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In statistics, the technique of 7least squares is used for
estimating the unknown parameters in a linear regres-
sionmodel (see7Linear RegressionModels).�is method
minimizes the sum of squared distances between the
observed responses in a set of data, and the �tted responses
from the regression model. Suppose we observe a collec-
tion of data {yi, xi}ni= on n units, where yis are responses
and xi = (xi, xi, . . . , xip)T is a vector of predictors. It is
convenient to write the model in matrix notation, as,

y = Xβ + ε, ()

where y is n ×  vector of responses, X is n × p matrix,
known as the design matrix, β = (β, β, . . . , βp)T is the
unknown parameter vector and ε is the vector of random
errors. In ordinary least squares (OLS) regression, we esti-
mate β by minimizing the residual sum of squares, RSS =
(y−Xβ)T(y− Xβ), giving β̂OLS = (XTX)−XTy.�is esti-
mator is simple and has some good statistical properties.
However, the estimator su�ers from lack of uniqueness
if the design matrix X is less than full rank, and if the
columns of X are (nearly) collinear. To achieve better pre-
diction and to alleviate ill conditioning problem of XTX,
Hoerl and Kernard () introduced ridge regression (see
7Ridge and Surrogate Ridge Regressions), which mini-
mizes the RSS subject to a constraint, ∑ βj ≤ t, in other
words
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where λ ≥  is known as the complexity parameter that
controls the amount of shrinkage. �e larger the value

of λ, the greater the amount of shrinkage.�e quadratic
penalty term makes β̂

ridge
a linear function of y. Frank

and Friedman () introduced bridge regression, a
generalized version of penalty (or absolute penalty type)
estimation,which includes ridge regressionwhen γ = . For
a given penalty function π(⋅) and regularization parameter
λ, the general form can be written as

ϕ(β) = (y − Xβ)
T
(y − Xβ) + λπ(β),

where the penalty function is of the form

π(β) =
p

∑
j=

∣βj∣
γ , γ > . ()

�e penalty function in () bounds the Lγ norm of the
parameters in the given model as∑mj= ∣βj∣

γ
≤ t, where t is

the tuning parameter that controls the amount of shrink-
age. We see that for γ = , we obtain ridge regression.
However, if γ ≠ , the penalty function will not be rota-
tionally invariant. Interestingly, for γ < , it shrinks the
coe�cient toward zero, and depending on the value of λ, it
sets some of them to be exactly zero.�us, the procedure
combines variable selection and shrinkage of coe�cients of
penalized regression. An important member of the penal-
ized least squares (PLS) family is the L penalized least
squares estimator or the lasso [least absolute shrinkage and
selection operator, Tibshirani ()]. In other words, the
absolute penalty estimator (APE) arises when the absolute
value of penalty term is considered, i.e., γ =  in (). Similar
to the ridge regression, the lasso estimates are obtained as
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()
�e lasso shrinks the OLS estimator toward zero and
depending on the value of λ, it sets some coe�-
cients to exactly zero. Tibshirani () used a quadratic
programming method to solve () for β̂

lasso
. Later,

Efron et al. () proposed least angle regression
(LAR), a type of stepwise regression, with which the
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lasso estimates can be obtained at the same compu-
tational cost as that of an ordinary least squares esti-
mation Hastie et al. (). Further, the lasso esti-
mator remains numerically feasible for dimensions m
that are much higher than the sample size n. Zou and
Hastie () introduced a hybrid PLS regression with
the so called elastic net penalty de�ned as λ∑

p

j=(αβj +

( − α) ∣βj∣). Here the penalty function is a linear com-
bination of the ridge regression penalty function and
lasso penalty function. A di�erent type of PLS, called
garotte is due to Breiman (). Further, PLS estima-
tion provides a generalization of both nonparametric least
squares and weighted projection estimators, and a popu-
lar version of the PLS is given by Tikhonov regularization
(Tikhonov ). Generally speaking, the ridge regres-
sion is highly e�cient and stable when there are many
small coe�cients. �e performance of lasso is superior
when there are a small-to-medium number of moderate-
sized coe�cients. On the other hand, shrinkage esti-
mators perform well when there are large known zero
coe�cients.
Ahmed et al. () proposed an APE for partially

linear models. Further, they reappraised the properties of
shrinkage estimators based on Stein-rule estimation.�ere
exists a whole family of estimators that are better than
OLS estimators in regression models when the number of
predictors is large. A partially linear regression model is
de�ned as

yi = x
T
i β + g(ti) + εi, i = , . . . ,n, ()

where ti ∈ [, ] are design points, g(⋅) is an unknown
real-valued function de�ned on [, ], and yi, x, β, and εi’s
are as de�ned in the context of (). We consider experi-
ments where the vector of coe�cients β in the linear part
of () can be partitioned as (β

T
 , β

T
 )
T , where β is the

coe�cient vector of order p×  for main e�ects (e.g., treat-
ment e�ects, genetic e�ects) and β is a vector of order
p ×  for “nuisance” e�ects (e.g., age, laboratory). Our
relevant hypothesis is H : β = . Let β̂ be a semi-
parametric least squares estimator of β, and we let β̃
denote the restricted semiparametric least squares estima-
tor of β. �en the semiparametric Stein-type estimator
(see 7James-Stein Estimator and Semiparametric Regres-
sion Models), β̂

S
, of β is

β̂
S

 = β̃ + { − (p − )T−}(β̂ − β̃), p ≥  ()

where T is an appropriate test statistic for the H.
A positive-rule shrinkage estimator (PSE) β̂

S+
 is de�ned as

β̂
S+
 = β̃ + { − (p − )T−}+(β̂ − β̃), p ≥  ()

where z+ = max(, z).�e PSE is particularly important to
control the over-shrinking inherent in β̂

S

 .�e shrinkage
estimators can be viewed as a competitor to the APE
approach. Ahmed et al. () �nds that, when p is
relatively small with respect to p, APE performs bet-
ter than the shrinkage method. On the other hand, the
shrinkage method performs better when p is large, which
is consistent with the performance of the APE in linear
models. Importantly, the shrinkage approach is free from
any tuning parameters, easy to compute and calculations
are not iterative.�e shrinkage estimation strategy can be
extended in various directions to more complex problems.
Itmay beworthmentioning that this is one of the two areas
Bradley Efron predicted for the early twenty-�rst century
(RSSNews, January ). Shrinkage and likelihood-based
methods continue to be extremely useful tools for e�cient
estimation.
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Accelerated life tests (ALT) are e�cient industrial experi-
ments for obtaining measures of a device reliability under
the usual working conditions.
A practical problem for industries of di�erent areas is

to obtain measures of a device reliability under its usual
working conditions. Typically, the time and cost of such
experimentation are long and expensive.�e ALT are e�-
cient for handling such situation, since the information on
the device performance under the usual working condi-
tions are obtained by considering a time and cost-reduced
experimental scheme. �e ALT are performed by test-
ing items at higher stress covariate levels than the usual
working conditions, such as temperature, pressure and
voltage.

�ere is a large literature on ALT and interested read-
ers can refer to Mann et al. (), Nelson (), Meeker
and Escobar () which are excellent sources for ALT.
Nelson (a, b) provides a brief background on acceler-
ated testing and test plans and surveys the related literature
point out more than  related references.
A simple ALT scenario is characterized by putting k

groups of ni items each under constant and �xed stress
covariate levels, Xi (herea�er stress level), for i = , . . . , k,
where i =  generally denotes the usual stress level, that is,
the usual working conditions.�e experiment ends a�er a
certain pre-�xed number ri < ni of failures, ti, ti, . . . , tiri ,
at each stress level, characterizing a type II censoring
scheme (Lawless ; see also 7Censoring Methodol-
ogy). Other stress schemes, such as step (see 7Step-Stress
Accelerated Life Tests) and progressive ones, are also com-
mon in practice but will not be considered here. Examples
of those more sophisticated stress schemes can be found in
Nelson ().

�e ALT models are composed by two components.
One is a probabilistic component, which is represented

by a lifetime distribution, such as exponential, Weibull,
log-normal, log-logistic, among others. �e other is a
stress-response relationship (SRR), which relates the mean
lifetime (or a function of this parameter) with the stress
levels. Common SRRs are the power law, Eyring and
Arrhenius models (Meeker and Escobar ) or even a
general log-linear or log-non-linear SRRwhich encompass
the formers. For sake of illustration, we shall assume an
exponential distribution as the lifetime model and a gen-
eral log-linear SRR. Here, the mean lifetime under the
usual working conditions shall represent our device reli-
ability measure of interesting.
Let T >  be the lifetime random variable with an

exponential density

f (t, λi) = λi exp{−λit} , ()

where λi >  is an unknown parameter representing the
constant failure rate for i = , . . . , k (number of stress
levels).�e mean lifetime is given by θ i = /λi.

�e likelihood function for λi, under the i-th stress
level Xi, is given by

Li(λi)=
⎛

⎝

ri

∏
j=
f (tij, λi)

⎞

⎠
(S(tiri , λi))

ni−ri = λ
ri
i exp{−λiAi} ,

where S(tiri , λi) is the survival function at tiri and Ai =
∑
ri
j= tij + (ni − ri)tiri denotes the total time on test for the

i-th stress level.
Considering data under the k random stress levels,

the likelihood function for the parameter vector λ =

(λ, λ, . . . , λk) is given by

L(λ) =
k

∏
i=

λ
ri
i exp{−λiAi} . ()

We consider a general log-linear SRR de�ned as

λi = exp(−Zi − β − βXi), ()

where X is the covariate, Z = g(X) and β and β are
unknown parameters such that −∞ < β, β <∞.

�e SRR () has several models as particular cases.�e
Arrhenius model is obtained if Zi = , Xi = /Vi, β=−α
and β = α, where Vi denotes a level of the tempera-
ture variable. If Zi = , Xi = −log(Vi), β = log(α) and
β = α, where Vi denotes a level of the voltage variable
we obtain the power model. Following Louzada-Neto and
Pardo-Fernandéz (), the Eyring model is obtained if
Zi = − logVi, Xi = /Vi, β = −α and β = α, where
Vi denotes a level of the temperature variable. Interested
readers can refer to Meeker and Escobar () for more
information about the physical models considered here.
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From () and (), the likelihood function for β and β
is given by

L(β, β) =
k

∏
i=

{exp(−Zi − β − βXi)
ri

exp(− exp(−Zi − β − βXi)Ai)}. ()

�e maximum likelihood estimates (MLEs) of β and
β can be obtained by direct maximization of (), or by
solving the system of nonlinear equations, ∂ logL/∂θ = ,
where θ′ = (β, β). Obtaining the score function is con-
ceptually simple and the expressions are not given explic-
itly.�e MLEs of θ i can be obtained, in principle, straight-
forwardly by considering the invariance property of the
MLEs.
Large-sample inference for the parameters can be

based on theMLEs and their estimated variances, obtained
by inverting the expected information matrix (Cox and
Hinkley ). For small or moderate-sized samples how-
ever we may consider simulation approaches, such as the
bootstrap con�dence intervals (see 7Bootstrap Methods)
that are based on the empirical evidence and are therefore
preferred (Davison and Hinkley ). Formal goodness-
of-�t tests are also feasible since, from (), we can use the
likelihood ratio statistics (LRS) for testing goodness-of-�t
of hypotheses such as H : β = .
Although we considered only an exponential dis-

tribution as our lifetime model, more general lifetime
distributions, such as the Weibull (see 7Weibull Distribu-
tion and Generalized Weibull Distributions), log-normal,
log-logistic, among others, could be considered in prin-
ciple. However, the degree of di�culty in the calcula-
tions increase considerably. Also we considered only one
stress covariate, however this is not critical for the over-
all approach to hold and the multiple covariate case can be
handle straightforwardly.
A study on the e�ect of di�erent reparametrizations on

the accuracy of inferences forALT is discussed in Louzada-
Neto and Pardo-Fernandéz ). Modeling ALT with a
log-non-linear SRR can be found in Perdoná et al. ().
Modeling ALT with a threshold stress, below which the
lifetime of a product can be considered to be in�nity or
much higher than that for which it has been developed is
proposed by Tojeiro et al. ().
We only considered ALT in presence of constant stress

loading, however non-constant stress loading, such as step
stress and linearly increasing stress are provided by Miller
and Nelson () and Bai, Cha and Chung (), respec-
tively. A comparison between constant and step stress tests
is provided by Khamis (). A log-logistic step stress
model is provided by Srivastava and Shukla ().

Two types of so�ware for ALT are provided by
Meeker and Escobar () and ReliaSo� Corporation
().
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Introduction
Acceptance sampling (AS) is one of the oldest statisti-
cal techniques in the area of 7statistical quality control.
It is performed out of the line production, most com-
monly before it, for deciding on incoming batches, but also
a�er it, for evaluating the �nal product (see Duncan ;
Stephens ; Pandey ; Montgomery ; and
Schilling and Neubauer , among others). Accepted
batches go into the production line or are sold to
consumers; the rejected ones are usually submitted to a
recti�cation process. A sampling plan is de�ned by the size
of the sample (samples) taken from the batch and by the
associated acceptance–rejection criterion.�e most widely
used plans are given by theMilitary Standard tables, devel-
oped during the World War II, and �rst issued in .
We mention MIL STD E () and the civil version
ANSI/ASQC Z. () of the American National Stan-
dards Institution and the American Society for Quality
Control.
At the beginning, all items and products were

inspected for the identi�cation of nonconformities. At the
late s, Dodge and Romig (see Dodge and Romig ),
in the Bell Laboratories, developed the area of AS, as an
alternative to % inspection.�e aimofAS is to lead pro-
ducers to a decision (acceptance or rejection of a batch)
and not to the estimation or improvement of the qual-
ity of a batch. Consequently, AS does not provide a direct
form of quality control, but its indirect e�ects in quality
are important: if a batch is rejected, either the supplier
tries improving its production methods or the consumer
(producer) looks for a better supplier, indirectly increasing
quality.

Regarding the decision on the batches, we distin-
guish three di�erent approaches: () acceptance without
inspection, applied when the supplier is highly reliable;
() % inspection, which is expensive and can lead to a
sloppy attitude towards quality; () an intermediate deci-
sion, i.e., an acceptance sampling program. �is increases
the interest on quality and leads to the lemma: make
things right in the �rst place. �e type of inspection that
should be applied depends on the quality of the last batches
inspected. At the beginning of inspection, a so-called nor-
mal inspection is used, but there are two other types of
inspection, a tightened inspection (for a history of low qual-
ity), and a reduced inspection (for a history of high quality).
�ere are special and empirical switching rules between
the three types of inspection, as well as for discontinuation
of inspection.

Factors for Classifications of Sampling
Plans
Sampling plans by attributes versus sampling plans by vari-

ables. If the item inspection leads to a binary result (con-
forming or nonconforming), we are dealing with sampling
by attributes, detailed later on. If the item inspection leads
to a continuous measurement X, we are sampling by vari-
ables.�en, we generally use sampling plans based on the
sample mean and standard deviation, the so-called vari-
able sampling plans. IfX is normal, it is easy to compute the
number of items to be collected and the criteria that leads
to the rejection of the batch, with chosen risks α and β. For
di�erent sampling plans by variables, see Duncan (),
among others.

Incoming versus outgoing inspection. If the batches are
inspected before the product is sent to the consumer, it is
called outgoing inspection. If the inspection is done by the
consumer (producer), a�er they were received from the
supplier, it is called incoming inspection.

Rectifying versus non-rectifying sampling plans. All depends
on what is done with nonconforming items that were
found during the inspection. When the cost of replac-
ing faulty items with new ones, or reworking them is
accounted for, the sampling plan is rectifying.

Single, double, multiple and sequential sampling
plans.

● Single sampling.�is is the most common sampling
plan: we draw a random sample of n items from the
batch, and count the number of nonconforming items
(or the number of nonconformities, if more than one
nonconformity is possible on a single item). Such a

http://www.reliasoft.com
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plan is de�ned by n and by an associated acceptance-
rejection criterion, usually a value c, the so-called accep-
tance number, the number of nonconforming items
that cannot be exceeded. If the number of noncon-
forming items is greater than c, the batch is rejected;
otherwise, the batch is accepted.�e number r, de�ned
as the minimum number of nonconforming items
leading to the rejection of the batch, is the so-called
rejection number. In the most simple case, as above,
r = c + , but we can have r > c + .

● Double sampling. A double sampling plan is charac-
terized by four parameters: n << n, the size of the �rst
sample, c the acceptance number for the �rst sample,
n the size of the second sample and c (> c) the accep-
tance number for the joint sample.�emain advantage
of a double sampling plan is the reduction of the total
inspection and associated cost, particularly if we pro-
ceed to a curtailment in the second sample, i.e. we stop
the inspection whenever c is exceeded. Another (psy-
chological) advantage of these plans is theway they give
a second opportunity to the batch.

● Multiple sampling. In the multiple plans a pre-
determined number of samples are drawn before
taking a decision.

● 7Sequential sampling.�e sequential plans are a gen-
eralization ofmultiple plans.�emaindi�erence is that
thenumber of samples is not pre-determined. If, at each
step, we draw a sample of size one, the plan, based on
Wald’s test, is called sequential item-to-item; otherwise,
it is sequential by groups. For a full study of multiple
and sequential plans see, for instance, Duncan ()
(see also the entry 7Sequential Sampling).

Special sampling plans. Among the great variety of special
plans, we distinguish:

● Chain sampling. When the inspection procedures are
destructive or very expensive, a small n is recommend-
able. We are then led to acceptance numbers equal to
zero.�is is dangerous for the supplier and if rectifying
inspection is used, it is expensive for the consumer. In
, Dodge suggested a procedure alternative to this
type of plans, which uses also the information of pre-
ceding batches, the so-called chain sampling method
(see Dogdge and Romig ).

● Continuous sampling plans (CSP).�ere are continu-
ous production processes, where the rawmaterial is not
naturally provided in batches. For this type of produc-
tion it is common to alternate sequences of sampling
inspection with % inspection – they are in a certain
sense rectifying plans.�e simplest plan of this type,
the CSP-, was suggested in  by Dodge. It begins

with a % inspection. When a pre-speci�ed num-
ber i of consecutive nonconforming items is achieved,
the plan changes into sampling inspection, with the
inspection of f items, randomly selected, along the
continuous production. If one nonconforming item is
detected (the reason for the terminology CSP-), %
inspection comes again, and the nonconforming item
is replaced. For properties of this plan and its general-
izations see Duncan ().

A Few Characteristics of a Sampling Plan
OCC.�e operational characteristic curve (OCC) is Pa ≡
Pa(p) = P(acceptance of the batch ∣ p), where p is the
probability of a nonconforming item in the batch.

AQL and LTPD (or RQL). �e sampling plans are built
taken into account the wishes of both the supplier and
the consumer, de�ning two quality levels for the judg-
ment of the batches: the acceptance quality level (AQL),
the worst operating quality of the process which leads to
a high probability of acceptance of the batch, usually %
– for the protection of the supplier regarding high quality
batches, and the lot tolerance percent defective (LTPD) or
rejectable quality level (RQL), the quality level belowwhich
an item cannot be considered acceptable. �is leads to a
small acceptance of the batch, usually % – for the pro-
tection of the consumer against low quality batches.�ere
exist two types of decision, acceptance or rejection of the
batch, and two types of risks, to reject a “good" (high qual-
ity) batch, and to accept a “bad" (low quality) batch.�e
probabilities of occurrence of these risks are the so-called
supplier risk and consumer risk, respectively. In a single
sampling plan, the supplier risk is α =  − Pa(AQL) and
the consumer risk is β = Pa(LTPD). �e sampling plans
should take into account the speci�cationsAQL andLTPD,
i.e. we are supposed to �nd a single plan with an OCC that
passes through the points (AQL, -α) and (LTPD, β).�e
construction of double plans which protect both the sup-
plier and the consumer are much more di�cult, and it is
no longer su�cient to provide indication on two points
of the OCC. �ere exist the so-called Grubbs’ tables (see
Montgomery ) providing (c, c,n,n), for n = n,
as an example, α = ., β = . and several rates
RQL/AQL.

AOQ, AOQL and ATI. If there is a rectifying inspection
program – a corrective program, based on a % inspec-
tion and replacement of nonconforming by conforming
items, a�er the rejection of a batch by an AS plan –,
the most relevant characteristics are the average outgoing
quality (AOQ), AOQ(p) = p ( − n/N)Pa, which attains
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Aa maximum at the so-called average output quality limit
(AOQL), the worst average quality of a product a�er a
rectifying inspection program, as well as the average total
inspection (ATI), the amount of items subject to inspection,
equal to n if there is no recti�cation, but given by ATI(p) =
nPa +N( − Pa), otherwise.
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A speci�c (and relatively new) type of �nancial calcula-
tions are actuarial operations, which represent a special
(in majority of countries they are usually licensed) sphere
of activity related to identi�cations of risks outcomes and
market assessment of future (temporary) borrowed cur-
rent assets and liabilities costs for their redemption.

�e broad range of existing and applicable actuarial
calculations require use of various methods and inevitably
predetermines a necessity of their alteration depending
on concrete cases of comparison analysis and selection of
most e�cient of them.

�e condition of success is a typology of actuarial cal-
culations methods, based on existing typology �elds and
objects of their applications, as well as knowledge of rule
for selection of most e�cient methods, which would pro-
vide selection of target results withminimum costs or high
accuracy.
Regarding the continuous character of �nancial trans-

actions, the actuarial calculations are carried out
permanently. �e aim of actuarial calculations in every
particular case is probabilistic determination of pro�t shar-
ing (transaction return) either in the form of �nancial
liabilities (interest, margin, agio, etc.) or as commission
charges (such as royalty).

�e subject of actuarial calculations can be distin-
guished in the narrow and in the broad senses.

�e given subject in the broad sense covers �nancial
and actuarial accounts, budgeting, balance, audit, assess-
ment of �nancial conditions and �nancial provision for
all categories and types of borrowing institutions, basis
for their preferential �nancial decisions and transactions,
conditions and results of work for di�erent �nancial and
credit institutions; �nancial management of cash �ows,
resources, indicators, mechanisms, instruments, as well as
�nancial analysis and audit of �nancial activity of compa-
nies, countries, nations their groups and unions, includ-
ing national system of �nancial account, �nancial control,
engineering, and forecast. In other words, the subject of
actuarial calculations is a process of determination of any
expenditures and incomes from any type of transactions in
the shortest way.
In the narrow sense it is a process of determination,

in the same way, of future liabilities and their comparison
with present assets in order to estimate their su�ciency,
de�cit of surplus.
We can de�ne general and e�cient actuarial calcula-

tions, the principals of which are given below.
E�cient actuarial calculations imply calculations of

any derivative indicators, which are carried out through
conjugation (comparison) of two or more dissimilar ini-
tial indicators, the results of which are presented as dif-
ferent relative numbers (coe�cients, norms, percents,
shares, indices, rates, tari�s, etc.), characterizing di�eren-
tial (e�ect) of anticipatory increment of one indicator in
comparison with another one.
In some cases similar values are called gradients,

derivatives (of di�erent orders), elasticity coe�cients, or
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anticipatory coe�cients and can be determined by ref-
erence to more complex statistical and mathematical
methods including geometrical, di�erential, integral, and
correlation and regression multivariate calculations.
Herewith in case of application of nominal comparison

scales for two or more simple values (so called scale of sim-

ple interests, which are calculated and represented in terms

of current prices) they are determined and operated as it was

mentioned by current nominal �nancial indicators, but in

case of real scales application, i.e. scales of so called com-

pound interests, they are calculated and represented in terms

of future or current prices, that is real e�cient �nancial

indicators.
In case of insurance scheme the calculation of e�cient

�nancial indicators signify the special type of �nancial cal-
culations i.e. actuarial calculations, which imply additional
pro�t (discounts) or demanding compensation of loss
(loss, damage or loss of pro�t) in connection with occur-
rence of contingency and risks (risk of legislation alter-
ation, exchange rates, devaluation or revaluation, in�ation
or de�ation, changes in e�ciency coe�cients).
Actuarial calculations represent special branch of

activity (usually licensed activity) dealing with market
assessment of compliance of current assets of insurance,
joint-stock, investment, pension, credit and other �nan-
cial companies (i.e. companies engaged in credit relations)
with future liabilities to the repayment of credit in order
to prevent insolvency of a debtor and to provide e�cient
protection for investors-creditors.
Actuarial calculations assume the comparison of assets

(ways of use or allocation of obtained funds) with liabili-
ties (sources of gained funds) for borrowing companies of
all types and forms, which are carried out in aggregate by
particular items of their expenses under circumstances of
mutual risks in order to expose the degree of compliance or
incompliance (surplus or de�cit) of borrowed assets with
future liabilities in term of repayment, in other words to
check the solvency of borrowing companies.
Borrowing companies – insurance, stock, broker and

auditor �rms, banks, mutual, pension, and other special-
ized investment funds whose accounts payable two or
more times exceeds their own assets and appear to be
a source of high risk, which in turn a�ects interests of
broad groups of business society as well as population –
are considered as companies that are subjects to obligatory
insurance and actuarial assessment.
Actuarial calculations assume the construction of bal-

ances for future assets and liabilities, probabilistic assess-
ment of future liabilities repayment (debts) at the expense
of disposable assets with regard to risks of changes of
their amount on hand and market prices.�e procedures

of documentary adoption, which include construction of
actuarial balances and preparation of actuarial reports and
conclusions, are called actuarial estimation; the organi-
zations that are carrying out such procedures are called
actuarial organizations.
Hence, there is a necessity to learn the organization and

technique of actuarial methods (estimations) in aggregate;
as well as to introduce the knowledge of actuarial subjects
to any expert who is involved in direct actuarial estima-
tions of future assets and liabilities costs of various funds,
credit, insurance, and similarly �nancial companies.�is
is true for assets and liabilities of any country.

�e knowledge of these actuarial assessments and
practical use is a signi�cant reserve for increasing not only
e�ciency but (more important today) legitimate, transpar-
ent, and protected futures for both borrowing and lending
companies.

Key Terms
Actuary (actuarius – Latin) – profession, appraiser of risks,
certi�ed expert on assessment of documentary insurance
(and wider – �nancial) risks; in insurance – insurer; in
realty agencies – appraiser; in accounting – auditor; in
�nancial markets – broker (or bookmaker); in the past reg-
istrar and holder of insurance documents; in England –
adjuster or underwriter.
Actuarial transactions – special �eld of activity related

to determination of insurance outcomes in circumstances
of uncertainty that require knowledge of probability theory
and actuarial statistics methods and mathematics, includ-
ing modern computer programs.
Actuarial assessment – type of practical activity,

licensed in the majority of countries, related to prepara-
tion of actuarial balances, market assessment of current
and future costs of assets and liabilities of insurer (in
case of pension insurance assets and liabilities of non-
governmental pension funds, insurances companies and
specialized mutual trust funds); completed with prepara-
tion of actuarial report according to standard methodolo-
gies and procedures approved, as a rule in conventional
(sometimes in legislative) order.
Actuarial estimations – documentary estimations of

chance outcomes (betting) of any risk (gambling) actions
(games) with participation of two or more parties with
�xed (registered) rates of repayment of insurance premium
and compensations premium for possible losses.�ey dif-
fer by criteria of complexity – that is elementary (simple
or initial) and complex. �e most widespread cases of
elementary actuarial estimations are bookmaker estima-
tions of pro�t and loss from di�erent types of gambling
including playing cards, lottery, and casinos, as well as risk
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Ataking on modern stock exchange, foreign exchange mar-
kets, commodity exchanges, etc.�e complex estimations
assume determination of pro�t from second and conse-
quent derived risks (outcomes over outcomes, insurance
over insurance, repayment on repayment, transactions
with derivatives, etc.). All of these estimations are carried
out with the help of various method of high mathemat-
ics (�rst of all, numeric methods of probability theory and
mathematical statistics).�ey are also o�en represented as
methods of high actuarial estimations.
Generally due to ignorance about such estimations,

current world debt (in  approximately  trillion
USD, including  trillion USD in the USA) has dras-
tically exceeded real assets, which account for about
 trillion USD, which is actually causing the enormous
�nancial crisis everywhere in the world.
Usually such estimations are being undertaken towards

future insurance operations, pro�ts and losses, and that is
why they are classi�ed as strictly approximate and repre-
sented in categories of probabilistic expectations.

�e fundamental methods of actuarial estimations are

the following: methods for valuing investments, select-
ing portfolios, pricing insurance contracts, estimating
reserves, valuing portfolios, controlling pension scheme,
�nances, asset management, time delays and underwriting
cycle, stochastic approach to life insurance mathematics,
pension funding and feed back, multiple state and disabil-
ity insurance, and methods of actuarial balances.

�e most popular range of application for actuarial

methods are: ) investments, (actuarial estimations) of
investments assets and liabilities, internal and external,
real and portfolio types their mathematical methods and
models, investments risks and management; ) life insur-
ance (various types and methods, insurance bonuses,
insurance companies and risks, role of the actuarial
methods in management of insurance companies and
reduction of insurance risks); ) general insurance (insur-
ance schemes, premium rating, reinsurance, reserving); )
actuarial provision of pension insurance (pension invest-
ments – investment policy, actuarial databases, meeting
the cost, actuarial researches).
Scientist who have greatly contributed to actuarial prac-

tices: William Morgan, Jacob Bernoulli, A. A. Markov,
V. Y. Bunyakovsky, M. E. Atkinson, M. H. Amsler,
B. Benjamin, G. Clark, C. Haberman, S. M. Hoem,
W. F. Scott, and H. R. Watson.
World’s famous actuary’s schools and institutes: �e

Institute of Actuaries in London, Faculty of Actuaries in
Edinburgh (on  May , following a ballot of Fellows
of both institutions, it was announced that the Institute and
Faculty wouldmerge to form one body – the “Institute and

Faculty of Actuaries”), Charted Insurance Institute, Inter-
national Association of Actuaries, International Forum of
Actuaries Associations, International Congress of Actuar-
ies, and Groupe Consultatif Actuariel Européen.
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Consider a set of data consisting of n observations of a
response variable Y and of vector of p explanatory vari-
ablesX = (X,X, . . . ,Xp)⊺.�eir relationship is described
by the linear regression model (see 7Linear Regression
Models)

Y = βX + βX + . . . + βpXp + e.

In terms of the observed data, the model is

Yi = βxi + βxi + . . . + βpxip + ei, i = , , . . . ,n.

�e variables e, . . . , en are unobservable model errors,
which are assumed being independent and identically dis-
tributed random variables with a distribution function F
and density f .�e density is unknown,we only assume that
it is symmetric around .�e vector β = (β, β, . . . , βp)⊺

is an unknown parameter, and the problem of interest is
to estimate β based on observations Y, . . . ,Yn and xi =
(xi, . . . , xip)⊺, i = , . . . ,n.
Besides the classical 7least squares estimator, there

exists a big variety of robust estimators of β. Some are dis-
tributionally robust (less sensitive to deviations from the
assumed shape of f ), others are resistant to the leverage
points in the design matrix and have a high breakdown
point [introduced originally by Hampel (), the �nite
sample version is studied in Donoho and Huber ()].

