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Preface

The First International Workshop on Logic, Rationality and Interaction (LORI-
I) took place in Beijing in August 2007, with participation by researchers from
the fields of artificial intelligence, game theory, linguistics, logic, philosophy, and
cognitive science. The workshop led to great advances in mutual understanding,
both academically and culturally, between Chinese and foreign logicians.

Due to the success of LORI-I, it was decided that the series should be con-
tinued, at various places in China and possibly other Asian countries, under
the overall guidance of a LORI Standing Committee consisting of Johan van
Benthem, Shier Ju, Frank Veltman, and Jialong Zhang.

This volume contains the proceedings of the next installment in the se-
ries, The Second International Workshop on Logic, Rationality and Interaction
(LORI-II), which took place in Chongqing in October 2009. From a flood of sub-
missions, we have, with great difficulty, selected 24 papers for presentation at
the conference, and eight more for presentation during a poster session. These
contributed presentations were supplemented with invited addresses by Hans
van Ditmarsch, Fangzhen Lin, Rohit Parikh, Henry Prakken, Jeremy Seligman,
Leon van der Torre, and Ming Xu.

For assistance in constructing the program, we owe a great debt to Johan
van Benthem, the Conference Chair, and to all the members of the Program
Committee for their hard work under the pressure of a very tight reviewing
deadline. We especially wish to thank Fenrong Liu for her many-sided help, not
only with the program, but in every possible way.

August 2009 John Horty
Eric Pacuit



Organization

LORI-II was organized at the Institute of Logic and Intelligence, Southwest
University in Chongqing, China during October 8 - 11, 2009.
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Expressing Properties of Coalitional Ability

under Resource Bounds�

Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib

School of Computer Science
University of Nottingham

Nottingham, UK
{nza,bsl,hnn,rza}@cs.nott.ac.uk

Abstract. We introduce Coalition Logic for Resource Games (CLRG)
which extends Coalition Logic by allowing explicit reasoning about re-
source endowments of coalitions of agents and resource bounds on strate-
gies. We show how to express interesting properties of coalitional ability
under resource bounds in this logic, including properties of Coalitional
Resource Games introduced by Wooldridge and Dunne in [1]. We also
give an efficient model-checking algorithm for CLRG which makes it
possible to verify the properties automatically.

1 Introduction

There are many problems in multi-agent systems which are not reducible to the
abilities of individual agents in the system, and which can only be usefully anal-
ysed in terms of the combined abilities of groups of agents. For example, it may
be that no single agent has a strategy to reach a particular state on its own, but
two agents cooperating with each other are capable of achieving this outcome. It
is often natural to formulate reasoning about the abilities of coalitions of agents
in terms of games, and there is a considerable amount of work on coalitional
games and logics in the literature, e.g., [2,3,4,5,6,7,8,9]. For example, Coalition
Logic can be used to reason about the coalitional ability of agents in strate-
gic games. Coalition Logic generalises the notion of a strategic game, in that it
is interpreted over state transition systems where each state has an associated
strategic game. It can be seen either as a way of reasoning about a sequence of
strategic games or as reasoning about a single complex game where each move
corresponds to a transition to a new state [2]. Alternating-Time Temporal Logic
(ATL) was originally developed to reason about computational processes in ad-
versarial environments, and has been shown to generalise Coalition Logic [4].
Instead of talking about the outcome of a strategic game in the next state, ATL
can express properties holding in arbitrary future states, or maintained during
a series of moves. Using these logics we can express properties such as ‘coalition
C has a strategy to bring about a state satisfying φ’ (no matter what the other
� An earlier version of this work was presented at the workshop on Logics for Agents

and Mobility 2009.

X. He, J. Horty, and E. Pacuit (Eds.): LORI 2009, LNAI 5834, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 N. Alechina et al.

agents in the system do) where φ characterises, e.g., the solution to a problem
or the successful execution of a protocol.

However, none of the existing coalition logics can express properties of coali-
tional abilities under resource restrictions, that is, directly express properties
such as ‘coalition C has a strategy to bring about φ under resource bound b1,
but not under a tighter resource bound b2’. Examples of situations where such
properties are critical are numerous; e.g., whether a team of agents can achieve a
task under a given allocation of resources [1], or whether a group of distributed
reasoning agents can answer a query given specified memory, communication
and time resources [10].

In this paper we present Coalition Logic for (Strategic) Resource Games
(CLRG). CLRG allows us to express properties such as ‘coalition C can enforce
a state satisfying φ under a resource bound b’, that is, the cost of their joint
action is at most b (where b is a tuple of resource value pairs 〈r1:b1, . . . , rj :bj〉
from a fixed set of resources R). We extend strategic games to strategic resource
games by adding resources, endowments and costs, and define Coalition Logic
for (Strategic) Resource Games in much the same way as Coalition Logic is
defined with respect to strategic games. As illustrations of how CLRG can be
used to express the abilities of coalitions under resource bounds, we show how to
express some of the decision problems for Coalitional Resource Games (CRGs)
given in [1], and how to express properties of agents in a simple multi-shot game.
Finally, we show how to automatically verify properties expressed in CLRG, in
particular properties of CRGs, using a standard model-checker, and give a more
efficient model-checking algorithm specifically for CLRG formulas.

2 Coalition Logic

In this section we briefly describe Coalition Logic (CL) introduced by Pauly in
[3] and state the main results on the complexity of model-checking CL.

Coalition Logic is used for reasoning about coalitional ability in strategic
games. The language of coalition logic contains modalities, [C], for each possible
set of agents (coalition) C. The meaning of [C]φ is that the coalition C can choose
a tuple of actions so that whatever actions are chosen by the other agents in the
system, the outcome state satisfies φ (C can enforce an outcome state satisfying
φ).

Definition 1. A strategic game form is a tuple (A, {Act i | i ∈ A}, S, o) where

– A = {1, . . . , n} is a set of agents,
– {Act i | i ∈ A} is a set of sets of actions (or strategies) for each agent i ∈ A,
– S is a non-empty set of states,
– o : Πi∈AAct i → S is an outcome function which associates with every tuple

of actions, by all agents in parallel, an outcome state in S.

The set of all game forms for a set of players A and a set of states S will be
denoted Γ (A,S). For a set of agents C ⊆ A, we will denote a tuple of actions
by the agents in C by aC , and a tuple of actions by all agents where agents in
C execute actions aC and agents C̄ = A \ C execute actions aC̄ as (aC , aA\C).
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Definition 2. A game model for a set of players A over a set of propositions
Prop is a triple (S, γ, V ), where

– S is a non-empty set of states,
– γ : S → Γ (A,S) is a mapping associating a strategic game form with each

state in S (we will use an extra argument s to distinguish components of
γ(s), for example o(s, a1, . . . , an) for the outcome function in state s),

– V : S → 2Prop is a valuation function which labels every state in S with a
set of propositions that are true in that state.

The language L of CL (parameterised by a set of propositional variables Prop
and a set of agents A) is as follows:

p | ¬φ | φ1 ∧ φ2 | [C]φ

where p ∈ Prop and C ⊆ A.
Formulas of L are evaluated with respect to game models as follows:

– M, s |= p iff p ∈ V (s)
– M, s |= ¬φ iff M, s �|= φ
– M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ
– M, s |= [C]φ iff there exists aC such that for every aA\C , M, o(s, aC , aA\C)
|= φ.

The model-checking problem for CL (given a formula φ and a model M , return
the set [φ]M of states satisfying φ) can be reduced to the model-checking problem
for ATL using the embedding into ATL given in [4], and therefore can be done
in time O(|φ| ×m) where m is the number of transitions in the model.

Coalition logic allows us to express interesting properties both of strategic
games and of multi-shot games, using nested [C] operators. For example, we can
express that a group of agents C has a three-step winning strategy in a game
by saying [C][C][C] win. However CL does not allow us to express properties of
coalitional abilities under resource restrictions.

3 Strategic Resource Game Forms

In this section we extend strategic games to strategic resource games (or rather
game forms, since we do not have a notion of preference over outcomes) by
adding resources to strategic games. Strategic resource game forms will be used
to define models of coalition logic for resource games in the next section.

Definition 3. A strategic resource game form is a tuple (A, {Act i | i ∈ A},
S, o, R, en, c) where

– A = {1, . . . , n} is a set of agents,
– {Act i | i ∈ A} is a set of sets of actions for each agent i ∈ A,
– S is a non-empty set of states,
– o : Πi∈AAct i → S is an outcome function,
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– R = {r1, . . . , rt} is a set of resources,
– en : A×R→ N is a resource endowment function,
– c : ∪i∈AAct i ×R→ N is an action cost function.

We extend strategic games with resources, endowments and costs. Each action
an agent can perform requires the consumption of zero or more units of each of a
set of resources R (the cost of the action), and each agent is given an endowment
of each resource en(i, r) (which may be zero). An action can only be executed
by an agent if the endowment of the agent is greater than or equal to the cost
of the action: a ∈ Act i iff c(a, r) ≤ en(i, r) for every resource r ∈ R. The set of
all resource game forms for a set of players A, a set of resources R and a set of
states S will be denoted Γ (A,S,R).

We will use en(C, r) for the sum of en(i, r) for all i ∈ C and c(aC , r) for the
sum of costs of all actions in aC : Σi∈Cc(ai, r). It is sometimes convenient to
talk about resource endowment of an agent as a single value, namely a vector
en(i) = 〈r1 : n1, . . . , rt : nt〉, where en(i, rj) = nj . The sum of vectors is defined
in the usual way (pointwise), so en(C) = 〈r1 : n1, . . . , rt : nt〉 where nj =
Σi∈Cen(i, rj). Similarly, we can talk about a cost of an action c(ai) as a vector
of values, one for each resource, and a cost of a joint action by a coalition C,
c(aC), as a vector corresponding to a pointwise sum of vectors c(ai) where i ∈ C.

Similarly, it is sometimes convenient to talk about tuples of resource values b
of the form 〈r1 : n1, . . . , rj : nj〉 (where the indices rj do not necessarily cover
all the values in R). For two tuples of resource values over the same resource
indices (referring to the same resources) b = 〈r1 : b1, . . . , rj : bj〉 and v = 〈r1 :
v1, . . . , rj : vj〉 we will also use the usual pointwise comparisons and operations,
for example b ≤ v iff b1 ≤ v1, . . . , bj ≤ vj and b+v = 〈r1 : b1+v1, . . . , rj : bj+vj〉.

4 Resource Game Models

We can now define models of the logic corresponding to strategic resource game
forms:

Definition 4. A resource game model for a set of players A and resources R
over a set of propositions Prop is a triple (S, γ, V ), where

– S is a non-empty set of states,
– γ : S → Γ (A,S,R) is a mapping associating a strategic resource game form

with each state in S,
– V : S → 2Prop is a valuation function which labels every state in S with a

set of propositions that are true in that state.

Endowments in reachable states reflect the resources which were required to
obtain that state: if s′ = o(s, a1, . . . , ai), then for every resource r, en(s′, i, r) =
en(s, i, r) − c(ai, r). Actions are only executable by an agent in a state if the
agent’s endowment in that state is greater than or equal to the cost of the
action. We assume one of the actions is noop such that for all resources r,
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c(noop, r) = 0 (this simply allows other agents to execute actions when some
agents have run out of resources). A noop action by all agents does not change
the state: o(s,noop, . . . ,noop) = s. We assume that all other actions cost some
non-zero amount for at least one resource.

5 Coalition Logic for Resource Games

In this section we extend Coalition Logic to a logic for reasoning about resource
games. We want to be able to express and verify properties such as ‘coalition C
can enforce φ under a resource bound b’, that is, the cost of their joint action is
less than b (where b is a tuple of resource value pairs 〈r1 : b1, . . . , rj : bj〉, from a
fixed set of resources R). While endowments constrain the abilities of individual
agents to perform actions, resource bounds constrain the abilities of a coalition
of agents to perform a joint action. With this in mind, we introduce quantifiers
[Cb]φ where b is a tuple of resource values. It is also useful to be able to refer to
the endowments of agents in each state; for this purpose we introduce nullary
modalities (endowment counters) e=(C, b) where C is a coalition and b is a tuple
of resource values, which means that the coalitions’s endowment for the given
resources in a given state is equal to b.

The language Lb,e of CLRG (parameterised by a set of propositional variables
Prop, a set of agents A and a set of resources R) is as follows:

p | ¬φ | φ1 ∧ φ2 | [C]φ | [Cb]φ | e=(C, b)

where p ∈ Prop, C ⊆ A and b is a tuple of resource values. Note that e≤(C, b)
can be defined as

∨
b′≤b e

=(C, b′) and e≥(C, b) as ¬e≤(C, b) ∨ e=(C, b). We will
write e=(i, b) for e=({i}, b).

We will refer to the language obtained from Lb,e by omitting modalities [Cb]
by Le, the language obtained from Lb,e by omitting endowment counters e=(C, b)
as Lb, and the language of coalition logic as L.

Formulas of Lb,e are evaluated with respect to resource game models as follows:

– M, s |= p iff p ∈ V (s)
– M, s |= ¬φ iff M, s �|= φ
– M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ
– M, s |= [C]φ iff there exists aC such that for every aA\C , M, o(s, aC , aA\C) |=
φ.

– M, s |= [Cb]φ iff there exists aC with c(aC) ≤ b such that for every aC̄ ,
the outcome of the resulting tuple of actions executed in s satisfies φ: M, o
(s, aC , aA\C) |= φ

– M, s |= e=(C, b) iff en(s, C) = b.

6 Expressing Properties in CLRG

In this section we show how to express some properties of coalitional ability
under resource restrictions in the language of CLRG.
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6.1 Properties of CRGs

We first show how to express properties of Coalitional Resource Games (CRGs)
introduced by Wooldridge and Dunne in [1]. A coalitional resource game Γ is
defined as a tuple (A,G,R,G1, . . . , Gn, en, req) where

– A = {1, . . . , n} is a set of agents,
– G = {g1, . . . , gm} is a set of goals,
– R = {r1, . . . , rt} is a set of resources,
– Gi ⊆ G is the set of goals for agent i,
– en : A × R → N is the resource endowment function (how many units of a

given resource is allocated to an agent),
– req : G × R → N is the resource requirement function (how many units of

a particular resource is required to achieve a goal). It is assumed that each
goal requires a non-zero amount for at least one resource.

In CRGs, the endowment of a coalition is equal to the sum of the endowments
of its members: en(C, r) = Σi∈Cen(i, r). Similarly, the resource requirement for
a set of goals is the sum of the requirements for each of the goals in the set:
req(X, r) = Σg∈Xreq(g, r). A set of goals satisfies a coalition if the intersection
with each of the members’ goal sets is non empty: X satisfies C if for every
i ∈ C, X ∩ Gi �= ∅. The set of such sets for a coalition C is denoted by sat(C).
A set of goals is feasible for a coalition if the coalition has sufficient resources
to achieve it: X is feasible for C if for every resource r, req(X, r) ≤ en(C, r).
The set containing all feasible sets of goals for C is denoted by feas(C). The
effectivity function sf returns, for each coalition, the set of sets of goals which
both satisfy a coalition and are feasible for it, namely sat(C) ∩ feas(C).

Coalitional resource games are defined in terms of goals whereas CLRG is
defined in terms of actions. However we show that we can encode a CRG without
loss of information in the initial state of a CLRG model, i.e., in a strategic
resource game form.

For each CRG Γ , we define a corresponding CLRG model MΓ . Let Prop =
G ∪ {sati | i ∈ A}. Intuitively, g ∈ G holds in a state if this goal has been
achieved in this state and sati holds in a state if one of agent i’s goals has been
achieved in this state. Given a CRG Γ = (A,G,R,G1, . . . , Gn, en, req), we define
MΓ = (S, γ, V ) as follows:

– S = 2G. Intuitively, the initial state is s0 = ∅, where no goals have been
achieved.

– V : S → 2Prop assigns to a state s = Q ⊆ G the set of goals which ‘hold’
in that state, namely g ∈ V (s) iff g ∈ s; sati ∈ V (s) if for some g ∈ Gi,
g ∈ V (s).

– for s0, γ(s0) is as follows:
• Act i(s0): the actions of each agent are vectors of the form 〈g1 : x1, . . . ,
gm : xm〉 where gj : xj means that the agent contributes a vector of
resources xj to the goal gj. 〈g1 : x1, . . . , gm : xm〉 ∈ Act i(s0) iff Σjxj ≤
en(i) and xj ≤ req(gj). In other words, the agents don’t contribute more
than their endowment or more than the requirement for the goal.
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• o(s0, 〈g1 : x1
1, . . . , gm : x1

m〉, . . . , 〈g1 : xn
1 , . . . , gm : xn

m〉) = s where gj ∈ s
iff Σix

i
j ≥ req(gj), that is, gj is achieved in s iff the agents together

contributed sufficient resources to achieve gj , and otherwise gj is false
in s.
• en(s0, i) = en(i).
• c(〈g1 : x1, . . . , gm : xm〉) = Σjxj , that is the cost of an action is the

(vector) sum of resources committed to all the goals in this action.
– for s �= s0, Act i(s) = {noop} for all i.

Proposition 1. Given MΓ as defined above, there is a unique (up to isomor-
phism) CRG Γ corresponding to MΓ .

To show that we can recover Γ from MΓ , observe that s0 is the state with the
maximal endowment. The set of goals Γ is given, but we can also reconstruct it
from the fact that S = 2G. Once we know s0, the outcome function in s0, and
Γ , we can compute the requirements for each goal: the minimal cost of a joint
action which achieves (exactly) that goal. Finally, sati allows us to compute Gi

for each i.
We now show how to express some CRG decision problems introduced in [1]

in CLRG. Below for a set G′ ⊆ G, we define G′∨ and G′∧ as the disjunction and
conjunction respectively of goals in G′.

Successful coalition (Γ , C): in a CRG Γ , C is a successful coalition. An agent is
successful if it achieves at least one of its goals. A coalition is successful if each
agent in the coalition is successful. A coalition C is successful in a CRG Γ iff
the following formula is true in MΓ , s0:

[C]
∧
i∈C

G∨
i

Maximal coalition (Γ , C): in a CRG Γ , C is a maximal coalition if any larger
coalition is not successful. A coalition C is maximal in a CRG Γ iff the following
formula is true in MΓ , s0: ∧

C′:C⊆C′
¬[C′]

∧
i∈C′

G∨
i

Maximally successful coalition (Γ , C): in a CRG Γ , C is a maximally successful
coalition if it is maximal and successful. A coalition C is maximally successful
in Γ iff the conjunction of the two previous properties holds in MΓ .

Coalition successful under resource bound b (Γ , C, b): in a CRG Γ , C is a
coalition successful under resource bound b if it can be successful while staying
within a resource bound b. A coalition C is successful under resource bound b in
Γ iff the following formula is true in MΓ , s0:

[Cb]
∧
i∈C

G∨
i
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Necessary resource (Γ,C, r): in a CRG Γ , for a coalition C, r is a necessary
resource if for every G′ ∈ sf (C), req(G′, r) > 0. For readability assume that
C = {1, . . . , k}. This property holds iff the following formula is true in MΓ , s0:∧

G′∈sat(C)

([C]G′ → ¬[C〈r:0〉]G′)

where sat(C) = {Q∧
1 ∧ . . . ∧Q∧

k | i ∈ C, Qi ⊆ Gi} (intuitively, a set of formulas
saying that at least one of the goals of each agent in C is satisfied).

Strictly necessary resource (Γ,C, r): r is a strictly necessary resource for C in
Γ if sf (C) �= ∅ and for every G′ ∈ sf (C), req(G′, r) > 0. This can be expressed
as a conjunction of the successful coalition formula and the necessary resource
formula.

G′ is optimal for C (Γ,C,G′, r): a set of goals G′ is optimal for C in Γ if
G′ ∈ sf (C) and for every G′′ ∈ sf (C), req(G′′, r) ≥ req(G′, r). This property
holds iff the following formula is true in MΓ , s0:

[C]G
′∧ ∧

∧
G′′∈sat(C)

([Cb]G′′ → [Cb]G
′∧)

where sat(C) is as above and G
′∧ ∈ sat(C).

G′ is Pareto-efficient for C (Γ,C,G′): G′ is Pareto-efficient for C in Γ if for
every G′′ ∈ sf (C), if for some r1, req(G′′, r1) < req(G′, r1), then there exists r2
such that req(G′′, r2) > req(G′, r2). This property holds iff the following formula
is true in MΓ , s0:∧

G′′∈sat(C)

([Cr1:v]G′′ ∧ ¬[Cr1:v]G′∧ →
∨

r �=r1

∨
v≤en(C,r)

([Cr:v]G′∧ ∧ ¬[Cr:v]G′′))

where sat(C) is as above.

Conflicting coalitions (Γ,C1, C2, b): C1 and C2 are conflicting coalitions if for
every G1 ∈ sf (C1), G2 ∈ sf (C2), G1 and G2 are achievable under the resource
bound b, but G1 ∪ G2 is not achievable under b. This property holds iff the
following formula is true in MΓ , s0:∧
G1∈sat(C1), G2∈sat(C2)

([C1]G1 ∧ [C2]G2 → ([Ab]G1 ∧ [Ab]G2 ∧ ¬[Ab](G1 ∧G2)))

Positive goal set(Γ,G′): G′ is a positive goal set in Γ if there exists a coalition
C such that G′ ∈ sf (C). This holds iff the following formula is true in MΓ , s0:∨

C⊆A: G′∧∈sat(C)

[C]G
′∧
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6.2 Properties of Multi-shot Games

In addition to expressing properties of CRGs, CLRG can express properties of
multi-shot resource games. Consider a simple example. Three agents 1, 2 and 3
are playing two consecutive games in which there is only one resource which is
money m. In the first game, they decide whether to get into town (which costs 1
dollar) or stay at home (noop action). Once an agent is in town, it can decide to
eat in a restaurant X , where dinner costs 25 dollars, or in a restaurant Y , where
dinner costs 50 dollars (or skip dinner). The goal of the agents is that two or more
agents have dinner together. Assume that their endowments are above 26 dollars.
Then although no single agent can enforce the goal, each two-agent coalition can,
and so can the grand coalition: [1, 2][1, 2] 12dinner and [1, 2, 3][1, 2, 3] 123dinner
(where 12dinner stands for agents 1 and 2 having a joint dinner, similarly for
123dinner). However if the dinner costs at most 50 dollars (for all participants),
the agents can claim the money as project meeting expenses. This can be ex-
pressed as achieving a joint dinner under the resource bound of 50 in the second
game. Now [1, 2][1, 2〈m:50〉] 12dinner but not [1, 2, 3][1, 2, 3〈m:50〉] 123dinner.

7 Automated Verification of CLRG Formulas

While CLRG allows us to express properties of resource games, there are no
existing automated verification tools which accept Lb,e formulas as specifica-
tions. However, in this section we show that it is possible to use a standard
Alternating-Time Temporal Logic (ATL) model-checker (such as MOCHA [11])
to automatically verify a property ψ stated in the language Lb,e of CLRG by
translating it into a formula of Le which is equivalent to ψ with respect to a
fixed model.

Note that under our assumption that each action apart from noop has a non-
zero cost, each model has a state with the maximal endowment value for each
agent (intuitively, the initial state of the system), and all other states have a
lower endowment value on at least one resource for one of the agents. This has
several implications. First of all, it implies that each model has a finite number
of non-identical states. Second, if we know the endowment in the initial state
and the cost of each action, we can calculate the set of all possible endowments
for each agent for each resource. Let us denote the set of resource endowment
tuples (one value for each resource) which agent i can have in a model M by
Q(M, i). As a trivial example, if the set of resources R = {r1, r2}, the highest
endowment of agent i is 〈r1 : 4, r2 : 3〉 and in addition to noop agent i can
execute a single action a with cost 〈r1 : 2, r2 : 2〉, then the possible endowments
of i are 〈r1 : 4, r2 : 3〉 and 〈r1 : 2, r2 : 1〉.

Given a finite set Q(M, i) for each i, we can eliminate [Cb] modalities from
any formula of CLRG:

Theorem 1. Given a model M such that Q(M, i) is finite for every i, and a
formula φ in the language Lb,e, there exists a formula φ′ in the language Le such
that for every state s in M , M, s |= φ iff M, s |= φ′.
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Proof. We define a translation function t which takes a formula φ ∈ Lb,e and
returns t(φ) ∈ Le:

– t(p) = p, t(e=(C, r)) = e=(C, r),
– t commutes with the booleans and [C],
– t([Cb]ψ) =

∧
v1,...,vk∈Q(M,i)(e

=(1, v1) ∧ . . . ∧ e=(k, vk)→ [C](t(ψ) ∧∨
b1+···+bk≤b e

=(1, v1 − b1) ∧ · · · ∧ e=(k, vk − bk))) where, for readability, we
assume that C = {1, . . . , k}

It is straightforward to translate formulas of Le into ATL. The endowment
modalities can be encoded as propositional variables (which are true in a state
s if and only if the value of the resource counter in the state satisfies the corre-
sponding condition), and formulas of the form [C]φ are translated as 〈〈C〉〉Xφ
(see, for example, [4]).

As an illustration, we show how to translate the following example CRG from
[1] into ATL.

A = {1, 2, 3}; G = {g1, g2}; R = {r1, r2}; G1 = {g1}, G2 = {g2}, G3 = {g1, g2};
en(1, r1) = 2, en(1, r2) = 0, en(2, r1) = 0, en(2, r2) = 1, en(3, r1) = 1, en(3, r2) =
2; req(g1, r1) = 3, req(g1, r2) = 2, req(g2, r1) = 2, and req(g2, r2) = 1.

The corresponding model MΓ = (S, γ, V ) is as follows:

S = {s0 = ∅, s1 = {g1}, s2 = {g2}, s3 = {g1, g2}}
V (s0) = ∅, V (s1) = {g1, sat1, sat3}, V (s2) = {g2, sat2, sat3}, V (s3) = {g1, g2,

sat1, sat2, sat3};
Act1(s0) = 〈g1 : 〈0, 0〉, g2 : 〈0, 0〉〉, 〈g1 : 〈1, 0〉, g2 : 〈0, 0〉〉, 〈g1 : 〈2, 0〉, g2 : 〈0, 0〉〉,
〈g1 : 〈0, 0〉, g2 : 〈1, 0〉〉, 〈g1 : 〈0, 0〉, g2 : 〈2, 0〉〉, 〈g1 : 〈1, 0〉, g2 : 〈1, 0〉〉 (the actions
available to agents 2 and 3 can be enumerated in a similar way);

o(s0, 〈g1 :〈0, 0〉, g2 :〈0, 0〉〉, 〈g1 :〈0, 0〉, g2 :〈0, 0〉〉, 〈g1 :〈0, 0〉, g2 :〈0, 0〉〉) = ∅ (other
action transitions can be enumerated similarly);

c(〈g1:〈0, 0〉, g2:〈0, 0〉〉) = 〈0, 0〉, for agent 1; the cost of actions 2 and 4 are 〈1, 0〉
and the costs of actions 3, 5 and 6 are 〈2, 0〉 (costs of actions by other agents
can be computed in a similar way).

The endowment in s0 is as in Γ .
Using this translation, we can state properties such as the coalition of agents

1 and 3 can achieve g1 under the resource bound corresponding to the sum of
their endowments: [1, 3〈r1:3,r2:2〉]g1. In ATL, to simplify the translation, we just
give the conjunct for the endowment values which evaluate to true:

e=(1, 〈r1:2, r2:0〉) ∧ e=(3, 〈r1:1, r2:2〉)→

〈〈1, 3〉〉X(g1 ∧
∨

b1+b2≤〈r1:3,r2:2〉
e=(1, 〈r1:2, r2:0〉 − b1) ∧ e=(3, 〈r1:1, r2:2〉 − b2))

The possible values of b1 and b2 above are all b1 and b2 such that b1 + b2 ≤ 〈r1 :
3, r2 : 2〉, but the values which make the disjunction in the consequent true are
b1 = 〈r1:2, r2:0〉 and b2 = 〈r1:1, r2:2〉.
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It is straightforward to encode a CLRG model for an ATL model checker. As
an example, we sketch an encoding for the reactive modules system description
language used by MOCHA model checker.

States of the CLRG models correspond to an assignment of values to state
variables in the model checker. The agent’s resource endowments are encoded as
vectors of state variables (of range type) and the goal propositions are encoded as
a set of boolean state variables. We also define a set of vectors of ‘contribution
variables’ for each agent and each goal, which represent the amount of each
resource the agent has contributed to achieving the goal. The actions available
to the agents are encoded as MOCHA atoms which describe the initial condition
and transition relation for a set of related state variables. An action is enabled
if the agent’s remaining endowment of a resource is greater than or equal to the
cost of the action on that resource, i.e., if en(i, r) ≥ c(ai, r). Performing an action
decrements the endowment variables for the agent by the cost of the action on
each resource, and increments the contribution variables for the proposition(s)
affected by the action by the same amount.

Each agent is encoded as a MOCHA module. A module is a collection of
atoms and a specification of which of the state variables updated by those atoms
are visible from outside the module. For technical reasons, it is convenient to
associate the state variables encoding the goal propositions with a separate ‘val-
uation’ module. The valuation module aggregates the effects of each individual
agent’s actions as encoded in the contribution variables and determines the truth
value of the goal propositions affected by the actions. A particular game is then
simply a parallel composition of the appropriate agent modules and the valuation
module.

Using the translation above, CRG problems can be translated from CLRG into
ATL with resource counters with only a polynomial increase in the size of the
formula (since the CLRG formulas contain no nested modalities). However the
translation may lead to an exponential increase in the size of the ATL formula
if the CLRG formula contains nested [Cb] modalities. This naturally raises the
question of whether there is a special purpose model-checking algorithm for Lb,e

formulas which avoids the exponential blowup.

8 Model-Checking Problem for CLRG

In this section we describe a model-checking algorithm for CLRG, which is very
similar to the model-checking algorithm for ATL [12] except that it only con-
siders ‘next state’ formulas. We show that bounds on coalition modalities and
endowment counters do not increase the complexity of the algorithm which has
the same complexity as the ATL algorithm (namely linear).

Theorem 2. The model-checking problem for CLRG is solvable in linear time.
Given a model M = (S, V, γ) and an Lb,e formula φ, there is an algorithm which
returns the set of states [φ]M satisfying φ: [φ]M = {s | M, s |= φ}, which runs
in time O(|φ| ×m) where m is the number of transitions in M .
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Proof. Consider the following symbolic model-checking algorithm:

for every φ′ in the set of subformulas of φ:
case φ′ == p: [φ′]M = {s | p ∈ V (s)}
case φ′ == e=(C, b): [φ′]M = {s | Σi∈C en(i) = b}
case φ′ == ¬ψ: [φ′]M = S \ [ψ]M
case φ′ == ψ1 ∧ ψ2: [φ′]M = [ψ1]M ∩ [ψ2]M
case φ′ == [C]ψ: [φ′]M = Pre(C, [ψ]M )
case φ′ == [Cb]ψ: [φ′]M = Preb(C, [ψ]M )

where Pre and Preb can be computed in O(m) as follows:
Computation of Pre(C, [ψ]M ):

1. bucket sort the set of transitions possible from a state. In other words, iterate
through the set of all possible transitions (aC , aA\C) from a state s collecting
all transitions with the same aC (i.e., the same set of actions by the agents
in C) in the same ‘bucket’ (note that given the mapping γ from states to
strategic game forms, the number of buckets is known in advance);1

2. iterate through the set of buckets and put s in Pre(C, [ψ]M ) if there is a
bucket where for all the transitions (joint actions) in the bucket, o(s, aC ,
aA\C) ∈ [ψ]M .

Computation of Preb(C, [ψ]M ):

1. bucket sort the set of transitions possible from a state: iterate through the set
of all possible transitions (aC , aA\C) from a state s collecting all transitions
with the same aC and where c(aC) ≤ b in the same bucket;

2. iterate through the set of buckets and put s in Preb(C, [ψ]M ) if there is a
bucket where for all the transitions (joint actions) in the bucket, o(s, aC ,
aA\C) ∈ [ψ]M .

We might hope that the resource bounds in CLRG might reduce the complexity
of the model checking problem for formulas with bounds, but this is not the
case. In ATL, for an explicitly enumerated model with m states, the maximum
length of the pre-image computation for computing 〈〈C〉〉�φ is bounded by m.
In our case, if b/d < m, where d is the smallest resource cost for any action
possible by agents in C and any resource, then the maximum length of the pre-
image computation may be shorter than for ATL. However the saving cannot
be greater than m for each subformula of the property to be checked, and so
the overall saving can be no better than linear in the size of the property, which
doesn’t change the complexity class.

9 Conclusion and Further Work

We propose a logic CLRG for reasoning about resource limitations on coalitional
ability, and show how to express some example problems—including CRG deci-
sion problems—in CLRG. As far as we are aware, there are no other automatic
1 The buckets serve essentially the same role as the C-move states in [12].
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tools for solving CRG problems. We show how to use a standard ATL model-
checker for verifying CLRG properties. However for nested modalities with re-
source bounds the translation into ATL may cause an exponential blow-up. We
show that this can be avoided with a special purpose model-checking algorithm
for CLRG which is (as expected) linear in the size of the formula and the number
of transitions in the model. This gives an automatic verification procedure for
CRG properties which is EXPTIME (since the model is exponential in the size
of a CRG). For NP- and co-NP complete properties this is the best that can be
expected. In other work [13] we provide a complete and sound axiomatisation
for a related logic (without endowment counters and unbounded [C] operators).
Axiomatisation of CLRG is a subject of future work.
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Abstract. Building on a simple modal logic of context, the paper presents a dy-
namic logic characterizing operations of contraction and expansion on theories.
We investigate the mathematical properties of the logic, and show how it can cap-
ture some aspects of the dynamics of normative systems once they are viewed as
logical theories.

1 Introduction

In artificial intelligence as well as in philosophy, contexts—when addressed formally—
are often thought of as sets of models of given theories [7] or, more simply, as sets of
possible worlds [17]. Once a context is viewed as a set of models/possible worlds, its
content is nothing but the set of logical formulae it validates or, otherwise, its theory or
intension.

This perspective has been used, in [9], to develop a simple modal logic for repre-
senting and reasoning about contexts. This logic is based on a set of modal operators
[X ] where X is a label denoting the context of a theory. A formula [X ]ϕ reads ‘in the
context of X it is the case that ϕ’. The present paper develops a ‘dynamification’ of
such logic by studying the two following operations:

– Context expansion (in symbolsX+ψ), by means of which a context is restricted and
hence, its intension—its logical theory—strengthened. Such operation is similar to
the operation for announcement studied in DEL [21]. Its function is to restrict the
space of possible worlds accepted by the context X to the worlds where ψ is true.

– Context contraction (in symbols X−ψ), by means of which a context is enlarged
giving rise to a weaker logical theory. The function of this operation is to add to the
space of possible worlds accepted by context X some worlds in which ψ is false.

The resulting dynamic logic is studied from the point of view of its mathematical prop-
erties and illustrated through a running example. Just like the context logic introduced in
[9] was developed to cope with some problems in the analysis of normative systems, its
dynamic version will be illustrated by resorting to examples taken from the normative
domain. In particular, we will link context expansion to some kind of “promulgation”
of norms and context contraction to some kind of “derogation” of norms.1

1 The terms promulgation and derogation are borrowed from the first paper addressing norm
dynamics by formal means, that is, [2].
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This illustration will highlight the features that norm dynamics shares with theory
dynamics once norms are viewed as logical statements of the type: “a certain fact ϕ im-
plies a violation”. Such view of norms builds on those approaches to deontic logic which
stemmed from the work of Anderson [4] and Kanger [12]. Although rather abstract and,
under many respects, simplistic such view of norms has received considerable attention
by recent developments in the logical analysis of normative systems within the artificial
intelligence community (e.g., [1, 13, 18]).

The paper is organized as follows. In Section 2 we will briefly present the modal logic
of context of [9]. Section 3 is devoted to extend this logic with the two events X+ψ and
X−ψ which allow to model context dynamics. Finally, in Section 4, we will apply our
logical framework to norm change, i.e. norm promulgation and norm derogation. The
results of this application are compared with related work in Section 5. Conclusions
follow.

2 A Modal Logic of Context

The logic presented in this section is a simple modal logic designed to represent and
reason about a localized notion of validity, that is, of validity with respect to all models
in a given set. Such a given set is what is here called a context.

Let Φ = {p, q, . . .} be a countable non-empty set of propositional letters, and let
C = {X,Y, . . .} be a countable set of contexts. LProp is the propositional language.

2.1 Models

Definition 1. A context model (Cxt-model)M = (W,R, I) is a tuple such that:

– W is a nonempty set of possible worlds;
– R : C −→ 2W maps each context X to a subset of W ;
– I : Φ −→ 2W is a valuation.

We write RX for R(X) and w ∈ M for w ∈ W . For w ∈ M, the couple (M, w) is a
pointed context model.

A Cxt-model represents a logical space together with some of its possible restrictions,
i.e., the contexts. In our case, contexts are used to represent the restrictions to those sets
of propositional models satisfying the rules stated by a given normative system [9]. Let
us illustrate how they can be used to model normative systems.

Example 1 (A toy normative system). Consider a normative system according to which:
motorized vehicles must have a numberplate ; motorized vehicles must have an insur-
ance; bikes should not have an insurance; bikes are classified as not being a motorized
vehicle. Once a designated atom V is introduced in the language, which represents a
notion of “violation” [4], the statements above obtain a simple representation:

Rule 1: (mt ∧ ¬pl)→ V Rule 2: (mt ∧ ¬in)→ V
Rule 3: (bk ∧ in)→ V Rule 4: bk → ¬mt

A Cxt-modelM = (W,R, I), where I maps atoms mt , pl , in , bk and V to subsets of
W , models the normative system above as a context X if RX coincides with the subset
of W where Rules 1-4 are true according to propositional logic.
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2.2 Logic

The logic Cxt is now presented which captures the notion of validity with respect
to a context. To talk about Cxt-models we use a modal language LCxt containing
modal operators [X ] for every X ∈ C, plus the universal modal operator [U]. The set of
well-formed formulae of LCxt is defined by the following BNF:

LCxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ | [X ]ϕ

where p ranges over Φ and X over C. The connectives �,∨,→,↔ and the dual
operators 〈X〉 are defined as usual within LCxt as: 〈X〉ϕ = ¬[X ]¬ϕ, forX ∈ C∪{U}.

We interpret formulas of LCxt in a Cxt-models as follows: the [U] operator is inter-
preted as the universal modality [5], and the [X ] operators model restricted validity.

Definition 2. LetM be a Cxt-model, and let w ∈M.

M, w |= p iff w ∈ I(p);
M, w |= [X ]ϕ iff for all w′ ∈ RX ,M, w′ |= ϕ;
M, w |= [U]ϕ iff for all w′ ∈ W ,M, w′ |= ϕ.

and as usual for the Boolean operators. Formula ϕ is valid in M, noted M |= ϕ,
iff M, w |= ϕ for all w ∈ M. ϕ is Cxt-valid, noted |=Cxt ϕ, iff M |= ϕ for all
Cxt-modelsM.

Cxt-validity is axiomatized by the following schemas:

(P) all propositional axiom schemas and rules

(4XY ) [X ]ϕ→ [Y ][X ]ϕ
(5XY ) 〈X〉ϕ→ [Y ]〈X〉ϕ

(TU) [U]ϕ→ ϕ

(KX) [X ](ϕ→ ϕ′)→ ([X ]ϕ→ [X ]ϕ′)
(NX) IF � ϕ THEN � [X ]ϕ

where X,Y ∈ C ∪ {U}. The [X ] and [Y ] operators are K45 modalities strengthened
with the two inter-contextual interaction axioms 4XY and 5XY . [U] is an S5 modality.
Provability of a formula ϕ, noted �Cxt ϕ, is defined as usual.

Logic Cxt is well-behaved for both axiomatizability and complexity.

Theorem 1 ([9]). |=Cxt ϕ iff �Cxt ϕ.

Theorem 2. Deciding Cxt-validity is coNP-complete.

Proof (Sketch of proof). Satisfiability of S5 formulas is decidable in nondeterministic
polynomial time [5]. Let L[U] be the language built from the set of atoms Φ ∪ C (sup-
posing Φ and C are disjoint) and containing only one modal operator [U]. That is:

L[U] : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ

where p ranges overΦ∪C. It gets a natural interpretation on context models where [U] is
the global modality. Then one can show that the following is a satisfiability-preserving
polytime reduction f of LCxt to L[U]: f(p) = p; f(¬ϕ) = ¬f(ϕ); f(ϕ ∧ ϕ′) =
f(ϕ) ∧ f(ϕ′); f([U]ϕ) = [U]f(ϕ); f([X ]ϕ) = [U](X → f(ϕ)).

The same argument proves linear time complexity if the alphabet Φ is finite.
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Another interesting property of Cxt is that every formula ofLCxt is provably equiv-
alent to a formula without nested modalities, as the following proposition shows. We
first formally define the language without nested modalities:

L1
Cxt : ϕ ::= α | [X ]α | [U]α | ¬ϕ | ϕ ∧ ϕ

where α ranges over LProp and X over C. This result is of use in Proposition 3.

Proposition 1. For all ϕ ∈ LCxt there is ϕ1 ∈ L1
Cxt such that �Cxt ϕ↔ ϕ1.

Proof. By induction on ϕ. The Boolean cases clearly work. If ϕ is of the form [X ]ψ
with X ∈ C ∪ {U} then by IH there are αk, α

i
j , β

i ∈ LProp such that

ϕ↔ [X ]
∧

k∈Nl

(αk ∨
∨

i∈Nnk

([Xi]αi
1 ∨ . . . ∨ [Xi]αi

ni
∨ 〈Xi〉βi))).

However, using (4XY ) and (5XY ), one can easily show that

�Cxt [X ](αk ∨
∨

i∈Nnk

([Xi]αi
1 ∨ . . . ∨ [Xi]αi

ni
∨ 〈Xi〉βi)))↔

([X ]αk ∨
∨

i∈Nnk

([Xi]αi
1 ∨ . . . ∨ [Xi]αi

ni
∨ 〈Xi〉βi))).

This completes the proof.

2.3 Normative Systems in Cxt

We are ready to provide an object-level representation of Example 1. The contextual
operators [X ] and the universal operator [U] can be used to define the concepts of classi-
ficatory rule, obligation and permission which are needed to model normative systems.
Classificatory rules are of the form “ϕ counts as ψ in the normative systemX” and their
function in a normative systems is to specify classifications between different concepts
[15]. For example, according to the classificatory rule “in the context of Europe, a piece
of paper with a certain shape, color, etc. counts as a 5 Euro bill”, in Europe a piece of
paper with a certain shape, color, etc. should be classified as a 5 Euro bill. The concept
of classificatory rule is expressed by the following abbreviation:

ϕ⇒X ψ
def
= [X ](ϕ→ ψ)

where ϕ ⇒X ψ reads ‘ϕ counts as ψ in normative system X’. As done already in
Example 1, by introducing the violation atom V we can obtain a reduction of deontic
logic to logic Cxt along the lines first explored by Anderson [4]. As far as obligations
are concerned, we introduce operators of the form OX which are used to specify what
is obligatory in the context of a certain normative system X :

OXϕ
def
= ¬ϕ⇒X V

According to this definition, ‘ϕ is obligatory within context X’ is identified with ‘¬ϕ
counts as a violation in normative system X’. Note that we have the following
Cxt-theorem:
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�Cxt ((ϕ⇒X ψ) ∧ (ϕ⇒X ¬ψ))→ OX¬ϕ (1)

Every OX obeys axiom K and necessitation, and is therefore a normal modal operator.

�Cxt OX(ϕ→ ψ)→ (OXϕ→ OXψ) (2)

IF �Cxt ϕ THEN �Cxt OXϕ (3)

Note that the formula OX⊥ is consistent, hence our deontic operator does not satisfy
the D axiom.

We define the permission operator in the standard way as the dual of the obligation
operator: “ϕ is permitted within context X”, noted PXϕ. Formally:

PXϕ
def
= ¬OX¬ϕ

Formula PUϕ should be read “ϕ is deontically possible”.

Example 2 (Talking about a toy normative system). Consider again the normative sys-
tem of Example 1. We can now express in Cxt that Rules 1-4 explicitly belong to
context X :

Rule 1: OX(mt → pl) Rule 2: OX(mt → in)
Rule 3: OX(bk → ¬in) Rule 4: bk ⇒X ¬mt

Rules 1′-4′ explicitly localize the validity of Rules 1-4 of Example 1 to context X .
Logic Cxt is therefore enough expressive to represent several (possibly inconsistent)
normative systems at the same time.

3 Dynamic Context Logic

In the present section we ‘dynamify’ logic Cxt.

3.1 Two Relations on Models

We first define the relations
X+ψ−→ and

X−ψ−→ on the set of pointed Cxt-models.

Definition 3. Let (M, w) = (W,R, I, w) and (M′, w′) = (W ′, R′, I ′, w′) be two
pointed Cxt-models, and let ϕ ∈ LCxt and X ∈ C.

We set (M, w)
X+ψ−→ (M′, w′) iff W = W ′, w = w′, I = I ′, and

– R′
Y = RY if Y �= X;

– R′
X = RX ∩ ||ψ||M.

We set (M, w)
X−ψ−→ (M′, w′) iff W = W ′, w = w′, I = I ′, and

– R′
Y = RY if Y �= X;

– R′
X =

{
RX ifM, w |= ¬[X ]ψ ∨ [U]ψ
RX ∪ S otherwise, for some ∅ �= S ⊆ ||¬ψ||M

In case (M, w)
X+ψ−→ (M′, w′) (resp. (M, w)

X−ψ−→ (M′, w′)), we say that M′ is a
(context) expansion (resp. contraction) ofM.
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In the above definition, ||ψ||M = {w ∈ M :M, w |= ψ}. So in both cases, it is only
the context X which changes from M to M′. In the first case, it is restricted to the
worlds that satisfy ψ, and in the second case, it is enlarged with some worlds which
satisfy ¬ψ, except if such worlds do not exist in the model ([U]ψ) or if ¬ϕ is already
consistent with the context (¬[X ]ψ). Note that there might be several contractions of a

given Cxt-model but there is always a unique expansion. The relation
X−ψ−→ thus defines

implicitly a family of contraction operations. The following proposition shows that
X−ψ−→

is essentially the converse relation of
X+ψ−→.

Proposition 2. Let (M, w) and (M′, w′) be two pointed Cxt-models and ψ ∈ LCxt.

Then (M, w)
X+ψ−→ (M′, w′) iff (M′, w′)

X−ψ−→ (M, w) andM′, w′ |= [X ]ψ.

Proof. The left to right direction is clear. Assume that (M′, w′)
X−ψ−→ (M, w) and

M′, w′ |= [X ]ψ. Then R′
Y = RY if Y �= X by definition. If M′, w′ |= ¬[U]ψ

then R′
X = RX ∪ S for some ∅ �= S ⊆ ||¬ψ||M becauseM′, w′ |= [X ]ψ ∧ ¬[U]ψ.

So R′
X = RX ∩ ||ψ||M. Otherwise, ifM′, w′ |= [U]ψ then R′

X = RX by definition.
So R′

X = RX ∩ ||ψ||M becauseM′, w′ |= [X ]ψ. In both cases R′
X = RX ∩ ||ψ||M.

Therefore (M, w)
X+ψ−→ (M′, w′).

3.2 Logic

The language of the logic DCxt is obtained by adding the dynamic operators [X+ψ]
and [X−ψ] to the language LCxt:

LDCxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [X ]ϕ | [U]ϕ | [X+ψ]ϕ | [X−ψ]ϕ

where p ranges over Φ, X over C and ψ over LCxt. [X+ψ]ϕ reads ‘after the expansion
of the contextX by ψ, ϕ is true’, and [X−ψ]ϕ reads ‘after any contraction of the context
X by ψ, ϕ is true’.

Definition 4. LetM be a Cxt-model. The truth conditions for LDCxt inM are those
of Definition 2, plus:

M, w |= [X+ψ]ϕ iff M′, w′ |= ϕ for all Cxt-models (M′, w′)

such that (M, w)
X+ψ−→ (M′, w′);

M, w |= [X−ψ]ϕ iff M′, w′ |= ϕ for all Cxt-models (M′, w′)

such that (M, w)
X−ψ−→ (M′, w′).

As before,M |= ϕ iffM, w |= ϕ for all w ∈ M, and ϕ is DCxt-valid (|=DCxt ϕ) iff
M |= ϕ for all Cxt-modelsM.

The operator [X−ψ] is thus useful if we want to have general properties about our family
of contractions or about a situation; for example, given some formulasψ1, . . . , ψn,what
would be true after any sequence of contractions and expansions by these formulas? Can
we get an inconsistency with a specific choice of contractions?
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In order to axiomatize the DCxt-validities we define for every X ∈ C two auxiliary
languages L�=X and L=X :

L=X : ϕ ::= [X ]α | ¬ϕ | ϕ ∧ ϕ
L�=X : ϕ ::= α | [Y ]α | ¬ϕ | ϕ ∧ ϕ

where α ranges over LProp and Y over (C ∪ {U})− {X}.
Logic DCxt is axiomatized by the following schemata:

(Cxt) All axiom schemas and inference rules of Cxt
(R+1) [X+ψ]ϕ�=X ↔ ϕ�=X

(R+2) [X+ψ][X ]α↔ [X ](ψ → α)
(R+3) [X+ψ]¬ϕ↔ ¬[X+ψ]ϕ
(R−1) [X−ψ](ϕ�=X ∨ ϕ=X)↔ (ϕ�=X ∨ [X−ψ]ϕX)
(R−2) ¬[X−ψ]⊥
(R−3) [X−ψ]([X ]α1 ∨ . . . ∨ [X ]αn ∨ 〈X〉α)↔

((¬[X ]ψ ∨ [U]ψ) ∧ ([X ]α1 ∨ . . . ∨ [X ]αn ∨ 〈X〉α))
∨ (([X ]ψ ∧ ¬[U]ψ) ∧
((
∨
i

([X ]αi ∧ [U](ψ ∨ αi))) ∨ 〈X〉α ∨ [U](ψ ∨ α)))

(K+) [X+ψ](ϕ→ ϕ′)→ ([X+ψ]ϕ→ [X+ψ]ϕ′)
(K−) [X−ψ](ϕ→ ϕ′)→ ([X−ψ]ϕ→ [X−ψ]ϕ′)

(RRE) Rule of replacement of proved equivalence

where X ∈ C, ϕ,ϕ′ ∈ LDCxt, ψ ∈ LCxt, ϕ=X ∈ L=X , ϕ�=X ∈ L�=X , and α, αi . . . ∈
LProp.

Note that from (R−1) and (R−2) one can deduce [X−ψ]ϕ�=X ↔ ϕ�=X . The formulae
above are reduction axioms:

Proposition 3. For all ϕDCxt ∈ LDCxt there is ϕCxt ∈ LCxt such that �DCxt
ϕDCxt ↔ ϕCxt.

Proof (Sketch of proof). (By induction on the number of occurrences of dynamic op-
erators.) Let ϕDCxt ∈ LDCxt and ϕ′

DCxt be one of its sub-formulas of the form
[X+ψ]ϕCxt or [X−ψ]ϕCxt, with ϕCxt ∈ LCxt. By Proposition 1, there is ϕ1

Cxt ∈
L1

Cxt such that �Cxt ϕCxt ↔ ϕ1
Cxt. So �DCxt [X+ψ]ϕCxt ↔ [X+ψ]ϕ1

Cxt by (REE)
and (K+). Now, thanks to axioms (R+1), (R+2) and (R+3) and because ϕ1

Cxt ∈ L1
Cxt,

one can easily show that there is ψCxt ∈ LCxt such that �DCxt [X+ψ]ϕ1
Cxt ↔ ψCxt.

For the case [X−ψ]ϕCxt we apply the same method using (R−1), (R−2) and (R−3). So
�DCxt ϕ

′
DCxt ↔ ψCxt. Now we replace ϕ′

DCxt by ψCxt in ϕDCxt. This yields an
equivalent formula (thanks to (RRE)) with one dynamic operator less. We then apply to
this formula the same process we applied to ϕCxt until we get rid of all the dynamic
operators.
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So, if we want to check that a given formula of the form [X ± ψ1] . . . [X ± ψn]ϕ holds
in a Cxt-model, instead of computing all the corresponding sequences of contractions
and expansions ψ1, . . . , ψn of the Cxt-model, we can also reduce the formula to one
of LCxt and check it on the original Cxt-model. This way to proceed might be com-
putationally less costly. For example, �DCxt [X−α]¬[X ]α ↔ 〈U〉¬α. As in DEL,
soundness, completeness and decidability follow from Proposition 3:

Theorem 3. |=DCxt ϕ iff �DCxt ϕ. Deciding DCxt-validity is decidable.

Finally, it should be noted that we could easily enrich this formalism with specific
contraction operators. For example we could add to LDCxt the contraction operator
[X � ψ]ϕ whose semantics would be defined as follows: forM = (W,R, I),M, w |=
[X � ψ]ϕ iffM′, w |= ϕ, whereM′ = (W,R′, I) with R′

Y = RY for Y �= X and
R′

X = RX ∪ {w ∈ W | M, w |= ¬ψ}. To get a complete axiomatization, we just
have to add to DCxt the following axiom schemas: (1) [X � ψ]ϕ�=X ↔ ϕ�=X ; (2)
[X � ψ]¬ϕ ↔ ¬[X � ψ]ϕ; (3) [X � ψ][X ]α ↔ [X ]α ∧ [U](¬ψ → α); and the
distribution axiom (K�). In fact this contraction � belongs to the family of contractions
defined in Definition 3, and so we get �DCxt [X−ψ]ϕ→ [X � ψ]ϕ.

4 A Logical Account of Norm Change

Just as we defined the static notions of obligation and classificatory rules on the basis
of Cxt, we can in the same spirit define the dynamic notions of promulgation and
derogation of obligation and classificatory rules on the basis of DCxt:

+(ϕ⇒X ψ)
def
= X+(ϕ→ ψ) +OXψ

def
= X+(¬ψ → V)

−(ϕ⇒X ψ)
def
= X−(ϕ→ ψ) −OXψ

def
= X−(¬ψ → V)

Operator [+(ϕ ⇒X ψ)]χ (resp. [−(ϕ ⇒X ψ)]χ) should be read ‘after the promulga-
tion (resp. after any derogation) of the classificatory rule ϕ⇒X ψ, χ is true’. Likewise,
[+OXψ]ϕ (resp. [−OXψ]ϕ) should be read ‘after the promulgation (resp. after any dero-
gation) within context X of the obligation ψ, χ is true’.

Example 3 (Changing a toy normative system). In Example 2, after the legislator’s
proclamation that motorized vehicles having more than 50cc (mf ) are obliged to have
a numberplate (event+OX((mt ∧ mf ) → pl ) and that motorized vehicles having less
than 50cc (¬mf ) are not obliged to have a numberplate (event−OX((mt ∧ ¬mf ) →
pl ) we should expect that motorbikes having more than 50cc have the obligation to
have a numberplate and motorbikes having less than 50cc have the permission
not to have a numberplate. This is indeed the case as the following formula is a
theorem:

PU(mt ∧ ¬mf ∧ ¬pl)→ ([+OX((mt ∧mf )→ pl)][−OX((mt ∧ ¬mf )→ pl)]
OX((mt ∧mf )→ pl) ∧PX(mt ∧ ¬mf ∧ ¬pl)).

More generally, we have the following proposition.



Dynamic Context Logic 23

Proposition 4. The following formulae are DCxt-theorems:

[+(ϕ⇒X ψ)]ϕ⇒X ψ (4)

[+OXψ]OXψ (5)

PU¬ψ → [−OXψ]PX¬ψ (6)

((ϕ⇒X ψ) ∧ 〈U〉¬(ϕ→ ψ))→ (7)

[−(ϕ⇒X ψ)][+(ϕ⇒X ¬ψ)]¬((ϕ⇒X ¬ψ) ∧ (ϕ⇒X ψ))
(OX(ϕ→ ψ) ∧PU¬(ϕ→ ψ))→ (8)

[−OX(ϕ→ ψ)][+OX(ϕ→ ¬ψ)]¬(OX(ϕ→ ¬ψ) ∧OX(ϕ→ ψ))
(PU¬(ψ → ϕ) ∧OXϕ)→ [−OX(ψ → ϕ)]¬OXϕ (9)

(ϕ⇒X ψ)→ ([−OXϕ]ξ → [−OXψ]ξ) (10)

(〈U〉¬(ϕ→ ψ) ∧ (ϕ⇒X ψ) ∧ (ψ ⇒X ξ))→ 〈−ϕ⇒X ψ〉¬(ϕ⇒X ξ) (11)

¬[X ]ψ → (ϕ↔ [X−ψ]ϕ) (12)

α→ [X−ψ][X+ψ]α for α ∈ LProp (13)

[Y ]α→ [X−ψ][X+ψ][Y ]α for α ∈ LProp (14)

Proofs are omitted for space reasons but the theorems can easily be checked semanti-
cally. Let us spell out the intuitive readings of these formulae. Formulae 4 and 5 simply
state the obvious consequences of the expansion of a context with a classificatory rule
and with an obligation. Formula 6 states that if a state of affairs can possibly be permit-
ted, then derogating the obligation for that state of affairs gives rise to a permission for
that state of affairs. It is worth noticing that this captures a notion of “strong permission”,
as it is often called in the literature on deontic logic (see, for instance, [11]), that is, a
permission which is obtained as the effect of an explicit derogation to norms in force.
Formulae 8 and 9 describe recipes for appropriately updating contexts. For instance, For-
mula 9 roughly says that if I want to make ¬ψ obligatory in ϕ-situations starting from
a context where ψ is instead obligatory, I have to first derogate this latter obligation and
then promulgate the desired one if I do not want to end up in situations where bothψ and
¬ψ are obligatory. Formula 9 states that if ϕ is obligatory, then by derogating that ϕ is
obligatory inψ-situations, an exception is introduced so thatϕ is not obligatory in an un-
conditional way any more. Formula 10 says that, in the presence of a classificatory rule,
by derogating the obligatoriness of the antecedent of the rule, we obtain a derogation
of the obligatoriness of its consequent too. Finally, Formula 11 states that if I have two
interpolated classificatory rules, by derogating one of them I undercut the conclusion
I could draw by transitivity before the derogation. Formulae 12-14 are reminiscent of
AGM postulates. Formula 12 expresses a form of minimality criterion, while Formulae
13 and 14 state two recovery principles for formulae belonging to a restricted language.

5 Related Work on Norm Change

Formal models of norm change have been drawing attention since the seminal work
of Alchourrón and Makinson on the logical structure of derogation in legal codes [3]
which expanded into a more general investigation of the logic of theory change (alias
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belief change) [2]. In this section we position our work with respect to AGM and related
approaches to norm change available in the literature.

The first thing to notice about AGM is that its models are about the contraction
of LProp-theories, and focus on minimal change. In contrast, we consider here a modal
languageLCxt. Our contraction operator “−” allows to express properties about a family
of contractions, which actually do not necessarily satisfy the AGM criteria of minimal
change. However, as shown in Proposition 4, our operator enjoys a minimality criterion
(Formula 12) and two forms of recovery (Formulae 13 and 14). With respect to recovery
it should be noticed, on the other hand, that formula ¬[X ]p → [X−p][X+p]¬[X ]p is
instead invalid, and hence that Formulae 13 and 14 do not generalize to all formulae in
LCxt.

Recently, norm change has gained quite some attention in the multi-agent systems
community. As it is often the case, two main methodological approaches are recogniz-
able: on the one hand syntactic approaches—inspired by legal practice—where norm
change is considered as an operation performed directly on the explicit provisions con-
tained in the “code” of the normative system [6, 8], and on the other hand semantic
approaches, which are inspired by the dynamic logic paradigm [21] and which look at
norm change as some form of model-update. Our contribution clearly falls in the sec-
ond group and for this very reason our logic can be used for the formal specification
and verification of computational models of norm-based interaction. Our approach is in
fact close in spirit to Segerberg’s [16], who argued for an integration of AGM belief re-
vision with Hintikka-like static logics of belief: we here do the same for ‘Andersonian’
deontic logic.

From the proposals belonging to this latter group, it is worth comparing our work in
particular with the approach proposed in [14]. There, an extension of the dynamic logic
of permission (DLP) of [20] with operations of granting or revoking a permission was
proposed. They call DLPdyn this DLP extension. Their operations are similar to our op-
erations of norm promulgation and norm derogation. DLP is itself an extension of PDL
(propositional dynamic logic) [10] where actions are used to label transitions from one
state to another state in a model. The DLPdyn operation of granting a permission just
augments the number of permitted transitions in a model, whereas the operation of re-
voking a permission reduces the number of permitted transitions. However there are
important differences between our approach and Pucella & Weissman’s. For us, norma-
tive systems are more basic than obligations and permissions, and the latter are defined
from (and grounded on) the former. Moreover, dynamics of obligations and permis-
sions are particular cases of normative system change (normative system expansion and
contraction). Thus, we can safely argue that our approach is more general than Pucella
& Weissman’s in which only dynamics of permissions are considered. It is also to be
noted that, while in our approach classificatory rules and their dynamics are crucial con-
cepts in normative change, in DLPdyn they are not considered and even not expressible.
In future work we will analyze the relationships between DLPdyn and our logic, and
possibly a reduction of DLPdyn to our logic DCxt.

While Pucella & Weissman’s revocation of permissions corresponds to public an-
nouncements in DEL, no DEL approaches have proposed the counterpart of their oper-
ation of granting permissions, alias contractions (with the exception of [19], but in the
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framework of a logic of preference). Arguably, the reason for it is that it is difficult to
define contraction operations both preserving standard properties of epistemic models
such as transitivity and Euclidianity and allowing for reduction axioms. This is made
instead possible in DCxt by the intercontextual interaction axioms 4XY and 5XY .

6 Conclusions

We have introduced and studied a dynamic logic accounting for context change, and
have applied it to analyze several aspects of the dynamics of norms, viz. the dynamics
of permissions, obligations and classificatory rules. Although the logic has been applied
here only to provide a formal analysis of norm-change, it is clear that its range of ap-
plication is much broader. Viewed in its generality, the logic is a logic of the dynamics
of propositional theories, and as such, can be naturally applied to formal epistemology
by studying theory-change, or to non-monotonic reasoning by studying how the con-
text of an argumentation evolves during, for instance, a dialogue game. This kind of
applications are future research.
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Abstract. Questions are triggers for explicit events of ‘issue manage-
ment’. We give a complete logic in dynamic-epistemic style for events of
raising, refining, and resolving an issue, all in the presence of information
flow through observation or communication. We explore extensions of the
framework to longer-term temporal protocols and multi-agent scenarios.
We sketch a comparison with two main alternative accounts: Hintikka’s
interrogative logic and Groenendijk’s inquisitive semantics.

Keywords: question, issue management, logical dynamics.

1 Introduction and Motivation

Questions are different from statements, but they are just as important in driv-
ing reasoning, communication, and general processes of investigation. The first
logical studies merging questions and propositions seem to have come from the
Polish tradition: cf. [12]. A forceful modern defender of this dual perspective
is Hintikka, who has long pointed out how any form of inquiry depends on an
interplay of inference and answers to questions. Cf. [13] and [14] on the resulting
‘interrogative logic’, and the epistemological views behind it. These logics are
mainly about general inquiry and learning about the world. But there is also
a related stream of work on the questions in natural language, as important
speech acts with a systematic linguistic vocabulary. Key names are Groenendijk
& Stokhof: cf. [16], [17], and the recent ‘inquisitive semantics’ of [18] ties this in
with a broader information-oriented ‘dynamic semantics’. Logic of inquiry and
logic of questions are related, but there are also differences in thrust: a logic of
‘issue management’ that fits our intuitions is not necessarily the same as a logic
of speech acts that must make do with what natural language provides.

In this paper, we do not choose between these streams, but we propose a
different technical approach. Our starting point is a simple observation. Ques-
tions are evidently important informational actions in human agency. Now the
latter area is the birth place of dynamic-epistemic logic of explicit events that
make information flow. But surprisingly, existing dynamic-epistemic systems do
not give an explicit account of what questions do! In fact, central examples in
the area have questions directing the information flow (say, by the Father in
the puzzle of the Muddy Children) – but the usual representations in systems
like PAL or DEL leave them out, and merely treat the answers, as events of
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public announcement. Can we make questions themselves first-class citizens in
dynamic-epistemic logic, and get closer to the dynamics of inquiry? We will
show that we can, following exactly the methodology that has already worked
in other areas, and pursuing the same general issues: what are natural acts of
inquiry, and how can dynamic logics bring out their structure via suitable recur-
sion axioms? Moreover, by doing so, we at once get an account of non-factual
questions, multi-agent aspects, temporal sequences, and other themes that have
already been studied in a DEL setting.

2 A Toy-System of Asking and Announcing

The methodology of dynamic-epistemic logic starts with a static base logic de-
scribing states of the relevant phenomenon, and identifies the key informational
state-changing events. Then, dynamic modalities are added to the base language,
and their complete logic is determined on top of the given static logic. To work
in the same style, we need a convenient static semantics to ‘dynamify’. We take
such a model from existing semantics of public questions, considering only one
agent first, for simplicity. We work in the style of public announcement logic
PAL, though our logic of questions will also have its differences.

2.1 Epistemic Issue Models

A simple framework for representing questions uses an equivalence relation over
some relevant domain of alternatives, that we will call the ‘issue relation’. This
idea is found in many places, from linguistics (cf. [16]) to learning theory (cf.
[19]): the current ‘issue’ is a partition of the set of options, with partition cells
standing for the areas where we would like to be. This partition may be induced
by a conversation whose current focus are the issues that have been put on the
table, or a game where finding out about certain issues has become important to
further play, a learning scenario for the language fed to us by our environment,
or even a whole research program with an agenda determining what is currently
under investigation. The ‘alternatives’ or worlds may range here from simple
finite settings like deals in a card game to complex infinite histories representing
a total life experience. Formally, all this reduces to the following structure:

Definition 1 (Epistemic Issue Model). An epistemic issue model is a
structure M = 〈W,∼,≈, V 〉 where:

- W is a set of possible worlds or states (epistemic alternatives),
- ∼ is an equivalence relation on W (epistemic indistinguishability),
- ≈ is an equivalence relation on W (the abstract issue relation),
- V : P→ ℘(W ) is a valuation for atomic propositions p ∈ P.

We could introduce models with more general structure, but equivalence rela-
tions will suffice for the points that we are trying to make in this paper.

2.2 Static Language of Information and Issues

To work with these structures, we need matching modalities in our language.
Here we make a minimal choice of modal and epistemic logic for state spaces plus
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two modalities describing the issue structure. First, Kϕ talks about knowledge
or semantic information of an agent, its informal reading is “ϕ is known”, and its
explanation is as usual: “ϕ holds in all epistemically indistinguishable worlds”.
To describe our models a bit further, we add a universal modality Uϕ saying
that “ϕ is true in all worlds”. Next, we use Qϕ to say that, locally in a given
world, the current structure of the issue-relation validates ϕ: “ϕ holds in all
issue-equivalent worlds”. While convenient, this local notion does not express the
global assertion that the current issue is ϕ, which will be defined later. Finally,
we find a need for a notion that mixes the epistemic and issue relations, talking
(roughly) about what would be the case if the issue were resolved given what we
already know. Technically, we add an intersection modality Rϕ saying that “ϕ
holds in all epistemically indistinguishable and issue equivalent worlds”. While
such modalities are frequent in many settings, they complicate axiomatization.
We will assume the standard device of adding nominals naming single worlds
(cf. [23] [24] for recent instances of this technique in the DEL setting).1

Definition 2 (Static Language). The language LELQ(P, N) has disjoint
countable sets P and N of propositions and nominals, respectively, with p ∈ P, i ∈
N. Its formulas are defined by: ⊥ | p | i | ¬ϕ | (ϕ ∧ ψ) | Kϕ | Qϕ | Rϕ | Uϕ.

Modal formulas of this static language are interpreted in the following way:

Definition 3 (Interpretation). Formulas are interpreted in models M at
worlds w with the usual Boolean clauses, and the following modal ones:

M |=w Kϕ iff for all v ∈W : w ∼ v implies M |=v ϕ,
M |=w Qϕ iff for all v ∈W : w ≈ v implies M |=v ϕ,
M |=w Rϕ iff for all v ∈W : w (∼∩≈) v implies M |=v ϕ,
M |=w Uϕ iff for all w ∈W : M |=w ϕ,

This semantics validates a number of obvious principles reflecting connections
between our modalities. In particular, the following are valid: Uϕ→ Kϕ,Uϕ→
Qϕ,Uϕ → Rϕ, and also Kϕ → Rϕ,Qϕ → Rϕ. Corresponding facts hold for
existential modalities Û , etc., defined as usual.

Next, the intersection modality Rϕ cannot be defined in terms of others. In
particular, R̂ϕ is not equivalent with K̂ϕ ∧ Q̂ϕ. However, the use of so-called
‘nominals’ i from hybrid logic helps us to completeness, by the valid converse:

K̂(i ∧ ϕ) ∧ Q̂(i ∧ ϕ)→ R̂ϕ

Our modal language can define various basic global statements describing the
current structure of inquiry. For instance, here is how it says which propositions
ϕ are ‘settled’ given the current structure of the issue-relation:

Definition 4 (Settlement). The current issue settles fact ϕ iff U(Qϕ∨Q¬ϕ).
1 As one illustration, working with nominals requires a modified valuation function in

Definition 1, to a V : P � N → ℘(W ) mapping every proposition p ∈ P to a set of
states V (p) ⊆ W , but every nominal i ∈ N to a singleton set V (i) of a world w ∈ W .
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2.3 Static Base Logic of Information and Issues

As for reasoning with our language, we write |= ϕ if the static formula ϕ is true
in every model at every world. The static epistemic logic ELQ of questions in
our models is defined as the set of all validities: ELQ = {ϕ ∈ LELQ : |= ϕ}.

We write �s ϕ iff ϕ is provable in the proof system given in Table 1.

Table 1. The proof system ELQ

All propositional tautologies Inclusion: Uϕ → Kϕ, Uϕ → Qϕ, Uϕ → Rϕ

S5 axioms for U ,K,Q and R Intersection: R̂i ↔ K̂i ∧ Q̂i, Kϕ → Rϕ, Qϕ → Rϕ

Nominals: Û(i ∧ ϕ) → U(i → ϕ) Necessitation and Modus Ponens

These laws of reasoning derive many intuitive principles. For instance, here is
how agents have introspection about the current public issue: U(Qp ∨ Q¬p) �
UU(Qp ∨Q¬p) � KU(Qp ∨Q¬p).
Theorem 1 (Completeness of ELQ). For every formula ϕ ∈ LELQ(P, N):

|= ϕ if and only if �s ϕ

Proof. By standard techniques for multi-modal hybrid logic.

2.4 Dynamic Actions of Issue Management

Now we look into basic actions that change the issue relation in a given model. We
do this first by some pictures where epistemic indistinguishability is represented
by links, and the issue relation by partition cells. For simplicity, we start with
the initial issue as the universal relation, represented by the bordering frame.

In Figure 1, the first transition illustrates the effect of asking a question: the
issue relation is split into p and ¬p cells. The second transition illustrates the
effect of asking a second question: the issue partition is further refined.

In Figure 2, the first transition models an announcement: indistinguishability
links between p and ¬p worlds are removed. The second transition is the effect
of a second announcement, the epistemic partition is further refined. Here we
use special events congenial to this setting, viz. the link-cutting announcements
of van Benthem & Liu [9] that do not throw away worlds.
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Fig. 1. Effects of Asking Yes/No Questions
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There is a certain symmetry between asking a question and making a soft
announcement. One refines the issue, the other the information partition:

p q p q

p q p q
�� ��

�� �	

p !−→

p q p q

p q p q
�� ��

�� �	

q !−→

p q p q

p q p q
�� ��

�� �	

Fig. 2. Almost Symmetrical Effects of ‘Soft’ Announcing

Definition 5 (Questions & Announcements). The execution of a ϕ? action
in a given model M results in a changed model Mϕ? = 〈Wϕ?,∼ϕ?,≈ϕ?, Vϕ?〉, with
ϕ≡M = {(w, v) | ‖ϕ‖Mw = ‖ϕ‖Mv }. Likewise, the execution of a ϕ! action results
in Mϕ! = 〈Wϕ!,∼ϕ!,≈ϕ!, Vϕ!〉, and we then have:

Wϕ? = W Wϕ! = W

∼ϕ? = ∼ ∼ϕ! = ∼∩ ϕ≡M

≈ϕ? = ≈ ∩ ϕ≡M ≈ϕ! = ≈
Vϕ? = V Vϕ! = V

The symmetry in this mechanism is lost if we let p! be an executable action only
if it is truthful, while the corresponding question p? is executable in every world
in a model, even those not satisfying p.

This attractive setting suggests further operations on information and issues.
Figure 3 contains two more issue management actions. In the first example two
Yes/No questions p? and q? are asked and a resolving action follows on the
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Fig. 3. Resolving and Refining Actions
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epistemic relation. In the second, two announcements p! and q! are made, and
a refinement action follows on the issue relation, adjusting it to what agents
already know. These operations are natural generalizations of asking and an-
nouncing, that need not have natural language correspondents. They can be
formally defined by abstract model operations as indicated in Definition 6.

Definition 6 (Resolution and Refinement). The execution of the ‘resolve’
action !, and of the ‘refine’ action ? in model M results in a changed model
M! = 〈W!,∼!,≈!, V!〉, respectively, M? = 〈W?,∼?,≈?, V?〉 with:

W? = W W! = W
∼? = ∼ ∼! = ∼∩ ≈
≈? = ≈ ∩ ∼ ≈! = ≈
V? = V V! = V

Again, these two actions are symmetric - suggesting that we could view, say, the
‘issue manager’ as an epistemic information agent.

In light of the previous observations we can also note that the ‘refine’ ac-
tion behaves analogously to the intersection of indistinguishability relations in
the usual treatment of “Distributed group knowledge” in the literature. This
notion of group knowledge represents what the agents would know by pooling
their information. This observation will become even more relevant in a multi-
agent setting and in combination with other group notions for issue managment,
defining an issue that is common to a group of agents.

2.5 Dynamic Language of Issue Management

In order to talk about the above changes, dynamic modalities are added to the
earlier modal language of static epistemic situations:

Definition 7 (Dynamic Language). Language LDELQ(P, N) is defined by
adding the following clauses to Definition 2: · · · | [ϕ!]ψ | [ϕ?]ψ | [?]ϕ | [! ]ϕ
These are interpreted by adding the following clauses to Definition 3:

Definition 8 (Interpretation). Formulas are interpreted in M at w by the
following clauses, where models Mϕ?, Mϕ!, M? and M! are as defined above:

M |=w [ϕ!]ψ iff M |=w ϕ implies Mϕ! |=w ψ,
M |=w [ϕ?]ψ iff Mϕ? |=w ψ,
M |=w [?]ϕ iff M? |=w ϕ
M |=w [! ]ϕ iff M! |=w ϕ

This language defines useful notions about questions and their relation with
answers from the literature. We only mention two of them here:

Definition 9 (Question Entailment). For formulas ϕ0, . . . , ϕn, ψ ∈ Lprop
DELQ

?ϕ0, . . . , ?ϕn entail ?ψ iff |=p [ϕ0?] · · · [ϕn?]U((ψ → Qψ) ∧ (¬ψ → Q¬ψ)).

Definition 10 (Answer Compliance). For formulas ϕ0, . . . , ϕn, ψ ∈ Lprop
DELQ

?ϕ0; · · · ; ?ϕn license !ψ iff |=p [ϕ0?] · · · [ϕn?]¬((¬ψ ∧ Q̂ψ) ∨ (ψ ∧ Q̂¬ψ)).
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An interesting property, also observed in a preference change context in [9] and
[6], is that, unlike for standard announcements, implemented by world elimina-
tion, there is no ‘action contraction’ principle equating two or more successive
questions to a single one with identical effect:

Fact 1 (Proper Iteration). There is no question composition principle.

Proof. If one single assertion had the same effect as a sequence ϕ?;ψ?, then,
starting with the issue as the universal relation, such a sequence will always
induce a two, not four, element partition (cf. Figure 3).

Validities encode reasoning in advance about later epistemic effects of asking
questions and answering them. Here is an example:

Fact 2 (Questioning Thrust). The formula K[ϕ?][ ! ]U(Kϕ∨K¬ϕ) is valid.

This says that agents know that the effect of a question followed by resolution is
knowledge. Such results generalize to more complex types of questions. Thus, our
logic encodes a formal base theory of question answering, usually investigated
in the literature using rather ad-hoc approaches.

Finally, this system brings to light phenomena reminiscent of DEL. For in-
stance, asking the same question repeatedly can have different effects on a model,
as illustrated by the question: (Q̂i→ (j ∨ k))∧ ((Q̂j ∧ p)→ Q̂i) starting with ≈
as the universal relation in a three-world model i, j, k where p is true at k.

2.6 Complete Dynamic Logic of Informational Issues

Our examples show that predicting epistemic effects of asking questions is not
always easy, but they also suggest an interesting algebra of operations on models.
For both purposes, we axiomatize a complete dynamic epistemic logic of ques-
tions. Satisfaction and validity are defined as before. The dynamic epistemic logic
of questioning based on a partition modeling (henceforth, DELQ) is defined as:

DELQ = {ϕ ∈ LDELQ
(P, N) : |= ϕ}

We introduce a new proof system by adding the reduction axioms in Table 2 to
the proof system for the static fragment from Table 1.

To save some space, in this short paper, Table 2 only lists axioms for two of
the four dynamic modalities. Soft announcements 〈ϕ!〉 satisfy the usual PAL-
style axioms given in [9], plus principles for its interaction with the two new
base modalities involving questions, such as: 〈ϕ!〉Q̂ψ ↔ (ϕ ∧ Q̂〈ϕ!〉ψ). Also, the
axioms for the refinement action [?] or are those listed below for the ‘resolving’
action with the modalities K and Q interchanged. We write � ϕ iff ϕ is provable
in the system from Tables 1 and 2.

Theorem 2 (Soundness). The reduction axioms in Table 2 are sound.

Proof. We discuss two cases that go beyond mere commutation of operators.
The first, (Asking & Partition), explains how questions refine a partition:

[ϕ?]Qψ ↔ (ϕ ∧Q(ϕ→ [ϕ?]ψ)) ∨ (¬ϕ ∧Q(¬ϕ→ [ϕ?]ψ))
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Table 2. Reduction axioms for DELQ

Asking&Atoms: [ϕ?]a ↔ a Asking&Negation: [ϕ?]¬ψ ↔ ¬[ϕ?]ψ
Asking&Conj.: [ϕ?](ψ ∧χ)↔ [ϕ?]ψ ∧ [ϕ?]χ Asking&Knowledge: [ϕ?]Kψ ↔ K[ϕ?]ψ
Asking&Partition: [ϕ?]Qψ ↔ (ϕ ∧ Q(ϕ → [ϕ?]ψ)) ∨ (¬ϕ ∧ Q(¬ϕ → [ϕ?]ψ))
Asking&Intersection: [ϕ?]Rψ ↔ (ϕ ∧ R(ϕ → [ϕ?]ψ)) ∨ (¬ϕ ∧ R(¬ϕ → [ϕ?]ψ))
Asking&Universal: [ϕ?]Uψ ↔ U [ϕ?]ψ Resolving&Atoms: [ ! ]a ↔ a
Resolving&Negation: [ ! ]¬ϕ ↔ ¬[ ! ]ϕ Resolving&Conj.: [!](ψ ∧χ)↔ [!]ψ ∧ [!]χ
Resolving&Knowledge: [ ! ]Kϕ ↔ R[ ! ]ϕ Resolving&Partition: [ ! ]Qϕ ↔ Q[ ! ]ϕ
Resolving&Intersection: [ ! ]Rϕ ↔ R[ ! ]ϕ Resolving&Universal: [ ! ]Uϕ ↔ U [ ! ]ϕ

(from left to right) Assume M |=w [ϕ?]Qψ then we also have Mϕ? |=w Qψ. In
case M |=w ϕ, suppose M |=w (ϕ ∧ Q(ϕ → [ϕ?]ψ)) ∨ (¬ϕ ∧ Q(¬ϕ → [ϕ?]ψ))
does not hold, then we can proceed by cases. If M |=w ¬Q(ϕ → [ϕ?]ψ) and
M |=w ϕ, then we have ∃v ∈ W : w ≈ v and M |=v ϕ ∧ ¬[ϕ?]ψ, therefore,
w

ϕ≡ v, and from this we have w ≈ϕ? v. But we also have Mϕ? |=v ¬ψ, hence
Mϕ? |=w ¬Qψ, which contradicts our initial assumption. For the remaining
interesting case M |=w ¬Q(ϕ → [ϕ?]ψ) and M |=w ¬Q(¬ϕ → [ϕ?]ψ) the
argument is similar. In case M |=w ¬ϕ we can reason analogously.

Our second illustration, (Resolving & Knowledge), shows how resolution
changes knowledge making crucial use of our intersection modality:

[ ! ]Kϕ↔ R[ ! ]ϕ

Let M |=w [ ! ]Kϕ. Then we have equivalently, M! |=w Kϕ and from this we get
∀v ∈ W! : w ∼! v implies M! |=v ϕ. As ∼! =∼∩≈, we can obtain equivalently
∀v ∈ W : w (∼∩≈) v implies M! |=v ϕ, and from this, by the semantics of our
dynamic modality, we get M |=w R[ ! ]ϕ as desired.

Theorem 3 (Completeness of DELQ). For every formula ϕ ∈ LDELQ(P, N):

|= ϕ if and only if � ϕ.

Proof. Proceeds by a standard DEL-style translation argument. Working inside
out, the reduction axioms translate dynamic formulas into corresponding static
ones, in the end completeness for the static fragment is invoked.

Remark (Hidden validities). Although DELQ is complete, like PAL, it leaves
something to be desired. We said already that model operations of issue man-
agement have a nice algebraic structure. For instance, resolving is idempotent:
!; ! =!, while it commutes with refinement: !; ? =?; !. But our logic does not state
such facts explicitly, since, by working from innermost occurrences of dynamic
modalities, our completeness argument needed no recursion axioms with stacked
modalities like [!][!]. Still, this is crucial information for a logic of issue manage-
ment, and schematic validities about operator stacking remain to be investigated.
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3 Temporal Protocols with Questions

Single announcements usually only make sense in a longer-term temporal per-
spective of an informational process: a conversation, experimental protocol, or
learning mechanism. To make this procedural information explicit, van Benthem,
Gerbrandy, Hoshi & Pacuit 2009 [5] introduced protocols into dynamic-epistemic
logic. This results in a modified public announcement logic PAL, that now en-
codes procedural as well as factual and epistemic information.

But the same applies to questions: not everything can be asked, because of
social convention, resource limitations, etc. Thus, we enrich our dynamic logic
with protocols, toward a more realistic theory of inquiry.

Definition 11 (DELQ Protocol). Let Σ be an arbitrary set of epistemic events
(questioning actions). Let Σ∗ be the set of finite strings over Σ (finite histories
of questioning events). A questioning protocol is a set H ⊆ Σ∗ (containing all
non-empty finite histories and all their prefixes, or rooted sub-histories) such
that FinPre−λ(H) = {h | h �= λ, ∃h′ ∈ H : h � h′} ⊆ H.

During the construction in the following definition the only sequences considered
are those of the form wσ, where w is a world in the initial model M , and σ a
sequence in the protocol Q, σn denotes the sequence σ up to its n-th position
and σ(n) denotes the n-th element in the sequence.

Definition 12 (Q-Generated Model). Let M = 〈W,∼,≈, V 〉 be an arbitrary
model and let Q be an arbitrary DELQ protocol over model M (a prefix-closed
set of finite sequences of questioning events). The Q-Generated Model at level
n, Mn

Q = 〈Wn
Q,∼n

Q,≈n
Q, V

n
Q 〉 is defined by induction on n as follows:

1 W 0
Q = W, ∼0

Q = ∼, ≈0
Q = ≈, V 0

Q = V ,
2 wσ ∈ Wn+1

Q iff w ∈ dom(M), σ ∈ Q, len(σ) = n+ 1, and wσn ∈ Wn
Q,

3 If σ(n+1) = 〈!〉 then: (a) (wσ, vσ′) ∈ ∼n+1
Q iff (wσn, vσ

′
n) ∈ ∼n

Q, (wσn, vσ
′
n) ∈

≈n
Q, and σ(n+1) = σ′

(n+1); and (b) (wσ, vσ′) ∈ ≈n+1
Q iff (wσn, vσ

′
n) ∈ ≈n

Q,
and σ(n+1) = σ′

(n+1),
4 If σ(n+1) = 〈ϕ?〉 then: (a) (wσ, vσ′) ∈ ≈n+1

Q iff σ(n+1) = σ′
(n+1), (wσn, vσ

′
n) ∈

≈n
Q, and (σ(n+1), σ

′
(n+1)) ∈ ≡Mn

Q
; and (b) (wσ, vσ′) ∈ ∼n+1

Q iff (wσn, vσ
′
n) ∈

∼n
Q, and σ(n+1) = σ′

(n+1).

The class of structures Forest(TDELQ) consists of all models Forest(M,Q) for
some arbitrary model M and some arbitrary TDELQ protocol Q.

Next we give a truth definition for a suitable dynamic language, where we assume
that all the dynamic actions involve formulas in the static base language only.
Also, in Definition 13 q is used as a variable for issue management actions.

Definition 13 (Interpretation). Formulas are interpreted at state h in model
Forest(M,Q) := Fr(M,Q) = 〈H,∼,≈, V 〉, by the following recursive definition:
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- Fr(M,Q) |=h Kϕ iff ∀h ∈ H : h ∼ h′ implies Fr(M,Q) |=h′ ϕ
- Fr(M,Q) |=h Qϕ iff ∀h ∈ H : h ≈ h′ implies Fr(M,Q) |=h′ ϕ
- Fr(M,Q) |=h Rϕ iff ∀h ∈ H : h (∼ ∩ ≈)h′ implies Fr(M,Q) |=h′ ϕ
- Fr(M,Q) |=h 〈q〉ϕ iff hq ∈ H and Fr(M,Q) |=hq ϕ

One feature that distinguishes TDELQ from our earlier system is this. Even
”Yes/No” questions ϕ? with tautological preconditions ϕ ∨ ¬ϕ need not always
be available for inquiry. Thus, as in PAL with protocols, the earlier recursion
axioms of DELQ have to be modified as in these two samples of TDELQ-axioms:

(Resolving & Knowledge) : 〈!〉Kϕ↔ 〈!〉�∧R〈!〉ϕ

(Ask&Part) : 〈ϕ?〉Qψ ↔ 〈ϕ?〉�∧((ϕ∧Q(ϕ → 〈ϕ?〉ψ))∨(¬ϕ∧Q(¬ϕ → 〈ϕ?〉ψ)))

Such new axioms describe the procedural restrictions that drive conversations or
processes of inquiry and discovery and leads to a logical system which is sound
and complete (cf. [7] for the full list of axioms and proofs of the results).

In TDELQ, 〈ϕ?〉� means that the question ϕ? can be asked. In general, 〈q〉�
will mean that the issue management action q is available for execution.2

4 Multi-agent Scenarios

Questions typically involve more than one person. Indeed, our system is easily
extended, high-lighting aspects lacking in the usual single-agent approaches.

4.1 Multi-agent DELQ with Public Issues

It is easy to generalize earlier definitions, marking accessibility relations and
modalities with agent subscripts. Complete logics are as before, since as in epis-
temic logic, we do not expect the logic itself to enforce significant interaction
principles tying agents together.

The multi-agent setting is essential with preconditions of questions, referring
to both questioner and answerer:

one precondition of e1 = “b asks ϕ” is ¬Kbϕ ∧ ¬Kb¬ϕ.

The questioner must not know the answer to the question she asks. But questions
are also asked to be answered, in general, by another agent:

a complex epistemic event e3 = “b asks ϕ to a” also has the
precondition that the questioner must consider it possible
that the answerer knows the answer: K̂b(Kaϕ ∨Ka¬ϕ).

2 We have considered here only uniform protocols restricted to asking ϕ and resolution
questioning actions. Of course, it is possible to add the remaining questioning actions
of announcing ϕ and refinement to this setting in a standard way.
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These observations suggest that the following definition might be useful:

M |=w 〈ϕ?〉baψiff M |=w (¬Kaϕ ∧ ¬Ka¬ϕ) ∧ K̂a(Kbϕ ∨Kb¬ϕ) and Mϕ? |=w ψ

Our logic describes such more realistic questions – and many other events.3

There are also interesting further issues here. In the above event, can we sepa-
rate informative preconditions from questions per se? That is, we first announce
the precondition, and then perform the issue change? For factual assertions, this
works well, but in general, there is a problem, since announcing the precondition
may change the correct answer to the question. Thus, we may have to analyze
complex question events as one unit, writing their recursion axioms separately.4

4.2 Multi-agent DELQ with Private Issues

So far, questions were public events. But in many scenarios, there may be private
aspects, reflecting partial information or other observational limitations.

One obvious scenario is a public question followed by a private answer, like
what happens in many classrooms. This is easily dealt with by attaching our logic
of public questions to the logic DEL of private announcements. But there can
also be private questions, with either private or public answers. For instance,
agent a can ask b if ϕ, while c does not hear it. Or, c may just have been
unable to hear if the question asked was P? or Q?. Such scenarios call for events
that modify the issue relation in ways that are different for different agents. In
the extended version of this paper (van Benthem & Minică 2009 [7]), we give
a generalization of the product update mechanism of DEL to deal with issue
management in the presence of privacy.5

Other multi-agent issues concern the formation of groups of agents. In partic-
ular, when many agents have different views of the issues, they may merge their
issue relations in one ‘common refinement’. This relation is a natural candidate
for the ‘collective issue’ of the whole group, and thus, we now also have group
versions of our modalities K,Q,R, linking common issues to common knowledge.

5 Further Directions, Comparisons and Conclusions

Further Agent Attitudes: Beliefs and Preferences. We have studied the
interaction of questions with knowledge. But of course, agents’ beliefs are just
as important, and we can also merge the preceding analysis with dynamic logics
of belief change. Thus, our question dynamics might be added to the DEL-style
belief logics of van Benthem 2007 [4] and Baltag & Smets 2007 [11].

3 Indeed, the logic should be flexible here. Different types of question can have different
preconditions: e.g., rhetorical questions have none of the above.

4 Incidentally, a multi-agent setting may also change our views of the effects of answers.
For instance, as observed in van Benthem (One is a Lonely Number) [1], an answer
like “I do not know” can be highly informative!

5 Of course, this requires refined epistemic issue models where the structure of the
issue for different agents is no longer common knowledge.
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Beyond beliefs, questions can also affect other agent attitudes. For instance,
a question can give us information about other agents’ goals and preferences.
This would come out concretely by adding question dynamics to the preference
logics of Girard 2008 [23] and Liu 2008 [24].6

Questioning Games. An interesting further development is an application of
our analysis to epistemic games like those developed for public announcements
by Ågotnes and van Ditmarsch in [10]. In Public Announcement Games players
have to find the optimal announcement to make in order to reach their epistemic
goals given their knowledge. Considering games in which the available moves for
the players include both announcements and questions is a way in which the
value of a question can receive a precise game-theoretical definition.

Update, Inference, and Syntactic Awareness Dynamics. While DEL has
been largely about observation-based semantic information, some recent propos-
als have extended it to include more finely grained information produced by
inference or introspection. The same sort of move makes sense in our current
setting. This would work well in the syntactic approach to inferential and other
fine-grained information in van Benthem & Quesada 2009 [8], with questions
providing one reason for their acts of ‘awareness promotion’. The latter take
would also fit well with Hintikka’s emphasis on the combination of questions
and deductions as driving inquiry.

Multi-agent Behavior over Time. We have already seen that, like assertions,
questions make most sense in the context of some longer temporal process. A
single question is hard to ‘place’ without a scenario. Our study of protocols was
one step in this direction, but obviously, we also need to make our dynamic logics
of questions work in analyses of extended conversation, or especially, games. An-
other perspective where this makes eminent sense are learning scenarios, where
asking successive local questions would seem a very natural addition to the usual
input streams of answers (cf. Kelly 1996 [19]) to one unchanging grand question
which global hypothesis about the actual history is the correct one.

Structured Issues and Agenda Dynamics. To us, the most striking lim-
itation of our current approach is the lack of structure in our epistemic issue
models. Surely, both in conversation and in general investigation, the agenda
of relevant issues is much more delicate than just some equivalence relation. If
we are to have any realistic logical account of, say, the development of research
programs, we need to understand this more finely-grained dynamics.

Moreover, there are already models that allow for this sort of dynamics. Girard
2008 [23], Liu 2008 [24] consider, essentially, ‘priority graphs’ of ordered relevant
propositions (first studied in Andreka, Ryan & Schobbens 2001 [21]) that can be
used for this purpose. Priority graphs can encode a structured family of issues,

6 Indeed, there are formal analogies between our question update operation and the
‘ceteris paribus’ preferences of van Benthem, Girard & Roy 2008 [6].
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and they allow for a larger repertoire of inserting or deleting questions.7 For a
first system of this more structured sort we refer to ([7]).

5.1 Comparisons with Other Approaches

We have mentioned several other approaches to the logic of questions. There is
the tradition of erotetic logic in the sense of Wísniewski [12], and the slightly
later classic Belnap & Steel 1976 [20].

More directly connected to our approach, we have mentioned the still active
program of Hintikka for interrogative logic [13]. Questions are treated here as re-
quests for new information, which function intertwined with deductive indicative
moves in ‘interrogative tableaux’. The framework has a number of nice theoret-
ical results, including meta-theorems about the scope of questioning in finding
the truth about some given situation. Clearly, several of these results would also
be highly relevant to what we are doing here, and a merge of the two approaches
might be of interest, bringing out Hintikka’s concerns even more explicitly in a
dynamic epistemic setting.

The closest comparison to our approach is the inquisitive semantics ([18] [15]).
Inquisitive semantics gives propositions an ‘interrogative meaning’ defined in a
universe of information states over propositional valuations, with sets of valu-
ations expressing issues. First, a compositional semantics is given, evaluating
complex propositions in sets of worlds, viewed as information states. Based on
this semantics, a propositional logic arises that describes valid consequence and
other relations between questions, and questions with answers.

At some level of abstraction, the ideas in this system sound very close to ours:
there is information dynamics, questions change current partitions, etcetera. But
the eventual system turns out to be an intermediate propositional logic in be-
tween intuitionistic and classical logic. Comparing the two approaches is an en-
terprise we leave for another occasion, though Icard 2009 (seminar presentation,
Stanford) has suggested that there might be both translations between the two
systems, and natural merges. Inquisitive semantics puts the dynamic informa-
tion about questions in a new account of the meaning of interrogative sentences
in a propositional language. By contrast, dynamic-epistemic logic wants to give
an explicit account of questions and other actions of issue management, but it
does so by means of dynamic modalities on top of a classical logical language.
The distinction is similar to one in logic itself (van Benthem 1993, ‘Reflections
on Epistemic Logic’ [3]). Intuitionistic logic studies knowledge and information
implicitly by changing the meaning of the classical logical constants, and then
picking a fight with classical logic in the set of ‘validities’. By contrast, epis-
temic logic analyzes knowledge explicitly as an additional operator on top of
classical propositional logic: there is no meaning shift, but agenda expansion.
In our view, dynamic-epistemic logic of questions stands in exactly the same
relationship to inquisitive semantics: it makes the dynamics explicit, and steers
away from foundational issues of meaning and logic. Comparisons between the
7 Being good at research seems to imply being able to ask good questions just as much

as giving clever answers.
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two approaches can be quite delicate (van Benthem 2008, ‘The Information in
Intuitionistic Logic’ [2]), and the same may also be true here.

