


Lecture Notes in Physics

For further volumes:
http://www.springer.com/series/5304

Founding Editors

W. Beiglböck
J. Ehlers
K. Hepp
H. Weidenmüller

Editorial Board

B.-G. Englert, Singapore
U. Frisch, Nice, France
F. Guinea, Madrid, Spain
P. Hänggi, Augsburg, Germany
W. Hillebrandt, Garching, Germany
M. Hjorth-Jensen, Oslo, Norway
R. A. L. Jones, Sheffield, UK
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Preface

This book is an edited version of the review talks given in the Fifth Aegean School
on the AdS/CFT correspondence, held in Adamas on Milos Island, Greece, from
21st to 26th of September 2009. The aim of this book is to present an advanced
multiauthored textbook which meets the needs of both the postgraduate students
and the young researchers, in the fields of Field Theory, String Theory, Gravity
and Condensed Matter Physics.

The AdS/CFT correspondence is a powerful tool in studying strongly coupled
phenomena in field theory using results from a weakly coupled gravity back-
ground. The principle of the AdS/CFT was developed within the string theory and
it was proved to be very useful in describing strongly coupled phenomena in gauge
theories like quark-gluon plasma and heavy ions collisions. Soon it was realized
that its applicability can be extended, in a more phenomenological approach, to
condensed matter systems and to systems described by fluid dynamics.

The selected contributions to this volume are aimed to describe the principle of
the AdS/CFT correspondence in its field theoretic formulation in string theory, its
applicability to holographic QCD and to heavy ions collisions and to give an
account of processes in fluid dynamics and of phenomena in condensed matter
physics, which can be studied with the use of this principle.

In the introductory part of the book the article by Christos Charmousis after
introducing the basic properties of the anti de Sitter spacetime, it discusses the
static black holes in this space, their basic properties and the novel topological
effects due to the presence of a negative cosmological constant. The anti-de Sitter
spacetime is a necessary ingredient to build up the gravity sector of the dual
conformal field theory. To extract information about the transport coefficients of
the boundary dual theory the properties of the background gravity sector should be
known, best described by perturbation theory. The article by George Siopsis
reviews the perturbations of black holes in asymptotically anti-de Sitter space and
it shows how the quasi-normal modes governing these perturbations can be cal-
culated analytically and it discusses the implications on the hydrodynamics of
gauge theory fluids per the AdS/CFT correspondence.
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The contribution by Philip Argyres introduces the basic concepts of the cor-
respondence and its foundation in string theory. He first reviews the properties of
d-dimensional conformal field theories and describes their relation to quantum
gravitational theories on (d + 1)-dimensional anti-de Sitter spacetimes. The
’t Hooft limit of U(N) Yang-Mills theory is reviewed and then it is described how
an appropriate limit of type IIB superstring theory with D3-branes can be used to
motivate a precise and computable correspondence between a 4-dimensional
conformal field theory and a quantum gravitational theory on AdS5 9 S5. He
finally discusses an extension of this construction in which probe branes on the
AdS spacetime are included.

The second part of the book deals with the holographic realization of the AdS/
CFT correspondence. The first article presented by Elias Kiritsis reviews the
applications of the correspondence to QCD. In particular it provides a detail
review of holographic models based on Einstein-dilaton gravity with a potential in
5 dimensions. Such theories, for a judicious choice of potential are very close to
the physics of large-N Yang-Mills theory both at zero and finite temperature. The
model can be used to calculate transport coefficients, like bulk viscosity, the drag
force jet quenching parameters, relevant for the physics of the quark-gluon plasma.

The next article by Romuald Janik in a pedagogical way presents the techniques
of the AdS/CFT correspondence which can be applied to the study of real time
dynamics of a strongly coupled plasma system. These methods are based on
solving gravitational Einstein’s equations on the string/gravity side of the AdS/
CFT correspondence. These AdS/CFT methods provide a fascinating arena
interrelating General Relativity phenomena with strongly coupled gauge theory
physics.

The contribution by Veronika Hubeny discusses the fluid/gravity correspon-
dence which originates from the AdS/CFT correspondence. This correspondence
constitutes a one-to-one map between configurations of a conformal fluid dynamics
in d dimensions and solutions to Einsteins equations in d + 1 dimensions.
In particular, the bulk solutions describe a regular generic, non-uniform and
dynamical black hole which at late times settles down to a stationary planar black
hole. The iterative construction of such solutions is indicated and the key physical
properties are extracted.

The article by Amos Yarom is on heavy ions collisions. This contribution
provides a review of two particular applications of the gauge-gravity duality to
heavy ion collisions. The first involves a study of the wake of a quark as it travels
through the quark gluon plasma and its possible connection to measurements of jet
correlations carried out at the relativistic heavy ion collider at Brookhaven. The
second section provides, via the gauge/gravity duality, a lower bound on the
entropy produced in a collision of two energetic distributions. This is then com-
pared to particle multiplicity in gold–gold collisions.

This part of the book ends with the article by Jiro Soda. In his article, he
explains how the AdS/CFT correspondence is related to the Randall–Sundrum
braneworld models. There are two different versions of these braneworlds models,
namely, the single-brane model and the two-brane model. In the case of the
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single-brane model, the relation between the geometrical and the AdS/CFT cor-
respondence approach using the gradient expansion method is revealed. In the case
of two-brane system, he shows that the AdS/CFT correspondence play an impor-
tant role in the sense that the low energy effective field theory can be described by
the conformally coupled scalar-tensor theory where the radion plays the role of the
scalar field.

The last part of the book consists of four articles and they discuss various
aspects of the application of the AdS/CFT correspondence to condensed matter
physics. In the first article Subir Sachdev reviews two classes of strong coupling
problems in condensed matter physics, and describes insights gained by applica-
tion of the AdS/CFT correspondence. The first class concerns non-zero tempera-
ture dynamics and transport in the vicinity of quantum critical points described by
relativistic field theories. The second class concerns symmetry breaking transitions
of two-dimensional systems in the presence of gapless electronic excitations at
isolated points or along lines (i.e. Fermi surfaces) in the Brillouin zone.

The next article by Gary Horowitz gives an introduction to the theory of
holographic superconductors. These are superconductors that have a dual gravi-
tational description using gauge/gravity duality. After introducing a suitable
gravitational theory, he discusses its properties in various regimes: the probe limit,
the effects of backreaction, the zero temperature limit, and the addition of mag-
netic fields. Using the gauge/gravity dictionary, these properties reproduce many
of the standard features of superconductors.

The string theory realization of holographic superconductors is given in the
next contribution by Matthias Kaminski. After reviewing the basic D-brane
physics and gauge/gravity methods at finite temperature he constructs the gravity
dual of a D3/D7-brane system yielding a superconducting or superfluid vector-
condensate. The corresponding gauge theory is 3 ? 1-dimensional N = 2 super-
symmetric Yang-Mills theory with SU(Nc) color and SU(2) favor symmetry and it
shows a second order phase transition typical to superconductivity. Condensates of
this nature are comparable to those recently found experimentally in p-wave
superconductors such as a ruthenate compound.

The final article is by Tassos Petkou who discusses some attempts to construct a
Kalb-Ramond superconductor. The article starts by explaining theholographic
implications of torsional degrees of freedom in the context of AdS4/CFT3,
emphasizing in particular the physical interpretation of the latter as carriers of the
non-trivial gravitational magnetic field. It presents a new exact 4-dimensional
gravitational background with torsion and argue that it corresponds to the holo-
graphic dual of a 3d system undergoing parity symmetry breaking. Finally, it
compares the new gravitational background with known wormhole solutions—
with and without cosmological constant—and argue that they can all be unified
under an intriguing Kalb-Ramond superconductivity framework.

The Fifth Aegean School and consequently this book, became possible with the
kind support of many people and organizations. The School was organized by the
Physics Department of the National Technical University of Athens, and supported
by the Physics Department of the University of Tennessee. We received financial
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support from the following sources and organizations and this is gratefully
acknowledged: Ministry of National Education and Religious Affairs, Alexander
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the staff of the Milos Conference Center ‘‘George Iliopoulos’’ for making available
to us all the excellent facilities of the Center and for helping us to run smoothly the
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Chapter 1
Introduction to Anti de Sitter Black Holes

Christos Charmousis

Abstract These introductory notes concern basic properties of negative constant
curvature spacetimes and their black holes. For comparison purposes we will begin
by reviewing flat spacetime, the spacetime diagram and two particular patches,
Milne and Rindler. We will then discuss anti de Sitter, its symmetries, basic
properties and the construction of the spacetime diagram. We then look into the
properties of anti de Sitter spacetime giving some global and local parametrisa-
tions. We will study the static black holes and then discuss their basic properties
and novel topological effects due to the presence of a negative cosmological
constant. We show using the classical Euclidean path integral approach their
thermodynamic properties in the canonical ensemble with a heat bath of constant
temperature. Finally we discuss, rather briefly, stationary and axially symmetric
spacetimes and some properties of the rotating black holes.

1.1 Spacetimes of Constant Curvature

1.1.1 Spaces of Maximal Symmetry and Constant Curvature

Let us consider in d dimensions Einstein’s equations with cosmological constant K,

GAB þ K gAB ¼ 0: ð1:1Þ

C. Charmousis (&)
LPT, Université de Paris-Sud, Bât 210, 91405, Orsay CEDEX, France
e-mail: Christos.Charmousis@th.u-psud.fr

C. Charmousis
LMPT, Parc de Grandmont, Université Francois Rabelais, Tours, France

E. Papantonopoulos (ed.), From Gravity to Thermal Gauge Theories:
The Ads/CFT Correspondence, Lecture Notes in Physics, 828,
DOI: 10.1007/978-3-642-04864-7_1, � Springer-Verlag Berlin Heidelberg 2011

3



Here, GAB is the Einstein tensor and capital Latin letters denote d dimensional
spacetime indices. The simplest of solutions to (1.1) we can consider are spaces
locally characterised by the geometric condition,

RABCD ¼
R

ðd � 1Þd ðgAC gBD � gAD gBCÞ; ð1:2Þ

where d is the spacetime dimension and R, Ricci scalar curvature. Using (1.1) we
see that,

GAB ¼ �R gAB
d � 2

2d
¼ �K gAB:

In other words R ¼ 2d
d�2 K are the, locally, constant curvature solutions of the

Einstein equations with cosmological constant. They are Einstein spaces which are
locally homogeneous. In particular for K ¼ 0 we have flat-Minkowski spacetime,
for K [ 0 positively curved, de Sitter (dS) spacetime and for K\0 anti de Sitter
spacetime (adS).

The above three spacetimes are of maximal symmetry and therefore by defini-
tion admit the maximal number of Killing vectors. Flat spacetime for example is
isometric under the group of Poincaré transformations, in other words d-dimen-
sional Lorentz coordinate transformations plus d translations. This is obvious in the
inertial Minkowskian system of coordinates. Therefore we have d þ dðd � 1Þ=2 ¼
dðd þ 1Þ=2 Killing vectors as generators of these symmetries all together. Since
this is the maximal number of Killing vectors (see Exercise 1) this spacetime is by
definition maximally symmetric. Flat spacetime is defined as the unique space of
zero Riemann curvature (and of trivial topology).

Before moving on to non zero constant curvature spacetimes it is useful to
classify the maximally symmetric n ¼ d � 1-spacelike sections. They are
respectively representing locally Euclidean, spherical and hyperbolic sections and
their line element can be written in a compact fashion as

dK2
n ¼

dv2

1� jv2
þ v2dX2

n�1; v� 0; ð1:3Þ

for normalised curvature j ¼ 0; 1;�1 respectively. The spherical line element
dX2

n�1 (n [ 1) is given by the iterative relation,

dX2
k ¼ dh2

k þ sin2ðhkÞdX2
k�1; . . .; dX1 ¼ dh1;

hk 2 ½0; p½; :::; h1 2 ½0; 2p½; k ¼ 2; :::; n� 1:
ð1:4Þ

Setting v ¼ sin / or v ¼ sinh / in (1.3) for j ¼ 1;�1 respectively gives us the
usual line element for the unit sphere and hyperboloid,

dX2
n ¼ d/2 þ sin2 /dX2

n�1; / 2 ½0;p� ð1:5Þ

4 C. Charmousis



dH2
n ¼ d2 þ sinh2 dX2

n�1; 2 ½0;þ1½: ð1:6Þ

We will be making extensive use of these parametrisations later on.

1.1.2 Flat Spacetime

1.1.2.1 Conformal Spacetime Diagram

To understand some of the basic properties of anti de Sitter space it is useful to first
make a rapid go through the case of flat space. This way we can introduce relevant
definitions in a more intuitive setting and compare properties. We turn our
attention to flat spacetime and in particular to its conformal spacetime diagram
(see for example [1]). One can write d dimensional Minkowski spacetime (1.3) as

ds2 ¼ �dt2 þ dr2 þ r2dX2
n�1; ð1:7Þ

in a spherical coordinate system (compare with (1.3)). To obtain the structure of
flat spacetime at infinity we will go to a spacetime metric which is conformally
equivalent,

~gABðxÞ ¼ X2ðxÞgAB;

to the initial one (1.7). The important point to realise is that the structure we obtain
at asymptotic infinity will be common to all asymptotically flat spacetimes. This is
due to the fact that a conformal transformation will shrink or stretch spacetime
lengths but will not alter the null cones and therefore asymptotic properties. The
main idea therefore is to use conformal transformations in order to bring
asymptotic infinities to finite values for the conformally transformed metric. This
is the central idea of Carter–Penrose diagrams.

To achieve this for flat spacetime we first pass to null retarded and advanced
coordinates, u ¼ t � r; v ¼ t þ r, where u or v ¼ constant correspond to null radial
geodesics of (1.7). Now we can bring coordinate infinity to finite values via the
coordinate transformation, tan ~U ¼ u; tan ~V ¼ v with � 1

2 p\~U; ~V\ 1
2 p. Go once

again to time-space like coordinates ~t ¼ ~U þ ~V ;~r ¼ ~V � ~U. Then (1.7) is con-
formally (and not coordinate) equivalent to

d~s2 ¼ �d~t2 þ d~r2 þ sin2 ~rdX2
n�1

with conformal factor, X ¼ 2 cosð~UÞ cosð~VÞ, i:e:; ds2 ¼ X2d~s2 (compare with
(1.3)). Its important to keep track of the coordinate ranges,

�p\~t þ ~r\p; �p\~t � ~r\p; ~r� 0: ð1:8Þ

1 Introduction to Anti de Sitter Black Holes 5



We can now draw the Carter–Penrose spacetime diagram for flat spacetime
(see Fig. 1.1). The domain defined by (1.8) is a triangle with its boundary defining
asymptotic infinity of flat spacetime. It will correspond to a diamond shaped region
of the Einstein cylinder (see [1]). In the diagram =� and =þ stand for null past
infinity and future null infinity, respectively, whereas i�; iþ are the endpoints of
timelike geodesics r ¼ constant. i0 is that of spacelike geodesics t ¼ constant.

A Cauchy surface is a spacelike surface intersecting all null and timelike
inextensible geodesics. It will inevitably touch i0 asymptotically. As its name
indicates a Cauchy surface is therefore a valid set of initial data (for our second
order Einstein field equations). A non-geodesic curve, such as xR ¼ constant, can
reach null infinity =þ if it is uniformly accelerated approaching the speed of light
as t! þ1. The tangent curve emanating from xR ¼ constant at =þ is the
acceleration horizon of the worldline xR ¼ constant. No events above this line can
be witnessed by the observer whose worldline is xR ¼ constant. These effects
concern Rindler and Milne spacetimes which we briefly turn to now.

1.1.2.2 Rindler and Milne Spacetimes

The line element for (spherical) Rindler spacetime is given by

ds2 ¼ �x2
Rdt2

R þ dx2
R þ x2

R cosh2 tRdX2
n�1; xR [ 0; ð1:9Þ

i

+

−

i

i

S+

S−

U

V

0
xR= const.Cauchy 

surface

timelike
geodesics

Rindler

Milne region

region

Fig. 1.1 Three dimensional
diagram and spacetime
diagram (right) of Minkowski
spacetime. The quarter
diamonds on the left are the
regions of Rindler and Milne
spacetimes
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and we immediately note that for xR ¼ 0 we have a singularity. Direct calculation
of the Riemann tensor for this spacetime gives us identically zero i.e., we have a
coordinate (and not curvature) singularity and furthermore Rindler spacetime is
just a coordinate patch of flat spacetime. Indeed the coordinate transformation
relating it to (1.7) is given by

tanh tR ¼
t

r
¼ sinð~V þ ~UÞ

sinð~V � ~UÞ
; xR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � t2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� tan ~U tan ~V
p

: ð1:10Þ

From the above we see that Rindler spacetime covers only part of the global
spacetime diagram since ~U ~V\0. The lines ~V ¼ 0 and ~U ¼ 0 corresponding to,
xR ¼ 0 and tR ! �1, are event horizons for the observer with coordinate time tR
and worldline xR ¼ constant. An observer with worldline xR ¼ constant is in
uniform acceleration a ¼ 1

xR
since his trajectory in the original inertial Minkowski

coordinates are hyperbolas (1.10). The inverse transformation reads,

t ¼ xR sinh tR; r ¼ xR cosh tR:

To get Milne spacetime we can consider,

xR ! itM ; tR ! xM þ
ip
2
:

This transformation, is one involving complex coordinates, however, it maps us
to a real metric which is a different portion of flat spacetime ð~U ~V [ 0Þ. It is Milne
spacetime,

ds2 ¼ �dt2
M þ t2

MdH2
n ; tM [ 0; ð1:11Þ

which is now a cosmological or time dependent type of metric. Notice it has no
initial big bang singularity. An observer of Milne spacetime has rather a cosmo-
logical horizon at tM ¼ 0 and has Hubble expansion rate H ¼ 1

tM
in proper time.

Note that (just like in de Sitter spacetime) there is no horizon problem in this
cosmological metric due to the fact that Milne spacetime is free of curvature
singularities.

1.1.3 Anti de Sitter Spacetime

1.1.3.1 Definition, Boundary and Isometries

Useful and elegant representations of de Sitter and anti de Sitter spacetimes are
obtained by embedding d dimensional hypersurfaces in d þ 1 dimensional flat
spacetime. Then de Sitter spacetime of curvature scale a is defined as the
hyperboloid,

1 Introduction to Anti de Sitter Black Holes 7



�X2
0 þ

X

d

i¼1

X2
i ¼ a2; ð1:12Þ

embedded in d þ 1 dimensional Minkowski spacetime. De Sitter space is topo-
logically < � Sd�1 and thus its spatial sections are compact (see also [1 or 2–4]).
We shall focus on adS space from now on.

AdS spacetime in turn is obtained by considering the hyperboloid,

X2
0 þ X2

d �
X

d�1

i¼1

X2
i ¼ l2 ð1:13Þ

of radius of curvature l [ 0 embedded in the d þ 1 dimensional spacetime,

ds2 ¼ �ðdX2
0 þ dX2

dÞ þ
X

d�1

i¼1

dX2
i ; ð1:14Þ

where note the double time coordinates. Clearly, any element of the Lorentz group
SOð2; d � 1Þ will leave (1.14) and (1.13) unchanged (by construction). Also we
see that translation invariance is broken by (1.13). Since SOð2; d � 1Þ has
dðd þ 1Þ=2 Killing generators just like flat spacetime, which is of maximal sym-
metry, SOð2; d � 1Þ is the precise isometry group of adS.

A second important point is that adS spacetime has a conformal boundary1 at
the hyperboloid infinity. To see this we rescale all coordinates by XA ! XAK and
take K!1. This limit defines the boundary as

X2
0 þ X2

d �
X

d�1

i¼1

X2
i ¼ 0; ð1:15Þ

XA ¼ XAK;K 2 <: ð1:16Þ

Suppose first that X0 6¼ 0: we can then divide by X0 and then rescale. We
therefore have that the boundary verifies,

�X2
d þ

X

d�1

i¼1

X2
i ¼ 1;

which is a hyperboloid in d � 1 dimensions. This is just d � 1 dimensional de Sitter
space according to (1.12). The topology is that of <� Sd�2 If X0 ¼ 0 on the other
hand, from (1.15) we have a sphere in d � 2 dimensions (times a point). Adding the
two spaces together the boundary is a maximally symmetric space S1 � Sd�2.

1 The boundary is called conformal for it admits not one but an equivalence class of metrics
which are related via a conformal transformation, gboundary

lm ¼ XCboundary
lm : This equivalence class

is manifest in the arbitrariness of K in (1.16).
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Since the adS isometry acts on this space the boundary preserves SOð1; d � 1Þ
symmetry. Note, however, that additionally we still have d extra transformations
(1.16) for the boundary metric, 1 dilatation and d � 1 special conformal transfor-
mations. The symmetry group is the conformal group Cð1; d � 2Þ that possesses,
Lorentz and angle preserving transformations. Due to this last property, which has
to do with the fact that we are dealing with an equivalence class of metrics, the
boundary of adS admits as many symmetries as the bulk adS space. In other words
the symmetry group of the boundary Cð1; d � 2Þ, is isomorphic to the symmetry
group of the bulk adS space, SOð2; d � 1Þ.

1.1.3.2 Parametrisations

Let us now construct line elements for adS space in d dimensions. A global
parametrisation is constructed as follows. Given the form of (1.13) we consider

two spheres X2
0 þ X2

d ¼ r2
1,
Pd�1

i¼1 X2
i ¼ r2

2 of radii r1; r2 such that

r2
1 � r2

2 ¼ l2: ð1:17Þ

This equation is solved setting r1 ¼ l coshðu=lÞ; r2 ¼ l sinhðu=lÞ where u 2
½0;þ1½. Now we just take the relevant parametrisations in polar spherical coor-
dinates, (1.3) for j ¼ 0, and replace them in the line element (1.14),

ds2 ¼ �ðdr2
1 þ r2

1d2Þ þ dr2
2 þ r2

2dX2
d�2

¼ �l2 cosh2ðu=lÞd2 þ du2 þ l2 sinh2ðu=lÞdX2
d�2: ð1:18Þ

The embedding in flat space is thus defined in coordinates, ðt; u; h1; :::; hd�2Þ as,

X0 ¼ l coshðu=lÞ sin; Xd ¼ l coshðu=lÞ cos;
X1 ¼ l sinhðu=lÞ cos h1; :::;Xd�1 ¼ l sinhðu=lÞ sin h1::: cos hd�2:

ð1:19Þ

The boundary lies at u!1. This is the global parametrisation of adS since all
points of the hyperboloid are taken into account exactly once. This metric is
solution to the Einstein equations with cosmological constant,

2K ¼ �ðd � 1Þðd � 2Þ
l2

: ð1:20Þ

Note that the timelike coordinate is an angular coordinate 2 ½�p; p½. This
signifies that adS is a spacetime with closed timelike curves! We can, however, get
around this; since the space is not simply connected (i.e. the time circle cannot be
topologically reduced to a point) we can unwrap the circle of the time coordinate
and take a new coordinate t 2 ½�1;þ1� with t � in each 2p-interval. This means
that we are effectively taking infinite copies of the hyperboloid. This is the uni-
versal covering of adS space,

ds2 ¼ �l2 cosh2ðu=lÞdt2 þ du2 þ l2 sinh2ðu=lÞdX2
d�2: ð1:21Þ

1 Introduction to Anti de Sitter Black Holes 9



This space is, however, not a Cauchy space (or in other words globally
hyperbolic). We can of course define a Cauchy surface but it represents no longer
sufficient initial data to describe the entire space of adS. Data on the boundary of
adS have to be also specified (see Fig. 1.2). We will come back to this briefly when
studying the spacetime diagram.

Also note that for the normal adapted coordinate u, ou is not a Killing vector for
adS. In adS space we miss a global spacelike Killing vector generating transla-
tional invariance in u (in de Sitter space we do not have a global timelike Killing
vector). Taking u ¼ u0 constant with u0 large we see that,

ds2� l2e
2u0

l �dt2 þ dX2
d�2

� �

;

that the geometry of the boundary is indeed topologically <� Sd�2 for the uni-
versal covering of adS. Had we considered we would have got, S1 � Sd�2.

Let us now consider a local parametrisation defined by

y ¼ l ln
Xd þ Xd�1

l
; ~t ¼ X0

Xd þ Xd�1
;

xi ¼
Xi

Xd þ Xd�1
; i ¼ 1; :::; d � 2: ð1:22Þ

Fig. 1.2 Spacetime diagram with timelike geodesics of adS spacetime (1.29). All past and future
timelike geodesics from s ¼ 0 focus in the past at point p and and in the future at point q. The
resulting ‘‘geodesic’’ triangular region covers only part of the timelike future of p. Similarly, the
Cauchy surface at t ¼ 0 covers only the triangular region in between p and q and their null past
and future, respectively. Any event beyond this triangle is not causally connected to s ¼ 0 unless
suitable reflective boundary conditions are imposed at the adS boundary. The accelerating
timelike curve C ‘‘escapes’’ from this bounded region and gets to see beyond, ending up at the
boundary of adS
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This parametrisation covers only half of the hyperboloid since we must have
Xd þ Xd�1 [ 0 in order for (1.22) to be well defined. In order to find the relevant
line element we must invert (1.22). Using (1.13) it is easy to show that,

Xd þ Xd�1 ¼ le
y
l ; Xd � Xd�1 ¼ le

�y
l 1þ e

2y
l

Pd�2
j¼1 x2

j �~t

l2

!

:

Taking the sum and the difference we then obtain the inverse transformation,

Xd�1 ¼ l sinh
y

l

� �

� l

2
e

y
lðx2 �~t2Þ;

X0 ¼ l~te
y
l ; Xi ¼ lxie

y
l ;

Xd ¼ l cosh
y

l

� �

þ l

2
e

y
lðx2 �~t2Þ; ð1:23Þ

where x2 ¼
Pd�2

j¼1 x2
j (compare with the global parametrisation (1.19)). Inserting

into (1.14) we now get the desired line element,

ds2 ¼ l2e
2y
l ð�d~t2 þ dx2Þ þ dy2; ð1:24Þ

with y 2 ½�1;þ1� measuring proper distance. Note that by rescaling the ð~t; xÞ
coordinates we can get rid of the l2 factor. Planar coordinates are obtained by
setting r ¼ le

y
l . We obtain,

ds2 ¼ r2ð�d~t2 þ dx2Þ þ l2dr2

r2
; ð1:25Þ

with r [ 0. We will use this chart for planar black holes. Again note from (1.22)
that planar coordinates cover only half of the hyperboloid. To cover all of adS we
take two portions r [ 0 and r\0. Note that the boundary is attained at r !1
whereas we have a horizon at r ¼ 0 due to the fact that we cannot cover all of adS
space. This is a degenerate (i.e. of zero temperature) Killing horizon associated to
the Poincaré flat slicing of adS space (we will come back to this in a moment).
Finally the Poincaré chart is obtained as the conformally flat version of adS by

setting z ¼ l2

r ,

ds2 ¼ l2

z2
ð�d~t2 þ dx2 þ dz2Þ; ð1:26Þ

where now the boundary is at z ¼ 0 for this chart.
Let us now find a proper time parametrisation of adS. We proceed as for the

global parametrisation modulo we now start by considering, X2
0 ¼ q2

1;X
2
d �

Pd�1
i¼1 X2

i ¼ q2
2 of radii q1; q2 such that

q2
1 þ q2

2 ¼ l2; ð1:27Þ
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which is solved setting q1 ¼ l sin s; q2 ¼ l cos s. We repeat the same procedure for

the hyperboloid X2
d �

Pd�1
i¼1 X2

i ¼ q2
2 with Xd ¼ q2 cosh and then we parametrise

Pd�1
i¼1 X2

i using (1.3) for j ¼ 0. All in all we have,

X0 ¼ sin s; Xd ¼ l cos s cosh;

X1 ¼ l cos s sinh cos h1; :::;Xd�1 ¼ l cos s sinh sin h1::: cos hd�1
ð1:28Þ

and replacing in the line element (1.14) we get,

ds2 ¼ �l2ds2 þ l2 cos2 sdH2
d�1: ð1:29Þ

This coordinate system is only defined for s 2� � 1
2 p; 1

2 p½. Therefore in this
patch �l	X0	 l (see Fig. 1.2).

1.1.3.3 Spacetime Diagram

Let us turn our attention now to the spacetime diagram for adS. Our starting point
is the global coordinate system (1.21). As before we write the metric in a con-
formally flat form and define novel coordinates so as to bring infinity of the radial
coordinate to a new finite coordinate value. Time, however, is either periodic in or
infinite in t. This amounts to solving dh ¼ dul cosh u

l and therefore considering the
coordinate transformation,

tan
h
2
þ p

4

� �

¼ e
u
l ; ð1:30Þ

with h 2 ½0; p2 ½. The line element is

ds2 ¼ l2

cos2 h
�dt2 þ dh2 þ sin2 hdX2

n�1

� �

ð1:31Þ

and it is conformally equivalent to a quarter of the Einstein cylinder (1.7). The
difference here is that h 2 ½0; p2� rather than h 2 ½0; p½ for flat space. Also note that
we cannot make a conformal transformation which brings time infinities to finite
values for then the conformal factor explodes. It is useful for comparison between
different charts to note that,

X0 ¼ l
sin t

cos h
;Xd ¼ l

cos t

cos q
;

X1 ¼ l tan q cos h1; :::;Xd�1 ¼ l tan q sin h1:: cos hn�1:

ð1:32Þ

Therefore the spacetime diagram consists of an infinite strip of length p=2 (for
the universal covering). The boundary resides at h ¼ p

2, the endpoint of both future
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and past null geodesics. For timelike geodesics we use the proper time slicing,
(1.29). Indeed comparing X0;Xd for (1.32) and (1.28) we get

sin t ¼ sin s cos h; cos t ¼ 1
tanh

sin h ð1:33Þ

for s and constant respectively (see Fig. 1.2).
Note that timelike infinity in the past i� or future iþ is infinite. As a conse-

quence there is no finite Cauchy spacelike surface at all in this space. This is
because although any constant t0 surface (t ¼ 0 or s ¼ 0 in Fig. 1.2), X say, covers
the whole of adS at instant t ¼ t0, however, we can find null surfaces that never
intersect X. This means that universal adS is not globally hyperbolic: Cauchy data
on arbitrary spacelike surface X, determines the system’s evolution only in a
region bounded by a null hypersurface called a Cauchy horizon for X (the trian-
gular region in Fig. 1.2). Physics on adS depends also on the boundary conditions
imposed at the boundary. Secondly all timelike geodesics emanating from t ¼ 0
focus at point q and diverge at p never reaching the boundary of adS. Unlike de
Sitter space which inflates spacetime events away from each other, anti-de-Sitter
never allows free-falling particles to escape to the boundary. There are actually
regions in the future of p which can never be reached by any geodesic as is shown
in the figure but only by accelerated observers as the curve C in (1.2). This is a
sign that the gravitational potential in adS will be a bounding potential for
gravitons or free particles.

Planar (or Poincaré) coordinates cover the region r� 0 which gives us the
triangular region in the spacetime diagram. Indeed we have (1.23) r ¼ Xd þ
Xd�1 ¼ l

cos h ðcos t þ sin h cos XÞ given the global patch (1.19) in coordinates (1.31)
(see Fig. 1.3) Note that the r ¼ const worldlines are now accelerating trajectories
and as a result we have the presence of an adS horizon at r�1. The Poincaré
patch is in this sense similar to the Rindler patch in flat spacetime.

Exercise 1 Show that for a Killing vector we have

rArBnC ¼ �RD
BCAnD:

Deduce that any Killing vector can be obtained by its values nA and rAnB at
any point P 2M. From Killing’s relation deduce therefore that there are at most
dðdþ1Þ

2 linearly independent Killing vectors in M and hence at most dðdþ1Þ
2 isom-

etries of the metric (for more details see [5]).

Exercise 2 The constant curvature slicings of adS are given by the following line
element,

ds2 ¼ �ðjþ r2

l2
Þdt2 þ dr2

jþ r2

l2
þ r2dK2

n�1: ð1:34Þ
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For j ¼ 0 we obtain the flat slicing already encountered (1.25). Show that the
spherical slicing is nothing but that of global coordinates (1.21). Find the coor-
dinate transformation relating the flat and spherical parametrisations. Find then the
region of validity of the Poincaré coordinates. Show that the hyperbolic slicing
gives a time dependent version of adS. Find its domain of validity.

Exercise 3 Show that the global coordinate system for de Sitter space is,

ds2 ¼ �dt2 þ a2 cosh2 t

a

� �

dX2
n: ð1:35Þ

Therefore there is no global timelike Killing vector in de Sitter space. Construct
the Poincaré slicing and the Carter–Penrose diagram for de-Sitter space (see for
example [1]).

i

−

+

adS Horizon
r=const. trajectories

Poincare Region r>0

Global coords

t= π/2

t= −π/2

adS boundary

i θ=0
θ=−π/2

.

.

Fig. 1.3 On the right a 3 dimensional representation of (universal) adS space with all but one
(symbolically X in the figure) of the angular coordinates fixed. The boundary of adS is
represented by the infinite cylinder, the bulk of adS space by its interior. The fundamental domain
is the cylinder bounded the horizontal cups t ¼ �p=2. The Poincaré region is bounded by the
tilted adS horizon caps r ¼ 0 and covers half of the fundamental domain for t 2 ½�p=2;p=2�. On
the left a projected 2 dimensional view of the Poincaré region [3]
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1.2 Static Black Holes

1.2.1 Basic Properties

Assume a d ¼ nþ 1 dimensional spacetime such that it has n� 1 dimensional
sections of constant curvature given by the line element (1.3). Then one can show,
for metrics of such symmetry, that the general solution of Einstein’s equations
with cosmological constant admits a locally timelike Killing vector. This is a
slightly generalised version of Birkhoff’ s theorem for vacuum spacetime (see for
example [6]). The solution reads (see [7, 8])

ds2 ¼ �VðrÞdt2 þ dr2

VðrÞ þ
r2

l2
dK2

n�1; n� 2; ð1:36Þ

where

VðrÞ ¼ j� l
rn�2
þ r2

l2
; ð1:37Þ

where the ðn�1Þ dimensional metric dK2
n�1 is given by (1.3) and the adS curvature

length l is related to the cosmological constant (1.20). Parameter l is an integration
constant which, as we will see, is associated to the black hole mass [9, 10]. For the
charged version of these black holes and their thermodynamics see [11].

Unlike de Sitter or flat spacetime, black holes in adS [12] will exist for all three
values of j ¼ 0; 1;�1. In other words black hole horizons do not have only
spherical topology in adS, we can have toroidal or even hyperbolic black holes.
The horizons have to undergo topological identifications so as to make the horizon
surface compact. For flat horizons, j ¼ 0, one can simply identify all flat direc-
tions in order to get a torus of n� 1 dimensions. One can identify flat directions
non-trivially, creating non orientable horizon surfaces such as the Klein bottle in
2 dimensions and so forth. For j ¼ �1 the construction is more complicated. Here
we give a rapid overview but the interested reader should consult [13–16]. Take a
locally H2 horizon (in a 4 dimensional hyperbolic black hole) and consider
a quotient space R ¼ H2=C. Here, H2 is modded out by its discrete subgroup
C made of discrete boosts of SOð2; 1Þ (which as we saw earlier belongs to the
symmetry group of H2). Then R turns out to be a compact space of genus g. The
compact space has 4g sides and the sum of its angles has to give an overall angle of
2p in order to avoid conical singularities (see Fig. 1.4). The fundamental domain
of R is a polygon whose edges are geodesics of H2. The action of C will identify
opposing edges. The simplest case free of conical singularities is a regular
hyperbolic octagon with opposite edges identified [13]. Often these black holes are
referred to as topological black holes [7, 14–17] due to the identifications one has
to undergo in order to compactify the horizon geometries. In fact, any Einstein
space of dimension n� 1 can form a horizon for an adS black hole [7].
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The solutions for j ¼ þ1 are sometimes called ‘‘Schwarzschild-adS’’ solutions
because they reduce to the standard Schwarzschild solution when the cosmological
constant vanishes, l!1, and to adS in global coordinates when l ¼ 0. In fact,
these are the genuine asymptotically adS solutions precisely because asymptotically
we recover the global patch of adS space. Moreover, their topology is IR2 � Sn�1,
and the horizon is the sphere Sn�1, like that of the Schwarzschild solution.

Given that these black holes are static their horizons, in this coordinate system,
are the zeros of the potential. We will denote their (largest root) event horizon by
r ¼ rh;VðrhÞ ¼ 0. This event horizon has typically a non-zero temperature which
can be calculated the standard Euclidean way: Indeed consider t! is. We have

ds2 ¼ VðrÞds2 þ dr2

VðrÞ þ r2dK2
n�1 ð1:38Þ

and the metric is then of Euclidean signature for r [ rh. This can be seen by
expanding around r ¼ rh,

ds2� 1
4

V
02
rh

� �

q2dh2 þ dq2 þ 
 
 
 ; ð1:39Þ

with radial isotropic (or cylindrical) coordinate q ¼
ffiffiffiffiffiffiffiffiffiffiffi

2ðr�rhÞ
jV 0rh
j

r

. Clearly in order to

evade a conical singularity at the origin of the axis, r ¼ rh, we must impose the
periodicity,

Fig. 1.4 The fundamental region depicting a regular hyperbolic octagon in the Poincaré

hyperbolic unit disk, D ¼ x 2 <2 : jxj\1
	 


with metric ds2 ¼ dx2þdy2

ð1�x2�y2Þ2. Notice how distances

get warped as we approach the boundary. Each depicted arc is orthogonal to the disks boundary.
Thus each polygon side is a geodesic segment in this space. The sum of angles gives 2p ensuring
the absence of conical singularities. The opposite edges of the polygon are identified via the
action of C. The thus constructed horizon surface is a compact space which is locally hyperbolic.
This figure is taken from [6] where the detailed construction can be found
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b ¼ 4p
jV 0ðrhÞj

: ð1:40Þ

As we will see, the Euclidean quantum field propagator, with the above periodic
boundary conditions, describes a canonical ensemble of states in thermal equi-
librium with a heat bath of temperature T ¼ b�1 [18] where

b ¼ 4pl2rh

nr2
h þ jðn� 2Þl2 : ð1:41Þ

This relation can be inverted to find

rh ¼
2pl2

nb
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j
nðn� 2Þb2

4p2l2

s2

4

3

5; ð1:42Þ

which allows us to take b as the parameter that determines the solution. For
j ¼ þ1 the minus branch for rh exists and corresponds to small black holes in adS.
Notice that in the limit where rh � l the j ¼ �1 classes of solutions approach the
planar black hole class j ¼ 0. This admits an interpretation in terms of an ‘‘infinite
volume’’ limit, in which the curvature radius of Sn�1 or Hn�1 is much larger than
the thermal wavelength of the system [19].

Setting l ¼ 0 we recover differing patches of adS space. For j ¼ 0 we obtain
the Poincaré patch which covers only part of adS. In this case r !1 is the
boundary of adS whereas r ¼ 0 is a horizon. This is a degenerate Killing horizon
meaning that there is no temperature associated with it (This is also true for the
j ¼ 1 case). These are then the ground states for their respective class of solutions
parametrised by l. In other words adS space is not associated with some tem-
perature or inversely we can construct any temperature adS state by suitably fixing
the period of Euclidean time. This is similar to flat spacetime and in contrast to de
Sitter spacetime. For j ¼ �1 however, we have a bifurcate Killing horizon at
rh ¼ l with r [ l. The hyperbolic slicing covers a yet smaller triangular portion of
adS but the horizon in question has now temperature, b ¼ 2pl. This patch is very
similar to the Rindler patch of flat spacetime. Therefore in this case it is not clear
what is the ground state of the system. We stress, however, that the l ¼ 0 case is
the only one which has no curvature singularity. The issue of the ground state is an
important question since when calculating the partition function it is important to
specify the background solution with which to annihilate divergences. AdS/CFT is
capital in resolving this and we will come back to this in a moment [9, 10].

Furthermore, for the j ¼ �1 class of black holes [8], and in contrast to the
j ¼ þ1; 0 classes, the zero temperature solution exists and is different from the
one that is isometric to adS. In fact, for j ¼ �1 there is a range of negative values
for l such that the solutions still possess regular horizons. When we are in such a
configuration we also have an inner horizon much like for a RN black hole. The
minimum values of l and rh that are compatible with cosmic censorship and for
which the horizon is degenerate are [7],
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lext ¼ �
2

n� 2
n� 2

n

� �n=2

ln�2; rext ¼
ffiffiffiffiffiffiffiffiffiffiffi

n� 2
n

r

l; ð1:43Þ

and,

lext ¼ �
l2

4
; rext ¼

l
ffiffiffi

2
p ; for n ¼ 4: ð1:44Þ

For these values of the parameters, the black hole is extremal with coinciding inner
and event horizons.

1.2.2 Thermodynamics

The thermodynamics of adS black holes have many interesting properties which
are rather different from their asymptotically flat or de Sitter cousins. We will
use here the path integral method developed by Hartle and Hawking [20] in
order to calculate the partition function and then, using standard thermodynamic
formulas, the basic thermodynamic quantities for adS black holes. Already as we
mentioned above, the j ¼ �1 case, presents subtleties due to the fact that the
background adS solution possesses a temperature at rh ¼ l whereas at the same
time there is an extremal black hole of zero temperature. Therefore it is not
clear, at least naively, which is the right background one should use. The adS/
CFT correspondence cures this ambiguity by providing through the boundary
CFT the correct geometric counter-terms. These are used to cancel out the
infinities and provide a background independent way to calculate the partition
function [9, 10, 21, 22]. For this presentation we will concentrate on pre-adS/
CFT method as a motivation and comparison with adS/CFT which will
be studied later on. We therefore concentrate here solely on the j ¼ 1 case
(for the conserved charges see [23, 24]) giving in particular an overview of the
Hawking–Page phase transition.

