
Dynamic Epistemic Temporal Logic

Bryan Renne1, Joshua Sack2,�, and Audrey Yap3

1 University of Groningen
http://bryan.renne.org/

2 Reykjav́ık University
http://www.joshuasack.info/

3 University of Victoria
http://web.uvic.ca/~ayap/

Abstract. We introduce a new type of arrow in the update frames (or
“action models”) of Dynamic Epistemic Logic in a way that enables us to
reason about epistemic temporal dynamics in multi-agent systems that
need not be synchronous. Since van Benthem and Pacuit (later joined by
Hoshi and Gerbrandy) showed that standard Dynamic Epistemic Logic
necessarily satisfies synchronicity, it follows that our arrow type is a new
way of extending the domain of applicability of the Dynamic Epistemic
Logic approach. Furthermore, our framework provides a new perspective
on the van Benthem et al work itself. In particular, while each of our
work and their work shows that epistemic temporal models generated by
standard update frames necessarily satisfy certain structural properties
such as synchronicity, our work clarifies the way in which these structural
properties arise as a result of the inherent structure of standard update
frames themselves.

1 Introduction

Dynamic Epistemic Logic [1,2,3,4,8,12] is a modal-logic approach to reasoning
about belief dynamics in multi-agent systems. The characteristic feature of this
approach is its use of update modals, which are modal operators [U, s] that de-
scribe operations on Kripke models. These operations, called updates, represent
informational events in which the agents receive information that may bring
about changes in their beliefs. The basic idea is that an update modal [U, s]
describes a specific partial function f[U,s] that maps a pointed Kripke model
(M, w) in the domain of f[U,s] to another pointed Kripke model that we write
as

(
M [U], (w, s)

)
. This allows us to view a sequence

(M0, w0), (M1, w1), (M2, w2), . . . , (Mn, wn) (1)

of pointed Kripke models, with (Mi+1, wi+1) generated from (Mi, wi) by the
update f[Ui+1,si+1] described by update modal [Ui+1, si+1], as a discrete-time

� Joshua Sack was partly supported by the project “New Developments in Opera-
tional Semantics” (nr. 080039021) of The Icelandic Research Fund and a grant from
Reykjav́ık University’s Development Fund.

X. He, J. Horty, and E. Pacuit (Eds.): LORI 2009, LNAI 5834, pp. 263–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 B. Renne, J. Sack, and A. Yap

distributed multi-agent system in which the state of the system at time i is
described by (Mi, wi). Defining the time of a world w in Mi within the sequence
(1) to be the index i, we obtain a notion of time that is external to the pointed
Kripke model (Mi, wi). One consequence of adopting this external notion of time
is that all of the worlds that an agent considers possible relative to a world w in
Mi have time i. This implies that at every world, every agent knows the current
time. Systems in which the current time is known at every world are called
synchronous [5,6]. Dynamic Epistemic Logic, which itself adopts this external
notion of time, is consequently restricted to the study of synchronous multi-agent
systems [5,6].

In this paper, we propose a simple extension to the update modals [U, s]
that allows us to reason about discrete-time distributed multi-agent systems
that need not be synchronous. We achieve this by adapting the methodology
of standard Dynamic Epistemic Logic so that it fits naturally within a version
of Epistemic Temporal Logic [9,11] whose only temporal modality is a discrete
one-step–past operator; this version will be called Simple Epistemic Temporal
Logic. Simple Epistemic Temporal Logic uses epistemic temporal models, which
are Kripke models in which one of the relational components is designated as
a time-keeping relation. When w is related to w′ according to the time-keeping
relation, the intended interpretation is that w′ is a possible way the system might
have been one time-step before w. This provides us with an internal notion
of time, in that the time of a world w in an epistemic temporal model M is
determined solely based on the time-keeping relation, which is internal to the
model M . Diagrammatically, we will represent this relation using arrows labeled
by the symbol Y —called Y -arrows—where “Y ” is a mnemonic for “yesterday”
(so having a Y -arrow from world w to world w′ is to be thought of as saying
that w′ is one of the possible ways w might have been “yesterday,” meaning one
time-step ago). In order to distinguish between Kripke models with and without
a Y -relation (the time-keeping relation), we adopt the following terminology:
epistemic temporal models are Kripke models with a designated Y -relation—
these have an internal notion of time—whereas epistemic models are Kripke
models without a designated Y -relation—these have an external notion of time.
Since an epistemic temporal model M uses an internal notion of time, the ways
in which the system described by M can evolve are determined in advance by the
structure of the Y -relation in M ; said informally, the protocol is fixed. In contrast,
the protocol in Dynamic Epistemic Logic is dynamic, as it can be changed on-
the-fly by using a different update modal to produce the next pointed Kripke
model appearing in the sequence (1).