6 Conclusion

The dynamic calculi of questions in this paper show how dynamic-epistemic
logic can incorporate a wide range of what we have dubbed ‘issue management’
beyond mere information handling. Our contribution is showing how this can
be defined precisely, leading to complete dynamic logics that fit naturally with
existing systems of DEL, broadly construed. Moreover, we have indicated how
these systems can be used to explore properties of issue management beyond
what is found in other logics of questions, including complex epistemic assertions,
many agents, and explicit dynamics.8

Even so, we do feel that our systems are only a first step - still far removed
from the complex structures of issues that give direction to rational agency. The
insight itself that the latter are crucial comes from other traditions, as we have
observed, but we hope to have shown that dynamic-epistemic logic has something
of interest to contribute.

Acknowledgments. We first started developing these ideas about half a year
ago, inspired by the ‘inquisitive semantics’ of [18] which, to us, raised the is-
sue how the phenomena covered there (and others) would be dealt with from
a dynamic-epistemic perspective. In the meantime, we have profited from com-
ments on various drafts of this paper from Viktoria Denisova, Solomon Fefer-
man, Tomohiro Hoshi, Thomas Icard, Floris Roelofsen, Lena Kurzen, Cedric
Degremont, Fernando Velazquez-Quesada, and George Smith. We also thank
two anonymous LORI-II referees for interesting comments and improvement
suggestions. The junior author aknowledges Nuffic for the Huygens scholarship.

References

1. van Benthem, J.: One is a Lonely Number. In: Chatzidakis, Z., Koepke, P., Pohlers,
W. (eds.) Logic Colloquium 2002, pp. 96–129. ASL & A.K. Peters, Wellesley, MA
(2006)

2. van Benthem, J.: The Information in Intuitionistic Logic. Synthese 2, 167 (2008)
3. van Benthem, J.: Reflections on Epistemic Logic. Logique et Analyse 34 (1993)
4. van Benthem, J.: Dynamic Logic of Belief Revision. Journal of Applied Non-

classical Logics 2, 17 (2007)
5. van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging Frameworks of

Interaction. Journal of Philosophical Logic (2009)
6. van Benthem, J., Girard, P., Roy, O.: Everything Else Being Equal: A Modal Logic

for Ceteris Paribus Preferences. Journal of Philosophical Logic 38, 83–125 (2008)

8 However, we have not arrived at any definite conclusion about the formal relation-
ships between our dynamic logics and existing alternatives. Perhaps all of them are
needed to get the full picture of issue management.



Toward a Dynamic Logic of Questions 41
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Abstract. Most belief change operators in the AGM tradition assume
an underlying plausibility ordering over the possible worlds which is tran-
sitive and complete. A unifying structure for these operators, based on
supplementing the plausibility ordering with a second, guiding, relation
over the worlds was presented in [5]. However it is not always reasonable
to assume completeness of the underlying ordering. In this paper we ge-
neralise the structure of [5] to allow incomparabilities between worlds.
We axiomatise the resulting class of belief removal functions, and show
that it includes an important family of removal functions based on finite
prioritised belief bases.

1 Introduction

The problem of belief removal [1,5,19], i.e., the problem of what an agent, he-
reafter A , should believe after being directed to remove some sentence from his
stock of beliefs, has been well studied in philosophy and in AI over the last 25
years. During that time many different families of removal functions have been
studied. A great many of them are based on constructions employing total preor-
ders over the set of possible worlds which is meant to stand for some notion ≤ of
relative plausibility [12]. A unifying construction for these families was given in
[5], in which a general construction was proposed which involved supplementing
the relation ≤ with a second, guiding, relation � which formed a subset of ≤.
By varying the conditions on � and its interaction with ≤ many of the different
families can be captured as instances.

The construction in [5] achieves a high level of generality, but one can argue it
fails to be general enough in one important respect: the underlying plausibility
order ≤ is always assumed to be a total preorder which by definition implies it
is complete, i.e., for any two worlds x, y, we have either x ≤ y or y ≤ x. This
implies that agentA is always able to decide which of x, y is more plausible. This
is not always realistic, and so it seems desirable to study belief removal based on
plausibility orderings which allow incomparabilities. A little work been done on
this ([3,8,9,12,17], and especially the choice-theoretic approach to belief change
advocated in [18]) but not much. This is in contrast to work in nonmonotonic
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c© Springer-Verlag Berlin Heidelberg 2009



A General Family of Preferential Belief Removal Operators 43

reasoning (NMR), the research area which is so often referred to as the “other
side of the coin” to belief change. In NMR, semantic models based on incom-
plete orderings are the norm, with work dating back to the seminal papers on
preferential models of [13,20]. Our aim in this paper is to relax the completeness
assumption from [5] and to investigate the resulting, even more general class of
removal functions.

The plan of the paper is as follows. In Sect. 2 we give our generalised defi-
nition of the construction from [5], which we call (semi-modular) contexts. We
describe their associated removal functions, as well as mention the characterisa-
tion from [5]. Then in Sect. 3 we present an axiomatic characterisation of the
family of removal functions generated by semi-modular contexts. Then, in Sect.
4 we mention a couple of further restrictions on contexts, leading to two corres-
ponding extra postulates. In Sect. 5 we mention an important subfamily of the
general family, i.e., those removals which may be generated by a finite prioritised
base of defaults, before moving on to AGM style removal in Sect. 6. We conclude
in Sect. 7.

Preliminaries: We work in a finitely-generated propositional language L. The
set of non-tautologous sentences in L is denoted by L∗. The set of propositional
worlds/models is W . For any set of sentences X ⊆ L, the set of worlds which
satisfy every sentence in X is denoted by [X ]. Classical logical consequence and
equivalence are denoted by � and ≡ respectively. As above, we let A denote
some agent whose beliefs are subject to change. A belief set for A is represented
by a single sentence which is meant to stand for all its logical consequences.
A belief removal function (hereafter just removal function) belonging to A is
a unary function � which takes any non-tautologous sentence λ ∈ L∗ as input
and returns a new belief set � (λ) for A such that � (λ) � λ. For any removal
function � we can always derive an associated belief set. It is just the belief set
obtained by removing the contradiction, i.e., � (⊥).

The following definitions about orderings will be useful in what follows. A
binary relation R over W is:

– reflexive iff ∀x : xRx
– transitive iff ∀x, y, z : xRy & yRz → xRz
– complete iff ∀x, y : xRy ∨ yRx
– a preorder iff it is reflexive and transitive
– a total preorder iff it is a complete preorder

The above notions are used generally when talking of “weak” orderings, where
xRy is meant to stand for something like “x is at least as good as y”. However in
this paper, following the lead of [17], we will find it more natural to work under
a strict reading, where xRy denotes “x is strictly better than y”. In this setting,
the following notions will naturally arise. R is:

– irreflexive iff ∀x : not(xRx)
– modular iff ∀x, y, z : xRy → (xRz ∨ zRy)
– a strict partial order (spo) iff it is both irreflexive and transitive
– the strict part of another relation R′ iff ∀x, y : xRy ↔ (xR′y & not(yR′x))
– the converse complement of R′ iff ∀x, y : xRy ↔ not (yR′x)
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We have that R is a modular spo iff it is the strict part of a total preorder [15].
So in terms of strict relations, much of the previous work on belief removal,
including [5], assumes an underlying strict order which is a modular spo. It is
precisely the modularity condition which we want to relax in this paper.

Given any ordering R and x ∈ W , let ∇R (x) = {z ∈W | zRx} be the set of
all worlds below x in R. Then we may define a new binary relation �R from R
by setting x �R y iff ∇R (x) ⊆ ∇R (y) . That is, x �R y iff every element below
x in R is also below y in R. It is easy to check that if R is a modular spo then
x �R y iff not (yRx), i.e., �R is just the converse complement of R.

2 Contexts, Modular Contexts and Removals

In this section we set up our generalised definition of a context, show how each
such context yields a removal function and vice versa, and recap the main results
from [5].

2.1 Contexts

We assume our agent A has in his mind two binary relations (<,≺) over the
set W . The relation < is a strict plausibility relation which forms the basis for
A’s actionable beliefs, i.e., x < y means that, to A’s mind, and on the basis of
all available evidence, world x is strictly more plausible than y. We assume <
is a strict partial order. In addition to this there is a second binary relation ≺.
This relation is open to several different interpretations, but the one we attach
is as follows: x ≺ y means “A has an explicit reason to hold x more plausible
than y (or to treat x more favourably than y)”. We will use � to denote the
converse complement of <, i.e.,x � y iff y ⊀ x. Thus x � y iff A has no reason
to treat y more favourably than x. Note � and ≺ are interdefinable, and we find
it convenient to switch between them freely.

Note the equivalence “x ≺ y iff both x � y and y � x” holds only if ≺ is
asymmetric, which might not hold in general, since it is perfectly possible for A
to have one explicit reason to hold x more plausible than y, and another to hold
y more plausible than x. In this case both these reasons will compete with each
other, with at most one of the pairs 〈x, y〉 or 〈y, x〉 making it into A’s plausibility
relation <.

What are the properties of ≺? We assume only two things, at least to begin
with: (i) an agent can never possess a reason to hold a world strictly more
plausible than itself, and (ii) an agent does not hold a world x to be more
plausible than another world y, i.e., x < y, without being in possession of some
reason for doing so. (Note this latter property lends a certain “foundationalist”
flavour to our construction.) All this is formalised in the following definition:

Definition 1. A context C is a pair of binary relations (<,≺) over W such
that:
(C1) < is a strict partial order
(C2) ≺ is irreflexive
(C3) <⊆≺
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If < is modular then we call C a modular context. We will later have grounds
for strengthening (C3).How does A use his context C to construct a removal
function �C? In terms of models, the set [�C (λ)] of models of his new belief set,
when removing a sentence λ, must include some ¬λ-worlds. Following the usual
practice in belief revision, he should take the most plausible ones according to <,
i.e., the <-minimal ones. But which, if any, of the λ-worlds should be included?
The following principle was proposed by Rott and Pagnucco [19]:

Principle of Weak Preference
If one object is held in equal or higher regard than another, the former
should be treated no worse than the latter.

Rott and Pagnucco use this principle to argue that the new set of worlds following
removal should contain all worlds x which are not less plausible than a<-minimal
¬λ-world y, i.e., y ≮ x. We propose to apply a tempered version of this principle
using the second ordering ≺. We include x if there is no explicit reason to believe
that y is more plausible than x, i.e., if y ⊀ x.

Definition 2. (� from C) Given a context C we define the removal function
�C by setting, for each λ ∈ L∗, [�C(λ)] =

⋃ {∇�(y) | y ∈ min< ([¬λ])}.
It can be shown that different contexts give rise to different removal functions,
i.e., the mapping C �→ �C is injective. The case of modular contexts was the
one which was studied in detail in [5], where it was shown how, by placing
various restrictions on the interaction between < and ≺, this family captures
a wide range of removal operations which have been previously studied, for
example both AGM contraction and AGM revision [1]1, severe withdrawal [19],
systematic withdrawal [16] and belief liberation [4]. For the general family in
that paper the following representation result was proved.

Theorem 1. [5,6] Let C be a modular context. Then �C satisfies the following
rules:

(�1) �(λ) � λ
(�2) If λ1 ≡ λ2 then �(λ1) ≡ �(λ2)
(�3) If �(λ ∧ χ) � χ then �(λ ∧ χ ∧ ψ) � χ
(�4) If �(λ ∧ χ) � χ then �(λ ∧ χ) � �(λ)
(�5) �(λ ∧ χ) � �(λ) ∨�(χ)
(�6) If �(λ ∧ χ) � λ then �(λ) � �(λ ∧ χ)

Furthermore if � is any removal function satisfying the above 6 rules, there exists
a unique modular context C such that � = �C.

All these rules are familiar from the belief removal literature. (�1) is the Success
postulate while (�2) is a syntax-irrelevance property. (�3) is sometimes known
as Conjunctive Trisection [11,17]. It says if χ is believed after removing the
conjunction λ ∧ χ, then it should also be believed when removing the longer
1 The fact that basic removal also covers AGM revision is what motivated our choice

of the contraction-revision “hybrid” symbol � to denote removal functions.
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conjunction λ ∧ χ ∧ ψ. Rule (�4) is closely-related to the rule Cut from non-
monotonic reasoning [13], while (�5) and (�6) are the two AGM supplementary
postulates for contraction [1].

Note the non-appearance in this list of the AGM contraction postulates Va-
cuity (� (⊥) � λ implies � (λ) ≡ � (⊥)),Inclusion (� (⊥) � � (λ)) and Recovery
(� (λ) ∧ λ � � (⊥)), none of which are valid in general for removal functions
generated from modular contexts. Vacuity has been argued against as a general
principle of belief removal in [5,6]. Inclusion has been questioned in [4], while
Recovery has long been regarded as controversial (see, e.g., [10]). Nevertheless
we will see in Sect. 6 how each of these three rules may be captured within our
general framework.

The second part of Theorem 1 was proved using the following construction.

Definition 3. (C from �) Given any removal function � we define the context
C(�) = (<,≺) as follows: x < y iff y �∈ [�(¬x∧¬y)] and x ≺ y iff y �∈ [� (¬x)].2

[5] showed that if � satisfies (�1)-(�6) then C (�) is a modular context and
� = �C(�).

3 Characterising the General Family

Now we want to drop the assumption that < is modular and assume only it
is a strict partial order. How can we characterise the resulting class of removal
functions? We focus first on establishing which of the postulates from Theorem
1 are sound for the general family, modifying our initial construction as and
when necessary. Clearly we cannot expect that all the rules remain sound. In
particular rule (�6) is known to depend on the modularity of < and so might be
expected to be the first to go. However we might hope to retain weaker versions
of it, for instance:

(�6a) If �(λ ∧ χ) � χ then �(λ) � �(λ ∧ χ)
(�6b) �(λ) ∧�(χ) � �(λ ∧ χ)

These two rules appear respectively as (-8c) and (-8r) in [18] (see also [9]). (�6b)
follows from (�6) given (�1).

Proposition 1. If C is a general context then �C satisfies (�1), (�2), (�4),
(�5) and (�6a) but not (�6b) (hence also (�6)) in general.

Surprisingly, we lose (�3), as the following counterexample shows:

Example 1. Assume L = {p, q} and let the 4 valuations of L be W =
{00, 11, 01, 10}, where the first and second numbers denote the truth-values of
p, q respectively. Let <= {(00, 10)} and �= {(10, 01)} (strictly speaking the re-
flexive closure of this). We have [�C(p ∧ q)] = {00, 10, 01} and [�C(q)] = {00}.
Hence 10 ∈ [¬q ∧�C(p ∧ q)] but 10 �∈ [�C(q)].
2 When a world appears in the scope of a propositional connective, it should be

understood as denoting any sentence which has that world as its only model.
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This leaves us with a problem, since whereas (�6) is to be considered somewhat
dispensible, (�3) is a very reasonable property for removal functions. Is there
some way we can capture it? It turns out we can capture it if we strengthen the
basic property (C3) to:

(C3a) �⊆�<

In other words if z < x and x � y then z < y. (C3a) is a coherence condition
between ≺ and <. It is saying that if there is a world z which A judges to be more
plausible than x but not to y then A has a reason to treat y more favourably
than x. Note that for modular contexts (C3) and (C3a) are equivalent, but in
general they are not.

Proposition 2. If C satisfies (C3a) then �C satisfies (�3).

Thus (C3a) seems necessary. Note rule (C3a) may also be interpreted
as a restricted form of modularity for <, since it may be re-written as
∀x, y, z (z < x→ (y ≺ x ∨ z < y)) . For this reason we make the following
definition:

Definition 4. A semi-modular context is any context C satisfying (C3a).

In the rest of the paper we will work only with semi-modular contexts. It can
be shown that �C still fails in general to satisfy (�6b) even for semi-modular
contexts.

So far we have a list of sound properties for the removal functions defined
from semi-modular contexts. They are the same as the rules which characterise
modular removal, but with (�6) replaced by the weaker (�6a). It might be
hoped that this list is complete, i.e., that any removal function � satisfying
these 6 rules is equal to �C for some semi-modular context C. Indeed we might
expect to be able to show � = �C(�), where C (�) is the context defined via
Definition 3. The following result gives us a good start.

Proposition 3. Let � be any removal function satisfying (�1)-(�5) and
(�6a). Then C (�) is a context, i.e., satisfies (C1)-(C3).

However to get (C3a) it seems an extra property is needed:

(�C) If �(λ) ∧ ¬λ � �(χ) ∧ ¬χ then �(λ) � �(χ)

We can rephrase this using the Levi Identity [14]. Given any removal function �
we may define a revision function �R by setting, for each consistent sentence
λ ∈ L, �R(λ) = �(¬λ) ∧ λ. Then rule (�C) may be equivalently written as:

(�C′) If �R(¬λ) � �R(¬χ) then �(λ) � �(χ)

Thus (�C′) is effectively saying that if revising by ¬λ leads to a stronger belief
set than revising by ¬χ, then removing λ leads to a stronger belief set than
removing χ. The next result confirms that this rule is sound for the removal
functions generated by semi-modular contexts, and that this property is enough
to show that C (�) satisfies (C3a).
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Proposition 4. Let C be a semi-modular context. Then �C satisfies (�C). Fur-
thermore if � is any removal function satisfying (�C) then the context C(�)
satisfies (C3a).

Rule (�C) is actually quite strong. In the presence of (�3) it can be shown
to imply (�4). This means that, in the axiomatisation of �C we can replace
(�4) with (�C). To show that the list of rules is complete, it remains to prove
� = �C(�). It turns out that here we need the following weakening of (�6b):

(�E) ¬(λ ∧ χ) ∧�(λ) ∧�(χ) � �(λ ∧ χ)

This rule may be reformulated as “� (λ) ∧ � (χ) � (λ ∧ χ) ∨ � (λ ∧ χ)”. In this
reformulation, the right hand side of the turnstile may be thought of as standing
for all those consequences of the conjunction λ ∧ χ which are believed upon
its removal. The rule is saying that any such surviving consequence must be
derivable from the combination of � (λ) and � (χ).

Proposition 5. Let C be a semi-modular context. Then �C satisfies (�E).

Theorem 2. Let � be any removal function satisfying (�1),(�2), (�3),(�C),
(�5), (�6a) and (�E). Then �C(�) = �.

Thus, to summarise, the family of removal functions defined from semi-modular
contexts is completely characterised by (�1)–(�3), (�C), (�5), (�6a) and
(�E).

4 Transitivity and Priority

In this section we look at imposing an extra couple of properties on semi-modular
contexts C = (<,≺), both of which were investigated in the case of modular
contexts in [5]. There it was shown how the resulting classes of removal functions
still remain general enough to include a great many of the classes which have
been previously proposed in the context of modular removal.

The first property is the transitivity of �, thus making � a preorder. (Recall
� is the converse complement of ≺, so this is equivalent to making ≺ modular.)
According to our above interpretation of � this means if there is no reason to
treat y more favourably than x, and no reason to treat z more favourably than y
then there is no reason to treat z more favourably than x.

Proposition 6. (i). If � is transitive then �C satisfies the following strengthe-
ning of (�C):

(�C+) If �(λ) ∧ ¬λ � �(χ) then �(λ) � �(χ)

(ii). If � satisfies (�C+) then the relation � in C(�) is transitive.

Note this property is a great deal simpler than the one used to characterise
transitivity of � in the modular context in [5]. It can be re-written as: If
�R(¬λ) � �(χ) then �(λ) � �(χ). It says that if the belief set following re-
moval of χ is contained in the belief set following the revision by ¬λ, then it
must be contained also in the belief set following the removal of λ. This seems
like a reasonable property.
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Corollary 1. For any removal function �, the following are equivalent:
(i). � is generated by a semi-modular context C = (<,≺) such that � is tran-
sitive. (ii). � satisfies the list of rules given at the end of Sect. 3, with (�C)
replaced by (�C+).

Now consider the following property of a context C = (<,≺):

(CP) If x ≺ y and y ⊀ x then x < y

This, too, looks reasonable: if A has an explicit reason to hold x more plausible
than y, but not vice versa, then in the final reckoning he should hold x to
be strictly more plausible than y. Consider the following property of removal
functions:

(�P) If �(λ) � χ and �(χ) � λ then �(λ ∧ χ) � χ

This property is briefly mentioned as Priority in [3], and is also briefly men-
tioned right at the end of [7]. It can be read as saying that if λ is excluded
following removal of χ, but not vice versa, then χ is strictly more entrenched
than λ. For the case of modular removal, we can obtain the following exact
correspondence between (CP) and (�P):

Proposition 7. (i). If C is a modular context satisfying (CP) then �C satisfies
(�P). (ii). If � satisfies (�P) then C(�) satisfies (CP).

The proof of Proposition 7(i) makes critical use of the modularity of <. It turns
out that (�P) is not sound for general semi-modular contexts, even if we insist
on (CP).

Example 2. Suppose L = {p, q} and that <= {(01, 11)} while �= {(01, 11)}
(strictly speaking the reflexive closure of this). One can verify that C is a semi-
modular context and that (CP) is satisfied. Now let λ = p ∨ ¬q and χ = ¬p.
Then [�C(λ)] = {01}, [�C(χ)] = {11, 01, 10} and [�C(λ ∧ χ)] = {01, 10} and we
have �C(λ) � χ, �C(χ) �� λ, and �C(λ ∧ χ) �� χ. Hence (�P) is not satisfied.

The question now is, which postulate corresponds to (CP) for general semi-
modular contexts? Here is the answer:

Proposition 8. (i). If C is a semi-modular context which satisfies (CP), then
�C satisfies the following rule:

(�P′) If � (λ) � χ and � (χ) � � (λ ∧ χ) then � (χ) � λ

(ii). If � satisfies (�P′), plus (�C) and (�1), then C (�) satisfies (CP).

It is straightforward to see (�P′) is weaker than (�P) given (�1), while it
implies (�P) given (�6).
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5 Finite Base-Generated Removal

In this section we mention a concrete and important subfamily of our general
family of removal functions, the ideas behind which can be seen already through-
out the literature on nonmonotonic reasoning and belief change (see in particular
[3] for a general treatment in a belief removal context). Given any, possibly in-
consistent, set Σ of sentences, let cons (Σ) denote the set of all consistent subsets
of Σ. We assume agent A is in possession of a finite set Σ of sentences which
are possible assumptions or defaults, together with a strict preference ordering
� on cons (Σ) (with sets “higher” in the ordering assumed more preferred). We
assume the following two properties of �:

(Σ1) � is a strict partial order
(Σ2) If A ⊂ B then A � B

(Σ2) is a monotonicity requirement stating a given set of defaults is strictly
preferred to all its proper subsets.

Definition 5. If Σ ⊆ L is a finite set of sentences and � is a binary relation
over cons (Σ) satisfying (Σ1) and (Σ2). Then we call � = 〈Σ,�〉 a prioritised
default base. If in addition � is modular then we call � a modular prioritised
default base.

How does the agent use a prioritised default base � = 〈Σ,�〉 to remove beliefs?
For Σ ⊆ L and λ ∈ L∗ let cons (Σ, λ) def= {S ∈ cons (Σ) | S � λ}. Then from �

we may define a removal function �� by setting, for each λ ∈ L∗,

�� (λ) =
∨{∧

S | S ∈ max
�

cons (Σ, λ)
}

.

In other words, after removing λ, A will believe precisely those sentences which
are consequences of all maximally preferred subsets of Σ which do not imply λ.

We will now show how the family of removal functions generated from priori-
tised default bases fits into our general family. From a given � = 〈Σ,�〉 we may
define a context C (�) = (<,≺) as follows. Let sentΣ (x) def= {α ∈ Σ | x ∈ [α]}.
Then

– x < y iff sentΣ (y) � sentΣ (x)
– x ≺ y iff sentΣ (x) � sentΣ (y)

Thus we define x to be more plausible than y iff the set of sentences in Σ satisfied
by x is more preferred than the set of sentences in Σ satisfied by y. Meanwhile
we have the natural interpretation for ≺ that A has a reason to hold x to be
more plausible than y precisely when one of the sentences in Σ is satisfied by x
but not y.

Theorem 3. (i). C (�) defined above forms a semi-modular context (which is
modular if � is modular). (ii). � is transitive and the condition (CP) from Sect.
4 holds. (iii). �� = �C(�).
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Thus we have shown that every removal function generated by a prioritised
default base may always be generated by a semi-modular context which further-
more satisfies the two conditions on contexts mentioned in the previous section.
By the results of the previous sections, this means we automatically obtain a list
of sound postulates for the default base-generated removals.

Corollary 2. Let � be any prioritised default base. Then �� satisfies all the
rules listed at the end of Sect. 3, as well as (�C+) and (�P′) from the last
section.

Note we have shown how every prioritised default base gives rise to a semi-
modular context satisfying �-transitivity and (CP). An open question is whether
every such context arises in this way.

6 AGM Preferential Removal

Recall that three of the basic AGM postulates for contraction do not hold in
general for the removal functions generated by semi-modular contexts, namely
Inclusion, Recovery and Vacuity. In this section we show how each of these rules
can be captured. In [5] it was shown already how they may be captured within
the class of modular context-generated removal.

The Inclusion rule is written in our setting as follows:

(�I) �(⊥) � �(λ)

To capture (�I) for any removal generated from any semi-modular context C =
(<,≺), we need only to require the following condition on C:
(CI) min<(W ) ⊆ min≺ (W )

According to our interpretation of ≺, (CI) is stating that, for any world x, if A
has some explicit reason favour some world y over x (i.e., y ≺ x) then in the
final reckoning A must hold some world z (not necessarily the same as y) more
plausible than x (i.e., z < x).

Proposition 9. (i). If C satisfies (CI) then �C satisfies (�I). (ii). If � satisfies
(�I) then C(�) satisfies (CI).
The Recovery rule is written as follows:

(�R) �(λ) ∧ λ � �(⊥)

The corresponding property on contexts C = (<,≺) is:

(CR) If y �/∈ min< (W ) and x �= y then x ≺ y

Thus the only worlds ∇� (x) contains, other than x itself, are worlds in
min< (W ).

Proposition 10. (i). If C satisfies (CR) then �C satisfies (�R). (ii). If � sat-
isfies (�R) then C(�) satisfies (CR).
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Note the combination of (CI) and (CR) specifies ≺, equivalently �, uniquely in
terms of <, viz. x �agm y iff x = y or x ∈ min< (W ), and we obtain the removal
recipe of AGM contraction, in which removal of λ boils down to just adding the
<-minimal ¬λ-worlds to the <-minimal worlds:

[�agm (λ)] = min
<

(W ) ∪min
<

([¬λ]) .

It is easy to check that the resulting context C satisfies condition (C3a) and thus
forms a semi-modular context. It is also easy to check (CP) is satisfied and that
the above-defined �agm is transitive. Thus the above �agm also satisfies (�C+)
and (�P′) from Sect. 4. It can also be shown to satisfy (�6b).

The Vacuity rule is written as follows:

(�V) If �(⊥) �� λ then �(λ) ≡ �(⊥)

Unlike in the modular case, where Vacuity is known to follow from Inclusion for
modular removal functions [5], (�V) does not even hold in general for the above
preferential AGM contraction �agm. This was essentially noticed, in a revision
context, in [2].

Example 3. Let L = {p, q} and <= {(11, 01)}. So [�agm (⊥)] = {00, 11, 10}. Let
λ = p. Then we have �agm (⊥) � λ (because 00 ∈ [�agm (⊥)]), but min< ([¬λ]) =
{00, 01}, so [�agm (λ)] = min< (W ) ∪min< ([¬λ]) = W �= [�agm (⊥)].

In order to ensure �agm satisfies (�V) it is necessary, as is done in [12], to
enforce the following property on <.

(< V) ∀x, y ((x ∈ min< (W ) ∧ y /∈ min< (W ))→ x < y) .

In other words all <-minimal worlds can be compared with, and are below, every
world which is not <-minimal. For general semi-modular contexts C = (<,≺)
we also require the following condition, which is weaker than (CI):
(CV) If x, y ∈ min<(W ) then x ⊀ y

This property says that for any two of his <-minimal worlds, A will not have
explicit reason to hold one to be more plausible than the other.

Proposition 11. (i). If C satisfies (CV) and (< V) then �C satisfies (�V).
(ii). If � satisfies (�V) then C(�) satisfies (CV).

7 Conclusion

In this paper we introduced a family of removal functions, generalising the one
given in [5] to allow for incomparabilities in the plausibility relation < between
possible worlds. Removal is carried out using the plausibility relation in combina-
tion with a second relation ≺ which can be thought of as indicating “reasons” for
holding one world to be more plausible than another. We axiomatically charac-
terised this general family as well as certain subclasses, and we showed how this
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family includes some important and natural families of belief removal, specifically
those which may be generated from prioritised default bases and the preferential
counterpart of AGM contraction. Our results show the central construct used in
this paper, i.e., semi-modular contexts, to be a very useful tool in the study of
belief removal functions.

For future work we would like to employ semi-modular contexts in the setting
of social belief removal [6], in which there are several agents, each assumed to
have their own removal function, and in which all agents must remove some belief
to become consistent with each other. [6] showed that, under the assumption
that each agent uses a removal function generated from a modular context,
certain equilibrium points in the social removal process are guaranteed to exist.
An interesting question would be whether these results generalise to the semi-
modular case.
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Computing Compliance
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Abstract. Inquisitive semantics (cf. Groenendijk, 2008) provides a for-
mal framework for reasoning about information exchange. The central
logical notion that the semantics gives rise to is compliance. This paper
presents an algorithm that computes the set of compliant responses to a
given initiative. The algorithm is sound and complete. The implementa-
tion is accessible online via www.illc.uva.nl/inquisitive-semantics.

1 Introduction

Traditionally, logic is concerned with argumentation. As a consequence, the
meaning of a sentence is traditionally identified with its informative content.
In much recent work, this notion is given a dynamic twist, and the meaning of
a sentence is taken to be its potential to change the ‘common ground’ of a con-
versation. The most basic way to formalize this idea is to think of the common
ground as a set of possible worlds, and of a sentence as providing information
by eliminating some of these possible worlds.

Of course, this picture is limited in several ways. First, when exchanging infor-
mation sentences are not only used to provide information, but also—crucially—
to raise issues, that is, to indicate which kind of information is desired. Second,
the given picture does not take into account that updating the common ground
is a cooperative process. One conversational participant cannot simply change
the common ground all by herself. All she can do is propose a certain change.
Other participants may react to such a proposal in several ways. Changes of the
common ground come about by mutual agreement.

In order to overcome these limitations, inquisitive semantics (cf.
Ciardelli and Roelofsen, 2009; Groenendijk, 2008; Groenendijk and Roelofsen,
2009; Mascarenhas, 2008) starts with an altogether different picture. It views
propositions as proposals to enhance the common ground. These proposals do
not always specify just one way of enhancing the common ground. They may
suggest alternative ways of doing so, among which the responder is then invited
to choose. Formally, a proposition consists of one or more possibilities. Each
possibility is a set of possible worlds and embodies a possible way to enhance
the common ground. If a proposition consists of two or more possibilities, it is
inquisitive: it invites the other participants to respond in a way that will lead to
a cooperative choice between the proposed alternatives. Inquisitive propositions
raise an issue. They indicate which kind of information is desired. Thus, inquis-
itive semantics directly reflects the idea that information exchange consists in a
cooperative dynamic process of raising and resolving issues.
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Traditional semantics gives rise to the logical notion of entailment, which
judges the validity of argumentation. Inquisitive semantics gives rise to the logi-
cal notion of compliance, which judges whether or not a sentence makes a signif-
icant contribution towards resolving a given issue. Extensive motivation for the
precise formulation of compliance can be found in (Groenendijk and Roelofsen,
2009). The aim of the present paper is to devise an algorithm that computes the
set of compliant responses to a given initiative. Such an algorithm will form the
basis for practical applications of inquisitive semantics.

The paper is organized as follows. Section 2 reviews the basic notions of
inquisitive semantics and some basic properties of the system, section 3 discusses
and illustrates the definition of compliance, and section 4 presents a sound and
complete algorithm for computing compliant responses.

2 Inquisitive Semantics

Definition 1 (Language). Let P be a finite set of proposition letters that we
will consider fixed throughout the paper. We denote by LP the set of formulas
built up from letters in P and ⊥ using the binary connectives ∧,∨ and →. We
will refer to LP as the propositional language based on P .

We will also make use of the following abbreviations: ¬ϕ for ϕ → ⊥, !ϕ for
¬¬ϕ , and ?ϕ for ϕ ∨ ¬ϕ.

Definition 2 (Indices). An index is a function from P to {0, 1}. We denote
by ω the set of all indices.

Definition 3 (States). A state is a set of indices. We denote by S the set of
all states.

Definition 4 (Support)

1. s |= p iff ∀w ∈ s : w(p) = 1
2. s |= ⊥ iff s = ∅
3. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
4. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ
5. s |= ϕ→ ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ

It follows from the above definition that the empty state supports any formula
ϕ. Thus, we may think of ∅ as the inconsistent state.

Fact 5 (Persistence). If s |= ϕ then for every t ⊆ s: t |= ϕ

Fact 6 (Singleton states behave classically). For any index w and
formula ϕ:

{w} |= ϕ ⇐⇒ ϕ is classically true under the valuation w

In particular, {w} |= ϕ or {w} |= ¬ϕ for any formula ϕ.
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It follows from definition 4 that the support-conditions for ¬ϕ and !ϕ are as
follows.

Fact 7 (Support for negation)

1. s |= ¬ϕ iff ∀w ∈ s : w |= ¬ϕ
2. s |= !ϕ iff ∀w ∈ s : w |= ϕ

In terms of support, we define the possibilities for a sentence ϕ and the propo-
sition expressed by ϕ. We also define the truth-set of ϕ, which is the meaning
that would be associated with ϕ in a classical setting.

Definition 8 (Truth sets, possibilities, propositions). Let ϕ be a formula.

1. A possibility for ϕ is a maximal state supporting ϕ, that is, a state that
supports ϕ and is not properly included in any other state supporting ϕ.

2. The proposition expressed by ϕ, denoted by [ϕ], is the set of possibilities
for ϕ.

3. The truth set of ϕ, denoted by |ϕ|, is the set of indices where ϕ is classically
true.

Notice that |ϕ| is a state, while [ϕ] is a set of states. The following result guar-
antees that the proposition expressed by a formula completely determines which
states support that formula, and vice versa.

Fact 9 (Support and Possibilities). For any state s and any formula ϕ:

s |= ϕ ⇐⇒ s is contained in a possibility for ϕ

Example 10 (Disjunction). Inquisitive semantics crucially differs from clas-
sical semantics in its treatment of disjunction. To see this, consider figures 1(a)
and 1(b). In these figures, it is assumed that P = {p, q}; index 11 makes both
p and q true, index 10 makes p true and q false, etcetera. Figure 1(a) depicts
the truth set—that is, the classical meaning—of p∨ q: the set of all indices that
make either p or q, or both, true. Figure 1(b) depicts the proposition associated
with p∨q in inquisitive semantics. It consists of two possibilities. One possibility
is made up of all indices that make p true, and the other of all indices that make
q true. So, as in the classical setting, p ∨ q is informative, in that it proposes
to eliminate the index where both p and q are false. But it is also inquisitive,
in that it proposes two alternative ways of enhancing the common ground, and
invites a response that is directed at chosing between these two alternatives.
This inquisitive aspect of meaning is not captured in a classical setting.

Definition 11 (Inquisitiveness and informativeness)

– ϕ is inquisitive iff [ϕ] contains at least two possibilities;
– ϕ is informative iff ϕ proposes to eliminate at least one index, that is, iff⋃

[ϕ] �= ω
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11 10

01 00

(a)

11 10

01 00

(b)

11 10

01 00

(c)

Fig. 1. (a) the classical picture of p∨ q, (b) the inquisitive picture of p∨ q, and (c) the
inquisitive picture of the polar question ?p

Definition 12 (Questions, assertions, and hybrids)

– ϕ is a question iff it is not informative;
– ϕ is an assertion iff it is not inquisitive;
– ϕ is a hybrid iff it is both informative and inquisitive.

Example 13 (Questions, assertions, and hybrids). We have already seen
that p ∨ q is both informative and inquisitive, i.e., hybrid. The proposition de-
picted in figure 1(a) is expressed by !(p∨ q). This proposition consists of exactly
one possibility. So !(p∨q) is an assertion. The proposition depicted in figure 1(c)
is expressed by ?p. This proposition covers the entire logical space, so ?p does
not propose to eliminate any index. That is, ?p is a question.1

The following result gives some sufficient syntactic conditions for a formula to
be an assertion.

Fact 14. For any proposition letter p and formulas ϕ, ψ:

1. p is an assertion;
2. ⊥ is an assertion;
3. if ϕ, ψ are assertions, then ϕ ∧ ψ is an assertion;
4. if ψ is an assertion, then ϕ→ ψ is an assertion.

Note that items 2 and 4 imply that any negation is an assertion. In particular, !ϕ
is always an assertion. In fact, as a consequence of proposition 7, the possibilities
for ¬ϕ and !ϕ can be characterized as follows.

1 Notice that questions do not have to be inquisitive, and assertions do not have to
be informative. For instance, the tautology !(p ∨ ¬p) is both a question and an as-
sertion, even though (or rather because) it is neither inquisitive nor informative.
Groenendijk and Roelofsen (2009) give a slightly more involved definition of ques-
tions and assertions, which makes sure that the two notions are strictly disjoint. This
may be more desirable from a linguistic point of view, but the additional complexity
is not quite relevant in the present setting, and is therefore avoided.



Computing Compliance 59

Fact 15 (Negation)

1. [¬ϕ] = {|¬ϕ|}
2. [!ϕ] = {|ϕ|}

Using fact 14 inductively we obtain the following corollary showing that disjunc-
tion is the only source of inquisitiveness in our propositional language.

Corollary 16. Any disjunction-free formula is an assertion.

In inquisitive semantics, the informative content of a formula ϕ is captured by
the union

⋃
[ϕ] of all the possibilities for ϕ. For ϕ proposes to eliminate all

indices that are not in
⋃

[ϕ]. In a classical setting, the informative content of ϕ
is captured by |ϕ|. The following result says that, as far as informative content
goes, inquisitive semantics does not diverge from classical semantics. In this
sense, inquisitive semantics is a ‘conservative extension’ of classical semantics.

Fact 17. For any formula ϕ:
⋃

[ϕ] = |ϕ|
We end this section with a definition of inquisitive equivalence.

Definition 18 (Equivalence)
Two formulas ϕ and ψ are equivalent, ϕ ≡ ψ, iff [ϕ] = [ψ].

It follows immediately from fact 9 that ϕ ≡ ψ just in case ϕ and ψ are supported
by the same states.

3 Compliance

The notion of compliance judges whether a certain conversational move makes
a significant contribution to resolving a given issue. Before stating the formal
definition, let us first review some of the basic logico-pragmatical intuitions
behind it.

Basic intuitions. Consider a situation where a sentence ϕ is a response to an
initiative ψ. We are mainly interested in the case where the initiative ψ is in-
quisitive, and hence proposes several alternatives. In this case, we consider ϕ to
be an optimally compliant response just in case it picks out exactly one of the
alternatives proposed by ψ. Such an optimally compliant response is an assertion
ϕ such that the unique possibility α for ϕ equals one of the possibilities for ψ:
!ϕ" = {α} and α ∈ !ψ". Of course, the responder will not always be able to
give such an optimally compliant response. It may still be possible in this case
to give a compliant informative response, not by picking out one of the alterna-
tives proposed by ψ, but by selecting some of them, and excluding others. The
informative content of such a response must correspond with the union of some
but not all of the alternatives proposed by ψ. That is, |ϕ| must coincide with
the union of a proper non-empty subset of !ψ".
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If such an informative compliant response cannot be given either, it may still
be possible to make a significant compliant move, namely by responding with
an inquisitive sentence, replacing the issue raised by ψ with an easier to answer
sub-issue. The rationale behind such an inquisitive move is that, if part of the
original issue posed by ψ were resolved, it might become possible to subsequently
resolve the remaining issue as well.

Summing up, there are basically two ways in which ϕ may be compliant
with ψ:

(a) ϕ may partially resolve the issue raised by ψ;
(b) ϕ may replace the issue raised by ψ by an easier to answer sub-issue.

Combinations are also possible: ϕ may partially resolve the issue raised by ψ and
at the same time replace the remaining issue with an easier to answer sub-issue.
What is important is that ϕ should do nothing more than this: it should not
provide any information that is not strictly related to the given issue, and it
should not raise any issues that are not strictly related to the given issue, or
issues that are more difficult to resolve. This means, in particular, that over-
informative answers are not compliant. For instance, p ∧ q is not a compliant
response to ?p, because it does not resolve the issue any more than the less
informative answer p would do.

These considerations are captured by the following definition:

Definition 19 (Compliance). ϕ is compliant with ψ, ϕ ∝ ψ, iff

1. every possibility in [ϕ] is the union of a non-empty set of possibilities in [ψ]
2. every possibility in [ψ] restricted to |ϕ| is contained in a possibility in [ϕ]

Here, the restriction of α ∈ [ψ] to |ϕ| is defined to be the intersection α∩|ϕ|. To
explain the workings of the definition, we will distinguish several cases, depending
on whether ψ and ϕ are assertions, questions or hybrids.

First, consider the case where ψ is an assertion. Then the first clause says
that every possibility for ϕ should coincide with the unique possibility for ψ.
This can only be the case if ϕ is equivalent to ψ. In this case, the second clause
is trivially met. Thus, the only way to compliantly respond to an assertion is to
confirm it.

Fact 20. If ψ is an assertion, then ϕ ∝ ψ iff [ϕ] = [ψ].

If ϕ is an assertion, then the first clause in the definition of compliance requires
that |ϕ| coincides with the union of a set of possibilities for ψ. The second clause
is trivially met in this case.

Fact 21. If ϕ an assertion, then ϕ ∝ ψ iff |ϕ| coincides with the union of a
non-empty set of possibilities for ψ.

In particular, if ϕ is an assertion and ψ is inquisitive, then fact 21 tells us that
ϕ is compliant with ψ just in case ϕ partially resolves the issue raised by ψ,
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without being over-informative. Thus, compliance embodies a strict notion of
partial answerhood.2

Next, consider the case where ϕ is a question. Then the first clause in the
definition of compliance requires that ψ is a question as well. Moreover, the first
clause also requires that every complete answer to ϕ is at least a partial answer
to ψ.

The second clause also plays a role in this case. However, since ϕ is assumed to
be a question, and since questions are not informative, the second clause can be
simplified: the restriction of the possibilities for ψ to |ϕ| does not have any effect,
because |ϕ| = ω. Hence,the second clause simply requires that every possibility
for ψ is contained in a possibility for ϕ.

Fact 22. If ϕ is a question, then ϕ ∝ ψ iff

1. every possibility in [ϕ] is the union of a non-empty set of possibilities in [ψ]
2. every possibility in [ψ] is contained in a possibility in [ϕ]

The second constraint prevents ϕ from being more difficult to answer than ψ.
Let us illustrate this with an example. Consider the case where ψ ≡ ?p∨ ?q and
ϕ ≡ ?p. The propositions expressed by ?p ∨ ?q and ?p are depicted in figure 2.

11 10

01 00

(a) ?p∨ ?q

11 10

01 00

(b) ?p

Fig. 2. Choice question and polar question

Intuitively, ?p∨ ?q is a choice question. To resolve it, one may either provide an
answer to the question ?p or to the question ?q. Thus, there are four possibilities,
each corresponding to an optimally compliant response: p, ¬p, q and ¬q. The
question ?p is more demanding: there are only two possibilities and thus only
two optimally compliant responses, p and ¬p. Hence, ?p is more difficult to
answer than ?p∨ ?q, and should therefore not count as compliant with it. This is
2 Earlier formal analyses of questions (cf. Groenendijk and Stokhof, 1984) usually

characterize partial answerhood in terms of entailment. Such characterizations are
satisfactory as long as questions are assumed to partition logical space. In inquisi-
tive semantics, questions are no longer associated with partitions: possibilities may
overlap. As a consequence, partial answerhood cannot be characterized in terms of
entailment anymore (cf. Groenendijk and Roelofsen, 2009).
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not taken care of by the first clause in the definition of compliance, since every
possibility for ?p is also a possibility for ?p∨ ?q. So the second clause is essential
in this case: it says that ?p is not compliant with ?p∨ ?q because two of the
possibilities for ?p∨ ?q are not contained in any possibility for ?p. The fact that
these possibilities are, as it were, ‘ignored’ by ?p is the reason that ?p is more
difficult to answer than ?p ∨ ?q.3

Notice that the second clause in the definition of compliance only plays a role
in case both ϕ and ψ are inquisitive. Moreover, the restriction of the possibilities
for ψ to |ϕ| can only play a role if |ϕ| ⊂ |ψ|, which is possible only if ϕ is
informative. Thus, the second clause can only play a role in its unsimplified
form if ϕ is both inquisitive and informative, i.e., hybrid. If ϕ is hybrid, just
as when ϕ is a question, the second clause forbids that a possibility for ψ is
ignored by ϕ. But now it also applies to cases where a possibility for ψ is partly
excluded by ϕ. The part that remains should then be fully included in one of
the possibilities for ϕ.

As an example where this condition applies, consider p ∨ q as a response to
p∨ q∨ r. One of the possibilities for p∨ q ∨ r, namely |r|, is ignored by p∨ q: the
restriction of |r| to |p∨q| is not contained in any possibility for p∨q. Again, this
reflects the fact that the issue raised by p∨ q is more difficult to resolve than the
issue raised by p ∨ q ∨ r.

A general characterization of what the second clause says, then, is that ϕ
may only remove possibilities for ψ by providing information. A possibility for
ψ must either be excluded altogether, or it must be preserved: its restriction to
|ϕ| must be contained in some possibility for ϕ.

4 Computing Compliance

In this section, we specify an algorithm which computes, for a given sentence ψ,
all sentences (up to logical equivalence) that are compliant with ψ. In order to
do so, we first introduce a procedure dnf, which determines, for any formula ψ,
an equivalent formula dnf(ψ) which is a disjunction of assertions (a disjunctive
normal form).

Definition 23. dnf(ψ) is recursively defined as follows:

1. dnf(p) = p
2. dnf(⊥) = ⊥
3. dnf(¬ψ) = ¬ψ
4. dnf(ψ ∨ χ) = dnf(ψ) ∨ dnf(χ)
5. dnf(ψ ∧ χ) =

∨
i,j (ψi ∧ χj )

where:
– dnf(ψ) = ψ1 ∨ . . . ∨ ψn

– dnf(χ) = χ1 ∨ . . . ∨ χm

3 Notice that compliance does not hold in the other direction either. That is, ?p ∨ ?q
is not compliant with ?p (in this case, the first clause is not satisfied).
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– i ranges over {1, . . . , n}
– j ranges over {1, . . . ,m}

6. dnf(ψ → χ) =
∨

k1 ,...,kn

∧
i(ψi → χki )

where:
– dnf(ψ) = ψ1 ∨ . . . ∨ ψn

– dnf(χ) = χ1 ∨ . . . ∨ χm

– i ranges over {1, . . . , n}
– k1 , . . . , kn all range over {1, . . . ,m}

Proposition 24. For all ψ, dnf(ψ) is a disjunction of assertions.

Proposition 25. For all ψ, dnf(ψ) ≡ ψ

There is a close correspondence between dnf(ψ) and the possibilities for ψ.

Proposition 26. If π is a possibility for ψ then π is a possibility (the unique
possibility) for some disjunct of dnf(ψ).

The converse, however, is not true. This is because some disjuncts of dnf(ψ) may
be entailed by others. If one disjunct α entails another β, then |α| is contained
in a possibility for ψ, but it is not identical to any such possibility. To get a
full correspondence between the possibilities for ψ and the disjuncts of dnf(ψ),
we must eliminate those disjuncts that entail others. This operation preserves
logical equivalence. We call the resulting formula the clean disjunctive normal
form of ψ, cdnf(ψ).

Definition 27. cdnf(ψ) is obtained from dnf(ψ) by removing any disjunct
that classically entails any other disjunct.

Proposition 28. For all ψ, cdnf(ψ) is a disjunction of assertions.

Proposition 29. For all ψ, cdnf(ψ) ≡ ψ.

Proposition 30. π is a possibility for ψ if and only if π is a possibility (the
unique possibility) for some disjunct of cdnf(ψ).

So cdnf(ψ) gives us, as it were, a syntactic representation of the possibilities for
ψ. This is exactly what we need to compute compliant responses. We are now
ready to define an algorithm that takes a sentence ψ as its input, and yields a
set comp(ψ) of sentences that are compliant responses to ψ.

Definition 31 (Algorithm)

1. The algorithm takes as its input a sentence ψ. It first computes cdnf(ψ). If
cdnf(ψ) consist of a single disjunct, then ψ is an assertion. Then, a sentence
is compliant with ψ iff it is equivalent with ψ. So we output comp(ψ) = {ψ}
in this case.
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2. If ψ is not an assertion, we first use cdnf(ψ) = ψ1 ∨ . . . ∨ ψn to compute
the set ca(ψ):

ca(ψ) = {!(ψi1 ∨ . . . ∨ ψim ) | i1 , . . . im ∈ {1, . . . , n}, m ≥ 1}

ca(ψ) consists of all formulas that are obtained from cdnf(ψ) by removing
some (possibly zero, but not all) disjuncts, and then turning the remaining
disjunction into an assertion using the ! operator. The unique possibility
for such a formula always coincides with the union of a non-empty set of
possibilities for ψ. So all formulas in ca(ψ) satisfy the first condition in the
definition of compliance. Moreover, by fact 21, the second condition does not
play a role for assertive responses. So all formulas in ca(ψ) are compliant
with ψ (hence the name ca, short for ‘compliant assertions’).

3. Oc course, a compliant response to ψ does not have to be an assertion. It may
very well be inquisitive. Any inquisitive compliant response, however, must
be equivalent with a disjunction of compliant assertions. Thus, we compute
the set of potentially compliant responses, pcr, as follows:

pcr(ψ) = {χ1 ∨ . . . ∨ χn | 1 ≤ n ≤ |ca(ψ)| and χ1 . . .χn ∈ ca(ψ)}

All formulas in pcr satisfy the first condition in the definition of compliance,
and vice versa, every formula that satisfies this condition is equivalent with
some formula in pcr(ψ).

4. What remains to be done is to filter out those formulas in pcr(ψ) that do
not satisfy the second condition in the definition of compliance. To do so,
we proceed as follows.
Take a sentence χ ∈ pcr(ψ). We know that χ = χ1 ∨ . . .∨χn , where all χi ’s
are assertions. We have to check that every possibility for ψ, when restricted
to |χ|, is contained in some possibility for χ.

To do so, take a disjunct ψj of cdnf(ψ), and check if ψj ∧ !χ classically
entails one of the disjuncts of χ. If this works for all ψj , then χ is compliant
with ψ, otherwise it is not.

Carrying out this procedure for all χ ∈ pcr(ψ) yields the desired set of
sentences comp(ψ).

5. Finally, there is some optional ‘cleaning up’ to do. The formulas in comp(ψ)
are all disjunctions of assertions, that is, formulas in disjunctive normal form.
To allow for a more intelligible output, we would like to bring these formulas
into clean disjunctive normal form. To do so, we simply apply cdnf to every
formula in comp(ψ).

We are now ready to state our main result: comp(ψ) does not just contain some
sentences that are compliant with ψ, it actually contains all such sentences (up
to logical equivalence). The proof of this result is suppressed here for reasons of
space. The interested reader is referred to (Cornelisse, 2009).

Theorem 1 (Soundness and Completeness of the Algorithm)
ϕ is compliant with ψ iff ϕ is logically equivalent with some sentence in comp(ψ).
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We end with a remark regarding the implementation of the algorithm. Notice
that most of the operations that have to be carried out consist in syntactic manip-
ulation of formulas. The only ‘reasoning’ steps consist in checking classical entail-
ment. Existing entailment/satisfiability checking algorithms can be used to carry
out this task. The algorithm has been implemented, and is accessible through a
graphical user interface at www.illc.uva.nl/inquisitive-semantics.

5 Conclusion and Outlook

The established algorithm could serve as the basis for practical applications
of inquisitive semantics, and will also aid in further developing and imparting
the theoretical framework. Several extensions suggest themselves. In particular,
Groenendijk and Roelofsen (2009) discuss some general criteria for preferring
certain compliant responses over others. Thus, one natural step to take would
be to develop an algorithm that, given an initiative ψ and an agent A with
information state sA, determines the most compliant response(s) to ψ that A
may truthfully utter.
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1 Introduction

One important function of logics of agency (Stit Logic, ATL, CL, Dynamic Logic)
is to assess the validity of arguments whereby responsibility is attributed to, or
denied by, individuals and groups. Indeed, the vocabulary and computational
properties of such logic allow us to express and reason on what agents did, or
what empowered them to do (either following a strategy as in ATL or not). It
is clear that this kind of reasoning is indispensable when we want to attribute
or distribute responsibility to agents, as when we want to ascertain that some
agents were not responsible of the events into account: if the group constituted
by two persons did not or even could not for some reasons blow a hospital,
then they should not be charged for blowing the hospital. Agency and the for-
mal framework for it then appear to be important for the implementation of a
rigourous reasoning on responsibility in (or of) groups.

Various developments have been carried over from a pure logic of agency to
frameworks where agency interacts with other notions. Focusing on Stit Logic,
the addition of knowledge (Broersen [4] and [5]) and intention (Broersen [6])
operators allows for the expression of statements such as that one did something
(un)knowingly or (un)intentionally. Here we make a further step in this direction,
by introducing expressions stating that an individual or group did not do more
than so-and-so. For instance, if responsibility is attributed to a group for the
robbing of a bank, then one member of the group may state that all he did was
to drive the others there and back. The setting we propose will enable us to
express the conditions for attributing or distributing responsibility.

In Stit Logic any set of individuals counts as a group, and the combination of
their individual actions counts as their group action. This means that the group
of you and some bank robber can be attributed responsibility for the combination
of watering the plants and robbing a bank, although all that you did was water
the plants. We shall call “agents” the individuals and “coalitions” the groups of
agents, thus following standard terminology in logics of agency.

If we aim at expressing the fact that an agent did something while another in
fact did not, it is necessary to expand the basic formal framework of stit logic.
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Indeed, an important feature of stit logic is the so-called coalition monotonicity
(discussed below): if coalition A accomplishes ϕ and coalition B accomplishes
ψ, then A∪B (the two coalitions together) accomplishes ϕ∧ψ. In other words,
coalitions preserve their accomplishments when entering bigger coalitions, and
this principle makes sense if we want to formalise cooperative behaviour (as
usually logics of agency do). But if ϕ ∧ ψ has been accomplished, this means
that the actual course of events has been forced as to include both ϕ ∧ ψ, and
hence it is not possible to make a difference whether A did only ϕ or only ψ (or
both). The same can be said for B. Yet we want to make this difference very
often. This is more evident in a concrete example. Take again the case of the
person watering the plants and the robbers. Given the set-theoretical apparatus
in the logics for collective actions, the coalition constituted by these persons both
water the plants and rob a bank. Obviously we want to dispense with the plant
waterer with the charge of robbing a bank, since he only watered the plants.
However, we cannot do that with the usual apparatus for Stit Logic or other
logics for agency. In the present paper, we aim at providing a formal refinement
of the Stit apparatus that allows to express the difference we perceive in the
above case and similar ones.

2 The Logic of “Seeing to It That”

Stit Logic is named after its primitive operator, the stit operator, which in turn
is the acronym of “seeing to it that”. “stitaϕ” reads “agent a sees to it that
ϕ”. The motivation for the logic has been mainly philosophical: to give a formal
semantic for sentences about agents and what they do (these sentences are also
called agentives in the literature). For instance, it allows a precise formulation
of the concept of free action (where one could have done otherwise than he/she
actually did). In this fashion a number of systems have been introduced for
example by Belnap, Perloff and Xu [2,3] and Horty [10]. However, in recent
years stit logic has been considered as a useful tool for the logic of agency in the
field of computer science, and this as resulted in proposals that are much more
sensible to the meta-logical properties we should reasonably want for a stit logic,
and more careful to the manageability of the logic itself. The systems proposed
by by Broersen [4] and Broersen, Herzig and Troquard [7] go in that direction.

A distinguishing feature of stit logic is that it is able to express what an agent
actually does, while other prominent logics of agency (Pauly’s [13] Coalition
Logic and Alur’s [1] Alternating-time Temporal Logic) are designed to express
just what an agent is empowered, or able, to do. This superior expressive power
has a number of conceptual virtues. For example, it enables us to point out how
the agent contributed to the actual state of the world or to what happened.
The ability to do this plays an important role in responsibility assignment or
distribution. Take the example of a bank that has been robbed. When we want
to charge or track down those who are responsible for that, we do not want to
single out those agents that were simply empowered to do it. We want to charge
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the agents that did it. Coalition Logic and Alternating-time Temporal Logics
have the resources to express just the first case (being empowered to do). By
contrast, Stit Logic has the expressive resources to discriminate the two cases,
since it can express them both. Thus the expressive power of stit logic fits with
some important differences we want to make in the general context of agency.
When it comes to more specific contexts, further expressive power is needed:
epistemic operators must be added to express what an agent knowingly does
(see Broersen [4]), while deontic ones (or a combined deontic-stit operator) are
indispensable if we want to express the notion of what an agent ought to do (see
Horty [10]). Similarly, gaining more expressive power is essential if we want to
express collective actions, i.e. what a group of agents does.

The example above makes reference to a set of agents, i.e. what we have
called a coalition. For expressing it, the language of stit logic must be endowed
with constants for sets of agents, so that we can form the sentence “stitAϕ”
(reading “coalition A sees to it that ϕ”). We must extend the language about
just one agent with names for set. Such a move allows as to enter the field of
multi-agency. As for the reasons for not confining ourselves to the mono-agent
case, there is a plenty of them. Most prominently, the most important phe-
nomena concerning agency are collective. Suppose we want to single out the
responsibility of one agent. In order to do that, we have to contrast agents
(we have to be able to say that agent a, but not agent b, committed a given
crime). Similarly, we must be able to speak of a plurality of agents if we want
to individuate those responsibility that are shared by more than one agent (the
case where both agent a and agent b committed the given crime). Stit Logic
is easily adapted to incorporate such expressions. Horty [10] and Broersen [4]
present specific versions of Stit Logic that expresses what coalitions do. No-
tice that cases involving one agent and cases with many agents may be treated
uniformly within an apparatus for collective action: stitaϕ may be taken as a
graphically light version of stit{a}ϕ, and then actions of a single agent may be
taken as actions of the coalition containing just that agent. Other changes are
needed beside the linguistic one. For example, Horty [10] uses a function to
individuate the alternative options of single agents, and then defines a formal
device to single the jointed action of many agents out of the possible actions of
each of the agents. However, the systems presented by Broersen [4] avoids this
further complication, since the apparatus there introduces applies in a straight-
forward way both to coalitions and single agents (to be considered singletons).
Such a feature is very attractive when it comes to expanding the framework
of coalitional Stit. Indeed, it allows to start with a straightforward and man-
ageable apparatus (though a rich one, in any case). Thus, in the present work
we shall use a slightly modified version of the system proposed in Broersen [4].
Such a system possess a feature that sets it apart from the classical Stit Log-
ics: it defines its main stit operator (xstit) as meaning “seeing to it that in
the next state of the world”. The reason for such a choice will become clear
below.



Attributing Distributed Responsibility in Stit Logic 69

2.1 The System xstit

The language Lxstit has three modal operators. One of these is [A xstit]ϕ, which
means that the agents in the set A see to it that ϕ is true directly after their next
(collective) action. For instance, {John,Bill} sees to it that the room is vented,
when John’s next action is to open the window and, simultaneously, Bill’s next
action is to open the door. A second modal expression in the language is �ϕ,
which says that ϕ is true (here and now), no matter what any of the agents
decide to do. For instance, if the door is locked and no agent has a key, then
�¬[A xstit]door open is true: necessarily, after the next actions of the agents the
door is (still) closed. The third modality is Xϕ, which means that in the state
actually resulting from the next action, ϕ is true.

The language is formally specified as follows:

ϕ, ψ, . . . := p | ⊥ | ¬ϕ | ϕ ∧ ψ | Xϕ | �ϕ | [A xstit]ϕ

Here p ∈ P is a propositional variable, and A ⊆ Ags is a set of agents.
The language is interpreted on a Kripke model 〈S,H,RX , R�, {RA | A ⊆

Ags}, V 〉. S is a set of states and H is the set of histories passing through these
states. Histories, in turn, are sets of states. A possibility is an ordered pair 〈h, s〉
of a history h and a state s, such that s ∈ h.

The relation R� is an equivalence relation for historical necessity, defined by:
〈h, s〉R�〈h′, s′〉 iff s = s′. This relation lets you ‘see’ the alternative possible
histories—the decisions that might be taken—to the actual history, relative to
the state at which you are in the actual history. The ‘next’ relation RX , on the
other hand, linearly orders the states in a given history. So 〈h, s〉RX〈h′, s′〉 only
if h = h′, and the relation is serial and deterministic.1

The relations RA, for any set A of agents, represent the substance of the
(next) actions undertaken by the group A in any given possibility. Various as-
sumptions are made concerning the structure of these relations. They are serial:
every coalition acts in any given history-state pair. The results of actions carry
over to larger coalitions (C-mon). Distinct (non-overlapping) coalitions can al-
ways join forces (Indep). The empty coalition achieves nothing (Ineff-0 ) and
no coalition achieves less than what is necessary to happen next (X-Eff ), nor
more than what next is necessary to happen: no actions constitute a choice be-
tween histories that are undivided in next states (NCUH ). These assumptions
are imposed as frame conditions, defining the class of XSTIT frames. Its precise
definition can be retrieved straightforwardly from the axioms, because they are
standard Sahlqvist formulas. See below for the axioms, and see Broersen [4] for
the precise statements of the frame conditions.

A valuation V : P �→ (S ×H) assigns truth values to the proposition letters
p ∈ P for every possibility 〈h, s〉. Given a model M = 〈S,H,RX , R�, {RA | A ⊆
Ags}, V 〉, the semantics is defined as follows:
1 Broersen [4] assumes that the total coalition Ags is deterministic, and so he defines

the ‘next’ relation by equating it with the relation RAgs. Here, we keep the two

distinct, in order to make the completeness proof for the logic of “seeing to it that
only” to go over smoothly.
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M, 〈h, s〉 |= p iff 〈h, s〉 ∈ V (p)
M, 〈h, s〉 |= ¬ϕ iff not M, 〈h, s〉 |= ϕ
M, 〈h, s〉 |= ϕ ∧ ψ iff M, 〈h, s〉 |= ϕ and M, 〈h, s〉 |= ψ
M, 〈h, s〉 |= Xϕ iff 〈h, s〉RX〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ
M, 〈h, s〉 |= �ϕ iff 〈h, s〉R�〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ
M, 〈h, s〉 |= [A xstit]ϕ iff 〈h, s〉RA〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ

2.2 Axiomatisation

The complete Hilbert calculus Λxstit is listed below.

PC propositional calculus
MP from ϕ and ϕ→ ψ infer ψ
Nec from ϕ infer Xϕ, [A xstit]ϕ and �ϕ
K� �(ϕ→ ψ)→ (�ϕ→ �ψ)
T� �ϕ→ ϕ
5� ¬�ϕ→ �¬�ϕ
(K-X) X(ϕ→ ψ)→ (Xϕ→ Xψ)
(Det-X) ¬X¬ϕ↔ Xϕ
(K-xstit) [A xstit](ϕ→ ψ)→ ([A xstit]ϕ→ [A xstit]ψ)
(Ser) [A xstit]ϕ→ ¬[A xstit]¬ϕ
(Ags-X) [Ags xstit]ϕ→ Xϕ
(C Mon) [A xstit]ϕ→ [(A ∪B) xstit]ϕ
(Indep) ♦[A xstit]ϕ ∧ ♦[B xstit]ψ → ♦([A xstit]ϕ ∧ [B xstit]ψ), if (A ∩B) = ∅
(Ineff-0) [∅ xstit]ϕ→ �Xϕ
(X-Eff) �Xϕ→ [A xstit]ϕ
(NCUH) [A xstit]ϕ→ X�ϕ

These axiom schemes are all within the Sahlqvist class, so they define a class of
frames XSTIT for which the logic is sound and complete (see Broersen [4]).

2.3 Why Do We Use xstit?

Working with the operator xstit is not the standard option in Stit Logic. So, why
are we doing it? The answer is that with the xstit operator we have neat technical
benefits. Indeed, the usual choice in Stit Logic is defining a stit operator by the
condition: “[Astit]ϕ is true iff for any history h′ there is a state s′ such that
M, 〈s′, h′〉 |= ϕ”. As a consequence, the states s′ in the relevant pairs state-
history may be subsequent states whatever of s (w.r.t. h′), and not the next
states w.r.t. to s. But if we let this go, we lose axiom K-xstit. Indeed, we may
have the following situation:

1. [Astit](ϕ→ ψ) is true at the pair 〈s, h〉, and hence for every history h′ is in
a pair 〈s′, h′〉 that is in RA with 〈s, h〉 and forces ϕ→ ψ.

2. All such pairs 〈s′, h′〉 forces ϕ→ ψ because both ϕ and ψ fail at such pairs.
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3. Every history is also in a pair 〈s′′, h′〉 in RA with 〈s, h〉 and such that it forces
ϕ. This makes [Astit]ϕ true at the pair 〈s, h〉. Yet no state that appears in
a pair in RA with 〈s, h〉 forces ψ. Hence [Astit]ψ is false at 〈s, h〉

As a consequence of the three conditions, [Astit](ϕ→ ψ) and [Astit]ϕ are true
at the pair 〈s, h〉, but [Astit]ψ is not. This makes K-xstit fail.

With the conditions for xstit the above situation is prevented. Indeed, if [A xstit]
(ϕ → ψ) [Axstit]ϕ are true at 〈s, h〉, then for every history there is only one
pair 〈s′, h′〉 (in RA with 〈s, h〉) that is relevant for the truth of the two sentences.
Such a pair is the one containing the next state of s w.r.t. s′. If ϕ→ ψ and ϕ are
forced at the pair 〈s′, h′〉, then also ψ is, from MP . And if for every history h′,
〈s′, h′〉, we have this situation, we have that at 〈s, h〉 not only [Astit](ϕ → ψ)
and [Astit]ϕ are true, but also [Astit]ψ is (otherwise it should fail in some of
the next states s′ above, but this contradicts the construction).

3 The Logic of “Seeing to It That Only”

3.1 Language, Models and Semantics

To be able to express that an agent (or coalition) does no more than ϕ, we
extend the language Lxstit with sentences of the form [A istit]ϕ. The intended
meaning of such sentences is that the collective action of group A excludes only
possibilities such that ϕ becomes true. In other words, the groupA does not avoid
any non-ϕ possibilities. The addition of the istit operator follows the approach of
Humberstone [11] of characterising the ‘only’ modality as a complex expression:

“Group A sees to it only that ϕ” ≡ [A xstit]ϕ ∧ [A istit]¬ϕ
ISTIT frames are tuples 〈S,H,RX , R�, {RA | A ⊆ Ags}, {R−

A | A ⊆ Ags}〉, where
〈S,H,RX , R�, {RA | A ⊆ Ags}〉 is an XSTIT frame and such that R−

A = def ((R�◦
RAgs) \ RA). As is standard, an ISTITmodel is obtained by adding a valuation
function V to the frame, that assigns truth values for all atomic propositions at
each of the history-state pairs of the frame.

The semantics is similarly an extension of the semantics for Lxstit. We can
therefore suffice with the clause for the additional operator.

M, 〈h, s〉 |= [A istit]ϕ iff 〈h, s〉R−
A〈h′, s′〉 implies that M, 〈h′, s′〉 |= ϕ

3.2 Axiomatisation, Soundness and Completeness

As Humberstone already observed, the property that two relations are disjoint
(i.e., RA ∩ R−

A = ∅) cannot be expressed in a language with a normal modal
semantics. This implies that we cannot identify a complete axiomatisation for
the class of ISTIT frames by means of standard correspondence theory. Instead,
adapting a proof from Herzig and Gasquet [9], we prove completeness by show-
ing that the frames characterised by the logic are p-morphic images of the
ISTIT frames.
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The logic Λistit constains the logic Λxstit plus the following:

– From ϕ infer [A istit]ϕ
– [A istit](ϕ→ ψ)→ ([A istit]ϕ→ [A istit]ψ)
– �Xϕ↔ ([A xstit]ϕ ∧ [A istit]ϕ)
– ♦[A istit]ϕ ∧ ♦[B istit]ψ → ♦([A istit]ϕ ∧ [B istit]ψ) (for A ∩B = ∅)
– [A ∪B istit]ϕ→ [A istit]ϕ
– [∅ istit]⊥

After necessitation and the scheme K, the third axiom scheme identifies what is
necessary to happen with that which is both a necessary consequence of what
one does and a necessary consequence of what one (thereby) avoids. This makes
the axiom scheme (X-Eff) superfluous. The remaining three axiom schemes are
straightforward consequences of making R−

A the complement of RA: both have
independence of agency, istit is reverse coalition monotonic, and because the
empty coalition is inactive, it avoids no possibility.

Soundness of this logic for the class of ISTIT frames can be proven by showing
that the first order conditions corresponding to the axiom schemes are true for
all ISTITmodels.

– RA ∪R−
A = R∅;

– If 〈h, s〉(R�◦R−
A)〈h′, s′〉 and 〈h, s〉(R�◦R−

B)〈h′′, s′′〉 andA∩B = ∅, then there
is a 〈h, s〉R�〈h′′′, s〉 such that both 〈h′′′, s〉R−

A〈h′, s′〉 and 〈h′′′, s〉R−
B〈h′′, s′′〉.

– R−
A ⊆ R−

B if A ⊂ B;
– R−

∅ = ∅.
Checking that these conditions obtain in all ISTIT frames is left to the reader.
Let us call the class of frames characterised by this logic F (Λ). In this class, the
relations RA and R−

A are not necessarily disjoint, but they do obey the above
four properties.

To prove completeness, we show that any F (Λ) model is a p-morphism of
some ISTITmodel: we can always make the relations RA and R−

A disjoint while
preserving the truth values of sentences. We do so by constructing, for an arbi-
trary F (Λ) model, the ISTITmodel of which it is a p-morphism. The proof is an
amendment of the proof given by Herzig and Gasquet for the logic of inacces-
sible worlds. The construction is by duplication of states and, accordingly, the
multiplication of histories.

Let M = 〈S,H,RX , R�, {RA | A ⊆ Ags}, {R−
A | A ⊆ Ags}, V 〉 be a point-

generated submodel for ϕ at its possibility 〈h, s〉. We define the model M ′ =
〈S′, H ′, R′

X , R
′
�, {R′

A | A ⊆ Ags}, {R−′
A | A ⊆ Ags}, V ′〉 as follows:

– S′ = T1 ∪ T2, where S, T1, and T2 are mutually disjoint and such that there
are two isomorphic mappings f1 : S �→ T1 and f2 : S �→ T2.

– H ′ is the set of all histories h′ such that there is an h ∈ H and h′ contains
either f1(s) or f2(s) iff s ∈ h. We write g(h′) for the unique history h ∈ H
such that all states in h′ are mapped onto states in h.

– 〈h, fi(s)〉R′
X〈h′, fj(s′)〉 iff 〈g(h), s〉RX〈g(h′), s′〉 and h = h′.

– 〈h, fi(s)〉R′
�〈h′, fj(s′)〉 iff s = s′.
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– 〈h, fi(s)〉R′
A〈h′, fj(s′)〉 iff 〈g(h), s〉RA〈g(h′), s′〉 and i = j, or 〈g(h), s〉(RA \

R−
A)〈g(h′), s′〉 and i �= j.

– 〈h, fi(s)〉R−′
A 〈h′, fj(s′)〉 iff 〈g(h), s〉R−

A〈g(h′), s′〉 and i �= j, or 〈g(h), s〉(R−
A \

RA)〈g(h′), s′〉 and i = j.
– 〈h, fi(s)〉 ∈ V ′(p) iff 〈g(h), s〉 ∈ V (p), for i = 1, 2.

The reverse of this construction, the mapping f−1
1 ∪ f−1

2 from M ′ to M , is a
p-morphism.2 So if ϕ is satisfiable in M it is also satisfiable in M ′. Moreover, it
can be observed that M ′ is an ISTIT model: for all coalitions A, the relations R′

A

and R−′
A are disjoint, while their union still completely covers R� ◦ RX . Also,

the determinacy of RX has been preserved in the construction.

4 Discussion

With this setting at hand, we are able to discriminate between cases where
one agent is involved in something and cases where he is not. Coming back to
the example of the person watering the plants—call him ‘Bob’: we have a clear
way to express that he did not partake in the bank robbery: in the language
of istit this is expressed by [bob xstit]water ∧ [bob istit]¬water. Combined with
[joe xstit]rob ∧ [joe istit]¬rob, this implies that [{bob, joe} xstit](water ∧ rob) ∧
[{bob, joe} istit]¬(water ∧ rob). That is to say, Bob only watered the plants.

In this scenario, Bob is entirely superfluous in the group of him and Joe insofar
as the robbery is concerned. So Bob is exculpated by this reasoning. Yet, in other
cases, doing only a precise thing may be also the source of a violation of some
sort. For example, suppose that a bank employee convinces me to subscribe
an investment with high risk-level. The description of the risk-level is in the
second page of the document he shows me. However, he shows me only the
first page of such a document. In our apparatus, [bank employee xstit]page1 ∧
[bank employee istit]¬page1. He should have shown me the other pages as well,
so he misled me. As a consequence, he has to be attributed the responsibility of
a mischievous act.

Lastly, as has been noted earlier, in the Stit framework a collective of agents
may be said to achieve more than their individual actions combined. A possible
example is the killing of a person by a mob, where the ‘fatal blow’ may not be
identifiable, so that legally the killing might be said to be caused by the mob as
such, rather than by any of its members. In the Netherlands, some controversy
has arisen over this notion of collective responsibility (article 141 of the Dutch
Criminal Code). The idea of such irreducibly collective actions is a complex
philosophical issue that we shall not address here (see for instance Graham [8]).
But it is important that we may express in our language that some harm was
caused by a collective of agents without the possibility of attributing it to any
individuals.

Using only the xstit operator we can express that a group did or did not cause
something, but not that their individual actions, as such, combined did or did
2 Or, if preferred, the mapping from each 〈h, fi(s)〉 onto 〈g(h), s〉.
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not cause the event. If no individual in a group performs any harmful action,
but collectively they do cause harm, then it depends on our concept of collective
action whether or not we will want to assign any guilt.

5 Concluding Remarks

An intriguing development in legal research is towards the aim of automated
legal reasoning. In that context, a specifically challenging issue is the formali-
sation of responsibility attribution, which involves more than the attribution of
causal relevance (and strict liability), because it includes the attribution of the
relevant epistemic attitudes and intentions as well (see for instance Lehmann
and Breuker [12]). Our paper is envisaged as part of a larger programme of
developing the Stit framework into a formal system suitable for automated at-
tribution of (legal or moral) responsibility. Apart from the reformulation of the
Stit framework into a normal (multi-modal and two-dimensional) modal logic
by Broersen, the aim is to introduce a variety of modal concepts to the language
allowing us to express the relevant conceptual distinctions needed in a fair and
correct responsibility attribution (including intention and knowledge). In view
of the coalitional approach to the modal operators in the recent Stit-formalisms,
the present contribution focusses on the assessment of a distribution of responsi-
bility within groups. In simple terms, we need to be able to judge who did what
and who refrained from doing what.

The technical work in this paper shows that the extension with the istit op-
erator allows us to do this within the scope of a normal modal logic, using the
insights of Humberstone and Herzig and Gasquet on the expression of ‘only’
notions in modal logic and its complete axiomatization.

A further potential application of the present approach, suggested by Broersen,
is the analysis of dynamic modal notions (as in dynamic epistemic logic, see [14])
within the Stit framework. An announcement of ϕ is an action that results in the
‘elimination’ of all and only ¬ϕ worlds in the domain.
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Abstract. Iterated dominance is perhaps the most basic principle in
game theory. The epistemic foundation of this principle is based on
the assumption that all players are rational. The main contribution of
this paper is to characterize the algorithm of iterated admissibility in
Probabilistic Epistemic Game Logic (PEGL). Firstly, on the basis of
Probabilistic Epistemic Logic we set up a logic PEGL. Secondly, by
redefining a concept of rationality, we show that the common knowledge
of the rationality characterizes the algorithm of Iterated Admissibility,
that is, we provide an epistemic foundation for the solutions or equilibria
which are found by the algorithm of Iterated Admissibility(IA). Next, we
provide a different characterization of IA using public announcements
of the rationality in dynamic logic. The results we obtain can be seen
as giving a dynamic epistemic foundation for the algorithm of Iterated
Admissibility.

Keywords: strategic-form game, probability logic, iterated admissibility
algorithm, rationality, common knowledge.

1 Introduction

The algorithm of iterated elimination and the rational players’ decisions in games
are research focuses in the fields of game theory and game logics ( cf. [1], [2],[3]
and [4] etc.) Most of the literatures on the concept of rationality used Bayesian
rationality as [5] and [6], that is to say, a strategy of player i is said to be ra-
tional if it maximizes player i’s expected payoff, given her probabilistic beliefs
about the strategies used by her opponents, except for [7], [8] and [9] etc. Al-
though [7] and [8] both give us more complicated descriptions of various iterated
deletion algorithms on the basis of different definitions of rationality in epis-
temic logic respectively, but neither of them give a logical characterization of
the algorithm of IA, which is a long-standing and attractive solution concept.
Furthermore they both restricted their analyses to pure strategies. In this paper,
firstly, building on the contributions of [7], [10] and [8], we put forward a new
logic, namely Probability Epistemic Game Logic (PEGL). Secondly, we gener-
alize the result in [11] to cover the mixed strategy, and by redefining rationality
we take a syntactic approach to show that common knowledge of this rationality
characterizes the algorithm of IA. Therefore, we give an epistemic foundation
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c© Springer-Verlag Berlin Heidelberg 2009



Characterizations of Iterated Admissibility Based on PEGL 77

for the algorithm of IA. Subsequently, inspired by [7], we show this rationality
can be used as a proper announcement assertion in public announcement logic
(PAL). In particular, using our definition of our rationality, the proposition“ All
players are rational ” just fails at the worlds in which the strategies are weakly
dominated. And after publicly announcing the proposition for one time, we can
remove simultaneously all weakly dominated strategies. This leads to a new sub-
game model. In this subgame model, the players may discover that some of their
retaining strategies are dominated again owing to the absence of some worlds. By
repeating the announcement and removing continuously the irrational worlds,
until we get a subgame model in which the proposition holds at every world. For
a game with finite strategy spaces, the procedure will stabilize after a finite num-
ber of stages. We indicate in this paper that the procedure which is constructed
by removing worlds after repeated public announcements of the rationality we
defined corresponds to the procedure of iterated admissibility.

The paper is organized as follows. In the next section we review the concept of
strategic-form game, admissibility and iterated deletion procedures, and also the
Probabilistic Epistemic logic (PEL) introduced by J.Y.Halpern. In Section 3, by
combining the PEL with Game Logic, we propose a logic, namely Probabilistic
Epistemic Game Logic(PEGL), and show how to provide an epistemic foundation
for the algorithm of iterated admissibility based on PEGL. In Section 4, we
prove that the announcement of this rationality can also characterize the iterated
admissibility. We briefly survey the related works in section 5, and draw the
conclusion.

2 Preliminaries

2.1 Game and Dominance

In this paper we restrict our attention to finite two-player strategic games, which
are defined as follows.

Definition 1. A finite strategic-form game is a tuple
G = 〈N, {Si}i∈N , {Δ(Si)i∈N , {ui}i∈N , {Ui}i∈N , {�i}i∈N 〉.1 where

– N = {1, 2} is a set of players;
– Si is a finite set of pure strategies of player i ∈ N ;
– Δ(Si) is a finite set of mixed strategies over Si. If Si = {s1i , ..., sm

i }, then
δi = (δ1i , ..., δ

m
i )(δi ∈ Δ(Si)) denotes player i’s mixed strategy, where δk

i (k =
1, ...,m) denotes the probability of player i choosing the pure strategy sk

i , and
δk
i satisfies 0 ≤ δk

i ≤ 1,
∑m

k=1 δ
k
i = 1;

– ui is a payoff function2 : S → Q. It gives player i’s utility ui(s) for each
pure strategy profile s ∈ S (where S = S1 × S2);

– Ui : ×j∈NΔ(Sj)→ Q, which we assume satisfies the expected utility property;

1 Here we define a game by combing a strategic game G = 〈N, {Si}i∈N , {ui}i∈N ,
{�i}i∈N 〉 with its mixed extension form 〈N, {Δ(Si)}i∈N , {Ui}i∈N , {�i}i∈N 〉.

2 Here we restrict ourselves to the games where players’ utility is rational numbers.
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– �i is player i′s preference on ×j∈NΔ(Sj);The strict ordering δi %i ηi is
defined as usual: δi %i ηi if and only if δi �i ηi and not ηi �i δi.

Where, �i is a partial order, satisfied reflexivity, antisymmetry and transitivity.
The interpretation of δi �i ηi is that, according to player i, the expected utility
obtained by selecting δi is at least as good as the utility of selecting ηi. Usually
we specify a player’s preference relation by giving a payoff function to represent
it. In this paper, we retain the two functions so that we can express games more
clearly in our logic.

Note that, we can take pure strategies as a special case of mixed strategies,
for example, pure strategy s1i that the player i chooses in a game is considered
as a mixed strategy δi = (1, 0, 0..., 0)︸ ︷︷ ︸

m

, where Si = {s1i , ..., sm
i } .

Definition 2. Given a game G, a strategy sk
i is weakly dominated (or inadmis-

sible) if there is a δi ∈ Δ(Si), such that Ui(δi, s
l
j) ≥ ui(sk

i , s
l
j) for all sl

j ∈ Sj,
and Ui(δi, s

h
j ) > ui(sk

i , s
h
j ) for some sh

j ∈ Sj(i �= j).3

In addition, a weakly undominated strategy sk
i is also called admissible for player

i. We can give an elimination procedure called iterated weak dominance or iter-
ated admissibility (cf. [12]). The formal definition is as follows:

Definition 3. Given a game G, let IAS be the set of iteratively admissible
strategies of G defined recursively as follows: IAS = ×i∈NIASi, where IASi =⋂

m�0 IAS
m
i , with IAS0

i = Si and for m � 1, IASm
i = IASm−1

i \ ISm−1
i , where

ISm−1
i = {sk

i ∈ IASm−1
i | sk

i is inadmissible in the IASm−1
i with respect to

IASm−1
−i }.

Note that in definition 3, it is assumed that at each stage all dominated strategies
are simultaneously deleted. In contrast to most equilibrium concepts, iterative
admissibility yields a rectangular set of strategy profiles, i.e. a Cartesian product
of sets. Accordingly, whether the choice of a particular player is rational in this
sense does not depend on the choices of other players. This IA procedures is
illustrated in the following figure 1.where,

Player1

Player2

X

Y

Z

a b c

( , )2 3 ( , )2 2 ( , )1 2

( , )5 3

( , )3 1

( , )0 2 ( , )4 2

( , )0 4( , )1 3

Player1

Player2

X

Y

Z

a b c

( , )2 3 ( , )2 2 ( , )1 2

( , )5 3

( , )3 1

( , )0 2 ( , )4 2

( , )0 4( , )1 3

Fig. 1. IWUS procedure

3 Later, we will refer to weakly dominated (or weakly dominate) as dominated(or
dominate).
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IAS0
1 = {X,Y, Z}, IS0

1 = ∅, IAS0
2 = {a, b, c}, IS0

2 = {b};
IAS1

1 = {X,Y, Z}, IS1
1 = {X,Z}, IAS1

2 = {a, c}, IS1
2 = ∅;

IAS2
1 = {Y } = IAS1, IS2

1 = ∅, IAS2
2 = {a, c}, IS2

2 = {c};
IAS3

2 = {a} = IAS2. Thus, IAS = {(Y, a)}

2.2 Probabilistic Epistemic Logic

The Probabilistic Epistemic logic(PEL)([10]), which allows us to mention the
probabilities explicitly in formulas, makes it possible to describe and analyze
games with mixed strategies.4

Roughly, PEL extends the language of multi-agent S5 system by adding a
probabilistic operator Pi, and taking a linear inequality q1P (ϕ1)+ ...+qnPn(ϕn)
≥ q (i.e.

∑m
k=1 qkPi(ϕk) ≥ q) as a legal formula in the language of PEL, where

q1, q2, ..., qn, q are arbitrary rational numbers, It’s an i-probability formula.
Pi(ϕ) ≥ q is read as ′the probability agent i assigns to ϕ is greater than or

equal to q′, and the probability of a formula ϕ is the probability of the set of
worlds where ϕ is true.5

In addition to axioms and rules for multi-agent S5 system, it includes two
classes of axioms for reasoning about linear inequalities and probabilities re-
spectively (cf [10]) in PEL. And R.Fagin and J.Y.Halpern showed:

Theorem 1. PEL is a sound and complete axiomatization for the logic of
knowledge and probability.

3 Probabilistic Epistemic Game Logic

In this section, on the basis of PEL, we construct a new Probabilistic Epistemic
Game Logic (PEGL), so that we can study games and discuss the epistemic
foundations of the equilibria which are achieved by the algorithm of iterated
admissibility.

Definition 4 (Language of PEGL). Given a game G with Si = {s1i , ..., sm
i },

Let P be a countable set of propositional letters and N a finite set of agents. The
language of PEGL denoted by LPEGL is given by the following rule in extended
Backus-Naur form:

ϕ ::=⊥| p | ¬ϕ | ϕ1 ∨ ϕ2 | Kiϕ | CNϕ |
m∑

k=1

akPi(ϕk) ≥ a

4 Here, we present the PEL which is modified by [13]. It will be more suitable for our
purpose.

5 Note that, here we simplify the probabilistic epistemic models to the models where
the σ-algebra of measurable sets is always the powerset of the sample space. Because
in this paper we just formalize the concept of the rationality rather than reason
about the probabilities, we don’t require that the probabilities is assigned on the set
of worlds that the agent considers possible, i.e. the property of CONS. However, our
logical system still satisfies the property MEAN, that’s to say, all formulas define
measurable sets.
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where i ∈ N, a1, ..., am, and a are rational numbers, which stand for a utility
value of some player i. Intuitively, Kiϕ says agent i knows that ϕ, while ENϕ
says that everyone in group N knows that ϕ, and CNϕ says that ϕ is common
knowledge among the group N . And the set of atomic propositions upon P
contains atomic propositions of the following form:

1. Pure strategy symbols s1i , s
2
i ..., s

m
i etc, Si is a set of player i’s pure strategies;

Mixed strategy symbols δi, σi, ... , and Δ(Si) is the set of player i’s mixed
strategies.

2. The symbol Rai means player i is rational, Bri is interpreted as the best
response of player, another a symbol NE means it is a Nash Equilibriu.

3. Atomic propositions of the form δi �i s
l
i and δi %i s

l
i.

6

We restrict the modal operator Pi only to taking effect on the set of the atomic
propositions Si, and Pi(sk

i ) stands for a probabilistic value that player i assigns
to his pure strategy sk

i , which is somewhat different from PEL.

Definition 5 ( The frame of PEGL). Given a game G, F = 〈W,Ri, Pi, fi〉
is a frame of PEGL , where

– W �= ∅: consists of all players’ pure strategy profiles.
– Ri is an accessibility relation for player i, which is defined as the equivalence

relation of agreement of profiles in the i’th coordinate.
– fi : W → Si is a pure strategic function, which satisfies the following

property: Riwv iff fi(w) = fi(v).
– P : (N ×W )→ (W ⇀ [0, 1])7, such that ∀i ∈ N, ∀w ∈W,∑

v∈dom(P (i,w)) P (i, w)(v) = 1. Moreover, We require that dom(P (i, w)) =
{w′|Rjww

′, j �= i}. In addition, we require that if Riwv, then
P (i, w)(v) = P (i, v)(w) = P (i, w)(w), i.e., for a player i, the same pure

strategies should have the same probability.

Thus, a PEGL-frame adds to a two-agent S5-Kripke frame a strategic function
that associates with every world w a pure strategy profile(fi(w), fj(w)) ∈ S and
a function that assigns a probability function to each agent at each world. Given
the above the frame for PEGL, we define an initial model based on it.

Definition 6 (The initial model for PEGL). Given a game G with Si =
{s1i , ..., sm

i }, an initial probabilistic epistemic game model M = (W,Ri, V, Pi), is
defined as follows. Given a world w ∈W .
(M,w) |= p iff w ∈ V (p)
(M,w) |= sk

i iff for ∀v,Riwv implies fi(v) = sk
i and

P (i, w)(v) = 1
(M,w) |= δi iff for ∀v,Riwv implies fi(v) = sk

i for a
sk

i ∈ Si and 0 ≤ P (i, w)(v) ≤ 1
(M,w) |= Bri iff ∀δj ∈ Δ(Sj),∧sk

i ∈Si
(Ui(fi(w), δj) ≥ Ui(sk

i , δj))

6 Here we just deal with the relation between mixed strategies and pure strategies,
while neglect the preference relations between the mixed strategies.

7 ⇀ means that it is a partial function.
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( , )X a

( , )Z b ( , )Z c

( , )Y c( , )Y b

( , )Z a

( , )Y a

( , )X c( , )X b 1

1

1 1

1

1

2 2 2

2 2 2

Br
2

Br
1

OBr Br
1 2
,

Br
1 1

1

1 1

1

1

2 2 2

2 2 2

Br
2 O

OO

Fig. 2. Epistemic game model(in the lefthand figure) and Distributions of players’ best
responses (in the righthand figure)

(M,w) |= NE iff (M,w) |= ∧i∈NBri

(M,w) |= ¬ϕ iff (M,w) 	 ϕ
(M,w) |= ϕ1 ∨ ϕ2 iff (M,w) |= ϕ1 or (M,w) |= ϕ2
(M,w) |= Kiϕ iff for ∀v, Riwv implies (M, v) |= ϕ
(M,w) |= CNϕ iff for ∀v, R∗wv implies (M, v) |= ϕ
(M,w) |= ∑m

k=1 akPi(ϕk) ≥ a iff
∑m

k=1 akP (i, w)(ϕk) ≥ a8

(M,w) |= δi �i s
l
i iff (M,w) |= ∑m

k=1 ui(sk
i , fj(w)) · Pi(sk

i ) ≥ ui(sl
i, fj(w))

(M,w) |= δi %i s
l
i iff (M,w) |= ∑m

k=1 ui(sk
i , fj(w)) · Pi(sk

i ) > ui(sl
i, fj(w))

In this definition, R∗ is the reflexive transitive closure of ∪i∈NRi, and
P (i, w)(ϕk) = P (i, w)({v ∈ dom(P (i, w))|(M, v) |= ϕk}).9

Figure 2(left) represents an initial PEGL model M from the game showed in
figure 1. Here player 2’s uncertainty relation R2 runs along columns, because
player 2 knows his own action, but not that of player 1. The uncertainty relation
of player 1 runs along the rows.

Figure 2(right) describes the distributions of players’ best responses in the
game of figure 1 limited to pure strategies.

It’s easy to prove that M |= (¬K1Br1 ∧ ¬K2Br2) in figure 2, i.e., neither
players knows that he plays the best response. However, rationality means players
aim at maximizing their utilities, in other words, a rational player i (Rai) always
choose her best response (Bri). Thus, we can deduce : M 	 CNRai. But this is
in contradiction with the analysis principle of game theory, that is, rationality
is common knowledge among players in a game. So it is necessary to modify the
definition of rationality, and we need to add epistemic ingredient to the definition
of rationality.10

Definition 7 (A definition of Rationality). Player i is rational at a world
w if there is not a mixed strategy δi , player i knows δi to be at least as good as
fi(w), and she considers it is possible that δi is better than fi(w). Formally:

8 Serving to state, we substitute
∑m

k=1 ui(s
k
i , fj(w)) for ak and ui(s

l
i, fj(w)) for a in

this definition.
9 We will express that player i assign a probabilistic value to a pure strategy sk

i by
P (i, w)(sk

i ) later.
10 This part is motivated by [7] and [14].



82 J. Cui, M. Guo, and X. Tang

M,w � Rai ⇐⇒ ¬∃δi ∈ Δ(Si),M,w � Ki(δi �i fi(w)) ∧ 〈Ki〉(δi %i fi(w))
(i ∈ N, 〈Ki〉 is dual for Ki).11

Definition 8 (The model of PEGL ). A probabilistic epistemic game model
MPEGL is a model which is attained by extending M with the valuation function
satisfies the atomic proposition Rai.

According to this definition, it is easy to verify that Rai fails exactly at the rows
or the columns with which the weakly dominated strategies correspond for player
i in a MPEGL. For instance, in figure 2, Ra2 fails at the states (X, b), (Y, b) and
(Z, b).

Following the research program proposed by [8], we can use an axiom (called
RA) to express the notion of rationality: it says that a player is irrational if he
chooses a strategy while knowing that a different strategy is at least as good and
he considers it is possible that this alternative strategy is actually better than
the chosen one:

RA sk
i ∧Ki(δi �i s

k
i ) ∧ 〈Ki〉(δi %i s

k
i )→ ¬Rai

Apart from axiom RA and all axioms included in PEL, PEGL also has the
following additional axioms:12

– G1 δi ∨ ηi ∨ ... ∨ θi

– G2 ¬(δi ∧ ηi)
– G3 (δi �i ηi) ∨ (ηi �i δi)
– G4 (δi %i ηi)↔ ((δi �i ηi) ∧ ¬(ηi �i δi))
– G5 δi → Kiδi

The intuitive meanings of these axioms is obvious. For example, axioms G1 and
G2 together imply that each player i chooses exactly one strategy. G3 and G4,
on the other hand, means that the ordering of strategies is complete and the
corresponding strict ordering is defined as usual respectively. G5 states player i
is aware of her own choice.

We denote by LG the PEGL logical system, which satisfies all axioms in PEL,
including the axioms RA and G1 to G5.

Theorem 2. Logic LG is sound with respect to the class of models MPEGL.

Proof. Owing to the definition of Ra, it’s clear that the axiom RA is sound in
MPEGL. And the verifications about axioms G1 to G4 is similar to the proof in
[8], so we pass over the details of these verifications. Here, we just prove G5.

