
Chapter 9
Condensed Matter and AdS/CFT

Subir Sachdev

Abstract I review two classes of strong coupling problems in condensed matter
physics, and describe insights gained by application of the AdS/CFT correspon-
dence. The first class concerns non-zero temperature dynamics and transport in the
vicinity of quantum critical points described by relativistic field theories. I describe
how relativistic structures arise in models of physical interest, present results for
their quantum critical crossover functions and magneto-thermoelectric hydrody-
namics. The second class concerns symmetry breaking transitions of two-dimen-
sional systems in the presence of gapless electronic excitations at isolated points or
along lines (i.e. Fermi surfaces) in the Brillouin zone. I describe the scaling
structure of a recent theory of the Ising-nematic transition in metals, and discuss its
possible connection to theories of Fermi surfaces obtained from simple AdS duals.

9.1 Introduction

The past couple of decades have seen vigorous theoretical activity on the quantum
phases and phase transitions of correlated electron systems in two spatial
dimensions. Much of this work has been motivated by the cuprate superconduc-
tors, but the list of interesting materials continues to increase unabated [1].

Methods from field theory have had a strong impact on much of this work.
Indeed, they have become part of the standard toolkit of condensed matter phys-
icists. In these lectures, I focus on two classes of strong-coupling problems which
have not yielded accurate solutions via the usual arsenal of field-theoretic methods.
I will also discuss how the AdS/CFT correspondence, discovered by string
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theorists, has already allowed substantial progress on some of these problems, and
offers encouraging prospects for future progress.

The first class of strong-coupling problems are associated with the real-time,
finite temperature behavior of strongly interacting quantum systems, especially
those near quantum critical points. Field-theoretic or numerical methods often
allow accurate determination of the zero temperature or of imaginary time cor-
relations at non-zero temperatures. However, these methods usual fail in the real-
time domain at non-zero temperatures, particularly at times greater than �h=kBT ,
where T is the absolute temperature. In systems near quantum critical points the
natural scale for correlations is �h=kBT itself, and so lowering the temperature in a
numerical study does not improve the situation.

The second class of strong-coupling problems arise near two-dimensional
quantum critical points with fermionic excitations. When the fermions have a
massless Dirac spectrum, with zero excitation energy at a finite number of points
in the Brillouin zone, conventional field-theoretic methods do allow significant
progress. However, in metallic systems, the fermionic excitations have zeros along
a line in the Brillouin zone (the Fermi surface), allowing a plethora of different low
energy modes. Metallic quantum critical points play a central role in many
experimental systems, but the interplay between the critical modes and the Fermi
surface has not been fully understood (even at zero temperature). Readers inter-
ested only in this second class of problems can jump ahead to Sect. 9.7.

These lectures will start with a focus on the first class of strong-coupling
problems. We will begin in Sect. 9.2 by introducing a variety of model systems
and their quantum critical points; these are motivated by recent experimental and
theoretical developments. We will use these systems to introduce basic ideas on
the finite temperature crossovers near quantum critical points in Sect. 9.3. In Sect.
9.4, we will focus on the important quantum critical region and present a general
discussion of its transport properties. An important recent development has been
the complete exact solution, via the AdS/CFT correspondence, of the dynamic and
transport properties in the quantum critical region of a variety of (supersymmetric)
model systems in two and higher dimensions: this will be described in Sect. 9.5.
The exact solutions are found to agree with the earlier general ideas discussed here
in Sect. 9.4. As has often been the case in the history of physics, the existence of a
new class of solvable models leads to new and general insights which apply to a
much wider class of systems, almost all of which are not exactly solvable. This has
also been the case here, as we will review in Sect. 9.6: a hydrodynamic theory of
the low frequency transport properties has been developed, and has led to new
relations between a variety of thermo-electric transport co-efficients.

The latter part of these lectures will turn to the second class of strong coupling
problems, by describing the role offermions near quantum critical points. In Sect. 9.7
we will consider some simple symmetry breaking transitions in d-wave supercon-
ductors. Such superconductors have fermionic excitations with a massless Dirac
spectrum, and we will show how they become critical near the quantum phase
transition. We will review how the field-theoretic 1=N expansion does allow solution
of a large class of such problems. Finally, in Sect. 9.8 we will consider phase
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transitions of metallic systems with Fermi surfaces. We will discuss how the 1=N
expansion fails here, and review the results of recent work involving the AdS/CFT
correspondence.

Some portions of the discussions below have been adapted from other review
articles by the author [2, 3].

9.2 Model Systems and Their Critical Theories

9.2.1 Coupled Dimer Antiferromagnets

Some of the best studied examples of quantum phase transitions arise in insulators
with unpaired S ¼ 1=2 electronic spins residing on the sites, i, of a regular lattice.
Using Sa

i (a ¼ x; y; z) to represent the spin S ¼ 1=2 operator on site i, the low
energy spin excitations are described by the Heisenberg exchange Hamiltonian

HJ ¼
X

i\j

JijS
a
i � Sa

j þ � � � ð9:1Þ

where Jij [ 0 is the antiferromagnetic exchange interaction. We will begin with a
simple realization of this model is illustrated in Fig. 9.1. The S ¼ 1=2 spins reside
on the sites of a square lattice, and have nearest neighbor exchange equal to either
J or J=k. Here k� 1 is a tuning parameter which induces a quantum phase tran-
sition in the ground state of this model.

At k ¼ 1, the model has full square lattice symmetry, and this case is known to
have a Néel ground state which breaks spin rotation symmetry. This state has a
checkerboard polarization of the spins, just as found in the classical ground state,
and as illustrated on the left side of Fig. 9.1. It can be characterized by a vector
order parameter ua which measures the staggered spin polarization

λλc

Fig. 9.1 The coupled dimer antiferromagnet. The full red lines represent an exchange interaction
J, while the dashed green lines have exchange J=k. The ellispes represent a singlet valence bond
of spins ðj "#i � j #"iÞ=

ffiffiffi
2
p
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ua ¼ giS
a
i ð9:2Þ

where gi ¼ �1 on the two sublattices of the square lattice. In the Néel state we have
huai 6¼ 0, and we expect that the low energy excitations can be described by long
wavelength fluctuations of a field uaðx; sÞ over space, x, and imaginary time s.

On the other hand, for k� 1 it is evident from Fig. 9.1 that the ground state
preserves all symmetries of the Hamiltonian: it has total spin S ¼ 0 and can be
considered to be a product of nearest neighbor singlet valence bonds on the J links.
It is clear that this state cannot be smoothly connected to the Néel state, and so
there must at least one quantum phase transition as a function k.

Extensive quantum Monte Carlo simulations [4–6] on this model have shown
there is a direct phase transition between these states at a critical kc, as in Fig. 9.1.
The value of kc is known accurately, as are the critical exponents characterizing a
second-order quantum phase transition. These critical exponents are in excellent
agreement with the simplest proposal for the critical field theory, [6] which can be
obtained via conventional Landau-Ginzburg arguments. Given the vector order
parameter ua, we write down the action in d spatial and one time dimension,

SLG ¼
Z

ddrds
1
2
ðosu

aÞ2 þ v2ðruaÞ2 þ sðuaÞ2
h i

þ u

4
ðuaÞ2
h i2

� �
; ð9:3Þ

as the simplest action expanded in gradients and powers of ua which is consistent
will all the symmetries of the lattice antiferromagnet. The transition is now tuned
by varying s�ðk� kcÞ. Notice that this model is identical to the Landau-Ginzburg
theory for the thermal phase transition in a d þ 1 dimensional ferromagnet,
because time appears as just another dimension. As an example of the agreement:
the critical exponent of the correlation length, m, has the same value, m ¼ 0:711. . .,
to three significant digits in a quantum Monte Carlo study of the coupled dimer
antiferromagnet, [6] and in a 5-loop analysis [7] of the renormalization group fixed
point of SLG in d ¼ 2. Similar excellent agreement is obtained for the double-layer
antiferromagnet [8, 9] and the coupled-plaquette antiferromagnet [10].

In experiments, the best studied realization of the coupled-dimer antiferro-
magnet is TlCuCl3. In this crystal, the dimers are coupled in all three spatial
dimensions, and the transition from the dimerized state to the Néel state can be
induced by application of pressure. Neutron scattering experiments by Ruegg and
collaborators [11] have clearly observed the transformation in the excitation
spectrum across the transition, and these observations are in good quantitative
agreement with theory [1].

9.2.2 Deconfined Criticality

We now consider an analog of transition discussed in Sect. 9.2.1, but for a
Hamiltonian H ¼ H0 þ kH1 which has full square lattice symmetry at all k. For
H0, we choose a form of HJ , with Jij ¼ J for all nearest neighbor links. Thus at
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k ¼ 0 the ground state has Néel order, as in the left panel of Fig. 9.1. We now want
to choose H1 so that increasing k leads to a spin singlet state with spin rotation
symmetry restored. A large number of choices have been made in the literature,
and the resulting ground state invariably [12] has valence bond solid (VBS) order;
a VBS state has been observed in the organic antiferromagnet EtMe3P½Pd(dmit)2�2
[13, 14]. The VBS state is superficially similar to the dimer singlet state in the right
panel of Fig. 9.1: the spins primarily form valence bonds with near-neighbor sites.
However, because of the square lattice symmetry of the Hamiltonian, a columnar
arrangement of the valence bonds as in Fig. 9.1, breaks the square lattice rotation
symmetry; there are 4 equivalent columnar states, with the valence bond columns
running along different directions. More generally, a VBS state is a spin singlet
state, with a non-zero degeneracy due to a spontaneously broken lattice symmetry.
Thus a direct transition between the Néel and VBS states involves two distinct
broken symmetries: spin rotation symmetry, which is broken only in the Néel state,
and a lattice rotation symmetry, which is broken only in the VBS state. The rules
of Landau-Ginzburg-Wilson theory imply that there can be no generic second-
order transition between such states.

