivariate distribution with (a) strict collapsibility of Y∣X risk differences over Z, (b) collapsibility of Y∣X risk
ratios when standardized over the Z margin, and (c) noncollapsibility of Y∣X odds ratios over Z. Table entries are cell probabilities

Z =  Z =  Collapsed over Z

X =  X =  X =  X =  X =  X = 

Y =  . . . . . .

Y =  . . . . . .

Risksa . . . . . .

Differences . . .

Ratios . . .

Odds ratios . . .

aProbabilities of Y =  in column

of Z. A measure of association of X and Y is strictly col-

lapsible acrossZ if it is constant across the strata (subtables)

and this constant value equals the value obtained from the

marginal table.

Noncollapsibility (violation of collapsibility) is some-

times referred to as 7Simpson’s paradox, a�er a celebrated
article by Simpson (). �is phenomenon had how-

ever been discussed by earlier authors, including Yule

(); see also Cohen and Nagel (). Some statisti-

cians reserve the term Simpson’s paradox to refer to the

special case of noncollapsibility in which the conditional

and marginal associations are in opposite directions, as in

Simpson’s numerical examples. Simpson’s algebra and dis-

cussion, however, dealt with the general case of inequality.

�e term “collapsibility” seems to have arisen in later work;

see Bishop et al. ().

Table  provides some simple examples.�e di�erence

of probabilities that Y =  (the risk di�erence) is strictly

collapsible. Nonetheless, the ratio of probabilities thatY = 

(the risk ratio) is not strictly collapsible because the risk

ratio varies across the Z strata, and the odds ratio is not at

all collapsible because itsmarginal value does not equal the

constant conditional (stratum-speci�c) value. �us, col-

lapsibility depends on the chosen measure of association.

Now suppose that a measure is not constant across the

strata, but that a particular summary of the conditional

measures does equal the marginal measure.�is summary

is then said to be collapsible across Z. As an example, in

Table  the ratio of risks averaged over (standardized to)

the marginal distribution of Z is

ΣzP(Y = ∣X = , Z = z)P(Z = z)/ΣzP(Y = ∣X = , Z = z)

P(Z = z) = {−.(.) + .(.)}/{−.(.)

+ .(.)} = .,

which is equal to the marginal (crude) risk ratio. �us,

the risk ratio in Table  is collapsible under this particular

weighting (standardization) scheme for the risks.

Various tests of collapsibility and strict collapsibility

have been developed (e.g., Whittemore ; Asmussen

and Edwards ; Ducharme and LePage ; Greenland

and Mickey ; Geng ) as well as generalizations

to partial collapsibility. �e literature on graphical prob-

ability models distinguishes other types of collapsibility;

see Frydenberg (), Whittaker (, Sect. .) and

Lauritzen (, Sect. .) for examples. Both de�nitions

given above are special cases of parametric collapsibility

(Whittaker ).

Collapsibility in Regression Models
�e above de�nition of strict collapsibility extends to

regression contexts. Consider a generalized linear model

(see 7Generalized Linear Models) for the regression of Y
on three vectors w, x, z:

g[E(Y ∣w, x, z)] = α + wβ + xγ + zδ.

�is regression is said to be collapsible for β over z if β∗ = β

in the regression omitting z,

g[E(Y ∣w, x)] = α
∗
+ wβ

∗
+ xγ

∗

and is noncollapsible otherwise.�us, if the regression is

collapsible for β over Z and β is the parameter of interest,

Z need not be measured to estimate β. If Z is measured,

however, tests of β∗ = β can be constructed (Hausman

; Clogg et al. ).

�e preceding de�nition generalizes the original

contingency-table de�nition to arbitrary variables.�ere is

a technical problem with the above regression de�nition,
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however: If the �rst (full) model is correct, it is unlikely

that the second (reduced) regression will follow the given

form; that is, most families of regression models are not

closed under deletion of Z. For example, suppose Y is

Bernoulli with mean p and g is the logit link function

ln[p/(−p)], so that the full regression is �rst-order logis-

tic.�en the reduced regressionwill not follow a �rst-order

logistic model except in special cases. One way around this

dilemma (and the fact that neither of themodels is likely to

be exactly correct) is to de�ne the model parameters as the

asymptotic means of the maximum-likelihood estimators.

�ese means are well-de�ned and interpretable even if the

models are not correct (White ).

If the full model is correct, δ =  implies collapsibility

for β and γ over Z. Nonetheless, if neither β nor δ is zero,

marginal independence of the regressors does not ensure

collapsibility for β over Z except when g is the identity

or log link (Gail et al. ; Gail ). Conversely, col-

lapsibility can occur even if the regressors are associated

(Whittemore ; Greenland et al. ). �us, it is not

generally correct to equate collapsibility overZwith simple

independence conditions, although useful results are avail-

able for the important special cases of linear, log-linear,

and logistic models (e.g., see Gail ; Wermuth ,

; Robinson and Jewell ; Geng ; Guo and Geng

).

Confounding Versus Noncollapsibility
Much of the statistics literature does not distinguish

between the concept of confounding as a bias in e�ect esti-

mation and the concept of noncollapsibility; for example,

Becher () de�nes confounding as β∗ ≠ β in the regres-

sion models given above, in which case the elements of

Z are called confounders. Similarly, Guo and Geng ()

de�ne Z to be a nonconfounder if β∗ = β. Nonetheless,

confounding as de�ned in the causal-modeling literature

(See 7Confounding) may occur with or without noncol-
lapsibility, and noncollapsibilitymay occurwith orwithout

confounding; see Greenland (, ) and Greenland

et al. () for examples. Mathematically identical con-

clusions have been reached by other authors, albeit with

di�erent terminology in which noncollapsibility is called

“bias” and confounding corresponds to “covariate imbal-

ance” (Gail ; Hauck et al. ).
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Comparison is the cognitive function that is basis for

any measuring process and a frequent activity in every-

day human life. Nowadays, comparisons of statistics over

time and, even more demanding, cross-national and mul-

tilateral comparisons are a central element of economic

and social analyzes. For politics and administration, for

business and media, and for each citizen, comparisons are

means to understand and assess the political, economic,

and social processes of this world. �is situation raises

questions: Under which conditions are statistics compa-

rable? Under which conditions is a comparison valid and

leads to reliable results? What conclusions may be drawn

and what are the risks implied by such conclusions?

Comparability: Definition and
Assessment
Rathsmann-Sponsel and Sponsel () describe “compar-

ison” as a -digit relation f (P, S, Z, K, V, A, B); P represents

the comparing person, S and Z describe the comparing

situation and the purpose of comparison, respectively; vec-

tor K stands for a number of criteria, V for a number of

procedures, and A and B represent the characteristics of

the objects to be compared, respectively. �is rather for-

mal view of psychologists indicates the complexity of the

interaction between the individual and the objects to be

compared. More visible becomes this complexity when the

de�nition is applied to real situations, e.g., comparing the

employment rates of two countries.

�e employment rate is the number of persons aged

– in employment as the share of the total popula-

tion of the same age group. Obviously, the de�nition of

“being in employment” and the exact meaning of “persons

aged –” are crucial for the value that is obtained for

the employment rate. In addition, the statistical value is

a�ected by the sampling design and other aspects of the

data collection.

In general, statistics are based on concepts and def-

initions, and the value of a statistic is the result of a

complexmeasurement process; comparability is a�ected by

all these factors and, consequently, a wide range of facts

must be considered. Moreover, the relevance of these facts

depends on the purpose of comparison, the comparing

situation, and other aspects of the comparison process.

E.g., if the comparison of the employment rates of two

countries is the basis for a decision on the allocation of sub-

sidies for structural development, comparability is a more

serious issue than in the case where the result of the com-

parisons does not have such consequences. �ese – and

many other – characteristics must be taken into considera-

tion when assessing di�erences between two employment

rates.

Assessment of comparability has to take into account the

multi-dimensionality of the conditions for comparability.

Many aspects to be considered are qualitative, so that the

corresponding dimensions cannot be measured on a met-

ric scale. Moreover, important characteristics of the statis-

tical products or the underlying measurement processes

are o�en not available or uncertain.

Hence, in general, it is not feasible to give a compre-

hensive picture of comparability by means of a few metric

measures. Alternatives are

● An indicator in form of a number between zero and

one that indicates the degree of comparability, a one

indicating perfect comparability.

● A rating of comparisons on an ordinal rating scale with

a small number of points, a high value representing

good comparability.

An example for a rating scale is the three point scale

that is used for the “Overall assessment of accuracy and

comparability” of indicators – such as the employment

rate –within the Eurostat Quality Pro�les; see Jouhette and

Sproge ().�is overall assessment is rated from “A” to

“C”. Grad “A” indicates that

● Data is collected from reliable sources applying high

standards with regard to methodology/accuracy and

is well documented in line with Eurostat metadata

standard.

● �e underlying data is collected on the basis of a

common methodology for the European Union and,
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where applicable, data for US and Japan can be consid-

ered comparable; major di�erences being assessed and

documented.

● Data are comparable over time; impact of procedural

or conceptual changes being documented.

�is example illustrates:

● �at the rating process reduces a high-dimensional

information to a single digit.

● Where the characteristics of the statistics to be com-

pared, the underlyingmeasurement processes, and also

conditions of the comparison process are crucial input

elements for the rating of comparability.

● �at the rating outcome has only the character of

a label which the user might trust but which only

re�ects – perhaps vaguely – the result of a complex and

subjective assessment process.

● �at the rating outcome may miss to give appropri-

ate weight to aspects that are important for a certain

user.

A rating of the comparability on an ordinal rating scale has

the advantage that it allows an easy communication about

comparability.

�e professional assessment of comparability requires:

● An adequate competence of the scrutinizer

● A careful documentation of all characteristics of the

statistical products that are relevant for assessing the

comparability

Generally, the scrutinizer will be di�erent from the pro-

ducer of a statistical product.�is certainly will be the case

in respect of cross-national comparisons.�e producer has

to provide a comprehensive set of metadata that docu-

ments all characteristics which are relevant for assessing

the comparability.�e outcome of this exercise might be

an indicator of the types that are described above.

For the non-expert user, the assessment of the compa-

rability of statistical products is hardly possible even when

a well-designed set of all metadata is available that are rel-

evant for assessing the comparability. Most users of the

statistical products will have to rely on the professional

assessment of the experts.

Comparability in Official Statistics
�e integration of societies and the globalization of

economies have the consequence that not only compar-

isons over time but especially cross-regional comparisons

of statistical products are of increasing interest and impor-

tance. Political planning and decisions of supranational

bodies need information that encompasses all involved

nations. Multi-national enterprises and globally acting

companies face the same problem.

Of even higher relevance for the need of comparabil-

ity is the fact that statistical products are more and more

used for operational purposes.Within the EuropeanUnion,

the process of integration of the member states into a com-

munity of states requires political measures in many areas.

National statistical indicators are the basis for allocating a

part of the common budget to member states, for admin-

istrating the regional and structural funds, for assessing

the national performances with respect to the pact for sta-

bility and growth, and for various other purposes. It is in

particular the European version of the System of National

Accounts (SNA) ESA that plays such an operational role in

various administrative processes of the European Union.

�e MillenniumDevelopment Goals and the Kyoto Proto-

col are other examples for the use of statistical indicators

in de�ning political aims and assessing the correspond-

ing progress. In all these cases, the comparability of the

relevant statistical products is a core issue.

In the cross-national context, the responsibility for

harmonizing cross-national concepts, de�nitions, and

methodological aspects must be assigned to an authority

with supra-national competence. Organizations like the

UN, OECD, and Eurostat are engaged in the compila-

tion of standards and the editing of recommendations,

guidelines, handbooks, and training manuals, important

means to harmonize statistical products and improve their

comparability. Examples of standards are the Statistical

Classi�cations of Economic Activities (ISIC) and the Inter-

national Statistical Classi�cation of Diseases (ICD). Prin-

ciples and Recommendations for Population and Housing

Censuses adopted by the Statistical Commission of the

UN is an example for a standard methodology. Exam-

ples of standards on the European level are the NACE

and CPA.

Within the European Union, standards and methods

are laid down in regulations which are legally binding for

the member states. E.g., the ESA  was approved as a

Council Regulation in June  and stipulates themember

states to apply the SNA in a very concrete form. In work-

ing groups, experts from the member states are dealing

with the preparation and implementation of such regula-

tions; the harmonization of national statistical products is

a central concern of these activities.

�e important role that is attributed to statistical com-

parability within the ESS is stressed by the fact that

the European Statistics Code of Practice () contains

Coherence and Comparability as one of its  princi-

ples.�e corresponding indicators refermainly to national

aspects but also to the European dimension.



 C Comparability of Statistics

To assess the comparability of statistical products,

national reports are essential that providemetadata for all

related aspects of the statistical product. Standard formats

for the documentation ofmetadata have been suggested by

the International Monetary Fund in form of the General

Data Dissemination Standard (GDDS) and the Special

Data Dissemination Standard (SDDS).

It should be mentioned that standardizing concepts,

de�nitions, andmethods also has unfavorable e�ects; com-

parability has a price. An important means for improv-

ing harmonization are standards; however, they are never

perfect and tend to get outdated over time. In par-

ticular the adaptation of standards to methodological

progress might be a time-consuming task. Generally, stan-

dardization reduces �exibility and makes adaptations to

new developments, especially of methodological alter-

natives, more di�cult. �is is especially true if stan-

dards are put into the form of regulations. It is even

truer if such standards are implemented in order to ease

the use for operational purposes, as it is the case in

the ESS.

Conclusions
Lack of comparability may lead to erroneous results when

statistical products are compared. �e need for cross-

national comparability is even more pronounced if sta-

tistical results are used for operational purposes as it is

the case, e.g., in the European Union. Hence, comparabil-

ity is an important quality aspect of statistical products.

It is a�ected by the involved concepts and de�nitions,

the measurement processes, and comparability may also

depend on conditions of the comparison. �e producer

of a statistical product has to care that the conditions of

comparability are ful�lled to the highest extent possible. In

the cross-national context, international organizations like

7Eurostat are fostering the compilation of standards for
concepts and de�nitions and of principles and standards

formethods and processes in order to harmonize statistical

products and improve their cross-national comparability.

For the assessment of comparability, a wide range of

information is needed, as many aspects of the statistics to

be compared but also of the purpose and conditions of

the comparison have to be taken into account. No gen-

eral rules are available that guarantee a valid assessment

of comparability; only experts with profound knowledge

can be expected to give a reliable assessment. For such an

assessment, metadata which document all relevant char-

acteristics are essential and have to be provided by the

producer of the statistical product. For cross-national pur-

poses, organizations like Eurostat have to care that the

relevant metadata are provided by the respective produc-

ers.�e user, e.g., the consumer of an economic or social

analysis, has to trust that the analysts and expertsmade use

of the involved statistics responsively.
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Imagine a simple randomized controlled trial evaluating

a psychotherapeutic intervention for depression. Partici-

pants are randomized to one of two treatment groups.�e

�rst (the control condition) comprises treatment andman-

agement as usual (TAU). Participants in the second group

are o�ered a course of individual cognitive behavior ther-

apy (CBT) in addition to TAU. �e outcome of the trial

is evaluated by assessing the severity of depression in all

of the participants  months a�er 7randomization. For
simplicity, we assume there are no missing outcomes. We

�nd a di�erence between the average outcomes for the two

groups to be about four points on the depression rating

scale, a di�erence that is of only borderline clinical sig-

ni�cance.�is di�erence of four points is the well-known

intention-to-treat (ITT) e�ect – it is the estimated e�ect

treatment allocation (i.e., o�ering the treatment).�is we

will call ITTALL.

Participants in the control (TAU) condition did not get

any access to CBT but we now discover that only about

half of those o�ered psychotherapy actually took up the

o�er. Only % of the treatment group actually received

CBT. So, it might be reasonable to now ask “What was

the e�ect of receiving CBT?” or “What was the treatment

e�ect in those who complied with the trial protocol (i.e.,

treatment allocation)?” Traditionally, trialists have been

tempted to carry out what is called a “Per Protocol” anal-

ysis. �is involves dropping the non-compliers from the

treatment arm and comparing the average outcomes in

the compliers with the average outcome in all of the con-

trols. But this is not comparing like with like. �ere are

likely to be selection e�ects (confounding) – those with a

better (or worse) treatment-free prognosis might be more

likely to turn up for their psychotherapy. �e same crit-

icism also applies to the abandonment of randomization

altogether and comparing the average outcomes in those

who received treatment with those who did not (a mixture

of controls and non-compliers) in a so-called “As treated”

analysis.

To obtain a valid estimate of the receipt of treatment

we need to be able to compare the average of the outcomes

in those who received CBT with the average of the out-

comes of the control participants who would have received

CBThad they been allocated to the treatment group.�is is

the Complier-Average Causal E�ect (CACE) of treatment.

How do we do this? �e simplest approach is based on

the realization that the ITT e�ect is attenuated estimate

of the CACE, and that the amount of attenuation is sim-

ply the proportion of compliers (or would-be compliers)

in the trial. �e proportion of compliers (PC) is simply

estimated by the proportion of those allocated to the treat-

ment group who actually receive CBT. We postulate that

we have two (possibly hidden) classes of participant: Com-

pliers and Non-compliers. Non-compliers receive no CBT

irrespective of their treatment allocation.�e intention-to-

treat e�ects in the Compliers and Non-compliers are ITTC

(≡CACE) and ITTNC, respectively. It should be clear to the

reader that ITTALL = PCITTC and ( − PC)ITTNC.

To make use of this simple relationship, let’s now

assume that treatment allocation in the Non-compliers

has no impact on their outcome (i.e., does not a�ect the

severity of their depression). �is assumption is o�en

referred to as an exclusion restriction. It follows that

ITTALL = PCITTC and that

CACE = ITTC = ITTALL/PC

So with % compliance, and estimated overall ITT e�ect

of  units on the depression scale, the CACE estimate is

 units – a result withmuchmore promise to our clinicians.

To get a standard error estimate we might apply a simple

bootstrap (see7BootstrapMethods). Note that CACE esti-
mation is not a means of conjuring up a treatment e�ect

from nowhere – if the overall ITT e�ect is zero so will

the CACE be. If the overall ITT e�ect is not statistically-

signi�cant, the CACE will not be statistically-signi�cant.

One last point: in a conventional treatment trial aiming

to demonstrate e�cacy, the ITT estimate will be conser-

vative, but in a trial designed to demonstrate equivalence

(or non-inferiority) it is the CACE estimate that will be the

choice of the cautious analyst (we do not wish to confuse

attenuation arising from non-compliance with di�erences

in e�cacy).

Here we have illustrated the ideas with the simplest

of examples. And here we have also made the deriva-

tion of the CACE estimate as simple as possible without

any detailed reference to required assumptions. An anal-

ogous procedure was �rst used by Bloom () but its

www.sgipt.org/wisms/verglbk0.htm
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formal properties were derived and compared with instru-

mental variable estimators of treatment e�ects by Angrist

et al. (). Non-compliance usually has an implication

for missing data – those that do not comply (or would-

be Non-compliers) with their allocated treatment are also

those who are less likely to turn up to have their out-

come assessed. �e links between CACE estimation and

missing data models (assuming latent ignorability) are dis-

cussed by Frangakis and Rubin (). Generalizations

of CACE methodology to estimation of treatment e�ects

through the use of Principal Strati�cation have also been

introduced by Frangakis and Rubin ().
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�e two obvious subdivisions of statistics are: (a)�eoret-

ical Statistics and (b) Practical Statistics.

. �e theoretical side is largely based on a mathematical

development of probability theory (see 7Probability
�eory: An Outline) applicable to data, particularly

the asymptotic properties of estimates (see7Properties
of Estimators) which lead to powerful theorems

such as the 7Central Limit �eorem. �e aim is to
put many practical approaches to data analysis (see

also 7Categorical Data Analysis; 7Multivariate Data
Analysis: An Overview; 7Exploratory Data Analysis;
7Functional Data Analysis) on a sound theoretical
foundation and to develop theorems about the proper-

ties of these approaches.�e theories are usually based

on a number of assumptions that may or may not hold

in practice.

. Practical statistics considers the analysis of data, how

the data can be summarized in useful fashions, and

how relationships between sets of data from di�er-

ent variables can be described and interpreted. �e

amount and the quality of the data (see7Data Quality)
that is available are essential features in this area. On

occasions data may be badly constructed or terms may

be missing which makes analysis more complicated.

Descriptive statistics include means, variances, his-

tograms, correlations, and estimates of quantiles, for exam-

ple. �ere are now various types of statistics depending

on the area of application. General statistics arose from

considerations of gambling (see7Statistics andGambling),
agriculture (see 7Agriculture, Statistics in; 7Analysis of
Multivariate Agricultural Data), and health topics (see

7Medical research, Statistics in; 7Medical Statistics) but
eventually a number of specialized areas arose when

it was realized that these areas contained special types

of data which required their own methods of analysis.

Examples are:

. Biometrics (see 7Biostatistics), from biological data
which required di�erent forms of measurement and

associated tests.

. 7Econometrics, for which 7Variables may or may not
be related with a time gap; data can be in the form of

7Time Series (particularly in economies and �nance)
or in large panels (see 7Panel Data) in various parts
of economics. �e techniques developed over a wide

range and the ideas have spread into other parts of

statistics.

. Psychometrics, where methods are required for the

analysis of results from very speci�c types of experi-

ments used in the area of psychology (see7Psychology,
Statistics in).

Othermajor areas of application such as engineering, mar-

keting, and meteorology generally use techniques derived

from methods in the areas mentioned above, but all have

developed some area-speci�c methods.
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.
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De�nition: A composite indicator is formed when indi-
vidual indicators are compiled into a single index, on the

basis of an underlyingmodel of themultidimensional con-

cept that is being measured (OECD, Glossary of Statisti-

cal Terms).

Multidimensional concepts like welfare, well-being,

human development, environmental sustainability, indus-

trial competitiveness, etc., cannot be adequately repre-

sented by individual indicators. For that reason, composite

indicators are becoming increasingly acknowledged as

a tool for summarizing complex and multidimensional

issues.

Composite indicators primarily arise in the follow-

ing areas: economy, society, globalization, environment,

innovation, and technology. A comprehensive list of

indicators can be found at the following address:

http:// composite-indicators.jrc.ec.europa.eu/FAQ.htm#

List_of_Composite_Indicators_

�e Handbook on Constructing Composite Indicators:

Methodology and User Guide (OECD ) recommends

a ten-step process of constructing composite indicators:

● �eoretical framework is the starting point of the
process of constructing composite indicators, de�ning

individual indicators (e.g., variables) and their appro-

priate weights, re�ecting the structure of the investi-

gated multidimensional concept.�is step is crucial in

construction process because it has the greatest impact

on the relevance of the indicator of the investigated

phenomena. For that reason, the constructors team

should include, besides the statisticians, who play the

major role, the experts and stakeholders from the topic

of the composite indicator.

Due to the fact that many new multidimensional con-

cepts do not have a generally agreed theoretical frame-

work, transparency is essential in constructing credible

indicators.

● Data selection should acquire analytically sound rel-
evant indicators, having in mind their avaliability

(country coverage, time, appropriate scale of measure-

ment, etc.). Engagement of experts and stakeholders is

recommended.

● Imputation of missing data (see 7Imputation) pro-
vides a complete dataset (single or. multiple). Inspec-

tion of presence of 7outliers in the dataset should not
be omitted.

● Multivariate analysis reveals the structure of the
considered dataset from two aspects: (a) units and

(b) available individual indicators, using appropri-

ate multivariate methods, e.g., 7principal compo-
nent analysis, factor analysis (see 7Factor Analy-
sis and Latent Variable Modelling), Cronbach coef-

�cient alpha, cluster analysis (see 7Cluster Analy-
sis: An Introduction), 7correspondence analysis, etc.
�ese methods are able to reveal internally homoge-

nous groups of countries or groups of indicators and

interpret the results.

● Normalization procedures are used to achieve com-
parability of variables of the considered dataset, taking

into account theoretical framework and the properties

of the data.�e robustness of normalization methods

against possible 7outliers must be considered.
● Weighting and aggregation should take into account
the theoretical framework and the properties of the

data.�e most frequently used aggregation form is a

weighted linear aggregation rule applied to a set of vari-

ables (OECD ). Weights shoud re�ect the relative

importance of individual indicators in a construction

of the particular composite indicator.

● Uncertainty and 7sensitivity analysis are neces-
sary to evaluate robustness of composite indicators

and to improve transparency, having in mind selec-

tion of indicators, data quality, imputation of miss-

ing data, data normalization, weighting, aggregation

methods, etc.

● Back to the original data, to (a) reconsider the rela-
tionships between composite indicator and the original

http://composite-indicators.jrc.ec.europa.eu/FAQ.htm#List_of_Composite_Indicators_
http://composite-indicators.jrc.ec.europa.eu/FAQ.htm#List_of_Composite_Indicators_
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data set and to identify the most in�uential indicators

and (b) compare pro�led performance of the consid-

ered units to reveal what is driving the composite indi-

cator results, and in particular whether the composite

indicator is overly dominated by a small number of

indicators.

● Links to other indicators identify the relationships
between the composite indicator (or its dimensions)

and other individual or composite indicators.

● Visualization of results should attract audience, pre-
senting composite indicators in a clear and accu-

rate way.

Following the above-mentioned guidelines, the construc-

tors of composite indicators should never forget that com-

posite indicators should never be seen as a goal per se.�ey

should be seen, instead, as a starting point for initiating dis-

cussion and attracting public interest and concern (Nardo

et al. ).

However, there is now general agreement about the

usefulness of composite indicators:�ere is a strong belief

among the constructors of composite indicators that such

summary measures are meaningful and that they can

capture the main characteristic of the investigated phe-

nomena. On the other side, there is a scepticism among

the critics of this approach, who believe that there is no

need to go beyond an appropriate set of individual indi-

cators.�eir criticism is focused on the “arbitrary nature

of the weighting process” (Sharpe ) in construction of

the composite indicators.
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What Is Computational Statistics?
We de�ne computational statistics to be: . . . ‘statistical

methods/results that are enabled by using computational

methods’. Having set forth a de�nition, it should be

stressed, �rst, that names such as computational statis-

tics and statistical computing are essentially semantic con-

structs that do not have any absolute or rigourous structure

within the profession; second, that there are any num-

ber of competing de�nitions on o�er. Some are unsat-

isfactory because they focus purely on data or graphical

methods and exclude symbolic/exact methods; others are

unsatisfactory because they place undue emphasis on

‘computationally-intensivemethods’ or brute force, almost

as if to exclude well-written e�cient and elegant algo-

rithms that might be computationally quite simple. Some-

times, the di�culty is not in the execution of an algorithm,

but in writing the algorithm itself.

Computational statistics can enable one:

● To work with arbitrary functional forms/distributions,

rather than being restricted to traditional known text-

book distributions.

● To simulate distributional properties of estimators and

test statistics, even if closed-form solutions do not

exist (computational inference rather than asymptotic

inference).

● To compare statisticalmethods under di�erent alterna-

tives.

● To solve problems numerically, even if closed-form

solutions are not possible or cannot be derived.

● To derive symbolic solutions to probability, moments,

and distributional problems that may never have been

solved before, and to do so essentially in real-time.

http://composite-indicators.jrc.ec.europa.eu/FAQ.htmjList_of_Composite_Indicators
http://composite-indicators.jrc.ec.europa.eu/FAQ.htmjList_of_Composite_Indicators
http://composite-indicators.jrc.ec.europa.eu/FAQ.htmjList_of_Composite_Indicators
http://stats.oecd.org/glossary/index.htm
http://stats.oecd.org/glossary/index.htm
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● To explore multiple di�erent models, rather than just

one model.

● To explore potentially good or bad ideas via simulation

in just a few seconds.