�e last  years brought a host of statistical pro-
cedures, many of them enjoying excellent properties
and being equipped with a computational so�ware (see

7Computational Statistics and 7Statistical So�ware: An
Overview). On the other hand, this progress has put an
applied statistician into a di�cult situation: If one needs
to �t the data with a regression hyperplane, he (she) is
hesitating which procedure to use. If there is more infor-
mation on the model, then the estimation procedure can
be chosen accordingly. If the data are automatically col-
lected by a computer and the statistician is not able tomake
any diagnostics, then he (she) might use one of the high
breakdown-point estimators. However, many decline this
idea due to the di�cult computation.�en, at the end, the
statistician can prefer the simplicity to the optimality and
uses either the classical least squares (LS), LAD-method or
other reasonably simple method.
Instead of to �x ourselves on one �xedmethod, one can

try to combine two convenient estimationmethods, and in
this way diminish eventual shortages of both. Taylor ()
suggested to combine the LAD (minimizing the L norm)
and the least squares (minimizing the L norm) methods.
Arthanari and Dodge () considered a convex com-
bination of LAD- and LS-methods. Simulation study by
Dodge and Lindstrom () showed that this procedure
is robust to small deviations from the normal distribu-
tion (see7NormalDistribution,Univariate). Dodge ()
extended thismethod to a convex combination of LADand
Huber’sM-estimationmethods (see7Robust Statistics and
Robust Statistical Methods). Dodge and Jurečková ()
observed that the convex combination of two methods
could be adapted in such a way that the resulted esti-
mator has the minimal asymptotic variance in the class
of estimators of a similar kind, no matter what is the
unknown distribution. �e �rst numerical study of this
procedure was made by Dodge et al. (). Dodge and
Jurečková (, ) then extended the adaptive proce-
dure to the combinations of LAD- with M-estimation and
with the trimmed least squares estimation.�e results and
examples are summarized in monograph of Dodge and
Jurečková (), where are many references added.
Let us describe the general idea, leading to a construc-

tion of an adaptive convex combination of two estimation
methods: We consider a family of symmetric densities
indexed by an suitable measure of scale s :

F = {f : f (z) = s−f(z/s), s > }.

�e shape of f is generally unknown; it only satis�es some
regularity conditions and the unit element f ∈ F has
the scale s = . We take s = /f () when we combine
L-estimator with other class of estimators.
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A�e scale characteristic s is estimated by a consistent
estimator ŝn based on Y, . . . ,Yn, which is regression-
invariant and scale-equivariant, i.e.,

(a) ŝn(Y)
p→ s as n→∞

(b) ŝn(Y + Xb) = ŝn(Y) for any b ∈ Rp (regression-invariance)
(c) ŝn(cY) = cŝn(Y) for c >  (scale-equivariance).

Such estimator based on the regression quantiles was con-
structed e.g., by Dodge and Jurečková (). Other esti-
mators are described in themonograph byKoenker ().

�e adaptive estimator Tn(δ) of β is de�ned as a
solution of the minimization problem

n

∑
i=

ρ (
Yi − x⊺i t
ŝn

) := min

with respect to t ∈ Rp, where

ρ(z) = δρ(z) + ( − δ)ρ(z) ()

with a suitable �xed δ,  ≤ δ ≤ , where ρ(z)

and ρ(z) are symmetric (convex) discrepancy func-
tions de�ning the respective estimators. For instance,
ρ(z)= ∣z∣ and ρ(z)= z

 if we want to combine LAD and
LS estimators. �en

√
n(Tn(δ) − β) has an asymptot-

ically normal distribution (see 7Asymptotic Normality)
Np(,Q−σ (δ, ρ, f ))with the variance dependent on δ, ρ
and f , where

Q = lim
n→∞

Qn, Qn =

n

n

∑
i=
xix⊺i .

Using δ = δ which minimizes σ (δ, ρ, f ) with respect to
δ,  ≤ δ ≤ , we get an estimator Tn(δ) minimizing the
asymptotic variance for a �xed distribution shape. Typi-
cally, σ (δ, ρ, f ) depends on f only through two moments
of f. However, these moments should be estimated on the
data.
Let us illustrate the procedure on the combination of the
least squares and the L procedures. Set

σ

= ∫ z


f (z)dz, σ


 = ∫ z


f(z)dz ()

E

 = ∫ ∣z∣ f(z)dz, E = ∫ ∣z∣ f (z)dz.

�en

σ

= ∫ z


f (z)dz = s


σ

 , E = ∫ ∣z∣ f (z)dz = sE




and the corresponding asymptotic variance of Tn(δ) is

σ

(δ, f , s) =

s


{( − δ)


σ

 + δ( − δ)E


 + δ


}. ()

If we know all moments in (), we minimize the variance
() with respect to δ, under the restriction  ≤ δ ≤ . It is
minimized for δ = δ where

δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if σ  ≤ E < /
σ  − E
σ  − E + 

if E < / and E < σ 

 if / ≤ E < σ  .

�e estimatorTn(δ) of β is a solution of theminimization

n

∑
i=

ρ((Yi − x⊺i t)/ŝn) := min, t ∈ Rp,

ρ(z) = ( − δ)z

+ δ∣z∣, z ∈ R. ()

But δ is unknown, because the entities in () depend on
the unknown distribution f . Hence, we should replace δ
by an appropriate estimator based on Y. We shall proceed
in the following way:
First estimate E = E/s = f () ∫IR ∣z∣ f (z)dz by

Ê

 = ŝ

−
n (n − p)

−
n

∑
i=

∣Yi − x′i β̂n (


)∣ ()

where β̂n(/) is the LAD-estimator of β. �e choice of
optimal δ̂n is then based on the following decision proce-
dure (Table ).
It can be proved that δ̂n

p
Ð→ δ as n → ∞ and

Tn(δ̂n) is a consistent estimator of β and is asymptotically
normally distributed with the minimum possible variance.

Adaptive Linear Regression. Table  Decision procedure

Compute Ê
 as in ().

() If Ên
 < /, calculate

σ̂n
 = 

ŝn
(n−p)

n
∑
i=
(Yi − x⊺i β̂(/))



and go to (). If not, go to ().

() If Ê 
n ≥ σ̂ 

n , put δ̂n = . Then Tn is the ordinary LS

estimator of β. If not, go to ().

() If Ê 
n < σ̂ 

n, calculate

δ̂n =
σ̂ 

n−̂E 
n

σ̂ 
n−̂E 

n+

and perform the minimization () with the function
ρ equal to

( − δ̂n)
n
∑
i=
( Yi−x′i t

ŝ n
)



+ δ̂n

n
∑
i=
∣ Yi−x⊺i t

ŝn
∣ .

() Put δ̂n = ; then Tn is the LAD-estimate of β.
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Many numerical examp les based on real data can be �nd
in the monograph Dodge and Jurečková ().
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Introduction
Statistical procedures, the e�ciencies of which are opti-
mal and invariant with regard to the knowledge or not of
certain features of the data, are called adaptive statistical
methods.
Such procedures should be used when one suspects

that the usual inference assumptions, for example, the nor-
mality of the error’s distribution, may not be met. Indeed,
traditional methods have a serious defect. If the distri-
bution of the error is non-normal, the power of classi-
cal tests, as pseudo-Gaussian tests, can be much less than
the optimal power. So, the variance of the classical least
squares estimator ismuch bigger than the smallest possible
variance.

What Is Adaptivity?
�e adaptive methods deal with the problem of estimat-
ing and testing hypotheses about a parameter of interest
θ in the presence of nuisance parameter ν.�e fact that ν

remains unspeci�ed induces, in general, a loss of e�ciency
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Awith the situation where ν is exactly speci�ed. Adaptivity
occurs when the loss of e�ciency is null, i.e., when we can
estimate (testing hypotheses about) θ as when not know-
ing ν as well as when knowing ν.�e method used in this
respect is called adaptive.
Adaptivity is a property of the model under study, the

best known of which is undoubtedly the symmetric loca-
tion model; see Stone (). However, under a totally
unspeci�ed density, possibly non-symmetric, the mean
can not be adaptively estimated.

Approaches to Adaptive Inference
Approaches to adaptive inference mainly belong to one of
two types: either to estimate the unknown parameters ν

in some way, or to use the data itself to determine which
statistical procedure is the most appropriate to these data.
�ese two approaches are the starting points of two rather
distinct strands of the statistical literature. Nonparametric
adaptive inference, on one hand, where ν is estimated from
the sample, and on the other hand, data-driven methods,
where the shape of ν is identi�ed via a selection statistic to
distinguish the e�ective statistical procedure suitable at the
current data.

Nonparametric Methods
�e �rst approach is o�en used for the semiparametric
model, where θ is a Euclidean parameter and the nuisance
parameter is an in�nite dimensional parameter f - o�en,
the unspeci�ed density of some white noise underlying the
data generating process.
Stein () introduced the notion of adaptation and

gave a simple necessary condition for adaptation in semi-
parametric models. A comprehensive account of adaptive
inference can be found in the monograph by Bickel et al.
() for semiparametricmodels with independent obser-
vations. Adaptive inference for dependent data have been
studied in a series of papers, e.g., Kreiss (), Drost et al.
(), and Koul and Schick ().�e current state of the
art is summarized in Grenwood et al. ().

�e basic idea in this literature is to estimate the under-
lying f using a portion of the sample, and to reduce locally
and asymptotically the semiparametric problem to a sim-
pler parametric one, through the so-called “least favorable
parametric submodel” argument. In general, the resulting
computations are non-trivial.
An alternative technique is the use of adaptive rank

based statistics. Hallin and Werker () proposed a suf-
�cient condition for adaptivity; that is, adaptivity occurs
if a parametrically e�cient method based on rank statis-
tics can be derived.�en, it su�ces, to substitute f in the
rank statistics by an estimate f̂ measurable on the 7order

statistics. Some results in this direction have been obtained
by Hájek (), Beran (), and Allal and El Melhaoui
().
Finally, these nonparametric adaptive methods, when

they exist, are robust in e�ciency: they cannot be out-
performed by any non-adaptive method. However, these
methods have not beenwidely used in practice, because the
estimation of density, typically, requires a large number of
observations.

Data-Driven Methods
�e second strand of literature addresses the same prob-
lem of constructing adaptive inference, and consists of the
use of the data to determine which statistical procedure
should be used and then using the data again to carry out
the procedure.

�e was �rst proposed by Randles and Hogg ().
Hogg et al. () used the measure of symmetry and tail-
weight as selection statistics in and adaptive two-sample
test. If the selection fell into one of the regions de�ned by
the adaptive procedure, then a certain set of rank scores
was selected, whereas if the selection statistic fell into a dif-
ferent region, then di�erent rank scores would be used in
the test. Hogg and Lenth () proposed an adaptive esti-
mator of the mean of symmetric distribution.�ey used
selection statistics to determine if a mean, a % trimmed
mean, ormedian should be used as an estimate of themean
of population. O’Gorman () proposed an adaptive
procedure that performs the commonly used tests of sig-
ni�cance, including the two-sample test, a test for a slope
in linear regression, and a test for interaction in two-way
factorial design.A comprehensive account of this approach
can be found in the monograph by O’Gorman ().

�e advantage of the data-driven methods is that if
an adaptive method is properly constructed, it automat-
ically downweight outliers and could easily be applied
in practice. However, and contrary to the nonparamet-
ric approach, the adaptive data-driven method is the best
among the existing procedures, but not the best that can
be built. As a consequence, the method so built is not
de�nitively optimal.
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Adaptive sampling is particularly useful for sampling
populations that are sparse but clustered. For example, �sh
can form large, widely scattered schools with few �sh in

between. Applying standard sampling methods such as
simple random sampling (SRS, see7Simple Random Sam-
ple) to get a sample of plots from such a population could
yield little information, withmost of the plots being empty.
�e idea can be simply described follows. We go �shing
in a lake using a boat and, assuming complete ignorance
about the population, we select a location at random and
�sh. If we don’t catch anything we select another location
at random and try again. If we do catch something we
�sh in a speci�c neighborhood of that location and keep
expanding the neighborhood until we catch no more �sh.
We then move on to a second location.�is process con-
tinues until we have, for example, �shed at a �xed number
of locations or until our total catch has exceeded a certain
number of �sh. �is kind of technique where the sam-
pling is adapted to what turns up at each stage has been
applied to a variety of diverse populations such as marine
life, birds, mineral deposits, animal habitats, forests, and
rare infectious diseases, and to pollution studies.
We now break down this process into components and

introduce some general notation. Our initial focus will be
on adaptive 7cluster sampling, the most popular of the
adaptive methods developed by Steven�ompson in the
s. Supposewe have a population ofN plots and let yi be
a variable that we measure on the ith plot (i = , , . . . ,N).
�is variable can be continuous (e.g., level of pollution
or biomass), discrete (e.g., number of animals or plants),
or even just an indicator variable taking the value  for
presence and zero for absence. Our aim is to estimate some
function of the population y values such as, for example,
the population total τ = ∑

N
i= yi, the population mean

µ = τ/N, or the population density D = τ/A, where A is
the population area.

�e next step is to determine the nature of the neigh-
borhood of each initially chosen plot. For example, we
could choose all the adjacent units with a common bound-
ary which, together with unit i, form a “cross” Neighbor-
hoods can be de�ned to have a variety of patterns and the
units in a neighborhood do not have to be contiguous (next
to each other).We then specify a conditionC such as yi > c
which determines when we sample the neighborhood of
the ith plot; typically c =  if y is a count. If C for the ith
plot or unit is satis�ed, we sample all the units in the neigh-
borhood and if the rule is satis�ed for any of those units we
sample their neighborhoods as well, and so on, thus lead-
ing to a cluster of units.�is cluster has the property that
all the units on its “boundary” (called “edge units”) do not
satisfy C. Because of a dual role played by the edge units,
the underlying theory is based on the concept of a network,
which is a cluster minus its edge units.
It should be noted that if the initial unit selected is any

one of the units in the cluster except an edge unit, then
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Aall the units in the cluster end up being sampled. Clearly,
if the unit is chosen at random, the probability of select-
ing the cluster will depend on the size of the cluster. For
this reason adaptive cluster sampling can be described as
unequal probability cluster sampling – a form of biased
sampling.

�e �nal step is to decide how we choose both the size
and the method of selecting the initial sample size. Focus-
ing on the second of these for the moment, one simple
approach would be to use SRS to get a sample of size n,
say. If a unit selected in the initial sample does not satisfy
C, then there is no augmentation and we have a cluster of
size one. We note that even if the units in the initial sam-
ple are distinct, as in SRS, repeats can occur in the �nal
sample as clusters may overlap on their edge units or even
coincide. For example, if two non-edge units in the
same cluster are selected in the initial sample, then that
whole cluster occurs twice in the �nal sample. �e �nal
sample then consists of n (not necessarily distinct) clus-
ters, one for each unit selected in the initial sample. We
�nally end up with a total of n units, which is random, and
some units may be repeated.

�ere are many modi�cations of the above scheme
depending on the nature of the population and we men-
tion just a few. For example, the initial sample may be
selected by sampling with replacement, or by using a form
of systematic sampling (with a random start) or by using
unequal probability sampling, as in sampling a tree with
probability proportional to its basal area. Larger initial
sampling units other than single plots can be used, for
example a strip transect (primary unit) commonly used
in both aerial and ship surveys of animals and marine
mammals. Other shaped primary units can also be used
and units in the primary unit need not be contiguous. If
the population is divided into strata, then adaptive clus-
ter sampling can be applied within each stratum, and the
individual estimates combined. How they are combined
depends on whether clusters are allowed to cross stratum
boundaries or not. If instead of strata, we simply have a
number of same-size primary units and choose a sample
of primary units at random, and then apply the adaptive
sampling within each of the chosen primary units, we have
two-stage sampling with its appropriate theory.
In some situations, the choice of c in condition C is

problematical as, with a wrong choice, we may end up
with a feast or famine of plots.�ompson suggested using
the data themselves, in fact the 7order statistics for the
yi values in the initial sample. Sometimes animals are
not always detected and the theory has been modi�ed
to allow for incomplete detectability. If we replace yi by
a vector, then the scheme can be modi�ed to allow for
multivariate data.

We now turn our attention to sample sizes. Several
ways of controlling sample sizes have been developed. For
example, to avoid duplication we can remove a network
once it has been selected by sampling networks without
replacement. Sequential methods can also be used, such
as selecting the initial sample sequentially until n exceeds
some value. In fact Salehi, in collaboration with various
other authors has developed a number of methods using
both inverse and sequential schemes. One critical question
remains:How canweuse a pilot survey to design an experi-
mentwith a given e�ciency or expected cost?One solution
has been provided using the two-stage sampling method
mentioned above (Salehi and Seber ).
We have not said anything about actual estimates as

this would take several pages. However, a number of
estimates associated with the authors Horvitz-�ompson
(see 7Horvitz–�ompson Estimator), Hansen-Hurwitz,
and Murthy have all been adapted to provide unbiased
estimates for virtually all the above schemes and modi-
�cations. Salehi () has also used the famous 7Rao-
Blackwell theorem to provide more e�cient unbiased esti-
mates in a number of cases. �e mentioned estimators
based on small samples under adaptive cluster sampling
o�en have highly skewed distributions. In such situations,
con�dence intervals (see 7Con�dence Interval) based on
traditional normal approximation can lead to unsatisfac-
tory results, with poor coverage properties; for another
solution see Salehi et al. (a).
As you can see, the topic is rich in applications and

modi�cations and we have only told part of the story! For
example, there is a related topic called adaptive allocation
that has been used in �sheries; for a short review of adap-
tive allocation designs see Salehi et al. (b). Extensive
references to the above are�ompson and Seber () and
Seber and Salehi ().
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on the estimation of animal abundance. He is the author
of the internationally recognized text Estimation of Ani-
mal Abundance and Related Parameters (Wiley, nd edit.,
; paperback reprint, Blackburn, ).�e third con-
ference on Statistics in Ecology and Environmental Moni-
toring was held in Dunedin () “to mark and recapture
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Advantages of Bayesian
Structuring: Estimating Ranks
and Histograms

Thomas A. Louis
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Johns Hopkins Bloomberg School of Public Health,
Baltimore, MD, USA

Introduction
Methods developed using the Bayesian formalism can be
very e�ective in addressing both Bayesian and frequentist
goals. �ese advantages are conferred by full probabil-
ity modeling are most apparent in the context of 7non-
linear models or in addressing non-standard goals. Once
the likelihood and the prior have been speci�ed and data

observed, 7Bayes’ �eorem maps the prior distribution
into the posterior. �en, inferences are computed from
the posterior, possibly guided by a 7loss function. �is
last step allows proper processing for complicated, non-
intuitive goals. In this context, we show how the Bayesian
approach is e�ective in estimating 7ranks and CDFs (his-
tograms). We give the basic ideas; see Lin et al. (,
); Paddock et al. () and the references thereof for
full details and generalizations.
Importantly, as Carlin and Louis () and many

authors caution, the Bayesian approach is not a panacea.
Indeed, the requirements for an e�ective procedure are
more demanding than those for a frequentist approach.
However, the bene�ts are many and generally worth the
e�ort, especially now that 7Markov Chain Monte Carlo
(MCMC) and other computing innovations are available.

A Basic Hierarchical Model
Consider a basic, compound sampling model with para-
meters of interest θ = (θ, . . . , θK) and data Y = (Y,
. . . ,YK).�e θk are iid and conditional on the θs, the Yk
are independent.

θk
iid
∼ G(⋅) ()

Yk∣θk
indep
∼ fk(Yk∣θk)

in practice, the θk might be the true di�erential expres-
sion of the kth gene, the true standardized mortality ratio
for the kth dialysis clinic, or the true, underlying region-
speci�c disease rate. Generalizations of () include adding
a third stage to represent uncertainty in the prior, a regres-
sion model in the prior, or a priori association among
the θs.
Assume that the θk and η are continuous random

variables.�en, their posterior distribution is,

g(θ ∣ Y) =
K

∏

g(θk ∣ Yk) ()

g(θk ∣ Yk) =
fk(Yk ∣ θk)g(θk)

∫ fk(Yk ∣ s)g(s)ds
=
fk(Yk ∣ θk)g(θk)

fG(Yk)

Ranking
�e ranking goal nicely shows the beauty of Bayesian struc-
turing. Following Shen and Louis (), if the θk were
directly observed, then their ranks (Rk) and percentiles
(Pk) are:

Rk(θ) = rank(θk) =
K

∑
j=
I{θk≥θ j}; Pk(θ) = Rk(θ)/(K + ).

()
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A�e smallest θ has rank  and the largest has rank K.
Note that the ranks aremonotone transform invariant (e.g.,
ranking the logs of parameters produces the original ranks)
and estimated ranks should preserve this invariance. In
practice, we don’t get to observe the θk, but can use their
posterior distribution () to make inferences. For exam-
ple, minimizing posterior squared-error loss for the ranks
produces,

R̄k(Y) = Eθ ∣Y[Rk(θ) ∣ Y] =
K

∑
j=
pr(θk ≥ θ j ∣ Y). ()

�e R̄k are shrunk towards the mid-rank, (K + )/, and
generally are not integers. Optimal integer ranks result
from ranking the R̄k, producing,

R̂k(Y) = rank(R̄k(Y)); P̂k = R̂k/(K + ). ()

Unless the posterior distributions of the θk are stochasti-
cally ordered, ranks based on maximum likelihood esti-
mates or those based on hypothesis test statistics perform
poorly. For example, if all θk are equal, MLEs with rela-
tively high variance will tend to be ranked at the extremes;
if Z-scores testing the hypothesis that a θk is equal to the
typical value are used, then the units with relatively small
variance will tend to be at the extremes. Optimal ranks
compromise between these two extremes, a compromise
best structured by minimizing posterior expected loss in
the Bayesian context.

Example: The basic Gaussian-Gaussian model
We specialize () to the model with a Gaussian prior and
Gaussian sampling distributions, with possibly di�erent
sampling variances. Without loss of generality assume that
the prior mean is µ =  and the prior variance is τ = .
We have,

θk iid N(, ),

Yk∣θk ∼ N(θk, σ

k )

θk ∣ Yk ind N (θ
pm

k
, ( − Bk)σ


k )

θ
pm

k
= ( − Bk)Yk; Bk = σ


k /(σ


k + ).

�e σ k are an ordered, geometric sequence with ratio of
the largest σ  to the smallest rls = σ K/σ  and 7geometric
mean gmv = GM(σ  , . . . , σ K). When rls = , the σ k are
all equal.�e quantity gmv measures the typical sampling
variance and here we consider only gmv = .
Table  documents SEL performance for P̂k (the opti-

mal approach), Yk (the MLE), ranked θ
pm

k
and ranked

exp{θ
pm

k
+

(−Bk)σ 
k

 } (the posterior mean of eθk ). We

present this last to assess performance for a monotone,

Advantages of Bayesian Structuring: Estimating Ranks and
Histograms. Table  Simulated preposterior ,  × SEL for
gmv = . As a baseline for comparison, if the data provided no
information on the θk(gmv =∞), all entries would be . If
the data provided perfect information (gmv = ), all entries
would be 

Percentiles based on

rls P̂k θ
pm
k exp{θ

pm
k + (−Bk)σ

k


} Yk

    

    

    

non-linear transform of the target parameters. For rls= ,
the posterior distributions are stochastically ordered and
the four sets of percentiles are identical, as is their per-
formance. As rls increases, performance of Yk-derived
percentiles degrades, those based on the θ

pm

k
are quite

competitive with P̂k, but performance for percentiles based
on the posterior mean of eθk degrades as rls increases.
Results show that though the posterior mean can perform
well, in general it is not competitive with the optimal
approach.

Estimating the CDF or Histogram
Similar advantages of the Bayesian approach apply to
estimating the empirical distribution function (EDF) of
the θk,

GK(t ∣ θ) = K
−
∑ I{θk≤t}.

As shown by Shen and Louis (), �e optimal SEL
estimate is

ḠK(t∣Y) = E[GK(t ∣ θ)∣Y] = K−∑Pr(θk ≤ t∣Y).

�e optimal discrete distribution estimate with at most K
mass points is ĜK , with mass K− at

Ûj = Ḡ
−
K (
j − 
K

∣Y), j = , . . . ,K

�e EDF is easy to compute from MCMC sampling. A�er
burn-in, pool all θs, order them and set Uj equal to the
(j − )th order statistic.
Bayesian structuring to estimate GK pays big divi-

dends. As shown in Fig. , for the basic Gaussian model
it produces the correct spread, whereas the histogram
of the θ

pm

k
(the posterior means) is under-dispersed and

that of the Yk (the MLEs) is over dispersed. More gen-
erally, when the true EDF is asymmetric or multi-modal,
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Advantages of Bayesian Structuring: Estimating Ranks and Histograms. Fig.  Histogram estimates using θpm, ML, and
−

GK for
the basic Gaussian/Gaussian model. GM({σ

k}) = , rls = 

the Bayesian approach also produces the correct shape
Paddock et al. ().

Discussion
�e foregoing are but two examples of the e�ectiveness of
Bayesian structuring. Many more are available in the cited
references and in other literature. In closing, we reiterate
that the Bayesian approach needs to be used with care;
there is nothing automatic about realizing its bene�ts.
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Definition
A Population 7census is the total process of collecting,
compiling, evaluating, analyzing and disseminating demo-
graphic, economic and social data related to a speci�ed
time, to all persons in a country or a well de�ned part of a
country.

History of Population Censuses
Population censuses are as old as human history.�ere are
records of census enumerations as early as in  bc in
Babylonia, in  bc in China and in  bc in Egypt.
�e Roman Empire conducted population censuses and
one of the most remembered censuses was the one held
around ad  when Jesus Christ was born as his parents
had moved from Nazareth to Bethlehem for the purpose
of being counted. However, modern censuses did not start
taking place until one was held in Quebec, Canada in .
�is was followed by one in Sweden in , USA in ,
UK in  and India .

African Population Censuses
In the absence of complete civil registration systems in
Africa, population censuses provide one of the best sources
of socioeconomic and demographic information for the
continent. Like in other parts of the world, censuses in
Africa started as headcounts and assemblies until a�er the
Second World War.�e British were the �rst to introduce
modern censuses in their colonial territories in west, east
and southern Africa. For example in East Africa, the �rst
modern census was conducted in  in what was being
referred to as British East Africa consisting of Kenya and
Uganda.�is was followed by censuses in  in Tanzania,
in  in Uganda and  in Kenya to prepare the coun-
tries for their political independence in ,  and ,
respectively. Other censuses have followed in these three

countries. Similarly, the British West African countries of
Ghana, Gambia, Nigeria and Sierra Leone were held in
s, s and s. In Southern Africa, similar cen-
suses were held in Botswana, Lesotho, Malawi, Swaziland,
Zambia and Zimbabwe in s and s, long before the
Francophone and Lusophone countries did so. It was not
until in s and s that the Francophone and Luso-
phone African countries started doing censuses instead of
sample surveys which they preferred.
To help African countries do population censuses,

United Nations set up an African census programme in
late s. Out of  countries,  participated in the
programme.�is programme closed in  and was suc-
ceeded by the Regional Advisory Services in the demo-
graphic statistics set up as a section of Statistics Division at
theUnitedNations EconomicCommission for Africa.�is
section supported many African countries in conducting
the  and  rounds of censuses. �e section was
superseded by the UNFPA sub-regional country support
teams stationed in Addis Ababa, Cairo, Dakar and Harare.
Each of these teams had census experts to give advisory
services to countries in the  round of censuses.�ese
teams have now been reduced to three teams stationed in
Pretoria, Cairo andDakar and are currently supporting the
African countries in population censuses.

�ere were working group committees on census on
each round of censuses to work on the content of cen-
sus 7questionnaire. For instance, in the  round of
censuses the working group recommended that the cen-
sus questionnaire should have geographic characteristics,
demographic characteristics, economic characteristics,
community level variables and housing characteristics. In
 round of censuses, questions on the disabled persons
were recommended to be added to the  round ques-
tions. Later in the  round of censuses, questions on
economic establishments, agricultural sector and deaths
in households were added. In the current round of 
censuses, the questions on disability were sharpened to
capture the data better. New questions being asked include
those on child labour, age at �rst marriage, ownership
of mobile phone, ownership of email address, access to
internet, distance to police post, access to salt in household,
most commonly spoken language in household and cause
of death in household.
In the  and s round of censuses, Post enu-

meration surveys (PES) to check on the quality of the
censuses were attempted in Ghana. However, the expe-
rience with and results from PES were not encouraging,
which discouraged most of the African countries from
conducting them. Recently, the Post enumeration sur-
veys have been revived and conducted in several African
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countries like South Africa, Tanzania and Uganda. �e
challenges of PES have included: poor cartographic work,
neglecting operational independence, inadequate funding,
fatigue a�er the census, matching alternative names, lack
of quali�ed personnel, useless questions in PES, probabil-
ity sample design and selection, �eld reconciliation, lack of
unique physical addresses in Africa and neglect of pretest
of PES.

�e achievements of the African censuses include sup-
plying the needed sub-national data to the decentral-
ized units for decision making processes, generating data
for monitoring poverty reduction programmes, provid-
ing information for measuring indicators of most MDGs,
using the data formeasuring the achievement of indicators
of International Conference on Population and Develop-
ment (ICP), meeting the demand for data for emerging
issues of socioeconomic concerns, accumulating experi-
ence in the region of census operations and capacity build-
ing at census and national statistical o�ces.
However, there are still several limitations associated

with the African censuses. �ese have included inade-
quate participation of the population of the region; only
% of the African population was counted in the 
round of censuses, which was much below to what hap-
pened in other regions: Oceania – %, Europe and
North America – %, Asia – %, South America – %
and the world – %. Other shortcomings were weak
organizational and managerial skills, inadequate funding,
non-conducive political environment, civil con�icts, weak
technical expertise at NSOs and lack of data for gender
indicators.
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Given a data vector x = (x, x, . . . , xn) and a weight
vector w = (w,w, . . . ,wn), there exist three aggrega-
tion schemes in the area of statistics that, under certain
assumptions, generate three well-knownmeasures of loca-
tion: arithmetic mean (AM),7geometric mean (GM), and
7harmonic mean (HM), where it is implicitly understood
that the data vector x contains values of a single variable.
Among all these three measures, AM is more frequently
used in statistics for some theoretical reasons. It is well
known that AM ≥ GM ≥ HM where equality holds only
when all components of x are equal.
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AIn recent years, some of these three and a new aggre-
gation scheme are being practiced in the aggregation of
development or deprivation indicators by extending the
de�nition of data vector to a vector of indicators, in the
sense that it contains measurements of development or
deprivation of several sub-population groups or measure-
ments of several dimensions of development or depriva-
tion.�emeasurements of development or deprivation are
either available in the form of percentages or need to be
transformed in the formof unit free indices. PhysicalQual-
ity of Life Index (Morris ),HumanDevelopment Index
(UNDP ), Gender-relatedDevelopment Index (UNDP
), Gender Empowerment Measure (UNDP ), and
Human Poverty Index (UNDP ) are some of the aggre-
gated indices of several dimensions of development or
deprivation.
In developing countries, aggregation of development

or deprivation indicators is a challenging task, mainly due
to two reasons. First, indicators usually display large varia-
tions or inequalities in the achievement of development or
in the reduction of deprivation across the sub-populations
or across the dimensions of development or deprivation
within a region. Second, during the process of aggregation
it is desired to incorporate the public aversion to social
inequalities or, equivalently, public preference for social
equalities. Public aversion to social inequalities is essential
for development workers or planners of developing coun-
tries for bringing marginalized sub-populations into the
mainstream by monitoring and evaluation of the develop-
ment works. Motivated by this problem, Anand and Sen
(UNDP ) introduced the notion of the gender-equality
sensitive indicator (GESI).
In societies of equal proportion of female and male

population, for example, the AM of  and  percent of
male and female literacy rate is the same as that of  and
 percent, showing that AM fails to incorporate the pub-
lic aversion to gender inequality due to the AM’s built-in
problem of perfect substitutability, in the sense that a  per-
centage point decrease in female literacy rate in the former
society as compared to the latter one is substituted by the
 percentage point increase in male literacy rate. �e
GM or HM, however, incorporates the public aversion to
gender inequality because they do not posses the perfect
substitutability property. Instead of AM, Anand and Sen
used HM in the construction of GESI.
In the above example consider that society perceives

the social problem from the perspective of deprivation;
that is, instead of gender-disaggregated literacy rates
society considers gender-disaggregated illiteracy rates.
Arguing as before, it immediately follows that AM fails to
incorporate the public aversion to gender inequality. It also

follows that neither GM nor HM incorporates the public
aversion to gender inequality. A new aggregation scheme
is required for aggregating indicators of deprivation.
So far, currently practiced aggregation schemes are

accommodated within a slightly modi�ed version of the
following single mathematical function due to Hardy et al.
() under the assumption that components of x and w
are positive and the sum of the components of w is unity.