Let w is an arbitrary world in MPEGL, and (MPEGL, w) |= δi, this means
∀v,Riwv implies fi(v) = sk

i for a sk
i ∈ Si and for 0 ≤ P (i, w)(sk

i ) ≤ 1. Thus,
according to Riwv iff fi(w) = fi(v) and the requirement of the Definition 3.2, for
∀v′, satisfies Rivv

′, we have fi(v′) = sk
i and for 0 ≤ P (i, w)(sk

i ) = P (i, v)(sk
i ) =

P (i, v′)(sk
i ) ≤ 1. Further, we have (MPEGL, v) |= δi for ∀v′, satisfies Rivv

′,
therefore, (MPEGL, w) |= Kiδi for ∀v, satisfies Riwv.
11 For convenience we replace sk

i with fi(w).
12 This part is motivated by [8].
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Next, we will show that the common knowledge of the rationality characterizes
the algorithm of Iterated Admissibility, so that we can provide an epistemic
foundation for the solutions or equilibria which can be found by the algorithm
of Iterated Admissibility. In what follows, we take Ra as ∧i∈NRai,that is, Ra =
∧i∈NRai.

Theorem 3. Given a probabilistic epistemic game model MPEGL based on a
finite strategic-form G and an arbitrary world w, w is in the MPEGL, then,
(MPEGL, w) |= CNRa iff f(w) ∈ IAS.

Proof. (a) From left to right: Supposed (MPEGL, w) |= CNRa. We will prove it
by induction.13

Firstly, for ∀v ∈ W satisfied R∗wv, we need to show f(v) /∈ IS0. If not,
then there exists a world w′, such that R∗ww′. And f(w′) ∈ IS0, this means,
there is a player i and one of his pure strategies, let be sl

i, satisfied fi(w′) = sl
i

and sl
i is weakly dominated by her some mixed strategy δi, as a result, for

∀sh
j ∈ Sj , Ui(δi, s

h
j ) ≥ ui(sl

i, s
h
j ) and ∃sg

j ∈ Sj , Ui(δi, s
g
j ) > ui(sl

i, s
g
j ). Further, for

∀v ∈ W,Riw
′v, Ui(δi, fj(v)) ≥ ui(sl

i, fj(v)), and ∃v′ ∈W,Riw
′v′, Ui(δi, fj(v′)) >

ui(sl
i, fj(v′)), i.e., ∀v ∈ W,Riw

′v,
∑m

k=1 ui(sk
i , fj(v)) · P (i, v)(sk

i ) ≥ ui(sl
i, fj(v)),

for ∃v′ ∈ W,Riw
′v′,

∑m
k=1 ui(sk

i , fj(v′)) · P (i, v′)(sk
i ) > ui(sl

i, fj(v′)), where, as
Ri is equivalence relation and the requirement of P (i, w)(v) in the definition 3.2.,
δk
i = P (i, v)(sk

i ) = P (i, v′)(sk
i ). Therefore, for ∀v ∈ W,Riw

′v, (MPEGL, v) |=∑m
k=1 ui(sk

i , fj(v))Pi(sk
i ) ≥ ui(sl

i, fj(v)), and ∃v′ ∈ W,Riw
′v′, (MPEGL, v

′) |=∑m
k=1 ui(sk

i , fj(v′))Pi(sk
i ) > ui(sl

i, fj(v′)). Furthermore, ∀v ∈W,Riw
′v,

(MPEGL, v) |= δi �i sl
i, and ∃v′ ∈ W,Riw

′v′, (MPEGL, v
′) |= δi %i sl

i, i.e.,
(MPEGL, w

′) 	 Rai, owing to the definition of Rai. But this is in contradiction
with the hypothesis that (MPEGL, w) |= CNRa. The reason is we can deduce
that (MPEGL, w

′) |= Rai by the hypothesis and R∗ww′. So, for ∀v ∈W satisfied
R∗wv, f(v) /∈ IS0, furthermore, f(v) ∈ IAS1.

Next, fix an integer m ≥ 1, let f(v) ∈ IASm, we will prove that
f(v) /∈ ISm. By contradiction, then, there exists a world w′ and
a player j and one of her pure strategies sl

j , satisfied fj(w′) = sl
j ,

meanwhile, sl
j is weakly dominated by her some mixed strategy δj .

By hypothesis, for every player i, fi(w′) ∈ IASm
i . It follows that, for

∀sh
i ∈ IASm

i , Uj(δj , s
h
i ) ≥ uj(sl

j , s
h
i ) and ∃st

i ∈ IASm
i , Uj(δj , s

t
i) > uj(sl

j , s
t
i).

Thus, ∀sh
i ∈ IASm

i ,
∑m

k=1 uj(sk
j , s

h
i ) · P (j, w′)(sk

j ) ≥ uj(sl
j , s

h
i ), and

∃st
i ∈ IASm

i ,
∑m

k=1 uj(sk
j , s

t
i) · P (j, w′)(sk

j ) > uj(sl
j , s

t
i). Further, according

to the above request that if Rjwv, then P (j, w)(v) = P (j, v)(w) = P (j, w)(w),
and the equivalence relation Ri, we have, ∀v ∈W,Rjw

′v,∑m
k=1 uj(sk

j , fi(v)) · P (j, v)(sk
j ) ≥ uj(sl

j , fi(v)), and ∃v′ ∈W,Rjw
′v′,∑m

k=1 uj(sk
i , fi(v′)) · P (j, v′)(sk

j ) > ui(sl
i, fi(v′)), where, δk

j = P (j, v)(sk
j ) =

P (j, v′)(sk
j ). So, (MPEGL, v) |= δj �j s

l
j , and (MPEGL, v

′) |= δj %j s
l
j , accord-

ingly, (MPEGL, w
′) 	 Raj . But by the hypothesis, we have (MPEGL, w

′) |= Raj ,
contradiction is presented. In additions, because of reflexivity of R∗, f(w) ∈ IAS

13 In this proof, each of the symbols t, h, m, g, l, k refers to a natural number.
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is established. Thus,we have shown by induction that if (MPEGL, w) |= CNRa,
then f(w) ∈ IAS.

(b)From right to left: Fix an arbitrary world w and an arbitrary player i,
according to the definition of IAS, for ∀i, sk

i ∈ Si ⊆ IASi, let be fi(w) = sk
i , then

fi(w) is an admissible strategy for player i in IASi. This means, ¬∃δi ∈ Δ(Si)
so that, Ui(δi, s

h
j ) ≥ ui(fi(w), sh

j ) for all sh
j ∈ Sj, Ui(δi, s

t
j) > ui(fi(w), st

j)for
some st

j ∈ Sj . Thus, (MPEGL, w) |= Rai, further, by the randomicity of w and
i, So, we have (MPEGL, w) |= CNRa.

4 Solving for NE and Public Announce Logic

As a basis for most dynamic epistemic logics, public announcement logic(PAL)
can deal with the change of information arising from the action of public an-
nouncement by adding a dynamic modality [ϕ] to the standard epistemic logic.
[ϕ]ψ means “ after a truthful public announcement of ϕ, formula ψ holds ”. And
its truth condition is that:

M,w � [ϕ]ψ iff if M,w � ϕ then M |ϕ, w � ψ.14

With this language, we can say things like [ϕ]Kiψ: after a truthful public an-
nouncement of ϕ, agent i knows ψ, or [ϕ]CNϕ: after its announcement, ϕ has
become common knowledge in the group N of agents and so on. As we observed,
the issue of “ an announcement limit ” has close connection with an equilibrium
solved by the algorithm of IA. The concept of announcement limit is defined as
follows:

Definition 9. For any model M and formula ϕ, the announcement limit
�(ϕ,M) is the first submodel in the repeated announcement sequence where
announcing ϕ has no further effect.15

Consequently, by repeatedly announcing ϕ to delete the worlds at which ϕ is
false, and retaining just those worlds where ϕ holds, it must stop at a finite
model, i.e.�(ϕ,M). This yields a sequence of nested decreasing sets. The proce-
dure bears similarities to the above-mentioned procedure of IA. So, it’s natural
to take a procedure of IA as a procedure of public announcing the rational-
ity by just adding an operator [α] to our language LPEGL, which provides a
dynamic-epistemic analysis for the procedure of game solution. The assertion
which players announce publicly must be the statements which they know to be
true in PAL. The following theorems guarantee that the rationality which we
define can be taken as a suitable assertion for public announcement.

We call the above defined probabilistic epistemic game model MPEGL as
a full probabilistic epistemic game model, and take a any submodel of a full
probabilistic epistemic game model MPEGL as a general probabilistic epistemic
game model M ′

PEGL.

14 M |ϕ is a submodel of M in which ϕ is true.
15 This definition is in [7]



Characterizations of Iterated Admissibility Based on PEGL 85

Theorem 4. Every finite general probabilistic epistemic game model M ′
PEGL

has worlds with Ra true.16

Proof. Note that atomic proposition Rai fails exactly at the rows or columns
with which weakly dominated strategies correspond for player i in a M ′

PEGL.
Consider any general game model M ′

PEGL, if there is not a weakly dominated
action for all player in the M ′

PEGL, then Ra is true at every worlds in the model.
Thus, iterated announcement of Ra can make no more change on the game
model, and get stuck in cycles in this situation. If there is a weakly dominated
action for some player in the game, but because of the relativity of the definition
of weakly dominated strategy, i.e. if player i has a weakly dominated strategy a,
then he must have a strategy which is weakly better than strategy a, let strategy
b. Thus, Rai holds at all the worlds which belong to the row or the column
corresponding to strategy b. On the other hand, for player j, if he has not a
weakly dominated action, then Raj holds also at all the worlds. Furthermore,
Raj holds at the worlds which belong to the row or the column corresponding
to the strategy b. So, Ra holds in the general game model. But if player j has a
weakly dominated action, accordingly she must have a weakly dominant action,
suppose that action Y and Raj is true at the worlds which belong to the row
or the column corresponding to the strategy Y . Therefore, Ra is satisfied at the
world (Y, b).

To sum up the above arguments, Every finite general game model has worlds
with Ra true.

Theorem 5. Rationality is epistemically introspective. i.e. The formula Rai →
KiRai is valid on a general game model M ′

PEGL.

Proof. Given a general probabilistic epistemic game model M ′
PEGL, an arbi-

trary w in M ′
PEGL, and (M ′

PEGL, w) � Rai, but (M ′
PEGL, w) 	 KiRai. Because

M ′
PEGL, w 	 KiRai, which means ∃v ∈ W,Riwv so that (M ′

PEGL, v) 	 Rai,
therefore, ∃δi ∈ Δ(Si), satisfied (M ′

PEGL, v) � Ki(δi �i fi(v))∧〈Ki〉(δi %i fi(v))
i.e., for ∀v′, Rivv

′ so that (M ′
PEGL, v

′) � (δi �i fi(v)) and ∃v′′, Rivv
′′ satisfied

(M ′
PEGL, v

′′) � (δi %i fi(v)). Then, Riwv
′ and Riwv

′′, since Ri is equivalent
relation. Thus, (M ′

PEGL, w) � Ki(δi �i fi(w)) ∧ 〈Ki〉(δi %i fi(w)). So, by Defi-
nition 3.4., (M ′

PEGL, w) 	 Rai, this is in contradiction with (M ′
PEGL, w) � Rai.

The formula Rai → KiRai is valid on a general probabilistic game model.

Consequently, these theorems guarantee that we can remove the worlds at which
Ra doesn’t hold after each player tells others what she know about her behavior
at some actual world at the same time.

In figure 3, the left-most model is the model from figure 1. The other models
are obtained by public announcements of Ra successively for three times. So,
in the last submodel, we have:(MPEGL, (Y, a)) � [Ra][Ra][Ra]CN(NE). This
formula indicates if the players iteratively announce that they are rational, the
process of dominated strategy elimination leads them to a solution that is known
to be NE.
16 Here, we just prove it on games with pure strategies. It is similarity for proving it

on games with mixed strategies.
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Again, in the following example (as shown in figure 4). Neither of the player
1’s strategies is dominated. Both a and b are undominated for player 2, but c
is weakly dominated by a (0.5, 0.5) mixture of a and b, i.e., a mixed strategy
(0.5, 0.5, 0). Ra2 is false at the worlds in the column c, thus, after the first
public announcement of Ra, we can delete the column c. This leads to the pure
strategy C to become dominated, which can also be deleted. Continuing this
announcement of rationality and the elimination, we can reach the equilibrium
of this game, that is (A, a).

More importantly, based on the Dynamic Epistemic logic we can also charac-
terize the IA.

Theorem 6. Given a full epistemic game model MPEGL based a finite strategic-
form G and an arbitrary world w, w is in a general epistemic game model
M ′

PEGL which is stable by repeated announcement of Ra for all player if and
only if f(w) ∈ IAS. That’s to say, for ∀w ∈ �(Ra,MPEGL)⇔ f(w) ∈ IAS.

Proof. By theorem 4, here we only need to prove that if for ∀w ∈ �(Ra,MPEGL),
then (MPEGL, w) � CNRa. And Conversely it is still hold.

Let M ′
PEGL be a general epistemic game model which is stable by repeated

announcement of Ra for all player in a MPEGL, and ∀w,w ∈M ′
PEGL

(i.e., w ∈ �(Ra,MPEGL)), by the definition of �(Ra,MPEGL), we have:

(M ′
PEGL, w) |= Ra. Meanwhile, by the property of a epistemic accessible relation

Ri in the MPEGL, it’s quite obvious that (M ′
PEGL, w) |= CNRa.

Conversely, if ∀w ∈ W , (M ′
PEGL, w) |= CNRa, then, by the theorem in the

multi-S5 system: CNϕ→ ϕ, we have, (M ′
PEGL, w) |= Ra. Thus, by the definition

of �(Ra,MPEGL), w ∈ �(Ra,MPEGL) is true.
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5 Related Work and Conclusions

There is a large amount of literatures on the algorithms of iterated elimination
in the fields of logic and game theory (cf.[2],[8],[7] [6],[15], [16], [17], [18] etc).
In particular, [8]and [7] describe and characterize different algorithms in game
theory by redefining rationality based on epistemic logic. Our intellectual debt
towards [8] and [7] is clear. Compared to their work, we generalize the pure strat-
egy to the strategic games with mixed strategies, which expands the research
field of epistemic analysis of strategic games by adding probabilistic operator
into multi-agent epistemic system. What’s more important, we give a logic char-
acterization for the algorithm of iterated admissibility, which is known to provide
a valuable criterion for selecting among multiple equilibria and to yield sharp
predictions in finite games(cf. [2]).

[7] defined two types of rationality, the weak rationality and the strong ratio-
nality, which are denoted by WRi and SRi, where

(MPEGL, w) |= WRi ⇔ (MPEGL, w) |= ∧sk
i �=fi(w)〈Ki〉(fi(w) �i s

k
i ),

(MPEGL, w) |= SRi ⇔ (MPEGL, w) |= 〈Ki〉 ∧sk
i �=fi(w) (fi(w) �i s

k
i ).

Repeatedly public announcements of these rationality characterize respectively
algorithms of iterated elimination strictly dominated strategy and of rational-
izability, which corresponds to Bernheim’s version of the rationalizability al-
gorithm in [5]. To compare the definition of our rationality Rai to these two
rationalities, we can conclude that the worlds removed by announcing WRi

must be deleted by announcing Rai, that is,Rai → WRi is valid on a general
game model M ′

PEGL. However, there is no relation between Rai and SRi. A NE,
which can be solved by iterated announcement of SR, is not necessarily solved
by iterated public announcement of Ra, and vice versa. For example, the follow-
ing games showed in figure 5, G1 can be solved only by repeated announcements
of SR, but for G2, we can find the NE only by announcement of Ra.

In addition, [7] explored the connection between iterated announcements and
epistemic fixed-point logics, proved that the solution zones for repeated an-
nouncement are definable in an epistemic fixed-point logic. This links game-
theoretic equilibrium theory with current fixed-point logics of computation. From
this perspective, when we are considering the function computing the next set
for iterated announcement Ra as its update function FM,Ra(X) = {w ∈ X |
(M |X,w) |= Ra}. But because the function FM,Ra(X) is not monotone (cf.
[19]), we can’t define the announcement limit �(Ra,MPEGL) as the greatest

Fig. 5. Comparison between SR and Ra
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fix-point like SR. Fortunately, in [7], it has been proved that “ The iterated
announcement limit is an inflationary fixed point ”. Therefore, we guess that
the iterated announcement Ra limit can also be defined in full generality via
a broader sort of procedure in so-called inflationary fixed-point logic [20]. This
will be left for our further work.

[8] also put forward two rationalities, namely WR′
i and SR′

i. G.Bonanno ex-
amined the implications of common belief and common knowledge of his two
rationalities, and proved that the weaker axiom of rationality characterizes the
iterated elimination strictly dominated strategy, while the stronger one char-
acterizes the pure-strategy version of the algorithm introduced in [21]. As the
same above reason, the rationality we defined, that is, Rai is stronger than WR′

i

in some sense. Compared to SR′
i, the epistemic game model in this paper is

different from the game model defined in [8], which is constructed according to
players’ belief. As a result, the outcomes of the removing procedure is different
too, although they are very close in literal sense.

Meanwhile, what we characterized for the algorithm of iterated admissibility
is also based on a dynamic epistemic analysis, while [8] is based on a static
epistemic logic. But in [8], frame characterization results are also provided. We
left this as our future work.
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Abstract. Formal learning theory formalizes the phenomenon of lan-
guage acquisition. The theory focuses on various properties of the pro-
cess of conjecture-change over time, and therefore it is also applicable
in philosophy of science, where it can be interpreted as a theory of em-
pirical inquiry. Treating “conjectures” as beliefs, we link the process of
conjecture-change to doxastic update. Using this approach, we recon-
struct and analyze the temporal aspect of learning in the context of
temporal and dynamic logics of belief change. We provide a translation
of learning scenarios into the domain of dynamic doxastic epistemic logic.
Then, we express the problem of finite identifiability as a problem of epis-
temic temporal logic model checking. Furthermore, we prove a doxastic
epistemic temporal logic representation result corresponding to an im-
portant theorem from learning theory, that characterizes identifiability in
the limit, namely Angluin’s theorem. In the end we discuss consequences
and possible extensions of our work.

Keywords: Formal learning theory, dynamic epistemic logic, doxastic
epistemic logic, temporal logic, epistemic update, belief revision.

1 Introduction

Doxastic epistemic temporal logics and dynamic doxastic logics have been devel-
oped and applied both in the context of multi-agent systems and philosophy and
can be used to analyze the process of belief change in a temporal perspective.
Formal learning theory, on the other hand, is concerned with functions that iden-
tify a correct hypothesis from a range of possibilities on the basis of inductively
given streams of data. These functions can be viewed as agents that change their
beliefs about which hypothesis is correct. In this paper we investigate the con-
nection between formal learning theory and modal logics of belief change and
build new bridges between the two frameworks. The motivation for connecting
learning theory and modal logics of belief change is two-fold. By analyzing the
temporal doxastic structure underlying formal learning theory, we provide addi-
tional insight into the semantics of inductive learning. By importing the ideas,
problems and methodology from learning theory, logics of epistemic and doxastic
change get enriched by new concepts and new problematic perspectives.
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Let us outline how the bridging is established (for philosophical discussion
see [6]). In what follows we focus on the language learning paradigm, treating
languages as sets of positive integers. In formal learning theory (FLT), learning
is viewed as a process in which an agent (Learner) considers some range of
languages. One of the languages is the actual one, and Learner’s aim is to get
to know which one it is. Elements of the language are given to Learner one by
one. The infinite sequence of data that governs this enumeration includes all
and only elements of the language. Several success conditions for Learner can
be defined. For instance, we can assume that each time Learner gets a piece
of information, she can make a conjecture. We can define the learning process
to be successful if Learner’s conjectures stabilize on the proper language. This
learnability condition is called identification in the limit [7]. A more restrictive
notion requires that Learner gives an answer only once, at some finite stage of
the procedure. This kind of learnability is known as finite identification [9]. In
Section 2 one can find a formal account of identification in FLT.

Intuitively, our approach to inductive learning in the context of modal log-
ics of belief change (presented in Section 3) is as follows. We take the initial
class of languages to be states in an epistemic plausibility model, which mirrors
Learner’s initial uncertainty and preferences over the range of languages. Each
state (language) is assigned a protocol that indicates which sequences of events
it allows (which streams of data enumerate that language). The incoming piece
of information is taken to be an event that modifies the initial model. The struc-
ture resulting from updating the model with a sequence of events generates a
doxastic epistemic temporal forest. We formulate the translation in Section 4.1.

We build on this construction in three ways. Firstly, we give a modal char-
acterization of forests generated from a learning situation that satisfies a given
learning condition (Section 4.2). Abstracting from this construction, we consider
learnability conditions as properties that doxastic epistemic temporal models
may or may not satisfy and characterize these classes of frames by a modal
formula. (Section 4.3). Finally, we show how FLT characterization theorems
have natural counterparts in representation theorems about temporal protocols
(Section 4.4). Section 5 concludes and presents directions for further work.

2 Formal Learning Theory

Let C ⊂ N be a recursively enumerable set. We will call any S ⊆ C a language.
A class of languages Ω = {S1, S2, . . .} is an indexed family of recursive languages
if there is a computable function f : N× C → {0, 1}, such that

f(i, w) =

{
1 if w ∈ Si,

0 if w /∈ Si.

In the rest of this paper we will consider indexed families of recursive languages.

Definition 1. By a positive presentation (text) of S, ε, we mean an infinite
sequence of elements from S such that it enumerates all and only the elements
from S allowing repetitions.



92 C. Dégremont and N. Gierasimczuk

Definition 2 (Notation). We will use the following notation:

– U =
⋃
Ω is the universal set of Ω;

– εn is the n-th element of ε; ε|n is the sequence (ε0, ε1, . . . , εn−1);
– set(ε) is the set of elements that occur in ε;
– L is a learning function — a partial map from finite data sequences to indexes

of sets, L : U∗ ⇀ N.

Finite identifiability of a class of languages from positive data is defined by
the following chain of conditions.

Definition 3 (Finite identification). A learning function L:

1. finitely identifies Si ∈ Ω on ε iff, when inductively given ε, at some point L
outputs i, and stops;

2. finitely identifies Si ∈ Ω iff it finitely identifies Si on every ε for Si;
3. finitely identifies Ω iff it finitely identifies every Si ∈ Ω.
4. Ω is finitely identifiable iff some learning function L finitely identifies Ω.

Example 1. Ω1 := {Si = {0, i}|i ∈ N}. Ω1 is finitely identifiable by L : U∗ → N:

L(ε|n) =
{

is undefined if set(ε|n) = {0},
max(set(ε|n)) otherwise.

In other words, L outputs the correct hypothesis as soon as it receives a number
different than 0, and the procedure ends.

Example 2. To see how restrictive the notion of finite identifiability is, take a
finite class of finite languages Ω2 = {S1, S2, S3}, where Si = {1, . . . , i}. Ω2 is
not finitely identifiable. To see that, assume that S2 is the actual language. A
learning function can never conclude that S2 is the actual language. For all it
knows, 3 might appear in the future, so it has to leave the S3-possibility open.

There is a way to deal with this kind of uncertainty. If we allow Learner to answer
each time she gets a new piece of data, we can define the success as convergence
to the right answer. This leads to the notion of identification in the limit.

Definition 4 (Identification in the limit [7]). A learning function L:

1. identifies Si in the limit on ε iff for co-finitely many m, L(ε|m) = i;
2. identifies Si in the limit iff it identifies Si in the limit on every ε for Si;
3. identifies Ω in the limit iff it identifies in the limit every Si ∈ Ω.
4. Ω is identifiable in the limit iff some learning function identifies Ω in the

limit.

Example 3. First let us consider an example of a finite class of finite sets. Recall
the class Ω2 from Example 2. Ω2 is identifiable in the limit by the following
function L : U∗ → N: L(ε|n) = m, such that m = max(set(ε|n)).

Example 4. The learning function from Example 3 identifies in the limit the fol-
lowing infinite class of finite sets: Ω3 = {Si|i ∈ N−{0}}, where Sn = {1, . . . , n}.
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Example 5. Identifiability in the limit of the class Ω3 is lost if we enrich it by
the set of all natural numbers. Let Ω4 = {Si|i ∈ N}, where S0 = N and for
n ≥ 1, Sn = {1, . . . , n}. Ω4 is not identifiable in the limit. To see this, assume
that there is a function L that identifies Ω4. Then, there is a k and n, such that
for all m ≥ n, L(ε|m) = k. Now, if k ∈ {1, 2, 3, . . .}, then L cannot identify the
set N. On the other hand, if k = 0 then L cannot identify Smax(set(ε|n)). So, we
get a contradiction, L cannot identify Ω4.

Another epistemically plausible way to learn is by the elimination of hypothe-
ses that are implausible, e.g. hypotheses that are inconsistent with the incoming
data. This paradigm is formalized in the framework of learning by erasing.

Definition 5 (Function stabilization)
In learning by erasing we say that a function stabilizes to number k on environ-
ment ε iff for co-finitely many n ∈ N: k = min{N− {L(ε|1), . . . , L(ε|n)}}.
Definition 6 (Learning by erasing [8]). A learning function L:

1. learns Si ∈ Ω by erasing on ε iff L stabilizes to i on ε;
2. learns Si ∈ Ω by erasing iff it learns by erasing Si from every ε for Si;
3. learns Ω by erasing iff it learns by erasing every Si ∈ Ω.
4. Ω is learnable by erasing iff some learning function learns Ω by erasing.

It is easy to observe that in this setting learnability heavily depends on the
chosen enumeration of languages, since the positive conjecture of the learning
function is interpreted as the minimal one that has not been eliminated yet.

3 Modal Logics of Multi-agent Belief Change

We are interested in two logical approaches to multi-agent belief change: the tem-
poral approach [10,5] and the dynamic approach [2]. After introducing models
and languages for both approaches we indicate how these two are related.

3.1 The Temporal Approach

Doxastic epistemic temporal logics offer a global view of the evolution of a
multi-agent system as events take place, focusing on the information that agents
possess and what they believe. We interpret these logics on doxastic epistemic
temporal forests [10].

Definition 7. A doxastic epistemic temporal model H is a tuple:

〈W,Σ,H, (≤j)j∈A, (∼j)j∈A, V 〉,
where W �= ∅ is a countable set of initial states, Σ is a countable set of events,
H ⊆W (Σ∗∪Σω) is a set of histories (sequences of events starting at states from
W ) closed under non-empty finite prefixes, for each agent j ∈ A, ≤j⊆ H ×H
is a well-founded pre-order on H, ∼j⊆ H × H is an equivalence relation, and
V : prop → ℘(H), V : nom → W , i.e. nominals are names for initial states.
wh ranges over finite histories starting at w, and wε over ω-histories.

ETL models are DETL models without the collection of plausibility pre-orders.
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Definition 8. Let P : s �→ ({s}(Σ∗ ∪ Σω)) ∩H for s ∈ W . Intuitively, P(s) is
the protocol or bundle of sequences of events associated with s. We refer to the
〈W,Σ,H〉-part of a ETL model as the protocol this model is based on.

We refer to the information of agent i at w by Ki[h] = {h′ ∈ H | h ∼i h
′}.

Bi[h] = Min≤iKi[h] are the histories that i considers the most plausible at h.
Let us introduce various assumptions about doxastic and epistemic agents.

Definition 9. Let H = 〈W,Σ,H, (∼j)j∈A, V 〉 be an epistemic temporal model.

Perfect Recall. H satisfies perfect recall iff ∀he, h′f ∈ H if Ki[he] = Kj[h′f ],
then Ki[h] = Kj[h′]. It states that agents do not forget the past information
as events take place.

Perfect Observation. H satisfies perfect observation iff ∀he, h′f ∈ H if Ki[he]
= Kj[h′f ], then e = f . Perfect observation is satisfied if agents always know
exactly what is happening.

Synchronicity. H satisfies synchronicity iff ∀h, h′ ∈ H if Ki[h] = Kj[h′], then
len[h] = len[h′], where len(x) is the length of sequence x. Synchronicity is
satisfied if the agents have access to some external discrete clock and can
thus keep track of the time.

Uniform No Miracles. H satisfies uniform no miracles iff ∀h, h′ ∈ H ∀e1,
e2 ∈ E with he1, h

′e2 ∈ H, if there are h′′, h′′′ ∈ H with h′′e1, h′′′e2 ∈ H
such that h′′e1 ∼i h

′′′e2 and h ∼i h
′, then he1 ∼i h

′e2. Uniform no miracles
characterizes agents that do not take into account the whole history but that
proceed in a step by step way.

Propositional Stability. H satisfies propositional stability iff for all h, he ∈ H
we have p ∈ V (he) iff p ∈ V (h).

Preference Stability. H satisfies preference stability iff ∀he, h′f ∈ H we have
he ≤i h

′f iff h ≤i h
′. It states that agents do not change their mind about

the a priori plausibility of two histories as events take place. Naturally, it
does not mean that the posterior beliefs of the agents might not evolve.
Indeed, beliefs are defined as the most plausible states of an information
partition and the latter might change.

A Hybrid Doxastic Epistemic Temporal Language. The syntax of our
hybrid dynamic epistemic temporal language LDET is defined inductively as
follows:

ϕ := p | i | x | ↓x.ϕ | ¬ϕ | ϕ ∨ ϕ | Kjϕ | Bjϕ | Aϕ | ©−1ϕ | Fϕ | Pϕ | ∀ϕ
p ranges over a countable set of proposition letters prop, i over a countable set
of nominals nom, x over a countable sets of state variables svar, j over A. Kiϕ
(Biϕ) reads i knows (believes) that ϕ. F and P stand for future and past. ∀ϕ
means: ‘in all continuations ϕ’. Also: Hϕ := ¬P¬ϕ and Gϕ := ¬F¬ϕ.
LETL is interpreted over a model H, an initial state w, an infinite history wε

and a finite prefix wh of wε [11,10], with an assignment function g : svar →
H , mapping states variables to nodes. Nominals are satisfied in all histories
extending an initial state, while state variables are true in exactly one node.



Can Doxastic Agents Learn? On the Temporal Structure of Learning 95

Definition 10. We give the semantics of LDETL. We skip the obvious clauses.
We take e � e′ to mean that e is an initial segment of e′.

H, wε, wh, g � p iff wh ∈ V (p)
H, wε, wh, g � i iff V (i) = w
H, wε, wh, g � x iff g(x) = wh
H, wε, wh, g �↓x.ϕ iff H, wε, wh, g[x := wh] � ϕ
H, wε, wh, g � Kiϕ iff ∀vh′ ∀wε if vh′ ∈ Ki[wh]&vh′ � vε′ then H, vε′, vh′ � ϕ
H, wε, wh, g � Biϕ iff ∀vh′ ∀wε if vh′ ∈ Bi[wh]&vh′ � vε′ then H, vε′, vh′ � ϕ
H, wε, wh, g � Aϕ iff ∀vh′ ∀wε if vh′ ∈ H & vh′ � vε′ then H, vε′, vh′ � ϕ

H, wε, wh, g �©−1ϕ iff ∃a ∈ Σ ∃h′ � ε with h′.a = h and H, wε, wh′ � ϕ
H, wε, wh, g � Fϕ iff ∃e ∈ Σ∗ ∃h′ � ε with h′ = he and H, wε, wh′ � ϕ
H, wε, wh, g � Pϕ iff ∃e ∈ Σ∗ ∃h′ � ε with h′e = h and H, wε, wh′ � ϕ
H, wε, wh, g � ∀ϕ iff ∀h ′ ∈ P(w) s.t. h � h we have H, wh′, wh � ϕ

3.2 The Dynamic Approach

The dynamic approach of dynamic doxastic and dynamic epistemic logics con-
siders belief change as a step by step operation on models.

Definition 11 ([3]). An epistemic plausibility model is a tuple: M = 〈W,
(∼i)i∈A, (≤i)i∈A, V 〉, where W �= ∅, for each agent i ∈ A, ∼i is an equivalence
uncertainty relation on W , ≤i is a pre-order on W , and V : Prop → ℘(W ),
where prop is a countable set of propositional letters. We let Ki[w] = {v ∈
W | w ∼i v} and Bi[w] = Min≤iKi[w]. We write v)w iff v ≤ w and w ≤ v.

In DDL epistemic change is viewed as a step by step operation on models, that
consists of an update of the epistemic model with an event plausibility model,
the latter representing the doxastic and epistemic of what has happened.

Definition 12. An event model is a triple: E = 〈E, (∼E
i )i∈A, pre〉, where E �= ∅

is a set of events, for each agent i ∈ A, ∼E
i is an equivalence relation on E, and

pre : E → LEL, is a precondition function and LEL is an epistemic language. A
pointed event model is an event model with one distinguished element from |E|.
The relation ∼E

i encodes agent i’s epistemic information and uncertainty about
the event taking place. The precondition function maps events to epistemic for-
mulas. An event will be executable in some state only if that state satisfies the
precondition of this event. We use epistemic event models (without plausibiltity
ordering) since they can already capture the setting of finite identifiability.

The effect of updating an epistemic plausibility modelM by an event model
E is computed according to so-called product update.

Definition 13. The product update of epistemic model M = 〈W, (∼i)i∈A, V 〉
with an event model E = 〈E, (∼E

i )i∈A, pre〉 is the model M⊗ E whose domain
is {(w, e) | w ∈ W, e ∈ E & M, w � pre(e)}. The epistemic relation in the
resulting model is (w, e) ∼′

i (w′, e′) iff w ∼i w′ and e ∼E
i e′, the plausibility

ordering is (w, e) ≤′
i (w′, e′) iff w ≤i w

′, and the valuation is as follows: (w, e) ∈
V (p) iff w ∈ V (p).
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An epistemic plausibility model describes what agents currently believe and
know, while product update creates the new doxastic epistemic situation after
some information event has taken place.

Recently DEL borrowed the crucial idea of protocol from the temporal ap-
proach [4]. A protocol P maps states in an epistemic plausibility model to sets
of finite sequences of pointed event models closed under taking prefixes. This
defines the admissible runs of some informational process: not every observation
may be available, or appropriate. We let E be the class of all pointed plausibility
event models. Let Prot(E) = {P ⊆ (E∗ ∪ Eω) | P is closed under finite prefixes}
be the co-domain of protocols, it is the class of all sets of sequences (infinite and
finite) of pointed plausibility event models closed under taking finite prefixes.

Definition 14. Let us take an epistemic plausibility model M, and let |M| be
the domain of M. A local protocol for M is a function P : |M| → Prot(E).

Definition 15. P, ε|n-generated epistemic model MP,ε|n is defined inductively
in the following way: MP,ε|0 =M;MP,ε|n+1 = 〈|MP,ε|n+1|,∼P,ε|n+1, VP,ε|n+1〉,
where:

1. |MP,ε|n+1| := {sε|n+ 1 | sε|n ∈MP,ε|nandε|n+ 1 ∈ P (s)};
2. ∼P,ε|n+1:=∼P,ε|n ∩(|MP,ε|n+1| × |MP,ε|n+1|);
3. For every p ∈ prop, VP,ε|n+1(p) := VP,ε|n(p) ∩ |MP,ε|n+1|.

3.3 Dynamic Doxastic Language

LDDE is a core language that matches dynamic belief update. Its syntax is:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | 〈≤i〉ϕ | 〈i〉ϕ | Eϕ | 〈ε, e〉ϕ
where i ranges over A, p over a countable set of proposition letters Prop, and
(ε, e) ranges over a suitable set of symbols for event models.

We use event symbols in the semantic clause and write pre(e) for preε(e). We
interpret LDDE as follows:

Definition 16. We give the interesting clauses and use usual abbreviations.

M, w � 〈≤i〉ϕ iff ∃v such that w �i v and M, v � ϕ
M, w � Kiϕ iff ∀v such that v ∈ Ki[w] we have M, v � ϕ
M, w � Biϕ iff ∀v such that v ∈ Bi[w] we have M, v � ϕ
M, w � Eϕ iff ∃v ∈W such that M, v � ϕ
M, w � 〈ε, e〉ϕ iffM, w � pre(e) and M× ε, (w, e) � ϕ

3.4 Connection between the Temporal and the Dynamic Approach

There is a connection between the two approaches presented above in Section 3.
In fact, the product updaters of the dynamic approach are one interesting type
of doxastic (temporal) agents. Indeed iterated product update of an epistemic
plausibility modelM according to a uniform line protocol P generates doxastic
epistemic temporal forests that validate particular doxastic temporal properties.
We will refer to this construction by For(M, P ) and define it as follows.
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Definition 17 (DETL forest generated by a DDL protocol). Each ini-
tial epistemic plausibility model M = 〈W, (∼M

i )i∈A, (≤M
i )i∈A, VM〉 and each

local protocol P yields a generated ETL forest For(M, P ) of the form: H =
〈WH, Σ,H, (∼i)i∈A, (≤i)i∈A, V 〉, as follows:

1. WH = |M|, Σ =
⋃

w∈W

⋃
n∈N

P (w)(n),
2. H is defined inductively as follows: H1 = WH;

– Hn+1 := {(we1 . . . en+1) |(we1 . . . en) ∈ Hn;
M⊗ ε1⊗ . . .⊗ εn, (w, e1, . . . , en) � pren(en+1) and e1 . . . en+1 ∈ P (w)};

– H =
⋃

1≤k<ω Hk.
3. If h, h′ ∈WH, then h ∼i h

′ iff h ∼M
i h′;

4. For 1 < k ≤ m, he ∼i h
′e′ iff he, h′e′ ∈ Hk, h ∼i h

′, e and e′ are events
from the same event model and e ∼i e

′ in their event model;
5. For 1 < k ≤ m, he ≤i h

′e′ iff he, h′e′ ∈ Hk and h ≤i h
′;

6. Finally, wh ∈ V (p) iff w ∈ VM(p).

We conclude by mentioning an important representation theorem due to van
Benthem et al. [4], that we make use of. It indicates what assumptions we are
making about the epistemic agents when working in the dynamic perspective.

Theorem 1 ([4]). An ETL-model H is isomorphic to the forest generated by
the sequential product update of an epistemic model according to some state-
dependent DEL-protocol iff it satisfies perfect recall, synchronicity, uniform no
miracles and propositional stability.

4 Analyzing Learnability in a DETL Framework

This section gives first results bridging learning theory and dynamic epistemic
temporal logics. We prove that the problem of checking whether a class of sets
is finitely identifiable can be reduced to the model-checking problem of LDET
on doxastic epistemic temporal forests. To start with we show how learning
situations can be encoded by an epistemic plausibility model and a local protocol.

4.1 Protocols That Correspond to Set Learning

We now focus on the single agent case, A = {L}. We write ∼ instead of ∼L.

Definition 18 (Initial epistemic model). Our initial epistemic model MΩ

is a triple: 〈WΩ ,∼Ω, VΩ〉, where WΩ = Ω, ∼Ω= WΩ ×WΩ, and for each set
Si ∈ Ω, we take a nominal i and we set V (i) = {Si}.

In words, we identify states of the model with sets, we also assume that our
agent does not have any particular initial information.

Definition 19 (Single event model). For each e ∈ U , we have a corresponding
event model E = 〈{e},∼E , preE〉 where ∼E= {(e, e)} and preE(e) = �.
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Given a set Si, we can transform it into a set of events, we write E(Si) =
{(E , e) | e ∈ Si}. We trivialize the role of preconditions, the admissible sequences
of events are defined by means of protocols.

We now define local protocol. Intuitively, given a state Si ∈WΩ , our protocol
PΩ should authorize at Si any ω-sequence that enumerates Si and nothing more.

Definition 20 (Local protocol). For every Si ∈ WΩ, PΩ(Si) is the smallest
subset of (E(U))∗ ∪ (E(U))ω that contains {f : ω → E(Si) | f is surjective}, and
that is closed under non-empty finite prefixes.

4.2 DETL Characterization of Finite Identifiability

Let us first define a DETL version of the notion of belief (resp. knowledge)
stabilization to a certain hypothesis.

Definition 21. j’s belief (resp. knowledge) about the initial state stabilizes to
w on the history vε iff there is a finite prefix e∗ 	 ε such that for any finite
sequence e′ such that e∗ � e′ 	 ε we have for all histories sh if sh ∈ Bj [ve′] then
s = w (resp. for Kj [ve′]).

For the case of finite identification we show what follows.

Proposition 1. The following are equivalent:

1. Ω is finitely identifiable.
2. In the generated forest For(MΩ , PΩ), for all Si ∈ WΩ and ε ∈ PΩ(Si) the

learner’s knowledge about the initial state stabilizes to Si on Siε.
3. For(MΩ , PΩ) � A(©−1⊥ →↓x.∀F KH(©−1⊥ → x)).

Proof. (1⇒ 2) Assume that Ω is finitely identifiable. We prove the contraposi-
tive. Assume that there is a state Si ∈ WΩ and ω-sequence ε ∈ PΩ(Si) such that
agent’s knowledge does not stabilize to Si on ε. There are two cases.

1. The learner stabilizes to another state, but then by construction of PΩ(Si)
and definition of a generated DEL-forest for every finite prefix h 	 ε, Sih ∈
K[Sih]. Contradiction.

2. After each finite prefix h 	 ε, there is at least one state different from Si that
remains epistemically possible. Since generated ETL forest satisfies perfect
recall (Theorem 1), it follows that there is some state Si �= Sj that remains
epistemically possible after each finite prefix h 	 ε. But by construction of
PΩ(Si) this is only possible if Si ⊂ Sj . Every finite subset of Si is a subset
of Sj , and therefore Si ∈ Ω does not have a finite definite tell-tale set.
Therefore, from Theorem 7 in [9], Ω is not finitely identifiable.

(2 ⇒ 3) We prove the contrapositive. Assume that For(MΩ , PΩ) �� A(©−1⊥
→↓ x.∀FKH(©−1⊥ → x) ). This means that some history satisfies ©−1⊥,
i.e., there is some initial state in w ∈ WΩ , such that for some ε ∈ PΩ(w) and
for every finite prefix h 	 ε we have For(MΩ , PΩ)w,wε, wh, g[g(x) := w] ��
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KH(©−1⊥ → x)). By truth condition of K and H(©−1⊥ → x)), there is
some history vh′ ∈ K[wh] with v �= w. But this means that Learner’s knowledge
does not stabilize to w on wε in For(MΩ , PΩ). Contradiction.

(3 ⇒ 1) By semantics of A(©−1⊥ → we know that in every initial state
Si ∈ WΩ: Si �↓x.∀FKH(©−1⊥ → x) (1). Now assume for contradiction that
there is some Si that is not finitely identifiable in Ω. It follows that there is some
enumeration ε∗ of the set such that after any finite prefix of ε∗, there is another
set Sj that the agent has not excluded (2).

But by (1) we can label Si by x and for any sequence of events ε, there will
be a finite prefix ε|m at which Siε|m, ε, g[x := Si] � KH(©−1⊥ → x) (3). By
construction of PΩ we have a finite prefix ε∗|n such that Siε

∗|n, ε∗, g[x := Si] �
KH(©−1⊥ → x) (4). But then the agents knows that the initial state was
g(x) = Si and thus has excluded any other initial state. Contradicting (2). �

The (1-3) equivalence shows that we can characterize finite identifiability by
the global satisfaction of a formula from the hybrid doxastic epistemic temporal
language. As corollary it shows that the problem of checking whether a class of
sets is finitely identifiable can be reduced to the model-checking problem of LDET
on doxastic epistemic temporal forests. (1-2) equivalence indicates that we can
abstract away from forests that are actually generated from learning situations
and reason directly about DETL models.

4.3 DETL Models for Learnability

Recall the condition from Proposition 1: In the generated forest For(MΩ , PΩ),
Si ∈ WΩ and ε ∈ PΩ(Si) the learner’s knowledge about the initial state stabilizes
to Si on Siε. The definitions we use are a natural generalization of that condition.

Definition 22. A DETL frame F (H) = 〈W,Σ,H,≤L,∼L〉 satisfies finite iden-
tification (FIN) iff for all s ∈ W and sε ∈ P (s) Learner’s knowledge about the
initial state stabilizes to s on sε.

We define what it means for a model to satisfy the learning by erasing property.
Definition 23. A DETL frame F (H) = 〈W,Σ,H,≤L,∼L〉 satisfies learning by
erasing (ERASE) iff for all s ∈W and h = sε ∈ P (s) Learner’s belief about the
initial state stabilizes to s on sε.

The preceding definitions indicate that it is possible to abstract away from
forests that are actually generated from learning situations and reason directly
about DETL frames. We now look into modal characterization of DETL frames
satisfying certain learnability conditions. Doing so is a first step to identify the
natural modal logics of learning.

The general scheme of such characterizations can be formulated as follows.

A DETL frame F (H) satisfies Learning Condition iff
[Specification of a procedure of choosing the current belief]

F (H) � i → [Quantifier] F [Epistemic Temporal Condition]i.
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The most straightforward is the characterization of finite identifiability.

A DETL frame F (H) satisfies FIN iff F (H) � i → ∀FKi

Learner can finitely identify a class iff for all elements i of the class if i holds,
then in the future Learner will know that i.

Further extension of the validity approach demands more expressive power,
namely we need to express the existence of an appropriate belief-choosing pro-
cedure, which leads to second-order quantification. If we skip the certainty con-
dition, we get the characteristics of limiting identification, similar to learning by
erasing.

A DETL frame F(H) satisfies ERASE iff ∃ ≤ F (H[≤]) � i → ∀FGBi .

The effectiveness of this procedure, in the presence of uncertainty, is guaran-
teed by the existence of an underlying preference ordering. The temporal condi-
tion is weakened, since Learner can not be guaranteed certainty. The success is
defined as a stabilization to a correct hypothesis.

In general if we allow some freedom in defining beliefs, we can make an attempt
to formalize computable identification in the limit.

A DETL frame F(H) satisfies Comp-LIM iff ∃B F (H[B]) � i → ∀FGBi .

In this expression the B is an effective procedure that at each step of the proce-
dure computes the current belief. In general we can make further substitution to
our general scheme and see what happens. Let us consider the following example.

Property of F (H) iff ∃ ≤ F (H[≤])i → ∃FGBi .

Here, we again take a preference ordering to determine the current belief, but
we require that the convergence happens only for some environments. We can
immediately see that this is an overuse of the scheme. To guarantee an “honest”
convergence, we have to insist that it happens for all allowed sequences of events.
Otherwise we have to deal with a situation of cheating, when the correct answer
is directly “communicated” to the learner by a particular encoding of the answer.

4.4 Characterizing Protocols That Guarantee Learnability

We now prove representation theorems that characterize classes of DETL models
in which learnability is guaranteed in terms of properties of the protocol the DETL
model is based on. We start by giving two results about finite identification and
then we move to a DETL counterpart of Angluin’s Theorem.

Proposition 2. A synchronous, perfect recall, perfect observation DETL model
〈W,Σ,H,∼,≤, V 〉 satisfies finite identifiability whenever for all w ∈ W and
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history wh ∈ H ∩ Σω, there is some natural number n ∈ ω such that for every
v �= w such that v ∈W and for every vh′ ∈ H ∩Σω we have (h|n) �= (h′|n).

Proof. Take an arbitrary w. By assumption some n ∈ ω such that for every
v �= w such that v ∈ W and for every vh′ ∈ H ∩ Σω we have (h|n) �= (h′|n).
We prove that w(h|n) �∼ v(h′|n) by induction. Indeed assume that they are in
the same information partition. Then by perfect observation the last events were
the same. But by perfect recall we also have that the nodes right before were
also in the same information partition so we can iterate this argument and apply
perfect observation all the way down, proving that (h|n) �= (h′|n). �

The next result corresponds to the finite identifiability characterization [9].

Proposition 3. A permutation closed, synchronous, perfect recall, perfect ob-
servation DETL model 〈W,Σ,H,∼,≤, V 〉 based on a finite state space satisfies
finite identifiability whenever for all w ∈ W there is an event a ∈ E(w) such
that for all v ∈ W if v �= w a ∈ E(v).

Proof. [Sketch] Take an arbitrary w ∈ W . Take a ∈ E such that for each v �= w
we have a /∈ E(v). By permutation closure a is included in every ε ∈ P (w). By
the definition of P we know that in every ε ∈ P (w) event a occurs at some finite
stage. Let us then take such ε ∈ P (w) with εn = a. Assume for a contradiction
that at stage n + 1 some state v �= w is still considered possible. But then it
means that a ∈ E(v). Contradiction. �

We now turn to a DETL counterpart to a crucial result in learning theory:
Angluin’s theorem, that characterizes identifiable in the limit classes of sets.

Theorem 2 (Angluin [1]). A class of sets Ω is identifiable in the limit iff for
all S ∈ Ω there is a finite DS ⊆ S such that for all S′ ∈ Ω, if S �= S′ and
DS ∈ S′, then S′ �⊆ S.

The next result is proved using once more the concept of a DEL-generated
forest. Before we state the result, let us introduce the following definitions:

Set-driven. A local protocol P for M is set-driven iff ∀w∃Sw ⊆ N such that
∀ε ∈ P (w) set(ε) = Sw.

A-condition for protocols. A local protocol P satisfies the A-condition iff
∀w∃e ∈ P (w) ∩Σ∗∀w �= v(e ∈ P (v) =⇒ P (v) �⊂ P (w)).

Finite identifiability of the incomparable. A local protocol P satisfies the
condition of finite identifiability of the incomparable sets iff states whose
image under P are ⊆-incomparable constitute finitely identifiable classes.

Let us assume that a local protocol P satisfies finite identifiability of the
incomparable. Then we can show the following equivalence.

Theorem 3. A state space W together with a set-driven local protocol P sat-
isfies A-condition iff there is a preference ordering ≤ on W and an epistemic
plausibility frame M = (W,∼,≤), where ∼= W ×W such that
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(#) for all w ∈W and for all ε ∈ P (w) there is some n ∈ ω such that for every
m > n, w ∈ |M ε|m| and w is the ≤-minimum of |M ε|m| in the generated
doxastic model M ε|m.

Proof. (⇒) Let us assume that W,P satisfies A-condition, well-foundedness and
finite identifiability of the incomparable. Let us define the preference ordering ≤
in the following way: v ≤ w iff P (v) ⊆ P (w).

Since we deal with an epistemic plausibility model and protocol that corre-
sponds to a set learning situation we have v)w iff v = w (1). We prove that
≤ satisfies (#). Take w ∈ W and choose some environment for w, i.e. some
ε ∈ P (w). We show that there is some n ∈ N such that for every m > n,
w ∈ |M ε|m| and w is the ≤-minimum of |M ε|m| in the generated doxastic model
M ε|m. To show that we consider all v �= w (2) such that v ≤ w or such that
v is ≤-incomparable to w. We show that there is a finite stage of the epistemic
update at which v is eliminated, i.e. w is the ≤-minimal element of |M ε|m|.

Let us take v ∈ W such that v ≤ w. By (1) and (2), if v ≤ w then P (v) ⊂
P (w). Then there is some e ∈ Σ such that e ∈ P (w) but e /∈ P (W ). Since
protocols allow environments that enumerate all and only elements from the set
Sw, e appears at some point at which v is eliminated as inconsistent with e.
Since the protocol satisfies the A-condition, i.e. there is no w ∈ W such that for
all e ∈ P (w) ∩ Σ∗ there is v ∈ W such that v �= w and P (v) ⊂ P (w), then for
each w ∈ W there is only finite number of v ∈ W , such that v ≤ w.1 It follows
that all v ≤ w are going to be eliminated at some finite stage.

If v is ≤-incomparable to w, then P (v) � P (w) and P (w) � P (v). Therefore
there is an e ∈ Σ with e ∈ P (w) and e /∈ P (v). Since protocols allow environ-
ments that enumerate all and only elements from the set Sw, e appears at some
point at which v is eliminated as inconsistent with e. Moreover, all v ∈ W such
that v is ≤-incomparable to w is eliminated at some finite stage by assumption
of finite identifiability of the incomparable.2 Therefore, at some finite stage m,
all v ∈ W that are either ≤-smaller that w or are ≤-incomparable to w are
eliminated, leaving w the smallest state in |M ε|m|.

(⇐) Assume that there is a preference ordering on W that satisfies (#).
To see that the underlying protocols satisfy A-condition for each w ∈ W we

take εw ∈ P (w) and, from the assumption, for each εw there is n such that for all
m ≥ n, M εw |m = M ′ and in w is minimal wrt ≤ in M ′. Let us take εw|m = σw.
Since for each w, σw is finite it is enough to show that for all v ∈ W such that
v �= w if σw ∈ P (v) then P (v) � P (w).

Assume for contradiction that there is v ∈W with σw ∈ P (v)∧P (v) ⊂ P (w).
Let τ ∈ P (v) such that τ |len(σw) = σw (there is such because τ ∈ P (v)). From
the assumption, M τ converges to a model that has w as minimal wrt to ≤. But

1 A counterexample is the class of sets Ω = {{1}, {1, 2}, {1, 2, 3}, . . . , N}. Using the
chosen preference relation the set N cannot be identified.

2 Otherwise the class of sets Ω = {Even, Even − {2} ∪ {3}, Even − {4} ∪ {5}, . . .} is
allowed, and it is clear we cannot get the “Even” set to become the ≤-minimal after
any finite number of steps.
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v �= w, so for one environment v, namely τ ∈ P (v), M τ converges to a model
with w as the minimal and not v. Contradiction. �

5 Conclusions and Perspectives

We compare the notions of learning theory, doxastic temporal and dynamic dox-
astic logic. We show that the problem of learnability can be reduced to the model
checking (or validity) problem of some doxastic temporal language. By abstract-
ing away from the construction used in this reduction we view learnability from
a DETL perspective and provide a representation theorem characterizing identi-
fiability in the limit in terms of properties of temporal protocols. These bridges
indicate that the two approaches, learning theory and doxastic temporal logic,
can be joined in order to describe the notions of belief and knowledge involved
in inductive inference. Also, our representation of initial classes of languages and
environments gives an interesting application for the theory of protocols.

Future work includes extending our approach to other types of identifica-
tion, e.g., identification of functions or learning from positive and negative infor-
mation; studying the effects of different restrictions on protocols; investigating
various constraints one can enforce on learning functions (e.g. consistency, con-
servatism or set-drivenness) and comparing them to those of epistemic and dox-
astic agents in the DETL framework. Finally FLT shows that for some classes
of problems there are procedures of belief change that guarantee success. After
reaching the convergence point Learner’s beliefs are safe, they will not change
under any true information [3]. Belief is fixed and true, but Learner can never
be sure about it. Our modal characterizations tend to identify modal logics of
learning and the operational concept of ‘stable belief’ it carries. A next step is
to develop complete logics taking these notions of belief as primitives.
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Abstract. In this paper we study Aumann’s Agreement Theorem in
dynamic-epistemic logic. We show that common belief of posteriors is
sufficient for agreements in “epistemic-plausibility models”, under com-
mon and well-founded priors, from which the usual form of agreement
results follows, using common knowledge. We do not restrict ourselves to
the finite case, and show that in countable structures such results hold
if and only if the underlying “plausibility ordering” is well-founded. We
look at these results from a syntactic point of view, showing that neither
well-foundedness nor common priors are expressible in a commonly used
language, but that the static agreement result is finitely derivable in an
extended modal logic. We finally consider “dynamic” agreement results,
show they have a counterpart in epistemic-plausibility models, and pro-
vide a new form of agreements via “public announcements”. Comparison
of the two types of dynamic agreement reveals that they can indeed be
different.

1 Introduction

In this paper we study Aumann’s Agreement Theorem [1] and some of its
subsequent extensions [2] and generalizations [3, 4] in dynamic-epistemic logic
[5, 6]. We show that common belief of posteriors is sufficient for agreements
in “epistemic-plausibility models”, under common and well-founded priors, from
which the usual form of agreement results follows, using common knowledge. We
do not restrict ourselves to the finite case, which thus represents an improve-
ment on known qualitative agreement theorems [4], and show that in countable
structures such results hold if and only if the underlying “plausibility order-
ing” is well-founded. We then look at these results from a syntactic point of
view, showing that neither well-foundedness nor common priors are expressible
in the language proposed in [7], even if it is extended with a common belief op-
erator, but we also show a finitary syntactic derivation of the static agreement
result in an extended modal language. We finally consider “dynamic” agreement
results. We show that “agreements via dialogues” [3, 4] have a counterpart in
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epistemic-plausibility models, and that one also gets agreements via “public
announcements”, a type of belief update that has so far not been considered
in the agreement literature—see [8] and [9]. Comparison of the two types of
dynamic agreements reveals that in some situations they are indeed different.

These technical results answer an “internal” question in dynamic-epistemic
logic, namely whether agreement results hold in this framework, but they also
offer new insights into the contribution of agreement theorems to interactive
epistemology. That common belief of posteriors is sufficient for agreements, under
common and well-founded priors, strengthens one of the key lessons of agreement
theorems, viz. that first-order information is closely dependent on higher-order
information in situations of interaction [8]. Our inexpressibility results, on the
other hand, support a qualm already voiced in the literature concerning the
difficulty for agents to reason about static agreements [10]. The two dynamic
results not only make a sharp distinction between two forms of belief changes,
they also allow one to capture more adequately the idea that agreements are
reached via public dialogues. Bringing agreement theorems to dynamic-epistemic
logic is thus important both technically and conceptually, and it helps to bridge
the existing literature on agreements with the logical approaches to knowledge,
beliefs and the dynamics of information.

In this extended abstract all the proofs are omitted, as well as some auxiliary
definitions. The reader interested in these details can communicate with the
authors.

2 Definitions

In this section we introduce the models in which we study the various agreement
results, and the logical language used in [7] to describe them.

2.1 Epistemic Plausibility Models

An epistemic plausibility model [5] is a qualitative representation of the agents’
beliefs as well as first- and higher-order information in a given interactive
situation.

Definition 1 (Epistemic Plausibility Model). Given a countable set of
atomic propositions prop, an epistemic plausibility model M = 〈W, (≤i)i∈I ,
(∼i)i∈I , V 〉 has W �= ∅ and countable, I = {1, 2, . . . , n} is a finite set of agents,
and for each i ∈ I, ≤i is a total (plausibility) pre-order on W , ∼i is a binary
equivalence relation on W , and V : prop → ℘(W ). An epistemic plausibility
frame F is an epistemic plausibility model with the valuation V omitted.

The total plausibility pre-order ≤i induces i’s priors, and can be viewed as a
qualitative counterpart to a prior probability distribution on W . If w ≤i w

′ we
say that i considers w′ at least as plausible as w. Given a set X ⊆ W , we say
that w ∈ X is ≤i-minimal in X if w ≤i w

′ for all w′ ∈ X . The relation ∼i

induces i’s information partition W . We write Ki[w] to denote the cell of this
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partition {v ∈W | w ∼i v} to which w belongs. Ki[w] should be regarded as i’s
(private) information at w. We write |M| = W for the domain ofM.

The next two assumptions are crucial in the following.

Definition 2 ((Local) well-foundedness). A plausibility pre-order satisfies:

– Local well-foundedness. If for all w ∈ W and i ∈ I, for all X ⊆ Ki[w],
X has ≤i-minimal elements.

– Well-foundedness. If for all X ⊆ W and i ∈ I, X has ≤i-minimal
elements.

M satisfies (Local) Well-foundedness if every plausibility pre-order has the
corresponding property.

Definition 3 ((A priori/ a posteriori) Most plausible elements)

– For all X ⊆W , let βi(X) = min≤i(X) = {w : w is ≤i -minimal in X}.
– For all w ∈W , let Bi[w] = βi(Ki[w]).

We write w 
B
i v iff v ∈ Bi[w], and w →X

i v iff v ∈ βi(Ki[w] ∩X).

Intuitively βi(X) are the a priori most plausible elements of a set, ignoring
the information partitions. Bi[w] gives the states i considers most plausible,
conditional on the information he possesses at w, i.e. conditional on Ki[w]. The
relation w→X

i v maps w to all states i considers most plausible, conditional on
the information he possesses at w and on a given subset X . Observe that the
set {v : w →X

i v} might be empty for a given w and a given X , if X ∩Ki[w] = ∅
or, in words, if X is already excluded by i’s information at w.

Observe that βi is well-defined if the plausibility pre-order is well-founded,
while local well-foundedness is sufficient for Bi to be well-defined. To draw an
analogy with the probabilistic case, this means that local well-foundedness en-
sures that the conditional beliefs of an agent i are well-defined for all “events”
that have a non-empty intersection with the agent’s information partition. Well-
foundedness, on the other hand, requires i’s conditional beliefs to be well-defined
for any non-empty subsets of W .

Definition 4 (Common Prior). There is common prior beliefs among group
G in an epistemic plausibility model M when ≤i = ≤j for all i, j ∈ G.

The reflexive-transitive closure of the union of the epistemic accessibility re-
lations ∼i for all agents i in a group G is the model-theoretic counterpart of
the notion of “common knowledge” in G [6, 11]. We define “common belief”
analogously.

Definition 5 (Common knowledge). For each G ⊆ I, let ∼∗
G be the reflexive-

transitive closure of
⋃

i∈G ∼i. Let [w]∗G = {w′ ∈ W | w ∼∗
G w′}.

Definition 6 (Common belief). For each G ⊆ I, let 
∗
G be the reflexive-

transitive closure of
⋃

i∈G 
B
i .
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2.2 Doxastic-Epistemic Logic

The logical language used in [7] to describe epistemic-plausibility models is a
propositional modal language with three families of modal operators, which we
extend here with “common belief” operators.

Definition 7 (Epistemic Doxastic Language). The language LEDL is
defined as follows:

φ := p | ¬φ | φ ∧ φ | Kiφ | Bφ
i φ | CGφ | CBGφ

where i ranges over N , p over a countable set of proposition letters prop and
∅ �= G ⊆ I.

The propositional fragment of this language is standard, and we write ⊥ for
p ∧ ¬p and � for ¬⊥. A formula Kiφ should be read as “i knows that φ”, CGφ
as “it is common knowledge among group G that φ”, CBGφ as “it is common
belief among group G that φ.” The formula Bφ

i ψ, should be read “ conditional
on φ, i believes that ψ.” These formulas are interpreted in epistemic plausibility
models as follows:

Definition 8 (Truth definition). We write ||φ||M for {w ∈ |M| : M, w �
φ}. We omit M when it is clear from the context.

M, w � p iff w ∈ V (p)
M, w � ¬φ iff M, w �� φ
M, w � φ ∧ ψ iff M, w � φ and M, w � ψ
M, w � Kiφ iff ∀v (if w ∼i v then M, v � φ)

M, w � Bψ
i φ iff ∀v (if w →||ψ||M

i v
then M, v � φ)

M, w � CGφ iff ∀v (if w ∼∗
G v then M, v � φ)

M, w � CBGφ iff ∀v (if w 
∗
G v then M, v � φ)

Simple belief conditional only on i’s information at a state w can be defined using
the conditional belief operator: Biφ = B�

i φ, since: M, w � B�
i φ iff ∀v (if w 
B

i

v then M, v � φ).

3 Static Agreements and Well-Foundedness

We first show that well-foundedness is sufficient for agreement on the posteriors
under common priors and common beliefs of the posteriors. More precisely, we
show that if an epistemic plausibility model is well-founded, then common belief
that agent i believes that φ while j does not believe that φ implies that i and j
have different priors, which is the contrapositive form of the agreement theorem.

Theorem 1 (Agreement theorem - Common Belief). If a well-founded
epistemic plausibility model M satisfiesM, w � CB{i,j}(Bip ∧ ¬Bjp) for some
w ∈W , then i and j have different priors in M.
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This immediately implies the “common knowledge” agreement result below, be-
cause CGφ → CBGφ is a valid implication in epistemic plausibility models.
Note, however, that this result can also have been shown independently, by ap-
plication of Bacharach’s [4] result on qualitative “decision functions”, modulo
generalization to the countable case.

Corollary 1 (Agreement theorem - Common Knowledge). If an epis-
temic plausibility model M satisfies well-foundedness and M, w � C{i,j}(Bip ∧
¬Bjp) for one w ∈ W , then i and j have different priors in M.

Well-foundeness is not only sufficient for common priors to exclude the possibility
of disagreements when the posterior are common beliefs, it is also necessary, as
the Proposition 1 shows. The model behind this result is drawn in figure 1.

W

0 1-1-2... 2
p  p

...

Fig. 1. The epistemic plausibility model constructed in the proof of Proposition 1.
The solid and dotted rectangles represent 1’s and 2’s information partitions on W ,
respectively. The arrows represent their common plausibility ordering.

Proposition 1. There exists a pointed epistemic plausibility modelM, w which
satisfies local well-foundedness and common prior such that M, w � C{1,2}
(B1p ∧ ¬B2p).

Well-foundedness is thus necessary for agreement results to hold, and furthermore
cannot be weakened to local well-foundedness. This condition on the plausibility
ordering is thus the safeguard against common knowledge of disagreement, once
we drop the assumption that the state space is finite.

4 Expressive Power and Syntactic Proofs

LEDL is a natural choice of language for talking about epistemic-plausibility
models, and but we show here that it cannot express Theorem 1 nor Corol-
lary 1, because it cannot express two of their key assumptions, common prior and
well-foundedness.

Fact 2. The class of epistemic plausibility frames that satisfies common prior
is not definable in LEDL.

This result, which rests on the two small models drawn in figure 2, confirms
the idea that to reason about (common) priors the agents must make “inter-
[information]-state comparisons” [10], which they cannot do because their rea-
sonings in LEDL are local, i.e. they are bounded by the “hard information” [12]
they have. This limitation also makes well-foundeness inexpressible, and with it
the two static agreement results.
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W
0 1

W’
0 1

Fig. 2. The two epistemic plausibility model constructed in the proof of Fact 2. 1’s
and 2’s information partitions on W are represented as in figure 1. The arrow in W
represents their common plausibility ordering, while in W ′ the solid arrow and dotted
arrows represent 1’s and 2’s orderings, respectively.

Fact 3. There is no formula φ of LEDL which is true in a pointed epistemic
plausibility model M, w iff Theorem 1 or Corollary 1 holds in M, w.

The syntactical counterpart of the model-theoretic agreement results thus re-
sides in more expressive languages. In the full version of the paper we present a
finite syntactic derivation of Corollary 1 in H(@, ↓, CG,≥j,∼j)1, which extends
the hybrid language H(@, ↓,≥j,∼j) with a common knowledge modality CG.
Formally the language is the following:

φ := p | i | x |¬φ | φ ∧ φ | Kjφ |〈≥j〉φ |
@iφ | @xφ | ↓x.φ | CGφ

Note that it allows one to scan the plausibility relation directly. The hybrid
semantics draws on assignation functions that maps states variables to states
and which allows the language to bind a variable to the current state and to
refer to it. A detailed presentation of this language and its semantics, together
with the syntactic derivation and proof of soundness of the axioms we are using
is given in the full version of the paper.

On the positive side this language is able to axiomatize (converse) well-
foundedness of the plausibility relation. On the negative side, the satisfiability
problem for this language on the class of conversely well-founded frames is Σ1

1 -
hard [13], ruling out any finite axiomatization of its validities. The derivation
we show, however, is finite and uses only sound axioms. At the time of writing
we still do not know whether the agreement results of Section 3 could be de-
rived in a less complex language. The fact that the syntactic derivation reported
here pertains to such an expressive language nevertheless shows that reasoning
explicitly about agreement results requires onerous expressive resources.

5 Agreements via Dialogues

In this section we turn to “agreements-via-dialogues” [2, 4], which analyze how
agents can reach agreement in the process of exchanging information about their
beliefs by updating the latter accordingly.
1 In fact we use a language with more primitives, but, as we prove, these are entirely

definable in the restricted language.
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5.1 Agreements via Conditioning

We first consider agreements by repeated belief conditioning. It is known that
if agents repeatedly exchange information about each others’ posterior beliefs
about a certain event, and update these posteriors accordingly, the posteriors
will eventually converge [2, 4]. We show here that this result also holds for the
“qualitative” form of beliefs conditionalization in epistemic plausibility models.

We call a conditioning dialogue about φ [2] at a state w of an epistemic plau-
sibility model M a sequence of belief conditioning, for each agent, on all other
agents’ beliefs about φ. This sequence can be intuitively described as follows. It
starts with the agents’ simple belief about φ, i.e. for all i: Biφ ifM, w � Biφ and
¬Biφ otherwise. Agent i’s beliefs about φ at the next stage is defined by taking
his beliefs about φ, conditional upon learning the others’ belief about φ at that
stage. Syntactically, this gives, IB1,i = Biφ if M, w � Biφ and IB1,i = ¬Biφ

otherwise and, for two agents i, j, IBn+1,i = B
IBn,jφ
i φ if M, w � B

IBn,jφ
i φ and

¬BIBn,jφ
i φ otherwise. This syntactic rendering is only intended to fix intuitions,

though, since in countable models the limit of this sequence exceeds the finitary
character of LEDL. We thus focus on model-theoretic conditioning.

Conditioning on a given event A ⊆ W boils down to refining an agent’s
information partition by removing “epistemic links” connecting A and non-A
states.

Definition 9 (Conditioning by a subset). Given an epistemic plausibility
model M, the collection of epistemic equivalence relation of the agents is an
element of ℘(W × W )I . Given a group G ⊆ I, the function fG : ℘(W ) →
(℘(W ×W )I → ℘(W ×W )I) is a conditioning function for G whenever:

(w, v) ∈ fG(A)(i)({∼i}i∈I) ={
(w, v) ∈∼i and (w ∈ A iff v ∈ A) if i ∈ G
(w, v) ∈∼i otherwise

Given M = 〈W, (≤i)i∈I , (∼i)i∈I , V 〉 we write fG(A)(M) for the model
〈W, (≤i)i∈I , fG(A)((∼i)i∈I), V 〉.
It is easy to see that the relations ∼i in fG(A)(M) are equivalence relations.
Here we are interested in cases where the agents condition their beliefs upon
learning in which belief state the others are.

Definition 10 (Belief states). LetM an epistemic plausibility model and A ⊆
W , we write

BM
j (A) for {w : βj(KM

j [w]) ⊆ A} and

¬BM
j (A) for W \BM

j (A)

We define IBM,w
j (A) as follows:

IBM,w
j (A) =

{
BM

j (A) if w ∈ BM
j (A)

¬BM
j (A) otherwise
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Observation 4. For any plausibility epistemic modelM indexed by a finite set
of agents I, 〈℘(W ×W )I ,⊆〉 is a chain complete poset. Moreover for all A ⊆W ,
w ∈W and G ⊆ I, fG(A) is deflationary.

Taking fI(
⋂

j∈I IBM,w
j (||φ||M)) as a mapping on models, it is easy to see from the

preceding observation that conditioning by agents’ beliefs about some event is
deflationary with respect to the relation of epistemic-submodel. It follows then by
the Bourbaki-Witt fixed-point theorem [14] that conditioning by agents’ beliefs
has a fixed point.

Theorem 5 (Bourbaki-Witt [14]). Let X be a chain complete poset. If f :
X → X is inflationary (deflationary), then f has a fixed point.

Given an initial pointed modelM, w and some event A ⊆W , we can construct
its fixed point under conditioning by agents’ beliefs as the limit of a sequence
of models, which are the model-theoretic counterpart of the dialogues described
above.

Definition 11. A conditioning dialogue about φ at the pointed plausibility epis-
temic modelM, w, withM = 〈W, (≤i)i∈I , (∼i)i∈I , V 〉 is the sequence of pointed
epistemic plausibility models (Mn, w) with

(M0, w) =M, w

(Mβ+1, w) = fI(
⋂
j∈I

IBMβ ,w
j (||φ||M))(Mβ), w

(Mλ, w) =
⋂

β<λ

(Mβ , w) for limit ordinals λ

This extends to the countable case the standard representation of a dialogue
about φ in the literature on dynamic agreements [2, 4]. By observation 4 we
know that dialogues cannot last forever, i.e. that each such sequence has a limit.

Corollary 2. For any pointed epistemic plausibility modelM, w and φ ∈ LEDL

there is a αf such that, for all i ∈ I, w ∈W and α > αf , Kα,i[w] = Kαf ,i[w].

Once the agents have reached this fixed-point αf—possibly after transfinitely
many steps—they have eliminated all higher-order uncertainties concerning the
posteriors about φ of the others, viz. these posteriors are then common
knowledge:

Theorem 6 (Common knowledge of beliefs about φ). At the fixed-point
αf of a conditioning dialogue about φ we have that for all w ∈ W and i ∈ I,
if w ∈ B

M
αf ,w

i (||φ||M) then w′ ∈ B
M

αf ,w

i (||φ||M) for all w′ ∈ [w]∗αf ,I , and

similarly if w �∈ BM
αf ,w

i (||φ||M).

With this in hand we can directly apply the static agreement result for com-
mon knowledge (Corollary 1, Section 3) to find that the agents do indeed reach
agreements at the fixed-point of a dialogue about φ.
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Corollary 3 (Agreement via conditioning dialogue). Take any dialogue
about φ with common and well-founded priors, and αf as in Corollary 2. Then for
all w in W , either [w]∗αf ,I ⊆

⋂
i∈I B

M
αf ,w

i (||φ||M) or [w]∗αf ,I ⊆
⋂

i∈I ¬B
M

αf ,w

i

(||φ||M).

This result brings qualitative dynamic agreement results [3, 4] to epistemic plau-
sibility models, and show that agents can indeed reach agreement via iterated
conditioning, even when the finite model assumption is dropped.

5.2 Agreements via Public Announcements

In this section we show that iterated “public announcements” lead to agree-
ments, thus introducing a distinct form of information update to the agreement
literature. Public announcements are “epistemic actions” [6] by which truthful,
hard information is made public to the members of a group by a trusted source,
in such a way that no member is in doubt about whether the others received the
same piece of information as he did.

One extends a given logical language with public announcements by operators
of the form [φ!]ψ, meaning “after the announcement of φ, ψ holds” [15, 16]. A
dialogue about φ via public announcements among the members of a group G
thus starts, as before, with i simple beliefs about φ, for all i ∈ I. The agents’
beliefs about φ at the next stage are then defined as those they would have
after a public announcement of all agents’ beliefs about φ at the first stage.
Syntactically, this gives: IB1,i as in Section 5.1, and IBn+1,i, as [

⋂
j∈I IBn,jφ!]Biφ

if M, w � [
⋂

j∈I IBn,jφ!]Biφ and as [
⋂

j∈I IBn,jφ!]¬Biφ otherwise. For the same
reason as in the previous section, we now move our analysis to the level of models.

The A-generated submodel of a given epistemic plausibility model M is
the model that results after the public announcement of A in M. We write
Sub(M) = {M′ is the A-generated submodel ofM | A ⊆ |M|} and M′ � M
wheneverM′ ∈ Sub(M).

Definition 12 (Relativization by agents beliefs). Let IBi(M, w, φ) be
defined as follows:

IBi(M, w, φ) =

{
||Biφ||M if M, w � Biφ

||¬Biφ||M otherwise

Then given an epistemic-plausibility model M = 〈W, (≤i)i∈I , (∼i)i∈I , V 〉, the
relativization !Bφ

w by agents’ beliefs about φ at w (where w ∈ |M|), takes M to
!Bφ

w(M). Here !Bφ
w(M) is the

⋂
i∈I IBi(M, w, φ)-generated submodel !Bφ

w(M) =

〈W !Bφ
w ,≤!Bφ

w

i ,∼!Bφ
w

i , V !Bφ
w〉 of M such that:

– W !Bφ
w =

⋂
i∈I IBi(M, w, φ)

and for each i ∈ I

– ≤!Bφ
w

i =≤i ∩ (W !Bφ
w ×W !Bφ

w)
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– ∼!Bφ
w

i =∼i ∩ (W !Bφ
w ×W !Bφ

w)
– For each v ∈W !Bφ

w , v ∈ V !Bφ

(p) iff v ∈ V (p)

Note that by construction above the actual state w is never eliminated.

Observation 7. For any plausibility epistemic modelM indexed by a finite set
of agents I, 〈Sub(M),�〉 is a chain complete poset. Moreover, for all φ ∈ LEDL,
w ∈W , !Bφ is deflationary.

It follows then by the Bourbaki-Witt [14] Theorem (see previous subsection)
that the process of public announcement of beliefs has a fixed point. Given an
initial pointed modelM, w and some formula φ ∈ LEDL, we can construct this
fixed point by taking the limit of a sequence of models, which we call a public
dialogue.

Definition 13. A public dialogue about φ starting in M, w is a sequence of
epistemic-doxastic pointed models {(Mn, w)} such that:

– M0 =M is a given epistemic-plausibility model.
– Mβ+1 =!Bφ

w(Mβ)
– (Mλ) is the submodel of M generated by

⋂
β<λ |Mβ | for limit ordinals λ

It is known that such a dialogue need not stop after the first round of announce-
ments, in e.g. the “muddy children” case [17], but by observation 7 we know
that it will stop at some point.

Corollary 4 (Fixed-point). Given an epistemic-plausibility modelM0, w and
a public dialogue about φ, there is a αφ such that (Mα, w) = (Mαφ , w) for all
α ≥ αφ.

Moreover atMαφ , w, which we call the fixed point of the public dialogue about
φ, the posteriors of the agents about this formula are common knowledge,
which means that they will reach an agreement on φ if they have common and
well-founded priors.

Theorem 8 (Common knowledge at the fixed point). At the fixed-point
of a public dialogueMαφ , w about φ, for all w ∈ W and i ∈ I, if w ∈ ||Biφ||Mαφ

then w′ ∈ ||Biφ||Mαφ for all w′ ∈ [w]∗αφ,I , and similarly if w �∈ ||Biφ||Mαφ .

Corollary 5 (Agreements via Public Announcements). For any public
dialogue about φ, if there is common and well-founded priors then at the fixed-
point Mαφ , w either all agents believe that φ or they all do not believe that φ.

This new form of dynamic agreements result is conceptually important because
it fits better than iterated conditioning the intuitive idea of a public dialogue,
or so shall we argue in the next section, by highlighting the differences between
the two processes of information exchange.
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5.3 Comparing Agreements via Conditioning and Public
Announcements

In this section we highlight by way of two examples that public announcements,
in comparison with belief conditioning, are indeed public. We illustrate this first
by comparing how conditioning and public announcements respectively change
higher-order information, even in the case of “non-epistemic” facts. We then
point out that this difference can indeed lead to different agreements, precisely
in cases where the dialogues are about epistemic facts.

W

2 2
1 1

w1 w2 w3
p p

Fig. 3. An epistemic plausibility model where one round of conditioning on p does not
remove higher-order uncertainty about p, while a public announcement of p does

Example 9. Consider the model in Figure 3. The arrows represent 1 and 2’s
common plausibility ordering, with w ≤ w′ and w′ ≤ w for all w,w′ ∈ W . The
solid and dotted rectangles represent 1 and 2’s information partitions, respec-
tively. Take a proposition letter p and assume that V (p) = {w1, w2}. Observe
that the agents already agree on p at w1, but that agent 2 is uncertain about
1’s beliefs about p: writing ♦2ψ for ¬B2¬ψ, we have w1 |= ♦2B1p ∧ ♦2¬B1p. A
single public announcement of p at w1 suffices to remove this higher-order uncer-
tainty: w1 |= [p!]C1,2p. Agent 2’s uncertainty about 1’s beliefs about p, however,
remains after a single conditioning on p. Taking ♦ψ

2 φ
′ for ¬Bψ

2 ¬ψ′, we have
w1 |= ♦p

2B1p ∧ ♦p
2¬B1p.

This example illustrates the public character of announcements in comparison
with the private character of conditioning. In the first case all agents know
that all others have received the same piece of truthful information. This is not
necessarily the case for conditioning, even if all agents condition simultaneously
on the same piece of information.

Given any pointed epistemic plausibility model M, w and formula φ, the
reader can check that both the dialogue about φ via public announcements and
the dialogue about φ via belief conditioning atM, w lead to the same agreement
whenever φ is a Boolean combination of propositional letters. This is mainly due
to the fact that neither operation changes the “basic facts”, i.e. the proposi-
tional valuation in a given model. They do, however, treat “informational” facts
differently, as the following example shows.

Example 10. Consider the epistemic plausibility model in Figure 4. The arrows
and rectangles are as in example 9. Take a proposition letter p and assume that
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W

2
1 1

w1 w2

Fig. 4. An epistemic plausibility model where conditioning leads to different
agreements than public announcements

V (p) = {w1}. Let φ := p ∧ ¬B2p, i.e. “p but 2 doesn’t believes that p”. Observe
that φ holds at w1, that 1 believes it but that 2 does not. The conditioning dialogue
and the dialogue via public announcements, both about φ, reach their fixed point
n∗ after one round in this model, where [w1]n∗,1 = [w1]n∗,2 = {w1}. The formula
φ leads to an “unsuccessful update” by public announcement [6], and at the fixed
point of the dialogue neither 1 nor 2 believe that φ. In conditioning dialogue,
however, both agents do believe that φ at the fixed point.

This example hinges on the fact that public announcement and belief condi-
tioning have a different influence on higher-order information. In conditioning
the truth value of the formula under consideration remains fixed. If the formula
contains epistemic (Ki or CG) or doxastic (Bi, CBG) operators, this means that
the conditioning dialogue bears on the knowledge and beliefs of the agents an-
terior to the information exchange [7]. In dialogues via public announcements
the truth value of the formula φ is dynamically adapted to the incoming new
information, reflecting the fact that knowing that others receive the same piece
of information might lead an agent to revise his higher-order information, too.

This highlights the public character of announcements in comparison with
belief conditioning, and thus that the former fit well with the intuition of public
dialogue that drives the dynamic agreement results.

6 Conclusion

We have studied agreement theorems from the point of view of dynamic-epistemic
logic. We have shown that both static and dynamic agreement results hold in epis-
temic plausibility models, answering an open question in the logic literature. We
pointed out the need for rather expressive logical languages to reason explicitly
about static agreement results. We have furthermore improved on existing quali-
tative agreement results by proving that common belief in posteriors is sufficient
to ensure agreement, under common and well-founded priors, and so for both fi-
nite and countable structures. Finally, we focused on the distinction between con-
ditioning and public announcements to provide two dynamic agreement results,
arguing that the later better capture the public character of dialogues. Introducing
agreement theorems to dynamic-epistemic logic thus proves to be both technically
and conceptually fruitful, and it bridges two important bodies of literature.
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Future work should put the full generality dynamic-epistemic logic [6, 18] to
use, as well as recent developments in “softer” forms of belief updates [12, 19], to
analyze the possibility of agreements in a larger class of situations. It also remains
open whether one can finitely axiomatize a logic which can derive the agreement
results, in both their static and dynamic forms. Finally, two issues pertaining
to the expressibility of the static agreement theorems should be investigated
further: first, the definability of the common prior assumption via countable sets
of formulas of LEDL, as shown by [20] for the probabilistic case; and second,
expressibility of alternative agreement results, as e.g. the one provided in [10].
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Abstract. In formal approaches to inductive learning, the ability to
learn is understood as the ability to single out a correct hypothesis from
a range of possibilities. Although most of the existing research focuses on
the characteristics of the learner, in many paradigms the significance of
the teacher’s abilities and strategies is in fact undeniable. Motivated by
this observation, this paper highlights the interactive nature of learning
by showing its relation with games. We show how learning can be seen
as a sabotage-type game between Teacher and Learner, and we present
different variants based on the level of cooperativeness and the actions
available to the players, characterizing the existence of winning strate-
gies by formulas of Sabotage Modal Logic and analyzing their complexity.
We also give a two-way conceptual account of how to further combine
games and learning: we propose to use game theory to analyze the gram-
mar inference approach, and moreover, we indicate that existing induc-
tive inference games can be analyzed using learning theory tools. Our
work aims at unifying game-theoretical and logical approach to formal
learning theory.

Keywords: Formal learning theory, game theory, modal logic, sabotage
games, inductive inference games, learning algorithms.

1 Introduction

Formal learning theory (see e.g. [1]) is concerned with the process of inductive
inference: it formalizes the process of inferring general conclusions from par-
tial, inductively given information, as in the case of language learning (inferring
grammars from sentences) and scientific inquiry (drawing general conclusions
from partial experiments).

This general process can be seen as a game between two players: Learner and
Teacher. The game starts with a class of possible worlds from which Teacher
chooses the actual one, and Learner has to find out which one it is. Teacher
inductively provides information about the world, and whenever Learner receives
a piece of information, he picks a conjecture from the initial class, indicating
which one he thinks is the case. Different conditions can be defined for the
success of the learning process: we can require that after a finite amount of
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data Learner decides on a correct hypothesis (finite identification), or that the
sequence of Learner’s conjectures converges to a correct hypothesis without him
ever being certain about the answer (identification in the limit) [2].

We restrict ourselves to a high-level analysis of the process described above.
Our proposal focuses on some important elements of learnability. First of all, we
treat learning as a procedure of singling out one correct hypothesis from some
range of possibilities. Moreover, we see this procedure not as a one-move choice,
but as a sequence of them, and therefore we allow many steps of update before
the conclusion is reached. Those two properties make our notion of learning
different from the concept of learning formalized in dynamic epistemic logic (see
e.g. [3]), where the word “learning” is often used as a synonym of “getting to
know” and is usually represented as a one-step epistemic update. Moreover, in
our approach we pay attention to the strategies for teaching, highlighting the
fact that restricted power and knowledge of Learner can be compensated by
additional insights and intentions of Teacher.

Our approach is also motivated by very concrete scenarios of Learner-Teacher
interaction as they occur in so called inductive inference games such as Zendo [4]
and (The New) Eleusis [5]. We argue that our interactive perspective on Learning
and Teaching together with the resulting formal model can also provide tools
for game-theoretical and complexity analyses of such concrete games.

The paper is structured as follows. In Section 2 we introduce the sabotage
learning framework, showing how sabotage modal logic can express the winning
conditions of three versions of Sabotage Learning Games and giving complexity
results for them. In Section 3, we analyze Sabotage Learning Games in which
players do not need to move in alternation. Section 4 gives additional insights
into the relation between learning and games. We first present a refined inter-
active view on Teaching, based on existing learning algorithms; then, we argue
that a mixture of learning theory, game theory and cognitive science tools can
be used to analyze existing inductive inference games. Section 5 concludes our
considerations.

2 Learning as a Sabotage Game

The main aim of the paper is to highlight the interactive nature of the learn-
ing process by showing its relation with games. This is motivated by learning
paradigms in which Teacher plays a significant role and, in fact, has a strong
influence on whether the process is successful (e.g., learning from queries and
counterexamples [6]).

Our first step is to show that learning can be seen as a game. We start by
considering a simple situation with two players: Teacher and Learner. From
a high-level perspective, we can describe learning as the step-by-step process
through which Learner changes his information state. The process is successful
if he eventually reaches an information state describing the real state of affairs,
a state called the goal. The information that Teacher provides can be interpreted
as feedback about Learner’s current conjecture, allowing him to rule out possible
mind changes because they are inconsistent with the received information.
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Table 1. Correspondence with Learning Model

Learning Model Sabotage Games

Hypotheses States

Correct hypothesis Goal state

Possibility of a mind change from hypothesis a to
hypothesis b

Edge from state a to b

A mind change from hypothesis a to hypothesis b Transition from state a to b

Giving a counterexample that eliminates the pos-
sibility of a mind change from a to b

Removing a transition be-
tween a and b

By looking at the Teacher-Learner interaction from this perspective, we can
represent the situation as a graph whose vertices represent Learner’s possi-
ble information states and edges represent transitions between them. Changes
in Learner’s information state are represented by moves along the edges, and
Teacher’s feedback is represented as the removal of edges. We say that the
learning process has been successful if Learner reaches the goal state. The cor-
respondence between the learning model from formal learning theory and our
interactive sabotage approach is described in Table 1.

Note how in our setting, Teacher’s information does not rule out states, but
changes in information states. Then, the removal of one edge does not need to
make the target unreachable state since there can be more than one path to it.

2.1 Sabotage Games

The described perspective on learning leads naturally to the framework of Sab-
otage Games [7,8]. A Sabotage Game is played in a directed multi-graph by two
players, Runner and Blocker, which move alternatingly with Runner being the
first. Runner moves by making one transition from the current vertex; Blocker
moves by deleting an edge from the graph.

In the present paper, we use a variant of the game based on labelled multi-
graphs. In [9] it is shown to be equivalent to the original game with respect of
the existence of a winning strategy.

Definition 1 (Directed Labelled Multi-graph). Let Σ = {a1, . . . an} be a
finite set of labels. A directed labelled multi-graph is a tuple GΣ = (V, E) where
V is a finite set of vertices and E = (Ea1 , . . . , Ean) is a collection of binary
relations: Eai ⊆ V × V for each ai ∈ Σ.

In this definition, labels from Σ are used to represent multiple edges between
two vertices. The definition of the game is as follows.

Definition 2. A Labelled Sabotage Game SGΣ = 〈V, E , v, vg〉 is given by a
directed labelled multi-graph (V, E) and two vertices v, vg ∈ V . Vertex v represents
the position of Runner and vg represents the goal state. Each match is played
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as follows: the initial position 〈E0, v0〉 is given by 〈E , v〉. Round k + 1 from
position 〈Ek, vk〉 with Ek = (Ek

a1
, . . . , Ek

an
), consists of Runner moving to some

vk+1 such that (vk, vk+1) ∈ Ek
ai

for some ai ∈ Σ, and then Blocker removing
an edge ((v, v′), aj), where (v, v′) ∈ Ek

aj
for some aj ∈ Σ. The new position is

〈Ek+1, vk+1〉, where Ek+1
aj

= Ek
aj
\ {(v, v′)} and Ek+1

ai
= Ek

ai
for all i �= j. The

match ends if Runner cannot make a move or if he reaches the goal state, with
Blocker winning in the first case and Runner winning in the second.

Note that Blocker cannot get stuck since, whenever it is her turn, there is at
least one edge left in the graph (the one that Runner just used).

It is easy to see that the Labelled Sabotage Game has the history-free deter-
minacy property: if one of the players has a winning strategy then she also has
one that only depends on the current position. Then, we can see each round as
a transition from a Sabotage Game SGΣ = 〈V, Ek, vk, vg〉 to another Sabotage
Game SGΣ = 〈V, Ek+1, vk+1, vg〉, since previous moves become irrelevant. We
will use this perspective throughout the paper. Also, by edges and vertices of
the game SGΣ = 〈V, E , v, vg〉, we will mean edges and vertices of (V, E).

Observe that when Blocker removes the edge (v, v′) ∈ Ea, the label a is irrel-
evant; what matters for who can win the game is how many edges are left from
v to v′. Also, vertices and labels are finite, so every match ends after a finite
number of rounds.

2.2 Sabotage Learning Games

We now define Sabotage Learning Games with different winning conditions. We
will work with Labelled Sabotage Games, using the labelling of the edges to
represent different kinds of information changes that take Learner from one state
into another.

Definition 3. A Sabotage Learning Game (SLG) is a Labelled Sabotage Game
between Learner (L, taking the role of Runner) and Teacher (T , taking the role of
Blocker). We distinguish between three versions, SLGUE, SLGHU and SLGHE.
They differ only in their winning conditions, which are provided in Table 2.

The winning conditions correspond to different levels of Teacher’s helpful-
ness and Learner’s willingness to learn. We can have unhelpful Teacher and
eager Learner (SLGUE ), but there can also be helpful Teacher and unwilling

Table 2. Sabotage Learning Games

Game Winning Condition

SLGUE Learner wins iff he reaches the goal state, Teacher wins otherwise.

SLGHU Teacher wins iff Learner reaches the goal state, Learner wins otherwise.

SLGHE Both players win iff Learner reaches the goal state. Both lose otherwise.
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Learner (SLGHU ). The cooperative case corresponds to helpful Teacher and ea-
ger Learner (SLGHE ). Having provided a formal framework for Teacher-Learner
interactions by means of SLGs, we now show how we can use Sabotage Modal
Logic for reasoning about players’ strategic powers in these games.

2.3 Sabotage Modal Logic

Sabotage Modal Logic (SML) has been introduced in [8]. Its language extends
the basic modal language by formulas of the form −�φ, saying that it is possible
to delete a pair from the accessibility relation such that φ holds.

Definition 4 (Sabotage Modal Language [8]). Let PROP be a countable set
of atomic propositions and Σ a finite set of labels. Formulas of the language of
SML are given by

φ ::= p | ¬φ | φ ∨ φ | �aφ | −�aφ

with p ∈ PROP and a ∈ Σ. We write �φ for
∨

a∈Σ �aφ and −�φ for
∨

a∈Σ
−�aφ.

Definition 5 (Sabotage Model [10]). Given a countable set of atomic propo-
sitions PROP and a finite set Σ = {a1, . . . , an}, a Sabotage Model is a tuple M =
〈W, (Rai)ai∈Σ,Val〉 where W is a non-empty set of worlds, each Rai ⊆W ×W
is an accessibility relation and Val : PROP→ P(W ) is a propositional valuation
function. The pair (M,w) with w ∈ W is called a Pointed Sabotage Model.

First we give the definition of the model that results from removing an edge.

Definition 6. Let M = 〈W,Ra1 , . . .Ran ,Val〉 be a Sabotage Model. The model
Mai

(v,v′) that results from removing the edge (v, v′) ∈ Rai is defined as

Mai

(v,v′) := 〈W,Ra1 , . . .Rai−1 , Rai \ {(v, v′)}, Rai+1 , . . .Ran ,Val〉.
Now the semantics of SML is given as follows.

Definition 7. Given a Sabotage Model M = 〈W, (Ra)a∈Σ ,Val〉 and a world w ∈
W , atomic propositions, negations, disjunctions and standard modal formulas are
interpreted as usual. For “transition-deleting” formulas, we have

M,w |= −�aφ iff ∃ w, v ∈ W : (v, v′) ∈ Ra & Ma
(v,v′), w |= φ,

and −�aφ is defined to be equivalent to ¬−�a¬φ.

Theorem 1 ([10]). Model checking (combined complexity) of Sabotage Modal
Logic is PSPACE-complete.

2.4 Sabotage Learning Games in Sabotage Modal Logic

Sabotage Modal Logic can be used for reasoning about games in which choices
of one player restrict the set of possible future moves of herself and the other
player. Therefore, this logic is useful for reasoning about players’ strategic power
in Sabotage Learning Games: for each SLG we can construct a Pointed Sabotage
Model in a straightforward way.
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Definition 8. Let SGΣ = 〈V, E , v0, vg〉 be a Sabotage Game with E = (Ea)a∈Σ.
We define the Pointed Sabotage Model (M(SGΣ), v0) over PROP := {goal}, with

M(SGΣ) := 〈V, E ,Val〉,
where Val(goal ) := {vg}.

For each game in Table 2, we can define a SML formula that is true in the
model corresponding to a game if and only if there is a w.s. in the game.

Consider SLGUE (the Sabotage Game of [8]). Inductively, we define

γUE
0 := goal , γUE

n+1 := goal ∨�−�γUE
n

The following result is Theorem 7 of [10] rephrased for Labelled Sabotage
Games. The new setting avoids a technical issue present in the original proof.

Theorem 2. Learner has a winning strategy (w.s.) in the SLGUE SGΣ =
〈V, E0, v0, vg〉 iff M(SGΣ), v0 |= γUE

n , where n is the number of edges of SGΣ.