● To choose methods that are theoretically appropriate,

rather than because they are mathematically tractable.

● To check symbolic/exact solutions using numerical

methods.

● To bring to life theoretical models that previously were

too complicated to evaluate . . .

Journals and Societies
Important journals in the �eld include:

● Combinatorics, Probability & Computing

● Communications in Statistics – Simulation and

Computation

● Computational Statistics

● Computational Statistics and Data Analysis

● Journal of Computational and Graphical Statistics

● Journal of the Japanese Society of Computational

Statistics

● Journal of Statistical Computation and Simulation

● Journal of Statistical So�ware

● SIAM Journal on Scienti�c Computing

● Statistics and Computing

Societies include: the International Association for Sta-

tistical Computing (IASC – a subsection of the ISI), the

American Statistical Association (Statistical Computing

Section), the Royal Statistical Society (Statistical Comput-

ing Section), and the Japanese Society of Computational

Statistics (JSCS) . . .

Computational statistics consists of three main areas,

namely numerical, graphical and symbolic methods . . .

Numerical Methods
�e numerical approach is discussed in texts such as

Gentle (), Givens and Hoeting (), and Martinez

and Martinez (); for Bayesian methods, see Bolstad

(). Numerical methods include: Monte Carlo studies

to explore asymptotic properties or �nite sample prop-

erties, pseudo-random number generation and sampling,

parametric density estimation, non-parametric density

estimation, 7bootstrap methods, statistical approaches
to so�ware errors, information retrieval, statistics of

databases, high-dimensional data, temporal and spatial

modeling, 7data mining, model mining, statistical learn-
ing, computational learning theory and optimisation etc.

. . . While optimisation itself is an absolutely essential tool

in the �eld, it is very much a �eld in its own right.

Graphical Methods
Graphical methods are primarily concernedwith either (a)

viewing theoretical models and/or (b) viewing data/�tted

models.

In the case of theoretical models, one typically

seeks to provide understanding by viewing one, two or

three variables, or indeed even four dimensions (using

-dimensional plots animated over time, translucent

graphics etc.).

Visualizing data is essential to data analysis and assess-

ing �t; see, for instance, Chen et al. (). Special interest

topics include smoothing techniques, kernel density esti-

mation, multi-dimensional data visualization, clustering,

exploratory data analysis, and a huge range of special statis-

tical plot types.Modern computing powermakes handling

and interacting with large data sets with millions of values

feasible . . . including live interactive manipulations.

Symbolic/Exact Methods
�e st century has brought with it a conceptually entirely

new methodology: symbolic/exact methods. Recent texts

applying the symbolic framework include Andrews and

Sta�ord (), Rose and Smith (), and Drew et al.

().

Traditional th century computer packages are based

on numerical methods that tend to be designed much like

a cookbook.�at is, they consist of hundreds or even thou-

sands of numerical recipes designed for speci�c cases. One

function is written for one aspect of the Normal distribu-

tion, another for the LogNormal, etc.�is works very well

provided one stays within the constraints of the known

common distributions, but unfortunately, it breaks down

as soon as one moves outside the catered framework. It

might work perfectly for random variable X, but not for

X, nor exp(X), nor mixtures, nor truncations, nor re�ec-

tions, nor folding, nor censoring, nor products, nor sums,

nor . . .

By contrast, symbolic/exactmethods are built on top of

computer algebra systems . . . programs such asMathemat-

ica and Maple that understand algebra and mathematics.

Accordingly, symbolic algorithms can provide exact gen-

eral solutions . . . not just for speci�c distributions/models.

Symbolic computational statistical packages includemath-

Statica (–, based on top of Mathematica) and

APPL (based on top of Maple).

Symbolicmethods include: automated expectations for

arbitrary distributions, probability, combinatorial prob-

ability, transformations of random variables, products

of random variables, sums and di�erences of random

variables, generating functions, inversion theorems, max-

ima/minima of random variables, symbolic and numerical

maximum likelihood estimation (using exact methods),
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curve �tting (using exact methods), non-parametric ker-

nel density estimation (for arbitrary kernels), moment

conversion formulae, component-mix and parameter-mix

distributions, copulae, pseudo-random number genera-

tion for arbitrary distributions, decision theory, asymptotic

expansions, 7order statistics (for identical and non-
identical parents), unbiased estimators (h-statistics, k-

statistics, polykays), moments of moments, etc.

The Changing Notion of What is
Computational Statistics
Just  or  years ago, it was quite common for peo-

ple working in computational statistics to write up their

own code for almost everything they did. For example, the

Handbook of Statistics : Computational Statistics (see Rao

) starts outChapter  by describing algorithms for sort-

ing data. Today, of course, one would expect to �nd sorting

functionality built into any so�ware package one uses . . .

indeed even into a word processor. And, of course, the

‘bar’ keeps on moving and evolving. Even in recent texts

such as Gentle (), about half of the text (almost all of

Part ) is devoted to computing techniques such as �xed-

and �oating-point, numerical quadrature, numerical lin-

ear algebra, solving non-linear equations, optimisation

etc., . . . techniques that Gentle et al. (, p. ) call “statis-

tical computing” but which are really just computing. Such

methods lie �rmly within the domain of computational

science and/or computational mathematics . . . they are

now built into any decent modern statistical/mathematical

so�ware package . . . they take years of work to develop

into a decent modern product, and they require tens of

thousands of lines of code to be done properly . . . all of

which means that it is extremely unlikely that any individ-

ual wouldwrite their own in today’s world. Today, one does

not tend to build an airplane simply in order to take a �ight.

And yet many current texts are still �rmly based in the

older world of ‘roll your own’, devoting substantial space

to routines that are (a) general mathematical tools such as

numerical optimisation and (b) which are now standard

functionality in modern packages used for computational

statistics. While it is, of course, valuable to understand

how such methods work (in particular so that one is aware

of their limitations), and while such tools are absolutely

imperative to carrying out the discipline of computational

statistics (indeed, as a computer itself is) – these tools are

now general mathematical tools and the days of building

one’s own are essentially long gone.

Future Directions
It is both interesting and tempting to suggest likely future

directions.

(a) So�ware packages: At the present time, the computa-

tional statistics so�ware market is catered for from

two polar extremes. On the one hand, there are

major generalmathematical/computational languages

such as Mathematica and Maple which provide best

of breed general computational/numerical/graphical

tools, and hundreds of high-level functional program-

ming constructs to expand on same, but they are

less than comprehensive in �eld-speci�c functional-

ity. It seems likely such packages will further evolve by

developing and growing tentacles into speci�c �elds

(such as statistics, combinatorics, �nance, economet-

rics, biometrics etc.). At the other extreme, there

exist narrow �eld-speci�c packages such as S-Plus,

Gauss and R which provide considerable depth in

�eld-speci�c functionality; in order to grow, these

packages will likely need to broaden out to develop

more general methods/general mathematical func-

tions, up to the standard o�ered by the major pack-

ages. �e so�ware industry is nascent and evolving,

and it will be interesting to see if the long-run equi-

librium allows for both extremes to co-exist. Perhaps,

all that is required is for a critical number of users to

be reached in order for each eco-system to become

self-sustaining.

(b) Methodology: It seems likely that the �eld will see a

continuing shi� or growth from statistical inference

to structural inference, . . . from data mining to model

mining, . . . from asymptotic inference to computational

inference.

(c) Parallel computing: Multicore processors have already

become mainstream, while, at the same time, the

growth in CPU speeds appears to be stagnating. It

seems likely then that parallel computing will become

vastly more important in evolving computational

statistics into the future. Future computational statisti-

cal so�ware may also take advantage of GPUs (graph-

ical processing units), though it should be cautioned

that the latter are constrained in serious statistical

work by the extremely poor numerical precision of

current GPUs.

(d) Symbolic methods: Symbolic methods are still some-

what in their infancy and show great promise as

knowledge engines i.e., algorithms that can derive

exact theoretical results for arbitrary randomvariables.

(e) On knowledge and proof : Symbolic algorithms can

derive solutions to problems that have never been

posed before – they place enormous technological

power into the hands of end-users. Of course, it is pos-

sible (though rare) that an error may occur (say in

integration, or by mis-entering a model). In a sense,
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this is no di�erent to traditional reference texts and

journal papers which are also not infallible, and which

are o�en surprisingly peppered with typographical or

other errors.

In this regard, the computational approach o�ers both

greater exposure to danger, as well as the tools to

avoid it.�e “danger” is that it has become extremely

easy to generate output in real-time.�e sheer scale

and volume of calculation has magni�ed, so that the

average user is more likely to encounter an error,

just as someone who drives a lot is more likely to

encounter an accident. Proving that the computer’s

output is actually correct can be very tricky, or imprac-

tical, or indeed impossible for the average practitioner

to do, just as the very same practitioner will tend to

accept a journal result at face value, without properly

checking it, even if they could do so.�e philosopher,

Karl Popper, argued that the aim of science should

not be to prove things, but to seek to refute them.

Indeed, the advantage of the computational statistical

approach is that it is o�en possible to check one’s work

using two completely di�erent methods: both numer-

ical and symbolic. Here, numerical methods take on

a new role of checking symbolic results. One can

throw in some numbers in place of symbolic param-

eters, and one can then check if the solution obtained

using symbolic methods (the exact theoretical solu-

tion) matches the solution obtained using numerical

methods (typically, 7numerical integration or Monte
Carlo methods, see 7Monte Carlo Methods in Statis-
tics). If the numerical and symbolic solutions do not

match, there is an obvious problem and we can gen-

erally immediately reject the theoretical solution (a

la Popper). On the other hand, if the two approaches

match up,we still do not have a proof of correctness . . .

all we have is just one point of agreement in parameter

space. We can repeat and repeat and repeat the exer-

cise with di�erent parameter values . . . and as we do

so, we e�ectively build up, not an absolute proof in the

traditional sense, but, appropriately for the statistics

profession, an ever increasing degree of con�dence . . .

e�ectively a proof by probabilistic induction . . . that

the theoretical solution is indeed correct. �is is an

extremely valuable (though time-consuming) skill to

develop, not only when working with computers, but

equally with textbooks and journal papers.
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In its most elementary form, the conditional probability

P(A∣B) of an event A given an event B is de�ned by

P(A∣B) =
B(A ∩ B)

P(B)
,

www.mathStatica.com
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provided thatP(B) ≠ .�is is a well-motivated de�nition,

compatible bothwith the frequency interpretation of prob-

ability as well as with elementary probability on count-

able spaces. An immediate consequence of the de�nition

is 7Bayes’ theorem: if A,A, . . . ,An are mutually disjoint
events whose union has probability one, then P(A∣B) =
P(B∣A)P(A)

∑ni= P(B∣Ai)P(Ai)
.

Suppose now thatX,Y are randomvariables taking val-

ues in �nite sets. We de�ne the conditional distribution of

X given Y by

P(X = x∣Y = y) =

⎧⎪⎪
⎨
⎪⎪⎩

P(X=x,Y=y)
P(Y=y) , if P(Y = y) ≠ 

, if P(Y = y) = .

�e latter choice, i.e., / interpreted as , is both physi-

cally motivated and mathematically desirable.�e object

P(X = x∣Y = y) is a probability in x (i.e., it sums up to 

over x) and a function of y. If X takes values in a set of real

numbers then we can de�ne the conditional expectation of

X given Y = y by

E(X∣Y = y) =∑
x

xP(X = x∣Y = y), ()

where the summation extends over all possible values x of

X.�is is a function of y, say h(y) = E(X∣Y = y). We can

then talk about the conditional expectation of X given Y

as the random variable h(Y) obtained by substituting y by

the random variable Y in the argument of h(y). From this

de�nition the following important property of E(X∣Y) is

easily derived:

E[(X − E(X∣Y)) ⋅ g(Y)] = , ()

for any random variable g(Y) which is a (deterministic)

function of Y .

One can easily generalise the above to countably-

valued random variables. However, de�ning conditional

probability and expectation for general random variables

cannot be done in the previous naive manner. One can

mimic the de�nitions for random variables possessing

density but this has two drawbacks: �rst, it is not easy

to rigorously reconcile with the previous de�nitions; sec-

ond, it is not easy to generalize. Instead, we resort to an

axiomatic de�nition of conditional expectation, stemming

directly from the fundamental property (). It can be easily

veri�ed that, in the earlier setup, there is only one function

h(y) satisfying () for all functions g(y), and this h(y) is

de�ned by ().

�e last observation leads us to the following de�ni-

tion: Let (Ω,F ,P) be a probability space and X a positive

random variable (i.e., a measurable function X : Ω → R+).

Let G ⊂ F be another sigma-algebra. We say that E(X∣G)

is the conditional expectation of X given G if (a) E(X∣G) is

G-measurable and (b) for all bounded G-measurable ran-

dom variables G, we have

E[XG] = E[E(X∣G)G]. ()

Such an object exists and is almost surely unique.�e lat-

ter means that if two random variables, H, H, say, satisfy

E[XG] = E[HiG], i = , , for all G then P(H = H) = .

(SuchHi are called versions of the conditional expectation.)

Existence is immediate by the 7Radon–Nikodým theo-
rem. Consider two measures on (Ω,G): the �rst one is P;

the second one is E[X1G], G ∈ G (where 1G is de�ned as 
on G and  on Ω/G). When P(G) =  we have E[X1G] = 
and therefore the second measure is absolutely continuous

with respect to the �rst. �e Radon–Nikodým theorem

ensures that the derivative (density) of the secondmeasure

with respect to the �rst exists and that it satis�es ().�is

observation and string of arguments is due to Kolmogorov

(), and it is through this that modern Probability�e-

ory was established as a mathematical discipline having a

natural connection with Measure�eory.

Having de�ned E[X∣G] for positive X we can de�ne

it for negative X by reversing signs and for general X via

the formula E[X∣G] = E[max(X, )∣G]+E[min(X, )∣G],

provided that wither E[max(X, )] < ∞ or E[min(X, )]

> −∞.

Given then two random variables X,Y (the �rst of

which is real-valued, but the second may take values

in fairly arbitrary spaces (such as a space of functions),

we can de�ne E[X∣Y] as E[X∣σ(Y)] where σ(Y) is the

σ-algebra generated by Y . It can be seen that this is entirely

compatible with the initial de�nition ().

Passing on to conditional probability, observe that if

A is an event, the expectation of 1A is precisely P(A). By
analogy, we de�ne

P(A∣G) = E[1A∣G].

For each event A ∈ F , this is a random variable, i.e., a

measurable function of ω ∈ Ω which is de�ned almost

surely uniquely (see explanation a�er formula ()). For a

real-valued random variable X we de�ne the conditional

distribution function P(X ≤ x∣G) as E[1X≤x∣G]. We would
like this to be a right-continuous non-decreasing function

of x. Since, for each x, P(X ≤ x∣G) is de�ned only almost

surely, we need to show that we can, for each x, pick a ver-

sion Hx of P(X ≤ x∣G) in a way that the probability of the

event {Hx ≤ Hy if x ≤ y and limє↓Hx+є = Hx} is one.�is

can be done and {Hx}x∈R is referred to as a regular condi-

tional distribution function ofX givenG. Informally (and in

practice) it is denoted as P(X ≤ x∣G). Regular conditional
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probabilities exist not only for real random variables X but

also for random elements X taking values in a Borel space

Kallenberg ().

From this general viewpoint we can now go down

again and verify everything we wish to have de�ned in an

intuitive or informal manner. For instance, if (X,Y) is a

pair of real-valued random variables having joint density

f (x, y) then, letting fY(y) := ∫R f (x, y)dx, de�ne

h(x∣y) :=

⎧⎪⎪
⎨
⎪⎪⎩

f (x,y)
fY(y) , if fY(y) ≠ 

, if fY(y) = 
.

�en the function ∫
x

−∞ h(s∣Y)ds serves as a the regular

conditional distribution of X given Y . We can also verify

that E(max(X, )∣Y) = ∫
∞

P(X > x∣Y)dx (in the sense

that the right-hand side is a version of the le�) and several

other elementary formulae.

It is important to mention an interpretation of E(X∣Y)

as a projection. First recall the de�nition of projection in

Euclidean space: Let x be a point (vector) in the space Rn

and Π a hyperplane. We de�ne the projection x̂ of x onto

Π as the unique element of Π which has minimal dis-

tance from x. Equivalently, the angle between x − x̂ and

any other vector g of Π must be ○: this can be written as

⟨x−x̂, g⟩ = , i.e., the standard inner product of x−x̂ and g is

equal to . Next suppose that E[X] < ∞.�en it can be

seen that

E[(X − E(X∣G))

] = min

G
E[(X −G)


],

where the minimum is taken over all G-measurable ran-

dom variables G with E[G] < ∞.�e de�ning property

() then says that the inner product between X − E(X∣G)

and any G is zero, just as in Euclidean space. Keeping the

geometric meaning in mind, we can devise (prove and

interpret) several properties of the conditional expecta-

tion. We mention one below.

�e tower property: If G ⊂ G are two sigma-algebras

then

E[E(X∣G)∣G] = E[X∣G].

�e geometric meaning is as follows: If Π is a hyperplane

(e.g., a plane in three dimensions) and Π a hyperplane

contained in Π (e.g., a line on the plane) then we can

�nd the projection onto Π by �rst projecting onto Π and

then projecting the projection.�e tower property holds

for general random variables as long as conditional expec-

tation can be de�ned, i.e., it does not require E[X] < ∞.

Another interpretation of it is as follows: if G,G represent

states of knowledge (information, say) andG is wider than

G (in the sense that G can be obtained from G) then,

in �nding the conditional expectation of X given G, the

additional knowledge contained in G can be ignored. A

particular form of this property is in the relation

E[E(X∣G)] = E[X].

Another important property is that E[GX∣G] =

GE[X∣G] if G is G-measurable. On the other hand, if Z is

independent of (X,Y) then E[X∣Y ,Z] = E[X∣Y]. For fur-

ther properties, see Williams (). In particular, if X and

Y are independent thenE[X∣Y] = E[X], i.e., it is a constant.

For normal random variables, the geometric picture

completely characterizes what we can do with them. Recall

that a random variable X is centred normal if it has �nite

variance σ  and if for all constants a, b there is a constant c

such that cX has the same distribution as aX′ + bX′′ where

X′,X′′ are independent copies of X. It follows that a + b

= c and thatX has density proportional to e−x
/σ 

.We say

that X is normal if X−E[X] is centred normal. We say that

a collection of random variables {Xt}t∈T , with T being an

arbitrary set, is (jointly) normal if for any t, . . . , tn, and any

constants c, . . . , cn, the random variable cXt+⋯+cnXtn is

normal. It follows that if {X,Y, . . . ,Yk} are jointly normal

then E[X∣Y, . . . ,Yk] = E[X∣σ(Y, . . . ,Yk)] = aY + ⋯ +

akYk + b where the constants can be easily computed by

().�e Kalman �lter property says that if {X,Y,Y} are

centred jointly normal such that Y and Y are indepen-

dent then E[X∣Y,Y] = E[X∣Y]+E[X∣Y].�e geometric

interpretation of this is: to project a vector onto a plane

de�ned by two orthogonal lines, we project to each line

and then add the projections. �e Kalman �lter is one

of the important applications of Probability to the �elds

of Signal Processing, Control, Estimation, and Inference

(Catlin ).

By the term conditioning in Probability we o�en mean

an e�ective application of the tower property in order to

de�ne a probability measure or to compute the expec-

tation of a functional. For example, if X,X, . . . are

i.i.d. positive random variables and an N is a geomet-

ric random variable, say P(N = n) = αn−( − α),

n = , , . . ., then E[θX+⋯+XN ]=E[E(θX+⋯+XN ∣N)]. But

E[θX+⋯+XN ∣N =n]=E[θX+⋯+Xn]= (E[θX])n, by inde-

pendence. Hence E[θX+⋯+XN ∣N]= (E[θX])N and so

E[θX+⋯+XN ] = E[(E[θX])N] = ( − α)/( − αE[θX]).

Conditional expectation and probability are used in de�n-

ing various classes of 7stochastic processes such as
7martingales and 7Markov chains (Williams ). Con-
ditional probability is a fundamental object in 7Bayesian
statistics (Williams ). Other applications are in the

�eld of Financial Mathematics where the operation of tak-

ing conditional expectation of a future random variable

with respect to the sigma-algebra of all events prior to the
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current time t plays a fundamental role. In fact, it can be

said that the notion of conditioning, along with that of

independence and coupling, are the cornerstones of mod-

ern probability theory and its widespread applications.
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A Con�dence Distribution (CD), H(X, θ), for a param-

eter is a function of the data, X, and the parameter in

question, θ, such that: (a) for each data value X, H(X, .)

is a (continuous) cumulative distribution function for

the parameter, and (b) for the true parameter value,

θ, H(., θ) has a uniform distribution (see 7Uniform
Distribution in Statistics) on the interval (,).�e concept

of CD has its historic roots in Fisher’s �ducial distribu-

tion (Fisher ), although, in its modern version, it is

a strictly frequentist construct (Schweder and Hjort ,

; Singh et al. , , and see also Efron ).

�e CD carries a great deal of information pertinent to a

variety of frequentist inferences and may be used for the

construction of con�dence intervals, tests of hypotheses

and point estimation.

For instance, the αth quantile of H(X, .), is the upper

end of a ( − α) percent one sided con�dence interval

for θ, and also the interval formed by the sth and tth

quantiles (s < t) is a (t− s) percent con�dence interval.

�ese properties indicate that a con�dence distribution is,

in a sense, a direct frequentist version of Fisher’s �ducial

distribution.

Similarly, a level α test of the one-sided hypothesisK :

θ ≤ θ versus K : θ > θ is given by rejecting K when

H(X, θ) ≤ α, and an analogous result holds for testing

K : θ ≥ θ versus K : θ < θ. Additionally, for testing

the two sided hypothesis K : θ = θ versus K : θ ≠ θ,

the rejection region {min(H(X, θ),  −H(X, θ))} ≥ α

gives an α level test.

�e CD may also be used in a natural ways to con-

struct a point estimate of θ. Perhaps the most straight-

forward estimator is the median of H(X, .), which is

median unbiased, and under mild conditions, consistent.

Another obvious estimator, θ̄ =∫ θ(∂H(X,θ)/∂θ)dθ is

also consistent under weak conditions.

One particularly simple way to construct a CD is via

a pivotal quantity, ψ(X, θ), a function of X and θ whose

cumulative distribution function, G(.) under the true θ

does not depend on θ. �en G(Ψ(X, θ)) is a CD pro-

vided Ψ(X, θ) is increasing in θ. Such quantities are easy

to construct in invariant models such as location or scale

models. Here is a prototypical example in a normal loca-

tion model. Suppose Xi ∼ N(θ, ), for i = ,⋯,n, are

iid.�en Ψ(X,⋯,Xn, θ) = (X − θ) ∼ N(, /n) so that

H(X,⋯,Xn, θ) = Φ
−

(
√
n(θ − X)) is a CD.

Another common construction is based on a series of

one sided α-level tests of K : θ ≤ θ versus K : θ > θ. If

the function P[θ,X] is a p-value for each value of θ, then

typically P[θ, .] has a uniform distribution for each value

of θ, and hence H(X, θ) = P[θ,X] is a CD.

�e above discussion can be extended naturally to

include the notion of an asymptotic CD by replacing (b)

above, with the requirement that H(., θ) approaches a

uniform distribution on (, ) weakly as the sample size

approaches in�nity, and dropping the continuity require-

ment in (a). Pro�le likelihoods (see, e.g., Efron ;

Schweder andHjort ; Singh et al. ), and Bootstrap

Distributions (see Efron ; Singh et al. , ) are

asymptotic CD’s under weak conditions.

It can also be extended to include nuisance parame-

ters. For example, in the case of a sample from a normal

population with unknownmean and variance, the usual t-

pivot can be used to construct a CD for the mean, while

the usual chi-square pivot can be used to construct a CD

for the variance.

See Schweder and Hjort (, ) or Singh et al.

(, ), formore detailed discussion on construction,
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properties and uses ofCD’s. In particular Singh et al. ()

discusses the combination of information from indepen-

dent sources via CD’s.
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A ( − α)% con�dence interval is an interval estimate

around a population parameter θ that, under repeated ran-

dom samples of sizeN, is expected to include θ’s true value

( − α)% of the time.�e con�dence interval thereby

indicates the precision with which a population parameter

is estimated by a sample statistic, givenN and α. For many

statistics there are also methods of constructing con�dence

regions, which are multivariate versions of simultaneous

con�dence intervals.

�e con�dence level, ( − α)%, is chosen a priori.

A two-sided con�dence interval uses a lower limit L and

upper limitU that each contain θ’s true value (−α/)%

of the time, so that together they contain θ’s true value

( − α)% of the time.�is interval o�en is written as

[L,U], and sometimes writers combine a con�dence level

and interval by writing Pr(L ≤ θ ≤ U) =  − α. In some

applications, a one-sided con�dence interval is used, pri-

marily when only one limit has a sensiblemeaning orwhen

interest is limited to bounding a parameter estimate from

one side only.

�e con�dence interval is said to be an inversion of its

corresponding signi�cance test because the ( − α)%

con�dence interval includes all hypothetical values of the

population parameter that cannot be rejected by its asso-

ciated signi�cance test using a Type I error-rate criterion

of α. In this respect, it provides more information than a

signi�cance test does. Con�dence intervals become nar-

rower with larger sample size and/or lower con�dence lev-

els. Narrower con�dence intervals imply greater statistical

power for the corresponding signi�cance test, but the con-

verse does not always hold.

�e limits L and U are derived from a sample statistic

(o�en the sample estimate of θ) and a sampling distribu-

tion specifying a probability for each value that the sample

statistic can take. �us L and U also are sample statis-

tics and will vary from one sample to another. �is fact

underscores a crucial point of interpretation regarding a

con�dence interval, namely that we cannot claim that a

particular interval has a − α probability of containing the

population parameter value.

A widespread practice regarding two-sided con�dence

intervals is to placeL andU so that α is evenly split between

the lower and upper tails.�is is o�en a matter of conven-

tion, but can be dictated by criteria that statisticians have

used for determining the “best” possible con�dence inter-

val. One such criterion is simply narrowness. It is readily

apparent, for instance, that if a sampling distribution is

symmetric and unimodal then for high con�dence levels

the shortest ( − α)% con�dence interval constructed

from that distribution is one that allocates α/ to the tails

outside of the lower and upper limits.

Other criteria for evaluating con�dence intervals are

as follows. A ( − α)% con�dence interval is exact if

it can be expected to contain the relevant parameter’s true

value (−α)%of the time.When approximate intervals
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are used instead, if the rate of coverage is greater than

( − α)% then the interval is conservative; if the rate is

less then the interval is liberal.�e (−α)% interval that

has the smallest probability of containing values other than

the true parameter value is said to be uniformly most accu-

rate. A con�dence interval whose probability of including

any value other than the parameter’s true value is less than

or equal to ( − α)% is unbiased.

Example  Suppose that a standard IQ test has been

administered to a random sample of N =  adults from

a large population with a sample mean of  and standard

deviation s = . We will construct a two-sided % con-

�dence interval for the mean, µ.�e limits U and L must

have the property that, given a signi�cance criterion of α,

sample size of , mean of  and standard deviation of

, we could reject the hypotheses that µ >  + U or

µ <  − L but not L ≤ µ ≤ U.

�e sampling distribution of the t-statistic de�ned by

t =
X − µ
serr

is a t-distribution with df = N −  = .

When df =  the value tα/ = . standard-error units

above the mean cuts α/ = . from the upper tail of this

t-distribution, and likewise −tα/ = −. standard-error

units below the mean cuts α/ = . from the lower tail.