In extending the updates of standard Dynamic Epistemic Logic from the class
of epistemic models (having external time) to the class of epistemic temporal
models (having internal time), we stand to gain dynamic protocols for systems
that need not be synchronous. While standard Dynamic Epistemic Logic sets each
world in M [U] to be one time-step ahead of any world in M , our new updates on
epistemic temporal models allow us greater flexibility in modeling the passage
of time. In particular, using the internal notion of time associated with the

Dynamic Epistemic Temporal Logic 265

Y -relation, our updates allow us to let worlds in M [U] have any natural-number
time; therefore, in certain updates that embed M into M [U], each world in M [U]
can be seen either as a world in M or else as an arbitrarily distant possible future
of a world in M . Such flexibility is essential to the study of asynchronous systems.
To bring about this flexibility, we add a new structural component to update
modals: the Y -arrow. We use Y -arrows to specify exact positions in which the
update f[U,s] is to insert Y -arrows in the updated model M [U]. We then identify
sufficient conditions on our new update modals [U, s] that will guarantee that the
update f[U,s] embeds M into M [U] or preserves properties such as synchronicity
in the resulting epistemic temporal model. We use these conditions to show
that epistemic temporal models that result from sequentially applying a proper
subclass of our new kinds of updates are isomorphic to the generated sequences
of epistemic models from standard Dynamic Epistemic Logic that have been
studied by a number of authors [5,6,10,14,15]. While [5,6] showed that properties
such as synchronicity are necessary of sequences generated in standard Dynamic
Epistemic Logic, our isomorphism result demonstrates that the necessity of these
properties stems from the inherent structure of standard Dynamic Epistemic
Logic update modals [U, s] themselves. This provides a new perspective on the
results of [5,6].

In the next section, we introduce the language LDETL and the theory TDETL

of Dynamic Epistemic Temporal Logic. It is this theory that we use in reasoning
about our new kinds of updates on epistemic temporal models. Due to space
constraints, we will omit the proofs of our results; the interested reader can find
full details in [13], an extended version of this paper.

2 Syntax

Notation 1 (A, Y , Y). A is a finite nonempty set of symbols not containing
the symbols Y and Y . The members of A will be called agents.

To define LDETL, we must first define the internal structure of update modals
[U, s]. This structure is built on top of finite Kripke frames. If S is a nonempty
set of symbols, then a Kripke frame F (for S) is a pair (WF , RF) consisting of
a nonempty set WF whose members are called worlds and a function RF : S →
(WF → 2W F

) mapping each symbol m ∈ S to a function Rm : WF → 2W F

; to
say that F is finite means that WF is finite.1 The internal structure of update
modals [U, s] is given by the structure of the object U , called an update frame.

Definition 2. For a language L, whose formulas we call L-formulas, an L-
update frame is a tuple U = (W, R, p) satisfying the following: (W, R) is a finite
Kripke frame for A ∪ {Y, Y } that will be called the Kripke frame underlying
U , and p : W → L is a function mapping each world s ∈ W to an L-formula

1 The function RF
a gives rise to a binary relation R̄F

a := {(x, y) ∈ WF ×WF | y ∈
RF

a (x)} on WF . We will conflate RF
a and R̄F

a whenever it is convenient. We will
often refer to the members of R̄F

a as a-arrows.

266 B. Renne, J. Sack, and A. Yap

p(s). A state in U is just a world in the Kripke frame underlying U . Notation:
for an L-update frame U , we write WU to denote the first element of the tuple
U , we write RU to denote the second element of the tuple U , and we write pU

to denote the third element of the tuple U . A pointed L-update frame is a pair
(U, s) consisting of an L-update frame U and a state s ∈ WU that will be called
the point of (U, s).

Update frames are also called “action models” (or “event models”) in the Dy-
namic Epistemic Logic literature [1,2,3,4,8,12]. For an update frame U , a state
s ∈ WU represents the communication of the formula pU (s). For an agent a ∈ A,
the relation RU

a represents agent a’s conditional uncertainty as to which formula
is communicated: if s′ ∈ RU

a (s) and the formula pU (s) was in fact communicated,
then agent a will think that the formula pU (s′) is one of the formulas that might
have be communicated.

We now define our language LDETL as an extension of the language LETL of
Simple Epistemic Temporal Logic.

Definition 3 (LETL). LETL, the Language of Simple Epistemic Temporal Logic,
consists of the formulas formed by the following grammar.

ϕ ::= ⊥ | � | pk | ϕ � ϕ | ¬ϕ | [a]ϕ

k ∈ N, � ∈ {→,∨,∧,≡}, a ∈ A ∪ {Y }

Terminology: we call [Y] the yesterday modal. For each agent a ∈ A, we read the
formula [a]ϕ as “agent a believes that ϕ is true.” We read the formula [Y]ϕ as
“ϕ is true in all possible yesterdays.” Notation: for each a ∈ A∪ {Y }, we let 〈a〉
abbreviate ¬[a]¬; we define for each i ∈ N the formula [a]iϕ by setting [a]0ϕ := ϕ
and [a]i+1ϕ := [a]([a]iϕ); for i ∈ N, the formula 〈a〉iϕ is defined analogously.

Definition 4 (LDETL, TDETL). LDETL is the Language of Dynamic Epistemic
Temporal Logic. The LDETL-formulas are the formulas that may be formed by
the grammar obtained from that in Definition 3 by adding the following formula-
formation rule: if ϕ is an LDETL-formula and (U, s) is a pointed L-update frame
with ∅
= L ⊆ LDETL, then [U, s]ϕ is an LDETL-formula. LDETL consists of the
LDETL-formulas along with the L-update frames for which ∅
= L ⊆ LDETL.
Terminology: we call [U, s] an update modal. Notation: we let 〈U, s〉 abbreviate
¬[U, s]¬. We read the formula [U, s]ϕ as “after update (U, s), ϕ is true.” An
update frame is an LDETL-update frame. A formula is a LDETL-formula. TDETL,
the Theory of Dynamic Epistemic Temporal Logic, is defined in Figure 1.