It has been argued that a second-order Néel-VBS transition can indeed occur
[15], but the critical theory is not expressed directly in terms of either order
parameter. It involves a fractionalized bosonic spinor zaða ¼"; #Þ, and an emergent
gauge field Al. The key step is to express the vector field ua in terms of za by

ua ¼ z	ar
a
abzb ð9:4Þ

where ra are the 2
 2 Pauli matrices. Note that this mapping from ua to za is
redundant. We can make a spacetime-dependent change in the phase of the za by
the field hðx; sÞ

za ! eihza ð9:5Þ

and leave ua unchanged. All physical properties must therefore also be invariant
under Eq. 9.5, and so the quantum field theory for za has a U(1) gauge invariance,
much like that found in quantum electrodynamics. The effective action for the za

therefore requires introduction of an ‘emergent’ U(1) gauge field Al (where
l ¼ x; s is a three-component spacetime index). The field Al is unrelated the
electromagnetic field, but is an internal field which conveniently describes the
couplings between the spin excitations of the antiferromagnet. As we did for SLG,
we can write down the quantum field theory for za and Al by the constraints of
symmetry and gauge invariance, which now yields

Sz ¼
Z

d2rds jðol � iAlÞzaj2 þ sjzaj2 þ uðjzaj2Þ2 þ
1

2g2
ð�lmkomAkÞ2

� �
ð9:6Þ

For brevity, we have now used a ‘‘relativistically’’ invariant notation, and scaled
away the spin-wave velocity v; the values of the couplings s; u are different from,
but related to, those in SLG. The Maxwell action for Al is generated from short
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distance za fluctuations, and it makes Al a dynamical field; its coupling g is
unrelated to the electron charge. The action Sz is a valid description of the Néel
state for s\0 (the critical upper value of s will have fluctuation corrections away
from 0), where the gauge theory enters a Higgs phase with hzai 6¼ 0. This
description of the Néel state as a Higgs phase has an analogy with the Weinberg-
Salam theory of the weak interactions—in the latter case it is hypothesized that the
condensation of a Higgs boson gives a mass to the W and Z gauge bosons, whereas
here the condensation of za quenches the Al gauge boson. As written, the s [ 0
phase of Sz is a ‘spin liquid’ state with a S ¼ 0 collective gapless excitation
associated with the Al photon. Non-perturbative effects [12] associated with the
monopoles in Al (not discussed here), show that this spin liquid is ultimately
unstable to the appearance of VBS order.

Numerical studies of the Néel-VBS transition have focussed on a specific lattice
antiferromagnet proposed by Sandvik [16–19]. There is strong evidence for VBS
order proximate to the Néel state, along with persuasive evidence of a second-
order transition. However, some studies [20, 21] support a very weak first order
transition.

9.2.3 Graphene

The last few years have seen an explosion in experimental and theoretical studies
[22] of graphene: a single hexagonal layer of carbon atoms. At the currently
observed temperatures, there is no evident broken symmetry in the electronic
excitations, and so it is not conventional to think of graphene as being in the
vicinity of a quantum critical point. However, graphene does indeed undergo a
bona fide quantum phase transition, but one without any order parameters or
broken symmetry. This transition may be viewed as being ‘topological’ in char-
acter, and is associated with a change in nature of the Fermi surface as a function
of carrier density.

Pure, undoped graphene has a conical electronic dispersion spectrum at two
points in the Brillouin zone, with the Fermi energy at the particle-hole symmetric
point at the apex of the cone. So there is no Fermi surface, just a Fermi point,
where the electronic energy vanishes, and pure graphene is a ‘semi-metal’. By
applying a gate voltage, the Fermi energy can move away from this symmetric
point, and a circular Fermi surface develops, as illustrated in Fig. 9.2. The Fermi
surface is electron-like for one sign of the bias, and hole-like for the other sign.
This change from electron to hole character as a function of gate voltage consti-
tutes the quantum phase transition in graphene. As we will see below, with regard
to its dynamic properties near zero bias, graphene behaves in almost all respects
like a canonical quantum critical system.

The field theory for graphene involves fermionic degrees of freedom. Repre-
senting the electronic orbitals near one of the Dirac points by the two-component
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fermionic spinor Ws, where s is a sublattice index (we suppress spin and ‘valley’
indices), we have the effective electronic action

SW ¼
Z

d2r

Z
ds Wys ðos þ iAs � lÞdss0 þ ivFsx

ss0ox þ ivFsy
ss0oy

� �
Ws0

þ 1
2g2

Z
d2q

4p2

Z
ds

q

2p
Asðq; sÞj j2; ð9:7Þ

where si
ss0 are Pauli matrices in the sublattice space, l is the chemical potential, vF

is the Fermi velocity, and As is the scalar potential mediating the Coulomb
interaction with coupling g2 ¼ e2=� (� is a dielectric constant). This theory
undergoes a quantum phase transition as a function of l, at l ¼ 0, similar in many
ways to that of SLG as a function of s. The interaction between the fermionic
excitations here has coupling g2, which is the analog of the non-linearity u in SLG.
The strength of the interactions is determined by the dimensionless ‘fine structure
constant’ a ¼ g2=ð�hvFÞ which is of order unity in graphene. While u flows to a
non-zero fixed point value under the renormalization group, a flows logarithmi-
cally slowly to zero. For many purposes, it is safe to ignore this flow, and to set a
equal to a fixed value.

9.3 Finite Temperature Crossovers

The previous section has described four model systems at T ¼ 0: we examined the
change in the nature of the ground state as a function of some tuning parameter,
and motivated a quantum field theory which describes the low energy excitations
on both sides of the quantum critical point.

Fig. 9.2 Dirac dispersion
spectrum for graphene
showing a ‘topological’
quantum phase transition
from a hole Fermi surface for
l\0 to a electron Fermi
surface for l [ 0
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We now turn to the important question of the physics at non-zero temperatures.
All of the models share some common features, which we will first explore for the
coupled dimer antiferromagnet. For k[ kc (or s [ 0 in SLG), the excitations
consist of a triplet of S ¼ 1 particles (the ‘triplons’), which can be understood
perturbatively in the large k expansion as an excited S ¼ 1 state on a dimer,
hopping between dimers (see Fig. 9.3). The mean field theory tells us that the
excitation energy of this dimer vanishes as

ffiffi
s
p

upon approaching the quantum
critical point. Fluctuations beyond mean field, described by SLG, show that the
exponent is modified to szm, where z ¼ 1 is the dynamic critical exponent, and m is
the correlation length exponent. Now imagine turning on a non-zero temperature.
As long as T is smaller than the triplon gap, i.e. T\szm, we expect a description in
terms of a dilute gas of thermally excited triplon particles. This leads to the
behavior shown on the right-hand-side of Fig. 9.3, delimited by the crossover
indicted by the dashed line. Note that the crossover line approaches T ¼ 0 only at
the quantum critical point.

Now let us look a the complementary behavior at T [ 0 on the Néel-ordered
side of the transition, with s\0. In two spatial dimensions, thermal fluctuations
prohibit the breaking of a non-Abelian symmetry at all T [ 0, and so spin rotation
symmetry is immediately restored. Nevertheless, there is an exponentially large
spin correlation length, n, and at distances shorter than n we can use the ordered
ground state to understand the nature of the excitations. Along with the spin-
waves, we also found the longitudinal ‘Higgs’ mode with energy

ffiffiffiffiffiffiffiffi
�2s
p

in mean
field theory. Thus, just as was this case for s [ 0, we expect this spin-wave+Higgs
picture to apply at all temperatures lower than the natural energy scale; i.e. for
T\ð�sÞzm. This leads to the crossover boundary shown on the left-hand-side of
Fig. 9.3.

Having delineated the physics on the two sides of the transition, we are left with
the crucial quantum critical region in the center of Fig. 9.3. This is present for

Classical
spin

waves

Dilute
triplon
gas

Quantum
critical

Neel order

Fig. 9.3 Finite temperature
crossovers of the coupled
dimer antiferromagnet in
Fig. 9.1
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T [ jsjzm, i.e. at higher temperatures in the vicinity of the quantum critical point.
To the left of the quantum critical region, we have a description of the dynamics
and transport in terms of an effectively classical model of spin waves: this is the
‘renormalized classical’ regime of [23]. To the right of the quantum critical region,
we again have a regime of classical dynamics, but now in terms of a Boltzmann
equation for the triplon particles. A key property of quantum critical region is that
there is no description in terms of either classical particles or classical waves at the
times of order the typical relaxation time, sr, of thermal excitations. Instead,
quantum and thermal effects are equally important, and involve the non-trivial
dynamics of the fixed-point theory describing the quantum critical point. Note that
while the fixed-point theory applies only at a single point (k ¼ kc) at T ¼ 0, its
influence broadens into the quantum critical region at T [ 0. Because there is no
characteristing energy scale associated with the fixed-point theory, kBT is the only
energy scale available to determine sr at non-zero temperatures. Thus, in the
quantum critical region [24, 25]

sr ¼ C
�h

kBT
ð9:8Þ

where C is a universal constant dependent only upon the universality class of the
fixed point theory i:e: it is universal number just like the critical exponents. This
value of sr determines the ‘friction coefficients’ associated with the dissipative
relaxation of spin fluctuations in the quantum critical region. It is also important
for the transport co-efficients associated with conserved quantities, and this will be
discussed in Sect. 9.4

Let us now consider the similar T [ 0 crossovers for the other models of
Sect. 9.2.

The Néel-VBS transition of Sect. 9.2.2 has crossovers very similar to those in
Fig. 9.3, with one important difference. The VBS state breaks a discrete lattice
symmetry, and this symmetry remains broken for a finite range of non-zero
temperatures. Thus, within the right-hand ’triplon gas’ regime of Fig. 9.3, there is
a phase transition line at a critical temperature TVBS. The value of TVBS vanishes
very rapidly as s& 0, and is controlled by the non-perturbative monopole effects
which were briefly noted in Sect. 9.2.2.

For graphene, the discussion above applied to Fig. 9.2 leads to the crossover
diagram shown in Fig. 9.4, as noted by Sheehy and Schmalian [26]. We have the
Fermi liquid regimes of the electron- and hole-like Fermi surfaces on either side of
the critical point, along with an intermediate quantum critical Dirac liquid. A new
feature here is related to the logarithmic flow of the dimensionless ‘fine structure
constant’ a controlling the Coulomb interactions, which was noted in Sect. 9.2.3.
In the quantum critical region, this constant takes the typical value a� 1= lnð1=TÞ.
Consequently for the relaxation time in Eq. 9.8 we have C� ln2ð1=TÞ. This time
determines both the width of the electron spectral functions, and also the transport
co-efficients, as we will see in Sect. 9.4.

9 Condensed Matter and AdS/CFT 281



9.4 Quantum Critical Transport

We now turn to the ‘transport’ properties in the quantum critical region: we
consider the response functions associated with any globally conserved quantity.
For the antiferromagnetic systems in Sect. 9.2.1 and 9.2.2, this requires consid-
eration of the transport of total spin, and the associated spin conductivities and
diffusivities. For graphene, we can consider charge and momentum transport. Our
discussion below will also apply to the superfluid-insulator transition: for bosons
in a periodic potential, this transition is described [27] by a field theory closely
related to that in Eq. 9.3. However, we will primarily use a language appropriate to
charge transport in graphene below. We will describe the properties of a generic
strongly-coupled quantum critical point and mention, where appropriate, the
changes due to the logarithmic flow of the coupling in graphene.