�e sample standard error is serr = s/
√
N = .. So a

t-distribution around U =  + (.)(.) = .

has . of its tail below , while a t-distribution around

L =  − (.)(.) = . has . of its tail

above .�ese limits ful�ll the above required property,

so the % con�dence interval for µ is [., .].�us,

we cannot reject hypothetical values of µ that lie between

. and ., using α = ..

Example  (transforming one interval to obtain another)

Cohen’s d for two independent samples is de�ned by

δ = (µ − µ)/σp, where µ and µ are the means of two

populations from which the samples have been drawn and

σp is the population pooled standard deviation.�is quan-

tity has a noncentral t distribution with a noncentrality

parameter ∆ = δ[NN/(N + N)]
/
, where N and N

are the sizes of the two samples. �e sample t-statistic

is the sample estimate of ∆. Suppose a two-condition

between-subjects experiment with N = N =  yields

t() = .. Using an appropriate algorithm (Smithson

) we can �nd the % con�dence interval for ∆, which

is [., .]. Because δ and ∆ aremonotonically related

by δ = ∆/[NN/(N + N)]
/
, we can obtain a %

con�dence interval for δ by applying this formula to the

lower and upper limits of the interval for ∆. �e sample

estimate of δ is d = t/[NN/(N +N)]
/

= ./. =

., and applying the same transformation to the limits

of the interval for ∆ gives an interval of [., .] for δ.
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Introduction
�e word confounding has been used to refer to at least

three distinct concepts. In the oldest and most widespread

usage, confounding is a source of bias in estimating causal
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e�ects. �is bias is sometimes informally described as

a mixing of e�ects of extraneous factors (called con-

founders) with the e�ect of interest, and important in

causal inference (see 7Causation and Causal Inference).
�is usage predominates in nonexperimental research,

especially in epidemiology and sociology. In a second and

more recent usage originating in statistics, confounding

is a synonym for a change in an e�ect measure upon

strati�cation or adjustment for extraneous factors (a phe-

nomenon called noncollapsibility or Simpson’s paradox; see

7Simpson’s Paradox; Collapsibility). In a third usage, orig-
inating in the experimental-design literature, confounding

refers to inseparability of main e�ects and interactions

under a particular design (see 7Interaction).
�e three concepts are closely related and are not

always distinguished from one another. In particular, the

concepts of confounding as a bias in e�ect estimation and

as noncollapsibility are o�en treated as equivalent, even

though they are not. Only the �rst usage, confounding as

a bias, will be described here; for more detailed coverage

and comparisons of concepts see, Greenland et al. (a),

Pearl (), and Greenland et al. ().

Confounding as a Bias in Effect
Estimation
In the �rst half of the nineteenth century, John Stuart Mill

described the problem of confounding in causal inference;

he acknowledged the seventeenth century scientist Francis

Bacon as a forerunner in dealing with these issues (Mill

, Chap. III). Mill listed a key requirement for an exper-

iment intended to determine causal relations:

7 “...none of the circumstances [of the experiment] that we
do know shall have effects susceptible of being confounded

with those of the agents whose properties we wish to
study” (emphasis added) (Mill , Chap. X).

In Mill’s time the word “experiment” referred to an

observation in which some circumstances were under the

control of the observer, as it still is used in ordinary

English, rather than to the notion of a comparative trial.

Nonetheless, Mill’s requirement suggests that a compari-

son is to bemade between the outcomeof our “experiment”

(which is, essentially, an uncontrolled trial) and what we

would expect the outcome to be if the agents we wish

to study had been absent. If the outcome is not as one

would expect in the absence of the study agents, thenMill’s

requirement ensures that the unexpected outcome was not

brought about by extraneous “circumstances” (factors). If,

however, those circumstances do bring about the unex-

pected outcome, and that outcome ismistakenly attributed

to e�ects of the study agents, then themistake is one of con-

founding (or confusion) of the extraneous e�ects with the

agent e�ects.

Much of the modern literature follows the same infor-

mal conceptualization given by Mill. Terminology is now

more speci�c, with “treatment” used to refer to an agent

administered by the investigator and “exposure” o�en used

to denote an unmanipulated agent.�e chief development

beyond Mill is that the expectation for the outcome in the

absence of the study exposure is now almost always explic-

itly derived from observation of a control group that is

untreated or unexposed.

Confounding typically occurs when natural or social

forces or personal preferences a�ect whether a person ends

up in the treated or control group, and these forces or

preferences also a�ect the outcome variable. While such

confounding is common in observational studies, it can

also occur in randomized experiments when there are

systematic improprieties in treatment allocation, admin-

istration, and compliance. A further and somewhat con-

troversial point is that confounding (as per Mill’s original

de�nition) can also occur in perfect randomized trials due

to random di�erences between comparison groups (Fisher

; Rothman ); this problem will be discussed fur-

ther below.

The Potential-Outcome Model
of Confounding
Various models of confounding have been proposed for

use in statistical analyses. Perhaps the one closest to Mill’s

concept is based on the potential-outcome or counterfac-

tual model for causal e�ects (see 7Causation and Causal
Inference). Suppose we wish to consider how a health-

status (outcome) measure of a population would change in

response to an intervention (population treatment). More

precisely, suppose our objective is to determine the e�ect

that applying a treatment x had or would have on an out-

come measure µ relative to applying treatment x to a

speci�c target population A. For example, this population

could be a cohort of breast-cancer patients, treatment x
could be a new hormone therapy, x could be a placebo

therapy, and the measure µ could be the -year survival

probability.�e treatment x is sometimes called the index

treatment; and x is sometimes called the control or ref-

erence treatment (which is o�en a standard or placebo

treatment).

�e potential-outcome model posits that, in popula-

tion A, µ will equal µA if x is applied, µA if x is applied;

the causal e�ect of x relative to x is de�ned as the change

from µA to µA, whichmight bemeasured as µA−µA, or

if µ is strictly positive, µA/µA. If A is given treatment x,
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then µ will equal µA and µA will be observable, but µA
will be unobserved.

Suppose now that µB is the value of the outcome µ

observed or estimated for a population B that was admin-

istered treatment x. If this population is used as a substi-

tute for the unobserved experience of population A under

treatment x, it is called the control or reference popula-

tion. Confounding is said to be present if µA ≠ µB, for

then there must be some di�erence between populations

A and B other than treatment di�erence that is a�ecting µ.

If confounding is present, a naive (crude) association

measure obtained by substituting µB for µA in an e�ect

measure will not equal the e�ect measure, and the associa-

tion measure is said to be confounded. Consider µA − µB,

which measures the association of treatments with out-

comes across the populations. If µA ≠ µB, then µA − µB
is said to be confounded for µA − µA, which measures

the e�ect of treatment x on population A.�us, to say an

association measure µA − µB is confounded for an e�ect

measure µA − µA is to say these two measures are not

equal.

Dependence of Confounding on the Outcome Measure

and the Population

A noteworthy aspect of the potential-outcome model

is that confounding depends on the outcome measure. For

example, suppose populations A and B have a di�erent

-year survival probability µ under placebo treatment x;

that is, suppose µB ≠ µA so that µA − µB is confounded

for the actual e�ect µA − µA of treatment on -year sur-

vival. It is then still possible that -year survival, υ, under

the placebo would be identical in both populations; that is

υA could still equal υB, so that υA−υB is not confounded

for the actual e�ect of treatment on -year survival. Lest

one think this situation unlikely, note that we should gen-

erally expect no confounding for -year survival, since

no known treatment is likely to raise the -year survival

probability of human patients above zero.

Even though the presence of confounding is depen-

dent on the chosen outcome measure, as de�ned above

its presence does not depend on how the outcome is

contrasted between treatment levels. For example, if Y is

binary so that µ = E(Y) is the Bernoulli parameter or risk

Pr(Y = ), then the risk di�erence µA − µB, risk ratio

µA/µB, and odds ratio {µA/(− µA)}/{µB/(− µB)}

are all confounded under exactly the same circumstances.

In particular, and somewhat paradoxically, confounding

may be absent even if the odds ratio changes upon covari-

ate adjustment, i.e., even if the odds ratio is noncollapsible

(Greenland and Robins ; Greenland et al. a, ;

see 7Collapsibility).

A second noteworthy point is that confounding

depends on the target population. �e preceding exam-

ple, with A as the target, had di�erent -year survivals µA
and µB for A and B under placebo therapy, and hence

µA − µB was confounded for the e�ect µA − µA of treat-

ment on population A. A lawyer or ethicist may also be

interested in what e�ect the hormone treatment would

have had on population B. Writing µB for the (unob-

served) outcome under treatment, this e�ect on B may be

measured by µB−µB. Substituting µA for the unobserved

µB yields µA − µB.�is measure of association is con-

founded for µB − µB (the e�ect of treatment x on -year

survival in population B) if and only if µA ≠ µB.�us, the

samemeasure of association, µA−µB,may be confounded

for the e�ect of treatment on neither, one, or both of popu-

lationsA and B, andmay ormay not be confounded for the

e�ect of treatment on other targets such as the combined

population A ∪ B.

Confounders (Confounding Factors) and
Covariate Imbalance
�e potential-outcome model is that it invokes no explicit

di�erences (imbalances) between populations A and B

with respect to circumstances or covariates that might

in�uence µ. (Greenland and Robins , ). Clearly,

if µA and µB di�er, then A and Bmust di�er with respect

to factors that in�uence µ.�is observation has led some

authors to de�ne confounding as the presence of such

covariate di�erences between the compared populations

(Stone ).�is is incorrect, however, because confound-

ing is only a consequence of these covariate di�erences. In

fact, A and Bmay di�er profoundly with respect to covari-

ates that in�uence µ, and yet confounding may be absent.

In other words, a covariate di�erence between A and B is a

necessary but not su�cient condition for confounding, as

can be seen when the impact of covariate di�erences may

balance each other out, leaving no confounding.

Suppose now that populations A and B di�er with

respect to certain covariates, and that these di�erences

have led to confounding of an association measure for the

e�ect measure of interest. �e responsible covariates are

then termed confounders of the associationmeasure. In the

above example, with µA − µB confounded for the e�ect

µA− µA, the factors responsible for the confounding (i.e.,

the factors that led to µA ≠ µB) are the confounders.

It can be deduced that a variable cannot be a con-

founder unless it can a�ect the outcome parameter µ

within treatment groups and it is distributed di�erently

among the compared populations (e.g., see Yule , who

uses terms such as “�ctitious association” rather than con-

founding).�ese two necessary conditions are sometimes
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o�ered together as a de�nition of a confounder. Nonethe-

less, counterexamples show that the two conditions are

not su�cient for a variable with more than two levels to

be a confounder (Greenland et al. a). Note that the

condition of a�ecting the outcome parameter is a causal

assertion and thus relies on background knowledge for jus-

ti�cation (Greenland and Robins ; Robins ; Pearl

).

Control of Confounding
Prevention of Confounding
An obvious way to avoid confounding is estimating

µA − µA is to obtain a reference population B for which

µB is known to equal µA. Such a population is some-

times said to be comparable to or exchangeablewithAwith

respect to the outcome under the reference treatment. In

practice, such a population may be di�cult or impossi-

ble to �nd.�us, an investigator may attempt to construct

such a population, or to construct exchangeable index and

reference populations.�ese constructions may be viewed

as design-based methods for the control of confounding.

Perhaps no approach is more e�ective for preventing

confounding by a known factor than restriction. For exam-

ple, gender imbalances cannot confound a study restricted

to women. However, there are several drawbacks: restric-

tion on enough factors can reduce the number of available

subjects to unacceptably low levels, andmay greatly reduce

the generalizability of results as well. Matching the treat-

ment populations on confounders overcomes these draw-

backs, and, if successful, can be as e�ective as restriction.

For example, gender imbalances cannot confound a study

in which the compared groups have identical proportions

of women. Unfortunately, di�erential losses to observa-

tion may undo the initial covariate balances produced by

matching.

Neither restriction nor matching prevents (although it

may diminish) imbalances on unrestricted, unmatched, or

unmeasured covariates. In contrast,7randomization o�ers
a means of dealing with confounding by covariates not

accounted for by the design. It must be emphasized, how-

ever, that this solution is only probabilistic and subject to

severe constraints in practice. Randomization is not always

feasible or ethical, and many practical problems (such

as di�erential loss and noncompliance) can lead to con-

founding in comparisons of the groups actually receiving

treatments x and x.

One somewhat controversial solution to noncompli-

ance problems is intent-to-treat analysis, which de�nes

the comparison groups A and B by treatment assigned

rather than treatment received. Confounding may, how-

ever, a�ect even intent-to-treat analyses, and (contrary to

widespread misperceptions) the bias in those analyses can

exaggerate the apparent treatment e�ect (Robins ).

For example, the assignments may not always be random,

as when blinding is insu�cient to prevent the treatment

providers from protocol violations. And, purely by bad

luck, randomization may itself produce allocations with

severe covariate imbalances between the groups (and con-

sequent confounding), especially if the study size is small

(Fisher ; Rothman ). Blocked (matched) random-

ization can help ensure that random imbalances on the

blocking factors will not occur, but it does not guarantee

balance of unblocked factors.

Adjustment for Confounding
Design-based methods are o�en infeasible or insu�cient

to prevent confounding. �us, there has been an enor-

mous amount of work devoted to analytic adjustments for

confounding. With a few exceptions, these methods are

based on observed covariate distributions in the compared

populations. Such methods can successfully control con-

founding only to the extent that enough confounders are

adequately measured. �en, too, many methods employ

parametric models at some stage, and their success may

thus depend on the faithfulness of the model to real-

ity. �ese issues cannot be covered in depth here, but a

few basic points are worth noting.�e simplest and most

widely trusted methods of adjustment begin with strati�-

cation on confounders. A covariate cannot be responsible

for confounding within internally homogeneous strata of

the covariate. For example, gender imbalances cannot con-

found observations within a stratum composed solely of

women. More generally, comparisons within strata can-

not be confounded by a covariate that is unassociated with

treatment within strata.�is is so, whether the covariate

was used to de�ne the strata or not. �us, one need not

stratify on all confounders in order to control confound-

ing; it su�ces to stratify on a balancing score (such as

a propensity score) that yields strata in which the con-

founders are unassociated with treatment.

If one has accurate background information on rela-

tions among the confounders, one may use this infor-

mation to identify sets of covariates statistically su�cient

for adjustment, for example by using causal diagrams or

conditional independence conditions (Pearl , ;

Greenland et al. ab; Glymour and Greenland ).

Nonetheless, if the strati�cation on the confounders is too

coarse (e.g., because categories are too broadly de�ned),

strati�cation may fail to adjust for much of the confound-

ing by the adjustment variables.

One of the most common adjustment approaches

today is to enter suspected confounders into a model

for the outcome parameter µ. For example, let µ be the

mean (expectation) of an outcome variable of interest Y ,
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let X be the treatment variable of interest, and let Z be

a suspected confounder of the X − Y relation. Adjust-

ment for Z is o�en made by �tting a generalized-linear

model (see 7Generalized Linear Models) g(µ) = g(α +

βx + γz) or some variant, where g(µ) is a strictly increas-

ing function such as the natural log ln(µ), as in log-

linear modeling, or the logit function ln{µ/( − µ)},

as in 7logistic regression; the estimate of β that results

is then taken as the Z-adjusted estimate of the X e�ect

on g(µ).

An o�-cited advantage of model-based adjustment is

that it allows adjustment for more variables and in �ner

detail than strati�cation. If however the form of the �t-

ted model cannot adapt well to the true dependence of

Y on X and Z, such model-based adjustments may fail

to adjust for confounding by Z. For example, suppose Z

is symmetrically distributed around zero within X levels,

and the true dependence is g(µ) = g(α + βx + γz);

then using the model g(µ) = g(α + βx + γz) will pro-

duce little or no adjustment for Z. Similar failures can arise

in adjustments based on models for treatment probabil-

ity (propensity scores). Such failures can be minimized

or avoided by using reasonably �exible models, by care-

fully checking each �tted model against the data, and by

combining treatment-probability and outcome models to

produce doubly robust e�ect estimators (Hirano et al. ;

Bang and Robins ).

Finally, if (as is o�en done) a variable used for adjust-

ment is not a confounder, bias may be introduced by the

adjustment (Greenland and Neutra ; Greenland et al.

b;Hernán et al. ; Pearl ).�e formof this bias

o�en parallels selection bias familiar to epidemiologists,

and tends to be especially severe if the variable is a�ected

by both the treatment and the outcome under study, as in

classic Berksonian bias (Greenland ). In some but not

all cases the resulting bias is a form of confounding within

strata of the covariate (Greenland et al. b); adjustment

for covariates a�ected by treatment can produce such con-

founding, even in randomized trials (Cox , Chap. ;

Greenland ).

Confounded Mechanisms Versus
Confounded Assignments
If the mechanism by which the observational units come

to have a particular treatment is independent of the poten-

tial outcomes of the units, the mechanism is sometimes

described as unconfounded or unbiased for µ (Rubin ;

Stone ); otherwise the mechanism is confounded or

biased. Randomization is the main practical example of

such a mechanism. Graphical models (see 7Causal Dia-
grams) provide an elegant algorithm for checking whether

the graphed mechanism is unconfounded within strata

of covariates (Pearl , ; Greenland et al. b;

Glymour and Greenland ). Note however that in typ-

ical epidemiologic usage the term “confounded” refers to

the result of a single assignment (the study group actu-

ally observed), not the behavior of the mechanism.�us

an unconfoundedmechanism can by chance produce con-

founded assignments.

�e latter fact resolves a controversy about adjustment

for baseline (pre-treatment) covariates in randomized tri-

als. Although Fisher asserted that randomized compar-

isons were “unbiased,” he also pointed out that particular

assignments could be confounded in the single-trial sense

used in epidemiology; see Fisher (, p. ). Resolution

comes from noting that Fisher’s use of the word “unbi-

ased” referred to the design and corresponds to an uncon-

founded assignmentmechanism; it was notmeant to guide

analysis of a given trial (which has a particular assign-

ment). Once the trial is underway and the actual treatment

allocation is completed, the unadjusted treatment-e�ect

estimate will be biased conditional on the observed allo-

cation if the baseline covariate is associated with treatment

in the allocation and the covariate a�ects the outcome; this

bias can be removed by adjustment for the covariate (Roth-

man ; Greenland and Robins , ; Greenland

et al. a).

Confounder Selection
An essential �rst step in the control of confounding is to

identify which variables among those measured satis�ed

the minimal necessary conditions to be a confounder.

�is implies among other things that the variables can-

not be a�ected by exposure or outcome; it thus excludes

intermediate variables and e�ects of exposure and dis-

ease, whose control could introduce Berksonian bias.

�is initial screening is primarily a subject-matter deci-

sion that requires consideration of the causal ordering

of the variables. Relatively safe candidate confounders

will be “pre-treatment” covariates (those occurring before

treatment or exposure), which have the advantage that

they cannot be intermediates or e�ects of exposure and

outcome. Exceptions occur in which control of certain

pre-treatment variables introduce bias (Pearl , ;

Greenland et al. b), although the bias so introduced

may be much less than the confounding removed (Green-

land ).

Variables that pass the initial causal screening are

sometimes called “potential confounders.” Once these are

identi�ed, the question arises as to which must be used for

adjustment. A common but unjusti�ed strategy is to select

confounders to control based on a test (usually a signi�-

cance test) of each confounder’s association with the treat-

ment X (a test of imbalance) or with the outcome Y , e.g.,
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using stepwise regression. Suppose Z is a pre-treatment

covariate (potential confounder). �e strategy of testing

the Z association with X arises from a confusion of two

distinct inferential problems:

. Do the treated (X = ) evince larger di�erences

from the untreated (X = ) with respect to Z than

one should expect from a random (or unconfounded)

assignment mechanism?

. Should we control for Z to estimate the treatment

e�ect?

A test of the X − Z association addresses question (a), but

not (b). For (b), the “large-sample” answer is that control

is advisable, regardless of whether the X − Z association is

random.�is is because an imbalance produces bias con-

ditional on the observed imbalance, even if the imbalance

derived from random variation.

�emistake of signi�cance testing for confounding lies

in thinking that one can ignore an imbalance if it is from

random variation. Random assignment only guarantees

valid performance of statistics over all possible treatment

allocations. It does not however guarantee validity con-

ditional on the observed Z imbalance, even though any

such imbalance must be random in a randomized trial.

�us the X − Z test addresses a real question (one rel-

evant to a �eld methodologist studying determinants of

response/treatment), but is irrelevant to the second ques-

tion (b) (Greenland and Neutra ; Robins andMorgen-

stern ; Greenland et al. a).

�e case of testing the Z association with Y devolves in

part to whether one trusts prior (subject-matter) knowl-

edge that Z a�ects Y (or is a proxy for a cause of Y)more

than the results of a signi�cance test in one’s own lim-

ited data.�ere are many examples in which a well-known

risk factor exhibits the expected association with Y in the

data, but for no more than chance reasons or sample-size

limitations, that association fails to reach conventional lev-

els of “signi�cance” (e.g., Greenland and Neutra ). In

such cases there is a demonstrable statistical advantage to

controlling Z, thus allowing subject-matter knowledge to

over-ride nonsigni�cance (Robins andMorgenstern ).

Another problematic strategy is to select a poten-

tial confounder Z for control based on how much the

e�ect estimate changes when Z is controlled. Like the

testing methods described above, it also lacks formal jus-

ti�cation and can exhibit poor performance in practice

(Maldonado and Greenland ). �e strategy can also

mislead if the treatment a�ects a high proportion of sub-

jects and one uses a “noncollapsible” e�ect measure (one

that changes upon strati�cation even if no confounding is

present), such as an odds ratio or rate ratio (Greenland and

Robins ; Greenland ; Greenland et al. a).

In practice, there may be too many variables to control

using conventional methods, so the issue of confounder

selection may seem pressing. Nonetheless, hierarchical-

Bayesian or other shrinkage methods may be applied

instead. �ese methods adjust for all the measured con-

founders by estimating the confounder e�ects using a prior

distribution for those e�ects. See Greenland (, )

for details. Some of these methods (e.g., the Lasso; Tibshi-

rani ) may drop certain variables entirely, and thus in

e�ect result in confounder selection; unlike signi�cance-

testing based selection, however, this selection has a justi-

�cation in statistical theory.
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�e term contagious distribution was apparently �rst used

by Neyman () for a discrete distribution that exhibits

clustering or contagious e�ect.�e classical Neyman Type

A distribution is one well-known example. However, con-

tagious distributions are used nowadays to describe a

plethora of distributions, many of which possess compli-

cated probability distribution expressed in terms of special

functions (see, for instance, Johnson et al. ).

It is instructive to give an account of the derivation of

the Neyman Type A distribution as developed by Neyman

() in his paper “On a new class of contagious distribu-

tions applicable in entomology and bacteriology.” Neyman

wanted to model the distribution of larvae on plots in a

�eld. He assumed that the number of clusters of eggs per

unit area, N, followed a Poisson distribution with mean θ

denoted by Poi(θ), while the number of larvae develop-

ing from the egg clusters Xi, i = , , . . . ,N is distributed as

another Poisson distribution Poi (ϕ). Mathematically, this

may be expressed as follows:

SN = X + X + . . . + XN

where SN is the total number of larvae per unit area.�e

distribution of SN is then a Neyman Type A.

�e above model is known as a true contagion model,

where the occurrence of “a favourable event depends on

the occurrence of the previous favorable events” (Gurland

). Among other terms used for the distribution aris-

ing from this model are generalized, clustered, stopped, or

stopped-sum distribution (see Douglas ; Johnson et al.

). It is convenient to represent the distribution of SN
concisely by

SN ∼ U ∨U,

which reads SN distribution is aU distribution generalized

by a U distribution. As an example, the Neyman Type A

distribution for SN , above, is

Neyman Type A ∼ Poi (θ) ∨ Poi (ϕ).

In addition, the probability generating function (pgf) of SN
distribution is

E[z
SN ] = g(g(z)),

where gi(z) is the pgf for the corresponding Ui, i = , 

distribution.
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Next, using the same example as above but instead, the

number of larvae per unit area is now considered to be dis-

tributed as a Poisson distribution, Poi (kθ), where due to

heterogeneity, the mean number of eggs that hatched into

larvae is assumed to vary with k following a Poisson distri-

bution Poi (ϕ).�e distribution for the number of larvae

per unit area is again a Neyman Type A.

�e model that gives rise to a distribution as in the

preceding formulation is known as an apparent contagion

model. Generally, this distribution arises when a parame-

ter of a U distribution is a random variable Ω that follows

a U distribution of its own. �is type of distribution is

also known as amixed, mixture, or compound distribution

(see Ord ; Johnson et al. ). A compound (mixture)

distribution can be represented by

U ∧
Ω
U,

which means that the U distribution is compounded by

U distribution (the distribution of Ω).U is known as the

compounding (mixing) distribution. �us, the Neyman

Type A distribution formulated through compounding is

represented by

Neyman Type A ∼ Poi (kθ)∧
k
Poi (ϕ)

�e pgf of a compound (mixture) distribution is

∫
ω
g ( z∣ ω) dF (ω)

where g(.) is the pgf for theU and F(.) is the cumulative

distribution function for U. �e class of mixed Poisson

distributions is a well-known class of compound distribu-

tions that has found applications in many areas of study

including biology, sociology, and medicine.

Note that both given examples of contagion models

lead to the Neyman Type A distribution.�e relationship

between the generalized and compound distributions is

given by the following theorem:

�eorem  (Gurland ) Let U be a random variable

with pgf [h (z)]
θ
, where θ is a given parameter. Suppose

now θ is regarded as a random variable. �en, whatever

be U

U ∧U ∼ U ∨U. ()

�is relation shows that it may not be possible to dis-

tinguish between the two types of contagion directly from

the data (Gurland ).

Contagious distributions have been studied by many

researchers including Feller (), Skellam (), Beall

and Rescia (), Gurland (), Hinz and Gurland

(), Khatri (), and Hill (), creating a rich

literature in this �eld.�e readers are referred toOrd (,

p. ) for a list of generalized and compound Poisson

distributions such as Polya-Aeppli, negative binomial, and

Hermite distributions. Other references for generalized

and compound distributions can be found in Douglas

(, Chaps.  and ) and Johnson et al. (, Chaps. 

and ).�ese references also describe statistical inference

for the contagious distributions. Recent review articles on

this subject are Gupta and Ong () and Karlis and

Xekalaki ().
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According to the central limit theorem (CLT) (see

7Central Limit�eorems), the distribution function Fn of
a normalized sum n−/(X + . . . + Xn) of n independent

random variables X, . . . ,Xn, having a common distribu-

tion with mean zero and variance σ  > , converges to the

distribution function Φσ of the normal distribution with

mean zero and variance σ , as n→∞. We will write Φ for

Φ for the case σ = .�e densities ofΦσ andΦ are denoted

by ϕσ and ϕ, respectively. In the case X
′
j s are discrete, Fn

has jumps and the normal approximation is not very good

when n is not su�ciently large. �is is a problem which

most commonly occurs in statistical tests and estimation

involving the normal approximation to the binomial and,

in its multi-dimensional version, in Pearson’s frequency

7chi-square tests, or in tests for association in categori-
cal data. Applying the CLT to a binomial random variable

T with distribution B(n, p), with mean np and variance

npq(q =  − p), the normal approximation is given, for

integers  ≤ a ≤ b ≤ n, by

P(a ≤ T ≤ b)≈Φ ((b − np)/
√
npq)−Φ ((a − np)/

√
npq).