Since our interest here is in implementing update mechanisms on Kripke models
with a designated Y -relation, we do not impose any of the usual properties
on belief or on time that one might expect [5,6,9,10,14,15]. So TDETL should
be viewed as the minimal theory that brings update mechanisms to Simple
Epistemic Temporal Logic. Future work will investigate extensions of this theory
that include familiar restrictions on belief and on time, though we do address
the preservation of certain time-related properties in Section 5.

Dynamic Epistemic Temporal Logic 267

Basic Schemes

CL. Schemes for Classical Propositional Logic

Ka. [a](ϕ → ψ) → ([a]ϕ → [a]ψ) for a ∈ A

KY . [Y](ϕ → ψ) → ([Y]ϕ → [Y]ψ)

UA. [U, s]q ≡ (
pU (s) → q

)
for q ∈ {pk,⊥,�}

U�. [U, s](ϕ � ψ) ≡ (
[U, s]ϕ � [U, s]ψ

)
for � ∈ {→,∨,∧,≡}

U¬. [U, s]¬ϕ ≡ (
pU (s) → ¬[U, s]ϕ

)

U[a]. [U, s][a]ϕ ≡ (
pU(s) → ∧

s′∈RU
a (s)[a][U, s

′]ϕ
)

for a ∈ A

U[Y]. [U, s][Y]ϕ ≡ (
pU (s) → ∧

s′∈RU
Y

(s)[Y][U, s′]ϕ
) ∧

(
pU (s) → ∧

s′∈RU
Y

(s)[U, s
′]ϕ

)

Rules

	 ϕ → ψ 	 ϕ
	 ψ

(MP)
a ∈ A ∪ {Y } 	 ϕ

	 [a]ϕ
(MN)

	 ϕ
	 [U, s]ϕ

(UN)

Fig. 1. The theory TDETL

3 Semantics

Having defined the language LDETL and theory TDETL of Dynamic Epistemic
Temporal Logic, we now define the semantics of LDETL. A Kripke model M is a
tuple (WM , RM , V M) consisting of a Kripke frame (WM , RM) and a function
V M : {pk | k ∈ N} → 2W M

called a (propositional) valuation. A pointed Kripke
model is a pair (M, w) consisting of a Kripke model M and a world w ∈ WM . The
notion of LDETL-truth extends the standard semantics for Dynamic Epistemic
Logic [1,2,3,4,8,12] in the following way.

Definition 5 (LDETL-Truth, LDETL-Validity). For a pointed Kripke model
(M, w) and a formula ϕ, we write M, w |=LDETL

ϕ to mean that ϕ is true at
(M, w), and we write M, w
|=LDETL

ϕ to mean that ϕ is not true at (or false at)
(M, w). The notion of truth of a formula at a pointed Kripke model is defined
by an induction on formula construction; we omit the Boolean cases.

– M, w |=LDETL
[a]ϕ means that M, x |=LDETL

ϕ for each x ∈ RM
a (w).

– M, w|=LDETL
[U, s]ϕ means that if M, w |=LDETL

pU (s), then M [U], (w, s) |=LDETL

ϕ, where the model M [U] is defined as follows.

WM [U] := {(x, t) ∈ WM × WU | M, x |=LDETL
pU (t)}

For a ∈ A : R
M [U]
a (x, t) := {(y, u) ∈ WM [U] | y ∈ RM

a (x) and u ∈ RU
a (t)}

R
M [U]
Y (x, t) := {(y, u) ∈ WM [U] | y ∈ RM

Y (x) and u ∈ RU
Y (t)} ∪

{(y, u) ∈ WM [U] | y = x and u ∈ RU
Y (t)}

V M [U](pk) := {(x, t) ∈ WM [U] | M, x |=LDETL
pk}

268 B. Renne, J. Sack, and A. Yap

To say that a formula ϕ is valid in a Kripke model M , written M |=LDETL
ϕ,

means that M, w |=LDETL
ϕ for each world w ∈ WM . To say that a formula ϕ

is valid, written |=LDETL
ϕ, means that M |=LDETL

ϕ for each Kripke model M .
When it ought not cause confusion, we may omit the subscript “LDETL” when
writing |=LDETL

.

Given a pointed Kripke model (M, w) representing a multi-agent situation and
a pointed update frame (U, s) with M, w |= pU (s), the pointed Kripke model(
M [U], (w, s)

)
represents the situation after the occurrence of the update de-

scribed by [U, s]. According to Definition 5, a world (x, t) must satisfy the prop-
erty that M, x |= pU (t). The set {x ∈ WM | M, x |= pU (t)} of worlds x in
M that satisfy pU (t) intuitively represents the set of worlds in M at which the
formula pU (t) can truthfully be communicated—these are the worlds at which t
can take place.

For each a ∈ A, Definition 5 tells us that the relation R
M [U]
a is determined

by two factors: agent a’s uncertainty as to which world was the case before the
communication (represented by RM

a) and agent a’s uncertainty as to which com-
munication has occurred (represented by RU

a). In particular, suppose (x′, t′) ∈
R

M [U]
a (x, t). Then if the communication corresponding to t actually occurred at

world x, then agent a will think it possible that the communication corresponding
to t′ occurred at world x′.