µ(x, w, r) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
n

∑
i=
wixi

r
)

/r

if r ≠ ,

n

∏
i=
xi
wi if r = .

()

For �xed x and w, the function () is de�ned for all real
numbers, implying that the function () yields an in�nite
number of aggregation schemes. In particular, it yieldsAM
when r = , HM when r = −, and obviously GM when
r = , and a new aggregation scheme suggested by Anand
and Sen in constructing Human Poverty Index when
n = , w = w = w = / and r =  (UNDP ). It
is well known that the values of the function are bounded
between x() and x(n), where x() = min{x, x, . . . , xn}
and x(n) = max{x, x, . . . , xn}, and the function is strictly
increasing with respect to r if all the components of data
vector are not equal (see Fig.  when w = w = ., x =
% and x = %).

�e �rst two partial derivatives of the function with
respect to the kth component of the vector x yield the
following results where g(x, w) is GM.

∂µ(x, w, r)
∂xk

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

wk (
xk

µ(x,w,r))
r−

if r ≠ ,

wk g(x,w)x−k if r = .

()

∂µ(x,w, r)
∂x
k

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(r − )wk [ xk
µ(x,w,r)]

r−
∑
i≠k
wixri if r ≠ ,

wk (wk − )g(x,w)xk− if r = .
()

For �xed
⎛
⎜
⎝

r < 
r > 

⎞
⎟
⎠
and w, () and () imply that

the function () is increasing and
⎛
⎜
⎝

concave
convex

⎞
⎟
⎠
with
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respect to each xk, implying that the aggregated value

increases at
⎛
⎜
⎝

decreasing
increasing

⎞
⎟
⎠
rate with respect to each com-

ponent of x. �ese properties are desirable for aggregat-

ing the
⎛
⎜
⎝

development
deprivation

⎞
⎟
⎠
indicators, since the aggregated

value of
⎛
⎜
⎝

development
deprivation

⎞
⎟
⎠
is expected to

⎛
⎜
⎝

rise
fall

⎞
⎟
⎠
from the

⎛
⎜
⎝

�oor to the ceiling value
ceiling to the �oor value

⎞
⎟
⎠
at decreasing rate with respect

to each component of x. For given x andw, the function ()

with any value of r,
⎛
⎜
⎝

r < 
r > 

⎞
⎟
⎠
, could be used to aggregate the

⎛
⎜
⎝

development
deprivation

⎞
⎟
⎠
indicators if the public aversion to social

inequalities should be incorporated.
What value of r should one use in practice?�ere is no

simple answer to this question, since the answer depends
upon the society’s degree of preference for social equality.
If a society has no preference for social equality, then one
can use r =  in aggregating development or deprivation
indicators, which is still a common practice in develop-
ing countries, even though the public e�orts for bring-
ingmarginalized sub-populations into themainstream has
become a major agenda of development.

If a society has preference for social equality, then sub-
jective judgment in the choice of r seems to be unavoidable.
For the purpose of monitoring and evaluation, such judg-
ment does not seem to be a serious issue as long as a
�xed value of r is decided upon. In this context, Anand
and Sen suggested using r = − for aggregating the indi-
cators of development when n =  (UNDP ), and
r =  for aggregating the indicators of deprivation when
n =  (UNDP ). A lot of research work still needs to
be done in this area for producing social-equality sensitive
indicators of development or deprivation.
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AAgriculture, Statistics in

Gavin J. S. Ross
Rothamsted Research, Harpenden, UK

�e need to collect information on agricultural production
has been with us since the dawn of civilization. Agri-
culture was the main economic activity, supplying both
food for growing populations and the basis for taxation.
�e Sumerians ofMesopotamia before  BC developed
writing systems in order to record crop yields and livestock
numbers.�e Ancient Egyptians recorded the extent and
productivity of arable land on the banks of the Nile. Later
conquerors surveyed their new possessions, as in the Nor-
man conquest of England which resulted in the Domesday
Book of , recording the agricultural potential of each
district in great detail.

�e pioneers of scienti�c agriculture, such as J.B.
Lawes and J.H.Gilbert at Rothamsted, England, from 
onwards, insisted on accurate measurement and record-
ing as the �rst requirement for a better understanding of
the processes of agricultural production.�e Royal Statis-
tical Society (RSS) was founded in  with its symbol of a
sheaf of corn, implying that the duty of statisticians was to
gather numerical information, but for others to interpret
the data. Lawes published numerous papers on the vari-
ability of crop yields from year to year, and later joined
the Council of the RSS. By  agricultural experiments
were conducted in several countries, including Germany,
the Netherlands and Ireland, where W.S. Gosset, publish-
ing under the name of “Student,” conducted trials of barley
varieties for the brewing industry.
In  R.A. Fisher was appointed to analyze the

accumulated results of  years of �eld experimenta-
tion at Rothamsted, initiating a revolution in statisti-
cal theory and practice. Fisher had already published
the theoretical explanation of Student’s t-distribution
and the sampling distribution of the correlation coe�-
cient, and challenged Karl Pearson’s position that statis-
tical analysis was only possible with large samples. His
�rst task was to study the relationship between rain-
fall and crop yields on the long-term experiments, for
which he demanded a powerful mechanical calculator, the
“Millionaire.” Introducing orthogonal polynomials to �t
the yearly weather patterns and to eliminate the long-term
trend in crop yield, he performed multiple regressions on
the rainfall components, and developed the variance ratio
test (later the F-distribution) to justify which terms to

include using what became the 7analysis of variance. If
the results were of minor interest to farmers, the methods
usedwere of enormous importance in establishing the new
methodology of curve �tting, regression analysis and the
analysis of variance.
Fisher’s work with agricultural scientists brought him

a whole range of statistical challenges. Working with small
samples he saw the role of the statistician as one who
extracts the information in a sample as e�ciently as pos-
sible. Working with non-normally distributed data he
proposed the concept of likelihood, and the method of
maximum likelihood to estimate parameters in a model.
�e early �eld experiments at Rothamsted contained the
accepted notion of comparison of treatments with con-
trols at the same location, and some plots included fac-
torial combinations of fertilizer sources. Fisher saw that
in order to apply statistical methods to assess the signif-
icance of observed e�ects it was necessary to introduce
7randomization and replication. Local control on land
of varying fertility could be improved by blocking, and
for trends in two directions he introduced Latin Square
designs. �e analysis of factorial experiments could be
expressed in terms of main e�ects and interaction e�ects,
with the components of interaction between blocks and
treatments regarded as the basic residual error variance.
Fisher’s ideas rapidly gained attention and his ideas and

methods were extended to many �elds beyond agricul-
tural science. George Snedecor in Iowa, Mahalanobis and
C.R. Rao in India, were early disciples, and his assistants
included L.H.C. Tippett, J. Wishart and H. Hotelling. He
was visited in  by J. Neyman, who was working with
agricultural scientists in Poland. In  he was joined by
Frank Yates who had experience of 7least squares meth-
ods as a surveyor in West Africa. Fisher le� Rothamsted
in  to pursue his interests in genetics, but continued to
collaborate with Yates.�ey introduced Balanced Incom-
plete Blocks and Lattice designs, and Split Plot designswith
more than one component of error variance.�eir Statis-
tical Tables, �rst published in , were widely used for
many decades later.
Yates expanded his department to provide statistical

analysis and consulting to agricultural departments and
institutes in Britain and the British Empire. Field exper-
imentation spread to South America with W.L Stevens,
and his assistants W.G. Cochran, D.J. Finney and O.
Kempthorne became well-known statistical innovators in
many applications. During World War II Yates persuaded
the government of the value of sample surveys to provide
information about farm productivity, pests and diseases
and fertilizer use. He later advised Indian statisticians on
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the design and analysis of experiments in which small
farmers in a particular area might be responsible for
one plot each.
In  Yates saw the potential of the electronic com-

puter in statistical research, andwas able to acquire the �rst
computer devoted to civilian research, the Elliott . On
this computer the �rst statistical programswere written for
the analysis of �eld experiments and surveys, for bioassay
and 7probit analysis, for multiple regression and multi-
variate analysis, and for model �tting by maximum like-
lihood. All the programs were in response to the needs of
agricultural scientists, at �eld or laboratory level, including
those working in animal science. Animal experiments typ-
ically had unequal numbers of units with di�erent treat-
ments, and iterativemethodswere needed to �t parameters
by least squares or maximum likelihood. Animal breed-
ing data required lengthy computing to obtain compo-
nents of variance from which to estimate heritabilities and
selection indices.�e needs of researcher workers in fruit
tree research, forestry, glasshouse crops and agricultural
engineering all posed di�erent challenges to the statistical
profession.
In  J.A. Nelder came to Rothamsted as head

of the Statistics Department, having been previously at
the National Vegetable Research Station at Wellesbourne,
where he had explored the used of systematic designs
for vegetable trials, and had developed the well-used Sim-
plex Algorithm with R. Mead to �t 7nonlinear models.
With more powerful computers it was now possible to
combine many analyses into one system, and he invited
G.N.Wilkinson from Adelaide to include his general algo-
rithm for the analysis of variance in amore comprehensive
system that would allow the whole range of nested and
crossed experimental designs to be handled, along with
facilities for regression and multivariate analysis.�e pro-
gram GENSTAT is now used world-wide in agricultural
and other research settings.
Nelder worked with R.M. Wedderburn to show how

the methodology of Probit Analysis (�tting binomial data
to a transformed regression line) could be generalized to a
whole class of 7Generalized Linear Models.�ese meth-
ods were particularly useful for the analysis of multiway
contingency tables, using logit transformations for bino-
mial data and log transformations for positive data with
long-tailed distributions.�e applications may have been
originally in agriculture but found many uses elsewhere,
such as in medical and pharmaceutical research.

�e needs of soil scientists brought new classes
of statistical problems. �e classi�cation of soils was
complicated by the fact that overlapping horizons with

di�erent properties did not occur at the same depth,
although samples were essential similar but displaced.�e
method of Kriging, �rst used by South African mining
engineers, was found to be useful in describing the spa-
tial variability of agricultural land, with its allowance for
di�ering trends and sharp boundaries.

�e need to model responses to fertilizer applica-
tions, the growth of plants and animals, and the spread
of weeds, pests and diseases led to developments in �tting
non-linear models. While improvements in the e�ciency
of numerical optimization algorithms were important,
attention to the parameters to be optimized helped to
show the relationship between the model and the data,
and which observations contributed most to the parame-
ters of interest. �e limitations of agricultural data, with
many unknown or unmeasurable factors present, makes
it necessary to limit the complexity of the models being
�tted, or to �t common parameters to several related
samples.
Interest in spatial statistics, and in the use of models

with more than one source of error, has led to develop-
ments such as the powerful REML algorithm.�e use of
intercropping tomake better use of productive land has led
to appropriate developments in experimental design and
analysis.
With the increase in power of computers it became

possible to construct large, complex models, incorporat-
ing where possible known relationships between growing
crops and all the natural and arti�cial in�uences a�ecting
their growth over the whole cycle from planting to har-
vest. �ese models have been valuable in understanding
the processes involved, but have not been very useful in
predicting �nal yields. �e statistical ideas developed by
Fisher and his successors have concentrated on the choices
which farmers can make in the light of information avail-
able at the time, rather than to provide the best outcomes
for speculators in crop futures. Modeling on its own is no
substitute for continued experimentation.

�e challenge for the st century will be to ensure
sustainable agriculture for the future, taking account of cli-
mate change, resistance to pesticides and herbicides, soil
degradation and water and energy shortages. Statistical
methods will always be needed to evaluate new techniques
of plant and animal breeding, alternative food sources and
environmental e�ects.

About the Author
Gavin J.S. Ross has worked in the Statistics Department
at Rothamsted Experimental Station since , now as
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AJohn Nelder and John Gower, advising agricultural work-
ers, and creating statistical so�ware for nonlinear mod-
elling and for cluster analysis and multivariate analysis,
contributing to the GENSTAT program as well as pro-
ducing the specialist programs MLP and CLASP for his
major research interests. His textbook Nonlinear Estima-
tion (Springer ) describes the use of stable parameter
transformations to �t and interpret nonlinear models. He
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Akaike’s Information Criterion

Hirotugu Akaike†

Former Director General of the Institute of Statistical
Mathematics and a Kyoto Prize Winner
Tokyo, Japan

�e Information Criterion I(g : f ) that measures the devi-
ation of a model speci�ed by the probability distribution f
from the true distribution g is de�ned by the formula

I(g : f ) = E log g(X) − E log f (X).

Here E denotes the expectation with respect to the
true distribution g of X. �e criterion is a measure of
the deviation of the model f from the true model g, or
the best possible model for the handling of the present
problem.

�e following relation illustrates the signi�cant char-
acteristic of the log likelihood:

I(g : f) − I(g : f) = −E(log f(X) − log f(X)).

�is formula shows that for an observation x of X
the log likelihood log f (x) provides a relative measure
of the closeness of the model f to the truth, or the good-
ness of the model.�is measure is useful even when the
true structure g is unknown.
For a model f (X/a) with unknown parameter a the

maximum likelihood estimate a(x) is de�ned as the value
of a thatmaximizes the likelihood f (x/a) for a given obser-
vation x. Due to this process the value of log f (x/a(x))
shows an upward bias as an estimate of log f (X/a).�us
to use log f (x/a(x)) as the measure of the goodness of
the model f (X/a), it must be corrected for the expected
bias.
In typical application of the method of maximum like-

lihood this expected bias is equal the dimension, or the
number of components, of the unknown parameter a.
�us the relative goodness of a model determined by the
maximum likelihood estimate is given by
AIC = − (log maximum likelihood − (number of

parameters)).
Here log denotes natural logarithm. �e coe�cient

− is used to make the quantity similar to the familiar
chi-square statistic in the test of dimensionality of the
parameter.
AIC is the abbreviation of An Information Criterion.

About the Author
Professor Akaike died of pneumonia in Tokyo on th
August , aged . He was the Founding Head of the
�rst Department of Statistical Science in Japan. “Now that
he has le� us forever, the world has lost one of its most
innovative statisticians, the Japanese people have lost the
�nest statistician in their history and many of us a most
noble friend” (Professor Howell Tong, from “�e Obituary
of Professor Hirotugu Akaike.” Journal of the Royal Statis-
tical Society, Series A,March, ). Professor Akaike had
sent his Encyclopedia entry on May  , adding the
following sentence in his email: “�is is all that I could do
under the present physical condition.”

Cross References
7Akaike’s InformationCriterion: Background,Derivation,
Properties, and Re�nements
7Cp Statistic
7Kullback-Leibler Divergence
7Model Selection



 A Akaike’s Information Criterion: Background, Derivation, Properties, and Refinements
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Introduction
�e 7Akaike Information Criterion, AIC, was introduced
by Hirotogu Akaike in his seminal  paper “Informa-
tion�eory and an Extension of theMaximum Likelihood
Principle.” AIC was the �rst model selection criterion to
gain widespread attention in the statistical community.
Today, AIC continues to be the most widely known and
used model selection tool among practitioners.

�e traditional maximum likelihood paradigm, as
applied to statistical modeling, provides a mechanism for
estimating the unknown parameters of a model having a
speci�ed dimension and structure. Akaike extended this
paradigm by considering a framework in which the model
dimension is also unknown, and must therefore be deter-
mined from the data.�us, Akaike proposed a framework
wherein both model estimation and selection could be
simultaneously accomplished.
For a parametric candidate model of interest, the like-

lihood function re�ects the conformity of the model to
the observed data. As the complexity of the model is
increased, the model becomes more capable of adapting
to the characteristics of the data.�us, selecting the �tted
model that maximizes the empirical likelihood will invari-
ably lead one to choose the most complex model in the
candidate collection. 7Model selection based on the like-
lihood principle, therefore, requires an extension of the
traditional likelihood paradigm.

Background
To formally introduce AIC, consider the following model
selection framework. Suppose we endeavor to �nd a
suitable model to describe a collection of response mea-
surements y. We will assume that y has been generated
according to an unknown density g(y). We refer to g(y)
as the true or generating model.
A model formulated by the investigator to describe the

data y is called a candidate or approximating model. We
will assume that any candidate model structurally corre-
sponds to a parametric class of distributions. Speci�cally,

for a certain candidate model, we assume there exists a
k-dimensional parametric class of density functions

F(k) = { f (y∣ θk) ∣ θk ∈ Θ(k)} ,

a class in which the parameter space Θ(k) consists of
k-dimensional vectors whose components are functionally
independent.
Let L(θk ∣ y) denote the likelihood corresponding to

the density f (y∣ θk), i.e., L(θk ∣ y) = f (y∣ θk). Let θ̂k denote
a vector of estimates obtained bymaximizing L(θk ∣ y) over
Θ(k).
Suppose we formulate a collection of candidate models

of various dimensions k.�ese models may be based on
di�erent subsets of explanatory variables, di�erent mean
and variance/covariance structures, and even di�erent
speci�cations for the type of distribution for the response
variable. Our objective is to search among this collection
for the �tted model that “best” approximates g(y).
In the development of AIC, optimal approximation is

de�ned in terms of a well-known measure that can be
used to gauge the similarity between the true model g(y)
and a candidate model f (y∣ θk): theKullback–Leibler infor-
mation (Kullback and Leibler ; Kullback ). �e
Kullback–Leibler information between g(y) and f (y∣ θk)
with respect to g(y) is de�ned as

I(θk) = E{log
g(y)

f (y∣ θk)
},

where E(⋅) denotes the expectation under g(y). It can be
shown that I(θk) ≥  with equality if and only if f (y∣ θk)
is the same density as g(y). I(θk) is not a formal metric,
yet we view the measure in a similar manner to a distance:
i.e., as the disparity between f (y∣ θk) and g(y) grows, the
magnitude of I(θk) will generally increase to re�ect this
separation.
Next, de�ne

d(θk) = E{− log f (y∣ θk)}.

We can then write

I(θk) = d(θk) − E{− log g(y)}.

Since E{− log g(y)} does not depend on θk, any rank-
ing of a set of candidate models corresponding to values
of I(θk) would be identical to a ranking corresponding to
values of d(θk). Hence, for the purpose of discriminating
among various candidate models, d(θk) serves as a valid
substitute for I(θk). We will refer to d(θk) as the Kullback
discrepancy.
To measure the separation between between a �t-

ted candidate model f (y∣ θ̂k) and the generating model
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Ag(y), we consider the Kullback discrepancy evaluated
at θ̂k:

d(θ̂k) = E{− log f (y∣ θk)}∣θk=θ̂k
.

Obviously, d(θ̂k) would provide an attractive means for
comparing various �tted models for the purpose of dis-
cerning which model is closest to the truth. Yet evaluating
d(θ̂k) is not possible, since doing so requires knowledge of
the true distribution g(⋅).�e work of Akaike (, ),
however, suggests that − log f (y∣ θ̂k) serves as a biased
estimator of d(θ̂k), and that the bias adjustment

E{d(θ̂k)} − E{− log f (y∣ θ̂k)} ()

can o�en be asymptotically estimated by twice the dimen-
sion of θk.
Since k denotes the dimension of θk, under appropriate

conditions, the expected value of

AIC = − log f (y∣ θ̂k) + k

will asymptotically approach the expected value of d(θ̂k),
say

∆(k) = E{d(θ̂k)}.

Speci�cally, we will establish that

E{AIC} + o() = ∆(k). ()

AIC therefore provides an asymptotically unbiased esti-
mator of ∆(k). ∆(k) is o�en called the expected Kullback
discrepancy.
In AIC, the empirical log-likelihood term − log

f (y∣ θ̂k) is called the goodness-of-�t term.�e bias correc-
tion k is called the penalty term. Intuitively, models which
are too simplistic to adequately accommodate the data at
hand will be characterized by large goodness-of-�t terms
yet small penalty terms. On the other hand, models that
conform well to the data, yet do so at the expense of con-
taining unnecessary parameters, will be characterized by
small goodness-of-�t terms yet large penalty terms. Mod-
els that provide a desirable balance between �delity to the
data and parsimony should correspond to small AIC val-
ues, with the sum of the two AIC components re�ecting
this balance.

Derivation
To justify AIC as an asymptotically unbiased estimator
of ∆(k), we will focus on a particular candidate class
F(k). For notational simplicity, we will suppress the
dimension index k on the parameter vector θk and its
estimator θ̂k.

�e justi�cation of () requires the strong assump-
tion that the true density g(y) is a member of the candi-
date class F(k). Under this assumption, we may de�ne a
parameter vector θo having the same size as θ, and write
g(y) using the parametric form f (y∣ θo).�e assumption
that f (y∣ θo) ∈ F(k) implies that the �tted model is either
correctly speci�ed or over�t.
To justify (), consider writing ∆(k) as indicated:

∆(k)
= E{d(θ̂)}

= E{− log f (y∣ θ̂)}
+ [E{− log f (y∣ θo)} − E{− log f (y∣ θ̂)}] ()

+ [E{d(θ̂)} − E{− log f (y∣ θo)}]. ()

�e following lemma asserts that () and () are both
within o() of k.
We assume the necessary regularity conditions required

to ensure the consistency and 7asymptotic normality of
the maximum likelihood vector θ̂.

Lemma

E{− log f (y∣ θo)} − E{− log f (y∣ θ̂)} = k + o(), ()
E{d(θ̂)} − E{− log f (y∣ θo)} = k + o(). ()

Proof

De�ne

I(θ) = E [−
∂ log f (y∣ θ)

∂θ∂θ
′

]

and I(θ, y) = [−
∂ log f (y∣ θ)

∂θ∂θ
′

].

I(θ) denotes the expected Fisher information matrix and
I(θ, y) denotes the observed Fisher information matrix.
First, consider taking a second-order expansion of

− log f (y∣ θo) about θ̂, and evaluating the expectation of
the result. Since − log f (y∣ θ) is minimized at θ = θ̂, the
�rst-order term disappears, and we obtain

E{− log f (y∣ θo)} = E{− log f (y∣ θ̂)}

+E{(θ̂ − θo)
′

{I(θ̂, y)}(θ̂ − θo)}

+ o().

�us,

E{− log f (y∣ θo)} − E{− log f (y∣ θ̂)}

= E{(θ̂ − θo)
′

{I(θ̂, y)}(θ̂ − θo)} + o(). ()

Next, consider taking a second-order expansion of
d(θ̂) about θo, again evaluating the expectation of the
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result. Since d(θ) is minimized at θ = θo, the �rst-order
term disappears, and we obtain

E{d(θ̂)} = E{− log f (y∣ θo)}

+E{(θ̂ − θo)
′

{I(θo)}(θ̂ − θo)}

+ o().

�us,

E{d(θ̂)} − E{− log f (y∣ θo)}

= E{(θ̂ − θo)
′

{I(θo)}(θ̂ − θo)} + o(). ()

Recall that by assumption, θo ∈ Θ(k).�erefore, the
quadratic forms

(θ̂ − θo)
′

{I(θ̂, y)}(θ̂ − θo) and (θ̂ − θo)
′

{I(θo)}(θ̂ − θo)

both converge to centrally distributed chi-square ran-
dom variables with k degrees of freedom. �us, the
expectations of both quadratic forms are within o()
of k. �is fact along with () and () establishes ()
and ().

Properties
�e previous lemma establishes that AIC provides an
asymptotically unbiased estimator of ∆(k) for �tted can-
didate models that are correctly speci�ed or over�t. From
a practical perspective, AIC estimates ∆(k) with negligi-
ble bias in settings where n is large and k is comparatively
small. In settings where n is small and k is comparatively
large (e.g., k ≈ n/), k is o�en much smaller than the bias
adjustment, making AIC substantially negatively biased as
an estimator of ∆(k).
If AIC severely underestimates ∆(k) for higher dimen-

sional �tted models in the candidate collection, the cri-
terion may favor the higher dimensional models even
when the expected discrepancy between these mod-
els and the generating model is rather large. Exam-
ples illustrating this phenomenon appear in Linhart and
Zucchini (, –), who comment (p. ) that “in
some cases the criterion simply continues to decrease as
the number of parameters in the approximating model is
increased.”
AIC is asymptotically e�cient in the sense of Shibata

(, ), yet it is not consistent. Suppose that the gen-
erating model is of a �nite dimension, and that this model
is represented in the candidate collection under consider-
ation. A consistent criterion will asymptotically select the
�tted candidate model having the correct structure with
probability one. On the other hand, suppose that the gen-
erating model is of an in�nite dimension, and therefore

lies outside of the candidate collection under considera-
tion. An asymptotically e�cient criterion will asymptoti-
cally select the �tted candidatemodel whichminimizes the
mean squared error of prediction.
From a theoretical standpoint, asymptotic e�ciency

is arguably the strongest optimality property of AIC.�e
property is somewhat surprising, however, since demon-
strating the asymptotic unbiasedness of AIC as an esti-
mator of the expected Kullback discrepancy requires the
assumption that the candidate model of interest subsumes
the true model.

Refinements
A number of AIC variants have been developed and pro-
posed since the introduction of the criterion. In general,
these variants have been designed to achieve either or both
of two objectives: () to relax the assumptions or expand
the setting under which the criterion can be applied, () to
improve the small-sample performance of the criterion.
In the Gaussian linear regression framework, Sugiura

() established that the bias adjustment () can be
exactly evaluated for correctly speci�ed or over�t mod-
els. �e resulting criterion, with a re�ned penalty term,
is known as “corrected” AIC, or AICc. Hurvich and
Tsai () extended AICc to the frameworks of Gaussian
nonlinear regression models and time series autoregres-
sive models. Subsequent work has extended AICc to other
modeling frameworks, such as autoregressivemoving aver-
age models, vector autoregressive models, and certain
7generalized linear models and 7linear mixed models.

�e Takeuchi () information criterion, TIC, was
derived by obtaining a general, large-sample approxima-
tion to each of () and () that does not rely on the assump-
tion that the true density g(y) is amember of the candidate
class F(k). �e resulting approximation is given by the
trace of the product of twomatrices: an informationmatrix
based on the score vector, and the inverse of an informa-
tion matrix based on the Hessian of the log likelihood.
Under the assumption that g(y) ∈ F(k), the information
matrices are equivalent.�us, the trace reduces to k, and
the penalty term of TIC reduces to that of AIC.
Bozdogon () proposed a variant of AIC that cor-

rects for its lack of consistency.�e variant, called CAIC,
has a penalty term that involves the log of the deter-
minant of an information matrix. �e contribution of
this term leads to an overall complexity penalization that
increases with the sample size at a rate su�cient to ensure
consistency.
Pan () introduced a variant of AIC for applica-

tions in the framework of generalized linear models �tted
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Ausing generalized estimating equations. �e criterion is
called QIC, since the goodness-of-�t term is based on the
empirical quasi-likelihood.
Konishi and Kitagawa () extended the setting in

which AIC has been developed to a general framework
where () the method used to �t the candidate model is
not necessarily maximum likelihood, and () the true den-
sity g(y) is not necessarily a member of the candidate
class F(k). �eir resulting criterion is called the gener-
alized information criterion, GIC. �e penalty term of
GIC reduces to that of TIC when the �tting method is
maximum likelihood.
AIC variants based on computationally intensive

methods have also been proposed, including cross-
validation (Stone ; Davies et al. ), bootstrap-
ping (Ishiguro et al. ; Cavanaugh and Shumway ;
Shibata ), and Monte Carlo simulation (Hurvich
et al. ; Bengtsson andCavanaugh ).�ese variants
tend to perform well in settings where the sample size
is small relative to the complexity of the models in the
candidate collection.
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Algebraic statistics applies concepts from algebraic geom-
etry, commutative algebra, and geometric combinatorics
to better understand the structure of statistical models, to
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improve statistical inference, and to explore new classes of
models. Modern algebraic geometry was introduced to the
�eld of statistics in themid s. Pistone andWynn ()
used Gröbner bases to address the issue of confounding in
design of experiments, and Diaconis and Sturmfels ()
used them to perform exact conditional tests. �e term
algebraic statistics was coined in the book by Pistone et al.
(), which primarily addresses experimental design.
�e current algebraic statistics literature includes work
on contingency tables, sampling methods, graphical and
latent class models, and applications in areas such as sta-
tistical disclosure limitation (e.g., Dobra et al. ()), and
computational biology and phylogenetics (e.g., Pachter
and Sturmfels ()).

Algebraic Geometry of Statistical Models
Algebraic geometry is a broad subject that has seen an
immense growth over the past century. It is concerned
with the study of algebraic varieties, de�ned to be (closures
of) solution sets of systems of polynomial equations. For
an introduction to computational algebraic geometry and
commutative algebra, see Cox et al. ().
Algebraic statistics studies statistical models whose

parameter spaces correspond to real positive parts of alge-
braic varieties. To demonstrate how this correspondence
works, consider the following simple example of the inde-
pendence model of two binary random variables, X and Y ,
such that joint probabilities are arranged in a  ×  matrix
p := [pij]. �e model postulates that the joint probabil-
ities factor as a product of marginal distributions: pij =
pi+p+j, where i, j ∈ {, }.�is is referred to as an explicit
algebraic statistical model. Equivalently, the matrix p is
of rank , that is, its  ×  determinant is zero: pp −
pp = .�is is referred to as an implicit description of
the independence model. In algebraic geometry, the set of
rank- matrices, where we allow pij to be arbitrary com-
plex numbers, is a classical object called a Segre variety.
�us, the independence model is the real positive part of
the Segre variety. Exponential family models, in general,
correspond to toric varieties, whose implicit description is
given by a set of binomials. For a broad, general de�ni-
tion of algebraic statistical models, see Drton and Sullivant
().
By saying that “we understand the algebraic geometry

of amodel,” wemean that we understand some basic infor-
mation about the corresponding variety, such as: degree,
dimension and codimension (i.e., degrees of freedom);
the de�ning equations (i.e., the implicit description of the
model); the singularities (i.e., degeneracy in the model).
�e current algebraic statistics literature demonstrates that
understanding the geometry of a model can be useful

for statistical inference (e.g., exact conditional inference,
goodness-of-�t testing, parameter identi�ability, andmax-
imum likelihood estimation). Furthermore, many relevant
questions of interest in statistics relate to classical open
problems in algebraic geometry.

Algebraic Statistics for Contingency
Tables
A paper by Diaconis and Sturmfels () on algebraic
methods for discrete probability distributions stimulated
much of the work in algebraic statistics on contingency
tables, and has led to two general classes of problems:
() algebraic representation of a statistical model, and ()
conditional inference.�e algebraic representation of the
independence model given above generalizes to any k-way
table and its corresponding hierarchical log-linear mod-
els (e.g., see Dobra et al. ()). A standard reference on
log-linear models is Bishop et al. ().
Most of the algebraic work for contingency tables

has focused on geometric characterizations of log-linear
models and estimation of cell probabilities under those
models. Algebraic geometry naturally provides an explicit
description of the closure of the parameter space.�is fea-
ture has beenutilized, for example, by Eriksson et al. ()
to describe polyhedral conditions for the nonexistence of
the MLE for log-linear models. More recently, Petrović
et al. () provide the �rst study of algebraic geometry
of the p random graph model of Holland and Leinhardt
().
Conditional inference relies on the fact that data-

dependent objects are a convex bounded set, Pt = {x : xi ∈
R≥, t = Ax}, where x is a table, A is a design matrix, and t
a vector of constraints, typically margins, that is, su�cient
statistics of a log-linear model.�e set of all integer points
inside Pt is referred to as a �ber, which is the support of the
conditional distribution of tables given t, or the so-called
exact distribution. Characterization of the �ber is crucial
for three statistical tasks: counting, sampling and opti-
mization. Diaconis and Sturmfels () provide one of the
fundamental results in algebraic statistics regarding sam-
pling from exact distributions.�ey de�ne aMarkov basis,
a set of integer valued vectors in the kernel of A, which
is a smallest set of moves needed to perform a 7random
walk over the space of tables and to guarantee connec-
tivity of the chain. In Hara et al. (), for example, the
authors useMarkov bases for exact tests in amultiple logis-
tic regression. �e earliest application of Markov bases,
counting and optimization was in the area of statistical
disclosure limitation for exploring issues of con�dentiality
with the release of contingency table data; for an overview,
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Asee Dobra et al. (), and for other related topics, see
Chen et al. (), Onn (), and Slavković and Lee
().