()

Here ≈ indicates that the di�erence between its two sides

goes to zero as n→∞. In particular, when a = b, the bino-

mial probability P(T = b) = Cnbp
bqn−b is approximated

by zero.�is error is substantial if n is not very large. One

way to improve the approximation is to think graphically

of each integer value b of T being uniformly spread over

the interval [b − 


, b + 


].�is is the so called histogram

approximation, and leads to the continuity correction given

by replacing {a ≤ T ≤ b} by {a − 


≤ T ≤ b + 


}

P (a −



≤ T ≤ b +




) ≈ Φ ((b +




− np) /

√
npq)

−Φ ((a −



− np) /

√
npq). ()

To give an idea of the improvement due to this correc-

tion, let n= , p= .. �en P(T ≤ )= ., whereas

the approximation () gives a probability Φ(−.) =

., and the continuity correction () yields

Φ(−.) = .. Analogous continuity corrections

apply to the Poisson distribution with a large mean.

For a precise mathematical justi�cation of the conti-

nuity correction consider, in general, i.i.d. integer-valued

random variables X, . . . ,Xn, with lattice span , mean µ,

variance σ , and �nite moments of order at least four.�e

distribution function Fn(x) of n
−/

(X + . . . + Xn) may

then be approximated by the 7Edgeworth expansion (See
Bhattacharya and Ranga , p. , or Gnedenko and

Kolmogorov , p. )

Fn(x) = Φσ(x) − n
− 
 S (nµ + n



 x) ϕσ(x)

+ n
− 
 µ/(σ


)( − x


/σ

)ϕσ(x) +O(n

−
), ()

where S(y) is the right continuous periodic function y−




(mod ) which vanishes when y = 


.�us, when a is an

integer and x = (a − nµ)/
√
n, replacing a by a + 


(or

a− 


) on the right side of () gets rid of the discontinuous

term involving S.

Consider next the continuity correction for the (Mann-

Whitney-)Wilcoxon two sample test (see7Wilcoxon–Mann–
Whitney Test). Here one wants to test nonparametrically

if one distribution G is stochastically larger than another

distribution F, with distribution functionsG(.), F(.).�en

the null hypothesis is H : F(x) = G(x) for all x, and

the alternative is H : G(x) ≤ F(x) for all x, with strict

inequality for some x. �e test is based on independent

random samples X, . . . ,Xm and Y, . . . ,Yn from the two

unknown continuous distributions F and G, respectively.

�e test statistic isWs = the sum of the ranks of the Y
′
j s in

the combined sample ofm+ n X′i s and Y
′
j s.�e test rejects

H ifWs ≥ c, where c is chosen such that the probability

of rejection under H is a given level α. It is known (see

Lehmann , pp. –) thatWs is asymptotically normal

and E(Ws) = 


n(m + n + ), Var(Ws) = mn(m + n +

)/. SinceWs is integer-valued, the continuity correction

yields

P(Ws ≥ c∣H) = P (Ws ≥ c −



∣H) ≈  −Φ(z), ()

where z = (c − 


− 


n(m + n + )) /

√
mn(m + n + )/.

As an example, let m = , n = , c = . �en

P(Ws ≥  ∣ H) = ., and its normal approximation

is  − Φ(.) = ..�e continuity correction yields

the better approximation P(Ws ≥  ∣ H) = P(Ws ≥

. ∣ H) ≈  −Φ(.) = ..

�e continuity correction is also o�en used in  × 

contingency tables for testing for association between two

categories. It is simplest to think of this as a two-sample

problem for comparing two proportions p, p of individ-

uals with a certain characteristic (e.g., smokers) in two

populations (e.g., men and women), based on two inde-

pendent random samples of sizes n,n from the two pop-

ulations, with n = n + n. Let r, r be the numbers in the

samples possessing the characteristic. Suppose �rst that we
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wish to test H : p = p, against H : p < p. Con-

sider the test which rejects H, in favor of H, if r ≥ c(r),

where r = r+ r, and c(r) is chosen so that the conditional

probability (under H) of r ≥ c(r), given r + r = r, is

α.�is is the uniformly most powerful unbiased (UMPU)

test of its size (See Lehmann , pp. –, or Kendall

and Stuart , pp. –). �e conditional distribu-

tion of r, given r + r = r, is multinomial, and the test

using it is called Fisher’s exact test. On the other hand,

if nipi ≥  and ni( − pi) ≥  (i = , ), the normal

approximation is generally used to rejectH. Note that the

(conditional) expectation and variance of r are nr/n and

nnr(n− r)/[n

(n− )], respectively (See Lehmann ,

p. ).�e normalized statistic t is then

t = [r − nr/n]/
√
nnr(n − r)/[n(n − )], ()

and H is rejected when t exceeds z−α , the ( −

α)th quantile of Φ. For the continuity correction, one

subtracts 

from the numerator in (), and rejectsH if this

adjusted t exceeds z−α . Against the two-sided alternative

H : p ≠ p, Fisher’sUMPU test rejectsH if r is either too

large or too small.�e corresponding continuity corrected

t rejects H if either the adjusted t, obtained by subtract-

ing 

from the numerator in (), exceeds z−α/, or if the

t adjusted by adding 

to the numerator in () is smaller

than−z−α/.�is may be compactly expressed as

Reject H if V ≡ (n − ) [∣ rn − rn ∣ −



n]


/

(nnr(n − r)) > χ

−α(), ()

where χ−α() is the ( − α)th quantile of the 7chi-square
distribution with one degree of freedom. �is two-sided

continuity correction was originally proposed by F. Yates

in , and it is known as Yates’ correction. For numeri-

cal improvements due to the continuity corrections above,

we refer to Kendall and Stuart (, pp. –) and

Lehmann (, pp. –). For a critique, see Connover

(). If the sampling of n units is done at random from

a population with two categories (men and women), then

the UMPU test is still the same as Fisher’s test above, con-

ditioned on �xed marginals n,(and, therefore, n) and r.

Finally, extensive numerical computations in

Bhattacharya and Chan () show that the chisquare

approximation to the distribution of Pearson’s frequency

chi-square statistic is reasonably good for degrees of free-

dom  and , even in cases of small sample sizes, extreme

asymmetry, and values of expected cell frequencies much

smaller than . One theoretical justi�cation for this may

be found in the classic work of Esseen (), which shows

that the error of chisquare approximation is O(n−d/(d+))

for degrees of freedom d.

Acknowledgments
�e author acknowledges support from the NSF grant

DMS .

About the Author
For biography see the entry 7RandomWalk.

Cross References
7Binomial Distribution
7Chi-Square Test: Analysis of Contingency Tables
7Wilcoxon–Mann–Whitney Test

References and Further Reading
Bhattacharya RN, Chan NH () Comparisons of chisquare, Edge-

worth expansions and bootstrap approximations to the distribu-

tion of the frequency chisquare. Sankhya Ser A :–

Bhattacharya RN, Ranga Rao R () Normal approximation and

asymptotic expansions. Wiley, New York

Connover WJ () Some reasons for not using Yates’ continu-

ity correction on  ×  contingency tables. J Am Stat Assoc

:–

Esseen CG () Fourier analysis of distribution functions: a math-

ematical study of the Laplace–Gaussian law. Acta Math :–

Gnedenko BV, Kolmogorov AN () Limit distributions of sums

of independent random variables. English translation by K.L.

Chung, Reading

Kendall MG, Stuart A () The advanced theory of statistics,

vol , rd edn. Griffin, London

Lehmann EL () Testing statistical hypotheses. Wiley, New York

Lehmann EL () Nonparametrics: statistical methods based

on ranks. (With the special assistance of D’Abrera, H.J.M.).

Holden-Day, Oakland

Control Charts

Alberto Luceño

Professor

University of Cantabria, Santander, Spain

Introduction
A control chart is a graphical statistical device used to

monitor the performance of a repetitive process. Control

charts were introduced by Shewhart in the s while

working forWestern Electric and Bell Labs and, since then,

they have been routinely used in Statistical Process Control

(SPC). According to Shewhart, control charts are useful to

de�ne the standard to be attained for a process, to help
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attaining that standard, and to judge whether that standard

has been reached.

Variability and Its Causes
Anymanufacturing or business process shows somedegree

of variability.�is is obviously true when little e�ort has

been made to try to keep the process stable around a tar-

get, but it continues to be true even when a lot of e�ort

has already been dedicated to stabilize the process. In

other words, the amount of variability can be reduced (as

measured, for example, by the output standard devia-

tion), but cannot be eliminated completely. �erefore,

some knowledge about the types of variability that can be

encountered in practice and the causes of this variability is

necessary.

Concerning the types of variability, one must recog-

nize at least the di�erence between stationary and non-

stationary behavior, the former being desirable, the latter

undesirable. A stationary process has �xed mean, vari-

ance and probability distribution, so that it is di�cult (if

not impossible) to perfectly attain this desirable state in

practice. A non-stationary process does not have �xed

mean, variance or probability distribution, so that its future

behavior is unpredictable. Moreover, any natural process,

when le� to itself, tends to be non-stationary, sometimes

in the long run, but most o�en in the short run. Conse-

quently, some control e�ort is almost always necessary to,

at least, induce stationarity in the process. Control charts

are useful for this purpose.

Concerning the causes of variability, the most obvi-

ous facts are that there are a lot of causes, that many of

them are unknown, and, consequently, that they are dif-

�cult to classify. Nevertheless, Shewhart suggested that it

is conceptually useful to classify the causes of variability

in two groups: common causes and special causes. Com-

mon causes are those that are still present when the process

has been brought to a satisfactory stationary state of con-

trol; they can be described as chance variation, because the

observed variation is the sum of many small e�ects having

di�erent causes. Special causes are those that have larger

e�ects and, hence, have the potential to send the process

out of control; hopefully, they can eventually be discovered

(assigned) and permanently removed from the system.

Control charts are useful tools to detect the presence

of special causes of variation worthy of removal.�ey do

so by modelling the likely performance of a process under

the in�uence of the common causes of variation, so that the

unexpected behavior (and possible non-stationarity) of the

process caused by the emergence of a special cause at any

time can be detected e�ciently.

Shewhart Charts
When Shewhart presented his control charts, he did not

claim any mathematical or statistical optimality for such

charts, but he did demonstrate that the cost of controlling

a process could o�en be reduced by using control charts.

Consequently, Shewhart control charts aremuchmore jus-

ti�able for their practical bene�ts than for their theoretical

properties.

A Basic Chart
Bearing this in mind, a Shewhart control chart for a mea-

surable quality characteristic is constructed in the fol-

lowing way. () Select the frequency of sampling and the

sample size; e.g., take n =  observations every  h. () Cal-

culate the sample average X̄t for every time interval t (e.g.,

every  h) and plot X̄t versus t for all the values of t at hand.

By doing so, one obtains a run chart. () Add a center line

(CL) to the run chart.�e ordinate of this horizontal line

can be a target value for the quality characteristic, a his-

torical mean of past observations, or simply the mean of

the observations at hand. () Add an upper control limit

(UCL) and a lower control limit (LCL). �ese horizon-

tal lines are usually situated symmetrically around the CL

and at a distance of three times the standard deviation of

the statistics plotted in the run chart (e.g., three times the

standard deviation of X̄t).

�is chart is used at every time interval t to take the

decision of whether the process should be considered to

be in a state of economic control or not.�e usual decision

rule is: () Decide that the process stays in control at time

t if the plotted statistics (X̄t) lies between the UCL and the

LCL, and continue plotting. () Declare an out of control

situation otherwise; in this case, a search for an assignable

cause should be started, which hopefully will eventually

lead to the identi�cation of this cause and its permanent

removal from the system.�is type of control procedure is

sometimes called process monitoring, or process surveil-

lance, and is a part of SPC. Figure  shows a Shewhart chart

for a random sample of values of X̄t having mean µ = 

and standard deviation σ = .�e chart does not show any

alarm.

Some Modifications of the Basic Chart
Under certain theoretical assumptions, the basic chart can

claim some type of optimality. However, it may not be

completely satisfactory in practice. Consequently, the form

of the basic chart and how it is used can be modi�ed in

many di�erent ways. For example, the control limits could

not be symmetrically placed around the CL or could not

necessarily lie at three standard deviations from the CL.
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Warning limits situated at two standard deviations from

the CL could also be plotted. Lines at one standard devia-

tion from the CL could be added.�e decision rule could

correspondingly be modi�ed using, for example, the so

called Western Electric rules, etc.

�e usefulness of thesemodi�cations of the basic chart

should be judged, in each particular application, on the

bases of the economical or practical advantages they pro-

vide. In doing so, the costs of declaring that the process is

in control when in fact is not, and vice versa, usually play a

role.�e elapsed time since the process starts to be out of

control until this state is detected can also play a role (true

alarm), as well as the time between consecutive declara-

tions of out of control situations when the process stays in

control (false alarm rate).�ese elapsed random times are

usually called run lengths (RLs) and their means are called

average run lengths (ARLs). Clearly, the frequency distri-

bution (or probability distribution) of the RL will depend

on whether the process is in control (RL for false alarms)

or out of control (RL for true alarms), and the ARL for

false alarms should be much larger than the ARL for true

alarms.

Some More Basic Charts
Control of the mean of a measurable quality characteris-

tic is important, but a process can also be out of control

because of excessive variation around its mean.�erefore,

in addition to the basic X̄ chart, previously described, it

is customary to simultaneously run a chart to control the

range (R-chart) or the standard deviation (S-chart) of the

observations taken every time interval t.

Similarly, when the quality characteristic is not mea-

surable, one can use a p-chart or an np-chart to control

the fraction nonconforming for each time interval t, or a

c-chart or a u-chart to control the total numbers (counts)

of nonconforming items for each period t.

Some Other Types of Control Charts
Basic Shewhart charts are useful to detect relatively large

and sporadic deviations from the state of control. However,

the control of a process may be jeopardized also by small

but persistent deviations from the state of control. �e

Western Electric rules may be considered as one of many

attempts to tackle this problem. However, a more formal

approach was suggested by Page (, ) by introduc-

ing the cumulative sum (CUSUM) charts. Moreover, the

introduction of the exponentially weighted moving aver-

age (EWMA) charts provided an alternative procedure.

More recently, cumulative score (CUSCORE) charts, spe-

cialized in detecting particular types of deviation from

the state of control, have also been suggested (e.g., by

Box and Ramírez ; Box and Luceño ; Box et al.

).
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Control Charts. Fig.  An example of a Shewhart chart
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Control Charts. Fig.  An example of a one-sided CUSUM chart for the same data as in Fig. 

CUSUM Charts
To be able to e�ciently detect small persistent deviations

from target occurring before and at period t, some use of

recent observations is necessary. CUSUM charts do so by

using the following statistics:

S
+
t = max [S

+
t− + (X̄t − k

+
); ] ;

S
−
t = max [S

−
t− + (−X̄t − k

−
); ] ; ()

where k+ and k− are called reference values.�e process

is considered to be in control until the period t at which

one of the inequalities S+t > h+ or S−t > h− becomes true,

where h+ and h− are called decision intervals. At this time,

an alarm is declared, and the search for a special cause (or

assignable cause, in Deming’s words) should begin.

�e reference values and decision intervals of the chart

are o�en chosen in the light of the theoretical ARLs that

they produce when the process is on target and when

the process is out of target by an amount of D times the

standard deviation of Xt (or, equivalently, D
√
n times the

standard deviation of X̄t).

If only one of the statistics in () is used, the CUSUM

chart is called one-sided; if both are used, the CUSUM

is called two-sided.�e theoretical evaluation of the run

length distributions for two-sided CUSUM charts is con-

siderably more di�cult than for their one-sided counter-

parts. Figure  shows a one-sided CUSUM chart based on

S+t , with reference value µ + .σ and decision interval at

σ , for the sample used in Fig. .�is chart produces an

alarm at t = .

EWMA Charts
EWMA charts use recent data in a di�erent way than

CUSUM charts.�e EWMA statistic is

X̃t = ( − λ)X̃t− + λX̄t , ()

where  < λ < , but most o�en . ≤ λ ≤ ..�e EWMA

statistic at time t is an average of all observations taken

at time t and before, in which each observation receives

a weight that decreases exponentially with its age. In other

words, Eq. () can be written as

X̃t = λ[X̄t + ( − λ)X̄t− + ( − λ)

X̄t− +⋯ ]. ()

�e smaller the value of λ, the smoother the chart.

�e process is usually considered to be in control until

the period t at which ∣X̃t ∣ reaches three times the standard

deviation of the EWMA statistic X̃t . It can be shown that

the variance of X̃t is the product of the variance of X̄t by a

factor λ[ − ( − λ)t]/( − λ), where t =  is the origin

of the chart. When an alarm is triggered, the search for a

special cause should start.

Information about the above mentioned charts and

many possible variants can be found in the bibliography

that follows.
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Introduction
�e convergence of a sequence of random variables (RVs)

is of central importance in probability theory and in statis-

tics. In probability, it is o�endesired to understand the long

term behavior of, for example, the relative frequency of an

event, does it converge to a number? In what sense does

it converge? In statistics, a given estimator o�en has the

property that for large samples the values it takes are dis-

tributed around and are close to the value of the desired

parameter. In many situations the distribution of this esti-

mator can be approximated by a well known distribution,

which can simplify the analysis. �us it is necessary to

understand the types of convergence of such sequences,

and conditions under which they occur.

Four modes of convergence are presented here.

. Weak convergence, also called convergence in distribu-

tion or convergence in law, refers to the conditions

under which a sequence of distribution functions con-

verges to a cumulative distribution function (cdf).

. A second mode is convergence in probability, which

studies the limiting behavior of the sequence of prob-

abilities that for each n, a RV deviates by more than a

given quantity from a limiting RV.

. Convergence with probability one, or almost sure con-

vergence, studies the conditions under which the prob-

ability of a set of points in the sample space for which

a sequence of RVs converges to another RV is equal to

one.

. Convergence in the rth mean refers to the convergence

of a sequence of expected values. As it is to be expected,

there are some relations between the di�erentmodes of

converge.

�e results here are explained, for their formal proof, the

reader is referred to the included references. In general, the

RVs {Xn} cannot be assumed to be independent or iden-

tically distributed. For each value of the subscript n, the

distribution of Xn may change (Casella and Berger ).

In many cases, however, the sequence of dfs converge to

another df.

A large amount of literature exists on the convergence

of random variables. An excellent reference for under-

standing the de�nitions and relations is Rohatgi (). For

http://www.itl.nist.gov/div898/handbook/
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a discussion of some of these modes of convergence and

as they apply to statistics, see Casella and Berger ().

Chow and Teicher (), Loeve () and Dudley ()

present amore formal and general approach to the concept

of convergence of randomvariables. In this paper, the nota-

tion {Xn} is used to represent the sequence X,X,X, . . .

Convergence in Distribution
Let {Xn} be a sequence of RVs de�ned on a sample space

(Ω,F,P), and let {Fn} be the corresponding sequence of

cdfs. LetX be a RVwith cdf F.�e sequence {Xn} is said to

converge in distribution to X if lim
n→∞

Fn(x) = F(x) at every

point where F(x) is continuous.�is type of convergence

is sometimes also called convergence in law and denoted

Xn
L
Ð→ X. A sequence of distribution functions does not

have to converge, and when it does:

. �e limiting function does not have to be a cdf itself.

Consider the sequence given by Fn(x) =  if x < n and

Fn(x) =  if x ≥ n; n = , , . . .�en, at each real value

x, Fn(x)→ , which is not a cdf.

. Convergence in distribution does not imply that the

sequence of moments converges.

For n = , , . . . , consider a sequence of cdfs {Fn}

de�ned by Fn(x) = , if x < ; Fn(x) =  − /n, for

 ≤ x < n; and Fn(x) =  for x ≥ n. �e sequence

of cdfs converges to the cdf F(x) =  for x ≥ , and

F(x) =  otherwise. For each n, the cdf Fn corresponds

to a discrete RV Xn that has probability function (pf)

given by P{Xn = } =  − /n and P{Xn = n} =

/n. �e limiting cdf F, corresponds to a RV X with

pf P(X = ) = . For k ≥ , the kth moment of

Xn is E (X
k
n) = ( − /n) + nk(/n) = nk−. Finally,

E(Xk) = , so that E (Xkn) does not converge to E(X
k
).

. Convergence in distribution does not imply convergence

of their pfs or probability density functions (pdfs). Let a

and b be �xed real numbers, and {Xn} a sequence of

RVs with pfs given by P{Xn = x} =  for x = b + a/n

and P{Xn = x} =  otherwise. None of the pfs assigns

any probability to the point x = b.�en P{Xn = x} →

, which is not a pf, but the sequence of cdfs {Fn} of

the RVs Xn converges to a cdf, F(x) =  for x ≥ b and

F(x) =  otherwise.

. For integer valued RVs, its sequence of pfs converges to

another pf if and only if the corresponding sequence of

RVs converges in distribution.

. If a sequence of RVs {Xn} converges in distribution to X

and c is a real constant, then {Xn + c}, and {cXn} con-

verge in distribution to {X + c}, and {cX}, respectively.

Convergence in Probability
Let {Xn} be a sequence of RVs de�ned on a sample space

(Ω,F,P).�e sequence {Xn} is said to converge in prob-

ability to a RV X, denoted by Xn
p
Ð→ X, if for every real

number ε > ,

lim
n→∞

P{∣Xn − X∣ > ε} = .

Convergence in probability of {Xn} to the RV X refers to

the convergence of a sequence of probabilities, real num-

bers to . It means that the probability that the distance

between Xn and X is larger than ε >  tends to  as the n

increases to in�nity. It does not mean that given ε > , we

can �nd N such that ∣Xn − X∣ < ε for all n ≥ N.

Convergence in probability, behaves in many respects

as one would expect with respect to common arithmetic

operations and under continuous transformations. �e

following results hold (Rohatgi ):

. Xn
p
Ð→ X if and only if Xn − X

p
Ð→ .

. If Xn
p
Ð→ X and Xn

p
Ð→ Y , then P{X = Y} = .

. If Xn
p
Ð→ X, then Xn − Xm

p
Ð→ , as n,m→∞.

. If Xn
p
Ð→ X and Yn

p
Ð→ Y , then Xn + Yn

p
Ð→ X + Y ,

and Xn − Yn
p
Ð→ X − Y .

. If Xn
p
Ð→ X and k is a real constant then kXn

p
Ð→ kX.

. If Xn
p
Ð→ k then Xn

p
Ð→ k.

. If Xn
p
Ð→ a and Yn

p
Ð→ b; a, b real constants, then

XnYn
p
Ð→ ab.

. If Xn
p
Ð→  then /Xn

p
Ð→ .

. If Xn
p
Ð→ a and Yn

p
Ð→ b; a, b real constants, b ≠ ,

then Xn/Yn
p
Ð→ a/b.

. If Xn
p
Ð→ X and Y is a RV then XnY

p
Ð→ XY .

. If Xn
p
Ð→ X and Yn

p
Ð→ Y , then XnYn

p
Ð→ XY .

. Convergence in probability is stronger than conver-

gence in distribution; that is, if Xn
p
Ð→ X then

Xn
L
Ð→X.

. Let k be a real number, then convergence in distribu-

tion to k implies convergence in probability to k, that

is, if Xn
L
Ð→ k then Xn

p
Ð→ k.

. In general, convergence in distribution does not imply

convergence in probability. For an example, con-

sider the identically distributed RVsX,X,X, . . . with

sample space {, }, such that for every n, P(Xn =

,X = )=P(Xn = ,X = ) =  and P(Xn = ,X =

) = P(Xn = ,X = ) =

/. Because X,Xn, are

identically distributed RVs, Xn
L
Ð→ X, but P{∣Xn − X∣

>

/} ≥ P{∣Xn − X∣ = } =  ≠ . (Rohatgi ).
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Ten series of , trials each, of a Binomial (, .) RV
X were simulated. The ratio of the running total of suc-
cesses x, to the number of trials n is plotted for each
series. For X/n to converge in probability to . implies
for this experiment, that as n increases, for fixed ε, the
probability of observing a series outside the interval
(. − ε, . + ε), will decrease to zero. It does not
mean there is a value N such that all the series that we
can possibly simulate nwill be found inside the interval
for all n > N.

Convergence of Random Variables. Fig.  Illustration of convergence in probability

. Convergence in probability does not imply that the kth

moments converge, that is, Xn
p
Ð→ X does not imply

that E (Xkn) → E(Xk) for any integer k > .�is is

illustrated by the example in () above.

Figure  illustrates the concept of convergence in prob-

ability for series of sample means of RVs from a Bino-

mial(, .) distribution. �e following results further

relate convergence in distribution and convergence in

probability. Let {Xn,Yn},n = , , . . . be a sequence of pairs

of random variables, and let c be a real number.

. If ∣Xn − Yn∣
p
Ð→  and Yn

L
Ð→ Y , then Xn

L
Ð→ Y .

. If Xn
L
Ð→ X and Yn

p
Ð→ c, then Xn + Yn

L
Ð→ X + c.

�is is also true for the di�erence Xn − Yn.

. If Xn
L
Ð→ X and Yn

p
Ð→ c then XnYn

L
Ð→ cX (for

c ≠ ) and XnYn
p
Ð→  (for c = ).

. If Xn
L
Ð→ X and Yn

p
Ð→ c then Xn/Yn

L
Ð→ X/c

(for c ≠ ).

Almost Sure Convergence
Let {Xn} be a sequence of RVs de�ned on a sample space

(Ω,F,P).�e sequence {Xn} is said to converge to X with

probability one or almost surely, denoted Xn
as
Ð→ X if

P ( lim
n→∞

Xn = X) = .

Almost sure convergence of a sequence of RVs {Xn}

to an RV X, means that the probability of the event

{ω; lim
n→∞

Xn(ω) = X(ω)} is one (see also 7Almost Sure

Convergence of Random Variables).�at is, the set of all

points ω in the sample space Ω, where Xn(ω) converges

to X(ω), has probability one. It is not required that the

sequence of functions {Xx(ω)} converge to the function

X(ω) pointwise, for all ω in the sample space, only that

the set of such ω has probability one.

. Convergence almost surely implies convergence in

probability. If the sequence of random variables {Xn}

converges almost surely toX then it converges in prob-

ability to X.
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. Skorokhod’s representation theorem shows that if a

sequence of RVs {Xn} converges in distribution to an

RV X, then there exists a sequence of random vari-

ables {Yn}, identically distributed as {Xn} such that

{Yn} converges almost surely to a RV Y , which itself

is identically distributed as X (Dudley ).

. Continuity preserves convergence in distribution, in

probability, and almost sure convergence. If Xn con-

verges in any of these modes to X, and f is a continu-

ous function de�ned on the real numbers, then f (Xn)

converges in the same mode to f (X).

. If {Xn} is a strictly decreasing sequence of positive ran-

dom variables, such thatXn converges in probability to

, then Xn converges almost surely to .

. Convergence in probability does not imply conver-

gence almost surely. Consider (Casella and Berger

) the sample space given by the interval [, ], and

the uniform probability distribution. Consider the RV

X(ω) = ω and let {Xn} be de�ned by

X(ω) = ω + I[,](ω), X(ω) = ω + I[,/](ω),

X(ω) = ω + I[/,](ω), X(ω) = ω + I[,/](ω),

X(ω) = ω+ I[/,/](ω), X(ω) = ω+ I[/,](ω),

and so on. Here IA(ω) is the indicator function of the

set A. �en {Xn} converges in probability to X, but

does not converge almost surely since the value Xn(ω)

alternates between ω and ω +  in�nitely o�en.

Convergence in the rth Mean
De�nition Let {Xn} be a sequence of RVs de�ned on a

samplespace(Ω,F,P)�esequence{Xn} issaidtoconverge

to X in the rth mean, r ≥ , if E(∣Xn∣r) <∞, E(∣X∣r) <∞

and lim
n→∞

E(∣Xn − X∣
r
) = .

. When r =  we say that {Xn} converges in the mean,

while for r = , we say that {Xn} converges in themean

square.

. If a sequence {Xn} converges in the rth mean, and

s < r, then {Xn} converges in the sth mean. For

example, convergence in the mean square implies con-

vergence in the mean.�is means that if the variances

of a sequence converge, so do the means.