According to Definition 5, the relation R
M [U]
Y is determined by two factors.

The first is the interaction between the relations RU
Y and RM

Y , which adds pairs
to R

M [U]
Y just as the interaction between RU

a and RM
a did to R

M [U]
a for a ∈ A.

The second factor is the relation RU
Y : if there is a Y -arrow from state t to state

t′ in U , then there will be a Y -arrow from world (x, t) to world (x, t′) in M [U].
The presence of a Y -arrow from t to t′ in U thus says that the communication
corresponding to t′ is to be thought of as occurring one time-step before the
communication corresponding to t. This addition to the standard definition of
updates in Dynamic Epistemic Logic [1,2,3,4,8,12] allows us to control how an
update affects the time of worlds in the model M [U].

Finally, we see that the valuation V M [U] after the update simply inherits its
truth conditions from the valuation V M before the update, making our updates
purely temporal-epistemic.

Theorem 6 (Correctness; [13]). For each formula ϕ, we have � ϕ if and only
if |= ϕ.

4 A Simple Example

Suppose Passengers a and b are traveling together by train in China. Further,
suppose Passenger a understands Mandarin but that Passenger b does not,
though Passenger b mistakenly believes that they are both equally ignorant of the
language. Now consider two scenarios in which an announcement in Mandarin
about a delay in arrival is made over the loudspeaker.

Dynamic Epistemic Temporal Logic 269

1. Passengers a and b are both awake and alert during the announcement.
2. Passenger a is awake and alert, but Passenger b, who is sleepy, dozes off and

sleeps through the announcement. Waking up a few minutes later without
knowing that the announcement occurred, Passenger b mistakenly thinks
that instead of sleeping for a few minutes, he merely blinked.

Taking p to be a propositional letter denoting the statement about late arrival,
we represent the first and the second scenarios in our framework using update
frames (U1, t1) and (U2, t2), respectively pictured on the left and on the right in
Figure 2.

�

s1

p

t1

�

u

a

a, b

b

Y

Y

a, b, Y

U1

�

s2

p

t2

a

Y

b

a, b, Y

U2

Fig. 2. Update frames for the synchronous (U1, t1) and asynchronous (U2, t2) private
announcement of p to a

In the first scenario, Passenger b knows that an announcement has taken
place, but it provides him with no new (non-temporal) information—nor does
he believe that a gained any (non-temporal) information. In effect, this is a
synchronous private announcement to a; after all, both a and b know that an
announcement occurred—so the event is synchronous—but only a knows the
content of the announcement—so the event is private to a. In Figure 2, s1 and
u are states in which no new (non-temporal) information is conveyed (since �
is always true and thus conveys no new non-temporal information), while t1 is a
state in which the message p is communicated. Since t1 and u are each connected
to s1 using a Y -arrow, the communications they represent occur one time-step
after the communication represented by s1.

Since s1 is labeled by �, has a reflexive x-arrow for every x ∈ {a, b, Y }, and
has no exiting Y -arrows, we see by the definition of truth (Definition 5) that
any Kripke model M is embedded into the Kripke model M [U1] by the mapping
taking each world y ∈ WM to the world (y, s1) ∈ WM [U1]. This embedding
preserves a copy of the “past situation” M within the “current situation” M [U1],
which leads us to call s1 a “past state.” So the role of the past state s1 is to
preserve a copy of a given situation M . The states t1 and u then represent
communications that occur one time-step after the situation M . At state t1,
Passenger a believes that t1 represents the only possible communication, while
Passenger b believes that u represents the only possible communication. Since
both u and t1 are one time-step after the past state s1, the update f[U1,t1]

270 B. Renne, J. Sack, and A. Yap

describes the private communication of p to Passenger a in which it is common
knowledge that one time-step occurs. So we see that

|= (¬〈Y 〉� ∧ ¬[b]p) → [U1, t1]
(
[a]〈Y 〉� ∧ [a]p ∧ [b]〈Y 〉� ∧ ¬[b]p

)
.

That is, if no event has yet occurred and Passenger b does not believe p, then,
after the occurrence of f[U1,t1], Passenger a believes that an event occurred and
that p is true, whereas Passenger b believes that an event occurred but does not
believe that p is true.

In contrast, the second scenario is in effect an asynchronous private announce-
ment to a. After all, while Passenger a knows that an announcement occurred
and she knows its content, Passenger b has two mistaken beliefs: first, that no
announcement occurred, and second, that the amount of time between closing
and later opening his eyes is essentially negligible. b thus does not even think it
possible that an event has occurred. Since the announcement results in b having
a mistaken belief about the number of events that have occurred, the announce-
ment event is asynchronous. At state t2 in Figure 2, Passenger a knows that p
is communicated, but Passenger b mistakenly believes that no event took place
because the only state he considers possible is the past state s2. Accordingly, we
see that

|= (¬〈Y 〉� ∧ ¬[b]p) → [U2, t2]
(
[a]〈Y 〉� ∧ [a]p ∧ ¬[b]〈Y 〉� ∧ ¬[b]p

)
.