Graphical and Mixture Models
Graphical models (e.g., Lauritzen ()) are an active
research topic in algebraic statistics. Non-trivial problems,
for example, include complete characterization of Markov
bases for these models, and counting the number of solu-
tions of their likelihood equations. Geiger et al. ()
give a remarkable result in this direction: decomposable
graphical models are precisely those whose Markov bases
consist of squarefree quadrics, or, equivalently, those
graphical models whose maximum likelihood degree is .
More recently, Feliz et al. () made a contribution to the
mathematical �nance literature by proposing a newmodel
for analyzing default correlation.

7Mixture models, including latent class models,
appear frequently in statistics, however, standard asymp-
totics theory o�en does not apply due to the presence of
singularities (e.g., see Watanabe ()). Singularities are
created by marginalizing (smooth) models; geometrically,
this is a projection of the corresponding variety. Alge-
braically, mixture models correspond to secant varieties.
�e complexity of such models presents many interesting
problems for algebraic statistics; e.g., see Fienberg et al.
() for the problems of maximum likelihood estima-
tion and parameter identi�ability in latent class models.
A further proliferation of algebraic statistics has been sup-
ported by studying mixture models in phylogenetics (e.g.,
see Allman et al. ()), but many questions about the
geometry of these models still remain open.

Further Reading
�ere are many facets of algebraic statistics, including gen-
eralizations of classes of models discussed above: exper-
imental design, continuous multivariate problems, and
new connections between algebraic statistics and informa-
tion geometry. For more details see Putinar and Sullivant
(), Drton et al. (), Gibilisco et al. (), and ref-
erences given therein. Furthermore, there are many freely
available algebraic so�ware packages (e.g., ti (ti team),
CoCoA (CoCoATeam)) that can be used for relevant com-
putations alone, or in combinationwith standard statistical
packages.
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Almost Sure Convergence
of Random Variables
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Definition and Relationship to Other
Modes of Convergence
Almost sure convergence is one of the most fundamen-
tal concepts of convergence in probability and statistics. A
sequence of random variables (Xn)n≥, de�ned on a com-
monprobability space (Ω,F ,P), is said to converge almost
surely to the random variable X, if

P({ω : lim
n→∞

Xn(ω) = X(ω)}) = .

Commonly used notations are Xn
a.s.
Ð→ X or limn→∞ Xn =

X (a.s.). Conceptually, almost sure convergence is a very
natural and easily understood mode of convergence; we
simply require that the sequence of numbers (Xn(ω))n≥
converges to X(ω) for almost all ω ∈ Ω. At the same time,
proofs of almost sure convergence are usually quite subtle.

�ere are rich connections of almost sure convergence
with other classical modes of convergence, such as con-
vergence in probability, de�ned by limn→∞ P(∣Xn − X∣ ≥
є) =  for all є > , convergence in distribution, de�ned
by limn→∞ Ef (Xn) = Ef (X) for all real-valued bounded,
continuous functions f , and convergence in Lp, de�ned by
limn→∞ E∣Xn − X∣p = . Almost sure convergence implies

convergence in probability, which again implies conver-
gence in distribution, but not vice versa. Almost sure con-
vergence neither implies nor is it implied by convergence in
Lp. A standard counterexample, de�ned on the probability
space [, ], equipped with the Borel σ-�eld and Lebesgue
measure, is the sequenceXn(ω) = [ j

k
, j+
k

](ω), if n = k+j,

k ≥ ,  ≤ j < k.�e sequence (Xn)n≥ converges to zero
in probability and in Lp, but not almost surely. On the same
probability space, the sequence de�ned by Xn = n/p [, 

n
]

provides an example that converges to zero almost surely,
but not in Lp.
Although convergence in probability does not imply

almost sure convergence, there is a partial result in this
direction. If (Xn)n≥ converges in probabilty to X, one can
�nd a subsequence (nk)k≥ such that Xnk

a.s.
Ð→ X.

Skorohod’s almost sure representation theorem is a
partial converse to the fact that almost sure convergence
implies convergence in distribution. If (Xn)n≥ converges
in distribution to X, one can �nd a sequence of random
variables (Yn)n≥ and a random variable Y such that Xn
and Yn have the same distribution, for each n, X and Y
have the same distribution, and limn→∞ Yn = Y almost
surely. Originally proved by Skorohod () for random
variables with values in a separable metric space, this rep-
resentation theorem has been extended by Dudley ()
to noncomplete spaces and later by Wichura () to
nonseparable spaces.
By some standard arguments, one can show that almost

sure convergence of (Xn)n≥ to X is equivalent to

lim
n→∞

P(sup
k≥n

∣Xk − X∣ ≥ є) = , for all є > .

�us almost sure convergence holds, if the series ∑k≥
P(∣Xk − X∣ ≥ є) converges. In this case, the sequence
(Xn)n≥ is said to converge completely to X.

Important Almost Sure Convergence
Theorems
Historically the earliest and also the best known almost
sure convergence theorem is the Strong Law of Large Num-
bers, established originally by Borel (). Given an i.i.d.
sequence (Xk)k≥ of random variables that are uniformly
distributed on [, ], Borel showed that


n
Sn

a.s.
Ð→ E(X),

where Sn := ∑nk= Xk denotes the partial sum. Later, this
was generalized to sequences with arbitrary distributions.
Finally, Kolmogorov () could show that the existence
of �rst moments is a necessary and su�cient condition for
the strong law of large numbers for i.i.d. random variables.
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AHsu and Robbins () showed complete convergence in
the law of large numbers, provided the random variables
have �nite secondmoments; BaumandKatz () showed
that this condition is also necessary.
Birkho� () proved the Ergodic �eorem, i.e., the

validity of the strong law of large numbers for station-
ary ergodic sequences (Xk)k≥ with �nite �rst moments.
Kingman () generalized this to the Subadditive Ergodic
�eorem, valid for doubly indexed subadditive process
(Xs,t) satisfying a certain moment condition. Doob ()
established the Martingale Convergence �eorem, which
states that every L-bounded submartingale converges
almost surely.

�e Marcinkiewicz-Zygmund Strong Law of Large

Numbers () is a sharpening of the law of large num-
bers for partial sums of i.i.d. random variables, stating that
for  ≤ p <  we have

lim
n→∞


n/p

n

∑
k=

(Xk − E(Xk)) =  a.s.,

if and only if the random variables have �nite p-th
moments. Note that for p =  this result is false as it would
contradict the central limit theorem (see 7Central Limit
�eorems).
For i.i.d. random variables with �nite variance σ  ≠ ,

Hartman andWintner () proved the Law of the Iterated
Logarithm, stating that

lim sup
n→∞


√
σ n log logn

n

∑
k=

(Xi − E(X)) =  a.s.,

and that the corresponding lim inf equals−. In the special
case of a symmetric7randomwalk, this theorem had been
established earlier by Khintchin ().�e law of the iter-
ated logarithm gives a very precise information about the
behavior of the centered partial sum.
Strassen () proved the Functional Law of the Iter-

ated Logarithm, which concerns the normalized partial
sum process, de�ned by

fn(
k

n
) :=


√
σ n log logn

k

∑
i=

(Xi − E(Xi)),  ≤ k ≤ n,

and linearly interpolated in between.�e randomsequence
of functions (fn)n≥ is almost surely relatively compact and
has the following set of limit points

K = {x ∈ C[, ] : x is absolutely continuous and

∫




(x
′
(t))


dt ≤ }.

�e functional lawof the iterated logarithmgives a remark-
ably sharp information about the behavior of the partial
sum process.

�e Almost Sure Invariance Principle, originally estab-
lished by Strassen () is an important technical tool
in many limit thorems. Strassen’s theorem states that for
i.i.d. random variables with �nite variance, one can de�ne
a standard Brownian motion (see 7Brownian Motion and
Di�usions)W(k) satisfying

n

∑
k=

(Xk − E(X)) − σW(n) = o(
√
n log logn), a.s..

Komlos et al. () gave a remarkable sharperning of the
error term in the almost sure invariance principle, showing
that for p >  one can �nd a standard Brownian motion
(Wt)t≥ satisfying

n

∑
k=

(Xk − E(X)) − σW(n) = o(n
/p

), a.s..

if and only if the random variables have �nite p-th
moments. In this way, results that hold for Brownian
motion can be carried over to the partial sum process.
E.g., many limit theorems in the statistical analysis of
change-points are proved by a suitable application of
strong approximations.
In the s, Brosamler, Fisher and Schatte indepen-

dently discovered the Almost Sure Central Limit �eo-
rem, stating that for partial sums Sk := ∑

k
i= Xi of an

i.i.d. sequence (Xi)i≥ with mean zero and variance σ 

lim
n→∞


logn

n

∑
k=


k
{Sk/σ

√
k≤x} = Φ(x),

where Φ(x) = ∫
x

−∞
√
π
e−t

/dt denotes the standard nor-
mal distribution function.�e remarkable feature of this
theorem is that one can observe the central limit theorem,
which in principle is a distributional limit theorem, along
a single realization of the process.
In , Glivenko and Cantelli independently discov-

ered a result that is now known as the Glivenko–Cantelli
�eorem (see 7Glivenko-Cantelli �eorems). Given a
sequence (Xk)k≥ of i.i.d random variables with distribu-
tion function F(x) := P(X ≤ x), we de�ne the empir-
ical distribution function Fn(x) = 

n ∑
n
k= {Xk≤x}. �e

Glivenko–Cantelli theorem states that

sup
x∈R

∣Fn(x) − F(x)∣
a.s.
Ð→ .

�is theorem is sometimes called the fundamental theorem
of statistics, as it shows that it is possible to recover the
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distribution of a random variable from a sequence of
observations.
Almost sure convergence has been established for U-

statistics, a class of sample statistics of great importance in
mathematical statistics. Given a symmetric kernel h(x, y),
we de�ne the bivariate U-statistic

Un := (
n


)

−

∑
≤i<j≤n

h(Xi,Xj).

Hoe�ding () proved theU-Statistic Strong Law of Large
Numbers, stating that for any integrable kernel and i.i.d.
random variables (Xi)i≥,

Un
a.s.
Ð→ Eh(X,X).

Aaronson et al. () established the corresponding
U-Statistic Ergodic�eorem, albeit under extra conditions.
�eU-statistic Law of the Iterated Logarithm, in the case of
i.i.d. data (Xi) was established by Sen (). In the case
of degenerate kernels, i.e., kernels satisfying Eh(x,X) = ,
for all x, this was sharpened by Dehling et al. () and
Dehling (). �eir Degenerate U-Statistic Law of the
Iterated Logarithm states that

lim sup
n→∞


n log logn ∑

≤i<j≤n
h(Xi,Xj) = ch, a.s.,

where ch is the largest eigenvalue (see7Eigenvalue, Eigen-
vector and Eigenspace) of the integral operator with kernel
h(x, y). A functional version as well as an almost sure
invariance principle were established by the same authors.

Proofs of Almost Sure Convergence
In most situations, especially in applications in Statistics,
almost sure convergence is proved by identifying a given
sequence as a a continuous function of a sequence of a
type studied in one of the basic theorems on almost sure
convergence.

�e proofs of the basic almost sure convergence
theorems are quite subtle and require a variety of tech-
nical tools, such as exponential inequalities, maximal
inequalities, truncation techniques and the Borel-Cantelli
lemma (see 7Borel–Cantelli Lemma and Its Generaliza-
tions).
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Areal Data
Areal data yi are data that are assigned to spatial regions
Ai, i = , , . . . ,n. Such data and spatial areas naturally arise
at di�erent levels of spatial aggregation, like data assigned

to countries, counties, townships, political districts, con-
stituencies or other spatial regions that are featured by
more or less natural boundaries. Examples for data yi
might be the number of persons having a certain chronic
illness, number of enterprises startups, average income,
population density, number of working persons, area of
cultivated land, air pollution, etc. Like all spatial data, also
areal data aremarked by the fact that they exert spatial cor-
relation to the data from neighboring areas. Tobler ()
expresses this in his �rst law of geography: “everything is
related to everything else, but near things are more related
than distant things.” It is this spatial correlation which
is investigated, modeled and taken into account in the
analysis of areal data.
Spatial proximity matrix. A mathematical tool that

is common to almost all areal analysis methods is the so-
called (n × n) spatial proximity matrixW, each of whose
elements, wij, represents a measure of spatial proximity of
area Ai and area Aj. According to Bailey and Gatrell ()
some possible criteria might be:

● wij =  if Aj shares a common boundary with Ai and
wij =  else.

● wij =  if the centroid of Aj is one of the k nearest
centroids to that of Ai and wij =  else.

● wij = d
γ

ij if the inter-centroid distance dij < δ (δ > ,
γ < ); and wij =  else.

● wij =
lij
li
, where lij is the length of common boundary

between Ai and Aj and li is the perimeter of Ai.

All diagonal elements wii are set to .�e spatial proxim-
ity matrix W must not be symmetric. For instance, case
 and case  above lead to asymmetric proximity matri-
ces. For more proximity measures we refer to Bailey and
Gatrell () and any other textbook on areal spatial
analysis like Anselin ().

Spatial Correlation Measures
Globalmeasures of spatial correlation.�e globalMoran
index I, �rst derived byMoran (), is a measure for spa-
tial correlation of areal data having proximity matrix W.
De�ning S = ∑ni=∑

n
j= wij and ȳ, the mean of the data yi,

i = , , . . . ,n, the global Moran index may be written

I =
n

S

∑
n
i=∑

n
j= wij(yi − ȳ)(yj − ȳ)

∑
n
i= (yi − ȳ)

 . ()

�us the global Moran index may be be interpreted as
measuring correlation between y = (y, y, . . . , yn)T and
the spatial lag-variableWy. But the Moran index does not
necessarily take values between − and . Its expectation
for independent data yi is E[I] = − 

n− . Values of the
Moran index larger than this value thus are an indication of
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positive global spatial correlation; values smaller than this
value indicate negative spatial correlation.
A global correlation measure similar to the variogram

known from classical geostatistics is the Geary-index
(Geary’s c, Geary ):

c =
n − 
S

∑
n
i=∑

n
j= wij(yi − yj)



∑
n
i= (yi − ȳ)

 ()

Under the independence assumption for the yi its expecta-
tion is E[c] = . Values of c larger than  indicate negative
correlation and values smaller than  positive correlation.

�e signi�cance for Moran’s I and Geary’s c may be
tested by means of building all n! permutations of the yi,
i = , , . . . ,n, assigning them to the the di�erent areas Aj,
j = , , . . . ,n, calculating for each permutation Moran’s I
or Geary’s c and then considering the distributions of these
permuted spatial correlation statistics. True correlation
statistics at the lower or upper end of these distributions
are an indication of signi�cance of the global correlation
measures.
Amap o�en useful for detecting spatial clusters of high

or low values is the so-called LISA map. It may be shown
that Moran’s I is exactly the upward slope of the regres-
sion line between the regressors (y − n ȳ) and the spatial
lag-variables W(y − n ȳ) as responses, where the matrix
W is here standardized to have rows which sum up to one.
�e corresponding scatterplot has four quadrants PP, NN,
PN and NP, with P and N indicating positive and negative
values for the regressors and responses. If one codes these
four classes into which the pairs [yi − ȳ,∑nj= wij(yj − ȳ)]
may fall with colors and visualizes these colors in a map
of the areas one can easily detect clusters of areas that are
surrounded by low or high neighboring values.
Both statistics, theMoran I andGeary’s cmake a global

assumption of second order stationarity, meaning that the
yi, i = , , . . . ,n all have the same constant mean and vari-
ance. If one doubts that this condition is fully met one has
to rely on local measures of spatial correlation, for local
versions of Moran’s I and Geary’s c see Anselin ().

Spatial Linear Regression
A problem frequently occuring in areal data analysis is the
regression problem. Response variables yi and correspond-
ing explanatory vectors xi are observed in spatial areas Ai,
i = , , . . . ,n and one is interested in the linear regression
relationship yi ≈ xTi β, where β is an unknown regres-
sion parameter vector to be estimated. Subsuming all row
vectors xTi in the (n × p) design matrix X and writing
y = (y, y, . . . , yn)T the ordinary 7least squares solution
to this regression problem, which does not take account

of spatial correlation, is known to be β̂ = (XTX)−XTy. If
the data in y are known to be correlated the above ordi-
nary least squares estimator is known to be ine�cient and
statistical signi�cance tests in this regression model are
known to be misleading. Problems may be resolved by
considering the generalized least squares estimator β̂ =

(XTΣ−X)−XTΣ−y, where the covariance matrix Σ is
measuring the correlation between the data in y. All regres-
sion procedures used in areal data analysis deal more or
less with the modeling and estimation of this covariance
structure Σ and the estimation of β. In all subsequent sec-
tions we will assume that the spatial proximity matrixW is
standardized such that its rows sum up to one.
Simultaneous autoregressive model (SAR).�e SAR

model is given as follows:

y = Xβ + u, u = λWu + є. ()

Here λ is an unknown parameter, − < λ < , mea-
suring spatial correlation; the parameters λ and β are to
be estimated. �e error vector є has uncorrelated com-
ponents with constant unknown variances σ , like u it
has expectation zero.�e two equations may be combined
to get

y = λWy +Xβ − λWXβ + є

Obviously y ismodeled as being in�uenced also by the spa-
tial lag-variablesWy and the spatial lag-regressionWXβ.
�e coe�cient λ is measuring the strength of this in�u-
ence. �e covariance matrix of u may be shown to be
cov[u] = σ ((In−λW)

T
(In−λW))

−. An estimation pro-
cedure for the SARmodel is implemented in the R-package
spdep, Bivand (). It is based on the Gaussian assump-
tion for y and iteratively calculatesmaximum (pro�le) like-
lihood estimates for σ  and λ and generalized least squares
estimates for β based on the covariance matrix cov[u] and
the estimates for σ  and λ calculated a step before.
Spatial lagmodel.�e so-called spatial lag model may

be written
y = λWy +Xβ + є. ()

It is simpler in structure than the SAR model because the
lag-regression term −λWXβ is missing. For its estimation,
again, an iterative pro�le likelihood procedure similar to
the SAR procedure may be used.
Spatial Durbin model.�e spatial Durbin model is a

generalization of the SAR model and given as

y = λWy +Xβ +WXγ + є, ()

withWXγ having its own regression parameter vector γ.
By means of the restriction γ = −λβ the Durbin model
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Abecomes equivalent to a SAR model.�e so-called com-
mon factor test (Florax and de Graaf ), a likelihood
ratio test, can be used to decide between the two hypothe-
ses, - SAR-model and spatial Durbin model. As an alter-
native to the above models one may also use a SAR model
with a lag-error component

y = Xβ + λWє + є. ()

Deciding between models. For the investigation
whether a SAR model, a spatial lag model or ordinary
least squares give the best �t to the data one may adopt
Lagrange multiplier tests as described in Florax and de
Graaf (). Interestingly, these tests are based on ordi-
nary least squares residuals and for this reason are easily
calculable. Breitenecker () gives a nice overview on all
the possibilities related to testing models.
Geographically weighted regression. Fotheringham

et al. () propose, as an alternative to the above men-
tioned regression models, geographically weighted regres-
sion. �e proposed methodology is particularly useful
when the assumption of stationarity for the response
and explanatory variables is not met and the regression
relationship changes spatially. Denoting by (ui, vi) the
centroids of the spatial areas Ai, i = , , . . . ,n, where
the responses yi and explanatory vectors xi are observed,
the model for geographically weighted regression may be
written

yi = xTi β(ui, vi) + єi, i = , , . . . ,n. ()

�e regression vector β(ui, vi) is thus dependent on the
spatial location (ui, vi) and is estimated by means of a
weighted least squares estimator that is locally dependent
on a diagonal weight matrix Ci:

β̂(ui, vi) = (XTCiX)−XTCiy

�e diagonal elements c(i)jj of Ci are de�ned by means

of a kernel function, e.g. c(i)jj = exp(−dij/h). Here dij
is a value representing the distance beetween Ai and Aj;
dij may either be Euclidean distance or any other met-
ric measuring distance between areas. Further, h is the
bandwidth measuring how related areas are and can be
determined bymeans of crossvalidating the residuals from
the regression or based on the 7Akaike’s information cri-
terion (Brunsdon et al. ). Selecting the bandwidth h
too large results in oversmoothing of the data. On the other
hand a bandwidth too small allows for too less data during
estimation.
All areal analysis methods discussed so far are imple-

mented in the R-packages spdep and spgwr, (Bivand ,
). Methods for counting data, as they frequently

appear in epidemiology, and Bayesian methods are not
dealt with here; for those methods the interested reader is
referred to Lawson ().

Spatial Interaction Data
�is is a further category of spatial data which is related to
modeling the “�ow” of people and/or objects between a set
of origins and a set of destinations. In contrast with areal
(and geostatistical) data, which are located at points or in
areas, spatial interaction data are related to pairs of points,
or pairs of areas. Typical examples arise in health services
(e.g., �ow to hospitals), transport of freight goods, popula-
tion migration and journeys-to-work. Good introductory
material on spatial interaction models can be found in
Haynes and Fotheringham ().

�e primary objective is to model aggregate spatial
interaction, i.e. the volume of �ows, not the �ows at an
individual level. Havingm origins and n destinations with
associated �ow data considered as random variables Yij
(i = , . . . ,m; j = , . . . ,n), the general spatial interaction
model is of the form

Yij = µij + εij; i = , . . . ,m; j = , . . . ,n ()

where E(Yij) = µij and εij are error terms with E(εij) = .
�e goal is then to �nd suitable models for µij involving
�ow propensity parameters of the origins i, attractiveness
parameters of the destinations j, and the e�ects of the “dis-
tances” dij between them. Here, the quantities dij may be
real (Euclidean) distances, travel times, costs of travel or
any other measure of the separation between origins and
destinations.One of themostwidely used classes ofmodels
for µij is the so-called gravity model

µij = αiβj exp(γ dij) ()

involving origin parameters αi, destination parameters βj
and a scaling parameter γ. Under the assumption that the
Yij are independent Poisson random variables with mean
µij, this model can be treated simply as a particular case of
a generalised linear model with a logarithmic link. Model
�tting can then proceed by deriving maximum likelihood
estimates of the parameters using iteratively weighted least
squares (IRLS) techniques.�e above gravity models can
be further enhanced when replacing the parameters βj by
some function of observed covariates xj = (xj, . . . , xjk)T

characterising the attractiveness of each of the destinations
j = , . . . ,n. Again, this is usually done in a log-linear way,
and the model becomes

µij = αi exp(g(xj, θ) + γ dij) ()
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where g is some function (usually linear) of the vector of
destination covariates and a vector of associated param-
eters θ. Contrary to (), which reproduces both the total
�ows from any origin and the total observed �ows to each
destination, the new model () is only origin-constrained.
�e obvious counterpart to () is onewhich is destination-
constrained:

µij = βj exp(h(z i,ω) + γ dij)

where h is some function of origin characteristics z i and
a vector of associated parameters ω. Finally, when model-
ing both αi and βj as functions of observed characteristics
at origins and destinations, we arrive at the unconstrained
model

log µij = h(z i,ω) + g(xj, θ) + γ dij ()
In population migration one o�en uses a particular form
of (), where z i and xj are taken to be univariate variables
meaning the logarithms of the population Pi and Pj at
origin i and destination j, respectively. Adding an overall
scaling parameter τ to re�ect the general tendency for
migration, the following simple model results:

Yij = τP
ω
i P

θ
j exp(γ dij) + εij ()

Likewise, in all the above models one can introduce more
complex distance functions than exp(γ dij). Also, as men-
tioned before, dij could be replaced by a general separation
term sij embracing travel time, actual distance and costs of
overcoming distance.

�e interaction models considered so far are only
models for µij, the mean �ow from i to j. �us, they
are only �rst order models, no second order e�ects are
included and the maximum likelihood methods for esti-
mating the parameters of the gravity models rest on the
explicit assumption that �uctuations about the mean are
independent. Up to now, there has been only little work
done on taking account of spatially correlated errors in
interaction modeling. To address such problems, pseudo-
likelihood-methods are in order. Good references for fur-
ther reading on spatial interaction models are Upton and
Fingleton (), Bailey andGatrell () andAnselin and
Rey ().
Spatial interaction models have found broad attention

among (economic) geographers and within the GIS com-
munity, but have received only little attention in the spatial
statistics community.�e book by Anselin and Rey ()
forms a bridge between the twodi�erentworlds. It contains
a reprint of the original paper by Getis (), who �rst
suggested that the family of spatial interaction models is
a special case of a general model of spatial autocorrelation.
Fischer et al. () present a generalization of the Getis-
Ord statistic which enables to detect local non-stationarity

and extend the log-additive model of spatial interaction to
a general class of spatial econometric origin-destination
�ow models, with an error structure that re�ects ori-
gin and/or destination autoregressive spatial dependence.
�ey �nally arrive at the general spatial econometricmodel
(), where the design matrix X includes the observed
explanatory variables as well as the origin, destination and
separation variables, andW is a row-standardized spatial
weights matrix.
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Introduction
�e Analysis of Covariance (generally known as
ANCOVA) is a statistical methodology for incorporat-
ing quantitatively measured independent observed (not
controlled) variables in a designed experiment. Such a
quantitatively measured independent observed variable
is generally referred to as a covariate (hence the name
of the methodology – analysis of covariance). Covariates
are also referred to as concomitant variables or control
variables.
If we denote the general linear model (GLM) associ-

ated with a completely randomized design as

Yij = µ + τj + εij, i = , . . . ,nj, j = , . . . ,m

where
Yij = the ith observed value of the response variable at the
jth treatment level
µ = a constant common to all observations
τj = the e�ect of the jth treatment level
εij = the random variation attributable to all uncon-
trolled in�uences on the ith observed value of the response
variable at the jth treatment level

For this model the within group variance is considered to
be the experimental error, and this implies that the treat-
ments have similar e�ects on all experimental units. How-
ever, in some experiments the e�ect of the treatments on
the experimental units varies systematically with some

characteristic that varies across the experimental units. For
example, one may test for a di�erence in the e�cacy of
a new medical treatment and an existing treatment pro-
tocol by randomly assigning the treatments to patients
(experimental units) and testing for a di�erence in the
outcomes. However, if the 7randomization results in the
placement of a disproportionate number of young patients
in the group that receives the new treatment and/or place-
ment of a disproportionate number of elderly patients in
the group that receives the existing treatment, the results
will be biased if the treatment is more (or less) e�ective on
young patients than it is on elderly patients. Under such
conditions one could collect additional information on the
patients’ ages and include this variable in the model.�e
resulting general linear model

Yij = µ + τj + βXij + εij, i = , . . . ,nj, j = , . . . ,m.

where
Xij = the ith observed value of the covariate at the jth treat-
ment level,
β = the estimated change in the response that corresponds
to a one unit increase in the value of the covariate at a �xed
level of the treatment

is said to be a completely randomized design ANCOVA
model and describes an experimental design GLM one
factor experiment with a single covariate.
Note that the addition of covariate(s) can accompany

many treatment and design structures.�is article focuses
on the simple one way treatment structure in a com-
pletely randomized design for the sake of simplicity and
brevity.

Purpose of ANCOVA
�ere are three primary purposes for including a covariate
in the 7analysis of variance of an experiment:

. To increase the precision of estimates of treatment
means and inferences on di�erences in the response
between treatment levels by accounting for concomi-
tant variation on quantitative but uncontrollable vari-
ables. In this respect covariates are the quantitative
analogies to blocks (which are qualitative/categorical)
in that they are () not controlled and () used to
remove a systematic source of variation from the
experimental error. Note that while the inclusion of a
covariate will result in a decrease in the experimental
error, it will also reduce the degrees of freedom asso-
ciated with the experimental error, and so inclusion of
a covariate in an experimental model will not always
result in greater precision and power.
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. To allow for the assessment of the nature of the rela-
tionship between the covariate(s) and the response
variable a�er taking into consideration the treatment
e�ects. In this respect covariates are analogous to inde-
pendent variables in linear regression, and their asso-
ciated slopes can provide important insight into the
nature of the relationship between the response and the
covariate.

. To statistically adjust comparisons of the response
between groups for imbalances in quantitative but
uncontrollable variables. In this respect covariates are
analogous to strati�cation and are of particular impor-
tance in situations where strati�cation on the covariate
is impractical or infeasible.

Applications of ANCOVA
Typical applications of analysis of covariance include:

● Clinical trials in which quantitative but uncontrollable
variables such as the weight, height, and age of the
patients may in�uence the e�ectiveness of a treatment
protocol.

● Marketing research in which quantitative but uncon-
trollable variables such as the pretest rating of a product
given by a respondent may in�uence the respondent’s
posttest rating (i.e., a�er exposure to the test condition)
of the product.

● Education experiments in which quantitative but
uncontrollable variables such as the age, intelli-
gence (if this can be measured), and prior scholastic
performance of the students may in�uence the e�ec-
tiveness of a pedagogical approach.

● Agricultural experiments in which quantitative but
uncontrollable variables such as rainfall and histori-
cal yield of fruit bearing trees may in�uence the yield
during an experiment.

Comparing Treatments in ANCOVA
Least squares means (or LS means) are generally used
to compare treatment e�ects in experiments that include
one or more covariates. LS means (which are sometimes
referred to as marginal means, estimated marginal means,
or adjusted treatment means) are the group means when
the covariate is set equal to its grandmeanXm (mean of the
covariate over all observations across all treatments).�ese
are easily calculated by substituting the grand mean of the
covariate into the estimated general linear model, i.e.,

Ŷj = µ + τj + βXm, j = , . . . ,m

Standard errors for LS means are typically calculated and
used (in conjunctionwith the7asymptotic normality of LS

means) to conduct inference on individual LS means and
contrasts based on the LSmeans.

Assumptions of ANCOVA
In addition to the standard ANOVA assumptions:

● Independence of error terms
● Homogeneity of variance of the error terms across
treatments

● Normality of the error terms across treatments

One must also consider the regression assumptions when
performing statistical inference with ANCOVA. �e
regression assumptions include:

● A linear relationship exists between the covariate and
the response variable.
If no relationship exists between the covariate and

response, there is no reason to include the covariate
in the experiment or resulting model. If the relation-
ship between the covariate and the response variable
is nonlinear, the inclusion of a covariate in the model
will not remove all variation in the observed values of
the response that can potentially be accounted for by
the covariate. �e nature of the relationship between
the covariate and the response can be assessed with
scatter plots of these two variables by treatment. If a
nonlinear relationship exists between the covariate and
the response, one can utilize a polynomial ANCOVA
model.

● Homogeneity of the regression slopes associated with
the covariate (i.e., parallel regression lines across treat-
ments).

�e calculations of the LS means are predicated
on the lack of existence of a response by covariate
interaction. If this assumption is violated, the adjust-
ment to the response variable for a common value of
the covariate is misleading. �is assumption can be
assessed through either scatter plots of the covariate
and the response by treatment or through the inclusion
of a treatment-covariate interaction in the model.