. Convergence in the rth mean implies convergence in

probability, if {Xn} converges in the rth mean to X,

then {Xn} converges in probability to X. However,

the converse is not true. For an example, consider the

sequence {Xn} with probability function de�ned by

P(Xn = ) =  −


n
and P(Xn = n) =



n
for r > .

(Rohatgi ).
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Introduction
Prior to  there was little awareness within statistics

or the applied sciences generally that a single observation

can in�uence a statistical analysis to a point where infer-

ences drawn with the observation included can be diamet-

rically opposed to those drawn without the observation.

�e recognition that such in�uential observations do occur

with notable frequency began with the  publication of

Cook’s Distance, which is a means to assess the in�uence

of individual observations on the estimated coe�cients in

a linear regression analysis (Cook ). Today the detec-

tion of in�uential observations is widely acknowledged as

an important part of any statistical analysis and Cook’s

distance is a mainstay in linear regression analysis. Gen-

eralizations of Cook’s distance and of the underlying ideas

have been developed for application in diverse statistical

contexts. Extensions of Cook’s distance for linear regres-

sion along with a discussion of surrounding methodology

were presented by Cook and Weisberg ().

Cook’s distance and its direct extensions are based

on the idea of contrasting the results of an analysis with

and without an observation. Implementation of this idea

beyond linear and7generalized linearmodels can be prob-
lematic. For these applications the related concept of local

in�uence (Cook ) is used to study the touchiness of an

analysis to local perturbations in the model or the data.

Local in�uence analysis continues to be an area of active

investigation (see, for example, Zhu et al. ).

Cook’s Distance
Consider the linear regression of a response variable Y on

p predictors X, . . . ,Xp represented by the model

Yi = β + βXi +⋯ + βpXip + εi,

where i = , . . . ,n indexes observations, the β’s are the

regression coe�cients and ε is an error that is independent

of the predictors and has mean  and constant variance

σ .�is classic model can be represented conveniently in

matrix terms as Y = Xβ + ε. Here, Y = (Yi) is the n × 

vector of responses, X = (Xij) is the n × (p + ) matrix

of predictor values Xij, including a constant column to

account for the intercept β, and ε = (εi) is the n×  vector

of errors. For clarity, the ith response Yi in combination

with its associated values of the predictors Xi, . . . ,Xip is

called the ith case. Let β̂ denote the ordinary least squares
(OLS) estimator of the coe�cient vector β based on the
full data and let β(i) denote the OLS estimator based on

the data a�er removing the ith case. Let s denote estima-

tor of σ  based on the OLS �t of the full dataset – s the

residual sum of squares divided by (n − p − ).

Cook () proposed to assess the in�uence of the

ith case on β̂ by using a statistic Di, which subsequently
became known as Cook’s distance, that can be expressed

in three equivalent ways:

Di =
(β̂ − β̂(i))

TXTX(β̂ − β̂(i))

(p + )s
()

=
(Ŷ − Ŷ(i))T(Ŷ − Ŷ(i))

(p + )s
()

=
ri
p + 

×
hi

 − hi
. ()

�e �rst form () shows that Cook’s distance measures

the di�erence between β̂ and β̂(i) using the inverse of the

contours of the estimated covariance matrix s(XTX)− of
β̂ and scaling by the number of terms (p+ ) in the model.
�e second form shows that Cook’s distance can be viewed

also as the squared length of the di�erence between the n×

vector of �tted values Ŷ = Xβ̂ based on the full data and
the n ×  vector of �tted values Ŷ(i) = Xβ̂(i) when β is
estimated without the ith case.

�e �nal form () shows the general characteristics of

cases with relatively large values of Di.�e ith leverage hi,

 ≤ hi ≤ , is the ith diagonal of the projection matrix

H = X(XTX)−X that puts the “hat” onY, Ŷ = HY. It mea-
sures how far the predictor values Xi = (Xi, . . . ,Xip)

T
for

the ith case are from the average predictor value X. If Xi is
far fromX then the ith casewill have substantial pull on the
�t, hi will be near its upper bound of , and the second fac-

tor of () will be very large. Consequently, Di will be large

unless the �rst factor in () is small enough to compensate.

�e second factor tells us about the leverage or pull that

Xi has on the �tted model, but it does not depend on the
response and thus says nothing about the actual �t of the

ith case.�at goodness of �t information is provided by ri
in �rst factor of (): ri is the Studentized residual for the

ith case – the ordinary residual for the ith case divided by

s
√
 − hi.�e squared Studentized residual r


i will be large

when Yi does not �t the model and thus can be regarded as

an outlier, but it says nothing about leverage. In short, the
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�rst factor gives information on the goodness of the �t of

Yi, but it says nothing about leverage, while the second fac-

tor gives the leverage information but says nothing about

goodness of �t. When multiplied, these factors combine to

give a measure of the in�uence of the ith case.

�e Studentized residual ri is a common statistic for

testing the hypothesis that Yi is not an outlier. �at test

is most powerful when hi is small, so Xi is near X, and
least powerful when hi is relatively large. However, lever-

age or pull is weakest when hi is small and strongest when

hi is large. In other words, the ability to detect 7outliers is
strongest where the outliers tend to be the least in�uential

and weakest where the outliers tend to be the most in�u-

ential.�is gives another reason why in�uence assessment

can be crucial in an analysis.

Cook’s distance is not a test statistic and should not by

itself be used to accept cases or reject cases. It may indicate

an anomalous case that is extramural to the experimen-

tal protocol or it may indicate the most important case

in the analysis, one that points to a relevant phenomenon

not re�ected by the other data. Cook’s distance does not

distinguish these possibilities.

Illustration
�e data that provided the original motivation for the

development of Cook’s distance came from an experiment

on the absorption of a drug by rat livers. Nineteen rats

were given various doses of the drug and, a�er a �xed wait-

ing time, the rats were sacri�ced and the percentage Y of

the dose absorbed by the liver was measured.�e predic-

tors were dose, body weight and liver weight.�e largest

absolute Studentized residual is max ∣ri∣ = ., which is

unremarkablewhen adjusting formultiple testing.�e case

with the largest leverage . has a modest Studentized

residual of ., but a relatively large Cook’s distance of

. – the second largest Cook’s distance is .. Body

weight and dose have signi�cant e�ects in the analysis of

the full data, but there are no signi�cant e�ects a�er the

in�uential case is removed. It is always prudent to study

the impact of cases with relatively large values of Di and

all case for which Di > .. �e most in�uential case in

this analysis �ts both of these criteria.�e rat data are dis-

cussed inCook andWeisberg () and available from the

accompanying so�ware.
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functions of the single random variables.�ey also allow

the construction of families of bivariate or multivariate

distributions.

�e de�nition of the notion of copula relies on those of

d-box (De�nition ) and ofH-volume (De�nition ). Here,

and in the following, we put I := [, ].

De�nition  Let a = (a, a, . . . , ad) and b = (b,

b, . . . , bd) be two points in Rd, with  ≤ aj ≤ bj ≤ 

(j ∈ {, , . . . ,d}); the d-box [a,b] is the cartesian product

[a,b] =
d

∏
j=

[aj, bj],

De�nition  For a function H : Rd → R, the H-volume
VH of the d-box [a,b] is de�ned by

VH ([a,b]) :=∑
v
sign(v)H(v),

where the sum is taken over the d vertices v of the box [a,b];
here

sign(v) =
⎧⎪⎪
⎨
⎪⎪⎩

, if vj = aj for an even number of indices,

−, if vj = aj for an odd number of indices.

De�nition  A function Cd : Id → I is a d-copula if

(a) Cd(x, x, . . . , xd) = , if xj =  for at least one index

j ∈ {, , . . . , d};

(b) when all the arguments of Cd are equal to , but for the

j-th one, then

Cd(, . . . , , xj, , . . . , ) = xj;

(c) the VCd -volume of every d-box [a,b] is positive,
VCd ([a,b]) ≥ .

�e set of d-copulas (d ≥ ) is denoted by Cd; in particular,

the set of (bivariate) copulas is denoted by C.

Property (c) is usually referred to as the “d-increasing

property of a d-copula”.�us every copula is the restric-

tion to the unit cube Id of a distribution function that
concentrates all the probability mass on Id and which has
uniformmargins (and this may also serve as an equivalent

de�nition).

It is possible to show that Cd is a compact set in the set

of all continuous functions from Id into I equipped with
the product topology, which corresponds to the topology

of pointwise convergence. Moreover, in Cd pointwise and

uniform convergence are equivalent.

Everyd-copula satis�es the Fréchet–Hoe�ding bounds:

for all x,…, xd in I, one has

Wd(x, . . . , xd) ≤ C(x, . . . , xd) ≤Md(x, . . . , xd), ()

where

Wd(x, . . . , xd) := max{, x + ⋅ ⋅ ⋅ + xd − d + }

Md(x, . . . , xd) := min{x, . . . , xd}.

Also relevant is the “independence copula”

Πd(x, . . . , xd) :=
d

∏
j=
xj.

While Πd and Md are copulas for every d ≥ , Wd is a

copula only for d = , although the lower bound provided

by () is the best possible.

● Πd is the distribution function of the random vector

U = (U,U, . . . ,Ud) whose components are indepen-

dent and uniformly distributed on I.
● Md is the distribution function of the vector

U = (U,U, . . . ,Ud) whose components are uni-

formly distributed on I and such that U = U = ⋅ ⋅ ⋅ =
Ud almost surely.

● W is the distribution function of the vector U =

(U,U) whose components are uniformly distributed

on I and such that U =  −U almost surely.

�e importance of copulas for the applications in

statistics stems from Sklar’s theorem.

�eorem  (Sklar ) Let H be a d-dimensional distri-

bution function withmargins F, F,…, Fd, and let Aj denote

the range of Fj, Aj := Fj(R) ( j = , , . . . , d). �en there

exists a d-copula C, uniquely de�ned on A ×A × ⋅ ⋅ ⋅ ×Ad,

such that, for all (x, x, . . . , xd) ∈ Rd,

H(x, x, . . . , xd) = C (F(t),F(t), . . . ,Fd(td)) . ()

Conversely, if F, F,…, Fd are distribution functions, and

if C is any d-copula, then the function H : Rd → I de�ned
by () is a d-dimensional distribution function with margins

F, F,…, Fd.

For a compact and elegant proof of this result see

(Rüschendorf ).

�e second (“converse”) part of Sklar’s theorem is espe-

cially important in the construction of statistical models,

since it allows to proceed in two separate steps:

● Choose the one-dimensional distribution functions F,

F,… , Fd that describe the behavior of the individual

statistical quantities (random variables) X, X,… , Xd
that appear in the model.

● Fit these in () bymeans of a copulaC that captures the

dependence relations among X, X,… , Xd.
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�ese two steps are independent in the sense that, once a

copula C has been chosen, any choice of the distribution

functions F, F,…, Fd is possible.

It should be stressed that the copula whose exis-

tence is established in Sklar’s theorem is uniquely de�ned

only when the distribution functions have no discrete

component; otherwise, there are, in general, several copu-

las that coincide on A × A × ⋅ ⋅ ⋅ × Ad and which satisfy

(). �is lack of uniqueness may have important conse-

quences when dealing with the copula of random variables

(see, e.g., (Marshall )).

�e introduction of copulas in the statistical litera-

ture has allowed an easier way to construct models by

proceeding in two separate steps: (i) the speci�cation of

the marginal laws of the random variables involved and

(ii) the introduction of a copula that describes the depen-

dence structure among these variables. In many applica-

tions (mainly in Engineering) this has allowed to avoid

the mathematically elegant and easy-to-deal, but usually

unjusti�ed, assumption of independence.

In view of possible applications, it is important to have

at one’s disposal a stock of copulas.Many families of bivari-

ate copulas can be found in the books by Nelsen (),

by Balakrishnan and Lai () and Jaworski et al. ().

Here we quote only the gaussian, the meta-elliptical (Fang

et al. ) and the extreme-value copulas (Ghoudi et al.

). A popular family of copulas is provided by the

Archimedean copulas, which, in the two-dimensional case,

are represented in the form

Cφ(s, t) = φ
[−]

(φ(s) + φ(t)) ,

where the generator φ : [, ] → [,+∞] is continuous,

strictly decreasing, convex and φ() = , and φ[−]
is the

pseudo-inverse of φ, de�ned by φ[−]
(t) := φ−(t), for

t ∈ [, φ()], and by , for t ∈ [φ(),+∞].�ese copu-

las depend on a function of a single variable, the generator

φ; as a consequence, the statistical properties of a pair of

random variables havingCφ as their copula are easily com-

puted in terms of φ (Genest and MacKay ; Nelsen

). For the multivariate case the reader is referred to

the paper by McNeil and Nešlehová (), where the

generators of a such a copula are completely characterized.

Notice, however, that the choice of a symmetric cop-

ula, in particular of an Archimedean one, means that the

random variables involved are exchangeable, if they have

the same distribution. �e e�ort to avoid this limitation

motivates the recent great interest in the construction of

nonsymmetric copulas (see, e.g., Liebscher ()).

It must also be mentioned that many methods of

construction for copulas have been introduced; here we

mention

● Ordinal sums (Mesiar and Sempi );

● Shu�es of Min (Mikusiński et al. ) and its gener-

alization to an arbitrary copula (Durante et al. );

● �e ∗-product (Darsow et al. ) and its generaliza-

tion (Durante et al. a);

● Transformations of copulas, Ch(u, v) := h[−]

(C(h(u),h(v))), where the function h : I → I is
concave (Durante and Sempi );

● Splicing of symmetric copulas (Durante et al. b;

Nelsen et al. );

● Patchwork copulas (De Boets and De Meyer ;

Durante et al. );

● Gluing of copulas (Siburg and Stoimenov ).

A strong motivation for the development of much of

copula theory in recent years has come from their appli-

cations in Mathematical Finance (see, e.g., (Embrechts

et al. ), in Actuarial Science (Free and Valdez ),

and in Hydrology (see, e.g., (Genest and Favre ;

Salvadori et al. )).
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Introduction
Correlation trading denotes the trading activity aimed at

exploiting changes in correlation or more generally in the

dependence structure of assets or risk factors. Likewise,

correlation risk is de�ned as the exposure to losses trig-

gered by changes in correlation.�e copula function tech-

nique, which enables analyzing the dependence structure

of a joint distribution independently from the marginal

distributions, is the ideal tool to assess the impact of

changes in market comovements on the prices of assets

and the amount of risk in a �nancial position. As far as

the prices of assets are concerned, copula functions enable

pricing multivariate products consistently with the prices

of univariate products. As for risk management, copula

functions enable assessing the degree of diversi�cation in

a �nancial portfolio as well as the sensitivity of risk mea-

sures to changes in the dependence structure of risk fac-

tors. �e concept of consistency between univariate and

multivariate prices and risk factors is very similar, and

actually parallel, to the problem of compatibility between

multivariate probability distributions and distribution of

lower dimensions. In �nance, this concept is endowedwith

a very practical content, since it enables designing strate-

gies involving univariate and multivariate products with

the aim of exploiting changes in correlation.

Copulas and Spatial Dependence in
Finance
Most of the applications of copula functions in �nance

are limited to multivariate problems in a cross-sectional

sense (as econometricians are used to saying), or in a

spatial sense (as statisticians prefer). In otherwords, almost

all the applications have to do with the dependence struc-

ture of di�erent variables (prices or losses in the case of

�nance) at the same date.�e literature on applications like

these is too large to be quoted here in detail, and we refer

the reader to the bibliography below and to those in Bouyé

et al. () and Cherubini et al. () for more details.

Pricing Applications
Standard asset pricing theory is based on the requirement

that the prices of �nancial products must be such that

no arbitrage opportunities can be exploited, meaning that

no �nancial strategy can be built yielding positive return
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with no risk. �e price consistent with absence of arbi-

trage opportunities is also known as the “fair value” of

the product. �e fundamental theorem of �nance states

that this amounts to assert that there must exist a prob-

ability measure, called risk-neutral measure, under which

the expected future returns on each and every asset must

be zero, or, which is the same, that the prices of �nan-

cial assets must be endowed with the martingale property,

when measured with that probability measure.�en, the

price of each asset promising some payo� in the future

must be the expected value with respect to the same prob-

ability measure. �is implies that if the payo� is a func-

tion of one risk factor only, the price is the expected

value with respect to a univariate probability measure. If

the payo� is instead a function of more than one vari-

able, then it must be computed by taking expectations

with respect to the joint distribution of the risk factors.

Notice that this implies that there must be a relationship

of price consistency between the prices of univariate and

multivariate products, and more generally there must be

compatibility relationships (in the proper meaning of the

term in statistics) among prices. �is is particularly true

for derivative products promising some payments contin-

gent on a multivariate function of several assets.�ese are

the so-called basket derivative products, which are mainly

designed on common equity stock (equity derivatives), or

insurance policies against default of a set of counterpar-

ties (credit derivatives). �e same structure may be used

for products linked to commodities or actuarial risks.

�ere are also products called “hybrids” that include dif-

ferent risk factors (such as market risk, i.e., the risk of

market movements and default of some obligors) in the

same product. For the sake of illustration, we provide

here two standard examples of basket equity and credit

derivatives:

Example  (Altiplano Note) �ese are so-called digital

products, that is, paying a �xed sum if some event takes

place at a given future dateT. Typically, the event is de�ned

as a set of stocks or market indexes, and the product pays

the �xed sum if all of them are above some given level, typ-

ically speci�ed as a percentage of the initial level.�e price

of this product is of course the joint risk-neutral proba-

bility that all the assets be above a speci�ed level at time

T : Q(S(T) > K, S(T) > K, . . . , Sm(T) > Km),

where Ki are the levels (so-called strike prices). Consider

now that we can actually estimate the marginal distribu-

tions from the option markets, so that we can price each

Qi(Si(T) > Ki). As a result, the only reasonwhy one wants

to invest in the multivariate digital product above instead

of on a set of univariate ones is to exploit changes in corre-

lation among the assets. To put it in other terms, the value

of a multivariate product can increase even if the prices

of all the univariate products remain unchanged, and this

may occur if the correlation increases. Copula functions

are ideal tools to single out this e�ect.

Example  (CollateralizedDebtObligation (CDO)) Today

it is possible to invest in portfolios of credit derivatives. In

nontechnical terms, we can buy and sell insurance (“protec-

tion” is the term inmarket jargon) on the �rst x% losses on

defaults of a set of obligors (called “names”).�is product is

called − x% equity tranche of a portfolio of credit losses.

For the sake of simplicity assume  names and a –%

equity tranche, and assume that in case of default, each loss

is equal to . So, this tranche pays insurance the �rst time a

default occurs (it is also called a �rst-to-default protection).

Again, we can easily recover the univariate probabilities of

default from other products, namely the so-called credit

default swap (CDS)market. So, we can price the protection

for every single name in the basket.�e price of the �rst-to-

default must then be compatible with such prices. In fact,

with respect to such prices, the multivariate product is dif-

ferent only because it allows to invest in correlation. Again,

the equity tranche can increase in value even though the

values of single-insurance CDS for all the names remain

constant, provided that the correlation of defaults increase.

Even in this case, copula functions provide the ideal tool to

evaluate and trade the degree of dependence of the events

of default.

Risk Management
�e riskmanager faces the problemofmeasuring the expo-

sure of the position to di�erent risk factors. In the stan-

dard practice, he transforms the �nancial positions in the

di�erent assets and markets into a set of exposures (buck-

ets, in jargon) to a set of risk factors (mapping process).

�e problem is then to estimate the joint distribution of

losses L,L,L, . . . ,Lk, on these exposures and de�ne a

risk measure on this distribution. Typical measures are

Value-at-Risk (VaR) andExpected Shortfall (ES)de�ned as

VaR(Li) ≡ inf(x : Hi(Li) > −α) ES ≡ E(Li∣Li ≥ VaR)

whereHi(.) is the marginal probability distribution of loss

Li. �e risk measure of the overall portfolio will analo-

gously be

VaR(
k

∑
i=
Li) ≡ inf (x : H(

k

∑
i=
Li) >  − α)

ES ≡ E(
k

∑
i=
Li∣Li ≥ VaR)

where H(.) is now the probability distribution of the

sum of losses. It is clear that the relationship between
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univariate and multivariate risk measures is determined

by the dependence structure linking the losses themselves.

Again, copula functions are used to merge these risk mea-

sures together. Actually, if the max(. , .) instead of the sum

were used as the aggregation operator, the risk measure

would use the copula function itself as the aggregated

distribution of losses.

Copula Pricing and Arbitrage
Relationships
Using copula functions is very easy to recover arbitrage

relationships (i.e., consistency, or compatibility relation-

ships) among prices of multivariate assets.�ese relation-

ships directly stem from links between copula functions

representing the joint distribution of a set of events and

those representing the joint distribution of the comple-

ment sets. A survival copula is de�ned as

Q(S >K, S >K, . . . , Sm >Km)=C(−u, −u, . . . , −um)

�e relevance of this relationship in �nance is clear because

it enforces the so-called put-call parity relationships.

�ese relationships establish a consistency link between

the price of products paying out if all the events in a set take

place and products paying out if none of them take place.

Going back to the Altiplano note above, we may provide a

straightforward check of this principle.

Example  (Put-Call Parity of Altiplano Notes) Assume

an Altiplano Note like that in Example , with the only

di�erence that the �xed sum is paid if all the assets Si are

below (instead of above) the same prede�ned thresholds

Ki. Clearly, the value of the product will be Q(S(T) ≤

K, S(T) ≤ K, . . . , Sm(T) ≤ Km). Given themarginal dis-

tributions, the dependence structure of this product, which

could be called put, or bearish, Altiplano should be rep-

resented by a copula, while the price of the call or bullish

Altiplano in Example  should be computed using the sur-

vival copula. It can be proved that if this is not the case, one

could exploit arbitrage pro�ts (see Cherubini and Luciano

; Cherubini and Romagnoli ).

Copulas and Temporal Dependence in
Finance
So far, we have described correlation in a spatial setting.

�e �aw of this approach, and of copula applications to

�nance in general, is that no consistency link is speci�ed,

among prices with the same underlying risk factors, but

payo�s at di�erent times. We provide three examples here,

two of which extend the equity and credit products cases

presented above, while the third one refers to a problem

arising in risk management applications. Research on this

topic, as far as applications to �nance are concerned, is at

an early stage, and is somewhat covered in the reference

bibliography below.

Example  (Barrier Altiplano Note) Assume an Altiplano

Note with a single asset, but paying a �xed sum at the

�nal date if the price of that asset S remains above a given

threshold K on a set of di�erent dates {t, t, t, . . . , tn}.

�is product can be considered multivariate just like that

in Example , by simply substituting the concept of tempo-

ral dependence for that of spatial dependence.Again, copula

functions can be used to single out the impact of changes in

temporal dependence on the price of the product. For some

of these products, it is not uncommon to �nd the so-called

memory feature, according to which the payo� is paid for

all the dates in the set at the �rst time that the asset is above

the threshold.

Example  (Standard Collateralized Debt Obligations)

(CDX, iTraxx) In the market there exist CDO contracts,

like those described in Example  above, whose terms are

standardized, so that they may be of interest for a large set

of investors.�ese products include  “names” represen-

tative of a whole market (CDX for the US and iTraxx for

Europe), and on these markets people may trade tranches

buying and selling protection on –%, –%, and so on,

according to a schedule, which is also standardized. So,

for example, you may buy protection against default of

the �rst % of the same  names, but for a time hori-

zon of  or  years (the standard maturities are , , and

 years). For sure you will pay more for the  years insur-

ance than for the  years insurance on the same risk. How

much more will depend on the relationship between the

losses which you may incur in the �rst  years and those

that you may face in the remaining  years. Clearly, tem-

poral dependence cannot be avoided in this case and it

is crucial in order to determine a consistency relationship

between the price of insurance against losses on a term of 

years and those on a term of  years.�is consistency rela-

tionship is known as the term structure ofCDX (or iTraxx)

premia.

Example  (Temporal aggregation of risk measures) We

may also think of a very straightforward problem of tem-

poral dependence in riskmanagement, which arises when-

ever we want to compute the distribution of losses over

di�erent time horizons. An instance in which this prob-

lem emerges is when one wants to apply risk measures to

compare the performance of managed funds over di�erent

investment horizons.�e same problem arises whenever

we have to establish a dependence structure between risk

factors that are measured with di�erent time frequencies.
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To take the typical example, assume you want to study the

dependence structure between market risk and credit risk

in a portfolio.�e risk measures of market risk are typi-

cally computed on losses referred to a period of  or  days,

while credit risk losses are measured in periods of months.

Before linking the measures, one has to modify the time

horizon of one of the two in order tomatch that of the other

one.�e typical “square root rule” used in the market obvi-

ously rests on the assumption of independent losses with

Gaussian distribution, but this is clearly a coarse approxi-

mation of reality.

Financial Prices Dynamics and Copulas
�e need to extend copulas to provide a representation

of both spatial and temporal dynamics of �nancial prices

and risk factors has led to the rediscovery of the rela-

tionship between 7copulas and the Markov process (see
7Markov Processes) that was �rst investigated by Darsow
et al. (). Actually, even though theMarkov assumption

may seem restrictive for general applications, it turns out

to be consistent with the standard E�cientMarket Hypoth-

esis paradigm.�is hypothesis postulates that all available

information must be embedded in the prices of assets, so

that price innovations must be unpredictable. �is leads

to models of asset prices driven by independent incre-

ments, which are Markovian by construction. For these

reasons, this approach was rediscovered both for pricing

and �nancial econometrics applications (Cherubini et al.

, ; Cherubini and Romagnoli ; Ibragimov

; Chen ).

We illustrate here the basic result going back toDarsow

et al. () with application to asset prices. We assume a

set of {S, S, . . . , Sm} assets and a set of {t, t, t, . . . , tn}

dates, and a �ltered probability space generated by the

prices and satisfying the usual conditions. Denote S
j

i the

price of asset i at time j. First, de�ne the product of two

copulas as

A∗B(u, v) ≡



∫


∂A(u, t)

∂t

∂B(t, v)

∂t
dt

and the extended concept of “star-product” as

A ∗ B(u,u, . . . ,um+n−)

≡

um

∫


∂A(u,u, . . . ,um−, t)

∂t

×
∂B(t,um+,um+, . . . ,um+n−)

∂t
dt

Now, Darsow et al. proved that a stochastic process Si
is a �rst order 7Markov chain if and only if there exists a

set of bivariate copula functions T
j,j+
i , j = , , . . . ,n, such

that the dependence among {Si , S

i , . . . , S

n
i } can be written

as

G
j

i (u

i ,u


i , . . . ,u

j

i) = T
,

i (ui ,u

i )

∗T,i (ui ,u

i ) . . . ∗ T

j−,j
i (ui ,u


i )

�e result was extended to general Markov processes

of order k by Ibragimov (). Within this framework,

Cherubini et al. () provided a characterization of

processes with independent increments.�e idea is to rep-

resent the price Sj (or its logarithm) as Sj− + Y j. Assume

that the dependence structure between Sj− and Y j is rep-

resented by copulaC(u, v).�en, the dependence between

Sj− and Sj may be written as

T
j−,j

(u, v) =

u

∫


DC(w,FY(F
−
S,j (v) − F

−
S,j−(w)))dw

where D represents partial derivative with respect to the

�rst variable, FY(.) denotes the probability distribution of

the increment, and the distribution FS,k(.) the probabil-

ity distribution of Sk.�e probability distribution of Sk is

obtained by taking the marginal

F(S
j
≤ s) = T

j−,j
(, v) =



∫


DC(w,FY(s−F
−
S,j−(w)))dw

�is is a sort of extension of the concept of convolution to

the case in which the variables in the sum are not inde-

pendent. Of course, the case of independent increments

is readily obtained by setting C(u, v) = uv. �e copula

linking Sj− and Sj becomes in this case

T
j−,j

(u, v) =

u

∫


FY(F
−
S,j (v) − F

−
S,j−(w))dw

A well-known special case is

T
j−,j

(u, v) =

u

∫


Φ(Φ
−
(v) −Φ

−
(w))dw

with Φ(x) the standard normal distribution, which yields

the dependence structure of a Brownian motion (see

7Brownian Motion and Di�usions) upon appropriate
standardization. As for pricing applications, Cherubini

et al. () applied the framework to temporal depen-

dence of losses and the term structure of CDX pre-

mia, and Cherubini and Romagnoli () exploited the

model to price barrier Altiplanos. �is stream of litera-

ture, which applies copulas to modeling stochastic pro-

cesses in discrete time, casts a bridge to a parallel approach,

that directly applies copulas to model dependence among
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stochastic processes in continuous time: this is the so-

called Lévy copula approach (Kallsen and Tankov ).