That is, if no event has yet occurred and Passenger b does not believe that p
is true, then, after the occurrence of f[U2,t2], Passenger a believes that an event
occurred and that p is true, whereas Passenger b believes neither that an event
occurred nor that p is true.

These scenarios demonstrate the way in which our framework uses Y -arrows to
describe synchronous and asynchronous private communications. In particular,
we see that Y -arrows can be used to describe updates that need not preserve
synchronicity, as is the case with the asynchronous private announcement.

5 Properties and Preservation

In this section, we define several properties of Kripke models and update frames
and then study sufficient conditions for the preservation of these properties after
the occurrence of an update.

Definition 7 (T -Runs, T -Histories, T -Depth). Fix a symbol T ∈ {Y, Y }
and let F = (W, R) be a Kripke frame for A∪ {Y, T }. A T -run (in F) is a finite
nonempty sequence {wi}n

i=0 of worlds in F satisfying the property that n ∈ N

and for each i ∈ N with i < n, we have that wi+1 ∈ RF
T (wi). We say that a

T -run {wi}n
i=0 begins at w0 and ends at wn. The length of a T -run {wi}n

i=0 is
defined as the number n. (Observe that the length of a T -run is one less than the
number of worlds that make up the T -run.) To say that a T -run σ′ end-extends
a T -run σ means that σ is a (not necessarily proper) prefix of σ′. (Note that each

Dynamic Epistemic Temporal Logic 271

T -run end-extends itself.) To say that a T -run σ is end-maximal (in F) means
that no T -run in F end-extends σ. A T -history (in F) is a T -run in F that is
end-maximal. (Note that a suffix of a T -history is itself a T -history.) A world
appearing at the end of a T -history in F is said to be T -terminal (in F). We
define a function dF

T : WF → N ∪ {∞} as follows: if there is a maximum n ∈ N

such that there is a T -history in F of length n that begins at w, then dF
T (w) is

n; otherwise, if no such maximum n ∈ N exists, then dF
T (w) is ∞. We will call

dF
T (w) the T -depth of w.

Definition 8. Fix T ∈ {Y, Y } and let F = (W, R) be a Kripke frame for A ∪
{Y, T }.
– T -Depth–Defined (T -DD). To say that F is T -depth–defined (T -DD) means

that for each world w in F , we have that dF
T (w)
= ∞.2

– Non–T -Branching. To say that F is non–T -branching means that for each
w ∈ WF , the set RF

T (w) has at most one member.
– T -Synchronous. If F is T -DD, then to say that F is T -synchronous means

that for each a ∈ A, each w ∈ WF , and each w′ ∈ RF
a (w), we have that

dF
T (w′) = dF

T (w). The negation of “T -synchronous” is T -asynchronous.

Convention: for tuples J having a Kripke frame (W J , RJ) underlying J , any use
of a property or concept from Definition 7 or Definition 8 in reference to J is
meant to be a use of that property or concept in reference to the Kripke frame
(W J , RJ) underlying J . Example: for an update frame U , the expression “Y -run
in U” is to be identified with the expression “Y -run in (WU , RU).”

Definition 9 (Kripke Model Properties). Let M be a Kripke model.

– Synchronicity (under Y -DD). If M is Y -DD, then to say that M is syn-
chronous means that M is Y -synchronous. The negation of “synchronous”
is asynchronous.

– Non–Past-Branching. To say that M is non–past-branching means that M
is non–Y -branching.

– Forest-like. To say that M is forest-like means that M is Y -DD and non–
past-branching.

Definition 10 (Update Frame Properties and Concepts). Let U be an
update frame.

– Path-Preserving. A path-preserving run (in U) is a Y -run {si}n
i=0 in U sat-

isfying the property that for each i ∈ N with i < n, we have |= pU (si) →
pU (si+1). To say that U is a path-preserving update frame means that each
Y -run in U is path-preserving.

2 We observe that if F is T -depth–defined, then F is T -converse well-founded (that
is, for every nonempty set S of worlds in F , there is a nonempty subset S′ ⊆ S
such that for each w ∈ S′, the unique T -run in F that begins at w has length zero).
However, if F is T -converse well-founded, it need not be the case that F is also
T -depth–defined. So the notion of T -depth–definedness is strictly stronger than the
notion of T -converse well-foundedness.

272 B. Renne, J. Sack, and A. Yap

– Depth-Respecting (under Y -DD). If U is Y -DD, then to say that U is depth-
respecting means that for each s ∈ WU and each s′ ∈ RU

Y (s), we have that
dU

Y (s′) ≤ dU
Y (s).

– Past State, Past-Preserving. A past state is a state s ∈ WU satisfying the
property that pU (s) = �, that RU

Y (s) = ∅, and that RU
a (s) = {s} for each

a ∈ A ∪ {Y }. To say that U is past-preserving means U is Y -DD and path-
preserving and that every Y -run in U can be end-extended to a Y -history
in U that ends at a past state.

– Non–Past-Splitting. To say that U is non–past-splitting means that for each
s ∈ WU , we have that RU

Y (s) ∪ RU
Y (s) has at most one element and that

RU
Y (s) ∩ RU

Y (s) = ∅.
Having defined these properties, we investigate their preservation under the pres-
ence of updates in the following two theorems. Theorem 11 concerns the behavior
of past states in update frames, and Theorem 12 concerns the preservation of
properties in Kripke models.