In traditional condensed matter physics, transport is described by identifying
the low-lying excitations of the quantum ground state, and writing down ‘transport
equations’ for the conserved charges carried by them. Often, these excitations have
a particle-like nature, such as the ‘triplon’ particles of Fig. 9.3 or the electron or
hole quasiparticles of the Fermi liquids in Fig. 9.4. In other cases, the low-lying
excitations are waves, such as the spin-waves in Fig. 9.3, and their transport is
described by a non-linear wave equation (such as the Gross-Pitaevski equation).
However, as we have discussed in Sect. 9.3 neither description is possible in the
quantum critical region, because the excitations do not have a particle-like or
wave-like character.

Despite the absence of an intuitive description of the quantum critical
dynamics, we can expect that the transport properties should have a universal
character determined by the quantum field theory of the quantum critical point. In
addition to describing single excitations, this field theory also determines the
S-matrix of these excitations by the renormalization group fixed-point value of the
couplings, and these should be sufficient to determine transport properties [28].

Fig. 9.4 Finite temperature
crossovers of graphene as a
function of electron density n
(which is tuned by l in
Eq. 9.7) and temperature, T .
Adapted from [26]
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The transport co-efficients, and the relaxation time to local equilibrium, are not
proportional to a mean free scattering time between the excitations, as is the case
in the Boltzmann theory of quasiparticles. Such a time would typically depend
upon the interaction strength between the particles. Rather, the system behaves
like a ‘‘perfect fluid’’ in which the relaxation time is as short as possible, and is
determined universally by the absolute temperature, as indicated in Eq. 9.8.
Indeed, it was conjectured in [29] that the relaxation time in Eq. 9.8 is a generic
lower bound for interacting quantum systems. Thus the non-quantum-critical
regimes of all the phase diagrams in Sect. 9.3 have relaxation times which are all
longer than Eq. 9.8.

The transport co-efficients of this quantum-critical perfect fluid also do not
depend upon the interaction strength, and can be connected to the fundamental
constants of nature. In particular, the electrical conductivity, r, is given by (in two
spatial dimensions) [28]

rQ ¼
e	2

h
Ur; ð9:9Þ

where Ur is a universal dimensionless constant of order unity, and we have added
the subscript Q to emphasize that this is the conductivity for the case of graphene
with the Fermi level at the Dirac point (for the superfluid-insulator transition, this
would correspond to bosons at integer filling) with no impurity scattering, and at
zero magnetic field. Here e	 is the charge of the carriers: for a superfluid-insulator
transition of Cooper pairs, we have e	 ¼ 2e, while for graphene we have e	 ¼ e.
The renormalization group flow of the ‘fine structure constant’ a of graphene to
zero at asymptotically low T , allows an exact computation in this case [30–32]:
Ur � 0:05 ln2ð1=TÞ. For the superfluid-insulator transition, Ur is T-independent
(this is the generic situation with non-zero fixed point values of the interaction
[33]) but it has only been computed [28, 29] to leading order in expansions in 1=N
(where N is the number of order parameter components) and in 3� d (where d is
the spatial dimensionality). However, both expansions are neither straightforward
nor rigorous, and require a physically motivated resummation of the bare pertur-
bative expansion to all orders. It would therefore be valuable to have exact
solutions of quantum critical transport where the above results can be tested, and
we turn to such solutions in the next section.

In addition to charge transport, we can also consider momentum transport. This
was considered in the context of applications to the quark-gluon plasma [34];
application of the analysis of [28] shows that the viscosity, g, is given by

g
s
¼ �h

kB
Ug; ð9:10Þ

where s is the entropy density, and again Ug is a universal constant of order unity.
The value of Ug has recently been computed [35] for graphene, and again has a
logarithmic T dependence because of the marginally irrelevant interaction:
Ug � 0:008 ln2ð1=TÞ.
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We conclude this section by discussing some subtle aspects of the physics
behind the seemingly simple result quantum-critical in Eq. 9.9. For simplicity, we
will consider the case of a ‘‘relativistically’’ invariant quantum critical point in
2 + 1 dimensions (such as the field theories of Sects. 9.2.1 and 9.2.2, but mar-
ginally violated by graphene, a subtlety we ignore below). Consider the retarded
correlation function of the charge density, vðk;xÞ, where k ¼ jkj is the wave-
vector, and x is frequency; the dynamic conductivity, rðxÞ, is related to v by the
Kubo formula,

rðxÞ ¼ lim
k!0

�ix
k2

vðk;xÞ: ð9:11Þ

It was argued in [28] that despite the absence of particle-like excitations of the
critical ground state, the central characteristic of the transport is a crossover from
collisionless to collision-dominated transport. At high frequencies or low tem-
peratures, the limiting form for v reduces to that at T ¼ 0, which is completely
determined by relativistic and scale invariance and current conversion upto an
overall constant

vðk;xÞ ¼ e	2

h
K

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2 � ðxþ igÞ2

q ; rðxÞ ¼ e	2

h
K; �hx� kBT; ð9:12Þ

where K is a universal number [36, 37]. However, phase-randomizing collisions
are intrinsically present in any strongly interacting critical point (above one spatial
dimension) and these lead to relaxation of perturbations to local equilibrium and
the consequent emergence of hydrodynamic behavior. So at low frequencies, we
have instead an Einstein relation which determines the conductivity with

vðk;xÞ ¼ e	2vc
Dk2

Dk2 � ix
; rðxÞ ¼ e	2vcD ¼ e	2

h
H1H2; �hx� kBT; ð9:13Þ

where vc is the compressibility and D is the charge diffusion constant. Quantum
critical scaling arguments show that the latter quantities obey

vc ¼ H1
kBT

h2v2
; D ¼ H2

hv2

kBT
; ð9:14Þ

where H1;2 are universal numbers. A large number of papers in the literature,
particularly those on critical points in quantum Hall systems, have used the col-
lisionless method of Eq. 9.12 to compute the conductivity. However, the correct
d.c. limit is given by Eq. 9.13, and the universal constant in Eq. 9.9 is given by
Ur ¼ H1H2. Given the distinct physical interpretation of the collisionless and
collision-dominated regimes, we expect that K 6¼ H1H2. This has been shown in a
resummed perturbation expansion for a number of quantum critical points [29].
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9.5 Exact Results for Quantum Critical Transport

The results of Sect. 9.4 were obtained by using physical arguments to motivate
resummations of perturbative expansions. Here we shall support the ad hoc
assumptions behind these results by examining an exactly solvable model of
quantum critical transport.

The solvable model may be viewed as a generalization of the gauge theory in
Eq. 9.6 to the maximal possible supersymmetry. In 2 + 1 dimensions, this is known
as N ¼ 8 supersymmetry. Such a theory with the U(1) gauge group is free, and so
we consider the non-Abelian Yang-Millis theory with a SU(N) gauge group. The
resulting supersymmetric Yang-Mills (SYM) theory has only one coupling con-
stant, which is the analog of the electric charge g in Eq. 9.6. The matter content is
naturally more complicated than the complex scalar za in Eq. 9.6, and also
involves relativistic Dirac fermions as in Eq. 9.7. However all the terms in the
action for the matter fields are also uniquely fixed by the single coupling constant
g. Under the renormalization group, it is believed that g flows to an attractive fixed
point at a non-zero coupling g ¼ g	; the fixed point then defines a supersymmetric
conformal field theory in 2 + 1 dimensions (a SCFT3), and we are interested here
in the transport properties of this SCFT3.

A remarkable recent advance has been the exact solution of this SCFT3 in the
N !1 limit using the AdS/CFT correspondence [38]. The solution proceeds by a
dual formulation as a four-dimensional supergravity theory on a spacetime with
uniform negative curvature: anti-de Sitter space, or AdS4. Remarkably, the solu-
tion is also easily extended to non-zero temperatures, and allows direct compu-
tation of the correlators of conserved charges in real time. At T [ 0 a black hole
appears in the gravity, resulting in an AdS-Schwarzschild spacetime, and T is also
the Hawking temperature of the black hole; the real time solutions also extend to
T [ 0.

The results of a full computation [39] of the density correlation function,
vðk;xÞ are shown in Figs. 9.5 and 9.6. The most important feature of these results
is that the expected limiting forms in the collisionless (Eq. 9.12) and collision-
dominated (Eq. 9.13) are obeyed. Thus the results do display the collisionless to
collision-dominated crossover at a frequency of order kBT=�h, as was postulated in
Sect. 9.4.

An additional important feature of the solution is apparent upon describing the
full structure of both the density and current correlations. Using spacetime indices
(l; m ¼ t; x; y) we can represent these as the tensor vlmðk;xÞ, where the previously
considered v  vtt. At T [ 0, we do not expect vlm to be relativistically covariant,
and so can only constrain it by spatial isotropy and density conservation. Intro-
ducing a spacetime momentum pl ¼ ðx; kÞ, and setting the velocity v ¼ 1, these
two constraints lead to the most general form

vlmðk;xÞ ¼
e	2

h

ffiffiffiffiffi
p2

p �
PT

lm KTðk;xÞ þ PL
lm KLðk;xÞ

�
ð9:15Þ
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where p2 ¼ glmplpm with glm ¼ diagð�1; 1; 1Þ, and PT
lm and PL

lm are orthogonal
projectors defined by

PT
00 ¼ PT

0i ¼ PT
i0 ¼ 0; PT

ij ¼ dij �
kikj

k2
; PL

lm ¼ glm �
plpm

p2

	 

� PT

lm; ð9:16Þ

with the indices i; j running over the two spatial components. The two functions
KT ;Lðk;xÞ define all the correlators of the density and the current, and the results
in Eqs. 9.13 and 9.12 are obtained by taking suitable limits of these functions. We
will also need below the general identity

KTð0;xÞ ¼ KLð0;xÞ; ð9:17Þ

which follows from the analyticity of the T [ 0 current correlations at k ¼ 0.