We shall consider a canonical ensemble with a constant temperature heat
bath. The system has thus fixed temperature but is allowed to exchange energy
with the heat bath. In asymptotically flat space although a black hole can be in
equilibrium with thermal radiation at some common constant temperature T0,
this equilibrium is unstable once gravitational corrections are taken into account.
In other words, if the mass of the black hole were to increase due to some
infalling matter then the temperature would decrease and the black hole would
continue to grow. This means that the canonical ensemble, where the black hole
is in thermal equilibrium with a heat bath of constant temperature, is ill defined
if gravitational energy flow is not held fixed. In adS space, however, the thermal
radiation remains confined close to the black hole since the gravitational
potential, V � r2=l2 increases for large r. This is true for any choice of origin
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since adS is a homogeneous space. Non-zero rest mass particles are confined and
prevented from escaping to infinity and one can consider a canonical ensemble
description for any given temperature T . Effectively, though volume of space is
infinite, adS provides a confining gravitational box. The canonical ensemble
partition function is defined via a path integral [25] that takes us from a given
configuration S; ðS; g;/Þ �! ðS0; g0;/0Þ to S0 via all possible paths. These paths
represent arbitrary matter fields and arbitrary metrics which are asymptotically
flowing to zero and adS, respectively, in periodic time s with period b (1.40).
Here / represents collectively matter fields and g Euclidean metrics.
Symbolically,

hg0;/0; S0jg;/; Si ¼
Z

Dð/; gÞ exp �I½/; g�ð Þ: ð1:45Þ

The path integral is taken in Euclidean signature in order to optimise regularity.
Indeed, this permits the amplitude to be an elliptic operator with an exponential
damping factor rather than an oscillating one. All defined above possible config-
urations are allowed but one can argue that regular classical solutions, i.e. saddle
points of the action, are going to give the dominant contributions to this integral
and in particular to the partition function Z ¼ e�I where,

Isol ¼ �
1

16pG

Z

ddx
ffiffiffi

g
p ðR� 2KÞ þ BT ¼ d � 1

8pG

Z

ddx
ffiffiffi

g
p ¼ d � 1

8pG
Vol ð1:46Þ

Here BT is the Gibbons–Hawking boundary term yielding a zero contribution for
adS (unlike flat space where it is the sole term giving a contribution). We have
immediately run into a problem: the volume integral resulting from this calculation
is clearly infinite, both for adS space and the black hole in question. We will
therefore here, have to regularise by some vacuum (background) solution behaving
similarly at asymptotic infinity to the black hole in question, so as to get rid of the
infinities. We choose the background as the ground state since it is a regular
solution satisfying the same boundary conditions for any temperature of the heat
bath. We resort to [26] considering an upper cut-off r\R, subtracting the two
volume integrals and then taking the limit R!1.

Let us take a closer look [19]. Our background in question is pure adS in global
coordinates. For adS and the black hole we have, respectively,

Vol1ðRÞ ¼
Z

b0

0

ds
Z

R

0

dr

Z

Sd�2

dXrd�2; ð1:47Þ

Vol2ðRÞ ¼
Z

b

0

ds
Z

R

rþ

dr

Z

Sd�2

dXrd�2: ð1:48Þ
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and note the differences in the bounds of integration for the two integrals.
Although the period b for the black hole is fixed by (1.41), for adS space it is
arbitrary, b0. We can therefore fix b0 so that the temperature of both configurations
is the same at r ¼ R. This is consistent with the fact that we are assuming a
common heat bath for the canonical ensemble at temperature T . This sets,

b0 ¼
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2

l2 �
l

Rd�3

q

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2

l2

q : ð1:49Þ

After evaluating the action difference and taking the limit we finally obtain,

�logðZÞ ¼ I ¼
VolðSd�2Þrd�2

þ ðl2 � r2
þÞ

4G½ðd � 1Þr2
þ þ ðd � 3Þl2� : ð1:50Þ

The action I we have calculated is essentially the difference in between the
saddle points present in the partition fuction. We see that I is positive for small rh

compared to l which means that the tunnelling probability from adS to a black hole
is exponentially suppressed. We have thus semi-classical stability. On the contrary
the sign is inverted for larger rh than l, which points to an instability, physically
favouring tunnelling to black holes. In between we can expect to find a phase
transition. Let us now pursue to find in a standard way the thermodynamic
quantities. The mean energy of thermal radiation is E ¼

P

states piEi, where pi ¼
1
Z e�bEi and therefore,

E ¼ � o

ob
logZ ¼

ðd � 2ÞVolðSd�2Þðl�2rd�1
þ � rd�3

þ Þ
16pG

¼ M; ð1:51Þ

where M ¼ ðd�2ÞVolðSd�2Þl
16pG is the gravitational mass of the black hole ([23, 24] for

j ¼ 1, with the general conserved charges for locally asymptotically adS space-
times given in [21]). The entropy S ¼

P

states pi log pi is given by

S ¼ bE � I ¼ 1
4G

rd�2
h VolðSd�2Þ ¼ A

4G
ð1:52Þ

where A is the volume of the horizon. Here we see how in adS the entropy-area
relation is verified. The heat capacity i.e., the amount of heat energy required to
increase the temperature by a unit quantity, is given by

C ¼ oE

oT
¼ oE

orh

orh

oT

¼ ðn� 1ÞVolðSd�2Þrn�3
h

8n
ðnr2

h

þ ðn� 2Þl2Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j
nðn� 2Þb2

4p2l2

s2

4

3

5; ð1:53Þ
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with C, the second derivative of the action with respect to temperature, gives
thermodynamic stability. The free energy is given by F ¼ E � TS ¼ IT

We can finally check the possible phases: first we note that rh is an increasing
function of the mass M. Now it is easy to check that 0	 b\bmax, where
bmax ¼ 2pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd�3Þðd�1Þ
p . Hence for temperatures T\Tmin ¼ 1

bmax
there is no black hole

and we have a pure (adS) phase of thermal radiation with negative free energy. For
T [ Tmin there are two black holes with M�\Mþ (1.42). The black hole with the
smaller mass has negative specific heat. It is therefore unstable to decay either to a
larger black hole or to pure thermal adS. The bigger black hole has on the contrary
positive specific heat and is thus thermodynamically stable. Furthermore for
Tmin\T\THP the free energy of the plus branch is less than pure thermal adS
which is energetically favoured. However, for T [ THP the situation is inversed
and the large black hole state has less free energy than thermal adS space. AdS
space can therefore tunnel towards this large black hole which becomes the
energetically preferred state.

1.3 Beyond Static Black Holes

Suppose we now reduce the symmetry of spacetime, requiring a stationary and
axially symmetric spacetime. As is often the case once symmetry is reduced the
field equations are no longer integrable and knowledge of the full spectrum of
solutions is lost. The presence of the cosmological constant presents a genuine
complication with respect to the vacuum case which remains integrable for the
stationary axially symmetric case (see [27–33] and references within).

Our aim in this section is to describe the difficulty associated to the presence of
K and to discuss briefly this open problem. Let us focus here mostly on the case of
d ¼ 4 dimensions to simplify the problem as much as possible. Consider a
spacetime with two killing vectors one which is locally timelike and one axial
which are no longer orthogonal to each other. In other words we have lost d � 2
maximal symmetry and we have traded stationarity for staticity. The general
metric anzatz reads,

ds2 ¼ e2ma�1=2ðdr2 þ dz2Þ þ ae�
X
2 du2 � ae

X
2ðdt þ AduÞ2; ð1:54Þ

where ot; ou are the Killing vectors in this adapted coordinate system. The metric
functions, m; a and X depend on r and z. Note that we can still undertake 2
dimensional conformal transformations in the ðr; zÞ plane without loss of gener-
ality. The field equations read,

Da ¼ �2Ka
1
2e2m; ð1:55Þ

r! 
 eXar!A
� �

¼ 0; ð1:56Þ
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1
a
r! 
 ar!X

� �

þ 2eXðr!AÞ2 ¼ 0; ð1:57Þ

Dmþ 1
4
ðr!XÞ2 � eXðr!AÞ2 ¼ Da

a
; ð1:58Þ

2m;u
a;u
a
� a;ff

a
¼ 1

8
ðX;fÞ2 �

1
2

eXA2
;f ðf$ �fÞ; ð1:59Þ

and correspond to a 4 dimensional spacetime with cosmological constant [16]. The
derivative operators are the usual flat 2 dimensional operators with respect to r and
z and f ¼ r þ iz.

This system is a slight generalisation of the Lewis–Papapetrou system for K ¼
0 (see for example [27–33]). In particular static and axially symmetric metrics
(usually called Weyl metrics) with K ¼ 0 are obtained setting A ¼ 0. The vacuum
case is long known to be integrable [27–33]. This is no longer true in the presence
of the cosmological constant and also in higher dimensions [34]. In higher
dimensions this is due to the appearance of novel curvature scales, much like the
cosmological constant, associated to the additional Killing vectors. However,
when all curvature scales are set to zero (all spatial Killing vectors have Uð1Þ
symmetry) the system is integrable for D [ 4 and has been studied extensively in
[35]. To picture how this works for vacuum and fails for K 6¼ 0 let us switch off in
(1.55–1.59) the curvature scale K and A (for simplicity). Note then from (1.55) that
a is a 2 dimensional harmonic function and we can use the 2 dimensional con-
formal transformations of the metric (1.54) to fix, without any loss of generality
a ¼ r. Then (1.57), is just Laplace’s equation, written in 3 dimensional cylindrical
coordinates, a linear ODE! Solving for X is in fact the same as solving for a
Newtonnian axial source! Given any Newtonian source we can find (and even
superpose) X, the corresponding Weyl potential for the static and axisymmetric
metric (1.54). In fact using this Newtonian analogy we can construct multi black
hole solutions (see for example [34, 36–38]). In essence once we have determined
the source corresponding to a black hole (a linear massive rod lying on the r ¼ 0
axis) we just superpose such sources on the symmetry axis. For a non-linear theory
as GR, however, this is not all. Using the non-linear (1.59) we solve for m obtaining
the full metric solution. Typically m picks up conical singularities on the axis r ¼ 0
which are interpreted as keeping the static equilibrium between attractive gravi-
tational sources. For a double black hole we have either two infinite cosmic strings
lying on r ¼ 0 pulling apart the black holes or a rigid strut in between the rods
keeping them apart [36–38]. The former corresponds to a conical defect,
mð0; zÞ[ 0, whereas the latter to a conical excess, mð0; zÞ\0.

Firstly go back to K 6¼ 0. Note now that the curvature scale K spoils this
integrability at step 1 given that we can no longer adequately fix the coordinate
system as before (1.55). Furthermore secondly, switching back on A takes us from
the static to the stationary case. Integrability for K ¼ 0 is still maintained largely
due to the fact that (1.56–1.57) combine together to form a complex equation, the
Ernst equation with respect to a complex potential E that has as its real part the
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Weyl potential and as its imaginary part a dual of the rotation A [39, 40]. It is
interesting that this mathematical property remains true even when K 6¼ 0. [41],
[42]. The Ernst equation replacing (1.56), (1.57) reads,

1
a
r! 
 ar!E�

� �

¼ ðr
!E�Þ2

ReðE�Þ
þ ReðE�Þ

Da
a
; ð1:60Þ

with E ¼ e
X
2aþ ix.

Let us now look at a specific example solution first found by Carter, which
generalises the Kerr metric in the presence of a cosmological constant. The
solution reads,

ds2
4 ¼ �

D
q2

dt � a sin2 h
Na

du

� �2

þDh sin2 h
q2

adt � r2 þ a2

Na
du

� �2

þ q2 dr2

D
þ dh2

Dh

� �

; ð1:61Þ

where k is the adS curvature scale, M is the black hole mass, a the angular
momentum parameter and

D ¼ ðr2 þ a2Þð1þ k2r2Þ � 2Mr; ð1:62Þ

Dh ¼ 1� a2k2 cos2 h; Na ¼ 1� a2k2; ð1:63Þ

q2 ¼ r2 þ a2 cos2 h; K ¼ �3k2: ð1:64Þ

Rotation is bounded since the solution remains valid for a2\k2 and is singular
at a2 ¼ k2. The exterior event horizon is the largest zero of DðrþÞ ¼ 0 and the
extremal limit is obtained when the inner and and outer horizons coincide. This
also sets the lower bound for the mass parameter, m�mext which is extremised for
a2 ¼ k2. Unlike the static black holes here the zeros of D do not correspond to the
position of the Killing horizon of ot. In fact the geometric region defined by
the null Killing generator of the horizon and the Killing horizon of ot defines the
ergoregion as in the case of Kerr spacetime. In this region we have superradiance
effects for certain wave modes due to the possible energy extraction of the black
hole with the reflected wave mode being of greater energy than the initial one
(Escattered [ Einitial). Now an intriguing possibility arises [43]. AdS, with its con-
fining gravitational potential, can act as an amplifier to this effect. This is true for
massive modes due to the confining potential not allowing them to escape to
infinity but shooting them back into the hole, and massless modes alike, due to the
reflecting boundary conditions imposed at the adS boundary. One expects through
this effect that the black hole will gradually loose its angular momentum [43].
Such an instability was found for small black holes in [44].

In 5 dimensions an interesting difference occurs [43] (for the generalization of
Carter’ s solution to higher dimensions see [45–48]) and this effect, can in some
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cases, be washed away. First there is an additional angular momentum parameter
due to the extra Killing vector. The null generator of the horizon reads, v ¼
ot þ X/o/ þ Xo where Xi is the rotational velocity associated to each angular
momentum parameter. If the hole is sufficiently slow rotating Xi\k with respect
to the curvature scale of adS, the vector v remains timelike all the way up to
infinity. In other words in adS matter can be in a co-rotating frame with the black
hole, something impossible for a Kerr spacetime where v is spacelike and an
external observer would have to move at a speed greater than light to keep up with
the black hole rotation. This effect also agrees with the rotating black hole ther-
modynamics in adS [43] where a similar phase transition occurs as for the static
case we studied earlier (see also [49] for a more general discussion including the
case of adS black rings and other assorted higher dimensional black objects).

Let us finally give the Ernst potential for the rotating black hole solution found
by Carter. We can transit in between the coordinate system of (1.61) and (1.54) by
setting

dr2

D
¼ dr2;

dh2

Dh
¼ dz2; ð1:65Þ

meaning that z and r are implicitly given as functions or h and r, respectively.
Using (1.54), this is all we need to know in order to identify the different
components:

a ¼ sin h
Na

ffiffiffiffiffiffiffiffiffi

DDh

p

; ð1:66Þ

A ¼ a sin2 hðD� Dhðr2 þ a2ÞÞ
Naða2Dh sin2 h� DÞ

; ð1:67Þ

eX ¼ N2
aðD� a2Dh sin2 hÞ2

DDhq4 sin2 h
; ð1:68Þ

e2m ¼ q2a1=2: ð1:69Þ

The electric Ernst potential for Carter’s solution is given by

E ¼ 1
q2

D� a2 sin2 hDh � 2ia cos hðk2q2r þMÞ
� �

: ð1:70Þ

If there is no rotation, a ¼ 0, the Ernst potential is real and corresponds to the
j ¼ 1 black holes we studied in the previous section. For M ¼ 0 we have pure adS
but the potential is still complex since the metric has non-zero angular momen-
tum.2 If K ¼ 0; E is the usual Ernst potential in the coordinates of (1.61).

2 This is quite unlike the situation for Kerr’s solution at asymptotic infinity.
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Chapter 2
Perturbations of Anti de Sitter Black
Holes

George Siopsis

Abstract I review perturbations of black holes in asymptotically anti de Sitter
space. I show how the quasi-normal modes governing these perturbations can be
calculated analytically and discuss the implications on the hydrodynamics of
gauge theory fluids per the AdS/CFT correspondence. I also discuss phase tran-
sitions of hairy black holes with hyperbolic horizons and the dual superconductors
emphasizing the analytical calculation of their properties.

2.1 Introduction

The perturbations of a black hole are governed by quasi-normal modes (QNMs).
The latter are typically obtained by solving a wave equation for small fluctuations
in the black hole background subject to the conditions that the flux be ingoing at
the horizon and outgoing at asymptotic infinity. These boundary conditions in
general lead to a discrete spectrum of complex frequencies whose imaginary part
determines the decay time of the small fluctuations

=x ¼ 1
s
: ð2:1Þ

There is a vast literature on quasi-normal modes and I make no attempt to review it
here. Instead, I concentrate on obtaining analytic expressions for QNMs of black
hole perturbations in asymptotically AdS space. One can rarely obtain analytic
expressions in closed form. Instead, I discuss techniques which allow one to
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calculate the spectrum perturbatively in an asymptotic regime (high or low
overtones). For high overtones, the frequencies at leading order are proportional to
the radius of the horizon. For low overtones, one in general obtains an additional
frequency which is inversely proportional to the horizon radius. Thus for large
black holes there is a gap between the lowest frequency and the rest of the
spectrum of QNMs. I pay special attention to the lowest frequencies because they
govern the behavior of the gauge theory fluid on the boundary according to the
AdS/CFT correspondence. The latter may have experimental consequences per-
taining to the formation of the quark-gluon plasma in heavy ion collisions.
Moreover, I discuss phase transitions to hairy black holes which correspond to a
dual superconducting phase. I concentrate on the case of black holes with a
hyperbolic horizon because their properties can be understood analytically.

In Sect. 2.2 I discuss scalar, gravitational and electromagnetic perturbations of
an AdS Schwarzschild black hole analytically calculating the QNM spectrum in
the high frequency regime. In Sect. 2.3 I calculate the QNM spectrum analytically
in the low frequency regime and discuss its relevance to the hyrdodynamic
behavior of the dual gauge theory fluid on the boundary. In Sect. 2.4 I introduce
hairy black holes and discuss their phase transition in the case of a hyperbolic
horizon which can be understood analytically. The dual gauge theory corresponds
to a superconductor whose properties can be calculated via electromagnetic per-
turbations. Finally, I conclude with Sect. 2.5.

2.2 Perturbations

In this section I discuss scalar, gravitational and electromagnetic perturbations of
an AdS Schwarzschild black hole in d dimensions analytically calculating the
QNM spectrum in the high frequency regime. Low overtones will be discussed in
the next section.

The metric of an AdS Schwarzschild black hole is

ds2 ¼ � r2

l2
þ K � 2l

rd�3

� �

dt2 þ dr2

r2

l2 þ K � 2l
rd�3

þ r2dR2
K;d�2: ð2:2Þ

I shall choose units so that the AdS radius l ¼ 1. The horizon radius and Hawking
temperature are, respectively,

2l ¼ rd�1
þ 1þ K

r2
þ

� �

; TH ¼
ðd � 1Þr2

þ þ Kðd � 3Þ
4prþ

: ð2:3Þ

The mass and entropy of the hole are, respectively,

M ¼ ðd � 2ÞðK þ r2
þÞ

rd�3
þ

16pG
VolðRK;d�2Þ; S ¼

rd�2
þ
4G

VolðRK;d�2Þ: ð2:4Þ
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The parameter K determines the curvature of the horizon and the boundary of AdS
space. For K ¼ 0;þ1;�1 we have, respectively, a flat (Rd�2), spherical (Sd�2) and
hyperbolic (Hd�2=C, topological black hole, where C is a discrete group of
isometries) horizon (boundary).

The harmonics on RK;d�2 satisfy

r2 þ k2
� �

T ¼ 0: ð2:5Þ

For K ¼ 0, k is the momentum; for K ¼ þ1, the eigenvalues are quantized,

k2 ¼ lðlþ d � 3Þ � d; ð2:6Þ

whereas for K ¼ �1,

k2 ¼ n2 þ d � 3
2

� �2

þd; ð2:7Þ

where n is discrete for non-trivial C. d ¼ 0; 1; 2 for scalar, vector, or tensor per-
turbations, respectively.

According to the AdS/CFT correspondence, QNMs of AdS black holes are
expected to correspond to perturbations of the dual Conformal Field Theory (CFT)
on the boundary. The establishment of such a correspondence is hindered by diffi-
culties in solving the wave equation governing the various types of perturbation. In
three dimensions one obtains a hypergeometric equation which leads to explicit
analytic expressions for the QNMs [1, 2]. In five dimensions one obtains a Heun
equation and a derivation of analytic expressions for QNMs is no longer possible. On
the other hand, numerical results exist in four, five and seven dimensions [3–5].

2.2.1 Scalar Perturbations

To find the asymptotic form of QNMs, we need to find an approximation to the
wave equation valid in the high frequency regime. In three dimensions the
resulting wave equation will be an exact equation (hypergeometric equation). In
five dimensions, I shall turn the Heun equation into a hypergeometric equation
which will lead to an analytic expression for the asymptotic form of QNM fre-
quencies in agreement with numerical results.

2.2.1.1 AdS3

In three dimensions the wave equation for a massless scalar field is

1
r
or r3 1�

r2
þ

r2

� �

orU

� �

� 1

r2 � r2
þ

o2
t Uþ

1
r2

o2
xU ¼ 0: ð2:8Þ
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Writing the wavefunction in the form

U ¼ eiðxt�pxÞWðyÞ; y ¼
r2
þ

r2
; ð2:9Þ

the wave function becomes

y2ðy� 1Þ ðy� 1ÞW0ð Þ0þx̂2 yWþ p̂2 yðy� 1ÞW ¼ 0 ð2:10Þ

to be solved in the interval 0\y\1, where

x̂ ¼ x
2rþ
¼ x

4pTH
; p̂ ¼ p

2rþ
¼ p

4pTH
: ð2:11Þ

For QNMs, we are interested in the solution

WðyÞ ¼ yð1� yÞix̂2F1ð1þ iðx̂þ p̂Þ; 1þ iðx̂� p̂Þ; 2; yÞ; ð2:12Þ

which vanishes at the boundary (y! 0). Near the horizon (y! 1), we obtain a
mixture of ingoing and outgoing waves,

W�Aþð1� yÞ�ix̂ þ A�ð1� yÞþix̂; A� ¼
Cð�2ix̂Þ

Cð1� iðx̂þ p̂ÞÞCð1� iðx̂� p̂ÞÞ :

Setting A� ¼ 0, we deduce the quasi-normal frequencies

x̂ ¼ �p̂� in; n ¼ 1; 2; . . . ð2:13Þ

which form a discrete spectrum of complex frequencies with =x̂\0.

2.2.1.2 AdS5

Restricting attention to the case of a large black hole, the massless scalar wave
equation reads

1
r3

orðr5 f ðrÞ orUÞ �
1

r2 f ðrÞ o
2
t U�

1
r2
r2U ¼ 0; f ðrÞ ¼ 1�

r4
þ

r4
: ð2:14Þ

Writing the solution in the form

U ¼ eiðxt�p�xÞWðyÞ; y ¼ r2

r2
þ

ð2:15Þ

the radial wave equation becomes

ðy2 � 1Þ yðy2 � 1ÞW0
� �0þ x̂2

4
y2 � p̂2

4
ðy2 � 1Þ

� �

W ¼ 0: ð2:16Þ

For QNMs, we are interested in the analytic solution which vanishes at the
boundary and behaves as an ingoing wave at the horizon. The wave equation
contains an additional (unphysical) singularity at y ¼ �1, at which the
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wavefunction behaves as W�ðyþ 1Þ�x̂=4. Isolating the behavior of the wave-
function near the singularities y ¼ �1,

WðyÞ ¼ ðy� 1Þ�ix̂=4ðyþ 1Þ�x̂=4F�ðyÞ; ð2:17Þ
we shall obtain two sets of modes with the same =x̂, but opposite <x̂.

F�ðyÞ satisfies the Heun equation

yðy2 � 1ÞF �00 þ 3� i� 1
2

x̂

� �

y2 � i� 1
2

x̂y� 1

� �

F0�

þ x̂
2
� ix̂

4
� 1� i

� �

y� ði� 1Þ x̂
4
� p̂2

4

� �

F� ¼ 0 ð2:18Þ

to be solved in a region in the complex y-plane containing jyj � 1 which includes
the physical regime r [ rþ.

For large x̂, the constant terms in the polynomial coefficients of F0 and F are
small compared with the other terms, therefore they may be dropped. The wave
equation may then be approximated by a hypergeometric equation

ðy2 � 1ÞF00� þ 3� i� 1
2

x̂

� �

y� i� 1
2

x̂

� �

F0� þ
x̂
2
� ix̂

4
� 1� i

� �

F� ¼ 0;

ð2:19Þ
in the asymptotic limit of large frequencies x̂. The acceptable solution is

F0ðxÞ ¼ 2F1ðaþ; a�; c; ðyþ 1Þ=2Þ; a� ¼ 1� i�1
4 x̂� 1; c ¼ 3

2� 1
2 x̂: ð2:20Þ

For proper behavior at the boundary (y!1), we demand that F be a polynomial,
which leads to the condition

aþ ¼ �n; n ¼ 1; 2; . . . ð2:21Þ

Indeed, it implies that F is a polynomial of order n, so as y!1, F� yn� y�aþ

and W� y�ix̂=4y�x̂=4y�aþ � y�2, as expected.
We deduce the quasi-normal frequencies [6]

x̂ ¼ x
4pTH

¼ 2nð�1� iÞ ð2:22Þ

in agreement with numerical results.
It is perhaps worth mentioning that these frequencies may also be deduced by a

simple monodromy argument [6]. Considering the monodromies around the
singularities, if the wavefunction has no singularities other than y ¼ �1, the
contour around y ¼ þ1 may be unobstructedly deformed into the contour around
y ¼ �1, which yields

Mð1ÞMð�1Þ ¼ 1: ð2:23Þ

Since the respective monodromies are Mð1Þ ¼ epx̂=2 and Mð�1Þ ¼ e�ipx̂=2,
using =x̂\0, we deduce x̂ ¼ 2nð�1� iÞ, in agreement with our result above.
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2.2.2 Gravitational Perturbations

Next I consider gravitational perturbations. For definiteness, I concentrate on the
case of spherical black holes (K ¼ þ1). I shall derive analytic expressions for
QNMs [7] including first-order corrections [8]. The results are in good agreement
with results of numerical analysis [9]. Extension to other forms of the horizon is
straightforward [10].

The radial wave equation for gravitational perturbations in the black-hole
background (2.2) can be cast into a Schrödinger-like form,

� d2W
dr2
�
þ V½rðr�Þ	W ¼ x2W ; ð2:24Þ

in terms of the tortoise coordinate defined by

dr�
dr
¼ 1

f ðrÞ : ð2:25Þ

The potential V for the various types of perturbation has been found by Ishibashi
and Kodama [11]. For tensor, vector and scalar perturbations, one obtains,
respectively,

VTðrÞ ¼ f ðrÞ ‘ð‘þ d � 3Þ
r2

þ ðd � 2Þðd � 4Þf ðrÞ
4r2

þ ðd � 2Þf 0ðrÞ
2r

� �

ð2:26Þ

VVðrÞ ¼ f ðrÞ ‘ð‘þ d � 3Þ
r2

þ ðd � 2Þðd � 4Þf ðrÞ
4r2

� rf 000ðrÞ
2ðd � 3Þ

� �

ð2:27Þ

VSðrÞ¼
f ðrÞ
4r2

‘ð‘þd�3Þ�ðd�2Þþðd�1Þðd�2Þl
rd�3

� 	�2



(

dðd�1Þ2ðd�2Þ3l2

R2r2d�8
�6ðd�1Þðd�2Þ2ðd�4Þ½‘ð‘þd�3Þ�ðd�2Þ	l

R2rd�5

þðd�4Þðd�6Þ½‘ð‘þd�3Þ�ðd�2Þ	2r2

R2
þ2ðd�1Þ2ðd�2Þ4l3

r3d�9

þ4ðd�1Þðd�2Þð2d2�11dþ18Þ½‘ð‘þd�3Þ�ðd�2Þ	l2

r2d�6

þðd�1Þ2ðd�2Þ2ðd�4Þðd�6Þl2

r2d�6

�6ðd�2Þðd�6Þ½‘ð‘þd�3Þ�ðd�2Þ	2l
rd�3

�6ðd�1Þðd�2Þ2ðd�4Þ½‘ð‘þd�3Þ�ðd�2Þ	l
rd�3

þ 4½‘ð‘þd�3Þ�ðd�2Þ	3þdðd�2Þ½‘ð‘þd�3Þ�ðd�2Þ	2
)

;
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Near the black hole singularity (r� 0),

VT ¼ �
1

4r2
�
þ AT

½�2ðd � 2Þl	
1

d�2

r
�d�1

d�2� þ � � � ; AT ¼
ðd � 3Þ2

2ð2d � 5Þ þ
‘ð‘þ d � 3Þ

d � 2
;

ð2:28Þ

VV ¼
3

4r2
�
þ AV

½�2ðd � 2Þl	
1

d�2

r
�d�1

d�2� þ � � � ; AV ¼
d2 � 8d þ 13
2ð2d � 15Þ þ

‘ð‘þ d � 3Þ
d � 2

ð2:29Þ

and

VS ¼ �
1

4r2
�
þ AS

½�2ðd � 2Þl	
1

d�2

r
�d�1

d�2� þ � � � ; ð2:30Þ

where

AS ¼
ð2d3 � 24d2 þ 94d � 116Þ

4ð2d � 5Þðd � 2Þ þ ðd
2 � 7d þ 14Þ½‘ð‘þ d � 3Þ � ðd � 2Þ	

ðd � 1Þðd � 2Þ2
:

ð2:31Þ

I have included only the terms which contribute to the order I am interested in. The
behavior of the potential near the origin may be summarized by

V ¼ j2 � 1
4r2
�
þ A r

�d�1
d�2� þ � � � ð2:32Þ

where j ¼ 0 (2) for scalar and tensor (vector) perturbations.
On the other hand, near the boundary (large r),

V ¼ j21 � 1

4ðr� � �r�Þ2
þ � � � ; �r� ¼

Z

1

0

dr

f ðrÞ ; ð2:33Þ

where j1 ¼ d � 1, d � 3 and d � 5 for tensor, vector and scalar perturbations,
respectively.

After rescaling the tortoise coordinate ðz ¼ xr�Þ, the wave equation to first
order becomes

H0 þ x�
d�3
d�2H1


 �

W ¼ 0; ð2:34Þ

where

H0 ¼
d2

dz2
� j2 � 1

4z2
� 1

� 	

; H1 ¼ �A z�
d�1
d�2: ð2:35Þ

By treating H1 as a perturbation, one may expand the wave function
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WðzÞ ¼ W0ðzÞ þ x�
d�3
d�2 W1ðzÞ þ � � � ð2:36Þ

and solve the wave equation perturbatively.
The zeroth-order wave equation,

H0W0ðzÞ ¼ 0; ð2:37Þ

may be solved in terms of Bessel functions,

W0ðzÞ ¼ A1
ffiffi

z
p

Jj
2
ðzÞ þ A2

ffiffi

z
p

Nj
2
ðzÞ: ð2:38Þ

For large z, it behaves as

W0ðzÞ�
ffiffiffi

2
p

r

A1 cosðz� aþÞ þ A2 sinðz� aþÞ½ 	

¼ 1
ffiffiffiffiffiffi

2p
p ðA1 � iA2Þe�iaþeiz þ 1

ffiffiffiffiffiffi

2p
p ðA1 þ iA2Þeþiaþe�iz;

where a� ¼ p
4 ð1� jÞ.

At the boundary (r !1), the wavefunction ought to vanish, therefore the
acceptable solution is

W0ðr�Þ ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xðr� � �r�Þ
p

Jj1
2
ðxðr� � �r�ÞÞ: ð2:39Þ

Indeed, W! 0 as r� ! �r�, as desired.
Asymptotically (large z), it behaves as

Wðr�Þ�
ffiffiffi

2
p

r

B cos xðr� � �r�Þ þ b½ 	; b ¼ p
4
ð1þ j1Þ: ð2:40Þ

This ought to be matched to the asymptotic form of the wavefunction in the
vicinity of the black-hole singularity along the Stokes line =z ¼ =ðxr�Þ ¼ 0. This
leads to a constraint on the coefficients A1;A2,

A1 tanðx�r� � b� aþÞ � A2 ¼ 0: ð2:41Þ

By imposing the boundary condition at the horizon

WðzÞ� eiz; z! �1; ð2:42Þ

one obtains a second constraint. To find it, one needs to analytically continue the
wavefunction near the black hole singularity (z ¼ 0) to negative values of z. A
rotation of z by �p corresponds to a rotation by � p

d�2 near the origin in the
complex r-plane. Using the known behavior of Bessel functions

Jmðe�ipzÞ ¼ e�ipmJmðzÞ; Nmðe�ipzÞ ¼ eipmNmðzÞ � 2i cos pm JmðzÞ; ð2:43Þ

for z\0 the wavefunction changes to
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W0ðzÞ ¼ e�ipðjþ1Þ=2 ffiffiffiffiffiffi

�z
p

A1 � ið1þ eipjÞA2
 �

Jj
2
ð�zÞ þ A2eipj Nj

2
ð�zÞ

n o

ð2:44Þ

whose asymptotic behavior is given by

W� e�ipðjþ1Þ=2

ffiffiffiffiffiffi

2p
p A1 � ið1þ 2ejpiÞA2

 �

e�iz þ e�ipðjþ1Þ=2

ffiffiffiffiffiffi

2p
p A1 � iA2½ 	 eiz: ð2:45Þ

Therefore one obtains a second constraint

A1 � ið1þ 2ejpiÞA2 ¼ 0: ð2:46Þ
The two constraints are compatible provided

1 �ið1þ 2ejpiÞ
tanðx�r� � b� aþÞ �1

�

�

�

�

�

�

�

�

¼ 0; ð2:47Þ

which yields the quasi-normal frequencies [7]

x�r� ¼
p
4
ð2þ jþ j1Þ � tan�1 i

1þ 2ejpi
þ np: ð2:48Þ

The first-order correction to the above asymptotic expression may be found by
standard perturbation theory [8]. To first order, the wave equation becomes

H0W1 þH1W0 ¼ 0: ð2:49Þ
The solution is

W1ðzÞ ¼
ffiffi

z
p

Nj
2
ðzÞ
Z

z

0

dz0
ffiffiffi

z0
p

Jj
2
ðz0ÞH1W0ðz0Þ
W

�
ffiffi

z
p

Jj
2
ðzÞ
Z

z

0

dz0
ffiffiffi

z0
p

Nj
2
ðz0ÞH1W0ðz0Þ
W : ð2:50Þ

where W ¼ 2=p is the Wronskian.
The wavefunction to first order reads

WðzÞ ¼ A1½1� bðzÞ	 � A2a2ðzÞf g
ffiffi

z
p

Jj
2
ðzÞ þ A2½1þ bðzÞ	 þ A1a1ðzÞf g

ffiffi

z
p

Nj
2
ðzÞ;

ð2:51Þ
where

a1ðzÞ ¼
pA
2

x�
d�3
d�2

Z

z

0

dz0 z0�
1

d�2Jj
2
ðz0ÞJj

2
ðz0Þ;

a2ðzÞ ¼
pA
2

x�
d�3
d�2

Z

z

0

dz0 z0�
1

d�2Nj
2
ðz0ÞNj

2
ðz0Þ;

bðzÞ ¼ pA
2

x�
d�3
d�2

Z

z

0

dz0 z0�
1

d�2Jj
2
ðz0ÞNj

2
ðz0Þ;

and A depends on the type of perturbation.
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Asymptotically, it behaves as

WðzÞ�
ffiffiffi

2
p

r

½A01 cosðz� aþÞ þ A02 sinðz� aþÞ	; ð2:52Þ

where

A01 ¼ ½1� �b	A1 � �a2A2; A02 ¼ ½1þ �b	A2 þ �a1A1 ð2:53Þ

and I introduced the notation

�a1 ¼ a1ð1Þ; �a2 ¼ a2ð1Þ; �b ¼ bð1Þ: ð2:54Þ

The first constraint is modified to

A01 tanðx�r� � b� aþÞ � A02 ¼ 0: ð2:55Þ

Explicitly,

½ð1� �bÞ tanðx�r� � b� aþÞ � �a1	A1 � ½1þ �bþ �a2 tanðx�r� � b� aþÞ	A2 ¼ 0:

ð2:56Þ

To find the second constraint to first order, one needs to approach the horizon. This
entails a rotation by �p in the z-plane. Using

a1ðe�ipzÞ ¼ e�ipd�3
d�2e�ipja1ðzÞ;

a2ðe�ipzÞ ¼ e�ipd�3
d�2 eipja2ðzÞ � 4 cos2 pj

2
a1ðzÞ � 2ið1þ eipjÞbðzÞ

� 	

;

bðe�ipzÞ ¼ e�ipd�3
d�2 bðzÞ � ið1þ e�ipjÞa1ðzÞ
 �

;

in the limit z! �1 one obtains

WðzÞ��ie�ijp=2B1 cosð�z� aþÞ � ieijp=2B2 sinð�z� aþÞ; ð2:57Þ

where

B1 ¼ A1 � A1e�ipd�3
d�2½�b� ið1þ e�ipjÞ�a1	

� A2e�ipd�3
d�2 eþipj�a2 � 4 cos2 pj

2
�a1 � 2ið1þ eþipjÞ�b

� 	

� ið1þ eipjÞ A2 þ A2e�ipd�3
d�2½�b� ið1þ e�ipjÞ�a1	 þ A1e�ipd�3

d�2e�ipj�a1

h i

B2 ¼ A2 þ A2e�ipd�3
d�2½�b� ið1þ e�ipjÞ�a1	 þ A1e�ipd�3

d�2e�ipj�a1:

Therefore the second constraint to first order reads
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½1� e�ipd�3
d�2ði�a1 þ �bÞ	A1 � ½ið1þ 2eipjÞ þ e�ipd�3

d�2ðð1þ eipjÞ�a1 þ eipj�a2 � i�bÞ	A2 ¼ 0

ð2:58Þ

Compatibility of the two first-order constraints yields

1þ �bþ �a2 tanðx�r� �b� aþÞ ið1þ 2eipjÞþ e�ipd�3
d�2ðð1þ eipjÞ�a1þ eipj�a2� i�bÞ

ð1� �bÞ tanðx�r� �b� aþÞ� �a1 1� e�ipd�3
d�2ði�a1þ �bÞ

�

�

�

�

�

�

�

�

¼ 0;

ð2:59Þ

leading to the first-order expression for quasi-normal frequencies,

x�r� ¼
p
4
ð2þ jþ j1Þ þ

1
2i

ln 2þ np

� 1
8

6i�b� 2ie�ipd�3
d�2�b� 9�a1 þ e�ipd�3

d�2�a1 þ �a2 � e�ipd�3
d�2�a2

n o

;

where

�a1 ¼
pA
4

np
2�r�

� ��d�3
d�2 Cð 1

d�2ÞCð
j
2þ d�3

2ðd�2ÞÞ
C2ð d�1

2ðd�2ÞÞCð
j
2þ d�1

2ðd�2ÞÞ

�a2 ¼ 1þ 2 cot
pðd � 3Þ
2ðd � 2Þ cot

p
2
�jþ d � 3

d � 2

� �� 	

�a1

�b ¼ � cot
pðd � 3Þ
2ðd � 2Þ �a1:

Thus the first-order correction is �Oðn�d�3
d�2Þ.

The above analytic results are in good agreement with numerical results [9] (see
Ref. [8] for a detailed comparison).

2.2.3 Electromagnetic Perturbations

The electromagnetic potential in four dimensions is

VEM ¼
‘ð‘þ 1Þ

r2
f ðrÞ: ð2:60Þ

Near the origin,

VEM ¼
j2 � 1

4r2
�
þ ‘ð‘þ 1Þr�3=2

�

2
ffiffiffiffiffiffiffiffiffi

�4l
p þ � � � ; ð2:61Þ
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where j ¼ 1. Therefore a vanishing potential to zeroth order is obtained. To cal-
culate the QNM spectrum one needs to include first-order corrections from the
outset. Working as with gravitational perturbations, one obtains the QNMs

x�r� ¼ np� i

4
ln nþ 1

2i
ln 2ð1þ iÞA

ffiffiffiffi

�r�
p� �

; A ¼ ‘ð‘þ 1Þ
2
ffiffiffiffiffiffiffiffiffi

�4l
p : ð2:62Þ

Notice that the first-order correction behaves as ln n, a fact which may be asso-
ciated with gauge invariance.

As with gravitational perturbations, the above analytic results are in good
agreement with numerical results [9] (see Ref. [8] for a detailed comparison).

2.3 Hydrodynamics

There is a correspondence between N ¼ 4 Super Yang–Mills (SYM) theory in the
large N limit and type-IIB string theory in AdS5 
 S5 (AdS/CFT correspondence).
In the low energy limit, string theory is reduced to classical supergravity and the
AdS/CFT correspondence allows one to calculate all gauge field-theory correlation
functions in the strong coupling limit leading to non-trivial predictions on the
behavior of gauge theory fluids. For example, the entropy of N ¼ 4 SYM theory
in the limit of large ’t Hooft coupling is precisely 3/4 its value in the zero coupling
limit.

The long-distance (low-frequency) behavior of any interacting theory at finite
temperature must be described by fluid mechanics (hydrodynamics). This leads to
a universality in physical properties because hydrodynamics implies very precise
constraints on correlation functions of conserved currents and the stress-energy
tensor. Their correlators are fixed once a few transport coefficients are known.

2.3.1 Vector Perturbations

I start with vector perturbations and work in the d-dimensional Schwarzschild
background (2.2) with K ¼ þ1 (spherical horizon and boundary). It is convenient
to introduce the coordinate [12]

u ¼ rþ
r


 �d�3
: ð2:63Þ

The wave equation becomes

�ðd � 3Þ2u
d�4
d�3 f̂ ðuÞ u

d�4
d�3 f̂ ðuÞW0


 �0
þV̂VðuÞW ¼ x̂2W; x̂ ¼ x

rþ
; ð2:64Þ
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where prime denotes differentiation with respect to u and I have defined

f̂ ðuÞ � f ðrÞ
r2
¼ 1� u

2
d�3 u� 1� u

r2
þ

� �

ð2:65Þ

V̂VðuÞ �
VV

r2
þ
¼ f̂ ðuÞ L̂2 þ ðd � 2Þðd � 4Þ

4
u�

2
d�3 f̂ ðuÞ

8

<

:

�
ðd � 1Þðd � 2Þ 1þ 1

r2
þ


 �

2
u

9

=

;

; ð2:66Þ

where L̂2 ¼ ‘ð‘þd�3Þ
r2
þ

.