If the sample results suggest that any of these assumptions
are not satis�ed, inference based on the model may not be
valid.

Alternatives to ANCOVA
Bonate () provides a good discussion of alternatives
to ANCOVA in pretest-posttest designs; he considers the
relative merits of di�erence scores, relative change func-
tions, various blocking methods, and repeated-measures
analysis. Several authors have suggestedmore general non-
parametric alternatives to ANCOVA based on an analysis
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Aof covariance of the ranks of the response and covari-
ance. Some notable examples of these approaches have
been suggested byQuade (, ), Puri and Sen (),
McSweeney and Porter (), Burnett and Barr (),
Shirley (), Conover and Iman (), Chang (),
Lesa�re and Senn (), and Tsangari andAkritas ().
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Agricultural research ismost o�enly based onobservational
studies and experimentation resulting in multi-response
variables. �e selection of appropriate variety to grow;
amount and types of fertilizers, insecticides and pesticides
to apply; the irrigation system to use; the plant sowing
technology to apply and to assess the soil fertility through
chemical analysis of macro and micro nutrients avail-
able in the soil are the major areas of interest for the
researcher to work on for the improvement of the agricul-
tural productivity in terms of quality and quantity.�e role
of Statistics in planning agricultural research, designing
experiments, data collection, analysis, modeling and inter-
pretation of agricultural results is very well established.
�e basic principles and theoretical development of exper-
imental designs pioneered by R. A. Fisher are the result
of collaborative work of agricultural scientists and statisti-
cians. In the process of experimentation and observational
studies, the researcher is keen to have as many data infor-
mation as possible so that nothing is le� unattended related
to the phenomenon under study as there will be no chance
to repeat the experiment till the next season of the crop
and it will not be less than a miracle if data from one year
of the crop is consistent with the results of second year, no
matter how much care is taken to keep the experimental
conditions identical.
Agricultural data obtained through experimentation is

initially analyzed using 7analysis of variance technique
and then depending on the nature of treatments/factors
applied, either the approach of multiple comparisons
or 7response surface methodology is used to explore
further the hidden features of the data. For example, the
experimenter might be interested to compare di�erent
varieties of a particular crop such that there are two local
varieties (V,V) in practice; three varieties are imported
(V,V,V) and two new varieties (V,V) are devel-
oped by a local agricultural institute. If results obtained
from analysis of variance conclude that performance of
the varieties is signi�cantly di�erent from each other
then obvious questions arise are to test the di�erence
between the following variety comparisons: [V and V];
[V and V]; [(V,V) and (V,V)]; [(V,V,V,V)
and (V,V,V)]; and if V is a hybrid variety, then one
has two more comparisons to test i.e., [V with (V,V)]
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and [V with V].�ese contrasts are orthogonal to each
other but it will not always be the case, other techniques of
multiple comparisons will have to be used then, which are
available in almost all the books on experimental designs.
On the other hand, if multifactor experiments are con-
ducted to determine the appropriate levels of the applied
factors on which optimum response is achieved. For this
purpose data sets are modeled in adequate functional
forms and the researcher is intended to �t simple func-
tional form. Ordinary polynomials are the most popular
functional forms which are used to model experimental
data from many �elds of scienti�c research. If �rst order
polynomial is �tted, the researcher very simply states that
the concerned factor has linear e�ect and the interpreta-
tion is made accordingly that with increase of levels of
factor will result in increase (or decrease) in the response.
�e second order polynomials are used with the expec-
tation that it will be possible to identify the levels of the
applied factors to get the optimum response. A number of
response functions that have been widely used by the agri-
cultural and biological researchers have been discussed by
Mead and Pike (). It should not be taken as granted
that one response function considered applicable to one
sort of situation will also be applicable to other similar
situations; it is advisable that graphical approach be used
to guess the appropriate functional form of the response
under consideration. An extremely useful concept that is
revealed by Nelder () is known as Inverse Polynomial
Response Functions (IPRF). It emphasizes that in agricul-
tural research the e�ect of increasing a factor inde�nitely
is either to produce a saturation e�ect, in which case the
response does not exceed a �nite amount, or to produce
a toxic e�ect, in which case the response eventually fall to
zero and the response curve has no build-in-symmetry.
Nelder () and Pike () advocated these surfaces

as giving responses that are nonnegative and bounded if
regression coe�cients are constrained to be positive and
it is further assumed that Var(Y) ∝ [E(Y)]. Exten-
sion in the ideas has been developed by Nelder and
Wedderburn () and McCullagh and Nelder () for
the response variables that may not be normal and that the
expected response may be a function of the linear predic-
tors rather than just the linear predictors itself. Ali ()
and Ali et al. () have objected on placing constrains
on the parameters as it will violate all the properties of
good estimators and will no longer follow the distribu-
tional structure required for valid inferences.�eir expe-
rience of examining many sets of data leads them not to
expect all regression coe�cients to be positive. Taking into
account the error structure and functional form used for
IPRF, Ali () proposed the form of a response function

called as Log Linear Response Functions (LLRF) based on
the logarithmic transformation of the response variable
and assuming that logY ∼ N(E(logY), σ ).�e estima-
tion of regression coe�cients achieved by carrying out a
multiple regression of logY on the terms required �tting
the data adequately; the resulting estimators are therefore
Minimum Variance Linear Unbiased Estimators. It is sim-
ple to estimate the variance-covariance matrix of these
estimators and to test hypotheses concerning parameters
by the usual linear regression methods. On the theoretical
grounds the LLRF model therefore has much to commend
it. �e assumption that logYi follows the normal distri-
bution may not always be true; in such cases it is recom-
mended that Box-Cox family of transformation may be
used under the same structure of the response function as
has been used for LLRF and IPRF.
In order to produce an adequate prediction the

researcher is usually uncertain as to which of the large
number of terms should be included in the �nalmodel.�e
main point to bear in mind is that it should have as many
terms as necessary so that maximum variation of the data
is explained and as few terms as possible so that it can easily
be interpreted. Ali () argued that for summarizing the
data from agricultural experiments the terms in the �nal
model are required to be selected in a conforming order
by preferring main e�ect terms over the interactions and
lower order terms over the higher. It is further to remem-
ber that the inverse terms describe the rising ridge of the
surfaces, the linear terms describe the optimum region and
the higher degree terms contribute in explaining the falling
portion of the surfaces. It is therefore recommended that
for building the appropriate model one should concentrate
on selection the inverse and linear terms along with their
associated interaction terms. One who is not convinced
with such types of model building method has the option
to use the approach established by Nelder ().

�e methods used for selection of �nal model are
mainly based on the Minimum Mean Square Error crite-
rion. It is possible to �nd more than one models which
ful�lls this criterion. In such cases one should select the
one which has reasonable shape of the response surface,
capable to determine the values of quantitative factors at
which the response is an optimum, statistically signi�cant
regression coe�cients and simple functional form.

�ere is no ambiguity to recognize the agricultural
research as multifactor and multi-response and that these
responses are measured at di�erent stages of the maturity
of the crop and that these are interrelatedwith one another.
�e univariate analyses of these variables therefore have
partial impact on the true �ndings of research.Multivariate
analyses are therefore natural and essential to consider the
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Adata by giving due weight to the interrelationships among
the variables under study. One possible approach which is
widely used by the researchers is to study the correlation
matrix of the variables. �is approach only facilitates to
assess the relationship among the pairs of variables and it
can be extended to triplets of variables by considering the
partial correlations and the multiple correlations among
those. As a result there would be 


p(p + ) pairs and

triplets to consider and it will certainly be confusing if the
number p of variables under consideration is large.
To overcome this di�culty, Principal Component

Analysis (PCA) can be used. It is a multivariate technique
that has its aim the explanation of relationships among
several di�cult-to-interpret, correlated variables in terms
of a few conceptually meaningful components which are
uncorrelatedwith each other and are capable of accounting
for nearly all the variation present in the observed data.
PCA therefore �nds a linear transformation of original
variables into a new set of variables called as principal
components which are uncorrelated with each other; are
capable of accounting for the variation of the obtained data
and are derived in such a way that the �rst few of them
can o�en provide enough information about the data and
so the dimensionality of the problem can considerably be
reduced.�e variables with higher component loadings in
a particular principal component are considered to be the
important ones and it is assumed that the principal com-
ponent is the representative of these variables; hence it is
interpreted only in terms of these variables.�is approach
of interpretation of principal components is acceptable
if principal components are extracted using the correla-
tion matrix R.�e variance–covariance matrix Σ is as well
used to derive principal components; since the principal
component technique is scale dependent, the principal
component loadings with this approach will therefore be
much in�uenced by the unit of the measurements of the
variables under consideration, hence, the interpretation
of principal components just based on the magnitude of
the loading may become questionable and misleading. Ali
et al. () suggested using the correlation between the
original variables and the principal component for selec-
tion of representative variables in a particular principal
component instead of using principal component loadings.
PCA is extremely useful technique when interest

lies in investigating the interrelationship within a set
of variables; when the relationship of two sets of vari-
ables, within and among the sets is of interest, the PCA
is not a valid technique. �e agricultural researchers
always encounter with such types of problems where
the assessment of relationship among and within the

twosets is essential e.g. the interdependence of nutri-
tional status and vegetative related characteristics with the
crop yield related characteristics is pivotal. For such cases,
7Canonical Correlation Analysis (CCA) technique devel-
oped by Hotelling () is of great bene�t. It has certain
maximal properties similar to those of PCA and in a way is
an extension of themultiple regression analysis.�e object
of this approach is to �nd the linear functions of the vari-
ables for each of the sets such that the correlation between
these linear functions is as high as possible. A�er locat-
ing such a pair of linear functions which are maximally
correlated with each other, we look for other pairs of lin-
ear functions which are maximally correlated subject to
the restriction that the new pair of linear functions must
be uncorrelated with all other previously located func-
tions. For the purpose of interpretation of the results, it
is proposed to use correlation between the canonical vari-
ates and the original variables instead of canonical weights
as has been already proposed for interpretation of PCA
results. Details of PCA and CCA may be found in Mardia
et al. () and Jolli�e ().

About the Author
Asghar Ali holding M.Sc and D.Phil in Statistics from Sus-
sex University and Post Doctorate fromUniversity of Kent
at Canterbury, UK is Professor of Statistics at Bahauddin
Zakariya University (BZU) Multan, Pakistan. Since ,
he is serving BZU in various capacities: Presently, he is
Chairman,Department of Statistics and also for a period of
three years, he held the position of chairmanship, Depart-
ment of Computer Science. Especially commendable have
been his period as Principal, College of Agriculture, BZU.
He has been publishing regularly related to data analysis in
the �eld of agricultural sciences which is now being cited
in related text books.

Cross References
7Agriculture, Statistics in
7Canonical Correlation Analysis
7Farmer Participatory Research Designs
7Multivariate Data Analysis: An Overview
7Multivariate Statistical Analysis
7Principal Component Analysis

References and Further Reading
Ali A () Interpretation of multivariate data: Comparison of

several methods of interpreting multivariate data from a series
of nutritional experiments, University of Sussex, Unpublished
PhD thesis

Ali A, Clarke GM, Trustrum K () Principal component analy-
sis applied to some data from fruit nutrition experiments. The
Statistician :–



 A Analysis of Variance

Ali A, Clarke GM, Trustrum K () Log-linear response functions
and their use to model data from plant nutrition experiments.
J Sci Food & Agric :–

Hotelling H () Relation between two sets of variates. Biometrika
:–

Jolliffe IT () Principal component analysis, nd edn. Springer,
USA

Mardia KV, Kent JT, Bibi JM () Multivariate analysis. Academic,
London

McCullagh P, Nelder JA () Generalized linear models, nd edn.
Chapman and Hall, London

Mead R, Pike DJ () A review of response surface methodology
from a biometric viewpoint. Biometrics ():–

Nelder JA () Inverse polynomials, a useful group of multifactor
response functions. Biometrics :–

Nelder JA () A reformation of linear models (with discussion),
J R Stat Soc A:–

Nelder JA, Wedderburn WM () Generalized linear models. J R
Stat Soc (General) A():–

Pike DJ () Inverse polynomials: A study of parameter estima-
tion procedures and comparison of the performance of several
experimental design criteria. University of Reading, Unpub-
lished PhD thesis

Analysis of Variance

Gudmund R. Iversen
Professor Emeritus
Swarthmore College, Swarthmore, PA, USA

Analysis of variance is the name given to a collection of sta-
tistical methods originally used to analyze data obtained
from experiments.�e experiments make us of a quantita-
tive dependent variable, also known as a metric variable
or an interval or ratio variable, and one or more qual-
itative independent variables, also known as categorical
or nominal variables.�ese analysis methods grew out of
agricultural experiments in the beginning of the twentieth
century, and the great English statistician Sir Ronald Fisher
developed many of these methods. As an example, the
dependent variable could be the yield in kilos of wheat
from di�erent plots of land and the independent variable
could by types of fertilizers used on the plots of land.

Experimental Design
�e way an experiment is run a�ects the particular anal-
ysis of variance method used for the analysis of the data.
Experiments are designed according to di�erent plans, and
the choice of the design of the experiment a�ects which
analysis of variance method being used. Without going

into details about designs of experiments, an experiment
could follow a factorial design, a randomized block design,
a Latin square design, etc.�ere exist too many designs of
experiments and accompanying analysis of variancemeth-
ods for the analysis of the resulting data to cover all of them
in this short presentation. But it is possible to present the
underlying features of all analysis of variance methods.

Analysis of Variance and Multiple
Regression
But �rst it is worth noting that analysis of variance is
closely related to regression analysis. Indeed, it is possible
to see both analyses as special cases of the so-called gen-
eral linear model. In particular, using 7dummy variables
for the independent variables in analysis of variance, the
analysis quickly turns into a regression analysis.�e main
di�erence is that when data are collected through a prop-
erly designed experiment, it is possible to conclude that
there is a causal e�ect of the independent variable(s) on
the dependent variable. When data are collected through
observational, studies there may be a causal e�ect of the
independent variable(s) or not.

Statistical Software
Much of the early work on analysis of variance consisted
of �nding e�cient ways of making the necessary com-
putations with the use of simple calculators. With the
introduction of modern statistical so�ware for electronic
computers, this line of work is now less important. Instead,
statisticians have worked on showing the similarities of
the computations needed for both analysis of variance and
multiple regression, and the old distinction between the
two approaches to data analysis is no longer of any impor-
tance. However, statistical so�ware packages still make a
distinction between the two, and the output from the two
methods o�en look very di�erent.

One-Way Analysis of Variance
�is name is given to the design where there is one inde-
pendent nominal variable with several categories and a
quantitative dependent variable with a unit of measure-
ment and o�en ameaningful zero. An example of an exper-
iment could be where students are randomly assigned to
two di�erent groups and the students in one group were
taught using a new method of teaching while the students
in the second group, as a control group, were taught using
the old method.�e random assignment to the di�erent
groups means that the e�ects of all other variables, for
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Aexample gender, is canceled out, and any observed di�er-
ence between the two groups is causally due to the teach-
ing method being used. In this simple case, the statistical
method is the same as the t-test for the di�erence between
two groups. From a regression point of viewwe could use a
dummy variable and assign the value  to all the students in
the control group and the value  to all the students in the
experiment group. In this case, the intercept of the regres-
sion line would equal the mean of the dependent variable
for the control group and the slope of the line would equal
the di�erence between the means of the two groups.�us,
the t-test for the null hypothesis that the population regres-
sion line has zero slop becomes the same as the t-test for
the di�erence between the two means.

�e fundamental question in an analysis of variance
is whether the population means for di�erent groups
are equal or not. But the methods for analysis of variance
use variances to answer the question about means, thus
the name analysis of variance. �e analysis is based on
identifying two factors that determine the values of the
dependent variable. One such factor is the net e�ect of
all factors except the independent variable, known as the
residual variable, and the other factor is the independent
variable.

The Residual Sum of Squares
If the residual variable had no e�ect, then all the values
of the dependent variable for the control group would be
equal to each other, and all the values of the dependent
variable for the experimental group would be equal to each
other.�e best estimates of these two values would be the
mean of the dependent variable for the group. To the extent
that the values within each group are not equal, is due to
the residual variable.�us, the e�ect of the residual vari-
able for a single observation can be seen as the di�erence
between the observed value and the group mean. For each
observation we now have such a di�erence. One way to
summarize the values of these di�erences for a group is to
square each di�erence and add all these squares. We then
have a sum of squares for each of the two groups, and by
adding these two sums we have a measure of the overall
e�ect of the residual variable. If the dependent variable is
known as Y and yij is the ith observation in the jth group
and yj is the mean in the jth group, then the residual sum
of squares RSS can be written

RSS =∑∑(yij − yj)
.

Note that there are many other ways we could com-
bine these di�erences. For example, we could have taken
the absolute value of each di�erence and added those

di�erences instead of using squares.�us, the �nal conclu-
sion from the analysis should include a statement that the
conclusion is based on squares and not some other mathe-
matical operation. Even though nobody does include such
awarning, it should bemade clear that the analysis is based
on squares.

The Treatment Sum of Squares
We also need a measure of how di�erent the two groups
are from each other. One way to do that is �nd how dif-
ferent the group means are from the overall mean. If the
treatment variable has no e�ect, then the two groupmeans
would be equal and equal to the overall mean. One way
to measure how di�erent the group means are from the
overall mean is to take each group mean and subtract the
overall mean. By squaring each di�erence and weighing
each square by the number of observations in the group
nj, then the treatment sum of squares between the groups
GSS can be written

GSS =∑∑nj(yj − y)
.

The F-Test
�e residual sum of squares is also known as the within
group sum of squares and the group sum of squares is
sometimes known as the between group squares.�e �nal
step consists of making a comparison between the two
sums of squares. If the residual sum of squares is large in
comparison with the group sum of squares, then it seems
that the di�erence between the group means is not statis-
tically signi�cant. For this comparison we take into how
many groups we have, here  and in general k groups, and
how many observations n there are all together. A math-
ematical development shows that we should compute the
ratio

F =
GSS/(k − )
RSS/(n − k)

�is is known as the F-ratio and is named in honor of
Ronald Fisher. It gives rise to the F-distribution, and the
distribution has been extensively tabulated.�e two num-
bers (k−) and (n−k) are the so-called degrees of freedom,
and they are used to take into account how many groups
there are in the experiment and how many observations
there are in the experiment. For example, for a % signi�-
cance level with k =  groups and n =  observations, the
critical value of F on  and  degrees of freedom equals
..�us, for any observed value of F larger than ., we
conclude that there is a statistically signi�cant di�erence
between the two groups. In this case, had we done a t-test
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for the di�erence between the special case of two group
means, the critical value of t becomes

√
. = ..

Other Analyses
It is possible to generalize to an experiment withmore than
just two groups.�e null hypothesis of equal group means
is tested the same way as with two groups, and the compu-
tations follow the same plan as above. With two or more
independent variables the analysis becomes more exten-
sive. We can still represent the independent variables by
dummy variables and do a regression analysis. But that
way it is easy to overlook the possible interaction e�ect
of the two independent variables. �is means we could
have an e�ect of the independent variables together over
and beyond their separate e�ects. Finally, in analysis of
variance we distinguish between using all values of the
independent variables (Model I) and only using a sample
of possible values (Model II).
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Introduction
Every statistical model has its own underlying “assump-
tions” that must be veri�ed to validate the results. In
some situations, violations of these assumptions will not
change substantive research conclusions, while in others,



Analysis of Variance Model, Effects of Departures from Assumptions Underlying A 

Aviolation of assumptions can be critical to meaningful
research. For a meaningful and conclusive data analysis by
7Analysis of Variance (ANOVA), the following assump-
tions are needed:

(a) Errors be normally distributed
(b) Errors have same variances (homogeneity of vari-

ances)
(c) Errors be independently distributed

However, the question arising is What would be the e�ects
of any departure from the assumptions of themodel on the
inferences made?�e answer is simple: It may either in�u-
ence the probability ofmakingType I error (i.e., incorrectly
rejecting null hypothesis) or a Type II error (i.e., failing to
reject a null hypothesis when it is false). For a thorough
discussion of the topic, the reader is referred to Sche�é
(), Miller (), Snedecor and Cochran (), Sahai
and Ojeda (), and Sahai and Ageel (). Some
of the main �ndings are discussed in the following
section.

Effects of Departures from Assumptions
Departures from Normality
For �xed e�ects model, due to the central limit theo-
rem (see 7Central Limit�eorems) the lack of normality
causes no problems in large samples, as long as the assump-
tions hold. In general, when true 7randomization occurs
the violations of normality is acceptable. Also, heterogene-
ity of variances can result in nonnormality, so ensuring
homogeneity of variances may also result in normality.
Only highly skewed distributions would have a marked
e�ect either on the level of signi�cance or the power of
the F test. However, it is worth mentioning that kurtosis
of the error distribution (either more or less peaked than a
normal distribution) is more important than skewness of
the distribution in terms of the e�ects on inferences. Both
analytical results (see, e.g., Sche�é :–) and the
empirical studies by Pearson (), Geary (), Gayen
(), Box and Anderson (), Boneau (, ),
Srivastava (), Bradley (), Tiku (, ), and
Donaldson () attest to the conclusion that lack of nor-
mality would have little e�ect of F test either in terms of
level of signi�cance or power. Hence, the F test is gener-
ally robust against departures from normality (in skewness
and/or kurtosis) if sample sizes are large or even if moder-
ately large. For instance, the speci�ed level of signi�cance
might be ., whereas the actual level for a nonnormal
error distribution might vary from . to . depend-
ing on the sample size and the magnitude of the kurtosis.
Generally, the actual level of signi�cance in the presence
of positive kurtosis (platykurtic) is slightly higher than

the speci�ed one and the real power of the test for posi-
tive kurtosis is slightly higher than the normal one. If the
underlying population has negative kurtosis (leptokurtic),
the actual power of the test will be slightly lower than the
normal one (Glass et al. ). Single interval estimates of
the factor level means and contrasts and some of the mul-
tiple comparison methods are also not much a�ected by
the lack of normality provided the sample sizes are not too
small.�e robustness of multiple comparison tests in gen-
eral has not been as thoroughly studied.Among few studies
in this area is that of Brown (). Some other studies have
investigated the robustness of several multiple comparison
procedures, including Tukey and Sche�é, for exponential
and chi-square distributions and found little e�ect on both
α and power (see, e.g., Petrinovich and Hardyck ;
Keselman and Rogan ). Dunnett () reported that
Tukey is conservative both with respect to α and power
for long-tailed distributions and to 7outliers. Similarly,
Ringland () found that Sche�é was conservative for
distributions with in�uence to outliers.
Lange andRyan () gave several examples that show

that nonnormality of random e�ects is, indeed, encoun-
tered in practice. For random e�ects model, the lack of
normality has more serious implications than �xed e�ects
model.�e estimates of the variance components are still
unbiased, but the actual con�dence coe�cients for inter-
val estimates of σ e , σ α , σ α/σ e may be substantially di�erent
from the speci�ed one (Singhal and Sahai ). Moreover,
when testing the null hypothesis, if the variance of a ran-
dom e�ect is some speci�ed value di�erent from zero, the
test is not robust to the assumption of normality. For some
numerical results of this, the reader is referred to Arvesen
and Schmitz () and Arvesen and Layard (). How-
ever, if one is concerned only with a test of hypothesis
σ α = , then slight departures from normality have only
minor consequences for the conclusions reached when the
sample size is reasonably large (see, e.g., Tan and Wong
; Singhal et al. ).

Departures from Equal Variances
Both the analytical derivations by Box () and the
empirical studies indicate that if the variances are unequal,
the F test for the equality of means under �xed e�ects
model is only slightly a�ected provided there is no remark-
able di�erence in sample sizes and the parent popula-
tions are approximately normally distributed. When the
variances are unequal, an approximate test similar to the
approximate t test when two group variances are unequal
may be used (Welch ). Generally, unequal error vari-
ances increase the actual level of signi�cance slightly
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higher than the speci�ed level and result in a slight ele-
vation of the power function to a degree related to the
magnitude of di�erences among variances. If larger vari-
ances are associated with larger sample sizes, the level of
signi�cance will be slightly less than the nominal value,
and if they are associated with smaller sample sizes, the
level of signi�cance will be slightly greater than the nomi-
nal value (Horsnell ; Kohr and Games ). Similarly,
the Sche�é’s multiple comparison procedure based on the
7F distribution is not a�ected to any appreciable degree
by unequal variances if the sample sizes are approximately
equal.�us, the F test and the related analyses are robust
against unequal variances if the sample sizes are nearly
equal.
On the other hand, when di�erent number of cases

appear in various samples, violation of the assumption
of homogeneous variances can have serious e�ects in
the validity of the �nal inference (see, e.g., Sche�é ;
Welch ; James ; Box ; Brown and Forsythe
; Bishop and Dudewicz ; Tan and Tabatabai ).
Krutchko� () made an extensive simulation study to
determine the size andpower of several analysis of variance
procedures, including the F test, Kruskal–Wallis test, and
a new procedure called the K test. It was found that both
the F test and the Kruskal–Wallis test are highly sensitive
whereas the K test is relatively insensitive to the hetero-
geneity of variances. Kruskal–Wallis test, however, is not
as sensitive to the unequal error variances as the F test
and was found to be more robust to nonnormality (when
the error variances are equal) than either the F test or the
K test.�us, whenever possible, the experimenter should
try to achieve the same number of cases in each factor level
unless the assumption of equal population variances can
reasonably be assured in the experimental context.�e use
of equal sample sizes for all factor levels not only tends to
minimize the e�ects of unequal variances using the F test,
but also simpli�es the computational procedure.
For random e�ects model, however, the lack of

homoscedasticity or unequal error variances can have seri-
ous e�ects on inferences about the variance components,
even when all factor levels contain equal sample sizes.
Boneau () has shown that when variances are dif-
ferent in the various groups and sample sizes are small
and di�erent, ANOVA can produce highly misleading
results.

Departures from Independence of Error
Terms
Lack of independence can result from biased measure-
ments or possibly from a poor allocation of treatments to
experimental units. Nonindependence of the error terms
can have important e�ects on inferences for both �xed

and random e�ects models. If this assumption is not met,
the F ratio may be strongly a�ected severely in serious
errors in inferences (Sche�é ). �e direction of the
e�ect depends on the nature of the dependence of the error
terms. In most cases encountered in practice, the depen-
dence tends to make the value of the ratio too large and
consequently the signi�cance level will be smaller than it
should be (although the opposite can also be true). Since
the remedy of violation of this assumption is o�en di�-
cult, every possible e�ort should be made to obtain inde-
pendent random samples. �e use of randomization in
various stages of the study can be most important pro-
tection against independence of error terms. In general,
great care should be taken to ensure that the data are based
on independent observations, both between and within
groups, i.e., each observation is in no way related to any
of the other observations. Although, dependency among
the error terms creates a special problem in any analysis
of variance, it is not necessary that the observations them-
selves must be completely independent for applying the
random e�ects model.
In summary, ANOVA is very robust to violations of the

assumptions, as long as only one assumption is violated. If
two or more assumptions are severely violated the results
are not to be trusted. Further if the data are:

(a) Not normally distributed, but satis�es the homo-
geneity of variance and independent assumptions,
the �ndings may still be valid.

(b) Normally distributed and are independent samples,
but does not satisfy the homogeneity of variance
assumption, the �ndings may still be valid.

�e above review and discussion are restricted to the one-
way analysis of variance. A similar �nding for two-way
classi�cation without and with interaction can be found in
Sahai and Ageel ().

Tests for Departures from Assumptions
As we have seen in the preceding section, the analysis
of variance procedure is robust and can tolerate certain
departures from the speci�ed assumptions. It is, neverthe-
less, recommended that whenever a departure is suspected
it should be checked out. In this section, we shall brie�y
state the tests for normality and homoscedasticity.

Tests for Normality
A relatively simple technique to determine the appropri-
ateness of the assumption of normality is to graph the data
points on a normal probability paper. If a straight line can
be drawn through the plotted points, the assumption of
normality is considered to be reasonable. Some formal tests
for normality are the chi-square goodness of �t test, and the
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Atests for skewness and kurtosis that are o�en used as sup-
plements to the chi-square test (see 7Chi-Square Tests).
For a detailed discussion of these tests refer to Sahai and
Ageel ().

�e tests mentioned above are some of the classical
tests of normality. Over the years, a large number of other
techniques have been developed for testing for departures
from normality. Some powerful omnibus tests proposed
for the problem are Shapiro–Wilk’s test (Shapiro and Wilk
), Shapiro–Francia’s test (Shapiro and Francia ),
and D’Agostino’s test (D’Agostino ).
For a discussion of tests especially designed for detect-

ing outliers see Barnett and Lewis (). Robust esti-
mation procedures have also been employed in detecting
extreme observations.�e procedures give less weight to
data values that are extreme in comparison to the rest of
the data. Robust estimation techniques have been reviewed
by Hampel et al. ().

Tests for Homoscedasticity
If there are just two populations, the equality of two pop-
ulation variances can be tested by using the usual F test.
However, more than two population, rather than making
all pairwise F tests, we want a single test that can be used to
verify the assumption of equality of population variances.
�ere are several tests available for this purpose.�e three
most commonly used tests are the Bartlett’s, Hartley’s, and
Cochran’s tests.�e7Bartlett’s test (Bartlett a, b) com-
pares the weighted arithmetic and geometric means of the
sample variances. �e Hartley’s test (Hartley ) com-
pares the ratio of the largest to the smallest variance.�e
Cochran’s test (Cochran ) compares the largest sam-
ple variance with the average of all the sample variances.
For a full description of these procedures and illustration
of their applications with examples see Sahai and Ageel
(). �ese tests, however, have lower power than is
desired for most applications and are adversely a�ected by
nonnormality. Detailed practical comments on Bartlett’s,
Hartley’s, and Cochran’s tests are also given by Sahai and
Ageel. In recent years, there have appeared a number of
tests in the literature that are less sensitive to normal-
ity in the data and are found to have a good power for
a variety of population distributions see Levene ().
Following Levene (), a number of other robust pro-
cedures have been proposed, which are essentially based
on techniques of applying ANOVA to transformed scores.
For example, Brown and Forsythe (a) proposed apply-
ing an ANOVA to the absolute deviations from the mean.
A somewhat di�erent approach known as 7jackknife was
proposed byMiller () where the original scores in each
group are replaced by the contribution of that observa-
tion to the group variance. O’Brien (, ) proposed a

procedure, which is a blend of Levene’s squared deviation
scores and the jackknife. In recent years, there have been
a number of studies investigating the robustness of these
procedures. For a further discussion and details, the reader
is referred to Conover et al. (), Olejnik and Algina
(), and Ramsey ().

Corrections for Departures from
Assumptions of the Model
Departure from independence could arise in an experi-
ment in which experimental units or plots are laid out in a
�eld so that adjacent plots give similar yields. Lack of inde-
pendence can also result from correlation in time rather
than in space. If the data set in a given problem violates the
assumptions of the analysis of variance model, a choice of
possible corrective measures is available. One approach is
to modify the model. However, this approach has the dis-
advantage that more o�en than not the modi�ed model
involves fairly complex analysis. Another approach may
be to consider using some nonparametric tests. A third
approach to be discussed in this section is to use transfor-
mations on the data. Sometimes it is possible to make an
algebraic transformation of the data to make them appear
more nearly normally distributed, or to make the vari-
ances of the error terms constant. Conclusions derived
from the statistical analyses performed on the transformed
data are also applicable to the original data. In this section,
we brie�y discuss some commonly used transformations
to correct for the lack of normality and homoscedastic-
ity. An extremely thorough and detailed monograph on
transformation methodology has been prepared by�öni
(). An excellent and thorough introduction and a
bibliography of the topic can be found in a review paper
by Hoyle (). For a more recent bibliography of articles
on transformations see Draper and Smith (:–).