Fig. 9.6 As in Fig. 9.5, but
for the collision-dominated
regime

Fig. 9.5 Spectral weight of
the density correlation
function of the SCFT3 with
N ¼ 8 supersymmetry in the
collisionless regime
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The relations of the previous paragraph are completely general and apply to any
theory. Specializing to the AdS-Schwarzschild solution of SYM3, the results were
found to obey a simple and remarkable identity [39]:

KLðk;xÞKTðk;xÞ ¼ K2 ð9:18Þ

where K is a known pure number, independent of x and k. It was also shown that
such a relation applies to any theory which is equated to classical gravity on AdS4,
and is a consequence of the electromagnetic self-duality of its four-dimensional
Maxwell sector. The combination of Eqs. 9.17 and 9.18 fully determines the vlm

correlators at k ¼ 0: we find KLð0;xÞ ¼ KTð0;xÞ ¼ K, from which it follows that
the k ¼ 0 conductivity is frequency independent and that Ur ¼ H1H2 ¼ K ¼ K.
These last features are believed to be special to theories which are equivalent to
classical gravity, and not hold more generally.

We can obtain further insight into the interpretation of Eq. 9.18 by considering
the field theory of the superfluid-insulator transition of lattice bosons at integer
filling. As we noted earlier, this is given by the field theory in Eq. 9.3 with the field
ua having two components. It is known that this two-component theory of rela-

tivistic bosons is equivalent to a dual relativistic theory, eS of vortices, under the
well-known ‘particle-vortex’ duality [39, 40] considered the action of this particle-
vortex duality on the correlation functions in Eq. 9.15, and found the following
interesting relations:

KLðk;xÞeK Tðk;xÞ ¼ 1; KTðk;xÞeK Lðk;xÞ ¼ 1 ð9:19Þ

where eK L;T determine the vortex current correlations in eS as in Eq. 9.15. Unlike
Eq. 9.18, Eq. 9.19 does not fully determine the correlation functions at k ¼ 0: it

only serves to reduce the four unknown functions KL;T , eK L;T to two unknown

functions. The key property here is that while the theories SLG and eS are dual to
each other, they are not equivalent, and the theory SLG is not self-dual.

We now see that Eq. 9.18 implies that the classical gravity theory of SYM3 is
self-dual under an analog of particle-vortex duality [39]. It is not expected that this
self-duality will hold when quantum gravity corrections are included; equivalently,
the SYM3 at finite N is expected to have a frequency dependence in its conductivity
at k ¼ 0. If we apply the AdS/CFT correspondence to the superfluid-insulator
transition, and approximate the latter theory by classical gravity on AdS4, we
immediately obtain the self-dual prediction for the conductivity, Ur ¼ 1. This value
is not far from that observed in numerous experiments, and we propose here that the
AdS/CFT correspondence offers a rationale for understanding such observations.

9.6 Hydrodynamic Theory

The successful comparison between the general considerations of Sect. 9.4, and
the exact solution using the AdS/CFT correspondence in Sect. 9.5, emboldens us to
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seek a more general theory of low frequency (�hx� kBT) transport in the quantum
critical regime. We will again present our results for the special case of a rela-
tivistic quantum critical point in 2 + 1 dimensions (a CFT3), but it is clear that
similar considerations apply to a wider class of systems. Thus we can envisage
applications to the superfluid-insulator transition, and have presented scenarios
under which such a framework can be used to interpret measurements of the
Nernst effect in the cuprates [41]. We have also described a separate set of
applications to graphene [30–32]: while graphene is strictly not a CFT3, the Dirac
spectrum of electrons leads to many similar results, especially in the inelastic
collision-dominated regime associated with the quantum critical region. These
results on graphene are reviewed in a separate paper [42], where explicit micro-
scopic computations are also discussed.

Our idea is to relax the restricted set of conditions under which the results of
Sect. 9.4 were obtained. We will work within the quantum critical regimes of the
phase diagrams of Sect. 9.3 but now allow a variety of additional perturbations.
First, we will move away from the particle-hole symmetric case, allow a finite
density of carriers. For graphene, this means that l is no longer pinned at zero; for
the antiferromagnets, we can apply an external magnetic field; for the superfluid-
insulator transition, the number density need not be commensurate with the
underlying lattice. For charged systems, such as the superfluid-insulator transition
or graphene, we allow application of an external magnetic field. Finally, we also
allow a small density of impurities which can act as a sink of the conserved total
momentum of the CFT3. In all cases, the energy scale associated with these
perturbations is assumed to be smaller than the dominant energy scale of the
quantum critical region, which is kBT . The results presented below were obtained
in two separate computations, associated with the methods described in Sects. 9.4
and 9.5, and are described in the two subsections below.

9.6.1 Relativistic Magnetohydrodynamics

With the picture of relaxation to local equilibrium at frequencies �hx� kBT
developed in [28], we postulate that the equations of relativistic magnetohydro-
dynamics should describe the low frequency transport. The basic principles
involved in such a hydrodynamic computation go back to the nineteenth century:
conservation of energy, momentum, and charge, and the constraint of the positivity
of entropy production. Nevertheless, the required results were not obtained until
our recent work [41]: the general case of a CFT3 in the presence of a chemical
potential, magnetic field, and small density of impurities is very intricate, and the
guidance provided by the dual gravity formulation was very helpful to us. In this
approach, we do not have quantitative knowledge of a few transport co-efficients,
and this is complementary to our ignorance of the effective couplings in the dual
gravity theory to be discussed in Sect. 9.6.2.
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The complete hydrodynamic analysis can be found in [41]. The analysis is
intricate, but is mainly a straightforward adaption of the classic procedure outlined
by Kadanoff and Martin [43] to the relativistic field theories which describe
quantum critical points. We list the steps:

1. Identify the conserved quantities, which are the energy-momentum tensor, Tlm,
and the particle number current, Jl.

2. Obtain the real time equations of motion, which express the conservation laws:

omT
lm ¼ FlmJm; olJl ¼ 0; ð9:20Þ

here Flm represents the externally applied electric and magnetic fields which
can change the net momentum or energy of the system, and we have not written
a term describing momentum relaxation by impurities.

3. Identify the state variables which characterize the local thermodynamic state—
we choose these to be the density, q, the temperature T , and an average velocity
ul.

4. Express Tlm and Jl in terms of the state variables and their spatial and temporal
gradients; here we use the properties of the observables under a boost by the
velocity ul, and thermodynamic quantities like the energy density, e, and the
pressure, P, which are determined from T and q by the equation of state of
the CFT. We also introduce transport co-efficients associated with the gradient
terms.

5. Express the equations of motion in terms of the state variables, and ensure that
the entropy production rate is positive [44]. This is a key step which ensures
relaxation to local equilibrium, and leads to important constraints on the
transport co-efficients. In d ¼ 2, it was found that situations with the velocity ul

spacetime independent are characterized by only a single independent transport
co-efficient [41]. This we choose to be the longitudinal conductivity at B ¼ 0.

6. Solve the initial value problem for the state variables using the linearized
equations of motion.

7. Finally, translate this solution to the linear response functions, as described in
[43].

9.6.2 Dyonic Black Hole

Given the success of the AdS/CFT correspondence for the specific supersymmetric
model in Sect. 9.5, we boldly assume a similar correspondence for a generic CFT3.
We assume that each CFT3 is dual to a strongly-coupled theory of gravity on
AdS4. Furthermore, given the operators associated with the perturbations away
from the pure CFT3 we want to study, we can also deduce the corresponding
perturbations away from the dual gravity theory. So far, this correspondence is
purely formal and not of much practical use to us. However, we now restrict our

9 Condensed Matter and AdS/CFT 289



attention to the hydrodynamic, collision dominated regime, �hx� kBT of the
CFT3. We would like to know the corresponding low energy effective theory
describing the quantum gravity theory on AdS4. Here, we make the simplest
possible assumption: the effective theory is just the Einstein-Maxwell theory of
general relativity and electromagnetism on AdS4. As in Sect. 9.5, the temperature
T of CFT3 corresponds to introducing a black hole on AdS4 whose Hawking
temperature is T . The chemical potential, l, of the CFT3 corresponds to an electric
charge on the black hole, and the applied magnetic field maps to a magnetic charge
on the black hole. Such a dynoic black hole solution of the Einstein-Maxwell
equations is, in fact, known: it is the Reissner-Nordstrom black hole.

We solved the classical Einstein-Maxwell equations for linearized fluctuations
about the metric of a dyonic black hole in a space which is asymptotically AdS4.
The results were used to obtain correlators of a CFT3 using the prescriptions of the
AdS/CFT mapping. As we have noted, we have no detailed knowledge of the
strongly-coupled quantum gravity theory which is dual to the CFT3 describing
the superfluid-insulator transition in condensed matter systems, or of graphene.
Nevertheless, given our postulate that its low energy effective field theory
essentially captured by the Einstein-Maxwell theory, we can then obtain a pow-
erful set of results for CFT3s.

9.6.3 Results

In the end, we obtained complete agreement between the two independent com-
putations in Sects. 9.6.1 and 9.6.2, after allowing for their distinct equations of
state. This agreement demonstrates that the assumption of a low energy Einstein-
Maxwell effective field theory for a strongly coupled theory of quantum gravity is
equivalent to the assumption of hydrodynamic transport for �hx� kBT in a
strongly coupled CFT3.

Finally, we turn to our explicit results for quantum critical transport with
�hx� kBT .

First, consider adding a chemical potential, l, to the CFT3. This will induce a
non-zero number density of carriers q. The value of q is defined so that the total
charge density associated with q is e	q. Then the electrical conductivity at a
frequency x is

rðxÞ ¼ e	2

h
Ur þ

e	2q2v2

ðeþ PÞ
1

ð�ixþ 1=simpÞ
: ð9:21Þ

In this section, we are again using the symbol v to denote the characteristic
velocity of the CFT3 because we will need c for the physical velocity of light
below. Here e is the energy density and P is the pressure of the CFT3. We have
assumed a small density of impurities which lead to a momentum relaxation time
simp [41, 45]. In general, Ur, q, e, P, and 1=simp will be functions of l=kBT which
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cannot be computed by hydrodynamic considerations alone. However, apart from
Ur, these quantities are usually amenable to direct perturbative computations in
the CFT3, or by quantum Monte Carlo studies. The physical interpretation of Eq.
9.21 should be evident: adding a charge density q leads to an additional Drude-like
contribution to the conductivity. This extra current cannot be relaxed by collisions
between the unequal density of particle and hole excitations, and so requires an
impurity relaxation mechanism to yield a finite conductivity in the d.c. limit.