Proof. [Sketch] The proof is by induction on n. The base case is immediate.
For the inductive case, Learner has a w.s. in a game with n + 1 edges iff he is

alreadyatvg or he canmove to avertex v1 inwhich, nomatterwhat edgeTeacher re-
moves, he has a w.s. in the resulting SG ′Σ . The first case is equivalent to
M(SGΣ), v0 |= goal . For the second case, note that SG ′Σ has n edges, and then by
inductive hypothesis we haveM(SG ′Σ), v1 |= γUE

n . Hence, M(SGΣ), v1 |= −�γUE
n

and thusM(SGΣ), v0 |= �−�γUE
n . Hence, M(SGΣ), v0 |= goal ∨�−�γUE

n . �

A detailed proof of Theorem 2 can be found in [9].
Next, consider SLGHU , the game with helpful Teacher and unwilling Learner.

Inductively, we define

γHU
0 := goal , γHU

n+1 := goal ∨ (�� ∧ �−�γHU
n ).

We show that this formula corresponds to the existence of a winning strategy
for Teacher. Note that Teacher has to make sure that Learner does not get stuck
before he has reached the goal state. This is why the conjunct �� is needed.

Theorem 3. Teacher has a w. s. in the SLGHU SGΣ = 〈V, E0, v0, vg〉 iff
M(SGΣ), v0 |= γHU

n , where n is the number of edges of SGΣ.

Proof. Similar to the proof of Theorem 2. �

Finally, for SLGHE , the corresponding formula is defined as

γHE
0 := goal , γHE

n+1 := goal ∨�−�γHE
n .

Theorem 4. Teacher and Learner have a joint w.s. in the SLGHE SGΣ =
〈V, E0, v0, vg〉 iff M(SGΣ), v0 |= γHE

n , where n is the number of edges of SGΣ.

Proof. [Sketch] Note that Learner and Teacher have a joint w.s. iff there is a
path from v0 to vg. Teacher can always remove the edge just used by Learner. �

The above results are summarized in Table 3.
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Table 3. Winning Conditions for SLG in SML

Game Winning Condition in SML Winner

SLGUE γUE
0 := goal , γUE

n+1 := goal ∨ �−�γUE
n Learner

SLGHU γHU
0 := goal , γHU

n+1 := goal ∨ (� ∧ (�−�γHU
n )) Teacher

SLGHE γHE
0 := goal , γHE

n+1 := goal ∨ �−�γHE
n Both

2.5 Complexity of Sabotage Learning Games

In this section, we investigate the complexity of Sabotage Learning Games. In our
framework the complexity of deciding whether a player has a winning strategy
in a given SLG corresponds to the complexity of deciding whether learning is
possible in a given situation.

Intuitively, learning as in SLG should be easiest with helpful Teacher and ea-
ger Learner. This is indeed reflected in the computational complexity of deciding
in a given game whether the winning condition is satisfied.

We provided SML formulas expressing the existence of a w.s. for the three
versions of SLG. By Theorem 1 (proved in [10]) Model checking (combined
complexity) of SML is PSPACE-complete. Thus, deciding whether a player can
win a game can be done in PSPACE. For the cases of SLGUE and SLGHE , we
can also give tight lower bounds.

For SLGUE , the standard Sabotage Game, PSPACE-hardness is shown by
reduction from QBF [10].

Theorem 5 ([10]). SLGUE is PSPACE-complete.

It remains to show whether SLGHU is also PSPACE-hard. SLGUE seems
like the dual of SLGHU , but this is not the case due to the different nature of
the players’ moves. Thus, reducing SLGUE to SLGHU is not straightforward.

Finally, SLGHE is cooperative: both players win or lose together. Here, a
w.s. is a joint strategy. As mentioned in the proof of Theorem 4, it exists iff the
goal is reachable from Learner’s position. So, determining if a game can be won

Table 4. Complexity Results for Sabotage Learning Games

Game Winning Condition Complexity

SLGUE Learner wins iff he reaches the goal state,
Teacher wins otherwise

PSPACE-complete.

SLGHU Teacher wins iff Learner reaches the goal
state, Learner wins otherwise.

PSPACE

SLGHE Both players win iff Learner reaches the
goal state. Both loose otherwise.

NL-complete
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is equivalent to the REACHABILITY (st-CONNECTIVITY) problem which is
nondeterministic logarithmic space complete (NL-complete) [11].

Theorem 6. SLGHE is NL-complete.

Table 4 summarizes the complexity results. They agree with our intuition that
in some sense learning is easiest if Learner and Teacher cooperate.

3 Relaxing Strict Alternation

As mentioned above, the players’ moves are asymmetric: Learner moves lo-
cally (moving to a vertex accessible from the current one) while Teacher moves
globally (removing any edge from the graph). Thus, Learner’s move does not
in principle need to be followed by Teacher’s move (e.g. Learner can perform
several changes of his information state before Teacher can make a restriction).

Definition 9. A Sabotage Learning Game without strict alternation (for Teach-
er) is a tuple SLG∗ = 〈V, E , v0, vg〉. Moves of Learner are as in SLG and, once he
has chosen a vertex v1, Teacher can choose between removing an edge, in which case
the next game is given as in SLG, and doing nothing, in which case the next game
is 〈V, E , v1, vg〉. Again, there are three different versions, now called SLG∗UE,
SLG∗HU and SLG∗HE.

Though in SLG∗ Teacher has an additional move, the players’ winning abilities
do not change. In the rest of this section we show that, for each of the three
versions, the games with and without strict alternation are equivalent.

We start with the case of an unhelpful teacher and an eager learner SLG∗UE.
Note that even though in this new setting matches can be infinite, in fact if
Learner can win the game, he can do so in a finite number of rounds. Consider
the case of unhelpful Teacher and eager Learner SLG∗UE. Before we go into the
details, note that if Learner can win the game, he can do so in a finite number
of rounds.

Theorem 7. Consider the SLG 〈V, E , v0, vg〉 with (V, E) a directed labelled mul-
ti-graph and v, vg vertices in it. Learner has a winning strategy in the correspond-
ing SLGUE iff he has a wining strategy in the corresponding SLG∗UE.

Proof. From left to right, the idea is that in each round L “pretends” that T has
removed some edge and then makes the move given by his strategy for SLGUE .
For the other direction, if L has a w.s. for SLG∗UE, then he can also win the
corresponding SLGUE by using the same strategy. �

Corollary 1. If Learner has a SLG∗UE-winning strategy in 〈V, E , v0, vg〉, then
he has a SLGUE-winning strategy.

Proof. If L can respond successfully to all of T ’s moves in SLG∗, then in
particular, he can do so if T removes an edge in every round. �

The case of helpful Teacher and unwilling Learner is more interesting. One
might expect that the additional possibility of skipping a move gives more power
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to Teacher, since she could avoid removals that would have made the goal un-
reachable from the current vertex. However, we can show that this is not the
case. First, we state the following lemmas.

Lemma 1. Consider the game 〈V, E , v0, vg〉 with winning condition SLG∗HU .
If there is a path from v0 to vg and there is no path from v0 to a state from
where vg is not reachable, then T has a SLG∗HU -winning strategy.

Proof. Let us assume that all states reachable from v0 are on paths to vg. Then
even if T refrains from removing any edge, L will be on a path to the goal. Now,
either the path to the goal does not include a loop or it does. If it does not then
T can simply wait until L arrives at the goal. If it does, T can remove the edges
that lead to the loops in such a way that vg is still reachable from any vertex. �

Lemma 2. For all SLG∗HU 〈V, E , v0, vg〉, if T has a w.s. and there is an edge
(v, v′) ∈ Ea for some a ∈ Σ such that no path from v0 to vg uses (v, v′), then T
also has a w.s. in 〈V, E ′, v0, vg〉, where E ′ results from removing (v, v′) from Ea.
Proof. If v is not reachable from v0, it is easy to see that the claim holds. Assume
that v is reachable from v0. T ’s w.s. should prevent L from moving from v to v′

(otherwise L wins). Hence, T can also win if (v, v′) is not there. �

Theorem 8. If Teacher has a w.s. in the SLG∗HU 〈V, E , v0, vg〉, then she also
has a winning strategy in which she removes an edge in each round.

Proof. The proof proceeds by induction on the number of edges n =
∑

a∈Σ |Ea|.
The base case is straightforward. For the inductive case, assume that T has a

winning strategy in SLG∗HU 〈V, E , v0, vg〉 with
∑

a∈Σ |Ea| = n+ 1.
If v0 = vg, we are done. Otherwise, since T can win, there is some v1 ∈ V

such that (v0, v1) ∈ Ea for some a ∈ Σ and for all such v1 we have:

1. There is a path from v1 to vg, and
2. (a) T can win 〈V, E , v1, vg〉, or

(b) there is a ((v, v′), a) ∈ (V ×V )×Σ such that (v, v′) ∈ Ea and T can win
〈V, E ′, v1, vg〉 where E ′ is the result from removing (v, v′) from Ea.

If 2b holds, since
∑

a∈Σ |E ′a| = n, we are done — we use the inductive hypoth-
esis to conclude that T has a w.s. in which she removes an edge in each round
(in particular, her first choice is ((v, v′), a)). Let us show that 2b holds.

If there is some (v, v′) ∈ V ×V such that (v, v′) ∈ Ea for some a ∈ Σ and this
edge is not part of any path from v1 to vg then by Lemma 2, T can remove this
edge and 2b holds, so we are done.

If all edges in (V, E) belong to a path from v1 to vg, from 1, there are two
cases: either there is only one, or there are more than one paths from v1 to vg.

In the first case (only one path) (v0, v1) can be chosen since it cannot be part
of the unique path from v1 to vg. Assume now that there is more than one path
from v1 to vg. Let p = (v1, v2, . . . , vg) be the/a shortest path from v1 to vg. This
path cannot contain any loops. Then, from this path take vi such that i is the



128 N. Gierasimczuk, L. Kurzen, and F.R. Velázquez-Quesada

smallest index for which it holds that from vi there is a path (vi, v
′
i+1, . . . vg) to

vg that is at least as long as the path following p from vi (i.e. (vi, vi+1, . . . , vg)).
Intuitively, when following path p from v1 to vg, vi is the first point at which one
can deviate from p in order to take another path to vg (recall that we consider
the case where every vertex in the graph is part of a path from v1 to vg). Now it
is possible for T to choose ((vi, v

′
i+1), a) such that (vi, v

′
i+1) ∈ Ea. Let E ′ be the

resulting set of edges after removing (vi, v
′
i+1) from Ea. Then we are in the game

〈V, E ′, v1, vg〉. Note due to the way we chose the edge to be removed, in the new
graph it still holds that from v0 there is no path to a vertex from which vg is
not reachable (this holds because from vi the goal vg is still reachable). Then by
Lemma 1, T can win 〈V, E ′, v1, vg〉, which then implies 2b.

Hence, we conclude that 2b is the case and thus using the inductive hypothesis,
T can win 〈V, E , v0, vg〉 also by removing an edge in every round. �

Corollary 2. If Teacher has a SLG∗HU -w.s. in 〈V, E , v0, vg〉, then he has a
SLGHU-winning strategy.

Finally, let us consider the case of helpful Teacher and eager Learner.

Theorem 9. If Learner and Teacher have a joint SLG∗HE-w.s. in 〈V, E , v0, vg〉,
then they have a joint SLGHE-w.s.

Proof. If the players have a joint SLG∗HE-w.s., then there is an acyclic path
from v0 to vg, which L can follow. At each round, T just has to remove the just
used edge. �

Let us briefly conclude this section. We have shown that in SLG, allowing
Teacher to skip moves does not change the winning abilities of the players. Using
these results, both the complexity and definability results from the previous
section also apply to the games in which Teacher can skip a move.

4 Interactive Learning and Teaching Scenarios

The view on learning presented above is very general. In this section, we will
present two more concrete settings that, we believe, can benefit from an inter-
active perspective on learning theory as we present it in this paper. First, we
present a game theoretic view on the queries and counterexamples framework
and then we give an outline of how interactive learning models could be used in
the analysis of inductive inference games.

4.1 Refined View on Teaching: Learning Algorithms

Let us go back to the queries and counterexamples paradigm (see [6]). Here,
Learner is an algorithm that embodies a winning strategy in the game of learning
(the learning procedure succeeds on all possible true data). Teacher can influence
this process by giving counterexamples. Therefore, the game of teaching in such
a setting can be formalized in extensive form as in Figure 1.
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C0

w1 w2 w3 w4

C1 C2 C3

w′
1 w′

2 w′
3 w′′

1 w′′
2 w′′

3 w′′′
1 w′′′

2 w′′′
3

. . . . . . . . .

C5

C5 C5 C5

. . .

. . . . . . . . .

Fig. 1. The tree of the teaching game: dotted lines are Learner’s moves, determined by
his algorithm; solid lines are Teacher’s moves; wi are counterexamples; Ci are Learner’s
conjectures; C5 is the correct hypothesis

A number of game-theoretical issues arise when viewing the run of the learning
algorithm as a game. We can e.g. consider the epistemic status of the players,
introduce imperfect information and analyze payoff characteristics. Concerning
the payoffs, for different classes of teachers such as (un)helpful ones, we can define
corresponding preferences or payoffs: the helpful teacher might strictly prefer all
shortest paths in the game tree, i.e. the paths in which the learner learns the
fastest. The unhelpful teacher might strictly prefer all the longest paths in the
game tree, i.e. the paths in which the learner learns slowly.

We can also provide a choice for Learner in this game. Firstly, we can allow
that at each step the learner can choose from different procedures which are part
of one algorithm. Secondly, in the beginning Learner can decide which available
algorithm to use. Moreover, we can consider another possibility that involves
extending the traditional inductive inference paradigm. Usually, learnability of a
class is interpreted as the existence of Learner that learns every element from the
class independently of the behavior of Teacher — if we introduce the possibility
of non-learnability, we can view learning algorithms as winning strategies for
eager Learner in the learning game. With the possibility of non-learnability,
there are also paths in the game tree in which Learner never makes a correct
conjecture. In this framework, a helpful teacher would also prefer all (shortest)
paths ending in a position in which the learner makes a correct conjecture over
all the other paths.

4.2 Inductive Inference Games

Inductive inference games such as (The New) Eleusis [12,13,5] and Zendo [4]
are examples of Learner-Teacher interaction in a very concrete setting. In these
games, one player takes the role of Teacher and chooses a secret rule (concern-
ing admissible sequences of cards or configurations of pyramids, in Eleusis and
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Zendo, respectively). The other players are Learners whose aim is to inductively
discover the rule. They do so by producing instances, and Teacher indicates
whether the instances obey the secret rule. These games vary in the additional
moves allowed to Learners, from the possibility of judging the correctness of
other Learners’ instances to the possibility of guessing the actual rule.

The winning conditions for these games allow Learner to win without actually
getting to know the rule. Thus, inductive inference games provide a controlled
setting in which we can investigate notions of successful learning that seem closer
to learning in real life situations than learning as exact identification. In Eleusis,
Learner can win by correctly classifying a certain number of instances; in the
case of Zendo, Learner can win by conjecturing a rule that cannot be disproved
by Teacher (that is, she cannot find an instance that distinguishes between the
conjecture and the actual rule).

What makes a game-theoretical analysis of inductive inference games partic-
ularly interesting is that it also requires a formal investigation of the notion of
operational knowledge and the complexity of hidden rules. A part of playing the
inductive inference games is to be able to converge to an accurate hypothesis
about the rule, without ever being sure about the correctness of the own conjec-
tures. The result of this process can be called “operational knowledge”, close to
true belief based on a reliable strategy of mind changes, but without certainty.

On the other hand, a computational and logical analysis of inductive inference
games can give a nice case study of comparing the complexity of logics expressing
the winning conditions, the complexity of deciding whether some player has a
winning strategy, and the complexity of the rules to be guessed. This can be
done by restricting the class of secret rules Teacher can choose from. Then we
can use the results from grammar inference to get the complexity of executing the
winning strategy (learning algorithm). We can also identify structural properties
of counterexamples given by Teacher and conjectures made by the learners that
characterize optimal strategies.

Both, epistemic and complexity analyses of inductive inference games can
also be investigated empirically. Such results could contribute to the research
in epistemic logic by giving an account of real agents dealing with the lack of
certainty, and also by introducing the complexity of executing (and not only
describing) epistemic actions.

5 Conclusions and Further Work

We have provided a game theoretical approach to learning that takes into account
different levels of cooperativeness between Learner and Teacher in a game of
perfect information.

Providing a new application of Sabotage Games, we have defined Sabotage
Learning Games with three different winning conditions, each of them repre-
senting different levels of cooperativeness between Teacher and Learner. Then,
we have shown how Sabotage Modal Logic can be used to reason about these
games and, in particular, we have identified formulas of the language that char-
acterize each of the three winning conditions, providing also complexity results
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for each one of them. Our complexity results support the intuitive claim that
the cooperation of agents facilitates learning.

From the game-theoretical perspective, Sabotage Learning Games can be ex-
tended to more general scenarios by relaxing the strict alternation. As we have
mentioned before, there is a difference in the “nature” of moves of the payers in
this game. Learner’s moves can be seen as internal ones while Teacher’s moves
can be interpreted externally. Due to this asymmetry, each of Learner’s moves
does not in principle need to be followed by Teacher’s move (e.g. Learner can per-
form several changes of his information state before Teacher can actually make
a restriction). Our results of Section 3 show that if we allow Teacher to skip a
move, the winning abilities of the players do not change with respect to the orig-
inal versions of the games. In the case of helpful Teacher and unwilling Learner,
this is quite surprising since it says that if the Teacher can force Learner to learn
in the game with non-strict alternation, then even if she is forced to remove
edges in each round she can do so without removing edges that are necessary for
Learner eventually reaching the goal state. This result crucially depends on the
fact that Learner is the first to move; and does not hold in case Teacher starts
the game.

From the perspective of Formal Learning Theory, several relevant extensions
can be done. We have described the learning process as changes in information
states, without going further into their epistemic and/or doxastic interpretation.
A deeper analysis can give us insights about how the learning process relates
belief revision and dynamic epistemic logic.

It can be argued that in some natural learning scenarios, e.g. language learn-
ing, the goal of the learning process is concealed from Learner. An extension of
the framework of Randomized Sabotage Games [14] could then be used to model
the interaction between Learner and Teacher.

In the introduction, we described the concepts of finite identification and
identification the limit. Our work on SLGs is closer to the first one, as we un-
derstand learning as the ability to reach an appropriate information state, not
taking into account what happens afterwards. In particular, we are not concerned
with the stability of the resulting belief. Identification in the limit extends fi-
nite identification by looking beyond reachability in order to describe “ongoing
behavior”. Fixed-point logics, such as the modal μ-calculus [15,16], can provide
us with tools to express this notion of learnability. Then epistemic and doxastic
interpretations of learning would involve notions of stable belief and a kind of
operational, non-introspective knowledge as a result of the process.
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Abstract. Arrow’s Theorem is a central result in social choice theory. It
states that, under certain natural conditions, it is impossible to aggregate
the preferences of a finite set of individuals into a social preference order-
ing. We formalise this result in the language of first-order logic, thereby
reducing Arrow’s Theorem to a statement saying that a given set of first-
order formulas does not possess a finite model. In the long run, we hope
that this formalisation can serve as the basis for a fully automated proof
of Arrow’s Theorem and similar results in social choice theory. We prove
that this is possible in principle, at least for a fixed number of individuals,
and we report on initial experiments with automated reasoning tools.

1 Introduction

Social choice theory is a branch of mathematical economics that is concerned
with the design and analysis of methods for collective decision making [1]. One
of the classical results in the field is Arrow’s Theorem [2]; it states that is impos-
sible to aggregate the preferences of a finite set of individuals in a manner that
would satisfy a small number of natural properties. In this paper we propose a
formalisation of Arrow’s Theorem in classical first-order logic (FOL), which may
eventually pave the way for an automated proof of this important result.

There have been a number of recent contributions that address the formal-
isation of theorems in social choice theory (e.g., Pauly [3], Ågotenes et al. [4],
Tang and Lin [5], Wiedijk [6], and Nipkow [7]). There are several reasons for this
broad interest in applying tools from mathematical logic and automated reason-
ing to social choice theory. One of them is of course that the full formalisation
of a problem domain can help us gain a deeper understanding of that domain.
More specifically, in social choice theory, it can clarify the exact nature of the
assumptions that are being made to derive, for instance, a characterisation re-
sult [3]. Second, a complete formalisation together with an automatically derived
(or automatically verifiable) proof can give additional assurances for the correct-
ness of a result. As pointed out by Blau [8], Arrow’s original proof contained an
error; this has been acknowledged and corrected in the second edition of Ar-
row’s book [2]. While there has been some discussion in the literature whether
the standard proofs have been worked out in sufficient detail [7], we certainly
do not want to suggest that the major results in social choice theory are not
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based on sound foundations. However, for verifying newer and less well studied
results, automated reasoning could prove a very useful tool. Finally, the use of
automated reasoning in social choice theory has the potential to unveil entirely
new results. For instance, we can imagine that it may soon become possible to
use automated theorem provers to check whether a known impossibility result
persists when we weaken or otherwise alter some of the axioms, or to use model
generators to automatically derive counterexamples. To a limited extent, such
results have already been achieved in recent work by Tang and Lin [5].

Previous work has discussed formalisations of Arrow’s Theorem in modal logic
[4], dependence logic,1 and in the language of set theory [6,7]. Here we explore to
what extent it is possible to model the framework underlying Arrow’s Theorem
in classical FOL. There are two reasons for focusing on FOL: it is a natural
language for speaking about linear orders, which are central to the modelling of
preferences, and automated theorem proving is more developed for FOL than it
is for other systems. We are able to show that it is possible to completely describe
the problem within a language of FOL based on the language of linear orders,
with one exception: for stating that Arrow’s Theorem only applies to the case of a
finite number of individuals we have to resort to a statement outside the language
(we will see that Arrow’s Theorem is equivalent to a certain finite theory of FOL
axioms not having a finite model). In particular, we will not require any form of
second-order quantification, which may seem surprising given that several of the
axioms used in Arrow’s Theorem certainly have a “second-order flavour”. Our
axiomatisation draws on several ideas from an important recent paper by Tang
and Lin [5], but goes beyond that work in providing a complete axiomatisation
of the Arrovian framework of social welfare functions in classical FOL.

The remainder of the paper is organised as follows. In Section 2 we recall
Arrow’s Theorem and prove a useful lemma. Section 3 presents our axioms and
ends with the restatement of Arrow’s Theorem in our framework. The models of
our axiomatisation are studied in detail in Section 4, with particular attention
being paid to the issue of an infinite number of individuals. Related work is
discussed in Section 5; and in Section 6 we discuss our preliminary results with
an automated theorem prover and conclude. For the rest of the paper we shall
assume familiarity with the basic concepts of first-order logic (see e.g. [10]).

2 Social Welfare Functions and Arrow’s Theorem

In this section we review Arrow’s Theorem and the framework of social welfare
functions in which it is stated. We also discuss a recent contribution by Tang
and Lin [5], who give a new proof of Arrow’s Theorem based on an inductive
argument, in which the base case can be checked automatically using automated
reasoning tools, and we show how to generalise a lemma proved by these authors
so as to also cover the case where there are an infinite number of alternatives
that need to be ranked.

1 J. Väänänen (personal communication, 2009); see also [9].
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Let I be a set of individuals expressing preferences over a set A of alternatives.
We assume that these preferences are represented by linear orders2 Pi, so that
aPib holds if individual i strictly prefers a to b. We denote with L(A) the set
of all linear orders on A, and call a social welfare function (SWF) for A and I
a function w : L(A)I → L(A). A SWF associates with every preference profile
P = (P1, . . . , Pn) ∈ L(A)I a linear order w(P ), that in most interpretations is
taken to represent the aggregation of the preferences of the individuals into a
“social preference order” over A.

There are several properties that such an aggregation mechanism may satisfy,
and some of them have been argued to be natural requirements for a SWF.
The fact that in our definition w is defined on all preference profiles in L(A)I

represents what is often stated as a first such property, the universal domain
condition. The three additional properties that lead to the statement of Arrow’s
Theorem are the following:

– UN: A SWF w satisfies unanimity if, whenever every individual prefers
alternative a to alternative b, so does society. Formally, if aPib for every
individual i ∈ I, then aw(P ) b.

– IIA: w satisfies independence of irrelevant alternatives if the social ranking
of two alternatives a and b depends only on their relative ranking by every
individual. The formal condition is that, given two preference profiles P and
P ′, if for every individual i ∈ I we have that aPib if and only if aP ′

i b, then
aw(P ) b if and only if aw(P ′) b.

– ND: w is non-dictatorial if there is no individual i ∈ I such that for every
profile P the social preference order w(P ) is equal to Pi.

Arrow’s Theorem [2] states that:

Theorem 1. If A and I are finite and non-empty, and if |A| ≥ 3, then there
exists no SWF for A and I that satisfies UN, IIA and ND.

Several proofs of the theorem are known (see e.g. [11]), and most of them give a
general argument that works for any number of individuals and any number of
alternatives. A new inductive proof has recently been given by Tang and Lin [5]:
the authors prove two lemmas to reduce the general statement to a base case
with 3 alternatives and 2 individuals, and verify this last step with a computer,
using either constraint programming or a satisfiability solver. The first lemma is
the inductive step on the number of alternatives: “if there exists a SWF for m+1
alternatives and n individuals that satisfies Arrow’s conditions, then there exists
a SWF for m alternatives and the same number of individuals that still satisfies
Arrow’s conditions.” The contrapositive of this lemma spreads the impossibility
from the base case to every finite set of alternatives: “if Arrow’s Theorem holds
for the case of 3 alternatives and n individuals, then it holds for every finite
set of m alternatives and n individuals.” We now prove a generalisation of this
lemma that also covers the case of an infinite number of alternatives:
2 The original statement of Arrow’s Theorem assumes weak orders, although many

proofs in the literature are restricted to this simpler case. We will discuss how our
framework can be extended to the more general case in Section 6.
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Lemma 1. If there exists a SWF w for A and I, with |A| ≥ 3, that satisfies
UN, IIA and ND, then there exists a set A′ with |A′| = 3 and a SWF for A′

and I that satisfies the same properties.

Note that the contrapositive of Lemma 1 reads: “if Arrow’s Theorem holds for
the case of 3 alternatives and n individuals, then it also holds for any larger set
A (including the infinite case) and n individuals”.

Proof. Let A′ = {a1, a2, a3} be any set containing three different alternatives in
A; every linear order P over A′ can be extended to a linear order P e over the
whole set A (though not in a unique way). Define a SWF w′ for A′ and I in the
following way:

xw′(P ) y :⇔ xw(P e) y

where P is a preference profile over A′ and P e any extension to a preference
profile over A. By IIA this definition does not depend on the extension chosen;
w′ remains unanimous and independent of irrelevant alternatives by definition.

It remains to show that w′ is non-dictatorial. Suppose the contrary: we prove
that w would then be dictatorial too, in contradiction with the assumptions. Let
i be the dictator for w′, and x and y two different alternatives in A, and suppose
that xPiy in a certain profile P . We now show that also xw(P ) y must hold,
thus i is a dictator on every pair of alternatives in A. The case where both x and
y are in A′ is trivial. We can therefore restrict ourselves to the case where there
are at least two distinct elements in A′ different from x and y, a1 and a2. Let
individual i change her preference relation such that a1Pia2, obtaining profile P ′.
Let now every individual (including i) rearrange her preference such that xPja1
and a2Pjy, and call this profile P ′′. Both steps can be done without affecting
the initial ranking of x and y, thus by IIA xw(P ) y if and only if xw(P ′′) y. By
unanimity of w we have xw(P ′′) a1 and a2 w(P ′′) y. Since i is a dictator relative
to A′, it must be the case that a1 w(P ′′) a2 holds, and thus by transitivity also
xw(P ′′) y, which as previously observed implies xw(P ) y. �

3 Axiomatisation

In this section we present a formal system that can model the social choice frame-
work of Arrow’s Theorem. Our approach borrows several ideas from Tang and
Lin [5], whose main concern, however, is a different one and who do not provide
a complete axiomatisation. Arrow’s conditions suggest a formalisation in second-
order logic, due to the quantification over preference profiles. Following Tang and
Lin [5], we instead introduce a set of “situations” and consider them as names for
different preference profiles. In our case the set of situations will be (a subset of
the domain) marked by a unary predicate, thus allowing us to quantify over this
set, which in turn enables us to give a first-order axiomatisation. We will indi-
cate with Pu the preference profile associated to situation u. We first define the
following first-order signature L = {a1, a2, a3, i1, s1, A

(1), I(1), S(1), p(4), w(3)}:
– a1, a2, a3 are constants indicating three alternatives, i1 indicates an individ-

ual, and s1 indicates a situation;
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– the three unary predicates mark alternatives (A), individuals (I), and situ-
ations (S);

– the predicate p represents, given an individual z and a situation u, the linear
order Pu

z associated with situation u; and
– w stands for the social welfare function, representing with a ternary predicate

the social preference relation w(P u) for every situation u.

Using this language, we start by introducing the axioms of linear order for p:

LINp: • I(z) ∧ S(u) ∧ A(x) ∧ A(y) → (p(z, x, y, u) ∨ p(z, y, x, u) ∨ x = y)
• I(z) ∧ S(u) ∧ A(x) → ¬p(z, x, x, u)
• I(z) ∧ S(u) ∧ A(x1) ∧ A(x2) ∧ A(x2) ∧

p(z, x1, x2, u) ∧ p(z, x2, x3, u) → p(z, x1, x3, u)

All axioms presented in this paper are to be considered universally closed;
therefore the first axiom should be read as: “for all z, u, x and y, if z is
an individual, if u is a situation and if x and y are alternatives, then either
individual z in situation u prefers x to y, or she prefers y to x, or x is equal to
y.” This is the completeness (or connectedness) axiom, and the second and the
third are the irreflexivity and transitivity axioms.

The analogous axioms for w(·, ·, u) follow:

LINw: • S(u) ∧ A(x) ∧ A(y) → (w(x, y, u) ∨ w(y, x, u) ∨ x = y)
• S(u) ∧ A(x) → ¬w(x, x, u)
• S(u) ∧ A(x) ∧ A(y) ∧ A(t) ∧ w(x, y, u) ∧ w(y, t, u) → w(x, t, u)

The next two sets of axioms guarantee that there are at least 3 different
alternatives, that i1 is an individual, s1 is a situation, and that A, I and S form
a partition of the universe of a model:

MIN: • A(a1) ∧ A(a2) ∧ A(a3) ∧ I(i1) ∧ S(s1)
• ¬(a1 = a2) ∧ ¬(a1 = a3) ∧ ¬(a2 = a3)

PART: • A(x) → (¬I(x) ∧ ¬S(x))
• I(x) → (¬A(x) ∧ ¬S(x))
• S(x) → (¬I(x)∧ ¬A(x))
• A(x) ∨ I(x) ∨ S(x)

The next two axioms restrict the arguments of p and w to be of the
correct type:

DEF: • p(z, x, y, u) → (I(z) ∧ A(x) ∧ A(y)∧ S(u))
• w(x, y, u) → (A(x)∧ A(y)∧ S(u))

The next axiom guarantees that two distinct situations cannot encode
the same preference profile, thus the encoding of situations into preference
profiles must be injective:

INJ: • S(u) ∧ S(v) ∧ u �= v →
∃z.∃x.∃y.[I(z)∧ A(x)∧ A(y) ∧ p(z, x, y, u) ∧ p(z, y, x, v)]
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To express the condition of universal domain in our language, and to be able
to quantify over the entire set of situations, we use another idea from the same
paper by Tang and Lin [5]: identify the set L(A) with the symmetric group S(A)
of all permutations over A and generate it via transpositions. This is the job of
the next axiom:3

PERM: • p(z, x, y, u) → ∃v. {S(v) ∧ p(z, y, x, v) ∧
∀x1.[p(z, x, x1, u) ∧ p(z, x1, y, u) → p(z, x1, x, v) ∧ p(z, y, x1, v)] ∧
∀x1.[(p(z, x1, x, u) → p(z, x1, y, v)) ∧ (p(z, y, x1, u) → p(z, x, x1, v))] ∧
∀x1.∀y1.[x1 �= x ∧ x1 �= y ∧ y1 �= y ∧ y1 �= x → (p(z, x1, y1, u) ↔ p(z, x1, y1, v))] ∧
∀z1.∀x1.∀y1. [z1 �= z → (p(z1, x1, y1, u) ↔ p(z1, x1, y1, v))]}

The complexity of this axiom is largely due to the fact that linear orders
are being represented as binary relations. Given our representation of Pi not as
a complete sequence of elements in A but as a subset of A2, we have to require
that, given a situation u, an individual z, and two alternatives x and y, there
exists another situation v such that (the following five items correspond to the
five lines of the axiom):

– the relative positions of x and y have been switched in P v
z ;

– if an alternative x1 was between x and y in Pu
z , then its relation with respect

to x and y is switched in P v
z ;

– if x1 was more preferred than x in Pu
z , then in v it is more preferred than y

(and thereby also x); if it was less preferred than y in Pu
z , then in v it is less

preferred than x (and thereby also y).
– for every pair of alternatives different from x and y the relative ranking is

copied;
– P v

z′ = Pu
z′ for every individual z′ �= z.

Call Tswf the theory composed of all the axioms above, as it summarises the
properties of social welfare functions. Adding the next three axioms we obtain
a theory that we shall call Tarrow:

UN: • S(u) ∧ A(x) ∧ A(y) → [(∀z.(I(z) → p(z, x, y, u))) → w(x, y, u)]
IIA: • S(u1) ∧ S(u2) ∧ A(x) ∧ A(y) →

[∀z.(I(z) → (p(z, x, y, u1) ↔ p(z, x, y, u2))) → (w(x, y, u1) ↔ w(x, y, u2))]
ND: • I(z) → ∃x.∃y.∃u.[S(u) ∧ A(x) ∧ A(y) ∧ p(z, x, y, u) ∧ w(y, x, u)]

Arrow’s Theorem can now be restated as:4

Theorem 2. Tarrow has no finite models.

It is worth noting that some of our axioms, such as PART or INJ, are not
strictly required. Including these axioms permits to have more “control” in the
resulting models and improves the readability of the axiomatisation.
3 Observe that in this axiom the variables x1, y1, and z1 must be explicitly quantified,

because they are within the scope of an existential quantifier; the other variables x,
y, z, and u are instead implicitly bound by the universal closure of the axiom.

4 This equivalence is a straightforward consequence of Proposition 1 that will be stated
in the following section. Once we have proved that every model of Tswf is associated
with a SWF, it will be sufficient to check that our last three axioms correspond to
Arrow’s conditions to prove that Theorem 2 is equivalent to Arrow’s Theorem.
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4 Dealing with the Infinite

In Section 3 we have referred to Tswf as the theory of social welfare functions, and
in this section we justify this choice of words by proving that Tswf axiomatises
this class.5 We will do so by associating with every SWF w a model Mw of
Tswf, and proving a completeness result. This enables us to determine precisely
to what extent Arrow’s Theorem can be proved automatically. Special attention
will be devoted to the issue of an infinite domain, where Arrow’s Theorem does
not hold. We will present two different approaches to overcome this difficulty,
first by fixing the number of individuals directly in the language, and then a
second one based on results by Kirman and Sondermann [12]. From now on we
shall assume that the set of alternatives is non-empty and contains at least 3
elements, and that the set of individuals is non-empty.

A model of Tswf is a structure M = (M,a1, a2, a3, i1, s1, A, I, S, p, w), speci-
fying the interpretation of every symbol in the language presented in Section 3.

Definition 1. If w is a SWF for A and I, then Mw is the following L-model:
(i) the universe M = A + I + L(A)I ; the disjoint union of the sets corresponds

to the three unary predicates A, I and S (in particular the set S is equal to
the set of all preference profiles L(A)I);

(ii) a1, a2, a3 are three different alternatives, i1 is an individual, and s1 is a
preference profile;

(iii) (z, x, y, u) ∈ p⇔ xPu
z y, where Pu

z is the preference relation of z in profile
u; and

(iv) (x, y, u) ∈ w ⇔ xw(P u) y.

If A is finite, then the resulting model Mw is in some sense unique, depending
only on the choice of the constants. In the case where A is infinite, on the other
hand, this is not the only model that can be built from w. To obtain a full
characterisation we need the following definition:

Definition 2. Given a set A, let S(A) denote the set of all permutations over
A. A transposition is a permutation that switches just two elements of the set.
G ⊆ S(A) is closed under transpositions if whenever g ∈ G, g ◦ τ ∈ G for every
transposition τ .

Observe that if A is finite, then the only subset of S(A) closed under transposi-
tions is S(A) itself.

Let now w be a SWF on an infinite set of alternatives A. We have already
remarked that we can identify the set L(A) with the set S(A) of all permutations
over A. With every choice of Gi ⊂ S(A) closed under transpositions for every
individual i ∈ I we can associate a model of Tswf, using the same construction
as in Definition 1, except that the set of situations is now the Cartesian product

5 Using the terminology introduced by Pauly [3], we will prove that Tswf absolutely
axiomatises the set of partial SWFs satisfying a condition of closure on the domain.
This translates in the finite case into an absolute axiomatisation of all SWFs.
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S =
∏

i∈I Gi. In the finite case this definition boils down to Definition 1, because
L(A) is the only possible choice for every individual. The following completeness
result shows that these are all possible models of Tswf:

Proposition 1. M |= Tswf if and only if there exist two non-empty sets A and
I, with |A| ≥ 3, and a SWF w for A and I such that M =Mw.

Proof. It is easy to prove that Mw is a model of Tswf. By definition, for every
z and u the relations p(z, ·, ·, u) and w(·, ·, u) are linear orders over A, so the
LINp axioms are satisfied as well as LINw. The axioms MIN, PART and
INJ are valid thanks to (i) and (ii) in Definition 1. The set of situations S is
either the set of all preference profiles or a Cartesian product

∏
i∈I Gi of subsets

of L(A) closed under transpositions. This is sufficient to validate axiom PERM:
given a situation u in S, for every individual and for every pair of alternatives
the linear order obtained by switching these two alternatives is the composition
of an element in Gi with a transposition. Therefore the new profile is still an
element of S, i.e., there exists a situation v that represents this profile.

Suppose now that M |= Tswf. We can define the two sets I and A as the
subsets of the universe indicated by the unary predicates. To every element in S
we can associate a preference profile, the one encoded in the relation pM. From
the relation wM we can define a partial SWF, whose domain is the set of all
preference profiles encoded in S, a subset G ⊆ L(A)I . By PERM, if we take the
projection of G on every component i, denoted with Gi, we obtain a set of linear
orders that is closed under transpositions: for every individual i, if g ∈ Gi then
g composed with every transposition (a swap of a pair of alternatives) is still in
Gi. Thus G is of the form

∏
i∈I Gi, and M =Mw as defined in Definition 1. �

In view of our ultimate goal of using automated reasoning in social choice theory,
a result like Theorem 2 is of little practical use, despite its theoretical interest.
What should be sought is a formalisation of Arrow’s theorem in a sentence that
can be derived formally from our theory. The first attempt of proving the incon-
sistency of Tarrow fails, because Arrow’s Theorem does not hold in the case of
an infinite number of individuals, as has first been pointed out by Fishburn [13].
(The issue of an infinite number of alternatives, on the contrary, is fully resolved
by Lemma 1.) Fishburn’s result translates in our framework into the existence
of an infinite model M of Tswf such thatM |= (UN ∧ IIA ∧ND). Since there
is no first-order formula that characterises finite models (see e.g. [10]), we have
to somehow circumvent this problem.

One possibility is to give up some generality and to fix the number of indi-
viduals in the language. Let therefore the new language Ln be L ∪ {i2, . . . , in}
with n − 1 new constants, and call T n

swf the theory composed of all axioms of
Tswf plus the following axioms:

– ik �= ij for every k �= j

– I(i2) ∧ · · · ∧ I(in)
– I(z)→ (z = i1) ∨ · · · ∨ (z = in)
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With a proof analogous to that of Proposition 1 we obtain a completeness result
for T n

swf with respect to SWFs defined for a set I of n individuals. Now the
following automated-reasoning friendly proposition holds:

Proposition 2. If w is a SWF for A and I with |A| ≥ 3 and |I| = n, and if
Mw is the corresponding model, then Mw |= ¬(UN ∧ IIA ∧ND). Therefore,
for every n there exists a proof of ¬(UN ∧ IIA ∧ND) in T n

swf.

Proof. The proof follows closely that of Lemma 1. In that proof, we never used
the condition of universal domain in its full generality: every time we defined a
new profile, it was always constructible with a finite sequence of switches between
pairs of alternatives. The condition of closure under transpositions therefore
guarantees that the result extends to everyMw defined on a finite set I. �

The second approach we present is an indirect one: derive a consequence of
Tarrow that forces the resulting models to be infinite. Following the presentation
of Arrow’s Theorem in the case of an infinite number of individuals given by
Kirman and Sondermann [12], this statement is the following: if a SWF satisfies
UN and IIA, then the collection of “winning coalitions”, those subsets J ⊆ I
such that if xPjy for every j ∈ J then xw(P ) y, is an ultrafilter over I. A
full axiomatisation of this statement can be given in the same language of Tswf

and is sketched in Appendix A. The condition of non-dictatorship corresponds
to requiring the ultrafilter to be free: an unsatisfiable requirement if the set of
individuals is finite. This finally formalises the argument of Fishburn [13] we
presented in this section: if a SWF satisfies UN, IIA and ND, then the number
of individuals must be infinite.

In conclusion, we have proved that an automated proof of Arrow’s Theorem is
possible, despite not in its most general form: for every finite number of individ-
uals there is a (possibly different) first-order proof of the theorem.6 The general
case can be proved indirectly by deducing a set of statements about the sets of
winning coalitions that force the set of individuals to be infinite. We report on
our preliminary results with automated theorem prover in the last section.

5 Related Work

While we are not aware of any other work exploring the limits of classical first-
order logic in expressing the Arrovian framework of social welfare functions,
there have been several contributions to the literature making proposals for a
full formalisation of Arrow’s Theorem, using a variety of logical frameworks. In
this section, we briefly review some of them.

As mentioned before, Tang and Lin [5] have shown that Arrow’s Theorem in
its general form (for finite A and I) follows from Arrow’s Theorem for 3 alter-
natives and 2 individuals. For this base case, these authors give a formalisation
in propositional logic. This is possible, because the number of possible situations
6 And since the set of theorems of a first-order theory is recursively enumerable it will

eventually be found by an automated theorem prover.
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(preference profiles) is finite (namely 3! × 3! = 36) for this scenario. While the
number of SWFs is already prohibitively large in this case (namely 636 ≈ 1028),
a complete instantiation of Arrow’s conditions for 36 situations is still feasible,
and Tang and Lin [5] report that unsatisfiability can be verified using a state-
of-the-art SAT-solver in less than 1 second. While our implementation of the
same base case in FOL cannot compete with this performance, it arguably has
the advantage of being more easily extended. The propositional language pre-
sented in [5] has the advantage of being rapidly solved, but can only be used
to verify a base case. Building on this language, we aim instead at providing
a fully automated proof of Arrow’s Theorem without relying on any inductive
lemma. (Note that the role of Lemma 1 is that of a theoretical guarantee for the
existence of such a proof, at least for a fixed number of individuals, and it would
not be part of any eventual automated derivation.) Also, our axiomatisation in
Prover9 syntax is human-readable and easily fits on a single page (see Section 6
and Appendix B), while Tang and Lin’s input to the SAT-solver is very large
and has to be computer-generated (it consists of 106354 clauses).

Kaneko and Suzuki [14] discuss bounds on the size of a potential proof of
Arrow’s Theorem in a Gentzen-style sequent calculus, for the special case of 2
individuals and 3 alternatives.

Ågotnes et al [4] develop a modal logic for expressing concepts from social
choice theory, including Arrow’s Theorem. This logic is specifically designed for
this purpose, and to date no automated procedure has been developed. The
potential of the approach is limited by the fact that the number of individuals
as well as the number of alternatives is fixed in the language.

Yet another approach is the one adopted by Nipkow [7] and Wiedijk [6]. These
authors verify formally two proofs of Arrow’s Theorem given by Geanakoplos [11]
using proof checkers (Isabelle and Mizar, respectively). Their language is the
language of set theory and their objects are sets; the condition of finiteness of
the set of individuals is expressible in this language and this makes it possible
to formalise and check the full statement of Arrow’s Theorem. However, this
approach requires a substantial amount of work in the process of rewriting an
existing proof and then allows us to check every single simple step automatically.

The FOL framework developed by Rubinstein [15], while working with FOL,
is different from ours. It aims at proving the existence of single-profile analogues
of various results in social choice theory using social welfare functions defined
on models of a suitable first-order theory. The single-profile approach avoids
quantification over preference profiles from the outset. The exact relationship
between these two frameworks certainly deserves future investigation.

6 Conclusions and Future Work

In this work we have given a first-order axiomatisation of social welfare func-
tions, formalising the framework in which Arrow’s Theorem is stated. We have
been able to reduce non-trivial conditions to first-order statements, such as the
universal domain condition and IIA. The issue of an infinite number of alter-
natives has been solved by proving a lemma that reduces the impossibility to
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the case of 3 alternatives. We have proved that, if the number of individuals is
fixed in our language, then there is a formal derivation of Arrow’s Theorem from
our axioms, and we have suggested an indirect approach to formalise the general
case with a possibly infinite number of individuals.

All these results support the belief that automated reasoning can play a role
in proving theorems of social choice theory, and we carried out some preliminary
experiments using an automated theorem prover. The system we used is Prover9,
the successor of the well-known and widely used Otter theorem prover [16]. The
task of writing an input file containing our axiomatisation does not pose any
challenge, thanks to the simplicity of the syntax and the high readability of our
axioms (see Appendix B). However, to date we have not been able to generate an
automated proof of Arrow’s Theorem. We designed a step-by-step proof of the
simplest case of Arrow’s Theorem for 2 individuals and 3 alternatives, following
the formalisation of a simple proof of Arrow’s Theorem by Nipkow [7]. At each
step we received a negative response, with the prover exceeding the search space
limits or not providing an answer in a reasonable amount of time.

A critical point, that may go some way towards explaining the difficulty of
automatically deriving a proof, is that all of the intermediate lemmas we for-
malised rely on some steps where the existence of a particular preference profile
has to be shown, using the condition of universal domain. This seems to require
a clever use of the axiom of permutation, guessing the correct sequence of swaps
to get from a profile to another, and it is likely to be the cause of the failure
of Prover9 on these tasks. It is very likely that a suitable reformulation of the
axioms, in a way that can help and guide the work of the theorem prover, would
prove successful in increasing its speed and efficiency.

Despite these difficulties we were able to obtain some simple results, mainly
by restricting the domain to the case of 2 individuals and 3 alternatives. For
instance, we were able to generate an automated proof for the fact that the
unanimity condition entails a weaker condition known as the non-imposition
property [1]. A SWF satisfies non-imposition if for every pair of distinct alter-
natives x and y there is a profile P such that xw(P ) y. In the syntax of Prover9
this condition can be written as follows:

A(x) & A(y) & x!=y -> (exists u (S(u) & w(x,y,u))).

We added two axioms to those in Appendix B in order to fix the number of al-
ternatives and individuals, and we instantiated the axiom of permutation to this
restricted domain. This still produces a readable axiomatisation, and Prover9
succeeds in providing a proof after about 3 hours on a standard desktop ma-
chine (with a memory limit of 500 Mb). The proof consists of 193 steps, and
the number of clauses generated is 20623974, of which 257685 have been kept to
arrive at the proof. We have also run the same problem using another automated
theorem prover, the E prover [17], and we obtained a positive response in a few
seconds (on the other hand, for more difficult problems, E tends to run out of
memory faster than Prover9).

This work can be extended in a number of ways. First, it is likely that a refor-
mulation of the axioms and a guided use of the theorem prover will significantly
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improve performance and lead to the creation of a usable tool for social choice
theorem proving. Second, it would be interesting to extend the axiomatisation
to allow for preferences that are weak orders, allowing both the individual and
the social order to express ties between alternatives. This can be achieved by
replacing the irreflexivity axiom for both p and w with a reflexivity axiom, and
adjusting the axiom of permutation to entail the condition of universal domain:
starting from a linear order over alternatives, added “by default” in a model,
it is possible to generate all weak orders requiring that in every situation ev-
ery two alternatives can not only be swapped, but also ranked the same in the
preference relation of every individual. Third, a large number of other results
in social choice theory are likely to also be expressible in first order-logic. Ex-
amples include Sen’s theorem on the impossibility of a Paretian Liberal and
the Gibbard-Satterthwaite Theorem on the impossibility of strategy-proof vot-
ing rules that are non-dictatorial. In this direction, as already remarked, lies the
main potential of this method: the use of automated reasoning as a tool for an
easier exploration of new results in social choice theory.
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Appendix A: Axioms for Kirman-Sondermann Theorem

The set J of “winning coalitions” is an ultrafilter:7

– I ∈ J (UN):
∃u.∃x.∃y.(∀z.(I(z)→ p(z, x, y, u))→ w(x, y, u))

– J ∈ J and J ⊆ K then K ∈ J :
w(x, y, u)→ [∀z.((I(z) ∧ p(z, x, y, u))→ p(z, x, y, v))→ w(x, y, v)]

– J1, J2 ∈ J then J1 ∪ J2 ∈ J :
w(x, y, u1) ∧ w(x, y, u2)→
[∀z.(I(z) ∧ p(z, x, y, u1) ∧ p(z, x, y, u2)↔ p(z, x, y, v))→ w(x, y, v)]

– J ⊂ I then J ∈ J or Jc ∈ J :
∀z.(I(z)→ (p(z, x, y, u)↔ ¬p(z, x, y, v)))→ (w(x, y, u) ∨ w(x, y, v))

– Free ultrafilter (ND):
¬∃z.(I(z) ∧ ∀x.∀y.∀u.(w(x, y, u)↔ p(z, x, y, u)))

Call FUF the conjunction of these axioms. With an analogous proof to that of
Proposition 2 we obtain that Tarrow � FUF. This gives a formal proof that the
set of winning coalitions under Arrow’s conditions must be a free ultrafilter (i.e.,
the Kirman-Sonderman Theorem). Since it is not possible to build a free ultra-
filter over a finite set, this formal proof is an indirect formalisation of Fishburn’s
generalisation of Arrow’s Theorem.

Appendix B: Tarrow in Prover9 Syntax

% LINp

(I(z) & S(u) & A(x) & A(y)) -> (p(z,x,y,u) | p(z,y,x,u) | x=y).

(I(z) & S(u) & A(x)) -> -p(z,x,x,u).

(I(z) & S(u) & A(x) & A(y) & A(v) & p(z,x,y,u) & p(z,y,v,u)) -> p(z,x,v,u).

7 The axioms that follow formalise the notion of ultrafilter in this particular case only.
Their formulation use a definition of “winning coalitions” that strongly relies on
Lemma A by Kirman and Sondermann [12].
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% LINw

(S(u) & A(x) & A(y)) -> (w(x,y,u) | w(y,x,u) | x=y).

(S(u) & A(x) & A(y)) -> -w(x,x,u).

(S(u) & A(x) & A(y) & A(v) & w(x,y,u) & w(y,v,u)) -> w(x,v,u).

% MIN

A(a1) & A(a2) & A(a3) & I(b1) & S(c1) & a1!=a2 & a2!=a3 & a1!=a3.

% PART

A(x) -> (-I(x) & -S(x)).

I(x) -> (-A(x) & -S(x)).

S(x) -> (-I(x) & -A(x)).

A(x) | I(x) | S(x).

% DEF

p(z,x,y,u) -> (I(z) & A(x) & A(y) & S(u)).

w(x,y,u) -> (A(x) & A(y) & S(u)).

% INJ

(S(u) & S(v) & u!=v) ->

exists z exists x exists y (I(z) & A(x) & A(y) & p(z,x,y,u) & p(z,y,x,v)).

% PERM

p(z,x,y,u) -> exists v (S(v) & p(z,y,x,v) &

(all x1 (p(z,x,x1,u) & p(z,x1,y,u) -> p(z,x1,x,v) & p(z,y,x1,v))) &

(all x2 (p(z,x2,x,u) -> p(z,x2,y,v))) &

(all x3 (p(z,y,x3,u) -> p(z,x,x3,v))) &

(all x4 all y1 (x4!=x & x4!=y & y1!=y & y1!=x ->

(p(z,x4,y1,u) <-> p(z,x4,y1,v)))) &

(all z1 all x5 all y2 (z1!=z ->

(p(z1,x5,y2,u) <-> p(z1,x5,y2,v))))).

% UN

(S(u) & A(x) & A(y)) -> ((all z (I(z) -> p(z,x,y,u))) -> w(x,y,u)).

% IIA

(S(u1) & S(u2) & A(x) & A(y)) ->

((all z (I(z) -> (p(z,x,y,u1)<->p(z,x,y,u2)))) -> (w(x,y,u1)<->w(x,y,u2))).

% ND

I(z) ->

exists x exists y exists u (A(x) & A(y) & S(u) & p(z,x,y,u) & w(y,x,u)).
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Abstract. By moving from a suggestive example, the paper analyzes
how information flows among agents involved in a deliberation. By delib-
erating, agents become aware of details, draw the attention of the group
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captures how, during a deliberation, information results from step-wise
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1 Introduction

A jury faces the following task:

“You’ve listened to the testimony [. . .] It’s now your duty to sit down
and try and separate the facts from the fancy. One man is dead. Another
man’s life is at stake. If there’s a reasonable doubt [. . .] as to the guilt
of the accused [. . .], then you must bring me a verdict of not guilty. If
there’s no reasonable doubt, then you must [. . .] find the accused guilty.
However you decide, your verdict must be unanimous.”

This is the setting of Sydney Lumet’s 1957 movie “12 Angry Men”, and rep-
resents a paradigmatic example of a collective decision-making scenario. These
kind of scenarios, where a group of agents have to establish whether a given
state-of-affairs (e.g., guiltiness beyond any reasonable doubt) holds or not [1],
have been object of extensive study in the literature on judgment aggregation
[2]. However, while judgment aggregation focuses on the social-theoretic aspects
of such decision-making processes (viz. properties of voting rules, possibility of
reaching collective judgments with ‘desirable’ properties, etc.), this paper looks
at the deliberation phase that typically precedes the very act of voting, and in
particular at its knowledge-related aspects.1

To best illustrate the problem, we consider the following example from the
mentioned movie. It will be our running example throughout the whole paper.
1 Recent literature on judgment aggregation has recognized the formal analysis of the

deliberation that precedes voting as a key open research question in the field [3].
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Example 1 (12 Angry Men). The jury members are engaged in the deliberation
that will lead to their unanimous verdict. An excerpt of the discussion follows.

A: Now, why were you rubbing your nose like that?
H : If it’s any of your business, I was rubbing it because it bothers me a little.
A: Your eyeglasses made those two deep impressions on the sides of your nose.
A: I hadn’t noticed that before.
A: The woman who testified that she saw the killing had those same marks on the

sides of her nose.
. . .
G: Hey, listen. Listen, he’s right. I saw them too. I was the closest one to her.

She had these things on the side of her nose.
. . .
D: What point are you makin’?
D: She had dyed hair, marks on her nose. What does that mean?
A: Could those marks be made by anything other than eyeglasses?
. . .
D: How do you know what she saw? How does he know all that? How do you

know what kind of glasses she wore? Maybe they were sunglasses! Maybe she
was far-sighted! What do you know about it?

C: I only know the woman’s eyesight is in question now.
. . .
C: Don’t you think the woman may have made a mistake?
B: Not guilty.

Agent A, convinced that the defendant cannot be proven guilty beyond any
doubt, tries to substantiate its claim in the face of B’s opposing claim. When
H rubs her nose, he becomes aware of an issue which has not been considered:
marks on the nose. Moreover, when considering the issue, A remembers that the
woman actually had such marks, and he truthfully announces it. Now he can
draw the conclusion that she should wear glasses, announcing it to everyone.
After the announcement, it is D who infers that the woman’s eyesight is in
question now. Finally, B draws the necessary conclusion and announces it: the
defendant is not guilty beyond any reasonable doubt.

In Dynamic Epistemic Logic (DEL) [4], the example could be distilled into a
public announcement to the effect that the witness is known to be unreliable.
Such representation, however, abstracts from a number of interesting subtleties
involved in the example, where the final knowledge —the non-guiltiness of the
defendant—is reached through a complex multi-agent procedure. The present
paper assumes this more fine-grained perspective on how knowledge flows and
is shared in decision-making scenarios such as the one sketched, proposing a
dynamic logic framework to cope with such situations.

2 The Static Framework

We start with an informal introduction to the epistemic notions the paper will
use to analyze our running example. We talk about “information” in order not
to commit, at this stage, to loaded notions such as “knowledge” or “belief”.



Twelve Angry Men: A Study on the Fine-Grain of Announcements 149

We use the term explicit information for the agent’s information that is di-
rectly available to her without performing an inference or any other process.
Implicit information, on the other hand, contains every piece of information the
agent can obtain after performing the adequate inferences, provided that she has
enough resources to do it. Finally, awareness of refers to the topics the agent
can talk about. In fact, it defines the agent’s particular language.

Intuitively, implicit knowledge extends explicit knowledge and, as a superset
of them, we have awareness of, since the agent cannot have implicit knowledge
about something without being able to talk about it.

2.1 The Formal Definitions

Definition 1 (Language L). Let P be a set of atomic propositions and let A
be a set of agents. Formulas ϕ and rules ρ of the language L are given by

ϕ ::= p | [i]p | Aci ϕ | Ri ρ | ¬ϕ | ϕ ∨ ψ | �iϕ
ρ ::= ({ϕ1, . . . , ϕnρ}, ψ)

with p ∈ P and i ∈ A. We denote by Lf the formulas of L and by Lr its rules.
Formulas of the form Aci ϕ ( access formulas) indicate that agent i can access

formula ϕ, and formulas of the form Ri ρ ( rule-access formulas) indicate that
agent i can access rule ρ. Formulas of the form [i]p indicate that agent i has
proposition p at her/his disposal for expressing her information. Other boolean
connectives (∧,→,↔) as well as the diamond modalities ♦i are defined as usual
(♦iϕ := ¬�i¬ϕ, for the last case).

The following definitions will be useful.

Definition 2 (Premises, conclusion and translation). Let ρ be a rule in
Lr of the form ({ϕ1, . . . , ϕnρ}, ψ). We define its premises and its conclusion as
prem(ρ) := {ϕ1, . . . , ϕnρ} and conc(ρ) := ψ, respectively. Moreover, we define
its translation TR(ρ) ∈ Lf as an implication whose antecedent is the (finite)
conjunction of the rule’s premises and whose consequent is the rule’s conclusion,
that is, TR(ρ) :=

∧
prem(ρ)→ conc(ρ).

Formulas of the form [i]p allow us to express the availability of atomic propo-
sitions. The extension to express availability of formulas of the whole language
is defined as follows.

Definition 3. Let i, j be agents in A.
[j](Aci ϕ) := [j]ϕ [j](ϕ ∨ ψ) := [j]ϕ ∧ [j]ψ

[j](Ri ρ) := [j] TR(ρ) [j](�iϕ) := [j]ϕ
[j](¬ϕ) := [j]ϕ [j]( [i]ϕ) := [j]ϕ

In words, ϕ is available to agent j iff all the atoms in ϕ are available to her.2

Here is the semantic model in which formulas of L will be interpreted.

2 A related notion, considering also availability of agents, is studied in [5].
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Definition 4 (Semantic model). With the sets P and A as before, a semantic
model is a tuple M = 〈W,Ri, V,PAi,ACi,Ri〉 where:

– 〈W,Ri, V 〉 is a standard Kripke model with W the non-empty set of worlds,
Ri ⊆W×W an accessibility relation for each agent i ∈ A and V : W → ℘(P)
the atomic valuation.

– PAi : W → ℘(P) is the propositional availability function, returning those
atomic propositions agent i ∈ A has at her/his disposal at each possible world.

– ACi : W → ℘(Lf ) is the access set function, returning those formulas agent
i ∈ A can access at each possible world.

– Ri : W → ℘(Lr) is the rule set function, returning those rules agent i ∈ A
can access at each possible world.

The pair (M,w) with M a semantic model and w a world in it is called a pointed
semantic model. We denote by M the class of all semantic models.

Formulas of L are interpreted in pointed semantic models as follows.

Definition 5 (Semantic interpretation). Let M = 〈W,Ri, V,PAi,ACi,Ri〉
be a semantic model, and take a world w ∈ W . The satisfaction relation |=
between formulas of L and the pointed semantic model (M,w) is given by.

(M,w) |= p iff p ∈ V (w) (M, w) |= [i]p iff p ∈ PAi(w)

(M,w) |= Aci ϕ iff ϕ ∈ ACi(w) (M, w) |= Ri ρ iff ρ ∈ Ri(w)

(M,w) |= ¬ϕ iff it is not the case that (M, w) |= ϕ

(M,w) |= ϕ ∨ ψ iff (M, w) |= ϕ or (M, w) |= ψ

(M,w) |= �iϕ iff for all u ∈ W , Riwu implies (M, u) |= ϕ

As it becomes evident from Definitions 4 and 5, our logic is based on a sorted
language where special atoms are introduced to represent signatures in the object
language (i.e., [i]p) and direct access to information (i.e., Aci ϕ and Ri ρ) which
are then interpreted by the dedicated valuation functions PAi and, respectively,
ACi and Ri. These sorts are used to capture the “fine-grain” we allude to in
the title. We will discuss this choice in more detail in Section 2.2, but first we
provide a sound and complete axiom system.

Theorem 1 (Sound and complete axiom system for L w.r.t. M). The
axiom system of Table 1 is sound and strongly complete for formulas of L with
respect to models in M.

Table 1. Axiom system for L w.r.t. M

� ϕ for ϕ a propositional tautology
� �i(ϕ → ψ) → (�iϕ → �iψ) for every agent i
� ♦iϕ ↔ ¬�i¬ϕ for every agent i
If � ϕ → ψ and � ϕ, then � ψ
If � ϕ, then � �iϕ for every agent i



Twelve Angry Men: A Study on the Fine-Grain of Announcements 151

Proof (Sketch). Soundness is proved by showing that axioms are valid and rules
preserve validity. For completeness, construct the standard modal canonical mod-
el M and, for each maximal consistent set of formulas w, define the propositional
availability, access set and rule set function in the following way:

PAi(w) := {p ∈ P | [i]p ∈ w}, ACi(w) := {ϕ ∈ Lf | Aci ϕ ∈ w},
Ri(w) := {ρ ∈ Lr | Ri ρ ∈ w}

With these definitions, we get completeness from the fact that the novel formulas,
[i]p, Aci ϕ and Ri ρ, satisfy the Truth Lemma:

(M, w) |= [i]p iff [i]p ∈ w, (M, w) |= Aci ϕ iff Aci ϕ ∈ w,
(M, w) |= Ri ρ iff Ri ρ ∈ w �

Note how there are no axioms for formulas of the form [i]p, Aci ϕ and Ri ρ. As
mentioned, such formulas are simply special atoms for the dedicated valuation
functions PAi, ACi and Ri. Moreover, these functions do not have any special
property3 and there is no restriction in the way they interact with each other4.
Just like axiom systems for Epistemic Logic (EL) do not require axioms for
atomic propositions, our system does not require axioms for these special atoms.

2.2 Defining Awareness, Implicit and Explicit Information

We now formalize the notions introduced at the beginning of Section 2.

Definition 6. The notions of awareness, implicit information and explicit in-
formation for an agent i are defined as in Table 2.

Table 2. Definitions of awareness, implicit and explicit information for agent i

i is aware of formula ϕ Awi(ϕ) := �i
[i]ϕ

i is aware of rule ρ Awi(ρ) := �i
[i] TR(ρ)

i is implicitly informed about formula ϕ Imi(ϕ) := �i(
[i]ϕ ∧ ϕ)

i is implicitly informed about rule ρ Imi(ρ) := �i(
[i] TR(ρ) ∧ TR(ρ))

i is explicitly informed about formula ϕ Exi(ϕ) := �i(
[i]ϕ ∧ ϕ ∧ Aci ϕ)

i is explicitly informed about rule ρ Exi(ρ) := �i(
[i] TR(ρ) ∧ TR(ρ) ∧ Ri ρ)

What about the reading of other combinations of access to worlds with access
to formulas and propositional availability? They are better read in terms of what
they miss in order to become explicit information. For example the EL definition
of information, �iϕ, expresses now information that will become explicit as soon
as the agent considers the atoms occurring in ϕ and have access to ϕ itself. In the
same way, �i(ϕ ∧Aci ϕ) describes information that will become explicit when
the agent considers the atoms in ϕ.

By unfolding the definitions, we can show that the notions behave as desired.

3 For example, we do not restrict ACi to formulas true in the corresponding world, a
restriction that would need Aci ϕ → ϕ as an axiom of the system.

4 See the discussion on strong and weak unawareness at the end of Section 2.2.
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Proposition 1. Let ξ be either a formula or else a rule of L. The formulas
Exi(ξ)→ Imi(ξ) and Imi(ξ)→ Awi(ξ) are valid in M-models.

In the remaining of the section our definitions are put in perspective with other
proposals available in the literature. We argue for information about formulas,
but similar cases can be done for information about rules.

Other Possibilities for Defining Explicit Information. The formal def-
inition of explicit information/knowledge has several variants in the literature,
in particular, the �iϕ ∧Aci ϕ of [6], and the Aci ϕ of [7,8,9,10].

A simple inspection of Table 2 shows that we opted here for yet another
definition, along the lines presented in [11]. According to this definition, all the
ingredients of explicit information fall under the scope of the modal box. This
choice guarantees, once information is interpreted as knowledge, a weak form of
both positive and negative introspection which otherwise fails for the definitions
sketched above:

Exi(ϕ) → Imi(Exi(ϕ)) and ¬Exi(ϕ) → Imi(¬Exi(ϕ))

The proof can be obtained by simple modal principles. Intuitively, if i has explicit
knowledge that ϕ then she implicitly knows—she should be in principle able to
infer—that she has explicit knowledge that ϕ. Conversely, if she does not have
explicit knowledge that ϕ then she implicitly knows that she does not have
explicit knowledge.

Syntactic Awareness vs. Semantic Awareness. The proposed formaliza-
tion of awareness builds on the intuition that, at each state, each agent has only
a particular subset of the language at disposal for phrasing her knowledge, so
to say. This intuition is modeled via dedicated atoms [i]p and via the inductive
extension of the [i] superscript to any formula by Definition 3. This is an emi-
nently syntactic way to look at the availability of bits of language to agents and,
thus, to look at awareness.

An alternative model-theoretic approach can be obtained via a relation hold-
ing between states equivalent up to a signature Pi ⊆ P [12].

Definition 7 (Equivalence up to a signature). Let P be a countable set of
atoms, W a set of states and V a valuation function. The states w,w′ ∈ W are
equivalent up to a signature Pi ∈ ℘(P) (Pi-equivalent) iff for any p ∈ Pi, we have
p ∈ V (w) iff p ∈ V (w′). If w,w′ ∈W are Pi-equivalent, we write ∼i.

Intuitively, the relation ∼i links states that are indistinguishable if the atoms
in P − Pi are neglected. Such relation can then be used as accessibility relation,
thereby yielding an extension of S5 in which the availability of certain formulas
to agents gets a semantics in terms of a notion of indistinguishability yielded
by the set of atoms considered. So, the fact that agent i can make use of ϕ in
eliciting her information means that she can distinguish, thanks to the atoms
she has at disposal, between ϕ-states and ¬ϕ-states which, in turn, boils down
to the truth of [∼i]ϕ ∨ [∼i]¬ϕ, where [∼i] gets the obvious interpretation.5

We have the following result generally relating [i]ϕ and [∼i]ϕ formulas.
5 We refer the interested reader to [12] for more details.
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Proposition 2 (Syntactic vs. semantic propositional availability). Let P
be a countable set of atoms, W a set of states and V a valuation function. For
each propositional availability function PAi there exists a propositional equiva-
lence relation ∼i modulo signature Pi ⊆ P such that, for any state w and boolean
formula ϕ:

(W,PAi, V ), w |= [i]ϕ =⇒ (W,∼i, V ), w |= [∼i]ϕ ∨ [∼i]¬ϕ.

The implication is strict.

Proof. Our proof is by construction. Each formula [i]ϕ is either true or false at
a pointed model ((W,PAi, V ), w) and, by Definition 3, that depends only on the
truth values of its atoms in that model. Now, put Pi := {p | (W,PAi, V ), w |=
[i]p}. By Definition 7 we obtain the relation ∼i. The desired implication is proved
via a simple induction on the complexity of ϕ. That the implication is strict,
follows directly from the fact that the truth of [∼i]ϕ-formulas is preserved under
substitution of equivalents, while this does not hold for [i]ϕ-formulas. �

In other words, the syntactic representation of the availability of atoms to
agents is stronger than the model-theoretic one. In particular, the failure of
the inverse implication in Proposition 2 constitutes the main reason for the
assumption of a syntactic view in the present paper.

Strong and Weak Unawareness. Our semantic models do not impose any
restriction for formulas in access sets. In particular, they can contain formulas
involving atomic propositions that are not in the corresponding propositional
availability set, that is, Aci ϕ ∧ ¬ [i]ϕ is satisfiable. If we ask for formulas in
access sets to be built only from available atoms (if we ask for Aci ϕ → [i]ϕ to
be valid), we can represent only strong unawareness : if the agent is unaware of
ϕ, then becoming aware of it does not give her any explicit information about
ϕ, simply because ϕ (or any formula involving it) cannot be in her access set.

On the other hand, our unrestricted setting allow us to represent also weak
unawareness : becoming aware of atoms in ϕ can give the agent explicit informa-
tion about ϕ because ϕ can be already in her access set. This allow us to model
situations where the agent remembers: I am looking for the keys in the bedroom,
and then when someone introduces the possibility for them to be in the kitchen,
I remember that actually I left them next to the oven. A similar notion can be
represented with the model-theoretical approach to awareness described above.

2.3 Working with Knowledge

Our current definitions do not guarantee us that the agent’s information is true.
This is simply because the real world does not need to be among those that the
agents consider possible. We now define the class MK , containing those models
describing true information, that is, knowledge.

Definition 8 (Class MK). A semantic model M = 〈W,Ri, V,PAi,ACi,Ri〉 is
in the class MK if and only if Ri is an equivalence relation for all agents i.
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Given the reflexivity of every Ri, it is easy to show that in MK-models,
implicit and explicit information are true at the evaluation point.

Proposition 3. In MK-models, implicit and explicit information are true in-
formation, that is, Imi(ϕ)→ ϕ and Exi(ϕ)→ ϕ are valid.

When working with models in MK , we will use the term knowledge instead of
the term information. Instead of implicit and explicit information, we will talk
about implicit and explicit knowledge. A sound and complete axiom system for
validities of L in MK-models is given by the standard S5 system.

Theorem 2 (Sound and complete axiom system for L w.r.t. MK). The
axiom system of Table 1 plus the axioms of Table 3 (for every agent i) is sound
and strongly complete for formulas of L with respect to models in MK .

Table 3. Extra axioms for L w.r.t. MK

� �iϕ → ϕ � �iϕ → �i�iϕ � ¬�iϕ → �i¬�iϕ

2.4 The Example

We are now in the position to start a formal analysis of Example 1 by representing
the information state of the relevant members of the jury at the beginning of the
conversation, which is done in Table 4. The relevant atomic propositions are gls
(the woman wears glasses), mkns (she has marks in the nose), esq (her eyesight
is in question) and glt (the accused is guilty beyond any reasonable doubt). The
relevant rules, abbreviated as ϕ⇒ ψ with ϕ the (conjunction of the) premise(s)
and ψ the conclusion, are σ1 : mkns⇒ gls, σ2 : gls⇒ esq and σ3 : esq⇒ glt.

Table 4. Information state of the agents in Example 1

A �A(TR(σ1) ∧ RA σ1) �A(mkns ∧ AcA mkns) AwA(glt)
�A(TR(σ2) ∧ RA σ2) AwA(esq)
�A(TR(σ3) ∧ RA σ3)

B �B(TR(σ1) ∧ RB σ1) AwB(glt)
�B(TR(σ2) ∧ RB σ2)
�B(TR(σ3) ∧ RB σ3)

C �C(TR(σ1) ∧ RC σ1) �C(mkns ∧ AcC mkns) AwC(glt)
�C(TR(σ2) ∧ RC σ2)
�C(TR(σ3) ∧ RC σ3)

G �G(TR(σ1) ∧ RG σ1) AwG(glt)
�G(TR(σ2) ∧ RG σ2)
�G(TR(σ3) ∧ RG σ3)
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In words, all the agents know—in the standard epistemic sense—that if some-
body has some signs on her nose that means she wears glasses, that if she wears
glasses then we can question her eyesight, and that someone with questioned
eyesight cannot be a credible eye-witness. Also, all the agents can in principle
follow this line of reasoning because each one of them has access to these rules in
all the worlds each one considers possible. However, only A and C have access to
the bit of information which is needed to trigger the inference, namely, that the
witness had those peculiar signs on her nose. This is, nonetheless, not enough
since no agent is considering the atoms mkns and gls in their “working lan-
guages”. The only bit of language they are considering concerns the defendant
being guilty or not and, in A’s case, the concern about the witness eyesight.

All in all, the key aspect here is that the bits of information that can possi-
bly generate explicit knowledge are spread across the group. The effect of the
deliberation is to share this bits through dedicated announcements, which is the
topic of the next section.

3 Dynamics of Information

Our framework allow us to describe the information of agents at some given
point in time. It is time to provide the tools that allow us to describe how this
information changes.

Three are the fundamental informational operations considered in our paper.
The first one, the awareness operation, makes the agent aware of a given atomic
proposition q; it is the processes through which the agent extends her awareness
and it can represent the introduction of completely unknown information or a
“remembering” action (see the discussion about weak and strong unawareness
above). The second one, inference, allows the agent to extend the information
she can access by the application of a rule; it is the process through which the
agent extends her explicit information. The third one, announcement, represents
agents’ communication. These operations are defined as follows.

Definition 9. Let M = 〈W,Ri, V,PAi,ACi,Ri〉 be a semantic model.

– Take q ∈ P and j ∈ A. The awareness operation yields the model M�q�;j =
〈W,Ri, V,PA′

i,ACi,Ri〉, differing from M just in the propositional availability
function of agent j, which is given by

PA′
j(w) := PAj(w) ∪ {q} for every w ∈ W

In words, the operation �q�; j adds the atomic proposition q to the proposi-
tional availability set of the agent j in all worlds of the model.

– Take σ ∈ Lr and j ∈ A. The inference operation yields the model Mj;σ =
〈W,Ri, V,PAi,AC′

i,Ri〉, differing from M just in the access set function of
the agent j, which is given by

AC′
j(w) :=

{
ACj(w) ∪ {conc(σ)} if σ ∈ Rj(w) and prem(σ) ⊆ ACj(w)
ACj(w) otherwise
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for every world w ∈ W . In words, the operation j;σ adds the conclusion of
σ to the access set of an agent j at a world w iff her rule and access sets at
w contain σ and its premises, respectively.6

– Take χ ∈ Lf and j ∈ A. The announcement operation yields the model
Mj;χ! = 〈W ′, R′

i, V
′,PA′

i,AC′
i,Ri〉, which is given by

W ′ := {w ∈ W | (M, w) |= χ }, R′ := R ∩ (W ′ × W ′)

and, for all w ∈W ′ and i ∈ A,

V ′(w) := V (w), PA′
i(w) := PAi(w) ∪ atom(χ), AC′

i(w) := ACi(w) ∪ {χ}

where atom(χ) is the set of atomic propositions occurring in χ. In words,
the operation j;χ! removes worlds where χ does not hold, restricting the
accessibility relation and the valuation to the new domain. It also extends
propositional availability sets with the atoms occurring in χ and extends ac-
cess sets with χ itself, preserving rule sets as in the original model.

Note how while the first two operations affect the model components of just
one agent (the one that extends her available atomic propositions and the one
that applies the inference, resp.), the third one affects those of all agents.

It can be easily proved that the three operations preserve models in MK .

Proposition 4. If M is a MK-model, so are M�q�;j, Mj;σ and Mj;χ!.

In order to express the effect of this operations over the agent’s knowledge,
we extend our language L with three new modalities, 〈�q�; j〉, 〈j;σ〉 and 〈j;χ!〉
(their “boxed” versions are defined as their correspondent dual, as usual). The
semantic interpretation of this extended L is as follows.

Definition 10 (Semantic interpretation). Let M = 〈W,Ri, V,PAi,ACi,Ri〉
be a semantic model, and take a world w ∈ W . Define the following formulas:

Pre(j; σ) := Exj(σ) ∧
∧

ϕ∈prem(σ)

Exj(ϕ) Pre(j; χ!) := Exj(χ)

Then,

(M, w) |= 〈�q�; j〉ϕ iff (M�q�;j , w) |= ϕ

(M, w) |= 〈j; σ〉ϕ iff (M, w) |= Pre(j; σ) and (Mj;σ, w) |= ϕ

(M, w) |= 〈j; χ!〉ϕ iff (M, w) |= Pre(j; χ!) and (Mj;χ!, w) |= ϕ

The semantic definitions rely on Proposition 4: the given operations preserve
models in the relevant class, so we can evaluate formulas in them. Moreover, the
precondition of each operation reflects its intuitive meaning: for the awareness
operation, the agent can consider new possibilities or even remember those she
knew and forgot at any point. For performing an inference with a rule σ, the

6 For the sake of simplicity, here we have considered only a modus ponens application
of a rule, but other ways of using them are also possible.
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Table 5. Extra axioms for extended L w.r.t. MK

� 〈�q�; j〉 p ↔ p � 〈�q�; j〉 Ri ρ ↔ Ri ρ

� 〈�q�; j〉 [i]p ↔ [i]p for i�=j � 〈�q�; j〉 ¬ϕ ↔ ¬〈�q�; j〉 ϕ

� 〈�q�; j〉 [j]p ↔ [j]p for p�=q � 〈�q�; j〉 (ϕ ∨ ψ) ↔ (〈�q�; j〉 ϕ ∨ 〈�q�; j〉 ψ)
� 〈�q�; j〉 [j]q ↔ � � 〈�q�; j〉 �iϕ ↔ �i〈�q�; j〉 ϕ

� 〈�q�; j〉 Aci ϕ ↔ Aci ϕ If � ϕ, then � [�q�; j] ϕ

� 〈j; σ〉 p ↔ Pre(j; σ) ∧ p � 〈j; σ〉 Ri ρ ↔ Pre(j; σ) ∧ Ri ρ

� 〈j; σ〉 [i]p ↔ Pre(j; σ) ∧ [i]p � 〈j; σ〉 ¬ϕ ↔ (Pre(j; σ) ∧ ¬〈j; σ〉ϕ)
� 〈j; σ〉 Aci ϕ ↔ Pre(j; σ) ∧ Aci ϕ for i�=j � 〈j; σ〉 (ϕ ∨ ψ) ↔ (〈j; σ〉 ϕ ∨ 〈j; σ〉ψ)
� 〈j; σ〉 Acj ϕ ↔ Pre(j; σ) ∧ Acj ϕ for ϕ �=conc(σ) � 〈j; σ〉�iϕ ↔ (Pre(j; σ) ∧ �i[j; σ] ϕ)
� 〈j; σ〉 Acj conc(σ) ↔ Pre(j; σ) If � ϕ, then � [j; σ] ϕ

� 〈j; χ!〉 p ↔ Pre(j; χ!) ∧ p � 〈j; χ!〉 Ri ϕ ↔ Pre(j; χ!) ∧ Ri ϕ

� 〈j; χ!〉 [i]p ↔ Pre(j; χ!) ∧ [i]p for p /∈ atom(χ) � 〈j; χ!〉 ¬ϕ ↔ (Pre(j; χ!) ∧ ¬〈j; χ!〉ϕ)
� 〈j; χ!〉 [i]p ↔ Pre(j; χ!) for p ∈ atom(χ) � 〈j; χ!〉 (ϕ ∨ ψ) ↔ (〈j; χ!〉 ϕ ∨ 〈j; χ!〉 ψ)
� 〈j; χ!〉 Aci ϕ ↔ Pre(j; χ!) ∧ Aci ϕ for ϕ �=χ � 〈j; χ!〉�iϕ ↔ (Pre(j; χ!) ∧ �i[j; χ!] ϕ)
� 〈j; χ!〉 Aci χ ↔ Pre(j; χ!) If � ϕ, then � [j; χ!] ϕ

agent needs to know explicitly σ and all its premises. For announcing χ, the
announcing agent needs to know it explicitly, which implies that χ is true.

In order to provide a sound and complete axiom system for the extended
language, we use a standard DEL technique. We extend our previous “static”
system (Tables 1 and 3) with reduction axioms indicating how to translate a
formula with the new modalities to a provably equivalent one without them.
Then, completeness follows from the completeness of the basic system. We refer
to [13] for an extensive explanation.

Theorem 3 (Sound and complete axiom system for extended L w.r.t.
MK). The axioms and rules of Tables 1 and 3 plus those of Table 5 form a sound
and strongly complete axiom system for formulas in extended L with respect to
models in MK .

The reduction axioms for atomic propositions, negation, disjunction and the
box modal operator are standard. The interesting ones are those expressing
how propositional availability, access and rule sets are affected. For the �q�; j
operation, the axioms indicate that only change is the addition of p to the
propositional availability sets of j. For the j;σ operation, the axioms indicate
that only the access sets of agent j are modified, and the modification consist in
adding the conclusion of the applied rule. Finally, axioms of the j;χ! operation
indicate that while rule sets are not affected, propositional availability sets are
extended with atoms of χ and access sets are extended with χ itself.

Though the awareness and the inference operations affect only the model
components of the agent who performs them, they are in some sense public. In
the awareness case, �q�; j makes [j]p true in all worlds any agent i considers
possible (�i

[j]p). Still, the operation is not explicit : [j]p will become i’s explicit
knowledge only after she becomes aware of p and has access to [j]p. The inference
operation behaves in a similar way. A further refinement of these operations,
reflecting better the private character of such actions, can be found in [14].

It is not complicated to see that the following proposition holds.
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Proposition 5

– The formula [�q�; j] Awj(q) is valid: after �q�; j the agent j is aware of q.
– The formula [j;σ] Exj(conc(σ)) is valid: after j;σ the agent j is explicitly

informed about conc(σ).
– For χ propositional, [j;χ!] Exi(χ) is valid, that is, after j;χ! all agents i are

explicitly informed about χ.

In the case of announcements, the proposition cannot be extended to arbi-
trary χ. This is because the well-known Moore-type formulas p∧¬Exi(p), which
become false after being announced.

3.1 The Example

Let us go back to the discussion room of Example 1. In Section 2.4, the static
part of our framework allowed us to present a still image describing the agents’
information before the discussion (Table 4). Here, the dynamic part allow us to
“press play”, and see a video describing how the agents interact and how their
information evolves.
Stage 1. Agent D ’s action of scratching his nose makes A aware of both mkns
and gls. Moreover, he becomes aware of the three relevant rules, since he was
already questioning the eyesight of the woman (esq).

〈�mkns�;A〉 〈�gls�;A〉
(
AwA(mkns) ∧ AwA(gls) ∧ AwA(mkns⇒ gls)∧
AwA(gls⇒ esq) ∧ AwA(esq⇒ ¬glt)

)
Stage 2. By becoming aware of mkns, A can introduce it into the discussion.
Moreover, mkns becomes part of his explicit knowledge, and he announces it.

〈A; AwA(mkns)!〉
(
AwJURY (mkns) ∧ ExA(mkns) ∧ 〈A; mkns!〉ExJURY (mkns)

)
Stage 3. In particular, the simple introduction of mkns to the discussion makes
it part of G’s explicit knowledge, since he was just unaware of it.

�G(mkns∧ AcG mkns) ∧ ¬AwG(mkns) ∧ 〈A; AwA(mkns)!〉ExG(mkns)

Stage 4. Now, A can apply the rule sgns ⇒ gls and, after doing it, he
announces the conclusion gls.

〈A; mkns⇒ gls〉
(
ExA(gls) ∧ 〈A; gls!〉ExJURY (gls)

)
Stage 5. With gls in his explicit knowledge (from A’s announcement), C can
apply gls⇒ esq, announcing esq after it.

〈C; gls⇒ esq〉
(
ExC(esq) ∧ 〈C; esq!〉ExJURY (esq)

)
Stage 6. Finally, B draws the last inference and announces the conclusion.

〈B; esq⇒ ¬glt〉 (ExB(¬glt) ∧ 〈B;¬glt!〉ExJURY (¬glt))
Obviously, Stages 1-6 could be written in one formula, and given Proposition 5,

it is not difficult to check that such formula is a logical consequence of the infor-
mation state of Table 4.
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4 Conclusions and Further Work

We have defined a framework to represent not only different notions of agents’
information (awareness of, implicit information and explicit information), but
also the way they evolve through certain epistemic actions. The framework is
expressive enough to deal with situations like our running example, an excerpt
of Sydney Lumet’s 1957 movie “12 Angry Men”.

Among the questions that arise from the present work, we mention three that
we consider interesting. (1) We have discussed individual notions of knowledge,
but there is also the important notion of common knowledge. It will be interesting
to look at implicit and explicit versions of the concept, as well as how it is
affected by epistemic actions. (2) We have focused on the notion of knowledge,
but there are several other notions, like belief and safe belief that are worthwhile
to investigate from our fine-grained perspective. (3) We have provided a dynamic
logic approach. A future research line consists in looking at correspondences
between our proposal and work on dialogues in argumentation theory [15].
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Abstract. We introduce a dynamic testimonial logic (DTL) to model
belief change over sequences of multi-agent testimony. Our static base
logic is Baltag and Smets’ [1] conditional doxastic logic (CDL). Our
dynamic base logic is van Benthem’s [12] dynamic logic of belief upgrade,
which we extend with a “belief suspension” operator. After showing how
to extract from CDL models agents’ beliefs about the doxastic reliability
of other agents, we add “authority graphs” to DTL models to capture
agents’ epistemic trust in other agents’ testimony. For DTL’s dynamic
testimony operator, we give complete reduction axioms. Finally, we
describe an application of DTL in modeling epistemic bandwagon effects.

Keywords: dynamic logic, modal logic, belief revision, testimony, trust.

1 Introduction

As it is modeled formally, judgment aggregation is an instantaneous process:
given a group of agents, each with an opinion on some proposition, an aggregation
function takes their (possibly conflicting) individual opinions and returns a group
opinion, all at once. Yet in many contexts—from courtrooms to committees—the
protocol is to solicit individual opinions sequentially, not simultaneously. For one
example of how the temporal dimension matters in expert testimony, consider
what Sorensen [11] calls the epistemic bandwagon effect :

An expert’s epistemic preferences can be justifiably influenced by his
knowledge of another expert’s preferences. Yet this provides the basis
for an epistemic bandwagon effect. For the sake of simplicity, suppose
there are three highly respectful experts, 1, 2, and 3, who prior to the
roll-call vote are respectively in favour, indifferent, and opposed to a
proposition. However, they only learn the others’ preferences by their
votes. If the roll-call vote is taken in order 1, 2, 3, expert 1 votes in
favour. Having learned that another expert favours the proposition, the
opinion of 2 is swayed and he too votes in favour. Having learned that
two experts favour the proposition, 3 reverses his opinion (since he is

X. He, J. Horty, and E. Pacuit (Eds.): LORI 2009, LNAI 5834, pp. 161–179, 2009.
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highly respectful) and the proposition is unanimously favoured. How-
ever, if the roll-call vote is taken in order 3, 2, 1, incremental disclo-
sure of preferences and high respect results in the proposition being
unanimously opposed.... [T]he general point holds for more complicated
cases involving larger groups with different degrees of respect and irreg-
ular preference revelation. Disclosure order bias indicates that epistemic
respect is trickier than has been supposed. (49-50)

There is nothing essential about voting in this scenario. The experts could ex-
press their views as statements in a public forum or as posts on a blog. What is
essential is the sequential nature of disclosure, together with the agents’ attitudes
of respect for one another.

In this paper we introduce a dynamic testimonial logic (DTL) to model belief
change over sequences of multi-agent testimony. We use the term ‘testimony’ in
the broad sense common in the philosophical literature, of a statement offered as
evidence for a proposition, whether or not it occurs in a courtroom or committee
(for further details, see [6]). For applications of DTL, one of our goals is to
formalize solutions to the epistemic bandwagon problem, in terms of both policies
for individual belief revision in response to testimony and protocols governing
testimonial sequences. Here we present only a base system capable of modeling
the bandwagon effect itself.

While Sorensen uses the notion of respect among experts, in DTL we use the
notion of trust. Modal logics have recently been developed to represent several
types of trust. To mention only two, an agent may (i) trust another agent to
perform an action or (ii) trust another agent’s judgment on the truth value
of a proposition. For examples in the literature, Broersen et al. [3] and Herzig
et al. [9] discuss logics of practical trust (i), while Demolombe [4,5] and Liau
[10] discuss logics of epistemic trust (ii). In this paper we deal exclusively with
epistemic trust. The logics developed so far to model epistemic trust are static
logics without dynamic operators, which provides another motivation for DTL
as a dynamic logic of trust. For discussion of the importance of epistemic trust
among experts and between laypeople and experts, we refer the reader to the
philosophical literature [7,8].

1.1 Modeling Trust and Authority

Consider those experts on whose authority you would be willing to believe a
proposition ϕ. We will say that you “trust the judgment” of these experts on
ϕ. Among your trusted experts, some may be more authoritative for you than
others; if expert 1 testifies that ϕ, expert 2 testifies that ¬ϕ, and you come to
believe ϕ, then 1 is more authoritative for you than 2. If 2 were more authori-
tative, then you should have come to believe ¬ϕ. And if 1 and 2 were equally
authoritative, you should not have changed your mind on ϕ either way, or you
should have suspended belief on ϕ altogether. The same points apply if 1 and 2
are groups of experts, rather than individuals.
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Supposing that 1 is more authoritative for you than 2, then after 1 testifies
that ϕ, you no longer “trust” 2 on ¬ϕ, in the sense that you will no longer believe
¬ϕ on the authority of 2 alone, something you might have done before 1 testified.
However, if another expert 3 joins 2 in testifying that ¬ϕ, you may believe ¬ϕ on
the authority of 2 together with 3, though perhaps not on the authority of either
of them individually. This will be the intuitive picture motivating our formal
representations of trust and authority.

1.2 Assumptions of the Model

The version of DTL given here makes a number of assumptions about testimony.
First, testimony is always public: in every case of testimony, the identity of the
testifier and the content of the testimony is information available to all agents.
Second, testimony need not be true, but it is always sincere: an agent i testifies
that ϕ only if i believes ϕ. Third, testimony is heard under the assumption of
sincerity: if an agent i testifies that ϕ, all other agents come to believe that i
believes ϕ. Finally, testimony is in the form of assertion: agents testify that ϕ,
but do not provide further arguments for ϕ.1

1.3 Testimony vs. Public Announcement

To identify the information provided by testimony, it is useful to compare tes-
timony with public announcement, the classic case of an informational event in
dynamic epistemic logic (see [13]). For our purposes, the crucial difference be-
tween testimony and announcement is that unlike testimony, announcements are
not typically thought to come from one of the agents within the model, but from
some anonymous external source.

What difference does the individual source of testimony make? When an agent
j testifies that ϕ, an agent i in j’s audience will acquire the information that j
believes ϕ, given our assumptions about sincerity. But then what is the difference
between a truthful public announcement that j believes ϕ and j’s own (public)
testimony that ϕ, if both provide the information that j believes ϕ?

The difference is that j’s testimony provides more information2: it provides
the information that j is willing to publicly assert ϕ. As we might say, j is willing
to “go on the record” for ϕ. If j is the kind of agent who only publicly asserts

1 Each of the first three assumptions could be dropped or modified, leading to a differ-
ent version of DTL. The fourth assumption, that we are dealing with testimony in
the form of assertion rather than argument, is more important. Given this assump-
tion, agents hearing testimony on a proposition ϕ must decide whether to change
their minds on ϕ purely on the basis of whether they take the testifier to be an
authority on the proposition and whether they trust the judgment of the testifier.

2 Here we are not considering the difference that public announcement is usually con-
ceived as a source of “hard information” that eliminates possibilities, while testi-
mony is better conceived as a source of “soft information” that reorders the relative
plausibility of possibilities (see [12] for this distinction).
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a proposition if he has conducted a thorough inquiry into its truth, then the
information that j is willing to publicly assert ϕ is vital information. A truth-
ful public announcement (from no particular agent) that j believes ϕ does not
provide this vital information. For it may be that j believes many propositions,
while he only has the time and resources to investigate some few of them in such
a way that he would be willing to make public assertions about them.

We can now make a distinction between two ways in which one agent might
judge another agent to be “reliable” about the truth of a proposition. If according
to i, if j believes ϕ, j’s belief is likely to be true, then i considers j doxastically
reliable on ϕ. If according to i, if j testifies that ϕ, j’s testimony is likely to
be true, then i considers j to be testimonially reliable on ϕ. The point is that
judgments of doxastic reliability and testimonial reliability may come apart.
Suppose that j has expressed a general lack of understanding of economics.
Then i might judge j’s doxastic reliability on each economic proposition to be
low. But suppose, as above, that i knows that j would only publicly assert a
proposition if he had conducted a thorough inquiry into its truth. Then i might
judge j’s testimonial reliability on each economic proposition to be high; if j
were to ever make a public assertion about economics, i would take it seriously.
As we will see, this distinction can be represented formally in DTL.

2 Conditional Doxastic Logic

In this section we define the static base logic for DTL, the conditional doxastic
logic (CDL) of Baltag and Smets [1].

2.1 Language

Definition 1. Let At be a set of atomic sentences and Agt a set of agent-
symbols. The language of CDL is defined by:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕ
i ϕ

where p ∈ At, i ∈ Agt.

The intended reading of Bϕ
i ψ is “i believes that ψ conditional on ϕ.”

2.2 Semantics

Definition 2. Let ≤ be a binary relation on a set W . A comparability class is
a set C = {w ∈W | w ≤ v or v ≤ w} for some v ∈ W .

Definition 3. ≤ is a well-preorder on W if it is reflexive, transitive and every
non-empty subset of W has a ≤-minimal element. ≤ is locally well-preordered
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on W if the restriction of ≤ to each comparability class C in W is a well-preorder
on C.

Definition 4. A multi-agent plausibility model is a triple M =〈
W, {≤i}i∈Agt , V

〉
where (i) W is a non-empty set (of “possible worlds”),

(ii) ≤i (agent i’s plausibility ordering) is a locally well-preordered relation on
W , and (iii) V : At→ P (W ) (a valuation).

Following convention, we read w ≤i v as “i considers world w at least as plausible
as world v,” so the minimal worlds in the ordering ≤i are the most plausible
worlds for i. We also use the notation w ∼i v (comparability) for (w ≤i v or
v ≤i w) and ∼i (w) = {v ∈W | w ∼i v} for the comparability class of world w
for i.

Definition 5. For boolean formulas, the truth definitions are those of classical
modal logic. For conditional belief, the truth definition is:

◦ M, w � Bϕ
i ψ iff for all v ∈ min≤i (�ϕ�∩ ∼i (w)) :M, v � ψ

where we denote the set of most plausible worlds for i in P ⊆ W by
min≤iP = {v ∈ P | v ≤i u for all u ∈ P} and the truth set of ϕ by �ϕ� =
{u ∈W | M, u � ϕ}.