Theorem 11 (Past State Theorem; [13]). Let U be an update frame and M
be a Kripke model.

– If s is a past state in U , then for each ϕ ∈ LDETL and each w ∈ WM , we
have that M [U], (w, s) |= ϕ if and only if M, w |= ϕ.

– If U is past-preserving and non–past-spliting, s ∈ WU has dU
Y (s) = n, and

w ∈ WM satisfies M, w |= pU (s), then for each ϕ ∈ LDETL, we have that
M [U], (w, s) |= 〈Y 〉nϕ if and only if M, w |= ϕ.

Theorem 11 tells us that past states play the role of “maintaining a link to the
past” within past-preserving, non–past-splitting update frames. In particular, if
s is a past state, then the submodel of M [U] consisting of the worlds of the
form (w, s) for some world w ∈ WM is LDETL-indistinguishable from the Kripke
model M itself. So the operation (M, w) �→ (

M [U], (w, s)
)

retains a copy of the
“past” state of affairs (M, w). Furthermore, if U is past-preserving, then from
any world in WM [U], there is a finite sequence of Y -arrows that leads back to
this “past” state of affairs, thereby “maintaining a link to the past.”

Let us now examine the preservation of properties of the Kripke model M in
the presence of the operation M �→ M [U].

Theorem 12 (Preservation Theorem; [13]). Let (U, s) be a pointed update
frame and (M, w) be a pointed Kripke model such that M, w |= pU (s).

– Y -DD. If M is Y -DD and U is Y -DD and depth-respecting, then M [U] is
Y -DD.

– Synchronicity. If M is synchronous (and Y -DD) and U is Y -DD, depth-
respecting, past-preserving, and Y -synchronous, then M [U] is synchronous.

– Non–Past-Branching. If M is non–past-branching and U is non–past-splitting,
then M [U] is non–past-branching.

– Forest-likeness. If M is forest-like and U is Y -DD and non–past-splitting,
then M [U] is forest-like.

Dynamic Epistemic Temporal Logic 273

6 Embedding Standard DEL

In this section, we show that standard (Temporal) Dynamic Epistemic Logic,
whose update modals contain neither Y - nor Y -arrows, can be embedded in our
framework in a natural way. This provides clear connections between our work
and the work in [5,6,10,14,15] on (Temporal) Dynamic Epistemic Logic, which
will be described at the end of this section.

Definition 13 (Standard). Choose T ∈ {Y, Y }. To say that a Kripke frame
F for A∪ {Y, T } is standard means that for each s ∈ WF and each m ∈ {Y, T },
we have RF

m(s) = ∅. To say that a Kripke model or an L-update frame is stan-
dard means that the Kripke frame underlying that model or L-update frame is
standard. To say that a pointed Kripke model or a pointed L-update frame is
standard means that the Kripke model or L-update frame making up the first
component of the pair is standard.

Definition 14 (LTDEL; [10]). LTDEL is the Language of Temporal Dynamic
Epistemic Logic. The LTDEL-formulas are the formulas that may be formed by
the grammar obtained from that in Definition 3 (the definition of LETL) by
adding the following formula-formation rule: if ϕ is an LTDEL-formula and (U, s)
is a standard pointed L-update frame with ∅
= L ⊆ LTDEL, then [U, s]ϕ is an
LTDEL-formula. LTDEL consists of the LTDEL-formulas along with the L-update
frames for which ∅
= L ⊆ LTDEL.

Notation 15 (Sequences). Let τ be a finite possibly empty sequence. We write
τ · x to denote the sequence obtained from τ by adding x at the end. |τ | denotes
the number of elements in τ .

Definition 16 (Adapted from [5,6,11,14,15]). A run is a nonempty finite
sequence {Mi}n

i=0 of Kripke models satisfying the property that for each i ∈ N

with 0 < i ≤ n and each w ∈ WMi , we have that w is of the form (π(w), s) for
some world π(w) ∈ WMi−1 . A pointed run is a pair (r · M, w) consisting of a
run r · M and a world w ∈ WM ; the world w is called the point of (r · M, w).
A standard (pointed) run is a (pointed) run whose constituent pointed Kripke
models are all standard. An L event-run is a finite possibly empty sequence
of pointed L-update frames. A standard L event-run is an L event-run whose
constituent pointed L-update frames are all standard.

Definition 17 (LTDEL-Truth; [5,6,10]). We define a notion of truth for LTDEL-
formulas at standard runs r by an induction on the construction ofLTDEL-formulas;
we consider only the non-Boolean cases.

– For a ∈ A: r · M, w |=LTDEL
[a]ϕ means that r · M, x |=LTDEL

ϕ for each
x ∈ RM

a (w).
– r · M, w |=LTDEL

[Y]ϕ means that if |r| > 0, then r, π(w) |=LTDEL
ϕ.

– r · M, w |=LTDEL
[U, s]ϕ means that if we have r · M, w |=LTDEL

pU (s), then,
letting r′ := r · M , it follows that r′ · r′[U], (w, s) |=LTDEL

ϕ, where r′[U] is
the standard Kripke model defined as follows.