Transformations to Correct Lack of Normality
Some transformations to correct for the departures from
normality are logarithmic transformation, square-root
transformation, and arcsine transformation.

Transformations to Correct Lack of
Homoscedasticity
�ere are several types of data in which the variances
of the error terms are not constant. If there is evidence
of some systematic relationship between treatment mean
and variance, homogeneity of the error variance may be
achieved through an appropriate transformation of the
data. Bartlett () has given a formula for deriving such
transformations provided the relationship between µi and
σ e is known. In many cases where the nature of the rela-
tionship is not clear, the experimenter can, through trial
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and error, �nd a transformation that will stabilize the vari-
ance. We give some commonly employed transformations
to stabilize the variance.�ese are logarithmic transforma-
tion, square-root transformation, reciprocal transforma-
tion, arcsine transformation, and power transformation.
For a detailed discussion of these transformations and their
applicability refer to Sahai and Ageel ().

�ese are some of the more commonly used transfor-
mations. Still other transformations can be found appli-
cable for various other relationships between the means
and the variances. Further, the transformations to stabilize
the variance also o�en make the population distribution
nearly normal. For equal sample sizes, however, these
transformations may not usually be necessary. Moreover,
the use of such transformations may o�en result in dif-
ferent group means. It is possible that the means of the
original scores are equal but the means of the transformed
scores are not, and vice versa. Further, the means of trans-
formed scores are o�en changed in ways that are not
intuitively meaningful or are di�cult to interpret.
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Introduction
A “goodness-of-�t” test is a procedure for determining
whether a sample of n observations, x, . . . , xn, can be con-
sidered as a sample from a given speci�ed distribution. For
example, the distribution might be a normal distribution
with mean  and variance . More generally, the speci�ed
distribution is de�ned as

F(x) =

x

∫
−∞

f (y)dy, −∞ < x <∞ , ()

where f (y) is a speci�ed density.�is densitymight be sug-
gested by a theory, or it might be determined by a previous
study of similar data.
When X is a random variable with distribution func-

tion F(x) = Pr{X ≤ x} , then U = F(X) is a random
variable with distribution function

Pr{U ≤ u} = Pr{F(X) ≤ u} = u,  ≤ u ≤ . ()

�e model speci�es u = F(x), . . . ,un = F(xn) as a sam-
ple from the distribution (), that is, the standard uniform
distribution (see 7Uniform Distribution in Statistics) on
the unit interval [, ] written U(, ).
A test of the hypothesis that x, . . . , xn is a sample from

a speci�ed distribution, say F(x), is equivalent to a test
that u = F(x), . . . ,un = F(xn) is a sample fromU(, ).
De�ne the empirical distribution function as

Fn(x) =
k

n
, −∞ < x <∞, ()

if k of (x, . . . , xn) are ≤ x. A goodness-of-�t test is a com-
parison of Fn(x) with F(x).�e hypothesis H : F(x) =
F(x), −∞ < x < ∞, is rejected if Fn(x) is very di�erent
from F(x). “Very di�erent” is de�ned here as

W

n = n

∞

∫
−∞

[Fn(x) − F

(x)]


ψ [F


(x)]dF


(x)

= n

∞

∫
−∞

[Fn(x) − F

(x)]


ψ [F


(x)] f


(x)dx ()

being large; here () holds and ψ(z) is a weight function
such that ψ(z) ≥ , and f (x) is the density of F(x).

If ψ(z) = , the statisticW
n is the Cramér-von Mises

statistic, denoted by nω. Anderson and Darling ()
gave a table of the limiting distribution of nω as n → ∞.
For example, the % signi�cance point is . and the %
signi�cance point is ..

The Anderson–Darling Statistic
For a given x and hypothetical distribution F(⋅), the ran-
dom variable nFn(x) has a 7binomial distribution with
probability F(x).�e expected value of nFn(x) is nF(x)
and the variance is nF(x) [ − F(x)]. �e de�nition
of the goodness-of-�t statistic () permits the choice of
weight function ψ(⋅). In particular the investigator may
want to emphasize the tails of the presumed distribution
F(x). In that case the choice is

ψ(u) =


u( − u)
. ()

�en for a speci�ed x

√
n

Fn(x) − F

(x)

√
F(x) [ − F (x)]

()

hasmean  and variance  when the null hypothesis is true.
�e Anderson–Darling statistic is

A

n = n

∞

∫
−∞

[Fn(x) − F

(x)]



F(x) [ − F(x)]
d F


(x). ()

It was shown in Anderson and Darling () that () can
be written as

A

n = −n−


n

n

∑
j=

(j − ) [logu(j) + log ( − u(n−j+))] ()

where u(j) = F (x(j)) and x() < x() < . . . < x(n) is the
ordered sample.
Anderson and Darling found the limiting distribution

of An [for weight function ()]. In the next section the
development of this distribution is outlined.�e % sig-
ni�cance point of the limiting distribution is . and the
% point is ..�e mean of this limiting distribution is
 and the variance is (π − )/ ∼ ..

Outline of Derivation
Let u = F(x), ui = F()(xi), i = , . . . ,n, and u(i) = F()

(x(i)), i = , . . . ,n. LetGn(u) be the empirical distribution
function of u, . . . ,un; that is

Gn(u) =
k

n
,  ≤ u ≤ , ()

if k of u, . . . ,un are ≤ u.�us

Gn [F

(x)] = F


n(x), ()
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Aand

W

n = n



∫


[Gn(u) − u]


ψ(u)du, ()

when the null hypothesis F(x) = F()(x) is true. For every
u ( ≤ u ≤ )

Yn(u) =
√
n [Gn(u) − u] ()

is a randomvariable, and the set of thesemay be considered
as a stochastic process with parameter u.�us

Pr{W
n ≤ z} = Pr

⎧⎪⎪
⎨
⎪⎪⎩



∫


Y

n(u)ψ(u)du ≤ z

⎫⎪⎪
⎬
⎪⎪⎭

= An(z),

()
say. For a �xed set u, . . . ,uk the k-variate distribution
of Yn (u) , . . . ,Yn (uk) approaches a multivariate normal
distribution (see 7Multivariate Normal Distributions) as
n→∞ with mean and covariance function

E [Yn(u)] = , EYn(u)Yn(v) = min(u, v) − uv. ()

�e limiting process of {Yn(u)} is a Gaussian process
y(u),  ≤ u ≤ , and Ey(u) =  and Ey(u)y(v) = min
(u, v) − uv. Let

a(z) = Pr
⎧⎪⎪
⎨
⎪⎪⎩



∫


y

(u)ψ(u)du ≤ z

⎫⎪⎪
⎬
⎪⎪⎭

. ()

�en An(z) → a(z),  ≤ z < ∞. �e mathematical
problem for the Anderson–Darling statistic is to �nd the
distribution function a(z) when ψ(u) = /u( − u).
We brie�y sketch the procedure to �nd the distribution

of


∫

z(u)du, where z(u) is a Gaussian stochastic process

with Ez(u) =  and Ez(u)z(v) = k(u, v). When the kernel
is continuous and square integrable (as is the case here), it
can be written as

k(u, v) =
∞
∑
j=


λj
fj(u) fj(v), ()

where λj is an eigenvalue and fj(u) is the corresponding
normalized eigenfunction of the integral equation

λ



∫


k(u, v)f (u)du = f (v), ()



∫


f

j (u)du = ,



∫


fi(u)fj(u)du = , i /= j. ()

�en the process can be written

z(u) =
∞
∑
j=


√

λj
Xjfj(u), ()

where X,X, . . ., are independent N(, ) variables.�en



∫


z

(u)du =

∞
∑
j=


λj
X

j , ()

with characteristic function

E exp
⎡
⎢
⎢
⎢
⎢
⎣

it



∫


z

(u)du

⎤
⎥
⎥
⎥
⎥
⎦

=
∞
∏
j=
E (exp itXj /λj)

=
∞
∏
j=

( − it/λj)
−  . ()

�e process Y∗n (u) =
√

ψ(u)Yn(u) has covariance
function

k(u, v) =
√

ψ(u)
√

ψ(v) [min (u, v) − uv] ; ()

as n→∞, the process Y∗n (u) approaches y∗(u) =√
ψ(u) y(u)with covariance ().�e characteristic func-

tion of the limiting distribution of nω is
¿
Á
ÁÀ

√
it

sin
√
it

()

for ψ(u) = , and that of the limiting distribution of An is

¿
Á
Á
ÁÀ

−πit

cos(
π


√
 + it)

. ()

for ψ(u) = /u( − u).
�e integral equation () can be transformed to a

di�erential equation

h
′′
(t) + λψ(t) h((t) = . ()

Anderson–Darling Tests with Unknown
Parameters
When parameters in the tested distribution are not known,
but are estimated e�ciently, the covariance () is mod-
i�ed, and the subsequent limiting distribution theory
for both nω and An follows the same lines as above,
with this new covariance. If the parameters are location
and/or scale, the limiting distributions do not depend on
the true parameter values, but depend on the class of
tested distributions. If the parameters are shape param-
eters, the limiting distribution depends on shape. Lim-
iting distributions have been evaluated and percentage
points given for a number of di�erent tested distribu-
tions; see Stephens (, ). Tests for three parameter
Weibull, and von Mises have been given by Lockhart and
Stephens (, ).



 A Approximations for Densities of Sufficient Estimators

�e percentage points for these tests are much smaller
than those given above for the case when parameters are
known.
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Introduction
Durbin (a) proposed a simple method for obtaining
asymptotic expansions for the densities of su�cient esti-
mators. �e expansion is a series which is e�ectively in
powers of n−, where n is the sample size, as compare
with the 7Edgeworth expansion which is in powers of
n−/. �e basic approximation is just the �rst term of
this series.�is has an error of order n− compare to the
error of n−/ in the usual asymptotic normal approxima-
tion (see7AsymptoticNormality).�e order ofmagnitude
of the error can generally be reduced to order n−/ by
renormalization.
Suppose that the real m-dimensional random vector

Sn = (Sn, Sn, . . . , Smn)′ has a density with respect to
Lebesgue measure which depends on integer n > N for
some positive N and on θ ∈ Θ, where Θ is a subset of Rq

for q an arbitrary positive integer.
Let

Dn(θ) = n
−
E {Sn − E(Sn)} {Sn − E(Sn)}′ ()

which we assume is �nite and positive-de�nite for all n
and θ, and which we assume converges to a �nite positive-
de�nite matrix D(θ) as n → ∞ and θ → θ, where θ is
a particular value of θ, usually the true value.
Let ϕn(z, θ) = E(eiz

′Sn) be the characteristic function
of Sn where z = (z, z, . . . , zm)′. Whenever the appropri-
ate derivatives exists, let

∂j log ϕn(̃z, θ)
∂zj



Approximations for Densities of Sufficient Estimators A 

Adenote the set of jth order derivatives ∂j log ϕn(z, θ)/
∂z
j
 ⋯∂z

jm
m for all integers j, j,…, jm ≥  satisfying∑k jk =

j, evaluated at z = z̃.�e jth cumulant κnj(θ) of Sn, where
it exists, satis�es the relation

i
j
κnj(θ) =

∂j log ϕn(, θ)
∂zj

. ()

Inwhat follows, let θ and θ be points in an open subsetΘ
ofΘ, and let r be a speci�ed integer. We use the word limit
in the sense of joint limit, and introduce three assumptions.
Assumption . If n is large enough ∣ϕn(z, θ)∣ is inte-

grable over Rm, and if δ is an arbitrary positive constant
the limit of

n
r
− ∫
Bδ
√

n

∣ϕn (z/
√
n, θ)∣dz,

as n → ∞ and θ → θ is zero, where Bδ
√
n is the region

∥z∥ ≥ δ
√
n and ∥⋅∥denotes the Euclidean norm.

Assumption .�e rth derivative ∂r log ϕn(z, θ)/∂zr

exists for z in a neighborhood of the origin and the limit of

n
− ∂

r log ϕn(z, θ)
∂zr

as n→∞, θ → θ and ∥z∥→  exists.
Assumption . �e cumulant κnj(θ) = O(n) uni-

formly for θ in a neighborhood of θ for j = , . . . ,
r − .
Now we present the Edgeworth expansion and the

corresponding approximation to the density hn(x, θ) of
Xn = n−/E {Sn − E(Sn)}. Suppose that there is an inte-
ger r ≥  such that Assumptions – hold.�en there is a
neighborhood ∥θ − θ∥ < δ of θ such that

hn(x, θ) − ĥn(x, θ) = o{n−(r/)+} ()

uniformly in x and in θ for ∥θ − θ∥ < δ, where

ĥn(x, θ) =
∣Dn(θ)∣

−/

(π)m/
exp{−



x′D−n (θ)x}

⎧⎪⎪
⎨
⎪⎪⎩

 +
r

∑
j=
n
−(j/)+

Pnj(x, θ)
⎫⎪⎪
⎬
⎪⎪⎭

, ()

and where Pnj(x, θ) is a generalized Edgeworth poly-
nomial of order j the de�nition of which is given in
Durbin (a).�e practical construction of Pnj(x, θ) is
described by Chambers (, pp. –).

Approximations to the Densities
of Sufficient Estimators
Suppose that y = (y, . . . , yn)

′ is amatrix of observations of
n continuos or discrete random ℓ× vectors, not necessarily
independent or identically distributed, with density

f (y, θ) = G(t, θ)H(y), y ∈ Y , θ ∈ Θ, ()

where t = (t, . . . , tm)′ is the value computed from y of an
estimator Tn of the m-dimensional parameter θ, where Y
and Θ are observation and parameter spaces and where Y
and H do not depend upon θ. We assume that f (y, θ) > 
for all y ∈ Y and θ ∈ Θ. By the factorization theorem Tn is
su�cient for θ.
Suppose that a transformation y, . . . , yn → t, . . . , tm,

um+, . . . ,unℓ exists such that on substituting for y on the
right-hand side of () and integrating or summing out
um+, . . . ,unℓ we obtain the marginal density g(t, θ) of Tn
in the form g(t, θ) = G(t, θ)H(t) where H does not
depend upon θ. We therefore have

f (y, θ) = g(t, θ)h(y), ()

where h(y) = H(y)/H(t). �e derivation of () from
() has been given in this form to avoid measure-theoretic
complications.
Suppose further that although functions G(t, θ) sat-

isfying () can be deduced immediately from inspection
of f (y, θ), the density g(t, θ) is unknown and we want to
obtain an approximation to it for a particular value θ of θ.
Since () holds for all θ ∈ Θ we have

f (y, θ) = g(t, θ)h(y). ()

On dividing () by () the unknown factor h(y) is elimi-
nated and we obtain immediately

g(t, θ) =
f (y, θ)
f (y, θ)

g(t, θ). ()

If we substitute t for θ in (), as is legitimate since we have
assumed that t ∈ Θ, we obtain

g(t, θ) =
f (y, θ)
f (y, t)

g(t, t). ()

�e basic idea is to obtain an approximation ĝ(t, θ) for
g(t, θ) by substituting a series approximation ĝ(t, t) for
g(t, t) in (), giving

ĝ(t, θ) =
f (y, θ)
f (y, t)

ĝ(t, t). ()

In e�ect, the method rescales the approximation ĝ(t, t) at
θ = t by the likelihood ratio f (y, θ)/f (y, t).
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A second idea is to substitute an Edgeworth series
approximation ĝ(t, θ̃) for g(t, θ) in (), where θ̃ is cho-
sen as the value of θ for which the mean of the distribution
of Tn coincides with t.�e reason for using this indirect
approach instead of approximating g(t, θ) directly is that
a straightforward Edgeworth approximation of g(t, θ),
would normally be in powers of n−/ whereas an Edge-
worth approximation of g(t, t) or ĝ(t, θ̃) is normally a
series in powers of n−.
Suppose that E(Tn) = θ − βn(θ), where βn(θ) =

O(n−) uniformly for θ in a neighborhood of θ, and that
nTn = Sn, where Sn satis�es the Assumptions – given
above with r = . Maximum likelihood estimators o�en
satisfy these assumptions. We make the following further
assumption:
Assumption . Uniformly for θ in a neighbor-

hood of θ,

∣Dn(θ)∣ = ∣D(θ)∣ { +O(n−)} .

�e assumption is, of course, satis�ed when Sn is a sum
of independent and identically distributed vectors but it
is also satis�ed in other cases of interest, notably in some
applications in time series analysis. We suppose that we
require a single-term approximation which has an error of
order n− at most.
SinceXn =n−/E {Sn − E(Sn)} =

√
n{Tn−θ+βn(θ)},

the value ofXn whenTn = t and θ = t is x= βn(θ)
√
n.With

r = , () gives

ĥn(x, t)=
∣Dn(t)∣−/

(π)m/
exp{−



nβn(t)

′D−n (t)βn(t)}

×

⎡
⎢
⎢
⎢
⎢
⎣

 +


∑
j=
n
−(j/)+

Pnj {βn(θ)
√
n, t}

⎤
⎥
⎥
⎥
⎥
⎦

.

()
Now nβn(t)

′D−n (t)βn(t) = O(n
−
) and the constant term

ofPn isO().MoreoverPn contains no constant term and
hence is O(n−/) when x = βn(θ)

√
n. We note that these

orders of magnitude are uniform for t in a neighborhood
of θ under the Assumptions –. Because of Assumption
, we have

ĥn(x, t) =
∣D(t)∣−/

(π)m/
{ +O(n−)}

uniformly for t in a neighborhood of θ.

Let hn(x, t) be the true density of Xn, then by ()

hn(x, t) = ĥn(x, t) + o(n−)

=
∣D(t)∣−/

(π)m/
{ +O(n−)} + o(n−). ()

Since the term o(n−) is uniform for t in a neighborhood
of ∥t − θ∥ < δ, where δis a suitably chosen positive con-
stant independent of n, and since ∣D(t)∣ is continuous at θ
and hence is bounded away from zero for t in the neigh-
borhood, the term o(n−) of () can be absorbed inside
the curly bracket. We thus have uniformly

hn(x, t) =
∣D(t)∣−/

(π)m/
{ +O(n−)} .

Transforming from x to t we obtain for the density of
Tn at Tn = θ = t,

g(t, t) = (
n

π
)
m/

∣D(t)∣−/ { +O(n−)} . ()

Substituting in () we obtain

g(t, θ) = (
n

π
)
m/

∣D(t)∣−/
f (y, θ)
f (y, t)

{ +O(n−)} ,

()
uniformly in t for ∥t − θ∥ < δ.
Expression () is the basic approximation for the

density of the su�cient estimator Tn. �e fact that
the error is a proportional error which is uniform
over the region ∥t − θ∥ < δ is important since the
limiting probability that Tn falls outside this region
is zero.
Assuming appropriate regularity conditions to be sat-

is�ed, D−(θ) is the limiting mean information matrix
I(θ), where

I(θ) = lim
n→∞

E [−n
− ∂

 log f (y, θ)
∂θ∂θ′

] .

We then have for the basic approximation

g(t, θ) = (
n

π
)
m/

∣I(t)∣/
f (y, θ)
f (y, t)

{ +O(n−)} ,

()
uniformly in t for ∥t − θ∥ < δ.

�e simplicity of the structure of this approximation
should be noted. It consists of the normal approximation
to the density when θ = t, namely {n/(π)}m/ ∣I(t)∣/,
multiplied by the likelihood ratio f (y, θ)/f (y, t).
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ADurbin (a) proved that when either () or () is
integrated over any subset of Rm, the error term remains
O(n−). �is result is, in fact, of great importance in
practical situations since it demonstrates that the basic
approximation can be integrated for inference purposes
with an error which is of order n− at most. He proved
as well that when the constant term of the approxima-
tion (), and consequently also of (), is adjusted to
make the integral over the whole space equal to unity,
the order of magnitude of the error is o�en reduced from
O(n−) to Ox(n−/), where Ox(n−q) denotes a quan-
tity which is O(n−q) for each �xed x =

√
n{t − E(Tn)}

but which is not O(n−q) uniformly for all x. �is pro-
cess of adjusting the constant term is generally called
renormalization.
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Approximations to Distributions

Juan Carlos Abril
President of the Argentinean Statistical Society, Professor
Universidad Nacional de Tucumán and Consejo Nacional
de Investigaciones Cientí�cas y Técnicas, San Miguel de
Tucumán, Argentina

Introduction
�e exact probability distribution of estimators for �nite
samples is only available in convenient form for simple
functions of the data and when the likelihood function is
completely speci�ed. Frequently, these conditions are not
satis�ed and the inference is based on approximations to
the sample distribution. Typically, large sample methods
based on the central limit theorem (see 7Central Limit
�eorems) are generally used. For example, if Tn is an esti-
mator of the parameter θ based on a sample of size n, it
is sometimes possible to obtain functions σ(θ) such that
the distribution of the random variable

√
n(Tn − θ)/σ(θ)

converges to the standard normal distribution as n tends to
in�nity. In such a case, it is very common to approximate
the distribution of Tn by a normal distribution with mean
θ and variance σ (θ)/n.

�ese asymptotic approximations can be good even for
very small samples.�emean of independent draws froma
rectangular distribution has a bell-shaped density for n as
small as three. But it is easy to construct examples where
the asymptotic approximation is bad even when the sam-
ple has hundreds of observations. It is therefore desirable to
know the conditions under which the asymptotic approx-
imations are reasonable and to have alternative methods
available when these approximations do not work prop-
erly. Most of the material discussed here is closely related
with the topic Asymptotic, higher order which is presented
as well in this Encyclopedia.

�ere is a good literature treating the theory and prac-
tice of approximations to distributions, but introductory
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texts are relatively few. A very brief summary can be
seen in Bickel and Doksum (), while some discussion
is given in Johnson and Kotz (). �e extension to
asymptotic expansions can be seen in the excellent paper
by Wallace (), although it is outdated. For a good
treatment of the subject, an incursion upon the advanced
probability and numerical analysis textbooks is needed.
For those with enough time and patience, Chaps.  and
 of Feller () are well worth reading.

The Central Limit Theorem
�e center of a large part of the asymptotic theory is
the central limit theorem, initially formulated for sums of
independent random variables. Let {Yn} be a sequence of
independent random variables. Denote byHn the distribu-
tion function of the standardized sum

Xn =

n

∑
j=

{Yj − E(Yj)}

¿
Á
ÁÀ{

n

∑
j=
V(Yj)}

,

where V(Yj) is the variance of Yj, and by N (.) the stan-
dard normal distribution function.�e central limit the-
orem then states that limHn(x) = N (x), as n → ∞,
for every �xed x, provided only that the means and vari-
ances are �nite. If the {Yj} are not identically distributed,
an additional condition guaranteeing that the distributions
are not too unbalanced is necessary.
For time series problems, for example, where in gen-

eral the variables are not independent, there have been
particularized versions of this theorem guaranteeing the
asymptotic behavior of statistics used in this area. Good
references are the textbook by Anderson (), Brockwell
and Davis (), Hannan (), and Priestley ()
where one can �nd an excellent treatment of the asymp-
totic theory applied to time series problems.
Some authors have shown that the order of magnitude

of the errors in the central limit theorem is O(n−/).
While the central limit theorem is very useful theo-

retically and o�en in practice, it is not always satisfactory
since for small or moderate n the errors of the normal
approximation may be too large.

Curve Fitting
�e most simplest form for obtaining an approximation
to a distribution is to look for a family of curves with the
correct shape and select the member that �ts best. If the
moments, specially those of low order, of the true distri-
bution are known, they can be used in the �tting process.

Otherwise one can use Monte Carlo simulations or any
other information about the true distribution.
Durbin andWatson () describe a number of di�er-

ent approximations to the null distribution of the statistic d
used for testing serial correlation in regression analysis.
One of the most accurate is the beta approximation pro-
posed by Henshaw (). Since d is between zero and
four and it seems to have a unimodal density, it is rea-
sonable to think that a linear transformation from a beta
distributed variable can be a good approximation to the
true distribution. Suppose that Y is a random variable with
beta distribution function

Pr(Y ≤ y) =


B(p, q)

y

∫


t
p−

( − t)q−dt = G(y; p.q),

where

B(p, q) =
∞

∫


t
p−

( − t)q−dt.

�en, for a and b constant, the random variable a + bY
has moments depending on p, q, a and b.�ese moments
are easy to express analytically. Moreover, the moments
of the Durbin–Watson’s statistic d are simple functions
of the matrix of explanatory variables. Equating the �rst
four moments of d with the corresponding moments of
a + bY , one obtains four equations with four unknowns.
For a given matrix of explanatory variables these equa-
tions give a unique solution, p∗, q∗, a∗ and b∗ say. So
Pr(d≤ y) can be approximated byG{(y − a∗)/b∗; p∗, q∗}.
�is approximation gives good results in many cases.
�eil and Nagar () proposed a similar approxima-
tion but using the approximated moments of d instead
of the true moments. Since these approximated moments
are independent of the matrix of explanatory variables,
�eil–Nagar’s approximation does not depend on the data
and can be tabulated without any problem. Unfortunately
the approximated moments are not always accurate and
the resulting approximation to the distribution is less
satisfactory than Henshaw’s approximation.
If one has enough information over the true den-

sity, the curve �tting methods give simple and correct
approximations. However these methods are not so attrac-
tive when the purpose is not quantitative but qualita-
tive.�e comparison of alternative procedures is di�cult
because the curve �tting methods does not produce, in
general, parametric families of curves easily comparable.
If two statistics are approximately normal, they can be
compared by their means and variances. If one statistic
is approximately beta and another is approximately nor-
mal, the comparison between them is not easy since the
usual parameters that describe one of the distributions are
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Anot of much interest for obtaining information about the
other.�e �exibility that makes the curve �tting method
so accurate is, as well, an inconvenience for using it in
comparisons.

Transformations
Suppose thatY is a random variable and b amonotonically
increasing function such that b(Y) has a distribution func-
tionHwhich can be approximated by Ĥ. Since Pr(Y ≤ y) is
equal to Pr{b(Y) ≤ b(y)}, the distribution function of Y
can be approximated by Ĥ {b(y)}. A well known example
of this technique is Fisher’s z transformation.�e sample
correlation coe�cient ρ̂ based on a random sample from
a bivariate normal population is very far from symme-
try when the true coe�cient ρ is large in absolute value.
But, z = b(ρ̂) = − log{( + ρ̂)/( − ρ̂)} is almost sym-
metric and can be approximated by a normally distributed
random variable with mean − log{( + ρ)/( − ρ)} and
variance n−. �erefore Pr(ρ̂ ≤ y) can be approxi-
mated by N {

√
nb(y) −

√
nb(ρ)} for moderate sample

size n.
�e use of transformations for approximating distribu-

tions is an art. Sometimes, as in the case of the correlation
coe�cient, the geometry of the problem can suggest the
appropriate transformation b. Since ρ̂ can be interpreted as
the cosine of the angle between two normally distributed
random vectors, an inverse trigonometric transformation
can be useful. In other cases, arguments based on approx-
imations to the moments are helpful. Suppose that b(Y)
can be expanded as a power series about µ = E(Y)

b(Y) = b(µ) + b
′
(µ)(Y − µ) +



b
′′
(µ)(Y − µ)


+⋯,

where Y − µ is in some sense small. so we can do

E(b) ≈ b(µ) +


b
′′
(µ)E(Y − µ)

,

V(b) ≈ {b
′
(µ)}


V(Y),

E {b − E(b)}

≈ {b

′
(µ)}


E(Y − µ)



+


{b

′
(µ)}


b
′′
(µ)E(Y − µ)

,

and choose b in such a way that these approximates
moments are equal to the moments of the approximated
distribution. If the approximated distribution is normal,
we can require that the variance V(b) be a constant inde-
pendent of µ; or we can require that the third order
moment be zero. If the moments of Y are (almost) known
and the above approximation is used, the criterion leads

to di�erential equations in b(µ). Note that Fisher’s trans-
formation of ρ̂ stabilizes the approximated variance of b
making it independent of ρ.
Jenkins () and Quenouille () apply inverse

trigonometric transformations to the case of the autocor-
relation coe�cient in time series.�e use of transforma-
tions in econometrics seems, however, to beminimumdue
mainly to the fact that the method is closely related with
univariate distributions.

Asymptotic Expansions
Frequently it is possible to decompose the problem of �nd-
ing the distribution in a sequence of similar problems.
If the sequence has a limit which can easily be found,
one can obtain an approximation to the solution of the
original problem by a solution of the limit problem.�e
sequence of the problem is indexed by a parameter, which
usually is the sample size n. Suppose for instance that we
want an approximation to the distribution of an estimator,
computed from a sample, of a parameter θ. We de�ne an
in�nite sequence θ̂n of estimators, one for each sample size
n = , , . . ., and we consider the problem of obtaining the
distribution of each θ̂n. Of course, it is necessary to have
some description of the joint distribution of the observa-
tions for each n. Given such a sequence of problems, the
asymptotic approach implies three steps:

(a) To look for a simple monotonic transformation Xn =
b(θ̂n; θ,n) such that the estimator Xn is not very sen-
sitive to n. Since the majority of estimators are cen-
terd upon the true value of the parameter and they
have a dispersion which decreases at the same rate
as n−/, the transformation Xn =

√
n(θ̂n − θ) is

frequently used.
(b) To look for an approximation Ĥn(x) to the distribution

function Hn(x) = Pr(Xn ≤ x) such that, when n tends
to in�nity, the error

∣Ĥn(x) −Hn(x)∣

tends to zero.
(c) �e distribution function of θ̂n is approximated by Ĥn,

i.e., Pr(θ̂n ≤ a) = Pr{Xn ≤ bn(a; θ,n)} is approxi-
mated by Ĥn {bn(a; θ,n)}.

Let Ĥn(x) be an approximation to the distribution
function Hn(x). If, for every x,

lim
n→∞

n
(r/)−

∣Ĥn(x) −Hn(x)∣ = , r = , , . . . ,

we write

Hn(x) = Ĥn(x) + o{n
(r/)−

} , r = , , . . . ,
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and we say that Ĥn(x) is an approximation o{n(r/)−} or
an approximation of order r − .�ese names are used as
well when approximating density functions. �e asymp-
totic distribution is an approximation o(n) = o() or a
�rst order approximation.�ese concepts are related with
the topic Asymptotic, higher order which is presented as
well in this Encyclopedia.

�e number nmeasures the velocity at which the error
of approximation tends to zero as n tends to in�nity. If we
choose the transformation b such thatHn and Ĥn vary gen-
tly with n, the value of r can give an indication of the error
of approximation for moderate values of n.

�ere are two well known methods for obtaining
high order approximations to distributions, both based on
the Fourier inversion of the characteristic function. Let
ϕn(z, θ) = E {exp(izXn)} be the characteristic function
of Xn and let ψn(z, θ) = log ϕn(z, θ) be the cumulant gen-
erating function. If ϕn is integrable, the density function hn
of Xn can be written as

hn(x; θ) =

π

∞

∫
−∞

e
−ixz

ϕn(z, θ)dz

=

π

∞

∫
−∞

exp{−ixz + ψn(z, θ)}dz. ()

Frequently it is possible to expand ψn(z, θ) in power series
where the successive terms are increasing powers of n−/.
In this case the integrand can be approximated by the �rst
few terms of this series expansion. Integrating term by
term, one obtains a series approximation to hn; a�erward
integration will give an approximation to the distribution
function.�e approximation known as Edgeworth approx-
imation or 7Edgeworth expansion consists in expanding
ψn(z, θ) at z = . �is method is the most frequently
used in practice because of its relative simplicity. It does
not require a complete knowledge of ψn(z, θ). It is enough
if one knows the �rst low order cumulants of Xn. More
details about this method is given in this Encyclopedia
under the name Edgeworth expansion. �e approxima-
tion known as saddlepoint approximation is obtained by
expanding ψn(z, θ) at the “saddlepoint” value z∗ where
the integrand of () ismaximized.�ismethod, introduced
by Daniels (), is more complex and requires a deeper
knowledge of the function ψn(z, θ).When this knowledge
is available, themethod gives accurate approximations spe-
cially in the “tail” region of the distribution. Daniels ()
and Phillips () applied this method to some autocorre-
lation statistics in time series analysis. More details about

this method is given in this Encyclopedia under the name
Saddlepoint approximations.
Wallace () gives an excellent introduction to the

approximations based on expansions of the characteris-
tic function. An exposition with emphasis on multivari-
ate expansions can be found in Barndor�-Nielsen and
Cox (). Durbin () proposed a simple method for
obtaining a second order approximation to the density of a
large class of statistics.�is method is discuss in this Ency-
clopedia under the name Approximations for densities of
su�cient estimators.