Both these approaches aim at overcoming the major �aw

of copula functions as a static tool and uni�cation of them

represents the paramount frontier issue in this important

and promising �eld of research.
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Introduction
In multivariate data modelling for an understanding of

stochastic dependence the notion of correlation has been

central. Although correlation is one of the omnipresent

concepts in statistical theory, it is also one of the most

misunderstood concepts. �e confusion may arise from

the literary meaning of the word to cover any notion of

dependence. From mathematics point of view, correlation

is only one particular measure of stochastic dependence. It

is the canonicalmeasure in theworld of7multivariate nor-
mal distributions and in general for spherical and elliptical

distributions. However empirical research in many appli-

cations indicates that the distributions of the real world

seldom belong to this class. We collect and present ideas of

copula functions with applications in statistical probability

distributions and simulation.

Dependence
We denote by (X,Y) a pair of real-valued nondegenerate

random variables with �nite variances σ x and σ y respec-

tively.�e correlation coe�cient between X and Y is the

standardized covariance σxy, i.e., ρ =
σxy

σxσy
, ρ ∈ [−, ].

�e correlation coe�cient is a measure of linear depen-hh
dence only. In case of independent random variables, cor-

relation is zero. Embrechts, McNeil and Straumann ()

have discussed that in case of imperfect linear dependence,

i.e., − < ρ < , misinterpretations of correlation are possi-

ble. Correlation is not ideal for a dependence measure and
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causes problems when there are heavy-tailed distributions.

Independence of two random variables implies they are

uncorrelated but zero correlation does not in general imply

independence. Correlation is not invariant under strictly

increasing linear transformations. Invariance property is

desirable for the statistical estimation and signi�cance test-

ing purposes. Further correlation is sensitive to 7outliers
in the data set. �e popularity of linear correlation and

correlation based models is primarily because it is o�en

straightforward to calculate and manipulate them under

algebraic operations. For many 7bivariate distributions it
is simple to calculate variances and covariances and hence

the correlation coe�cient. Another reason for the pop-

ularity of correlation is that it is a natural measure of

dependence inmultivariate normal distributions andmore

generally in multivariate spherical and elliptical distribu-

tions. Some examples of densities in the spherical class are

those of the multivariate t-distribution and the 7logistic
distribution.

Another class of dependence measures is rank corre-

lations. �ey are de�ned to study relationships between

di�erent rankings on the same set of items. Rank corre-

lation measures the correspondence between two rank-

ings and assess their signi�cance. Two commonly used

measures of concordance are Spearman’s rank correla-

tion (ρs) and Kendall’s rank correlation (τ). Assuming

random variables X and Y have distribution functions

F and F and joint distribution function F, Spearman’s

rank correlation ρs = ρ(F(X),F(Y)) where ρ is the lin-

ear correlation coe�cient. If (X,Y) and (X,Y) are two

independent pairs of random variables from the distribu-

tion function F, then the Kendall’s rank correlation is τ =

Pr [(X − X)(Y − Y) > ]−Pr [(X − X)(Y − Y) < ].

�e main advantage of rank correlations over ordinary

linear correlation is that they are invariant under mono-

tonic transformations. However rank correlations do not

lend themselves to the same elegant variance–covariance

manipulations as linear correlation does since they are not

moment-based.

A measure of dependence like linear correlation sum-

marizes the dependence structure of two random variables

in a single number. Scarsini () has detailed properties

of copula based concordance measures. Another excel-

lent discussion of dependence measures is by Embrecht

et al. (). Let D(X,Y) be a measure of depen-

dence which assigns a real number to any real-valued

pair of random variables (X,Y). �en dependence mea-

sure D(X,Y) is desired to have properties: (i) Sym-

metry: D(X,Y)= D(Y ,X); (ii) Normalization: − ≤

D(X,Y) ≤ + ; (iii) Comonotonic or Countermonotonic:

�e notion of comonotonicity in probability theory is

that a random vector is comonotonic if and only if

all marginals are non-decreasing functions (or non-

increasing functions) of the same random variable.

A measure D(X,Y) is comonotonic if D(X,Y) = 

⇐⇒ X,Y or countermonotonic if D(X,Y) = −

⇐⇒ X,Y ; (iv) For a transformation T strictly mono-

tonic on the range of X, D(T(X),Y) = D(X,Y),

T(X) increasing or D(T(X),Y) = −D(X,Y), T(X)

decreasing.

Linear correlation ρ satis�es properties (i) and (ii) only.

Rank correlations ful�ll properties (i)–(iv) for continuous

random variables X and Y . Another desirable property

is: (v) D(X,Y) =  ⇐⇒ X,Y ( Independent). How-

ever it contradicts property (iv).�ere is no dependence

measure satisfying properties (iv) and (v). If we desire

property (v), we should consider dependence measure

≤D∗(X,Y)≤ + . �e disadvantage of all such depen-

dence measuresD∗(X,Y) is that they can not di�erentiate

between positive and negative dependence (Kimeldorf and

Sampson ; Tjøstheim ).

Copulas
7Copulas have recently emerged as a means of describ-
ing joint distributions with uniform margins and a tool

for simulating data. �ey express joint structure among

random variables with any marginal distributions. With a

copula we can separate the joint distribution into marginal

distributions of each variable. Another advantage is that

the conditional distributions can be readily expressed

using the copula. An excellent introduction of copulas is

presented in Joe () and Nelsen (). Sklar’s theo-

rem () states that any multivariate distribution can

be expressed as the k-copula function C(u, . . . ,ui, . . . ,uk)

evaluated at each of the marginal distributions. Copula is

not unique unless the marginal distributions are contin-

uous. Using probability integral transform, each contin-

uous marginal Ui = Fi(xi) has a uniform distribution

(see7UniformDistribution in Statistics) on I ∈[, ] where
Fi(xi) is the cumulative integral of fi(xi) for the random

variable Xi ∈ (−∞,∞) . �e k-dimensional probability

distribution function F has a unique copula representa-

tion F(x, x, . . . , xk) = C(F(x),F(x), . . . ,Fk(xk)) =

C(u,u, . . . ,uk). �e joint probability density func-

tion is written as f (x, x, . . . , xk) = Π
k
i= fi(xi) ×

c(F(x),F(x), . . . ,Fk(xk))where fi(xi) is eachmarginal

density and coupling is provided by copula density

c(u,u, . . . ,uk) = ∂kC(u,u, . . . ,uk)/∂u∂u . . . ∂uk if

it exists. In case of independent random variables, cop-

ula density c(u,u, . . . ,uk) is identically equal to one.

�e importance of the above equation f (x, x, . . . , xk)
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is that the independent portion expressed as the prod-

uct of the marginals can be separated from the function

c(u,u, . . . ,uk) describing the dependence structure or

shape.�e dependence structure summarized by a copula

is invariant under increasing and continuous transforma-

tions of the marginals.�is means that suppose we have a

probability model for dependent insurance losses of vari-

ous kinds. If our interest now lies in modelling the loga-

rithm of these losses, the copula will not change, only the

marginal distributions will change.

�e simplest copula is independent copula Π := C(u,

u, . . . ,uk) = uu . . . uk with uniform density func-

tions for independent random variables. Another cop-

ula example is the Farlie–Gumbel–Morgenstern (FGM)

bivariate copula. �e general system of FGM bivariate

distributions is given by F(x, x) = F(x) × F(x)

[ + ρ ( − F(x)) ( − F(x))] and copula associated

with this distribution is a FGM bivariate copula C(u, v) =

uv [ + ρ ( − u) ( − v)]. A widely used class of copu-

las is Archimedean copulas which has a simple form

and models a variety of dependence structures. Most of

the Archimedean copulas have closed-form solutions. To

de�ne an Archimedean copula, let ϕ be a continuous

strictly decreasing convex function from [, ] to [,∞]

such that ϕ() =  and ϕ() =∞ . Let ϕ− be the pseudo

inverse of ϕ.�en a k-dimensional Archimedean copula

is C(u,u, . . . ,uk) = ϕ
−

[ϕ(u) + . . . + ϕ(uk)]. �e func-

tion ϕ is known as a generator function.�us any generator

function satisfying ϕ() = ; limx→ ϕ(x) = ∞; ϕ′(x) <

; ϕ′′(x) >  will result in an Archimedean copula.

For an example, generator function ϕ(t) = (t−θ
− ) /θ,

θ ∈ [−,∞)/{} results in the bivariate Clayton copula

C(u,u) = max [(u −θ
 + u −θ

 − )
−/θ

, ]. �e copula

parameter θ controls the amount of dependence between

X and X.

�e Frécht–Hoe�ding bounds for copulas:�e lower

bound for k-variate copula isW(u,u, . . . ,uk) :=max {−

n +∑
k
i= ui, } ≤ C(u,u, . . . ,uk). �e upper bound for

k-variate copula is C(u,u, . . . ,uk) ≤ mini∈{,,. . .,k} ui =:

M(u,u, . . . ,uk). For all copulas, the inequalityW(u, . . .,

uk)≤ C(u, . . . ,uk) ≤ M(u, . . . ,uk) is satis�ed. �is

inequality is well known as the Frécht-Hoe�ding bounds

for copulas. Further,W andM are copulas themselves. It

may be noted that the Frécht-Hoe�ding lower bound is not

a copula in dimension k > . Copulas M,W and Π have

important statistical interpretations (Nelson, ). Given

a pair of continuous random variables (X,X), (i) copula

of (X,X) is M(u,u) if and only if each of X and X is

almost surely increasing function of the other; (ii) copula

of (X,X) is W(u,u) if and only if each of X and X

is almost surely decreasing function of the other and (iii)

copula of (X,X) is Π(u,u) = uu if and only if X and

X are independent.

�ree famous measures of concordance Kendall’s τ,

Spearman’s ρs and Gini’s index γ could be expressed in

terms of copulas (Schweizer and Wol� ) τ =  ∫ ∫I

C(u,u) dC(u,u) − , ρs =  ∫ ∫I uu dC(u,u) −

and γ =  ∫ ∫I (∣u + u − ∣− ∣u − u∣) dC(u,u). It may

however be noted that the linear correlation coe�cient ρ

cannot be expressed in terms of copula.

�e tail dependence indexes of a multivariate distribu-

tion describe the amount of dependence in the upper right

tail or lower le� tail of the distribution and can be used to

analyze the dependence among extremal random events.

Tail dependence describes the limiting proportion that one

margin exceeds a certain threshold given that the other

margin has already exceeded that threshold. Joe ()

de�nes tail dependence: If a bivariate copula C(u,u) is

such that λU := limu→
[−u+C(u,u)]

(−u) exists, then C(u,u)

has upper tail dependence for λU ∈ (, ] and no upper

tail dependence for λU = . Similarly lower tail depen-

dence in terms of copula is de�ned λL := limu→
C(u,u)
u
.

Copula has lower tail dependence for λL ∈ (, ] and no

lower tail dependence for λL = .�is measure is exten-

sively used in extreme value theory. It is the probability

that one variable is extreme given that other is extreme.

Tail measures are copula-based and copula is related to the

full distribution via quantile transformations, i.e.,C(u,u)

= F (F− (u),F
−
 (u)) for all u,u ∈ (, ) in the bivari-

ate case.

Simulation
Simulation in statistics has a pivotal role in replicating

and analysing data. Copulas can be applied in simula-

tion and Monte Carlo studies. Johnson () discusses

methods to generate a sample from a given joint distri-

bution. One such method is a recursive simulation using

the univariate conditional distributions. �e conditional

distribution of Ui given �rst i −  components is

Ci(ui∣u, . . . ,ui−) =
∂i−Ci(u ,. . .,ui)
∂u . . .∂ui−

/
∂i−Ci−(u ,. . .,ui−)

∂u . . .∂ui−
. For k≥ ,

procedure is as follows: (i) Simulate a random number

ufrom Uniform (,); (ii) Simulate value u from the con-

ditional distribution C(u∣u);(iii) Continue in this way;

(iv) Simulate a value uk from Ck(uk∣u, . . . ,uk−).

We list some important contributions in the area of

copulas under the reference section.
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Introduction
In statistical inference it is of fundamental importance to

obtain the sampling distribution of statistics. However, we

o�en encounter situations where the exact distribution

cannot be obtained in closed form, or even if it is obtained,

it might be of little use because of its complexity. One prac-

tical way of getting around the problem is to provide rea-

sonable approximations of the distribution function and

its quantiles, along with extra information on their pos-

sible errors. �is can be accomplished with the help of

Edgeworth and Cornish–Fisher expansions. Recently,

interest in Cornish–Fisher expansions has increased
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because of intensive study of VaR (Value at Risk) models in

�nancial mathematics and �nancial risk management (see

Jaschke ()).

Expansion Formulas
Let X be a univariate random variable with a continuous

distribution function F. For α :  < α < , there exists x

such that F(x) = α, which is called the (lower) α% point

of F. If F is strictly increasing, the inverse function F−(⋅) is

well de�ned and the α% point is uniquely determined.

We also speak of “quantiles” without reference to particular

values of α meaning the values given by F−(⋅).

Even in the general case, when F(x) is not necessarily

continuous nor is it strictly increasing, we can de�ne its

inverse function by the formula

F
−
(u) = inf{x;F(x) > u}.

�is is a right-continuous nondecreasing function de�ned

on the interval (,) and F(x) ≥ u if x = F
−
(u).

Let Fn(x) be a sequence of distribution functions and

let each Fn admit the 7Edgeworth expansion (EE) in the
powers of є = n−/ or n−:

Fn(x) = Gk,n(x) +O(є
k
) with

Gk,n(x) = G(x) + {єa(x) + ⋅ + є
k−
ak−(x)}g(x),

()

where g(x) is the density function of the limiting dis-

tribution function G(x). An important approach to the

problem of approximating the quantiles of Fn is to use

their asymptotic relation to those of G’s. Let x and u be the

corresponding quantiles of Fn andG, respectively.�en we

have

Fn(x) = G(u). ()

Write x(u) and u(x) to denote the solutions of () for x

in terms of u and u in terms of x, respectively [i.e. u(x) =

G−(Fn(x)) and x(u) = F
−
n (G(u))].�en we can use the

EE () to obtain formal solutions x(u) and u(x) in the form

x(u) = u + єb(u) + є

b(u) +⋯ ()

and

u(x) = x + єc(x) + є

c(x) +⋯. ()

Cornish and Fisher () and Fisher and Cornish

() obtained the �rst few terms of these expansions

when G is the standard normal distribution function (i.e.,

G = Φ). We call both () and () the Cornish–Fisher

expansions, (CFE). Concerning CFE for random variables

obeying limit laws from the family of Pearson distributions

see Bol’shev (). Hill and Davis () gave a general

algorithm for obtaining each term of CFE when G is an

analytic function:

�eorem  Assume that the distribution function G is

analytic.�en the following relation for x and u satisfying

Fn(x) = G(u) holds:

x = u −
∞
∑
r=



r!
{−[g(u)]

−
du}

r−
[{zn(u)}

r
/g(u)] , ()

where du = d/du and zn(u) = Fn(u) −G(u).

A similar relation can be written for u as a function of

x.

Inmany statistical applications, Fn(x) is known to have

an asymptotic expansion of the form

Fn(x) = G(x) + g(x) [n
−a
p(x) + n

−a
p(x) +⋯] ,

where pr(x)may be polynomials in x and a = / or .�en

the formulas () can be written as

x = u −
∞
∑
r=



r!
d(r){gn(u)}

r
, ()

where qn(u)=n
−ap(u) + n

−ap(u) +⋯,

m(x) = −g′(x)/g(x),

d() = the identity operator,

d(r) = {m(u) − du}{m(u) − du}⋯{(r − )m(u) − du},

r = , , . . .

�e rth term in () is of order O(n−ra).

It is a tedious process to rewrite () in the form of

() and to express the adjustment terms bk(u) directly in

terms of the cumulants (see Hill and Davis ()). Lee

and Lin developed a recurrence formula for bk(u), which

is implemented in the algorithm AS (see Lee and Lin

(, )).

Usually the CFE are applied in the following form with

k = , , or :

xk(u) = u +
k−
∑
j=

є
j
bj(u) +O(є

k
), ()

In order to �nd the explicit expressions for b(u) and

b(u) we substitute () with k =  to () and using () we

have

Fn(x) = Fn(u + єb + є

b +⋯)

= G(u + єb + є

b) + g(u + єb + є


b)

× {єa(u + єb) + є

a(u)} +O(є


).

By Taylor’s expansions for G, g, and a, we obtain

Fn(x) =G(u) + єg(u){b + a(u)}

+ є

[g(u)b +




g
′
(u)b


 + g(u)a

′
(u)b

+g(u)a(u) + g
′
(u)ba(u)] +O(є


),
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which should be G(u).�erefore,

b = −a(u),

b =



{g

′
(u)/g(u)}a


 (u) − a(u) + a

′
(u)a(u).

An application of general formulas () in the case

of normal limit distribution see the entry 7Edgeworth
Expansion.

Suppose that

Fn(x) = Gf (x) +
f γ

n
[Gf (x) + Gf+(x) +Gf+(x)]

+
f

n



∑
j=

(−)
j
cjGf+j(x) + o(n

−
),

where Gf (x) = Pr{χf ≤ x}; that is, the distribution func-

tion of the 7chi-square distribution with f degrees of
freedom, γ is a constant, and cj are constants such that

∑

j=(−)

jcj = .�en G(u) = Gf (u),

g(u) = gf (u) = [Γ( f /)
f /

]
−
u
f /−

exp(−u/),

m(u) = −g
′
f (u)/gf (u) =




−


u
(
f


− ) .

�us, we can write

qn(u) = −
u(u − f − 

n( f + )
−

u

n( f + )( f + )( f + )
[cu



+ (c − c)( f + )u

+ (c − c)

( f + )( f + )u

c( f + )( f + )( f + )] + o(n
−

).

�erefore, we obtain

x = u − qn(u)−[γ

u(u − f − )/{n


(f + )


}]

× {u

− (f + )u + (f + )


} + o(n

−
).

�e upper and lower bounds for the quantiles x = x(u)

and u = u(x), satisfying the equation (), i.e.

xn(u) ≥ x(u) ≥ x̄n(u), un(x) ≥ u(x) ≥ ūn(x)

were obtained for some special distributions by Wallace

().

Validity of Cornish–Fisher Expansions
In applications, the CFE are usually used in the form ().

It is necessary to remember that the approximations for α-

quantiles provided by the CFE

(i) become less and less reliable for α →  and α → ;

(ii) do not necessarily improve (converge) for a �xed Fn
and increasing order of approximation k.

Let xα and x
∗
α be the upper α%points of Fn andGk,n

from (), respectively; that is, they satisfy

Fn(xα) = Gk,n (x
∗
α) =  − α.

�e approximate quantile x∗α based on the Edgeworth

expansion is available in numerical form but cannot be

expressed in explicit form. Suppose that the remainder

term, Rk,n(x) = Fn(x) −Gk,n(x), is such that

∣Rk,n∣ ≤ є
n
Ck.

�en

∣Fn (x
∗
α) − ( − α)∣ = ∣Fn (x

∗
α) −Gk,n (x

∗
α)∣ ≤ є

n
Ck.

�is gives an error bound for the absolute di�erences

between the probabilities based on the true quantiles and

their approximations.

�e other validity of the CFE was obtained by consid-

ering the distribution function F̃k,n of

X̃ = U +
k−
∑
j=

є
j
bj(U),

where U is the standard normal variable. Takeuchi and

Takemura () showed that if ∣Fn(x) − Gk,n(x)∣ =

o(єk−), then ∣Fn(x) − F̃k,n∣ = o(є
k−

).

Function of Sample Mean
Usually the conditions that are su�cient for validity of EE

are su�cient as well for validity of CFE. Under the condi-

tions of section “7Function of SampleMeans” in the entry
7Edgeworth Expansion and in its notation we have (see
Hall ()):

sup
є<α<−є

RRRRRRRRRRR

xα − uα −
k−
∑
j=

bj(uα)

nj/

RRRRRRRRRRR

= o(


n(k−)/
) ,

where xα = inf{x; Pr(
√
nH(Ȳ)/σ ≤ x) > α}, uα =

Φ−(α), є is any constant in (,/) and b′js are polynomials

depending on Q′js.

Error Bounds
It is possible to get error bounds for approximation given

by the CFE providedwe have error bounds for EE. For sim-

plicity, we give error bounds for the �rst-order CFE (see

Chap.  in Fujikoshi et al. ()):

�eorem  Suppose that for the distribution function of U

we have

F(x) ≡ Pr{U ≤ x} = G(x) + R(x),

where for remainder term R(x) there exists a constant c
such that

∣R(x)∣ ≤ d ≡ cє.
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Let xα and uα be the upper α% points of F and G,

respectively; that is,

Pf{U ≤ xα} = G(uα) =  − α.

�en, for any α such that  > α > d and  > α + d:

. uα+d ≤ xα ≤ uα−d .

. ∣xα − uα ∣ ≤ d/g(u()), where

g(u) = min
u∈[uα+d

,uα−d
]
g(u).
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Introduction
A covariance term loosely aims at capturing some essence

of joint dependence between two random variables. A cor-

relation coe�cient is nothing more than an appropriately

scaled version of the covariance.

Section “Population Correlation Coe�cient” intro-

duces the concepts of a covariance and the population cor-

relation coe�cient. Section “Correlation Coe�cient and

Independence” highlights some connections between the

correlation coe�cient, independence, and dependence.

Section “A Sample Correlation Coe�cient” summa-

rizes the notion of a sample correlation coe�cient and its

distribution, both exact and large-sample approximation,

due to Fisher (; ). Section “Partial Correlations”

gives a brief summary of the concept of partial correlation

coe�cients.

Population Correlation Coefficient
A covariance term tries to capture a sense of joint depen-

dence between two real valued random variables. A cor-

relation coe�cient, however, is an appropriately scaled

version of a covariance.

De�nition  �e covariance between two random vari-

ables X and X, denoted by Cov(X,X), is de�ned as

Cov(X,X) = E [(X − µ)(X − µ)]

or equivalently E [XX] − µµ,

where µi = E(Xi), i = ,  and E [XX] , µ, µ are

assumed �nite.

De�nition  �e correlation coe�cient between two ran-

dom variables X and X, denoted by ρX ,X , is de�ned as

ρX ,X =
Cov(X,X)

σσ
,
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whenever one has  < σ  = V(X) < ∞ and  < σ  =

V(X) <∞.

One may note that we do not explicitly assume −∞ <

Cov(X,X) < ∞. In view of the assumption  < σ  , σ

 <

∞, one can indeed claim the �niteness of Cov(X,X) by

appealing to Cauchy–Schwartz inequality. It should also be

clear that

Cov(X,X) = Cov(X,X) and Cov(X,X) = V(X),

as long as those terms are �nite.

Two random variables X,X are respectively called

negatively correlated, uncorrelated, or positively correlated

if and only if ρX ,X is negative, zero or positive.

�eorem  Consider random variables X and X and

assume that  < V(X),V(X) < ∞. �en, we have the

following results:

. Let Yi = ci + diXi w.p. where −∞ < ci < ∞ and  <

di <∞ are �xed numbers, i = , .�en, ρY ,Y = ρX ,X .

. ∣ρX ,X ∣ ≤ , the equality holds if and only if X = a+bX
w.p. for some real numbers a and b.

More details can be found from Mukhopadhyay (,

Sect. .).

Correlation Coefficient and
Independence
If ρX ,X is �nite andX,X are independent, then ρX ,X = .

Its converse is not necessarily true. In general, ρX ,X = 

may not imply independence between X,X. An example

follows.

Example  Let X be N(, ) and X = X . �en,

Cov(X,X) = , and surely  < V(X),V(X) < ∞, so

that ρX ,X = . But, X and X are dependent variables.

More details can be found from Mukhopadhyay (,

Sect. .). �e recent article of Mukhopadhyay () is

relevant here.

Now, we state an important result which clari�es the

role of zero correlation in a bivariate normal distribution.

�eorem  Suppose that (X,X) has the N
(µ, µ, σ


 , σ


 , ρ) distribution where −∞ < µ, µ <

∞,  < σ, σ < ∞ and − < ρ(= ρX ,X) < . �en, X
and X are independent if and only if ρ = .

Example  A zero correlation coe�cient implies inde-

pendence not merely in the case of a bivariate normal

distribution. Consider random variables X and X whose

joint probability distribution puts mass only at four points

(, ), (, ), (, ), and (, ). Now, if Cov(X,X) = ,

then X and X must be independent.

A Sample Correlation Coefficient
We focus on a bivariate normal distribution. Let (X,Y),

. . . , (Xn,Yn) be iid N (µ, µ, σ

 , σ


 , ρ) where −∞ <

µ, µ < ∞,  < σ  , σ

 < ∞ and − < ρ < ,n ≥ . Let

us denote

X = n−Σni=Xi Y = n−Σni=Yi
S = (n − )−Σni=(Xi − X) S = (n − )−Σni=(Yi − Y)

S = (n − )−Σni=(Xi − X)(Yi − Y) r = S/(SS).

Here, r is called the Pearson (or sample) correlation coe�-

cient.�is r is customarily used to estimate ρ.

�e probability distribution of r is complicated, partic-

ularly when ρ ≠ . But, even without explicitly writing the

pdf of r, it is simple enough to see that the distribution of

r can not involve µ, µ, σ

 and σ  .

Francis Galton introduced a numerical measure, r,

which he termed “reversion” in a lecture at the Royal Sta-

tistical Society on February ,  and later called “regres-

sion.” �e term “cor-relation” or “correlation” probably

appeared �rst inGalton’s paper to theRoyal Statistical Soci-

ety on December , . At that time, “correlation” was

de�ned in terms of deviations from the median instead of

the mean. Karl Pearson gave the de�nition and calculation

of correlation r in . In , Pearson and his collabora-

tors discovered that the standard deviation of r happened

to be (− ρ)/
√
n when n was large. “Student” derived the

“probable error of a correlation coe�cient” in . Soper

() gave large-sample approximations for the mean and

variance of r which performed better than those proposed

earlier by Pearson. Refer to DasGupta () for more

historical details.

�e unsolved problem of �nding the exact pdf of r

for normal variates came to R. A. Fisher’s attention via

Soper’s  paper.�e pdf of r was published in the year

 by Fisher for all values of ρ ∈ (−, ). Fisher, at the

age of , brilliantly exploited the n-dimensional geom-

etry to come up with the solution, reputedly within one

week. Fisher’s genius immediately came into limelight. Fol-

lowing the publication of Fisher’s results, however, Karl

Pearson set up amajor cooperative study of the correlation.