First I consider the large black hole limit rþ ! 1 keeping x̂ and L̂ fixed
(small). Factoring out the behavior at the horizon (u ¼ 1)

W ¼ ð1� uÞ�i x̂
d�1FðuÞ; ð2:67Þ

the wave equation simplifies to

AF00 þ Bx̂F0 þ Cx̂;L̂F ¼ 0; ð2:68Þ

where

A ¼ �ðd � 3Þ2u
2d�8
d�3 ð1� u

d�1
d�3Þ

Bx̂ ¼ �ðd � 3Þ½d � 4� ð2d � 5Þud�1
d�3	ud�5

d�3 � 2ðd � 3Þ2 ix̂
d � 1

u
2d�8
d�3 ð1� u

d�1
d�3Þ

1� u

Cx̂;L̂ ¼ L̂2 þ ðd � 2Þ½d � 4� 3ðd � 2Þud�1
d�3	

4
u�

2
d�3

� x̂2

1� u
d�1
d�3

þ ðd � 3Þ2 x̂2

ðd � 1Þ2
u

2d�8
d�3 ð1� u

d�1
d�3Þ

ð1� uÞ2

� ðd � 3Þ ix̂
d � 1

½d � 4� ð2d � 5Þud�1
d�3	ud�5

d�3

1� u
� ðd � 3Þ2 ix̂

d � 1
u

2d�8
d�3 ð1� u

d�1
d�3Þ

ð1� uÞ2
:

One may solve this equation perturbatively by separating

ðH0 þH1ÞF ¼ 0; ð2:69Þ

where

H0F � AF00 þ B0F0 þ C0;0F

H1F � ðBx̂ � B0ÞF0 þ ðCx̂;L̂ � C0;0ÞF:

Expanding the wavefunction perturbatively,

F ¼ F0 þ F1 þ � � � ð2:70Þ
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at zeroth order the wave equation reads

H0F0 ¼ 0 ð2:71Þ
whose acceptable solution is

F0 ¼ u
d�2

2ðd�3Þ; ð2:72Þ

being regular at both the horizon (u ¼ 1) and the boundary (u ¼ 0, or W� r�
d�2

2 !
0 as r !1). The Wronskian is

W ¼ 1

u
d�4
d�3ð1� u

d�1
d�3Þ

ð2:73Þ

and another linearly independent solution is

�F0 ¼ F0

Z W
F2

0

; ð2:74Þ

which is unacceptable because it diverges at both the horizon (�F0� lnð1� uÞ for

u � 1) and the boundary (�F0� u�
d�4

2ðd�3Þ for u � 0, or W� r
d�4

2 !1 as r !1).
At first order the wave equation reads

H0F1 ¼ �H1F0 ð2:75Þ

whose solution may be written as

F1 ¼ F0

Z W
F2

0

Z

F0H1F0

AW : ð2:76Þ

The limits of the inner integral may be adjusted at will because this amounts to
adding an arbitrary amount of the unacceptable solution. To ensure regularity at
the horizon, choose one of the limits of integration at u ¼ 1 rendering the inte-
grand regular at the horizon. Then at the boundary (u ¼ 0),

F1 ¼ �F0

Z

1

0

F0H1F0

AW þ regular terms: ð2:77Þ

The coefficient of the singularity ought to vanish,

Z

1

0

F0H1F0

AW ¼ 0; ð2:78Þ

which yields a constraint on the parameters (dispersion relation)

a0L̂2 � ia1x̂� a2x̂
2 ¼ 0: ð2:79Þ
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After some algebra, one arrives at

a0 ¼
d � 3
d � 1

; a1 ¼ d � 3: ð2:80Þ

The coefficient a2 may also be found explicitly for each dimension d, but it cannot
be written as a function of d in closed form. It does not contribute to the dispersion
relation at lowest order. E.g., for d ¼ 4; 5, one obtains, respectively

a2 ¼
65

108
� 1

3
ln 3;

5
6
� 1

2
ln 2: ð2:81Þ

Equation (2.79) is quadratic in x̂ and has two solutions,

x̂0 � �i
L̂2

d � 1
; x̂1 � �i

d � 3
a2
þ i

L̂2

d � 1
: ð2:82Þ

In terms of the frequency x and the quantum number ‘,

x0 � �i
‘ð‘þ d � 3Þ
ðd � 1Þrþ

;
x1

rþ
� �i

d � 3
a2
þ i

‘ð‘þ d � 3Þ
ðd � 1Þr2

þ
: ð2:83Þ

The smaller of the two, x0, is inversely proportional to the radius of the horizon and is
not included in the asymptotic spectrum. The other solution, x1, is a crude estimate
of the first overtone in the asymptotic spectrum, nevertheless it shares two impor-
tant features with the asymptotic spectrum: it is proportional to rþ and its dependence
on ‘ is Oð1=r2

þÞ. The approximation may be improved by including higher-
order terms. This increases the degree of the polynomial in the dispersion relation
(2.79) whose roots then yield approximate values of more QNMs. This method
reproduces the asymptotic spectrum derived earlier albeit not in an efficient way.

To include finite size effects, I shall use perturbation theory (assuming 1=rþ is
small) and replace H1 by

H01 ¼ H1 þ
1

r2
þ
Hþ ð2:84Þ

where

HþF � AþF00 þ BþF0 þ CþF: ð2:85Þ

The coefficients may be easily deduced by collecting Oð1=r2
þÞ terms in the exact

wave equation. One obtains

Aþ ¼ �2ðd � 3Þ2u2ð1� uÞ

Bþ ¼ �ðd � 3Þu ðd � 3Þð2� 3uÞ � ðd � 1Þ 1� u

1� u
d�1
d�3

u
d�1
d�3

� 	

Cþ ¼
d � 2

2
d � 4� ð2d � 5Þu� ðd � 1Þ 1� u

1� u
d�1
d�3

u
d�1
d�3

� 	

:
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Interestingly, the zeroth order wavefunction F0 is an eigenfunction of Hþ,

HþF0 ¼ �ðd � 2ÞF0; ð2:86Þ

therefore the first-order finite-size effect is a simple shift of the angular momentum
operator

L̂2 ! L̂2 � d � 2
r2
þ

: ð2:87Þ

The QNMs of lowest frequency are modified to

x0 ¼ �i
‘ð‘þ d � 3Þ � ðd � 2Þ

ðd � 1Þrþ
þ Oð1=r2

þÞ: ð2:88Þ

For d ¼ 4; 5, we have respectively,

x0 ¼ �i
ð‘� 1Þð‘þ 2Þ

3rþ
; �i

ð‘þ 1Þ2 � 4
4rþ

ð2:89Þ

in agreement with numerical results [9, 13].
One deduces from (2.88) the maximum lifetime of the vector modes,

smax ¼
4p
d

TH : ð2:90Þ

In the case of a flat horizon (K ¼ 0),

x0 ¼ �i
k2

ðd � 1Þrþ
; ð2:91Þ

which leads to the diffusion constant

D ¼ 1
4pTH

: ð2:92Þ

In the case of a hyperbolic horizon (K ¼ �1), a similar calculation yields [10]

x0 ¼ �i
n2 þ ðd�1Þ2

4

ðd � 1Þrþ
; s ¼ 1

jx0j
\

16p

ðd � 1Þ2
TH : ð2:93Þ

It follows that for d ¼ 5, these modes live longer than their spherical counterparts
which is important for plasma behavior.
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2.3.2 Scalar Perturbations

Next I consider scalar perturbations which are calculationally more involved but
phenomenologically more important because their spectrum contains the lowest
frequencies and therefore the longest living modes. For a scalar perturbation we
ought to replace the potential V̂V by

V̂SðuÞ ¼
f̂ ðuÞ

4
m̂þ 1þ 1

r2
þ

� �

u

� 	�2


 dðd � 2Þ 1þ 1
r2
þ

� �2

u
2d�8
d�3 � 6ðd � 2Þðd � 4Þm̂ 1þ 1

r2
þ

� �

u
d�5
d�3

(

þ ðd � 4Þðd � 6Þm̂2u�
2

d�3 þ ðd � 2Þ2 1þ 1
r2
þ

� �3

u3

þ 2ð2d2 � 11d þ 18Þm̂ 1þ 1

r2
þ

� �2

u2

þ
ðd � 4Þðd � 6Þ 1þ 1

r2
þ


 �2

r2
þ

u2 � 3ðd � 2Þðd � 6Þm̂2 1þ 1

r2
þ

� �

u

�
6ðd � 2Þðd � 4Þm̂ 1þ 1

r2
þ


 �

r2
þ

uþ 2ðd � 1Þðd � 2Þm̂3 þ dðd � 2Þ m̂
2

r2
þ

9

=

;

;

ð2:94Þ

where m̂ ¼ 2 ‘ð‘þd�3Þ�ðd�2Þ
ðd�1Þðd�2Þr2

þ
¼ 2ð‘þd�2Þð‘�1Þ
ðd�1Þðd�2Þr2

þ
.

In the large black hole limit rþ ! 1 with m̂ fixed (small), the potential sim-
plifies to

V̂ð0ÞS ðuÞ ¼
1� u

d�1
d�3

4ðm̂þ uÞ2
�

dðd� 2Þu2d�8
d�3 � 6ðd� 2Þðd� 4Þm̂u

d�5
d�3:

þ ðd� 4Þðd� 6Þm̂2u�
2

d�3þ ðd� 2Þ2u3

þ2ð2d2� 11dþ 18Þm̂u2� 3ðd� 2Þðd� 6Þm̂2uþ 2ðd� 1Þðd� 2Þm̂3

�

:

ð2:95Þ
The wave equation has an additional singularity due to the double pole of the
scalar potential at u ¼ �m̂. It is desirable to factor out the behavior not only at the
horizon, but also at the boundary and the pole of the scalar potential,

W ¼ ð1� uÞ�i x̂
d�1

u
d�4

2ðd�3Þ

m̂þ u
FðuÞ: ð2:96Þ

Then the wave equation reads

2 Perturbations of Anti de Sitter Black Holes 43



AF00 þ Bx̂F0 þ Cx̂F ¼ 0; ð2:97Þ

where

A ¼� ðd � 3Þ2u
2d�8
d�3 ð1� u

d�1
d�3Þ

Bx̂ ¼� ðd � 3Þu2d�8
d�3 ð1� u

d�1
d�3Þ d � 4

u
� 2ðd � 3Þ

m̂þ u

� 	

� ðd � 3Þ½d � 4� ð2d � 5Þud�1
d�3	ud�5

d�3 � 2ðd � 3Þ2 ix̂
d � 1

u
2d�8
d�3 ð1� u

d�1
d�3Þ

1� u

Cx̂ ¼� u
2d�8
d�3 ð1� u

d�1
d�3Þ � ðd � 2Þðd � 4Þ

4u2
� ðd � 3Þðd � 4Þ

uðm̂þ uÞ þ 2ðd � 3Þ2

ðm̂þ uÞ2

" #

� d � 4� ð2d � 5Þud�1
d�3

n o

u
d�5
d�3 þ 2ðd � 3Þ ix̂

d � 1
u

2d�8
d�3 ð1� u

d�1
d�3Þ

1� u

" #


 d � 4
2u
� d � 3

m̂þ u

� 	

� ðd � 3Þ ix̂
d � 1

½d � 4� ð2d � 5Þud�1
d�3	ud�5

d�3

1� u

� ðd � 3Þ2 ix̂
d � 1

u
2d�8
d�3 ð1� u

d�1
d�3Þ

ð1� uÞ2
þ

V̂ð0ÞS ðuÞ � x̂2

1� u
d�1
d�3

þ ðd � 3Þ2 x̂2

ðd � 1Þ2
u

2d�8
d�3 ð1� u

d�1
d�3Þ

ð1� uÞ2

I shall define the zeroth-order wave equation as H0F0 ¼ 0, where

H0F � AF00 þ B0F0: ð2:98Þ

The acceptable zeroth-order solution is

F0ðuÞ ¼ 1; ð2:99Þ

which is plainly regular at all singular points (u ¼ 0; 1;�m̂). It corresponds to a

wavefunction vanishing at the boundary (W� r�
d�4

2 as r !1).
The Wronskian is

W ¼ m̂þ uð Þ2

u
2d�8
d�3 ð1� u

d�1
d�3Þ

ð2:100Þ

and an unacceptable solution is �F0 ¼
R

W. It can be written in terms of hyper-

geometric functions. For d� 6, it has a singularity at the boundary, �F0� u�
d�5
d�3 for

u � 0, or W� r
d�6

2 !1 as r !1. For d ¼ 5, the acceptable wavefunction
behaves as r�1=2 whereas the unacceptable one behaves as r�1=2 ln r. For d ¼ 4,
the roles of F0 and �F0 are reversed, however the results still valid because the
correct boundary condition at the boundary is a Robin boundary condition [12, 14].
Finally, note that �F0 is also singular (logarithmically) at the horizon (u ¼ 1).
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Working as in the case of vector modes, one arrives at the first-order constraint

Z 1

0

Cx̂
AW ¼ 0; ð2:101Þ

because H1F0 � ðBx̂ � B0ÞF00 þ Cx̂F0 ¼ Cx̂. This leads to the dispersion relation

a0 � a1ix̂� a2x̂
2 ¼ 0; ð2:102Þ

After some algebra, one obtains

a0 ¼
d � 1

2
1þ ðd � 2Þm̂
ð1þ m̂Þ2

; a1 ¼
d � 3

ð1þ m̂Þ2
; a2 ¼

1
m̂

1þ Oðm̂Þf g: ð2:103Þ

For small m̂, the quadratic equation has solutions

x̂�0 � �i
d � 3

2
m̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d � 1
2

m̂

r

ð2:104Þ

related to each other by x̂þ0 ¼ �x̂��0 , which is a general symmetry of the
spectrum.

Finite size effects at first order amount to a shift of the coefficient a0 in the
dispersion relation

a0 ! a0 þ
1

r2
þ

aþ ð2:105Þ

After some tedious but straightforward algebra, we obtain

aþ ¼
1
m̂

1þ Oðm̂Þf g: ð2:106Þ

The modified dispersion relation yields the modes

x̂�0 � �i
d � 3

2
m̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d � 1
2

m̂þ 1

r

: ð2:107Þ

In terms of the quantum number ‘,

x�0 � �iðd � 3Þ ‘ð‘þ d � 3Þ � ðd � 2Þ
ðd � 1Þðd � 2Þrþ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ð‘þ d � 3Þ
d � 2

r

; ð2:108Þ

in agreement with numerical results [13].
Notice that the imaginary part is inversely proportional to rþ, as in vector case.

In the scalar case, we also obtained a finite real part independent of rþ.
The maximum lifetime of a gravitational scalar mode is found from (2.108) to

be
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smax ¼
d � 2
ðd � 3Þd 4pTH : ð2:109Þ

In the case of a flat horizon (K ¼ 0), one obtains

x ¼ � k
ffiffiffiffiffiffiffiffiffiffiffi

d � 2
p � i

d � 3
ðd � 1Þðd � 2Þrþ

k2; ð2:110Þ

showing that the speed of sound is

v ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

d � 2
p ð2:111Þ

as expected for a CFT and the diffusion constant is

D ¼ d � 3
d � 2

1
4pTH

: ð2:112Þ

For a hyperbolic horizon (K ¼ �1), a similar calculation yields [10]

x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ ðd�3
2 Þ

2

d � 2

s

� i
ðd � 3Þ½n2 þ ðd�1Þ2

4 	
ðd � 1Þðd � 2Þrþ

; s\
4ðd � 2Þ

ðd � 3Þðd � 1Þ2
4pTH :

ð2:113Þ

In the physically relevant case d ¼ 5, evidently the K ¼ �1 scalar modes live
longer than any other modes, which is important for plasma behavior.

2.3.3 Tensor Perturbations

Finally, for completeness I discuss the case of tensor perturbations. Unlike the
other two cases of gravitational perturbations, the asymptotic spectrum of tensor
perturbations is the entire spectrum. To see this, note that in the large black hole
limit, the wave equation reads

� ðd � 3Þ2ðu2d�8
d�3 � u3ÞW00 � ðd � 3Þ½ðd � 4Þud�5

d�3 � ð2d � 5Þu2	W0

þ L̂2 þ dðd � 2Þ
4

u�
2

d�3 þ ðd � 2Þ2

4
u� x̂2

1� u
d�1
d�3

( )

W ¼ 0:

For the zeroth-order equation, we may set L̂ ¼ 0 ¼ x̂. The resulting equation may
be solved exactly. Two linearly independent solutions are (W ¼ F0 at zeroth order)

F0ðuÞ ¼ u
d�2

2ðd�3Þ; �F0ðuÞ ¼ u�
d�2

2ðd�3Þ ln 1� u
d�1
d�3


 �

: ð2:114Þ
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Neither behaves nicely at both ends (u ¼ 0; 1). Therefore both are unacceptable
which makes it impossible to build a perturbation theory to calculate small fre-
quencies which are inversely proportional to r0. This negative result is in agree-
ment with numerical results [9, 13] and in accordance with the AdS/CFT
correspondence. Indeed, there is no ansatz that can be built from tensor spherical
harmonics Tij satisfying the linearized hydrodynamic equations, because of the
conservation and tracelessness properties of Tij.

2.3.4 Hydrodynamics on the AdS Boundary

The above results in the bulk dictate the hydrodynamic behavior of the dual gauge
theory fluid on the conformal boundary. To see the correspondence, one needs to
understand the hydrodynamics in the linearized regime of a d � 1 dimensional
fluid with dissipative effects. The fluid lives on a space with metric

ds2
o ¼ �dt2 þ dR2

K;d�2: ð2:115Þ

The hydrodynamic equations are simply the requirement that the stress-energy
momentum tensor be conserved,

rlTlm ¼ 0: ð2:116Þ

As the duality corresponds to a conformal field theory one must also demand scale
invariance which implies

Tl
l ¼ 0; � ¼ ðd � 2Þp; f ¼ 0; ð2:117Þ

where �, p and f are the energy density, pressure and bulk viscosity of the fluid. In
the rest frame of the fluid, the velocity field is ul ¼ ð1; 0; 0; 0Þ and the pressure p0

is constant. Consider a perturbation

ul ¼ ð1; uiÞ; p ¼ p0 þ dp; ð2:118Þ

Applying the hydrodynamic equations, one obtains

ðd � 2Þotdpþ ðd � 1Þp0riu
i ¼ 0

ðd � 1Þp0otu
i þ oidp� g rjrju

i þ Kðd � 3Þui þ d � 4
d � 2

oiðrju
jÞ

� 	

¼ 0;
ð2:119Þ

where I used the curvature tensor Rij ¼ Kðd � 3Þgij.
For vector perturbations, consider the ansatz

dp ¼ 0; ui ¼ CV e�ixt
V

i; ð2:120Þ

where V
i is a vector harmonic.
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The hydrodynamic equations imply

�ixðd � 1Þp0 þ g k2
V � Kðd � 3Þ

 �

¼ 0: ð2:121Þ

Using

g
p0
¼ ðd � 2Þ g

s

S

M
¼ 4pg

s

rþ
K þ r2

þ
; ð2:122Þ

with x from the gravity dual, one obtains for large rþ,

g
s
¼ 1

4p
ð2:123Þ

which is the standard value of the ratio in gauge theory fluids with a gravity dual
[15].

For scalar perturbations, consider the ansatz

ui ¼ ASe�ixtoi
S; dp ¼ BSe�ixt

S; ð2:124Þ

where S is a scalar harmonic.
The hydrodynamic equations imply the system of equations

ðd � 2ÞixBS þ ðd � 1Þp0k2
SAS ¼ 0

BS þAS �ixðd � 1Þp0 � 2ðd � 3ÞKgþ 2gk2
S

d � 3
d � 2

� 	

¼ 0:
ð2:125Þ

The determinant must vanish,

ðd � 2Þix ðd � 1Þp0k2
S

1 �ixðd � 1Þp0 � 2ðd � 3ÞKgþ 2gk2
S

d�3
d�2

�

�

�

�

�

�

�

�

¼ 0: ð2:126Þ

Arguing along the same lines as for vector perturbations, we arrive at

g
s
¼ 1

4p
ð2:127Þ

which is the same result as the one obtained with vector QNMs.

2.3.5 Conformal Soliton Flow

The above results have been applied to the study of the quark-gluon plasma which
forms in heavy ion collisions (at the Relativistic Heavy Ion Collider (RHIC) and
elsewhere). In the case of a spherical horizon (K ¼ þ1), the boundary of space-
time is S3 
 R. This may be conformally mapped onto a flat Minkowski space.
Then by holographic renormalization, the AdS5-Schwarzschild black hole is dual
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to a spherical shell of plasma on the four-dimensional Minkowski space which first
contracts and then expands (conformal soliton flow) [13].

Quasi-normal modes govern the properties of this plasma with long-lived
modes (i.e., of small =x) having the most influence. For example, one obtains the
ratio

v2

d
¼ 1

6p
<x4 � 40x2 þ 72

x3 � 4x
sin

px
2
; ð2:128Þ

where v2 ¼ hcos 2/i evaluated at h ¼ p
2 (mid-rapidity) and averaged with respect

to the energy density at late times; d ¼ hy
2�x2i
hy2þx2i is the eccentricity at time t ¼ 0.

Numerically, v2
d ¼ 0:37, which compares well with the result from RHIC data,

v2
d � 0:323 [16].

Another observable is the thermalization time which is found to be

s ¼ 1
2j=xj �

1
8:6Tpeak

� 0:08 fm/c; Tpeak ¼ 300 MeV ð2:129Þ

not in agreement with the RHIC result s� 0:6 fm/c [17], but still encouragingly
small. For comparison, the corresponding result from perturbative QCD is
sJ2:5 fm/c [18, 19].

In the case of a hyperbolic horizon (topological black hole; K ¼ �1), one needs
to work with a conformal map from H

d�2=C
 R to a ðd � 1Þ-dimensional
Minkowski space. Finding an explicit form of this map for d ¼ 5 involves a
considerable amount of numerical work. However, it is important that one consider
this case because the modes of hyperbolic black holes live the longest [10].

2.4 Phase Transitions

In this section I discuss hairy black holes in asymptotically AdS space and their
duals. At low temperatures, an instability leads to symmetry breaking and the
formation of a dual superconductor. Electromagnetic perturbations of the black
hole determine the conductivity in the bulk. First I review the case of a flat horizon
(K ¼ 0) [20] and then I discuss the case of hyperbolic horizon (K ¼ �1) where
exact analytical results are obtained [21].

2.4.1 K 5 0

Consider a scalar W of mass m2 ¼ �2, which is above the Breitenlohner-Freedman
(BF) bound coupled to an electromagnetic potential Al in 3 + 1 dimensions. The
Lagrangian density is
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L ¼ � 1
2
olWolWþW2 � 1

4
FlmF

lm � q2

2
W2ðolh� AlÞðolh� AlÞ; ð2:130Þ

where h is a Stückelberg field. q is an arbitrary parameter which can be thought of as
the electric charge of the scalar field W (one may instead turn W into a complex scalar
field of charge q coupled to an electromagnetic potential in a standard fashion).

The Lagrangian density (2.130) is invariant under the Uð1Þ gauge transformation

Al ! Al þ olx; h! hþ x: ð2:131Þ

To fix the gauge, set

h ¼ 0: ð2:132Þ

Working in the probe limit (q!1) in which there is no back reaction to the
metric, assume that the fields propagate in the black hole background (2.2) with
d ¼ 4 and K ¼ 0. The radius of the horizon and Hawking temperature are,
respectively,

rþ ¼ ð2lÞ1=3; T ¼ 3rþ
4p

: ð2:133Þ

Assuming spherical symmetry and an electrostatic potential A0 ¼ UðrÞ, the field
equations yield two coupled non-linear differential equations [20]

W00 þ f 0

f
þ 2

r

� �

W0 þ U
f

� �2

Wþ 2
f
W ¼ 0

U00 þ 2
r
U0 � 2W2

f
U ¼ 0;

ð2:134Þ

where I set q ¼ 1 and

f ðrÞ ¼ r2 � 2l
r

ð2:135Þ

As r !1, one obtains the boundary behavior

W ¼ Wð1Þ

r
þWð2Þ

r2
þ � � � ; U ¼ Uð0Þ þ Uð1Þ

r
þ � � � ð2:136Þ

where one of the WðiÞ ¼ 0 (i ¼ 1; 2) for stability, Uð0Þ is the chemical potential and

Uð1Þ ¼ �q (charge density).
Below a critical temperature T0 a condensate forms,

hOii ¼
ffiffiffi

2
p

WðiÞ ð2:137Þ

of an operator of dimension D ¼ i.
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At T ¼ T0, one may set W ¼ 0 in the equation for U and deduce (using
UðrþÞ ¼ 0)

U ¼ q
1
rþ
� 1

r

� �

: ð2:138Þ

Then the equation for W turns into an eigenvalue problem which yields

T0 � 0:226
ffiffiffi

q
p

; 0:118
ffiffiffi

q
p

depending on the boundary conditions.
To study the properties of the dual CFT, apply an electromagnetic perturbation.

It obeys the wave equation

A00 þ f 0

f
A0 þ x2

f 2
� 2W2

f

� �

A ¼ 0; ð2:139Þ

to be solved subject to the boundary conditions that it be ingoing at the horizon,
A� f�ix=ð4pTÞ, and at the boundary (r !1),

A ¼ Að0Þ þ Að1Þ

r
þ � � � ð2:140Þ

Ohm’s law yields the conductivity

rðxÞ ¼ Að1Þ

ixAð0Þ
: ð2:141Þ

For T � T0, W ¼ 0, therefore A� eixr� where r� ¼
R

dr=f ðrÞ is the tortoise coor-
dinate. It follows that

rðxÞ ¼ 1: ð2:142Þ

At low T , for hO1i 6¼ 0, we have

W � hO1i
ffiffiffi

2
p

r

Since rþ ! 0, we obtain A� eix0r� , where x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � hO1i2
q

. Therefore, for

x\hO1i, <r ¼ 0, i.e., we obtain a superconductor with a gap.

2.4.2 K 5 21

Turning to the case of a hyperbolic horizon [21], choose a scalar W of mass
m2 ¼ �2, as before, but conformally coupled with potential
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VðWÞ ¼ 8pG

3
W4

The system has an exact solution (MTZ black hole [22])

ds2 ¼ �fMTZðrÞdt2 þ dr2

fMTZðrÞ
þ r2dr2; fMTZ ¼ r2 � 1þ r0

r


 �2
; ð2:143Þ

with

WðrÞ ¼ �
ffiffiffiffiffiffiffiffiffi

3
4pG

r

r0

r þ r0
; U ¼ 0: ð2:144Þ

The temperature, entropy and mass are, respectively,

T ¼ 1
p

rþ �
1
2

� �

; SMTZ ¼
r

4G
2rþ � 1ð Þ; MMTZ ¼

rrþ
4pG

rþ � 1ð Þ: ð2:145Þ

and the law of thermodynamics dM ¼ TdS holds.
At M ¼ 0, the MTZ black hole coincides with the topological black hole with

no hair (Eq. 2.2) with d ¼ 4, K ¼ �1),

ds2
AdS ¼ �ðr2 � 1Þdt2 þ dr2

r2 � 1
þ r2dR2 ð2:146Þ

and an enhanced scaling symmetry (pure AdS space) emerges at the critical
temperature

T0 ¼
1

2p
ð2:147Þ

At this point there is a phase transition which can be seen by calculating the
difference in free energies,

DF ¼ FTBH � FMTZ ¼ �
r

8pG
p3l3ðT � T0Þ3 þ � � � ; ð2:148Þ

showing that there is a third-order phase transition at T0.
Perturbative stability of the MTZ black hole has also been demonstrated for

T\T0 (M\0) [21]. Comparing with the flat case, note that here both Wð1Þ and

Wð2Þ are non-vanishing, yet the MTZ black hole is stable. However this is true only
if the mass is negative which is never the case with a flat horizon. Also, here the
condensation of the scalar field has a geometrical origin and is due entirely to its
coupling to gravity.

Moreover, the heat capacities in the normal and superconducting (corre-
sponding to the MTZ black hole) phases, respectively, as T ! 0 exhibit a power-
law behavior
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Cn �
pr

3
ffiffiffi

3
p

G
T; Cs �

pr
2G

T; ð2:149Þ

Since both Wð1Þ and Wð2Þ are non-vanishing, we have a multi-trace deformation of
the CFT [23] with a condensate

hO1i ¼
ffiffiffiffiffiffiffi

3p3

2G

r

ðT2
0 � T2Þ : ð2:150Þ

It should be noted that the deformation does not break the global Uð1Þ symmetry
because W is a real field (see Eq. 2.130).

To study the conductivity, apply an electromagnetic perturbation. It obeys the
wave equation (2.139) which may be solved using first-order perturbation theory in
q2,

A ¼ e�ixr� þ q2

2ix
ei�

Z

r

rþ

dr0W2ðr0Þe�2i� � q2

2ix
e�i�

Z

r

rþ

dr0W2ðr0Þ: ð2:151Þ

The conductivity to first order in q2 is

rðxÞ ¼ Að1Þ

ixAð0Þ
¼ 1� q2

ix

Z

1

rþ

drW2ðrÞe�2ixr� : ð2:152Þ

The superfluid density is found from

<½rðxÞ	 � pnsdðxÞ; =½rðxÞ	 � ns

x
; x! 0: ð2:153Þ

One obtains

ns ¼ q2
Z

1

rþ

drW2ðrÞ ¼ 3q2

4pG

r2
0

rþ þ r0
¼ a T0 � Tð Þ2; a ¼ 3pq2

4G
: ð2:154Þ

Near T ¼ 0,

nsð0Þ � nsðTÞ �
a
p

Td; d ¼ 1 ð2:155Þ

In Table 2.1, this analytic prediction is compared against exact numerical results
for various values of the charge q. Naturally, the agreement is best at small values
of q.

Table 2.1 The exponent d characterizing the low-temperature dependence of the superfluid
density ns

q=
ffiffiffiffi

G
p

1 3 5

d 1:025� 0:007 1:52� 0:03 1:78� 0:03
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The normal, non-superconducting, component of the DC conductivity is

nn ¼ lim
x!0
<½rðxÞ	 : ð2:156Þ

Therefore,

ln nn ¼ 2q2
Z

1

rþ

drW2ðrÞr�: ð2:157Þ

At low T ,

nn� Tc ; c ¼ 3q2

4pG
: ð2:158Þ

This analytic result and the prediction for the parameter a determining the critical
behavior of the superfluid density are compared against exact numerical results in
Table 2.2. Again, the agreement is best at small q.

Figures 2.1 and 2.2 show the frequency dependence of the real and imaginary,
respectively, parts of the conductivity. The real part of the conductivity becomes
smaller as we increase the charge q. Unfortunately, numerical instabilities also
increase and we have not been able to produce reliable numerical results above
q=

ffiffiffiffi

G
p
¼ 5. The superconductor appears to be gapless. However, a gap is likely to

Table 2.2 Numerical vs analytical results for the normal and superfluid densities

q=
ffiffiffiffi

G
p

cnumerical canalytical anumerical aanalytical

0.1 0.0020 0.0024 0.0225 0.024
0.5 0.0538 0.0597 0.552 0.589
1.0 0.187 0.239 2.196 2.356
2.0 0.684 0.955 8.678 9.425
3.0 1.325 2.15 20.35 21.21
5.0 2.522 5.97 52.90 58.90
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Fig. 2.1 The real part of the conductivity vs x for q=
ffiffiffiffi

G
p
¼ 2 (left) and q=

ffiffiffiffi

G
p
¼ 5 (right) and

T ¼ 0:0032; 0:032; 0:064: The lowest curve corresponds to the lowest temperature
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develop above a certain value of the charge q, as indicated by the trend in the
graphs as q increases.

2.5 Conclusion

The quasi-normal modes that govern perturbations of black holes in asymptotically
AdS space are a powerful tool in understanding the hydrodynamic behavior of a
gauge theory fluid at strong coupling. Here I focused on the analytic calculation of
QNMs. I discussed both high overtones and low frequencies. I applied the results
on gravitational perturbations to the understanding of the quark-gluon plasma
produced in heavy ion collisions at RHIC and the LHC. I also considered hairy
black holes whose electromagnetic perturbations allow one to analyze the con-
ductivity of the dual conformal field theory and the phase transition to a super-
conducting state. I reviewed the case of a flat horizon and compared the results
with those from black holes with hyperbolic horizon for which exact hairy solu-
tions have been constructed (MTZ black holes [22]). In all these cases, only the
low-lying QNMs were needed. It is unclear what physical role high overtones play.
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Chapter 3
Introduction to the AdS/CFT
Correspondence

Philip C. Argyres

Abstract We review the basic properties of d-dimensional conformal field the-
ories (CFTs) and describe their relation to quantum gravitational theories on
d þ 1-dimensional anti-de Sitter (AdSdþ1) space–times. We briefly review the
’t Hooft limit of UðNÞ Yang–Mills theory, and then describe how an appropriate
limit of type IIB superstring theory with D3-branes can be used to motivate a
precise and computable correspondence between a four-dimensional conformal
field theory and a quantum gravitational theory on AdS5 � S5. We then discuss an
extension of this construction in which probe branes on the AdS space–time are
included.

3.1 Introduction

These lectures review the foundations of the AdS/CFT correspondence, empha-
sizing the logical structure of the arguments that lead to this conjectured equiva-
lence of a (non-gravitational) quantum field theory with a higher-dimensional
theory of quantum gravity. Included are summaries of the basic ingredients in the
correspondence: d-dimensional conformal field theories, anti-de Sitter (AdS)
space–times, and the ’t Hooft limit of Yang–Mills (YM) theories. A basic
familiarity with string theory [1–3] is assumed. Although the framework for how
computations in the AdS/CFT correspondence can be carried out is set up, the
description of detailed and efficient computational techniques are left for other
lectures in this volume.
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E. Papantonopoulos (ed.), From Gravity to Thermal Gauge Theories:
The Ads/CFT Correspondence, Lecture Notes in Physics, 828,
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A basic introduction to the AdS/CFT correspondence of a descriptive nature,
together with an elementary introduction to string theory can be found in [4],
while [5] gives a descriptive survey of extensions and some applications of the
correspondence. Some more detailed reviews of the AdS/CFT correspon-
dence and modern developments of the formalism for carrying out computations
are [6–8].

3.2 CFTs

Scale-invariant quantum field theories are important as possible end-points of
renormalization group flows on the space of cut-off effective field theories.
Knowledge of them and their relevant deformations partially organizes the space
of quantum field theories; see Fig. 3.1. Scaling a local or quasi-local quantum field
theory to its infrared (IR), or long-wavelength, limit results in a local scale-
invariant field theory, by definition. Scaling to the ultraviolet (UV), or short
distances, need not always lead to a scale-invariant local field theory (e:g:, the non-
local ‘‘little string theories’’ are a known exception; see [9] for a review), but many
such examples are known, including all the asymptotically free and scale invariant
Yang–Mills theories in four space–time dimensions.

It is believed [10] that unitary scale-invariant theories are also conformally
invariant: the space–time symmetry group Poincaré�dilatations enlarges to the
conformal group of symmetries. In what follows we will concentrate on such
conformal field theories (CFTs) for which there exists a local, conserved, traceless
energy–momentum tensor TlmðxÞ

3.2.1 Conformal Algebra

The conformal group in d space–time dimensions is the group of reparameter-
izations which preserve the (flat) space–time metric, glm, up to a local scale factor,
where l; m 2 f1; . . .; dg. (We will work in Euclidean signature where convenient.)

UV CFT

IR CFTCFT

Fig. 3.1 Effective field theory RG flows from UV to IR CFTs, which appear as fixed points of
RG flows. CFTs can also govern the behavior of flows at intermediate scales, as shown
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For d [ 2 its generators are (Lorentz) rotations, Mlm, plus translations, dilatations,
and special conformal transformations which, respectively, act infinitesimally as

Pl : xl ! xl þ al;

D : xl ! ð1þ �Þxl;

Km : xl ! xl þ �mðglmx2 � 2xlxmÞ:
ð3:1Þ

They obey the algebra

½D;Kl� ¼ iKl; ½D;Pl� ¼ �iPl; ½Pl;Km� ¼ 2iMlm � 2iglmD; ð3:2Þ

where the other commutators either vanish or follow from rotational invariance.
By defining 2d þ 1 additional rotation generators from Pl; D, and Kl,

Ml dþ1 � ðKl � PlÞ=2; Ml dþ2 � ðKl þ PlÞ=2; Mdþ1 dþ2 � D; ð3:3Þ

we see that the d-dimensional conformal algebra is equivalent to SOðd; 2Þ in
Minkowski signature or SOðd þ 1; 1Þ in Euclidean signature.

3.2.2 Local Field Operators

As in usual quantum field theory, we classify local field operators OðxlÞ,
by their transformation properties of the little group SOðdÞ � SOð2Þ � SOðd; 2Þ
of the conformal group. In radial quantization in Euclidean signature, the SOðdÞ
irreducible representation is the ‘‘spin’’ of the field, while the charge under the
(infinite cover of the) SOð2Þ subgroup is the scaling dimension, D, of the field,

ODðkxlÞ ¼ k�DODðxlÞ , ½D;ODð0Þ� ¼ �iDODð0Þ ð3:4Þ

In radial quantization we foliate Euclidean Rd by ðd�1Þ-spheres, Sd�1, con-
centric at the origin, and define the Hilbert space of states of the CFT at a given
radial slice. The dilatation operator, D, then generates the evolution of states to
different radial slices. In this case there is a correspondence between local oper-
ators and states in the Hilbert space. First, we denote by j0i the conformal vacuum
state, defined to be the state annihilated by all the generators of the conformal
algebra. Then each local operator OðxlÞ defines a state at the origin (i.e., in the
zero radius limit of the slicing) by Oð0Þj0i. In a CFT, by scale invariance this is a
state on any size Sd�1 around the origin. Conversely any state on an Sd�1 created
by the action of operators at smaller radii can be written as a state created by a
local operator insertion at the origin by shrinking the sphere.
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Primary operators are those annihilated by the special conformal generators,
Kl, at the origin. By translating such operators to arbitrary position, it follows that
they obey the commutation relations

½Pl;ODðxÞ� ¼ iolODðxÞ;

½Mlm;ODðxÞ� ¼ iðxlom � xmolÞ þ RR
lm

h i

ODðxÞ;

½D;ODðxÞ� ¼ iðxlol � DÞODðxÞ;

½Kl;ODðxÞ� ¼ iðx2ol � 2xlxmom þ 2xlDÞ � 2xmRR
lm

h i

ODðxÞ:

ð3:5Þ

Here D 2 R is the conformal dimension of the primary operator, and RR
lm are the

representation matrices of the irreducible spin R of the primary which acts on its
spin indices (which we have suppressed).

Unitarity puts lower bounds on the conformal dimension, D, of primaries
depending on their spin, R; see [11] for a review. In particular, for a scalar primary,
D�ðd � 2Þ=2, with equality only for a free field.

Descendant operators are those made by acting on a primary operator with Pls.
All local operators are found in this way. Note that acting with Pl (Kl) increases
(decreases) the scaling dimension D of the operator by 1.

3.2.3 Conformal Correlators

Correlators of descendant fields can be derived from those of the primary fields by
taking derivatives. Conformal invariance determines the form of the correlators of
primaries in terms of their scaling dimensions and spins up to undetermined
functions of conformal invariants made up of the positions of the insertions of the
operators. For example, for scalar primaries, the 2-, 3-, and 4-point functions are
determined to have the forms

hOD1ðx1ÞOD2ðx2Þi ¼ d1;2

Y

2

i\j

jxijj�D;

hOD1ðx1ÞOD2ðx2ÞOD3ðx3Þi ¼ c123

Y

3

i\j

jxijjD�2Di�2Dj ;

hOD1ðx1ÞOD2ðx2ÞOD3ðx3ÞOD4ðx4Þi ¼ c1234ðu; vÞ
Y

4

i\j

jxijj
1
3D�Di�Dj :

ð3:6Þ

Here xij � xi � xj and D �
P

i Di are the sum of the dimensions of the operators in
the correlator. For the 2-point function the Kronecker d represents a choice of
normalization of the primary fields. For the 3-point function, the cijk are
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undetermined constant coefficients, while for the 4-point function c1234ðu; vÞ is an
undetermined function of the two independent conformally invariant cross-ratios

u � jx12jjx34j
jx13jjx24j

; v � jx14jjx23j
jx13jjx24j

: ð3:7Þ

The number of independent conformal invariants grows with the number of
insertion points, so higher-point correlators would appear to be even less con-
strained by conformal invariance.

However, the state-operator correspondence implies that the product of any two
conformal primaries can be rewritten as a linear combination of conformal oper-
ators inserted at a nearby point (as long as there are no other insertions in between
the two primaries). This expansion is called the operator product expansion (OPE)
of the two primaries. For example, for two scalar primaries it has the form

ODiðxÞODjð0Þ ¼
X

k

cijkjxj�Di�DjþDkðODkð0Þ þ descendantsÞ ð3:8Þ

where the sum on the right side is over all primaries and their descendants. The
coefficients appearing in front of the descendants of each primary are completely
determined by conformal invariance. It is also easy to see that the coefficients cijk

appearing in front of each primary on the right side are the same as the coefficients
appearing in the 3-point functions.

In principle all n-point correlators are determined by the OPEs, since any
n-point function can be replaced by an infinite sum of ðn�1Þ-point functions by
using the OPE for any two adjacent insertions. Thus, the CFT is completely
determined by the data fDi; spins; cijkg for all the primaries (labelled by i; j; k).
However, this data is highly constrained: unitarity and associativity (‘‘crossing
symmetry’’) of the OPEs imply many non-trivial relations among the CFT data, so
arbitrary lists of fDi; spins; cijkg will not in general define a consistent CFT.

Since the associativity constraints from the OPEs are notoriously difficult to
even state, let alone solve, we look for other approaches to constructing CFTs. The
AdS/CFT correspondence is such an alternative approach.

It is based on a different, useful way of encoding the correlation functions of a
CFT in terms of its partition function,

Z½/Di
� � exp

Z

ddx /Di
ðxÞODiðxÞ

� �� �

CFT

: ð3:9Þ

This functional of the classical sources /Di
ðxÞ associated with each field operator

in the CFT generates the correlation functions by taking derivatives of Z with
respect to the sources:

hOD1ðx1ÞOD2ðx2Þ. . .i ¼
onZ½/Di

�
o/D1
ðx1Þo/D2

ðx2Þ � � �

�

�

�

�

/Di
¼0

: ð3:10Þ
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The conformal invariance of the correlators is reflected in the conformal
invariance of Z½/D�. In particular, under scaling,
Z

ddx /DðxÞODðxÞ ¼
Z

ddðkxÞ/DðkxÞODðkxÞ ¼ kd�D
Z

ddx /DðkxÞODðxÞ;

ð3:11Þ

so Z is invariant under the following scaling transformation of the sources:

/DðxÞ ! kd�D/DðkxÞ: ð3:12Þ

In general, the sources transform in field representations of the conformal group
and Z½/D� is an invariant combination of these fields.

3.3 AdS/CFT Correspondence

We now introduce a trick to generate conformally invariant Z½/D�s. It is not
guaranteed to generate all CFTs, perhaps just a special subset of them. The idea is
to copy the way we write actions as invariants of field representations of the
Poincaré group, and apply it instead to the conformal group. Local field repre-
sentations of the Poincaré group are functions on Rd valued in finite dimensional
representations of the Lorentz group. Poincaré invariant actions are formed by
taking translationally invariant integrals over Rd of scalar combinations of fields
and their derivatives formed using the Minkowski (Euclidean) metric on Rd. The
key point in this familiar construction is that d-dimensional Minkowski (Euclid-
ean) space is the space whose isometry group is the d-dimensional Poincaré group.