Attitudes and Perspectives
�e theory of approximate distributions, like the theory
of exact distributions, depends on the assumptions made
about the stochastic process which generates the data.�e
quality of the approximations will not be better than the
quality of the speci�cations sustaining them. one certainly
will not rely upon a theory of distribution unless the con-
clusions are so robust that they do not vary signi�cantly
in front of moderate changes of basic assumptions. Since
themajority of themethods of approximation use informa-
tion about the �rst four moments at least, while the usual
asymptotic theory only need information about the �rst
two moments, some loss of robustness has to be expected.
However, if some idea about the degree of skewness
and kurtosis is available, this information can be helpful
to obtain better approximations to the distribution of
statistics.
Recently there has been an increasing interest in

asymptotic theory. Great e�orts have been made in order
to demonstrate that some statistics are asymptotically nor-
mal and e�cient. Of course, the asymptotic theory is
important to have an idea of the sample properties of a
given statistical procedure. Unfortunately there has been
some confusion with the use of the terms “asymptotic”
and “approximated.”�e fact that a standardized estimator
has an asymptotic normal distribution is purely a math-
ematical proposition about the limit of the probabilities
measures under a set of previously speci�ed assumptions.
�e fact that a given estimator is approximately normal
suggests that, for this particular problem, one believes
in the possibility of treating the estimator as if it was
normal.
Sometimes, under certain circumstances, asymptotic

arguments lead to good approximations, bet frequently
they do not. A careful analyst, with some knowledge of
statistical theory, a modest computer and a great amount
of common sense can �nd reasonable approximations for
a given inferential problem.
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Association Measures for
Nominal Categorical Variables
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As a means of summarizing the potential relationship
between two (or more) random categorical variables X
and Y , a number of measures of association have been
proposed over the years. A historical review of such mea-
sures and new proposals have been presented in a series of
papers by Goodman and Kruskal () [see also Kendall
and Stuart (), Ch.  and Liebetrau ()]. Such sum-
mary measures depend on whether X and Y are nominal
or ordinal as well as on whether X and Y are to be treated
symmetrically or asymmetrically. In the symmetric case,
X and Y are treated equivalently and no causal relation-
ship is assumed to exist between them. In the asymmetric
case, a causal relationship between X and Y is considered
to exist so that one variable is treated as the explanatory
variable (X) and the other variable treated as the response
variable (Y).

�e focus here will be on the case when both X and Y
are nominal categorical variables, i.e., no natural ordering
exists for the variables. Association measures for both the
symmetric and asymmetric case will be considered.

Symmetric Measures
For the variable X with I categories and the variable Y
with J categories, their joint and marginal probabilities are
de�ned as Pr(X = i,Y = j) = pij, Pr(X = i) = pi+, and
Pr(Y = j) = p+j for i = , . . . , I and j = , . . . , J where


∑

i = I



∑

j = Jpij =



∑

i = Ipi+ =



∑

j = Jp+j = . In terms

of a two-way contingency table with I rows and J columns,
the cell entries come from the joint distribution {pij}, with
pij being the entry in cell (i, j), and {pi+} and {p+j} are the
marginal distributions (totals) for the rows and columns,
respectively.�e conditional distribution of Y given X is
de�ned in terms of pj∣i = pij/pi+ for all i and j.
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Several early suggested association measures were
based on the (Pearson) coe�cient of mean square contin-
gency de�ned by

Φ =
I

∑
i=

J

∑
j=

(pij − pi+p+j)

pi+p+j



=
I

∑
i=

J

∑
j=

p ij

pi+p+j
− . ()

If the pij represent sample estimates (of population proba-
bilities πij) pij = nij/N based on themultinominal frequen-

cies nij for all i, j and sample size N =


∑

i = I



∑

j = Jnij,

then it is recognized that Φ = X/N whereX is the famil-
iar Pearson chi-square goodness-of-�t statistic for testing
the null hypothesis or independence betweenX and Y , i.e.,

X

= N(

I

∑
i=

J

∑
j=

nij

ni+n+j
− ). ()

�e most popular such association measure based on X

appears to be Cramér’s () V de�ned as

V =

√
X

N(M − )
, M = min{I, J} . ()

�is V ranges in value between  and , inclusive, for any
given I and J, with V =  if, and only if, X and Y are
independent and V =  when there is no more than one
non-zero entry in either each row or in each column.�e
V is invariant with any permutations of the rows or the
columns. �e estimated standard error of V is given in
Bishop et al. (, p. ), but its expression is rather
messy.
Kendall and Stuart (, p. ), have shown that

V is the mean squared canonical correlation. However,
it has been argued that values of V are di�cult to inter-
pret since V has no obvious probabilistic meaning or
interpretation. Nevertheless, V does re�ect the divergence
(or “distance”) of the distribution {pij} from the inde-
pendence distribution {pi+p+j} relative to the maximum
divergence.

�ere is some uncertainty in the literature as to
whether V or V is the proper measure to use.�is issue
will be addressed in a section below. It may also be pointed
out that a similar association measure can be formulated
in terms of the likelihood-ratio statistic G, which has the
same asymptotic chi-square distribution as χ under the
null hypothesis and is o�en used instead of χ. For the G

under independence, i.e., for

G

= 

I

∑
i=

J

∑
j=
nij log(

Nnij

ni+n+j
) ()

and since nij ≤ ni+ and nij ≤ n+j for all i and j, it follows
that

G

≤ G


X = 

I

∑
i=
ni+ log(

N

ni+
) and G ≤ GY

= 
J

∑
j=
n+j log(

N

n+j
) .

()

�us, analogously to V in (), one could de�ne the associ-
ation measure

W =

√
G

min{GX ,G

Y}

()

with GX and G

Y as given in ().

�is new measure W can also be interpreted as the
divergence (“distance”) of the distribution {pij} from the
independence distribution {pi+p+j} relative to its maxi-
mum [see also Kvålseth ()].�eW has the same type
of properties as Cramér’s V in () and can be expected to
take on values quite similar to those of V . For instance, for
the data

n =  n =  n = 

n =  n =  n = 

it is found from () and () that V = . andW = ..

Asymmetric Measures
Goodman and Kruskal  have discussed two di�erent
asymmetric association measures (λY∣X) and (τY∣X) for
the case when X can be considered to be the explanatory
variable and Y the response variable. Such measures are
frequently referred to as proportional reduction in error
(PRE) measures since they can be interpreted in terms of
the relative di�erence between two error probabilities PY
and PY∣X , i.e.,

PREY∣X =
PY − PY∣X

PY
()

where PY is the probability of error when predicting the
Y – category of a randomly selected observation or item
without knowing its X – category and PY∣X is the cor-
responding expected (weighted mean) error probability
given its X – category.

�e optimal prediction strategy would clearly be to
predict that a randomly selected observation (item) would
belong to a maximum-probability (modal) category, so
that with

p+m = max{p+, . . . , p+J}; and pim = max{pi, . . . , piJ},

i = , . . . , I
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Athe error probabilities PY and PY∣X become

PY = −p+m, PY∣X =
I

∑
i=
pi+ ( − pim/pi+) = −

I

∑
i=
pim. ()

From ()–(), the so-called Goodman–Kruskal lambda
becomes

λY∣X =



∑

i = Ipim − p+m

 − p+m
()

which is the relative decrease in the error probability when
predicting the Y-category as between not knowing and
knowing the X-category.
Another asymmetric measure is based on a di�erent

prediction rule: Predictions are made according to the
given probabilities.�us, a randomly chosen observation
(item) is predicted to fall in the jth category ofY with prob-
ability p+j (j = , . . . , J) if its X-category is unknown. If,
however, the observation is known to belong to the ith cat-
egory of X, it is predicted to belong to the jth category of
Y with the (conditional) probability pij/pi+ (j = , . . . , J).
�e error probabilities are then given by

PY =  −
J

∑
j=
p

+j, PY∣X =

I

∑
i=
pi+[ −

J

∑
j=

(pij/pi+)

] ()

so that, from () and (), the following so-called
Goodman–Kruskal tau results:

τY∣X =

I

∑
i=

J

∑
j=
pij/pi+ −

J

∑
j=
p+j

 −
J

∑
j=
p+j

()

which gives the relative reduction in the error probability
when predicting an observation’sY-category as between its
X-category not given and given.
Both measures in () and (), and whose esti-

mated standard errors are given elsewhere [e.g., Bishop
et al. (, pp. –), Goodman and Kruskal (),
and Liebetrau ()], can assume values between  and
, inclusive. Both equal  if, and only if, each row of the
contingency table contains nomore than one non-zero cell
entry. Both are invariant under permutations of rows or of
columns. However, their zero-value conditions di�er.�e
τY∣X =  if, and only if, X and Y are independent, whereas
λY∣X =  if () X and Y are independent or () the modal
probabilities pim in all rows fall in the same column.�is
second condition ismost likely to occurwhen themarginal
distribution {pi+} is highly uneven (non-uniform).�us,
in cases of highly uneven {pi+}, λY∣X may be  or very
small, while other measures such as τY∣X may be substan-
tially larger. �e high sensitivity of λY∣X to {pi+} is one

limitation of this measure that may lead to misleadingly
low association values.
Symmetric version of lambda and tau can also be for-

mulated in terms of weighted averages (Goodman and
Kruskal ).�us, in terms of the general expression in
(), a symmetric PRE could be formulated as the following
weighted mean of PREY∣X and PREX∣Y :

PRE =
PY − PY∣X + PX − PX∣Y

PY + PX
.

However, there would seem to be no strong reason for pre-
ferring such symmetricized measures over the V orW in
() and ().
It should be pointed out that asymmetric association

measures can also be formulated in terms of relative reduc-
tion in variation, somewhat analogously to the coe�cient
of determination (R) used in regression analysis.�is can
be done by basically replacing the prediction error prob-
abilities in () with appropriate measures of categorical
variation (Agresti , pp. –).

Concluding Comment
For Cramér’s V in (), there is inconsistency in the
literature concerning the use of V versus V (and Cramér
himself proposedV (Cramér , p. )). Also, concern
has been expressed that di�erentmeasures such as those in
() and () can produce quite di�erent results. Such issues
are indeed important and are o�en overlooked.
As with any summary measure, and so it is with asso-

ciation measures, it is essential that a measure takes on
values throughout its range that are reasonable in that they
provide true or valid representations of the attribute being
measured. In order to make such an assessment for the
above association measures, consider the simple case of a
× table with all themarginal probabilities equal to . and
with the following cell entries:

p = ( − w)/p = ( + w)/

p = ( + w)/p = ( − w)/

with  ≤ w ≤ . Each of these probabilities are seen
to be the weighted mean of the corresponding probabili-
ties for the case of perfect association and zero association
(independence) for the given marginal probabilities, i.e.,

p = p = w()+(−w)(.), p = p = w(.)+(−w)(.)

In order for some association measure A ∈ [, ] to
take on reasonable values in this ease, the only logical
requirement is clearly that

A = w(A = ) + ( − w)(A = ) = w, w ∈ [, ]
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It is readily seen that the measures in () and () meet
this requirement for all w, i.e., V = w (and not V) and
λY∣X = w for the above {pij} – distribution. However, it is
seen that, for (), λY∣X = w.�is shows that τ′Y∣X =

√
τY∣X

should be used as an association measure rather than τY∣X .
In the case ofW in (), it is apparent thatW is only approx-
imately equal to w, but the approximation appears to be
su�ciently close for W to be a competitive association
measure.
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Introduction
�e term “astronomy” is best understood as short-hand
for “astronomy and astrophysics.” Astronomy is the obser-
vational study of matter beyond Earth: planets and other
bodies in the Solar System, stars in the Milky Way Galaxy,
galaxies in the Universe, and di�use matter between these

concentrations of mass. �e perspective is rooted in our
viewpoint on or near Earth, typically using telescopes or
robotic satellites. Astrophysics is the study of the intrinsic
nature of astronomical bodies and the processes by which
they interact and evolve.�is is an inferential intellectual
e�ort based on the well-con�rmed assumption that phys-
ical processes established to rule terrestrial phenomena
– gravity, thermodynamics, electromagnetism, quantum
mechanics, plasma physics, chemistry, and so forth – also
apply to distant cosmic phenomena.
Statistical techniques play an important role in analyz-

ing astronomical data and at the interface between astron-
omy and astrophysics. Astronomy encounters a huge range
of statistical problems: samples selected with truncation;
variables subject to censoring and heteroscedastic mea-
surement errors; parameter estimation of complex mod-
els derived from astrophysical theory; anisotropic spatial
clustering of galaxies; time series of periodic, stochastic,
and explosive phenomena; image processing of both gray-
scale and Poissonian images; 7data mining of terabyte-
petabyte datasets; and much more. �us, astrostatistics
is not focused on a narrow suite of methods, but rather
brings the insights frommany �elds of statistics to bear on
problems arising in astronomical research.

History
As the oldest observational science, astronomy was the
driver for statistical innovations over many centuries
(Stigler ; Hald ). Hipparchus, Ptolemy, al-Biruni,
andGalileoGalilei were among thosewho discussedmeth-
ods for averaging discrepant astronomical measurements.
�e least squares method (see 7Least Squares) and its
understanding in the context of the normal error distri-
bution were developed to address problems in Newto-
nian celestial mechanics during the early nineteenth cen-
tury by Pierre-Simon Laplace, Adrian Legendre, and Carl
Friedrich Gauss.�e links between astronomy and statis-
tics considerably weakened during the �rst decades of
the twentieth century as statistics turned its attention to
social and biological sciences while astronomy focused
on astrophysics. Maximum likelihood methods emerged
slowly starting in the s, and Bayesianmethods are now
gaining considerably popularity.
Modern astrostatistics has grown rapidly since the

s. Several cross-disciplinary research groups emerged
to develop advanced methods and critique common prac-
tices (http://hea-www.harvard.edu/AstroStat; http://www.
incagroup.org; http://astrostatistics.psu.edu).Monographs
were written on astrostatistics (Babu and Feigelson ),
galaxy clustering (Martinez and Saar ), image pro-
cessing (Starck and Murtagh ), Bayesian analysis

http://hea-www.harvard.edu/AstroStat
http://astrostatistics.psu.edu
http://www.incagroup.org
http://www.incagroup.org
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A(Gregory ), and Bayesian cosmology (Hobson et al.
). �e Statistical Challenges in Modern Astronomy
(Babu and Feigelson ) conferences bring astronomers
and statisticians together to discuss methodological issues.

�e astronomical community is devoting consider-
able resources to the construction and promulgation of
large archival datasets, o�en based on well-designed sur-
veys of large areas of the sky.�ese surveys can generate
petabytes of images, spectra and time series. Reduced data
products include tabular data with approximately ten vari-
ables measured for billions of astronomical objects. Major
projects include the SloanDigital Sky Survey, International
Virtual Observatory, and planned Large Synoptic Sur-
vey Telescope (http://www.sdss.org, http://www.ivoa.net,
http://www.lsst.org). Too large for traditional treatments,
these datasets are spawning increased interest in computa-
tionally e�cient data visualization, data mining, and sta-
tistical analysis. A nascent �eld of astroinformatics allied
to astrostatistics is emerging.

Topics in Contemporary Astrostatistics
Given the vast range of astrostatistics, only a small por-
tion of relevant issues can be outlined here. We outline
three topics of contemporary interest (�e astronomi-
cal research literature can be accessed online through
the SAO/NASA Astrophysics Data System, http://adsabs.
harvard.edu.).

Heteroscedastic Measurement Errors
Astronomical measurements at telescopes are made with
carefully designed and calibrated instruments, and “back-
ground” levels in dark areas of the sky are examined to
quantitatively determine the noise levels.�us, unlike in
social and biological science studies, heteroscedastic mea-
surement error are directly obtained for each astronomical
measurement.�is produces unusual data structures. For
example, a multivariate table of brightness of quasars in six
photometric bands will have  columns of numbers giving
the measured brightness and the associated measurement
error in each band.
Unfortunately, few statistical techniques are available

for this class of non-identically distributed data. Most
errors-in-variables methods are designed to treat situa-
tions where the heteroscedasticity is not measured, and
instead becomes part of the statistical model (Carroll
et al. ). Methods are needed for density estimation,
regression, multivariate analysis and classi�cation, spatial
processes, and time series analysis. Common estimation
procedures in the astronomical literature weight eachmea-
surement by its associated error. For instance, in a func-
tional regression model, the parameters θ̂ in model M

are estimated by minimizing the weighted sum of squared
residuals ∑i(Oi − Mi(θ̂)/σ i of the observed data Oi
where σ i are the known variances of the measurement
errors.
More sophisticated methods are being developed, but

have not yet entered into common usage. Kelly ()
treats structural regression as an extension of a nor-
mal mixture model, constructing a likelihood which can
either be maximized with the EM Algorithm or used in
7Bayes’ theorem.�e Bayesian approach is more power-
ful, as it also can simultaneous incorporate censoring and
truncation into the measurement error model. Delaigle
and Meister () describe a nonparametric kernel den-
sity estimator that takes into account the heteroscedastic
errors. More methods (e.g., for multivariate clustering and
time series modeling) are needed.

Censoring and Truncation
In the telescopic measurement of quasar brightnesses
outlined above, some targeted quasars may be too faint
to be seen above the background noise level in some
photometric bands.�ese nondetections lead to censored
data points.�e situation is similar in some ways to cen-
soring treated by standard survival analysis, but di�ers in
other ways: the data are le�-censored rather than right-
censored; censoring can occur in any variable, not just a
single response variable; and censoring levels are linked to
measurement error levels. Survival techniques have come
into common usage in astronomy since their introduc-
tion (Isobe et al. ).�ey treat some problems such as
density estimation (with the Kaplan-Meier product-limit
estimator), two-sample tests (with the Gehan, logrank and
Peto-Prentice tests), correlation (using a generalization of
Kendall’s τ), and linear regression (using the Buckley-
James line).
Consider a survey of quasars at a telescope with lim-

ited sensitivity where the quasar sample is not provided
in advance, but is derived from the photometric colors of
objects in the survey. Now quasars which are too faint for
detection are missing entirely from the dataset. Recovery
from this form of truncation is more di�cult than recov-
ery from censoring with a previously established sample.
A major advance was the derivation of the nonparamet-
ric estimator for a randomly truncated dataset, analo-
gous to the Kaplan-Meier estimator for censored data, by
astrophysicist Lynden-Bell (). �is solution was later
recovered by statistician Woodroofe (), and bivari-
ate extensions were developed by Efron and Petrosian
().

http://www.sdss.org
http://www.ivoa.net
http://www.lsst.org
http://adsabs.
harvard.edu.
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Periodicity Detection in Difficult Data
Stars exhibit a variety of periodic behaviors: binary star
or planetary orbits; stellar rotation; and stellar oscillations.
While Fourier analysis is o�en used to �nd and charac-
terize such periodicities, the data o�en present problems
such as non-sinusoidal repeating patterns, observations of
limited duration, and unevenly-spaced observations. Non-
sinusoidal periodicities occur in elliptical orbits, eclipses,
and rotational modulation of surface features. Unevenly-
spaced data arise from bad weather at the telescope, diur-
nal cycles for ground-based telescopes, Earth orbit cycles
for satellite observatories, and inadequate observing time
provided by telescope allocation committees.
Astronomers have developed a number of statis-

tics to locate periodicities under these conditions. �e
Lomb-Scargle periodogram (Scargle ) generalizes the
Schuster periodogram to treat unevenly-spaced data.
Stellingwerf () presents a widely used least-squared
technique where the data are folded modulo trial peri-
ods, grouped into phase bins, and intra-bin variance is
compared to inter-bin variance using χ. �e method
treats unevenly spaced data, measurement errors, and
non-sinusoidal shapes. Dworetsky () gives a simi-
lar method without binning suitable for sparse datasets.
Gregory and Loredo () develop a Bayesian approach
for locating non-sinusoidal periodic behaviors from Pois-
son distributed event data. Research is now concentrat-
ing on methods for computationally e�cient discovery of
planets orbiting stars as they eclipse a small fraction during
repeated transits across the stellar surface.�ese methods
involve matched �lters, Bayesian estimation, least-squares
box-�tting, maximum likelihood, 7analysis of variance,
and other approaches (e.g., Pontopappas et al. ).
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Consider a sequence of random variables Tn, whose
distribution depends on a parameter n that generally
represents sample size.�e sequence is said to be asymp-
totically normal if there exists a sequences µn and σn
such that limn→∞ P [(Tn − µn)/σn ≤ x] = Φ(x) for all
x, where Φ(x) is the standard Gaussian distribution
function

∫

x

−∞
exp(−y/)(π)−/ dy. ()

One o�en writes

Tn ∼ AN(µn, σ n) ()

to express asymptotic normality. Note that µn generally
depend on n, and furthermore may be data-dependent.
Furthermore, in some casesTnmight be a sequence of ran-
dom vectors; in this case, µn is a sequence of vectors, σ n is
a sequence of matrices, and Φ the vector valued counter-
part of (). In the scalar case, for �xed n, the quantity σn is
called the standard error of Tn.
Many frequentist statistical inferential procedures are

performed by constructing a Tn so that () holds under
a null hypothesis, with a dissimilar distribution under
interesting alternative hypotheses, and reporting

( −Φ(∣(Tn − µn)/σn∣)) ()

as a two-sided p-value; the application for one-sided
p-values is similar, and there are also Bayesian applica-
tions of a similar �avor. Ser�ing () provides further
information.
Consider the following examples of quantities that are

asymptotically normal:

● If Tn is the mean of n independent and identically dis-
tributed randomvariables, eachwith expectation µ and
standard deviation σ , then

Tn ∼ AN(µ, σ /n). ()

Furthermore, if sn is the traditional standard deviation
of the contributors the the mean,

Tn ∼ AN(µ, sn/n); ()

note that the standard error here is data-dependent,
and it is incorrect to call sn/

√
n a standard deviation of

Tn, even approximately. In the present case square root

of the second argument to the AN operator estimates
the standard deviation of Tn, but a further example
shows that even this need not be true. In this case, the
standard Z-test for a single sample mean follows from
using () when σ is known, and when the components
of Tn are binary, the standard standard Z-test for a sin-
gle sample mean follows from using () with σ  the
standard Bernoulli variance. When σ is unknown, ()
is o�en used instead, and for n ≤ , the t distribution
function is generally used in place ofΦ in () for greater
accuracy.

● Many rank-based statistics are asymptotically nor-
mal; for example, if Tn is the Wilcoxon signed-rank
statistic (see 7Wilcoxon-Signed-Rank Test) for testing
whether the expectation of n independent and identi-
cally distributed random variables takes on a particu-
lar null value, assuming symmetry and continuity of
the underlying distribution. Without loss of general-
ity, take this null mean to be zero.�en Tn is obtained
by ranking the absolute values of the observations, and
summing the ranks of those observations that are pos-
itive. Hettmansperger () notes that () holds with
µn = n(n + )/ and σn =

√
n(n + )(n + )/, and

the test against the two-sided alternative reports the
p-value (). In this case, Tn may be written as the sum
of independent but not identically-distributed random
variables, or as the sum of identically-distributed but
not independent random variables.

● Many parameter estimates resulting from �tting mod-
els with independent observations are asymptotically
normal. For example, consider independent Bernoulli
observations Yi with P [Yi = ] = exp(β + βxi)/( +
exp(β + βxi)). Let

ℓ(β) =
n

∑
i=

[Yiβ + xiYiβ − log( + exp(β + βxi))] ,

()
and let β̂ maximize ℓ; here β̂ implicitly depends on n.
�en

β̂ ∼ AN(β, [−ℓ′′(β)]
−
), ()

as one can see by heuristically expressing ℓ′(β) + ℓ′′

(β)(β̂ − β) ≈ ℓ′(β̂) = , and solving for β̂ to obtain
β̂ ≈ β − [ℓ′′(β)]−ℓ′(β), noting that ℓ′′(β) is non-
random, and noting that a variant of the Central Limit
�eorem proves the asymptotic normality of ℓ′(β),
and hence of β̂.�is heuristic argument is easily made
rigorous once one notes β̂ is consistent (i.e., for any
є > , limn→∞ P [∥β̂ − β∥ > є] = ; see Cox and
Hinkley ). In this example, the outcome Yi =  ∀i
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has positive probability, and for such {Y, . . . ,Yn}, β̂
is in�nite. A similar result holds for Yi =  ∀i. Hence
the variance of β̂ does not exist.
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Asymptotic Relative Efficiency of Two
Estimators
For statistical estimation problems, it is typical and even
desirable that several reasonable estimators can arise for
consideration. For example, themean andmedian parame-
ters of a symmetric distribution coincide, and so the sample

mean and the sample median become competing estima-
tors of the point of symmetry.Which is preferred? By what
criteria shall we make a choice?

One natural and time-honored approach is simply to
compare the sample sizes at which two competing estima-
tors meet a given standard of performance.�is depends
upon the chosen measure of performance and upon the
particular population distribution F.
To make the discussion of sample mean versus sam-

ple median more precise, consider a distribution function
F with density function f symmetric about an unknown
point θ to be estimated. For {X, . . . ,Xn} a sample from
F, put Xn = n−∑ni= Xi and Medn = median{X, . . . ,Xn}.
Each of Xn and Medn is a consistent estimator of θ in the
sense of convergence in probability to θ as the sample size
n → ∞. To choose between these estimators we need to
use further information about their performance. In this
regard, one key aspect is e�ciency, which answers: How
spread out about θ is the sampling distribution of the estima-

tor?�e smaller the variance in its sampling distribution,
the more “e�cient” is that estimator.
Here we consider “large-sample” sampling distribu-

tions. For Xn, the classical central limit theorem (see
7Central Limit �eorems) tells us: if F has �nite vari-
ance σ F , then the sampling distribution of Xn is approxi-
matelyN (θ, σ F/n), i.e., Normal withmean θ and variance
σ F/n. For Medn, a similar classical result (Ser�ing )
tells us: if the density f is continuous and positive at θ,
then the sampling distribution of Medn is approximately
N(θ, /[f (θ)]n). On this basis, we consider Xn and
Medn to perform equivalently at respective sample sizes n
and n if

σ F
n

=


[f (θ)]n
.

Keeping inmind that these sampling distributions are only
approximations assuming that n and n are “large,” we
de�ne the asymptotic relative e�ciency (ARE) of Med to X
as the large-sample limit of the ratio n/n, i.e.,

ARE (Med,X,F) = [f (θ)]

σ

F . ()

Definition in the General Case
For any parameter η of a distribution F, and for esti-
mators η̂() and η̂() approximately N(η,V(F)/n) and
N(η,V(F)/n), respectively, the ARE of η̂() to η̂() is
given by

ARE (η̂
(), η̂(),F) =

V(F)

V(F)
. ()

Interpretation. If η̂() is used with a sample of size n, the
number of observations needed for η̂() to perform equiv-
alently is ARE(η̂(), η̂(),F) × n.
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AExtension to the case of multidimensional parameter. For a
parameter η taking values in Rk, and two estimators η̂(i)

which are k-variate Normal with mean η and nonsingular
covariance matrices Σi(F)/n, i = , , we use [see Ser�ing
()]

ARE (η̂
(), η̂(),F) = (

∣Σ(F)∣

∣Σ(F)∣
)

/k

, ()

the ratio of generalized variances (determinants of the
covariance matrices), raised to the power /k.

Connection with the Maximum Likelihood
Estimator
Let F have density f (x ∣ η) parameterized by η ∈ R and
satisfying some di�erentiability conditions with respect to

η. Suppose also that I(F) = Eη {[
∂
∂η
log f (x ∣ η)]


} (the

Fisher information) is positive and �nite.�en (Lehmann
and Casella ) it follows that (a) the maximum likeli-
hood estimator η̂ (ML) of η is approximately N(η, /I(F)n),
and (b) for a wide class of estimators η̂ that are approx-
imately N(η,V(η̂,F)/n), a lower bound to V(η̂,F) is
/I(F). In this situation, () yields

ARE (η̂, η̂
(ML),F) =


I(F)V(η̂,F)

≤ , ()

making η̂ (ML) (asymptotically) the most e�cient among
the given class of estimators η̂. We note, however, as will
be discussed later, that () does not necessarily make η̂(ML)

the estimator of choice, when certain other considerations
are taken into account.

Detailed Discussion of Estimation of
Point of Symmetry
Let us now discuss in detail the example treated above,
with F a distribution with density f symmetric about an
unknown point θ and {X, . . . ,Xn} a sample from F. For
estimation of θ, we will consider not onlyXn andMedn but
also a third important estimator.

Mean versus Median
Let us now formally compareXn andMedn and see how the
ARE di�ers with choice of F. Using () with F = N (θ, σ F),
it is seen that

ARE (Med,X,N (θ, σ F)) = /π = ..

�us, for sampling from aNormal distribution, the sample
mean performs as e�ciently as the sample median using
only % as many observations. (Since θ and σF are loca-
tion and scale parameters of F, and since the estimators

Xn andMedn are location and scale equivariant, their ARE
does not depend upon these parameters.)�e superiority
of Xn here is no surprise since it is the MLE of θ in the
model N (θ, σ F).
As noted above, asymptotic relative e�ciencies pertain

to large sample comparisons and need not reliably indicate
small sample performance. In particular, for F Normal, the
exact relative e�ciency of Med to X for sample size n = 
is a very high %, although this decreases quickly, to %
for n = , to % for n = , and to % in the limit.
For sampling from a double exponential (or Laplace)

distribution with density f (x) = λe−λ∣x−θ ∣
/, −∞ < x <∞

(and thus variance /λ), the above result favoringXn over
Medn is reversed: () yields

ARE (Med,X, Laplace) = ,

so that the sample mean requires % as many observa-
tions to perform equivalently to the samplemedian. Again,
this is no surprise because for this model the MLE of θ is
Medn.

A Compromise: The Hodges–Lehmann
Location Estimator
We see from the above that the ARE depends dramatically
upon the shape of the density f and thus must be used cau-
tiously as a benchmark. For Normal versus Laplace, Xn is
either greatly superior or greatly inferior to Medn.�is is a
rather unsatisfactory situation, since in practice we might
not be quite sure whether F is Normal or Laplace or some
other type. A very interesting solution to this dilemma
is given by an estimator that has excellent overall perfor-
mance, the so-called Hodges–Lehmann location estimator
(Hodges and Lehmann ; see 7Hodges-Lehmann Esti-
mators):

HLn =Median{
Xi + Xj


} ,

the median of all pairwise averages of the sample
observations. (Some authors include the cases i = j,
some not.) We have (Lehmann a) that HLn is
asymptoticallyN(θ, /[∫ f


(x)dx]n), which yields that

ARE (HL,X,N (θ, σ F)) = /π = . and ARE(HL,X,
Laplace) = .. Also, for the 7Logistic distribution with
density f (x) = σ−e(x−θ)/σ

/[ + e(x−θ)/σ
]
, −∞ < x <

∞, for which HLn is the MLE of θ and thus opti-
mal, we have ARE(HL,X, Logistic) = π/ = . [see
Lehmann (b)]. Further, for F the class of all distri-
butions symmetric about θ and having �nite variance, we
have infF ARE(HL,X,F) = / = . [see Lehmann
(a)].�e estimator HLn is highly competitive with X
at Normal distributions, can be in�nitely more e�cient at
some other symmetric distributions F, and is never much
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less e�cient at any distribution F in F .�e computation
of HLn appears at �rst glance to require O(n) steps, but a
much more e�cient O(n logn) algorithm is available [see
Monohan ()].