Now consider thermal transport in a CFT3 with a non-zero l. The d.c. thermal
conductivity, j, is given by

j ¼ Ur
k2

BT

h

	 

eþ P

kBTq

	 
2

; ð9:22Þ

in the absence of impurity scattering, 1=simp ! 0. This is a Wiedemann-Franz-like
relation, connecting the thermal conductivity to the electrical conductivity in the
l ¼ 0 CFT. Note that j diverges as q! 0, and so the thermal conductivity of the
l ¼ 0 CFT is infinite.

Next, turn on a small magnetic field B; we assume that B is small enough that
the spacing between the Landau levels is not as large as kBT . The case of large
Landau level spacing is also experimentally important, but cannot be addressed by
the present analysis. Initially, consider the case l ¼ 0. In this case, the result
Eq. 9.22 for the thermal conductivity is replaced by

j ¼ 1
Ur

k2
BT

h

	 

eþ P

kBTB=ðhc=e	Þ

	 
2

ð9:23Þ

also in the absence of impurity scattering, 1=simp ! 0. This result relates j to the
electrical resistance at criticality, and so can be viewed as Wiedemann-Franz-like
relation for the vortices. A similar 1=B2 dependence of j appeared in the Boltz-
mann equation analysis of [46, 47], but our more general analysis applies in a
wider and distinct regime [30–32], and relates the co-efficient to other observables.

We have obtained a full set of results for the frequency-dependent thermo-
electric response functions at non-zero B and l. The results are lengthy and we
refer the reader to [41] for explicit expressions. Here we only note that the
characteristic feature [41, 48] of these results is a new hydrodynamic cyclotron
resonance. The usual cyclotron resonance occurs at the classical cyclotron fre-
quency, which is independent of the particle density and temperature; further, in a
Galilean-invariant system this resonance is not broadened by electron-electron
interactions alone, and requires impurities for non-zero damping. The situation for
our hydrodynamic resonance is very different. It occurs in a collision-dominated
regime, and its frequency depends on the density and temperature: the explicit
expression for the resonance frequency is
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xc ¼
e	Bqv2

cðeþ PÞ : ð9:24Þ

Further, the cyclotron resonance involves particle and hole excitations moving in
opposite directions, and collisions between them can damp the resonance even in
the absence of impurities. Our expression for this intrinsic damping frequency is
[41, 48]

c ¼ e	2

h
Ur

B2v2

c2ðeþ PÞ ; ð9:25Þ

relating it to the quantum-critical conductivity as a measure of collisions between
counter-propagating particles and holes. We refer the reader to a separate dis-
cussion [30–32] of the experimental conditions under which this hydrodynamic
cyclotron resonance may be observed.

9.7 d-Wave Superconductors

We now turn to the second class of strong-coupling problems outlined in Sect. 9.1:
those involving quantum critical points with fermionic excitations. This section
will consider the simpler class of problems in which the fermions have a Dirac
spectrum, and the field-theoretic 1=N expansion does allow for substantial
progress.

We will begin in Sect. 9.7.1 by an elementary discussion of the origin of these
Dirac fermions. Then we will consider two quantum phase transitions, both
involving a simple Ising order parameter. The first in Sect. 9.7.2, with time-
reversal symmetry breaking, leads to a relativistic quantum field theory closely
related to the Gross-Neveu model. The second model of Sect. 9.7.3 involves
breaking of a lattice rotation symmetry, leading to ‘‘Ising-nematic’’ order. The
theory for this model is not relativistically invariant: it is strongly coupled, but can
be controlled by a traditional 1=N expansion.

We note that symmetry breaking transitions in graphene are also described by
field theories similar to those discussed in this section [49, 50].

9.7.1 Dirac Fermions

We begin with a review of the standard BCS mean-field theory for a d-wave
superconductor on the square lattice, with an eye towards identifying the fermionic
Bogoliubov quasiparticle excitations. For now, we assume we are far from any
QPT associated with SDW, Ising-nematic, or other broken symmetries. We con-
sider the Hamiltonian
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HtJ ¼
X

k

ekcykacka þ J1

X

hiji
Si � Sj ð9:26Þ

where cja is the annihilation operator for an electron on site j with spin a ¼"; #, cka

is its Fourier transform to momentum space, ek is the dispersion of the electrons
(it is conventional to choose ek ¼ �2t1ðcosðkxÞ þ cosðkyÞÞ � 2t2ðcosðkx þ kyÞþ
cosðkx � kyÞÞ � l, with t1;2 the first/second neighbor hopping and l the chemical
potential), and the J1 term is similar to that in Eq. 9.1 with

Sja ¼
1
2

cyjar
a
abcjb ð9:27Þ

and ra the Pauli matrices. We will consider the consequences of the further
neighbor exchange interactions for the superconductor in Sect. 9.7.2 below.
Applying the BCS mean-field decoupling to HtJ we obtain the Bogoliubov
Hamiltonian

HBCS ¼
X

k

ekcykacka �
J1

2

X

jl

Dl cyj"c
y
jþl̂;# � cyj#c

y
jþl̂;"

� �
þ h.c.: ð9:28Þ

For a wide range of parameters, the ground state energy optimized by a dx2�y2

wavefunction for the Cooper pairs: this corresponds to the choice Dx ¼ �Dy ¼
Dx2�y2 . The value of Dx2�y2 is determined by minimizing the energy of the BCS
state

EBCS ¼ J1jDx2�y2 j2 �
Z

d2k

4p2
Ek � ek½ � ð9:29Þ

where the fermionic quasiparticle dispersion is

Ek ¼ e2
k þ J1Dx2�y2ðcos kx � cos kyÞ

�� ��2
h i1=2

: ð9:30Þ

The energy of the quasiparticles, Ek, vanishes at the four points ð�Q;�QÞ at
which ek ¼ 0. We are especially interested in the low energy quasiparticles in the
vicinity of these points, and so we perform a gradient expansion of HBCS near each
of them. We label the points Q1 ¼ ðQ;QÞ, Q2 ¼ ð�Q;QÞ, Q3 ¼ ð�Q;�QÞ, Q4 ¼
ðQ;�QÞ and write

cja ¼ f1aðrjÞeiQ1�rj þ f2aðrjÞeiQ2�rj þ f3aðrjÞeiQ3�rj þ f4aðrjÞeiQ4�rj ; ð9:31Þ

while assuming the f1�4;aðrÞ are slowly varying functions of x. We also introduce

the bispinors W1 ¼ ðf1"; f
y
3#; f1#;�f y3"Þ, and W2 ¼ ðf2"; f

y
4#; f2#;�f y4"Þ, and then

express HBCS in terms of W1;2 while performing a spatial gradient expansion. This
yields the following effective action for the fermionic quasiparticles:
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SW ¼
Z

dsd2r Wy1 os � i
vFffiffiffi

2
p ðox þ oyÞsz � i

vDffiffiffi
2
p ð�ox þ oyÞsx

	 

W1

�

þWy2 os � i
vFffiffiffi

2
p ð�ox þ oyÞsz � i

vDffiffiffi
2
p ðox þ oyÞsx

	 

W2

�
: ð9:32Þ

where the sx;z are 4
 4 matrices which are block diagonal, the blocks consisting of
2
 2 Pauli matrices. The velocities vF;D are given by the conical structure of Ek

near the Q1�4: we have vF ¼ jrkekjk¼Qa
j and vD ¼ jJ1Dx2�y2

ffiffiffi
2
p

sinðQÞj. In this

limit, the energy of the W1 fermionic excitations is Ek ¼ ðv2
Fðkx þ kyÞ2=2þ

v2
Dðkx � kyÞ2=2Þ1=2 (and similarly for W2), which is the spectrum of massless Dirac

fermions.

9.7.2 Time-Reversal Symmetry Breaking

We will consider a simple model in which the pairing symmetry of the super-
conductor changes from dx2�y2 to dx2�y2 � idxy. The choice of the phase between
the two pairing components leads to a breaking of time-reversal symmetry. Studies
of this transition were originally motivated by the cuprate phenomenology, but we
will not explore this experimental connection here because the evidence has
remained sparse.

The mean field theory of this transition can be explored entirely within the
context of BCS theory, as we will review below. However, fluctuations about the
BCS theory are strong, and lead to non-trivial critical behavior involving both
the collective order parameter and the Bogoliubov fermions: this is probably the
earliest known example [23, 51, 52] of the failure of BCS theory in two (or higher)
dimensions in a superconducting ground state. At T [ 0, this failure broadens into
the ‘‘quantum critical’’ region.

We extend HtJ in Eq. 9.26 so that BCS mean-field theory permits a region with
dxy superconductivity. With a J2 second neighbor interaction, Eq. 9.26 is modified
to:

eHtJ ¼
X

k

ekcykrckr þ J1

X

hiji
Si � Sj þ J2

X

nnn ij

Si � Sj: ð9:33Þ

We will follow the evolution of the ground state of eHtJ as a function of J2=J1.
The mean-field Hamiltonian is now modified from Eq. 9.28 to

eHBCS ¼
X

k

ekcykrckr �
J1

2

X

j;l

Dlðcyj"c
y
jþl̂;# � cyj#c

y
jþl̂;"Þ þ h.c.

� J2

2

X

j;m

0
Dmðcyj"c

y
jþm̂;# � cyj#c

y
jþm̂;"Þ þ h.c.; ð9:34Þ
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where the second summation over m is along the diagonal neighbors x̂þ ŷ and
�x̂þ ŷ. To obtain dxy pairing along the diagonals, we choose Dxþy ¼ �D�xþy ¼
Dxy. We summarize our choices for the spatial structure of the pairing amplitudes
(which determine the Cooper pair wavefunction) in Fig. 9.7. The values of Dx2�y2

and Dxy are to be determined by minimizing the ground state energy (generalizing
Eq. 9.29)

EBCS ¼ J1jDx2�y2 j2 þ J2jDxyj2 �
Z

d2k

4p2
Ek � ek½ � ð9:35Þ

where the quasiparticle dispersion is now (generalizing Eq. 9.30)

Ek ¼ e2
k þ J1Dx2�y2ðcos kx � cos kyÞ þ 2J2Dxy sin kx sin ky

�� ��2
h i1=2

: ð9:36Þ

Notice that the energy depends upon the relative phase of Dx2�y2 and Dxy: this
phase is therefore an observable property of the ground state.