3.3.1 AdS Geometry

To apply the same strategy to construct conformal invariant functions we want to
find the space whose isometry group is the d-dimensional conformal group
SOðd þ 1; 1Þ. (We will work in Euclidean signature for now.) Since SOðd þ 1; 1Þ
is the ðd þ 2Þ-dimensional Lorentz rotation group, flat Rdþ2 might work. But this
space has additional translational symmetries beyond the Lorentz rotations. So we
remove them by restricting to a ðdþ1Þ-dimensional ‘‘sphere’’ of radius R: this
preserves the rotational symmetry, but will leave no translational symmetries.

To realize SOðd þ 1; 1Þ, we really want a Lorentzian ‘‘sphere’’, that is, a
hyperboloid

X2 þ V2
þ � V2

� ¼ R2; ð3:13Þ

where X :¼ fX1; . . .;Xdg and V	 are Cartesian coordinates on Rdþ1;1 with metric
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ds2 ¼ dX2 þ dV2
þ � dV2

�: ð3:14Þ

The surface in Rdþ1;1 described by (3.13) is called the ðdþ1Þ-dimensional
(Euclidean) anti-de Sitter space, or AdSdþ1, of radius R.

Useful coordinates on this space are fx; zg defined by

X ¼ R

z
x; V	 ¼

1
2

zþ x2 	 R2

z

� �

; ð3:15Þ

which parametrizes solutions of the hyperboloid constraint (3.13) for x 2 Rd and
z [ 0. In these coordinates (called Poincaré patch coordinates), the AdS metric reads

ds2 ¼ R2

z2
ðdz2 þ dx2Þ: ð3:16Þ

Thus AdSdþ1 is conformal to the upper-half space z [ 0 of Rdþ1 see Fig. 3.2.
A closely related set of coordinates are x and r ¼ R2=z, in which

ds2 ¼ R2

r2
dr2 þ r2

R2
dx2: ð3:17Þ

r is often called the radial coordinate of the AdS. Here r ¼ 1 is the boundary of
AdS, and r ¼ 0 can be thought of as a horizon. Note that both are infinitely distant
from any finite r.

To go to Minkowski signature, one simply changes the d-dimensional
Euclidean factor dx2 in the AdS metric to

dx2 ! �dt2 þ dx2; ð3:18Þ

the d-dimensional Minkowski metric, where now on the right side
x ¼ ðx1; . . .; xd�1Þ. Minkowski-AdS has the interesting feature that though the
boundary is radially infinitely far from any interior point, it can be reached in finite
time by radial light-like signals.

We will work mostly in Euclidean-signature AdS from now on.

x

z

AdS

Fig. 3.2 AdSdþ1 is
conformal to the upper
half-space of Rdþ1. In these
coordinates, the boundary
of AdSdþ1 is conformal to Rd

at z ¼ 0
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3.3.2 Partition Function

Any generally covariant function of (tensor) fields /ðz; xÞ on AdS will be con-
formally invariant. But these fields live in one more dimension (z) than we want.
So we want to restrict to fields on a d-dimensional subspace of AdSdþ1 while
keeping general covariance in the full AdSdþ1:

The boundary, oAdS ’ fz¼0; xg, is special because the group of conformal
isometries acts on it in the same way as the conformal group acts in d-dimensional
space–time: translations acting as fz; xg ! fz; xþ ag, (Lorentz) rotations acting
as fz; xg ! fz;Kxg, and the scaling transformation fz; xg ! fkz; kxg are all
clearly isometries. (The special conformal transformations are more complicated,
but not hard to work out.) So boundary values of (tensor) functions on AdS,
limz!0 /ðz; xÞ, transform as representations of the conformal group on space–time.

We can therefore try to identify any generally covariant (on AdSdþ1) function
of the boundary values of fields as the partition function of a CFT (as a functional
of the boundary values of those fields).

A way of writing a general class of such functions is as a functional integral
over fields /ðz; xÞ on AdSdþ1 with a generally covariant measure keeping the
boundary values /ð0; xÞ
/ðxÞ fixed:

Z½/ðxÞ� ¼
Z

/jo¼/

D/ðz; xÞ e�S½/ðz;xÞ� ð3:19Þ

Then, e.g., Z is invariant under scale transformations taking scalar fields
/ðz; xÞ ! /ðkz; kxÞ. In particular, if / behaves near the boundary like

/ðz; xÞ
 zd�D/ðxÞ þ Oðzd�Dþ1Þ ð3:20Þ

it follows that the boundary value /ðxÞ transforms under scaling as

/ðxÞ ! kd�D/ðkxÞ: ð3:21Þ

Comparing to the scaling of sources in the CFT, (3.12), it follows that / � /D is
the source of a (scalar) primary operator OD of dimension D in the CFT. Similar
remarks apply to non-scalar fields as well.

Since Z is given as a path integral, it defines a quantum theory if the / fluctuate,
i.e., if they have kinetic terms. For example, if / is a free scalar on AdS so that it
has action

S½/� ¼ 1
2

Z

AdSdþ1

ffiffiffi

g
p

/ð�DlDl þ m2Þ/; ð3:22Þ

then it is not hard to check that its equation of motion has two independent
solutions scaling near the boundary as zd�D and zD, so that asymptotically

/ðz; xÞ
 zd�D/ðxÞ þ � � � þ zDuðxÞ þ � � � ð3:23Þ
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with

D ¼ d

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

2

� �2

þm2R2

s

: ð3:24Þ

and / is the source for OD in the CFT. Note that in the limit where the mass of the
scalar field goes to infinity—turning off the /-fluctuations—the dimension
Denergy–momentum of the associated CFT operator also goes to infinity.

Every CFT has a local tensor, TlmðxÞ, as a primary operator of dimension
D ¼ d. It is sourced by

R

hlmTlm, so hlm is the boundary value of a spin-2 field on
AdS. An argument similar to the one for the scalar field shows that D ¼ d for Tlm

implies that m2 ¼ 0 for hlm. So the AdS theory must have a dynamical, massless
spin-2 field: a graviton. This gives the basic AdS/CFT correspondence [12, 13].

The partition function of a quantum gravity theory on an asymptotically AdSdþ1

space–time as a function of the boundary values of its fields is the partition
function of a CFTd with the boundary values acting as sources for the primary
operators:

Zqu�grav½/� ¼ ZCFT½/� ð3:25Þ

It is worth pointing out a few simple but important properties or modifications of
the AdS/CFT correspondence as described so far.

• If we replace AdSdþ1 by AdSdþ1 � X with X any space without boundary, the
same procedure still works. The isometry group of X becomes a global internal
symmetry of the CFT.

• If we define a partition function by the same procedure but cut off the AdS at
z ¼ �[ 0 (i:e:, make z ¼ � the boundary), we then keep Poincaré invariance, but
break conformal invariance and locality on length scales smaller than �.

• For negative mass-squared in the range 0 [ m2 [ � d2=4R2, the associated
scaling dimension of the CFT primary is d [ D [ d=2, which is real and above
the unitarity bound. This corresponds to the fact [14, 15] that scalars with
negative mass-squared in this range are stable in AdS.

• For ðd þ 2Þ=2 [ D [ d=2, both the zd�D as well as the zD asymptotic solution
are normalizable, so we can use either as a source of an operator OD or Od�D,
respectively [16]. This allows us to describe operators with dimensions down to
the unitarity bound D ¼ ðd � 2Þ=2:

3.3.3 Semi-classical Gravity Limit

The result for the AdS/CFT correspondence summarized by (3.25) immediately
raises two questions: (1) Are there consistent quantum gravity theories in which
we can compute the left side of (3.25) and (2) What class of CFTs do they
correspond to?
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The only examples of quantum gravity theories whose consistency we have
confidence in are string theories. It is difficult to compute string theory partition
functions on AdS backgrounds, except in the weak-coupling, low-energy limit, in
which case it reduces to classical Einstein gravity coupled to other massless string
fields. So we now describe the correspondence in more detail in this limit.

A gravitational theory on AdSdþ1 has the low-energy effective action

1
j2

Z

ddþ1x
ffiffiffi

g
p Rþ a0R2 þ � � �
� 	

ð3:26Þ

whereR is the Ricci scalar curvature and the dots denote an infinite series of higher-
derivative terms built from curvature tensors and covariant derivatives (as well as
other possible fields). The relative sizes of these terms define the basic length scales
governing strength of gravity and size of higher-derivative terms, respectively:

Planck length: ‘p
 j
2

d�1; String length: ‘s

ffiffiffiffi

a0
p

: ð3:27Þ

In an AdS backgroundR
R�2, so gravity is weak and the higher-derivative terms
are small when

‘p � R; and ‘s � R: ð3:28Þ

In this limit the semi-classical (saddle-point) approximation to the gravitational
partition function is then

Zqu�grav½/� 

X

f/clg
e�SEinstein ½/cl� ð3:29Þ

where f/clg are the classical field values (including the space–time metric) found
by extremizing the action subject to the /jo ¼ / boundary conditions (including
the boundary condition that the space–time is asymptotically AdS), and the sum is
over all such extrema. SEinstein is the Einstein action, i.e., (3.26) with all the a0 and
higher-derivative terms dropped.

In this semi-classical gravity limit, there is now a concrete calculational pro-
cedure for extracting correlation functions of the associated CFT via the AdS/CFT
correspondence.

1. Find the dominant saddle point.
2. Each ðdþ1Þ-dimensional (or ‘‘bulk’’) field, /, obeys a second order partial

differential equation of motion on the (asymptotically) AdS space, with near-
boundary asymptotic expansion

/ðz; xÞ
 zd�D/ðxÞ þ � � � þ zDuðxÞ þ � � � ð3:30Þ

3. / � /D is associated with the source for an OD CFT primary.
4. With boundary conditions fixing /ðxÞ, then uðxÞ is determined by the equa-

tions of motion, so / ¼ /½/�.
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5. Evaluate SEinstein on these solutions to get, by the AdS/CFT correspondence
(3.25),

SEinstein½/� ¼ � ln ZCFT½/�
� 	

� �WCFT½/�: ð3:31Þ

6. Then the ‘‘connected’’ correlators in the CFT are

OD1ðx1Þ � � � ODnðxnÞh iCFT�conn ¼ �
onSEinstein½f/g�

o/D1
ðx1Þ � � � o/Dn

ðxnÞ

�

�

�

�

�

/¼0

: ð3:32Þ

To actually compute SEinstein½/� and its derivatives, one must regulate (by
cutting off consistently at z ¼ �[ 0), renormalize (by adding local counterterms
on the z ¼ � boundary) to preserve conformal invariance, then take the �! 0 limit
to extract finite answers. See for example [8]. As an example of the kind of results
that one finds, for the simplest case of a free massive scalar plus �ðg=4Þ/4

interaction term, with some work one finds [8]

hODðxÞe
R

/DODiCFT ¼ ð2D� dÞuðxÞ

hODðx1ÞODðx2ÞiCFT ¼ ð2D� dÞ CðDÞ
pd=2CðD� d

2Þ
1

jx12j2D

hODðx1ÞODðx2ÞODðx3Þi ¼ 0

hODðx1ÞODðx2ÞODðx3ÞODðx4Þi ¼ . . .explicit but complicated. . .

Many other more difficult examples have been worked out in the literature, notably
correlators of the energy momentum tensor and of global conserved currents in the
CFT.

3.4 Large N

We now briefly review a few salient points about the large-N expansion of gauge
theories. These will be important in the precise form of the AdS/CFT corre-
spondence that will be discussed in the next section.

Consider a UðNÞ Yang–Mills theory in the ’t Hooft limit, i.e., take N !1
keeping k � g2

ymN fixed. The UðNÞ YM action has the general form

L
 N

k
tr d/d/þ /2d/þ /4� 	

; ð3:33Þ

for fields / in the adjoint representation of the gauge group. / here represents
either the vector boson or an adjoint scalar superpartner of the vector boson in a
super–Yang–Mills (SYM) theory. In the ’t Hooft limit the growth of the action
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with N makes the theory look semi-classical, i.e., dominated by the saddle point
contributions.

We can write the adjoint indices as /i
j with i; j ¼ 1; . . .;N, corresponding to the

N � N decomposition of the adjoint representation. Then h/i
j/

k
‘i / di

‘d
j
k, so we can

notate propagators in Feynman diagrams as oppositely oriented double lines with
each line tracking the fundamental or antifundamental indices, see Fig. 3.3.
Associate to each interaction a vertex, to each propagator an edge, and to each loop
a face, to form a triangulation of some oriented surface. Denote the number of
vertices, edges, and faces, by E; V , and F, respectively.

Since each vertex has a factor of N=k, each propagator k=N, and each face N
(from the associated trace over the fundamental indices), a given diagram has
weight NV�EþFkE�V . Since V � E þ F ¼ 2� 2g, where g is the genus of the
surface, and extending to diagrams with n external propagators (with appropriate
normalization), we find that connected correlators have the general form

hO1 � � � Oni

X

1

g¼0

N2�2g�nFg;nðkÞ: ð3:34Þ

So correlators are dominated by the g ¼ 0, or ‘‘planar’’, diagrams in the ’t Hooft
limit.

In this limit, 2-point functions 
 N0, 3-point functions 
 N�1, etc., so 1=N
acts like an effective coupling constant in large-N YM (in addition to the ’t Hooft
coupling k).

3.5 D3-Branes and AdS5� S5

Now we will use a specific quantum gravity theory—string theory—to derive a
specific example of the AdS/CFT correspondence. In particular we will derive the
Maldacena conjecture [17]: type IIB string on AdS5 � S5 is equivalent to four-
dimensional N ¼ 4 supersymmetric SU(N) YM. The argument can be organized
into three basic steps.

∼ Ν  λ2 3 0 2∼ Ν  λ

Fig. 3.3 Two sample Feynman diagrams and their associated N and k weights. Note that the left
diagram is planar, and can be interpreted as a triangulation of a disk; while the right one is not
planar: it is the triangulation of a torus minus a disk
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1. Identify SUðNÞ SYM as a sector of the low energy limit of IIB strings in the
presence of N parallel D3-branes at weak coupling.

2. Identify the space–time geometry sourced by the D3-branes as approximately
an AdS5 � S5 ‘‘throat’’ glued into an asymptotically flat region whose gravi-
tational modes decouple from the string modes on the throat.

3. Compare these two low energy descriptions to identify the SYM sector with the
AdS5 � S5 sector with a specific mapping of parameters.

The same type of argument can be used to find many other examples.

3.5.1 SYM from D-Branes

In IIB string theory place a stack of N parallel D3-branes extended along the
x ¼ x0;1;2;3 directions, and take the limit in which they become coincident. At weak
enough string coupling, gs � 1, this stack is well-described as a 4-manifolds
where oriented open strings may end, see Fig. 3.4. Label the D3-branes by indices
i; j; . . . ¼ 1; . . .;N. The lightest modes of open strings connecting the branes then
carry adjoint UðNÞ labels. They fill out a massless four-dimensional N ¼ 4 vector
supermultiplet of the UðNÞ SYM theory. The SYM coupling is the open string
coupling, gym


ffiffiffiffi

gs
p

.
For small enough gs at fixed N, the gravitational back-reaction of the D3-branes

is small, since even though the D3-brane tension s3 is proportional to Ng�1
s , the

gravitational coupling j2 is proportional to g2
s , so the net strength of the D3-brane

source goes as s3j2 / gsN.
In the low energy limit, E� ‘�1

s or E2a0 ! 0, only the massless string modes
can be excited. These modes are the bulk (10-dimensional) supergravity modes of
the closed strings and the (four-dimensional) UðNÞ SYM modes of the open
strings. The couplings between the four-d SYM and ten-d supergravity sectors are
higher-derivative, and so vanish in the low energy limit.

Since the gravitational coupling j
 gsa0
2, the dimensionless coupling strength

is E4j which vanishes as the energy scale E ! 0. Thus the supergravity sector is
IR-free. On the other hand, the SYM sector stays at fixed coupling, g2

ym, since

3

2

φ

φ

1
1

3
2

1

Fig. 3.4 A stack of nearly
coincident D3-branes labelled
by indices 1, 2, 3, and two
sample open string modes
labelled by the ordered pair of
indices associated with the
brane the string starts on and
ends on
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N ¼ 4 SYM is a CFT for all gym. In other words, the gauge coupling is an exactly
marginal coupling so does not run with scale. (More precisely, the diagonal
Uð1Þ � UðNÞ decouples and is free, corresponding to the overall translational
degrees of freedom of the N D3-branes. So only the SUðNÞ SYM factor stays at
fixed non-zero coupling.) The net result of this analysis is that:

In the small gs limit at fixed N, the low energy effective action of IIB strings in
the presence of N coincident D3-branes consists of three decoupled sectors:

ðfree 10-d supergravityÞ�
ðfree 4-d U(1) SYMÞ�
ð4-d SU(N) SYM CFT with g2

ym
 gsÞ:
ð3:35Þ

3.5.2 D3-Brane Near Horizon Geometry

Now look at the same system in the gs ! 0; N !1 limit, keeping gsN � k fixed.
In this limit the gravitational back-reaction of the D3-branes cannot be neglected,
since the D3-brane tension times the gravitational coupling is proportional to
Ng�1

s � g2
s ¼ k. In the low energy and gs ! 0 limit, the N D3-branes source a

classical supergravity solution with metric and RR 5-form field strength given by

ds2 ¼ f�1=2ð�dt2 þ dx2Þ þ f 1=2ðdr2 þ r2dX2
5Þ

F5 ¼ ð1þ Þdt ^ dx1 ^ dx2 ^ dx3 ^ df�1
ð3:36Þ

where

f � 1þ R4

r4
; and R4 � 4pgsNa02: ð3:37Þ

For r � R; f ! 1, so the solution asymptotes to flat R9;1, while for r � R;
f 1=2 ! R2=r2, so the metric becomes

ds2
 R2

r2
dr2 þ r2

R2
ð�dt2 þ dx2Þ þ dX2

5 ð3:38Þ

which we recognize as AdS5 � S5 in Poincaré patch coordinates; compare to
(3.17). The AdS boundary at r ¼ 1 is replaced by a transition to flat R9;1; see
Fig. 3.5.

We now want to consider the low energy effective description of physics in this
geometry. There are low energy scattering states of the massless supergravity
modes in the R9;1 asymptotic region. There are also arbitrarily low-energy modes
far down the AdS ‘‘throat’’. To see this, consider an object of fixed energy E as
measured in the frame of a co-moving observer. From the point of view of an
asymptotic observer at r ¼ 1 (where we are measuring all our observables) it has
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a red-shifted energy E ¼ ffiffiffiffiffi

gtt
p

E ¼ f�1=4E. So E
 rE=R! 0 as r ! 0. There-

fore states of arbitrary finite energy E in the AdS5 � S5 throat are low-energy
excitations.

Finally there are also a few massless modes corresponding (from the asymptotic
R9;1 perspective) to the translational zero-modes of the whole throat. (They are the
‘‘singleton’’ boundary modes on the AdS.) Since they are the translational modes
of the whole stack of D3-branes, they are equivalent to a free four-dimensional
Uð1Þ SYM theory. In summary,

In the small gs, fixed k ¼ gsN limit, the low energy effective action of IIB
strings in the presence of N coincident D3-branes has three sectors:

ðfree 10-d supergravityÞ�
ðfree 4-d U(1) SYMÞ�
ðIIB string theory on AdS5 � S5 withR4 ¼ 4pka02 and j ¼ gsa

02Þ:
ð3:39Þ

Furthermore, these three sectors decouple in the low-energy limit, since the
cross-section for an R9;1 supergravity wave of frequency x to scatter off the throat
(r\R) region is r
x3R8, so vanishes in the low-energy x! 0 limit. Likewise,
as the low-energy throat modes are localized closer to r ¼ 0, escape to the
asymptotically flat region is energetically suppressed. Finally, low energy R9;1

gravitational waves can not excite the massive throat translational modes, while
the associated singleton modes on the boundary of AdS decouple from bulk AdS
modes. Thus all three sectors decouple.

3.5.3 Strong/Weak Duality

Comparing these two low energy descriptions, (3.35) and (3.39), leads to the
Maldacena conjecture:

Type IIB string theory onAdS5 � S5

is equivalent to

4-dimensionalN ¼ 4 supersymmetric SUðNÞYM

with parameters identified as

4pgs ¼ g2
ym; and R4=a02 ¼ k � g2

ymN:

5

(r<<R)
AdS  x S5

10−d Mink
(r>>R)

Fig. 3.5 A cartoon
illustrating how the AdS5 �
S5 ‘‘throat’’ geometry for r �
R is attached to the flat R9;1

geometry for r � R
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It is just a conjecture because the low energy descriptions of (3.35) and (3.39)
were in different limits (the first at fixed N, the second as N !1). Note that oða0Þ
string worldsheet corrections are oð1=

ffiffiffi

k
p
Þ corrections in the Yang–Mills theory,

and at fixed k, the oðgsÞ string loop corrections are oð1=NÞ corrections on the
Yang–Mills side. The N D3-brane near horizon AdS geometry came from a
classical supergravity solution, i.e., it did not contain gs or a0 corrections, so it is
not a priori clear that the AdS solution should still be valid in the regime where the
SYM description was derived.

Thus there are different possible versions of the conjecture that one can
imagine:

Weak: valid only for gsN !1: neither a0 nor gs corrections agree.
Medium: valid for all gsN but only for N !1: only a0 corrections agree.
Strong: valid for all gsN and all N: an exact equivalence.

The strong version of the conjecture allows all kinds of finite energy interior
processes and objects in the AdS space–time, including space–times with different
topologies (e:g:, black holes). So in this version,

ZCFT ¼
X

8 asymptotic AdS geometries ð3:40Þ

Most tests of the conjecture are by computing at large N quantities whose k-
dependence is determined by supersymmetry, though a few are also checks that
1=N corrections match as well.

In any case, the string theory on AdS5 � S5 is currently only really calculable in
the classical supergravity limit where gs � 1 (so no string loops) and ‘s � R (so
no a0 corrections). In terms of YM parameters this means that N � k� 1, which
is the planar ’t Hooft limit, but at strong ’t Hooft coupling. On the other hand, the
YM theory is only under perturbative control at small k and finite N. A great deal
of the power of Maldacena’s conjecture comes not just from the fact that it is an
explicit realization of the AdS/CFT conjecture, but also that weak coupling on one
side of the equivalence is strong coupling on the other.

3.6 Extensions

There are many examples, refinements, extensions and deformations of the AdS/
CFT correspondence; see the other lectures in this volume for a flavor. Two
extensions which are basic and play an important role in many other applications
involve

• turning on a finite temperature, and
• adding brane probes.

The finite temperature extension can be derived by the same argument as in the
last section, but keeping a finite energy density on the D3-branes. In this case the
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supergravity solution become a black 3-brane, and the near-horizon limit is the
AdS5-black hole �S5 geometry. The AdS black hole Hawking temperature is the
same as the temperature of the SYM theory. This extension of the AdS/CFT
correspondence is straightforward in the sense that it does not change the under-
lying equivalence, but involves identifying certain excited states on the two sides
of the correspondence. Nevertheless, this extension leads to rich and beautiful
physics, such as the correspondence between the deconfinement transition in finite
volume SYM and the instability of small black holes in AdS space [18].

The brane probe approximation in the AdS/CFT correspondence can be more
subtle, so I will describe an example of it in more detail. This particular example
can be motivated by the following question: How can one add fundamental (as
opposed to adjoint) matter to the SYM theory in the AdS/CFT correspondence? In
the weak coupling limit, we need string states with one end on the D3-brane stack
(carrying a fundamental color index) and the other end elsewhere. Since funda-
mental strings end on D-branes, we should add other kinds of D-branes to the
initial setup. We call these other branes ‘‘flavor branes’’ since they will label
different flavors of fundamental matter.

In general it is hard to find supergravity solutions for the gravitational back-
reaction of adding flavor branes. However, if the number, Nf , of flavor branes is
much smaller than the number, N, of (color) D3-branes, this back-reaction can be
ignored in the large N limit. To see this, recall that Newton’s constant
j2
 g2

s 
N�2 in the ’t Hooft limit (where k ¼ gsN is kept fixed), and the tension
of Nf Dp-branes is Nf TDp

lm 
Nf g�1
s 
Nf N, so the gravitational back-reaction of the

flavor branes is j2Nf TDp
lm 
Nf =N which vanishes as N !1 with Nf fixed. Thus

such probe branes need only satisfy their classical equations of motion in the
unperturbed background space–time generated by the N color branes. These
equations come from extremizing the probe branes’ world volume [or the DBI
action if the brane’s Uð1Þ field is turned on].

It was shown in [19, 20] that probe flavor D7-branes can be added in such a way
as to keep half of the N ¼ 4 supersymmetry of the SYM theory. The required
embedding of the flavor brane in AdS5 � S5 is shown in Fig. 3.6. The dual theory
is then interpreted to be N ¼ 2 SUðNÞ SYM with Nf massive quark hypermulti-
plets. Since the probe D7-branes only added new open string states—identified
with the fundamental hypermultiplets on the YM side—the dual theory can no
longer be a CFT, but must in fact have non-zero beta function. The AdS/CFT
correspondence then implies that the dual string background should not be
asymptotically AdS. This is reflected in the fact that a D7 brane is co-dimension 2
in 10 dimensions, and so no matter how light, its tension will deform the
asymptotic structure of the space (by causing a deficit angle). Thus, strictly
speaking, D7-branes can never satisfy the probe approximation, and the AdS=N ¼
2 SYM correspondence is not exact, but is broken by Nf =N effects.

Higher co-dimension probes are less problematic. For example, fundamental
string and D1-brane probes of the AdS5 geometry have proven very useful, either
as strings extending to the boundary of AdS whose worldsheets are dual to
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insertions of the non-local Wilson and ’t Hooft loop operators in the CFT, or as
strings ending on probe D7-branes dual to massive quark states in the N ¼ 2
SYM. Both of these scenarios have led to physically rich and active areas of
development of the AdS/CFT correspondence following on the work of [21, 22]
and [23, 24], respectively.
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Chapter 4
Improved Holographic QCD

U. Gursoy, E. Kiritsis, Liuba Mazzanti, G. Michalogiorgakis
and Francesco Nitti

Abstract We provide a review to holographic models based on Einstein-dilaton
gravity with a potential in five dimensions. Such theories, for a judicious choice
of potential are very close to the physics of large-N YM theory both at zero and
finite temperature. The zero temperature glueball spectra as well as their finite
temperature thermodynamic functions compare well with lattice data. The model
can be used to calculate transport coefficients, like bulk viscosity, the drag force
and jet quenching parameters, relevant for the physics of the Quark–Gluon
Plasma.
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4.1 Introduction

The experimental efforts at RHIC [1–4] have provided a novel window in the
physics of the strong interactions. The consensus on the existing data is that shortly
after the collision, a ball of quark–gluon plasma (QGP) forms that is at thermal
equilibrium, and subsequently expands until its temperature falls below the QCD
transition (or crossover) where it finally hadronizes. Relativistic hydrodynamics
describes very well the QGP [5], with a shear-viscosity to entropy density ratio
close to that of N ¼ 4 SYM [6, 7]. The QGP is at strong coupling, and it neces-
sitates a treatment beyond perturbative QCD approaches, [8–10]. Moreover,
although the shear viscosity from N ¼ 4 seems to be close to that ‘‘measured’’ by
experiment, lattice data indicate that in the relevant RHIC range 1� T

Tc
� 3 the

QGP seems not to be a fully conformal fluid. Therefore the bulk viscosity may play
a role near the phase transition [11–13]. The lattice techniques have been suc-
cessfully used to study the thermal behavior of QCD, however they are not easily
extended to the computation of hydrodynamic quantities. They can be used how-
ever, together with parametrizations of correlators in order to pin down parameters
[12, 13]. On the other hand, approaches based on holography have the potential to
address directly the real-time strong coupling physics relevant for experiment.

In the bottom-up holographic model of AdS/QCD [14, 15], the bulk viscosity is
zero as conformal invariance is essentially not broken (the stress tensor is trace-
less). In the soft-wall model [16], no reliable calculation can be done for glue
correlators and therefore transport coefficients are ill-defined. Similar remarks hold
for other phenomenologically interesting observables as the drag force and the jet
quenching parameter [17–21].

Top-down holographic models of QCD displaying all relevant features of the
theory have been difficult to obtain. Bottom-up models based on AdS slices [22]
have given some insights mostly in the meson sector [14, 15] but necessarily lack
many important holographic features of QCD. A hybrid approach has been advo-
cated [23–25] combining features of bottom-up and top-down models. An similar
approach was proposed independently in [26]. Such an approach, called Improved
Holographic QCD (or IHQCD for short) is essentially a five-dimensional dilaton-
gravity system with a non-trivial dilaton potential. Flavor can be eventually added
in the form of Nf space-time filling D4� D4 brane pairs, supporting UðNf ÞL �
UðNf ÞR gauge fields and a bi-fundamental scalar [27]. The UV asymptotics of the
potential are fixed by QCD perturbation theory, while the IR asymptotics of the
potential can be fixed by confinement and linear glueball asymptotics. An analysis
of the finite temperature behavior [28, 29] has shown that the phase structure is
exactly what one would expect from YM. A potential with a single free parameter
tuned to match the zero temperature glueball spectrum was able to agree with the
thermodynamic behavior of glue to a good degree [28]. Similar results, but with
somewhat different potentials were also obtained in [26, 30].

In [26, 28, 29] it was shown that Einstein-dilaton gravity with a strictly monotonic
dilaton potential that grows sufficiently fast, generically shares the same phase
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structure and thermodynamics of finite-temperature pure Yang–Mills theory at large
Nc. There is a deconfinement phase transition (dual to a Hawking-Page phase tran-
sition between a black hole and thermal gas background on the gravity side), which is
generically first order. The latent heat scales as N2

c . In the deconfined gluon-plasma
phase, the free energy slowly approaches that of a free gluon gas at high temperature,
and the speed of sound starts from a small value at Tc and approaches the conformal
value c2

s ¼ 1=3 as the temperature increases. The deviation from conformal invari-
ance is strongest at Tc, and is signaled by the presence of a non-trivial gluon con-
densate, which on the gravity side emerges as a deviation of the scalar solution that
behaves asymptotically as r4 close to the UV boundary. In the CP-violating sector,
the topological vacuum density TrF~F has zero expectation value in the deconfined
phase, in agreement with lattice results [31] and large-Nc expectations.

The analysis performed in [29] was completely general and did not rely on any
specific form of the dilaton potential VðkÞ. A detailed analysis of an explicit model
in [32] shows that the thermodynamics matches quantitatively the thermodynamics
of pure Yang–Mills theory. The (dimensionless) free energy, entropy density, latent
heat and speed of sound, obtained on the gravity side by numerical integration of the
5D field equations, can be compared with the corresponding quantities, calculated
on the lattice for pure Yang–Mills at finite-T , resulting in excellent agreement, for
the temperature range that is accessible by lattice techniques. The same model also
shows a good agreement with the lattice calculation of glueball mass ratios at zero
temperature, and the value of the deconfining critical temperature (in units of the
lowest glueball mass) is also in good agreement with the lattice results.

In short, the model we present gives a good phenomenological holographic
description of most static properties1 (spectrum and equilibrium thermodynamics)
of large-Nc pure Yang–Mills, as computed on the lattice, for energies up to several
times Tc. Thus it constitutes a good starting point for the computation of dynamical
observables in a realistic holographic dual to QCD (as opposed to e.g. N ¼ 4
SYM), such as transport coefficients and other hydrodynamic properties that are
not easily accessible by lattice techniques, at energies and temperatures relevant
for relativistic heavy-ion collision experiments. We will report on such a calcu-
lation in the near future.

The vacuum solution in this model is described in terms of two basic bulk
fields, the metric and the dilaton. These are not the only bulk fields however, as the
bulk theory is expected to have an a priori infinite number of fields, dual to all
possible YM operators. In particular we know from the string theory side that there
are a few other low mass fields, namely the RR axion (dual to the QCD h-angle)
the NSNS and RR two forms B2 and C2 as well as other higher-level fields. With
the exception of the RR axion, such fields are dual to higher-dimension and/or
higher-spin operators of YM. Again, with the exception of the RR axion, they are
not expected to play an important role into the structure of the vacuum and this is

1 There are very few observables also that are not in agreement with YM. They are discussed in
detail in [25].
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why we neglect them when we solve the equations of motion. However, they are
going to generate several new towers of glueball states beyond those that we
discuss in this paper (namely the 0þþ glueballs associated to dilaton fluctuations,
2þþ glueballs associated to graviton fluctuations and 0�þ glueballs associated to
RR axion fluctuations). Such fields can be included in the effective action and the
associated glueball spectra calculated. Since we do not know the detailed structure
of the associated string theory, their effective action will depend on more semi-
phenomenological functions like ZðkÞ in (4.45). These functions can again be
determined in a way similar to ZðkÞ. In particular including the B2 and C2 field will
provide 1þ� glueballs among others. Fields with spin greater than 2 are necessarily
stringy in origin. We will not deal further with extra fields, like B2 and C2 and
other as they are not particularly relevant for the purposes of this model, namely
the study of finite temperature physics in the deconfined case. We will only
consider the axion, as its physics is related to the CP-odd sector of YM with an
obvious phenomenological importance.

It is well documented that string theory duals of YM must have strong cur-
vatures in the UV regime. This has been explained in detail in [25] where it was
also argued, that although the asymptotic AdS boundary geometry is due to the
curvature non-linearities of the associated string theory, the inwards geometry is
perturbative around AdS, with logarithmic corrections, generating the YM per-
turbation theory. The present model is constructed so that it takes the asymptotic
AdS geometry for granted, by introducing the associated vacuum energy by hand,
and simulates the perturbative YM expansion by an appropriate dilaton potential.
In the IR, we do not expect strong curvatures in the string frame, and indeed the
preferred backgrounds have this property. In this sense the model contains in itself
the relevant expected effects that should arise from strong curvatures in all
regimes. These issues have been explained in [23, 24] and in more detail in [25].

A different and interesting direction is the use of such models to study the
expansion of the plasma and the associated dynamics. Such a context is similar to
what happens on cosmology, especially the one related to the Randall–Sundrum
setup. Indeed in this case the expansion can be found by following the geodesic
motion of probe branes in the relevant background [33–36]. This generalizes to
more complicated backgrounds [36] like the ones studied here.

Once we have a holographic model we trust, we should calculate observables ,
like transport coefficients that are hard to calculate on the lattice. A first class of
transport coefficients are viscosity coefficients.2 A general fluid is characterized by
two viscosity coefficients, the shear g and the bulk viscosity f. The shear viscosity
in strongly coupled theories described by gravity duals was shown to be universal
[6, 7]. In particular, the ratio g=s, with s the entropy density, is equal to 1

4p. This is
correlated to the universality of low-energy scattering of gravitons from black

2 These are the leading transport coefficients in the derivative expansion. There are subleading
coefficients that have been calculated recently forN ¼ 4 SYM [37, 38]. However, at the present
level of accuracy, they cannot affect substantially the comparison to experimental data [5].
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holes. It is also known that deviations from this value can only be generated by
higher curvature terms that contain the Riemann tensor (as opposed to the Ricci
tensor of the scalar curvature). In QCD, as the theory is strongly coupled in the
temperature range Tc� T � 3Tc, we would expect that g=s ’ 1

4p. Recent lattice
calculations [39] agree with this expectations although potential systematic errors
in lattice calculations of transport coefficients can be large.

Conformal invariance forces the bulk viscosity to vanish. Therefore the N ¼ 4
SYM plasma, being a conformal fluid, has vanishing bulk viscosity. QCD on the
other hand is not a conformal theory. The classical theory is however conformally
invariant and asymptotic freedom implies that conformal invariance is a good
approximation in the UV. This would suggest that the bulk viscosity to entropy
ratio is negligible at large temperatures. However it is not expected to be so in the
IR: as mentioned earlier lattice data indicate that in the relevant RHIC range
1� T

Tc
� 3 the QGP seems not to be a fully conformal fluid. Therefore the bulk

viscosity may play a role near the phase transition.
So far there have been two approaches that have calculated the bulk viscosity in

YM/QCD [12, 40–43] and have both indicated that the bulk viscosity rises near the
phase transition as naive expectation would suggest. The first used the method of sum
rules in conjunction with input from Lattice thermodynamics [40–43]. It suggested a
dramatic rise of the bulk viscosity near Tc although the absolute normalization of the
result is uncertain. The reason is that this method relies on an ansatz for the density
associated with stress-tensor two point functions that are otherwise unknown.

The second method [12] relies on a direct computation of the density at low
frequency of the appropriate stress-tensor two-point function. As this computation
is necessarily Euclidean, an analytic continuation is necessary. The values at a
finite number of discrete Matsubara frequencies are not enough to analytically
continue. An ansatz for the continuous density is also used here, which presents
again a potentially large systematic uncertainty.

Calculations in IHQCD support a rise of the bulk viscosity near Tc, but the values
are much smaller than previously expected. Studies of how this affects hydrody-
namics at RHIC [44] suggest that this implies a fall in radial and elliptic flow.

Another class of interesting experimental observables is associated with quarks,
and comes under the label of ‘‘jet quenching’’. Central to this is the expectation that
an energetic quark will loose energy very fast in the quark–gluon plasma because of
strong coupling. This has as a side effect that back-to back jets are suppressed.
Moreover if a pair of energetic quarks is generated near the plasma boundary then
one will exit fast the plasma and register as an energetic jet, while the other will
thermalize and its identity will disappear. This has been clearly observed at RHIC
and used to study the energy loss of quarks in the quark–gluon plasma.

Heavy quarks are of extra importance, as their mass masks some low-energy
strong interaction effects, and can be therefore cleaner probes of plasma energy
loss. There are important electron observables at RHIC [45] that can probe heavy-
quark energy loss in the strongly coupled quark–gluon plasma. Such observables
are also expected to play an important role in LHC [46].
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A perturbative QCD approach to calculate the energy loss of a heavy quark in
the plasma has been pursued by calculating radiative energy loss [47–49]. How-
ever its application to the RHIC plasma has recently raised problems, based on
comparison with data. A phenomenological coefficient used in such cases is known
as the jet quenching coefficient q̂, and is defined as the rate of change of the
average value of transverse momentum square of a probe. Current fits [45, 50]
indicate that a value of order 10 GeV2=fm or more is needed to describe the data
while perturbative approaches are trustworthy at much lower values.

Several attempts were made to compute quark energy loss in the holographic
context, relevant for N ¼ 4 SYM.3 In some of them [18, 52] the jet-quenching
coefficient q̂ was calculated via its relationship to a light-like Wilson loop.
Holography was then used to calculate the appropriate Wilson loop. The q̂

obtained scales as
ffiffiffi

k
p

and as the third power of the temperature,

q̂conformal ¼
C 3

4

� �

C 5
4

� �

ffiffiffiffiffi

2k
p

p
3
2T3: ð4:1Þ

A different approach chooses to compute the drag force acting a string whose
UV end-point (representing an infinitely heavy quark) is forced to move with
constant velocity v [17, 19–21] in the context of N ¼ 4 SYM plasma. The result
for the drag force is

Fconformal ¼
p
2

ffiffiffi

k
p

T2 v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ð4:2Þ

and is calculated by first studying the equilibrium configuration of the appropriate
string world-sheet string and then calculating the momentum flowing down the
string. This can be the starting point of a Langevin evolution system, as the process
of energy loss has a stochastic character, as was first pointed out in [53] and more
recently pursued in [54–60].

Such a system involves a classical force, that in this case is the drag force, and a
stochastic noise that is taken to be Gaussian and which is characterized by a
diffusion coefficient. There are two ingredients here that are novel. The first is that
the Langevin evolution must be relativistic, as the quarks can be very energetic.
Such relativistic systems have been described in the mathematical physics litera-
ture [61, 62] and have been used in phenomenological analyses of heavy-ion
data [50]. They are known however to have peculiar behavior, since demanding an
equilibrium relativistic Boltzmann distribution, provides an Einstein relation that
is pathological at large temperatures. Second, the transverse and longitudinal
diffusion coefficients are not the same [57]. A first derivation of such Langevin
dynamics from holography was given in [57]. This has been extended in [60]
where the thermal-like noise was associated and interpreted in terms of the world-
sheet horizon that develops on the probe string.

3 Most are reviewed in [51].
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Most of the transport properties mentioned above have been successfully
computed in N ¼ 4 SYM and a lot of debate is still waged as to how they can be
applied to QCD in the appropriate temperature range [19, 20, 63–65]. A holo-
graphic description of QCD has been elusive, and the best we have so far have
been simple bottom up models.

In the simplest bottom-up holographic model known as AdS/QCD [14, 15], the
bulk viscosity is zero as conformal invariance is essentially not broken (the stress
tensor is traceless), and the drag force and jet quenching essentially retain their
conformal values.

In the soft-wall model [16], no reliable calculation can be done for glue cor-
relators and therefore transport coefficients are ill-defined, as bulk equations of
motion are not respected. Similar remarks hold for other phenomenologically
interesting observables as the drag force and the jet quenching parameter.

The shear viscosity of IHQCD is the same as that of N ¼ 4 SYM, as the model
is a two derivative model. Although this is not a good approximation in the UV of
QCD, it is expected to be a good approximation in the energy range Tc� T � 5Tc.
The bulk viscosity in IHQCD rises near the phase transition but ultimately stays
slightly below the shear viscosity. There is a general holographic argument that
any (large-N) gauge theory that confines color at zero temperature should have an
increase in the bulk viscosity-to-entropy density ratio close to Tc.

The drag force on heavy quarks, and the associated diffusion times, can be
calculated and found to be momentum depended as anticipated from asymptotic
freedom. Numerical values of diffusion times are in the region dictated by phe-
nomenological analysis of heavy-ion data. The medium-induced corrections to the
quark mass (needed for the diffusion time calculation) can be calculated, and they
result in a mildly decreasing effective quark mass as a function of temperature.
This is consistent with lattice results. Finally, the jet-quenching parameter can be
calculated and found to be comparable at Tc to the one obtained by extrapolation
from N ¼ 4 SYM. Its temperature dependence is however different and again
reflects the effects of asymptotic freedom.

4.2 The 5D Model

The holographic dual of large Nc Yang Mills theory, proposed in [23, 24], is based
on a five-dimensional Einstein-dilaton model, with the action4:

S5 ¼ �M3
pN2

c

Z

d5x
ffiffiffi

g
p

R� 4
3
ðoUÞ2 þ VðUÞ

� �

þ 2M3
pN2

c

Z

oM

d4x
ffiffiffi

h
p

K: ð4:3Þ

4 Similar models of Einstein-dilaton gravity were proposed independently in [26] to describe the
finite temperature physics of large Nc YM. They differ in the UV as the dilaton corresponds to a
relevant operator instead of the marginal case we study here. The gauge coupling eU also
asymptotes to a constant instead of zero in such models.
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Here, Mp is the five-dimensional Planck scale and Nc is the number of colors. The
last term is the Gibbons–Hawking term, with K being the extrinsic curvature of the
boundary. The effective five-dimensional Newton constant is G5 ¼ 1=ð16pM3

pN2
c Þ,

and it is small in the large-Nc limit.
Of the 5D coordinates fxi; rgi¼0...3; xi are identified with the 4D space-time

coordinates, whereas the radial coordinate r roughly corresponds to the 4D RG
scale. We identify k � eU with the running ’t Hooft coupling kt � Ncg2

YM , up to an
a priori unknown multiplicative factor,5 k ¼ jkt.