274 B. Renne, J. Sack, and A. Yap

W r′[U] := {(x, t) ∈ WM × WU | r · M, x |=LTDEL
pU (t)}

For a ∈ A : R
r′[U]
a (x, t) := {(y, u) ∈ W r′[U] | y ∈ RM

a (x) and u ∈ RU
a (t)}

R
r′[U]
Y (x, t) := ∅

V r′[U](pk) := {(x, t) ∈ W r′[U] | r · M, x |=LTDEL
pk}

When it ought not cause confusion, we may omit the subscript “LTDEL” in writing
|=LTDEL

.

Definition 18 (Generated Structures). Let (M, w) be a standard pointed
Kripke model.

– If σ = {(Ui, si)}n
i=1 is an LDETL event-run, then (M, w) ∗p σ, the pointed

Kripke model that is point-generated from (M, w) by σ, is the pointed Kripke
model (Mm, wm) appearing at the end of the sequence {(Mi, wi)}m

i=0 having
the largest integer m ≤ n subject to the following restrictions: (M0, w0) =
(M, w) and for each j ∈ N with j < m, we have

• Mj , wj |=LDETL
pUj+1(sj+1) and

• (Mj+1, wj+1) =
(
Mj [Uj+1], (wj , sj+1)

)
.

Note: “|=LDETL
” and Mj[Uj+1] are given by LDETL-truth (Definition 5).

– If σ = {(Ui, si)}n
i=1 is a standard LTDEL event-run, then (M, w) ∗s σ, the

pointed run that is sequence-generated from (M, w) by σ, is the pointed run
({Mi}m

i=0, wm) obtained from the sequence {(Mi, wi)}m
i=0 of pointed Kripke

models having the largest integer m ≤ n subject to the following restrictions:
(M0, w0) = (M, w) and for each j ∈ N with j < m, we have

• {Mi}j
i=0, wj |=LTDEL

pUj+1(sj+1) and
• (Mj+1, wj+1) =

({Mi}j
i=0[Uj+1], (wj , sj+1)

)
.

Note: “|=LTDEL
” and {Mi}j

i=0[Uj+1] are given by LTDEL-truth (Definition 17).

Definition 19 (↓). Let (r, w) = ({Mi}n
i=0, w) be the standard pointed run

sequence-generated by a standard LTDEL event-run from a standard pointed
Kripke model. We write (r, w)↓ to denote the pointed Kripke model (M, w)
defined in the following way.

WM :=
⋃n

i=0 WMi

RM
a (v) := RMi

a (v) if i ∈ N and v ∈ WMi

RM
Y (v) :=

{
{v′} if v = (v′, s) ∈ WMi and i > 0

∅ otherwise

Definition 20 (�n, �). For n ∈ N, we define the function �n : LTDEL → LDETL

in Figure 3. If σ = {(Ui, si)}n
i=1 is a standard LTDEL event-run, then we define

σ� := {(U �(i−1)
i , si)}n

i=1.

Dynamic Epistemic Temporal Logic 275

q�n := q if q ∈ {pk,⊥,�}
(ϕ � ψ)�n := ϕ�n � ψ�n

(¬ϕ)�n := ¬(ϕ�n)

([a]ϕ)�n := [a](ϕ�n) if a ∈ A or (a = Y and n = 0)

([Y]ϕ)�n := [Y]ϕ�(n−1) if n > 0

([U, s]ϕ)�n := [U �n, s](ϕ�(n+1))

WU�n

:= UW � {�} (disjoint union)

for a ∈ A ∪ {Y, Y },
RU�n

a (s) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RU
a (s) if a
= Y and s
= �,

{�} if a
= Y and s = �,

{�} if a = Y and s
= �,

∅ if a = Y and s = �.

pU�n

(s) :=

{(
pU (s)

)�n ∧ 〈Y 〉n[Y]⊥ if s
= �,

� if s = �.

Fig. 3. Definition of �n : LTDEL → LDETL for n ∈ N

Theorem 21 (Isomorphism Theorem; [13]). Let (M, w) be a standard
pointed Kripke model and let σ be a standard LTDEL event-run. Defining m :=
|(M, w) ∗p σ| − 1, we have each of the following.

1. For ϕ ∈ LTDEL: (M, w) ∗s σ |=LTDEL
ϕ if and only if (M, w) ∗p σ� |=LDETL

ϕ�m.
2.

(
(M, w) ∗s σ

)↓ and (M, w) ∗p σ� are isomorphic.3

The Isomorphism Theorem (Theorem 21) allows us to view results about Kripke
models that have been sequence-generated by standard LTDEL event-runs as re-
sults about (Temporal) Dynamic Epistemic Logic—and the other way around.
In particular, [5,6] studies certain structural properties of the forest structure
given by a run (M, w) ∗s σ that has been sequence-generated from a standard
pointed Kripke model (M, w) by a standard LETL event-run σ. In [5,6], the au-
thors define what it means for the run (M, w) ∗s σ to be synchronous (among
other properties) and then show that every run sequence-generated from a

3 To say that two (pointed) Kripke models are isomorphic means that there exists an
isomorphism between them. An isomorphism between Kripke models M and M ′ is a
bijection f : WM →WM′

satisfying each of the following: (i) v ∈ V M (pk) if and only

if f(v) ∈ V M′
(pk) for each k ∈ N, and (ii) u ∈ RM

a (v) if and only if f(u) ∈ RM′
a (f(v))

for each a ∈ A ∪ {Y }. An isomorphism between pointed Kripke models (M,w) and
(M ′, w′) is an isomorphism f between M and M ′ for which f(w) = w′. See [7] for
more information.