It is a simple matter to numerically carry out the minimization of Eq. 9.36, and
the results for a typical choice of parameters are shown in Fig. 9.8 as a function
J2=J1. One of the two amplitudes Dx2�y2 or Dxy is always non-zero and so the
ground state is always superconducting. The transition from pure dx2�y2 super-
conductivity to pure dxy superconductivity occurs via an intermediate phase in
which both order parameters are non-zero. Furthermore, in this regime, their rel-
ative phase is found to be pinned to �p=2 i.e.

argðDxyÞ ¼ argðDx2�y2Þ � p=2: ð9:37Þ

The reason for this pinning can be intuitively seen from Eq. 9.36: only for these
values of the relative phase does the equation Ek ¼ 0 never have a solution. In
other words, the gapless nodal quasiparticles of the dx2�y2 superconductor acquire a
finite energy gap when a secondary pairing with relative phase �p=2 develops. By

Δx2-y2Δx2-y2

−Δx2-y2

−Δx2-y2

−Δxy

−Δxy

Δxy

Δxy

Fig. 9.7 Values of the
pairing amplitudes,
�hci"cj# � ci#cj"i with i the
central site, and j is one of its
eight near neighbors
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a level repulsion picture, we can expect that gapping out the low energy excitations
should help lower the energy of the ground state. The intermediate phase obeying
Eq. 9.37 is called a dx2�y2 þ idxy superconductor.

The choice of the sign in Eq. 9.37 leads to an overall two-fold degeneracy in the
choice of the wavefunction for the dx2�y2 þ idxy superconductor. This choice is
related to the breaking of time-reversal symmetry, and implies that the dx2�y2 þ
idxy phase is characterized by the non-zero expectation value of a Z2 Ising order
parameter; the expectation value of this order vanishes in the two phases (the
dx2�y2 and dxy superconductors) on either side of the dx2�y2 þ idxy superconductor.
As is conventional, we will represent the Ising order by a real scalar field /.
Fluctuations of / become critical near both of the phase boundaries in Fig. 9.8. As
we will explain below, the critical theory of the dx2�y2 to dx2�y2 þ idxy transition is

not the usual /4 field theory which describes the ordinary Ising transition in three
spacetime dimensions. (For the dispersion ek appropriate to the cuprates, the dxy

superconductor is fully gapped, and so the dx2�y2 þ idxy to dxy transition in Fig. 9.8
will be ordinary Ising.)

Near the phase boundary from dx2�y2 to dx2�y2 þ idxy superconductivity it is
clear that we can identify

/ ¼ iDxy; ð9:38Þ

0.000

0.010

0.020

0.030

0.40 0.50 0.60 0.70 0.80 0.90
J2

Δx2-y2

Δxy

dx2-y2 dx2-y2+idxy

dxy

Fig. 9.8 BCS solution of the phenomenological Hamiltonian eHtJ in Eq. 9.33. Shown are the
optimum values of the pairing amplitudes jDx2�y2 j and jDxyj as a function of J2 for t1 ¼ 1,
t2 ¼ �0:25, l ¼ �1:25, and J1 fixed at J1 ¼ 0:4. The relative phase of the pairing amplitudes
was always found to obey Eq. 9.37. The dashed lines denote locations of phase transitions
between dx2�y2 , dx2�y2 þ idxy, and dxy superconductors. The pairing amplitudes vanishes linearly
at the first transition corresponding to the exponent bBCS ¼ 1 in Eq. 9.40. The Brillouin zone
location of the gapless Dirac points in the dx2�y2 superconductor is indicated by filled circles. For
the dispersion ek appropriate to the cuprates, the dxy superconductor is fully gapped, and so the
second transition is ordinary Ising
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(in the gauge where Dx2�y2 is real). We can now expand EBCS in Eq. 9.35 for small
/ (with Dx2�y2 finite) and find a series with the structure [53, 54]

EBCS ¼ E0 þ s/2 þ vj/j3 þ . . .; ð9:39Þ

where s, v are coefficients and the ellipses represent regular higher order terms in
even powers of /; s can have either sign, whereas v is always positive. Notice the

non-analytic j/j3 term that appears in the BCS theory—this arises from an infrared
singularity in the integral in Eq. 9.35 over Ek at the four nodal points of the dx2�y2

superconductor, and is a preliminary indication that the transition differs from that
in the ordinary Ising model, and that the Dirac fermions play a central role. We can
optimize / by minimizing EBCS in Eq. 9.39— this shows that h/i ¼ 0 for s [ 0,
and h/i 6¼ 0 for s\0. So s�ðJ2=J1Þc � J2=J1 where ðJ2=J1Þc is the first critical
value in Fig. 9.8. Near this critical point, we find

h/i� ðsc � sÞb; ð9:40Þ

where we have allowed for the fact that fluctuation corrections will shift the
critical point from s ¼ 0 to s ¼ sc. The present BCS theory yields the exponent
bBCS ¼ 1; this differs from the usual mean-field exponent bMF ¼ 1=2, and this is of

course due to the non-analytic j/j3 term in Eq. 9.39.
We can now write down the required field theory of the onset of dxy order. In

addition to the order parameter /, the field theory should also involve the low
energy nodal fermions of the dx2�y2 superconductor, as described by SW in Eq.
9.32. For the / fluctuations, we write down the usual terms permitted near a phase
transition with Ising symmetry:

S/ ¼
Z

d2rds
1
2
ðos/Þ2 þ c2ðox/Þ2 þ c2ðoy/Þ2 þ s/2
� �

þ u

24
/4

� �
: ð9:41Þ

Note that, unlike Eq. 9.39, we do not have any non-analytic j/j3 terms in the
action: this is because we have not integrated out the low energy Dirac fermions,
and the terms in Eq. 9.41 are viewed as arising from high energy fermions away
from the nodal points. Finally, we need to couple the / and W1;2 excitations. Their
coupling is already contained in the last term in Eq. 9.34: expressing this in terms
of the W1;2 fermions using Eq. 9.31 we obtain

SW/ ¼ #xy

Z
d2rds / Wy1s

yW1 �Wy2s
yW2

� �h i
; ð9:42Þ

where #xy is a coupling constant. The partition function of the full theory is now

Zdid ¼
Z
D/DW1DW2 exp �SW � S/ � SW/

� 
; ð9:43Þ
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where SW was in Eq. 9.32. It can now be checked that if we integrate out the W1;2

fermions for a spacetime independent /, we do indeed obtain a j/j3 term in the
effective potential for /.

We begin our analysis of Zdid by assuming that the transition is described by a
fixed point with #xy ¼ 0: then the theory for the transition would be the ordinary

/4 field theory S/, and the nodal fermions would be innocent spectators. The
scaling dimension of / at such a fixed point is ð1þ gIÞ=2 (where gI is the
anomalous order parameter exponent at the critical point of the ordinary three
dimensional Ising model), while that of W1;2 is 1. Consequently, the scaling
dimension of #xy is ð1� gIÞ=2 [ 0. This positive scaling dimension implies that
#xy is relevant and the #xy ¼ 0 fixed point is unstable: the Dirac fermions are fully
involved in the critical theory.

Determining the correct critical behavior now requires a full renormalization
group analysis of Zdid. This has been described in some detail in [55], and we will
not reproduce the details here. The main result we need for our purposes is that
couplings #xy, u, vF=c and vD=c all reach non-zero fixed point values which define
a critical point in a new universality class. These fixed point values, and the
corresponding critical exponents, can be determined in expansions in either
ð3� dÞ [51, 52, 55] (where d is the spatial dimensionality) or 1=N [56] (where N is
the number of fermion species). An important simplifying feature here is that the
fixed point is actually relativistically invariant. Indeed the fixed point has the
structure of the so-called Higgs-Yukawa (or Gross-Neveu) model which has been
studied extensively in the particle physics literature [57] in a different physical
context: quantum Monte Carlo simulation of this model also exist [58], and pro-
vide probably the most accurate estimate of the exponents.

The non-trivial fixed point has strong implications for the correlations of the

Bogoliubov fermions. The fermion correlation function G1 ¼ hW1W
y
1i obeys

G1ðk;xÞ ¼
xþ vFkxsz þ vDsx

ðv2
Fk2

x þ v2
Dk2

y � x2Þð1�gf Þ=2
ð9:44Þ

at low frequencies for s� sc. Away from the critical point in the dx2�y2 super-
conductor with s [ sc, Eq. 9.44 holds with gf ¼ 0, and this is the BCS result, with
sharp quasi-particle poles in the Green’s function. At the critical point s ¼ sc

Eq. 9.44 holds with the fixed point values for the velocities (which satisfy
vF ¼ vD ¼ c) and with the anomalous dimension gf 6¼ 0—the ð3� dÞ expansion
[51, 52] estimate is gf � ð3� dÞ=14, and the 1=N expansion estimate [56] is

gf � 1=ð3p2NÞ, with N ¼ 2. This is clearly non-BCS behavior, and the fermionic
quasiparticle pole in the spectral function has been replaced by a branch-cut
representing the continuum of critical excitations. The corrections to BCS extend
also to correlations of the Ising order /: its expectation value vanishes as Eq. 9.40
with the Monte Carlo estimate b � 0:877 [58]. The critical point correlators of /
have the anomalous dimension g � 0:754 [58], which is clearly different from the
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very small value of the exponent gI at the unstable #xy ¼ 0 fixed point. The value
of b is related to g by the usual scaling law b ¼ ð1þ gÞm=2, with m � 1:00 the
correlation length exponent (which also differs from the exponent mI of the Ising
model).

9.7.3 Nematic Ordering

We now consider an Ising transition associated with ‘‘Ising-nematic’’ ordering in
the d-wave superconductor. This is associated with a spontaneous reduction of the
lattice symmetry of the Hamiltonian from ‘‘square’’ to ‘‘rectangular’’. Our study is
motivated by experimental observations of such a symmetry breaking in the
cuprate superconductors [59–61].