Efficiency versus Robustness Trade-Off
Although the asymptotically most e�cient estimator is
given by the MLE, the particular MLE depends upon the
shape of F and can be drastically ine�cient when the actual
F departs even a little bit from the nominal F. For example,
if the assumed F isN(µ, ) but the actual model di�ers by a
small amount ε of “contamination,” i.e., F = (−ε)N(µ, )+
εN(µ, σ ), then

ARE(Med,X,F) =

π
( − ε + εσ

−
)

( − ε + εσ


) ,

which equals /π in the “ideal” case ε =  but otherwise→
∞ as σ →∞. A small perturbation of the assumed model
thus can destroy the superiority of the MLE.
One way around this issue is to take a nonparamet-

ric approach and seek an estimator with ARE satisfying a
favorable lower bound. Above we saw how the estimator
HLn meets this need.
Another criterion by which to evaluate and com-

pare estimators is robustness. Here let us use �nite-sample
breakdown point (BP): the minimal fraction of sample
points which may be taken to a limit L (e.g., ±∞) with-
out the estimator also being taken to L. A robust estima-
tor remains stable and e�ective when in fact the sample
is only partly from the nominal distribution F and con-
tains some non-F observations which might be relatively
extreme contaminants.
A single observation taken to ∞ (with n �xed) takes

Xn with it, so Xn has BP = . Its optimality at Normal
distributions comes at the price of a complete sacri�ce of
robustness. In comparison, Medn has extremely favorable
BP = . but at the price of a considerable loss of e�ciency
at Normal models.
On the other hand, the estimator HLn appeals broadly,

possessing both quite high ARE over a wide class of F and
relatively high BP =  − −/ = ..
As another example, consider the problem of estima-

tion of scale. Two classical scale estimators are the sample
standard deviation sn and the sample MAD (median abso-
lute deviation about the median) MADn. �ey estimate
scale in di�erent ways but can be regarded as competi-
tors in the problem of estimation of σ in the model F =
N(µ, σ ), as follows. With both µ and σ unknown, the
estimator sn is (essentially) the MLE of σ and is asymp-
totically most e�cient. Also, for this F, the population
MAD is equal to Φ−(/)σ , so that the estimator σ̂n =

MADn/Φ−(/) = .MADn competes with sn for
estimation of σ . (Here Φ denotes the standard normal dis-
tribution function, and, for any F, F−(p) denotes the pth
quantile, inf{x : F(x) ≥ p}, for  < p < .) To compare
with respect to robustness, we note that a single observa-
tion taken to∞ (with n �xed) takes sn with it, sn has BP =
. On the other hand, MADn and thus σ̂n have BP = .,
like Medn. However, ARE(σ̂n, sn,N(µ, σ )) = ., even
worse than the ARE of Medn relative to X. Clearly desired
is amore balanced trade-o� between e�ciency and robust-
ness than provided by either of sn and σ̂n. Alternative scale
estimators having the same . BP as σ̂n but much higher
ARE of . relative to sn are developed in Rousseeuw and
Croux (). Also, further competitors o�ering a range of
trade-o�s given by (BP, ARE) = (., .) or (., .)
or (., .), for example, are developed in Ser�ing
().
In general, e�ciency and robustness trade o� against

each other.�us ARE should be considered in conjunction
with robustness, choosing the balance appropriate to
the particular application context. �is theme is promi-
nent in the many examples treated in Staudte and
Sheather ().

A Few Additional Aspects of ARE
Connections with Confidence Intervals
In view of the asymptotic normal distribution underlying
the above formulation of ARE in estimation, we may also
characterize the ARE given by () as the limiting ratio of
sample sizes at which the lengths of associated con�dence
intervals at approximate level ( − α)%,

η̂
(i)

± Φ− ( −
α


)

√
Vi(F)

ni
, i = , ,

converge to  at the same rate, when holding �xed the
coverage probability  − α. (In practice, of course, con-
sistent estimates of Vi(F), i = , , are used in forming
the CI.)

Fixed Width Confidence Intervals and ARE
One may alternatively consider con�dence intervals of
�xed length, in which case (under typical conditions) the
noncoverage probability depends on n and tends to  at an
exponential rate, i.e., n− log αn → c > , as n → ∞. For
�xed width con�dence intervals of the form

η̂
(i)

± d σF , i = , ,

we thus de�ne the �xed width asymptotic relative e�ciency
(FWARE) of two estimators as the limiting ratio of sample
sizes at which the respective noncoverage probabilities α

(i)
n ,

i = , , of the associated �xed width con�dence intervals
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Aconverge to zero at the same exponential rate. In particular,
for Med versus X, and letting η =  and σF =  without loss
of generality, we obtain (Ser�ing and Wackerly )

FWARE(Med,X,F) =
logm(−d)

log[(F(d) − F(d))/]
, ()

wherem(−d) is a certain parameter of the 7moment gen-
erating function of F.�e FWARE is derived using large
deviation theory instead of the central limit theorem. As
d → , the FWARE converges to the ARE. Indeed, for F
a Normal distribution, this convergence (to /π = .) is
quite rapid: the expression in () rounds to . for d = ,
to . for d = , and to . for d ≤ ..

Confidence Ellipsoids and ARE
For an estimator η̂ which is asymptotically k-variate Nor-
mal with mean η and covariance matrix Σ/n, as the sam-
ple size n → ∞, we may form (see Ser�ing ) an
associated ellipsoidal con�dence region of approximate level

( − α)% for the parameter η,

En,α = {η : n (η̂ − η)
′
Σ
−
(η̂ − η) ≤ cα},

with P (χk > cα) = α and in practice using a consistent
estimate of Σ.�e volume of the region En,α is

πk/(cα/n)
k/

∣Σ∣/

Γ((k + )/)
.

�erefore, for two such estimators η̂(i), i = , , the ARE
given by () may be characterized as the limiting ratio of
sample sizes at which the volumes of associated ellipsoidal
con�dence regions at approximate level ( − α)% con-
verge to  at the same rate, when holding �xed the coverage
probability  − α.
Under regularity conditions on the model, the maxi-

mum likelihood estimator η̂(ML) has a con�dence ellipsoid
En,α attaining the smallest possible volume and, moreover,
lying wholly within that for any other estimator η̂.

Connections with Testing
Parallel to ARE in estimation as developed here is the
notion of Pitman ARE for comparison of two hypothesis
test procedures. Based on a di�erent formulation, although
the central limit theorem is used in common, the Pitman
ARE agrees with () when the estimator and the hypothe-
sis test statistic are linked, as for example X paired with the
t-test, or Medn paired with the 7sign test, or HLn paired
with the 7Wilcoxon-signed-rank test. See Lehmann b,
Nikitin , Nikitin , and Ser�ing .

Other Notions of ARE
As illustrated above with FWARE, several other important
approaches to ARE have been developed, typically using
either moderate or large deviation theory. For example,
instead of asymptotic variance parameters as the criterion,
one may compare probability concentrations of the esti-
mators in an ε-neighborhood of the target parameter η:
P (∣η̂(i)

− η∣ > ε), i = , . When we have

logP(∣η̂(i)
n − η∣ > ε)

n
→ γ

(i)
(ε, η), i = , ,

as is typical, then the ratio of sample sizes n/n at which
these concentration probabilities converge to  at the same
rate is given by γ()

(ε, η)/γ()
(ε, η), which then represents

another ARE measure for the e�ciency of estimator η̂
()
n

relative to η̂
()
n . See Ser�ing (, ..) for discussion

andBasu () for illustration that the variance-based and
concentration-based measures need not agree on which
estimator is better. For general treatments, see Nikitin
(), Puhalskii and Spokoiny (), Nikitin (), and
Ser�ing (, Chap. ), as well as the other references
cited below. A comprehensive bibliography is beyond the
present scope. However, very productive is ad hoc explo-
ration of the literature using a modern search engine.
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Asymptotic Relative Efficiency of Two
Tests
Making a substantiated choice of the most e�cient statis-
tical test of several ones being at the disposal of the statis-
tician is regarded as one of the basic problems of Statistics.
�is problem became especially important in the middle
of XX century when appeared computationally simple but
“ine�cient” rank tests.
Asymptotic relative e�ciency (ARE) is a notion which

enables to implement in large samples the quantitative
comparison of two di�erent tests used for testing of the
same statistical hypothesis.�e notion of the asymptotic

e�ciency of tests is more complicated than that of asymp-
totic e�ciency of estimates. Various approaches to this
notion were identi�ed only in late forties and early ��ies,
hence, – years later than in the estimation theory. We
proceed now to their description.
Let {Tn} and {Vn} be two sequences of statistics

based on n observations and assigned for testing the null-
hypothesis H against the alternative A. We assume that
the alternative is characterized by real parameter θ and
for θ = θ turns into H. Denote by NT(α, β, θ) the sam-
ple size necessary for the sequence {Tn} in order to attain
the power β under the level α and the alternative value
of parameter θ.�e number NV(α, β, θ) is de�ned in the
same way.
It is natural to prefer the sequence with smaller N.

�erefore the relative e�ciency of the sequence {Tn}with
respect to the sequence {Vn} is speci�ed as the quantity

eT ,V(α, β, θ) = NV(α, β, θ)/NT(α, β, θ) ,

so that it is the reciprocal ratio of sample sizes NT and NV .
�e merits of the relative e�ciency as means for

comparing the tests are universally acknowledged. Unfor-
tunately it is extremely di�cult to explicitly compute
NT(α, β, θ) even for the simplest sequences of statistics
{Tn}. At present it is recognized that there is a possi-
bility to avoid this di�culty by calculating the limiting
values eT ,V(α, β, θ) as θ → θ, as α →  and as
β →  keeping two other parameters �xed. �ese lim-
iting values ePT ,V , e

B
T ,V and e

HL
T ,V are called respectively

the Pitman, Bahadur and Hodges–Lehmann asymptotic
relative e�ciency (ARE), they were proposed correspond-
ingly in Pitman (), Bahadur () and Hodges and
Lehmann ().
Only close alternatives, high powers and small levels

are of the most interest from the practical point of view. It
keeps one assured that the knowledge of these ARE types
will facilitate comparing concurrent tests, thus producing
well-founded application recommendations.

�e calculation of the mentioned three basic types
of e�ciency is not easy, see the description of theory
and many examples in Ser�ing (), Nikitin ()
and Van der Vaart (). We only mention here, that
Pitman e�ciency is based on the central limit theorem
(see 7Central Limit�eorems) for test statistics. On the
contrary, Bahadur e�ciency requires the large deviation
asymptotics of test statistics under the null-hypothesis,
while Hodges–Lehmann e�ciency is connected with large
deviation asymptotics under the alternative. Each type of
e�ciency has its own merits and drawbacks.
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APitman Efficiency
Pitman e�ciency is the classical notion usedmost o�en for
the asymptotic comparison of various tests. Under some
regularity conditions assuming 7asymptotic normality of
test statistics underH andA, it is a number which has been
gradually calculated for numerous pairs of tests.
We quote now as an example one of the �rst Pitman’s

results that stimulated the development of nonparametric
statistics. Consider the two-sample problem when under
the null-hypothesis both samples have the same continu-
ous distribution and under the alternative di�er only in
location. Let e PW , t be the Pitman ARE of the two-sample
Wilcoxon rank sum test (see 7Wilcoxon–Mann–Whitney
Test) with respect to the corresponding Student test (see
7Student’s t-Tests). Pitman proved that for Gaussian sam-
ples e PW , t = /π ≈ . , and it shows that the ARE of
the Wilcoxon test in the comparison with the Student test
(being optimal in this problem) is unexpectedly high. Later
Hodges and Lehmann () proved that

. ≤ ePW , t ≤ +∞ ,

if one rejects the assumption of normality and, moreover,
the lower bound is attained at the density

f (x) =

⎧⎪⎪
⎨
⎪⎪⎩

 ( − x)/ (
√
) if ∣x∣ ≤

√
,

 otherwise.

Hence the Wilcoxon rank test can be in�nitely better
than the parametric test of Student but their ARE never
falls below .. See analogous results in Ser�ing ()
where the calculation of ARE of related estimators is
discussed.
Another example is the comparison of independence

tests based on Spearman and Pearson correlation coef-
�cients in bivariate normal samples. �en the value of
Pitman e�ciency is /π ≈ ..
In numerical comparisons, the Pitman e�ciency

appear to be more relevant for moderate sample sizes than
other e�ciencies Groeneboom and Oosterho� (). On
the other hand, Pitman ARE can be insu�cient for the
comparison of tests. Suppose, for instance, that we have
a normally distributed sample with the mean θ and vari-
ance  and we are testing H : θ =  against A : θ > . Let
compare two signi�cance tests based on the sample mean
X̄ and the Student ratio t. As the t-test does not use the
information on the known variance, it should be inferior
to the optimal test using the sample mean. However, from
the point of view of Pitman e�ciency, these two tests are
equivalent. On the contrary, Bahadur e�ciency eBt,X̄(θ) is
strictly less than  for any θ > .

If the condition of asymptotic normality fails, consid-
erable di�culties arise when calculating the Pitman ARE
as the latter may not at all exist or may depend on α

and β. Usually one considers limiting Pitman ARE as
α → . Wieand () has established the correspondence
between this kind of ARE and the limiting approximate
Bahadur e�ciency which is easy to calculate.

Bahadur Efficiency
�e Bahadur approach proposed in Bahadur (; )
to measuring the ARE prescribes one to �x the power
of tests and to compare the exponential rate of decrease
of their sizes for the increasing number of observa-
tions and �xed alternative. �is exponential rate for a
sequence of statistics {Tn} is usually proportional to some
non-random function cT(θ) depending on the alternative
parameter θ which is called the exact slope of the sequence
{Tn}. �e Bahadur ARE e BV ,T(θ) of two sequences
of statistics {Vn} and {Tn} is de�ned by means of the
formula

e
B
V ,T(θ) = cV(θ) / cT(θ).

It is known that for the calculation of exact slopes it is nec-
essary to determine the large deviation asymptotics of a
sequence {Tn} under the null-hypothesis. �is problem
is always nontrivial, and the calculation of Bahadur e�-
ciency heavily depends on advancements in large deviation
theory, see Dembo and Zeitouni () and Deuschel and
Stroock ().
It is important to note that there exists an upper bound

for exact slopes
cT(θ) ≤ K(θ)

in terms of Kullback–Leibler information number K(θ)

which measures the “statistical distance” between the
alternative and the null-hypothesis. It is sometimes com-
pared in the literature with the7Cramér–Rao inequality in
the estimation theory.�erefore the absolute (nonrelative)
Bahadur e�ciency of the sequence {Tn} can be de�ned as
eBT(θ) = cT(θ)/K(θ).
It is proved that under some regularity conditions

the likelihood ratio statistic is asymptotically optimal in
Bahadur sense (Bahadur ; Van der Vaart , Sect.
.; Arcones ).
O�en the exact Bahadur ARE is uncomputable for any

alternative θ but it is possible to calculate the limit of
Bahadur ARE as θ approaches the null-hypothesis.�en
one speaks about the local Bahadur e�ciency.

�e indisputable merit of Bahadur e�ciency consists
in that it can be calculated for statistics with non-normal
asymptotic distribution such as Kolmogorov-Smirnov,
omega-square, Watson and many other statistics.
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Asymptotic Relative Efficiency in Testing. Table  Some
local Bahadur efficiencies

Statistic Distribution

Gauss Logistic Laplace
Hyperbolic
cosine Cauchy Gumbel

Dn . .  . . .

ω
n . . .  . .

Consider, for instance, the sample with the distribution
function (df) F and suppose we are testing the goodness-
of-�t hypothesis H : F = F for some known continu-
ous df F against the alternative of location. Well-known
distribution-free statistics for this hypothesis are the Kol-
mogorov statistic Dn and omega-square statistic ωn. �e
following table presents their local absolute e�ciency in
case of six standard underlying distributions:
We see from Table  that the integral statistic ωn is in

most cases preferable with respect to the supremum-type
statistic Dn. However, in the case of Laplace distribution
the Kolmogorov statistic is locally optimal, the same hap-
pens for the Cramér-von Mises statistic in the case of
hyperbolic cosine distribution. �is observation can be
explained in the framework of Bahadur local optimality,
see Nikitin ( Chap. ).
See also Nikitin () for the calculation of local

Bahadur e�ciencies in case of many other statistics.

Hodges–Lehmann efficiency
�is type of the ARE proposed in Hodges and Lehmann
() is in the conformity with the classical Neyman-
Pearson approach. In contrast with Bahadur e�ciency, let
us �x the level of tests and let compare the exponential rate
of decrease of their second-kind errors for the increasing
number of observations and �xed alternative.�is expo-
nential rate for a sequence of statistics {Tn} is measured
by some non-random function dT(θ) which is called the
Hodges–Lehmann index of the sequence {Tn}. For two
such sequences the Hodges–Lehmann ARE is equal to the
ratio of corresponding indices.

�e computation of Hodges–Lehmann indices is di�-
cult as requires large deviation asymptotics of test statistics
under the alternative.

�ere exists an upper bound for the Hodges–Lehmann
indices analogous to the upper bound for Bahadur exact
slopes. As in the Bahadur theory the sequence of statistics
{Tn} is said to be asymptotically optimal in the Hodges–
Lehmann sense if this upper bound is attained.

�e drawback of Hodges–Lehmann e�ciency is that
most two-sided tests like Kolmogorov and Cramér-von
Mises tests are asymptotically optimal, and hence this kind

of e�ciency cannot discriminate between them. On the
other hand, under some regularity conditions the one-
sided tests like linear rank tests can be compared on the
basis of their indices, and their Hodges–Lehmann e�-
ciency coincides locally with Bahadur e�ciency, see details
in Nikitin ().
Coupled with three “basic” approaches to the ARE cal-

culation described above, intermediate approaches are also
possible if the transition to the limit occurs simultane-
ously for two parameters at a controlledway.�us emerged
the Cherno� ARE introduced by Cherno� (), see also
Kallenberg (); the intermediate, or the Kallenberg
ARE introduced by Kallenberg (), and the Borovkov–
Mogulskii ARE, proposed in Borovkov and Mogulskii
().
Large deviation approach to asymptotic e�ciency of

tests was applied in recent years to more general prob-
lems. For instance, the change-point, “signal plus white
noise” and regression problems were treated in Puhalskii
and Spokoiny (), the tests for spectral density of a sta-
tionary process were discussed in Kakizawa (), while
Taniguchi () deals with the time series problems, and
Otsu () studies the empirical likelihood for testing
moment condition models.
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Higher order asymptotic deals with two sorts of closely
related things. First, there are questions of approxima-
tion. One is concerned with expansions or inequalities
for a distribution function. Second, there are inferential
issues. �ese involve, among other things, the applica-
tion of the ideas of the study of higher order e�ciency,
admissibility and minimaxity. In the matter of expansions,
it is as important to have usable, explicit formulas as a rig-
orous proof that the expansions are valid in the sense of

truly approximating a target quantity up to the claimed
degree of accuracy.
Classical asymptotics is based on the notion of asymp-

totic distribution, o�en derived from the central limit
theorem (see 7Central Limit�eorems), and usually the
approximations are correct up to O(n−/), where n is
the sample size. Higher order asymptotics provides re�ne-
ments based on asymptotic expansions of the distribution
or density function of an estimator of a parameter.�ey are
rooted in the Edgeworth theory, which is itself a re�nement
of the central limit theorem. �e theory of higher order
asymptotic is very much related with the corresponding
to Approximations to distributions treated as well in this
Encyclopedia.
When higher order asymptotic is correct up to

o(n−/), it is second order asymptotic. When further
terms are picked up, so that the asymptotic is correct up
to o(n−), it is third order asymptotic. In his pioneer-
ing papers, C. R. Rao coined the term second order e�-
ciency for a concept that would now is called third order
e�ciency. �e new terminology is essentially owing to
Pfanzagl and Takeuchi.
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Autocorrelation in Regression
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Linear regressions are a useful empirical tool for economists
and social scientists and the standard 7least squares esti-
mates are popular because they are the best linear unbiased
estimators (BLUE) under some albeit strict assumptions.
�ese assumptions require the regression disturbances not
to be correlated with the regressors, also homoskedastic,
i.e., with constant variance, and not autocorrelated. Viola-
tion of the no autocorrelation assumption on the distur-
bances, will lead to ine�ciency of the least squares esti-
mates, i.e., no longer having the smallest variance among
all linear unbiased estimators. It also leads to wrong stan-
dard errors for the regression coe�cient estimates.�is in
turn leads to wrong t-statistics on the signi�cance of these
regression coe�cients and misleading statistical inference
based on a wrong estimate of the variance–covariance
matrix computed under the assumption of no autocor-
relation. �is is why standard regression packages have
a robust heteroskedasticity and autocorrelation-consistent
covariance matrix (HAC) option for these regressions
which at least robusti�es the standard errors of least
squares and shows how sensitive they would be to such
violations, see Newey and West ().
Autocorrelation is more likely to occur in time-series

than in cross-section studies. Consider estimating the con-
sumption function of a random sample of households.
An unexpected event, like a visit of family members will
increase the consumption of this household. However, this
positive disturbance need not be correlated with the dis-
turbances a�ecting consumption of other randomly drawn
households. However, if we were estimating this consump-
tion function using aggregate time-series data for the U.S.,
then it is very likely that a recession year a�ecting con-
sumption negatively that year, may have a carry over e�ect
to the next few years. A shock to the economy like an oil

embargo in  is likely to a�ect the economy for several
years. A labor strike this year may a�ect production for
the next few years.�e simplest work horse for illustrating
this autocorrelation in time series on the regression dis-
turbances, say ut is the �rst-order autoregressive process
denoted by AR():

ut = ρut− + єt t = , , . . . ,T

where єt is independent and identically distributed with
mean  and variance σ є . It is autoregressive because ut
is related to its lagged value ut−. One can show, see for
example Baltagi (), that the correlation coe�cient
between ut and ut− is ρ. Also, that the correlation coef-
�cient between ut and ut−r is ρr . When ρ = , there is
no autocorrelation and one test for this null hypothesis is
the Durbin and Watson () test discussed as a separate
entry in this encyclopedia by Krämer.�is AR() process
is also stationary as long as ∣ ρ ∣< . If ρ = , then this
process has a unit root and it is called a 7random walk.
See the entry by Dickey on testing for this unit root using
the 7Dickey-Fuller tests. Note that if the process is sta-
tionary, then ρ is a fraction and the correlation for two
disturbances r periods apart is ρr , i.e., a fraction raised to
an integer power.�is means that the correlation is decay-
ing between the disturbances the further apart they are.
�is is reasonable in economics andmay be the reasonwhy
this AR() form is so popular. One should note that this
is not the only form that would correlate the disturbances
across time. Other forms like the Moving Average (MA)
process, and higher order Autoregressive Moving Average
(ARMA)processes are popular, see Box and Jenkins (),
but these are beyond the scope of this entry.
Since least squares is no longer BLUE under autocor-

relation of the disturbances, Cochrane and Orcutt ()
suggested a simple estimator that corrects for autocor-
relation of the AR() type. �is method starts with an
initial estimate of ρ, the most convenient is , and mini-
mizes the residual sum of squares of the regression.�is
gives us the least squares estimates of the regression coe�-
cients and the corresponding least squares residuals which
we denote by et . In the next step, one regresses et on
et− to get an estimate of ρ, say ρ̂. �e second step of
the Cochrane–Orcutt procedure (SCO) is to perform the
regression of (Yt − ρ̂Yt−) on (Xt − ρ̂Xt−) to get estimates
of the regression coe�cients. One can iterate this proce-
dure (ITCO) until convergence. Both the SCO and the
ITCO are asymptotically e�cient as the sample size gets
large.�e argument for iterating must be justi�ed in terms
of small sample gains. Other methods of correcting for
serial correlation includePrais andWinsten (),Durbin
(), as well asmaximum likelihoodmethods, all studied
more extensively inChap.  of Baltagi ().�e Prais and
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AWinsten method recaptures the initial observation lost in
the Cochrane–Orcutt method. Monte Carlo studies using
an autoregressive regressor, and various values of ρ, found
that least squares is still a viable estimator as long as ∣ρ∣ <
., but if ∣ρ∣ > ., then it pays to perform procedures that
correct for serial correlation based on an estimator of ρ.
For trended regressors, which is usually the case with eco-
nomic data, least squares outperforms SCO, but not the
Prais-Winsten procedure that recaptures the initial obser-
vation. In fact, Park and Mitchell () who performed
an extensive Monte Carlo using trended and untrended
regressors recommend that one should not use regressions
based on (T − ) observations as in the Cochrane and
Orcutt procedure.�ey also found that test of hypotheses
regarding the regression coe�cients performed miserably
for all estimators based on an estimator of ρ.
Correcting for serial correlation is not without its crit-

ics. Mizon () argues this point forcefully in his arti-
cle entitled “A simple message for autocorrelation correc-
tors: Don’t.” �e main point being that serial correla-
tion is a symptom of dynamic misspeci�cation which is
better represented using a general unrestricted dynamic
speci�cation.
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Ingredients of Probability Spaces
De�nition  A collection F of subsets of a set Ω is called
a ring on Ω if it satis�es the following conditions:

. A,B ∈ F ⇒ A ∪ B ∈ F ,
. A,B ∈ F ⇒ A ∖ B ∈ F .

A ring F is called an algebra if Ω ∈ F .
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De�nition  A ringF on Ω is called a σ-ring if it satis�es
the following additional condition:

. For every countable family (An)n∈N of subsets of F :
⋃n∈N An ∈ F .

A σ-ringF on Ω is called a σ-algebra (or σ-�eld) if Ω ∈ F .

Proposition  �e following properties hold:

. If F is a σ-algebra of subsets of a set Ω, then it is an
algebra.

. If F is a σ-algebra of subsets of Ω, then
● For any countable family (En)n∈N∖{} of elements
of F :⋂∞n= En ∈ F ,

● For any �nite family (Ei)≤i≤n of elements of F :
⋂
n
i= Ei ∈ F ,

● B ∈ F ⇒ Ω ∖ B ∈ F .

De�nition  Every pair (Ω,F) consisting of a set Ω and
a σ-ring F of subsets of Ω is a measurable space. Further-
more, ifF is a σ-algebra, then (Ω,F) is ameasurable space
on which a probability measure can be built.

Example 

. Generated σ-algebra. IfA is a family of subsets of a set
Ω, then there exists the smallest σ-algebra of subsets
of Ω that contains A.�is is the σ-algebra generated
by A, denoted by σ(A). If, now, G is the set of all
σ-algebras of subsets of Ω containingA, then it is not
empty because it has the set P(Ω) of all subsets of Ω,
among its elements, so that σ(A) = ⋂C∈G C.

. Borel σ-algebra. Let Ω be a topological space. �en
the Borel σ-algebra on Ω, denoted by BΩ , is the
σ-algebra generated by the set of all open subsets of Ω.
Its elements are called Borel sets.

. Product σ-algebra. Let (Ωi,Fi)≤i≤n be a family ofmea-
surable spaces, with allFi,  ≤ i ≤ n, σ-algebras, and let
Ω =∏

n
i= Ωi. De�ning

R={E ⊂ Ω∣∀i = , . . . ,n ∃Ei ∈ Fi such that E=
n

∏
i=
Ei},

the σ-algebra onΩ generated byR is called the product
σ-algebra of the σ-algebras (Fi)≤i≤n.

Proposition  Let (Ωi)≤i≤n be a family of topological
spaces with a countable base and letΩ =∏

n
i= Ωi.�en the

Borel σ-algebra BΩ is identical to the product σ-algebra of
the family of Borel σ-algebras (BΩi)≤i≤n.

Axioms of Probability
Weassume that the reader is already familiar with the basic
motivations and notions of probability theory. We present

the axioms of probability according to the Kolmogorov
approach [see Kolmogorov ()].

De�nition  Given a set Ω, and a σ-algebra F of subsets
of Ω, a probability measure on F is any function P : F →
[, ] such that

P. P(Ω) = ,
P. for any countable family A, . . . ,An, . . . of elements of
F such that Ai ∩ Aj = /, whenever i ≠ j:

P(⋃
n

An) =∑
n

P(An).

De�nition  A probability space is an ordered triple
(Ω,F ,P), whereΩ is a set,F is a σ-algebra of subsets ofΩ,
and P : F → [, ] is a probability measure on F .�e set
Ω is called the sample space, the elements of F are called
events.

De�nition  A probability space (Ω,F ,P) is �nite if Ω
has �nitely many elements.

Remark  If Ω is at most countable, then it is usual to
assume that F = P(Ω), the σ-algebra of all subsets of Ω.
In this case all sets {ω} reduced to sample points ω ∈ Ω

are events; they are called elementary events.
Remark  If the σ−algebra of events F is �nite, then the
requirement of countable additivity in the de�nition of the
probability measure P can be reduced to �nite additivity.
Remark  It is worth mentioning that an important alter-
native approach to probability theory is the so called sub-
jective probability; this approach does not insist on Axiom
P., and rather uses the �nite version of it (De Finetti
–).

De�nition  A�nite probability space (Ω,F ,P)withF =

P(Ω) is an equiprobable or uniform space, if

∀ω ∈ Ω : P({ω}) = k (constant);

i.e., its elementary events are equiprobable.

Remark  Following the axioms of a probability space and
the de�nition of a uniform space, if (Ω,F ,P) is equiprob-
able, then

∀ω ∈ Ω : P({ω}) =


∣Ω∣
,

where ∣⋅∣ denotes the cardinal number of elementary events
in Ω, and

∀A ∈ F ≡ P(Ω) : P(A) =
∣A∣

∣Ω∣
.

Intuitively, in this case we may say that P(A) is the ratio of
the number of favorable outcomes, divided by the number
of all possible outcomes.
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AExample  Consider an urn that contains  balls, of
which  are red and  are black but that are otherwise
identical, from which a player draws a ball. De�ne the
event

R:�e �rst drawn ball is red.

�en
P(R) =

∣R∣

∣Ω∣
=



= ..

De�nition  We shall call any event F ∈ F such that
P(F) = , a null event.

Elementary consequences of the above de�nitions are
the following ones.

Proposition  Let (Ω,F ,P) be is a probability space.

. P(Ac) =  − P(A), for any A ∈ F ;
. P(/) = ;
. If A,B ∈ F , A ⊆ B, then P(B) = P(A) + P(B ∖ A);
. If A,B ∈ F , A ⊆ B, then P(A) ≤ P(B) (monotonicity);
. If A,B ∈ F , then

P(B ∖ A) = P(B) − P(B ∩ A)

P(A ∪ B) = P(A) + P(B) − P(A ∩ B);

. If A,B ∈ F , A ⊆ B, then P(B ∖ A) = P(B) − P(A);
. (Principle of inclusion-exclusion) Let A, . . . ,An ∈ F ,

then

P (∪ni=Ai) = ∑
n
i= P(Ai) −∑i<j P(Ai ∩ Aj)

+ . . . + (−)n+P(A ∩ . . . ∩ An);

. If A, . . . ,An ∈ F , then

P(
n

⋃
i=
Ai) ≤

n

∑
i=
P(Ai).
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