276 B. Renne, J. Sack, and A. Yap

standard pointed Kripke model by a standard LETL event-run is synchronous.4

Our Preservation Theorem (Theorem 12) works together with the Isomorphism
Theorem (Theorem 21) to provide a different perspective on this synchronicity
result. In particular, our work shows that the results of [5,6] can be viewed as a
consequence of the structural properties that are present in an update frame U �n,
produced from a standard update frame U , thereby pinpointing the source of
the synchronicity result in the structure of standard update frames themselves.

7 Conclusion

In this paper, we showed how to extend the updates of Dynamic Epistemic Logic
so that they operate not just on epistemic models but also on epistemic tempo-
ral models in a way that allowed us to control how an update affects the time
of worlds in the model M [U]. This enabled us to extend the domain of appli-
cability of the Dynamic Epistemic Logic approach to discrete-time multi-agent
distributed systems that need not be synchronous. We then studied sufficient con-
ditions for the preservation of various properties of Kripke models, such as syn-
chronicity. Identifying an isomorphism that connects epistemic temporal models
generated in our framework with epistemic temporal models generated by stan-
dard updates as in [5,6], we saw that the necessity of synchronicity in standardly
generated epistemic temporal models stems from the structure of standard up-
dates themselves. We then presented two scenarios contrasting synchronous and
asynchronous private announcements.

In its technical essence, this paper is about adding a new type of arrow—the Y -
arrow—to update frames and then studying what we can do when the operation
M �→ M [U] described on epistemic models in [1,2] is extended by the Y -arrow
mechanism to epistemic temporal models in a way that allows us to control how
the update affects the time of worlds in the model M [U]. Essentially, the Y -arrow
describes a sufficient condition for the creation of Y -arrows in the model M [U]
resulting from the occurrence of an update. Namely, when there is a Y -arrow
from state s to state s′ in update frame U , then there should be a Y -arrow from
state (x, s) to state (x, s′) in M [U]. While this is one possible sufficient condition
for the creation of a certain kind of arrow, there other conditions we may wish
to consider. In particular, examining the hybrid scheme

[U, s][a]ϕ ≡ pU (s) →
∧

s′∈W U

∀z.
(
aU

a (s, s′) → @z(pU (s′) → [U, s′]ϕ)
)

(2)

in which aU
a is a function mapping pairs (s, s′) of states in U to a formula (possi-

bly containing z), we see that the function aU
a allows us to express a precondition

for the creation of a-arrows in the model M [U] produced by a generalized update

4 If (M,w) ∗s σ is a run sequence-generated from a standard pointed Kripke model
(M,w) by a standard LETL event-run σ, then the definition in [5,6] would have us say
that (M,w) ∗s σ satisfies synchronicity if and only if

(
(M,w) ∗s σ

)↓ is synchronous
(according to our Definition 9).

Dynamic Epistemic Temporal Logic 277

frame U = (W, p, a). The hybrid language of such generalized update frames,
called the arrow-precondition language, allows us to describe a wide variety of
arrow-creation conditions, including all of those mentioned in this paper [13].
Though there is much to be studied about this generalization, it may prove use-
ful in extending Dynamic Epistemic Logic to a much wider class of applications.

References

1. Baltag, A., van Ditmarsch, H.P., Moss, L.S.: Epistemic logic and information up-
date. In: Adriaans, P., van Benthem, J. (eds.) Handbook on the Philosophy of
Information, pp. 369–463. Elsevier, Amsterdam (2008)

2. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224
(2004)

3. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge and private suspicions. In: Gilboa, I. (ed.) TARK 1998, pp. 43–56 (1998)

4. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change.
Information and Computation 204(11), 1620–1662 (2006)

5. van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging frameworks for
interaction. Journal of Philosophical Logic (in press, 2009)

6. van Benthem, J., Gerbrandy, J., Pacuit, E.: Merging frameworks for interaction:
DEL and ETL. In: Proceedings of the 11th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK XI), pp. 72–81 (2007)

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

8. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library. Springer, Heidelberg (2007)

9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

10. Hoshi, T., Yap, A.: Dynamic epistemic logic with branching temporal structures.
Synthese (in press, 2009)

11. Parikh, R., Ramanujam, R.: A knowledge based semantics of messages. Journal of
Logic, Language, and Information 12, 453–467 (2003)

12. Renne, B.: A survey of Dynamic Epistemic Logic. Manuscript (July 2008)
13. Renne, B., Sack, J., Yap, A.: Dynamic Epistemic Temporal Logic. Extended

Manuscript (June 2009)
14. Sack, J.: Temporal languages for epistemic programs. Journal of Logic, Language,

and Information 17(2), 183–216 (2008)
15. Yap, A.: Dynamic epistemic logic and temporal modality. Forthcoming in Proceed-

ings of Dynamic Logic Montréal (2007)

	Dynamic Epistemic Temporal Logic
	Introduction
	Syntax
	Semantics
	A Simple Example
	Properties and Preservation
	Embedding Standard {\sf DEL}
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