The ingredients of such an ordering are actually already present in our simple
review of BCS theory in Sect. 9.7.1. In Eq. 9.28, we introduce 2 variational pairing
amplitudes Dx and Dy. Subsequently, we assumed that the minimization of the
energy led to a solution with dx2�y2 pairing symmetry with Dx ¼ �Dy ¼ Dx2�y2 .
However, it is possible that upon including the full details of the microscopic
interactions we are led to a minimum where the optimal solution also has a small
amount of s-wave pairing. Then jDxj 6¼ jDyj, and we can expect all physical
properties to have distinct dependencies on the x and y co-ordinates. Thus, one

measure of the the Ising nematic order parameter is jDxj2 � jDyj2.
The derivation of the field theory for this transition follows closely our pre-

sentation in Sect. 9.7.2. We allow for small Ising-nematic ordering by introducing
a scalar field / and writing

Dx ¼ Dx2�y2 þ /; Dy ¼ �Dx2�y2 þ /: ð9:45Þ

The evolutions of the Dirac fermion spectrum under such a change is indicated in
Fig. 9.9. We now develop an effective action for / and the Dirac fermions W1;2.
The result is essentially identical to that in Sect. 9.7.2, apart from a change in the
structure of the Yukawa coupling. Thus we obtain a theory SW þ S/ þ SW/,
defined by Eqs. 9.32 and 9.41, and where Eq. 9.42 is now replaced by

Fig. 9.9 Phase diagram of
Ising nematic ordering in a
d-wave superconductor as a
function of the coupling s in
S/. The filled circles indicate
the location of the gapless
fermionic excitations in the
Brillouin zone. The two
choices for s\sc are selected
by the sign of h/i:
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SW/ ¼ #I

Z
d2rds / Wy1s

xW1 þWy2s
xW2

� �h i
: ð9:46Þ

The seemingly innocuous change between Eqs. 9.42 and 9.46 however has
strong consequences. This is partly linked to the fact with SW/ cannot be rela-
tivistically invariant even after all velocities are adjusted to equal. A weak-cou-
pling renormalization group analysis in powers of the coupling #I was performed
in ð3� dÞ dimensions in [51, 52, 55], and led to flows to strong coupling with no
accessible fixed point: thus no firm conclusions on the nature of the critical theory
were drawn.

This problem remained unsolved until the recent works of [62, 63]. It is
essential that there not be any expansion in powers of the coupling #I . This is
because it leads to strongly non-analytic changes in the structure of the / prop-
agator, which have to be included at all stages. In a model with N fermion flavors,
the 1=N expansion does avoid any expansion in #I . The renormalization group
analysis has to be carried out within the context of the 1=N expansion, and this
involves some rather technical analysis which is explained in [63]. In the end, an
asymptotically exact description of the vicinity of the critical point was obtained.
It was found that the velocity ratio vF=vD diverged logarithmically with energy
scale, leading to strongly anisotropic ‘arc-like’ spectra for the Dirac fermions.
Associated singularities in the thermal conductivity have also been computed [64].

9.8 Metals

This section considers symmetry breaking transitions in two-dimensional metals.
Away from the quantum critical point, the phases will be ordinary Fermi liquids.
We will be interested in the manner in which the Fermi liquid behavior breaks
down at the quantum critical point. Our focus will be exclusively on two spatial
dimensions: quantum phase transitions of metals in three dimensions are usually
simpler, and the traditional perturbative theory appears under control.

In Sect. 9.7 the fermionic excitations had vanishing energy only at isolated
nodal points in the Brillouin zone: see Figs. 9.8 and 9.9. Metals have fermionic
excitations with vanishing energy along a line in the Brillouin zone. Thus we can
expect them to have an even stronger effect on the critical theory. This will indeed
be the case, and we will be led to problems with a far more complex structure.
Unlike the situation in insulators and d-wave superconductor, many basic issues
associated with ordering transition in two dimensional metals have not been fully
resolved. The problem remains one of active research and is being addressed by
many different approaches. In recent papers [65, 66], Metlitski and the author have
argued that the problem is strongly coupled, and proposed field theories and
scaling structures for the vicinity of the critical point. We will review the main
ingredients for the transition involving Ising-nematic ordering in a metal. Thus the
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symmetry breaking will be just as in Sect. 9.7.3, but the fermionic spectrum will be
quite different. Our study here is also motivated by experimental observations in
the cuprate superconductors [59–61].

As in Sect. 9.7, let us begin by a description of the non-critical fermionic sector,
before its coupling to the order parameter fluctuations. We use the band structure
describing the cuprates in the over-doped region, well away from the Mott insu-
lator. Here the electrons cka are described by the kinetic energy in Eq. 9.26, which
we write in the following action

Sc ¼
Z

ds
X

k

cyka
o

os
þ ek

	 

cka; ð9:47Þ

As in Sect. 9.7.3, we will have an Ising order parameter represented by the real
scalar field /, which is described as before by S/ in Eq. 9.41. Its coupling to the
electrons can be deduced by symmetry considerations, and the most natural cou-
pling (the analog of Eqs. 9.46) is

Sc/ ¼
1
V

Z
ds
X

k;q

ðcos kx � cos kyÞ/ðqÞcykþq=2;ack�q=2;a: ð9:48Þ

where V is the volume. The momentum dependent form factor is the simplest
choice which changes sign under x$ y, as is required by the symmetry properties
of /. The sum over q is over small momenta, while that over k extends over the
entire Brillouin zone. The theory for the nematic ordering transition is now
described by Sc þ S/ þ Sc/. The phase diagram as a function of the coupling s in
S/ and temperature T is shown in Fig. 9.10. Note that there is a line of Ising phase
transitions at T ¼ Tc: this transition is in the same universality class as the classical
two-dimensional Ising model. However, quantum effects and fermionic excitations
are crucial at T ¼ 0 critical point at s ¼ sc and its associated quantum critical
region.

A key property of Eq. 9.48 is that small momentum critical / fluctuations can
efficiently scatter fermions at every point on the Fermi surface. Thus the non-
Fermi singularities in the fermion Green’s function will extend to all points on the
Fermi surface. This behavior is dramatically different from all the field theories we
have met so far, all of which had singularities only at isolated points in momentum
space. We evidently have to write down a long-wavelength theory which has
singularities along a line in momentum space.

We describe the construction of [65] of a field theory with this unusual prop-
erty. Pick a fluctuation of the order parameter / at a momentum q. As shown in
Fig. 9.11 this fluctuation will couple most efficiently to fermions near two points
on the Fermi surface, where the tangent to the Fermi surface is parallel to q.
A fermion absorbing momentum q at these points, changes its energy only by � q2;
at all other points on the Fermi surface the change is � q. Thus we are led to focus
on different points on the Fermi surface for each direction of q. In the continuum
limit, we will therefore need a separate field theory for each pair of points �k0 on
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the Fermi surface. We conclude that the quantum critical point is described by an
infinite number of field theories.

There have been earlier descriptions of Fermi surfaces by an infinite number of
field theories [67–73]. However many of these earlier works differ in a crucial
respect from the the theory to be presented here. They focus on the motion of
fermions transverse to Fermi surface, and so represent each Fermi surface point by
a 1 + 1 dimensional chiral fermion. Thus they have an infinite number of 1 + 1
dimensional field theories, labelled by points on the one dimensional Fermi sur-
face. The original problem was 2 + 1 dimensional, and so this conserves the total
dimensionality and the number of degrees of freedom. However, we have already

Fig. 9.11 A / fluctuation at
wavevector q couples most
efficiently to the fermions w�
near the Fermi surface points
�k0

Quantum
critical

Fig. 9.10 Phase diagram of Ising nematic ordering in a metal as a function of the coupling s in
S/ and temperature T . The Fermi surface for s [ 0 is as in the overdoped region of the cuprates,
with the shaded region indicating the occupied hole (or empty electron) states. The choice
between the two quadrapolar distortions of the Fermi surface is determined by the sign of h/i.
The line of T [ 0 phase transitions at Tc is described by Onsager’s solution of the classical two-
dimensional Ising model. We are interested here in the quantum critical point at s ¼ sc, which
controls the quantum-critical region
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argued above that the dominant fluctuations of the fermions are in a direction
transverse to the Fermi surface, and so we believe this earlier approach is not
suited for the vicinity of the nematic quantum critical point. As we will see in
Sect. 9.8.1, we will need an infinite number of 2 + 1 dimensional field theories
labelled by points on the Fermi surface. (Some of the earlier works included
fluctuations transverse to the Fermi surface [72, 73], but did not account for the
curvature of the Fermi surface; it is important to take the scaling limit at fixed
curvature, as we will see.) Thus we have an emergent dimension and a redundant
description of the degrees of freedom. We will see in Sect. 9.8.2 how compatibility
conditions ensure that the redundancy does not lead to any inconsistencies. The
emergent dimensionality suggests a connection to the AdS/CFT correspondence,
as will be discussed in Sect. 9.8.5.

9.8.1 Field Theories

Let us now focus on the vicinity of the points �k0, by introducing fermionic field
w� by

wþðkÞ ¼ ck0þk; w�ðkÞ ¼ c�k0þk: ð9:49Þ

Then we expand all terms in Sc þ S/ þ Sc/ in spatial and temporal gradients.
Using the co-ordinate system illustrated in Fig. 9.11, performing appropriate
rescaling of co-ordinates, and dropping terms which can later be easily shown to
be irrelevant, we obtain the 2 + 1 dimensional Lagrangian

L ¼ wyþa

�
fos � iox � o2

y

�
wþa þ wy�a

�
fos þ iox � o2

y

�
w�a

� k/ wyþawþa þ wy�aw�a

� 
þ N

2
ðoy/Þ2 þ

Ns

2
/2: ð9:50Þ

Here f, k and s are coupling constants, with s the tuning parameter across the
transition; we will see that all couplings apart from s can be scaled away or set
equal to unity. We now allow the spin index a ¼ 1; . . .;N, as we will be interested
in the structure of the large N expansion. Note that Eq. 9.50 has the same basic
structure as the models considered in Sect. 9.7, apart from differences in the spatial
gradients and the matrix structure. We will see that these seemingly minor dif-
ferences will completely change the physical properties and the nature of the large
N expansion.

9.8.2 Symmetries

A first crucial property of L is that the fermion Green’s functions do indeed have
singularities along a line in momentum space, as was required by our discussion
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above. This singularity is a consequence of the invariance of L under the following
transformation

/ðx; yÞ ! /ðx; yþ hxÞ; wsðx; yÞ ! e�isðh2yþh2
4 xÞwsðx; yþ hxÞ; ð9:51Þ

where h is a constant. Here we have dropped time and a indices because they play
no role, and s ¼ �. We can view this transformation as one which performs a
‘rotation’ of spatial co-ordinates, moving the point k0 to neighboring points on the
Fermi surface. We are not assuming the Fermi surface is circular, and so the
underlying model is not rotationally invariant. However, we are considering a
limiting case of a rotation, precisely analogous to the manner in which Galilean
transformations emerge as a limiting case of a relativistic transformation (x
behaves like time, and y as space, in this analogy). This ‘Galilean’ symmetry is an
emergent symmetry of L for arbitrary shapes of the Fermi surface. It is not difficult
to now show from (9.51) that the / Green’s function D, and the fermion Green’s
functions Gs obey the exact identities

Dðqx; qyÞ ¼ DðqyÞ ð9:52Þ

Gsðqx; qyÞ ¼ Gðsqx þ q2
yÞ: ð9:53Þ

So we see that the Wþ Green’s function depends only on qx þ q2
y . The singularities

of this function appear when qx þ q2
y ¼ 0, and this is nothing but the equation of

the Fermi surface passing through the point k0 in Figs. 9.11 and 9.12. Thus we
have established the existence of a line of singularities in momentum space.