The dynamics is encoded in the dilaton potential,6 VðkÞ. The small-k and large-
k asymptotics of VðkÞ determine the solution in the UV and the IR of the geometry
respectively. For a detailed but concise description of the UV and IR properties of
the solutions the reader is referred to Sect. 2 of [29]. Here we will only mention the
most relevant information:

1. For small k; VðkÞ is required to have a power-law expansion of the form:

VðkÞ� 12
‘2
ð1þ v0kþ v1k

2 þ � � �Þ; k! 0: ð4:4Þ

The value at k ¼ 0 is constrained to be finite and positive, and sets the UV AdS
scale ‘. The coefficients of the other terms in the expansion fix the b-function
coefficients for the running coupling kðEÞ. If we identify the energy scale with
the metric scale factor in the Einstein frame, as in [23, 24], we obtain:

bðkÞ � dk
d log E

¼ �b0k
2 � b1k

3 þ � � �

b0 ¼
9
8

v0; b1 ¼
9
4

v1 �
207
256

v2
0:

ð4:5Þ

2. For large k, confinement and the absence of bad singularities7 require:

VðkÞ� k2Qðlog kÞP k!1; 2=3\Q\2
ffiffiffi

2
p

=3; P arbitrary
Q ¼ 2=3; P� 0

�

: ð4:6Þ

In particular, the values Q ¼ 2=3;P ¼ 1=2 reproduce an asymptotically-linear
glueball spectrum, m2

n� n, besides confinement. We will restrict ourselves to
this case in what follows.

5 This relation is well motivated in the UV, although it may be modified at strong coupling (see
Sect. 4.3. The quantities we will calculate do not depend on the explicit relation between k and kt.
6 With a slight abuse of notation we will denote VðkÞ the function VðUÞ expressed as a function
of k � eU.
7 We call ‘‘bad singularities’’ those that do not have a well defined spectral problem for the
fluctuations without imposing extra boundary conditions.
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In the large Nc limit, the canonical ensemble partition function of the model just
described, can be approximated by a sum over saddle points, each given by a
classical solution of the Einstein-dilaton field equations:

ZðbÞ ’ e�S1ðbÞ þ e�S2ðbÞ þ � � � ð4:7Þ

where Si are the euclidean actions evaluated on each classical solution with a fixed
temperature T ¼ 1=b, i.e. with euclidean time compactified on a circle of length b.
There are two possible types of Euclidean solutions which preserve three-
dimensional rotational invariance. In conformal coordinates these are:

1. Thermal gas solution,

ds2 ¼ b2
oðrÞ dr2 þ dt2 þ dxmdxm

� 	

; U ¼ UoðrÞ; ð4:8Þ

with r 2 ð0;1Þ for the values of P and Q we are using;
2. Black-hole solutions,

ds2 ¼ bðrÞ2 dr2

f ðrÞ þ f ðrÞdt2 þ dxmdxm

� �

; U ¼ UðrÞ; ð4:9Þ

with r 2 ð0; rhÞ, such that f ð0Þ ¼ 1, and f ðrhÞ ¼ 0.

In both cases Euclidean time is periodic with period bo and b respectively for
the thermal gas and black-hole solution, and three-space is taken to be a torus with
volume V3o and V3 respectively, so that the black-hole mass and entropy are
finite.8

The black holes are dual to a deconfined phase, since the string tension vanishes
at the horizon, and the Polyakov loop has non-vanishing expectation value [66, 67].
On the other hand, the thermal gas background is confining.

The thermodynamics of the deconfined phase is dual to the 5D black-hole
thermodynamics. The free energy, defined as

F ¼ E � TS; ð4:10Þ

is identified with the black-hole on-shell action; as usual, the energy E and entropy
S are identified with the black-hole mass, and one fourth of the horizon area in
Planck units, respectively.

The thermal gas and black-hole solutions with the same temperature differ at
Oðr4Þ:

bðrÞ ¼ boðrÞ 1þ G r4

‘3
þ � � �

� �

; f ðrÞ ¼ 1� C

4
r4

‘3
þ � � � r ! 0; ð4:11Þ

8 The periods and three-space volumes of the thermal gas solution are related to the black-hole
solution values by requiring that the geometry of the two solutions are the same on the (regulated)
boundary. See [29] for details.
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where G and C are constants with units of energy. As shown in [29] they are
related to the enthalpy TS and the gluon condensate hTrF2i :

C ¼ TS

M3
pN2

c V3
; G ¼ 22

3ð4pÞ2
hTrF2iT � hTrF2io

240M3
pN2

c

: ð4:12Þ

Although they appear as coefficients in the UV expansion, C and G are deter-
mined by regularity at the black-hole horizon. For T and S the relation is the
usual one,

T ¼ �
_f ðrhÞ
4p

; S ¼ Area
4G5

¼ 4p ðM3
pN2

c V3Þ b3ðrhÞ: ð4:13Þ

For G the relation with the horizon quantities is more complicated and cannot be
put in a simple analytic form. However, as discussed in [29], for each temperature
there exist only specific values of G (each corresponding to a different black hole)
such that the horizon is regular.

At any given temperature there can be one or more solutions: the thermal gas is
always present, and there can be different black holes with the same temperature.
The solution that dominates the partition function at a certain T is the one with
smallest free energy. The free energy difference between the black hole and
thermal gas was calculated in [29] to be:

F
M3

pN2
c V3
¼ FBH �F th

M3
pN2

c V3
¼ 15G � C

4
: ð4:14Þ

For a dilaton potential corresponding to a confining theory, like the one we will
assume, the phase structure is the following [29]:

1. There exists a minimum temperature Tmin below which the only solution is the
thermal gas.

2. Two branches of black holes (‘‘large’’ and ‘‘small’’) appear for T � Tmin, but the
ensemble is still dominated by the confined phase up to a temperature Tc [ Tmin

3. At T ¼ Tc there is a first order phase transition to the large black-hole phase.
The system remains in the black-hole (deconfined) phase for all T [ Tc.

In principle there could be more than two black-hole branches, but this will not
happen with the specific potential we will use.

4.3 Scheme Dependence

There are several sources of scheme dependence in any attempt to solve a QFT.
Different parametrizations of the coupling constant (here k) give different
descriptions. However, physical statements must be invariant under such a change.
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In our case, reparametrizations of the coupling constant are equivalent to radial
diffeomorphisms as we could use k as the radial coordinate.

In the holographic context, scheme dependence related to coupling redefini-
tions translates into field redefinitions for the bulk fields. As the bulk theory is
on-shell, all on-shell observables (that are evaluated at the single boundary of
space-time) are independent of the field redefinitions showing that scheme-
independence is expected. Invariance under radial reparametrizations of scalar
bulk invariants is equivalent to RG invariance. Because of renormalization
effects, the boundary is typically shifted and in this case field redefinitions must
be combined with appropriate radial diffeomorphisms that amount to RG-
transformations.

Another source of scheme dependence in our setup comes from the choice of
the energy function. Again we may also consider this as a radial coordinate and
therefore it is subject to coordinate transformations. A relation between k and E is
the b-function,

dk
d log E

¼ bðkÞ: ð4:15Þ

b by definition transforms as a vector under k reparametrizations and as a form
under E reparametrizations. bðkÞ can therefore be thought of as a vector field
implementing the change of coordinates from k to E and vice-versa.

Physical quantities should be independent of scheme. They are quantities that
are fully diffeomorphism invariant. If the gravitational theory had no boundary
there would be no diffeomorphism invariant quantities, except for possible topo-
logical invariants. Since we have a boundary, diffeomorphism invariant quantities
are defined at the boundary.

Note that scalar quantities are not invariant. To be invariant they must be scalar
and constant. We therefore need to construct scalar functions that are invariant
under changes of radial coordinates.

We can fix this reparametrization invariance by picking a very special frame.
For example choosing the (string) metric in the conformal frame

ds2 ¼ e2A dr2 þ dxldxl

� �

; kðrÞ ð4:16Þ

or in the domain-wall frame

ds2 ¼ du2 þ e2Adxldxl; kðuÞ ð4:17Þ

fixes the radial reparametrizations almost completely. In conformal frame, com-
mon scalings of r; xl are allowed, corresponding to constant shifts of AðrÞ.

Eventually we are led to calculate and compare our results to other ways of
calculating (like the lattice). Some outputs are easier to compare (for example
correlators). Others are much harder as they are not invariant (like the value of the
coupling at a given energy scale).
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In the UV such questions are well understood. The asymptotic energy scale is
fixed by comparison to conformal field theory examples. This is possible because
the space is asymptotically AdS5.9

The coupling constant is also fixed to leading order from the coupling of the
dilaton to D3 branes (up to an overall multiplicative factor). Subleading (in per-
turbation theory) redefinitions of the coupling constant and the energy lead to
changes in the b-function beyond two loops.

More in detail, as it has been described in [23–25], the general form of the
kinetic term for the gauge fields on a D3 brane is expected to be:

SF2 ¼ e�UZðR; nÞTr½F2	; n � �e2U F2
5

5!
ð4:18Þ

where ZðR; nÞ is an (unknown) function of curvature R and the five-form field
strength, n. At weak background fields, Z ’ � 1

4þ � � �. In the UV regime,
expanding near the boundary in powers of the coupling k � NceU we obtain, [25]

SF2 ¼ Nc Tr½F2	 1
k

ZðR
; n
Þ �
ZnðR
; n
Þ

FnnðR
; n
Þ
ffiffiffiffiffi

n

p k

‘
þOðk2Þ

� �

ð4:19Þ

where FðR; nÞ is the bulk effective action and R
; n
 are the boundary values for
these parameters. Therefore the true ’t Hooft coupling of QCD is

k0t Hooft ¼ �
k

ZðR
; n
Þ
1þ ZnðR
; n
Þ

ZðR
; n
ÞFnnðR
; n
Þ
ffiffiffiffiffi

n

p k

‘
þOðk2Þ

� �

: ð4:20Þ

In the IR, more important changes can appear between our k and other definitions
as for example in lattice calculations.

In the region of strong coupling we know much less in order to be guided
concerning the correct definition of the energy. We can obtain some hints however
by comparing with lattice results.10 In particular, based on lattice calculations
using the Schröndiger functional approach [68], it is argued that at long distance L
the ’t Hooft coupling constant scales as

klat� emL; m ’ 3
4

m0þþ : ð4:21Þ

9 As the dilaton is now not constant there is a non-trivial question: in which frame is the metric
AdS. In [25] it was argued that this should be the case in the string frame. The difference of
course between the string and Einstein frame is subleading in the UV as the coupling constant
vanishes logarithmically. But this may not be the case in the IR where we have very few criteria
to check. In the model we are using we impose that the space is asymptotically AdS in the
Einstein frame as this is the only choice consistent with the whole framework.
10 We would like to thank K. Kajantie for asking the question, suggesting to compare with lattice
data, and providing the appropriate references.
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This was based on a specific definition of the coupling constant, and length scale on
the lattice as well as on numerical data, and some general expectations on the fall-
off of correlations in a massive theory. This suggests an IR b function of the form

L
dk
dL
¼ k log

k
k0
; k ¼ k0 emL: ð4:22Þ

On the other hand our b-function at strong coupling uses the UV definition of
energy, log E ¼ AE (the scale factor in the Einstein frame), E� 1=L and is

L
dk
dL
¼ 3

2
k 1þ 3

4
a� 1

a

1
log k

þ � � �
� �

; k ’ L

L0


 �3
2

: ð4:23Þ

where a is a parameter in the IR asymptotics of the potential. The case we consider
as best fitting YM is a ¼ 2 as then the asymptotic glueball trajectories are linear.

Consider now taking as length scale the string scale factor eAs in the IR.11 Since
it increases, it is consistent to consider it as a monotonic function of length. From
its relation to the Einstein scale factor As ¼ AE þ 2

3 log k and (4.23) we obtain

dk
dAs
¼ 2a

a� 1
k log kþ � � � ð4:24Þ

Therefore if we define as length scale in the IR

log L ¼ 2a

a� 1
As ! L ¼ eAs

� 	

2a
a�1 ð4:25Þ

we obtain a running of the coupling compatible with the given lattice scheme. Note

however that L ¼ eAsð Þ
2a

a�1 cannot be a global choice but should be only valid in the IR.
The reason is that this function is not globally monotonic.

We conclude this section by restating that physical observables are independent of
scheme. But observables like the ’t Hooft coupling constant do depend on schemes,
and it is obvious that our scheme is very different from lattice schemes in the IR.

4.4 The Potential and the Parameters of the Model

We will make the following ansatz for the potential,12

VðkÞ ¼ 12
‘2

1þ V0kþ V1k
4=3 log 1þ V2k

4=3 þ V3k
2

� h i1=2
� �

; ð4:26Þ

11 The string scale factor is not a monotonic function on the whole manifold [23, 24], and this is
the reason that it was not taken as a global energy scale. In particular in the UV, eAs decreases
until it reaches a minimum. The existence of the minimum is crucial for confinement. After this
minimum eAs increases and diverges at the IR singularity.
12 Further studies of IHQCD with different potentials can be found in [69].
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which interpolates between the two asymptotic behaviors (4.4) for small k and
(4.6) for large k, with Q ¼ 2=3 and P ¼ 1=2. Not all the parameters entering this
potential have physical relevance. Below we will discuss the independent
parameters of the model, and their physical meaning.

4.4.1 The Normalization of the Coupling Constant k

As discussed in the previous section, the relation between the bulk field kðrÞ and
the physical QCD ’t Hooft coupling kt ¼ g2

YMNc is a priori unknown. In the UV,
the identification of the D3-brane coupling to the dilaton implies that the relation is
linear, and depends on an a priori unknown coefficient j, defined as:

k ¼ jkt: ð4:27Þ

The coefficient j can in principle be identified by relating the perturbative UV
expansion of the Yang–Mills b-function, to the holographic b-function for the bulk
field k:

bðktÞ ¼ �b0k
2
t � b1k

3
t þ � � � ; b0 ¼

22

3ð4pÞ2
; b1 ¼

51
121

b2
0; . . . ð4:28Þ

bðkÞ ¼ �b0k
2 � b1k

3 þ � � � ; b0 ¼
9
8

v0; b1 ¼
9
4

v1 �
207
256

v2
0 . . . ð4:29Þ

The two expressions (4.28) and (4.29) are consistent with a linear relation as in
(4.27), and expanding the identity jbtðktÞ ¼ bðjktÞ to lowest order leads to:

j ¼ b0=b0: ð4:30Þ

Therefore, to relate the bulk field k to the true coupling kt one looks at the linear
term in the expansion of the potential. More generally, the other b function
coefficients are related by bn ¼ jnþ1bn, and the combinations bn=bnþ1

0 ¼ bn=b
nþ1
0

are j-independent (however they are scheme-dependent for n� 2).
As discussed in Sect. 4.3, the introduction of the coefficient j amounts to a field

redefinition and therefore its precise value does not affect physical (scheme-
independent) quantities. In this sense, j is not a parameter that can be fixed by
matching some observable computed in the theory. Assuming the validity of the
relation (4.27), we could eventually fix j by matching a RG-invariant (but scheme-
dependent) quantity, e.g. k at a given energy scale.

However, as we discuss later in this section, rescaling k in the potential (thus
changing j) affects other parameters in the models, that are defined in the string
frame, e.g. the fundamental string length ‘s: if we hold the physical QCD string
tension fixed, the ratio ð‘s=‘Þ scales with degree �2=3 under a rescaling of j.

An important point to keep in mind, is that the simple linear relation (4.27) may
be modified at strong coupling, but again this does not have any effect on physical
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observables. As long as we compute RG-invariant and scheme-independent
quantities, knowledge of the exact relationship k ¼ FðktÞ is unnecessary.

4.4.2 The AdS Scale ‘

This is set by the overall normalization of the potential, and its choice is equivalent
to fixing the unit of energy. It does not enter dimensionless physical quantities. As
usual the AdS length at large Nc is much larger than the Planck length
(‘p� 1=ðMpN2=3

c Þ, independently of the ’t Hooft coupling.

4.4.3 The UV Expansion Coefficients of VðkÞ

They can be fixed order by order by matching the Yang–Mills b-function. We
impose this matching up to two-loops in the perturbative expansion, i.e. Oðk3Þ in ðkÞ.
One could go to higher orders by adding additional powers of k inside the loga-
rithm, but since our purpose is not to give an accurate description of the theory in
the UV, we choose not to introduce extra parameters.13

Identifying the energy scale with the Einstein frame scale factor,
log E � log bðrÞ, we have the relation (4.29) between the b-function coefficients
and the expansion parameters of VðkÞ, with

v0 ¼ V0; v1 ¼ V1
ffiffiffiffiffi

V2
p

: ð4:31Þ

The term proportional to V2 in (4.26) is needed to reproduce the correct value of
the quantity b1=b2

0 ¼ b1=b
2
0 ¼ 51=121, which is invariant under rescaling of k.

Thus, V2 is not a free parameter, but is fixed in terms of V0 and V1 by:

V2 ¼ b4
0

23þ 36 b1=b2
0

81V1


 �2

; b0 ¼
9
8

V0;
b1

b2
0

¼ 51
121

: ð4:32Þ

As explained earlier in this section, when discussing the normalization of the
coupling, fixing the coefficient V0 is the same as fixing the normalization j through
(4.30). As we argued, the actual value of j should not have any physical
consequences, so it is tempting to set V0 ¼ 1 by a field redefinition, k! k=V0 and
eliminate this parameter altogether.

In fact, most of the quantities we will compute are not sensitive to the value of
V0, but for certain quantities, such as the string tension, some extra care is needed.
In general, we can ask whether two models of the same form (4.3), but with

13 Moreover, higher order b-function coefficients are known to be scheme-dependent.
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different potentials VðkÞ and ~VðkÞ, such that ~VðkÞ ¼ VðakÞ for some constant a,
lead to different physical predictions. As we can change from one model to the
other simply by a field redefinition k! ak (this has no effect on the other terms in
the action in the Einstein frame, (4.3), clearly the two potentials lead to the same
result for any physical quantity that can be computed unambiguously from the
Einstein frame action, e.g. dimensionless ratios between glueball masses, critical
temperature, latent heat etc.

However a rescaling of k does affect the string frame metric, since the latter

explicitly contains factors of k: bsðrÞ ¼ bðrÞk2=3 [23, 24] thus, under the rescaling
k! ak; bsðrÞ ! a2=3bsðrÞ. This means that any dimensionless ratio of two
quantities, such that one of them remains fixed in the string frame and the other in
the Einstein frame, will depend on a. An example of this is the ratio ‘s=‘, where ‘s

is the string length, that we will discuss shortly.
Therefore, we can safely perform a field redefinition and set V0 to a given value,

as long as we are careful when computing quantities that depend explicitly on the
fundamental string length.

Bearing this caveat in mind, we will choose a normalization such that b0 ¼ b0, i.e.

V0 ¼
8
9
b0; ð4:33Þ

so that the normalization of k in the UV matches the physical Yang–Mills cou-
pling. With this choice, out of the four free parameters Vi appearing in (4.26) only
V1 and V3 play a non-trivial role (V2 being fixed by (4.32)).

4.4.4 The 5D Planck Scale Mp

Mp appears in the overall normalization of the 5D action (4.3). Therefore it enters
the overall scale of quantities derived by evaluating the on-shell action, e.g. the
free energy and the black-hole mass. It also sets the conversion factor between the
entropy and horizon area. Mp cannot be fixed directly as we lack a detailed
underlining string theory for YM. To obtain quantitative predictions, Mp must be
fixed in terms of the other dimension-full quantity of the model, namely the AdS
scale ‘. As shown in [29] this can be done by imposing that the high-temperature
limit of the black-hole free energy be that of a free gluon gas with the correct
number of degrees of freedom.14 This requires:

ðMp‘Þ3 ¼
1

45p2
: ð4:34Þ

14 Note that this is conceptually different from the N ¼ 4 case. There, near the boundary, the
theory is strongly coupled and this number must be calculated in string theory. It is different by
a factor of 3/4 from the free sYM answer. Here near the boundary the theory is free. Therefore
the number of degrees of freedom can be directly inferred.

94 U. Gursoy et al.



4.4.5 The String Length

In the non-critical approach the relation between the string length ‘s and the 5D
Planck length (or the AdS length ‘) is not known from first principles. The
string length does not appear explicitly in the two-derivative action (4.3), but it
enters quantities like the static quark–antiquark potential. The ratio ‘s=‘ can be
fixed phenomenologically to match the lattice results for the confining string
tension.

More in detail, the relation between the fundamental and the confining string
tensions Tf and r is given by:

r ¼ Tf b2ðr
Þk4=3ðr
Þ; ð4:35Þ

where r
 is the point where the string frame scale factor, bsðrÞ � bðrÞk2=3ðrÞ, has
its minimum. Fixing the confining string tension by comparison with the lattice
result we can find Tf (more precisely, the dimensionless quantity Tf ‘

2, since the
overall scale of the metric depends on ‘). The string length is in turn given by
‘s=‘ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pTf ‘2
p

.
As is clear from (4.35), rescaling k! ak, keeping the value of the QCD

string tension r and of the AdS scale ‘ fixed, affects the fundamental string length
in AdS units as ‘s=‘! a�2=3ð‘s=‘Þ. Therefore two models a and b, defined in the
Einstein frame by (4.3), but with potentials related by VbðkÞ ¼ VaðakÞ, must
have different fundamental string tensions in order to reproduce the same result for
the QCD string tension. The quantity ‘s=‘ therefore depends on the value of V0.

4.4.6 Integration Constants

Besides the parameters appearing directly in the gravitational action, there are also
other physically relevant quantities that label different solutions to the 5th order
system of field equations. Any solution is characterized by a scale K, the tem-
perature T and a value for the gluon condensate G, that correspond to three of the
five independent integration constants.15

Regularity at the horizon fixes G as a function of T , so that effectively the gluon
condensate is a temperature-dependent quantity.

The quantity K controls the asymptotic form of the solution, as it enters the

dilaton running in the UV: k ’ �ðb0 log rKÞ�1. It can be defined in a repara-
metrization invariant way as:

15 The remaining two are the value f ð0Þ which should be set to one for the solution (4.9) to
obey the right UV asymptotics, and an unphysical degree of freedom in the reparametrization
of the radial coordinate.
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K ¼ ‘�1 lim
k!0

bðkÞ
exp � 1

b0k

h i

kb1=b2
0

8

<

:

9

=

;

; ð4:36Þ

and it is fixed once we specify the value of the scale factor bðkÞ at a given k0.
Every choice of K corresponds to an inequivalent class of solutions, that differ

by UV boundary conditions. Each class is thermodynamically isolated, since
solutions with different K’s have infinite action difference. Thus, in the canonical
partition sum we need to consider only solutions with a fixed value of K. However,
this choice is merely a choice of scale, as solutions with different K’s will give the
same predictions for any dimensionless quantity. In short, K is the holographic
dual to the QCD strong coupling scale: it is defined by the initial condition to the
holographic RG equations, and does not affect dimensionless quantities such as
mass ratios, etc. Therefore, as long as all solutions we consider obey the same UV
asymptotics, the actual value of K is immaterial, since the physical units of the
system can always be set by fixing ‘.

To summarize, the only nontrivial phenomenological parameters we have at our
disposal are V1 and V3 appearing in (4.26). The other quantities that enter our
model are either fixed by the arguments presented in this section, or they only
affect trivially (e.g. by overall rescaling that can be absorbed in the definition of
the fundamental string scale) the physical quantities.

In the next section we present a numerical analysis of the solutions and ther-
modynamics of the model defined by (4.26), and show that for an appropriate
choice of the parameters it reproduces the lattice results for the Yang–Mills
deconfinement transition and high-temperature phase as well as the zero temperature
glueball data.

4.5 Matching the Thermodynamics of Large-Nc YM

Assuming a potential of the form (4.26), we look for values of the parameters such
that the thermodynamics of the 5D model match the lattice results for the ther-
modynamics of 4D YM. As explained in Sect. 4.3, we set V0 and V2 as in (4.33 and

4.32), respectively, with b0 ¼ b0 ¼ 22=3ð4pÞ�2.
We then vary V1 and V3 only. We fix these parameters by looking at thermo-

dynamic quantities corresponding to the latent heat per unit volume, and the
pressure at one value of the temperature above the transition, which we take as 2Tc.

It is worth remarking that V1 and V3 are phenomenological parameters that we
use to fit dimensionless QCD quantities. The single (dimension-full) parameter of
pure Yang–Mills, the strong coupling scale, is an extra input that fixes the overall
energy scale of our solution.

Using the numerical method explained in [32], for each set of parameters
ðV1;V3Þ we numerically generate black-hole solutions for a range of values of kh,
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then from the metric at the horizon and its derivative we extract the temperature
and entropy functions TðkhÞ and SðkhÞ, and the function FðkhÞ from the integrated
form of the first law,

FðkhÞ ¼
Z

þ1

kh

d�kh Sð�khÞ
dTð�khÞ

d�kh
: ð4:37Þ

Here SðkhÞ is given by (4.13) and both the large black hole and small black-hole
branches are needed in order the get the full result for the free energy. This is
because the integral in (4.37) extends to þ1, entering deeply in the small black-
hole branch.

The behavior of the thermodynamic functions is shown in Figs. 4.1, 4.2 and 4.3,
for the best fit parameter values that we discuss below. One can see the existence
of a minimal temperature Tmin ¼ TðkminÞ, and a critical value kc where F changes
sign. The resulting function FðTÞ is shown in Fig. 4.1.

The phase transition is first order, and the latent heat per unit volume Lh, nor-
malized by N2

c T4
c , is given by the derivative of the curve in Fig. 4.4 at T=Tc ¼ 1.

1 1.1 1.2

T

Tc
0

0.01

0.01

0.02

0.03

F

Nc
2 Tc

4 V3

Fig. 4.1 The free energy
density (in units of Tc) as a
function of T=Tc, for V1 ¼ 14
and V3 ¼ 170. The vertical
lines correspond to the
critical temperature (solid)
and the minimum black-hole
temperature (dashed)

Tc

λc 0.12 0.4 0.8 1.2
λ h

1

1.2

1.4

T

Tmin

Fig. 4.2 Temperature in
units of Tmin, as a function of
kh, for V1 ¼ 14 and
V3 ¼ 170. The dashed
horizontal and vertical lines
indicate the critical
temperature and the critical
value of the dilaton field at
the horizon
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Equivalently, Lh is proportional to the jump in the entropy density s ¼ S=V3 at the
phase transition from the thermal gas (whose entropy is of Oð1Þ, in the limit
Nc !1) to the black hole (whose entropy scales as N2

c in the same limit): thus, in
the large Nc limit,

Lh � TDs ’ TcsðkcÞ ð4:38Þ

up to terms of Oð1=N2
c Þ.

To fix V1 and V3 we compare our results to the data of G. Boyd et al. [70]. The
relevant quantities to compare are the dimensionless ratios pðTÞ=T4; eðTÞ=T4 and
sðTÞ=T3, where p ¼ F=V3 is the pressure, and e ¼ pþ Ts is the energy density.
Lattice results for these functions are available in the range T ¼ Tc� 5Tc, and can
be seen in Fig. 7 of [70]. The analysis of [70] correspond to Nc ¼ 3, but one
expects that the thermodynamic functions do not change to much for large Nc.16

0.4 0.8 1.2
λh

0.04

0.02

0.02

F

Nc
2V3 Tmin

4

Fig. 4.3 The free energy
density in units of Tmin, as a
function of kh

λc 0.4 0.8 1.2
λh
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0.4

0.6

0.8

1

S

Nc
2V3 Tmin

3

Fig. 4.4 Entropy density in
units of Tmin, as a function of
kh

16 See e.g. [71–73], in which results for Nc ¼ 8 do not different significantly from those for
Nc ¼ 3 as well as the recent high-precision data by Panero [74, 75].
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An additional quantity of relevance is the value for the ‘‘dimensionless’’ latent
heat per unit volume, Lh=T4

c which for large Nc was found in [76] to be
ðLh=T4

c Þlat ¼ 0:31N2
c . The result for N2

c ¼ 3 is slightly lower (’0:28N2
c ).

As already noted in [28, 29], the qualitative features of the thermodynamic
functions are generically reproduced in our setup: the curves 3pðTÞ=T4; eðTÞ=T4

and 3sðTÞ=4T3 increase starting at Tc, then (very slowly) approach the constant
free field value p2N2

c=15 (given by the Stefan–Boltzmann law) as T increases. By
computing the thermodynamic functions for various sets of values of V1 and V3 we
obtain that:

(1) V1 roughly controls the height reached by the curves pðTÞ=T4; eðTÞ=T4 and
sðTÞ=T3 at large T=Tc (* a few): for larger V1 the curves approach the free
field limit faster;

(2) V3 does not affect much the height of the curves at large T=Tc, but on the other
hand it changes the latent heat, which is increasing as V3 decreases.

The best fit corresponds to the values

V1 ¼ 14 V3 ¼ 170: ð4:39Þ

Below we discuss the values of various physical quantities (both related to ther-
modynamics, and to zero-temperature properties) obtained with this choice of
parameters.

4.5.1 Latent Heat and Equation of State

The comparison between the curves pðTÞ=T4; eðTÞ=T4 and sðTÞ=T3 obtained in
our models with (4.39), and the lattice results [70] is shown in Fig. 4.5. The match

free gas

e

T 4 Nc
2

3 s

4 T 3 Nc
2

3 p

T 4 Nc
2
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T
Tc

0.0
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0.2

0.3

0.4

0.5

0.6

0.7
Fig. 4.5 Temperature
dependence of the
dimensionless
thermodynamic densities,
normalized such that they
reach the common limiting
value p2=15 (dashed
horizontal line) as T !1.
The dots correspond to the
lattice data for Nc ¼ 3 [70]

4 Improved Holographic QCD 99



is remarkably good for Tc\T\2Tc, and deviates slightly from the lattice data in
the range up to 5Tc.

The latent heat we obtain is:

Lh=T4
c ¼ 0:31N2

c ; ð4:40Þ

which matches the lattice result for Nc !1 [76].
An interesting quantity is the trace anomaly ðe� 3pÞ=T4, (also known as

interaction measure), that indicates the deviation from conformality, and it is
proportional to the thermal gluon condensate. The trace anomaly in our setup is
shown, together with the corresponding lattice data, in Fig. 4.6, and the agree-
ment is again very good. Our results agree even better with recent high-precision
lattice calculations of the thermodynamics functions done by Panero at different
values of Nc up to Nc ¼ 8, [74, 75]. In Fig. 4.7 a comparison (taken from [74,
75]) of the normalized interaction measure with lattice results for different Nc is
shown.

We also compute the specific heat per unit volume cv, and the speed of sound cs

in the deconfined phase, by the relations

cv ¼ �T
o2F

oT2
; c2

s ¼
s

cv
: ð4:41Þ

These are shown in Figs. 4.8 and 4.9 respectively. The speed of sound is shown
together with the lattice data, and the agreement is remarkable.

Lh Nc
2Tc

4
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Tc
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0.4

e 3 p

T4 Nc
2

Fig. 4.6 The trace anomaly
as a function of temperature
in the deconfined phase of the
holographic model (solid
line) and the corresponding
lattice data [70] for Nc ¼ 3
(dots). The peak in the lattice
data slightly above Tc is
expected to be an artifact of
the finite lattice volume. In
the infinite volume limit the
maximum value of the curve
is at Tc, and it equals
Lh=N2

c T4
c
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4.5.2 Glueball Spectrum

In [23, 24], the single phenomenological parameters of the potential was fixed by
looking at the zero-temperature spectrum, i.e. by computing various glueball mass
ratios and comparing them to the corresponding lattice results. The masses are
computed by deriving the effective action for the quadratic fluctuations around the
background [77] and subsequently reducing the dynamics to four dimensions.

Fig. 4.7 The rescaled trace anomaly (so that it is Nc-independent) as a function of temperature in
the deconfined phase of the holographic model (solid line) and the corresponding recent high
precision lattice data taken from [74, 75] for different Nc. The errors shown are statistical only
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Fig. 4.8 The specific heat
(divided by T3), as a function
of temperature, in the
deconfined phase of the
holographic model
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The associated thermodynamics for this potential was studied in [28] which was
in qualitative agreement with lattice QCD results, but not in full quantitative
agreement. This is due to the fact that the thermodynamics depends more on the
details of the potential than the glueball spectrum for the main Regge trajectories.
Here we use the potential (4.26), but with the two phenomenological parameters
V1 and V3 already determined by the thermodynamics (4.39).

The glueball spectrum is obtained holographically as the spectrum of normal-
izable fluctuations around the zero-temperature background. As explained in the
introduction, and motivated in [23–25], here we consider explicitly the 5D metric,
one scalar field (the dilaton), and one pseudoscalar field (the axion). As a con-
sequence, the only normalizable fluctuations above the vacuum correspond to spin
0 and spin 2 glueballs17 (more precisely, states with JPC ¼ 0þþ; 0�þ; 2þþ), each
species containing an infinite discrete tower of excited states.

In 4D YM there are many more operators generating glueballs, corresponding
to different values of JPC , that are not considered here. These are expected to
correspond holographically to other fields in the noncritical string spectrum (e.g.
form fields, which may yield spin 1 and CP-odd spin 2 states) and to higher string
states that provide higher-spin glueballs. As the main focus is in reproducing the
YM thermodynamics in detail rather than the entire glueball spectrum, we choose
not to include these states.18 Therefore we only compare the mass spectrum
obtained in our model to the lattice results for the lowest 0þþ; 0�þ; 2þþ glueballs

free gas

0 1 2 3 4 5

T

Tc

0.1

0.2

0.3

0.4
cs

2Fig. 4.9 The speed of sound
in the deconfined phase, as a
function of temperature, for
the holographic model (solid
line) and the corresponding
lattice data [70] for Nc ¼ 3
(dots). The dashed horizontal
line indicates the conformal
limit c2

s ¼ 1=3

17 Spin 1 excitations of the metric can be shown to be non-normalizable.
18 A further reason is that, unlike the scalar and (to some extent) the pseudoscalar sector that we
are considering, the action governing the higher Regge slopes is less and less universal as one
goes to higher masses. Only a precise knowledge of the underline string theory is expected to
provide detailed information for such states.
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and their available excited states. These are limited to one for each spin 0 species,
and none for the spin 2, in the study of [78, 79], which is the one we use for our
comparison. This provides two mass ratios in the CP-even sector and two in the
CP-odd sector.

The glueball masses are computed by first solving numerically the zero-tem-
perature Einstein’s equations, by setting f ðrÞ ¼ 1, and using the resulting metric
and dilaton to setup an analogous Schrödinger problem for the fluctuations [23,
24]. The results for the parity-conserving sector are shown in Table 4.1, and are in
good agreement with those reported by [78, 79] for Nc ¼ 3, whereas the results
reported by [80] for large Nc are somewhat larger. The CP-violating sector (axial
glueballs) will be discussed separately.

We should add that there are other lattice studies (see e.g. [81]) that report
additional excited states. Our mass ratios offer a somewhat worse fit of the mass
ratios found in [81] (whose results are not entirely compatible with those of [78,
79] for the states the two studies have in common). We should stress however that
reproducing the detailed glueball spectrum is secondary here since the main focus
is thermodynamics. However, the comparison of our spectrum to the existing
lattice results shows that our model provides a good global fit to 4D YM also with
respect to quantities beyond thermodynamics.

Unlike the various mass ratios, the value of any given mass in AdS-length units
(e.g. m0þþ‘) does depend on the choice of integration constants in the UV, i.e. on
the value of bUV and kUV. Therefore its numerical value does not have an intrinsic
meaning. However it can be used as a benchmark against which all other
dimension-full quantities can be measured (provided one always uses the same UV
b.c.). On the other hand, given a fixed set of initial conditions, asking that m0þþ
matches the physical value (in MeV) obtained on the lattice, fixes the value of ‘
hence the energy unit.

4.5.3 Critical Temperature

The thermodynamic quantities we have discussed so far, are dimensionless ratios,
in units of the critical temperature. To compute Tc, we need an extra dimension-
full quantity which can be used independently to set the unit of energy. In lattice
studies this is typically the confining string tension r in the T ¼ 0 vacuum, with a

value of around ð440 MeVÞ2, and results are given in terms of the dimensionless
ratio Tc=

ffiffiffi

r
p

. In our case we cannot compute r directly, since it depends on the
fundamental string tension, which is a priori unknown. Instead, we take the mass
m0þþ of the lowest-lying glueball state as a reference.

Table 4.1 Glueball masses

HQCD Nc ¼ 3 [78, 79] Nc ¼ 1 [80]

m0
þþ=m0þþ 1.61 1.56(11) 1.90(17)
m2þþ=m0þþ 1.36 1.40(4) 1.46(11)
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We compute m0þþ with the potential (4.26), with V1 and V3 fixed as in (4.39),
then compare Tc=m0þþ to the same quantity obtained on the lattice. For the lattice
result, we take the large Nc result of [76], Tc=

ffiffiffi

r
p
¼ 0:5970ð38Þ, and combine it

with the large Nc result for the lowest-lying glueball mass [80], m0þþ=
ffiffiffi

r
p
¼

3:37ð15Þ. The two results are in fair agreement, without need to adjust any extra
parameter:

Tc

m0


 �

hQCD

¼ 0:167;
Tc

m0


 �

lattice

¼ 0:177ð7Þ: ð4:42Þ

In physical units, the critical temperature we obtain is given by

Tc ¼ 0:56
ffiffiffi

r
p
¼ 247 MeV: ð4:43Þ

4.5.4 String Tension

The fundamental string tension Tf ¼ 1
2p‘2

s
cannot be computed from first principles

in our model, but can be obtained using as extra input the lattice value of the
confining string tension r, at T ¼ 0. The fundamental and confining string tensions
are related by (4.35).

As for the critical temperature, we can relate Tf to the value of the lowest-lying
glueball mass, by using the lattice relation

ffiffiffi

r
p
¼ m0þþ

3:37 [80]. Since what we actually
compute numerically is m0þþ‘, this allows us to obtain the string tension Tf (and
fundamental string length ‘s ¼ 1=

ffiffiffiffiffiffiffiffiffiffi

2pTf
p

in AdS units:

Tf ‘
2 ¼ 0:19; ‘s=‘ ¼ 0:15: ð4:44Þ

This shows that the fundamental string length in our model is about an order of
magnitude smaller than the AdS length. The meaning of this fact is a little more
complicated conceptually, as the discussion in [25] indicates. Also, we should
stress that, as discussed in Sect. 4.4, this result depends on our choice of the overall
normalization of k: changing the potential by k! jk will yield different
numerical values in (4.44) without affecting the other physical quantities.

Another related observable is the spatial string tension. It is calculated from the
expectation value of the rectangular Wilson loop which stretches in spatial
dimensions only. This has been calculated on the lattice [82], as well as using the
high-temperature (resumed) perturbative expansion plus a zero-temperature
calculation of the string tension in three-dimensional YM theory [83]. The two
calculation agree reasonably well.

The spatial string tension at finite temperature can be calculated in IHQCD [84]
by calculating the relevant Wilson loop. Very good agreement was found with the
lattice calculations, especially at temperatures not far from the phase transition.
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Finally, several calculations of quark–antiquark potentials exist. At zero tem-
perature the long distance asymptotics of the quark potential was calculated in [23,
24] and used to classify the dilaton potentials as a function of the confinement
property. The full quark potential including the short distance behavior was
computed in [85]. There a comparison to the Cornell potential was done as well as
with quarkonium spectra finding excellent agreement with data. The issue of
quarkonium potentials from IHQCD-like theories was also recently discussed in
[86].

Finally the Polyakov loop was recently computed [87, 88] in similar Einstein
dilaton models that were studied first in [26].

4.5.5 CP-Odd Sector

The CP-odd sector of pure Yang–Mills is described holographically by the addi-
tion of a bulk pseudoscalar field aðrÞ (the axion) with action19:

Saxion ¼
M3

p

2

Z

d5xZðkÞ ffiffiffiffiffiffiffi�g
p ðolaÞðolaÞ: ð4:45Þ

The field aðrÞ is dual to the topological density operator TrF~F. The prefactor ZðkÞ
is a dilaton-dependent normalization. The axion action is suppressed by a factor
1=N2

c with respect to the action (4.3) for the dilaton and the metric, meaning that in
the large-Nc limit one can neglect the back-reaction of the axion on the
background.

As shown in [23, 24], requiring the correct scaling of aðrÞ in the UV, and
phenomenologically consistent axial glueball masses, constrain the asymptotics of
ZðkÞ as follows:

ZðkÞ� Z0; k! 0; ZðkÞ� k4; k!1; ð4:46Þ

where Z0 is a constant. As a simple interpolating function between these large- and
small- k asymptotics we can take the following:

ZðkÞ ¼ Z0ð1þ cak
4Þ: ð4:47Þ

The parameter Z0 can be fixed by matching the topological susceptibility of pure
Yang–Mills theory, whereas ca can be fixed by looking at the axial glueball mass
spectrum.

19 This action was justified in [23–25]. The dilaton dependent coefficient ZðkÞ is encoding both
the dilaton dependence as well as the UV curvature dependence of the axion kinetic terms in
the associated string theory. We cannot determine it directly from the string theory, but we pin
it down by a combination of first principles and lattice input, as we explain further below.
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4.5.5.1 Axial Glueballs

As in [23, 24], we can fix ca by matching to the lattice results the mass ratio
m0�þ=m0þþ between the lowest-lying axial and scalar glueball states. This is
independent of the overall coefficient Z0 in (4.47). The lattice value m0�þ=m0þþ ¼
1:49 [78, 79] is obtained for:

ca ¼ 0:26: ð4:48Þ

With this choice, the mass of the first excited axial glueball state is in good
agreement with the corresponding lattice result [78, 79]:

m0�þ

m0þþ


 �

hQCD

¼ 2:10
m0�þ

m0þþ


 �

lattice

¼ 2:12ð10Þ: ð4:49Þ

4.5.5.2 Topological Susceptibility

In pure Yang–Mills, the topological v susceptibility is defined by:

EðhÞ ¼ 1
2
vh2; ð4:50Þ

where EðhÞ is the vacuum energy density in presence of a h-parameter. EðhÞ can
be computed holographically by solving for the axion profile aðrÞ on a given
background, and evaluating the action (4.45) on-shell.