Onewill notice that in the team formed for this cooperative

project (Soper et al. ) studying the distribution of the

sample correlation coe�cient, the young Fisher was not

included.�is happened in spite of the fact that Fisher was

right there and he already earned quite some fame. Fisher

felt hurt as he was le� out of this project. One thing led

to another. RA. Fisher and Karl Pearson continued criti-

cizing each other even more as each held on to his own

philosophical stand.
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We will merely state the pdf of r when ρ = .�is pdf

is given by

f (r) = c ( − r)



(n−) for −  < r < ,

where c = Γ ( 

(n − )) {

√
π Γ ( 


(n − ))}

−
for n ≥ .

Using a simple transformation technique, one can easily

derive the following result:

r(n − )/( − r)−/ has the Student’s t distribution

with (n − ) degrees of freedom when ρ = .

Fisher’s geometric approach () also included the exact

pdf of r in the form of an in�nite power series for all values

of ρ ≠ . One may also look at Rao (, pp. –) for

a non-geometric approach.

Large-Sample Distribution
But, now suppose that one wishes to construct an approx-

imate ( − α)% con�dence interval for ρ,  < α < .

In this case, one needs to work with the non-null distribu-

tion of r. We mentioned earlier that the exact distribution

of r, when ρ ≠ , was found with an ingenious geometric

technique by Fisher (). �at exact distribution being

very complicated, Fisher () proceeded to derive the

following asymptotic distribution when ρ ≠ :

√
n(r − ρ)

£
→ N (, ( − ρ)) as n→∞.

For a proof, one may look at Sen and Singer (, pp.

–) among other sources.

One should realize that a variance stabilizing trans-

formation may be useful here. We may invoke Mann-

Wald�eorem (see Mukhopadhyay , pp. –) by

requiring a suitable function g(.) such that the asymptotic

variance of
√
n [g(r) − g(ρ)] becomes free from ρ.�at is,

we want to have:

g
′

(ρ)( − ρ

) = k, a constant.

So, g(ρ) = k ∫


(−ρ)dρ. Hence, we rewrite

g(ρ) = 


k ∫ { 

−ρ
+ 

+ρ
}dρ = 


k log{

+ρ

−ρ
}+ constant.

It is clear that we should look at the transformations:

U =



log{

 + r

 − r
} and ξ =




log{

 + ρ

 − ρ
} ,

and consider the asymptotic distribution of
√
n[U − ξ].

Now, we can claim that

√
n[U − ξ]

£
→ N(, ) as n→∞,

since with g(ρ) = 


log{

+ρ

−ρ
} , one has g

′

(ρ) = 

−ρ
.�at

is, for large n, we should consider the following pivot:

√
n[U − ξ], which is approximately N(, ) for large n.

�ese transformations can be equivalently stated as

U = tanh
−
(r) and ξ = tanh

−
(ρ),

which are referred to as Fisher’s Z transformations intro-

duced in .

Fisher obtained the �rst four moments of tanh
−
(r)

which were later updated by Gayen (). It turns out that

the variance of tanh
−
(r) is approximated better by 

n−
rather than 

n
when n is moderately large. Hence, in many

applications, one uses an alternate pivot (for n > ):
√
n −  [tanh

−
(r)− tanh

−
(ρ)] , which is

approximately N(, ),

for large n whatever be ρ,− < ρ < .

For large n, one customarily uses Fisher’s Z transfor-

mations to come up with an approximate ( − α)%

con�dence interval for ρ. Also, to test a null hypothesis

H : ρ = ρ, for large n, one uses the test statistic

Zcalc =
√
n −  [tanh

−
(r) − tanh

−
(ρ)]

and comes up with an approximate level α test against an

appropriate alternative hypothesis.�ese are customarily

used in all areas of statistical science whether the parent

population is bivariate normal or not.

Partial Correlations
Suppose that in general X= (X, . . . ,Xp) has a

p-dimensional probability distribution with all pairwise

correlations �nite. Now, ρXi ,Xj will simply denote the corre-

lation coe�cient betweenXi,Xj based on their joint bivari-

ate distribution derived from the distribution of X, for any
i ≠ j = , . . . , p.

Next, ρXi ,Xj .Xk is simply the correlation coe�cient

between Xi,Xj based on their joint bivariate conditional

distribution given Xk that is derived from the distribution

of X, for any i ≠ j ≠ k = , . . . , p.
Similarly, ρXi ,Xj .Xk ,Xl is simply the correlation coe�-

cient between the pair of random variables Xi,Xj based on

their joint bivariate conditional distribution given Xk,Xl
derived from the distribution of X, for any i ≠ j ≠ k ≠

l = , . . . , p. Clearly, one may continue further like this.

Such correlation coe�cients ρXi ,Xj .Xk , ρXi ,Xj .Xk ,Xl are

referred to as partial correlation coe�cients. Partial

correlation coe�cients have important implications in

multiple linear regression analysis. One may refer to

Ravishanker and Dey (, pp. –) among other

sources.
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Correspondence analysis (CA) has been developed in

the s in France by Jean-Paul Benzécri and his col-

laborators; it is the central part of the French “Anal-

yse des Données,” or in English, geometric data analysis

(cf. Benzécri et al. ; Greenacre , ; Lebart et al.

; Le Roux and Rouanet ). �e method can be

applied to any data table with nonnegative entries. �e

main objective of CA is to display rows and columns of

data tables in two-dimensional spaces, called “maps.”�is

kind of data description via visualization re�ects a way of

thinking that is typical for the social sciences in France,

especially associated with the name of Pierre Bourdieu,

and of many statisticians in the s and s in France,

who at that time published almost only in French.�e phi-

losophy behind their work can be expressed by the famous

quotation of Jean-Paul Benzécri who pointed out that “�e

modelmust follow the data, and not the other way around.”

Instead of limiting the data to restrictive and subjectively

formulated statistical models, they show the importance

of the data and of the features in the data themselves.�e

discussion outside of France started with the textbooks by

Greenacre () and Lebart et al. ().

CA translates deviations from the independencemodel

in a contingency table into distances as the following brief

introduction shows. In the simple case, there is a two-way

table N with I rows and J columns. In cases where the
data are from survey research, the cells nij of N contain
the frequencies of a bivariate cross-tabulation of two vari-

ables, with ∑
ij

nij = n. Dividing nij by the sample size n

provides the percentages of the total pij, or, for the entire

table, with the (I × J) correspondence matrix P.�ereby,
r = P is the vector of the “rowmasses,” or the “average col-
umn pro�le” with elements ri = ni+/n, and c = PT is the
vector of “columnmasses” or the “average row pro�le” with

elements cj = n+j/n; Dr and Dc are the diagonal matrices
of the row and column masses, respectively.

�e matrix of row pro�les can be de�ned as the rows

of the correspondence matrix P divided by their respective
rowmasses,D−r P; for thematrix of columns pro�les yields

PD−c . As a measure of similarity between two row pro�les

(or between two column pro�les, respectively), a weighted

Euclidian or chi-square distance in the metric D−r (or,

D−c , respectively) is used. For chi-square calculations, the

weighted deviations from independence over all cells of the

contingency table are used. For each cell, the unweighted

deviation of the observed from the expected value can be

calculated by (nij − n̂ij), with n̂ij = (ni+ × n+j)/n. Divid-

ing (nij − n̂ij) by n provides with (pij − ricj), or, in matrix

notation, (P − rcT), with the unweighted deviations from
the independence model for the entire table.

To ful�ll the chi-square statistic, thismatrix is weighted

by the product of the square root of the row and column

masses to give the standardized residuals sij = (pij −

ricj)/
√
ricj, or in matrix notation, the (I × J) matrix of
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standardized residuals S = D
−/
r (P − rcT)D

−/
c .�e sim-

ilarity to chi-square analysis and total inertia as a measure

for the variation in the data table, which is de�ned as

∑
ij

sij =
χ

n
=

I

∑
i=

J

∑
j=

(pij − ricj)
ricj

, becomes apparent. Apply-

ing singular value decomposition to S results in SVD(S) =
UΓVT , where Γ is a diagonal matrix with singular val-
ues in descending order γ ≥ γ ≥ . . . ≥ γS > , with

S = rank of S. �e columns from U are the le� singular
vectors, the columns fromV are the right singular vectors,
with UTU = VTV = I.

�e connection between SVD as used in CA and

the well-known canonical decomposition is shown by

STS = VΓUTUΓVT = VΓVT = VΛVT , with SST =

UΓVTVΓUT = UΓUT = UΛUT , and λ ≥ λ ≥ . . . ≥

λS > ; χ/n = ∑
s

λs = total inertia, since trace (SST) =

trace (STS) = trace (Γ) = trace (Λ).
As in 7principal component analysis (PCA), the �rst

axis is chosen to explain the maximum variation in the

data; the second axis captures themaximumof the remain-

ing variation, and so on. Again, analogous to PCA, it is

possible to interpret the variable categories in relation to

the axes, which can be considered the latent variables. And

furthermore, as in PCA and other data reduction meth-

ods, only the s major components are used for interpreta-

tion.�e number of interpretable dimensions depends on

criteria such as the eigenvalue criteria, theory (how many

latent variables can be substantively interpreted), or the

scree test (for more details, see Blasius ).

For the graphical representation, we use F = D
−/
r UΓ

providing the principal coordinates of the rows, and

G = D
−/
c VΓ providing the principal coordinates of the

columns (for further details seeGreenacre , ).�e

maps drawn on the basis of principal coordinates are called

“symmetric maps.” In the full space, the distances between

the rows and the distances between the columns can be

interpreted as Euclidian distances, whereas the distances

between the rows and the columns are not de�ned.

As in PCA, the input data can be factorized. Under-

standing correspondence analysis as a model (see, e.g.,

van der Heijden et al. , ), the row and column

coordinates can be used for recomputing the input data.

Adding the latent variables successively models the devi-

ations from independency.�is is similar to the loglinear

model and other modeling approaches such as the latent

class model or the log-multiplicative model (see, e.g., van

der Heijden et al. , ; Goodman ). In loglin-

ear analysis, for example, these deviations are modeled

by using higher-order interaction e�ects; in correspon-

dence analysis latent variables are used. For any cell yields

nij = nricj( +
S

∑
s=

fisgjs/γs), or pij = ricj( +
S

∑
s=

fisgjs/γs),

and in matrix notation P = rcT + DrFΓ−GTDc.�e le�
part of the equation re�ects the independence model and

the right part, themodeling from independency by includ-

ing the S factors in successive order. Including all factors in

the model fully reconstructs the original data table N.
�e interpretation of CA is similar to the one of PCA,

both methods provide eigenvalues and their explained

variances, factor loadings, and factor values. While PCA is

restricted to metric data, CA can be applied to any kind of

data table with nonnegative entries, among others, to indi-

cator and Burt matrices – in these two cases the method is

called multiple correspondence analysis (MCA).

Whereas simple correspondence analysis is applied to

a single contingency table or to a stacked table, MCA uses

the same algorithm to an indicator or a Burt matrix. In

the case of survey research, input data to simple CA is

usually a matrix of raw frequencies of one or more contin-

gency tables. In this context, there is usually one variable to

be described, for example, preference for a political party,

and one or more describing variables, for example, edu-

cational level and other sociodemographic indicators such

as age groups, gender, and income groups. �e number

of variables can be quite high, apart from theoretical con-

siderations there is no real limitation by the method. In

the given case, each of the describing variables is cross-

tabulated with the variable to be described in order to

investigate the importance of this association. Concatenat-

ing, or stacking the tables before applying CA allows to

visualize and interpret several relationships of “preferred

political party” with the sociodemographic indicators in

the same map.

Applying CA to the indicator matrix Z (=MCA), the
table of input data has as many rows as there are respon-

dents, and as many columns as there are response alter-

natives in all variables included in the analysis. A “” in a

given row indicates the respondent who chose that speci�c

response category; otherwise there is a “” for “speci�c

response category not chosen.” Considering all categories

of all variables provides row sums that are constant and

equal to the number of variables, the column sums re�ect

the marginals. An alternative to the indicator matrix as

input to MCA is the Burt matrix B.�is matrix can either
be generated by cross-tabulating all variables by all vari-

ables, including the cross-tabulations of the variables by

themselves, and stacking them row- and column-wise.

Further, B can be computed by multiplying the transposed
indicator matrix by itself, that is B = ZTZ.�e solutions
from Z can be directly converted to those of B by rescaling
the solution; for example, the squared eigenvalues of Z
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are equal to those of B. As it is true for PCA, MCA con-
tains all �rst-order interaction e�ects, the method can be

understood as a generalization of PCA to categorical data.

Taking a two-way contingency table with I =  rows,

J =  columns, and n =  cases as an example, input data

of the simple CA would be the frequencies of the ( × )

cross-table. Turning to MCA, input data is an indicator

matrixwith  rows (the number of cases) and  columns

(the number of variable categories). MCA is also known

under the names “homogeneity analysis” (see Gi� ;

Heiser andMeulman ), “dual scaling” (Nishisato ,

), and “quanti�cation of qualitative data III” (Hayashi

); CA procedures are available in all major statistic

packages as well as inR (Greenacre andNenadić ). For

details regarding the history ofCAand relatedmethods,we

refer to Nishisato (, Chap. ).

CA employs the concept of inertia: the farther the cat-

egories are from the centroid along a given axis (squared

distances) and the higher their masses (their marginals),

the more the categories determine the geometric orienta-

tion of that axis. In the graphical solution, the locations

of all variable categories can be compared to each other

(except in simple CA and using symmetric maps, in this

case the distances between rows and columns are not

de�ned), short distances imply high similarities and long

distances imply high dissimilarities. For all dimensions,

CA supplies principal inertias that can be interpreted as

canonical correlation coe�cients (they are the singular val-

ues of the solution, i.e., the square roots of the eigenvalues),

correlation coe�cients between the item categories and the

latent variables as well as scores for all item categories and

all respondents.

�ere are several extensions of simple CA and MCA.

With respect to the Burt matrix B, it is apparent that
most of the variation in this super matrix is caused by

the main diagonal blocks.�ese sub-matrices contain the

cross-tabulations of the variables by themselves; the main

diagonal elements of them contain the marginals of the

variables while their o�-diagonal elements are equal to

zero. Excluding this variation in an iterative procedure and

visualizing the variation of the o�-diagonal blocks of B
only is the objective of joint correspondence analysis.�e

aim of subset correspondence analysis is to concentrate

on some response categories only, while excluding others

from the solution. For example, applying subset MCA to a

set of variables, the structure of non-substantive responses

(“don’t know,” “no answer”) can be analyzed separately, or

these responses can be excluded from the solution while

concentrating on the substantive responses. Variables can

also be included in the model as supplementary or passive

ones; in this case they do not have any impact on the

geometric orientation of the axes but they can be inter-

preted together with the active variables. CA can not only

be applied to single and stacked contingency tables or to

indicator matrix, it can also be used to analyze rank and

metric data, multiple responses, or squared tables.�e sta-

tistical background and examples of these kinds of data can

be found in the textbook of Greenacre () as well as

in the readers of Greenacre and Blasius (, ), and

Blasius and Greenacre ().
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�e Cp statistic was invented by C. Mallows in . It

facilitates the comparison of many subset-regressionmod-

els, by giving for each model an unbiased estimate of the

(scaled) total mean-square-error for that model.�ere is

an associated graphical technique called the “Cp plot” in

which values of Cp (one for each subset of regressors) are

plotted against p.

�e problem in choosing a subset-regressionmodel for

predicting a response is that including too many unneces-

sary termswill add to the variance of the predictions, while

including too few will result in biased predictions.

In more detail, if we have n observations, and k regres-

sors are available (possibly including a constant term), let

P denote some subset of these. (Usually if a constant term

is to be considered, this will appear in each subset). Let p

be the number of regressors in the subset P.�en Cp (for

the P-subset model) is de�ned to be

Cp =
RSSP

s
− n + p

whereRSSP is the residual sum of squares for this P-model,

and s is an estimate of the residual variance when all rele-

vant terms are included in the model. Usually this is taken

to be RSSK where K is the set of all available regressors.

Under the usual assumptions, that the vector of obser-

vations y equals ν + z where ν is the vector of true means,

and the z’s are independent with mean zero and constant

variance σ , sCp is an unbiased estimate of σ
E(JP)where

JP is ∣ν̂P − ν∣, and where ν̂P is the estimate of ν that is

obtained by �tting the Pmodel.�us JP is a measure of the

adequacy for prediction of the P model.�is result holds

even when the true model ν is not expressible in terms of

the available regressors.However in this casewe cannot use

the residual sum of squares from the full (K) model as an

estimate of σ .

�e Cp statistic is o�en used to guide selection of a

subset-model, but this cannot be recommended; while for

each P separately, Cp gives an unbiased estimate of the

scaled mean-square error for that subset, this is not true if

the subset is chosen to minimise Cp. In fact this approach

can lead to worse results than are obtained by simply �t-

ting all available regressors. In a  paper, Mallows has

attempted to quantify this e�ect.

�e Cp statistic is similar to 7Akaike’s Information
criterion.

About the Author
Colin L.Mallows spent  years at AT&TBell Labs and one

of its descendants, AT&T Labs. Since retiring he has been a

consultant at another descendant, Avaya Labs. He is a Fel-

low of the American Statistical Association, the Institute of

Mathematical Statistics, and the Royal Statistical Society.

He has served on several committees of the IMS and ASA.

He was an Associate editor of JASA (–). He has

been COPSS Fisher Lecturer and ASA Deming Lecturer,

and has received theASAWilksMedal. He haswritten over

 papers, and has edited two books.

Cross References
7Akaike’s Information Criterion
7General Linear Models

References and Further Reading
Daniel C, Wood FS () Fitting equations to data, rev edn. Wiley,

New York

Gorman JW, Toman RJ () Selection of variables for fitting

equations to data. Technometrics :–

Mallows CL () Some comments on Cp. Technometrics

:–

Mallows CL () More comments on Cp. Technometrics

:–



 C Cramér–Rao Inequality

Cramér–Rao Inequality

Maarten Jansen

, Gerda Claeskens




Université libre de Bruxelles, Brussels, Belgium

K. U. Leuven, Leuven, Belgium

The Cramér–Rao Lower Bound
�e Cramér–Rao inequality gives a lower bound for the

variance of an unbiased estimator of a parameter. It is

named a�er work by Cramér () and Rao ().�e

inequality and the corresponding lower bound in the

inequality are stated for various situations. We will start

with the case of a scalar parameter and independent and

identically distributed random variables X, . . . ,Xn, with

the same distribution as X.

Denote X = (X, . . . ,Xn) and denote the common

probability mass function or probability density function

of X at a value x by f (x; θ) where θ ∈ Θ, which is a subset

of the real line R and x ∈ R. Denote the support of X by R,
that is, R = {x : f (x; θ) > }.

Assumptions
. �e partial derivative ∂

∂θ
log f (x; θ) exists for all θ ∈

Θ and all x ∈ R and it is �nite. �is is equivalent

to stating that the Fisher information value IX(θ) =

E [( ∂
∂θ
log f (X; θ))


] is well de�ned, for all θ ∈ Θ.

. �e order of integration and di�erentiation is inter-

changeable in ∫
∂
∂θ
log f (x; θ)dx. If the support of X,

that is, the set R, is �nite, then the interchangeability

is equivalent with the condition that the support does

not depend on θ. A counter-example on uniformly

distributed random variables is elaborated below.

The Cramér–Rao inequality
Under assumptions (i) and (ii), if θ̂ = g(X) is an unbiased

estimator of θ, this means that E[θ̂] = θ, then

var(θ̂) ≥ / [n ⋅ IX(θ)] .

�e lower bound in this inequality is called the Cramér–

Rao lower bound.

�e proof starts by realizing that the correlation of the

score V = ∂
∂θ ∑

n
i= log fX(Xi; θ) and the unbiased estima-

tor θ̂ is bounded above by . �is implies that (var(V) ⋅

var(θ̂))
/

≥ cov(V , θ̂). �e assumptions are needed to

prove that the expected score E(V) is zero. �is implies

that the covariance cov(V , θ̂) = , from which the stated

inequality readily follows.

A second version of the Cramér–Rao inequality holds

if we estimate a functional κ = H(θ). Under assumptions

(i) and (ii), if X is a sample vector of independent observa-
tions from randomvariableXwith density function f (x; θ)

and κ̂ = h(X) is an unbiased estimator of H(θ), such that

the �rst derivative
dH(θ)
dθ

exists and is �nite for all θ, then

var(κ̂) ≥ [
dH(θ)

dθ
]



/ [n ⋅ IX(θ)] .

Similar versions of the inequality can be phrased

for observations that are independent but not identically

distributed.

In the case of a vector parameter θ, the variance of
the single parameter estimator var(θ̂) is replaced by the

covariance matrix of the estimator vector Σθ̂ .�is matrix

is bounded by a matrix expression containing the inverse

of the Fisher information matrix, where bounded means

that the di�erence between the covariance matrix and its

“upper bound” is a negative semide�nite matrix.

�e Cramér–Rao inequality is important because it

states what the best attainable variance is for unbiased esti-

mators. Estimators that actually attain this lower bound are

called e�cient. It can be shown that maximum likelihood

estimators asymptotically reach this lower bound, hence

are asymptotically e�cient.

Cramér–Rao and UMVUE
If X is a sample vector of independent observations from
the random variable X with density function fX(x; θ) and

θ̂ = g(X) is an unbiased estimator of θ, then var(θ̂) =

/ [n ⋅ IX(θ)]⇔ θ̂ = aV + b with probability one, where

V is the score and a and b are some constants.�is follows

from the proof of the Cramér–Rao inequality: the lower

bounded is reached if the correlation between the score

and the estimator is one.�is implies that var ( V
σV
+ θ̂

σ
θ̂

)

=  ⇒ V
σV
+ θ̂

σ
θ̂

= c almost surely for some constant c. We

here used the notation σX to denote the standard deviation

of a random variable X.

�e coe�cients a and bmay depend on θ, but θ̂ should

be observable without knowing θ.

If a and b exist such that θ̂ is unbiased and observ-

able, then θ̂ has the smallest possible variance among

all unbiased estimators: it is then certainly the uniformly

minimum variance unbiased estimator (UMVUE).

It may, however, be well possible that no a and b can be

found. In that case, the UMVUE, if it exists, does not reach

the Cramér-Rao lower bound. In that case, the notion of

su�ciency can be used to �nd such UMVUE.
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Counter example: estimators for the
upperbound of uniform data
Let X ∼ unif[, a], so fX(x) = 

a
I( ≤ x ≤ a), where

I(c ≤ x ≤ d) is the indicator function of the interval [c,d].

We want to estimate a.�e maximum likelihood estima-

tor (MLE) is âMLE = max
i=,. . .,n

Xi, which is biased. De�ne

âu =
n
n− âMLE, which is unbiased.�e method of moments

leads to an estimator âMME = X, which is also unbiased.

�e score is Vi =
∂
∂a
log fX(Xi; a) = − 

a
. �is is a con-

stant (so, not a random variable), whose expected value

is of course not zero.�is is because the partial derivative

and expectation cannot be interchanged, as the boundary

of the support of X depends on a. As a consequence, the

Cramér–Rao lower bound is not valid here. We can verify

that var(âMLE) = n
(n+)(n+) a


and var(âu) = 

n(n+)a

.

�is is (for n → ∞) one order of magnitude smaller

than var(âMME) = 

n
a and also one order of magni-

tude smaller than what you would expect for an unbiased

estimator if the Cramér–Rao inequality would hold.

A Bayesian Cramér–Rao Bound
It should be noted that biased estimators can have vari-

ances below the Cramér–Rao lower bound. Even the MSE

(mean squared error), which equals the sumof the variance

and the squared bias can be lower than the Cramér–Rao

lower bound (and hence lower than any unbiased esti-

mator could attain). A notable example in this respect is

Stein’s phenomenon on shrinkage rules (Efron and Morris

).

In practice, large classes of estimators, for example

most nonparametric estimators, are biased. An inequality

that is valid for biased or unbiased estimators is due to

van Trees (, p. ), see also Gill and Levit () who

developed multivariate versions of the inequality.

We assume that the parameter space Θ is a closed

interval on the real line and denote by g some probabil-

ity distribution on Θ with density λ(θ) with respect to the

Lebesguemeasure.�is is where the Bayesian �avor enters.

�e θ is now treated as a random variable with density λ.

We assume that λ and f (x; ⋅) are absolutely continuous and

that λ converges to zero at the endpoints of the interval

Θ. Moreover we assume that E[ ∂
∂θ
log f (X; θ)] = . We

denote I(λ) = E[{log λ(θ)}] and have that E[IX(θ)] =

∫ IX(θ)g(θ)dθ.�en, for an estimator θ̂ = θ̂(X), it holds

that

E[{θ̂ − θ}

] ≥



E[IX(θ)] + I(λ)
.

A second form of this inequality is obtained for func-

tionals κ = H(θ). Under the above assumptions, for an

estimator κ̂ = h(X) of H(θ), such that the �rst derivative
dH(θ)
dθ

exists and is �nite for all θ,

E[{κ̂ −H(θ)}

] ≥

{E[ d
dθ
H(θ)]}

E[IX(θ)] + I(λ)
.
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Introduction
Cramér–vonMises statistics are well established for testing

�t to continuous distributions; see Anderson () and

Stephens (), both articles in this encyclopedia. In this

paper, the corresponding statistics for testing discrete dis-

tributions will be described.

Consider a discrete distribution with k cells labeled

, , . . . , k, and with probability pi of falling into cell i. Sup-

pose n independent observations are given; let oi be the

observed number of observations and ei = npi be the

expected number in cell i. Let Sj = ∑
j

i= oi and Tj = ∑
j

i= ei.
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�en Sj/n and Hj = Tj/n are the cumulated histograms

of observed and expected values and correspond to the

empirical distribution function Fn(z) and the cumulative

distribution function F(.) for continuous distributions.

Suppose Zj = Sj − Tj, j = , , . . . , k; the weighted mean

of the Zi is Z̄ = ∑
k
j= Zjtj, where tj = (pj + pj+)/, with

pk+ = p.�e modi�ed Cramér–von Mises statistics are

then de�ned as follows:

W

d = n

−
k

∑
j=
Z

j tj; ()

U

d = n

−
k

∑
j=

(Zj − Z̄)

tj; ()

A

d = n

−
k

∑
j=
Z

j tj/{Hj( −Hj)}. ()

note that Zk =  in these summations, so that the last term

inW
d is zero.�e last term in A


d is of the form /, and is

set equal to zero.

�e well-known Pearson χ statistic is

χ

=

k

∑
i=

(oi − ei)

/ei.

Statistics corresponding to the Kolmogorov–Smirnov

statistics (see7Kolmogorov-Smirnov Test) for continuous
observations are

D
+
d = max

j
(Zj)/

√
n,D

−
d = max

j
(−Zj)/

√
n,

Dd = max
j

∣Zj∣/
√
n.

Comments on the Definitions
. Several authors have examined distributions of the

Kolmogorov–Smirnov family, see Pettitt and Stephens

() and Stephens () for tables and references.

In general, for continuous data, the Kolmogorov–

Smirnov statistic is less powerful as an omnibus

test statistic than the Cramér–von Mises family; lim-

ited Monte Carlo studies suggest that this holds also

for Dd.

. �e Cramér–von Mises and Kolmogorov–Smirnov

statistics take into account the order of the cells, in

contrast to the Pearson χ statistic.

. Use of tj in these de�nitions ensures that the value of

the statistic does not change if the cells are labelled in

reverse order.

For instance, in testing the7binomial distribution,
one statistician might record the histogram of suc-

cesses, and another the histogram of failures; or in a

test involving categorical data such as the tones of a

photograph, the histogram of cells with light to dark

observations might be recorded, or vice versa.

. �e statistic Ud is intended for use with a discrete

distribution around a circle, since its value does not

change with di�erent choices of origin; this is why pk+
is set equal to p.