The identities in Eq. 9.51 also help establish the consistency of our description
in terms of an infinite number of 2 + 1 dimensional field theories. Consider the
fermion Green’s function at the point P in Fig. 9.12. This can be computed in
terms of the 2 + 1 dimensional field theory defined at the point k0, or from that at a

P
Fig. 9.12 The fermion
correlator at the point P can
be described either in terms
of the 2 + 1 dimensional field
theory at k0, or that at k1
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neighboring point k1. Equation 9.53 ensures that both methods yield the same
result. A little geometry [65] shows that qx þ q2

y is an invariant that measures the
distance between P and the closest point on the Fermi surface: thus it takes the
same value in the co-ordinates systems at k0 and k1, with qx þ q2

y ¼ q0x þ q02y ,
establishing the identity of the two computations.

9.8.3 Scaling Theory

Let us now discuss the behavior of L under renormalization group scaling trans-
formations. The structure of the spatial gradient terms in the Lagrangian indicates
that the rescaling of spatial co-ordinates should be defined by

x0 ¼ x=b2; y0 ¼ y=b: ð9:54Þ

The invariance in Eq. 9.53 implies that these scalings are exact, and the spatial
anisotropy acquires no fluctuation corrections. Or, in other words

dim½y� ¼ �1; dim½x� ¼ �2: ð9:55Þ

For now, let us keep the rescaling of the temporal co-ordinate general:

dim½s� ¼ �z: ð9:56Þ

Note that the dynamic critical exponent z is defined relative to the spatial co-
ordinate y tangent to the Fermi surface (other investigators sometimes define it
relative to the co-ordinate x normal to the Fermi surface, leading to a difference in
a factor of 2). We define the engineering dimensions of the fields so that co-
efficients of the y derivatives remain constant. Allowing for anomalous dimensions
g/ and gw from loop effects we have

dim½/� ¼ ð1þ zþ g/Þ=2; dim½w� ¼ ð1þ zþ gwÞ=2: ð9:57Þ

Using these transformations, we can examine the scaling dimensions of the cou-
plings in L at tree level

dim½f� ¼ 2� z� gw; dim½k� ¼ ð3� z� g/ � 2gwÞ=2: ð9:58Þ

We will see in Sect. 9.8.4 that low order loop computations suggest that the
anomalous dimensions g/ and gw are small, and that z � 3. Assuming these
estimates are approximately correct, we see that the coupling f is strongly irrel-
evant. Thus we can send f! 0 in all our computations. However, we do not set
f ¼ 0 at the outset, because the temporal derivative term is needed to define the
proper analytic structure of the frequency loop integrals [74]. As we will discuss
later, the limit f! 0, also dramatically changes the counting of powers of 1=N in
the loop expansion [74].
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Also note that these estimates of the scaling dimensions imply dim½k� � 0. Thus
the fermion and order parameter fluctuations remain strongly coupled at all scales.
Conversely, we can also say that the requirement of working in a theory with fixed
k implies that z � 3; this circumvents the appeal to loop computations for taking
the f! 0 limit. With a near zero scaling dimension for k, we cannot expand
perturbatively in powers of k. This features was also found in Sect. 9.7.3, but there
we were able to use the 1=N expansion to circumvent this problem.

Moving beyond tree level considerations, we note that another Ward identity
obeyed by the theory L allows us to fix the scaling dimension of / exactly. This
Ward identity is linked to the fact that / appears in the Yukawa coupling like the x
component of a gauge field coupled to the fermions [65]. The usual arguments
associated with gauge invariance then imply that dim½/� ¼ 2 (the same as the
scaling dimension of ox), and that we can work in theory in which the ‘‘gauge
coupling’’ k set equal to unity at all scales. Note that with this scaling dimension,
we have the exact relation

g/ ¼ 3� z: ð9:59Þ

Note also that Eq. 9.57 now implies that dim½k� ¼ gw at tree level, which is the
same as the tree level transformation of the spatial derivative terms. The latter
terms have been set equal to unity by rescaling the fermion field, and so it is also
consistent to set k ¼ 1 from now on.

We reach the remarkable conclusion that at the critical point s ¼ sc, L is
independent of all coupling constants. The only parameter left is N, and we have
no choice but to expand correlators in powers of 1=N. The characterization of the
critical behavior only requires computations of the exponents z and gw, and
associated scaling functions.

We can combine all the above results into scaling forms for the / and W
Green’s functions at the quantum critical point at T ¼ 0. These are, respectively

D�1ðqx; qy;xÞ ¼ qz�1
y FD

x
qz

y

 !
ð9:60Þ

G�1ðqx; qy;xÞ ¼ ðqx þ q2
yÞ

1�gw=2FG
x

ðqx þ q2
yÞ

z=2

 !
; ð9:61Þ

where FD and FG are scaling functions.

9.8.4 Large N Expansion

We have come as far as possible by symmetry and scaling analyses alone on L.
Further results require specific computations of loop corrections, and these can
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only be carried out within the context of the 1=N expansion. At N ¼ 1, the /
propagator at criticality is

D�1

N
¼ q2

y þ
jxj

4pjqyj
ð9:62Þ

for imaginary frequencies x. This is clearly compatible with Eq. 9.60 with z ¼ 3.
The leading correction to the fermion propagator comes from the self energy
associated with one / exchange, and this leads to

G�1
þ ¼ �ifxþ qx þ q2

y � isgnðxÞ 2
ffiffiffi
3
p
ð4pÞ2=3N

jxj2=3; ð9:63Þ

which is also compatible with Eq. 9.61 with z ¼ 3 and gw ¼ 0. Notice also that as

x! 0, the fx term in Eq. 9.63 is smaller than the jxj2=3 term arising from the self
energy at order 1=N; this relationship is equivalent to our earlier claim that f is
irrelevant at long scales, and so we should take the limit f! 0 to obtain our
leading critical scaling functions.

The structure of Eq. 9.63 also illustrates a key difficulty associated with the

f! 0 limit. At f ¼ 0, the leading x dependence of G�1 is � jxj2=3=N. Feynman
graphs which are sensitive to this x dependence will therefore acquire additional
factors of N, leading to a breakdown of the conventional counting of powers of
1=N in the higher loop graphs.

This breakdown of the 1=N expansion was investigated by Lee [74] for a
‘single patch’ theory with fermions only at k0 (and not at �k0). We see from
Eq. 9.63 that the 1=N term in G�1 becomes important when qx ¼ qy ¼ 0 i.e. the
fermion is precisely on the Fermi surface. Thus the power of N is maximized
when fermions in all internal lines are on the Fermi surface. Such a Fermi
surface restriction is satisfied only in a subspace of reduced dimension in the
momentum space integral of any Feynman graph. Lee presented an algorithm
for computing the dimensionality of this restricted subspace: he demonstrated
that the power of 1=N was determined by the genus of the surface obtained after
drawing the graph in a double-line representation. So determining the leading
1=N terms in Eqs. 9.62 and 9.63 requires summation of the infinite set of planar
graphs. This problem remains unsolved, but the unexpected appearance of planar
graphs does suggest an important role for the AdS/CFT correspondence.

The structure of the loop expansion for the ‘two patch’ theory with fermions at
�k0, as written in Eq. 9.50, was studied in [65]. It was found that z ¼ 3 was
preserved upto three loops, but a small non-zero value for gw did appear at three
loop order. Also, the genus counting of powers of 1=N was found to break down,
with larger powers of N appearing in some three loop graphs.
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9.8.5 AdS/CFT Correspondence

There has been a great deal of recent work [75–93] investigating the structure of
Fermi surfaces using the AdS/CFT correspondence. The results obtained so far do
have features that resemble our results above for the Ising-nematic transition in
two dimensional metals. However, the precise connection remains obscure, and is
an important topic for future research. In particular, a microscopic understanding
of the field content of the CFT dual of the AdS theory is lacking, although there
has been interesting progress very recently [88, 92].

One of the main results of the analysis of [77, 78] is the general structure of the
fermion Green’s function obtained in a theory dual to a Reissner-Nordstrom black
hole in AdS4. This had the form

G�1ðk;xÞ ¼ �ixþ vFðjkj � kFÞ � c1x
h; ð9:64Þ

where the momentum k is now measured from the origin of momentum space (and
not from a Fermi surface), and the complex number c1 and exponent h are com-
putable functions of the ultraviolet scaling dimension of the fermion field. The
AdS theory only considers a circular Fermi surface, and for this geometry (after
appropriate rescaling)

vFðjkj � kFÞ ¼ vFðjqþ k0j � kFÞ � qx þ q2
y ; ð9:65Þ

now Eq. 9.64 is seen to be strikingly similar to Eq. 9.63. Liu et al. [77], and
Faulkner et al. [78] also argued that Eq. 9.64 was a generic property of the near
horizon geometry of the Reissner-Nordstrom black hole: the geometry changes
from AdS4 near the boundary to AdS2 
 R2 near the black hole horizon.

It is interesting to compare the structure of the critical theory in the AdS/CFT
framework to that found in the subsections above for the Ising-nematic transition
in a metal. The latter was described by an infinite set of 2 + 1 dimensional field
theories labelled by pairs of momenta on a one-dimensional Fermi surface i:e: a
S1=Z2 set of 2 + 1 dimensional field theories. In the low-energy limit, the AdS/CFT
approach yields [77, 78] a AdS2 
 R2 geometry: this can be interpreted as an
infinite set of chiral 1 + 1 dimensional theories labelled by a R2 set of two-
dimensional momenta k. It is notable, and perhaps significant, that both approa-
ches have an emergent dimension not found in the underlying degrees of freedom.
The Ising nematic theory began with a 2 + 1 dimensional Hamiltonian Sc þ S/ þ
Sc/ in Eqs. (9.41, 9.47, 9.48), and ended up with a S1=Z2 set of 2+1 dimensional
field theories. In AdS/CFT, there is the emergent radial direction representing
energy scale. These emergent dimensions imply redundant descriptions, and
require associated consistency conditions: we explored such consistency condi-
tions in Sect. 9.8.2, while in AdS/CFT the consistency conditions are Einstein’s
equations representing the renormalization group flow under changes of energy
scale. It would be interesting to see if fluctuations about the classical gravity theory
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yield corrections to the AdS2 
 R2 geometry which clarify the connection to our
Ising-nematic theory.
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