In the deconfined phase, the axion profile is trivial, implying a vanishing
topological susceptibility [29]. This is in agreement with large-Nc arguments and
lattice results [31].

In the low-temperature phase, the axion acquires a non-trivial profile,

aðrÞ ¼ aUV

FðrÞ
Fð0Þ ; FðrÞ �

Z

1

r

dr

ZðkðrÞÞe3AðrÞ : ð4:51Þ

This profile is shown, for the case at hand, in Fig. 4.10, where the axion is nor-
malized to its UV value.

The topological susceptibility is given by [23, 24]:

v ¼ M3
pFð0Þ�1 ¼ M3

p

Z

1

0

dr

e3AðrÞZðrÞ

2

4

3

5

�1

; ð4:52Þ

where ZðrÞ � ZðkðrÞÞ. Evaluating this expression numerically with ZðkÞ as in
(4.47), and ca ¼ 0:26 (to match the axial glueball spectrum), we can determine the
coefficient Z0 by looking at the lattice result for v. For Nc ¼ 3 [89] obtained

v ¼ ð191 MeVÞ4, which requires Z0 ¼ 133.
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In Table 4.4 we present a summary of the various physical quantities discussed
in this section, as obtained in our holographic model, and their comparison with
the lattice results for large Nc (when available) and for Nc ¼ 3. The quantities
shown in the upper half of the table are the ones that were used to fix the free
parameters (reported in the last column) of the holographic model.

4.5.6 Coupling Normalization

Finally, we can relate the field kðrÞ to the running ’t Hooft coupling. All other
quantities we have discussed so far are scheme-independent and RG-invariant.
This is not the case for the identification of the physical YM ’t Hooft coupling,
which is scheme dependent.

In the black-hole phase we can take kh � kðrhÞ as a measure of the temperature-
dependent coupling. In Fig. 4.11 we show kh as a function of the temperature in
the range Tc to 5Tc.
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Fig. 4.10 Axion profile in
the radial direction. The x-
axis is taken to be the energy
scale, EðrÞ ¼ E0bðrÞ, where
the unit E0 is fixed to match
the lowest glueball mass
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λ hFig. 4.11 The coupling at

the horizon as a function
of temperature in the range
Tc–5Tc
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As a reference, we may take the result of [70], that found g2ð5TcÞ ’ 1:5 for
Nc ¼ 3, which translates to ktð5TcÞ ’ 5. On the other hand, if we make the
assumption that the identification k ¼ kt is valid at all scales (not only in the UV),
we find in our model ktð5TcÞ ’ 0:04 (see Fig. 4.11), i.e. a factor of 100 smaller
than the lattice result.

This discrepancy is almost certainly due to the identification (4.27) being very
different from lattice at strong coupling.

4.6 Bulk Viscosity

The bulk viscosity f is an important probe of the quark–gluon plasma. Its profile as
a function of T reveals information regarding the dynamics of the phase transition.
In particular, both from the low-energy theorems and lattice studies [12, 40, 41],
there is evidence that f increases near Tc.

For a viscous fluid the shear g and bulk f viscosities are defined via the rate of
entropy production as

os

ot
¼ g

T
oivj þ ojvi �

2
3
ðo � vÞdij

� �2

þ f
T
ðo � vÞ2: ð4:53Þ

Therefore, in a holographic setup, the bulk viscosity can be defined as the
response of the diagonal spatial components of the stress–energy tensor to a small
fluctuation of the metric. It can be directly related to the retarded Green’s function
of the stress–energy tensor by Kubo’s linear response theory (Table 4.2):

Table 4.2 Collected in this table is the complete set of physical quantities that we computed in
our model and compared with data

HQCD Lattice Nc ¼ 3 Lattice Nc !1 Parameter

½p=ðN2
c T4Þ	T¼2Tc

1.2 1.2 – V1 ¼ 14

Lh=ðN2
c T4

c Þ 0.31 0.28 [70] 0.31 [76] V3 ¼ 170

½p=ðN2
c T4Þ	T!þ1 p2=45 p2=45 p2=45 Mp‘ ¼ ½45p2	�1=3

m0þþ=
ffiffiffi

r
p

3.37 3.56 [78, 79] 3.37 [80] ‘s=‘ ¼ 0:15
m0�þ=m0þþ 1.49 1.49 [78, 79] – ca ¼ 0:26
v ð191 MeVÞ4 ð191 MeVÞ4 [89] – Z0 ¼ 133

Tc=m0þþ 0.167 – 0.177(7)
m0
þþ=m0þþ 1.61 1.56(11) 1.90(17)
m2þþ=m0þþ 1.36 1.40(4) 1.46(11)
m0
�þ=m0þþ 2.10 2.12(10) –

The upper half of the table contains the quantities that we used as input (shown in boldface) for
the holographic QCD model (HQCD). Each quantity can be roughly associated to one parameter
of the model (last column). The lower half of the table contains our ‘‘postdictions’’ (i.e. quantities
that we computed after all the parameters were fixed) and the comparison with the corresponding
lattice results. The value we find for the critical temperature corresponds to Tc ¼ 247 MeV
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f ¼ � 1
9

lim
x!0

1
x

ImGRðx; 0Þ; ð4:54Þ

where GRðw; pÞ is the Fourier transform of retarded Green’s function of the stress–
energy tensor:

GRðw; pÞ ¼ �i

Z

d3xdteixt�ip�xhðtÞ
X

3

i;j¼1

h½Tiiðt; xÞ; Tjjð0; 0Þ	i: ð4:55Þ

A direct computation of the RHS on the lattice is non-trivial as it requires analytic
continuation to Lorentzian space-time. In Refs. [40, 41] the low energy theorems
of QCD, as well as (equilibrium) lattice data at finite temperature were used in
order to evaluate a particular moment of the spectral density of the relevant cor-
relator. using a parametrization of the spectral density via two time-dependent
constants, one of which is the bulk viscosity a relation for their product was
obtained as a function of temperature. This can be converted to a relation for f,
assuming the other constant varies slowly with temperature.

The conclusion was that f=s increases near Tc. Another conclusion is that the
fermionic contributions to f are small compared to the glue contributions.

The weak point of the approach of [41], is that it requires an ansatz on the
spectrum of energy fluctuations, and further assumptions on the other parameters.
which are not derived from first principles.

A direct lattice study of the bulk viscosity was also made in [12]. Here, the
result is also qualitatively similar 4.12. However, the systematic errors in this
computation are large especially near Tc, mostly due to the analytic continuation
that one has to perform after computing the Euclidean correlator on the lattice.

The results of references [40, 41] and the assumptions of the lattice calculation
have been recently challenged in [90].

4.6.1 The Holographic Computation

The holographic approach offers a new way of computing the bulk viscosity. In the
holographic set-up, f is obtained from (4.54). Using the standard AdS/CFT pre-
scription, the two point-function of the energy-momentum tensor can be read off
from the asymptotic behavior of the metric perturbations dglm. This is similar in
spirit to the holographic computation of the shear viscosity [6], but it is technically
more involved. A recent treatment of the fluctuation equation governing the scalar
mode of a general Einstein-Dilaton system can be found in [91]. Here, we follow
the method proposed by [92].

As explained in [92], one only needs to examine the equations of motion in the
gauge r ¼ U, where the radial coordinate is equal to the dilaton. In our type of
metrics, the applicability of this method requires some clarifications, that we
provide in [93]. Using SOð3Þ invariance and the five remaining gauge degrees of
freedom the metric perturbations can be diagonalized as
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dg ¼ diagðg00; g11; g11; g11; g55Þ; ð4:56Þ

where

g00 ¼ �e2Af ½1þ h00ðUÞe�i�t	; g11 ¼ e2A½1þ h11ðUÞe�i�t	; ð4:57Þ

g55 ¼
e2B

f
½1þ h55ðUÞe�i�t	;

where the functions A and B emerge from the metric

ds2 ¼ e2AðUÞð�fdt2 þ dxmdxmÞ þ e2BðUÞ dU2

f
: ð4:58Þ

Here, the fluctuations are taken to be harmonic functions of t while having an
arbitrary dependence on U.

The bulk viscosity depends only on the correlator of the diagonal components
of the metric and so it suffices to look for the asymptotics of h11. Interestingly, in
the r ¼ U gauge this decouples from the other components of the metric and
satisfies the following equation20

h0011 � � 8
9A0
� 4A0 þ 3B0 � f 0

f


 �

h011 � � e2B�2A

f 2
x2 þ 4f 0

9fA0
� f 0B0

f


 �

h11 ¼ 0 :

ð4:59Þ

One needs to impose two boundary conditions. First, we require that only the
infalling condition survives at the horizon:

h11 ! cbðUh � UÞ�
ix

4pT ; U! Uh; ð4:60Þ

where cb is a normalization factor. The second boundary condition is that h11 has
unit normalization on the boundary:

h11 ! 1; U! �1: ð4:61Þ

Having solved for h11ðUÞ, Kubo’s formula (4.54) and a wise use of the AdS/CFT
prescription to compute the stress–energy correlation function [92] determines the
ratio of bulk viscosity as follows.

The AdS/CFT prescription relates the imaginary part of the retarded Tii Green’s
function to the number flux of the h11 gravitons F [92]:

Im GRðx; 0Þ ¼ �
F

16pG5
ð4:62Þ

20 Difference in the various numerical factors in this equation w.r.t [92] is due to our different
normalization of the dilaton kinetic term.
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where the flux can be calculated as the Noether current associated to the Uð1Þ
symmetry h11 ! eihh11 in the gravitational action for fluctuations. One finds,

F ¼ i
e4A�Bf

3A02
½h
11h011 � h11h


0

11	: ð4:63Þ

As F is independent of the radial variable, one can compute it at any U, most
easily near the horizon, where h11 takes the form (4.60). Using also the fact that
ðdA=dUÞðUhÞ ¼ �8VðUhÞ=9V 0ðUhÞ, one finds

Fð/Þ ¼ 27
32

�jcbð�Þj2e3AðUhÞ V
0ðUhÞ2

VðUhÞ
: ð4:64Þ

Then, (4.54 and 4.62) determine the ratio of bulk viscosity and the entropy density
as,

f
s
¼ 3

32p
V 0ðUhÞ
VðUhÞ


 �2

jcbj2: ð4:65Þ

In the derivation we use the Bekenstein–Hawking formula for the entropy density,
s ¼ exp 3AðUhÞ=4G5.

To find f we need to find cb only in the limit x! 0. The computation is
performed by numerically solving equation (4.59) with the appropriate boundary
conditions. There are two separate methods that one can employ to determine the
quantity cb:

1. One can solve (4.59) numerically with a fixed x=T , but small enough so that cb

reaches a fixed value. The method is valid also for finite values of x. From a
practical point of view, it is easier to solve (4.59) with the boundary condition
(4.60) with a unit normalization factor, read off the value on the boundary
h11ð�1Þ from the solution and finally use the symmetry of (4.59) under
constant scalings of h11 to determine jcbj ¼ 1=jh11ð�1Þj.

2. An alternative method of computation that directly extracts the information at
x ¼ 0 follows from the following trick [92]. Instead of solving (4.59) for small
but finite x, one can instead solve it for x ¼ 0. This is a simpler equation, yet
complicated enough to still evade analytic solution. Let us call this solution h0

11.
One numerically solves it by fixing the boundary conditions on the boundary:
h0

11ð�1Þ ¼ 1 and the derivative dh0
11=dUð�1Þ is chosen such that h11 is

regular at the horizon. Matching this solution to the expansion of (4.60) for
small x than yields jcbj ¼ h0

11ðUhÞ.

Both methods were used to obtain f=s as a function of T and checked that they
yield the same result. As explained in [29], most of the thermodynamic observ-
ables are easily computed using the method of scalar variables [29, 93].

The results are presented in Fig. 4.12. This figure gives a comparison of the
curve obtained by the holographic calculation sketched above by solving (4.59) and
the lattice data of [12]. We also show g=s ¼ 1=4p in this figure for comparison.
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The result is qualitatively similar to the lattice result where f=s increases as T
approaches Tc, however the rate of increase is slower than the lattice. As a result, we
obtain a value f=sðTcÞ � 0:06 that is an order of magnitude smaller than the lattice
result [12] which is 0.8. Note however that the error bars in the lattice evaluation are
large near Tc and do not include all possible systematic errors from the analytic
continuation.

We should note the fact that the holographic calculation gives a smaller value for
the bulk viscosity near Tc than the lattice calculation is generic and has been found for
other potentials with similar IR asymptotics [92]. The fact that the value of f=s near
Tc is correlated with the IR asymptotics of the potential will be shown further below.

Another fact that one observes from Fig. 4.12 is that f=s vanishes in the high T
limit. This reflects the conformal invariance in the UV and can be shown ana-
lytically as follows. f=s is determined by formula (4.65). In the high T limit,
(corresponding to kh ! 0, near the boundary), the fluctuation coefficient jcbj ! 1.
This is because of the boundary condition h11ðk ¼ 0Þ ¼ 1. We use the relation
between T and kh in the high T limit [29],

kh ! b0 logðpT=KÞð Þ�1: ð4:66Þ

Substitution in (4.65) leads to the result,

f
s large !

2
27p

1

log2ðpT=KÞ
;

�

�

�

�

as T !1: ð4:67Þ

As s itself diverges as T3 in this limit—it corresponds to an ideal gas—we learn
that f also diverges as T3= log2ðTÞ. Divergence at high T is expected from the
bulk-viscosity of an ideal gas. We do not expect however the details of the
asymptotic result to match with the pQCD result, for the same reasons that
the shear-viscosity-to-entropy ratio does not, [25]. We note however, that the
asymptotic T-dependence is very similar to the pQCD result [94]:
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in Improved Holographic
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112 U. Gursoy et al.



f=s / log�2ðpT=KÞ log�1 logðpT=KÞ : ð4:68Þ

4.6.2 Holographic Explanation for the Rise of f=s Near Tc

With the same numerical methods, one can also compute the ratio f=s on the small
black-hole branch. As this solution has a smaller value of the action than the large
black-hole solution, it is a subleading saddle point in the phase space of the theory,
hence bears no direct significance for an holographic investigation of the quark–
gluon plasma. However, as we show below, the existence of this branch provides a
holographic explanation for the peak in f=s in the quark–gluon plasma, near Tc.

From the practical point of view, we find the second numerical method above
(solving the fluctuation equation at x ¼ 0) easier in the range of kh that corre-
sponds to the small black hole. The result is shown in Fig. 4.13a. The presence of
two branches for T [ Tmin, is made clear in this figure. See also Fig. 4.13b for the
respective ranges of kh that correspond to small and large BHs. In Fig. 4.13a, f=s
on the large BH branch is depicted with a solid curve and the small BH branch is
depicted with a dashed curve. We observe that f=s keeps increasing on the large-
BH branch as T is lowered, up to the temperature Tmin where the small and large
BH branches merge.21 On the other hand, on the small BH branch f=s keeps
increasing as the T is increased, up to a certain Tmax that lies between Tmin and Tc,
see Fig. 4.14. From this point onwards, f=s decreases with increasing T.

A simple fact that can be proved analytically is that the derivative of f=s
diverges at Tmin. This is also clear from Fig. 4.14. This is shown by inspecting
(4.65). The T derivative is determined as d=dT ¼ ðdT=dkhÞd=dkh. Whereas the
derivative w.r.t kh is everywhere smooth,22 the factor dT=dkh diverges at Tmin by
definition, see Fig. 4.13b.

Therefore, the presence of a Tmin where the large and the small black holes meet,
in other words, the presence of a small black-hole branch is responsible for the
increase of f=s near Tmin. As in most of the holographic constructions that we
analyzed, and specifically in the example we present here, Tc and Tmin are close to one
another, this fact implies a rise in the bulk viscosity near Tc. This proposal, combined
with the fact that the existence of a small BH branch and color confinement in the
dual gauge theory at zero T are in one-to-one correspondence [29], suggests that in
confining large-N gauge theories, there will be a peak in the ratio f=s close to Tc.

Another fact that can be shown analytically is that f=s asymptotes to a finite
value as T !1 in the small black-hole branch.23 We find that,

21 As far as the thermodynamics of the gluon plasma is concerned, the temperatures below Tc
(on the large BH branch) has little importance, because for T\Tc the plasma is in the confined
phase.
22 Note that cb is also a function of kh. As both the fluctuation (4.59) and the boundary
conditions are smooth at kh ¼ kmin, one concludes that cb also is smooth at this point.
23 See the discussion at appendix B of [93].
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f
s small !

1
6p
;

�

�

�

�

as T !1: ð4:69Þ

As the entropy density vanishes in this limit [29], we conclude that f should vanish
with the same rate.

For a general potential with strong coupling asymptotics

VðkÞ� kQ as k!1; ð4:70Þ

taking into account (4.65), (4.69) is modified to

f
s small !

3Q2

32p
;

�

�

�

�

as rh ! r0: ð4:71Þ

where r0 is the position of the singularity in the zero temperature solution.
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Fig. 4.13 a Numerical evaluation of f=g both on the large-BH branch (the solid curve) and on
the small BH branch (the dashed curve). Tm denotes Tmin. b The two branches of black-hole
solutions, that correspond to different ranges of kh. The large BH corresponds to kh\kmin and the
small BH corresponds to kh [ kmin

114 U. Gursoy et al.



For confining theories, the limit rh ! r0 corresponds to T !1 on the small
BH branch. However, one can show that the result (4.71) holds quite generally,
regardless of whether the zero T theory confines or not. In particular, for the non-
confining theories—that is either when Q\4=3 or when Q ¼ 4=3 but the sub-
leading term in the potential vanishes at the singularity—there is only the large
black-hole branch and the limit rh ! r0 corresponds to the zero T limit of this BH.
Thus, we also learn that there exist holographic models that correspond to non-
confining gauge theories whose zero T limit yield a constant f=s. This constant
approaches zero as Q! 0, i.e. in the limiting AdS case.

We also see that the asymptotic value of f=s in the small BH branch is close to
the value of f=s near Tc. We shall give an explanation of this fact in the next
subsection. Using the asymptotic formula (4.71), the fact that Q [ 4

3 for con-

finement and Q� 4
ffiffi

2
p

3 for the IR singularity to be good and repulsive we may
obtain a range of values where we expect f=s to vary, namely

1
6p
� f

s small;asymptotic�
1

3p

�

�

�

�

: ð4:72Þ

A final observation concerns the coefficient cbðkhÞ in (4.65). This part is the
only input from the solution of the fluctuation equation, the rest of (4.65) is fixed
by the dilaton potential entirely. We plot the numerical result for cb in Fig. 4.15 as
a function of the coupling at the horizon kh.

First of all, Fig. 4.15 provides a check that, the approximate bound of [92]
jcbj � 1, is satisfied in the entire range. One also observes cb approaches to 1 in the
IR and UV asymptotics. These facts can be understood analytically: In the UV

Tmin

Tc

Tmax

0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
T Tc

ζ s

Fig. 4.14 An inset from the Fig. 4.13 around the maximum of f=s
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(near the boundary) it is because of the boundary condition cb ¼ 1. In the IR, it is
more subtle, and it is explained in appendix B of [93].

Finally, we observe that the deviation of cb from the asymptotic value 1 is
maximum around the phase transition point kc. In fact, we numerically observed
that the top of the curve in Fig. 4.15 coincides with kc to a very high accuracy.
Whether this is just a coincidence or not, remains to be clarified.

4.6.3 The Adiabatic Approximation

Motivated by the Chamblin-Reall solutions [95], Gubser et al. [26] proposed an
approximate adiabatic formula for the speed of sound. In the case when V 0=V is a
slowly varying function of U [26] proposes the following formulae for the entropy
density and the temperature:

log s ¼ � 8
3

Z

Uh

dU
V

V 0
þ � � � ; ð4:73Þ

log T ¼
Z

Uh

dU
1
2

V 0

V
� 8

9
V

V 0


 �

� � � ; ð4:74Þ

where the ellipsis denote contributions slowly varying in Uh.24

It is very useful to reformulate this approximation using the method of scalar
variables, which in turn allows us to extract the general T dependence of most of
the thermodynamic observables in an approximate form. Here, we apply this
formalism to the computation of f=s. The method of scalar variables and the
details of the adiabatic approximation in the scalar variables are given in [93].

For the scalar variable X ¼ U0

3A0 the adiabatic approximation means

λc

0.00 0.01 0.02 0.03 0.04
λh1.0

1.1

1.2

1.3

1.4

1.5

1.6
cbFig. 4.15 The coefficient jcbj

of (4.65) as a function of kh

24 Various coefficients in these equations differ from [26] due to our different normalization of
the dilaton kinetic term.
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XðUÞ � � 3
8

V 0ðUÞ
VðUÞ : ð4:75Þ

The fluctuation (4.59) greatly simplifies with (4.75). In fact, as shown in [93], the
solution becomes independent of U. With unit normalization on boundary, the
adiabatic solution in the entire range of U 2 ð�1;UhÞ becomes hadbðUÞ ¼ 1.
Consequently, the coefficient cb in (4.65) becomes unity, hence:

f
s adb ¼

3
32p

V 0ðUhÞ
VðUhÞ


 �2
�

�

�

�

�

: ð4:76Þ

We plot this function in kh in Fig. 4.16, where we also provide the exact numerical
result for comparison. Note that in Fig. 4.16 the whole large black-hole branch has
been compressed at the left of the figure for kh . 0:04 The same functions in the
variable T=Tc are plotted in Fig. 4.17.

The validity of the adiabatic approximation (4.75), is determined by the rate at
which V 0=V varies with U. In particular, the approximation becomes exact in the

1.5 2.0 2.5 3.0
T Tc

0.02

0.04

0.06

0.08

ζ
s

Fig. 4.17 Comparison of the
exact f=s with the adiabatic
approximation in variable T.
Solid curve is the full
numerical result and the
dashed curve follows from
(4.76)

0.1 0.2 0.3 0.4 0.5
λ h
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0.06

0.08

ζ s

Fig. 4.16 Comparison of the exact f=s with the adiabatic approximation in the variable kh. Solid
curve is the full numerical result and the dashed curve follows from (4.76)
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limits where V 0=V becomes constant. This happens for a constant potential or a
potential that is a single power of k (exponential in U). This is the case in the UV
(U! �1, where the potential becomes a constant) and the IR (U! þ1 where
the potential becomes a power law.). Therefore (4.76) allows us to extract the
analytic behavior of f=s in the limits Uh ! �1.

The numerical values one obtains from (4.76) in the intermediate region may
differ from the exact result (4.65) considerably, especially near Tc. However, we
expect that the general shape will be similar.

Finally, the adiabatic approximation hints at why, in the particular background
that we study, f=s at Tc is close to the limit value (4.69): In order to see this we
rewrite (4.76) as

f
s adb ¼

2
3p

X2

�

�

�

�

: ð4:77Þ

In the limit (4.69) we have X ! �1=2. The only other point where X ¼ �1=2, is
at the minimum of the string frame scale factor U
. This is the point where the
confining string saturates [23, 24]. On the other hand, we expect on general
physical grounds that the de-confinement phase transition happens near this point,
i.e. Uc � U
. Thus, the adiabatic formula predicts that f=sðUcÞ be close to the limit
value 1=6p.25

4.6.4 Buchel’s Bound

In [96], Buchel proposed a bound for the ratio of the bulk and shear viscosities,
motivated by certain well-understood holographic examples. In four space-time
dimensions the Buchel bound reads,

f
g
� 2

1
3
� c2

s


 �

: ð4:78Þ

We note that the bound is proposed to hold in the entire range of temperature from
Tc to 1. This bound is trivially satisfied for exact conformal theories such as
N ¼ 4 YM, and saturated in theories on Dp branes [96, 97]. With the numerical
evaluation at hand, we can check (4.78) in our case. In Fig. 4.18a we plot the LHS
and RHS of the bound.26 We clearly see that the bound is satisfied for all

25 This argument may break down for two (dependent) reasons: First of all the adiabatic
approximation becomes lees good near Uc. This is because, in this region V 0=V varies relatively
more rapidly as a function of U. Secondly, precisely because of this, even though Uc is not far
away from U
 the difference can result in a considerable change in the value of f=s through
(4.76).
26 Since this theory contains two derivatives only, g

s has the universal value 1=4p.
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temperatures. As expected, both the LHS and the RHS of (4.78) vanishes in the
high T conformal limit.

A clear picture of Buchel’s bound is obtained by defining the function:

CðTÞ ¼ f=g

2 1=3� c2
s

� 	 ; ð4:79Þ

in terms of which the bound is simply C [ 1. In Fig. 4.18b we show the function
CðTÞ obtained numerically in our IHQCD model, between Tc and 5Tc. The values
of this function are mildly dependent on temperature, and are between 1.5 and 2,
the same range of values that were recently considered in the hydrodynamic codes
by Heinz and Song [98].

We may also investigate the fate of the bound at large T. using the asymptotics
of f=s in (4.67)

f
s large ¼

2
27p

1

log2ðpT=KÞ
þ � � � ;

�

�

�

�

as T !1: ð4:80Þ
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Fig. 4.18 a Comparison of f=g (solid line) and the RHS of (4.78) (dashed line), obtained using
the speed of sound of the IHQCD model [22]. b Plot of the function CðTÞ defined in (4.79) as a
function of temperature. The horizontal dashed line indicates where Buchel’s bound is saturated.
We see that the bound is satisfied in the entire range of temperatures
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and

1
c2

s

� 3 ¼ 4
3

1

log2 T
Tc

� þ 32b

9

log log T
Tc

� � 

log3 T
Tc

�  þ � � � ð4:81Þ

from [29], that can be rewritten as

1
3
� c2

s ¼
4

27
1

log2 T
Tc

� þ 32b

81

log log T
Tc

� � 

log3 T
Tc

�  þ � � � ð4:82Þ

where b ¼ b1

b2
0
¼ 3�34

2�121 is the ratio of the two-loop to the one-loop squared b-function

coefficients in large-Nc YM.
Since in this class of models g=s ¼ 1=4p exactly we obtain

lim
T!1

f=g

2 1=3� c2
s

� 	 ¼ 1 ð4:83Þ

in agreement with a recently derived general formula, in Einstein dilaton gravity
[99]

lim
T!1

f=g

2 1=3� c2
s

� 	 ¼ 2p
4� D

4� 2D
cot

pD
4


 �

ð4:84Þ

where D is the scaling dimensions of the scalar operator in the UV, that is marginal
in our case.

It has also been suggested recently [100–102] that the speed of sound squared,
in Einstein dilaton gravity asymptotes to 1/3 at high temperatures from below.
This is evident in our asymptotic formula (4.82), although the formulae in [100–
102] fail to capture correctly the marginal case that is relevant here.

4.7 The Drag Force on Strings and Heavy Quarks

We will now consider an (external) heavy quark moving through an infinite vol-
ume of gluon plasma with a fixed velocity v at a finite temperature T [17, 19, 20].
The quark feels a drag force coming from its interaction with the plasma and an
external force has to be applied in order for it to keep a constant velocity. In a more
realistic set up one would like to describe the deceleration caused by the drag.

The heavy external quark can be described by a string whose endpoint is at the
boundary. One can accommodate flavor by introducing D-branes, but we will not
do this here. A first step is to describe the classical string ‘‘trailing’’ the quark.

We consider the Nambu–Goto action on the world-sheet of the string.
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SNG ¼ �
1

2p‘2
s

Z

drds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det �gMNoaXMobXN
� 	

q

; ð4:85Þ

where the metric is the string frame metric. The ansatz we are going to use to
describe the trailing string is [19, 20]

X1 ¼ vt þ nðrÞ; X2 ¼ X3 ¼ 0; ð4:86Þ

along with the gauge choice

r ¼ r; s ¼ t; ð4:87Þ

where r is the (radial) holographic coordinate. The string is moving in the X1

direction.
This is a ‘‘steady-state’’ description of the moving quark as acceleration and

deceleration are not taken into account. For a generic background the action of the
string becomes

S ¼ � 1
2p‘2

s

Z

dtdr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00grr � g00g11n
02 � g11grrv2

q

: ð4:88Þ

Note that g00 is negative, and we should check whether our solution produces a
real action. For example a straight string stretching from the quark to the horizon is
a solution to the equations of motion but has imaginary action.

We note that the action does not depend on n but only its derivative, therefore
the corresponding ‘‘momentum’’ is conserved

pn ¼ �
1

2p‘2
s

g00g11n
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00grr � g00g11n
02 � g11grrv2

q : ð4:89Þ

We solve for n0 to obtain

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00grr � g11grrv2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g00g11 1þ g00g11=ð2p‘2
s pnÞ2

� 

r : ð4:90Þ

The numerator changes sign at some finite value of the fifth coordinate rs. For the
solution to be real, the denominator has to change sign at the same point. We
therefore determine rs via the equation

g00ðrsÞ þ g11ðrsÞv2 ¼ 0; ð4:91Þ

and the constant momentum

p2
n ¼ �

g00ðrsÞg11ðrsÞ
ð2p‘2

s Þ
2 ð4:92Þ
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Writing the string-frame metric as

ds2 ¼ e2As
dr2

f
� f dt2 þ dx � dx

� �

ð4:93Þ

(4.91) becomes

v2 ¼ f ðrsÞ ð4:94Þ

The induced world-sheet metric is therefore

gab ¼ e2AsðrÞ
�ðf ðrÞ � v2Þ e2AsðrsÞv2

f ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðrÞ�v2

e4AsðrÞf ðrÞ�e4AsðrsÞv2

q

e2AsðrsÞv2

f ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðrÞ�v2

e4AsðrÞf ðrÞ�e4AsðrsÞv2

q

e4AsðrÞf 2ðrÞ�v4e4AsðrsÞ

f 2ðrÞ e4AsðrÞf ðrÞ�v2e4AsðrsÞ½ 	

0

@

1

A ð4:95Þ

We can change the time coordinate to obtain a diagonal induced metric t ¼
sþ fðrÞ with

f0 ¼ e2AsðrsÞv2

f ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf ðrÞ � v2Þðe4AsðrÞf ðrÞ � e4AsðrsÞv2Þ
p

The new metric is

ds2 ¼ e2AsðrÞ �ðf ðrÞ � v2Þds2 þ e4AsðrÞ

ðe4AsðrÞf ðrÞ � e4AsðrsÞv2Þ dr2

� �

ð4:96Þ

and near r ¼ rs it has the expansion

ds2 ¼ �f 0ðrsÞe2AsðrsÞðr � rsÞ þ Oððr � rsÞ2Þ
h i

ds2

þ e2AsðrsÞ

ð4v2A0sðrsÞ þ f 0ðrsÞÞðr � rsÞ
þ Oð1Þ

� �

dr2 ð4:97Þ

This is a world-sheet black-hole metric with horizon at the turning point r ¼ rs:

4.7.1 The Drag Force

The drag force on the quark can be determined by calculating the momentum that
is lost by flowing along the string into the horizon:

Fdrag ¼
dp1

dt
¼ � 1

2p‘2
s

g00g11n
0

ffiffiffiffiffiffiffi�g
p ¼ pn: ð4:98Þ

This can be obtained by considering the world-sheet Noether currents Pa
M and

expressing the loss of momentum as DPz
x1
¼
R

Pr
1. This may be evaluated at any

value of r, but it is more convenient to evaluate it at r ¼ rs.
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We finally find that

Fdrag ¼ �
1

2p‘2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�g00ðrsÞg11ðrsÞ
p

: ð4:99Þ

Using the form (4.93) of our finite-temperature metric in the string frame we
finally obtain

Fdrag ¼ �
e2AsðrsÞ

ffiffiffiffiffiffiffiffiffiffi

f ðrsÞ
p

2p‘2
s

¼ � e2AðrsÞ
ffiffiffiffiffiffiffiffiffiffi

f ðrsÞ
p

kðrsÞ4=3

2p‘2
s

; ð4:100Þ

where in the second equality we expressed the force in terms of the Einstein-frame
scale factor and the ‘‘running’’ dilaton. Substituting from (4.94) we obtain

Fdrag ¼ �
v e2AsðrsÞ

2p‘2
s

¼ � v e2AðrsÞkðrsÞ4=3

2p‘2
s

; ð4:101Þ

Before proceeding further, we will evaluate the drag force for the conformal case
of N ¼ 4 SYM where

eAs ¼ ‘
r
; v2 ¼ f ðrsÞ ¼ 1� ðpTrsÞ4;

‘2

‘2
s

¼
ffiffiffi

k
p

: ð4:102Þ

Substituting in (4.101) we obtain [17–20]

Fconf ¼
p
2

ffiffiffi

k
p

T2 v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p : ð4:103Þ

Moving on to YM, to compute the drag force from (4.101) we must first
determine ‘s in the IHQCD model. In this setup there is no analog of the
N ¼ 4 SYM relation (4.102) between ‘; ‘s and k. Rather, the fundamental
string length ‘s is determined in a bottom-up fashion, by matching the effective
string tension to the QCD string tension rc derived from the lattice calculations.
We obtain

rc ¼
1

2p‘2
s

e2As;oðr
Þ ¼ 1
2p‘2

s

e2Aoðr
Þkoðr
Þ4=3; ð4:104Þ

where r
 is the point where the zero-temperature string scale factor (at T = 0)

As;oðrÞ has a minimum. For a typical value of rc�ð440 MeVÞ2 [78, 79] we find

‘s ¼ 6:4 ‘; ð4:105Þ

where ‘ is the radius of the asymptotic AdS space.
On the other hand, unlike inN ¼ 4 SYM, in the IHQCD model the value of the

coupling kðrsÞ in (4.101) is not an extra parameter to be fixed by hand, but rather
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it is determined dynamically together with the background metric (Figs. 4.19
and 4.20).

4.7.2 The Relativistic Asymptotics

When v! 1 then rs ! 0 and we approach the boundary. Near the boundary
(r ! 0) we have the following asymptotics of the scale factor and the ’t Hooft
coupling [23, 24]
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T Tc 3.68

T Tc 1.99

T Tc 1.48

T Tc 1.01

Fig. 4.20 The ratio of the drag force in improved holographic QCD to the drag force in N ¼ 4
SYM is shown. The ratio is computed for different temperatures as a function of velocity. The
’t Hooft coupling for the N ¼ 4 SYM theory is taken to be 5:5. As temperature increases the
value of the ratio decreases
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Fig. 4.19 The ratio of the drag force in improved holographic QCD to the drag force in N ¼ 4
SYM is shown. The ratio is computed for different velocities as a function of temperature. The
’t Hooft coupling for the N ¼ 4 SYM theory is taken to be 5:5. We chose this value as it is
considered in the central region of possible values for the ’t Hooft coupling. It is seen that as the
velocity increases the value of the ratio decreases
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f ðrÞ ’ 1� pT e3AðrhÞ

‘3
r4 1þO 1

logðKrÞ


 �� �

þOðr8Þ;

eAðrÞ ¼ ‘
r

1þO 1
logðKrÞ


 �� �

þ � � � ð4:106Þ

and

kðrÞ ¼ � 1
b0 logðrKÞ þ OðlogðrKÞ�2Þ ð4:107Þ

where rh is the position of the horizon.
We therefore obtain for the turning point

rs ’
‘3ð1� v2Þ
pTe3AðrhÞ

� �

1
4

1þO 1
logð1� v2Þ


 �� �

; kðrsÞ ’ �
4

b0 log 1� v2½ 	 þ � � �

ð4:108Þ

and the drag force

Fdrag ’ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pT‘b3ðrhÞk
8
3ðrsÞ

q

2p‘2
s

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p þ � � � ð4:109Þ

We also use

e3AðrhÞ ¼ sðTÞ
4pM3

p N2
c

¼ 45p‘3sðTÞ
N2

c

ð4:110Þ

where sðTÞ the entropy per unit three-volume, and we write the relativistic
asymptotics of the drag force as,

Fdrag ’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pT‘b3ðrhÞ
p

2p‘2
s

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

� b0
4 log 1� v2½ 	

� 4
3

þ � � � ð4:111Þ

¼ � ‘
2

‘2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

45 TsðTÞ
4N2

c

s

v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

� b0
4 log 1� v2½ 	

� 4
3

þ � � �

The force is proportional to the relativistic momentum combination v=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

modulo a power of log 1� v2½ 	. This factor is present because, as argued in [25] the
asymptotic metric is AdS in the Einstein frame instead of the string frame. Its
effects are not important phenomenologically.
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4.7.3 The Non-relativistic Asymptotics

We now consider the opposite limit, v! 0. In this case the turning point
asymptotes to the horizon, rs ! rh and we have the expansion

f ðrÞ ’ 4pTðrh � rÞ þ Oððrh � rÞ2Þ; rs ¼ rh �
v2

4pT
þOðv4Þ ð4:112Þ

and

Fdrag ’ �
e2AðrhÞkðrhÞ

4
3

2p‘2
s

v 1� v2

2pT
A0ðrhÞ �

v2

3pT

k0ðrhÞ
kðrhÞ

þ Oðv4Þ
� �

ð4:113Þ

’ � ‘
2

‘2
s

45p sðTÞ
N2

c


 �2
3kðrhÞ

4
3

2p
vþOðv3Þ

where primes are derivatives with respect to the conformal coordinate r.

4.7.4 The Diffusion Time

For a heavy quark with mass Mq we may rewrite (4.103) as

Fconf �
dp

dt
¼ � 1

s
p; p ¼ Mqv

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ð4:114Þ

where the first equation defines the diffusion time s. In the conformal case, the
diffusion time is constant,

sconf ¼
2Mq

p
ffiffiffi

k
p

T2
: ð4:115Þ

This is not anymore the case in QCD, where s defined as above is momentum
dependent. We may still define it as in (4.114) in which case we obtain the
following limits (Fig. 4.21):

lim
p!1

s ¼ Mq
‘2

s

‘2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4N2
c

45 TsðTÞ

s

b0

4
log

p2

M2
q

 !4
3

þ � � � ð4:116Þ

lim
p!0

s ¼ Mq
‘2

s

‘2

N2
c

45p sðTÞ


 �

2
3 2p

kðrhÞ
4
3

þ � � � ð4:117Þ
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4.7.5 Including the Correction to the Quark Mass

In order to estimate the diffusion time of a quark of finite rest mass, we must take
into account the fact that the mass of the quark receives medium-induced
corrections. In other words, the mass appearing in (4.114) is a temperature-
dependent quantity, MqðTÞ 6¼ MqðT ¼ 0Þ. The ratio MqðTÞ=Mqð0Þ can be esti-
mated holographically by representing a static quark of finite mass by a static,
straight string27 stretched along the radial direction starting at a point r ¼ rq 6¼ 0.
At zero temperature, the IR endpoint of the string can be taken as the ‘‘confine-
ment’’ radius, r
, where the string frame metric reaches its minimum value; At
finite temperature, the string ends in the IR at the BH horizon.28 The masses of the
quark at zero and finite T are related to the world-sheet action evaluated on the
static solution ðs ¼ t; r ¼ rÞ :

Mqð0Þ ¼
‘

2p‘2
s

Z

r


rq

dr e2AoðrÞk4=3
o ðrÞ ; MqðTÞ ¼

‘

2p‘2
s

Z

rh

rq

dr e2AðrÞk4=3ðrÞ: ð4:118Þ
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Fig. 4.21 The ratio of the diffusion time in the Improved Holographic QCD model to the
diffusion time in N ¼ 4 SYM is shown. The ’t Hooft coupling for N ¼ 4 SYM is taken to be
k ¼ 5:5. The heavy quark has a mass of Mq ¼ 1:3 GeV. Note that with the definition of the
diffusion time in (4.114) the ratio is the inverse of the ratio of the forces. A similar plot is valid for
the bottom quark as well, as the mass drops out of the ratio. although the energy scales are
different. In this plot the x-axis is taken to be in MeV units. As temperature increases the ratio
also increases

27 This representation ignores the fact that the kinetic mass of a moving quark may be different
from the static mass [17].
28 It would stop at the confinement radius if the latter were closer to the boundary than the
horizon, i.e. if r
ðTÞ\rhðTÞ. However, in the model we are considering, in the large BH branch
we find that the relation rh\r
 is always satisfied.
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The value rq can be fixed numerically by matching Mqð0Þ to the physical
quark mass, and translating the fundamental string tension in physical units by

using the relation (4.104), with rc ¼ ð440 MeVÞ2. This makes MqðTÞ a function
of Mqð0Þ. The ratios MqðTÞ=Mqð0Þ we found numerically in the model under
consideration is shown in Fig. 4.22 for the Charm (Mð0Þ ¼ 1:5 GeV) and Bottom
(Mð0Þ ¼ 4:5 GeV) quarks. The fact that, in the deconfined plasma, the quark
mass decreases with increasing temperature is a direct consequence of the
holographic framework,29 since for higher temperature, the distance to the
horizon is smaller. An indication that this result may be in the right direction
comes from the lattice computation of the shift in the position of the quarkonium
resonance peak at finite temperature [104]: in the deconfined phase the char-
monium peak moves to lower mass at higher temperature. Our result for the
medium-induced shift in the constituent quark mass is consistent with these
observations.

We can now write the diffusion time from (4.101) and (4.114) as:

sðT ; vÞ ¼ MqðTÞ
rc

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p koðr
Þ

kðrsÞ


 �4=3

e2Aoðr
Þ�2AðrsÞ; ð4:119Þ

where once again we have eliminated the fundamental string length using
(4.104). Given a set of zero- and finite-temperature solutions, (4.119) can be
evaluated numerically for different values of the velocity and different quark
masses. The results for the Charm (Mqð0Þ ¼ 1:5 GeV) and Bottom (M ¼ 4:5 GeV)
quarks are displayed in Fig. 4.23.
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Fig. 4.22 Ratios between the
thermal mass and the rest
mass of the Charm (curve
labelled ‘‘c’’) and Bottom
(curve labelled ‘‘b’’) quarks,
as a function of temperature

29 For a possible field theoretical explanation of this phenomenon, see [103].
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4.7.6 Temperature Matching and Diffusion Time Estimates

An important question is how we should choose the temperature in our holo-
graphic model in order to compare our results with heavy-ion collision experi-
ments. This is nontrivial, since our setup is designed to describe pure SUðNcÞ
Yang–Mills, whereas at RHIC temperatures there are three light quark flavors that
become relevant. As a consequence, the critical temperatures and the number of
degrees of freedom of the two theories are not the same: for pure SUðNcÞ Yang
Mills we have N2

c � 1 degrees of freedom and a critical temperature around

Tc
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Fig. 4.23 Diffusion time for the Charm and Bottom quarks, as a function of energy, for different
ratios of the temperature to the IHQCD transition temperature Tc
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260 MeV; For SUðNcÞ QCD with Nf flavors the number of degrees of freedom is
N2

c � 1þ NcNf , and the transition temperature is lower, around 180 MeV.
In IHQCD, the transition temperature in physical units was calculated to be

Tc ¼ 247 MeV [32], i.e. close to the lattice result for the pure YM deconfining
temperature. From now on, this is the value we will mean when we refer to Tc.
This is also close to the temperature of QGP at RHIC, which we will denote TQGP,
and is estimated to be around 250 MeV. Since this value is uncertain, below we
give our results for a range of temperatures between 200 and 400 MeV. The higher
temperatures will be relevant for the LHC heavy-ion collision experiments (see
e.g. [105]).