Matrix Formulation
To obtain asymptotic distributions it is convenient to put

the above de�nitions into matrix notation. Let a prime,

e.g., Z′, denote the transpose of a vector or matrix. Let I
be the k × k identity matrix, and let p′ be the  × k vec-

tor (p, p, . . . , pk). SupposeD is the k× k diagonal matrix
whose j-th diagonal entry is pj, j = , . . . , k and let E be
the diagonal matrix with diagonal entries tj, and K be the
diagonal matrix whose (j, j)-th element is K jj = /{Hj( −

Hj)}, j = , . . . , k−  and Kkk = . Let oi and ei be arranged

into column vectors o, e (so that, for example, the j-th com-
ponent of o is oj, j = , . . . , k).�en Z = Ad, where d = o−e
and A is the k × k partial- sum matrix

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

   . . . 

   . . . 

   . . . 

⋮ ⋮ ⋮ ⋱ ⋮

   . . . 

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

�e de�nitions become

W

d = Z

′
EZ/n, ()

U

d = Z

′
(I − E

′
)E(I − 

′
E)Z/n, ()

A

d = Z

′
EKZ/n, ()

X

= (d

′
D
−
d)/n = Z

′
A
− ′
D
−
A
−
Z/n. ()

Asymptotic Theory
All Parameters Known
All four statistics above are of the general form S = Y ′MY ,

where Y = Z/
√
n andM is symmetric. ForW

d ,M = E, for

Ud ,M = (I − E′)E(I − ′E), and for Ad,M = EK. Also

Y has mean . Suppose its covariance matrix is Σy, to be
found below; then S may be written

S = Y
′
MY =

k−
∑
i=

λi(w
′
iY)


, ()
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where λi are the k −  non-zero eigenvalues of MΣy and
wi are the corresponding eigenvectors, normalized so that

w′iΣywj = δij where δij is  if i = j and  otherwise.

As n → ∞, the si tend to standard normal, and they

are independent; the limiting distribution of S is that of S∞
where

sinf S∞ =
k−
∑
i=

λis

i ()

which is a sum of independent weighted χ variables.

Recall that Y = Z/
√
n = Ad/

√
n; its covariance Σy is

found as follows. Calculate the k × kmatrix

Σ = D − pp′; ()

this is the covariance matrix of (o − e)/
√
n. �en Σy =

AΣA′, with entries Σy,ij = min(Hi,Hj) −HiHj.
For the appropriate M for the statistic required, the

eigenvalues λi, i = ,⋯, k ofMΣy are used in () to obtain
the limiting distribution of the statistic.�e limiting dis-

tributions have been examined in detail in Choulakian

et al. ().

Parameters Unknown
Cramér–von Mises statistics when the tested distribution

contains unknownparameters θ i have been investigated by

Lockhart et al. ().�e θ i must be estimated e�ciently,

for example by maximum likelihood (ML). Suppose θ =
(θ, θ, . . . , θm)

′
is the vector ofm parameters.

�e log-likelihood is (omitting irrelevant constants)

L
∗
=

k

∑
i=
oi log pi,

and pi contains the unknown parameters.�e ML estima-

tion consists of solving them equations

∂L∗

∂θ j
=

k

∑
i=

oi

pi

∂pi

∂θ j
= ,

for j = , . . . ,m.

Let θ̂ be the ML estimate of θ, let p̂ be the estimate
of p, evaluated using θ̂, and let ê be the estimated vector
of expected values in the cells, with components êj = np̂j.

�en let d̂ = (o − ê) and Ẑ = Ad̂.

De�ne a k bymmatrix B with entries

Bi,j = ∂pi/∂θ j

for i = , . . . , k and j = , . . . ,m. �e matrix B′D−B is

the Fisher Informationmatrix for the parameter estimates.

De�ne V = (B′D−B)−.�e asymptotic covariance of θ̂
is then V/n, the covariance of d̂/

√
n is Σd = Σ − BVB′,

where Σ is de�ned in (), and the covariance of Ẑ/
√
n =

Ad̂/
√
n = Ŷ is

Σu = AΣdA
′
.

�en, as in the previous section, where parameters

were known, the weights λi in the asymptotic distribu-

tion () are the k eigenvalues of MΣu for the appropriate
M for the statistic required.

In practice, in order to calculate the statistics, using

(–), the various vectors and matrices must be replaced

by their estimates where necessary. For example, let matrix

D̂ beD with p replaced by p̂ and similarly obtain B̂, Ê, V̂ , K̂

and Σ̂ using estimates in an obvious way.�e eigenvalues
will also be found using the estimated matrices Σ̂u and M̂.
Consistent estimates of the λi will be obtained and () used

to �nd the estimated asymptotic distribution.

�us the steps are :

. Calculate V̂ = (B̂
′
D̂
−
B̂)−.

. Calculate Σ̂d = Σ̂ − B̂V̂B̂
′
and Σ̂u = AΣ̂dA′.

. For the statistic required, let M̂ be the estimate of

the appropriate M. Find the k −  eigenvalues of

M̂Σ̂u, or (equivalently) those of the symmetric matrix
M̂
/Σ̂uM̂

/
and use them in () to obtain the asymp-

totic distribution.

For practical purposes, percentage points of S∞ using

exact or estimated λs, can be used for the distributions of

the statistics for �nite n; this has been veri�ed by many

Monte Carlo studies. One therefore needs good approxi-

mate points in the upper tail of S∞; these can be found

from the percentage points of S, where S has the distribu-

tion a+bχp, and the a, b, p are chosen so that the �rst three

cumulants of S match those of S∞ in (). �ese cumu-

lants are κj = 
j−

(j− )!∑
k−
i= λ

j

i. In particular, the mean κ
is ∑

k−
i= λi, the variance κ is ∑

k−
i= λ


i and κ is ∑

k−
i= λi .

�en for the S approximation, b = κ/(κ), p = κ

/κ ,

and a = κ − bp.�is approximation is generally accurate

in the upper tail, at levels α < .. More accurate points

can be obtained by the method of Imhof ().
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Hierarchically Structured Data
Interesting real life data rarely conform to classical text

book assumptions about data structures. Traditionally

these assumptions are about observations that can bemod-

elled with independently, and typically identically, dis-

tributed “error” terms. More o�en than not, however,

the populations that generate data samples have com-

plex structures where measurements on data units are not

mutually independent, but depend on each other through

complex structural relationships. For example, a house-

hold survey of voting preferences will typically show vari-

ation among households and voting constituencies (con-

stituencies and households di�er on average in their polit-

ical preferences).�is implies that the replies from indi-

vidual respondents within a household or constituency

will be more alike than replies from individuals in the

population at large. Another example of such “hierarchi-

cally structured data” would be measurements on students

in di�erent schools, where, for example, schools di�er in

terms of the average attainments of their students. In epi-

demiology we would expect to �nd di�erences in such

things as fertility and disease rates across geographical and

administrative areas.

Techniques for modelling such data have come to be

known as “multilevel” or “hierarchical data” models and

basic descriptions of these are dealt with in other articles

(see 7Multilevel Analysis). In the present article we shall
consider two particular extensions to the basic multilevel

model that allow us to �t structures that have considerable

complexity and are quite commonly found, especially in

the social and medical sciences.

The Basic Multilevel Model
A simple multilevel model for hierarchical data structures

with normally distributed responses can be written as:

yij = β + βxij + uj + eij, uj
iid
∼ N(, σ


u ), eij

iid
∼ N(, σ


e ).

()

�is might be applied to a sample, say, of school students

where i indexes students (level ), who are grouped within

schools (level ).�e response y might be an attainment

measure and x a predictor such as a prior test score. O�en

referred to as a “variance components” model this may be

extended in a number of ways to better �t a data set. For

example, we may introduce further covariates and we may

allow the coe�cients of such covariates to vary at level , so

that, say, β, may vary from school to school. Another pos-

sibility is to allow the level  variance to depend on a set

of explanatory variables, so that, for example, we can allow

the variance between male students to be di�erent from

that for female students. We can have several responses

that are correlated leading to a multivariate model, and we

can consider non-normal responses, such as binary ones,

in order to �t generalised linear multilevel models. We can

also have several further levels; for example schoolsmay be
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grouped within school boards or authorities, so yielding

a three level structure. Goldstein () provides further

details and discusses estimation methods.

Cross Classified Structures
�e above only describes purely hierarchical models. In

practice, however, data structures are o�en more compli-

cated. Consider an educational example where students

move through both their primary and secondary education

with the response being attainment at the end of secondary

school. For any given primary school, students will gen-

erally move to di�erent secondary schools, and any given

secondary school will draw students from a number of

primary schools. We therefore have a cross classi�cation

of primary by secondary schools where each cell of the

classi�cation will be populated by students (some may be

empty).When wemodel such a structure we have a contri-

bution to the response that is the sum of an e�ect from the

primary and an e�ect from the secondary school attended

by a student. A basic, variance components, cross classi�ed

model may be written as

y
()
i = β + βxi + u

()
primary school(i) + u

()
secondary school(i)

+u
()
student(i)

u
()
primary school(i)

iid
∼ N(, σ u()),

u
()
secondary school(i)

iid
∼ N(, σ u()) ()

u
()
student(i)

iid
∼ N(, σ u()), i = , . . . ,N.

We have changed the notation to make it more general

and �exible. �e superscript refers to the set of units, or

classi�cation;  being students,  primary school and 

secondary school. Model () thus assumes that there are

separate, additive, contributions from the primary and the

secondary school attended. As with the simple hierarchical

model we can extend () in several ways by introduc-

ing random coe�cients, complex variance structures and

further cross classi�cations and levels. �ere are many

examples where cross classi�ed structures are important.

�us, for example, students will generally be grouped by

the neighborhood where they live and this will constitute a

further classi�cation. In a repeated measures study where

there is a sample of subjects and a set of raters ormeasurers,

if the subjects are rated by di�erent people at each occasion

we would have a cross classi�cation of subjects by raters.

Multiple Membership Structures
In many circumstances units can be members of more

than one higher level unit at the same time. An example

is friendship patterns where at any time individuals can be

members of more than one friendship group. In an edu-

cational system students may attend more than one school

over time. In all such cases we shall assume that for each

higher level unit to which a lower level unit belongs there is

a known weight (summing to . for each lower level unit),

which represents, for example, the amount of time spent in

the higher level unit.�e choice of weights may be impor-

tant but is beyond the scope of this article. Formore details

about choosing weights see Goldstein et al. ().

Using the general notation we used for cross classi�ca-

tions we can write a basic variance components multiple

membership model as

y
()
i = β + βxi +∑

j∈school(i)
w
()
i,j u

()
(j) + u

()
i

u
()
(j) ∼ N(, σ


u()), u

()
(i)∼N(, σ


u()) ()

∑
j∈school(i)

w
()
i,j = .

�is assumes that the total contribution from the level

 units (schools) is a weighted sum over all the units of

which the level  unit has been a member.�us, for exam-

ple, if every student spends half their time in one school

and half their time in another (randomly selected) then the

variance at level  will be

var(.u
()
j

+ .u
()
j

) = σ

u()/. ()

�us, a failure to account for the multiple membership of

higher level units in this case will lead us to treat the esti-

mate of the level  variance, σ u()/ as if it were a consistent

estimate of the true level  variance σ u(). More generally,

ignoring a multiple membership structure will lead to an

underestimation of the higher level variance.

Finally, we can combine cross classi�ed and multi-

ple membership structures within a single model and

this allows us to handle very complex structures. An

example where the response is a binary variable is given

in Goldstein (, Chap. ). It is possible to use maxi-

mum likelihood estimation for these models, but apart

from small scale datasets, MCMC estimation is more e�-

cient and �exible.�e MLwiN so�ware package (Rasbash

et al. ; Browne . http://www.cmm.bristol.ac.uk)

is able to �t these models.
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�is article will initially treat joint probability measures

and their associated cross-covariance operators. Subse-

quently, attention will be shi�ed to three examples of

problems on capacity of information channels.

Cross-covariance operators were introduced in Baker

() as a tool in solving a basic problem in informa-

tion theory, and treated more extensively in Baker ().

Related results are in Gualtierotti () and Fortet ().

�e empahsis in Baker () was in two directions: show-

ing the added power of analysis obtained by introducing

the cross-covariance operator of a joint measure, and pro-

viding new results for actually computing likelihood ratios

for joint measures. Applications to date have included

results on absolute continuity of probability measures,

mutual information for pairs of7stochastic processes, and
analysis of information capacity for communication chan-

nels. More recently, there has been interest in this topic by

researchers in machine learning, who have applied theory

from Baker () in a number of interesting publications

(e.g., Fukumizu et al. , ; Gretton et al. ).

�e jointmeasures to be discussed are probabilitymea-

sures on the product of two real separable Hilbert spaces,

H and H, with Borel sigma �elds θ. and θ. Denote the

inner products by < , > on H and < , > on H. H x H is

then a real separableHilbert space under the inner product

de�ned by <(x,u), (v,y)> = <x,v> + <u,y>. Next, intro-
duce a joint measure π on the measurable space (H x

H, θ x θ). Only strong second-order probability mea-

sures will be considered: those joint measures ∂ such

that E∂, ∣∣∣(x,y)∣∣∣

 = ∫HxH

(∣∣x∣∣

 + ∣∣y∣∣


)d∂(x,y) is �nite.

All Gaussian measures on HxH are strong second order,

as are their projections on H and H. From the measure

π one has projections πi on (Hi, θ i), i = , . Let m and

m denote themean elements andR andR the covariance

operators of π and π.

�e �rst result of note is the de�nition and properties

of the cross-covariance operator for the joint measure π.

Denoting that operator by C, it is de�ned for all (u,v) in

HxH by

<Cv,u> = ∫
HxH

<x −m,u> <y −m, v> dπ(x, y).

�eorem  C has representation C = R/ VR
/
 , V: H

→H a unique linear operator having ∣∣V ∣∣ ≤  and PVP =

V, Pi the projection of Hi onto the closure of range(Ri). ⊡

Next, we turn to the de�nition and properties of the

covariance operator R of π. By direct computation

(Baker ), one can show that this operator is de�ned on

every element (u,v) in HxH by

R(u, v) = (Ru + Cv,Rv + C
∗
u)

= (R ⊗ R)(u, v) + (C
∗
 ⊗ C)(u, v).

We now give a result that illustrates both similarity and

di�erence between a joint measure and the usual mea-

sure.as de�ned on one of the spaces H or H. We de�ne

a self-adjoint operator V in HxH by V(u,v) =(Vv, V∗u)
= (V

∗
⊗V)(u,v) and denote by I the identity operator in

HxH; it is shown in Baker () that ∣∣V∣∣ ≤  and that the
non-zero eigenvalues of VV

∗
are squares of the non-zero

eigenvalues of V.
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�eorem  �e covariance operator R of the measure
π on HxH has representation R = R/⊗(I+V)R

/
⊗,

whereR⊗ is the covariance operator of the productmeasure
π ⊗ π. If π is Gaussian, then π and π ⊗ π are mutu-

ally absolutely continuous if and only ifV is Hilbert-Schmidt
with ∣∣V∣∣ < , and otherwise orthogonal.⊡

�e preceding results give some of the basic proper-

ties of the covariance operator of a joint measure, and it

is seen that the cross-covariance operator is an essential

component in the de�nition and properties of the covari-

ance operator. In Baker (), considerable attention is

given to Gaussian joint measures. However, it should be

noted that the de�nition of the cross-covariance operator

and its relation to the covariance operator hold for any

strong-second order joint probability measure When the

joint measure at hand is not Gaussian, one still has the

cross-covariance operator available as well as themean and

the covariance operator.�ese functions can frequently be

estimated from data and used to develop suboptimum but

e�ective operations using (for example) second moment

criteria.

We now turn to a brief introduction to three prob-

llems on the capacity of a Gaussian channel without feed-

back (Baker , ; Baker and Chao a, b). �e

cited papers provide examples of the use of results from

Baker () in applications to information theory. �e

de�nition of the channel capacity is as follows. We have

a joint measure πS,AS+N where S is the actual signal,

AS is the transmitted coded signal (from a measurable

space (Ω,Θ)) and AS+N is the received waveform of sig-

nal+noise from a measurable space (Ψ, Γ).�e (average)

mutual information will be �nite if πS,AS+N is absolutely

continuous with respect to its product measure πS⊗AS+N ,

and its value is then given by

∫
ΩxΨ
log[(dπS,AS+N /dπS⊗AS+N)(x, y)]dπS,AS+N(x, y).

�e transmitted signal AS and the received AS+N can vary

with choices by the coder (and the jammer in the third

example below), and the channel capacity is the supre-

mum of the mutual information over all admissible S and

AS+N.pairs.

In each case, the transmitted signal has a constraint

given in terms of the ambient noise process. When the

constraint on the transmitted signal is given in terms of

the channel noise covariance, one says that the channel

is “matched” (coder constraint is matched to the chan-

nel noise covariance) (Baker ). �e second type of

channel is “mismatched” (the signal constraint is not given

in terms of the channel noise covariance) (Baker ).

�e third class is the jamming channel without feedback,

wherein the noise in the channel consists of a knownGaus-

sian ambient noise (nature’s contribution) plus an indepen-

dent noise that is under the control of a hostile jammer

(Baker and Chao a, b). In this channel, there is a

constraint on the jammer’s noise as well as one on the

coder’s.transmitted signal.

In the jamming channel, the jammer has no constraints

on the choice of the probability distributions of the noise

at his command. However, it is known (Ihara ) that if

the channel noise due to nature is Gaussian, then the infor-

mation capacity is minimized by the jammer choosing

(among all processes satisfying the constraints) a Gaussian

process. �us, the original problem becomes a problem

involving an ambient Gaussian noise (which is used to cal-

culate the coder’s constraint) and an independentGaussian

process (jamming) giving the covariance constraint that

the jammer uses.

Cross References
7Canonical Analysis and Measures of Association
7Measure�eory in Probability
7Statistical Signal Processing
7Statistical View of Information�eory

References and Further Reading
Baker CR () Mutual information for Gaussian processes. SIAM J

Appl Math ():–

Baker CR () Joint measures and cross-covariance operators.

Trans Am Math Soc :–

Baker CR () Capacity of the Gaussian channel without feedback.

Inf Cont :–

Baker CR () Capacity of the mismatched Gaussian channel. IEEE

Trans Inf Theory :–

Baker CR, Chao IF (a) Information capacity of channels

with partially unknown noise. I. Finite-dimensional channels.

SIAM J Appl Math :–

Baker CR, Chao IF (b) Information capacity of channels with

partially unknown noise. II. Infinite-dimensional channels.

SIAM J Cont Optimization :–

Fortet RM () Vecteurs, fonctions et distributions aleatoires dans

les espaces de Hilbert. Hermes, Paris (see pp.  ff.)

Fukumizu K, Bach FR, Jordan MJ () Dimensionality reduction

for supervised learning with reproducing kernel Hilbert spaces.

J Mach Learning Res :–

Fukumizu K, Bach FR, Jordan MJ () Kernel dimensionality

reduction in regression. Ann Stat :–

Gretton A, Bousquet O, Smola AJ, Schölkopf B () Measuring

statistical dependence with Hilbert–Schmidt norms. MPI Tech-

nical Report, Max Planck Institute for Biological Cybernetics.

Tübingen, Germany’ Report 

Gualtierotti AF () On cross-covariance operators. SIAM J Appl

Math ():–

Ihara S () On the capacity of channels with additive

non-Gaussian noise. Inf Cont :–


	C
	Calibration
	About the Author
	Cross References
	References and Further Reading

	Canonical Analysis and Measures of Association
	Introduction
	Canonical Analysis
	 Measures of Association
	Cross References
	References and Further Reading

	Canonical Correlation Analysis
	Introduction
	Procedure
	Interpretation
	Relationship to DiscriminantFunction Analysis
	Generality of Canonical Correlation Analysis
	About the Author
	Cross References
	References and Further Reading

	Careers in Statistics
	Medicine
	Ecology
	Market Research
	Manufacturing
	Actuarial Sciences
	Safety
	Telecommunications
	About the Authors
	Cross References

	Case-Control Studies
	Introduction
	Types of Case-Control Studies
	Discussion
	About the Authors
	Cross References
	References and Further Reading

	Categorical Data Analysis
	Introduction
	Contingency Tables
	Inference and Software
	About the Author
	Cross References
	References and Further Reading

	Causal Diagrams
	Introduction
	Graphical Models and Causal Diagrams
	Basics of Graph Theory
	Interpretations of Graphs
	Control: Manipulation Versus Conditioning
	Graphical Representation of Manipulation
	Separation

	Statistical Interpretations and Applications
	Bias and Confounding
	Estimation of Causal Effects
	Identification of Effects and Biases
	Questions of Discovery

	Further Readings
	About the Authors
	Cross References
	References and Further Reading

	Causation and Causal Inference
	Counterfactuals and Potential Outcomes
	From Randomized to Observational Inference

	Canonical Inference
	Bias Analysis
	Structural Equations and Causal Diagrams
	Conclusion
	Acknowledgments
	About the Author
	Cross References
	References and Further Reading

	Censoring Methodology
	Basic Concepts on Censored Data
	Different Types of Censoring Schemes
	Type-I Censoring
	Type-II Censoring
	Progressive Censoring
	Hybrid Censoring

	About the Author
	Cross References
	References and Further Reading

	Census
	Introduction
	History
	Uses of Census Information
	Conducting a Census
	Planning the Census
	Collecting the Information
	Processing and Analysis of Data
	Publication of Results

	Problems in Census Taking and Issues for the Future
	About the Author
	Cross References
	References and Further Reading

	Central Limit Theorems
	Introduction
	Different Versions of the Central Limit Theorem
	Rates of Convergence to Normality
	Convergence of Moments
	Asymptotic Distributions of Statistics not Expressible as Sums of Random Variables
	Central Limit Theorems for Stochastic Processes
	About the Author
	Cross References
	References and Further Reading

	Chaotic Modelling
	About the Author
	Cross References
	References and Further Reading

	Characteristic Functions
	Cross References
	References and Further Reading

	Chebyshev's Inequality
	About the Author
	Cross References
	References and Further Reading

	Chemometrics
	About the Author
	Cross References
	References and Further Reading

	Chernoff Bound
	About the Author
	Cross References
	References and Further Reading

	Chernoff Faces
	About the Author
	Cross References
	References and Further Reading

	Chernoff-Savage Theorem
	About the Author
	Cross References
	References and Further Reading

	Chi-Square Distribution
	Cross References
	References and Further Reading

	Chi-Square Goodness-of-Fit Tests: Drawbacks and Improvements
	About the Authors
	Cross References
	References and Further Reading

	Chi-Square Test: Analysis of Contingency Tables
	Pearson's Chi-Square
	Likelihood Ratio Chi-Square
	Small Expected Frequencies
	Alternative Research Designs
	Summary
	About the Author
	Cross References
	References and Further Reading

	Chi-Square Tests
	About the Author
	Cross References
	References and Further Reading

	Clinical Trials, History of
	About the Author
	Cross References
	References and Further Reading

	Clinical Trials: An Overview
	About the Author
	Cross References
	References and Further Reading

	Clinical Trials: Some Aspects of Public Interest
	Side Effect of Drugs
	Contradictory Statements by Opposing Camps of Medical Researchers
	Large Clinical Trials: Meta-analysis
	Reducing Side Effects of Drugs
	Experiments with Many Factors: Interactions
	About the Author
	Cross References
	References and Further Reading

	Cluster Analysis: An Introduction
	About the Author
	Cross References
	References and Further Reading

	Cluster Sampling
	Cross References
	References and Further Reading

	Coefficient of Variation
	About the Author
	Cross References
	References and Further Reading

	Collapsibility
	Collapsibility in Contingency Tables
	Collapsibility in Regression Models
	Confounding Versus Noncollapsibility
	About the Author
	Cross References
	References and Further Reading

	Comparability of Statistics
	Comparability: Definition and Assessment
	Comparability in Official Statistics
	Conclusions
	About the Author
	Cross References
	References and Further Reading

	Complier-Average Causal Effect (CACE) Estimation
	About the Author
	References and Further Reading

	Components of Statistics
	About the Author
	Cross References

	Composite Indicators
	Cross References
	References and Further Reading

	Computational Statistics
	What Is Computational Statistics?
	Journals and Societies
	Numerical Methods
	Graphical Methods
	Symbolic/Exact Methods

	The Changing Notion of What is Computational Statistics
	Future Directions
	About the Author
	Cross References
	References and Further Reading

	Conditional Expectation and Probability
	About the Author
	Cross References
	References and Further Reading

	Confidence Distributions
	About the Author
	Cross References
	References and Further Reading

	Confidence Interval
	About the Author
	Cross References
	References and Further Reading

	Confounding and Confounder Control
	Introduction
	Confounding as a Bias in Effect Estimation
	The Potential-Outcome Model of Confounding
	Confounders (Confounding Factors) and Covariate Imbalance

	Control of Confounding
	Prevention of Confounding
	Adjustment for Confounding
	Confounded Mechanisms Versus Confounded Assignments
	Confounder Selection

	About the Author
	Cross References
	References and Further Reading

	Contagious Distributions
	Cross References
	References and Further Reading

	Continuity Correction
	Acknowledgments
	About the Author
	Cross References
	References and Further Reading

	Control Charts
	Introduction
	Variability and Its Causes
	Shewhart Charts
	A Basic Chart
	Some Modifications of the Basic Chart
	Some More Basic Charts

	Some Other Types of Control Charts
	CUSUM Charts
	EWMA Charts

	About the Author
	Cross References
	References and Further Reading

	Convergence of Random Variables
	Introduction
	Convergence in Distribution
	Convergence in Probability
	Almost Sure Convergence
	Convergence in the rth Mean
	About the Author
	Cross References
	References and Further Reading

	Cook's Distance
	Introduction
	Cook's Distance
	Illustration
	Acknowledgments
	About the Author
	Cross References
	References and Further Reading

	Copulas
	About the Author
	Cross References
	References and Further Reading

	Copulas in Finance
	Introduction
	Copulas and Spatial Dependence in Finance
	Pricing Applications
	Risk Management

	Copula Pricing and Arbitrage Relationships
	Copulas and Temporal Dependence in Finance
	Financial Prices Dynamics and Copulas
	About the Author
	Cross References
	References and Further Reading

	Copulas: Distribution Functions and Simulation
	Introduction
	Dependence
	Copulas
	Simulation
	Acknowledgments
	About the Author
	Cross References
	References and Further Reading

	Cornish–Fisher Expansions
	Introduction
	Expansion Formulas
	Validity of Cornish–Fisher Expansions
	Function of Sample Mean
	Error Bounds
	About the Author
	Cross References
	References and Further Reading

	Correlation Coefficient
	Introduction
	Population Correlation Coefficient
	Correlation Coefficient and Independence
	A Sample Correlation Coefficient
	Large-Sample Distribution

	Partial Correlations
	About the Author
	Cross References
	References and Further Reading

	Correspondence Analysis
	About the Author
	Cross References
	References and Further Reading

	Cp Statistic
	About the Author
	Cross References
	References and Further Reading

	Cramér–Rao Inequality
	The Cramér–Rao Lower Bound
	Assumptions
	The Cramér–Rao inequality

	Cramér–Rao and UMVUE
	Counter example: estimators for the upperbound of uniform data

	A Bayesian Cramér–Rao Bound
	About the Authors
	Cross References
	References and Further Reading

	Cramér–Von Mises Statistics for Discrete Distributions
	Introduction
	Comments on the Definitions

	Matrix Formulation
	Asymptotic Theory
	All Parameters Known
	Parameters Unknown

	About the Author
	Cross References
	References and Further Reading

	Cross Classified and Multiple Membership Multilevel Models
	Hierarchically Structured Data
	The Basic Multilevel Model
	Cross Classified Structures
	Multiple Membership Structures
	About the Author
	Cross References
	References and Further Reading

	Cross-Covariance Operators
	Cross References
	References and Further Reading