In CDL, (unconditional) belief and knowledge are derived operators. For be-
lief, we define Biϕ := B�

i ϕ, read “i believes that ϕ,” and B̂iϕ := ¬Bi¬ϕ, read
“i considers it plausible that ϕ.” For knowledge, we define Kiϕ := B¬ϕ

i ⊥, read
“i knows that ϕ,” and K̂iϕ := ¬Ki¬ϕ, read “i considers it possible that ϕ.”

For complete axiomatizations of CDL, see [1] and [2].

2.3 Doxastic Reliability Information in CDL Models

CDL models contain information about what agents would believe upon learning
various facts. They also contain information about what agents would believe
upon learning about other agents’ beliefs. Consider a formula such as BBjp

i p ∧
B

Bj¬p
i ¬p, which is true if and only if in all the Bjp worlds that i considers most

plausible, j’s belief is true, and likewise for the most plausible Bj¬p worlds. If
this formula is true, then after a public announcement that Bjp, i will believe
p. Intuitively, the formula expresses that i takes j to be doxastically reliable on
p, in the sense of Section 1.3. Various judgments of doxastic unreliability can
be expressed in a similar way. We can even extend this observation to agents’
beliefs about the relative doxastic reliability of other agents. For example, a
formula such asBBjp∧Bk¬p

i p∧BBj¬p∧Bkp
i ¬p (∗) expresses i’s belief in the superior

doxastic reliability of j relative to k on p.
Figure 1 shows a CDL model in which BBkp

i p ∧ BBk¬p
i ¬p is true (at every

world), so i considers k doxastically reliable on p, but (∗) is also true (at every
world), so when j and k disagree, i considers j more reliable. The lines represent
plausibility orderings, with arrows pointing toward more plausible worlds and
arrowless lines indicating equi-plausibility. The solid lines are for i, while the
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Bk¬p, Bj¬pBkp, Bjp Bk¬p, Bjp Bkp, Bj¬p

¬p¬ppp

k

i

Fig. 1.

dashed lines are for k. No lines are shown for j, indicating that at each world, j
considers no other worlds possible. Note that every world is equi-plausible with
itself for each agent, but we omit the reflexive loops.

If we view CDL models as containing information about agents’ beliefs about
the doxastic reliability of others, we can extract a relation k <ϕ

i,w j that holds
just in case, e.g., M, w � B

Bjϕ∧Bk¬ϕ
i ϕ ∧ BBj¬ϕ∧Bkϕ

i ¬ϕ. Other definitions are
also possible. Note that the relation <ϕ

i,w will not in general be an ordering,
unless we make further assumptions about the relations and valuation in the
model.

Although CDL models contain information about agents’ views of the dox-
astic reliability of other agents, they do not contain information about agents’
views of the testimonial reliability of other agents. If we were to assimilate j’s
testimony that ϕ to a public announcement of Bjϕ, then CDL models would con-
tain sufficient information to determine how agents’ beliefs change in response
to this “testimony.”3 However, as discussed in Section 1.3, j’s testimony that ϕ
is not equivalent to a public announcement of Bjϕ, in terms of the information
provided. For this reason, we will need to add additional structure to models for
DTL in Section 4.

3 Dynamic Belief Revision

Having defined the static base logic for DTL, we turn to the dynamics. To model
belief revision, we use van Benthem’s [12] dynamic logic of belief upgrade. Two
dynamic logics are presented in [12], one for lexicographic upgrade and one for
conservative upgrade. Technically, either could serve as a dynamic base for DTL,
but here we use the logic of conservative upgrade. It represents a “softer” way
in which agents can revise their beliefs in response to incoming information,
appropriate to settings in which authoritative sources conflict.

3 Moreover, if we understand a judgment of doxastic reliability to be a kind of trust,
then CDL provides a kind of logic of trust. An open problem, which we leave for
future work, is to identify—and if possible, axiomatize—a fragment of CDL sufficient
to capture the notion of trust given by judgments of doxastic reliability.
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3.1 Language

Definition 6. Let At be a set of atomic sentences and Agt a set of agent-
symbols. The language of conservative upgrade is defined by:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕ
i ϕ | [↑i ϕ]ϕ

where p ∈ At, i ∈ Agt.

The intended reading of [↑i ϕ]ψ is “after i upgrades (or, revises his beliefs) with
ϕ, ψ is the case.” As an abbreviation, we write [↑S ϕ] for [↑s1 ϕ] [↑s2 ϕ] ... [↑sn ϕ]
where S = {s1, ..., sn} ⊆ Agt.

3.2 Semantics

Models for the logic of conservative upgrade are the same multi-agent plausibility
models as before.

Definition 7. Given a modelM =
〈
W, {≤j}j∈Agt , V

〉
, the updated modelM ↑i

θ =
〈
W, {≤j}↑iθ

j∈Agt , V
〉

is obtained by changing the plausibility ordering ≤i to

≤↑θ
i as follows: in each ≤i-comparability class, the most plausible θ worlds become

most plausible overall, but otherwise the old ordering remains.

Definition 8. The truth definitions for static formulas are those of CDL. The
truth definition for belief upgrade is:

◦ M, w � [↑i θ]ϕ iffM ↑i θ, w � ϕ

3.3 Axiomatization

In [12] van Benthem provides reduction axioms that allow the rewriting of any
formula with the dynamic operator [↑i ϕ] as an equivalent formula in the static
base logic of CDL. Given a complete axiomatization for CDL, these reduction
axioms provide a complete axiomatization for the dynamic logic of conservative
upgrade. Here we give only the crucial reduction axioms for conditional belief:

[↑i θ]Bϕ
i ψ ↔

((
B̂θ [↑i θ]ϕ ∧Bθ∧[↑iθ]ϕ

i [↑i θ]ψ
)∨(

Bθ¬ [↑i θ]ϕ ∧B[↑iθ]ϕ [↑i θ]ψ
))

[↑i θ]Bϕ
j ψ ↔ B

[↑iθ]ϕ
j [↑i θ]ψ for j �= i

The first axiom captures how i’s upgrade affects i’s conditional beliefs. The left
side expresses that after i upgrades with θ, the best (most plausible) ϕ worlds
for i are ψ worlds. The right side expresses an equivalent condition in terms of
what is true before the upgrade, given a case distinction. Case 1: some of the
best θ worlds in the original model become ϕ after the upgrade, indicated by
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B̂θ [↑i θ]ϕ. Since the upgrade makes the best θ worlds best overall, in this case
the best ϕ worlds after the upgrade are the best worlds satisfying θ ∧ [↑i θ]ϕ
in the original model. Case 2: none of the best θ worlds in the original model
become ϕ after the upgrade, indicated by Bθ¬ [↑i θ]ϕ. In this case the best ϕ
worlds after the upgrade are simply the best worlds satisfying [↑i θ]ϕ in the
original model.

The second axiom captures how i’s upgrade affects the conditional beliefs of
other agents.4 Since i’s upgrade may change j’s higher-order beliefs (about i’s
beliefs), to determine whether j believes ψ conditional on ϕ in the new model,
we check whether j believes [↑i θ]ψ conditional on [↑i θ]ϕ in the original model.

3.4 Suspension of Belief

In modeling belief change due to testimony, we wish to model not only how
agents form new beliefs about propositions, but also how agents suspend belief
about propositions. Suppose that agents j and k are equally authoritative in
the eyes of i. If j testifies that ϕ and then k testifies that ¬ϕ, one policy for i
would be to believe whoever testified first—in this case, agent j. A more sensible
policy, in a situation where equally authoritative sources conflict, would be to
suspend belief about ϕ. Alternatively, imight not revise his beliefs at all, ignoring
the conflicting testimony of j and k. Yet conflicting testimony from authoritative
sources does not seem to “cancel out” to provide i with no information. Something
informative has occurred—two authoritative sources have testified for ϕ and ¬ϕ
respectively—and the manner in which i suspends belief on ϕ should reflect this.

To extend the logic to a dynamic logic of conservative upgrade and suspension,
we add a suspension operator [↓i ϕ] to the language defined in the previous
section. The intended reading of [↓i ϕ]ψ is “after i suspends belief on ϕ, ψ is
the case.” As an abbreviation, we write [↓S ϕ] for [↓s1 ϕ] [↓s2 ϕ] ... [↓sn ϕ] where
S = {s1, ..., sn} ⊆ Agt.

Definition 9. Given a modelM =
〈
W, {≤j}j∈Agt , V

〉
, the updated modelM ↓i

θ =
〈
W, {≤j}↓iθ

j∈Agt , V
〉

is obtained by changing the plausibility ordering ≤i to

≤↓θ
i as follows: in each ≤i-comparability class, the most plausible ¬θ worlds and

the most plausible θ worlds becomes equally plausible and most plausible overall,
but otherwise the old ordering remains.
4 In the multi-agent setting, belief revision via relation change is a kind of public belief

revision; when one agent’s plausibility ordering changes, other agents may “notice”
the change. This does not mean that if i upgrades with ϕ, all other agents necessarily
come to believe that i believes ϕ. The effect can be more subtle, changing only the
conditional beliefs of other agents. While it is natural to understand belief revision
as a private mental change on the part of an agent, which other agents can at best
infer or learn of through communication, in the version of DTL introduced below
it makes sense for belief revision to be public in the sense that relation change is
public, because information about whom agents trust will also be public. Hence if j
testifies that ϕ and all agents know that i trusts j on ϕ, it is reasonable that agents’
beliefs about i’s beliefs change after j’s testimony.
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Definition 10. The truth definition for belief suspension is:

◦ M, w � [↓i θ]ϕ iffM ↓i θ, w � ϕ

Proposition 1. Together with a complete axiomatization of CDL and the re-
duction axioms for conservative upgrade, the following reduction axiom for sus-
pension and belief (the other axioms are of the same form as those for upgrade)
provides a complete axiomatization for the dynamic logic of conservative upgrade
and suspension:

[↓i θ]Bϕ
i ψ ↔((

Bθ
i (¬ [↓i θ]ϕ) ∧B¬θ

i (¬ [↓i θ]ϕ) ∧B[↓iθ]ϕ
i [↓i θ]ψ

)
∨(

B̂θ
i [↓i θ]ϕ ∧B¬θ

i (¬ [↓i θ]ϕ) ∧Bθ∧[↓iθ]ϕ
i [↓i θ]ψ

)
∨(

Bθ
i (¬ [↓i θ]ϕ) ∧ B̂¬θ

i [↓i θ]ϕ ∧B¬θ∧[↓iθ]ϕ
i [↓i θ]ψ

)
∨(

B̂θ
i [↓i θ]ϕ ∧ B̂¬θ

i [↓i θ]ϕ ∧Bθ∧[↓iθ]ϕ
i [↓i θ]ψ ∧B¬θ∧[↓iθ]ϕ

i [↓i θ]ψ
))

The same style of analysis that we gave for the reduction axiom for upgrade and
belief can be used here for suspension and belief. We leave it to the reader to
confirm the soundness of the above axiom.

4 Basic DTL

In this section we develop basic DTL. For the design of the system, we make
two simplifying assumptions about testimony. First, we assume that it is publicly
known how agents trust the testimony of others. Second, we assume that the tes-
timonial sequences of interest are on a single issue; as in Sorensen’s bandwagon
example, agents testifying in a given sequence either testify for a single proposi-
tion or against it (or pass). Here we cannot treat the many questions raised by
private relations of trust and multi-issue testimony on related propositions. We
plan to address both in future work.

4.1 Language

Definition 11. Let At be a set of atomic sentences and Agt a finite set of agent-
symbols. The language of basic DTL is defined by:

ϕ0 := p | ¬ϕ0 | ϕ0 ∧ ϕ0
ϕ1 := Uϕ0
ϕ := ϕ0 | ϕ1 | ¬ϕ | ϕ ∧ ϕ | Bϕ

i ϕ | [↑i ϕ]ϕ | [↓i ϕ]ϕ
Rec (i, ϕ0) | S �ϕ0

i S′ | 〈i, !ϕ0〉ϕ
where p ∈ At, i ∈ Agt, and S, S′ ⊆ Agt.
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The language of basic DTL includes four types of formula not in CDL. We
have added the universal modality U for ϕ0 formulas for technical reasons—in
particular, so we can express in our axioms that two ϕ0 formulas are equivalent
in a model (see the Appendix).

The intended reading of Rec (i, ϕ) is “i is (most recently) on the record as
testifying that ϕ.” The intended reading of S �ϕ

i S′ is “S′ is as (testimonially)
authoritative as S on ϕ for i.” Intuitively, we have in mind that S’s authorita-
tiveness on ϕ for i is a matter of the extent to which i judges S to be testimo-
nially reliable on ϕ, in the sense of Section 1.3. One may also wish to think of
non-cognitive or non-rational factors that contribute to authoritativeness.

We use the abbreviations S ≺ϕ
i S′ := S �ϕ

i S′ ∧ S′ �ϕ
i S, read “S′ is more

authoritative than S on ϕ for i,” and S ≈ϕ
i S′ := S �ϕ

i S′ ∧ S′ �ϕ
i S, read “S

and S′ are equally authoritative on ϕ for i.” In Section 4.3, we will use formulas
of these kinds to define trust formulas of the form Ti (j, ϕ), read “i trusts j’s
testimony on ϕ.”

We also allow ∅ to occur in formulas: we read ∅ ≺ϕ
i S as “S’s testimony on ϕ is

authoritative for i,” ∅ ≈ϕ
i S as “S’s testimony on ϕ is neutral for i,” and S ≺ϕ

i ∅
as “S’s testimony on ϕ is anti-authoritative for i.” We can think of the formula
∅ ≈ϕ

i S as expressing that i has no information about the testimonial (as opposed
to doxastic) reliability of S. The formula S ≺ϕ

i ∅ expresses that according to i,
S’s public testimony that ϕ (taken by itself) would actually support ¬ϕ.

The intended reading of 〈i, !ϕ〉ψ is “(i can sincerely testify that ϕ and) after i
testifies that ϕ, ψ is the case,” the parenthetical phrase reflecting the precondition
for testimony that i believes ϕ. We may also want to express what is the case
after i testifies with his actual belief on ϕ, whatever that may be. In Section 4.3,
we will define a formula, 〈i, ?ϕ〉ψ, read “after i testifies with his opinion on ϕ, ψ
is the case.” Note that in basic DTL, for simplicity we consider only testimony
on factual formulas ϕ0, so agents do not testify about the beliefs of others. It is
for this reason that only ϕ0 formulas can appear inside testimony operators and
in authority and record formulas.

4.2 Semantics

Definition 12. A testimonial model M =
(
W, {≤i}i∈Agt , V, rec, E

)
is a multi-

agent plausibility model together with two new functions, (i) rec : P (W ) →
P (Agt) (a public record) such that if j ∈ rec (P ) then j /∈ rec (W − P ) and (ii)
E (an expertise function), which sends each triple (i, w, P ) of an agent i ∈ Agt, a
world w ∈W , and a proposition P ⊆W to an authority graph

(P (Agt) ,�P
i,w

)
.

The authority relation �P
i,w is a total preorder on P (Agt), satisfying the

condition: S �P
i,w S′ ⇔ S �W−P

i,w S′.

The function of the public record is to record which agents have testified on
which propositions, where a proposition is now understood as a set of worlds,
not a formula. For reasons discussed below, we require that an agent cannot be
on the record for both a proposition and its complement at the same time. The
function of the authority graphs is to encode agents’ judgments of the relative
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testimonial authority of other (sets of) agents. For simplicity, we require that an
authority relation be a total preorder, but for specific applications this could be
modified. The condition that S �P

i,w S′ ⇔ S �W−P
i,w S′ could also be dropped,

at the expense of complicating the system.5

Definition 13. A pointed testimonial model (M, w) is a model M =(
W, {≤i}i∈Agt , V, rec, E

)
together with a distinguished world w ∈W .

Definition 14. A testimonial model M is introspective iff for all i ∈ Agt,
w, v ∈W , P ⊆W : if w ∼i v, then E (i, w, P ) = E (i, v, P ).

In an introspective model, agents have knowledge of their own authority rela-
tions, reflecting the assumption that agents have introspective access to their
views about other agents.

Definition 15. A testimonial model is fully public iff for all i ∈ Agt, w, v ∈W ,
P ⊆W : E (i, w, P ) = E (i, v, P ).

In such a model, each agent’s authority relations are commonly known. Hence
fully public models are introspective. In this paper we consider only fully public
models, so we write �ϕ

i instead of �ϕ
i,w.

Definition 16. Given a pointed model (M, w), the updated pointed model
(M, w)〈j,!ϕ〉 =

(
W, {≤i}〈j,!ϕ〉

i∈Agt , V, rec
〈j,!ϕ〉, E, w

)
is defined as follows (taking �α�

to be the truth set of α in (M, w)):

1. For P �= �ϕ� and P �= W − �ϕ�, let rec〈j,!ϕ〉 (P ) = rec (P ).
Let rec〈j,!ϕ〉 (�ϕ�) = rec (�ϕ�) ∪ {i}.
Let rec〈j,!ϕ〉 (W − �ϕ�) = rec (W − �ϕ�) − {i}.

2. Let ≤〈j,!ϕ〉
j =≤j. For i ∈ Agt, i �= j:

(a) If rec〈j,!ϕ〉 (W − �ϕ�) ≺�ϕ�
i rec〈j,!ϕ〉 (�ϕ�) and

�Bjϕ ∧ ϕ�∩ ∼i (w) �= ∅, then let ≤〈j,!ϕ〉
i =≤↑Bjϕ∧ϕ

i .
(b) If rec〈j,!ϕ〉 (�ϕ�) ≺�ϕ�

i rec〈j,!ϕ〉 (W − �ϕ�) and
�Bjϕ ∧ ¬ϕ�∩ ∼i (w) �= ∅, then let ≤〈j,!ϕ〉

i =≤↑Bjϕ∧¬ϕ
i .

5 Without the condition, we would have to give S �ϕ
i S′ a more complicated reading

than “S′ is as authoritative as S on ϕ for i,” since both S �ϕ
i S′ and S′ �¬ϕ

i S could
be true. A little reflection also shows that transitivity for �P

i,w would no longer hold.
One reason to drop the condition that S �P

i,w S′ ⇔ S �W−P
i,w S′ is that it implies

that j is authoritative on ϕ for i if and only if j is authoritative on ¬ϕ for i. Yet
this principle is subject to counterexamples. (We leave it to the reader to think of
some.) In cases where such counterexamples arise, the condition may be dropped.
In the cases we have in mind, those of testimony among scientific experts, it seems
more plausible to require that a scientist j is authoritative on a scientific proposition
ϕ if and only if j is authoritative on ¬ϕ. Since counterexamples can be produced for
other conditions that one might consider imposing on authority relations, we do not
build other “principles of authority” or “principles of trust” into the logic.
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(c) If rec〈j,!ϕ〉 (W − �ϕ�) ≈�ϕ�
i rec〈j,!ϕ〉 (�ϕ�) �≈�ϕ�

i ∅,
�Bjϕ ∧ ϕ�∩ ∼i (w) �= ∅ and �Bjϕ ∧ ¬ϕ�∩ ∼i (w) �= ∅,
then let ≤〈j,!ϕ〉

i =≤↑Bjϕ,↓ϕ
i .

(d) Otherwise let ≤〈j,!ϕ〉
i =≤↑Bjϕ

i .

Note that if (M, w) is introspective/fully public, then (M, w)〈j,!ϕ〉 is introspec-
tive/fully public, since upgrade and suspension do not change the comparability
relations ∼i or the expertise function E.

The definition states when j testifies that ϕ, j goes on the record for �ϕ� and
comes off the record for W − �ϕ� = �¬ϕ�. For another agent i, after j testifies
that ϕ, if i judges those on the record for �ϕ� to be more authoritative than those
on the record for �¬ϕ�, and i considers it possible for j to truly believe ϕ, then
i upgrades with Bjϕ∧ ϕ. If, on the other hand, i judges those on the record for
�¬ϕ� to be more authoritative, and i considers it possible for j to falsely believe
ϕ, then i upgrades with Bjϕ ∧ ¬ϕ. If i judges both groups to be authoritative
and equally so, and i considers it possible both that j truly believes ϕ and that
j falsely believes ϕ, then i upgrades with Bjϕ but suspends belief on ϕ itself.
Otherwise i simply upgrades with Bjϕ, and whether i comes to believe ϕ in this
case depends on i’s beliefs about j’s doxastic reliability.6

We should note several features of the testimony update. First, we do not
allow an agent to be on the record for a proposition and its complement at the
same time, because if this were possible, then i could count the same agent’s
authority both in favor of and against a proposition.7 Second, note that after j
testifies that ϕ, while i compares the authority of those on the record for �ϕ� with
the authority of those on the record for �¬ϕ�, i does not consider those who have
testified that ψ ∧ ϕ or those who have testified that ψ and ψ → ¬ϕ (assuming
these are not equivalent to ϕ or ¬ϕ in the model). This is unproblematic if
we wish to model single-issue testimonial sequences, but if we wish to model
multi-issue sequences in which agents testify on related formulas, the definition
of update for testimony must be more complex. Finally, note that i considers all
and only those on the record for �ϕ� and those on the record for �¬ϕ�. Other
policies are possible. For example, i may choose not to consider k’s authority in
favor of �ϕ� if although k testified that ϕ, i believes that k no longer believes ϕ.
By counting the authority of those agents who have testified that ϕ but who (i
believes) no longer believe ϕ, we assume that i judges the testimonial reliability

6 Hence when i does not have any view of the relative testimonial reliability of the �ϕ�-
testifiers versus the �¬ϕ�-testifiers (or he does, but he considers it impossible for j to
believe ϕ and for ϕ to have the truth value claimed by the more authoritative group
of agents), i “falls back” on his beliefs (if he has any) about j’s doxastic reliability.
Note that our semantics for the testimony operator gives a kind of priority to the
assumption of sincerity. Whatever else i believes as a result of j’s testimony that ϕ,
i will believe that j believes ϕ.

7 We do, however, allow an agent to count his own past testimony in favor of accepting
a proposition. We do not rule this out because the modeler can do so when specifying
the authority graphs: simply let S ≈P

i S ∪ {i} for every S ⊆ Agt and P ⊆ W .
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of k in terms of how reliable k’s past testimony has been, even in cases where (i
believes) k later gave up the belief that the testimony expressed.8

Two other model transformations are useful to include in DTL, but we do
not define them formally here. The first is a simpler testimony transformation
that updates only agents’ beliefs about factual formulas, ignoring how agents’
higher-order beliefs (about others’ beliefs) change in response to testimony. Such
a transformation is sufficient to model the bandwagon effect of Section 1, where
higher-order beliefs are not essential, and using an associated operator in formu-
las reduces the complexity of deriving what agents’ factual beliefs will be after
a testimonial sequence. The second transformation is public retraction. So far,
the only way for an agent to get off the record for �ϕ� is to go on the record for
�¬ϕ�. Yet we can easily define a model transformation that allows an agent j to
publicly retract his past testimony so that he will no longer be on the record for
�ϕ�, and other agents will upgrade with ¬Bjϕ.

Definition 17. The truth definitions for the new formulas are:

◦ M, w � Uϕ iff for all v ∈W , M, v � ϕ
◦ M, w � Rec (i, ϕ) iff i ∈ rec (�ϕ�)
◦ M, w � S ≤ϕ

i S′ iff S ≤�ϕ�
i S′

◦ M, w � 〈j, !ϕ〉ψ iffM, w � Bjϕ and (M, w)〈j,!ϕ〉
, w � ψ

In the Appendix, we give a sound and complete axiomatization for basic DTL
over the class of fully public models.

4.3 Reliability, Opinion, and Trust

We can now express formally the difference between i judging j doxastically re-
liable and i judging j testimonially reliable. For example, the satisfiable formula
¬BBjϕ

i ϕ ∧ 〈j, !ϕ〉Biϕ expresses that if i were to learn that Bjϕ (and noth-
ing stronger), i would not come to believe ϕ, but if j were to publicly testify
that ϕ, i would come to believe ϕ, reflecting the kind of situation described in
Section 1.3.

Given the precondition of Bjϕ for 〈j, !ϕ〉, we can express “after j testifies with
his opinion on ϕ, ψ is the case” as follows9:

〈j, ?ϕ〉ψ := (¬Bjϕ ∧ ¬Bj¬ϕ ∧ 〈j, !�〉ψ) ∨ 〈j, !ϕ〉 ψ ∨ 〈j, !¬ϕ〉 ψ

We can also define the notion of trust we have adopted. First, we need two
abbreviations for S ⊆ Agt:

8 We could distinguish such pure testimonial reliability from a hybrid testimonial-
doxastic reliability, judged in terms of the reliability of an agent’s testimony in just
those cases in which the agent retained the belief that his testimony expressed.

9 One defect of this definition is that if j has no opinion on ϕ, then j testifies to ,
which provides no information to other agents. Yet intuitively, the fact that j has no
opinion is itself informative. We leave it to future work to capture these subtleties.
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◦ Rec (S, ϕ) :=
∧

s∈S

Rec (s, ϕ)

◦ Abs (S, ϕ) :=
∧

s∈S

(¬Rec (s, ϕ) ∧ ¬Rec (s,¬ϕ))

We read Abs (S, ϕ) as “the agents in S have (so far) abstained from testifying
on ϕ.”

Let PartX be the set of partitions of X . Then the trust formula Ti (j, ϕ) is:

α ∧
⎛⎝ ∨

{X,Y,Z}∈PartAgt

(Rec (X,ϕ) ∧Rec (Y,¬ϕ) ∧ Abs (Z,ϕ) ∧ β)

⎞⎠
where α := K̂i (Bjϕ ∧ ϕ) and β := Y − {j} ≺ϕ

i X ∪ {j}. We read Ti (j, ϕ) as “i
trusts j’s testimony on ϕ.” As indicated in the semantics for 〈j, !ϕ〉, in order for
i to trust j on ϕ, i must consider it possible for i to believe ϕ and for ϕ to be
true at the same time.10

Given our definition of trust, the formulas (Bjϕ ∧ Ti (j, ϕ))→ 〈j, !ϕ〉Biϕ and
Ti (j, ϕ)→ KiTi (j, ϕ) are basic DTL validities (and analogues of axioms C3 and
C2 in Liau’s [10] static logic of trust).

5 Application: Bandwagon Effects

Given the intended readings of DTL formulas, we can sketch how to model
Sorensen’s bandwagon scenario. Let the initial premises about the three agents
in the example be:

1. B1ϕ ∅ ≈ϕ
1 {2} ≈ϕ

1 {3} ≺ϕ
1 {2, 3}

2. ¬ (B2ϕ ∨B2¬ϕ) ∅ ≺ϕ
2 {1} ≈ϕ

2 {3} ≺ϕ
2 {1, 3}

3. B3¬ϕ ∅ ≈ϕ
3 {1} ≈ϕ

3 {2} ≺ϕ
3 {1, 2}

Since the epistemic bandwagon effect need not involve agents’ higher-order be-
liefs (but only beliefs about who is on the record), we can model it using the
simpler kind of testimony operator alluded to in Section 4.2. If we denote that

10 Note that whether i trusts j’s testimony on ϕ depends on who else is on the record
for �ϕ� and who else is on for �¬ϕ�. This explains why Ti (j, ϕ) is consistent with
∅ ⊀ϕ

i {j} and even {j} ≺ϕ
i ∅. If we wished to define “individual trust” or “isolated

trust,” we could let ITi (j, ϕ) := ∅ ≺ϕ
i {j}. Here a peculiarity arises if we consider

anti-authorities, those agents j such that {j} ≺�ϕ�
i ∅. Agent i can “trust” the anti-

authority j, even though {j} ∪ rec (�ϕ�) ≺�ϕ�
i ∅. This occurs in a situation in which

although {j}∪ rec (�ϕ�) ≺�ϕ�
i ∅, we also have rec (�¬ϕ�) ≺�ϕ�

i {j}∪ rec (�ϕ�). Suppose
rec (�ϕ�) and rec (�¬ϕ�) are both anti-authoritative for i. If rec (�¬ϕ�) is more anti-
authoritative than rec (�ϕ�) ∪ {j} for i, then when j testifies that ϕ, i will actually
come to believe ϕ. It is certainly a stretch to say that i “trusts” j in this case, but it
would unduly complicate our terminology to introduce distinctions for this case.
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operator by 〈i, ϕ!〉 instead of 〈i, !ϕ〉, then the following formulas, which repre-
sent the outcomes of the two testimonial sequences, are easily derivable from the
premises above11:

〈1, ϕ?〉 〈2, ϕ?〉 〈3, ϕ?〉B1ϕ ∧B2ϕ ∧B3ϕ

〈3, ϕ?〉 〈2, ϕ?〉 〈1, ϕ?〉B1¬ϕ ∧B2¬ϕ ∧B3¬ϕ
A list of DTL validities facilitates the derivation of these formulas, but for reasons
of space we do not give the list or the derivation here.

6 Conclusion

We have proposed a logic to model belief change over sequences of multi-agent
testimony. In Section 1 we began by distinguishing testimony from public an-
nouncement, considering the informational difference that the individual source
of testimony makes. We also distinguished judgments of doxastic reliability from
those of testimonial reliability, showing in Section 2 how multi-agent plausibil-
ity models capture the former and in Section 4 how testimonial models capture
both. In Section 3 we showed how to represent suspension of belief, providing
the key reduction axiom for the associated dynamic operator. We introduced dy-
namic testimonial logic (DTL) in Section 4, and we defined a dynamic testimony
operator for one policy of belief revision in response to testimony. In Section 5,
we showed how DTL can represent agents’ judgments of the two kinds of relia-
bility, as well as agents trusting the testimony of others. Finally, in Section 6 we
sketched how to model epistemic bandwagon effects in DTL.

In future work we plan to extend basic DTL to represent further aspects of
testimony, including testimonial sequences on multiple issues, authority graphs
that are not fully public, operations that change authority graphs, trust about
doxastic as well as factual formulas, and agents’ reasoning about how testimony
has influenced the beliefs of others. In a full version of DTL, we hope to model
not only how bandwagons start, but also how to stop them.
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Appendix

Theorem 1. Together with the reduction axioms for belief upgrade and sus-
pension and with an axiomatization for CDL plus the universal modality, the
following axiom system is sound and complete for the class of fully public
testimonial models. The static axioms are:

(R1)Rec (j, ϕ)→ KiRec (j, ϕ) (R2) (Rec (j, ϕ) ∧ U (ϕ↔ ψ))
(R3)Rec (j, ϕ)→ ¬Rec (j,¬ϕ) → Rec (j, ψ)
(A1)S �ϕ

i S′ → KjS �ϕ
i S′ (A2) (S �ϕ

i S′ ∧ U (ϕ↔ ψ))
(A3)S �ϕ

i S′ ∨ S′ �ϕ
i S → S �ψ

i S′

(A4)S �ϕ
i S (A5) (S �ϕ

i S′ ∧ S′ �ϕ
i S′′)

(A6)S �ϕ
i S′ ↔ S �¬ϕ

i S′ → S �ϕ
i S′′

The new reduction axioms for conservative upgrade/suspension are:

(C1) [↑i ϕ]α↔ α for α of the form Uψ,Rec (j, ψ) or S �ψ
j S′

(S1)Same as (C1)but for [↓i ϕ]
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The reduction axioms for the DTL testimony operator are:

(T1) 〈j, !ϕ〉Rec (j, ψ)↔ (
Bjϕ∧

((Rec (j, ψ) ∧ ¬U (ψ ↔ ¬ϕ)) ∨ U (ψ ↔ ϕ))
)

(T2)For i �= j, 〈j, !ϕ〉Rec (i, ψ)↔ (Bjϕ ∧Rec (i, ψ))
(T3) 〈j, !ϕ〉α↔ (Bjϕ ∧ α) for α of the form p, Uψ or S �ψ

i S′

(T4) 〈j, !ϕ〉 ¬ψ ↔ (Bjϕ ∧ ¬ 〈j, !ϕ〉 ψ)
(T5) 〈j, !ϕ〉 (ψ ∧ ψ′)↔ (〈j, !ϕ〉 ψ ∧ 〈j, !ϕ〉 ψ′)
(T6)For θ and ψ that do not contain testimony operators,

〈j, !ϕ〉Bθ
i ψ ↔

(
Bjϕ∧( ∨

{X,Y,Z,V }∈Part
Agt(Bθ

i
ψ)−{j}

(
TX (j, ϕ) ∧ T−

Y (j, ϕ) ∧ T≈
Z (j, ϕ) ∧ UV (j, ϕ)

∧ [↑X Bjϕ ∧ ϕ] [↑Y Bjϕ ∧ ¬ϕ] [↑Z Bjϕ] [↓Z ϕ] [↑V Bjϕ]Bθ∗
i ψ∗

)))
where we use the following notation: Agt

(
Bθ

i ψ
)

is the set of agent-symbols
occurring in Bθ

i ψ; T−
i (j, ϕ) and T≈

i (j, ϕ) are obtained by changing α and β in
the definition of Ti (j, ϕ) in Section 4.3. For T−

i (j, ϕ) set α := K̂i (Bjϕ ∧ ¬ϕ),
β := X ∪ {j} ≺ϕ

i Y − {j}; for T≈
i (j, ϕ) set α := K̂i (Bjϕ ∧ ϕ) ∧ K̂i (Bjϕ ∧ ¬ϕ),

β := Y − {j} ≈ϕ
i X ∪ {j} ∧ ¬ (X ∪ {j} ≈ϕ

i ∅). Given S ⊆ Agt, we also define:

◦ TS (j, ϕ) :=
∧

s∈S

Ts (j, ϕ), and similarly for T−
S (j, ϕ) and T≈

S (j, ϕ)

◦ US (j, ϕ) :=
∧

s∈S

(¬Ts (j, ϕ) ∧ ¬T−
s (j, ϕ) ∧ ¬T≈

s (j, ϕ))

Finally, the formulas θ∗ and ψ∗ are obtained from θ and ψ respectively
by replacing, for all α, each occurrence of Rec (j, α) in θ and ψ by
((Rec (j, α) ∧ ¬U (α↔ ¬ϕ)) ∨ U (α↔ ϕ))

)
.

Proof. (rough sketch) Soundness. Axiom (R1) reflects the global nature of the
rec function, while (A1) reflects the full publicity of models. (R2) and (A2) hold
because the �P

i relations and rec function deal with propositions as sets of
worlds. (R3) (with (R2)) corresponds to the condition that an agent cannot be
on the record for both a proposition and its complement at the same time.
(A3)−(A5) express the basic properties of the �P

i relations, while (A6) (with (A2))
expresses the condition that authority relations must agree for a proposition and
its complement. (C1) and (S1) indicate that belief upgrade and suspension do
not change universal propositional facts, the rec function, or the �P

i relations.
(T1) says that after j testifies that ϕ, j is on the record for ψ iff j was already

on the record for ψ and ψ is not equivalent in the model to ¬ϕ (for if it were,
j would have been taken off the record for ψ when he testified that ϕ) or ψ is
equivalent in the model to ϕ (in which case j was added to the record for ψ
when he testified that ϕ). (T2) says that for agents other than j, the record
does not change after j’s testimony. (T3) reflects the fact that testimony does
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not change local or universal propositional facts or the �P
i relations. (T4)− (T5)

give standard properties of dynamic operators.
(T6) captures the effect of j’s testimony that ϕ on agents’ beliefs, which

follows exactly the semantic definition of model transformation due to testi-
mony. Note that we only consider what happens to the beliefs of those agents
whose symbols appear in Bθ

i ψ, since others do not matter for evaluating the
formula. Following the semantics for the testimony operator, we do not update
j’s beliefs. The reason for the change from θ and ψ to θ∗ and ψ∗ is that θ and
ψ may contain a formula of the form Rec (j, α), the truth value of which may
change after j’s testimony. Hence we use the same idea as in (T1) and express
what must be true in the original model in order for Rec (j, α) to be true in the
updated model.12

Completeness. Using the reduction axioms (C1) − (T6), every formula
of basic DTL with dynamic operators is reducible to an equivalent formula in
the static part of the language.13 It therefore suffices to show completeness for
the static part of DTL. We use the standard canonical model construction, only
we must show how to construct the expertise function and the public record for
the canonical model.

Suppose Γ is a consistent set of CDL formulas plus �ϕ
i and Rec formulas.

Extend Γ to a maximally consistent set Γ+ in the usual way. Let Γ+
� be the

set of authority formulas S �ϕ
i S′ in Γ+ and Γ+

rec the set of record formulas
Rec (i, ϕ) in Γ+. The canonical testimonial model based on Γ+

� and Γ+
rec has the

domain:

WC =
{
Δ | Δ is an MCS and Δ ∪ Γ+

� ∪ Γ+
rec is consistent

}
We extract a canonical set of authority relations from Γ+

� as follows: if

S �ϕ
i S′ ∈ Γ+

≤ , then for every Δ ∈ WC , construct the relation ��ϕ�
i,Δ such

that S ��ϕ�
i,Δ S′. This construction clearly produces a (fully public) authority

relation. For suppose ��ϕ�
i,Δ is not reflexive, because S ��ϕ�

i,Δ S. Then by
construction, S �ϕ

i S /∈ Γ+
≤ . Since Γ+

≤ is a maximally consistent and hence
complete set of authority formulas, we have S �ϕ

i S ∈ Γ+
≤ . But then Γ+

≤
is inconsistent by (A4). The arguments for the other properties of authority
relations follow similarly. We define the canonical expertise function EC as the
function that maps each triple (i,Δ, P ) of i ∈ Agt, Δ ∈ WC , and P ⊆ WC

to the relation �P
i,Δ constructed as above (except for those P ⊆WC that are not

12 The replacement of θ and ψ by θ∗ and ψ∗ does not achieve the correct result if either
θ or ψ contains additional testimony operators, hence the restriction on θ and ψ.

13 We reduce DTL formulas by applying the reduction axioms from the “inside out,”
eliminating dynamic operators from subformulas first. This explains why the restric-
tion on θ and ψ in (T6) is acceptable; since θ and ψ are subformulas of Bθ

i ψ, any
testimony operators will be eliminated from them by the time we get to 〈j, !ϕ〉Bθ

i ψ.
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definable by ϕ0 formulas, for which we let �P
i,Δ and �W−P

i,Δ be the same, ar-
bitrary total preorder on P (Agt)). We define the canonical recC function by
setting recC (P ) = {i ∈ Agt | Rec (i, ϕ) ∈ Γ+

rec and �ϕ� = P} for all i ∈ Agt. It is
straightforward to check that this construction produces a proper public record.

The rest of the completeness proof for DTL uses the standard methods,
following the completeness proof for CDL (see [2]).
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Abstract. The standard approach to a rational action paradox in game
theory (namely, the chain store paradox) has presupposed that the
player’s beliefs are probabilities represented by functions with values be-
tween 0 and 1. However, a general solution must include the possibility
that the subjective probabilities take only the values 1 and 0, requiring
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1 Introduction

Reinhard Selten has raised a rational choice paradox in game theory: the chain
store paradox. Its extensive form produces inconsistency between game theory
and plausible human behavior.

To explain in detail, imagine a market situation: a monopolist A has twenty
chain stores in different cities of a region. Assume he faces some fixed number
of potential competitors. Each potential competitor has only a single opportu-
nity to enter the market. When the opportunity comes, each competitor has to
decide whether to enter or not. If he does enter, the monopolist has to choose
whether to accommodate or to deter (by aggressive pricing). If the monopolist
accommodates, it will cost him less and yield a profit for the competitor.

According to standard game theory, the monopolist deduces the following by
backward induction: after the last competitor, there is no point to aggressive
pricing, since there are no more competitors to attempt to deter. So, to accom-
modate in the last round is the rational strategy for the monopolist to take,
since it costs less. Thus, if the last competitor is rational, knowing the monop-
olist will cooperate, he will choose to enter the market, and the monopolist will
accommodate.

Consequently, the next to the last competitor will enter, too, knowing the
rationality of the monopolist, who will certainly not act aggressively in the next
to last round, since attempting to deter the last competitor would be futile. Thus,
the induction argument reaches the conclusion that each of the players should
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choose to enter and the monopolist should always react with his accommodating
response [6].

However, intuitively, if the monopolist were to choose to deter at an early
stage, it is probable that the next competitor would not enter the market, since
the monopolist’s deviation from the predicted strategy would force him to revise
his estimate of the monopolist’s utility structure. Given the likely success of
deterrence, the monopolist should choose to deter in the first round. Selten calls
this the conclusion of “deterrence theory” [6, pg. 131 - 132].

Thus, there is a contradiction between the conclusion of the induction ar-
gument and a plausible deterrence theory. Selten named it “the chain store
paradox.”

2 Game Theory Solution

Philip Reny [4] argued that game theory assumes that both the monopolist and
the competitor are rational agents and that the knowledge of the structure of the
game and of the principles of game theory is a matter of mutual belief between
them. So they both know (via the induction argument) that the monopolist will
not deter. However, if we add the assumption that the monopolist does deter
in any round, a contradiction is generated, since we are assuming both that the
monopolist is rational and that he is irrational. So, the natural way to avoid the
paradox is simply to avoid making assumptions that contradict the theory of
the game.

However, Reny’s assumption that deterrence behavior by the monopolist is
irrational is itself subject to a paradox. If we modify the game theory by assuming
that the monopolist acts “irrationally” by attempting to deter in the first round,
we must conclude that this attempted deterrence would be successful, which
makes his choice rational after all. The paradox still exists.

Christina Bicchieri [2] defended the claim that the monopolist’s efforts to
deter wouldn’t succeed, for the competitor’s belief will not be updated in the
appropriate way, since their prior probability of the monopolist’s irrationality is
zero. If the retaliation did emerge, it would just be treated by the succeeding
competitors as a freak accident, without implications for the monopolist’s future
behavior. Thus, even if the assumption is added, it will not affect the results,
and the backward induction argument succeeds.

Reny and Bicchieri’s arguments are based on the work of David M. Kreps
and Robert Wilson.[5] They argued that the assumption of complete information
(with certainty) in the Chain-Store Paradox is more a modeling artifact than a
good representation of real situations. It is easy to think that potential entrants
are in fact uncertain about the monopolist’s payoffs.

Their solution depends on the use of mixed strategy equilibrium , and in the
general case, on concentroid mixed strategies. Here, the mixed strategy equilib-
rium is defined as a Nash or correlated equilibrium in which one or more players
play a mixed strategy. A Nash equilibrium contains a noncentroid mixed strategy
if it contains a mixed strategy in which some player do not play these equally



182 L. Li, R.C. Koons, and J. Zhang

valued pure strategies with equal probabilities.[3, pg. 30] A correlated equilib-
rium assigns a probability to each combination of strategies, and thus assigns
to each strategy of each player a probabilistic distribution over the strategies of
the other players.

Kreps et al. interpret the mixed-strategy equilibrium as representing the play-
ers’ collective uncertainty about each others’ “type”, where each type assigns a
different utility to the outcomes of various joint pure strategies. The competi-
tors are uncertain about whether the monopolist enjoys aggressive behavior as
an end in itself, and the monopolist is uncertain about how sensitive the competi-
tors are to the threat of future aggression. The players update their subjective
probabilities using Bayes’s theorem. At the equilibrium point, the monopolist’s
acting aggressively in the first round results in belief updates that induce a state
of near indifference in the competitors between entering and not entering: each
competitor’s entrance depends on his particular type. Similarly, the equilibrium
point induces near indifference in the monopolist between responding aggres-
sively and accommodating. What had been a contradiction (when uncertainty
was overlooked) resolves itself into an equilibrium point of mutually supporting
states of uncertainty.

3 Situation Theory Approach

Selten believed that the paradox was an unexpected, surprising result in game
theory, but we will show: “it is a paradoxical in the strong sense: a logical anti-
nomy of rational belief.” [3, pg. 26]

The solution of Kreps at al. presupposes that the monopolist’s and competi-
tors’ beliefs are represented by subjective probabilities with values between 0
and 1 (exclusive).But what if all the relevant probabilities took the values of 0
and 1 only? This possibility cannot be excluded by mere stipulation. If we just
replace the probability with a model that includes only believing or disbelieving,
we must address explicitly the problem of belief revision, since Bayesian condi-
tioning will no longer be well-defined (since the prior probability of unexpected
behavior by the monopolist would be equal to zero).

Let Jip represent the rational belief of player i(i = m, c) in proposition p, and
let K represent the subjunctive conditional proposition that if the monopolist
were to retaliate against the first competitor, the second competitor would stay
out. The truth of K depends on how the competitors revise their beliefs. If the
competitor does not think that the monopolist believes that if he retaliates, the
second competitor will stay out, he will be sure that the monopolist would not
act aggressively, since the backward induction argument would in that case be
dispositive. Given this conviction on the part of the second competitor, if the
monopolist were, contrary to expectation, to act aggressively in the first round,
the second competitor would have to revise his beliefs about the monopolist’s
utilities. Let’s assume that, in such a case, the second competitor would come
to believe that the monopolist is an inveterate retaliator. On this assumption,
retaliation by the monopolist in the first round would in fact successfully deter
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the second competitor, and so would be an optimal strategy for the monopolist,
given his actual, non-aggressive utility function. Thus, if the competitor believes
that the monopolist does not believe in K, then K would in fact be true.

Conversely, assume that the second competitor does believe that the monopo-
list believes that if he were to act aggressively in the first round, then the second
competitor would stay out. The second competitor will then expect the monop-
olist to act aggressively in the first round (given the opportunity). Consequently,
such aggressive action will result in no revision of the second competitor’s be-
liefs. Since the game ends in the second round, and since the monopolist has no
possible reason to act aggressively in that round, the second competitor would
not be deterred. Thus, if the second competitor believes that the monopolist
does believe in K, then K would in fact be false.

Since the monopolist has available all of the information that we used in
reaching this conclusion, we should assume that the monopolist himself believes
K ↔ ¬JcJmK, that is, the second competitor would be deterred from enter-
ing if and only if he does not believe that the monopolist believes in K. If the
monopolist also believes that the competitor believes JmK if and only if the
monopolist himself believes it (a reasonable assumption, given their mutual ra-
tionality and their common knowledge of the game), then the monopolist will
infer.

(J1) and (J5) are axioms and rules on a very plausible of rational belief,
which is meant to capture the properties of justifiable or ideally rational belief
(as opposed to knowledge):

(J1) ¬J⊥
(J2) Jϕ ,where ϕ is a logical axiom
(J3) J(ϕ→ φ) → (Jϕ→ Jφ)
(J4) Jϕ→ JJϕ
(J5) from ϕ infer Jϕ.

(J1) is a schema which express the consistency of rational justified belief. Schema
(J4) is too strong, in general, but it is also dispensable. [3, pg. 15] We employ
it here simply for simplicity’s sake. Schemata (J2) and (J3) simply ensure that
the property of being rationally justifiable in a situation is closed under logical
entailment. (J5) guarantees that certain obviously true axioms of the logic of
rationally justifiable belief are themselves rationally justifiable in the situation
under consideration. We will need the following lemma for the following proof:

Lemma 1. J¬Jϕ→ ¬Jϕ.

Lemma 1 follows very quickly from (J1)–(J4). The inconsistency can be proved
as follows:

(1) J(K ↔ ¬JJK) (assumption for reductio)
(2) JK, (assumption for conditional proof)
(3) J¬JJK, (1) (2) (J2) (J3) (1) ,(2)
(4) ¬JJK, (3),(lemma 1) (1),(2)
(5) JK → ¬JJK, conditional proof ,(2)-(4), (1)
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(6) J(K ↔ ¬JJK)→ [JK → ¬JJK], (conditional proof,(1)-(5))
(7) J [J(K ↔ ¬JJK)]→ [JK → ¬JJK], (6),(J5)
(8) JJ(K ↔ ¬JJK), (1),(J4)(1)
(9) J(JK → ¬JJK), (7),(8),(J3)(1)
(10) JJK, (assumption for reducito)
(11) J¬JJK, (9),(10), (J3) (1)(10)
(12) ¬JJK, (11),(lemma 1)(1)(10)
(13) ¬JJK, (reductio (10)-(12) (1)
(14) J(K ↔ ¬JJK) , (conditional proof (1)-(13))
(15) J [J(K ↔ ¬JJK)→ ¬JJK], (14),(J5)
(16) J¬JJK , (8),(15),(J3),(1)
(17) JK, (1),(16),(J2),(J3)(1)
(18) JJK, (17),(J4) ,(1)
(19) ¬J(K ↔ ¬JJK). Reductio ,(1),(12),(18)

By diagnosing the paradox, let us look into the propositions that represent the
objects of belief. By treating truth as a property of propositions, not sentences,
Jon Barwise and John Etchemendy have modeled two distinct conceptions of
propostions: one is the Russelian proposition and the other is the Austinian
proposition. [1] In Russell’s view, a sentence alone expresses a proposition, which
is true or not. However, for Austin, there is always a contextual parameter —
the situation the statement is about — that comes between the sentence and
a proposition. “All propositions contain an additional contextually determined
feature, namely, the situation they are about.” [1, pg. 1]

“According to Austin, a legitimate statement A provides two things: a histor-
ical (or an actual) situation Sa, and a type of situation Ta . . . the statement A
is true if Sa is of type Ta; otherwise it is false.”[1, pg. 29]

“Sentences express Austinian propositions, which consist of three elements: a
sentence type of English assignment of extensions to the indexical and demon-
strative elements of that type, and a partial model of the world that the propo-
sitions is about.”[3, pg. 100]

Based on the Austin’s view on propositions, Jon Barwise and John Etchemendy
provided a solution to the liar’s paradox. Here is a typical liar propositions (ls is
a proposition that Barwise and Etchemendy call a “denial liar”) [3, pg. 100]:

ls = ¬[ls; true(ls)]

S must be an actual situation for ls to be expressible. For any actual S, ls is true
relative to any sufficiently large part of the world, but not relative to situation S.
No actual situation S can contain the information the denial liar proposition ls is
true relative to it. Hence ls will be true relativized to some larger situation S′.

In the case of the chain store paradox, the biconditional proposition K ↔
¬JJK is like a liar proposition. If we treated the proposition as Russellian,
that is, both the monopolist and the competitor are in the same situation S
(representing the whole world), a paradox would be generated as we discussed
above. In contrast, by using Austinian propositions, situation theory can solve
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the paradox by treating the biconditional K ↔ ¬JJK as relativized to one or
more situation parameters. The biconditional itself concludes two propositional
parts each of which is the argument of the rational justifiability of operator
J . On the Austinlian account, each proposition must have its own situation
parameter. Let us assume, to begin with that all the proposition are in the
same situation, call it S. So the biconditional proposition can be represented as
K ↔ ¬JJSKS.we argued above this biconditional is obviously true, it should
be rationally believed. However, if we suppose it can be rationally believed in
situation S, then the contradiction we derived above will still be derivable, the
proof we give above could be used to prove the following in situation theory:

¬J(K ↔ S¬JJSKS).

In other words, the biconditional can not be rationally believed by competitors
trapped in situation S, but could be rationally believed by outsider observers,
as long as these observers are in a larger situation S′, which contains more
information than the situation S. Thus, no paradox is generated. In this way,
without modifying the general belief axioms and rules, the paradox can be solved.

This situation solution given above is one of the phenomenons similar to that
Roy Sorensen calls a “blindspot”. Some fact is a blindspot for a person if there is
some reason in principle why that person couldn’t know it . Sorensen reach the
conclusion about the chain store paradox. “Thus we have another illustration
of the fact that one cannot foresee the choices of an equally well-informed ideal
agent if that agent has the means and the motive to undermine the prediction.”[7,
pg. 359]

In fact we have shown the biconditional K ↔ S¬JJSKS is a blindspot for
the players in the game but not for the rest of us. Situation theory provides
some explanation of why these occurs by hypothesis some propositions are not
universally accessible, it is not possible for some persons to think about the very
situation in which they are embedded, only the outsider can obtain the right
“perspective” on the game. The players have suffered from intellectual tunnel
vision.

More details about how the situations are different from each other, and how
the reasoning works in the situation remain open questions in this field.

4 Situation Theory Approach to Infinite Chain-Store-Like
Paradox

We can see from the chain store paradox that a finite game which involves self-
reference can generate paradox. Someone may argue that if we just imagine
a infinite game, there would be many equilibria, which corresponds to many
different behavioral patterns. In the infinite case, without the backward induc-
tion argument, the paradox will not appear. However, by giving the example of
promise keeping, which comes from the work of D. H. Hodgson, we can show
that the infinite game can generate paradox as well.

To generate the Liar-like paradox, three conditions are required.
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1. The promise-receivers must expect that promise-maker to conform to one
specific behavioral pattern, corresponding to one of the many Nash
equilibria.

2. The promise-receivers would revise their beliefs about the promise-maker in
a non-Bayesian way, should they observe off-equilibrium behavor.

3. The way in which they change their beliefs depends on the beliefs they have
about the rationality (given the promise-maker’s utilities) of the observed
deviation. More specifically: if they believe that the deviation is rational,
then they will assume that the deviation was a simple mistake (the result
of what game-theorists call a “trembling hand”), and they will expect the
promisor to return to the equilibrium path in the future. Alternatively, if
they believe that the deviation was irrational, then they will completely
abandon their expectation of the original equilibrium pattern.

Let’s compare the familiar Prisoner’s Dilemma with that of Hodgson’s Promise
Keeping Dilemma:

In PD, the payoffs would be

DC C
Dont′ confess 3, 3 0, 4

Confess 4, 0 1, 1

In Hodgson’s game, the payoffs would be:

Promise Don′t trust
Keep 3, 3 0, 1

Break 4, 0 1, 1

In the promise keeping game, the action of Breaking the promise dominates the
action of Keeping it. Since this is common knowledge, in a single-play game,
the promisee can be certain that the promisor will Break, and so he will choose
Don’t trust.

To move from a finite game to an infinite game, let’s assume that the payoffs in
each successive round shrink at an exponential rate, in such a way that keeping
a promise in one round has a higher expected utility than breaking the promise
if and only if keeping the promise induces the promisee in the next round to play
Trust. Such an infinite game has infinitely many Nash equilibria. Keeping and
trusting the promise in every round is one such equilibrium. However, there is
also an equilibrium in which the promisor breaks his promise in the first n round
and keeps the promise in all succeeding rounds (with the promises playing Don’t
trust in the first n rounds and Trust thereafter), and one additional equilibrium
in which the promisor breaks his promise in every round and every promisee
plays Don’t trust.

Let’s suppose that the players start the game in a state of expectation cor-
responding to the equilibrium of Break/Don’t trust in the first n rounds, and
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Keep/trust thereafter. Let’s also suppose that n is a relatively large number.
Now, let’s consider what happens if, contrary to the certain expectations of the
promisees, the promisor keeps his promise in the first round. We have to make
some assumptions about the upshot of whatever non-Bayesian belief-revision
mechanism is at work.

Let’s suppose that, if the promisees believe that the promisor believes that,
by playing off the equilibrium in round 1, he can induce the second promisee
to deviate from the equilibrium by playing Trust in round 2. In this case, the
promisor’s deviation is consistent with the basic assumptions about his rational-
ity and utility function, and we can assume that the second promisee will make
a minimal change in his beliefs about the promisor’s future play. Such minimal
change would consist in believing that the observed deviation was a mere fluke,
to be followed by a return by the promisor to the originally expected pattern (of
promise-breaking in the rest of the first n rounds). Alternatively if the promisees
believe that the promisor does not believe that deviating by keeping the promise
in the first round would induce trust in the second round, then the promisees
are forced to make much more radical changes in their beliefs about the ra-
tionality and motivation of the promisor. Let’s suppose that they will come to
believe that the monopolist enjoys keeping his promise so much that it strictly
dominates promise-breaking in each round. In that case, they would expect the
promisor to keep his promises in all rounds, and the second promisee would be
induced to play Trust.

Thus, if the promisor is believed to believe that promise-keeping in the first
round would create expectations of future promise-keeping, then doing so would
in fact fail to create those expectations. Conversely, if the promisor is not believed
to believe that keeping the promise would create such expectations, then keeping
the promise would in fact create those expectations. Thus, we have a paradoxical
blindspot of precisely the same kind as the chain store paradox.

Hodgson believed that his argument demonstrated that the moral theory of
act-utilitarianism is self-refuting, since it cannot sustain the obviously advanta-
geous practice of promising. We believe that the argument shows, at the very
least, that utilitarian moral theory is seriously incomplete. Because of the per-
vasiveness of liar-like blindspots, utilitarian moral theory fails to provide the
participants in social situations with any concrete guidance with respect to such
important institutions as promising. An adequate moral and legal theory must
supplement the principle of utility with respect for established social rules.
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Abstract. Two types of game structures for logics of ability have been
proposed: Concurrent game structures and models of propositional con-
trol. The former takes an abstract view and can be used for general
purposes; the latter is a restriction but is much easier for implemen-
tation. We present a game structure in between namely a declaration
structure. A cooperation logic based on declaration structures is given.
We present its deductive system and algorithms for model checking and
satisfiability checking.

Keywords: cooperation logics, propositional control, declarations.

1 Introduction

Cooperation logics are relatively new area of interest in game logics. They provide
formalisms to analyze ability of agents in game like systems. Modal operators
are used to express properties that a group of agents can cooperate by choosing
their game strategies to bring about certain situations. The best known examples
of cooperation logics are alternating-time temporal logic (ATL) [1] and coalition
logic (CL) [6]. The two are closely related and their semantics are essentially
equivalent [4]. Their models reflect an abstract view of a strategic game in which
whenever all agent have chosen their strategies, the system will come up with an
unique outcome by a prescribed outcome function. They do not explain where
the outcome function comes from.

From the point of view of a software agent designer, ATL and CL are not easy
to handle in the sense that they presume a detailed system specification, where all
possible system transitions are explicitly presented. Such a specification would be
impractical if the system contains a large set of variables, and therefore contains
an exponentially larger set of states. Coalition logic of propositional control (CL-
PC) [9] is a recently proposed logical framework that presumes a much simpler
specification: A game structure is defined by assigning to each variable an agent
that controls it. Outcomes are determined by agents choosing valuations over
variables they control. There are several succedent works along this way, such as
embedding delegation [10], action [7], or preference [8] in CL-PC, geralizations
of CL-PC [3], and applications of CL-PC [5].
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Knowing who controls what is enough for a designer to build models of CL-PC.
It is a natural way to specify game like structures, and is easy to use. However,
arguably due to its static allocation function, CL-PC has received much less
attention than ATL and CL. In CL-PC, each proposition is controlled by an
appointed agent throughout the whole model, whereas applications may require
loosing or regaining controls. It is meaningless to define temporal operators on
a CL-PC model since it consists of a product of a family of equivalent relations.
Any temporal operator would collapse to the “next” operator. [3] presented
a generalization of CL-PC’s model such that a proposition may be controlled
by more than one agent, and may not be controlled by any agent. However,
an outcome function was introduced to ensure an unique outcome under each
situation. According to the above observation, such generalizations sacrifice the
main advantage of propositional control. Also, a dynamic extension of CL-PC
was suggested in [10], where dynamic operators were constructed by actions a1 
a2, reading as that agent a1 gives proposition p to agent a2. We take a different
approach in this paper. First, we deal with the issue within a cooperation logic,
that is, we keep the simplicity of cooperation logics where only coalition operators
are presented. Second, losing or gaining control over propositions is not a result
of agents’ actions of transferring control; it is programmed within a system:
agents losing or gaining control according certain conditions.

We define a generalization of CL-PC’s model called declaration structures
(DS). DS does not require a prescribed outcome function so that it is indeed
in the school of propositional control. The basic idea is to replace allocation
functions by declarations that says “who controls what in what conditions”. An
agent gains control of a proposition if certain condition holds, and loses control if
the condition fails. We distinguishes two types of declarations: Agent declaration
is the condition for an agent to control a proposition; environment declaration is
the condition for no agent to control a proposition, and its value is determined
by system background.

2 Declaration Structures

The set of formulas is constructed from a given set of propositions At and a
given set of agents Ag, both finite and non-empty. Where p ∈ At and A ⊆ Ag,

ϕ =:: p | ¬ϕ | ϕ1 ∨ ϕ2 | �A ϕ.

�Aϕ is a cooperation modality, and is read as that agents in A can make sure
the system reaches a next state at which ϕ is true. Other Boolean connectives
are defined as usual. Let �Aϕ =df ¬�A¬ϕ. A formula that contains no modality
is called an objective formula.

By l(p), we denote a literal p or ¬p. An environment declaration is an objective
formula denoted by ψl(p) with intended meaning that l(p) is bound to be true
if ψl(p) holds. An agent declaration is an objective formula denoted by ψi

p with
intended meaning that agent i controls p if ψi

p holds.
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Definition 21. A declaration structure is a tuple DS = (Ag,At,De,DAg),
where

(1) Ag = {1, . . . , n} is a finite non-empty set of agents;
(2) At = {p1, . . . , pk} is a finite non-empty set of propositional variables; a

Boolean valuation s : At→ {0, 1} is called a state.
(3) De is a set of environment declarations such that for each literal l(p), there

is a single declaration ψl(p) in De.
(4) DAg is a set of agent declarations such that for each agent i and each propo-

sition p, there is a single declaration ψi
p in DAg.

We impose the following constraints on declarations: For any p ∈ At,
(i) ψ1

p ∨ . . . ∨ ψn
p ∨ ψp ∨ ψ¬p is a tautology, and

(ii) for any two different declarations ψ and ψ′ in {ψ1
p, . . . , ψ

n
p , ψp, ψ¬p},

ψ → ¬ψ′ is a tautology.

Remark. The constraints guarantee that at each state each proposition is con-
trolled by a single agent or determined by the environment. Without the con-
straints, there will be undetermined situations in the system, and will require an
outcome function to solve the problem, which should be avoided in structures
based on propositional control.

Let A = {i1 . . . ij} ⊆ Ag. We write ψA
p for declarations ψi1

p , . . . , ψ
ij
p , where

ψA
p = ψi1

p ∨ . . . ∨ ψij
p . We write A for Ag/A, and i for a singleton {i}.

Let i be an agent, s a state. Control(i, s) is the set of propositions con-
trolled by agent i at state s, i.e. Control(i, s) = {p|s |= ψi

p}. For any A ⊆ Ag,
let Control(A, s) =

⋃{Control(i, s)|i ∈ A}. For each state s, Control(+, s)
(Control(−, s)) is the set of propositions whose values are positively (negatively)
determined by the environment, i.e. Control(+, s) = {p|s |= ψp} (Control(−, s)
= {p|s |= ψ¬p}).

Given a state s and A ⊆ Ag, sA is the set of next states to s that can
be guaranteed by agents A. Formally, s′ ∈ sA if the followings hold for any
proposition p:

(i) s′(p) = 1 if p ∈ Control(+, s).
(ii) s′(p) = 0 if p ∈ Control(−, s).
(iii) s′(p) = s(p) if p ∈ Control(Ag/A, s).

Definition 22. We write s |=DS ϕ to indicate that ϕ is satisfied at state s in
declaration structure DS. |=DS ϕ is to denote that ϕ is satisfied at every state
in DS. The semantic rules for |=DS are as follows:

s |=DS p iff s(p) = 1, where p is a proposition.
s |=DS ¬ϕ iff s 	|=DS ϕ.
s |=DS ϕ1 ∨ ϕ2 iff s |=DS ϕ1 or s |=DS ϕ2.
s |=DS �Aϕ iff s′ |=DS ϕ for some s′ ∈ sA.

It can be checked that a declaration structure DS is semantically equivalent to a
standard Kripke model that consists of all states in DS with obvious valuations,
and with binary relations RA such that sRAt iff t ∈ sA. We will freely use DS
as a Kripke model.
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3 Axiom Systems for Declaration Structures

Fix a declaration structure DS = (Ag,At,De,DAg), a deductive system LDS
for DS (logic for DS ) consists of axioms and rules

(Prop) propositional tautologies,
(KA) �A(ϕ1 → ϕ2)→ (�Aϕ1 → �Aϕ2),
(DA) �Aϕ→ �Aϕ,

(Envi) ψl(p) → �Al(p),
(effect) ψA

p → �Al(p),
(non-effect) l(p) ∧ ¬ψA

p ∧ ¬ψ¬l(p) → �Al(p),
(Comb) �Al(p1)∧ . . .∧ �Al(pj)→ �A(l(p1)∧ . . .∧ l(pj), where p1, . . . , pj are

different propositions.
(Incl) �Aϕ→ �Bϕ, where A ⊆ B,
(MP ) ϕ,ϕ→ ψ/ψ, and
(NA) ϕ/�Aϕ.

Notions of a deduction (Γ �LDS ϕ), a proof (�LDS ϕ) are defined as usual.

Theorem 31. (soundness) For any formula ϕ, �LDS ϕ implies |=DS ϕ.

By a similar argument to CL-PC’s in [9], it can be shown that every formula is
equivalent to an objective one.

Lemma 32. Let A ⊆ Ag, p1, . . . , pj be different propositions. Then

�LDS �A(l(p1) ∧ . . . ∧ l(pj)) ↔
∧

1≤i≤j(ψl(pi) ∨ ψA
pi
∨ (l(pi) ∧ ψA

pi
)).

Proof. First, by (Comb) and properties of modal diamond, we have that

�LDS �A(l(p1) ∧ . . . ∧ l(pj)) ↔ (�Al(p1) ∧ . . . ∧ �Al(pj)).

It is sufficient to show that for each 1 ≤ i ≤ j,

�LDS �Al(pi) ↔ (ψl(pi) ∨ ψA
pi
∨ (l(pi) ∧ ψA

pi
))

For the right to left direction, by (Envi), and DA, (1) �LDS ψl(pi) → �Al(pi). By
(non-effect), (DA) and definition 21-4, (2) �LDS (l(pi) ∧ ψA

pi
) → �Al(pi). From

(1), (2) and (effect), it is a propositional consequence that �LDS (ψl(pi) ∨ ψA
pi
∨

(l(pi) ∧ ψA
pi

))→ �Al(pi).
For the other direction, by (Envi), (3) �LDS �Al(pi) → ¬ψ¬l(pi). By (3) and

definition 21-4, (4) �LDS �Al(pi) → (ψl(pi) ∨ ψA
pi
∨ ψA

pi
). By (non-effect), (5)

�LDS �Al(pi) → (ψl(pi) ∨ ψA
pi
∨ l(pi)). From (4) and (5), it is a propositional

consequence that �LDS �Al(pi)→ (ψl(pi) ∨ ψA
pi
∨ (l(pi) ∧ ψA

pi
)). �

Theorem 33. Any formula ϕ is equivalent in LDS to an objective formula.
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Proof. The proof is by induction on the structure of ϕ. Let ϕ = �Aχ. Other
cases are straightforward. By inductive hypothesis, χ is equivalent to an objective
formula χ′. We write χ′ in its disjunctive normal form as π1∨. . .∨πd, where each
πi is a conjunction of different literals. Then �LDS �Aχ↔ (�Aπ

1 ∨ . . . ∨ �Aπ
d).

By lemma 32, each �Aπ
i is equivalent to an objective formula. �

As having been noted in [9], the translation does not imply that the cooperation
logic is redundant, since it involves an exponential blow-up in the size of a
formula. Theorem 33 gives a procedure of computing an objective formula for
any given formula ϕ. We will use T (ϕ) to denote the objective formula.

Definition 34. (Canonical model) Given a LDS system, we define its canonical
model as a tuple M can

LDS = (Scan, Rcan, θcan), where Scan is the set of LDS
maximal consistent sets; Rcan = {Rcan

A |A ⊆ Ag} and ΓRcan
A Δ iff for all ϕ ∈

Δ, �Aϕ ∈ Γ , or equivalently, iff for all �Aϕ ∈ Γ , ϕ ∈ Δ; θcan(Γ, p) = 1 iff
p ∈ Γ .

Lemma 35. (Truth lemma) Γ |=Mcan
LDS

ϕ iff ϕ ∈ Γ .

Lemma 36. M can
LDS is isomorphic to DS.

Proof. We define a function f from M can
LDS to DS such that for any proposition p,

f(Γ )(p) = 1 iff p ∈ Γ . Clearly f is indeed a function. Suppose that f(Γ ) = f(Δ).
Then Γ and Δ contains exactly the same literals, and therefore contains the
same objective formulas. By theorem 33, Γ = Δ. Thus f is an injection. Given a
state s, {p|s(p) = 1} is consistent and can be extended to a maximal consistent
set Γ . Since f(Γ ) = s, f is a surjection. clearly Γ and f(Γ ) satisfy the same
propositions.

It is left to prove that ΓRcan
A Δ iff f(Γ )RAf(Δ). For the left to right direction,

assume that f(Γ )RAf(Δ) does not hold. Then we have two cases:
Case 1: For some proposition p such that f(Γ ) |=DS ψl(p), f(Δ) 	|=DS l(p).

Then l(p) 	∈ Δ. Since ψl(p) is objective, and Γ and f(Γ ) satisfy the same
propositions, we have Γ |=Mcan

LDS
ψl(p). By truth lemma, ψl(p) ∈ Γ . By (Envi),

�Al(p) ∈ Γ . Then for all Δ′ such that ΓRcan
A Δ′, l(p) ∈ Δ′. Thus ΓRcan

A Δ does
not hold.

Case 2: f(Γ )(p) 	= f(Δ)(p) for some p ∈ Control(Ag/A, f(Γ )). By definition
21-4, f(Γ ) |=DS ¬ψA

p and f(Γ ) |=DS ¬ψ¬p. Since ¬ψA
p and ¬ψ¬p are objective,

similarly we have ¬ψA
p ∈ Γ and ¬ψ¬p ∈ Γ . Without losing generality, we assume

that f(Γ )(p) = 1 and f(Δ)(p) = 0. Then p ∈ Γ and p 	∈ Δ. By (non-effect),
�Ap ∈ Γ . Then for all Δ′ such that ΓRcan

A Δ′, p ∈ Δ′. We conclude that ΓRcan
A Δ

does not hold.
For the other direction, assume that f(Γ )RAf(Δ). Let ϕ be any formula in Δ.

Let π be the conjunction of all literals in Δ. By theorem 33, �LDS π → ϕ. Then
�LDS �Aπ → �Aϕ. Let l(p) be a literal such that l(p) ∈ Δ. Then f(Δ) |=DS l(p).
By the semantical definition, f(Γ ) |=DS ψl(p)∨ψA

p ∨(l(p)∧ψA
p ). Since the formula

is objective, we have ψl(p) ∨ ψA
p ∨ (l(p) ∧ ψA

p ) ∈ Γ . By lemma 32, �Aπ ∈ Γ . We
conclude that �Aϕ ∈ Γ . �
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Theorem 37. (completeness) LDS is complete with respect to the semantics
on DS, i.e. for any formula ϕ, |=DS ϕ implies �LDS ϕ .

Theorem 38. Let DS and DS′ be different declaration structures based on the
same propositions and agents. Then there exists a formula ϕ such that �LDS ϕ
and 	�LDS′ ϕ.

Proof. We use ψ to denote declarations in DS, and ψ′ to denote declarations in
DS′. Let

ϕA
p = ψA

p ↔ (�Ap ∧ �A¬p), where A ⊆ Ag,
ϕ+

p = ψp ↔ �∅p ∧ ¬(�Agp ∧ �Ag¬p),
ϕ−

p = ψ¬p ↔ �∅¬p ∧ ¬(�Agp ∧ �Ag¬p).
ϕ′A

p , ϕ′+
p , ϕ′−

p are similarly defined. It is easy to check that |=MDS ϕA
p ∧ϕ+

p ∧ϕ−
p

and |=MDS′ ϕ
′A
p ∧ ϕ′+

p ∧ ϕ′−
p .

Since declarations in DS and DS′ are different, there exists a proposition
p such that one of the following pairs are inequivalent: (ψp, ψ

′
p), (ψ¬p, ψ

′
¬p),

(ψA
p , ψ

′A
p ) for A ⊆ Ag. Consider the case where 	� ψA

p ↔ ψ′A
p . Other cases are

similar.
Suppose that |=MDS′ ψ

A
p ↔ (�Ap∧�A¬p). Since |=MDS′ ψ

′A
p ↔ (�Ap∧�A¬p),

we have that |=MDS′ ψA
p ↔ ψ′A

p . Since ψA
p and ψ′A

p are objective, and every
propositional evaluation is included in MDS′ , we have that |= ψA

p ↔ ψ′A
p . Con-

tradict to 	� ψA
p ↔ ψ′A

p . Thus, 	|=MDS′ ψA
p ↔ (�Ap ∧ �A¬p). By coherence

and completeness theorem, we conclude that �LDS ψA
p ↔ (�Ap ∧ �A¬p) and

	�LDS′ ψA
p ↔ (�Ap ∧ �A¬p). �

LDS is a deductive system for individual declaration structures. A deductive
system LDSg for general declaration structures can be constructed from each
LDS due to the facts that any formula is equivalent to an objective one, and
the alphabet is finite. LDSg will be such that �LDSg ϕ iff |=DS ϕ for every
declaration structure DS. We leave details of the construction.

4 More about Declarations

Fixing a set of agents and a set of propositions, behaviors of cooperation modali-
ties are totally determined by declarations. In order to obtain desired properties
of coalitions, we can impose more constraints on declarations besides the two in
definition 21-4

Let Ψ = {ψj
pi
|1 ≤ i ≤ k, 1 ≤ j ≤ n}∪{ψl(pi)|1 ≤ i ≤ k}∪At. A constraint (on

declarations) is a Boolean combinations of elements in Ψ . Note that declarations
ψ are prime in a constraint, though they are objective formulas in LDS. Each
constraint defines a set of declaration structures. A simple example is a constraint
ψp ∨ ψ¬p that defines the set of declaration structures in which proposition p is
always not controlled by any agent. We say that a declaration structure satisfies
a constraint if the constraint is a tautology in the structure.
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First, we consider for each given formula its corresponding constraint. It is by
theorem 33 that we can construct an objective formula T (ϕ) that is equivalent
to any given ϕ. It follows that any property of coalitions (any formula) can be
fulfilled by specifying certain declarations.

Theorem 41. For any formula ϕ, �LDS ϕ if and only if DS satisfies T (ϕ)
(where T (ϕ) is understood as a constraint, not a formula).

The property that p is not controlled by any agent is formalized as ¬(�Agp ∧
�Ag¬p). The formula is translated by T into ¬((ψp ∨ ψAg

p ∨ (p ∧ ψ∅
p) ∧ (ψ¬p ∨

ψAg
p ∨ (¬p ∧ ψ∅

p)), which can be reduced to ψp ∨ ψ¬p.
The reverse is also true, that is, each constraint corresponds to a modal for-

mula. Let [χ] be a modal formulas that is obtained from a constraint χ by
respectively substituting (�Ap ∧ �A¬p) and �Agl(p) for each occurrence of ψA

p

and ψl(p).

Theorem 42. For each constraint χ, DS satisfies χ if and only if �LDS [χ].

Now we consider the relationship between constraints and property of Kripke
models. For example, it is easy to see that for each RA in DS, RA is reflexive if
and only if DS satisfies

∧
1≤i≤k((ψpi → pi)∧(ψ¬pi → ¬pi)). For a general result,

we use the standard translation STx defined in [2] (page 84). For each modal
formula ϕ, STx(ϕ) is a first order formula with a single free variable x. Without
introducing confusion, DS |= ∀xSTx(ϕ) means that sentence ∀xSTx(ϕ) is true
in the first order model DS. Readers shall consult [2] for details.

Theorem 43. For each constraint χ, DS |= ∀xSTx([χ]) if and only if DS
satisfies χ.

It can be verified that ∀xSTx[
∧

1≤i≤k((ψpi → pi) ∧ (ψ¬pi → ¬pi))] is equivalent
to that ∀x(xRAx) for all A ⊆ Ag (or for a single A ⊆ Ag).

5 Complexity

LDS model checking is the problem of finding whether or not a state in a
declaration structure satisfies a given formula. Our algorithm is much similar to
the one for CL-PC presented in [9] (figure 4, page 108):

function eval(ϕ, (Ag,At,De, DAg), s) returns 0 or 1
if ϕ ∈ At then

return s(ϕ)
else if ϕ = ¬ϕ1 then

return 1 − eval(ϕ1, (Ag,At, De, DAg), s)
else if ϕ = ϕ1 ∨ ϕ2 then

return max(eval(ϕ1, (Ag,At,De, DAg), s), eval(ϕ2, (Ag,At, De, DAg), s)
else if ϕ = �Aϕ1 then

for each s′ ∈ sA do
if eval(ϕ1, (Ag,At, De, DAg), s

′) then
return 1
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end if
end for

end if
end function

The only extra cost of our algorithm in contrast to CL-PC’s is in the case of
ϕ = �Aϕ1, where we have to calculate sA. This can be done by a pre-procedure
that determines for each declarations a set of valuations that satisfy it, which is a
Boolean satisfiability problem and is NP-complete. Since CL-PC model checking
problem is PSPACE-complete. We conclude that model checking problem of
LDS is as tractable as CL-PC’s.

Theorem 51. The model checking problem of LDS is PSPACE-complete.

LDS satisfiability checking is the problem that given a formula ϕ and a decla-
ration structure DS, whether or not ϕ is true at some state of DS. The present
version of satisfiability checking is different from the one in [9], where the only
argument is a formula ϕ, and it is to check whether or not ϕ is true at some state
of some structure. We argue that the present version is a more important prob-
lem to be checked, because properties of a concrete declaration structure and its
deductive system LDS are usually in question. Properties of general declaration
structures and its system LDSg is less important.

Theorem 52. The satisfiability checking problem of LDS is PSPACE-complete.

Proof. Given a declaration structure DS and a formula ϕ, the problem is checked
with a non-deterministic algorithm as follows: First guess a state s in DS; then
determine whether or not ϕ is true at s. By theorem 51, the problem is in
NPSPACE, therefore in PSPACE.

To see PSPACE hardness, we reduce QSAT to the LDS satisfiability problem
in the same way as in the proof of theorem 5.1 in [9], where a CL-PC model is cre-
ated for each given quantified Boolean formula α = ∃x1∀x2∃x3 . . .Qxmϕ(x1, x2,
x3, . . . , xm). Since the valuation in the CL-PC model is irrelevant to the proof, we
can regard it as a declaration structure that consists of agents 1, 2, 3, . . . ,m and
propositions x1, x2, x3, . . . , xm, and declarations ψl(xi) = False and ψi

xi
= True

for each i ∈ {1, . . . ,m}. We conclude that α is true iff �1�2 �3 . . .Gmϕ(x1, x2, x3,
. . . , xm) is satisfiable in the declaration structure, where G is � if Q is ∃, � if Q
is ∀. �

6 Conclusion

We have defined a notion of declaration structures as a general framework of
propositional control. We used the same type of cooperation operators as CL-
PC’s to express properties of the so-called contingent ability. It was shown in
[9] that this seemingly weaker notion of ability is enough for defining α-ability
and β-ability. The former is captured in ATL and CL. An obvious challenge for
future research is to answer the question: How far can we go along this road?
Models of CL-PC is a restricted version of declaration structures, and declaration
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structures is a restricted version of models of ATL and CL. Is there a further
generalization of declaration structures that is equivalent to models of ATL and
CL, but keep the key idea of propositional control of no prescribed outcome
functions? A generalization of allowing disjunctive choices of agents would be
the first step and is not discussed in the paper. If we have had a full general
structure in propositional control, we could investigate the possibility of a logic
of propositional control that has the full power of ATL and CL. That certainly
requires temporal operators in the logic.
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Abstract. The aim of this work is propose a logical approach to intention dy-
namics based on the notion of assignment [3, 7]. The function of an assignment
is to associate the truth value of a certain formula ϕ to a propositional atom p.
We combine a static modal logic of belief and choice with three kinds of dynamic
modalities and corresponding three kinds of assignments: assignments operating
on an agent’s beliefs, assignments operating on the agent’s choices and assign-
ments operating on the objective world. An agent’s intention is defined in our
approach as the agent’s choice to perform a given action and two basic opera-
tions on intentions called intention generation and intention reconsideration are
defined as specific kinds of assignments on choices.

1 Introduction

Since the seminal work of Cohen & Levesque [6] aimed at implementing Bratman’s
philosophical theory of intention [5], many formal logics for reasoning about inten-
tions, their dynamics and their relationships with beliefs have been developed (see, e.g.,
[12, 13, 14, 16, 17, 19]). Most of them are frameworks based on a blend of dynamic
logic with doxastic logic, enriched with modal operators for motivational attitudes such
as preferences, goals and intentions. But, although logical analysis of intention dynam-
ics are available in the literature, the issue of a formal semantics for the dynamics of
intentions has received much less attention. Indeed, all previous approaches are mostly
interested in characterizing in the object language the epistemic conditions under which
an agent’s intention persists over time and the epistemic conditions under which an an
agent’s intention is generated, but they do not provide a semantic characterization of
the process of generating an intention and of the process of reconsidering an intention.

The aim of this work is to shed light on this unexplored area by proposing a for-
mal semantics of intention dynamics based on the notion of assignment. The function
of an assignment is to associate the truth value of a certain formula ϕ to a proposi-
tional atom p. We combine a static modal logic including modal operators for belief
and choice with three kinds of dynamic modalities and corresponding three kinds of
assignments: assignments operating on an agent’s beliefs, assignments operating on the
agent’s choices and assignments operating on the objective world. An agent’s intention
is defined in our approach as the agent’s choice to perform a given action and two basic
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operations on intentions called intention generation and intention reconsideration are
defined as specific kinds of assignments on choices.

Assignments were studied before in the literature on modal logic for information dy-
namics. However they were only applied to the dynamics of belief and knowledge [3, 7],
and there is still no application of this notion to the theory of intention. In this paper we
show that assignments are well-suited to model intention dynamics. Indeed, assignments
capture the locality of intention dynamics better than other operations like announce-
ments [8] and upgrades [2, 11], where locality means that the process of reconsidering
(or generating) an agent’s intention does not affect the other intentions of the agent.

The rest of the paper is organized as follows. The first part (Section 2) introduces a
static logic of belief, choice and intention. In the second part (Section 3) we move from
a static perspective on agents’ attitudes to a dynamic perspective. We first present the
syntax and semantics of three kinds of assignments on beliefs, on choices and on the
objective world. Then in Section 4, we analyze the notion of executability preconditions
for assignments. We devote special attention to executability preconditions of assign-
ments which are responsible for the generation (resp. reconsideration) of an intention.
In Section 5 we compare our approach with existing logical approaches to belief and
preference dynamics.

2 A Modal Logic of Beliefs, Choices and Intentions

We introduce a modal logic called L which supports reasoning about three different
kinds of mental attitudes: beliefs, choices (or chosen goals), and intentions.

2.1 Syntax

Let ATM Fact = {f1, f2, . . .} be a nonempty finite set of atoms denoting facts (or state
of affairs), and let ATMAct = {α, β, . . .} be a nonempty finite set of atoms denoting
actions. The atom α is meant to stand for ‘the agent performs a certain action α’. We
also have special atoms of type goodα expressing that ‘performing action α is good
for the agent’. ATMGood is the corresponding set, that is, ATMGood = {goodα|α ∈
ATMAct}. We define ATM = ATMFact ∪ ATMAct ∪ ATMGood to be the set of
atomic formulas. We note p, q, . . . the elements in ATM .

The language L of the logic L is the set of formulas defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [B]ϕ | [C]ϕ

where p ranges over ATM . The other Boolean constructions �, ⊥, ∨, → and ↔ are
defined from ¬ and ∧ in the standard way.

The two modal operators of our logic have the following reading: [B]ϕ means ‘the
agent believes ϕ’ and [C]ϕ means ‘the agent has chosen ϕ’ (or ‘the agent wants ϕ to be
true’). Operators [C] are used to denote the agent’s choices, that is, the state of affairs
that the agent has decided to pursue. Similar operators have been studied in [6, 12, 14].

The following abbreviation will also be convenient for every α ∈ ATMAct :

I(α) def= [C]α.

I(α) is meant to stand for ‘the agent intends to do action α’.
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2.2 Semantics

Models of the logic L (L-models) are tuples F = 〈W,B,C ,V 〉 defined as follows:

– W is a nonempty set of possible worlds or states;
– B ⊆W ×W is a serial, transitive and Euclidean accessibility relation for belief;
– C ⊆W ×W is a serial, transitive and Euclidean accessibility relation for choice;
– V : ATM −→ 2W is a valuation function.

Accessibility relations on W can be viewed as functions from W to 2W . Therefore,
we write B(w) = {v|(w, v) ∈ B} and C (w) = {v|(w, v) ∈ C }. B(w) is the set
of worlds that are compatible with the agent’s beliefs at w (or belief accessible worlds
at w), C (w) is the set of worlds that are compatible with the agent’s choices at w (or
choice accessible worlds at w).

The accessibility relations B and C satisfy the following additional constraints for
every w ∈ W :

S1 if v ∈ B(w) then C (v) = C (w);
S2 if v ∈ C (w) and u ∈ B(v) then u ∈ C (w);
S3 if v ∈ C (w) then v ∈ B(v).

Constraint S1 expresses that the agent’s choices are positively and negatively introspec-
tive (i.e. if v is compatible with the agent’s beliefs at w then the set of worlds which
are compatible with the agent’s choices at w is identical to the set of worlds which are
compatible with the agent’s choices at v). According to constraint S2, the agent always
chooses the states that he considers possible from the states that he chooses. According
to constraint S3, if at state w the agent chooses state v then at v the agent considers v
a possible state. In other words, the agent always chooses that the current state belongs
to the set of states that he considers possible.

Given a model M , a world w and a formula ϕ, we write M,w |= ϕ to mean that
ϕ is true at world w in M . The rules defining the truth conditions of formulas are just
standard for atomic formulas, negation and disjunction. The following are the remaining
truth conditions for [B]ϕ, [C]ϕ:

– M,w |= [B]ϕ iff M, v |= ϕ for all w′ such that v ∈ B(w);
– M,w |= [C]ϕ iff M, v |= ϕ for all w′ such that v ∈ C (w).

We write |=L ϕ if ϕ is valid (i.e. ϕ is true in all L-models). We say that ϕ is satisfiable
if ¬ϕ is not valid.

2.3 Axiomatization

Fig. 1 contains the axiomatization of the logic L. We adopt a standard KD45 logic for
beliefs [9] and a standard KD45 logic for choices [6]. Thus, we have positive and neg-
ative introspection for beliefs (Axioms 4 and 5 for [B]), and we assume that an agent
cannot have inconsistent beliefs (Axiom D for [B]). We assume that if the agent chooses
something then he chooses to choose it and if the agent does not choose something
then he chooses not to choose it (Axioms 4 and 5 for [C]), and we assume that the
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All principles of classical propositional calculus(PC)

All principles of modal logic KD45 for [B](KD45[B])

All principles of modal logic KD45 for [C](KD45[C])

[C]ϕ → [B][C]ϕ(PIntr[C])

¬[C]ϕ → [B]¬[C]ϕ(NIntr[C])

[C]ϕ → [C][B]ϕ(AchieveAware)

[C](ϕ → ¬[B]¬ϕ)(NotIncorrectBel)

Fig. 1. Axiomatization of L

agent cannot have inconsistent choices (Axiom D for [C]). We have negative and pos-
itive introspection for choices (Axioms PIntr[C] and NIntr[C]). Moreover, we suppose
that if the agent chooses ϕ then he chooses to believe ϕ (Axiom AchieveAware). In
other words, if the agent wants that ϕ will be true then he wants to achieve a state in
which he believes that ϕ is true (i.e. he wants to achieve ϕ knowingly). Finally, we sup-
pose that the agent always wants that if ϕ is true then he does not believe ¬ϕ (Axiom
NotIncorrectBel). In other words, the agent always wants not to have incorrect beliefs.

We call L the logic axiomatized by the principles given in Fig. 1. We write �L

ϕ if ϕ is a L-theorem. For instance, the following theorem is provable by Axiom
NotIncorrectBel, Axiom K and necessitation rule for [C]:

�L [C][B]ϕ→ [C]ϕ.

The theorem just says that if the agent wants to acquire a certain belief then he wants
the content of this belief to be true. Therefore, our logic does not allow self-deception.
For example, it excludes the situation of a person who wants to believe that God exists
in order to feel better when thinking about the afterlife (i.e. [C][B]GodExists) and, at
the same time, she does not want that God exists (i.e. ¬[C]GodExists).

It is to be noted that [B]ϕ ∧ [C]¬ϕ are satisfiable in our logic. For example, our logic
allows the situation of a person who smokes and believes this (i.e. [B]smoke) and, she
decides to stop smoking (i.e. [C]¬smoke).

Theorem 1. The logic L is completely axiomatized by the principles in Fig. 1.

Proof. It is a routine task to check that the axioms of the logic L correspond one-to-one
to their semantic counterparts on the models. In particular, Axioms D, 4 and 5 for [B]
correspond to the seriality, transitivity and Euclideanity of the accessibility relation B.
Axioms D, 4 and 5 for [C] correspond to the seriality, transitivity and Euclideanity of
C . Axioms PIntr[C] and NIntr[C] together correspond to the constraint S1. Finally, Ax-
iom AchieveAware corresponds to S2 and Axiom NotIncorrectBel corresponds to S3.
It is routine, too, to check that all of our axioms are in the Sahlqvist class. This means
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that the axioms are all expressible as first-order conditions on models and that they are
complete with respect to the defined model classes, cf. [4, Th. 2.42]. ��

3 From Static to Dynamic Mental States

In this section we extend the logic L of Section 2 by modal operators for objective
world change and mental attitude change. We distinguish two kinds of mental attitude
change: belief change and choice change. We call Ldyn the extended logic.

3.1 Syntax

Atomic events for world change (or atomic world assignments) are of the form p
W ϕ

whereas atomic events for belief change (or atomic belief assignments) and for choice

change (or atomic choice assignments) are of the form p
B ϕ and p

C ϕ: p
B ϕ is the

event ‘the truth value of ϕ is assigned to p in the agent’s beliefs’; p
C ϕ is the event

‘the truth value of ϕ is assigned to p in the agents’ choices’; p
W ϕ is the event ‘the

truth value of ϕ is assigned to p in the objective world’.

We respectively note BASGB = {p B ϕ|p ∈ ATM and ϕ ∈ L}, BASGC =
{p C ϕ|p ∈ ATM and ϕ ∈ L} and BASGW = {p W ϕ|p ∈ ATM and ϕ ∈ L} the
set of atomic belief assignments, the set of atomic choice assignments and the set of
atomic world assignments. We define EVT = BASGB ∪ BASGC ∪ BASGW to be
the set of atomic assignments.

The following two types of atomic choice assignments characterize two basic
operations on an agent’s intentions:

gen(α) def= α
C �;

rec(α) def= α
C ⊥.

The event gen(α) is the agent’s mental operation of generating the intention to do
action α, whereas the event rec(α) is the agent’s mental operation of reconsidering (or
erasing) his intention to perform action α.1

Complex assignments are defined as partial functions from ATM to L. We distin-
guish three kinds of complex assignments: complex belief assignments, complex choice
assignments and complex world assignments. We note σB, σ

′
B , . . . the complex belief

assignments, σC , σ
′
C , . . . the complex choice assignments and σW , σ′

W , . . . the complex
world assignments. Moreover, we respectively note CASGB , CASGC and CASGW

the set of all complex belief assignments, the set of all complex choice assignments
and the set of all complex world assignments. Given a complex belief assignment
σB , D(σB) is the domain of σB and C(σB) is its codomain. Similarly, D(σC) (resp.
D(σW )) is the domain of the complex choice (resp. world) assignment σC (resp. σW )

1 For some different approaches to intention generation and intention reconsideration, see e.g.
[10, 13].
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and C(σC) (resp. C(σW )) is its codomain. We extend partial functions to total func-
tions by stipulating that when p /∈ D(σB) then σB(p) = p. Similarly, we stipulate that
σC(p) = p when p /∈ D(σC), and σW (p) = p when p /∈ D(σW ).

For every complex belief assignment σB , we define

s(σB) = {p B σB(p)|p ∈ D(σB)}
to be the corresponding set of atomic belief assignments. Similarly, for every complex
choice assignment σB and complex world assignments σW

s(σC) = {p C σC(p)|p ∈ D(σC)} and

s(σW ) = {p W σW (p)|p ∈ D(σW )}
are the corresponding sets of atomic choice and atomic world assignments.

The elements of ASG are all sets including a set of atomic belief assignments, a set
of atomic choice assignments and a set of atomic world assignments, that is,

ASG = {{s(σB),s(σC),s(σW )}|σB ∈ CASGB , σC ∈ CASGC , σW ∈ CASGW }.
The language Ldyn of the logic Ldyn is defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [B]ϕ | [C]ϕ | [Σ:W ]ψ | [Σ:B]ψ | [Σ:C]ψ

where p ranges over ATM and Σ ranges over ASG .

The formula [Σ:W ]ψ is meant to stand for: ψ holds in the objective world after the
occurrence of the event Σ. The formula [Σ:B]ψ is meant to stand for: ψ holds in the
context of the agent’s beliefs after the occurrence of the event Σ. The formula [Σ:C]ψ
is meant to stand for: ψ holds in the context of the agent’s choices after the occurrence
of the event Σ. The duals of the operators [Σ:W ], [Σ:B] and [Σ:C] are defined as usual:

〈Σ:W〉ψ def= ¬[Σ:W ]¬ψ, 〈Σ:B〉ψ def= ¬[Σ:B]¬ψ, and 〈Σ:C〉ψ def= ¬[Σ:C]¬ψ.

3.2 Semantics

We introduce a function Pre from EVT to L which returns the executability precondi-
tions of every atomic belief assignment, of every atomic choice assignment and of every
atomic world assignment. The function Pre is generalized to the events Σ in ASG in a
straightforward manner. Suppose Σ = {s(σB),s(σC),s(σW )}. Then:

Pre(Σ) =
∧

p
B�ϕ∈s(σB)

Pre(p B ϕ)∧
∧

p
C�ϕ∈s(σC)

Pre(p C ϕ)∧
∧

p
W�ϕ∈s(σW )

Pre(p W ϕ).

Note that this formula is indeed in the language and is not infinitary. Indeed, the set of
atoms ATM has been supposed to be finite.

For everyΣ ∈ ASG , Pre(Σ) denotes the executability preconditions of the eventΣ,
i.e. the conditions which are together necessary and sufficient to ensure that the event
Σ will possibly occur.

Suppose thatΣ = {s(σB),s(σC),s(σW )}. In order to give semantics to the operators
[Σ:W ], [Σ:B] and [Σ:C] we define the model
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MΣ = 〈WΣ ,BΣ ,C Σ,V Σ〉
which results from the occurrence of the eventΣ in the modelM . The elements ofMΣ

are defined as follows:

WΣ ={wW |w ∈W and M,w |= Pre(Σ)}∪
{wB|w ∈ W and M,w |= Pre(Σ)}∪
{wC |w ∈W and M,w |= Pre(Σ)};

BΣ ={(wW , vB)|v, w ∈W and (w, v) ∈ B}∪
{(wB , vB)|v, w ∈ W and (w, v) ∈ B}∪
{(wC , vC)|v, w ∈W and (w, v) ∈ B};

C Σ ={(wW , vC)|v, w ∈ W and (w, v) ∈ C }∪
{(wB , vC)|v, w ∈W and (w, v) ∈ C }∪
{(wC , vC)|v, w ∈W and (w, v) ∈ C };

V Σ(p) ={wW |w ∈W and M,w |= σW (p)}∪
{wB|w ∈ W and M,w |= σB(p)}∪
{wC |w ∈W and M,w |= σC(p)}.