Based on these considerations, there are different ways of fixing the temperature
(see e.g. the recent review [51]): one direct and two alternative schemes (that we
call the energy and entropy scheme).

• Direct scheme: The temperature of the holographic model is identified with the
temperature of the QGP in the experimental situation (at RHIC or LHC),

TðdirÞ
ihqcd ¼ TQGP.

• Energy scheme: One matches the energy densities, rather than the temperatures.
The energy density at RHIC is approximately (treating the QCD plasma as a free

gas.30) �QGP ’ ðp2=15ÞðN2
c � 1þ NcNf ÞðTQGPÞ4. For Nc ¼ Nf ¼ 3, asking that

our energy density matches this value requires us to consider the holographic

model at temperature T ð�Þihqcd given by

�ihqcdðT ð�ÞihqcdÞ ’ 11:2ðTQGPÞ4 ð4:120Þ

• Entropy scheme: Instead of matching the energy densities, alternatively one can
match the entropy density s, which for the QGP, in the free gas approxima-

tion,rQGP ’ 4p2=45ðN2
c � 1þ NcNf ÞðTQGPÞ4. This leads to the identification:

sihqcdðT ðsÞihqcdÞ ¼ 14:9ðTQGPÞ3 ð4:121Þ

The temperature translation table between the various schemes is shown in
Table 4.3. In that table, Tc ¼ 247 MeV is the deconfining temperature of the
holographic model.

In Fig. 4.24 we show the comparison between the diffusion times, as a function
of initial quark momentum, in the different schemes for the Charm and Bottom
quarks, at the temperature TQGP ¼ 250 MeV.

The results for the diffusion times at different temperatures, computed at a
reference heavy quark initial momentum p � 10 GeV, are displayed in Tables 4.4
and 4.5. We see that there is little practical difference between the entropy and

30 This is itself an approximation, since as we know both from experiment and in our
holographic model, the plasma is strongly coupled up to temperatures of a few Tc.
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dotted), all corresponding to
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Table 4.3 Translation table between different temperature identification schemes

TQGP (MeV) TQGP=Tc T ð�Þihqcd (MeV) T ð�Þihqcd=Tc T ðsÞihqcd (MeV) T ðsÞihqcd=Tc

190 0.77 259 1.05 274 1.11
220 0.89 290 1.18 302 1.23
250 1.01 325 1.31 335 1.35
280 1.13 361 1.46 368 1.49
310 1.26 398 1.61 402 1.63
340 1.38 434 1.76 437 1.77
370 1.50 471 1.90 472 1.91
400 1.62 508 2.06 507 2.05

The first two columns display temperatures in the direct scheme, (in which the temperature of the
holographic model matches the physical QGP temperature) and the corresponding ratio to the
IHQCD critical temperature, that was fixed by YM lattice results at Tc ¼ 247 MeV [32]. The third
and fourth columns display the corresponding temperatures (and respective ratios to Tc) in the
energy scheme, and the last two in the entropy scheme

Table 4.4 The diffusion times for the charm quark are shown for different temperatures, in the
three different schemes

TQGP;MeV scharm (fm/c) (direct) scharm (fm/c) (energy) scharm (fm/c) (entropy)

220 – 4.0 3.6
250 5.7 3.1 3.0
280 4.3 2.6 2.5
310 3.5 2.1 2.1
340 2.9 1.8 1.8
370 2.5 1.5 1.5
400 2.1 1.3 1.3

Diffusion times have been evaluated with a quark initial momentum fixed at p � 10 GeV
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energy schemes; on the other hand the difference between the direct scheme and
the two alternative schemes can be quite substantial.

4.8 Jet Quenching Parameter

In this section we discuss the jet quenching parameter in the class of holographic
models under consideration, and we estimate its numerical value for the concrete
model with potential (4.26) and parameters fixed as in [32]. For the holographic
computation, we will follow [18, 52]. There is another method available [57], but
we will not use it here.

The jet-quenching parameter q̂ provides a measure of the dissipation of the
plasma and it has been associated to the behavior of a Wilson loop joining two
light-like lines. We consider two light-like lines which extend for a distance L�

and are situated distance L apart in a transverse coordinate. Then q̂ is given by the
large Lþ behavior of the Wilson loop

W � e�
1

4
ffiffi

2
p q̂L�L2

: ð4:122Þ

We consider the bulk string frame metric

ds2 ¼ e2AsðrÞ �f ðrÞdt2 þ dx~2 þ dr2

f ðrÞ


 �

: ð4:123Þ

To address the problem of the Wilson loop we make a change of coordinates to
light cone coordinates for the boundary theory

xþ ¼ x1 þ t x� ¼ x1 � t ð4:124Þ

for which the metric becomes

Table 4.5 Diffusion times
for the bottom quark are
shown for different
temperatures, in the three
different schemes

TQGP

ðMeVÞ
sbottom

(fm/c)
(direct)

sbottom

(fm/c)
(energy)

sbottom

(fm/c)
(entropy)

220 – 8.9 8.4
250 11.4 7.5 7.1
280 10.1 6.3 6.1
310 8.6 5.4 5.3
340 7.5 4.7 4.7
370 6.6 4.1 4.1
400 5.8 3.6 3.6

Diffusion times have been evaluated with a quark initial
momentum fixed at p � 10 GeV
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ds2 ¼ e2As dx2
2 þ dx2

3 þ
1
2
ð1� f Þðdx2

þ þ dx2
�Þ þ ð1þ f Þdxþdx� þ

dr2

f


 �

:

ð4:125Þ

The Wilson loop in question stretches across x2, and lies at a constant xþ; x3. It is
convenient to choose a world-sheet gauge in which

x� ¼ s; x2 ¼ r: ð4:126Þ

Then the action of the string stretching between the two lines is given by

S ¼ 1
2p‘2

s

Z

drds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�detðgMNoaXMobXNÞ
q

ð4:127Þ

and assuming a profile of r ¼ rðrÞ we obtain

S ¼ L�

2p‘2
s

Z

dx2 e2As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� f Þ
2

1þ r02

f


 �

s

: ð4:128Þ

The integrand does not depend explicitly on x2, so there is a conserved quantity, c:

r0
oL
or0
� L ¼ c

ffiffiffi

2
p ; ð4:129Þ

which leads to

r02 ¼ f
e4Asð1� f Þ

c2
� 1


 �

: ð4:130Þ

A first assessment of this relation involves determining the zeros and the region
of positivity of the right-hand side. f is always positive and vanishes at the horizon.
For the second factor we need the asymptotics of e4Asð1� f Þ. This factor remains
positive and bounded from below in the interior and up to the horizon. It vanishes
however logarithmically near the boundary as

e4Asð1� f Þ ¼ pT‘e3AðrhÞ � 1
b0 logðKrÞ


 �8
3

1þO 1
logðKrÞ


 �� �

: ð4:131Þ

This is unlike the conformal case where we obtain a constant

e4Asð1� f Þ conformal ¼ ðpT‘Þ4
�

� : ð4:132Þ

Because of this, for fixed c, there is a region near the boundary where r02

becomes negative. At this stage we will avoid this region, by using a modified
boundary at r ¼ �. We will later show that this gymnastics will be irrelevant for
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the computation of the jet quenching parameter, as it involves effectively the limit
c! 0 (Fig. 4.25).

We will place the modified boundary r ¼ � a bit inward from the place r ¼ rmin

where the factor e4As ð1�f Þ
c2 � 1 vanishes:

e4AsðrminÞð1� f ðrminÞÞ ¼ c2: ð4:133Þ
Therefore we choose rmin\�.

Then, in the range �\r\rh the factor e4As ð1�f Þ
c2 � 1 is positive for sufficiently

small c. In this same range, r0 vanishes only at r ¼ rh. This is the true turning point
of the string world-sheet. This is also what happens in the conformal case. It is also
intuitively obvious that the relevant Wilson loop must sample also the region near
the horizon.

The constant c is determined by the fact that the two light-like Wilson loops are
a x2 ¼ L distance apart.

L

2
¼
Z

rh

�

cdr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðe4Asð1� f Þ � c2Þ
p : ð4:134Þ

The denominator vanishes at the turning point. The singularity is integrable.31

Therefore, as we are interested in the small L region, it is obvious from the
expression above that that c must also be small in the same limit.

This relation can then be expanded in powers of c as

L

2c
¼
Z

rh

�

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p þ c2

2

Z

rh

�

e�6As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ3
q þOðc4Þ : ð4:135Þ
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Fig. 4.25 The combination
ð1� f Þe4As is plotted as a
function of the radial
distance, for several
temperatures. The radial
distance is given in units of
the horizon position rc for the
black hole at the critical
temperature Tc. All curves
stop at the corresponding
horizon position

31 Even if we choose � ¼ rmin, the new singularity at r ¼ rmin is also integrable as suggested
from (4.131).
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Therefore to leading order in L

c ¼ L

2
R rh

�
e�2As dr
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p þ OðL3Þ:: ð4:136Þ

We are now ready to evaluate the Nambu–Goto action of the extremal con-
figuration we have found. Starting from (4.128), we substitute r0 from (4.130), and
change integraLn variable from x2 ! r to obtain

S ¼ 2L�

2p‘2
s

Z

rh

�

dr
e4Asð1� f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f e4Asð1� f Þ � c2ð Þ
p : ð4:137Þ

As in [18, 52], we subtract from (4.137) the action of two free string straight
world-sheets that hang down to the horizon. To compute this action a convenient
choice of gauge is x� ¼ s; r ¼ r. The action of each sheet is

S0 ¼
L�

2p‘2
s

Z

rh

�

dr
ffiffiffiffiffiffiffiffiffiffiffi

g�grr
p ¼ L�

2p‘2
s

Z

rh

�

dr e2As

ffiffiffiffiffiffiffiffiffiffiffi

1� f

2f

s

: ð4:138Þ

The subtracted action is therefore:

Sr ¼ S� 2S0 ¼
L�c2

2p‘2
s

Z

rh

�

dr

e2As
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p þOðc4Þ ; ð4:139Þ

Using now (4.136) to substitute c we finally obtain

Sr ¼
L�L2

8p‘2
s

1
R rh

�
dr

e2As
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p þ OðL4Þ : ð4:140Þ

So far we have evaluated the relevant Wilson loop in the fundamental repre-
sentation (by using probe quarks). On the other hand, the Wilson loop that defines
the jet-quenching parameter is an adjoint one. We can obtain it in the large-Nc

limit from the fundamental using trAdjoint ¼ tr2
Fundamental. We finally extract the jet-

quenching parameter as

q̂ ¼
ffiffiffi

2
p

p‘2
s

1
R rh

�
dr

e2As
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p : ð4:141Þ

We are now ready to remove the cutoff. As the integral appearing is now well-
defined up to the real boundary r ¼ 0 we may rewrite it as
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Z

rh

�

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p ¼

Z

rh

0

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p � Ið�Þ; Ið�Þ ¼

Z

�

0

e�2As dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ð1� f Þ
p : ð4:142Þ

In [93] we obtain the small � estimate of Ið�Þ that vanishes as � �ðlog �Þ
4
3.

� �ðlog �Þ
4
3We may finally write32

q̂ ¼
ffiffiffi

2
p

p‘2
s

1
R rh

0
dr

e2As
ffiffiffiffiffiffiffiffiffiffi

f ð1�f Þ
p : ð4:143Þ

From (4.143) we obtain, in the conformal case:

q̂conformal ¼
C 3

4

� �

C 5
4

� �

ffiffiffiffiffi

2k
p

p
3
2T3: ð4:144Þ

The conformal value, for the median value of k ¼ 5:5 and T ’ 250 MeV gives
q̂conformal ’ 1:95 GeV2=fm where we used the conversion 1 GeV ’ 5 fm�1.

Numerical evaluation of (4.143) in the non-conformal IHQCD setup33 gives
us a value of q̂ which is lower (at a given temperature) than the conformal value, as
shown in Figs. 4.26, 4.27 and 4.28. Tables 4.6, 4.7, 4.8, and 4.9 display the
numerical values of the jet quenching parameter at different temperatures in the
experimentally relevant range, in different temperature matching schemes.

2 3 4 5
T Tc

0.32

0.34

0.36

0.38

0.40

qihQCD qconf

Fig. 4.26 The ratio of the jet quenching parameter in our model to the jet quenching parameter
in N ¼ 4 is shown. The integral present in (4.141) has been numerically calculated from an
effective cutoff at r ¼ rh=1000. The jet quenching parameter in N ¼ 4 SYM has been calculated
with k‘t Hooft ¼ 5:5

32 In practise, the previous discussion including regularizing the UV is academic. The numerical
calculation is done with a finite cutoff where the boundary conditions for the couplings are
imposed.
33 In this case, the value of ‘s appearing in (4.143) is fixed as explained in Sect. 4.4.
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Fig. 4.27 The jet quenching parameter q̂ for the Improved Holographic QCD model and N ¼ 4
SYM is shown in units of GeV2=fm for a region close to T ¼ Tc. The smallest dashed curve is the
ihQCD result with an effective cutoff of rcutoff ¼ rh=1000. The small dashed curve is the ihQCD
result with the cutoff from the mass of the Bottom quark. The medium dashed curve has a cutoff
coming from the Charm mass and largest dashed curve is the N ¼ 4 SYM result
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Fig. 4.28 The jet quenching parameter q̂ for the Improved Holographic QCD model (lower curve)
and N ¼ 4 SYM (upper curve) are shown in units of GeV2=fm for temperatures up to T ¼ 4Tc

Table 4.6 The jet quenching
parameter q̂ computed with
different cutoffs for the
different temperatures shown
in the first column

TQGP;MeV q̂ðGeV2=fmÞ
(direct)

q̂1ðGeV2=fmÞ
(direct)

220 – –
250 0.5 0.6
280 0.8 0.8
310 1.1 1.1
340 1.4 1.4
370 1.8 1.8
400 2.2 2.2

The computation is done in the direct scheme. The second col-
umn shows q̂ with a cutoff at rcutoff ¼ rh=1000, where rh is the
location of the horizon. In accordance with the conclusions of
appendix q̂ does not change significantly as we vary the cutoff
from rh=1000 to rh=100
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Table 4.7 The jet quenching
parameter q̂ using the three
different comparison schemes

TQGP;MeV q̂ðGeV2=fmÞ
(direct)

q̂ðGeV2=fmÞ
(energy)

q̂ðGeV2=fmÞ
(entropy)

220 – 0.9 1.0
250 0.5 1.2 1.3
280 0.8 1.6 1.7
310 1.1 2.1 2.2
340 1.4 2.7 2.8
370 1.8 3.4 3.4
400 2.2 4.2 4.2

For lower temperatures the ‘‘entropy scheme’’ gives higher
values. As energy is increased the energy and entropy schemes
temperatures start to coincide and there is little difference in the
jet quenching parameter as well

Table 4.8 The jet quenching
parameter q̂ using the three
different comparison schemes
with an effective cutoff
provided by the mass of the
Charm quark

TQGP;
MeV

q̂charm

ðGeV2=fmÞ
(direct)

q̂charm

ðGeV2=fmÞ
(energy)

q̂charm

ðGeV2=fmÞ
(entropy)

220 – 1.3 1.5
250 0.8 1.8 2.0
280 1.2 2.6 2.8
310 1.7 3.5 3.6
340 2.2 4.6 4.7
370 2.8 5.9 6.0
400 3.6 7.6 7.5

Again, for lower temperatures the ‘‘entropy scheme’’ gives
higher values. As energy is increased the energy and entropy
schemes temperatures start to coincide and there is little differ-
ence in the jet quenching parameter as well. Also when the
temperature approaches the quark mass the picture of the heavy
quark as a hanging string collapses and results are not reliable

Table 4.9 The jet quenching
parameter q̂ using the three
different comparison schemes
with an effective cutoff
provided by the mass of the
Bottom quark

TQGP;
MeV

q̂bottom

ðGeV2=fmÞ
(direct)

q̂bottom

ðGeV2=fmÞ
(energy)

q̂bottom ðGeV2=fmÞ
(entropy)

220 – 1.0 1.1
250 0.6 1.4 1.5
280 0.9 1.9 2.0
310 1.2 2.5 2.6
340 1.6 3.2 3.2
370 2.0 4.0 4.0
400 2.5 5.0 4.9

The results are close to the q̂ results computed in Table 4.7 since
the mass of the Bottom quark is much larger than the tempera-
tures we examine
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4.9 Discussion and Outlook

The construction presented in this paper offers a holographic description of large-
Nc Yang–Mills theory that is both realistic and calculable, and in quite good
agreement with a large number of lattice results both at zero and finite
temperature.

It is a phenomenological model; as such it is not directly associated to an explicit
string theory construction. In this respect it is in the same class as the models based
on pure AdS backgrounds (with hard or soft walls) [14–16, 106, 107], or on IR
deformations of the AdS metric [108, 109]. In comparison to them however, the
IHQCD approach has the advantage that the dynamics responsible for strong
coupling phenomena (such as confinement and phase transitions) is made explicit in
the bulk description, and it is tied to the fact that the coupling constant depends on
the energy scale and becomes large in the IR. This makes the model consistent and
calculable, once the 5D effective action is specified: the dynamics can be entirely
derived from the bulk Einstein’s equation. The emergence of an IR mass scale and
the finite temperature phase structure are built-in: they need not be imposed by hand
and do not suffer from ambiguities related to IR boundary conditions (as in hard
wall models) or from inconsistencies in the laws of thermodynamics (as in non-
dynamical soft wall models based on a fixed dilaton profile [16] or on a fixed metric
[108, 109]). More specifically, in this approach it is guaranteed that the Bekenstein–
Hawking temperature of the black hole matches the entropy computed as the
derivative of the free energy with respect to temperature.

With an appropriate choice of the potential, a realistic and quantitatively
accurate description of essentially all the static properties (spectrum and equilib-
rium thermodynamics) of the dynamics of pure Yang–Mills can be provided. The
main ingredient responsible for the dynamics (the dilaton potential) is fixed
through comparison with both perturbative QCD and lattice results. It is worth
stressing that such a matching on the quantitative level was only possible because
the class of holographic models we discuss generically provides a qualitatively
accurate description of the strong Yang–Mills dynamics. This is a highly non-
trivial fact, that strongly indicates that a realistic holographic description of real-
world QCD might be ultimately possible.

Although the asymptotics of our potential is dictated by general principles, we
base our choice of parameters by comparing with the lattice results for the ther-
modynamics. There are other physical parameters in the 5D description that do not
appear in the potential: the 5D Planck scale, that was fixed by matching the free
field thermodynamics in the limit T !1; the coefficients in the axion kinetic
term, that were set by matching the axial glueball spectrum and the topological
susceptibility (from the lattice). The quantities that we use as input in our fit, as
well as the corresponding parameters in the 5D model, are shown in the upper half
of Table 4.2.

The fact that our potential has effectively two free parameters depends on our
choice of the functional form. This functional form contains some degree of
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arbitrariness, in that only the UV and IR asymptotics of VðkÞ are fixed by general
considerations (matching the perturbative b-function in the UV, and a discrete
linear glueball spectrum for the IR). Therefore the results presented in this paper
offer more a description, rather than a prediction of the thermodynamics.

Nevertheless, there are several quantities that we successfully ‘‘postdict’’ (i.e.
they agree with the lattice results) once the potential is fixed: apart from the good
agreement of the thermodynamic functions over the whole range of temperature
explored by the lattice studies (see Figs. 4.5, 4.7 and 4.9), they are the lowest
glueball mass ratios and the value of the critical temperature. The comparison of
these quantities with the lattice results is shown in the lower half of Table 4.2, and
one can see that the agreement is overall very good. Moreover the model predicts
the masses of the full towers of glueball states in the 0þ�; 0þþ; 2þþ families.

The fact that IHQCD is consistent with a large number of lattice results is
clearly not the end of the story: its added value, and one of the main reasons for its
interest lies in its immediate applicability beyond equilibrium thermodynamics,
i.e. in the dynamic regimes tested in heavy-ion collision experiments. This is a
generic feature of the holographic approach, in which there are no obstructions (as
opposed to the lattice) to perform real-time computations and to calculate
hydrodynamics and transport coefficients. IHQCD provides a framework to
compute these quantities in a case where the static properties agree with the real-
word QCD at the quantitative level. Therefore the bulk viscosity, drag force and jet
quenching parameters were computed in IHQCD.

4.9.1 Bulk Viscosity

The bulk viscosity was computed by calculating the low frequency asymptotics of
the appropriate stress tensor correlator holographically. The result is that the bulk
viscosity rises near the phase transition but stays always below the shear viscosity.
It floats somewhat above the Buchel bound, with a coefficient of proportionality
varying between 1 and 2. Therefore it is expected to affect the elliptic flow at the
small percentage level [44, 98]. Knowledge of the bulk viscosity is important in
extracting the shear viscosity from the data. This result is not in agreement with
the lattice result near Tc. In particular the lattice result gives a value for the
viscosity that is ten times larger.

The bulk viscosity keeps increasing in the black-hole branch below the tran-
sition point until the large BH turns into the small BH at a temperature Tmin. The
bulk viscosity on the small BH background is always larger than the respective one
in the large BH background. In particular, it can be shown that the T derivative of
the quantity f=s diverges at Tmin. This is the holographic reason for the presence of
a peak in f=s near Tc. On the other hand, as it is shown in [29], the presence of Tmin

(i.e. a small BH branch) is in one-to-one correspondence with color confinement at
zero T. We arrive thus at the suggestion that in a (large N) gauge theory that
confines color at zero T, there shall be a rise in f=s near Tc.
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An important ingredient here is the value of the viscosity asymptotically in the
small BH branch. There the asymptotic value correlates to the IR behavior of the
potential. Taking also into account the fact that this asymptotic value is very close
to the value of the bulk viscosity near Tc, we can derive bounds that suggest that
the bulk viscosity cannot increase a lot near Tc.

4.9.2 Drag Force

The drag force calculated from IHQCD has the expected behavior. Although it
increases with temperature, it does so slower than in N ¼ 4 SYM, signaling the
effects of asymptotic freedom.

4.9.3 Diffusion Time

Based on the drag force calculation the diffusion times can be computed for a
heavy external quark. The numerical values obtained are in agreement with phe-
nomenological models [50]. To accommodate for the fact that IHQCD exhibits a
phase transition around T ¼ 247 MeV (i.e. about 30% higher than in QCD), the
results are compared using alternative schemes, as proposed in [19, 20]. For
example, for an external Charm quark of momentum p ¼ 10 GeV (in the alter-
native scheme) a diffusion time of s ¼ 2:6 fm at temperature T ¼ 280 MeV is
found. Similarly, for a Bottom quark of the same momentum and at the same
temperature, s ¼ 6:3 fm. Generally the numbers obtained are close to those
obtained by [50] and [54].

4.9.4 Jet Quenching

The jet quenching parameter of this model, has been also calculated, based on the
formalism of [18, 52] by computing the appropriate light-like Wilson loop. q̂
grows with temperature, but slower than the T3 growth of N ¼ 4 SYM result.
Again this can be attributed to the incorporation of asymptotic freedom in IHQCD.
Using the alternative scheme to compare with experiment, the results are close to
the lower quoted values of q̂. For example, for a temperature of T ¼ 290 MeV,
which in the alternative ‘‘energy scheme’’ corresponds to a temperature of T ¼
395 MeV in our model, we find that q̂ � 2 GeV2=fm.

However, the numbers obtained for this particular definition of jet quenching
parameter seem rather low and indicate that this may not be the most appropriate
definition in the holographic context. There are other ways to define q̂, in particular
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using the fluctuations of the trailing string solution. This is gives a direct and more
detailed input in the associated Langevin dynamics and captures the asymmetry
between longitudinal and transverse fluctuations. It would be interesting to com-
pute this, along the lines set in [57, 59, 60].

Acknowledgements We would like to thank the numerous colleagues that have shared their
insights with us via discussions and correspondence since 2007 that this line of research has
started: O. Aharony, L. Alvarez-Gaumé, B. Bringoltz, R. Brower, M. Cacciari, J. Casalderrey-
Solana, R. Emparan , F. Ferrari, B. Fiol, P. de Forcrand, R. Granier de Cassagnac, L. Giusti,
S. Gubser, K. Hashimoto, T. Hertog, U. Heinz, D. K. Hong, G. Horowitz, E. Iancu, K. Intriligator,
K. Kajantie, F. Karsch, D. Kharzeev, D. Kutasov, H. Liu, B. Lucini, M. Luscher, J. Mas,
D. Mateos, H. B. Meyer, C. Morningstar, V. Niarchos, C. Nunez, Y. Oz, H. Panagopoulos, S. Pal,
M. Panero, I. Papadimitriou, A. Paredes, A. Parnachev, G. Policastro, S. Pufu, K. Rajagopal,
F.Rocha, P. Romatchke, C. Salgado, F. Sannino, M. Shifman, E. Shuryak, S. J. Sin, C. Skenderis,
D. T. Son, J. Sonnenschein, S. Sugimoto, M. Taylor, M. Teper, J. Troost, A. Tseytlin,
A. Vainshtein, G. Veneziano, A. Vladikas, L. Yaffe, A. Yarom and U. Wiedemann.This work was
partially supported by a European Union grant FP7-REGPOT-2008-1-CreteHEPCosmo-228644,
and ANR grant NT05-1-41861. Work of LB has been partly funded by INFN, Ecole Polytech-
nique (UMR du CNRS 7644), MEC and FEDER under grant FPA2008-01838, by the Spanish
Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042) and by Xunta de Galicia
(Consellería de Educación and grant PGIDIT06PXIB206185PR).E. K. thanks the organizers and
especially E. Papantonopoulos for organizing a very interesting and stimulating school.

References

1. Adams, J., et al. [STAR Collaboration]: Experimental and theoretical challenges in the
search for the quark gluon plasma: the STAR collaboration’s critical assessment of the
evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005) [ArXiv:nucl-ex/0501009]

2. Back, B.B., et al.: The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28
(2005) [ArXiv:nucl-ex/0410022]

3. Arsene, I., et al. [BRAHMS Collaboration]: Quark gluon plasma and color glass condensate
at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1 (2005)
[ArXiv:nucl-ex/0410020]

4. Adcox, K., et al. [PHENIX Collaboration]: Formation of dense partonic matter in
relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX
collaboration. Nucl. Phys. A 757, 184 (2005) [ArXiv:nucl-ex/0410003]

5. Luzum, M., Romatschke, P.: Conformal relativistic viscous hydrodynamics: applications to
RHIC results at

ffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Phys. Rev. C 78, 034915 (2008) [ArXiv:0804.4015]

[nucl-th]
6. Policastro, G., Son, D.T., Starinets, A.O.: The shear viscosity of strongly coupled N = 4

supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001) [ArXiv:hep-th/
0104066]

7. Kovtun, P., Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field
theories from black-hole physics. Phys. Rev. Lett. 94, 111601 (2005) [arXiv:hep-th/
0405231]

8. Shuryak, E.: Physics of strongly coupled quark–gluon plasma. Prog. Part. Nucl. Phys. 62,
48–101 (2009) [ArXiv:0807.3033][hep-ph]

9. Son, D.T., Starinets, A.O.: Viscosity, black holes, and quantum field theory. Ann. Rev.
Nucl. Part. Sci. 57, 95 (2007) [ArXiv:0704.0240][hep-th]

10. Natsuume, M.: String theory and quark–gluon plasma [ArXiv:hep-ph/0701201]

142 U. Gursoy et al.



11. Karsch, F., Kharzeev, D., Tuchin, K.: Universal properties of bulk viscosity near the QCD
phase transition. Phys. Lett. B 663, 217 (2008) [ArXiv:0711.0914][hep-ph]

12. Meyer, H.B.: A calculation of the bulk viscosity in SU(3) gluodynamics. Phys. Rev. Lett.
100, 162001 (2008) [ArXiv:0710.3717][hep-lat]

13. Meyer, H.B.: Energy–momentum tensor correlators and viscosity. PoS LATTICE 2008 017
(2008) [ArXiv:0809.5202][hep-lat]

14. Erlich, J., Katz, E., Son, D.T., Stephanov, M.A.: QCD and a holographic model of hadrons.
Phys. Rev. Lett. 95, 261602 (2005) [arXiv:hep-ph/0501128]

15. Da Rold, L., Pomarol, A.: Chiral symmetry breaking from five dimensional spaces. Nucl.
Phys. B 721, 79 (2005) [ArXiv:hep-ph/0501218]

16. Karch, A., Katz, E., Son, D.T., Stephanov, M.A.: Linear confinement and AdS/QCD. Phys.
Rev. D 74, 015005 (2006) [ArXiv:hep-ph/0602229]

17. Herzog, C.P., Karch, A., Kovtun, P., Kozcaz, C., Yaffe, L.G.: Energy loss of a heavy quark
moving through N = 4 supersymmetric Yang–Mills plasma. JHEP 0607, 013 (2006)
[ArXiv:hep-th/0605158]

18. Liu, H., Rajagopal, K., Wiedemann, U.A.: Calculating the jet quenching parameter from
AdS/CFT. Phys. Rev. Lett. 97, 182301 (2006) [ArXiv:hep-ph/0605178]

19. Gubser, S.S.: Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006) [ArXiv:hep-th/
0605182]

20. Gubser, S.S.: Comparing the drag force on heavy quarks in N = 4 super-Yang–Mills theory
and QCD. Phys. Rev. D 76, 126003 (2007) [ArXiv:hep-th/0611272]

21. Casalderrey-Solana, J., Teaney, D.: Heavy quark diffusion in strongly coupled N = 4 Yang
Mills. Phys. Rev. D 74, 085012 (2006) [ArXiv:hep-ph/0605199]

22. Polchinski, J., Strassler, M.J.: Hard scattering and gauge/string duality. Phys. Rev. Lett. 88,
031601 (2002) [ArXiv:hep-th/0109174]

23. Gursoy, U., Kiritsis, E.: Exploring improved holographic theories for QCD: Part I. JHEP
0802, 032 (2008) [ArXiv:0707.1324][hep-th]

24. Gursoy, U., Kiritsis, E., Nitti, F.: Exploring improved holographic theories for QCD: Part II.
JHEP 0802, 019 (2008) [ArXiv:0707.1349][hep-th]

25. Kiritsis, E.: Dissecting the string theory dual of QCD. Fortsch. Phys. 57, 396–417 (2009)
[ArXiv:0901.1772][hep-th]

26. Gubser, S.S., Nellore, A.: Mimicking the QCD equation of state with a dual black hole.
Phys. Rev. D78, 086007 (2008) [ArXiv:0804.0434][hep-th]

27. Casero, R., Kiritsis, E., Paredes, A.: Chiral symmetry breaking as open string tachyon
condensation. Nucl. Phys. B 787, 98–134 (2007) [ArXiv:hep-th/0702155]

28. Gursoy, U., Kiritsis, E., Mazzanti, L., Nitti, F.: Deconfinement and gluon plasma dynamics
in improved holographic QCD. Phys. Rev. Lett. 101, 181601 (2008) [ArXiv:0804.0899]
[hep-th]

29. Gursoy, U., Kiritsis, E., Mazzanti, L., Nitti, F.: Holography and thermodynamics of 5D
dilaton-gravity. JHEP 0905, 033 (2009) [ArXiv:0812.0792][hep-th]

30. DeWolfe, O., Rosen, C.: Robustness of sound speed and jet quenching for gauge/gravity
models of hot QCD. JHEP 0907, 022 (2009) [ArXiv:0903.1458][hep-th]

31. Vicari, E., Panagopoulos, H.: Theta dependence of SU(N) gauge theories in the presence of
a topological term. Phys. Rep. 470, 93–150 (2009) [ArXiv:0803.1593][hep-th]

32. Gursoy, U., Kiritsis, E., Mazzanti, L., Nitti, F.: Improved holographic Yang–Mills at finite
temperature: comparison with data. Nucl. Phys. B 820, 148 (2009) [ArXiv:0903.2859]
[hep-th]

33. Kraus, P.: Dynamics of anti-de Sitter domain walls. JHEP 9912, 011 (1999) [ArXiv:hep-th/
9910149]

34. Kiritsis, E.: Supergravity, D-brane probes and thermal super Yang–Mills: a comparison.
JHEP 9910, 010 (1999) [ArXiv:hep-th/9906206]

35. Kehagias, A., Kiritsis, E.: Mirage cosmology. JHEP 9911, 022 (1999) [arXiv:hep-th/
9910174]

4 Improved Holographic QCD 143



36. Kiritsis, E.: Holography and brane-bulk energy exchange. JCAP 0510, 014 (2005)
[ArXiv:hep-th/0504219]

37. Baier, R., Romatschke, P., Son, D.T., Starinets, A.O., Stephanov, M.A.: Relativistic viscous
hydrodynamics, conformal invariance, and holography. JHEP 0804, 100 (2008) [ArXiv:
0712.2451][hep-th]

38. Bhattacharyya, S., Hubeny, V.E., Minwalla, S., Rangamani, M.: Nonlinear fluid dynamics
from gravity. JHEP 0802, 045 (2008) [ArXiv:0712.2456][hep-th]

39. Meyer, H.B.: A calculation of the shear viscosity in SU(3) gluodynamics. Phys. Rev. D 76,
101701 (2007) [ArXiv:0704.1801][hep-lat]

40. Kharzeev, D., Tuchin, K.: Bulk viscosity of QCD matter near the critical temperature. JHEP
0809, 093 (2008) [ArXiv:0705.4280][hep-ph]

41. Karsch, F., Kharzeev, D., Tuchin, K.: Universal properties of bulk viscosity near the QCD
phase transition. Phys. Lett. B 663, 217 (2008) [ArXiv:0711.0914][hep-ph]

42. Teaney, D.: Finite temperature spectral densities of momentum and R-charge correlators in
N = 4 Yang Mills theory. Phys. Rev. D 74, 045025 (2006) [ArXiv:hep-ph/0602044]

43. Romatschke, P., Son, D.T.: Spectral sum rules for the quark–gluon plasma. Phys. Rev. D 80,
065021 (2009) [ArXiv:0903.3946][hep-ph]

44. Heinz, U.: Talk at the Extra strong quark gluon plasma (ESQGP), Stony Brook (2008)
45. Adare, A., et al. [PHENIX Collaboration]: Energy loss and flow of heavy quarks in Au+Au

collisions at
ffiffiffiffiffiffiffi

sNN
p

= 200 GeV. Phys. Rev. Lett. 98, 172301 (2007) [ArXiv:nucl-ex/
0611018]

46. Borghini, N., Wiedemann, U.A.: Predictions for the LHC heavy ion programme. J. Phys. G
35, 023001 (2008) [ArXiv:0707.0564][hep-ph]

47. Baier, R., Dokshitzer, Y.L., Mueller, A.H., Peigne, S., Schiff, D.: Radiative energy loss of
high energy quarks and gluons in a finite-volume quark–gluon plasma. Nucl. Phys. B 483,
291 (1997) [ArXiv:hep-ph/9607355]

48. Baier, R., Dokshitzer, Y.L., Mueller, A.H., Peigne, S., Schiff, D.: Radiative energy loss and
p(T)-broadening of high energy partons in nuclei. Nucl. Phys. B 484, 265 (1997)
[ArXiv:hep-ph/9608322]

49. Zakharov, B.G.: Radiative energy loss of high energy quarks in finite-size nuclear matter
and quark–gluon plasma. JETP Lett. 65, 615 (1997) [ArXiv:hep-ph/9704255]

50. Akamatsu, Y., Hatsuda, T., Hirano, T.: Heavy quark diffusion with relativistic langevin
dynamics in the quark–gluon fluid [ArXiv:0809.1499][hep-ph]

51. Gubser, S.S., Pufu, S.S., Rocha, F.D., Yarom, A.: Energy loss in a strongly coupled thermal
medium and the gauge–string duality [ArXiv:0902.4041][hep-th]

52. Liu, H., Rajagopal, K., Wiedemann, U.A.: Wilson loops in heavy ion collisions and their
calculation in AdS/CFT. JHEP 0703, 066 (2007) [ArXiv:hep-ph/0612168]

53. Svetitsky, B.: Diffusion of charmed quark in the quark gluon plasma. Phys. Rev. D 37, 2484
(1988)

54. van Hees, H., Rapp, R.: Thermalization of heavy quarks in the quark–gluon plasma. Phys.
Rev. C 71, 034907 (2005) [ArXiv:nucl-th/0412015]

55. Moore, G.D., Teaney, D.: How much do heavy quarks thermalize in a heavy ion collision?.
Phys. Rev. C 71, 064904 (2005) [ArXiv:hep-ph/0412346]

56. van Hees, H., Greco, V., Rapp, R.: Heavy-quark probes of the quark–gluon plasma at RHIC.
Phys. Rev. C 73, 034913 (2006) [ArXiv:nucl-th/0508055]

57. Gubser, S.S.: Momentum fluctuations of heavy quarks in the gauge–string duality. Nucl.
Phys. B 790, 175 (2008) [ArXiv:hep-th/0612143]

58. de Boer, J., Hubeny, V.E., Rangamani, M., Shigemori, M.: Brownian motion in AdS/CFT.
JHEP 0907, 094 (2004) [ArXiv:0812.5112][hep-th]

59. Son, D.T., Teaney, D.: Thermal noise and stochastic strings in AdS/CFT. JHEP 0907 021,
(2009), [ArXiv:0901.2338 [hep-th]

60. Giecold, G.C., Iancu, E., Mueller, A.H.: Stochastic trailing string and Langevin dynamics
from AdS/CFT. JHEP 0907 033, (2009), [ArXiv:0903.1840] [hep-th]

144 U. Gursoy et al.



61. Debbasch, F., Mallick, K., Rivet, K.P.: Relativistic Ornstein–Uhlenbeck process. J. Stat.
Phys. 88, 945 (1997)

62. Chevalier, C., Debbasch, F.: Relativistic diffusions: a unifying approach. J. Math. Phys. 49,
043303 (2008)

63. Caron-Huot, S., Kovtun, P., Moore, G.D., Starinets, A., Yaffe, L.G.: Photon and dilepton
production in supersymmetric Yang–Mills plasma. JHEP 0612, 015 (2006) [ArXiv:hep-th/
0607237]

64. Sin, S.J., Zahed, I.: Holography of radiation and jet quenching. Phys. Lett. B 608, 265
(2005) [ArXiv:hep-th/0407215]

65. Sin, S.J., Zahed, I.: Ampere’s law and energy loss in AdS/CFT duality. Phys. Lett. B 648,
318 (2007) [ArXiv:hep-ph/0606049]

66. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge
theories. Adv. Theor. Math. Phys. 2, 505 (1998) [ArXiv:hep-th/9803131]

67. Kinar, Y., Schreiber, E., Sonnenschein, J.: Q anti–Q potential from strings in curved
spacetime: classical results. Nucl. Phys. B 566, 103 (2000) [ArXiv:hep-th/9811192]

68. Heitger, J., Simma, H., Sommer, R., Wolff, U. [ALPHA collaboration]: The Schroedinger
functional coupling in quenched QCD at low energies. Nucl. Phys. Proc. Suppl. 106, 859
(2002) [ArXiv:hep-lat/0110201]

69. Alanen, J., Kajantie, K., Suur-Uski, V.: A gauge/gravity duality model for gauge theory
thermodynamics. Phys. Rev. D 80, 126008 (2009) [ArXiv:0911.2114][hep-ph]

70. Boyd, G., Engels, J., Karsch, F., Laermann, E., Legeland, C., Lutgemeier, M., Petersson, B.:
Thermodynamics of SU(3) lattice gauge theory. Nucl. Phys. B 469, 419 (1996) [ArXiv:hep-
lat/9602007]

71. Lucini, B., Teper, M., Wenger, U.: The deconfinement transition in SU(N) gauge theories.
Phys. Lett. B 545, 197 (2002) [ArXiv:hep-lat/0206029]

72. Lucini, B., Teper, M., Wenger, U.: The high temperature phase transition in SU(N) gauge
theories. JHEP 0401, 061 (2004) [ArXiv:hep-lat/0307017]

73. Bringoltz, B., Teper, M.: The pressure of the SU(N) lattice gauge theory at large-N. Phys.
Lett. B 628, 113 (2005) [ArXiv:hep-lat/0506034]

74. Panero, M.: Thermodynamics of the QCD plasma and the large-N limit. Phys. Rev. Lett.
103, 232001 (2009) [ArXiv:0907.3719][hep-lat]

75. Panero, M.: Thermodynamics of the strongly interacting gluon plasma in the large-N limit.
PoS LAT2009 172, (2009), [ArXiv:0912.2448 ][hep-lat]

76. Lucini, B., Teper, M., Wenger, U.: Properties of the deconfining phase transition in SU(N)
gauge theories. JHEP 0502, 033 (2005) [ArXiv:hep-lat/0502003]

77. Kiritsis, E., Nitti, F.: On massless 4D gravitons from 5D asymptotically AdS space-times.
Nucl. Phys. B 772, 67 (2007) [ArXiv:hep-th/0611344]

78. Morningstar, C.J., Peardon, M.J.: The glueball spectrum from an anisotropic lattice study.
Phys. Rev. D 60, 034509 (1999) [ArXiv:hep-lat/9901004]

79. Chen, Y. et al.: Glueball spectrum and matrix elements on anisotropic lattices. Phys. Rev. D
73, 014516 (2006) [ArXiv:hep-lat/0510074]

80. Lucini, B., Teper, M.: SU(N) gauge theories in four dimensions: Exploring the approach to
N ¼ 1. JHEP 0106, 050 (2001) [ArXiv:hep-lat/0103027]

81. Meyer, H.B.: Glueball Regge trajectories [ArXiv:hep-lat/0508002]
82. Cheng, M. et al.: The spatial string tension and dimensional reduction in QCD. Phys. Rev.