MΣ is obtained by creating three copies of each state of the original model M (a copy
for the objective world, a copy for belief, a copy for choice), and by restricting the
original model to the set of states in which the executability preconditions of Σ hold.
Moreover, for every atom p, the effect of a model update by Σ is to assign the truth
value of σB(p) to the atom p in all belief copies of the original states, to assign the truth
value of σC(p) to the atom p in all choice copies, and to assign the truth value of σW (p)
to the atom p in all world copies.

For every world copy wW , at wW the agent considers possible all belief copies of
those states that he considered possible before the event Σ, and he chooses all choice
copies of those states that he chose before the event Σ.

For every belief copy wB , at wB the agent considers possible all belief copies of
those states that he considered possible before the event Σ, and he chooses all choice
copies of those states that he chose before the event Σ.

For every choice copy wC , at wC the agent considers possible all choice copies of
those states that he considered possible before the event Σ, and he chooses all choice
copies of those states that he chose before the event Σ.

This construction of the updated model MΣ ensures that the agent is aware that
his choices have been changed accordingly so that the properties of positive and in-
trospection over the agent’s choices (constraint S1) are preserved after the occurrence
of the event Σ. Moreover, it ensures that the agent chooses that his beliefs change as
his choices change so that the constraints S2 and S3 are preserved after the occurrence
of the event Σ. On the contrary, the operation of world change is independent of the
operations of belief and choice change, and the operations of belief and choice change
are independent of the operation of world change.

Theorem 2. If M is an L-model then MΣ is an L-model.
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Proof. It is just trivial to prove that our operation of model update preserves the serial-
ity, transitivity and Euclideanity of the accessibility relations B and C .

We just prove that the constraints S1, S2 and S3 are also preserved.
We start with S1. Assume vB ∈ BΣ(wW ) and uC ∈ C Σ(vB). It follows that

v ∈ B(w) and u ∈ C (v) and M,w |= Pre(Σ) and M,u |= Pre(Σ). Then, by
constraint S1, we have u ∈ C (w). Therefore, uC ∈ C Σ(wW ). In a similar way we
can prove that if vB ∈ BΣ(wB) and uC ∈ C Σ(vB) then uC ∈ C Σ(wB), and if
vC ∈ BΣ(wC) and uC ∈ C Σ(vC) then uC ∈ C Σ(wC).

Now, assume vC ∈ C Σ(wW ) and uB ∈ BΣ(wW ). It follows that v ∈ C (w) and
u ∈ B(w) and M, v |= Pre(Σ) and M,u |= Pre(Σ). Then, by constraint S1, we
have v ∈ C (u). Therefore, vC ∈ C Σ(uB). In a similar way we can prove that if
vC ∈ C Σ(wB) and uB ∈ BΣ(wB) then vC ∈ C Σ(uB), and if vC ∈ C Σ(wC) and
uC ∈ BΣ(wC) then vC ∈ C Σ(uC).

Let us prove S2. Assume vC ∈ C Σ(wW ) and uC ∈ BΣ(vC). It follows that v ∈
C (w) and u ∈ B(v) and M,w |= Pre(Σ) and M,u |= Pre(Σ). Then, by constraint
S2, we have u ∈ C (w). We can conclude that uC ∈ C Σ(wW ). In a similar way we
can prove that if vC ∈ C Σ(wB) and uC ∈ BΣ(vC) then uC ∈ C Σ(wB); and if
vC ∈ C Σ(wC) and uC ∈ BΣ(vC) then uC ∈ C Σ(wC).

Let us prove S3. Assume vC ∈ C Σ(wW ). It follows that v ∈ C (w) and M, v |=
Pre(Σ). Then, by constraint S3, we have that v ∈ B(v). Therefore, vC ∈ BΣ(vC).

In a similar way we can prove that if vC ∈ C Σ(wB) then vC ∈ BΣ(vC) and if
vC ∈ C Σ(wC) then vC ∈ BΣ(vC). ��
The truth conditions are those of Section 2 plus the following:

– M,w |= [Σ:W ]ψ iff, if M,w |= Pre(Σ) then MΣ , wW |= ψ;
– M,w |= [Σ:B]ψ iff, if M,w |= Pre(Σ) then MΣ, wB |= ψ;
– M,w |= [Σ:C]ψ iff, if M,w |= Pre(Σ) then MΣ, wC |= ψ;

Note that 〈Σ:W〉� and 〈Σ:B〉� and 〈Σ:C〉� are individually equivalent to the exe-
cutability preconditions of Σ (i.e. Pre(Σ)). Therefore 〈Σ:W〉�, 〈Σ:B〉� and 〈Σ:C〉�
should be respectively read ‘Σ will possibly occur in the objective world’, ‘Σ will
possibly occur in the context of the agent’s beliefs’ and ‘Σ will possibly occur in the
context of the agent’s choices’.

In Section 4 we will specify in detail four general kinds of executability precon-

ditions: the executability preconditions of the atomic world assignments p
W ⊥ and

p
W � (with p ∈ ATM Fact ); the executability preconditions of the atomic world as-

signment α
W � (with α ∈ ATMAct ); the executability preconditions of the atomic

choice assignment gen(α); the executability preconditions of the atomic choice assign-
ment rec(α). The first are the executability preconditions of the event which consists in
making true (resp. false) a certain objective fact p; the second are executability precon-
ditions of the intentional action α; the third are the executability preconditions of the
process of generating the intention to doα; the fourth are the executability preconditions
of the process reconsidering the intention to do α.

A discussion about the relationships between the present approach and the action/
event model with assignments à la [3, 7] is given in Section 5.
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3.3 Axiomatization

We have reduction axioms for the three operators [Σ:W ], [Σ:B] and [Σ:C].

Theorem 3. Suppose Σ = {s(σB),s(σC),s(σW )}. Then, the following schemata are
valid in Ldyn :

R1a. [Σ:W ]p↔ (Pre(Σ)→ σW (p))
R1b. [Σ:B]p↔ (Pre(Σ) → σB(p))
R1c. [Σ:C]p↔ (Pre(Σ)→ σC(p))
R2a. [Σ:W ]¬ϕ↔ (Pre(Σ)→ ¬[Σ:W ]ϕ)
R2b. [Σ:B]¬ϕ↔ (Pre(Σ)→ ¬[Σ:B]ϕ)
R2c. [Σ:C]¬ϕ↔ (Pre(Σ)→ ¬[Σ:C]ϕ)
R3a. [Σ:W ](ϕ ∧ ψ)↔ ([Σ:W ]ϕ ∧ [Σ:W ]ψ)
R3b. [Σ:B](ϕ ∧ ψ) ↔ ([Σ:B]ϕ ∧ [Σ:B]ψ)
R3c. [Σ:C](ϕ ∧ ψ) ↔ ([Σ:C]ϕ ∧ [Σ:C]ψ)
R4a. [Σ:W ][B]ϕ↔ (Pre(Σ)→ [B][Σ:B]ϕ)
R4b. [Σ:B][B]ϕ↔ (Pre(Σ)→ [B][Σ:B]ϕ)
R4c. [Σ:C][B]ϕ↔ (Pre(Σ) → [B][Σ:C]ϕ)
R5a. [Σ:W ][C]ϕ↔ (Pre(Σ)→ [C][Σ:C]ϕ)
R5b. [Σ:B][C]ϕ↔ (Pre(Σ)→ [C][Σ:C]ϕ)
R5c. [Σ:C][C]ϕ↔ (Pre(Σ) → [C][Σ:C]ϕ)

Proof. We just prove R4a as an example.

M,w |= [Σ:W ][B]ϕ
IFF if M,w |= Pre(Σ) then MΣ, wW |= [B]ϕ
IFF if M,w |= Pre(Σ) then, if vB ∈ BΣ(wW ) then MΣ , vB |= ϕ
IFF if M,w |= Pre(Σ) then, if v ∈ B(w) and M,w |= Pre(Σ) and M, v |= Pre(Σ)
then MΣ, vB |= ϕ
IFF if M,w |= Pre(Σ) then, if v ∈ B(w) and M, v |= Pre(Σ) then MΣ, vB |= ϕ
IFF if M,w |= Pre(Σ) then, if v ∈ B(w) then if M, v |= Pre(Σ) then MΣ, vB |= ϕ
IFF if M,w |= Pre(Σ) then, if v ∈ B(w) then M, v |= [Σ:B]ϕ
IFF if M,w |= Pre(Σ) then M,w |= [B][Σ:B]ϕ
IFF if M,w |= Pre(Σ)→ [B][Σ:B]ϕ. ��
We call Ldyn the logic axiomatized by the principles of the logic L plus the axiom
schemata of Theorem 3 and the rule of replacement of proved equivalence. We write
�Ldyn ϕ if ϕ is a Ldyn -theorem. The following are examples of Ldyn -theorems about
intention generation and intention reconsideration.
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Proposition 1

�Ldyn [{∅,{gen(α)},∅}:W ]I(α)(1a)

�Ldyn [{∅,{rec(α)},∅}:W ]¬I(α)(1b)

�Ldyn [{∅,{gen(α)},∅}:C]α(1c)

�Ldyn [{∅,{rec(α)},∅}:C]¬α(1d)

�Ldyn ¬I(β) → [{∅,{gen(α)},∅}:W ]¬I(β) if α 	= β(1e)

�Ldyn I(β) → [{∅,{rec(α)},∅}:W ]I(β) if α 	= β(1f)

Proof. We prove Theorem (1a) as an example. [∅,{gen(α)},∅:W ]I(α) is equivalent to
Pre(Σ) → [C][∅,{gen(α)},∅:C]α (by reduction axiom R5a. and rule of replacement
of proved equivalences). The latter is equivalent to Pre(Σ) → [C](Pre(Σ) → �) (by
reduction axiom R1c. and rule of replacement of proved equivalences) which in turn is
equivalent to �. ��
According to Theorem 1a, after generating the intention to do α, the agent intends to do
α in the objective world. According to Theorem 1b, after reconsidering the intention to
do α, the agent does not intend to do α in the objective world. Theorems 1c and 1d ex-
press the corresponding effects of the processes of intention generation and of intention
reconsideration in the context of the agent’s choices: after generating (resp. reconsid-
ering) the intention to do α, the agent performs (resp. does not perform) action α in
the context of his choices. Theorems 1e and 1f express that the operations of intention
generation and of intention reconsideration are local operations, that is, the process of
generating (resp. reconsidering) an intention does not affect the other intentions of the
agent: if α and β are different actions and the agent intends (resp. does not intend) to do
β then, after reconsidering (resp. generating) the intention do α, the agent will intend
(resp. not intend) to do β.

Theorem 4. The logic Ldyn is completely axiomatized by principles in Fig. 1 together
with the schemata of Theorem 3 and the rule of replacement of proved equivalence.

Proof. By means of the principles R1a-R6 in Theorem 3, it is straightforward to prove
that for every Ldyn formula there is an equivalent L formula. In fact, each reduction
axiom R1a-R5c, when applied from the left to the right by means of the rule of re-
placement of proved equivalence R6, yields a simpler formula, where ‘simpler’ roughly
speaking means that the dynamic operators are pushed inwards. Once the dynamic op-
erators attain an atom they are eliminated by one of the equivalences R1a-R1c. Hence,
the completeness of Ldyn is a straightforward consequence of Theorem 1. ��

4 Applications

It is now time to study in detail the notion of executability preconditions introduced in
Section 3.2. We will study four general kinds of executability preconditions: the exe-
cutability preconditions of the event which consists in making true (resp. false) a certain
objective fact p; the executability preconditions of an intentional action; the executabil-
ity preconditions of a process of intention generation; the executability preconditions
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of a process of intention reconsideration. Thus, we will be able to clarify why the dis-
tinction between atoms denoting facts and atoms denoting actions given in Section 2.1
is not merely a syntactic distinction. On the contrary, it has concrete effects on the dy-
namic level of our model. Indeed, we will show that the executability preconditions for
assignments to atoms denoting facts are qualitatively different from the executability
preconditions for assignments to atoms denoting actions.

Positive and negative effect preconditions. Executability preconditions can be used to
describe how the world will change after the occurrence of a certain action, that is, how
a fact p might become true (resp. false) when the agent acts in a certain way. In way
similar to [15], we denote with γ+(α, p) the positive effect preconditions of action α
with respect to p (i.e. the conditions which ensure that p will be settled to be true when
action α occurs) and with γ−(α, p) the negative effect preconditions of action α with
respect to p (i.e. the conditions which ensure that p will be settled to be false when ac-
tion α occurs). For example, we might suppose that γ+(pullTrigger , scaredEnemy) =
holdsGun ∧ loadedGun , i.e. the positive effect preconditions of the action ‘pull the
trigger of the gun’ with respect to the fact ‘the enemy gets scared’ consist in ‘holding a
loaded gun in a hand’. As the following definition highlights, we can say that a certain
fact will possibly become true (resp. false) if and only if, there exists an action α per-
formed by the agent, the positive (resp. negative) effect preconditions of α with respect
to p hold and there is no action β performed by the agent such that the negative (resp.
positive) effect preconditions of β with respect to p hold.

Definition 1. For every p ∈ ATM Fact we define:

Pre(p W �) =
∨

α∈ATMAct (α ∧ γ+(α, p)) ∧ ¬∨β∈ATMAct (β ∧ γ−(α, p));

Pre(p W ⊥) =
∨

α∈ATMAct (α ∧ γ−(α, p)) ∧ ¬∨β∈ATMAct (β ∧ γ+(α, p)).

Executability preconditions for action execution. The following general principle clari-
fies the connection between mental level and intentional action level (a similar principle
is discussed in [12]).

(*) An action α will be possibly performed by an agent if and only if the agent has the
intention to perform action α and he does not believe that doing α is something bad
for him.

Therefore, if an agent intends to a certain action α and, before starting to perform the
action, he learns that doing α is something bad for him, he will not start to execute the
action and he will reconsider his corresponding intention (see Principle *** below). As
the following definition highlights, the Principle * can be expressed in our logic.

Definition 2. For every α ∈ ATMAct we define:2

Pre(α W �) = I(α) ∧ ¬[B]¬goodα.

From Definition 2 it follows that all action occurrences of type α are occurrences of
intentional actions.

2 We here suppose that the agent believes that doing an action α is bad for him if and only if he
believes doing α is not good for him.
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Executability preconditions for intention generation and for intention reconsideration.
The executability preconditions of a process of intention generation correspond to gen-
eral principles of instrumental rationality which specify the beliefs that an agent uses
as premises of a practical argument (viz. the argument that concludes in an intention).
Such beliefs are generally called reasons for acting or reasons for intending and have
been extensively studied in the philosophical literature (see, e.g., [1, 18]).

We here suppose that an agent will possibly decide to perform a certain action (and
will possibly form the corresponding intention) on the basis of the following general
principle of instrumental rationality:

(**) An agent will possibly form the intention to perform action α if and only if, he
does not have this intention and he believes that doing action α is something good
for him.

The Principle ** can be expressed in our logic in terms of the executability precondi-
tions of the event gen(α).

Definition 3. For every α ∈ ATMAct we define:

Pre(gen(α)) = ¬I(α) ∧ [B]goodα.

The following principle is about intention reconsideration.

(***) An agent will possibly reconsider his intention to perform action α if and only
if, he intends to perform action α and he believes that performing action α is
something bad for him.

The Principle *** can be expressed in our logic in terms of the executability precondi-
tions of the event rec(α).

Definition 4. For every α ∈ ATMAct we define:

Pre(rec(α)) = I(α) ∧ [B]¬goodα.

An example. We provide a general example in order to show how Ldyn can be con-
cretely used to model intention dynamics. Consider the scenario represented in Fig. 2.

r o b o t l i on

Fig. 2. Example

The agent is a robot moving in a space with three rooms (left room, middle room,
right room). It can either move right or move left, that is, ATMAct ={moveL,moveR}.
Moreover, if the robot is in the middle room or in the left room and it moves to the
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left, it will be in the left room afterwards. If the robot is in the middle room or in the
left room or in the right room and it moves to the right, it will not be in the left room
afterwards. Finally, if the robot is in the right room and it moves left, it will not be in the
right room afterwards. These three facts are formally expressed by the following three
positive and negative effect preconditions: γ+(moveL, robotL) = robotL ∨ robotM ,
γ−(moveL, robotL) = robotR and γ−(moveR, robotL) = robotL∨robotM ∨robotR.

The robot just entered into the middle room from the left room by moving right, it
has still the intention to move right and it does not have the intention to move left in
order to escape from the middle room:

H1. robotM ∧ ¬robotL ∧ ¬robotR ∧ I(moveR) ∧ ¬I(moveL).

From the middle room the robot can see that a ferocious lion is inside the right room.
Hence, the robot has the following beliefs: it believes that moving right is something
bad for him and it believes that moving left is something good for him. Indeed, if it
moves right it will be eaten by the lion, and if it moves left it will escape from the lion:

H2. [B]¬goodmoveR ∧ [B]goodmoveL.

As the following proposition highlights, the previous Hypothesis H1 and H2 ensure
that the following three-event sequence will possibly occur: the robot will reconsider
its intention to move right and will generate the intention to move left; the robot will
perform the action of moving left; the robot will enter into the left room. Moreover, at
the end of the three-event sequence, the robot will be in the left room.

Proposition 2. �Ldyn (H1 ∧H2)→ 〈{∅,{rec(moveR),gen(moveL)},∅}:W〉
〈{∅,∅,{moveL W �}}:W〉〈{∅,∅,{robotL W �}}:W〉robotL.

5 Related Works and Perspectives

Note that the three operators [Σ:W ], [Σ:B] and [Σ:C] can be seen as nothing but the
three points eW , eB and eC of an action/event model à la [3, 7], such that Pre(eW ) =
Pre(eB) = Pre(eC) =Pre(Σ) and such that (eW , eB),(eB, eB),(eC , eC) ∈B and
(eW , eC), (eB, eC), (eC , eC) ∈ C , and such such that Post(eW )(p) = σW (p) for all
atoms p ∈ D(σW ) and similarly for eC and eB, where Post(eW )(p) is the postcon-
dition of the event eW applied to the atom p. In the surprising variation on the event
models with assignments proposed in this paper, we have defined preconditions per
atomic proposition p and not all at once per event eC , eB , eW . As only for a finite
number of atoms such preconditions are given, the precondition à la DEL indeed corre-
sponds to the conjunction defining Pre(Σ) at the beginning of Section 4. So this is all
neat and nice, and we have therefore more variation in finetuning preconditions than in
standard DEL with assignments.

In [2, 11] a logic of knowledge and preference dynamics is provided. In van Benthem
& Liu’s approach knowledge dynamics are modeled by means of announcements (or
updates), whereas preference dynamics are modeled by means of operations on acces-
sibility relations called upgrades. We have provided here an approach to choice change
and intention dynamics based on assignments. We think indeed that assignments, rather



Intentions and Assignments 211

than announcements and upgrades, are more suited to model intention dynamics (inten-
tion generation and intention reconsideration). Indeed, intention dynamics are obtained
by means of local operations on an agent’s choices and assignments are a natural can-
didate to formalize these kinds of operations. This locality aspect of intention dynamics
has been discussed in Section 3.3 in which we have shown that a process of generating
(resp. reconsidering) an intention defined in terms of assignments does not affect the
other intentions of the agent (Theorems 1e and 1f).

Directions for future research are manifold. For instance, the logic Ldyn does not
allow to distinguish between present-directed intention and future-directed intention.
According to [5], a future-directed intention is an intention to do some action later
whereas a present-directed intention is an intention to do some action now. An interest-
ing direction to be explored is an extension of Ldyn with temporal modalities in order
to be able to express this distinction. Furthermore, in this paper we only considered the
single-agent case. We plan to extend our approach to the multi-agent case.
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Abstract. We propose a modal logic called EDLA (Epistemic Dynamic Logic
of Agency) that allows to reason about epistemic games in strategic form. EDLA
integrates the concepts of joint action, preference and knowledge. In the first part
of the paper we introduce EDLA and provide soundness, completeness and com-
plexity results. In the second part we study in EDLA the epistemic and rationality
conditions of some classical solution concepts like Nash equilibrium and iterated
strict dominance. In the last part of the paper we combine EDLA with Dynamic
Epistemic Logic (DEL) in order to model epistemic game dynamics.

1 Introduction

We present a modal logic integrating the concepts of joint action, preference and knowl-
edge. Our logic supports reasoning about epistemic games in strategic form in which
agents decide what to do according to some general principles of rationality while being
uncertain about several aspects of the interaction such as other agents’ choices, other
agents’ preferences, etc.

While epistemic games have been extensively studied in economics (in the so-called
interactive epistemology area, see e.g. [1,8,3,9]) and while there have been some anal-
ysis of epistemic games in modal logic (see, e.g., [5,10,8,20]), no modal approach to
epistemic games in strategic form has been proposed up to now which addresses all the
following issues at the same time: to provide a formal language, and a corresponding
formal semantics, which is sufficiently general to express solution concepts like Nash
Equilibrium or Iterated Deletion of Strictly Dominated Strategies (IDSDS) and to de-
duce formally the epistemic and rationality conditions on which such solution concepts
are based; to prove its soundness and completeness; to study its computational proper-
ties like decidability and complexity. In this paper, we try to fill this gap by proposing
a sound and complete modal logic for epistemic games interpreted on a Kripke-style
semantics. We also provide complexity results for our logic.

The remainder of the paper is organized as follows. In Section 2 we present our
modal logic of joint actions, preference and knowledge called EDLA (Epistemic Dy-
namic Logic of Agency). Section 3 is devoted to the analysis in EDLA of the epistemic
conditions of Nash equilibrium and IDSDS. In Section 4 we make EDLA dynamic
by extending it with constructions of Dynamic Epistemic Logic (DEL) [11], and we
show that this dynamic version of EDLA allows to express IDSDS in a more com-
pact way than in the static EDLA. In Section 5 we show how our logical framework
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can be applied to the analysis of strategic interaction with imperfect information about
the game structure. Finally, in Section 6, we compare our approach with some existing
approaches to epistemic games in modal logic.

2 A Logic of Joint Actions, Knowledge And Preferences

The logic EDLA (Epistemic Dynamic Logic of Agency) is an extension of the logic
DLA (Dynamic Logic of Agency) with modal operators for preference and knowl-
edge modalities. DLA itself, which was presented in [14,17], extends dynamic logic
by a modal operator of historic possibility quantifying over possible joint actions of all
agents. This operator is borrowed from STIT theory [4]. In [14,17] the relationships
between DLA and Coalition Logic (CL), and DLA and STIT have been studied. We
will come back to this point in Section 2.3.

2.1 Syntax

The syntactic primitives of EDLA are the finite set of agents Agt , the set of atomic
formulas Atm and a nonempty finite set of atomic action names Act = {a1, a2, . . . ,
a|Act|}.

The language LEDLA of the logic EDLA is given by the following BNF:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈i:a〉ϕ | ♦ϕ | Kiϕ | [good]i ϕ

where p ranges over Atm, a ranges over Act , and i ranges over Agt .
It is supposed that every agent performs exactly one action at a time, that actions

performed by different agents are independent, that actions of different agents are per-
formed in parallel and lead to a unique successor state. Therefore the formula 〈i:a〉ϕ
reads “i performs action a and ϕ holds afterwards”, and 〈i:a〉� reads “i performs a”.
Note that this is slightly different from the standard PDL reading “there is a possi-
ble execution of action a after which ϕ holds”, which takes into account that there
could be different executions of the same action leading to different successor states.
〈i:a〉� ∧ 〈j:b〉� means that i and j respectively perform a and b in parallel.

The operator ♦ is an operator of historic possibility, and quantifies over possible
joint actions of all agents, that is, over the strategy profiles of the current game (the
terms “joint actions of all agents” and “strategy profiles” are supposed here to be syn-
onymous). ♦ϕ reads “ϕ holds for some alternative strategy profile of the current game”,
or simply “ϕ is possibly true”.

The classical Boolean connectives ∧, →, ↔ and � (tautology) are defined from ⊥,
∨ and ¬ in the usual manner. Moreover, [i:a]ϕ abbreviates ¬〈i:a〉¬ϕ, �ϕ abbreviates
¬♦¬ϕ and K̂iϕ abbreviates ¬Ki¬ϕ. � ϕ means “ϕ is necessarily true”. Therefore
[i:a]⊥ reads “i does not perform action a”, and [i:a]ϕ reads “if i performs a then
ϕ holds afterwards”. The following abbreviations are convenient to speak about joint
actions. Sets of agents are called coalitions, notedC1, C2, . . . To every agent i ∈ Agt we
associate the set Act i of all possible ordered pairs i:a, that is, Act i = {i:a | a ∈ Act}.
Besides, we note Δ the set of all joint actions of all agents (alias strategy profiles), that
is, Δ =

∏
i∈Agt Act i.
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Elements in Δ are Agt-tuples noted α, β, γ, δ, . . . Given δ ∈ Δ, we note δi the
element in δ corresponding to agent i. Finally, we note δC = (δi)i∈C the tuple which
consists of the vector of all δi for i ∈ C. Therefore δAgt = δ. Moreover, we write
δ−i = δAgt\{i}.

The following abbreviation will be useful to axiomatize EDLA. For every δ ∈ Δ

and C ⊆ Agt : 〈δC〉ϕ def=
∧

j∈C〈δj〉ϕ. 〈δC〉ϕ reads “the joint action δC is going to
be performed by coalition C and ϕ will be true afterwards”. For example, 〈i:a, j:b〉ϕ
abbreviates 〈i:a〉ϕ ∧ 〈j:b〉ϕ, and stands for “the joint action 〈i:a, j:b〉 is going to be

performed, and ϕ will be true afterwards”. As usual [δC ]ϕ def= ¬〈δC〉¬ϕ.
Construction Kiϕ is read as usual “agent i knows that ϕ”, whereas the construction

[good]i ϕ is read “ϕ is true in all worlds which are for agent i at least as good as the
current one concerning the strategy profile that is chosen”. We define 〈good〉iϕ as an
abbreviation of ¬ [good]i ¬ϕ. Operators [good]i are used in EDLA to define agents’
preference orderings over the strategy profiles of the current game. Similar operators
are studied in [6]. We use EKCϕ as an abbreviation of

∧
i∈C Kiϕ, i.e. every agent in

C knows ϕ (if C = ∅ then EKCϕ is equivalent to �). Then we define by induction

EKk
Cϕ for every natural number k ∈ N: EK0

Cϕ
def= ϕ and for all k ≥ 1, EKk

Cϕ
def=

EKC(EKk−1
C ϕ). We define for all natural numbers n ∈ N, MKn

Cϕ as an abbreviation of∧
1≤k≤n EKk

Cϕ. MKn
Cϕ expresses C’s mutual knowledge that ϕ up to n iterations, i.e.

everyone in C knows ϕ, everyone in C knows that everyone in C knows ϕ, and so on
until level n.

2.2 Semantics

Frames are tuples F = 〈W,R,∼, E,�〉 where:

– W is a nonempty set of possible worlds or states;
– R : Agt×Act −→ W ×W maps every agent-action pair i:a to a transition relation
Ri:a ⊆W ×W between possible worlds;

– ∼ is an equivalence relation on W ;
– E : Agt −→W ×W maps every agent i to an equivalence relation Ei on W ;
– �: Agt −→W ×W maps every agent i to a reflexive, transitive relation�i on W .

It is convenient to use RδC =
⋂

i∈C Rδi , and RδC (w) = {w′ ∈ W | wRδCw
′}. If

Ri:a(w) 	= ∅ then i performs a at w. More generally, if RδC (w) 	= ∅ then coalition C
performs joint action δC at w. If w′ ∈ RδC (w) then world w′ results from the perfor-
mance of joint action δC by coalition C at w.

If w′ ∼ w then w and w′ correspond to alternative strategy profiles of the same
game. For short, we say that w′ is alternative to w. Given a world w, we use the nota-
tion ∼(w) = {w′ | w′ ∼ w} to denote the equivalence class made up of those worlds
corresponding to alternative strategy profiles of the game of which w is one of the
strategy profile. Consider e.g. Agt = {1, 2} and Act = {c, d, skip}. In the frame in
Fig. 1 we have w1 ∼ w2. This means that the joint action performed at w1 (viz.
〈1:c, 1:c〉) and the one performed at w2 (viz. 〈1:c, 1:d〉) are alternative strategy pro-
files of the same game defined by the equivalence class ∼(w1) = {w1, w2, w3, w4}.
For every C ⊆ Agt , if there exists w′ ∈ ∼(w) such that C performs δC at w′ then we
say that δC is possible at w (or δC can be performed at w).
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Fig. 1. The equivalence class {w1, w2, w3, w4} represents the Prisoner’s Dilemma game [18]
between two players 1 and 2 (action c stands for ‘cooperate’ and action d stands for ‘defect’).
Full ellipses are epistemic relations for 1, dotted ellipses are epistemic relations for 2 (both 1 and
2 are uncertain about the other’s action).

wEiw
′ means that, for agent i, world w′ is (epistemically) possible at w, whilst

w �i w′ means that for agent i, world w′ is at least as good as world w. We write
w =i w

′ iff w �i w
′ and w′ �i w, and w <i w

′ iff w �i w
′ and not w′ �i w.

Frames have to satisfy the following semantic constraints S1-S9 in order to be
EDLA-frames. For every w, v, v′ ∈W and δ, δ′ ∈ Δ and a ∈ Act and i ∈ Agt :

(S1) If v ∈ Rδ(w) and v′ ∈ Rδ′(w) then v = v′;
(S2)

⋃
δ∈Δ Rδ(w) 	= ∅;

(S3) If δ 	= δ′ then Rδ(w) = ∅ or Rδ′(w) = ∅;
(S4) If for every i ∈ Agt there is vi such that w ∼ vi and Rδi(vi) 	= ∅ then there is a

v such that w ∼ v and Rδ(v) 	= ∅;
(S5) If w ∼ v and Rδ(w) 	= ∅ and Rδ(v) 	= ∅, then w = v;
(S6) If wEiv then Ri:a(w) 	= ∅ iff Ri:a(v) 	= ∅;
(S7) If w �i v then w ∼ v;
(S8) If w ∼ v and w ∼ v′ then v �i v

′ or v′ �i v;
(S9) If wEiw

′ then w ∼ w′.

According to Constraint S1, for every world w there exists exactly one successor of
w, viz. the world resulting from the execution of the strategy profile associated to w.
According to the Constraints S2 and S3, every world is associated to exactly one joint
action of all agents (alias strategy profile). Note that constraints S1 and S2 together
ensure that for every world w there is exactly one next (future) world. We can therefore
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define a function Nxt in order to identify this unique next (future) world. Formally,
given an arbitrary agent i we suppose that for every w ∈W :

Nxt(w) = v iff
⋃

i∈Agt, a∈Act Ri:a(w) = {v}.
According to the Constraint S4, if every individual action in a joint action δ is possible
at w, then their simultaneous occurrence is also possible at w. We suppose determin-
ism for the joint actions of all agents: different worlds in an equivalence class ∼(w)
correspond to the occurrences of different strategy profiles (Constraint S5). Constraint
S6 just says that agents know what they are doing. This is a standard assumption in in-
teractive epistemology and epistemic analysis of games (see [8] for instance). We also
have two constraints over the relations �i. We suppose that a world w′ is for agent i at
least as good as w only if w′ is a world which is possible at w, i.e. only if w′ and w
correspond to alternative strategy profiles of the same game (Constraint S7). Further-
more, we suppose that every agent has a complete preference ordering over the strategy
profiles of the current game (Constraint S8). Finally, we suppose perfect information
about the specification of the game, including the players’ strategy sets (or action reper-
toires) and the players’ preference ordering over strategy profiles. This assumption is
formally expressed by Constraint S9: if world w′ is epistemically possible for agent i at
w, then w and w′ correspond to alternative strategy profiles of the same game. Perfect
information about the structure of the game is a standard assumption in game theory.
In Section 5, this assumption will be relaxed in order to deal with realistic situations
in which an agent might be uncertain about his own utility and other agents’ utilities
associated to a certain strategy profile, as well as about his own action repertoire and
other agents’ action repertoires.

A frame F is a EDLA-frame if F satisfies constraints S1-S9. A EDLA-model is
a couple M = 〈F, π〉 where F is a EDLA-frame (satisfying constraints S1-S9) and
π : Atm −→ 2W is a valuation function.

Truth conditions for atomic formulas and the Boolean operators are standard. The
truth conditions for the modal operators are:

– M,w |= 〈i:a〉ϕ iff M,w′ |= ϕ for some w′ ∈ Ri:a(w);
– M,w |= ♦ϕ iff M,w′ |= ϕ for some w′ ∈ ∼(w);
– M,w |= Kiϕ iff M,w′ |= ϕ for all w′ such that wEiw

′;
– M,w |= [good]i ϕ iff M,w′ |= ϕ for all w′ such that w �i w

′.

A formula ϕ is true in an EDLA-model M iff M,w |= ϕ for every world w in M . ϕ is
EDLA-valid (noted |= ϕ) iff ϕ is true in all EDLA-models. ϕ is EDLA-satisfiable iff
¬ϕ is not EDLA-valid.

2.3 Axiomatization

We call EDLA the logic that is axiomatized by the principles given in Table 1. Note
that Axiom Indep is the EDLA counterpart of the so-called axiom of independence
of agents of STIT logic [4]. This axiom allows to express the basic game theoretic
assumption that the set of strategy profiles of a game in strategic form is the cartesian
product of the sets of individual actions for the agents in Agt .
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Table 1. Axiomatization of EDLA

All principles of classical propositional logic(CPL)

All principles of modal logic S5 for �(S5� )

All principles of modal logic K for every [i:a](K[i:a])

All principles of modal logic S5 for every Ki(S5Ki )

All principles of modal logic S4 for every [good]i(S4[good]i
)

〈δ〉ϕ → [
δ′
]
ϕ(Alt[δ]) ∨

δ∈Δ

〈δ〉(Active)

〈δ〉 → [
δ′
]⊥ if δ �= δ′(Single) ( ∧

i∈Agt

♦〈δi〉
)

→ ♦〈δ〉(Indep)

(〈δ〉 ∧ ϕ) → �(〈δ〉 → ϕ)(JointDet)

〈i:a〉 → Ki〈i:a〉(Aware)

�ϕ → [good]i ϕ(Incl[good]i,� )

♦ϕ ∧ ♦ψ → ♦(ϕ ∧ 〈good〉iψ) ∨ ♦(ψ ∧ 〈good〉iϕ)(PrefConnect)

�ϕ → Kiϕ(PerfectInfo)

We write �EDLA ϕ if ϕ is a theorem of EDLA. We can define in EDLA an operator

next as follows: Xϕ
def=

∨
δ∈Δ〈δ〉ϕ. Due to Axioms Active and Alt[δ], X obeys the

standard validity Xϕ↔ ¬X¬ϕ of the linear-time temporal logic.

Theorem 1. EDLA is determined by the class of EDLA-frames.

Proof. All axioms of EDLA are in the Sahlqvist class. Using the Sahlqvist algorithm
it is routine to prove that the Axioms Alt[δ], Active, Single, Indep, JointDet, Aware,
Incl[good]i,�, PrefConnect and PerfectInfo of EDLA respectively correspond to the
constraints S1, S2, S3, S4, S5, S6, S7, S8 and S9. Completeness of EDLA then follows
from Sahlqvist’s completeness theorem, cf. [7, Th. 2.42]. �

Theorem 2. The satisfiability problem of EDLA is PSPACE-complete.

Proof. We give a sketch of the proof. Theorem 2 is implied by the following two facts.

1. The satisfiability problem of EDLA is PSPACE-hard.
2. The satisfiability problem of EDLA is PSPACE.

Consider B the logic of the class of infinite binary trees. The logic B is PSPACE-
complete (we leave to the reader the adaptation of the proof given in [7]). Then the
idea is to simulate binary trees with one agent and two actions. Let ϕ a B-formula. We
define a translation tr from the language of B to the language of EDLA by: tr(ϕ) =
�
∧

i∈md(ϕ)(X�)i(atmosta1a2foragent1∧justactiona1forotheragents)∧tr1(ϕ)
where:
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– atmosta1a2foragent1 =
∧

j∈{3,...,n}[1:aj ]⊥,
– justactiona1forotheragents =

∧
i∈Agt,i�=1

∧
j∈{2,...,n}[i:aj ]⊥,

– tr1(p) = p,
– tr1(♦ψ) = ♦Xtr1(ψ),

and tr1 is isomorphic for other connectives. We can prove that ϕ is B-sat iff tr(ϕ) is
EDLA-sat.

In order to prove that the satisfiability problem of EDLA is PSPACE, note that the
satisfiability problem of the fragment of EDLAwithout time is NP-complete. The latter
fragment is the set of formulas ϕ such that for every subformula [i:a]ψ of ϕ implies
ψ = ⊥. Indeed, we can prove that every satisfiable formula is satisfiable in a model
whose size is bounded by card(Act)card(Agt). Finally we can prove that there exists an
depth first search algorithm running in PSPACE. The idea is the same as in [2]. ��
It has been proved in [17] that the fragment of EDLA without preference and knowl-
edge modalities embeds Coalition Logic (CL) [19]. In particular, CL cooperation
modalities of the form [C] can be reconstructed in our logic as follows.

tr([C]ϕ) =
∨

δ∈Δ (♦〈δC〉� ∧�(〈δC〉� → Xϕ))

That is, the CL expression “coalition C can enforce an outcome state satisfying ϕ”
(noted [C]ϕ) is translated in our logic as “there exists a joint action δC of the agents in
C such that the agents in C can perform δC , and necessarily if the agents in C perform
δC then ϕ will be true in the next state, no matter what the agents outside C do”.

It has also been shown in [14] that a slightly different variant of the logic presented
in this paper embeds Chellas’ STIT logic with agents and groups [16], under the hy-
pothesis that the number of agents’ choices is bounded. STIT logic has formulas of the
form [C cstit:ϕ] that are read “group C sees to it that ϕ”. To obtain this embedding, it is
sufficient to remove from EDLA the Axiom of joint determinism JointDet and to add
an Axiom of the form 〈δ〉♦ϕ → ♦〈δ〉ϕ which allows to capture the so-called semantic
property no choice between undivided histories on STIT frames (see [4]). The transla-
tion of STIT modalities of the form [C cstit:] into our logic would be the following:

tr([C cstit:ϕ]) =
∨

δ∈Δ(〈δC〉� ∧�(〈δC〉� → ϕ))

That is, the STIT expression “groupC sees to it that ϕ” is translated intoDLA as “there
exists a joint action δC of the agents in C such that the agents in C perform δC , and
necessarily if the agents in C perform δC then ϕ will be true, no matter what the agents
outside C do”.

3 A Logical Account of Epistemic Games
3.1 Best Response and Nash Equilibrium

The modal operators [good]i and � allow to capture in EDLA a notion of comparative
goodness over formulas of the kind “ϕ is for agent i at least as good as ψ”, noted
ψ ≤i ϕ:

ψ ≤i ϕ
def= � (ψ → 〈good〉iϕ).
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ψ ≤i ϕ is a total preorder: the formulas ψ ≤i ψ, (ϕ1 ≤i ϕ2) ∧ (ϕ2 ≤i ϕ3) → (ϕ1 ≤i

ϕ3) and (ϕ1 ≤i ϕ2) ∨ (ϕ2 ≤i ϕ1) are valid in EDLA. We note ψ <i ϕ
def= (ψ ≤i

ϕ) ∧ ¬(ϕ ≤i ψ) and δ ≤i δ
′ def= 〈δ〉� ≤i 〈δ′〉�. Finally we note δ <i δ

′ def= (δ ≤i

δ′) ∧ ¬(δ′ ≤i δ).
Some basic concepts of game theory can be expressed in EDLA in terms of com-

parative goodness. We first consider best response. Agent i’s action a is said to be a
best response to the other agents’ joint action δ−i, noted BR(i:a,δ−i), if and only if i
cannot improve his utility by deciding to do something different from a while the others
choose the joint action δ−i, that is:

BR(i:a,δ−i)
def=

∧
b∈Act((〈i:b〉� ∧ 〈δ−i〉�) ≤i (〈i:a〉� ∧ 〈δ−i〉�)).

Given a certain strategic game, the strategy profile (or joint action) δ is said to be a Nash
equilibrium if and only if for every agent i ∈ Agt , i’s action δi is a best response to the
other agents’ joint action δ−i:

Nash(δ) def=
∧

i∈Agt BR(δi,δ−i).

From Axiom PerfectInfo and S5 for �, the following theorems are provable express-
ing perfect information about the players’ preferences ordering over strategy profiles,
perfect information about the existence of a Nash equilibrium, and perfect informa-
tion about the players’ repertoires: (ψ ≤i ϕ) ↔ MKn

Agt (ψ ≤i ϕ), Nash(δ) ↔
MKn

AgtNash(δ) and ♦〈δi〉� ↔ MKn
Agt♦〈δi〉�, for every n ∈ N.

3.2 Epistemic Rationality

The following EDLA formula characterizes a notion of rationality which is commonly
supposed in the epistemic analysis of games (see, e.g., [3,5]):∧

a,b∈Act

(
〈i:a〉� → ∨

δ∈Δ

(
K̂i〈δ−i〉� ∧ (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

This means that an agent i is rational if and only if, if he chooses a particular action
a then for every alternative action b, there exists a joint action δ−i of the other agents
that he considers possible such that, playing a while the others play δ−i is for i at least
as good as playing b while the others play δ−i. As in EDLA δ ≤i δ

′ and Ki(δ ≤i δ
′)

are equivalent, the previous definition of rationality can be rewritten in the following
equivalent form:

Rati
def=
∧

a,b∈Act

(
〈i:a〉� → ∨

δ∈Δ

(
K̂i〈δ−i〉� ∧ Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

Theorem 3. For all i ∈ Agt:

�EDLA Rati ↔ KiRati(3a)

�EDLA ¬Rati ↔ Ki¬Rati(3b)

Theorem 3 highlights that the concepts of rationality and irrationality are introspective.
The following theorem specifies some sufficient epistemic conditions for guaranteeing
that the chosen strategy profile is a Nash equilibrium: if all agents are rational and every
agent knows the choices of the other agents, then the selected strategy profile is a Nash
equilibrium. A similar theorem has been stated for the first time in [1,9].
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Theorem 4. For all n ∈ N, for all δ ∈ Δ:

�EDLA
((∧

i∈Agt Rati
)
∧∧i∈Agt Ki〈δ−i〉�

)
→ Nash(δ)

3.3 Iterated Deletion of Strictly Dominated Strategies

A strategy a for agent i is a strictly dominated strategy, noted SD≤0(i:a), if and only
if, if a can be performed then there is another strategy b such that, no matter what joint
action δ−i the other agents choose, playing b is for i strictly better than playing a:

SD≤0(i:a) def= ♦〈i:a〉� →∨
b∈Act

(
♦〈i:b〉� ∧

∧
δ∈Δ

(♦〈δ−i〉 → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉))
)

.

An example of strictly dominated strategy is cooperation in the Prisoners Dilemma
(PD) game: whether ones opponent chooses to cooperate or defect, defection yields a
higher payoff than cooperation. Therefore, a rational player will never play a dominated
strategy. So when trying to predict the behavior of rational players, we can rule out
all strictly dominated strategies. The so-called Iterated Deletion of Strictly Dominated
Strategies (IDSDS) (or iterated strict dominance) [18] is a procedure that starts with
the original game and, at each step, for every player i removes from the game all i’s
strictly dominated strategies, thereby generating a subgame of the original game, and
that repeats this process again and again. IDSDS can be inductively characterized in our
logic EDLA by defining a concept of strict dominance in the subgame of depth at most
n, noted SD≤n(i:a). For every n ≥ 1:

SD≤n(i:a) def= ¬SD≤n−1(i:a)→
∨

b∈Act

(
¬SD≤n−1(i:b) ∧

∧
δ∈Δ

(
¬SD≤n−1(δ−i) → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉)

))
.

where SD≤k(δC) is an abbreviation of
∨

i∈C SD≤k(δi) for every k ≥ 0 and for every
δC . According to this definition, a is a strictly dominated strategy for agent i in a sub-
game of depth at most n, noted SD≤n(i:a), if and only if, if a is not strictly dominated
for i in all subgames of depth k < n then there is another strategy b such that b is not
strictly dominated for i in all subgames of depth k < n and, no matter what joint action
δ−i the other agents choose, if the elements in δ−i are not dominated in all subgames
of depth k < n then playing b is for i strictly better than playing a. In other terms
SD≤n(i:a) means that strategy i:a does not survive after n rounds of IDSDS.

It has been shown that common knowledge of rationality implies that players choose
strategies which survive IDSDS ([8,3,9]). This latter principle can be derived in our
logic EDLA. According to the following Theorem 5, if there is mutual knowledge of
rationality among the players to n levels and the agents play the strategy profile δ then,
for every agent i, δi survives IDSDS until the subgame of depth n+1.

Theorem 5. For all δ ∈ Δ, �EDLA
((

MKn
Agt

∧
i∈Agt Rati

)
∧ 〈δ〉�

)
→ ¬SD≤n(δ).
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4 Game Transformation

We provide in this section an alternative and more compact characterization of the pro-
cedure IDSDS in our logic EDLA. To this aim, we introduce special events whose
effect is to delete a strictly dominated strategy from the current game. These events are
similar to announcements in Dynamic Epistemic Logic (DEL) [11].
LAN is the set of announcable formulas and is defined by the following BNF:

χ ::= �ψ → [i:a]⊥ | χ ∧ χ
where ψ ∈ LEDLA, i ∈ Agt and a ∈ Act . Thus, announcable formulas are of the
form ‘if property ψ necessarily holds in the current game, then action a should not be
performed by agent i’.

We extend the EDLA language with announcements operators of the form [χ!] with
χ ∈ LAN . We call EDLAAN the extended logic. The truth condition for [χ!]ϕ is:

M,w |= [χ!]ϕ iff M,w |= χ implies Mχ, w |= ϕ

with Mχ = 〈Wχ, Rχ,∼χ, Eχ,�χ, πχ〉 and:

Wχ = ‖χ‖M

Rχ
i:a =[Ri:a ∩ (Wχ ×Wχ)] ∪ {(w,w) | Ri:a(w) 	= ∅, w ∈ ‖χ‖M , Nxt(w) 	∈ ‖χ‖M}
∼χ = ∼ ∩(Wχ ×Wχ)
Eχ

i = Ei ∩ (Wχ ×Wχ)
�χ

i = �i ∩(Wχ ×Wχ)
πχ(p) = π(p) ∩Wχ

Thus, an event χ! removes from the model M all worlds in which χ is false. The epis-
temic relations Ei and preference orderings �i are restricted to the worlds in which χ
is true. Moreover, if v is the world which results from the execution of a by i at w, and
w and v are not removed from the model by the event χ! then, after the occurrence of
χ!, v is still the world which results from the execution of a by i at w; if v is the world
which results from the execution of a by i at w, w is not removed from the model by the
event χ! and v is removed then, after the occurrence of χ!, we impose that w itself is the
world which results from the execution of a by i at w. This ensures that the constraint
S2 will be preserved after the model transformation.

Theorem 6. If M is a EDLA model then Mχ is a EDLA model.

We have reduction axioms for χ! which guarantee the completeness of EDLAAN .

Theorem 7. The following schemata are valid in EDLAAN .
R1. [χ!]p↔ (χ→ p)
R2. [χ!]¬ϕ↔ (χ→ ¬[χ!]ϕ)
R3. [χ!](ϕ1 ∧ ϕ2)↔ ([χ!]ϕ1 ∧ [χ!]ϕ2)
R4. [χ!]�ϕ↔ (χ→ �[χ!]ϕ)
R5. [χ!]Kiϕ↔ (χ→ Ki[χ!]ϕ)
R6. [χ!] [good]i ϕ↔ (χ→ [good]i [χ!]ϕ)
R7. [χ!] [i:a]ϕ↔ (¬χ ∨ ([i:a]χ ∧ [i:a] [χ!]ϕ) ∨ (¬ [i:a]χ ∧ [χ!]ϕ))
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Proof. The proofs of R1-R6 go as in DEL (see [11]). We here prove R7.

CASE 1. ¬χ and [χ!]⊥ are equivalent in EDLAAN . Therefore,

(A) ¬χ→ ([χ!] [i:a]ϕ↔ ¬χ)

is valid in EDLAAN .

CASE 2. Suppose M,w |= [i:a]χ ∧ χ.
M,w |= [χ!] [i:a]ϕ
IFF if M,w |= χ then Mχ, w |= [i:a]ϕ
IFF if M,w |= χ then, if v ∈ Rχ

i:a(w) then Mχ, v |= ϕ
IFF if M,w |= χ then, if v ∈ Ri:a(w) then Mχ, v |= ϕ (because M,w |= [i:a]χ ∧ χ
implies Rχ

i:a(w) = Ri:a(w)),
IFF if M,w |= χ then, if v ∈ Ri:a(w) then Mχ, v |= ϕ and M, v |= χ (by M,w |=
[i:a]χ),
IFF if M,w |= χ then, if v ∈ Ri:a(w) then M, v |= [χ!]ϕ and M, v |= χ
IFF if M,w |= χ then M,w |= [i:a] ([χ!]ϕ ∧ χ)
IFF if M,w |= χ→ ([i:a] ([χ!]ϕ ∧ χ)
IFF if M,w |= χ→ [i:a] [χ!]ϕ (by the hypothesis M,w |= [i:a]χ).
This proves that ([i:a]χ∧χ) → ([χ!] [i:a]ϕ↔ (χ→ [i:a] [χ!]ϕ)) is valid in EDLAAN .
It follows that
(B) ([i:a]χ ∧ χ)→ ([χ!] [i:a]ϕ↔ [i:a] [χ!]ϕ)

is valid in EDLAAN too.

CASE 3. Suppose M,w |= ¬ [i:a]χ ∧ χ which is equivalent to M,w |= 〈i:a〉¬χ ∧ χ.
M,w |= [χ!] [i:a]ϕ
IFF if M,w |= χ then Mχ, w |= [i:a]ϕ
IFF if M,w |= χ then, if v ∈ Rχ

i:a(w) then Mχ, v |= ϕ
IFF if M,w |= χ then Mχ, w |= ϕ (because M,w |= 〈i:a〉¬χ ∧ χ implies Rχ

i:a(w) =
{w}),
IFF if M,w |= χ then Mχ, w |= ϕ and M,w |= χ (by the hypothesis M,w |= χ),
IFF if M,w |= χ then Mχ, w |= [χ!]ϕ
IFF if M,w |= χ→ [χ!]ϕ
IFF if M,w |= [χ!]ϕ (by the hypothesis M,w |= χ). Therefore
(C) (¬ [i:a]χ ∧ χ)→ ([χ!] [i:a]ϕ↔ [χ!]ϕ)

is valid in EDLAAN . From (A), (B) and (C) it follows that:
[χ!] [i:a]ϕ↔ (¬χ ∨ ([i:a]χ ∧ [i:a] [χ!]ϕ) ∨ (¬ [i:a]χ ∧ [χ!]ϕ))

is valid in EDLAAN . ��
Theorem 8. The logic EDLAAN is completely axiomatized by the axioms and infer-
ence rules of EDLA together with the schemata of Theorem 7 together with the rule of
replacement of proved equivalence.

Now, consider the following formula:

χSD
def=
∧

i∈Agt,a∈Act(�SD≤0(i:a) → [i:a]⊥).

The effect of χSD! is to delete from every game ∼(w) in the model M all worlds in
which a strictly dominated strategy is played by some agent.
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As the following Theorem 9 highlights, the procedure IDSDS that we have charac-
terized in Section 3.3 in the static EDLA can be characterized in a more compact way
in EDLAAN . Suppose δ is the selected strategy profile. Then, for every agent i, δi sur-
vives IDSDS until the subgame of depth n+1 if and only if, the event χSD! can occur
n+1 times in sequence.

Theorem 9. For all δ ∈ Δ, for all n ≥ 0,

�EDLAAN 〈δ〉� →
(
¬SD≤n(δ)↔ 〈χSD!〉n+1�

)
.

Finally, here is a reformulation of Theorem 5 in EDLAAN .

Theorem 10. For all n ≥ 0, �EDLAAN

(
MKn

Agt

∧
i∈Agt Rati

)
→ 〈χSD!〉n+1�.

5 Concluding Remarks: Imperfect Information

We here consider a more general class of games which includes strategic games with
imperfect information about the game structure. Apart from few exceptions (see, e.g.,
[13,12]), these games have been rarely explored. Indeed, most work in game theory
assumed that players have common knowledge of all relevant aspects of the game. We
are interested in verifying whether the results obtained in Sections 3.2 and 3.3 can be
generalized to this kind of games, that is:
1. Are rationality of every player and every agent’s knowledge about other agents’

choices still sufficient to ensure that the selected strategy profile is a Nash equilib-
rium in a strategic game with imperfect information about the game structure?

2. Is mutual knowledge of rationality among the players still sufficient to ensure that
the selected strategy profile survives iterated deletion of dominated strategies in a
strategic game with imperfect information about the game structure?

To answer these questions, we have to remove Axiom PerfectInfo from EDLA and the
corresponding semantic constraint S9 from the definition of EDLA frames expressing
the hypothesis of perfect information about the game structure. We call EDLA∗ the
resulting logic and EDLA∗-frames the resulting class of frames. Then we have to check
whether Theorems 4 and 5 given in Sections 3.2 and 3.3 are still derivable in EDLA∗.

We have a positive answer to the previous first question. Indeed, the formula((∧
i∈Agt Rati

)
∧∧i∈Agt Ki〈δ−i〉�

)
→ Nash(δ)

is derivable in EDLA∗. But we have a negative answer to the second question. Indeed,
the following formula is invalid in EDLA∗ for every δ ∈ Δ and for every n ∈ N such
that n > 0: ((

MKn
Agt

∧
i∈Agt Rati

)
∧ 〈δ〉�

)
→ ¬SD≤n(δ).

6 Related Works

Although several modal logics of games in strategic forms have been proposed (see,
e.g., [15,21]), few modal logics exist which support reasoning about epistemic (strate-
gic) games. Among them we should mention [10,20,8].
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De Bruin [10] has developed a very rich logical framework which enables to reason
about the epistemic aspects of strategic games and of extensive games. His system deals
with several game-theoretic concepts like the concepts of knowledge, rationality, Nash
equilibrium, iterated strict dominance, backward induction. Nevertheless, de Bruin’s
approach differs from ours in several respects. First of all, our logical approach to epis-
temic games is minimalistic since it relies on few primitive concepts: knowledge, action,
historical necessity and preference. All other notions such Nash equilibrium, rationality,
iterated strict dominance are defined by means of these four primitive concepts. On the
contrary, in de Bruin’s logic all those notions are atomic propositions managed by a ad
hoc axiomatization (see, e.g., [10, pp. 61,65] where special propositions for rationality
and iterated strict dominance are introduced). Secondly, we provide a semantics and a
complete axiomatics for our logic of epistemic games. De Bruin’s approach is purely
syntactic: no model-theoretic analysis of games is proposed nor completeness result for
the proposed logic is given. Finally, de Bruin does not provide any complexity results
about his logic while we prove that the satisfiability problem of a formula in our logic
is PSPACE-complete.

Roy [20] has recently proposed a modal logic integrating preference, knowledge
and intention. In his approach every world in a model is associated to a nominal which
directly refers to a strategy profile in a strategic game. This approach is however limited
in expressing formally the structure of a strategic game. In particular, in Roy’s logic
there is no principle like the EDLA Axiom Indep explaining how possible actions
δi of individual agents are combined to form a strategy profile δ of the current game.
Another limitation of Roy’s approach is that it does not allow to express the concept of
(weak) rationality that we have been able to define in Section 3.2 (see [20, pp. 101]). As
discussed in the previous sections this is a crucial concept in interactive epistemology
since it is used for giving epistemic justifications of several solution concepts like Nash
equilibrium and IDSDS (see Theorems 4 and 5).

Bonanno [8] integrates modal operators for belief, common belief with construc-
tions expressing agents’ preferences over individual actions and strategy profiles, and
applies them to the semantic characterization of solution concepts like Iterated Dele-
tion of Strictly Dominated Strategies (IDSDS) and Iterated Deletion of Inferior Profiles
(IDIP). As in [20], in Bonanno’s logic every world in a model corresponds to a strat-
egy profile of the current game. Although this logic allows to express the concept of
weak rationality, it is not sufficiently general to enable to express in the object language
solution concepts like Nash equilibrium and IDSDS (note that the latter is defined by
Bonanno only in the metalanguage).

It is to be noted that, differently from EDLA, most modal logics of epistemic games
in strategic form (including Roy’s logic and Bonanno’s logic) postulate a one-to-one
correspondence between models and games (i.e. every model of the logic corresponds
to a unique strategic game, and worlds in the model are all strategy profiles of this
game). Such an assumption is quite restrictive since it prevents from analyzing in the
logic games with imperfect information about the game structure in which an agent can
imagine alternative games. As shown in Section 5, this is something we can do in our
logical framework by removing Axiom PerfectInfo from EDLA.
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Before concluding this section about related works it is to be noted that the approach
to game dynamics based on Dynamic Epistemic Logic (DEL) we proposed in Section 4
is inspired by [5] in which strategic equilibrium is defined by fixed-points of operations
of repeated announcement of suitable epistemic statements and rationality assertions.
However, the analysis of epistemic games proposed in [5] is mainly semantical and
the author does not provide a full-fledged modal language for epistemic games which
allows to express in the object language solution concepts like Nash Equilibrium or
IDSDS, and the concept of rationality. Moreover, van Benthem’s analysis does not in-
clude any completeness result for the proposed framework and there is no proposal of
reduction axioms for a combination of DEL with a static logic of epistemic games. On
the contrary, these two aspects are central in our analysis.
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Abstract. Following the approach given by Nina Gierasimczuk [2009]
to bridge dynamic epistemic logic and learning theory, the logic of finite
identification in the limit in the process of learning has been explored in
this paper. The main results are two complete axiomatic systems. One
is defined in terms of public announcements, and the other in terms of
update by event models.
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1 Introduction

The motivation of formal learning theory (FLT) is to construct precise models
of language acquisition (E. M. Gold [1967]). Human beings have the ability to
learn a language. If we can construct a precise model on how children learn a lan-
guage, then it is possible to investigate theoretically how a natural language can
be achieved. One important important notion in language acquisition is the iden-
tification of some natural language. Another related notion is empirical inquiry
by a scientist. For example, there are only two possible worlds (possibilities): the
p-world where p is true, and the not-p-world where p is false. The scientist knows
all the possibilities. Suppose that the p-world is the actual one. But he cannot
distinguish them. Then he makes plausible conjectures or hypotheses from clues
given by the actual world, and he gets information or data about worlds by
observation and experiments. Finally, if the proposition p became stable since
redundant pieces of evidence show that p is the case, he can identify the actual
world in the limit. In section 2, I will describe a paradigm in formal learning
theory in terms of empirical inquiry by scientist. Then I would like to show the
bridge built in Nina Gierasimczuk [2009] between formal learning theory (FLT)
and dynamic epistemic logic (DEL) in section 3. In section 4, I will recast the
syntax and semantics for the logic of finite identification. Then I will define a
complete axiomatization in terms of public announcements. In section 5, the
result in section 4 will be extended to the dynamic epistemic logic of update in
the process of finite identification in the limit. In the final section, I will give
conclusions and some further remarks.
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2 A Fundamental Paradigm of FLT

Components of the paradigm described in these examples in section 1 which I
will focus on in this paper is the paradigm of set learning other than paradigms
like function learning. It can be extracted as following three ingredients. De-
tails of formal learning theory can be found in Osherson, de Jongh, Martin and
Weinstein [1997].

Possible Realities. In the language acquisition, a theoretically possible real-
ity is a potential natural language. In the empirical inquiry, a possible real-
ity is a possible world. Realities are represented by non-empty r.e. (recursively
enumerable) subsets of natural numbers. Think of such sets as potential nat-
ural languages or possible worlds. Numbers can also be conceived as codes for
objects and events founded in scientific contexts.

The Data Available about any Given Reality. The actual world provides a
series of clues about the reality. The clues constitute the data according to which
scientist makes hypotheses. Streams of data are often called environments. An
environment ε of a reality S is an infinite sequence of elements from S such that
it enumerates all and only elements from S, allowing repetitions.

Plausible Hypotheses about Any Given Reality. A Turing machine will function
as a conjecture or hypothesis. For each reality or language S in C, we consider
Turing machines hn which generate S, and in that case we say that n is a index
of S. Let H(C) be the set of all Turing machines generating all realities in C.
Each S may have infinitely many indices. Let IS := {n : hn generates S}, and
IH(C) =

⋃
S∈C IS . A scientist working in a given reality will identify the reality

in the limit if he successfully makes answers stable on a correct hypothesis.
The following notation is often used in literatures. Let εn be the n-th element

of ε, and ε|n the initial segment (ε0, . . . , εn−1) of ε. Let SEQ be the set of all
finite initial segment of all environments, and set(ε) the set of elements that
occur in ε. Finally, let hn be a hypothesis, i.e., a finite description of a set, a
Turing machine generating S, and L : SEQ → IH(C) a learning function from
finite data sequences to indices of hypotheses. The following two fundamental
definitions about identification often occurred in literatures are also contained
in Gierasimczuk [2009].

Definition 1. (Identification in the Limit). A learning function L identifies S
in C in the limit on ε iff there is a number k such that for co-finitely many m,
L(ε|m) = k and k ∈ IS. L identifies S in C in the limit iff it identifies S in the
limit on every environment ε for S. L identifies C in the limit iff it identifies
every S in C in the limit.

Definition 2. (Finite Identification in the Limit) A learning function L finitely
identifies S in C on ε iff when inductively given ε, at some point, L outputs a
single k such that k ∈ IS , and stops. L finitely identifies S in C iff it finitely
identifies S on every environment ε for S. L finitely identifies C iff it finitely
identifies every S in C.

Example 1. The following examples can also be found in Gierasimczuk [2009].
They show ways for a range of sets being identified or not.



Dynamic Epistemic Logic of Finite Identification 229

(1) LetC0 = {{0, 1}, {0, 2}, {0, 3}, . . .}.H(C0) = {h1, h2, h3, . . .}. C0 is finitely
identified by the following learning function L : L(ε|n) = undefined, if set(ε|n) =
{0}; Otherwise, L(ε|n) = max(set(ε|n)).

(2) Let C1 = {{1}, {1, 2}, {1, 2, 3}}, with H(C1) = {h1, h2, h3}. Then C1 is not
finitely identifiable. Suppose not. Let a learning function L identifies it. Assume
that {1, 2} is chosen as the actual world. But then h2 can never be conclusively
decided to be true. For 3 might occur in the future, and he cannot decide that
which of h2 and h3 is true. But C1 is identifiable in the limit by the following
learning function L : SEQ→ H(C1) : L(ε|n) = hm where m = max(set(ε|n)).

(3) Let C2 = {{1}, {1, 2}, {1, 2, 3}, . . .}. H(C2) = {h1, h2, h3, . . .}. This class
can also be identified in the limit by the above function. Let C3 = {N} ∩
{{1}, {1, 2}, {1, 2, 3}, . . .}. H(C3) = {h0, h1, h2, h3, . . .}, where h0 = ω. Then
C3 is not identifiable in the limit. Suppose not. Let L identifies C3. Then there
are numbers k and n such that for all m ≥ n, L(ε|m) = k. If k > 0, then L
cannot identify N. If k = 0, then it cannot identify hmax(set(ε|n)).

Another notion of learning presented in Gierasimczuk [2009] is the notion of
learning by erasing. From an epistemological point of view, it often happens
that some hypotheses falsified during the inductive inquiry are eliminated in the
process of jumping to the correct conclusion. Thus, a formal model has been
constructed in which the function each time eliminates a hypothesis, instead of
making positive a conjecture. That is learning by erasing. The following two
definitions are given in Gierasimczuk [2009].

Definition 3. (Function Stablization) In learning by erasing, we say that a
function stabilizes to number k on environment ε iff for co-finitely many number
n, k = min{N \ {L(ε|0), . . . , L(ε|n)}}.
Definition 4. (Learning by Erasing) A learning function L learns S in C by
erasing on ε iff L stabilizes to k on ε and k ∈ IS . A learning function L learns S
in C by erasing iff it learns S by erasing from every ε for S. A learning function
L learns S by erasing iff it learns every S in C by erasing.

3 A Bridge between FLT and DEL

Gierasimczuk [2009] bridges FLT and dynamic epistemic logic (DEL) in terms of
notions from DEL. In the process of learning in the limit, we have hypotheses and
pieces of incoming information. Hypotheses can be treated as the set of histories
of events that it predicts. For example, let h be N \ {3}. Then it predicts that
the environment will enumerate all natural numbers except 3.

The possible worlds in our epistemic model are identified with hypotheses.
Fix a class C of sets, and for each Sn in C, let hn be a hypothesis describing Sn.
In learning by erasing, we take the initial epistemic model as the background
for a scientist and his uncertainty about which world is the actual one. Let
M = (H(C),∼) be an epistemic frame, where H(C) is a possibly infinite set
of worlds, and ∼ is the uncertainty relation. This is the initial model. Next,
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some world is decided be to the actual one. Then some particular environment
ε, consistent with the actual world, occurs. The occurrences of a piece of data ε1
can be seen as the public announcement of ε1 at the initial stage. More generally,
it can be represented by the event frame E1 = ({e},∼, P re), where e ∼ e and
Pre(e) = ε1. Then we have the product update M ⊗E1. The scientist tests each
hypothesis with ε1. If a hypothesis is consistent with it, then it remains as a
possibility, and if not, the hypothesis is removed. In general, this process has
been described in Gierasimczuk [2009] as follows.

Definition 5. Let M be an epistemic model, ε an environment. The model M ε

generated from M by ε is defined as M ⊗E1⊗E2⊗E3 . . ., where the event model
corresponds to the public announcement of εn for each n.

The following example is very good for understanding the process of successful
identification of a single hypothesis in the limit in a certain scenario.

Example 2. Let H(C) = {h1, h2, h3} where hi corresponds to reality {1, . . . , i}.
Assume that h3 is chosen as the actual one. Let ε be the environment 1, 2, 1, 3,
2, . . .. After 1 occurs, no hypothesis can be removed since the piece of data 1 is
consistent with each hypothesis. After 2 occurs, the hypothesis h1 is removed
since it cannot produce such a piece of data. Finally, after 3 occurs, h2 is removed
and the actual world h3 is finitely identified in the limit.

Proposition 1. (Gierasimczuk [2009]) Finite identifiability can be modeled in
dynamic epistemic logic.

We have epistemic states for hypotheses, infinite sequences of announcements for
environments, and epistemic update for the progress in eliminating uncertainty
over hypotheses. Scientist succeeds in finite identification of S from ε iff there
is a finite initial segment ε|n such that the domain of the ε|n-generated model
contains only one hypothesis hk where k is a index for S. In other words, there
is a finite step of the iterated epistemic update along ε that eliminates the
uncertainty.

The update of the initial model along the given environment depends also
on the given data. In the above example, let h2 be chosen as the actual one.
Given the environment 1, 2, 1, 2, 2, 2, . . ., the uncertainty will not be eliminated
conclusively. Thus we can enrich the epistemic model with a preference relation
≤ over hypothesis. The relation does make sense. For example, scientist may
choose the simplest hypothesis. Thus the initial epistemic frame is of the form
M = (H(C),∼,≤). For those inconsistent hypotheses, the procedure of erasing
is the same as before. After h1 is eliminated, h2 is the scientists current belief
(the smallest one now). Although scientist cannot distinguish h2 and h3, his
preference makes him believe the current hypothesis. The approach by preference
order is often used in dynamic doxastic logic. (See van Benthem [2009].)

Proposition 2. (Gierasimczuk [2009]) Learning by erasing can be modeled in
dynamic doxastic logic.
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We have epistemic states for hypotheses, infinite sequences of announcements for
environments, epistemic update for the progress in eliminating uncertainty over
the hypothesis space, preference relation for the underlying hypothesis space,
and in each step of the procedure, the most preferred hypothesis for the actual
positive guess of the learning function. Scientist learns S by erasing from ε iff
there is n such that for every m > n, the most preferred state of the domain of
the ε|m-generated epistemic model is hk and k ∈ IS .

4 Syntax and Semantics

In this section, we first define a language to talk about the finite identification in
the limit exhibited in example 7. Before defining the formal language, we should
first clarify some philosophical notions.

A World as a Set of Facts. Recall that, in example 7, we need possible worlds con-
sisting of facts. It is convenient to think of a world as a set of propositional facts.
Thus we may associate each possible world with one set of propositional letters
which represent propositional facts. In the analytic philosophical tradition, the
philosophy of logical atomism shows such a world-view. The open sentence of
Ludwig Wittgensteins Tractatus says: “Die Welt is alles, was der Fall ist.” (“The
world is everything that is the case.”(Wittgenstein [1963])) Atomic propositions
stands for those facts. We even may include Bertrand Russell’s universal facts
(Rusell [1986]). If we keep staying outside, not going into the inner structure of a
proposition, we may consider an universal or quantified sentence as standing for
an universal fact. The nature chooses the actual world from which facts consist-
ing of an environments comes out by experiments and observation of scientist.
Thus we need two components in our model. One is the actual world designated
by the nature. The other is a mapping that assigns a set of propositional letters
to a world.

Talking about Possible Worlds. The end point of the process of successful finite
identification in the limit is to determine which world is the actual one. For each
possibility or possible world, scientist has a hypothesis saying that it may be the
actual one. Thus we also need to talk about hypotheses. This is equivalent to
say that the set of propositional letters assigned to the current world is actually
the set of all facts occurring in that world. Hence we need a language containing
symbols standing for the world. One alternative is to count the set of propo-
sitional letters assigned to a world as the proposition saying the fact that the
current world is the world which having exactly certain facts.

Identification. We also need an operator to talk about the identification of the
actual world. Actually, we only treat the notion of successful finite identification
in the limit. In the identification model, there should be a fixed non-empty initial
segment ε|n of a environment ε. Finite identification in the limit is achieved at
some stage in such a initial segment. The key feature of such an operator is that
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it only operates on the set of facts assigned to the actual world. Such an operator
can also be reduced by other notions.

Dynamic Operations. The approach given by Nina Gierasimczuk [2009] shows us
the road to explore logical dynamics in the process of finite identification in the
limit. Public announcements, or more generally, events can be used to represent
pieces of data that come from the actual world. This is the key clue for us to find
out complete logics. (For general discussions about dynamic epistemic logic, see
van Benthem [2009] and van Ditmarsch et al. [2007].) With those notions, we
can define the language for talking about finite identification in the limit, and
then give the semantics.

Definition 6. (Finite Identification Model) Given a set of propositional letters
Φ, a finite identification model M = (W,d,∼,w, ε|n) is defined as follows: W 	=
∅ and W is countable; d : W → ℘(Φ) is a function such that d(u) 	= ∅ for
all u ∈ W ; ∼ is a non-empty relation on W ; w ∈ W ; and finally, ε is an
enumeration of d(w) and ε|n is a nonempty initial segment of ε.

The set W is called the set of possible worlds or possibilities. Each world u ∈ W
is called a possible world or a possibility. d is a mapping used to completely
describe each given world by assigning a set of facts represented by propositional
letters. The relation∼ over possible worlds represents the uncertainty of scientist
between different possible worlds. And finally, the designated world w is chosen
by nature as the actual world. An environment in such a identification model
consists of elements in d(w). The reason for restricting W to be countable is
technical. The definition of epistemic language needs to add each d(u) as a basic
proposition which represents the fact that u is the world determined by d(u).
The fact d(u) may be seen as a meta-fact about facts in the world u.

In this section, the public announcement logic is used to talk about the process
of eliminating hypotheses in finite identification. Let’s define the language first,
and then give the semantics and complete axiomatization.

Definition 7. Given an identification model M = (W,d,∼, w, ε|n), the (single-
agent) epistemic public announcement language L(M) for talking about finite
identification in M has a countable set Φ of propositional letters, Boolean con-
nectives, knowledge operator K, difference operator �, public announcements of
facts in the actual world w, the identification operator Iε|n which operates only
on d(w). The well-formed formulas Form(L(M)) is given by the following rule:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | Kϕ | [!p]ϕ | [!p]ϕ | d(v) | Iεnd(w)

where p ∈ d(w) and v ∈ W .

Definition 8. Given an identification model M = (W,d,∼,w, ε|n) and u ∈W ,
define the satisfaction relation M,u � ϕ recursively as follows:
M,u � p iff p ∈ d(u);
M,u � ¬ϕ iff M,u 	 ϕ;
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M,u � ϕ ∨ ψ iff M,u � ϕ or M,u � ψ;
M,u � Kϕ iff M, v � ϕ for all v with u ∼ v;
M,u � �ϕ iff there exists a world v 	= u in M with M, v � ϕ;
M,u � [!p]ϕ iff if M,u � p then M |p, u � ϕ;
M,u � d(v) iff u = v;
M,u � Iε|nd(w) iff u = w and there is p ∈ ε|n with dom(M |p) = {w}.

In the above definition, M |p is the submodel of M induced by the domain {v ∈
W : M, v � p}. Let 〈K〉 denote the dual of knowledge operator K. Let � := ¬�¬
be the dual of difference operator �. Then M,u � �ϕ iff M, v 	 ϕ for all worlds
v 	= u. Why do we add the difference operator in our language? The reason
is the following. In the final step of finite identification in the limit, the actual
world is identified by using an fact or proposition that can occur only in the
actual world. Otherwise, if no such a fact appears, the actual world cannot be
finitely identified. The property of the unique fact is that it does not appear
in any other possible world. Such a property can be exactly expressed by the
dual of difference operator. Next, we give the public announcement logic of finite
identification. To define such a logic, we need first to identify the static part.

Proposition 3. The following system ELD is a complete axiomatization of
(single-agent) epistemic logic with difference operator:

(1) All instances of propositional tautologies.
(2) K(p→ q)→ (Kp→ Kq)
(3) Kp→ p
(4) Kp→ KKp
(5) 〈K〉p→ K〈K〉p
(6) �(p→ q) → (�p→ �q)
(7) p→ ��p
(8) ��p→ p ∨ �p
(9) MP: from ϕ and ϕ→ ψ infer ψ
(10) K-Gen: from ϕ infer Kϕ
(11) D-Gen: from ϕ infer �ϕ
(12) Sub: from ϕ infer any substitution of ϕ.

Proof. ELD is the fusion of basic epistemic S5 logic and the logic of inequality.
By the following three lemmas, the completeness result of ELD follows:

– S5 is complete with respect to the class of frames with equivalence accessi-
bility relation.

– (de Rijke [1992]) The logic axiomatized by the above axioms of difference
operator, D-Gen and MP is strongly complete w.r.t the class of frames sat-
isfying symmetry and pseudo-transitivity.

– (Kurucz [2007]) If modal logics ML1 and ML2 are characterized by frame
classes C1 and C2 respectively, and if C1 and C2 are closed under the for-
mation of disjoint union and isomorphic copies, then the fusion ML1⊕ML2
is characterized by the class C1 ⊕ C2 = {(W,R1, . . . , Rn, S1, . . . , Sm) :
(W,R1, . . . , Rn) ∈ C1 and (W,S1, . . . , Sm) ∈ C2}.
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Although some important facts, like d(u) → �¬d(u) and d(u) ∧ d(v) → u = v,
are not contained in ELD, we choose it as the static part of dynamic logics since
these facts depends on the possible world it talks about and a more expressive
language will be needed if they are to be embraced. Next we combine public
announcement logic and the static part ELD. The key step for finding out com-
plete axiomatization is to find out reduction axioms for static logical operators
under public announcements.

Theorem 1. The public announcement logic of finite identification PELD is
completely axiomatized by the static logic ELD plus the following reduction
axioms:

(1) [!p]q ↔ (p→ q)
(2) [!p]¬ϕ↔ (p→ ¬[!p]ϕ)
(3) [!p](ϕ ∨ ψ) ↔ ([!p]ϕ ∨ [!p]ψ)
(4) [!p]Kϕ↔ (p→ K(p→ [!p]ϕ))
(5) [!p]d(v) ↔ (p→ d(v))
(6) [!p]�ϕ↔ (p→ �(p ∧ [!p]ϕ))
(7) Iε|nd(w) ↔ d(w) ∧∨p∈ε|n �¬p.

Proof. The soundness proof is easy. Only the validity proof of the final reduction
axiom needs to be explained. Suppose that M,u � Iε|nd(w). Then u = w,
and there exists p ∈ ε|n with dom(M |p) = {w}. By u = w, M,u � d(w).
By dom(M |p) = {w} = {u}, M, v � ¬p for all v 	= u. Thus M,u � �¬p.
Conversely, assume that d(w) ∧ ∨p∈ε|n �¬p. Then u = w since M,u � d(w).
By M,u �

∨
p∈ε|n �¬p, there exists p ∈ ε|n with M,u � �¬p. Thus M, v � ¬p

for all v 	= u. Since p ∈ ε|n, p ∈ d(w) = d(u). Hence dom(M |p) = {w}.
The completeness is proved as follows. Suppose that � ϕ, i.e., ϕ is valid. Then
find the syntactically equivalent formula ϕ# without public announcements by
using reduction axioms. Then ϕ# is valid in ELD by the soundness. By the
completeness of ELD, �ELD ϕ#. Hence �PELD ϕ.

The above logic PELD is the public announcement logic of finite identification
in the limit on certain environmental segment. More general notion is the notion
of event model that have been studied in Baltag, Moss and Solecki [1998]. Also
see van Benthem [2009] for more details. The approach is to consider events and
models updated by them. In the next section, I find that it is easy to extend
the PELD to the dynamic epistemic logic of finite identification in the limit on
certain environmental segment.

5 DEL of Finite Identification

Some notions from dynamic epistemic logic should be explained first. And then
we define the language and semantics. Finally, we present the dynamic epistemic
logic DELD of finite identification in the limit on some given environmental
segment.
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Definition 9. (Event Model) A event model E = (E,∼, P re, V ) consists of a
set E of events, a binary uncertainty relation ∼ between events, a function Pre
from the event set E to the set of preconditions, and a valuation V .

In the process of finite identification in the limit, one occurrence of a piece of
data can be taken as an event. Note that the precondition of such an event is a
fact occurred in the actual world. Thus the preconditions of events are exactly
atomic propositions representing facts in the actual world. Moreover, the notion
of environment should be changed into the following. An environment ϑ is an
enumeration of all events that can occur in the actual world. Accordingly, given
a set of events, the precondition function determines which events can happen in
the actual world. In the finite identification model, the environmental segment
ε|n should also be changed into the event segment ϑ|n.

Definition 10. (Finite Identification Event Model) A finite identification event
model M = (W,d,∼,w, ϑ|n) is defined as an identification model except the
following condition: ϑ is a non-empty r.e. sequence (allowing repetition), the
sequence of events, each component of which is associated with exactly one fact
in d(w), i.e., the set all events in ϑ is equipotent to d(w). ϑ|n is an initial
segment of ϑ.

Thus each event sequence can be taken as representing an enumeration of all
facts in d(w). These facts determine which events can happen in the actual
world. Hence each event sequence is an environment for the actual world.

Definition 11. Given a finite identification event model M = (W,d,∼,w, ϑ|n),
an M -dependent event model EM = (EM ,∼, P re, V ) is defined as follows: EM

is the set of all events in the sequence ϑ. The relation ∼ is binary on EM . Pre
is a function from EM to d(w).

Definition 12. Given a finite identification model M = (W,d,∼,w, ϑ|n) and
M -dependent event model E, the production update model M ⊗ E under the
environmental segment ϑ|n is defined as follows: dom(M ⊗ E) = {(v, f) : f ∈
ϑ|n, v ∈W and M, v � Pre(f)}; (u, e) ∼ (v, f) iff u ∼ v and e ∼ f .

Definition 13. Given a finite identification model M = (W,d,∼,w, ϑ|n) and
a M -dependent event model E, the language L(M,E, ϑ|n) of logic DELD con-
sists primitive symbols in the language of logic ELD plus event model operators
{[E, e]}e∈ϑ|n and the finite identification operator Iϑ|n which only operates on
d(w). The set of formulas Form(L(M,E, ϑ|n)) is given by the following rule:

ϕ ::= p | ¬ϕ |ϕ ∨ ψ | Kϕ | �ϕ | [E, e]ϕ | d(v) | Iϑ|nd(w)

where p ∈ d(w), e ∈ ϑ|n, and v ∈W .

Definition 14. Given a finite identification model M = (W,d,∼,w, ϑ|n), a M -
dependent event model E and u ∈ W , define the satisfaction relation M,u � ϕ
recursively as follows. The clauses for ELD-formulas are the same as before. It
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suffices to define the following two clauses: (i) M,u � [E, e]ϕ iff M,u � Pre(e)
implies M ⊗ E, (u, e) � ϕ; (ii) M,u � Iϑ|nd(w) iff u = w and there is e ∈ ϑ|n
with dom(M |Pre(e)) = {w}.
Theorem 2. The dynamic epistemic logic of finite identification in the limit
DELD is completely axiomatized by the static logic ELD plus the following
reduction axioms:

(1) [E, e]q ↔ (Pre(e) → q)
(2) [E, e]¬ϕ↔ (Pre(e) → ¬[E, e]ϕ)
(3) [E, e](ϕ ∨ ψ)↔ [E, e]ϕ ∨ [E, e]ψ
(4) [E, e]Kϕ↔ (Pre(e) → ∧

e∼f K[E, f ]ϕ)
(5) [E, e]d(v) ↔ (Pre(e) → d(v))
(6) [E, e]�ϕ↔ (Pre(e) → �(Pre(e) ∧ [E, e]ϕ))
(7) Iϑ|nd(w)↔ d(w) ∧∨e∈ϑ|n �¬Pre(e).

Thus we gain the complete axiomatization of the logic of identification in the
limit in terms of event models and updates. This approach is a sort of general-
ization of the public announcement logic presented in section 4. There may some
philosophical implication of thinking events and their preconditions in philoso-
phy of scientific inquires. The main role of the two logics presented here is to see
what happens in the process of identifying some scientific results.

6 Conclusions and Further Remarks

In this paper, I recast Nina Gierasimczuks ideas of bridging formal learning the-
ory and dynamic epistemic logic. The main work is to define proper languages
for talking about finite identification and then explore logics in terms of pub-
lic announcements, or in terms of events and product updates. I find that the
situation can be described in the epistemic language by adding the difference
operator. Finally two logics PELD and DELD are presented.

Gierasimczuk [2009] claims that learning by erasing can be modeled in dy-
namic doxastix logic. But the problem of finding dynamic doxastic logics of
learning by erasing. It involves the notion of “Current Belief”. We need to merge
public announcement logic and belief revision, i.e., the semantics of the formula
[!p]Bϕ (i.e., after the public announcement of p, the agent believes that ϕ) should
be made explicit. The semantics of belief involves many difficulties.

Another direction in merging learning and dynamic epistemic logic is to make
the meaning of the verb “learn” in natural language explicit. One option is to
interpret as follows: the agent learns ϕ means that he is informed of ϕ. The
may be different approaches to find the logic of learning in the informational
sense. One is the AGM-approach which take the information set of the agent
as changing. Thus some operations may be found to reflect changes in agents
information set. There seems to be many differences between the information
set and agents belief set. For instance, information set can a contradict one.
It cannot be contract. But one key feature of a belief set is that it should be
consistent.
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Another approach is the dynamic epistemic one. We may introduce the for-
mula Lϕ saying that the agent learns ϕ. The key problem here is to define
the semantics of Lϕ. It is plausible to insist some principles. For instance, the
following two formulas seems to be plausible: L(ϕ → ψ) → (Lϕ → Lψ) and
Lϕ → LLϕ. The former formula says that if the agent has the ability to infer
new information by MP. If he learns that (is informed of) ϕ → ψ and ϕ, he
must learn that ψ. The latter formula says that if the agent is introspective with
respect to information. If he learns that ϕ, he is aware of that he learns that ϕ.

But some principles seems to be false. For instance, Lϕ → ϕ, Lϕ → Kϕ,
and Lϕ → Bϕ. The first one says that the truth of ϕ follows from the agent’s
learning or information of ϕ. This contradicts the intuition that the truth of a
formula is independent of agent’s information of it. The second one says that
the agent’s knowledge of ϕ follows from his information of ϕ. This contradicts
to the intuition that knowledge is true. The final one says that the agent’s belief
of ϕ follows from his information of ϕ. But it may often happens that the agent
has heart some proposition but he does not believe it. To clarify these problems
depends on making a good semantics for learning that can make the difference
between learning, knowledge, and belief explicit. Such a semantics will be very
helpful for us to understand learning as a way of obtaining information.
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Abstract. We suggest that in the context of planning in uncertain envi-
ronments, an agent’s performance of an action may be tentative and not
definitive. In this view, an agent plans to merely try performing an ac-
tion, and further planning is dependent on the success or failure of such a
trial. Epistemic logics seem well suited to formalize the reasoning in such
contexts. We study a simple such logic for one planning agent making
bounded plans, for which we give a complete axiomatization and prove
decidability. We discuss preliminary results for extensions to multi-agent
plans as well as unbounded plans.

1 Introduction

A primary goal of research on agent-based systems is to design agents that are
capable of planning [GNT04]. Typically a goal is given, and the planning problem
is to synthesize a plan (a sequence of actions) leading to the goal. Such a plan
synthesis is an algorithmic process, but is limited by the large size of the explored
state space. Deductive planning [MW87, Lev05] typically reduces plan synthesis
to theorem proving.

An important constraint on planning is uncertainty. This can come about due
to incompleteness in the state information available to the planning agent, or due
to non-deterministic outcomes of actions. In such contexts, actions are partial,
in the sense that the outcome achieved may be only a partial realization of the
desired outcome. It has been shown in [MW87, BS01, Lev05] that even for simple
domains involving uncertainty, there exist no classical plans. In such scenarios
it is meaningful to specify plans as programs with branching, and perhaps also
iterative, structure. Such an approach has led to the use of formalisms similar
to or inspired by propositional dynamic logic (PDL) ([HKT00]) for automated
planning ([Ros81, GB96, ST00]), and agent programming ([vRFM05]).

One way to overcome uncertainty in unpredictable environments is by using
sensing actions. A sensing or test action is an act of observation that does not
change the state of the world. Some examples of sensing actions include litmus
tests, read actions on variables or files, or Unix commands such as ‘ls, pwd’. Sens-
ing actions are considered in [EHW+92, GW96, Lev96, BS01, Lev05]. Spalazzi
and Traverso ([ST00]) go further and consider planning in a reactive system

X. He, J. Horty, and E. Pacuit (Eds.): LORI 2009, LNAI 5834, pp. 238–250, 2009.
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where sensing actions may change the state of the world and such actions may
fail as well. Typically, when sensing actions fail, the plans (programs) involving
sensing actions may abort or get stuck.

It is easy to see that sensing actions are epistemically founded. Why does a
planning agent perform a sensing action ? Typically, the plan dictates an action
a at that state, and the agent is uncertain, does not know whether a can be
carried out or not. In such a situation, the sensing action is an attempt to learn
and helps to increase the agent’s knowledge (perhaps partially).

However, one foundational difficulty with the use of sensing actions is the
possible uncertainty in whether the sensing action can be carried out or not,
and we need to consider sensing of sensors, a clearly unsatisfactory state of
affairs. Instead, a logical theory can work with the abstract effects of sensing by
looking only at change in information states. Planning then becomes a process
by which we seek not only goal states in “the world” but also goals in the agent’s
information states.

In what follows, we suggest that epistemic change, alongwith the notion of
partial actions, or trials. An agent tries to perform an action a, based on its
knowledge, and the observed success or failure of the action results in learning.
Admittedly, trials are again actions, so such a refinement may seem unnecessary.
But it is in the interaction between trials and epistemic attitudes that we see
the scope of reasoning relevant to planning.

We can conceive of trials as an abstract intentional form of sensing actions,
perhaps tentatively so. An agent, trying to pick up an object without precise
information about its weight, may actually succeed in picking it up, or learn that
it is too heavy, or fail to pick up and yet learn little. Thus it may well be possible
for a trial to determine whether an action is executable without incurring the
cost (and effects) of executing the action1. What learning actually results is an
epistemic change, and we model this change explicitly.

However, considering trials also as actions, though of the informational kind,
is important. Tests require preconditions to hold too, and their effect may be
to change information states. Further, sensing actions may not, in general, be
available but a robot may yet need to plan and carry out actions.

We use the standard S5 model of knowledge based on equivalence relations
to model epistemic attitudes. It may be more realistic to consider belief sets
rather than knowledge in the planning context ([SL03]) but this complicates the
technical development in our setting.

A familiar context in which such ‘trials’ are seen is in relation to questions.
Asking a question does not cause factual change but informational change. Fur-
ther, questioning is epistemically founded in much the same manner as trials:
a questioner (usually!) does not already know the answer, considers many an-
swers to be possible, and the form of the question is determined by how much
the questioner knows. These issues have been studied by Hintikka [Hin86], Har-
rah [Har02], Belnap and Steel [BS76], Hendricks and Symons [HS06], and other

1 This was pointed out by a perceptive reviewer.
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logicians. The crucial difference between questions and trials is that the latter
carries an action component implicitly.

Another thread, relevant to this line of work, is that of strategic reasoning in
game theory. Strategies are complete plans that advise a player on how to play
in all possible game situations, and make sense when reasoning externally about
games. However, when viewed within a game, a player’s choice of strategies is
local, tentative and partial; moves are trials whose outcomes determine further
strategizing. Such ideas are pursued in [RS08] but we merely note here that these
are connected.

In this paper, we propose a simple logic for one planning agent making
bounded plans, for which we give a complete axiomatization and prove decid-
ability. We then discuss preliminary results for extensions to multi-agent plans as
well as unbounded plans. But before we proceed with the technical development,
an example of planning based on trials may be relevant.2

2 Blocks World Example

As customary, we consider the Blocks World (BW) domain. The fluents in the
BW domain are ontable(x), clear(x), handempty, on(x, y). The operators are
pickup(x), putdown(x), stack(x, y), unstack(x, y). The operator stack(x, y) is
used to denote putting block x on top of block y; unstack(x, y) is the reverse
of stack(x, y). An action is a ground instance of an operator. For example, if
we have 3 blocks - A,B,C, then pickup(A), putdown(C), stack(A,B), etc. are
the actions. Let the initial configuration be that all the blocks are placed on the
table. The final configuration is a tower of blocks with A at the bottom, C at
the top, and B on top of A.

The planning problem is to find a plan that transforms the initial configuration
to the final configuration.

We assume that the blocks are of different weights. In the original BW domain,
the preconditions of pickup(x) are clear(x), handempty, and ontable(x). We
redefine pickup(x) by attaching one more pre-condition: block is not heavy. The
other natural condition is that a heavy block should not rest on a light block.
To consider weights we can also assume another operator apply lever(x, y) that
places a block x on top of block y, when both the blocks x, y are heavy, and
there is nothing on top of x, y.

We consider the situation that the planning agent does not have precise in-
formation regarding the weight of a block. So when the agent attempts to pick
up a block, it either manages to do so or discovers that it is heavy. This is a very
simple instance of partial actions.

Consider an example scenario given in figure 1. Let the initial configuration
be that all the blocks are placed on the table. The final configuration is a tower
of blocks such that the lighter blocks rest on top of heavy blocks.

2 This paper is a companion to [Niy09] which defines the logic and works out detailed
examples of plans, but does not address technical questions.



An Epistemic Logic for Planning with Trials 241

We introduce the operator try pickup(x) that is quite similar to pickup(x),
except that unlike pickup(x), try pickup(x) may be enabled at the initial state.
If it succeeds, its outcome is exactly that of pickup(x), i.e., holding(x) becomes
true. Now suppose that try pickup(x) fails. (In this paper we assume that the
notion of failure is with respect to goal attainment and not that of actions
aborting as in [ST00].) Then the agent comes to know that the block is heavy,
implying that pickup(x) cannot be performed at that state. So the try action
helps the agent in updating its knowledge about the world.

A B C

final

weights unknown

A,B: heavy

C: light

initial configuration configuration

B

A

C

Fig. 1. Modified Blocks World Domain

The table below describes the operators in the modified blocks world do-
main. Note that the post-condition for try pickup(x) includes the possibility of
handempty even when the precondition satisfies not heavy(x). This is a state
where pickup(x) is enabled, but a trial may yet cause no change of state. This
corresponds to the notion of trial as a partial action, in this case, a partial
attempt at picking up the object: we can interpret it as a tentative “tug”
that does not change the object state, nor does it change the informational
equivalence class for the agent.

Operators Preconditions Effects
pickup(x) ontable(x), clear(x), holding(x)

handempty,
¬heavy(x)

putdown(x) holding(x) ontable(x)
stack(x, y) holding(x), clear(y) on(x, y)
unstack(x, y) on(x, y), clear(x), holding(x)

handempty
apply lever(x, y) heavy(x), heavy(y), on(x, y)

clear(y)
rev lever(x, y) on(x, y), clear(x) ontable(x)
try pickup(x) ontable(x), clear(x), holding(x) or

handempty handempty
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3 Transition Systems with Trials

We use the formal model of labelled transition systems to describe plans. Since
we wish to study how the knowledge of the agent determines, and is in turn
determined by, the agent’s trials leading to plans, we enrich transition systems
with information partitions.

Let act be a finite set of primitive actions, and let Σ = act∪ {try a|a ∈ act}.
We use a, b etc to denote elements of A and x, y etc for elements of Σ.

Formally, a Σ-labelled epistemic transition system, often referred to as a
frame, is a tuple F = (S,∼,→), where S is a set of states, ∼ ⊆ (S × S) is
an equivalence relation, and → ⊆ (S × Σ × S) is the transition relation. ∼ is
called the indistinguishability relation of the agent.

For example, if the weight of a block in the BW domain is not known, then
the agent considers two states possible—one in which the block is heavy, and
another in which it is light. try pickup(x) is a way by which the agent can learn
whether it is heavy or not and refine the partition.

A frame F = (S,∼,→) is said to be a trial based planning frame if F satisfies
the following conditions:

– Condition1.
∀s1, s2 ∈ S, a ∈ act, if s1

a→s2 then either s1
trya→ s1 or s1

trya→ s2.
– Condition2. ∀s1, s2 ∈ S, a ∈ act, if s1 ∼ s2 then trya is enabled at s1 iff
trya is enabled at s2.

– Condition3. ∀s ∈ S, a ∈ act, if try a is enabled at s, then ∃s′ s.t. s ∼ s′

and a is not enabled at s′.
– Condition4. ∀s1, s2, s′1, s′2 ∈ S, a ∈ act, if s1 ∼ s2, s1

a→s′1 and s2
a→s′2 then

s′1 ∼ s′2 as well.

The intuition underlying these conditions is as follows. The information state of
the planning agent at s is captured by the equivalence class [s]∼. The agent does
not know the true state of the world s. The agent, based only on the information
available to it, cannot distinguish s from s′, where s ∼ s′.

Now, at any state s there are four possibilities regarding an action a.

– Neither a nor trya is enabled at s: this is the situation when the agent knows
that action a is not available as an option in state s.

– trya is enabled at s, but a is not: this is when the agent considers the action
a as possible but is unsure. Condition 3 above reflects this uncertainty: the
notion of ‘trying’ presumes the possibility of failure. Note that when an
agent tries to do a, it knows that it can try to do a: no information it has
can preclude the trial itself, as asserted by Condition 1.

– a is enabled at s, but trya is not: this clearly does not make sense and ruled
out by Condition 1.

– Both a and trya are enabled at s: Condition 1 ensures that either state does
not change due to trial or both result in the same change of state. The former
situation arises when the trial is partial. For example, giving a large rock a
tentative tug to see whether it can be lifted.
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In addition, Condition 4 asserts that when an action succeeds at indistinguish-
able states, the resulting states are again indistinguishable to the agent. Note
that such a condition does not hold for trya, which reflects the essence of learn-
ing due to trial actions. This enables hypothetical reasoning of the form: “I do
not know whether the actual state satisfies p or ¬p but if this trial succeeds then
I will know”.

Note that trial based systems can be quite nondeterministic with respect to
actions. For instance, consider the system in Figure 2. The agent does not know
whether the state is s or s′. Trying the same action in s leads to failure whereas
in s′ it succeeds. However, even in the latter case, the agent is uncertain whether
the resulting state is s1 or s2.

s’

s1 s2

trya a, try a, tryaa

s, s’ 

s1, s2

 indistinguishable

 indistinguishable

s

t

Fig. 2.

Condition 4 carries some subtlety: it only asserts that whenever an agent can
perform an action after which it knows φ, it already knows that φ will hold after
doing it. The converse does not hold, as we see in the system in Figure 3, which
clearly satisfies Condition 4.

s1

s s’

a

s1, s2  indistinguishable

s, s’  indistinguishable

s2

Fig. 3.



244 R. Niyogi and R. Ramanujam

4 An Epistemic Logic with Try Actions

The logic proposed here is an action-indexed logic with a knowledge operator.
Fix P = {p0, p1, . . .}, an at most countable set of atomic propositions, and Σ

as above.

Syntax: From P and Σ, the set Φ of formulas defined inductively as:

Φ := p ∈ P | ¬φ | φ1 ∨ φ2 | [x]φ, x ∈ Σ | Kφ

Note that the syntax is an epistemic extension of standard action indexed modal
logic, the only difference being the use of trya actions. As the semantics will
clarify, it is the interaction of these actions with knowledge operators that makes
for new logical interest.

As usual, conjunction, implication and equivalence are defined in terms of
negation and disjunction. 〈x〉φ = ¬[x]¬φ denotes the dual of [x]φ, and Lφ =
¬K¬φ, the dual of Kφ.

Semantics: The semantics is defined in terms of labeled transition systems that
describe trial based plans.

A model is a pair M = (F, V ), where V : S → 2P is the valuation map and
F = (S,∼,→) is a trial based planning frame. Given a model M and a state s
in S, the satisfaction relation |= for a formula α, is given inductively as follows:

– M, s |= p iff p ∈ V (s) for p ∈ P .
– M, s |= ¬α iff M, s 	|= α.
– M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.
– M, s |= [x]α iff for all t such that s x→t, we have: M, t |= α.
– M, s |= Kα iff for all s′ such that s′ ∼ s, we have: M, s′ |= α.

It is easily seen that M, s |= 〈x〉α iff there exists t, s x→t and M, t |= α.
As is usual, we say that a formula α is satisfiable, if there exists a model

M = (F, V ), F = (S,∼,→) and s ∈ S such that M, s |= α. We say that α is
valid if ¬α is not satisfiable.

4.1 Axiomatization

We now propose an axiomatization of the valid formulas of the logic. What
follows is a standard axiomatization enhanced by formulas connecting action
modalities with knowledge and those capturing the interaction of knowledge
with action trials.

The Axiom Schemes

1. All the substitutional instances of tautologies of boolean logic.
2. [x](α ⊃ β) ⊃ ([x]α ⊃ [x]β)
3. K(α ⊃ β) ⊃ (Kα ⊃ Kβ)
4. Kα ⊃ (α ∧ KKα)
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5. Lα ⊃ KLα
6. ([trya]α ∧ [trya]β) ⊃ ((α ∧ β) ∨ [a](α ∧ β))
7. 〈trya〉True ⊃ (K〈trya〉True ∧ L¬〈a〉True)
8. 〈a〉Kα ⊃ K[a]Kα

Inference Rules

(MP) α, α ⊃ β (NG) α (KG) α
β [x]α Kα

We say α is a theorem of the system, denoted � α if it is derivable from substi-
tution instances of the axioms by finitely many applications of inference rules.
It is easily seen that every theorem is valid. It can be checked that the formula
[trya]α ⊃ (α ∨ [a]α) is sound. However, we need the stronger form of the axiom
6 for completeness.

Theorem 4.1. The system Ax above is a complete axiomatization of the valid
formulas of the logic.

Proof. The theorem is easily proved by the observation that the canonical model
for the logic is a trial based planning frame. Consider F = (M,→,∼) where M
is the set of all maximal consistent sets, and → and ∼ are as given below.

For a definition of maximal consistent sets (MCS), firstly, a formula α is said
to be consistent if 	� ¬α. A finite set of formulas is consistent if the conjunction of
its formulas is is consistent. A set of formulas is consistent if every finite subset
is consistent. A set A is maximal consistent if whenever A ∪ {α} is consistent,
α ∈ A. Below we use A,B, etc to denote MCS’s.

Define A x→B iff for every [x]α, if [x]α ∈ A then α ∈ B. Define A ∼ B iff for
every Kα, Kα ∈ A iff Kα ∈ B. Clearly, ∼ is an equivalence relation on M.

For instance, suppose A a→B. To prove that A
trya→ B or A

trya→ A, suppose that
neither is the case. Then there exist α, β such that [trya]α, [trya]β ∈ A, but
α 	∈ A, β 	∈ B. Hence α∧β 	∈ A, and by axiom (A6), [a](α∧β) ∈ A. Since A a→B,
we have that (α ∧ β) ∈ B, contradicting the fact that β 	∈ B.

Now suppose A ∼ B, A a→A′ and B
a→B′. To prove that A′ ∼ B′, suppose

that Kα ∈ A′. By definition of a→, 〈a〉Kα ∈ A and by axiom (A8), K[a]Kα ∈ A,
and by definition of ∼, K[a]Kα ∈ B and hence [a]Kα ∈ B (by axiom (A4)). By
definition of a→, Kα ∈ B′. Symmetrically we can prove that whenever Kα ∈ B′,
we also have Kα ∈ a′. Thus A′ ∼ B′.

Define the model M = (F, V ), where V (A) = A ∩ P . We can now prove by
induction on the structure of formulas that, for every formula α and every MCS
A, M,A |= α iff α ∈ A.

Let α0 be a consistent formula. Then there exists an MCS A0 such that
α0 ∈ A0. By what we saw above, M,A0 |= α0, and hence α0 is satisfiable. Thus
every consistent formula is satisfiable, establishing completeness of the axiom
system. �

Note that we made essential use of MCS’s in proving the frame conditions. Any
attempt at doing the proof with maximal consistent finite sets (say subformulas
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of α0) runs into the barrier that the use of (A8) makes the set A above infinite.
Thus, we need to be more careful when we attempt a decision procedure for
satisfiability.

5 Decidability

We now discuss the decidability problem for the logic.

Theorem 5.1. The satisfiability problem for the logic is decidable, and PSpace-
complete.

The action-indexed logic without epistemic operator is already PSpace-hard (by
a standard Ladner-type argument), so the lower bound is clear. We now sketch
the argument for the upper bound.

We first define the subformula closure of a formula φ, denoted CL(φ). This
is the least set containing φ, closed under negation and subformulas, but addi-
tionally satisfies the conditions that whenever [x]φ′ ∈ CL(φ), K[x]φ′ ∈ CL(φ)
as well. Additionally we assume that K〈x〉True ∈ CL(φ), for every x ∈ Σ. Note
that for every formula φ, CL(φ) is finite and its size is linear in the length of φ.

We also assume that the formula is rewritten so that negation is pushed inside
and appears only on atomic propositions.

The notion of successor depth of a formula α, denoted d(α), is clear and
defined inductively: d(p) = 0 for p ∈ P ; d(¬α) = d(Kα) = d(α); d(α ∨ β) =
max{d(α), d(β)}; d(〈x〉α) = d(α) + 1.

Now fix a given formula α0 and let CL denote the set CL(α0). Let d0 = d(α0).
We work with down-closed subsets of CL. Let A ⊆ CL. A is down-closed if it
satisfies the natural conditions that whenever ¬β ∈ A, β 	∈ A; if α∨β ∈ A, either
α ∈ A or β ∈ A; if α ∧ β ∈ A, then α ∈ A and β ∈ A; if Kα ∈ A then α ∈ A;
if α ∈ A and Lα ∈ CL then Lα ∈ A. Additionally, we ensure that whenever
〈trya〉True ∈ A, we also have K〈trya〉True ∈ A and L¬〈a〉True ∈ A.

A down-closed set A is minimal for α if it contains α and no proper subset
is down-closed. For any formula α, let DC(α) denote the set of minimal down-
closed subsets of CL for α. Similarly define DC(B) for any B ⊆ CL.

The algorithm proceeds as follows. It attempts to build a forest whose max-
imum depth is at most d0. At each level, sufficiently many nodes are added to
fulfil all epistemic requirements (clearly bounded by the length of α0).

Given A ⊆ CL, let K(A) = {Kα |Kα ∈ A} ∪ {Lβ |Lβ ∈ A}, and for x ∈ Σ,
let Nx(A) = {α | [x]α ∈ A}.

At the first step, guess A ∈ DC(α0), and for each Lβ ∈ A such that β 	∈ A, find
B ∈ DC(K(A)∪{β}). The algorithm fails, if it cannot find such sets. Otherwise
suppose m such sets (say B1, . . . , Bm) are chosen. Then define the structure
F0 = (S0,→0,∼0, λ0), where S0 = {w0, w1, . . . , wm},→0= ∅, ∼0= (S0×S0) and
λ0 : S0 → 2CL is defined by λ0(w0) = A and λ0(wj) = Bj , where j ∈ {1, . . . ,m}.

Inductively, given a structure Fk = (Sk,→k,∼k, λk), the algorithm tries to
fulfil an x-requirement, x ∈ Σ: it is a w ∈ Sk such that 〈x〉True ∈ λk(w) = A

but there is no w′ ∈ Sk such that w
x→w′. If there is no such requirement,
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set Fk+1 = Fk. Suppose there is such a requirement at w. If x = trya and
〈a〉True 	∈ A, the algorithm tries to pick a B ∈ DC(Nx(A)) and as before, a set
B′ for every Lβ ∈ B such that β 	∈ B; and these many nodes are added to the
structure, with one transition labelled trya from w to a node (say w′) labelled
by B.

If 〈a〉True ∈ A, the construction is similar, but with some crucial differences:
we need to check that Ntrya(A) ⊆ B, and for every w1, w2 ∈ Sk such that
w1 ∼k w and w1

a→w2, K(w2) ⊆ B. We set (w2, w
′) ∈∼k+1.

When such a construction is complete, we have a structure F = (S,→,∼, λ)
defined by pointwise union. We can check that (S,→,∼) satisfies the frame
conditions and for all w,w′ ∈ S:

– If w x→w′ then for all [x]α in CL, if [x]α ∈ λ(w) then α ∈ λ(w′).
– If w ∼ w′ then for all Kα in CL, Kα ∈ λ(w) iff Kα ∈ λ(w′).
– If 〈x〉α ∈ λ(w) then there exists w′′ ∈ S such that w x→w′′ and α ∈ λ(w′′).
– If Lα ∈ λ(w) then there exists w′′ ∈ S such that w ∼ w′′ and α ∈ λ(w′′).

We then define a model M = (S,→,∼, V ) by: V (w) = λ(w) ∩ P . We can then
show that for every w ∈ S and α ∈ CL, if α ∈ λ(w) then M,w |= α. Since
we started with α0 ∈ λ(w0), we then have that M,w0 |= α0 and hence α0 is
satisfiable.

Thus successful termination of the algorithm implies that the given formula
is satisfiable. That the algorithm terminates can be seen by arguing that every
time a transition is added, successor depth decreases. On the other hand, if the
given formula is satisfiable, it is easily shown that a correct guess of down-closed
sets is available at every stage, leading to successful termination.

That the algorithm uses only space polynomial in the length of α0 needs care-
ful analysis since reuse of space is needed, but follows along standard lines. This
gives a nondeterministic polynomial space algorithm, and hence by Savitch’s
theorem, we get a PSpace decision procedure.

6 Extensions

The logic presented here is very simple, but forms the basis for very natural
extensions.

6.1 Multi-agent Plans

It is clear that the framework presented here can be easily extended to multi-
agent plans. Consider a system with n agents. The simplest extension consists
of generalizing trial based planning frames to have n equivalence relations, set
Σ to the tuple (Σ1, . . . , Σn), with Σi ∩ Σj = ∅ for i 	= j. Correspondingly the
syntax of the logic is generalized to have Kiα, for i ∈ {1, . . . , n}, with the obvious
semantics. It is then easy to check that the technical results extend for this logic
as well (though the decision procedure does get considerably complicated).
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However, such a generalization does not address the rich possibilities that
make multi-agent planning interesting in the first place. For instance, in the
Blocks World domain, when one agent tries to lift a block and finds it too heavy,
every other agent who has observed the trial learns this fact as well. Then there
is the differential ability among agents to lift heavy blocks. It is therefore clear
that the same trial could reveal different information to distinct agents.

The next issue is whether the performance of an action by one agent can cause
an enabled action to become disabled after this. For instance we can consider
situations where two trials are enabled, by distinct agents, but if one of the
agents performs its trial, in the resulting information state, the other agent’s
trial is no longer enabled.

Finally, it is interesting to consider the planning goal to be separately specified
for each agent. With this we enter the realm of game theory. The connection
between plan synthesis and strategy synthesis in games is intuitively clear, but
we expect that epistemic logic [FHMV95] would play a significant role in studying
their formal relationship.

This discussion suggests that we need a more refined structure in both the
frames and the logic in the context of multi-agent plans. Importantly, we need to
limit the visibility neighbourhoods of trials, and causality relationships between
agents’ actions.

6.2 Unbounded Plans

It is easily seen that the logic can specify branching plans of bounded duration.
Since many interesting situations in planning are modelled as finite trees, this is
already expressive. However, there are many situations where plans need to be
unbounded. For instance, when an agent keeps trying to open a tightly sealed
jam bottle, after a sequence of trials she suddenly finds that the bottle opens.
While it is true that the lid has eased gradually, this is a plan of unbounded
duration, typically specified by keep trying until a condition is satisfied.

A simple extension of the logic is to add a modality �α, and the semantics
is given by: M, s |= �α iff there exists s′ such that s ⇒ s′ and M, s′ |= α,
where ⇒=

⋃
x∈Σ

x→. Thus �α holds at s if there is a state reachable from s in

finitely many steps at which α holds. Let �α = ¬�¬α and ©α =
∧

x∈Σ

[x]α.

It is easy to see that the following formula is valid: �α ⊃ (α ∧ [x]�α). What is
more interesting that we also have an induction axiom: �(α ⊃ ©α) ⊃ (α ⊃ �α).
Such an axiom is clearly needed, but proving that such an extension suffices for
completeness seems difficult. We conjecture that these axioms, along with the
Kripke axiom for � modality, suffice for completeness.

The decidability of the logic for unbounded duration plans is also non-trivial.
For one thing, we cannot work with a simple forest construction as we did in the
previous section. In the decision procedure we presented, we fulfill all epistemic
requirements on the addition of each node, and check for the learning condition
for each successor. It turns out that we need a dual construction for this logic:
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every time we add a node, we complete the construction of its reachability sub-
graph, checking for �α requirements. Then we consider epistemic requirements,
and each such addition induces a subgraph to be added and checked. The ter-
mination of such a procedure and its complexity involve tricky detail. Moreover,
this algorithm takes double exponential time, and perhaps can be improved.
Details will be provided in the full paper; we mention this here only to point out
that reasoning becomes harder for unbounded plans.

The � modality is too coarse to constrain paths. For instance, we might want
to consider only sequences of try actions until some condition becomes true.
This can be achieved by extending the logic to a Propositional Dynamic Logic
([HKT00]) with tests and regular expressions over Σ. Technically this has the
same complexity as the logic of unbounded plans discussed above.

Much better would be the embedding of such a logic in a Dynamic Epistemic
Logic (DEL) ([vDvdHK07]) by modifying DEL to work with partial and uncer-
tain actions. It is hoped that such an attempt will lead to new directions for
plan synthesis.
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Abstract. In this paper, we suggest defining obligations under the as-
sumption that agents are responsible. We consider how the framework
developed by Horty in [2] can be modified to incorporate this idea, and
how this solves some objections raised to Horty’s system. Also, we discuss
how the assumption of a responsible world can (not easily) be incorpo-
rated into the framework of knowledge based obligations introduced by
Pacuit, Parikh and Cogan in [5].

1 Introduction

This paper is concerned with formalizing obligations to act. The normative con-
cept of obligation is modelled in the extensively studied area of logic called
deontic logic. In this paper we will focus on two existing systems of deontic
logic. The first is a deontic theory of actions as developed by Horty in his book
‘Deontic Logic and Agency’ [2]. Horty’s system models personal obligations in an
environment with multiple agents acting simultaneously. The second system is a
formal account of so-called ‘knowledge based obligations’ developed by Pacuit,
Parikh and Cogan (PPC) in [5]. In this model epistemic and deontic logic are
combined to capture the idea that an agent’s epistemic state influences the obli-
gations he has. For the purpose of this paper, there is no need to introduce the
formal languages as proposed in both systems as we are mainly concerned with
the structural concepts they define.

Our main contribution is the idea that obligations should not be defined irre-
spective of (all the) possible moves of other agents. Rather, we suggest defining
obligations in a world in which other agents behave responsibly, morally or ra-
tionally. We suggest a modification of Horty’s framework that incorporates this
assumption and we will see how this solves some of the critiques raised to Hory’s
original system. We will also discuss how the assumption of a responsible envi-
ronment cannot immediately be incorporated into the framework of PPC with
multiple agents acting simultaneously. The reason for this being the way the
notion of goodness is defined in PPC’s model. When we consider other agents’
future moves, however, our idea can be applied.

The paper will be organized as follows. First, we will discuss Horty’s deontic
theory of actions and we will mention several problems arising in this frame-
work. Next, we will introduce the system developed by PPC and discuss some of
its problems. We will compare the two systems and their respective notions of
goodness and obligations. Finally, we will come to the heart of the paper where
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we will discuss defining obligations under the assumption of a responsible world
and the way in which it can(not) be incorporated into the systems of Horty and
PPC respectively.

2 Deontic Logic and Agency

In his book, “Deontic Logic and Agency” [2], Horty develops a deontic theory of
what an agent ought to do using a “Seeing To It That” or STIT framework. This
framework, a modal logic of action reports, was originally proposed in a series
of papers by Belnap, Bartha and Horty (see [1] for an overview). The theory is
developed using a model of branching time, originally due to Prior [6].

The idea of a model of branching time is that moments in time form a tree-like
structure: the past is deterministic, the future branches. Each (infinite) branch
of the tree is called a history (H). Propositions are evaluated with respect to
a moment (m) together with a history through that moment (H). The set of
histories passing through m is denoted with Hm. The set |A|Mm denotes the set
of histories from Hm in which the proposition A is true. Thus, propositions are
regarded as sets of histories with respect to a moment.

Just like propositions, actions are also defined to be sets of histories. Thus, in a
way, actions are propositions. At a moment m an agent α can choose his action
from a set Choicem

α which is a partition of Hm. An action does not uniquely
determine a single future, but generally narrows down the set of possible futures.

In order to model the notion of obligation, Horty introduces an utilitarian
value-function. This function assigns to each history H a single rank-reflecting
numerical value V alue(H) that is uniform along the history. Thus, each history
has a fixed relative utility assigned to it; a utility to the world.

Within this STIT framework with values, Horty provides a formal and prim-
itive account of what an individual ought to do. Or, to be more precise, of what
an agent ought to see to.

First an order on the set of propositions is defined as follows. Given two
propositions A and A′, A is better than A′ (A ≤ A′) just in case V alue(H) ≤
V alue(H ′) for each H ∈ A and H ′ ∈ A′. Also, the concept of a Statem

α is
introduced. It is the set of agent-independent states that α faces at moment m
and is defined as the set action tuples available at m to the group of agents other
than α. Formally,

Statem
α := Choicem

Agent−α.

Given this notion of a state, an ordering on the set of actions is defined as follows.

Definition 1 (Horty 2001). Let α be an agent and m a moment from a util-
itarian STIT frame, and let K, K ′ be members of Choicem

α . Then K � K ′ (K ′

weakly dominates K) if and only if K ∩ S ≤ K ′ ∩ S for each state S ∈ Statem
α ;

and K ≺ K ′ (K ′ strongly dominates K) if and only if K � K ′ and it is not the
case that K ′ � K.
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The above definition satisfies Savage’s sure-thing principle and captures the idea
that K ′ weakly dominates K whenever the results of performing K ′ are at least
as good as those of performing K, no matter what actions the other agents
choose.

Given this definition of dominance, a set of optimal actions of an agent α at
a moment m (Optimalmα ) is defined to be the set of available actions that are
not strongly dominated by any other action. Thus,

Optimalmα = {K ∈ Choicem
α | there is no K ′ ∈ Choicem

α : K ≺ K ′}
In case there are only finitely many different utilities, Horty’s definition of what
an agent ought to see to is as follows:

Definition 2. Let α be an agent and Hm an index from a utilitarian STIT
model M. Then agent α ought to see to it that A in M at Hm, if and only if,
K ⊆ |A|Mm for each action K ∈ Optimalmα .

In short, an agent ought to see to it that A, if all the undominated actions
guarantee an outcome of A. From this definition it follows that an agent in
obligated to perform an action K iff K strictly dominates each action at each
state. Or, in other words, there is no action that allows for a better outcome
at a particular state. In particular, an action is obligatory if it guarantees an
outcome with maximal value.

Problems with Horty’s Framework

In this section we will pose two ‘objections’ to Horty’s framework by describing
two scenarios resulting in strange Horty-obligations. The first is more of an
observation rather than an important critique.

Example 1. Sam is very ill. Andrea, Sam’s wife, has two choices: bring Sam to
a doctor so he can get treatment, or leave him at home, in which case he might
die. In the mean time, Sam’s daughter Beata, can either play some music Sam
likes in his room, or not.

Within Horty’s framework, Beata has an obligation to play the music in Sam’s
room, because, no matter what Andrea does, the outcome will be better. How-
ever, in real life, we might object to saying that Beata has this obligation at the
current moment. We could say; ‘Beata, don’t bother playing the music, Andrea
will have to take Sam to the hospital, so he won’t be there to enjoy it anyway’.
Thus, this example depicts a situation in which an obligation to act arises in a
setting where we might object to it.

The second objection is a more substantial critique posed by McNamara. It
involves a scenario in which no obligation arises whereas there should. In his re-
view of Horty’s book [4], McNamara argues that dominance utilitarianism is too
weak to account for actual decision making in ordinary situations of uncertainty.
He gives the following illustrative example.



254 L. Olde Loohuis

Example 2. [McNamara 2004.] Suppose I am obliged to be somewhere and can
get there only by driving. Now consider the fact that at numerous intersections
that I drive through, someone could choose to run the lights or stop signs and
thereby kill me. These are choices other drivers could make, thus nothing I do can
rule out this sort of possible history other than to not drive to my appointment.

According to Horty’s theory, driving to my appointment does not dominate
staying at home, and hence I will not be obliged to see to it that I keep
my appointment. Given the assumption of independence of actions, McNamara
argues, there will be far too few dominance oughts.

In section 5 we see how our modification of Horty’s framework involving re-
sponsibility of fellow-agents will solve both examples. But first we will introduce
the model of knowledge based obligations as proposed in [5].

3 Knowledge Based Obligation

In their paper ‘The Logic of Knowledge Based Obligation’ [5] Pacuit, Parikh and
Cogan (PPC) combine a logic of knowledge with a logic of obligation. In order to
choose responsibly, they argue, one needs knowledge about the circumstances.
A motivating example used in [5] is the following:

Example 3. [PPC 2006.] Uma is a physician whose neighbor [Sam] is ill. Uma
does not know and has not been informed.

Because the histories in which Sam gets treated are optimal and, in this simple
scenario, coincide with the action of Uma treating Sam, it follows from Horty’s
analysis that Uma has an obligation to treat Sam. Of course, this conclusion
seems rather odd. In the system to be discussed next, oddities of this kind are
eliminated.

The framework of PPC is in many ways similar to that of Horty. Just like in
Horty, a model of branching time is used. And just like in Horty, each (infinite)
history is assigned a value, a utility to the world. There are however, also some
important differences between the two approaches. The main difference, as al-
ready mentioned above, is that in [5] notions of knowledge and uncertainty are
introduced. This is done by making a distinction between global histories and
local histories. A global history H includes all the (relevant) events that have
taken place. An agent α’s local history h, on the other hand, contains only those
events from H that agent α has actually observed and non-informative clock
ticks for events that α has not observed.

Furthermore, at momentm, two histories H,H ′ are indistinguishable for agent
α, Hm ∼α H ′

m, if and only if α’s corresponding local histories hm and h′m are
the same.

In the PPC framework, actions are events. An action a can be performed at
a finite history and yields a set a(Hm) of global extensions of Hm. Just like in
[2], this is a subset of Hm. Formally,

a(Hm) = {H ′|Hma  H ′},
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where  denotes the initial segment relation. Note that in Horty’s system agents
move simultaneously, whereas in PPC’s (original) model only one agent can move
at a given time.

In order to formalize an agent’s obligations within the framework of actions
and knowledge in branching time, a notion of H-good histories G(H) is intro-
duced. G(H) is defined as the set of extensions of finite history H with the
highest possible value1. Thus, the set of H-good histories is actually the set of
H-optimal ones. Given this notion of H-goodness, an action a is defined to be
good if and only if G(H) ⊆ a(H), i.e. every H-good history involves performing
a. Note that this does not imply that performing a guarantees an H-good future.

Finally, the PPC notion of obligation is as follows:

Definition 3 (PPC 2006). An agent α is obliged to perform an action a at
global history H and moment m iff a is an action which α (only) can perform,
and α knows that it is good to perform a. Formally, (∀H ′)(Hm ∼α H ′

m and H ′ ∈
G(H ′

m) implies H ′ ∈ a(H ′
m)).

Thus, at moment m, agent α is obliged to perform a iff a is a good action and
α knows this.

The above notion of knowledge based obligation eliminates Uma’s obligation
to treat Sam in example 3 in the following way: Assume that treating Sam when
he is ill is optimal, whereas treating him when healthy is not. It follows that
treating Sam is good. However, Uma does not know this and hence she has no
obligation (as yet) to treat him.

Apart from the absolute notion of knowledge based obligation, also a weaker
concept of default obligation is introduced in [5]. Intuitively, an agent has a
default obligation to perform action a if all maximal histories that an agent
considers plausible are ones in which a is performed.

Afterthoughts on Knowledge Based Obligation

In [?] several suggestions have been proposed for improving the PPC semantics
of knowledge based obligations. We will only mention the one that we will come
back to in section 5. This suggestion is to allow simultaneous moves, such that at
each moment, every agent is allowed to choose from his set of valid actions. To
capture this idea the use of action tuples is proposed. Note that this modification
is in line with Horty’s concurrent moves. The concept of obligation is modified
as follows: an agent is obliged to perform a if all good histories are preserved,
irrespective of what the other agents do.

As an aside, we would like to mention one afterthought of our own. In the PPC
framework, it is assumed that all the necessary information about the possible
outcomes of actions are determined by the (past) history. Now, let us consider
the situation in which Uma considers performing an operation on a patient that
has never been performed before (under the current circumstances). Uma is

1 Some reasonable restrictions apply to the set of possible values which guarantee that
a maximal possible value always exists.
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unsure about the possible consequences of this action. Suppose moreover that
the operation will in fact cure the patient. And thus, performing the action will
preserve all good histories. According to the PPC model, this implies that Uma
has the (remarkable) obligation to perform the operation.

We think that one way to deal with uncertainty about outcomes of actions
is by introducing explicit uncertainty relations among actions. The concept of
obligation then becomes: α is obliged to perform a iff α can perform a and for
all worlds compatible with his local history α knows a is good to perform a.
Unfortunately, developing this idea in further detail is not within the scope if
this paper.

Problems with PPC’s Framework

Though [5] is primarily concerned with how (acquiring) information influences
obligations, this will not be our main focus when discussing the PPC framework.
Rather, in this very brief section and the next, we will concentrate on obligation
arising in situations without uncertainty. As we did for Horty’s framework, we
would like to pose two ‘objections’ to PPC’s framework by describing two sce-
narios resulting in odd obligations. As before, in the first scenario an obligation
arises where it should not, and in the second, no obligation arises whereas there
should.

The first example is the following:

Example 4. Uma is a physician whose neighbour Sam is ill. Uma knows about
this and has two options: flip a coin and treat Sam if the coin lands heads,
and poison him if it lands tails. The second option is to continue watching TV
(knowing that Sam might survive his illness without treatment).

In this example Uma has the, somewhat strange, obligation to flip the coin.
In the next Uma-example, Uma has no obligation to do what many might

judge to be the only right thing.

Example 5. Uma is a physician whose neighbour Sam is ill. Uma knows about
this and can decide to treat Sam or to flip a coin. If she flips the coin and it
lands heads, she will treat Sam after all. If the coin lands tails, she will continue
watching TV.

Unfortunately, in this case, Uma has no obligation to treat Sam. Neither does
he have the obligation to flip the coin.

In section 5 we will come back to these examples and we will see how they
may be interpreted under the assumption of a responsible world.

4 On Goodness and Obligations

Defining goodness or obligations in a setting in which actions are intrinsically
indeterministic is not at all straightforward. And there are many possible ways
of going about it. Of course, ordering actions according to their expected value,
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would be wonderful, if not ideal. But, as Horty points out in [3], the required
information to do this is not always available or even meaningful, especially in
situations in which free agents make independent choices. In this section we will
briefly emphasize the difference between the respective notions of goodness and
obligation of Horty and PPC.

First, recall that according to Horty, an action K is good if it is not strictly
dominated by another action. An agent is obliged to perform an action if it
strictly dominates all other actions. In particular, an action is obligatory if it
is the only action that guarantees perfect outcomes at each state. According to
PPC, on the other hand, an action is good if every optimal outcome is preserved
by performing K. To illustrate the differences that result from these definitions,
let us revisit some of our earlier examples. It turns out that in every example
mentioned in the ‘problems with’-sections, the Horty and PPC frameworks con-
flict about whether or not obligations arise. First, contrary to Horty, Beata is
not PPC-obligated to play the music in example 1, since this action does not
necessarily preserve all the optimal histories (in which her mother brings Sam
to the hospital). Just like in Horty, however, Andrea has the PPC-obligation to
bring her husband to the hospital. In example 2, I have the PPC (but not the
Horty)-obligation to drive to my appointment. On the other hand, in example 4,
where PPC prescribe Uma to flip the coin with the risk of poisoning her neigh-
bor, Horty’s framework tells us that both flipping the coin and watching TV is
good, though neither is obligated. Finally, according to Horty’s semantics, treat-
ing Sam is the only good, and in fact obligatory, action in example 5, whereas
according to PPC, there are no good actions available in this situation.

Certainly, the two notions of obligation are different. But how should the
differences be interpreted? One interpretation is as follows. According to Horty,
an agent is obligated to perform an action only if it guarantees a good outcome
immediately. That is, if the outcomes of this action are better than the outcomes
of any other action no matter what happens. Here, ‘no matter what happens’
applies to actions of other agents in the present, but also to actions in the future.
To see how Horty’s notion of obligations fails to allow for future indeterminism
or future development, consider the following example:

Example 6. Sam needs a complicated treatment performed over several weeks
and by various doctors. Because Uma is the only doctor aware of Sam’s illness,
it is assumed that the treatment can only be initiated by Uma.

According to Horty, Uma is not obliged to start Sam’s treatment if one of the
future doctors to participate in the treatment is capable of poisoning Sam. Note
that this example is a temporal variant of McNamara’s driving example.

The PPC framework, to the contrary, does allow for gradually working towards
a good outcome. However, as we have illustrated with example 5, it does not al-
low for hitting a perfect outcome right away (if there are other actions available
that possibly result in another perfect outcome), or for ruling out good histories
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in general2. We think that both the definitions of Horty and that of PPC are re-
stricted in their own way: Horty focuses too much on a guarantee in the present,
whereas PPC focus too much on future development. In our view, an ‘optimal’
definition of goodness should allow for both present and potential future good
moves. The PPC framework can quite straightforwardly be adopted to, at least
partially, incorporate this idea by defining an action as good iff it preserves all
good histories or it guarantees a good history (right away). The dominance rela-
tion of Horty is a little harder to modify. We will very briefly come back to this
point when we discuss responsibilities in a moral environment in the next section.

5 Obligations in a Responsible World (RW): A New
Approach

In this section we will propose a new way of defining dominance of actions and
(epistemic) oughts. As we have mentioned already several times before, our main
proposal is to define obligations and epistemic oughts with respect to a respon-
sible or ‘moral’ world. The idea is that, in defining obligations, we assume (com-
mon knowledge of) rationality, or in this case, because all the agents share the
same utility-functions, responsibility of the agents. Of course, assuming a moral
responsible environment is a strong assumption, and it is certainly not always
met. We think however, that in many simple daily-life situations, it is satisfied.
Moreover, note that we are not assuming that people always act responsibly,
we are simply trying to define obligations against the idealistic background of a
responsible world. To see why this approach is sensible, consider the situation
in which John and I both have the obligation to drive to the university to meet
there. Now, if John for whatever reasons ignores this obligation and does not
come, we could say that under the current circumstances, my obligation to drive
to the university no longer applies. Thus, when thinking about our obligations we
often assume responsibility of other agents. If this assumption is violated, that
is, if someone fails to behave responsibly, we may argue that some of our obliga-
tions therefore cease to exist3. Given these two reasons, we feel the responsibility
assumption is justified as a background for defining obligations.

We will see how the responsible world assumption (RW) can be applied to
both Horty’s and PPC’s frameworks respectively. In Horty’s framework our idea

2 Note that our examples are too simplified in the sense that outcomes of a history are
determined by simple actions, whereas in real life, there are many later action that
will influence the value of the future. However, the point we would like to make here
is that it is often possible to guarantee a good (or perfect) outcome by performing
an action a that rules out other possible good outcomes. In a situation like this we
believe it is still possible for a to be obligatory.

3 We have to admit, however, that this reasoning does not always apply. Think for
example of a mother admonishing her child about bad behavior: “I don’t care that
Johnny started, you are never allowed to bully other children.”
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can quite straightforwardly be adopted. It will turn out that, if we do so, Beata
no longer has the obligation to play music in Sam’s room, and I will regain the
obligation to drive to my appointment. In PPC’s framework, however, applying
the idea of a responsible environment is a little more complicated. But we will
suggest some possible ways in which the assumption can be interpreted.

RW Applied to Horty

Within Horty’s framework, we can incorporate the idea of assuming responsi-
bility of the agents by redefining the set of states as the set of all rationalizable
action profiles, as opposed to the set of all possible action profiles. Given this
definition, an actionK dominates K ′ if in each rationalizable state,K guarantees
a better outcome than K ′.

We will formalize this idea by using a well-known concept from game theory:
iterative deletion of dominated strategies (or actions). In doing this, we would like
to suggest the following modifications to Horty’s original notions of dominance
and optimal actions.

First, we define a stricter notion of dominance of actions as follows. Given a
set of states State, we say that an action K is strictly dominated by K ′ with
respect to the set State; K <<State K

′ iff K ∩ S < K ′ ∩ S for each S ∈ State.
And, K is strongly dominated by K ′ with respect to State; K <State K ′ iff
K ∩ S ≤ K ′ ∩ S for each S ∈ State and K ∩ S < K ′ ∩ S for some S. This last
definition is an obvious generalization of Horty’s dominance of actions. Next, we
redifine the concepts of states and choices. Our definition will capture the idea
that we iteratively delete strictly dominated (irresponsible) strategies from the
set of available actions for the players. When defining the set of optimal actions,
we only need to consider the remaining - non strictly dominated - actions.

At a moment m we define rStatei
α and rChoicei

α (r standing for responsible,
or rationalizable), as follows.

rChoice0α = Choicem
α ,

where Choicem
α is Horty’s original choice-set for agent α at moment m. And

rState0α = rChoice0Agent−α,

is simply the set of all action tuples of other players.
By induction, we now define:

rChoicei+1
α = {a | a ∈ rChoicei

α and ¬∃a′ ∈ rChoicei
α : a <<rStatei

α
a′},

and

rStatei+1
α = rChoicei+1

Agent−α.

Thus, we start with the each player’s full choice-set as the set of possible actions,
and at each round, we delete those actions that are strictly dominated by one
of the remaining ones. Finally, we define rChoiceα := rChoiceω

α and rStateα :=
rStateω

α, and we define the set of optimal actions for player α as
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rOptimalmα = {K | K ∈ rChoiceα and ¬∃K ′ ∈
rChoiceα such that K <rStateα K ′}.

Thus, an action is (r)optimal if and only if it survives iterative deletion of strictly
dominated strategies and, finally, it is not strongly dominated by any other
remaining action.

The last part of the definition, regarding strong dominance, is added to stay
in line with Horty’s notion of dominance of actions. The reason for only deleting
strictly dominated actions - and not the strongly dominated ones until the very
end - is that deleting strongly dominated actions may cause rationalizable actions
to be deleted. Also, we don’t want to have to worry about the order in which
actions are deleted. Using the set rOptimalmα , we define obligations analogue to
Horty’s original definition:

Definition 4. Let α be an agent and Hm an index from a utilitarian STIT
model M. Then agent α ought to see to it that A in M at Hm, if and only if,
K ⊆ |A|Mm for each action K ∈ Optimalmα .

Note that this modification of Horty’s definition of obligations puts an extreme
burden on the degree of rationality of the players. In fact, their rationality is
assumed to be unbouded. For, according to the above definition, Jack can base
his actions on Carol basing her actions on Bill basing his actions on Linda etc4.
We leave it for future work to refine our definition of obligations to allow for
bounded rationality as well. For now, we settle the issue by pointing out that
in most real-life situations such deeply nested inferences are not necessary for
recognizing ones obligations.

Before considering a moral environment in the PPC framework, let us look
at how the above-described modifications of Horty’s framework solve examples
1 and 2. The situation as depicted in example 1 can be modeled as follows.
Let H stand for Andrea taking Sam to the hospital, and M for Beata playing
music in Sam’s room. The situation depicted in this example can be modeled
using four possible histories: (H&M), (H&¬M), (¬H&M), (¬H&¬M), with the
straightforward interpretations and with values of 10, 10, 1 and 0 respectively. In
Horty’s framework ¬M ∩ H ≤ M ∩ H and ¬M ∩ ¬H < M ∩ ¬H and hence
Beata has the obligation to play the music. In our framework however, we have
¬H <<ChoiceB H and hence rChoiceA = {H}. That is, the only non-strictly
dominated action for Andrea is to do H . From this, it follows that rStateB =
{H} and because both (H&M) and (H&¬M) have value 10, neither action, M
nor ¬M is (strictly or strongly) dominating or obligatory for Andrea.

The driving example can be modeled similarly. Let D stands for me driving to
the appointment and R for a second agent crossing the red light - for simplicity,
we model the situation with only two agents. A simple model of the situation
uses again four histories: (D&R), (D&¬R), (¬D&R), (¬D&¬R) with respective
values 0, 10, 2 and 5. Then clearly, R <<Choiceme ¬R and hence rStateme =
{¬R}. Since ¬R ∩ ¬D < ¬R ∩D, it follows that ¬D <<{¬R} D and hence my
only non-dominated, and thus obligated, action is D.
4 We thank Rohit Parikh for drawing our attention to this issue.
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Ideally, we would like to extend this definition of optimal, good, or obligatory
actions to also incorporate agents’ future responsibility. This would, at least
partially, solve Horty’s lack of allowing for future goodness and situations like
example 6. This idea can be formalized by combining backward induction with
iterated deletion of dominated strategies. That is, we start at ‘the end’ and
iteratively delete dominated strategies going back in time, until reaching the
present. Of course, when histories are infinite, it is not at all clear how to decide
where ‘the end’ starts.

RW Applied to PPC

First, let us see how our idea of a morally responsible world, or iterative deletion
of dominated strategies, can not easily be applied to the PPC framework with
multiple agents acting at the same time. The reason for this is simple. Because
an agent is obliged to perform a if all good histories are preserved, narrowing
down an other agent’s scope of action, only decreases the number of potential
future histories and hence the number of obligations. This holds even if these
other agents act as perfectly moral beings. It seems that the only way out of this
problem is by relinquishing the notion of goodness of an action as preserving all
good histories. It is not immediately clear if or how our suggested new definition
of obligation (of an action being obligated if it preserves all good histories, or
guarantees a good history) can fully resolve this issue. Of course, we can select
agents’ good actions by first selecting original PPC-good actions and then ap-
plying the second Horty-like part of the definition iteratively. But the problem
with the first PPC-part of the definition remains.

Other definitions of goodness are compatible with our idea as well. For exam-
ple, we could define an action as good, or obligatory, if the worst histories are
avoided. This definition can then be used (iteratively) to delete bad actions.

The assumption of a responsible environment is better applicable to or inter-
pretable in to the original, sequential, PPC framework. To see this, let us recall
example 4. Clearly, a coin cannot act responsibly. But, if in this example, the
coin is replaced with an agent that can act morally responsibly, say a doctor at
a hospital, he will be obliged to treat Sam (assuming there is no third doctor
capable of treating Sam). And, if it is assumed that her fellow doctors are re-
sponsible, and thus comply with their obligations, it is no longer strange that
Uma has the obligation to leave the decision to the other doctor (even though
he is capable of poisoning Sam). A similar reasoning can be applied to example
5. If the coin is replaced with a doctor, it is no longer strange that Uma has
no immediate obligation to treat Sam herself5. The fact that PPC-obligations
‘focus on the future’ may fit well with the assumption of future-rational agents.
That is, an action may be obligatory despite a possible bad outcome (like in
example 4), if this bad outcome can be ruled out by a responsible action in the
future. It is not obvious however, how the idea of a morally responsible future

5 We assume in this example that the extra time it costs to inform the second doctor
does not decrease the value of the outcome - Sam being treated.
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can be made precise. For example, as we already mentioned above, how far in
the future should responsibility of agents be assumed?

Unfortunately, we have to leave formalizing this notion of assuming future
responsibility for future work.

6 Conclusion

In this paper we analyzed and compared the frameworks of deontic actions of
Horty as presented in [2] and of Pacuit, Parikh and Cogan [5]. We have proposed
the idea that obligations of an agent should be defined under the assumption
that other agents are responsible, and we have seen how this assumption can po-
tentially solve some of the problems arising in the respective models. However,
the ideas as presented in this paper are very preliminary and we would like to
develop them in further detail. Hopefully, this development will involve modi-
fying the notion of goodness and obligations of actions assuming both present
and, to some extend, future responsibility.
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Abstract. We introduce a new type of arrow in the update frames (or
“action models”) of Dynamic Epistemic Logic in a way that enables us to
reason about epistemic temporal dynamics in multi-agent systems that
need not be synchronous. Since van Benthem and Pacuit (later joined by
Hoshi and Gerbrandy) showed that standard Dynamic Epistemic Logic
necessarily satisfies synchronicity, it follows that our arrow type is a new
way of extending the domain of applicability of the Dynamic Epistemic
Logic approach. Furthermore, our framework provides a new perspective
on the van Benthem et al work itself. In particular, while each of our
work and their work shows that epistemic temporal models generated by
standard update frames necessarily satisfy certain structural properties
such as synchronicity, our work clarifies the way in which these structural
properties arise as a result of the inherent structure of standard update
frames themselves.

1 Introduction

Dynamic Epistemic Logic [1,2,3,4,8,12] is a modal-logic approach to reasoning
about belief dynamics in multi-agent systems. The characteristic feature of this
approach is its use of update modals, which are modal operators [U, s] that de-
scribe operations on Kripke models. These operations, called updates, represent
informational events in which the agents receive information that may bring
about changes in their beliefs. The basic idea is that an update modal [U, s]
describes a specific partial function f[U,s] that maps a pointed Kripke model
(M,w) in the domain of f[U,s] to another pointed Kripke model that we write
as
(
M [U ], (w, s)

)
. This allows us to view a sequence

(M0, w0), (M1, w1), (M2, w2), . . . , (Mn, wn) (1)

of pointed Kripke models, with (Mi+1, wi+1) generated from (Mi, wi) by the
update f[Ui+1,si+1] described by update modal [Ui+1, si+1], as a discrete-time
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distributed multi-agent system in which the state of the system at time i is
described by (Mi, wi). Defining the time of a world w in Mi within the sequence
(1) to be the index i, we obtain a notion of time that is external to the pointed
Kripke model (Mi, wi). One consequence of adopting this external notion of time
is that all of the worlds that an agent considers possible relative to a world w in
Mi have time i. This implies that at every world, every agent knows the current
time. Systems in which the current time is known at every world are called
synchronous [5,6]. Dynamic Epistemic Logic, which itself adopts this external
notion of time, is consequently restricted to the study of synchronous multi-agent
systems [5,6].

In this paper, we propose a simple extension to the update modals [U, s]
that allows us to reason about discrete-time distributed multi-agent systems
that need not be synchronous. We achieve this by adapting the methodology
of standard Dynamic Epistemic Logic so that it fits naturally within a version
of Epistemic Temporal Logic [9,11] whose only temporal modality is a discrete
one-step–past operator; this version will be called Simple Epistemic Temporal
Logic. Simple Epistemic Temporal Logic uses epistemic temporal models, which
are Kripke models in which one of the relational components is designated as
a time-keeping relation. When w is related to w′ according to the time-keeping
relation, the intended interpretation is that w′ is a possible way the system might
have been one time-step before w. This provides us with an internal notion
of time, in that the time of a world w in an epistemic temporal model M is
determined solely based on the time-keeping relation, which is internal to the
model M . Diagrammatically, we will represent this relation using arrows labeled
by the symbol Y—called Y -arrows—where “Y ” is a mnemonic for “yesterday”
(so having a Y -arrow from world w to world w′ is to be thought of as saying
that w′ is one of the possible ways w might have been “yesterday,” meaning one
time-step ago). In order to distinguish between Kripke models with and without
a Y -relation (the time-keeping relation), we adopt the following terminology:
epistemic temporal models are Kripke models with a designated Y -relation—
these have an internal notion of time—whereas epistemic models are Kripke
models without a designated Y -relation—these have an external notion of time.
Since an epistemic temporal model M uses an internal notion of time, the ways
in which the system described by M can evolve are determined in advance by the
structure of the Y -relation inM ; said informally, the protocol is fixed. In contrast,
the protocol in Dynamic Epistemic Logic is dynamic, as it can be changed on-
the-fly by using a different update modal to produce the next pointed Kripke
model appearing in the sequence (1).

In extending the updates of standard Dynamic Epistemic Logic from the class
of epistemic models (having external time) to the class of epistemic temporal
models (having internal time), we stand to gain dynamic protocols for systems
that need not be synchronous. While standard Dynamic Epistemic Logic sets each
world in M [U ] to be one time-step ahead of any world in M , our new updates on
epistemic temporal models allow us greater flexibility in modeling the passage
of time. In particular, using the internal notion of time associated with the
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Y -relation, our updates allow us to let worlds in M [U ] have any natural-number
time; therefore, in certain updates that embed M into M [U ], each world in M [U ]
can be seen either as a world in M or else as an arbitrarily distant possible future
of a world inM . Such flexibility is essential to the study of asynchronous systems.
To bring about this flexibility, we add a new structural component to update
modals: the Y -arrow. We use Y -arrows to specify exact positions in which the
update f[U,s] is to insert Y -arrows in the updated model M [U ]. We then identify
sufficient conditions on our new update modals [U, s] that will guarantee that the
update f[U,s] embeds M into M [U ] or preserves properties such as synchronicity
in the resulting epistemic temporal model. We use these conditions to show
that epistemic temporal models that result from sequentially applying a proper
subclass of our new kinds of updates are isomorphic to the generated sequences
of epistemic models from standard Dynamic Epistemic Logic that have been
studied by a number of authors [5,6,10,14,15]. While [5,6] showed that properties
such as synchronicity are necessary of sequences generated in standard Dynamic
Epistemic Logic, our isomorphism result demonstrates that the necessity of these
properties stems from the inherent structure of standard Dynamic Epistemic
Logic update modals [U, s] themselves. This provides a new perspective on the
results of [5,6].

In the next section, we introduce the language LDETL and the theory TDETL

of Dynamic Epistemic Temporal Logic. It is this theory that we use in reasoning
about our new kinds of updates on epistemic temporal models. Due to space
constraints, we will omit the proofs of our results; the interested reader can find
full details in [13], an extended version of this paper.

2 Syntax

Notation 1 (A, Y , Y ). A is a finite nonempty set of symbols not containing
the symbols Y and Y . The members of A will be called agents.

To define LDETL, we must first define the internal structure of update modals
[U, s]. This structure is built on top of finite Kripke frames. If S is a nonempty
set of symbols, then a Kripke frame F (for S) is a pair (WF , RF ) consisting of
a nonempty set WF whose members are called worlds and a function RF : S →
(WF → 2W F

) mapping each symbol m ∈ S to a function Rm : WF → 2W F

; to
say that F is finite means that WF is finite.1 The internal structure of update
modals [U, s] is given by the structure of the object U , called an update frame.

Definition 2. For a language L, whose formulas we call L-formulas, an L-
update frame is a tuple U = (W,R, p) satisfying the following: (W,R) is a finite
Kripke frame for A ∪ {Y, Y } that will be called the Kripke frame underlying
U , and p : W → L is a function mapping each world s ∈ W to an L-formula

1 The function RF
a gives rise to a binary relation R̄F

a := {(x, y) ∈ W F × W F | y ∈
RF

a (x)} on W F . We will conflate RF
a and R̄F

a whenever it is convenient. We will
often refer to the members of R̄F

a as a-arrows.
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p(s). A state in U is just a world in the Kripke frame underlying U . Notation:
for an L-update frame U , we write WU to denote the first element of the tuple
U , we write RU to denote the second element of the tuple U , and we write pU

to denote the third element of the tuple U . A pointed L-update frame is a pair
(U, s) consisting of an L-update frame U and a state s ∈WU that will be called
the point of (U, s).

Update frames are also called “action models” (or “event models”) in the Dy-
namic Epistemic Logic literature [1,2,3,4,8,12]. For an update frame U , a state
s ∈WU represents the communication of the formula pU (s). For an agent a ∈ A,
the relation RU

a represents agent a’s conditional uncertainty as to which formula
is communicated: if s′ ∈ RU

a (s) and the formula pU (s) was in fact communicated,
then agent a will think that the formula pU (s′) is one of the formulas that might
have be communicated.

We now define our language LDETL as an extension of the language LETL of
Simple Epistemic Temporal Logic.

Definition 3 (LETL). LETL, the Language of Simple Epistemic Temporal Logic,
consists of the formulas formed by the following grammar.

ϕ ::= ⊥ | � | pk | ϕ ! ϕ | ¬ϕ | [a]ϕ
k ∈ N, ! ∈ {→,∨,∧,≡}, a ∈ A ∪ {Y }

Terminology: we call [Y ] the yesterday modal. For each agent a ∈ A, we read the
formula [a]ϕ as “agent a believes that ϕ is true.” We read the formula [Y ]ϕ as
“ϕ is true in all possible yesterdays.” Notation: for each a ∈ A∪ {Y }, we let 〈a〉
abbreviate ¬[a]¬; we define for each i ∈ N the formula [a]iϕ by setting [a]0ϕ := ϕ
and [a]i+1ϕ := [a]([a]iϕ); for i ∈ N, the formula 〈a〉iϕ is defined analogously.

Definition 4 (LDETL, TDETL). LDETL is the Language of Dynamic Epistemic
Temporal Logic. The LDETL-formulas are the formulas that may be formed by
the grammar obtained from that in Definition 3 by adding the following formula-
formation rule: if ϕ is an LDETL-formula and (U, s) is a pointed L-update frame
with ∅ 	= L ⊆ LDETL, then [U, s]ϕ is an LDETL-formula. LDETL consists of the
LDETL-formulas along with the L-update frames for which ∅ 	= L ⊆ LDETL.
Terminology: we call [U, s] an update modal. Notation: we let 〈U, s〉 abbreviate
¬[U, s]¬. We read the formula [U, s]ϕ as “after update (U, s), ϕ is true.” An
update frame is an LDETL-update frame. A formula is a LDETL-formula. TDETL,
the Theory of Dynamic Epistemic Temporal Logic, is defined in Figure 1.

Since our interest here is in implementing update mechanisms on Kripke models
with a designated Y -relation, we do not impose any of the usual properties
on belief or on time that one might expect [5,6,9,10,14,15]. So TDETL should
be viewed as the minimal theory that brings update mechanisms to Simple
Epistemic Temporal Logic. Future work will investigate extensions of this theory
that include familiar restrictions on belief and on time, though we do address
the preservation of certain time-related properties in Section 5.
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Basic Schemes

CL. Schemes for Classical Propositional Logic

Ka. [a](ϕ → ψ) → ([a]ϕ → [a]ψ) for a ∈ A

KY . [Y ](ϕ → ψ) → ([Y ]ϕ → [Y ]ψ)

UA. [U, s]q ≡ (
pU (s) → q

)
for q ∈ {pk,⊥,}

U�. [U, s](ϕ � ψ) ≡ (
[U, s]ϕ � [U, s]ψ

)
for � ∈ {→,∨,∧,≡}

U¬. [U, s]¬ϕ ≡ (
pU (s) → ¬[U, s]ϕ

)
U[a]. [U, s][a]ϕ ≡ (

pU(s) → ∧
s′∈RU

a (s)[a][U, s′]ϕ
)

for a ∈ A

U[Y ]. [U, s][Y ]ϕ ≡ (
pU (s) → ∧

s′∈RU
Y

(s)[Y ][U, s′]ϕ
) ∧(

pU (s) → ∧
s′∈RU

Y
(s)[U, s′]ϕ

)
Rules

� ϕ → ψ � ϕ

� ψ
(MP)

a ∈ A ∪ {Y } � ϕ

� [a]ϕ
(MN)

� ϕ

� [U, s]ϕ
(UN)

Fig. 1. The theory TDETL

3 Semantics

Having defined the language LDETL and theory TDETL of Dynamic Epistemic
Temporal Logic, we now define the semantics of LDETL. A Kripke model M is a
tuple (WM , RM , V M ) consisting of a Kripke frame (WM , RM ) and a function
V M : {pk | k ∈ N} → 2W M

called a (propositional) valuation. A pointed Kripke
model is a pair (M,w) consisting of a Kripke model M and a world w ∈ WM . The
notion of LDETL-truth extends the standard semantics for Dynamic Epistemic
Logic [1,2,3,4,8,12] in the following way.

Definition 5 (LDETL-Truth, LDETL-Validity). For a pointed Kripke model
(M,w) and a formula ϕ, we write M,w |=LDETL

ϕ to mean that ϕ is true at
(M,w), and we write M,w 	|=LDETL

ϕ to mean that ϕ is not true at (or false at)
(M,w). The notion of truth of a formula at a pointed Kripke model is defined
by an induction on formula construction; we omit the Boolean cases.

– M,w |=LDETL
[a]ϕ means that M,x |=LDETL

ϕ for each x ∈ RM
a (w).

– M,w|=LDETL
[U, s]ϕmeans that ifM,w |=LDETL

pU (s), thenM [U ], (w, s) |=LDETL

ϕ, where the model M [U ] is defined as follows.

WM [U ] := {(x, t) ∈ WM ×WU |M,x |=LDETL
pU (t)}

For a ∈ A : R
M [U ]
a (x, t) := {(y, u) ∈ WM [U ] | y ∈ RM

a (x) and u ∈ RU
a (t)}

R
M [U ]
Y (x, t) := {(y, u) ∈ WM [U ] | y ∈ RM

Y (x) and u ∈ RU
Y (t)} ∪

{(y, u) ∈ WM [U ] | y = x and u ∈ RU
Y (t)}

V M [U ](pk) := {(x, t) ∈ WM [U ] |M,x |=LDETL
pk}
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To say that a formula ϕ is valid in a Kripke model M , written M |=LDETL
ϕ,

means that M,w |=LDETL
ϕ for each world w ∈ WM . To say that a formula ϕ

is valid, written |=LDETL
ϕ, means that M |=LDETL

ϕ for each Kripke model M .
When it ought not cause confusion, we may omit the subscript “LDETL” when
writing |=LDETL

.

Given a pointed Kripke model (M,w) representing a multi-agent situation and
a pointed update frame (U, s) with M,w |= pU (s), the pointed Kripke model(
M [U ], (w, s)

)
represents the situation after the occurrence of the update de-

scribed by [U, s]. According to Definition 5, a world (x, t) must satisfy the prop-
erty that M,x |= pU (t). The set {x ∈ WM | M,x |= pU (t)} of worlds x in
M that satisfy pU (t) intuitively represents the set of worlds in M at which the
formula pU (t) can truthfully be communicated—these are the worlds at which t
can take place.

For each a ∈ A, Definition 5 tells us that the relation R
M [U ]
a is determined

by two factors: agent a’s uncertainty as to which world was the case before the
communication (represented by RM

a ) and agent a’s uncertainty as to which com-
munication has occurred (represented by RU

a ). In particular, suppose (x′, t′) ∈
R

M [U ]
a (x, t). Then if the communication corresponding to t actually occurred at

world x, then agent a will think it possible that the communication corresponding
to t′ occurred at world x′.

According to Definition 5, the relation R
M [U ]
Y is determined by two factors.

The first is the interaction between the relations RU
Y and RM

Y , which adds pairs
to R

M [U ]
Y just as the interaction between RU

a and RM
a did to R

M [U ]
a for a ∈ A.

The second factor is the relation RU
Y : if there is a Y -arrow from state t to state

t′ in U , then there will be a Y -arrow from world (x, t) to world (x, t′) in M [U ].
The presence of a Y -arrow from t to t′ in U thus says that the communication
corresponding to t′ is to be thought of as occurring one time-step before the
communication corresponding to t. This addition to the standard definition of
updates in Dynamic Epistemic Logic [1,2,3,4,8,12] allows us to control how an
update affects the time of worlds in the model M [U ].

Finally, we see that the valuation V M [U ] after the update simply inherits its
truth conditions from the valuation V M before the update, making our updates
purely temporal-epistemic.

Theorem 6 (Correctness; [13]). For each formula ϕ, we have � ϕ if and only
if |= ϕ.

4 A Simple Example

Suppose Passengers a and b are traveling together by train in China. Further,
suppose Passenger a understands Mandarin but that Passenger b does not,
though Passenger b mistakenly believes that they are both equally ignorant of the
language. Now consider two scenarios in which an announcement in Mandarin
about a delay in arrival is made over the loudspeaker.
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1. Passengers a and b are both awake and alert during the announcement.
2. Passenger a is awake and alert, but Passenger b, who is sleepy, dozes off and

sleeps through the announcement. Waking up a few minutes later without
knowing that the announcement occurred, Passenger b mistakenly thinks
that instead of sleeping for a few minutes, he merely blinked.

Taking p to be a propositional letter denoting the statement about late arrival,
we represent the first and the second scenarios in our framework using update
frames (U1, t1) and (U2, t2), respectively pictured on the left and on the right in
Figure 2.

�

s1

p

t1

�

u

a

a, b

b

Y

Y

a, b, Y

U1

�

s2

p

t2

a

Y

b

a, b, Y

U2

Fig. 2. Update frames for the synchronous (U1, t1) and asynchronous (U2, t2) private
announcement of p to a

In the first scenario, Passenger b knows that an announcement has taken
place, but it provides him with no new (non-temporal) information—nor does
he believe that a gained any (non-temporal) information. In effect, this is a
synchronous private announcement to a; after all, both a and b know that an
announcement occurred—so the event is synchronous—but only a knows the
content of the announcement—so the event is private to a. In Figure 2, s1 and
u are states in which no new (non-temporal) information is conveyed (since �
is always true and thus conveys no new non-temporal information), while t1 is a
state in which the message p is communicated. Since t1 and u are each connected
to s1 using a Y -arrow, the communications they represent occur one time-step
after the communication represented by s1.

Since s1 is labeled by �, has a reflexive x-arrow for every x ∈ {a, b, Y }, and
has no exiting Y -arrows, we see by the definition of truth (Definition 5) that
any Kripke model M is embedded into the Kripke model M [U1] by the mapping
taking each world y ∈ WM to the world (y, s1) ∈ WM [U1]. This embedding
preserves a copy of the “past situation” M within the “current situation” M [U1],
which leads us to call s1 a “past state.” So the role of the past state s1 is to
preserve a copy of a given situation M . The states t1 and u then represent
communications that occur one time-step after the situation M . At state t1,
Passenger a believes that t1 represents the only possible communication, while
Passenger b believes that u represents the only possible communication. Since
both u and t1 are one time-step after the past state s1, the update f[U1,t1]
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describes the private communication of p to Passenger a in which it is common
knowledge that one time-step occurs. So we see that

|= (¬〈Y 〉� ∧ ¬[b]p)→ [U1, t1]
(
[a]〈Y 〉� ∧ [a]p ∧ [b]〈Y 〉� ∧ ¬[b]p

)
.

That is, if no event has yet occurred and Passenger b does not believe p, then,
after the occurrence of f[U1,t1], Passenger a believes that an event occurred and
that p is true, whereas Passenger b believes that an event occurred but does not
believe that p is true.

In contrast, the second scenario is in effect an asynchronous private announce-
ment to a. After all, while Passenger a knows that an announcement occurred
and she knows its content, Passenger b has two mistaken beliefs: first, that no
announcement occurred, and second, that the amount of time between closing
and later opening his eyes is essentially negligible. b thus does not even think it
possible that an event has occurred. Since the announcement results in b having
a mistaken belief about the number of events that have occurred, the announce-
ment event is asynchronous. At state t2 in Figure 2, Passenger a knows that p
is communicated, but Passenger b mistakenly believes that no event took place
because the only state he considers possible is the past state s2. Accordingly, we
see that

|= (¬〈Y 〉� ∧ ¬[b]p)→ [U2, t2]
(
[a]〈Y 〉� ∧ [a]p ∧ ¬[b]〈Y 〉� ∧ ¬[b]p

)
.

That is, if no event has yet occurred and Passenger b does not believe that p
is true, then, after the occurrence of f[U2,t2], Passenger a believes that an event
occurred and that p is true, whereas Passenger b believes neither that an event
occurred nor that p is true.

These scenarios demonstrate the way in which our framework uses Y -arrows to
describe synchronous and asynchronous private communications. In particular,
we see that Y -arrows can be used to describe updates that need not preserve
synchronicity, as is the case with the asynchronous private announcement.

5 Properties and Preservation

In this section, we define several properties of Kripke models and update frames
and then study sufficient conditions for the preservation of these properties after
the occurrence of an update.

Definition 7 (T -Runs, T -Histories, T -Depth). Fix a symbol T ∈ {Y, Y }
and let F = (W,R) be a Kripke frame for A∪ {Y, T }. A T -run (in F ) is a finite
nonempty sequence {wi}n

i=0 of worlds in F satisfying the property that n ∈ N
and for each i ∈ N with i < n, we have that wi+1 ∈ RF

T (wi). We say that a
T -run {wi}n

i=0 begins at w0 and ends at wn. The length of a T -run {wi}n
i=0 is

defined as the number n. (Observe that the length of a T -run is one less than the
number of worlds that make up the T -run.) To say that a T -run σ′ end-extends
a T -run σ means that σ is a (not necessarily proper) prefix of σ′. (Note that each
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T -run end-extends itself.) To say that a T -run σ is end-maximal (in F ) means
that no T -run in F end-extends σ. A T -history (in F ) is a T -run in F that is
end-maximal. (Note that a suffix of a T -history is itself a T -history.) A world
appearing at the end of a T -history in F is said to be T -terminal (in F ). We
define a function dF

T : WF → N ∪ {∞} as follows: if there is a maximum n ∈ N
such that there is a T -history in F of length n that begins at w, then dF

T (w) is
n; otherwise, if no such maximum n ∈ N exists, then dF

T (w) is ∞. We will call
dF

T (w) the T -depth of w.

Definition 8. Fix T ∈ {Y, Y } and let F = (W,R) be a Kripke frame for A ∪
{Y, T }.
– T -Depth–Defined (T -DD). To say that F is T -depth–defined (T -DD) means

that for each world w in F , we have that dF
T (w) 	= ∞.2

– Non–T -Branching. To say that F is non–T -branching means that for each
w ∈WF , the set RF

T (w) has at most one member.
– T -Synchronous. If F is T -DD, then to say that F is T -synchronous means

that for each a ∈ A, each w ∈ WF , and each w′ ∈ RF
a (w), we have that

dF
T (w′) = dF

T (w). The negation of “T -synchronous” is T -asynchronous.

Convention: for tuples J having a Kripke frame (W J , RJ) underlying J , any use
of a property or concept from Definition 7 or Definition 8 in reference to J is
meant to be a use of that property or concept in reference to the Kripke frame
(W J , RJ) underlying J . Example: for an update frame U , the expression “Y -run
in U” is to be identified with the expression “Y -run in (WU , RU ).”

Definition 9 (Kripke Model Properties). Let M be a Kripke model.

– Synchronicity (under Y -DD). If M is Y -DD, then to say that M is syn-
chronous means that M is Y -synchronous. The negation of “synchronous”
is asynchronous.

– Non–Past-Branching. To say that M is non–past-branching means that M
is non–Y -branching.

– Forest-like. To say that M is forest-like means that M is Y -DD and non–
past-branching.

Definition 10 (Update Frame Properties and Concepts). Let U be an
update frame.

– Path-Preserving. A path-preserving run (in U) is a Y -run {si}n
i=0 in U sat-

isfying the property that for each i ∈ N with i < n, we have |= pU (si) →
pU (si+1). To say that U is a path-preserving update frame means that each
Y -run in U is path-preserving.

2 We observe that if F is T -depth–defined, then F is T -converse well-founded (that
is, for every nonempty set S of worlds in F , there is a nonempty subset S′ ⊆ S
such that for each w ∈ S′, the unique T -run in F that begins at w has length zero).
However, if F is T -converse well-founded, it need not be the case that F is also
T -depth–defined. So the notion of T -depth–definedness is strictly stronger than the
notion of T -converse well-foundedness.
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– Depth-Respecting (under Y -DD). If U is Y -DD, then to say that U is depth-
respecting means that for each s ∈ WU and each s′ ∈ RU

Y (s), we have that
dU

Y (s′) ≤ dU
Y (s).

– Past State, Past-Preserving. A past state is a state s ∈ WU satisfying the
property that pU (s) = �, that RU

Y (s) = ∅, and that RU
a (s) = {s} for each

a ∈ A ∪ {Y }. To say that U is past-preserving means U is Y -DD and path-
preserving and that every Y -run in U can be end-extended to a Y -history
in U that ends at a past state.

– Non–Past-Splitting. To say that U is non–past-splitting means that for each
s ∈ WU , we have that RU

Y (s) ∪ RU
Y (s) has at most one element and that

RU
Y (s) ∩RU

Y (s) = ∅.
Having defined these properties, we investigate their preservation under the pres-
ence of updates in the following two theorems. Theorem 11 concerns the behavior
of past states in update frames, and Theorem 12 concerns the preservation of
properties in Kripke models.

Theorem 11 (Past State Theorem; [13]). Let U be an update frame and M
be a Kripke model.

– If s is a past state in U , then for each ϕ ∈ LDETL and each w ∈ WM , we
have that M [U ], (w, s) |= ϕ if and only if M,w |= ϕ.

– If U is past-preserving and non–past-spliting, s ∈ WU has dU
Y (s) = n, and

w ∈ WM satisfies M,w |= pU (s), then for each ϕ ∈ LDETL, we have that
M [U ], (w, s) |= 〈Y 〉nϕ if and only if M,w |= ϕ.

Theorem 11 tells us that past states play the role of “maintaining a link to the
past” within past-preserving, non–past-splitting update frames. In particular, if
s is a past state, then the submodel of M [U ] consisting of the worlds of the
form (w, s) for some world w ∈WM is LDETL-indistinguishable from the Kripke
model M itself. So the operation (M,w) #→ (

M [U ], (w, s)
)

retains a copy of the
“past” state of affairs (M,w). Furthermore, if U is past-preserving, then from
any world in WM [U ], there is a finite sequence of Y -arrows that leads back to
this “past” state of affairs, thereby “maintaining a link to the past.”

Let us now examine the preservation of properties of the Kripke model M in
the presence of the operation M #→M [U ].

Theorem 12 (Preservation Theorem; [13]). Let (U, s) be a pointed update
frame and (M,w) be a pointed Kripke model such that M,w |= pU (s).

– Y -DD. If M is Y -DD and U is Y -DD and depth-respecting, then M [U ] is
Y -DD.

– Synchronicity. If M is synchronous (and Y -DD) and U is Y -DD, depth-
respecting, past-preserving, and Y -synchronous, then M [U ] is synchronous.

– Non–Past-Branching. IfM is non–past-branching and U is non–past-splitting,
then M [U ] is non–past-branching.

– Forest-likeness. If M is forest-like and U is Y -DD and non–past-splitting,
then M [U ] is forest-like.
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6 Embedding Standard DEL

In this section, we show that standard (Temporal) Dynamic Epistemic Logic,
whose update modals contain neither Y - nor Y -arrows, can be embedded in our
framework in a natural way. This provides clear connections between our work
and the work in [5,6,10,14,15] on (Temporal) Dynamic Epistemic Logic, which
will be described at the end of this section.

Definition 13 (Standard). Choose T ∈ {Y, Y }. To say that a Kripke frame
F for A∪ {Y, T } is standard means that for each s ∈WF and each m ∈ {Y, T },
we have RF

m(s) = ∅. To say that a Kripke model or an L-update frame is stan-
dard means that the Kripke frame underlying that model or L-update frame is
standard. To say that a pointed Kripke model or a pointed L-update frame is
standard means that the Kripke model or L-update frame making up the first
component of the pair is standard.

Definition 14 (LTDEL; [10]). LTDEL is the Language of Temporal Dynamic
Epistemic Logic. The LTDEL-formulas are the formulas that may be formed by
the grammar obtained from that in Definition 3 (the definition of LETL) by
adding the following formula-formation rule: if ϕ is an LTDEL-formula and (U, s)
is a standard pointed L-update frame with ∅ 	= L ⊆ LTDEL, then [U, s]ϕ is an
LTDEL-formula. LTDEL consists of the LTDEL-formulas along with the L-update
frames for which ∅ 	= L ⊆ LTDEL.

Notation 15 (Sequences). Let τ be a finite possibly empty sequence. We write
τ · x to denote the sequence obtained from τ by adding x at the end. |τ | denotes
the number of elements in τ .

Definition 16 (Adapted from [5,6,11,14,15]). A run is a nonempty finite
sequence {Mi}n

i=0 of Kripke models satisfying the property that for each i ∈ N
with 0 < i ≤ n and each w ∈ WMi , we have that w is of the form (π(w), s) for
some world π(w) ∈ WMi−1 . A pointed run is a pair (r ·M,w) consisting of a
run r ·M and a world w ∈ WM ; the world w is called the point of (r ·M,w).
A standard (pointed) run is a (pointed) run whose constituent pointed Kripke
models are all standard. An L event-run is a finite possibly empty sequence
of pointed L-update frames. A standard L event-run is an L event-run whose
constituent pointed L-update frames are all standard.

Definition 17 (LTDEL-Truth; [5,6,10]). We define a notion of truth for LTDEL-
formulas at standard runs r by an induction on the construction ofLTDEL-formulas;
we consider only the non-Boolean cases.

– For a ∈ A: r · M,w |=LTDEL
[a]ϕ means that r · M,x |=LTDEL

ϕ for each
x ∈ RM

a (w).
– r ·M,w |=LTDEL

[Y ]ϕ means that if |r| > 0, then r, π(w) |=LTDEL
ϕ.

– r ·M,w |=LTDEL
[U, s]ϕ means that if we have r ·M,w |=LTDEL

pU (s), then,
letting r′ := r ·M , it follows that r′ · r′[U ], (w, s) |=LTDEL

ϕ, where r′[U ] is
the standard Kripke model defined as follows.
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W r′[U ] := {(x, t) ∈ WM ×WU | r ·M,x |=LTDEL
pU (t)}

For a ∈ A : R
r′[U ]
a (x, t) := {(y, u) ∈W r′[U ] | y ∈ RM

a (x) and u ∈ RU
a (t)}

R
r′[U ]
Y (x, t) := ∅
V r′[U ](pk) := {(x, t) ∈ W r′[U ] | r ·M,x |=LTDEL

pk}
When it ought not cause confusion, we may omit the subscript “LTDEL” in writing
|=LTDEL

.

Definition 18 (Generated Structures). Let (M,w) be a standard pointed
Kripke model.

– If σ = {(Ui, si)}n
i=1 is an LDETL event-run, then (M,w) ∗p σ, the pointed

Kripke model that is point-generated from (M,w) by σ, is the pointed Kripke
model (Mm, wm) appearing at the end of the sequence {(Mi, wi)}m

i=0 having
the largest integer m ≤ n subject to the following restrictions: (M0, w0) =
(M,w) and for each j ∈ N with j < m, we have

• Mj , wj |=LDETL
pUj+1(sj+1) and

• (Mj+1, wj+1) =
(
Mj [Uj+1], (wj , sj+1)

)
.

Note: “|=LDETL
” and Mj[Uj+1] are given by LDETL-truth (Definition 5).

– If σ = {(Ui, si)}n
i=1 is a standard LTDEL event-run, then (M,w) ∗s σ, the

pointed run that is sequence-generated from (M,w) by σ, is the pointed run
({Mi}m

i=0, wm) obtained from the sequence {(Mi, wi)}m
i=0 of pointed Kripke

models having the largest integer m ≤ n subject to the following restrictions:
(M0, w0) = (M,w) and for each j ∈ N with j < m, we have

• {Mi}j
i=0, wj |=LTDEL

pUj+1(sj+1) and
• (Mj+1, wj+1) =

({Mi}j
i=0[Uj+1], (wj , sj+1)

)
.

Note: “|=LTDEL
” and {Mi}j

i=0[Uj+1] are given by LTDEL-truth (Definition 17).

Definition 19 (↓). Let (r, w) = ({Mi}n
i=0, w) be the standard pointed run

sequence-generated by a standard LTDEL event-run from a standard pointed
Kripke model. We write (r, w)↓ to denote the pointed Kripke model (M,w)
defined in the following way.

WM :=
⋃n

i=0 W
Mi

RM
a (v) := RMi

a (v) if i ∈ N and v ∈ WMi

RM
Y (v) :=

{
{v′} if v = (v′, s) ∈ WMi and i > 0

∅ otherwise

Definition 20 (�n, �). For n ∈ N, we define the function �n : LTDEL → LDETL

in Figure 3. If σ = {(Ui, si)}n
i=1 is a standard LTDEL event-run, then we define

σ� := {(U �(i−1)
i , si)}n

i=1.
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q	n := q if q ∈ {pk,⊥,}
(ϕ � ψ)	n := ϕ	n � ψ	n

(¬ϕ)	n := ¬(ϕ	n)

([a]ϕ)	n := [a](ϕ	n) if a ∈ A or (a = Y and n = 0)

([Y ]ϕ)	n := [Y ]ϕ	(n−1) if n > 0

([U, s]ϕ)	n := [U 	n, s](ϕ	(n+1))

W U�n

:= UW � {�} (disjoint union)

for a ∈ A ∪ {Y, Y },
RU�n

a (s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
RU

a (s) if a �= Y and s �= �,

{�} if a �= Y and s = �,

{�} if a = Y and s �= �,

∅ if a = Y and s = �.

pU�n

(s) :=

{(
pU (s)

)	n ∧ 〈Y 〉n[Y ]⊥ if s �= �,

 if s = �.

Fig. 3. Definition of �n : LTDEL → LDETL for n ∈ N

Theorem 21 (Isomorphism Theorem; [13]). Let (M,w) be a standard
pointed Kripke model and let σ be a standard LTDEL event-run. Defining m :=
|(M,w) ∗p σ| − 1, we have each of the following.

1. For ϕ ∈ LTDEL: (M,w) ∗s σ |=LTDEL
ϕ if and only if (M,w) ∗p σ� |=LDETL

ϕ�m.
2.
(
(M,w) ∗s σ

)↓ and (M,w) ∗p σ� are isomorphic.3

The Isomorphism Theorem (Theorem 21) allows us to view results about Kripke
models that have been sequence-generated by standard LTDEL event-runs as re-
sults about (Temporal) Dynamic Epistemic Logic—and the other way around.
In particular, [5,6] studies certain structural properties of the forest structure
given by a run (M,w) ∗s σ that has been sequence-generated from a standard
pointed Kripke model (M,w) by a standard LETL event-run σ. In [5,6], the au-
thors define what it means for the run (M,w) ∗s σ to be synchronous (among
other properties) and then show that every run sequence-generated from a

3 To say that two (pointed) Kripke models are isomorphic means that there exists an
isomorphism between them. An isomorphism between Kripke models M and M ′ is a
bijection f : W M → W M′

satisfying each of the following: (i) v ∈ V M (pk) if and only

if f(v) ∈ V M′
(pk) for each k ∈ N, and (ii) u ∈ RM

a (v) if and only if f(u) ∈ RM′
a (f(v))

for each a ∈ A ∪ {Y }. An isomorphism between pointed Kripke models (M, w) and
(M ′, w′) is an isomorphism f between M and M ′ for which f(w) = w′. See [7] for
more information.
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standard pointed Kripke model by a standard LETL event-run is synchronous.4

Our Preservation Theorem (Theorem 12) works together with the Isomorphism
Theorem (Theorem 21) to provide a different perspective on this synchronicity
result. In particular, our work shows that the results of [5,6] can be viewed as a
consequence of the structural properties that are present in an update frame U �n,
produced from a standard update frame U , thereby pinpointing the source of
the synchronicity result in the structure of standard update frames themselves.

7 Conclusion

In this paper, we showed how to extend the updates of Dynamic Epistemic Logic
so that they operate not just on epistemic models but also on epistemic tempo-
ral models in a way that allowed us to control how an update affects the time
of worlds in the model M [U ]. This enabled us to extend the domain of appli-
cability of the Dynamic Epistemic Logic approach to discrete-time multi-agent
distributed systems that need not be synchronous. We then studied sufficient con-
ditions for the preservation of various properties of Kripke models, such as syn-
chronicity. Identifying an isomorphism that connects epistemic temporal models
generated in our framework with epistemic temporal models generated by stan-
dard updates as in [5,6], we saw that the necessity of synchronicity in standardly
generated epistemic temporal models stems from the structure of standard up-
dates themselves. We then presented two scenarios contrasting synchronous and
asynchronous private announcements.

In its technical essence, this paper is about adding a new type of arrow—the Y -
arrow—to update frames and then studying what we can do when the operation
M #→ M [U ] described on epistemic models in [1,2] is extended by the Y -arrow
mechanism to epistemic temporal models in a way that allows us to control how
the update affects the time of worlds in the model M [U ]. Essentially, the Y -arrow
describes a sufficient condition for the creation of Y -arrows in the model M [U ]
resulting from the occurrence of an update. Namely, when there is a Y -arrow
from state s to state s′ in update frame U , then there should be a Y -arrow from
state (x, s) to state (x, s′) in M [U ]. While this is one possible sufficient condition
for the creation of a certain kind of arrow, there other conditions we may wish
to consider. In particular, examining the hybrid scheme

[U, s][a]ϕ ≡ pU (s) →
∧

s′∈W U

∀z.(aU
a (s, s′)→ @z(pU (s′) → [U, s′]ϕ)

)
(2)

in which aU
a is a function mapping pairs (s, s′) of states in U to a formula (possi-

bly containing z), we see that the function aU
a allows us to express a precondition

for the creation of a-arrows in the model M [U ] produced by a generalized update

4 If (M, w) ∗s σ is a run sequence-generated from a standard pointed Kripke model
(M, w) by a standard LETL event-run σ, then the definition in [5,6] would have us say
that (M, w) ∗s σ satisfies synchronicity if and only if

(
(M, w) ∗s σ

)↓ is synchronous
(according to our Definition 9).
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frame U = (W, p, a). The hybrid language of such generalized update frames,
called the arrow-precondition language, allows us to describe a wide variety of
arrow-creation conditions, including all of those mentioned in this paper [13].
Though there is much to be studied about this generalization, it may prove use-
ful in extending Dynamic Epistemic Logic to a much wider class of applications.
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Abstract. The contemporary development of deontic logic since von
Wright has been based on the study of the analogies between normative
and alethic modalities. The weakest deontic logic called standard deontic
logic (SDL) is the modal system of type KD. Jones and Sergot argued
that contrary-to-duty (CTD) reasoning was necessary to represent the
legal codes in legal expert systems. This reasoning invites such CTD
paradoxes as Chisholm’s Paradox of SDL that is monadic. Hansson’s
dyadic deontic logic can avoid CTD paradoxes. But it introduces such
dilemmas as the Considerate Assassin’s Dilemma. Prakken and Sergot,
and van der Torre and Tan proposed preference-based dyadic deontic
logics that can explain away this dilemma. However, these logics face
the Fundamental Problem of Intrinsic Preference. The aim of this paper
is to propose a new non-modal logical version of complete and decid-
able preference-based dyadic deontic logic–conditional expected utility
maximiser’s deontic logic (CEUMDL) that can avoid Chisholm’s Para-
dox and explain away the Considerate Assassin’s Dilemma. In the model
of CEUMDL we can explain an agent’s preferences in terms of his degrees
of belief and degrees of desire via conditional expected utility maximisa-
tion, which can avoid the Fundamental Problem of Intrinsic Preference
and furnish a solution to the Gambling Problem. We provide CEUMDL
with a Domotor-type model that is a kind of measurement-theoretic and
decision-theoretic one.

Keywords:deontic logic, preference, measurement theory, representation
theorem, conditional expected utility maximisation, projective geometry.

1 Introduction

Much of the recent work on deontic logic has been based on the view that
deontic logic is a branch of modal logic, and that the concepts of obligation,
permission and prohibition are related to each other in the same way as the
alethic necessity, possibility and impossibility. The contemporary development of
deontic logic since von Wright ([26]) has been based on the study of the analogies
between normative and alethic modalities. Following the Chellas classification
([2]), the weakest deontic logic called standard deontic logic (SDL) is the weakest
normal modal system of type KD. Jones and Sergot ([9]) argued that contrary-to-
duty (CTD) reasoning was necessary to represent the legal codes in legal expert
systems. This reasoning invites such CTD paradoxes as Chisholm’s Paradox ([3])
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of SDL that is monadic. Hansson’s dyadic deontic logic ([6]) and Lewis’ dyadic
deontic logic ([11]) can avoid CTD paradoxes. But they introduce such dilemmas
as the Considerate Assassin’s Dilemma ([17], [18]). Prakken and Sergot ([18])
and van der Torre and Tan ([25]) proposed preference-based dyadic deontic logics
that can explain away this dilemma. However, these logics face the Fundamental
Problem of Intrinsic Preference ([28]) mentioned later.

The aim of this paper is to propose a new non-modal logical version of com-
plete and decidable preference-based dyadic deontic logic–conditional expected
utility maximiser’s deontic logic (CEUMDL) that can avoid Chisholm’s Paradox
and explain away the Considerate Assassin’s Dilemma. In the model of CEUMDL
we can explain an agent’s preferences in terms of his degrees of belief and de-
grees of desire via conditional expected utility maximisation, which can avoid
the Fundamental Problem of Intrinsic Preference and furnish a solution to the
Gambling Problem ([8]) mentioned later.

Von Wright ([27]) divided preferences into two categories: extrinsic and in-
trinsic preference. An agent is said to prefer ϕ1 extrinsically to ϕ2 if ϕ1 is better
than ϕ2 in some explicit respect. So we can explain extrinsic preference from
some explicit point of view. If we cannot explain preference from any explicit
point of view, we call it intrinsic. Most preference logics that have been proposed
are intrinsic but little attention has been paid to extrinsic preference. Von Wright
([28]) posed the following fundamental problem intrinsic preference logics were
doomed to face. The development of a satisfactory logic of preference has turned
out to be unexpectedly problematic. The evidence for this lies in the fact that al-
most every principle which has been proposed as fundamental to one preference
logic has been rejected by another one. We call it the Fundamental Problem of
Intrinsic Preference. For example, the status of such logical properties as (transi-
tivity), (contraposition), (conjunctive expansion), (disjunctive distribution) and
(conjunctive distribution) is as follows:

Example 1 (Variety of Preferences)
( )

von Wright ([27]) Martin ([14]) Chisholm and Sosa ([4])

Transitivity + + +
Contraposition − + −
Conjunctive Expansion + − −
Disjunctive Distribution − − −
Conjunctive Distribution + − −

‘+’ denotes the property in question being provable in the logic in question. ‘−’
denotes the property in question not being provable in the logic in question.
(Conjunctive expansion) says that an agent does not prefer ϕ1 to ϕ2 iff he does
not prefer ϕ1 ∧ ¬ϕ2 to ϕ2 ∧ ¬ϕ1. (Disjunctive distribution) says that if he does
not prefer ϕ1 ∨ϕ2 to ϕ3, then he does not prefer ϕ1 to ϕ3 or does not prefer ϕ2
to ϕ3. (Conjunctive distribution) says that if he does not prefer ϕ1 to ϕ2 and
does not prefer ϕ3 to ϕ2, then he does not prefer ϕ1 ∨ ϕ3 to ϕ2.

Mullen ([15]) analysed the cause of the Fundamental Problem as follows. Different
theories, such as ethics, welfare economics, consumer demand theory, game theory
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and decision theory make different demands upon the fundamental properties of
preference. The adequacy criteria for preference principles considered by prefer-
ence logicians have been whether the principles are consistent with our intuitions
of reasonableness.But intuitions cannot be used as a major factor in the evaluation
of the principles of a preference logic. This is because conformity to intuition im-
poses almost no restraint upon the principles of a theory. For example, a principle
may conform to intuition and useless, or it may be inconsistent with intuition and
essential to the theoretical solution to a particular problem. Mullen came to the
conclusion that preference logic rested upon the mistaken belief that concept con-
struction of preference could satisfactorily be carried out in isolation from theory
construction. In order to adopt conditional expected utility maximisation as a the-
ory that makes demands upon the fundamental properties of preference, we resort
to measurement theory.1 There are two fundamental problems with measurement
theory: (1) the representation problem–justifying the assignment of numbers to
objects or phenomena, and (2) the uniqueness problem–specifying the transfor-
mation up to which this assignment is unique. A solution to the former can be
furnished by a representation theorem, which establishes that the chosen numeri-
cal system preserves the relations of the relational system. From a measurement-
theoretic viewpoint of decision theory, there is a tradition to explain an agent’s
degrees of belief and degrees of desire in terms of his preferences [and vice versa].
This explanation takes the form of a representation theorem of [conditional] ex-
pected utility maximisation:

If [and only if] an agent’s preferences satisfy such-and-such conditions,
there exist a probability function and a utility function such that he
should act as a [conditional] expected utility maximiser.

In mono-set measurement theories where probability functions and utility
functions are functions of propositions and preference relations are relations be-
tween propositions, Domotor’s representation theorem is the only known one of
conditional expected utility maximisation that has the “only if” part. Mono-set
measurement theories are more suitable for the semantics of logic than non-
mono-set ones like Savage’s ([20]), for regarding propositions as the semantic
values of sentences is simpler than regarding entities like acts (that is, functions
from the set of possible worlds to the set of consequences) as those when we wish
to provide logic with its semantics. So only by virtue of Domotor’s representa-
tion theorem, we can explain, in a mono-set measurement theory, an agent’s
preferences in terms of his degrees of belief and degrees of desire via conditional
expected utility maximisation, which can avoid the Fundamental Problem of
Intrinsic Preference. We provide CEUMDL with a model based on Domotor’s
representation theorem. On the other hand, the weak preference relations in
both Prakken and Sergot’s logic ([25]) and van der Torre and Tan’s logic ([18])

1 [19] gives a comprehensive survey of measurement theory. The mathematical founda-
tion of measurement had not been studied before Hölder developed his axiomatisation
for the measurement of mass ([7]). [10], [22] and [13] are seen as milestones in the his-
tory of measurement theory.
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are pre-orders (reflexive and transitive relations). It is impossible to construct a
meaningful theory and prove a representation theorem of a pre-order based on
it. So both Prakken and Sergot’s logic and van der Torre and Tan’s logic cannot
avoid the Fundamental Problem of Intrinsic Preference.

Castanẽda ([1]) made a distinction between two kinds of ought: the ought-to-
be and the ought-to-do. According to Horty ([8]), the idea of analysing what an
agent out to do as what it ought to be that he does was advanced by Meinong,
Chisholm and others. Horty observed that the Meinong/Chisholm analysis of
the ought-to-do was vulnerable to the Gambling Problem as follows:

Imagine that an agent α is faced with two options at the moment m: to
gamble the sum of five dollars, or to refrain from gambling. If α gambles,
we suppose that there is a history in which he wins ten dollars, and
another in which he loses his stake; but of course, α cannot determine
whether he wins or loses. If α does not gamble, we suppose that he
preserves his original stake of five dollars no matter how things turn out.
([[8]: p. 55])

He went on to say as follows:

The Meinong/Chisholm analysis of what an agent ought to do thus tells
us unambiguously that, in this situation, the agent ought to gamble: the
most valuable history, with a utility of 10, is that in which he gambles
and wins, and it is a necessary condition for achieving this outcome that
he should gamble. But this is a strange conclusion; for by gambling, the
agent risks achieving an outcome with a utility of 0, while he is able to
guarantee a utility of 5 by refraining from the gamble. ([[8]: pp. 56–57])

Here we classify decision problems into the following three types. We shall say
that we are in the realm of decision making under:

1. Certainty if each action is known to lead invariably to a specific outcome,
2. Risk if each action leads to one of a set of possible specific outcomes, each

outcome occurring with a known probability,2
3. Uncertainty if either action or both has as its consequence a set of pos-

sible specific outcomes, but where the probabilities of these outcomes are
completely unknown or are not even meaningful. ([[12]: p. 13])

Horty considered the situation of the Gambling Problem to a case of uncertainty
and dealt with it by means of the dominance ordering among actions given
by the sure-thing principle. On the other hand, we deal with it by means of
conditional expected utility maximisation. Indeed when we specify a probability
function that can represent a conditional expected utility maximiser’s belief
state, conditional expected utility maximisation may be a valid decision rule
only for decision makings under certainty and risk. But because in the model
of CEUMDL, by virtue of Domotor’s representation theorem, it is not necessary
to specify a probability, CEUMDL enables us to treat obligations defined by
preferences resulting from decision makings under certainty, risk and uncertainty.
2 Of course, certainty is a degenerate case of risk where the probabilities are 0 or 1.
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2 Measurement-Theoretic Settings

2.1 Projective-Geometric Concepts

We need some projective-geometric concepts to state Domotor’s representation
theorem. We define the preliminaries to the measurement-theoretic settings as
follows:

Definition 1 (Preliminaries). W is a nonempty set of possible worlds. Let F
denote a Boolean field of subsets of W. We call A ∈ F a proposition.

We define a characteristic function as follows:

Definition 2 (Characteristic Function I). A characteristic function̂ : F →
{0, 1}W is one where for any A ∈ F we have Â : W → {0, 1} such that

Â(w) :=
{

1 if w ∈ A,
0 otherwise,

for any w ∈W.

Because it is impossible to characterise multiplication of probabilities and utili-
ties in terms of union, intersection and preferences, we need a Cartesian product
×.̂ is defined also on Cartesian products of propositions:

Definition 3 (Characteristic Function II)

(A×B)̂(w1, w2) :=
{

1 if w1 ∈ A and w2 ∈ B,
0 otherwise,

for any w1, w2 ∈W.

By means of ×, we define an exterior product Â ◦ B̂ as follows:

Definition 4 (Exterior Product). Â◦B̂ is a 3-valued random variable defined
by

Â ◦ B̂ := (A×B)̂ − (B ×A)̂.

We combine exterior products by means of a symmetric product Â�B̂ as follows:

(Â ◦ B̂)� (Ĉ ◦ D̂)
:= (Â ◦ B̂) ◦ (Ĉ ◦ D̂) + (Ĉ ◦ D̂) ◦ (Â ◦ B̂) =
(A ×B × C ×D)̂ + (B ×A×D × C )̂ + (C ×D ×A×B)̂+(D × C ×B ×A)̂
−(A×B ×D × C )̂−(B ×A× C ×D)̂−(C ×D ×B ×A)̂−(D × C ×A×B)̂.

By means of symmetric products, we define a four-fold exterior product �
(Â, B̂ , Ĉ , D̂) as follows:
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Definition 5 (Four-Fold Exterior Product). �(Â, B̂ , Ĉ , D̂) is a 25-valued
random variable defined by

�(Â, B̂ , Ĉ , D̂) :=
(Â ◦ B̂)� (Ĉ ◦ D̂) + (Â ◦ Ĉ)� (D̂ ◦ B̂) + (Â ◦ D̂)� (B̂ ◦ Ĉ) =
(A× B × C ×D)̂ + (B ×A×D × C )̂ + (C ×D ×A×B)̂ + (D × C ×B ×A)̂
−(A×B ×D × C )̂−(B ×A× C ×D)̂−(C ×D ×B ×A)̂ − (D × C ×A×B)̂
+(A× C ×D × B)̂+(C ×A×B ×D)̂+(D ×B ×A× C )̂ + (B ×D × C ×A)̂
−(A× C ×B ×D)̂−(C ×A×D ×B)̂−(D ×B × C ×A)̂ − (B ×D ×A× C )̂
+(A×D ×B × C )̂+(D ×A× C ×B)̂+(B × C ×A×D)̂ + (C ×B ×D ×A)̂
−(A×D × C × B)̂−(D ×A×B × C )̂−(B × C ×D ×A)̂ − (C ×B × A×D)̂.

2.2 Deontic Preference Space and Deontic Preference Space
Assignment

We define deontic preference space and deontic preference space assignment as
follows:

Definition 6 (Deontic Preference Space and Deontic Preference Space
Assignment). 	w is a deontic weak preference relation on F2. A 	w B is
interpreted to mean that A is not deontically preferred to B in w. ∼w and ≺w

are defined as follows:

• A ∼w B := A 	w B and B 	w A,
• A ≺w B := A 	w B and A �∼w B.

For any w ∈ W, (W,F ,	w, ̂ ,×, +,−) is called a deontic preference space.
Let PS denote the set of all deontic preference spaces. ρ : W → PS is called a
deontic preference space assignment.

2.3 Conditions for Representation

We can state necessary and sufficient conditions for representation as follows:

1. A 	w B or B 	w A (Connectedness),
2. If (Ai 	w Bi and Ci 	w Di for any i < n),

then (if An 	w Bn, then Dn 	w Cn),
where

∑
i≤n

(Âi ◦ B̂i)� (Ĉi ◦ D̂i) = �(Ân, B̂n, Ĉn, D̂n) (Projectivity).

2.4 Domotor’s Representation Theorem

We can prove Domotor’s representation theorem as follows:3

3 In Theorem 1, we do not obtain the uniqueness result. But it does not matter when
we provide CEUMDL with its model.
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Theorem 1 (Representation). For any w ∈W, (W,F ,	w, ̂ ,×, +,−) satis-
fies Connectedness and Projectivity iff there are Pw : F → IR and Uw : F\∅ → IR
such that the following conditions hold for any A, B ∈ F\∅:
• (W,F , Pw) is a finitely additive probability space,
• A 	w B iff Uw(A) ≤ Uw(B),
• If A ∩B = ∅, Uw(A ∪B) = Pw(A|A ∪B)Uw(A) + Pw(B|A ∪B)Uw(B),
• When A ∈ F , if Pw(A) = 0, then A = ∅.

Proof. Except that the proof is relative to world, it is similar to that of [[5]:
184–194].

3 Conditional Expected Utility Maximiser’s Deontic
Logic CEUMDL

3.1 Language

The language LCEUMDL of CEUMDL is defined as follows:

Definition 7 (Language). Let S denote a set of sentential variables, WPR a
deontic weak preference relation symbol, and FCP a four-fold Cartesian product
symbol. LCEUMDL is given by the following rule:

ϕ ::= s | � | ¬ϕ | ϕ1 ∧ ϕ2 | WPR(ϕ1, ϕ2) | FCP(ϕ1, ϕ2, ϕ3, ϕ4),

where s ∈ S, and nestings of FCP do not occur. ⊥,∨,→ and↔ are introduced by
the standard definitions. We define a deontic indifference relation symbol IND
and a deontic strict preference relation symbol SPR as follows:

IND(ϕ1, ϕ2) := WPR(ϕ1, ϕ2) ∧WPR(ϕ2, ϕ1),
SPR(ϕ1, ϕ2) := WPR(ϕ1, ϕ2) ∧ ¬IND(ϕ1, ϕ2).

We define a deontic relation symbol O( | ) as follows:

O(ϕ1|ϕ2) := SPR(¬ϕ1 ∧ ϕ2, ϕ1 ∧ ϕ2).

The set of all well-formed formulae of LCEUMDL will be denoted by ΦLCEUMDL
.

3.2 Semantics

DAG In order to state
∑
i≤n

(Âi ◦ B̂i)� (Ĉi ◦ D̂i) = �(Ân, B̂n, Ĉn, D̂n) of (projec-

tivity) in logical terms, we use FCP. To provide FCP with a truth definition,
we use a directed acyclic graph (DAG). We got a hint about this idea from [16].
We define directedness as follows:

Definition 8 (Directedness). A graph G is directed if G consists of a nonempty
set W of vertices (possible worlds) and an irreflexive accessibility relation R on W.
G is denoted as (W, R).
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We define a path as follows:

Definition 9 (Path). A sequence [w1, . . . , wn+1] of vertices is a path of length
n in G from w1 to wn+1 if (wi, wi+1) ∈ R for i = 1, . . . , n.

By means of a path, we define a cycle.

Definition 10 (Cycle). A cycle of length n is a path [w1, . . . , wn, w1] from w1
to w1.

By means of a circle, we define acyclicity as follows:

Definition 11 (Acyclicity). G is acyclic if G contains no cycles.

By means of directedness and acyclicity, we define a directed acyclic graph
(DAG) as follows:

Definition 12 (DAG). G is a directed acyclic graph (DAG) if G is both di-
rected and acyclic.

Remark 1. DAGs can be considered to be a generalisation of trees in which
certain subtrees can be shared by different parts of the tree.

Model. By means of a DAG, we define a Domotor-type structured model M
for preference as follows:

Definition 13 (Model). M is a quintuple (W, R, L, V, ρ), where W is a
nonempty set of possible worlds, R is an accessibility relation on W2, (W, R) is
a DAG, L : R → {π1, π2, π3, π4} is a function that assigns labels to the edges of
the graph, any two edges leaving the same vertex have different labels, any vertex
either has π1-, π2-, π3- and π4-labeled outgoing edges or none of them, V is a
truth assignment to each s ∈ S for each w ∈ W, and ρ is a deontic preference
space assignment that assigns to each w ∈W (W,F ,	w, ̂ ,×, +,−) that satis-
fies Connectedness and Projectivity. For any w1 ∈ W, by πi(w1) (i = 1, 2, 3, 4)
we mean the unique w2 ∈ W such that R(w1, w2) and L(w1, w2) = πi if such
world exists.

Truth Definition. We can provide CEUMDL with the following truth definition:

Definition 14 (Truth). The notion of ϕ ∈ ΦLCEUMDL
being true at w ∈ W in

M, in symbols (M, w) |=CEUMDL ϕ is inductively defined as follows:

• (M, w) |=CEUMDL s iff V (w)(s) = true,
• (M, w) |=CEUMDL �,
• (M, w) |=CEUMDL ϕ1 ∧ ϕ2 iff (M, w) |=CEUMDL ϕ1 and (M, w) |=CEUMDL ϕ2,
• (M, w) |=CEUMDL ¬ϕ iff (M, w) �|=CEUMDL ϕ,
• (M, w) |=CEUMDL FCP(ϕ1, ϕ2, ϕ3, ϕ4) iff (M, π1(w)) |=CEUMDL ϕ1
and (M, π2(w)) |=CEUMDL ϕ2 and (M, π3(w)) |=CEUMDL ϕ3
and (M, π4(w)) |=CEUMDL ϕ4,
• (M, w) |=CEUMDL WPR(ϕ1, ϕ2) iff [[ϕ1]] 	w [[ϕ2]],
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where [[ϕ]] := {w ∈ W : (M, w) |=CEUMDL ϕ}. If (M, w) |=CEUMDL ϕ for all
w ∈ W, we write M |=CEUMDL ϕ and say that ϕ is valid in M. If ϕ is valid in
all Domotor-type structured models for preference, we write |=CEUMDL ϕ and say
that ϕ is valid.

Semantic Properties. In CEUMDL, the conditional versions of K and D are
valid.

Proposition 1 (Conditional K and D)

• |=CEUMDL O(ϕ→ ψ|χ) → (O(ϕ|χ) → O(ψ|χ)) (Conditional K),
• |=CEUMDL O(ϕ|ψ) → ¬O(¬ϕ|ψ) (Conditional D)

Deontic Detachment is concerned with Chisholm’s Paradox. Restricted Down-
ward Inheritance is concerned with the Considerate Assassin’s Dilemma.

Proposition 2 (Deontic Detachment and Restricted Downward Inher-
itance)

• |=CEUMDL O(ψ|ϕ) → (O(ϕ|�) → O(ψ|�)) (Deontic Detachment),
• |=CEUMDL (WPR(ϕ ∧ ¬ψ,¬ϕ ∧ ¬ψ) ∨ SPR(¬ϕ ∧ ψ, ϕ ∧ ψ)) → (O(ϕ|�)→

O(ϕ|ψ))
(Restricted Downward Inheritance)

Remark 2. What Restricted Downward Inheritance says is as follows.

1. WPR(ϕ∧¬ψ,¬ϕ ∧ ¬ψ), that is, the negation of SPR(¬ϕ ∧¬ψ, ϕ ∧¬ψ) is
sufficient for SPR((¬ϕ∧ψ)∨(¬ϕ∧¬ψ), (ϕ∧ψ)∨(ϕ∧¬ψ)) → SPR(¬ϕ∧ψ, ϕ∧
ψ) that is equivalent by definition to Downward Inheritance (O(ϕ|�) →
O(ϕ|ψ)).

2. SPR(¬ϕ ∧ ψ, ϕ ∧ ψ) is trivially sufficient for Downward Inheritance be-
cause the consequent of Downward Inheritance is equivalent by definition to
SPR(¬ϕ ∧ ψ, ϕ ∧ ψ).

Remark 3. Prakken and Sergot ([17],[18]) observed that the condition concern-
ing alethic modalities that ♦(ϕ∧ψ)∧¬�(¬ϕ → ψ) was sufficient for Downward
Inheritance. On the other hand, we have proposed the above condition concern-
ing deontic preference relations sufficient for Downward Inheritance.

3.3 Syntax

Syntactic Counterpart of Projectivity. We devise a syntactic counterpart
of Projectivity. By developing the idea of [21], we define DCi (Disjunction of
Conjunctions) as follows:

Definition 15 (Disjunction of Conjunctions). For any i (1 ≤ i ≤ 4n + 4),
DCi is defined as the disjunction of all the following conjunctions:
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n−1∧
j=1

djFCP(ϕj , ψj , χj , τj)

∧dnFCP(ϕn, χn, ψn, τn)
∧dn+1FCP(ϕn, τn, χn, ψn)

∧
2n∧

j=n+2

djFCP(ψj−n−1, ϕj−n−1, τj−n−1, χj−n−1)

∧d2n+1FCP(χn, ϕn, τn, ψn)
∧d2n+2FCP(τn, ϕn, ψn, χn)

∧
3n+1∧

j=2n+3

djFCP(χj−2n−2, τj−2n−2, ϕj−2n−2, ψj−2n−2)

∧d3n+2FCP(τn, ψn, χn, ϕn)
∧d3n+3FCP(ψn, χn, τn, ϕn)

∧
4n+2∧

j=3n+4

djFCP(τj−3n−3, χj−3n−3, ψj−3n−3, ϕj−3n−3)

∧d4n+3FCP(ψn, τn, ϕn, χn)
∧d4n+4FCP(χn, ψn, ϕn, τn)

∧
n−1∧
j=1

ejFCP(ϕj , ψj , τj , χj)

∧enFCP(ϕn, χn, τn, ψn)
∧en+1FCP(ϕn, τn, ψn, χn)

∧
2n∧

j=n+2

ejFCP(ψj−n−1, ϕj−n−1, χj−n−1, τj−n−1)

∧e2n+1FCP(χn, ϕn, ψn, τn)
∧e2n+2FCP(τn, ϕn, χn, ψn)

∧
3n+1∧

j=2n+3

ejFCP(χj−2n−2, τj−2n−2, ψj−2n−2, ϕj−2n−2)

∧e3n+2FCP(τn, ψn, ϕn, χn)
∧e3n+3FCP(ψn, χn, ϕn, τn)

∧
4n+2∧

j=3n+4

ejFCP(τj−3n−3, χj−3n−3, ϕj−3n−3, ψj−3n−3)

∧e4n+3FCP(ψn, τn, χn, ϕn)
∧e4n+4FCP(χn, ψn, τn, ϕn)

such that exactly i of the dj’s and i of the ej’s are the negation symbols, the rest
of them being the empty string of symbols.

By means of DCi, we define DDC as follows:

Definition 16 (Disjunction of Disjunctions of Conjunctions)

DDCn
i=1(ϕi, ψi, χi, τi) :=

4n+4∨
i=1

DCi.
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Proof System. We provide CEUMDL with the following proof system.

Definition 17 (Proof System)

• Axioms of CEUMDL

(A1) All tautologies of classical sentential logic,

(A2) WPR(ϕ1, ϕ2) ∨WPR(ϕ2, ϕ1)
(Syntactic Counterpart of Connectedness),

(A3)
DDCn

i=1(ϕi, ψi, χi, τi)→
(∧n

i=1(WPR(ϕi, ψi)∧WPR(χi, τi))→(WPR(ϕn, ψn)→WPR(τn, χn)))
(Syntactic Counterpart of Projectivity),

(A4) FCP(�,�,�,�) (Tautology and Four-Fold Cartesian Product),

(A5)
FCP(ϕ1 ∧ ϕ2, ψ1 ∧ ψ2, χ1 ∧ χ2, τ1 ∧ τ2)
→ (FCP(ϕ1, ψ1, χ1, τ1) ∧ FCP(ϕ2, ψ2, χ2, τ2))
(Conjunction and Four-Fold Cartesian Product 1),

(A6) (FCP(ϕ1, μ, ν, ξ) ∧ FCP(ϕ2, μ, ν, ξ))→ FCP(ϕ1 ∧ ϕ2, μ, ν, ξ)
(Conjunction and Four-Fold Cartesian Product 2),

(A7) (FCP(λ, ψ1, ν, ξ) ∧ FCP(λ, ψ2, ν, ξ)) → FCP(λ, ψ1 ∧ ψ2, ν, ξ)
(Conjunction and Four-Fold Cartesian Product 3),

(A8)
(FCP(λ, μ, χ1, ξ) ∧ FCP(λ, μ, χ2, ξ)) → FCP(λ, μ, χ1 ∧ χ2, ξ)
(Conjunction and Four-Fold Cartesian Product 4),

(A9)
(FCP(λ, μ, ν, τ1) ∧ FCP(λ, μ, ν, τ2)) → FCP(λ, μ, ν, τ1 ∧ τ2)
(Conjunction and Four-Fold Cartesian Product 5),

(A10)

¬FCP(ϕ, ψ, χ, τ)
↔ (FCP(¬ϕ, ψ, χ, τ) ∨ FCP(ϕ,¬ψ, χ, τ)
∨FCP(ϕ, ψ,¬χ, τ) ∨ FCP(ϕ, ψ, χ,¬τ))
(Negation and Four-Fold Cartesian Product).

• Inference Rules of CEUMDL

(R1)
ϕ1 ϕ1 → ϕ2

ϕ2
(Modus Ponens),

(R2)
ϕ ∧ ψ ∧ χ ∧ τ

FCP(ϕ, ψ, χ, τ)
(Four-Fold Cartesian Product Necessitation).

A proof of ϕ ∈ ΦCEUMDL is a finite sequence of LCEUMDL-formulae having ϕ as
the last formula such that either each formula is an instance of an axiom, or it
can be obtained from formulae that appear earlier in the sequence by applying an
inference rule. If there is a proof of ϕ, we write �CEUMDL ϕ.
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3.4 Metalogic

We can prove the soundness of CEUMDL.

Theorem 2 (Soundness). For every ϕ ∈ ΦLCEUMDL
, if �CEUMDL ϕ, then

|=CEUMDL ϕ.

Proof. The nontrivial part of the proof is to show that (A3) is true in every
model.

We can prove the completeness of CEUMDL.

Theorem 3 (Completeness). For every ϕ ∈ ΦLCEUMDL
, if |=CEUMDL ϕ, then

�CEUMDL ϕ.

Proof. By Lindenbaum Lemma and Truth Lemma.

We can prove the decidability of CEUMDL.

Theorem 4 (Decidability). CEUMDL is decidable.

Proof. by Finite Model Property Lemma.

4 Chisholm’s Paradox and Considerate Assassin’s
Dilemma

By means of CEUMDL we analyse Chisholm’s Paradox as follows:

Example 2 (Chisholm’s Paradox).

1. Jones ought to go to help his neighbors (O(help|�)).
2. Jones ought to tell his neighbors he is coming if he is going to help them

(O(tell|help)).
3. If Jones does not go to help his neighbors, he ought not to tell them he is

coming (O(¬tell|¬help)).
4. Jones does not go to help his neighbors (¬help).

Factual Detachment : O(ψ|ϕ) → (ϕ → O(ψ|�)) is necessary for (1)–(4) to lead
to a contradiction. Although Deontic Detachment is valid in CEUMDL, Factual
Detachment is not valid. So (1)–(4) do not lead to a contradiction.

By means of CEUMDL we analyse the Considerate Assassin’s Dilemma as follows:

Example 3 (Considerate Assassin’s Dilemma).

1. You should not offer cigarettes (O(¬offer|�)).
2. If you kill the witness, you should offer him a cigarette (O(offer|kill)).

Van der Torre and Tan ([25]) observed that (1) and (2) without additional as-
sumptions led to a contradiction. By means of CEUMDL, on the other hand, we
diagnose as follows. On the assumption that

WPR(¬offer ∧ ¬kill, offer ∧ ¬kill) ∨ SPR(offer ∧ kill,¬offer ∧ kill),

(1) and (2) lead to a contradiction because of Restricted Downward Inheritance.
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5 Conclusion

In this paper we have proposed a new non-modal logical version of complete
and decidable preference-based dyadic deontic logic–conditional expected utility
maximiser’s deontic logic (CEUMDL) that can avoid Chisholm’s Paradox and
explain away the Considerate Assassin’s Dilemma. In the model of CEUMDL we
can explain an agent’s preferences in terms of his degrees of belief and degrees of
desire via conditional expected utility maximisation, which can avoid the Funda-
mental Problem of Intrinsic Preference and furnish a solution to the Gambling
Problem.

Acknowledgements. We would like to thank two anonymous reviewers for
their helpful comments.
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Abstract. Coalition Logic does not explicitly talk about the effects of a
coalitional move on the strategic ability of the remaining players, while
in Game Theory reasoning patterns involving this concept often occur.
To fill this gap, we study an update operator for strategic ability update
in coalition structures. Its formal connections with the update operators
known from Dynamic Epistemic Logic will be discussed.

1 Introduction

Ever since the work of Rohit Parikh on the logic of games [9] the research on
the characterization of game-theoretical notions in terms of a logical language
has grown rapidly. In Cooperative Game Theory for instance results on the
correspondence between strategic games and neighbourhood models - such as
Pauly Representation Theorem for Coalition Logic [10] or the completeness of
Alternating-Time Temporal Logic (ATL) [7] - have opened the possibility of
studying cooperative interactions by means of modal logic. ATL and Coalition
Logic reason on what coalitions can achieve by cooperating, however they do not
explicitly describe what the effects of a given coalitional action or strategy are on
the moves of the remaining players. Game Theory instead deals with reasoning
structures, as for instance that of Dominant Strategy Equilibrium [8], in which
players consider all the possible reactions of their opponents and choose the best
strategy given all such reactions.

As affirmed in [11], p.1:

Much of game theory is about the question whether strategic equi-
libria exist. But there are hardly any explicit languages for defining,
comparing, or combining strategies as such - the way we have them for
actions and plans, maybe the closest intuitive analogue to strategies.
True, there are many current logics for describing game structure - but
these tend to have existential quantifiers saying that ”players have a strat-
egy” for achieving some purpose, while descriptions of these strategies
themselves are not part of the logical language.

In order to capture the reasoning structure behind Dominant Strategy Equilib-
rium and many other solution concepts, we intuitively need a language able to

X. He, J. Horty, and E. Pacuit (Eds.): LORI 2009, LNAI 5834, pp. 292–301, 2009.
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talk about strategic ability update and consequently to make the role of strategic
ability explicit. Updates are not new to the realm of modal logics. Formaliza-
tions of dynamics of information flow, like Dynamic Epistemic Logic [15] (DEL),
reason about how agents’ knowledge is updated after an epistemic event, for
instance a public announcement, takes place.

Logics for strategic ability using a model update have already been studied,
ranging from the use of counterfactuals in CATL [14], to the action expressions
used in Coalition Action Logic [4] and the first order strategy terms in Strategy
Logic [6]. Nevertheless all these extensions use arbitrary strategy terms that do
not allow to reduce strategy execution to strategic ability. The reduction of the
language of Public Announcement Epistemic Logic to Epistemic Logic is instead
one of the most elegant results in Dynamic Epistemic Logic.

The idea of this paper is to extend the update paradigm of public announce-
ments to account for the changes that moves in a game induce on players’ strate-
gic ability and to study strategies reducing them to the choice structures under
which they can be executed.

1.1 Motivating Example

To provide a clearer intuition of the notion of strategic ability update, we resort
to the well known gametheoretical example of the Prisoners’ Dilemma [8], that
is an interactive situation in which the advantages of cooperation are overruled
by the incentive for individual players to defect. In Table 1 a Prisoners’ Dilemma
is described, where players i and j, that we assume to be rational, can choose
between a cooperative move C and a defective move D, yielding an outcome
(xi, xj), xk being the payoff for each k ∈ {i, j}. If we focus on player i we can
observe that, after the choice C by j, the choice D becomes preferable to the
choice C - yielding (4, 0) instead of (3, 3) - and the same holds in case j moved
D - yielding (1, 1) instead of (0, 4). Our rationality assumption warrants player
i to reason on the updates of his own choices brought about by player j, and to
select his best response in each such scenario.

Our aim is to formally capture the reasoning structure of players in strate-
gic interaction, in which players consider the best action to take, given what
their opponents do. This should not be confused with the reasoning patterns in
extensive games, in which players reason on the best action to take after their
opponents have moved, neither with the notion of ability to guarantee an out-
come independently of what the other players do, which is the typical reading
of the operators in the various game logics. To make these intuitions precise we

Table 1. A Prisoners’ Dilemma

�
��i

j C D

C (3, 3) (0, 4)

D (4, 0) (1, 1)
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will provide a semantics for the notion of game restriction induced by the moves
of the players in a strategic interaction. We will work on cooperative structures,
where players can form coalitions to achieve their goals [2]. In our treatment we
will focus on coalitional ability, abstracting away from players’ preferences.

The paper is structured as follows: in the first part we introduce Coalition
Logic, that we use to model strategic ability; in the second part we introduce
an operator to talk about the model transformations induced by the choices
of coalitions: the subgame operator. Finally we give reduction axioms for the
subgame operator and discuss the links with Public Announcement Logic.

2 Coalition Logic and Strategic Ability

In Game Theory players may be able to force the interaction to end up in an
outcome satisfying certain properties. An abstract representation of this notion
is given by the dynamic effectivity function, first described in [10], which we
adopt to model strategic ability.

Definition 1 (Dynamic Effectivity Function)
Given a finite set of agents Agt and a set of states W , a dynamic effectivity
function is a function E : W → (2Agt → 22W

).

Any subset of Agt will henceforth be called a coalition. The elements of W are
called states or worlds ; the sets of states X ∈ E(w)(C) are called the choices
of coalition C in state w. The set E(w)(C) is called the choice set of C in
w. The complement of a set X is indicated as X and calculated relative to
the expected domain. A dynamic effectivity function can be seen as a “formal
description of the power structure in a society” [1]; it assigns, in each world,
to every coalition a set of sets of states that represents the strategic ability of
that coalition. Intuitively, if X ∈ E(w)(C), C is said to be able from w to force
the interaction to end up in some member of X . Every effectivity function has
the property of outcome monotonicity: for all X ⊆ W, Y ⊆ W, w ∈ W, C ∈
2Agt, if X ∈ E(w)(C) and X ⊆ Y , then Y ∈ E(w)(C). Said in other words,
if a coalition is able to force the the interaction to end up in some member
of X then is also able to force the interaction to end up in some member of
any supersets of X . Together with outcome monotonicity we will assume the
properties of regularity: if X ∈ E(w)(C), then X �∈ E(w)(C); and closed-
worldness: E(w)(∅) = {W}. Regularity means that disjoint coalitions do not
make choices that contradict each other, while closed-worldness requires the
empty coalition not to influence the interaction. For an in depth discussion on
the desirability of these properties see the results in [5].

2.1 Models and Language

The models we refer to are structures of the form

〈W, E, V 〉
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where W is a nonempty set of states, E an outcome monotonic, regular and
closed-world effectivity function, V : W → 2P a valuation function that assigns
to each state a subset of a countable set of atomic propositions P , to be in-
terpreted as true at that state. The formulas for the basic language are of the
form

p|¬φ|φ ∧ ψ|[C]φ|Aφ

where p is any atomic proposition in P , [C]φ is the coalitional operator expressing
the fact that coalition C can force or bring about the formula φ; Aφ is the global
modality, which talk about a formula that holds in every world in the model.
Their interpretation is standard [10] [3] [12] and it is given as follows:

M, w |= p iff p ∈ V (w)
M, w |= ¬φ iff not M, w |= φ

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= [C]φ iff φM ∈ E(w)(C)
M, w |= Aφ iff M, v |= φ, for all v ∈ W

where φM = {w ∈ W |M, w |= φ} is the truth set of φ.

What we can say in Coalition Logic. The Prisoners’ Dilemma can intuitively
be rewritten as a coalition model. Here coalition {i} can force that {i} defects
and can force that {i} cooperates, but {i} cannot force that {j} cooperates (and
equivalently it cannot force that {j} defects). In any world w, we have therefore
that PD, w |= [{i}]( i defects )∧¬[{i}]( j defects ). On the other hand we cannot
express what i can do given that j defects. This would mean i to have a strategy
forcing that i defects and j defects and a strategy forcing that i cooperates and
j defects. This at the model level is PD, w |= [{i}]( i defects and j defects ) ∧
[{i}]( i cooperates and j defects ). By the property of outcome monotonicity, we
would then get PD, w |= [{i}]( j defects ), which is at odds with our initial
statement. The reason of this limitation is to be found in the interpretation of the
coalition logic operator, that expresses what a coalition can achieve independently
of what its opponents do. Reasoning about how the strategic ability (to force
some outcome) of a coalition depends on the possible moves of its opponents
requires that we can express in our language that a coalition can force some
outcome given what its opponents do.

3 Strategic Ability Update

To model strategic ability update we introduce an operator [C ↓ ψ]φ whose
informal reading is: “after coalition C chooses ψ, φ holds”. We define the dual
〈C ↓ ψ〉φ as an abbreviation of ¬[C ↓ ψ]¬φ. Intuitively what we do is to talk
about the model restrictions that are caused by the possible move ψ of coalition
C. For this reason it will be called the subgame operator. Its formal interpretation
goes as follows:

M, w |= [C ↓ ψ]φ⇔ ψM ∈ E(w)(C) implies M ↓(C,ψM ,w), w |= φ
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The interpretation of the operator has a conditional reading: if a coalition
C has a certain choice ψM at w, then the model where this choice is actually
executed makes a certain proposition φ true. The capacity of C to choose ψM is
seen here as a precondition for C to actually execute ψM .

The restricted models M ↓(C,ψM ,w) are so defined:

M ↓(C,ψM ,w)
.= 〈W, E ↓(C,ψM ,w), V 〉

They inherit the domain and the valuation function from the original coalition
model while they update the coalitional relation1 E ↓(C,ψM ,w) in the following
way:

E ↓(C,ψM ,w) (w)(D) .= ({ψM})sup for D ∩ C �= ∅
E ↓(C,ψM ,w) (w)(D) .= (E(w)(D) � ψM )sup for D ∩ C = ∅ and D �= ∅
E ↓(C,ψM ,w) (w′)(D) .= E(w′)(D) for w′ �= w or D = ∅

where for a set of sets X , (X )sup = {X ⊆ W | there is Y ∈ X and Y ⊆ X ⊆W}.
In words, ()sup is the superset closure of a set of sets. Moreover taken two sets
of sets X ,P , X � P = {ξ ∩ ψ|ξ ∈ X and ψ ∈ P}.

The way the relation is updated deserves some comment. A distinction is
made between the strategic ability update of the players who made a certain
choice φ and all the other players. After coalition C has made a choice φ, all the
coalitions involving agents belonging to C are given (φM )sup as a choice set. This
view maintains that a coalition comprising players in a coalition that has already
formed cannot further influence the outcome of the game. This fact implies that
the subgame operator is not coalition monotonic, in the sense given in [10], that
is bigger coalitions need not have bigger power. Said in other words, we do not
allow players to make a choice within a certain coalition and then, at the same
time, to make a choice within different coalitions. The models of reference are
strategic games, in which strategies are decided in the beginning once and for
all [8]. The other (nonempty) coalitions instead truly update their choice set
having it restricted by the choice of C. Restriction is implemented in this case
by intersecting the effectivity function with the move that has been carried out.
If for instance C chooses to force ψ and C were able to decide on ξ, then given the
choice by C, C is able to force ξ ∧ψ. The coalitional relation at worlds different
from the one where the choice is made remains instead unchanged. This means
that the update is local. Again, the references are strategic games, where the
sequential structure of strategies is substantially ignored. Notice that by the last
condition the empty coalition never gains power. In sum the strategic ability
update is governed by three principles: the irrelevance of hybrid coalitions,
that does not allow members of the coalition that moved to further influence
the interaction, the restriction of opponents’ choices, that truly updates
1 Here the word functional relation would be more appropriate. In fact the Effec-

tivity Function behaves as a relation in a Neighbourhood model and our restriction
uniquely associates to an Effectivity Function the restriction imposed by a coalitional
choice.
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Table 2. Proof System

Axioms
Regularity

A1 [C]φ → ¬[C]¬φ

Closed-Worldness
A2 [∅]φ ↔ Aφ

Global Modality Axioms
A3 φ → Eφ
A4 EEφ → Eφ
A5 φ → AEφ
A6 A(φ → ψ) → (Aφ → Aψ)

Strategic Ability Update Axioms
A7 [C ↓ ξ]p ↔ ([C]ξ → p)
A8 [C ↓ ξ]¬φ ↔ ([C]ξ → ¬[C ↓ ξ]φ)
A9 [C ↓ ξ](φ ∧ ψ) ↔ ([C ↓ ξ]φ ∧ [C ↓ ξ]ψ)
A10 [C ↓ ξ]Aφ ↔ ([C]ξ → Aφ)
A11 [C ↓ ξ][D]φ ↔ ([C]ξ → [D](ξ → φ)) (for D ∩ C = ∅ and D �= ∅)
A12 [C ↓ ξ][D]φ ↔ A(ξ → φ) (for D ∩ C �= ∅)
A13 [C ↓ ξ][D]φ ↔ ([C]ξ → [D]φ) (for D = ∅)

Rules
R1 φ ∧ (φ → ψ) ⇒ ψ
R2 φ → ψ ⇒ [C]φ → [C]ψ
R3 φ ⇒ Aφ
R4 φ ⇒ [C ↓ ξ]φ
R5 φ ↔ ψ ⇒ [C ↓ ξ]χ ↔ [C ↓ ξ]χ[φ/ψ]

the effectivity function of the coalitions opposing the one that moved, and the
locality of the update, that leaves the coalitional power at different worlds
untouched.

The following relevant fact can be easily verified:

Proposition 1. For every C,w, ψM ∈ E(w)(C), we have that E ↓(C,ψM ,w) is
outcome monotonic, regular and closed-world.

The proposition represents the basis for our reduction results. Whatever update
is carried out a model is obtained that obeys the properties that have been
assumed for coalition models.

Even though the interpretation of the update operator may look complex, its
structural behaviour is rather simple. The validities in Table 2 allow to translate
every sentence where the operator is occurring to a sentence where the opera-
tor is not occurring, provided an appropriate law for substitution of equivalent
formulas (as R5 in the Table). Resemblance to Public Announcement Logic is
no coincidence. The axioms reduce in fact the update operator to the global
modality and the coalition logic operator. So the operator adds no expressiv-
ity to the language and completeness of the language with the update operator
follows from the completeness of the language without it. A completeness proof
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Table 3. Proof System for Public Announcement Logic

Axioms
Public Announcement Axioms

A1 [φ]p ↔ (φ → p)
A2 [φ]¬ψ ↔ (φ → ¬[φ]ψ)
A3 [φ](ξ ∧ ψ) ↔ ([φ]ξ ∧ [φ]ψ)
A4 [φ]�aψ ↔ (φ → �a[φ]ψ)

Rules
R1 ξ ∧ (ξ → ψ) ⇒ ψ
R2 ξ ⇒ [φ]ξ

for Closed-World coalition logic, where the global modality interacts with the
coalition logic modality by means of the axiom [∅]φ↔ Aφ is provided in [5].

3.1 Back to the Game

With the new operator it becomes possible to formalize the conditional as-
pect of strategic reasoning. In the structure PD we have that PD, w |= [{i} ↓
i defects ]([{j}]( j defects and i defects ) ∧ [{j}]( j cooperates and i defects )).

Nothing changes at the level of grand coalition, since PD |= [∅ ↓ φ][Agt]ψ ↔
[Agt]ψ.

4 Discussion: Choices as Announcements

Public Announcement Logic formalizes the effect of the announcement of a true
formula in each agent’s a epistemic relation R(a), defined as a partition on a
domain W . The standard operator [φ]ψ says that ψ holds after φ is announced.
Its semantics is given as follows:

M, w |= [φ]ψ ⇔M, w |= φ implies M |φ, w |= ψ

where M |φ = (W ′, R′(a), V ′) takes these values:

– W ′ = φM

– R′(a) = R(a) ∩ (W × φM )
– V ′(p) = V (p) ∩ φM

The model restriction of public announcement throws worlds away. In fact, as
shown for instance in [13], public announcements can be defined by only updating
the epistemic relation. A reduction can be shown in which every sentence from
the modal language with the S5 knowledge relation and the public announcement
operator can be translated into a sentence from the same language without the
public announcement operator occurring in it. We report the reduction axioms
in Table 3.
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If we compare the public announcement operator to the subgame operator, we
can observe the structure of the two axiom systems is very similar in the atomic
and boolean case, but very different in the modal case. A subtle difference can
be though observed in the atomic clause. If Public Announcement Logic reduces
the atomic announcement to an implication between atoms ([q]p ↔ (q → p)),
the subgame operator reduces it to an implication between an atom and a choice
([C ↓ q]p ↔ ([C]q → p)). This fact witnesses that we are really reducing strategy
execution to strategic ability. The appendix will make it clear that the similarity
of the logics applies to the proof techniques as well, that are at least for the
basic cases identical to those of Public Announcement Logic [15]. The specific
differences are given, once again, by the way the coalitional relation is updated.

5 Conclusion and Future Work

We have built a logic for strategic ability update, where we can represent the ef-
fects of a coalitional choice on the players’ strategic ability, extending the update
paradigm of Dynamic Epistemic Logic to account for the dynamics of strategic
ability in Coalition Structures. Our framework explicitly expresses how a coali-
tional move modifies the ability of all the players involved in the interaction,
providing a useful framework for capturing coalitional reasoning in strategic set-
tings. Our results are limited to Coalition Logic. Further study is needed to
analyze whether the same characterizations are possible in different frameworks
for strategic ability, for instance the Consequentialist-STIT framework, ATL and
the full Game Logic. Further work can also be done in characterizing within this
framework a number of other gametheoretical concepts like Nash Equilibrium
and the Core for Cooperative Games without transferable utility.
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A Proofs for Reduction Axioms

Atomic and Boolean Cases

[C ↓ ξ]p ↔ ([C]ξ → p)

Take arbitrary M, w. M, w |= [C ↓ ξ]p⇔M, w |= [C]ξimplies thatM ↓ (C,ξM ,w),
w |= p⇔M, w |= [C]ξimplies that M, w |= p ⇔M, w |= [C]ξ → p. Q.E.D.

[C ↓ ξ]¬φ ↔ ([C]ξ → ¬[C ↓ ξ]φ)

Take arbitrary M, w. M, w |=[C ↓ ξ]¬φ⇔M, w |=[C]ξ implies that M ↓ (C,ξM ,w),
w |= ¬φ ⇔ M, w |= [C]ξ implies that (M, w |= [C]ξ and M ↓(C,ξM ,w), w |=
¬φ) ⇔ M, w |= [C]ξ implies that not(M, w |= [C]ξ implies M ↓(C,ξM ,w), w �|=
¬φ) ⇔|= [C]ξ implies that not(M, w |= [C]ξ implies M ↓(C,ξM ,w), w |= φ) ⇔
M, w |= [C]ξ implies that M, w �|= [C ↓ ξ]φ⇔M, w |= [C]ξ → ¬[C ↓ ξ]φ Q.E.D.

[C ↓ ξ](φ ∧ ψ) ↔ ([C ↓ ξ]φ ∧ [C ↓ ξ]ψ)

Take arbitrary M, w. M, w |= [C ↓ ξ](φ ∧ ψ)⇔M, w |= [C]ξ implies that M ↓
(C,ξM ,w), w |= φ ∧ ψ ⇔ M, w |= [C]ξ implies that (M ↓(C,ξM ,w), w |= φ and
M ↓(C,ξM ,w), w |= ψ) ⇔ (M, w |= [C]ξimplies thatM ↓(C,ξM ,w), w |= φ) and
(M, w |= [C]ξ implies that M ↓(C,ξM ,w), w |= ψ) ⇔ (M, w |= [C ↓ ξ]φ)
and (M, w |= [C ↓ ξ]ψ) ⇔M, w |= ([C ↓ ξ]φ ∧ [C ↓ ξ]ψ) Q.E.D.

Interaction with Global Modality

[C ↓ ξ]Aφ ↔ ([C]ξ → Aφ)

Take an arbitrary M, w. M, w |= [C ↓ ξ]Aφ ⇔ M, w |= [C]ξ implies that
M ↓(C,ξM ,w), w |= Aφ ⇔ M, w |= [C]ξ implies that M ↓(C,ξM ,w), w |= [∅]φ ⇔
M, w |= [C]ξ implies that M, w |= [∅]φ ⇔ M, w |= [C]ξ implies that M, w |=
Aφ ⇔M, w |= [C]ξ → Aφ

http://www.illc.uva.nl/Publications/ResearchReports/PP-2008-03.text.pdf
http://www.illc.uva.nl/Publications/ResearchReports/PP-2008-03.text.pdf
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Interaction with Coalition Modality

[C ↓ ξ][D]φ ↔ ([C]ξ → [D](ξ → φ))( for D ∩ C = ∅ and D �= ∅)

Proof by contraposition.
⇐: Suppose, for some D �= ∅, that [C]χ → [D](χ → φ) and M, w �|= [C ↓

χ][D]φ for some C such that (C ∩ D) = ∅. The semantic clauses then tell us
that (if χM ∈ E(w)(C) then (χ → φ)M ∈ E(w)(D)) and χM ∈ E(w)(C) and
φM �∈ E′(w)(D). [I write E′ for E ↓(C,χM).] By modus ponens φM �∈ E′(w)(D).

By the definition of update, E′(w)(D) = (E(w)(D)�χM )sup. So, ((χ→ φ)M∩
χM ) ∈ E′(w)(D). By elementary set theory this just says that φM ∈ E′(w)(D).
Contradiction.
⇒: Suppose, for some D �= ∅, that M, w |= [C ↓ χ][D]φ and M, w �|= [C]χ →

[D](χ → φ) for some C such that (C ∩ D) = ∅. The semantic clauses then
tell us that (if χM ∈ E(w)(C) then φM ∈ E′(w)(D)) and χM ∈ E(w)(C) and
(χ→ φ)M �∈ E(w)(D). By modus ponens we are assuming that φM ∈ E′(w)(D)
and (χ → φ)M �∈ E(w)(D).

By the definition of update, E′(w)(D) = (E(w)(D)�χM )sup. Because φM ∈
E′(w)(D), there must be some X ∈ E(w)(D), such that (X ∩ χM ) ⊆ φM . By
elementary set theory, it must be the case that X ⊆ (χ→ φ)M .

Hence, by outcome monotonicity of E, if X ∈ E(w)(D), then (χ → φ)M ∈
E(w)(D). Contradiction.

[C ↓ ξ]([D]φ ↔ A(ξ → φ))( for D ∩ C �= ∅)

Proof. Take arbitrary M, w, and arbitrary ξM ∈ E(w)(C). Consider a coalition
D with D ∩ C �= ∅. We have that E ↓(C,ξM ,w) (w)(D) = (ξM )sup by semantics.
This means that ξM ⊆ φM iff φM ∈ E ↓(C,ξM ,w) (w)(D). It is easy to conclude
that M, w |= [C ↓ ξ]([D]φ ↔ A(ξ → φ)). Notice that this also means M, w |=
[C ↓ ξ][D]φ ↔ A(ξ → φ). Q.E.D.

[C ↓ ξ][D]φ ↔ ([C]ξ → [D]φ)( for D = ∅)
It follows directly from the semantics of the update operator for the case of
D = ∅. Q.E.D.
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Abstract. We study games in the presence of an interaction structure,
which allows players to communicate their preferences, assuming that
each player initially only knows his own preferences. We study the out-
comes of iterated elimination of strictly dominated strategies (IESDS)
that can be obtained in any given state of communication.

We also give epistemic foundations for these “intermediate” IESDS
outcomes. This involves firstly describing the knowledge that the players
would have in any state of communication, using the framework from
Apt et al. [3]. We then prove that when there is common knowledge of
rationality, each intermediate outcome is entailed by the knowledge in
the relevant state of communication.

1 Introduction

1.1 Background and Motivation

There is a substantial amount of research within game theory on the implications
of assumptions concerning players’ knowledge and beliefs [5]. In particular, Tan
and Werlang [16] have shown that if payoffs are commonly known and all players
are rational and commonly believe in each other’s rationality, they will only
play strategies that survive iterated elimination of strictly dominated strategies
(IESDS). In this context rationality means that one does not choose strictly
dominated strategies.

Another line of research stresses the relevance of locality in strategic games.
For example, in graphical games [14] the locality assumption is formalized by
assuming a graph structure over the set of players and using payoff functions
which depend only on the strategies of players’ neighbors.

In this paper we study a game-theoretic framework which combines locality
and interaction. The locality assumption refers to the information about payoffs
(or more generally, preferences), rather than to the payoffs themselves. In turn,
interaction takes place by means of communication within (possibly overlapping)
groups of players. The framework is realized by incorporating the notion of a
strategic game into the setting of interaction structures discussed in [3].
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An interaction structure consists of (possibly overlapping) groups of players
within which synchronous communication is possible. We assume that players’
preferences are not commonly known. Instead, the initial information of each
player only covers his own preferences, and the players can communicate this
information only within the limits of the interaction structure.

More precisely, we make the following assumptions:

– the players initially know their own preferences;
– they are rational;
– they are part of an interaction structure and can communicate their own

preferences within any group they belong to;
– communication is truthful and synchronous, as in [3];
– the players have no knowledge other than what follows from these assump-

tions, and this is common knowledge.

In this setting we then study the outcome of iterated elimination of strictly
dominated strategies started in some intermediate state of communication, in
particular in the state in which all communication permitted by the interaction
structure has taken place. We use the results from our previous work [3] to prove
that this outcome can be described by analyzing what the players know in the
considered state.

It is important to note that we do not examine strategic or normative aspects
of the communication here. So we do not allow players to lie and do not examine
why they communicate or what they should communicate. Rather, we examine
what happens if they do communicate, assuming that they are rational and have
reasoning powers.

To justify this focus, we can think of a setting in which the strategic aspects of
communication are not relevant. One possibility is when communication is not a
deliberate act, but rather occurs through observing somebody’s behavior. Such
communication is certainly more difficult to manipulate and more laborious to
fake than mere words. In a sense it is inherently credible, and research in social
learning argues along similar lines [8, Ch. 3].

This also helps to explain another assumption we make, corresponding to
the framework we examined in [3]: players only communicate their own prefer-
ences, since information about others’ preferences is either difficult to obtain or
communication about them is not credible. One may also assume that commu-
nicating about preferences of third parties is less common for privacy reasons.
From this perspective the groups of the interaction structure can be viewed as
the ones who can commonly observe each other, for example colleagues sharing
lunch at work.

In other settings, for example that of artificial agents communicating by means
of messages, it may be more difficult to view communication as something non-
deliberate. Here, ignoring strategic aspects of communication can be interpreted
as bounds on the players’ rationality or reasoning capabilities—they simply lack
the capabilities to deal with all the consequences of such an inherently rich
phenomenon as communication.



304 A. Witzel, K.R. Apt, and J.A. Zvesper

In general, strategic communication is a research topic on its own, with con-
troversial discussions (see, e.g., [15]) and many questions widely open. Crawford
and Sobel [10] have considered the topic in a probabilistic setting, and Farrell
and Rabin [12] have looked at related issues under the notion of cheap talk. Also
within epistemic logic, formalizations of the information content of strategic
communication have been suggested, e.g., by Gerbrandy [13].

Finally, it is useful to clarify the relation between strategic games with inter-
action structures and pre-Bayesian games, see, e.g., Ashlagi et al. [4]. In these
games, too, each player knows his payoff but does not know the payoffs of the
other players and makes no assumptions about them. In our setup this private
knowledge aspect of pre-Bayesian games can be trivially modelled by the empty
interaction structure, or viewed as corresponding to our initial situation. Due to
the different nature of these frameworks, however, the questions of interest are
also different.

1.2 Plan of the Paper

This paper is organized as follows. In the following Sect. 2, we review the ba-
sic definitions concerning strategic games, optimality notions and operators on
restrictions of games. Next, in Sect. 3, we study the outcome of IESDS in the
presence of an interaction structure. We first look at the outcome that is arrived
at after all communication permitted in the given interaction structure has taken
place, and then detail the outcomes obtained in any particular intermediate state
of communication. The formulations we consider make no direct use of the notion
of knowledge. The connection with knowledge is made in 4, where we prove the
outcomes we have obtained to be correct with respect to the epistemic frame-
work from [3], in the sense that the outcomes capture exactly what the players
can do given their partial knowledge of the game structure in any particular
state. Finally, in Sect. 5, we suggest some future research directions.

2 Preliminaries

Following [2], by a strategic game with parametrized preferences (in
short, a game) for players N = {1, . . . , n}, where n > 1, we mean a tuple
(S1, . . . , Sn,�1, . . . ,�n), where for each i ∈ N ,

– Si is the non-empty, finite set of strategies available to player i. We write
S to abbreviate the set of strategy profiles: S = S1 × · · · × Sn.

– �i is the strict preference relation for player i, so �i⊆ S × S.

This qualitative approach precludes the use of mixed strategies, but they will
not be needed in our considerations.

As usual we denote player i’s strategy in a strategy profile s ∈ S by si, and
the tuple consisting of all other strategies by s−i, i.e., s−i = (s1, . . . , si−1, si+1,
. . . , sn). Similarly, we use S−i to denote S1×· · ·×Si−1×Si+1×· · ·×Sn, and for
s′i ∈ Si and s−i ∈ S−i we write (s′i, s−i) to denote (s1, . . . , si−1, s

′
i, si+1, . . . , sn).

Finally, we use s′i �s−i si as a notational alternative for (s′i, s−i) �i (si, s−i).
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Fix now an initial strategic game G := (S1, . . . , Sn,�1, . . . ,�n). We say that
(S′

1, . . . , S
′
n) is a restriction of G if each S′

i is a non-empty subset of Si. We
identify the restriction (S1, . . . , Sn) with G.

To analyze iterated elimination of strategies from the initial game G, we view
such procedures as operators on the set of restrictions of G. This set together
with component-wise set inclusion forms a complete lattice.

For any restriction G′ := (S′
1, . . . , S

′
n) of G and strategies si, s

′
i ∈ Si, we say

that si is strictly dominated by s′i on S′
−i if s′i �s′

−i
si for all s′−i ∈ S′

−i.Then
we introduce the following abbreviations (� stands for “local” and g stands for
“global”; the terminology is from Apt [1]):

– sd�(si,G′) which holds iff strategy si of player i is not strictly dominated on
S′
−i by any strategy from S′

i (i.e., ¬∃s′i ∈ S′
i ∀s′−i ∈ S′

−i s′i �s′
−i

si),
– sdg(si,G′) which holds iff strategy si of player i is not strictly dominated on

S′
−i by any strategy from Si (i.e., ¬∃s′i ∈ Si ∀s′−i ∈ S′

−i s′i �s′
−i

si).

So in sdg, the global version of strict dominance introduced by [9], it is stipulated
that a strategy is not strictly dominated by a strategy from the initial game.

We call each relation of the form sd� or sdg an optimality notion. We
say then that the optimality notion φ used by player i is monotonic if for all
restrictions G′′ and G′ and strategies si, G′′ ⊆ G′ and φ(si,G′′) implies φ(si,G′).

As noted in [1, 7], sdg is monotonic, while sd� is not (though in finite games
their respective outcomes coincide, as discussed in the proof of Theorem 1).

Given an operator T on a finite lattice (D,⊆) with the largest element � and
k ≥ 0, we denote by T k the k-fold iteration of T , where T 0 = � (so the iterations
start “at the top”) and put T∞ :=

⋂
k≥0 T k. We call T monotonic if for all

D′, D′′, we have that D′ ⊆ D′′ implies T (D′) ⊆ T (D′′).
Finally, as in [3], an interaction structure H is a hypergraph on N , i.e., a

set of non-empty subsets of A ⊆ N , called hyperarcs.

3 Iterated Strategy Elimination

In this section we define procedures for iterated elimination of strictly dominated
strategies. Let us fix a strategic game G = (S1, . . . , Sn,�1, . . . ,�n) for play-
ers N , an interaction structure H ⊆ 2N \ {∅}, and an optimality notion φ. In
Sect. 3.1, we look at the outcome reached after all communication permitted
by H has taken place, that is, when within each hyperarc of H all of its mem-
bers’ preferences have been communicated. In Sect. 3.2, we then look at the
outcomes obtained in any particular intermediate state of communication. We
stress that in general there is no relation between the preferences �i and H .

The formulations we give here make no direct use of a formal notion of
knowledge. The connection with a formal epistemic model is made in Sect. 4.

All iterations of the considered operators start at the initial restriction
(S1, . . . , Sn).
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3.1 Completed Communication

Let us assume that within each hyperarc A ∈ H , all its members have shared all
information about their preferences. We leave the exact definition of communi-
cation to Sect. 3.2 and the epistemic formalization to Sect. 4, and focus here on
an operational description.

For each group of players G ∈ N , let SG denote the set of those restrictions
of G which only restrict the strategy sets of players from G. That is,

SG := {(S′
1, . . . , S

′
n) | S′

i ⊆ Si for i ∈ G and S′
i = Si for i �∈ G}.

Now we introduce an elimination operator TG on each such set SG, defined as
follows. For each G′ = (S′

1, . . . , S
′
n) ∈ SG, let TG(G′) := (S′′

1 , . . . , S′′
n), where for

all i ∈ N ,

S′′
i :=

{{si ∈ S′
i | φ(si,G′)} if i ∈ G

S′
i otherwise.

We call T∞
G the outcome of iterated elimination (of non-φ-optimal strate-

gies) on G. We then define the restriction G(H) of G as1 G(H) := (G(H)1, . . . ,
G(H)n), where for all i ∈ N ,

G(H)i := T{i}
(⋂

A:i∈A∈H T∞
A

)
i
.

That is, the ith component of G(H) is the ith component of the result of ap-
plying T{i} to the intersection of T∞

A for all A ∈ H containing i. We call G(H)
the outcome of iterated elimination (of non-φ-optimal strategies) with
respect to H . Note that G(H) implicitly depends on φ.

Let us “walk through” this definition to understand it better. Given a player i
and a hyperarc A ∈ H such that i ∈ A, T∞

A is the outcome of iterated elimination
on A, starting at (S1, . . . , Sn). The strategies of players from outside of A are not
affected by this process. This elimination process is performed simultaneously
for each hyperarc that i is a member of. By intersecting the outcomes, i.e., by
considering the restriction

⋂
A:i∈A∈H T∞

A , one arrives at a restriction in which
all such “groupwise” iterated eliminations have taken place. However, in this
restriction some of the strategies of player i may be non-φ-optimal. They are
eliminated using one application of the T{i} operator. We illustrate this process,
and in particular this last step, in the following example.

Example 1. Consider local strict dominance, sd�, in the following three-player
game G where the payoffs of players 1 and 2 and those of players 1 and 3 re-
spectively depend on each other’s actions, but the payoffs of player 2 and 3 are
independent:

Pl. 1

Pl. 2, 3
L, l L, r R, l R, r

U 1, 1, 1 0, 1, 0 0, 0, 1 0, 0, 0
D 0, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0

1 Here and elsewhere the outer subscript ‘i’ refers to the preceding restriction.
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12 3

L � R l � r

U � D

Fig. 1. Illustrating Example 1. Hyperarcs are shown in gray. Callouts attached to hy-
perarcs represent communicated, and thus commonly known, information. The thought
bubble represents private information, in this case obtained from the combination of
information only available to player 1.

So, for example, the payoffs for the strategy profile (U, L, r) are, respectively, 0,
1, and 0. Now assume the interaction structure H = {{1, 2}, {1, 3}}. We obtain
T∞
{1,2} = ({U, D}, {L}, {l, r}) and T∞

{1,3} = ({U, D}, {L, R}, {l}). The restriction
defined by these two outcomes is ({U, D}, {L}, {l}), and in the final step player 1
eliminates his strategy D by one application of T{1}. The outcome of the whole
process is thus G(H) = ({U}, {L}, {l}). See Fig. 1 for an illustration of this
situation. �!
In this example, the outcome with respect to the given interaction structure coin-
cides with the outcome of the customary IESDS on the fully specified game matrix.
We should emphasize that this is not the case in general, and the purpose of this
example is simply to illustrate how the operators work. Example 2 later on shows
in a different setting how the interaction structure can influence the outcome.

Note that when H consists of the single hyperarc N that contains all the
players, then for each player i,

⋂
A:i∈A∈H T∞

A reduces to T∞
N , and this is closed

under application of each operator T{i}. So then, indeed, G(H) = T∞
N , that

is, G(H) in this special case coincides with the customary outcome of iterated
elimination of non-φ-optimal strategies.

In general, this customary outcome is included in the outcome w.r.t. any
hypergraph H . This result is established in Theorem 1, and Example 2 shows a
case where the inclusion is proper.

Theorem 1. For φ ∈ {sd�, sdg} and for all hypergraphs H, we have T∞
N ⊆ G(H).

The inclusion proved in this result cannot be reversed, even when each pair of
players shares a hyperarc. The following example also shows that the hypergraph
structure is more informative than the corresponding graph structure.

Example 2. Consider the following strategic game with three players. The payoffs
of player 1 and 2 depend here only on each other’s choices, and the payoffs of
player 3 depend only on the choices of player 2 and 3:

Pl. 1

Pl. 2
L R

U 0, 1 0, 0
D 1, 0 1, 1

Pl. 3

Pl. 2
L R

A 0 1
B 1 0

Payoff of players 1 and 2 Payoff of player 3
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So, for example, the payoffs for the strategy profile (U, L, A) are, respectively,
0, 1, and 0. If we assume the hypergraph H that consists of the single hyper-
arc {1, 2, 3}, then the outcome of iterated elimination of non-φ-optimal strate-
gies w.r.t. H is the customary outcome which equals ({D}, {R}, {A}). Indeed,
player 1 can eliminate his strictly dominated strategy U , then player 2 can elim-
inate L, and subsequently player 3 can eliminate B.

In contrast, if the hypergraph consists of all pairs of players, so H = {{1, 2},
{2, 3}, {1, 3}}, then the outcome of iterated elimination of non-φ-optimal strate-
gies w.r.t. H equals ({D}, {R}, {A, B}).

Informally, the reason for this difference is that in the latter case, player 3 can
eliminate B only using the fact that player 2 eliminated L, but this information
is available only to players 1 and 2. �!
To familiarize ourselves further with our definitions, we establish the following
intuitive monotonicity result. We say that H ′ extends H if for each A ∈ H there
is A′ ∈ H ′ such that A ⊆ A′.

Proposition 1. If H ′ extends H and T is monotonic, then G(H ′) ⊆ G(H).

3.2 Intermediate States

The setting considered in Sect. 3.1 corresponds to a state in which in all hyperarcs
all players have shared all information about their preferences. Given the game G
and the hypergraph H , the outcome G(H) there defined thus reflects which
strategies players can eliminate if initially they know only their own preferences
and they communicate all their preferences in H . We now define formally what
communication we assume possible, and then look at intermediate states, where
only certain preferences have been communicated.

Each player i can communicate his preferences to each A ∈ H with i ∈ A.
We take a message by i to consist of a preference statement s′i �s−i si for
si, s

′
i ∈ Si and s−i ∈ S−i. We denote such a message by (i, A, s′i �s−i si), and

require that i ∈ A and that it is truthful with respect to the given initial
game G, that is, indeed s′i �s−i si in G. Note that the fact that i is the sender
is, strictly speaking, never used. Thus, in accordance with the interpretation of
communication described in Sect. 1.1, we could drop the sender and simply write
“the players in A commonly observe that s′i �s−i si.” An intermediate state
is now given by the set M of messages which have been communicated.

We now adjust the definition of an optimality notion to account for inter-
mediate states. An intermediate optimality notion φG,M (derived from an
optimality notion φ) uses only information shared among the group G in the
intermediate state given by M . So with singleton G = {i} only i’s preferences
are used, and with larger G only preferences contained in messages to a superset
of G are used. Thus in the case of sdg we have that sdg

G,M (si,G′) holds iff

¬∃s′i ∈ Si ∀s−i ∈ S′
−i s′i �s−i si if G = {i}

¬∃s′i ∈ Si ∀s−i ∈ S′
−i M �G� s′i �s−i si otherwise,
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where by M �G� s′i �s−i si we mean that s′i �s−i si is entailed by those messages
in M which G received. Specifically, the entailment relation

M �G� s′i �s−i si

holds iff there exist messages (·, Gk, sk
i �s−i sk+1

i ) ∈ M for k ∈ {1, . . . , � − 1}
such that Gk ⊇ G, s1

i = s′i and s�
i = si.

We now define a generalization of the TG operator by:

TG,M(G′) := (S′′
1 , . . . , S′′

n),

where G′ = (S′
1, . . . , S

′
n) and for all i ∈ N ,

S′′
i := {si ∈ S′

i | φG,M (si,G′)}.
Note that, as before, S′

i remains unchanged for i �∈ G, since then φG,M (si,G′)
always holds. Indeed, for it to be false, there would have to be some message
(i, G, ·) ∈ M , which would imply i ∈ G.

Similarly, we now define the outcome of iterated elimination (of non-
φ-optimal strategies) with respect to H, M to be the restriction G(H, M),
where for i ∈ N

G(H, M)i := T{i},M

(⋂
A:i∈A∈H T∞

A,M

)
i
.

Here H denotes the closure of H under non-empty intersection. That is,

H = {A1 ∩ · · · ∩Ak | {A1, . . . , Ak} ⊆ H} \ {∅}.
The use of H is necessary because certain information may be entailed by mes-
sages sent to different hyperarcs. For example, with (j, A, s′′j �s−j s′j),
(j, A′, s′j �s−j sj) ∈ M , the combined information that s′′j �s−j sj is available
to the members of A ∩A′.

Again, let us “walk through” the definition of G(H, M). First, a local elimina-
tion process is run on each hyperarc of H , using only information which has been
communicated there (which now no longer covers all members’ preferences, but
only the ones according to the intermediate state M). Then, in the final step,
each player combines his insights from all hyperarcs of which he is a member,
and eliminates any strategies that he thereby learns not to be optimal.

It is easy to see that in the case where the players have communicated all
there is to communicate, i.e., for

Mall
H := {(i, A, s′i �s−i si) | i ∈ N, A ∈ H, si, s

′
i ∈ Si with s′i �s−i si in G},

the intermediate outcome coincides with the previously defined outcome, i.e.,

G(H, Mall
H ) = G(H).

This corresponds to the intuition that G(H) captures the elimination process
when all possible communication has taken place. In particular, all entailed in-
formation has also been communicated in Mall

H , which is why we did not need
to consider H in 3.1.
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1

2

3

L �s−2 R

l �s−3 r

1

2

3

L �s−2 R

l �s−3 r

1

2

3

L �s−2 R

l �s−3 r

1

2

3

L �s−2 R

l �s−3 r

U � D

M M ′ M ′′

Fig. 2. Illustrating Example 3

Example 3. The process described in this example is illustrated in Fig. 2. Con-
sider again the game G from Example 1, and the initial state where M = ∅. We
have T∞

A,M = G for all A ∈ H , that is, without communication no strategy can
“commonly” be eliminated. However, players 2 and 3 can “privately” eliminate
one of their strategies each, since each of them knows his own preferences, so

T{1},M (
⋂

A:1∈A∈H T∞
A,M ) = ({U, D}, {L, R}, {l, r}),

T{2},M (
⋂

A:2∈A∈H T∞
A,M ) = ({U, D}, {L}, {l, r}),

T{3},M (
⋂

A:3∈A∈H T∞
A,M ) = ({U, D}, {L, R}, {l}),

This elimination cannot be iterated upon by other players and the overall
outcome is G(H, M) = ({U, D}, {L}, {l}).

Consider now the intermediate state M ′ = {(2, {1, 2}, L �s−2 R)|s−2 ∈ S−2},
that is, a state in which player 2 has shared with player 1 the information that
for any joint strategy of players 1 and 3, he prefers his strategy L over R. Then
only the result of player 1 changes:

T{1},M ′(
⋂

A:1∈A∈H T∞
A,M ′) = ({U, D}, {L}, {l, r}),

while the other results and the overall outcome remain the same. If additionally
player 3 communicates all his information in the hyperarc he shares with player 1,
that is, if the intermediate state is M ′′ = M ′ ∪ {(3, {1, 3}, l �s−3 r)|s−3 ∈ S−3},
then player 1 can combine all the received information and obtain

T{1},M ′′(
⋂

A:1∈A∈H T∞
A,M ′′) = ({U}, {L}, {l}).

This is also the overall outcome G(H, M ′′), coinciding with the outcome G(H,
Mall

H ) where all possible information has been communicated. �!
Let us now illustrate the importance of using entailment in the intermediate
optimality notions and H (rather than H) in the definition of G(H, M).
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1

3

2

4

A �L B
A �R C

B �L C

1

3

2

4

� A � C

1

3

2

4

A � C

R �−C L

1

3

2

4

A � C

R �−C L

D � A, B, C

M M ′

Fig. 3. Illustrating Example 4. Strategies of the dummy players are omitted. A � C
stands for A �s−1 C, and �−C combines �α for α ∈ {A, B, D}. Note that in the first
step, information is not explicitly communicated but deduced.

Example 4. We look at a game involving four players, but we are only interested
in the preferences of two of them. The other two players serve merely to create
different hyperarcs. The strategies and payoffs of player 1 and 2 are as follows:

Pl. 1

Pl. 2
L R

A 3, 0 1, 1
B 2, 0 1, 1
C 1, 1 0, 0
D 0, 0 5, 1

For players 3 and 4 we assume a “dummy” strategy, denoted respectively by X
and Y . Consider the hypergraph H = {{1, 2, 3}, {1, 2, 4}} and the intermediate
state

M = {(1, {1, 2, 3}, A �LXY B),
(1, {1, 2, 4}, B �LXY C),
(1, {1, 2, 3}, A �RXY C)}.

The fact that player 1, independently of what the remaining players do, strictly
prefers A over C is not explicit in these pieces of information, but it is entailed
by them, since A �LXY B and B �LXY C imply A �LXY C. However, this
combination of information is only available to the players in {1, 2, 3}∩{1, 2, 4}.

Player 2 can make use of this fact that C is dominated, and eliminate his own
strategy L. If we now look at a state in which player 2 has communicated his
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relevant preferences, so M ′ = M ∪ {(2, {1, 2, 3}, R �αXY L)|α ∈ {A, B, D}}, we
notice that player 1 can in turn eliminate A and B, but only by combining infor-
mation available to the players in {1, 2, 3}∩{1, 2, 4}. There is no single hyperarc
in the original hypergraph which has all the required information available. It
thus becomes clear that we need to take into account iterated elimination on
intersections of hyperarcs.

The whole process is illustrated in Fig. 3. �!

4 Epistemic Foundations

In this section, we provide epistemic foundations for our framework. The aim
is to prove that the definition of the outcome G(H, M) correctly captures what
strategies the players can eliminate using all they “know”, in a formal sense.

We proceed as follows. First, in Sect. 4.1, we briefly introduce an epistemic
model formalizing the players’ knowledge. In Sect. 4.2, we give a general epis-
temic formulation of strict dominance and argue that it correctly captures the
notion. Sect. 4.2 also contains the main result of our epistemic analysis, namely
that the outcome G(H, M) indeed yields the outcome stipulated by the epistemic
formulation. We rely on the basic framework and results from [3].

We focus on the global version of strict dominance, sdg, mainly because the
presentation is then more concise. However, our results carry over to the local
version sd� due to the equivalence result mentioned in the proof of Theorem 1.

4.1 Epistemic Language and States

Again, we assume a fixed game G with non-empty set of strategies Si for each
player i, and a hypergraph H representing the interaction structure. Analogously
to [3], we use a propositional epistemic language with a set At of atoms which
is divided into disjoint subsets Ati, one for each player i, where Ati = {s′i �s−i

si | si, s
′
i ∈ Si, s−i ∈ S−i}.

The set Ati describes all possible strict preferences between pairs of strategies
of player i, relative to a joint strategy of the opponents. We consider the usual
connectives ∧ and ∨ (but not the negation ¬), and a common knowledge
operator CG for any group G ⊆ N of players. As in [3], we write Ki for C{i}.
By L+ we denote the set of formulas built from the atoms in At using these two
connectives and knowledge operators.

A valuation V is a subset of At such that for each s−i ∈ S−i, the restriction
V ∩ {· �s−i ·} is a strict partial order.

Intuitively, a valuation consists of the atoms assumed true. Each specific game
G induces exactly one valuation which simply represents its preferences. However,
in general we also need to model the fact that players may not have full knowledge
of the game. The restriction imposed on the valuations ensures that each of them
is induced by some game.

So for example {s �a t} is a valuation (given a game with appropriate strategy
sets), while {s �a t, t �a u} and {s �a t, t �a s} are not.
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Recall from Sect. 3.2 that a message from player i to a hyperarc A ∈ H has
the form (i, A, s′i �s−i si), where i ∈ A, si, s

′
i ∈ Si, and s−i ∈ S−i. We say that

a message (·, ·, p) is truthful with respect to a valuation V if p ∈ V . A state,
or possible world, is a pair (V, M), where V is a valuation and M is a set of
messages that are truthful with respect to V .

This setting is an instance of the framework defined in [3], and the formal
semantics is as defined there. We repeat here only the intuition that CGϕ
means that ϕ is common knowledge among G, that is, everybody in G knows ϕ,
everybody knows that everybody knows ϕ, etc. In particular, Kiϕ means that
player i knows ϕ. We assume that each player i initially knows the true facts in
Ati entailed by the initial game G and that the basic assumptions from Sect. 1.1
are commonly known among the players.

4.2 Correctness Result

We start by giving an epistemic formula describing the global version of iterated
elimination of strictly dominated strategies. In contrast to the formulation in
Sect. 2, this formula states player i knows that a strategy is strictly dominated.

We define, for i ∈ N and si ∈ Si,

dom1(si) := Ki

∨
s′

i∈Si

∧
s−i∈S−i

s′i �s−i si,

dom�+1(si) := Ki

∨
s′

i∈Si

∧
s−i∈S−i

(
s′i �s−i si ∨

∨
j∈N\{i} dom�(sj)

)
.

That is, in the base case, player i knows that si is strictly dominated if i knows
that there is an alternative strategy s′i which, for all joint strategies of the other
players, is strictly preferred. Furthermore, after iteration �+1, i knows that si is
strictly dominated if i knows that there is an alternative strategy s′i such that,
for all joint strategies s−i of the other players, either s′i is strictly preferred or
some strategy sj in s−i is already known by player j to be strictly dominated
after iteration �.

We restrict our attention to formulas dom�(si) with � ∈ {1, . . . , �̂}, where
�̂ =

∑
i∈N |Si|. By the semantics of the considered formulas, there is some �

within this range such that for all �′ ≥ �, dom�′ is equivalent to dom�. To reflect
the fact that this can be seen as the outcome of the iteration, we denote dom �̂

by dom∞.
As a first connection with the TG operator defined in Sect. 3, we have the

following epistemic counterpart of Proposition 1. Intuitively, this is due to the
fact that if we look at the states in which all communication allowed by a given
hypergraph has taken place, then knowledge (of positive formulas) can only grow
as that hypergraph grows.

Proposition 2. If H ′ extends H, then for all i ∈ N and si ∈ Si,

(V, Mall
H ) � dom∞(si) implies (V, Mall

H′ ) � dom∞(si),

where Mall is defined as in Sect. 3.2.
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We now proceed to the main result of the paper. We prove that the non-epistemic
formulation of iterated elimination of non-sdg-optimal strategies, as given in
Sect. 3, coincides with the epistemic formulation of strict dominance.

Theorem 2. For any strategic game G, hypergraph H, set of messages M
truthful with respect to G, and i ∈ N ,

G(H, M)i = {si ∈ Si | (V, M) 	 dom∞(si)},
where V is the valuation induced by G.

5 Conclusions

We studied here strategic games in the presence of interaction structures. We
assumed that initially the players know only their own preferences, and that they
can truthfully communicate information about their own preferences within their
parts of the interaction structure. This allowed us to analyze the consequences
of locality, formalized by means of an interaction structure, on the outcome of
the iterated elimination of strictly dominated strategies. To this end we appro-
priately adapted the framework introduced in [3] and showed that in any given
state of communication this outcome can be described by means of epistemic
analysis.

We plan to extend our analysis in a number of ways by:

– Allowing players to send information about the preferences of other players
that they learned through interaction. The abstract epistemic framework
of [3] includes already this extension,

– Allowing other forms of messages, for example, messages containing informa-
tion that a strategy has been eliminated, or containing epistemic statements,
such as knowing that some strategy of another player has been eliminated,

– Considering strategic aspects of communication, even if truthfulness is re-
quired (should one send some piece of information or not?)

– Considering formation or evolution of interaction structures, given strategic
advantages of certain interaction structures over others.

The last point could connect our research with that on network formation games,
see, e.g., [6].

Finally, let us mention that in [3] we already abstracted from the framework
considered here and studied a setting in which players send messages that inform
a group about some atomic fact that a player knows or has learned. We clarified
there, among others, under what conditions common knowledge of the underlying
hypergraph matters. The framework there considered could be generalized by
allowing players to arrive jointly at some conclusions using their background
theories, by means of an interaction through messages sent to groups. From this
perspective IESDS could be seen as a metaphor of such a conclusion. Through
its focus on the form of allowed messages and background knowledge, this study
would differ from the line of research pursued by Fagin et al. [11], where the
effects of communication are considered in the framework of distributed systems.
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Social dilemma is a situation in which individual rationality leads to collective
irrationality. That is, individually reasonable behavior leads to a situation in
which everyone is worse off than they might have been otherwise [Kol98]. There
are four types of social dilemmas: prisoner’s dilemmas, assurance games, chicken
games, and coordination games. This paper aims to find a possible solution
for Social dilemma. In this paper, we focus on a two-person social dilemma:
Prisoner’s Dilemma and propose a contract which is negotiated by authorities
to solve this problem. The contract says that the cooperators can be rewarded
and the defectors will be punished. However, the player’s collective rationality
will ultimately depend on their knowledge about the contract. By introducing
the third person: a secretary whose task is to convey the contract to the players
and who is completely truthful, we transform the two-player static game into a
two-coalition dynamic game, one for the two-player and the other for secretary.
In this new game, the secretary’s rationality tells her to perform the strategy
‘convey’, which will bring her better payoff than the strategy ‘not convey’, since
the authorities will punish her seriously if she balks at the task. In addition, the
secretary is completely truthful. Thus, once the two players, Bob and Jim, learn
the contract from the secretary, they will realize that the cooperation is their best
choice as a coalition after knowing that their previous payoffs would have been
changed. After introducing the notion of knowledge-based cooperation, we offer
an S5, history-based semantics proposed by Parikh and Ramanujam [PR03] to
express this notion. These enable us to represent how the contract is transmitted
between the two coalitions, and how their knowledge changes, which make the
players perform the collective action. The contribution of our work is that we
formalize the players’ reasoning in this new dynamic game and a semantic and
axiomatic system is provided.
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Cooperation of agents is a major issue in fields such as computer science, eco-
nomics and philosophy. The conditions under which coalitions are formed occur
in various situations involving multiple agents.

Various modal logic (ML) frameworks have been developed for reasoning
about coalitional power; an important one is Coalition Logic (CL) [7], using
modalities of the form 〈[C〉] φ saying “coalition C has a joint strategy to ensure
that φ”. CL has neighborhood semantics but can be simulated on Kripke models
[3]. Another class of cooperation logics explicitly represents the strategies and
actions by which groups can achieve something [8].

Another crucial concept for reasoning about interactive situations is that of
preferences. It also received attention from modal logicians ([5] surveys). Recent
works (e.g. [1,2,6]) propose different mixtures of cooperation and preference log-
ics. In such logics, many concepts from game theory (GT) and social choice theory
(SCT) are commonly encountered. Depending on the situations to be modelled,
different bundles of notions are important. Ability to express these notions – to-
gether with good computational behavior – make a logic appropriate for reasoning
about cooperation.

Aim and Methodology. Rather than designing a new logic, we analyze how
demanding SCT and GT notions are for MLs in terms of expressivity and com-
plexity. Thus, our work helps making design choices for MLs for cooperation.

We focus on three existing classes of ML models. Then we identify notions
inspired by GT and SCT concepts for reasoning about cooperation and prefer-
ences. Next, we look at how each notion can be interpreted in the models, and
determine the required expressive power for expressing it in ML. This is done
both by determining under which operations on models and frames the notions
are invariant, and by explicitly defining each notion in some (extended) ML.
This way, we obtain upper bounds on the complexity for satisfiability (SAT) and
model checking (MC) problems of MLs able express the considered notions.

Three Models of Cooperation. We investigate three different classes of
models. In each of them, we represent preferences as TPOs over the statespace.

1. ℘(N)-LTS (labeled transition systems indexed by coalitions ℘(N))[4].
The focus is on the interaction of preferences and cooperation; coalitional
powers are primitives, directly represented in the accessibility relations.
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2. ABC (action-based coalitional models). Coalitional power is represented in
terms of actions that agents can perform.

3. PBC (power-based coalitional models)[3]. The focus is on coalitional power
itself, encoding the choices of groups as partitions of the state space.

Some Representative Results

– “C can guarantee that the next state is one j finds at least as good as the
current one.”. Whereas for ℘(N)-LTS, this notion can be expressed using the
basic language extended with an intersection modality with SAT in PSPACE,
for the other models, this is more difficult: we could only express it with
formulas having alternation of ↓x and boxes, which leads to SAT in Π0

1 .
– Nash-stability vs. strong Nash-stability. In ℘(N)-LTS, strong Nash-stability

is easy to express (in a logic in PSPACE), but for Nash-stability seems to
be only expressible in logics with undecidable (Π0

1 ) SAT. For the other two
models, we saw an opposite effect. Nash-stability can be expressed in logics
in EXPTIME whereas the strong version seems to require logics in Π0

1 .
– “Only coalitions containing a majority of the agents have non-trivial power.”

This global property involving the inability of groups to achieve anything
is difficult to axiomatize in ABC, which we could only do in logics with
EXPTIME-hard SAT. For the other models, it can be done in PSPACE.

Conclusion. Our results show that in general global notions are not very de-
manding and mostly expressible in basic ML. Local notions however are more
demanding and many are not invariant under bounded morprhisms. Our analysis
shows that when designing logics for coalitional power the choice of primitives is
not only conceptually important but also has an impact on complexity required
to express certain notions: e.g. whether weak or strong efficiency notions are
“dangerous” w.r.t. complexity, heavily depends on the choice of models.
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Abstract. In intuitionistic logic system, constructive negation operator complies with the law of 
contradiction but not the law of excluded middle in intuitionistic logic system.In da Costa's 
paraconsistent logic system , paraconsistent negation operator complies with the law of excluded 
middle but not the law of contradiction. Putting aside classical negation operator, both 
intuitionistic logic and da Costa's paraconsistent logic establish logic systems by directly 
introducing new negation operators basing on the positive proposition logic. This paper attempts 
to make constructive negation operator and paraconsistent negation operator satisfying the 
conditions mentioned above in classical logical system.  

Oppositional logic is an extended system of classical propositional logic. It can be obtained 
from the classical propositional logic by adding an unary connective * and introducing the 
definitions of two unary connectives △ and ▽. In oppositional logic system, there are four kinds 
of negation: the classical negation ¬ complying with both law of contradiction and law of 
excluded middle, the constructive negation ▽ complying with law of contradiction but not law of 
excluded middle, the paraconsistent negation △ complying with law of excluded middle but not 
law of contradiction, as well as the dialectical negation * complying with neither law of 
contradiction nor law of excluded middle. 

This paper gives the proof of the soundness and completenesstheorem of oppositional logic. 
It also gives the following conclusions:  

[1] Oppositonal logic can be a kind of tools for paraconsistent theory and intuitionistic theory; 
the famous Duns Scotus law does not hold according to the paraconsistent negation and the 
dialectical negation;  
[2] In oppositonal logic, according to the unary connective ¬ , * , ▽ and △, A is in 
contradictory opposition with ¬ A; A is in subaltern opposition with *A; A is in contrary 
opposition with ▽A; A is in subcontrary opposition with △A. In this sense, we call the logical 
system mentioned above oppositional logic. 
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Abstract. Deliberate contrary-to-law action is a kind of action that
caused by the inconsistent of law and personal intention. This kind of
action is not encouraged, however, it offen happens in our society as a
kind of irrational actions. In this paper I will use the theory of agents
and choices to show that deliberate contrary-to-law action is not a kind
of irrational actions. It is a pragmatic problem which can be interpreted
by perspectival act utilitarianism. But perspectival act utilitarianism is
based on decision theory especialy the theory of normative behavior. I
think the theory of descirptive behavior is more suitable to interpret de-
liberate contrary-to-law action so I will alter some disciplines in John
Hortys perspectival act utilitarianism to show why people do deliberate
contrary-to-law action. The modified perspectival act utilitarianism can
also be a kind of interpretation about irrational actions.

Keywords: deliberate contrary-to-law action, irrational action, perspec-
tival act utilitarianism.
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We model the information flow between different states of a single agent as
that agent reasons deductively. K–axiom–based epistemic closure for explicit
knowledge is rejected for even the most trivial cases of inferential reasoning
on account of the fact that the closure axiom does not extend beyond a raw
consequence relation.

The resource management of the database of agent states for the deductive
reasoning fragment in question is covered by the logic corresponding to the non–
associative Lambek Calculus with permutation, bottom, and identity: NLP0,1.

A, B . . . are types of propositional formula φ, ψ, . . . such that φ : A is read as
formula φ is of type A. The language of our logic is given as follows:

A ::= φ | A | 0 | 1 | A⊗B | A � B | A⊥ (1)

We have an information frame F 〈S,$, •〉 with weak (one place) commutation
and Cut. S is a set of incomplete, or partial information states x, y,. . . .1 The
binary relation $ is a partial order on S of informational development/inclusion.
• is the (non-associative, but weakly commutative) binary composition operator
on information states. ⊗ is merge/fusion, and � is implication. ⊥ is interactive
negation on account of its being defined in terms of � and 0: A⊥ := A � 0. 0
is bottom, and 1 is unit/identity such that: 1⊗A = A = A⊗ 1.

A model M := 〈F, �〉 is an ordered pair F 〈S,$, •〉 and � such that � is an
evaluation relation that holds between members of S and formulas constructed
out of our binary connectives ⊗, and �, and constant 0. Where A is a proposi-
tional formula, and x, y, z ∈ F, � obeys the heredity or monotonicity condition:2

For all A, if x � A and x $ y, then y � A, (2)

And also obeys the following conditions for each of our connectives and
constant 0:

x � A⊗B iff for some y, z,∈ F s.t. y • z $ x, y � A and z � B. (3)
x � A � B iff for all y, z ∈ F s.t. x • y $ z, if y � A then z � B. (4)

1 In doxastic cases, we would allow for inconsistency also. But since knowledge is
factive if anything is, we disallow this property here.

2 We would drop this condition for certain doxastic scenarios where non–monotonicity
is a distinctive property.
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x � 0 for no x ∈ F. (5)

x � A⊥[A � 0] iff for all y, z ∈ F s.t. x • y $ z, if y � A then z � 0. (6)

Now set the following:

φ⇒ ψ : A, σ ⇒ φ : B, σ : C, φ : D, ψ : E (7)

Allowing multiple types, then given that φ⇒ ψ : A and σ : C, it is also the case
that φ ⇒ ψ : C⊥. Hence φ ⇒ ψ : C � 0. For any state x � C � 0, we know
that it is that case that if we combine this information with any other state y
s.t. y � A, then the result will be a state z s.t. z � 0 via (6). However, we know
that 0 is not supported via any state via (5). Hence associativity fails.

Take A⊗ (C ⊗B) � E, we have the following corresponding step–wise infor-
mation state combination:

x � A⊗ (C ⊗B) iff for some w, y, z ∈ F s.t. w • (y • z) $ x,

w � A, y � C, and z � B. (8)

The information states x, y, . . . ∈ S may be naturally interpreted as states of α as
α reasons deductively. In this case, the information state combination w•(y•z)[$
x] specifies the step–wise reasoning procedure that α must engage in in order
to be truthfully said to know the result of the merged propositions, namely ψ.
Since, y � C, and z � B via (8), and σ : C and σ ⇒ φ : B via (7), y • z $ v,
where v � D, and φ : D via (7). Since w � A via (8) and φ ⇒ ψ : A via (7),
w • v $ x, where x � E and ψ : E via (7). �

We can transform interaction structures into iterated conditional information
processing structures. From A⊗ (C ⊗B), we get:

1 � B � (C � (A � E)) (9)

Similarly to interaction structures, the processing structures/function types are
individuated by information states. With respect to (9), and via (4), we have
the following:

x � B � (C � (A � E)) iff for all s, t, v, w, y, z ∈ F s.t. ((x • y) • v) • t $ s,

if z � C � (A � E), and y � B, and w � A � E, and v � C, and t � A,

then s � E. (10)

Since x • y $ z, z • v $ w, and w • t $ s. �

We interpret processing structures as instructions, and their corresponding in-
teraction structures as the result of carrying out or executing the corresponding
instruction, i.e., as executions.

By following the instructions laid out in the processing structure, α can extract
the very interaction structure who’s “activation” will cause her to know explicitly
that ψ. This fact has a straightforward interpretation in terms of the data–base
structure, or grammar, of the “cognitive langauge” of deductive reasoning.
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The link between modal logic and non-well-founded sets has been shown by P.
Aczel [1988], and systematically by J. Barwise and L. Moss [1996]. A. Baltag
[1998] also proved some important theorems about characterizing sets by modal
sentences. The aim of this paper is to explore the relationship between modal
logic and sets more deeply in the expressive power of modal languages and modal
definability over sets. Let’s consider both basic and infinitary modal languages.

For each set a, the support of a (notation: support(a)) is the set of proposi-
tional letters in the transitive closure of a. A set a is pure, if support(a) = ∅.
Define Vafa[Φ] := {a : a is a set and support(a) ⊆ Φ}. The satisfaction relation
a |= φ is defined recursively as follows: 1) a |= p iff p ∈ a for all propositional
letter p ∈ Φ; 2) a |= ♦φ iff there exists a set b ∈ a with b |= φ; 3) a |= ∨

Σ iff
a |= σ for some σ ∈ Σ. A formula φ is valid, if a |= φ for all sets a ∈ Vafa[Φ]. A
subset W ⊆ Vafa[Φ] is transitive on sets, if for any set b ∈ a ∈W , b ∈W . Write
W |= φ, if a |= φ for all a ∈ W .

Next, let’s define some non-standard operations on set which are used to prove
some preservation results. Given a set a ∈ Vafa[Φ], define the transitive closure on
sets of {a} (written: STC({a})) as the minimal set satisfying the following two
conditions: a ∈ STC({a}); if a set b ∈ c ∈ a then b ∈ STC({a}). Define satisfac-
tion relation STC({a}), x |= φ like the satisfaction relation between set and for-
mula such that STC({a}), x |= ♦φ iff there exists y ∈ x with STC({a}), y |= φ.
(i) Given a family of sets {ai}i∈I , the disjoint union

⋃
i∈I STC({ai}) of all tran-

sitive closures on sets STC({ai}) is defined as
⋃

i∈I({i}×STC({ai})). (ii) For all
sets a, given any non-empty subset X ⊆ STC({a}), the subset Y ⊆ STC({a})
generated from X is defined as the minimal set satisfying conditions: X ⊆ Y ;
and if a set a ∈ b ∈ X then a ∈ Y . (iii) Given any two sets a and b, a func-
tion f : STC({a}) → STC({b}) is a p-morphism, if the following conditions
hold: f is surjective; if f(x) = y, then x ∩ Φ = y ∩ Φ; if u ∈ x ∈ STC({a})
then f(u) ∈ f(x) ∈ STC({b}); if v ∈ f(x) ∈ STC({b}) then there exists
u ∈ STC({a}) with f(u) = v and u ∈ x. (iv) Let b ∈ STC({a}). The un-
raveling set unr(STC({a}), b) of STC({a}) from b is defined as the minimal set
of all finite sequences of sets in STC({a}) satisfying the following three condi-
tions: the sequence (b) ∈ unr(STC({a}), b); if (x1, . . . , xn) ∈ unr(STC({a}), b)
and xn+1 ∈ xn then (x1, . . . , xn+1) ∈ unr(STC({a}), b); p is true at (x1, . . . , xn)
iff p ∈ xn for all propositional letters p. (v) A bisimulation relation Z on sets is
a non-empty binary relation between sets with the following properties: if aZb
then (1) for all sets c ∈ a there exists d ∈ b with cZd, (2) for all sets d ∈ b there
exists c ∈ a with cZd, and (3) a ∩ Φ = b ∩ Φ. It is also easy to check that the
above non-standard operations are special cases of bisimulation.
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Theorem 1. Let φ be any (infinitary) modal formula, a and {ai}i∈I sets. Then
the following hold: 1) for every x ∈ STC({ai}),

⋃
i∈I STC({ai}), x |= φ iff

STC({ai}), x |= φ; 2) given any subset X ⊆ STC({a}), let Y be the subset of
STC({a}) generated from X. Then for any y ∈ Y , Y, y |= φ iff STC({a}), y |=
φ; 3) let f be a p-morphism from STC({a}) to STC({b}). Then for any x ∈
STC({a}), STC({a}), x |= φ iff STC({b}), f(x) |= φ; 4) for any b ∈ STC({a}),
let c ∈ STC({a}) and x be a finite sequence of sets in STC({a}) which ends
with the set c. Then unr(STC({a}), b), x |= φ iff STC({a}), c |= φ.

J. Barwise and L. Moss [1996] obtained one result with respect to the modal
formula T := �p → p. A set a is called reflexive, if a ∈ a. The class of all heredi-
tarily reflexive sets is the largest class HRefl satisfying the following condition:
if a ∈ HRefl then a ∈ a and for all sets b ∈ a, b ∈ HRefl. The class of all heredi-
tarily non-empty sets is the largest class HNe satisfying the following condition:
if a ∈ HNe then there exists b ∈ a and for all sets b ∈ a, b ∈ HNe. Define the set
of infinitary modal formulas ΘT as follows: let Θ0 := {�ψ → ψ : ψ is an infini-
tary modal formula}, and Θn+1 := Θn ∪ {�φ : φ ∈ Θn}. Define ΘT =

⋂
n∈ω Θn.

Then set ΘT defines HRefl. The following theorem is a family of similar results.
Consider the class HNe and the following: i) let Tran be the class of sets satis-
fying the following condition: if a set b ∈ a ∈ Tran then b ∈ Tran; (ii) Let Sym
be the largest class of sets satisfying the following condition: if a set b ∈ a ∈ Sym
then a ∈ b ∈ Sym; (iii) define the class Euc as the largest class of sets satisfying
the following condition: if a set b ∈ a ∈ Euc and c ∈ a then b ∈ c ∈ Euc; (iv) let
WF be the class of all well-founded sets in Vafa[Φ].

Theorem 2. The classes of sets HNe, Tran, Sym, Euc, and WF are definable
in the infinitary modal language by sets of formulas defined like ΘT through
formulas ♦�, �p → ��p, p → �♦p, ♦p → �♦p, and �(�p → p) → �p
respectively.

Although the idea of combining modal logic and non-well-founded set theory
seems to simple, results are fruitful in this direction. One more interesting
direction not contained in this paper is to introduce coalgebra into this area.
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1 Introduction

Classical Epistemic Logic (EL) is a compact and powerful framework for rep-
resenting an agent’s information. In its dynamic versions (Dynamic Epistemic
Logic), it also describes the information flow driven by observation and commu-
nication. Nevertheless, it makes a strong idealization: the agent’s information
is closed under logical consequence, making truth-preserving inference uninfor-
mative. This criticism extends to its dynamics versions: acts of observation and
communication provides the agent not only with the new information but also
with all logical consequences of it. Thus, dynamic epistemic logics lack of an
account of the step-by-step information flow driven by agent’s inferences, a con-
cern that arises not only in epistemic contexts, but also in doxastic areas. The
extended version of the present abstract [1] combines ideas from the earlier
literature proposing a unified framework to address these problems.

2 The Modal-Access Framework

In EL, an agent is informed about ϕ iff ϕ is true in all the worlds she considers
possible. The definition assumes that the agent can access all true formulas of
every world she considers possible, but that does not need to be the case.

Our semantic model, M = 〈W, R, V, Y, Z〉, extends a Kripke model with two
functions. The first, Y , returns the set of propositional formulas the agent can
access at each possible world; the second, Z, returns the set of rules (a rule is
a pair (Γ, γ) with Γ its finite set of premises and γ its conclusion, all of them
prop. formulas) she can apply at each world. We ask for every γ ∈ Y (w) to be
true at w, and for the translation TR of each rule1 ρ ∈ Z(w) to be true at w.2

Our language extends that of EL with two kind of formulas: Aγ is true at
world w iff γ ∈ Y (w), and L ρ is true at w iff ρ ∈ Z(w). The basic system K
plus Aγ → γ and L ρ→ TR(ρ) provides a sound and complete axiomatization.

1 TR is defined as an implication with the conjunction of the premises as antecedent
and the conclusion as consequent.

2 In general these properties are not preserved by model operations; that is the reason
to restrict formulas and rules in Y and Z to only propositional formulas.
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Defining Implicit and Explicit Information. Other works have proposed
similar models for representing the information of non-omniscient agents, the
main difference being the definition of explicit information.

For implicit information, we say that the agent is implicitly informed about ϕ
iff �ϕ is the case. For explicit information, different from previous approaches, we
use a definition with access to formulas in the scope of the modal box: the agent
is explicitly informed about γ (γ a propositional formula) iff �Aγ holds. We
can talk about implicit information about any ϕ in the language, but given our
restriction for access sets, explicit information is limited to the propositional case.
Similar definitions apply for the case of rules (�TR(ρ) and �L ρ, respectively).

3 Knowledge

For the notion of knowledge, we interpret R as an indistinguishability relation,
asking for it to be reflexive, transitive and symmetric. The notions of implicit
and explicit knowledge are given by �ϕ and �Aγ, just as before.

We define operations over the model, representing the effect of rule-based
inference and observation. The first one adds the conclusion of a rule ρ to the
formulas the agent can access at w whenever she can access both the rule and
its premises at w. The second one has two variants: an implicit observation of γ
simply removes those worlds where γ does not hold; an explicit one also adds γ
to the access sets of the remaining worlds. We add to the language modalities to
express the effect of these operations. Sound and complete axiom systems (based
in reduction axioms) as well as properties of the operations are presented.

4 Belief

We define belief as what is true in the most plausible worlds. This is formalized
by interpreting R as a plausibility relation and by asking for it to be reflexive,
transitive and connected. Because of connectedness, the notions of implicit and
explicit belief can be defined as ♦�ϕ and ♦�Aγ, respectively.

We define analogous operations for implicit and explicit dynamics, this time
for the notion of beliefs. The inference operation adds the conclusion of the
applied rule to the sets of those worlds where the agent can access the rule
and its premises. The upgrade operation is defined on its implicit version: an
upgrade with ϕ makes all ϕ-worlds more plausible than all ¬ϕ-worlds, keeping
the original order within the two zones. New modalities for these new operations
are added to the language, and again, sound and complete axiom systems as well
as properties of the operations are presented.
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In social life of human being, individuals or collective group will be always con-
fronted with choices. The occurring of choice implies that rational action agent
(individual, collective group or social group in wide sense) must make a satis-
fying decision based on the alternatives set whose cardinal number is at least
2. Choice depends on preferences (Fishburn (1979)), so the nature of choice can
be deemed to preference whether for individual or collective group. Preference
is the ordering of alternatives given by rational agent according to his own will
based on the sensibility and proneness. Preference can be crisp and fuzzy also.

The group’s choice represents the reduction of the individuals’ preferences to a
single collective preference, i.e. to a group preference (Hwang and Lin (1987)), so
group decision-making is basically an extension of the individual decision-making
activity (Cheng (2004)).

Whether for individual or collective group, when facing choice agent has in
mind a transcendental preferential choice complex which, as a premise but not a
criterion in the theory of Feldman and Serrano (2006), says that people always
choose one alternative which is preferred to or is indifferent with all the other
alternatives, further more, one alternative may become satisfied alternative if it
is not inferior to others. That is, rational agent will always chooses the “best”
or satisfied alternative from his point of view. It is called complex of preferential
choice (CPC), popularly, we also call this complex rational choice principle or
rational choice presumption.

Let C(X) be choice function over alternatives set X , the formal description
of CPC is, Ci(X) = x⇔ {x ∈ X | xRiy, ∀y ∈ X}.

In section 2, we proposed and proved theorem existence of satisfied alternative
(TESA) which says that if preferential relations satisfy completeness and IIA,
then choice function is nonempty. Following TESA, we give a feasible method
to attain satisfied alternative, which can be programmed through a computer to
attain satisfied alternative. TESA can works well even if the set of alternatives
is infinite, and the method is applicable both to individual choice and group
choice.

Section 3 shows the applications of TESA to special cases in choice and con-
structed general models based on applications. The applications show that ratio-
nal agent can achieves satisfied alternative and make well-pleasing choice because
of the existence of satisfied alternative or TESA, and that TESA is an important
theorem when human being confronted with choices especially the specific cases,
such as Condorcet (1785) voting and choice of Buridan’s Ass, MCC , MECC ,

X. He, J. Horty, and E. Pacuit (Eds.): LORI 2009, LNAI 5834, pp. 327–328, 2009.
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MBC , MEBC and MHC , on the one hand, cases of exigency and emergency on
the other hand, occurs.

However, each decision maker may have unique motivations or goals and may
approach the decision process from a different angle (Evangelos (2000), Marakas
(2003)), the application of TESA may lead to the occurring of Morph-dictator.
For example, we can see that both choice making of Condorcet Voting Paradox
and Buridan’s Ass are finally consistent with preference of Morph-Dictator, in
details, MCC , MECC , MBC , MEBC and MHC all implies the possibility of the oc-
curring of Morph-Dictator in certain circumstances. When alternatives satisfied
MCC , MECC , MBC , MEBC , MHC , agent can legally decides which alternative
be the satisfied alternative according to his own preference, viz. Agent’s pref-
erence would automatically and legally becomes social preference or collective
preference if he want to realizes his dictatorship.

Morph-dictator is a concept not derived from the literature. For Morph-
dictator, (1) choice function is non-emptiness for Morph-dictator as well as for
traditional dictator, and, (2) Morph-Dictator is Rational, and, (3) there are
conditions and non-conditions to attain satisfied alternative, and (4) choice is
legitimate for Morph-dictator in a sense. We think that Morph-Dictator is ratio-
nal and legal agent who, based on TESA, can automatically turn his preference
into social preference through precisely logic reasoning from premises of common
knowledge. Morph-Dictator is also called rational dictator or legal dictator.

Nevertheless, in addition to gain satisfied alternative before action when agent
facing common choice situations, we think that TESA is a quite feasible way to
ravel out Condorcet Paradox and its homothetic choice problem especially when
decision must be made in a given time or when an immediate decision has to be
reached.
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