D 78, 034506 (2008) [ArXiv:0806.3264][hep-lat]
83. Schroder, Y., Laine, M.: Spatial string tension revisited. PoS LAT LAT2005, 180 (2006)

[ArXiv:hep-lat/0509104]
84. Alanen, J., Kajantie, K., Suur-Uski, V.: Spatial string tension of finite temperature QCD

matter in gauge/gravity duality. Phys. Rev. D 80, 075017 (2009) [ArXiv:0905.2032]
[hep-ph]

85. Zeng, D.f.: Heavy quark potentials in some renormalization group revised AdS/QCD
models. Phys. Rev. D 78, 126006 (2008) [ArXiv:0805.2733][hep-th]

4 Improved Holographic QCD 145



86. Galow, B., Megias, E., Nian, J., Pirner, H.J.: Phenomenology of AdS/QCD and its gravity
dual. Nucl.Phys.B 834 330–362, (2010), [arXiv:0911.0627]

87. Noronha, J.: Connecting polyakov loops to the thermodynamics of SUðNcÞ gauge theories
using the gauge–string duality. Nucl.Phys.B 834 330–362, (2010) [ArXiv:0911.0627] [hep-
ph]

88. Noronha, J.: Polyakov loops in strongly-coupled plasmas with gravity duals. J.Phys.G 37
094018, (2010) [ArXiv:1001.3155][hep-th]

89. Del Debbio, L., Giusti, L., Pica, C.: Topological susceptibility in the SU(3) gauge theory.
Phys. Rev. Lett. 94, 032003 (2005) [ArXiv:hep-th/0407052]

90. Moore, G.D., Saremi, O.: Bulk viscosity and spectral functions in QCD. JHEP 0809, 015
(2008) [ArXiv:0805.4201][hep-ph]

91. Springer, T.: Sound mode hydrodynamics from bulk scalar fields. Phys. Rev. D 79, 046003
(2009) [[ArXiv:arXiv:0810.4354][hep-th]]

92. Gubser, S.S., Pufu, S.S., Rocha, F.D.: Bulk viscosity of strongly coupled plasmas with
holographic duals. JHEP 0808, 085 (2008) [ArXiv:0806.0407][hep-th]

93. Gursoy, U., Kiritsis, E., Michalogiorgakis, G., Nitti, F.: Thermal transport and drag force in
improved holographic QCD. JHEP 0912, 056 (2009) [ArXiv:0906.1890][hep-ph]

94. Arnold, P., Dogan, C., Moore, G.D.: The bulk viscosity of high-temperature QCD. Phys.
Rev. D 74, 085021 (2006) [arXiv:hep-ph/0608012]

95. Chamblin, H.A., Reall, H.S.: Dynamic dilatonic domain walls. Nucl. Phys. B 562, 133
(1999) [arXiv:hep-th/9903225]

96. Buchel, A.: Bulk viscosity of gauge theory plasma at strong coupling. Phys. Lett. B 663, 286
(2008) [ArXiv:0708.3459][hep-th]

97. Kanitscheider, I., Skenderis, K.: Universal hydrodynamics of non-conformal branes. JHEP
0904, 062 (2009) [ArXiv:0901.1487][hep-th]

98. Song, H., Heinz, U.W.: Extracting the QGP viscosity from RHIC data—a status report from
viscous hydrodynamics. J.Phys.G36 064033, (2009) [ArXiv:0812.4274][nucl-th]

99. Yarom, A.: Notes on the bulk viscosity of holographic gauge theory plasmas, JHEP1004
024, (2010) [ArXiv:0912.2100][hep-th]

100. Cherman, A., Cohen, T.D., Nellore, A.: A bound on the speed of sound from holography.
Phys. Rev. D 80, 066003 (2009) [ArXiv:0905.0903][hep-th]

101. Cherman, A., Nellore, A.: Universal relations of transport coefficients from holography.
Phys. Rev. D 80, 066006 (2009) [ArXiv:0905.2969][hep-th]

102. Hohler, P.M., Stephanov, M.A.: Holography and the speed of sound at high temperatures.
Phys. Rev. D 80, 066002 (2009) [ArXiv:0905.0900][hep-th]

103. Beuf, G., Marquet, C., Xiao, B.W.: Heavy-quark energy loss and thermalization in a
strongly coupled SYM plasma. Phys.Rev.D80 085001, (2009) [ArXiv:0812.1051][hep-ph]

104. Datta, S., Karsch, F., Petreczky, P., Wetzorke, I.: Behavior of charmonium systems after
deconfinement. Phys. Rev. D 69, 094507 (2004) [ArXiv:hep-lat/0312037]

105. Luzum, M., Romatschke, P.: Viscous hydrodynamic predictions for nuclear collisions at the
LHC. Phys.Rev.Lett.103 262302, (2009) [ArXiv:arXiv:0901.4588][nucl-th]

106. Herzog, C.P.: A holographic prediction of the deconfinement temperature. Phys. Rev. Lett.
98, 091601 (2007) [ArXiv:hep-th/0608151]

107. Ballon Bayona, C.A., Boschi-Filho, H., Braga, N.R.F., Pando Zayas, L.A.: On a holographic
model for confinement/deconfinement. Phys. Rev. D 77, 046002 (2008) [ArXiv:0705.1529]
[hep-th]

108. Andreev, O.: Some thermodynamic aspects of pure glue, fuzzy bags and gauge/string
duality. Phys. Rev. D 76, 087702 (2007) [ArXiv:0706.3120][hep-ph]

109. Kajantie, K., Tahkokallio, T., Yee, J.T.: Thermodynamics of AdS/QCD. JHEP 0701, 019
(2007) [ArXiv:hep-ph/0609254]

146 U. Gursoy et al.



Chapter 5
The Dynamics of Quark-Gluon Plasma
and AdS/CFT

Romuald A. Janik

Abstract In these pedagogical lectures, we present the techniques of the AdS/
CFT correspondence which can be applied to the study of real time dynamics of a
strongly coupled plasma system. These methods are based on solving gravitational
Einstein’s equations on the string/gravity side of the AdS/CFT correspondence.
We illustrate these techniques with applications to the boost-invariant expansion of
a plasma system. We emphasize the common underlying AdS/CFT description
both in the large proper time regime where hydrodynamic dynamics dominates,
and in the small proper time regime where the dynamics is far from equilibrium.
These AdS/CFT methods provide a fascinating arena interrelating General Rela-
tivity phenomenae with strongly coupled gauge theory physics.

5.1 Introduction

The current experimental program of heavy-ion collisions at RHIC and the
forthcoming experiments at LHC open an interesting window onto properties of
QCD matter at high temperatures, where it appears in the guise of a new phase—
the quark-gluon plasma. At asymptotically high temperatures it should be a free
gas of quarks and gluons, however, at the experimentally accessible energies there
are strong indications that the quark-gluon plasma is indeed a strongly coupled
system (see e.g. [1]).
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This poses numerous problems for its theoretical description, yet at the same
time makes its study theoretically interesting. One can roughly differentiate the
physical properties of the quark-gluon plasma system into two broad categories—
static and dynamic (real-time) properties.

The first of these, the static properties, typically involve the study of equilib-
rium thermodynamics, the entropy, energy density as a function of temperature
and more generally properties which can be directly deduced from the Euclidean
formulation of finite temperature gauge theory. In this case lattice QCD is an
effective tool for accessing these properties in the nonperturbative, strongly cou-
pled regime. It deals directly with QCD and yields quantitative results directly
applicable for the QCD quark-gluon plasma.

The second class, the real time dynamic properties of strongly coupled plasma
are much more difficult to access. They have to be formulated directly in Min-
kowski space and since lattice QCD methods are inherently Euclidean, it is very
difficult to extrapolate numerical results to Minkowski signature. Moreover, it is
exactly these kind of properties which are particularly relevant for the quark-gluon
plasma produced in heavy-ion collisions.

To this end let us recall schematically the basic stages of a heavy-ion colli-
sion. First the two ultrarelativistic nuclei collide and the plasma is produced in
a state very far from equilibrium. Then in a relatively very short time, it becomes
thermalized (or at least the pressure becomes isotropic with the residual anisot-
ropy wholly due to flow). From that point on, hydrodynamic phenomenological
models seem to describe the properties of the expanding plasma quite well
[2, 3]. In particular the plasma expands and cools, and when the temperature
reaches the confinement/deconfinement phase transition one expects hadronization
to occur.

It would be interesting to understand these various stages of the plasma
dynamics directly from first principles. For example, one would like to derive the
hydrodynamic behaviour from some theoretical framework and not only use it as a
phenomenological model. But what is even more interesting is the understanding
of the process of thermalization and what governs the short thermalization time
necessary for the applicability of hydrodynamic models.

Unfortunately, for the case of QCD we lack appropriate theoretical methods
which would be applicable to these kinds of problems at strong coupling.
A possible route that one may take is to consider an analogous set of problems in a
different theory for which appropriate real-time nonperturbative tools exist.

The new method for studying nonperturbatively various gauge theories
(although not directly QCD) is the AdS/CFT correspondence [4–7], which trans-
lates dynamical problems in strongly coupled gauge theory into (usually) gravi-
tational ones in higher number of dimensions. Its main advantage is that it works
equally well in Minkowski as well as in Euclidean signature. In these lectures we
will consider the AdS/CFT correspondence in its simplest original setting for the
maximally supersymmetric N ¼ 4 Super-Yang–Mills theory. Of course, one has
to be aware that the cost of switching the theory of interest from QCD to N ¼ 4
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SYM is that we may most probably loose direct quantitative applicability of our
results to realistic heavy-ion collisions. Moreover, there are certain marked dif-
ferences between the theories which will cause a huge difference for certain
physical phenomenae, at the same time being unimportant for other questions. We
will discuss some of these points in these lectures.

Nevertheless, we would like to point out that currently we do not have any
gauge theory in which we would have a theoretical understanding of the issues
described earlier. Therefore it is very interesting to study these issues for the case
of N ¼ 4 SYM and use the results as a point of reference for analyzing the
situation in QCD. Later, one could try to generalize these results to more com-
plicated versions of the AdS/CFT correspondence for theories closer to QCD. In
essence, this motivation is in line with the statement that N ¼ 4 SYM is the
harmonic oscillator of four dimensional gauge theories. If one tries to develop
some theoretical tools, one should better first apply them to the ‘harmonic
oscillator’.

We have tried to make these lectures very pedagogical and self-contained.
Our main emphasis in the presentation is to show how one can use the AdS/
CFT correspondence as a tool even for far from equilibrium configurations
without presupposing any kind of dynamics (which are in fact not known for
nonlinear far from equilibrium systems). Therefore our presentation of hydro-
dynamics is subordinate to this goal, especially as a very general discussion
focused on hydrodynamics per se is contained in the lectures by Hubeny at this
school [8].

The plan of these lectures is as follows. In Sect. 5.2, we introduce the AdS/
CFT correspondence, in Sect. 5.3 we compare some properties of plasma in the
N ¼ 4 theory and in QCD. Then we proceed to present the AdS/CFT setup
specialized to the study of time-dependent dynamics of strongly coupled plasma.
We then illustrate these methods in Sect. 5.5 by discussing two important
examples—the appearance from this setup of the standard planar AdS black hole,
and a planar shock wave. In this section we also discuss some subtleties arising
with different choices of coordinate systems which will be relevant later. Then in
Sect. 5.6, we introduce the main physical example of a time-dependent plasma
configuration—the boost invariant flow. In Sect. 5.7, we analyze its large proper
time asymptotics and show how nonlinear perfect fluid dynamics arises from the
AdS/CFT methods. In Sect. 5.8, we show how one can see first corrections
coming from shear viscosity, and in Sect. 5.9, for completeness, we will sum-
marize briefly the current status of hydrodynamics in AdS/CFT. Then in Sect.
5.10, we introduce physical situations, where the plasma dynamics is not
describable by hydrodynamics, and finally, in Sect. 5.11, we apply the AdS/CFT
methods to study boost invariant flow in the far from equilibrium small proper
time regime. We close the lectures with conclusions and an appendix with a short
guide to the literature regarding work done on related topics which were not
covered here.
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5.2 The AdS/CFT Correspondence

The AdS/CFT correspondence [4–7], in its original form states the equivalence of
two apparently completely different theories: the N ¼ 4 supersymmetric Yang–
Mills theory (SYM) in four dimensions and type IIB superstrings in a ten-
dimensional curved AdS5 � S5 background. Since then, it has been generalized in
various directions, extending it to a wider class of gauge theories, at the cost of
making the dual string backgrounds more complicated. Throughout these lectures
we will stay within the context of the AdS/CFT correspondence for N ¼ 4 SYM
theory.

The reason why the AdS/CFT correspondence is so interesting is that the
nonperturbative strong coupling regime of the N ¼ 4 gauge theory is mapped to
the (semi-)classical strings or just (super)gravity which, in contrast to the gauge
theory side, is at least theoretically tractable. Therefore one can use the AdS/CFT
correspondence as a new method for accessing the very difficult nonperturbative
gauge theory physics.

The AdS/CFT correspondence is an equivalence, so in principle any state/phe-
nomenon on the gauge theory side should have its direct counterpart on the string
side and vice-versa. However one should keep in mind that the correspondence is an
equivalence of gauge and string theory, so the dual counterpart does not have to be
in the well understood (super)gravity sector. Fortunately, it will turn out that for the
questions considered in these lectures namely the study of the dynamics of plasma
expansion, the dual description will be purely gravitational.

Apart from the direct physical interest, the AdS/CFT correspondence is also
theoretically very interesting as it translates various dynamical gauge theory
questions into a geometrical language described by higher-dimensional General
Relativity (GR). This leads to quite fascinating links between the two fields,
providing a whole range of physically motivated interesting questions which could
be addressed by GR methods. In the other direction, various notions introduced by
the GR community like dynamical apparent horizons find their application and
new interpretation on the gauge theory side.

5.2.1 Effective Degrees of Freedom at Strong Coupling

As an illustration of the use of the AdS/CFT correspondence, and as a justification
for the gravitational methods let us consider the question of finding effective
degrees of freedom for strongly coupled N ¼ 4 SYM. By the AdS/CFT equiva-
lence, it amounts to asking the same question for superstrings in AdS5 � S5.

Let us first recall the case of closed strings in flat space. The string worldsheet
action is characterized by a dimensionfull parameter a0 (related to the string ten-
sion). The various vibrational modes of the string correspond to particles (fields)
with distinct masses
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m2
n ¼

n2

a0
ð5:1Þ

The massless modes correspond to the graviton (and its whole supergravity
multiplet). There is also an infinite tower of massive modes. In the limit of a0 ! 0,
the massive modes become very heavy and effectively decouple at fixed energies
leaving as the governing dynamics just (super)gravity.

In the case of strings in AdS5 � S5, the a0 parameter becomes proportional to

1=
ffiffiffi

k
p

where k ¼ g2
YMNc is the ’t Hooft coupling of the dual N ¼ 4 gauge theory.

The vibrational modes again split into a massless (super)graviton multiplet and a
set of massive modes. The formula (5.1) is no longer exact, but the parametric
behaviour with a0 still holds. So in the strong coupling limit, those massive string
modes become very heavy and effectively decouple leaving essentially super-
gravity modes as the effective degrees of freedom. Since the AdS/CFT corre-
spondence postulates an equivalence with gauge theory, these should also
correspond to the effective degrees of freedom of the gauge theory at strong
coupling.

Once we lower the coupling, the massive modes become lighter and their
effects will no longer be negligible. Initially, their effects may be absorbed into
corrections to the gravitational Einstein–Hilbert action (so-called a0 corrections),
but at low coupling corresponding to the perturbative regime the spacetime
description is not known.

Finally, let us note that the N ¼ 4 SYM theory is quite special in that it allows
for such a clean separation between gravity modes and massive string modes.
Presumably a dual description of real QCD (or even of large Nc pure YM) would
not have such a property.

5.3 Why Study N ¼ 4 Plasma?

Since we will be using the AdS/CFT correspondence for N ¼ 4 SYM as a cal-
culational tool for analyzing strongly coupled dynamics of gauge theory plasma,
we will be essentially considering plasma in the supersymmetric N ¼ 4 gauge
theory. This theory is completely different from QCD at zero temperature. It is
supersymmetric, exactly conformal, does not have confinement. However once we
turn on some nonzero temperature (or consider not the vacuum but some appro-
priate state), supersymmetry is broken and temperature (or energy density)
introduces a scale. So qualitatively, we may expect to have similarities with QCD
plasma in a certain window of temperatures where it is strongly coupled,
approximately conformal and (by definition) deconfined.

However we have to keep in mind some definite differences w.r.t. QCD plasma.
Firstly, the N ¼ 4 theory has no running coupling so, in contrast to QCD, even at
very high temperatures/energy densities the coupling may remain large. Secondly,
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the equation of state of the N ¼ 4 plasma is exactly conformal (E ¼ 3p) which is
only an approximation for a certain range of temperatures for QCD plasma. Indeed
we know, from lattice QCD, that deviations from a conformal equation of state are
important close to Tc. In addition, we have other consequences of conformality
like that the bulk viscosity for the N ¼ 4 theory is exactly zero. Thirdly, for the
N ¼ 4 theory (on Minkowski spacetime) there is no phase transition—no analog
of the confinement/deconfinement phase transition of QCD. Therefore as the
plasma expands and cools, in theN ¼ 4 theory it will expand indefinitely, while in
QCD it will cool down to the phase transition temperature and hadronize.

From the above discussion we see that the applicability of using N ¼ 4 plasma
to model real world phenomena depends on the questions asked. It may give a
good qualitative picture for the range of temperatures where we have similarities.
However, let us note that in this theory we may compute the dynamics from ‘first
principles’ (using the AdS/CFT correspondence). For QCD, unfortunately, we do
not have any similar calculational technique, even numerical, which would enable
us to study real-time dynamics of the strongly coupled quark-gluon plasma.
Therefore it is interesting to build up results on strong coupling properties of
N ¼ 4 plasma and use them as a point of departure for analyzing or describing
QCD plasma. Eventually, one might consider more realistic theories with AdS/
CFT duals which are closer to QCD. In those cases generically the dual gravita-
tional backgrounds are much more complicated so it is advantageous to start from
the simplest setting for the N ¼ 4 SYM theory.

Another motivation for studying the dynamics of N ¼ 4 plasma is that the
natural language of the AdS/CFT correspondence is quite new w.r.t. conventional
gauge theory methods. So by studying relatively simple examples we may build up
some new physical intuitions within this novel language. Also the interrelations
with General Relativity physics are fascinating from the purely theoretical point of
view. Last but not least, there may be some unexpected discoveries like the cel-
ebrated universality of the shear viscosity to entropy ratio g=s [9], which, at strong
coupling, remains equal to 1=4p for any theory with a gravitational dual [10, 11]
(see the lectures by Starinets at this school [12]).

5.4 The AdS/CFT Setup for Studying Real-Time Dynamics
of Plasma

Let us now briefly review the AdS/CFT correspondence on a more technical level,
concentrating on the features relevant to the study of the time evolution of a
plasma system.

The S5 factor in the AdS5 � S5 background is associated with a global SOð6Þ ¼
SUð4Þ symmetry of the N ¼ 4 theory. In the following, we will only consider
systems which do not break this symmetry, so the S5 factor will be irrelevant and
the whole dynamics will be concentrated in the AdS5 factor.
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The five-dimensional Anti-de-Sitter spacetime AdS5 can be given by the fol-
lowing metric

ds2 ¼
glmdxldxm þ dz2

z2
ð5:2Þ

with z� 0. z ¼ 0 is the boundary of AdS5, while the region z [ 0 is often called
‘the bulk’. This choice of coordinates covers the Poincare patch of global AdS5 and
is relevant for the case when the dual gauge theory lives in R

1;3 Minkowski
spacetime. The above geometry can be understood to correspond to the gauge
theory vacuum state. In particular gauge theory operators like the energy-
momentum tensor Tlm all have vanishing expectation values in this state

hTlmi ¼ 0 ð5:3Þ

Let us recall that the AdS/CFT correspondence states the equivalence with
superstrings in AdS5(�S5). So, on the string side, we may excite any normalizable
mode, in particular we may excite gravitons. This will correspond to some states in
N ¼ 4 SYM with hTlmi 6¼ 0. We expect a configuration of N ¼ 4 plasma to be a
very complicated state which would correspond to exciting very many gravitons.
Then it is better to interpret it instead as a change of the background:

ds2 ¼ g5D
ab dxadxb ¼ glmðxq; zÞdxldxm þ dz2

z2
ð5:4Þ

with the metric coefficients being now generic functions of all the five coordinates.
We therefore seek to describe a plasma configuration in terms of the geometry
glmðxq; zÞ. Let us note that the above choice of the metric (5.4) is always possible
after a suitable change of coordinates. Such coordinates, in which the metric has
the form (5.4) are called Fefferman–Graham coordinates.

The geometry (5.4) cannot be, however, completely arbitrary. It must form a
consistent background for strings, so it must satisfy five-dimensional Einstein’s
equations with a negative cosmological constant1:

Rab �
1
2

g5D
ab R� 6 g5D

ab ¼ 0 ð5:5Þ

Furthermore, for a physical state in the gauge theory this geometry should not have
a naked singularity. This turns out to be a crucial requirement with far reaching
consequences for the resulting dynamics of the N ¼ 4 plasma, as we will see in
the following.

1 These equations are equivalent to the original ten-dimensional type IIB supergravity equations
when we preserve full SOð6Þ symmetry of S5 and no other fields are turned on. The negative
cosmological constant is a remnant of the RR five-form under this dimensional reduction.
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5.4.1 The Gravity �! hTlmi Dictionary

Once one has the geometry (5.4) corresponding to some plasma configuration, the
key question is what is the energy momentum tensor of that gauge theory system.
The way to derive the answer, holographic renormalization, has been explained in
the lectures by Skenderis [13]. Here we just summarize the outcome derived in
[14], which in the Fefferman–Graham coordinates defined by (5.4) takes a par-
ticularly simple form.

Suppose that the metric coefficients glmðxq; zÞ have the following Taylor
expansion near the boundary2

glmðxq; zÞ ¼ glm þ z4gð4Þlm ðxqÞ þ � � � ð5:6Þ

Then the expectation value of the energy-momentum tensor is

hTlmðxqÞi ¼ N2
c

2p2
� gð4Þlm ðxqÞ ð5:7Þ

The spacetime dependence of the energy-momentum tensor carries a lot of
information about the dynamics of the plasma—its energy density, momentum
flow, stress tensor. Indeed, it is just this information which is exactly the direct
outcome of hydrodynamic simulations of realistic heavy-ion collisions. Finally, let
us emphasize, to avoid any chance of confusion, that the Tlm is the energy-
momentum tensor of the dual gauge theory. On the gravity side we are always
dealing with vacuum Einstein’s equations.

The construction outlined above leads to the following scenario of investigating
a plasma system in strongly coupled N ¼ 4 SYM. One starts from some initial
conditions for the five-dimensional Einstein’s equations. Then the geometry is
evolved forward in time by solving Einstein’s equations. Finally using the above
formula (5.7), one extracts the hTlmi of the corresponding plasma system. The
details of the evolution of Tlm are very interesting from the point of view of
physics, especially in the far from equilibrium region, where very little is known
about thermalization/isotropisation and transition to a hydrodynamic expansion.
We will follow this route in Sect. 5.11.

5.4.2 The hTlmi �! Gravity Dictionary

It turns out to be very fruitful to ask also the opposite question. Suppose that we
are given a certain spacetime profile of the energy momentum tensor hTlmi—how

2 Here we always assume that the gauge theory lives in flat Minkowski space, hence the leading
glm and the absence of a z2 term (see [14] for details).
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to construct the dual five-dimensional geometry? The prescription is really just
running the preceding recipe backwards. One has to solve Einstein’s equations

Rab �
1
2

g5D
ab R� 6 g5D

ab ¼ 0 ð5:8Þ

with the boundary condition

glmðxq; zÞ ¼ glm þ z4gð4Þlm ðxqÞ þ � � � ð5:9Þ

where gð4Þlm ðxqÞ is related to hTlmðxqÞi through

gð4Þlm ðxqÞ ¼ 2p2

N2
c

hTlmðxqÞi ð5:10Þ

It turns out that for a solution to exist, gð4Þlm ðxqÞ has to be traceless and con-
served, which is of course physically expected for an energy-momentum tensor in
a conformal theory. However here it is just an independent consequence of five-
dimensional Einstein’s equations.

Once such a gð4Þlm ðxqÞ is chosen, Einstein’s equations determine uniquely the
solution in the bulk (at least locally i.e. all higher coefficients of the Taylor
expansion of glmðxq; zÞ around z ¼ 0 are uniquely determined).

In this way we see that for every energy momentum profile which does not
violate the standard requirements of energy-momentum conservation and trace-
lessness we may construct a dual gravity background. However generically, such a
geometry will be highly singular with naked singularities in the bulk. The
requirement of the absence of naked singularities will very strongly constrain the
admissible bulk geometries and hence also the possible spacetime profiles of
the energy momentum tensor. This is a nontrivial constraint on the dynamics of the
gauge theory as the spacetime profile includes of course the time evolution of Tlm.

This line of reasoning was introduced in [15] as a way of determining the
possible evolution of the energy momentum tensor. One first picks a family of
profiles TlmðxqÞ, then one constructs for each of them a dual geometry by solving
Einstein’s equations with appropriate boundary conditions. Finally, one picks the
allowed dynamics by requiring that the corresponding dual geometry is nonsin-
gular. We will describe this procedure in detail in the first part of these lectures.

5.5 Exact Analytical Examples

In this section we will illustrate the AdS/CFT methods by analyzing two simple
examples of plasma configurations for which the dual gravitational background
can be computed in closed form [15]. Both of these examples have also a clear
physical interpretation.
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5.5.1 A Case Study: Static Uniform Plasma

Let us first consider the simplest configuration of plasma, namely with a uniform
and static distribution of energy density filling up the whole spacetime. The energy
momentum tensor is just a constant diagonal one:

Tlm ¼

E 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

0

B

B

@

1

C

C

A

ð5:11Þ

with E ¼ 3p. In order to find the dual gravity background, we have to solve
Einstein’s equations with the boundary conditions given by (5.9) and (5.10). Due
to the fact that the energy momentum tensor is constant, the metric will only
depend on the z coordinate and the Einstein’s equations reduce to ordinary dif-
ferential equations which can be solved explicitly. The result is

ds2 ¼ � ð1� z4=z4
0Þ

2

ð1þ z4=z4
0Þz2

dt2 þ ð1þ z4=z4
0Þ

dx2
i

z2
þ dz2

z2
ð5:12Þ

where the parameter z0 is related to E through

E ¼ 3N2
c

2p2z4
0

ð5:13Þ

Although it is not evident at first glance, the geometry (5.12) is exactly the
standard AdS planar black hole [16], but written in the Fefferman–Graham system
of coordinates. We will give the explicit form of the coordinate transformation to
the standard AdS Schwarzschild form shortly.

The fact that the dual geometry turns out to be a black hole has significant
implications for the physics. Let us note that we did not assume that a black hole
would appear. It came, in a unique way, from solving Einstein’s equations with
appropriate boundary conditions.

The parameter z0 appearing in (5.12) is the location of the black hole horizon.
The Hawking temperature TH which is given by

TH ¼
ffiffiffi

2
p

pz0
ð5:14Þ

is identified with the gauge theory temperature. This may be most easily seen by
computing the Hawking temperature through a Wick rotation of the metric (5.12)
and requiring the absence of a conical singularity at z ¼ z0. This requirement leads
to a specific periodicity condition for the Euclidean time coordinate which is
inversely proportional to the Hawking temperature. But, according to the AdS/
CFT correspondence the metric induced on the boundary z ¼ 0 (up to an overall
rescaling by z2) is exactly the metric of the (now Euclidean) gauge theory.
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Thus the gauge theory also has a compactified Euclidean time with the radius
given by the same temperature [16].

Another gravitational concept which carries over to the dual gauge theory is the
Bekenstein–Hawking entropy which is identified with the entropy of the dual
gauge theory plasma system. In this case, the entropy per spatial three-volume is

s ¼ 1
4GN

Area ¼ N2
c

2p

ffiffiffi

2
p

z0

� �3

ð5:15Þ

Now we can use the relation between the horizon parameter z0 and temperature to
express the result completely in terms of gauge theoretical quantities

s ¼ 1
2

N2
c p2T3 ð5:16Þ

Finally, we may use the relation between the energy density E and z0, and the
link with temperature to express the energy density as a function of T . We get

E ¼ 3
8

N2
c p2T4 ð5:17Þ

The nontrivial factor here is the numerical coefficient, which is different from the
corresponding one for the free massless gas (Stefan–Boltzmann). Similarly, the
entropy density derived earlier is 3=4 of the free gas answer [17]. This mismatch is
quite natural since here we are dealing with a strongly coupled plasma. In fact
similar deviations from the Stefan–Boltzmann answer have been observed in
lattice studies of QCD thermodynamics above the confinement/deconfinement
phase transition.

Before we move on to discuss various systems of coordinates for this geometry,
let us note that it is exactly this geometry which is used to describe N ¼ 4 SYM at
fixed nonzero temperature T . This interpretation is obvious from the above
mentioned Euliclidean continuation, but can also be understood directly in Min-
kowski signature, where a link with the real-time formalism of finite-temperature
QFT appears [18–23].

5.5.1.1 Various Coordinate Systems

The geometry (5.12) has been presented in the Fefferman–Graham coordinates, in
which the connection to the gauge theory energy-momentum tensor is simplest.
However these coordinates have also some significant drawbacks, of which one
has to be aware.

Let us first perform a coordinate transformation to bring the metric (5.12) into
the standard AdS Schwarzschild form. To this end set

zstd ¼
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z4=z4
0

p ð5:18Þ
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Then, the metric becomes

ds2 ¼ � 1� z4
std=~z

4
0

z2
std

dt2 þ dx2
i

z2
std

þ 1

1� z4
std=~z

4
0

dz2

z2
std

ð5:19Þ

with ~z0 ¼ z0=
ffiffiffi

2
p

. Looking at the transformation of coordinates (5.18), we see that
the Fefferman–Graham coordinates cover only the region between the boundary
and the horizon. Even if one would analytically continue the metric for z [ z0 one
does not go beyond the horizon but rather returns back to the boundary.

The standard Schwarzschild coordinates also break down at the horizon and, in
order to have explicit regularity at the horizon, it is convenient to introduce yet
another system of coordinates—the (ingoing) Eddington–Finkelstein coordinates.

These coordinates may be obtained from the standard Schwarzschild ones by
redefining the time coordinate:

tEF ¼ t � 1
4

~z0 2 arctan
zstd

~z0
þ log

~z0 þ zstd

~z0 � zstd

� �

ð5:20Þ

The metric becomes then

ds2 ¼ � 1� z4
std=~z

4
0

z2
std

dt2
EF þ 2

dtEFdzstd

z2
std

þ dx2
i

z2
std

ð5:21Þ

The crucial advantage of these coordinates is that the horizon is a perfectly regular
point and one can enter the region inside the horizon. The lines xl ¼ constl are
null geodesics falling into the black hole and reaching the singularity at zstd ¼ 1.
These coordinates were used extensively in V. Hubeny’s lectures at this school
with zstd substituted by r ¼ 1=zstd, which brings them to the canonical form.

Finally let us note that in the formula (5.20), the time coordinate gets an infinite
shift at the horizon. In the case of the static black hole geometry this is completely
harmless as the metric is time-independent, however for the time dependent
geometries which will be the focus of these lectures this shift will give rise to some
spurious singularities in the Fefferman–Graham treatment (fortunately appearing
only at NNNLO in the large proper time expansion of the geometry).

Some comments are in order here. Of course in General Relativity nothing
depends on the choice of coordinate system. This is true if we are dealing with an
exact solution of Einstein’s equations—we may analyze it in any coordinate
system we like. However if we perform an expansion in time in some coordinate
system and deal with approximate solutions truncated at some order, we may get
spurious singularities like in Fefferman–Graham at third order.

In these lectures we will nevertheless present the analysis in Fefferman–Graham
coordinates (apart from a brief review of the Eddington–Finkelstein approach of
Bhattacharyya et al. [24] in Sect. 5.9) The general formulation in Eddington–
Finkelstein is considered in detail in the lectures of V. Hubeny, and has been
applied to the boost invariant setting in [25–27]. One motivation for this choice of
presentation is that our main focus is in reaching the small proper time regime,
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where we deal with exact solutions of the Einstein’s equations and hence do not
need to worry about these subtleties. Also there, the analysis of initial conditions in
Fefferman–Graham coordinates is simpler.

5.5.2 A Case Study: A Planar Shock Wave

Another case of a gauge theory energy-momentum tensor for which the dual
geometry is exactly solvable is a planar shockwave concentrated on the boundary.
The only nonvanishing component of Tlm is

T�� ¼ lf ðx�Þ ð5:22Þ

Such a configuration, for f ðx�Þ ¼ ldðx�Þ represents a planar shock wave of gauge
theory matter moving at the speed of light along one light cone direction. It may be
understood to represent an analog of an ultrarelativistic nuclei. Then the dual
metric is found to be

ds2 ¼ dxþdx� þ f ðx�Þz4dx�2 þ dx2
? þ dz2

z2
ð5:23Þ

This configuration was proposed in [15], being the simplest member of a family of
shock wave solutions with x? dependence derived in [28] (see also [29]). A natural
question to consider is a collision of two such shock waves, one propagating along
the x� light cone direction, the other along xþ. There have been some preliminary
investigation along these lines in [30–34]. However, a complete analysis remains
to be done. Finally, let us note that this kind of shock wave is sourceless in the
bulk, in contrast to the shock waves considered recently in [35] and in the lectures
of Yarom [36]. For references on work done on these other kinds of shock waves
consult [36].

5.6 Boost-Invariant Flow

Let us now concentrate on a concrete evolving plasma system. Since eventually we
would like to solve exactly Einstein’s equations, one has to introduce as much
symmetries as possible to reduce the complexity of the task, at the same time
allowing for nontrivial physics to intervene. A natural choice in the context of
heavy ion collisions is the requirement of longitudinal boost invariance. This
assumption was introduced by Bjorken [37] back in 1983 to model ultrarelativistic
collisions. Basically, the motivation is that at infinite energy, a finite boost along
the collision axis would not modify the physics. This is certainly not an ideal
approximation, however it is used in basically all hydrodynamic codes for mod-
elling relativistic heavy-ion collisions at RHIC [2, 3]. We will make here an
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additional assumption that there is no dependence on the transverse coordinates,
which corresponds to the limit of infinitely large nuclei. This is not really nec-
essary for discussing the hydrodynamic limit (see [8, 24]) but will be essential in
the far from equilibrium regime of small proper times.

When assuming boost invariance, it is natural to pass to proper-time/spacetime
rapidity coordinates ðs; y; x1; x2Þ

t ¼ s cosh y x3 ¼ s sinh y ð5:24Þ

Then it turns out that the only non-vanishing components of the energy-momen-
tum tensor are Tss, Tyy and Txx � Tx1x1 ¼ Tx2x2 . Moreover, these components
become functions of s alone.

We should now impose tracelessness Tl
l ¼ 0 and conservation of energy

momentum Tlm
;m ¼ 0 conditions, which take the form

�Tss þ
1
s2

Tyy þ 2Txx ¼ 0

s
d

ds
Tss þ Tss þ

1
s2

Tyy ¼ 0

These equations determine Tlm uniquely in terms of a single function eðsÞ

Tlm ¼

eðsÞ 0 0 0
0 �s3 d

ds eðsÞ � s2eðsÞ 0 0
0 0 eðsÞ þ 1

2 s d
ds eðsÞ 0

0 0 0 eðsÞ þ 1
2 s d

ds eðsÞ

0

B

B

@

1

C

C

A

ð5:25Þ

The remaining function eðsÞ can be interpreted as the energy density of the plasma
at mid-rapidity (i.e. at x3 ¼ 0) as a function of (proper-) time.

Let us note that the above decomposition was purely ‘kinematical’—valid in
any conformal 4D theory at any coupling. The determination of eðsÞ will be an
issue of understanding the dynamics of the theory of interest—here N ¼ 4 SYM.
In particular, weak coupling perturbative considerations [38] lead to the free
streaming behaviour

eðsÞ� 1
s

ð5:26Þ

If, on the other hand, we would suppose that the plasma system behaves as a
perfect fluid, then on top of the decomposition (5.25) we would impose

Tlm ¼ ðeþ pÞulum � pglm ð5:27Þ

with e ¼ 3p. By our symmetry assumptions ul ¼ ð1; 0; 0; 0Þ and we get in par-
ticular p ¼ 1

s2 Tyy ¼ Txx, which gives a differential equation for eðsÞ
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�s
d

ds
eðsÞ � eðsÞ ¼ eðsÞ þ 1

2
s

d

ds
eðsÞ ð5:28Þ

with the celebrated Bjorken solution

eðsÞ ¼ const:

s
4
3

ð5:29Þ

Other dynamical assumptions would modify the functional form of eðsÞ. E.g. if the
fluid would not be a perfect fluid but would have a nonzero viscosity (proportional
to T3� e3=4 as should be the case for a conformal theory), then (5.29) would no
longer be exact but would have corrections starting with

eðsÞ ¼ 1

s
4
3

1� 2g0

s
2
3

þ � � �
� �

ð5:30Þ

with g0 related to the shear viscosity. Here we set a single dimensional scale to
unity. It can be easily reinstated in all terms by dimensional analysis. Further
1=s4=3 corrections are uniquely determined in terms of g0. If the dynamics would
follow 2nd order viscous hydrodynamics, these 1=s4=3 corrections would be
different and would involve additional, second order transport coefficients.

So we see that the knowledge of eðsÞ contains a lot of information on the
dynamics of plasma. In the rest of these lectures our goal will be to deduce what
eðsÞ is singled out by the AdS/CFT correspondence. Initially we will concentrate
on the large s asymptotics of eðsÞ and then, in Sect. 5.11, move to consider the
behaviour of eðsÞ for small s.

5.7 Large Proper Time Behaviour

Let us first concentrate on the large s asymptotics of eðsÞ and consider determining
the exponent s in

eðsÞ� 1
ss

for s!1 ð5:31Þ

We will follow here the strategy outlined in Sect. 5.4, and construct, for each s, the
dual geometry. Then we will check for which s the dual geometry is nonsingular.
This condition will determine s. This approach was proposed in [15], where more
details may be found. But first, let us narrow down the range of possible s. We will
demand that the energy density in any reference frame is non-negative i.e.

Tlmt
ltm� 0 ð5:32Þ

for any time like four-vector tl. This leads to the inequalities
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eðsÞ� 0 e0ðsÞ� 0 se0ðsÞ� � 4eðsÞ ð5:33Þ

In particular, for (5.31), we obtain that 0� s� 4.

5.7.1 The AdS/CFT Analysis

Now we have to construct the dual geometry to a plasma configuration with the
energy density behaving like (5.31). Since the geometry will have the same
symmetries as assumed for the plasma system, we are led to the following ansatz

ds2 ¼ 1
z2
�eaðz;sÞds2 þ ebðz;sÞs2dy2 þ ecðz;sÞdx2

?

� �

þ dz2

z2
ð5:34Þ

Again, let us reiterate that the above ansatz is completely general. At this stage the
choice of the Fefferman–Graham system of coordinates is perfectly legitimate.

According to the approach explained in Sect. 5.4, we have to solve Einstein’s
equations

Rab �
1
2

g5D
ab R� 6 g5D

ab ¼ 0 ð5:35Þ

with the boundary conditions

aðz; sÞ ¼ �z4eðsÞ þ z6a6ðsÞ þ z8a8ðsÞ þ � � � ð5:36Þ

It is instructive to find the explicit form of the first few coefficients in the above
Taylor series.3 Using a computer algebra system we obtain

a s; zð Þ ¼ �eðsÞ � z4 þ � e0ðsÞ
4s
� e00ðsÞ

12

� �

� z6 þ 1
6
eðsÞ2 þ 1

6
se0ðsÞeðsÞþ

�

þ 1
16

s2e0ðsÞ2 þ e0ðsÞ
128s3

� e00ðsÞ
128s2

� eð3ÞðsÞ
64s

� 1
384

eð4ÞðsÞ
�

� z8 þ � � � ð5:37Þ

Let us now specialize to the case of interest eðsÞ ¼ 1=ss. We get

�z4s�s þ z6 1
6

s�s�2s� 1
12

s�s�2s2

� �

þz8 � 1

16
s�2 ss2 � 1

6
s�2 s þ 1

6
s�2 ssþ 1

96
s�s�4s2 � 1

384
s�s�4s4

� �

þ � � �

where the terms dominant for large s are outlined in bold. Looking at the above
formula and analyzing a couple of higher order terms we may convince ourselves
that the dominant terms in anðsÞ for large s will be of the form

3 This is an exact result without any approximation.
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znanðsÞ�
zn

s
ns
4
¼ z

s
s
4

� �n
for large s ð5:38Þ

This shows that it is natural to introduce a scaling variable

v � z

s
s
4

ð5:39Þ

Consequently, the metric coefficients will have an expansion of the form

aðz; sÞ ¼ a0ðvÞ þ
1
s#

a1ðvÞ þ � � � ð5:40Þ

Several comments are in order here. Firstly, the appearance of the scaling variable
at late times is a dynamical consequence of the structure of Einstein’s equations.
We will find later, that for small proper times a similar structure will not appear.4

Secondly, the separation of dynamics into a scaling variable and an expansion in
inverse powers of s corresponds to a gradient expansion (cf. [24] and the lecture by
V. Hubeny [8]). Finally, the appearance of a scaling variable reduces the very
complicated Einstein’s equations to a system of nonlinear ordinary differential
equations:

vð2a0ðvÞc0ðvÞ þ a0ðvÞb0ðvÞ þ 2b0ðvÞc0ðvÞÞ � 6a0ðvÞ � 6b0ðvÞ � 12c0ðvÞ þ vc0ðvÞ2 ¼ 0

3vc0ðvÞ2 þ vb0ðvÞ2 þ 2vb00ðvÞ þ 4vc00ðvÞ � 6b0ðvÞ � 12c0ðvÞ þ 2vb0ðvÞc0ðvÞ ¼ 0

2vsb00ðvÞ þ 2sb0ðvÞ þ 8a0ðvÞ � vsa0ðvÞb0ðvÞ � 8b0ðvÞ þ vsb0ðvÞ2

þ 4vsc00ðvÞ þ 4sc0ðvÞ � 2vsa0ðvÞc0ðvÞ þ 2vsc0ðvÞ2 ¼ 0

which can be solved exactly. The solution is

aðvÞ ¼ AðvÞ � 2mðvÞ
bðvÞ ¼ AðvÞ þ ð2s� 2ÞmðvÞ
cðvÞ ¼ AðvÞ þ ð2� sÞmðvÞ

where

AðvÞ ¼ 1
2

logð1þ DðsÞ v4Þ þ logð1� DðsÞ v4Þ
	 


mðvÞ ¼ 1
4DðsÞ logð1þ DðsÞ v4Þ � logð1� DðsÞ v4Þ

	 


with

DðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3s2 � 8sþ 8
24

r

4 For the case eðsÞ ! const. as s! 0.
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Now we can analyze the singularities of the above geometry. We see that there
is a potential singularity where the argument of the logarithm vanishes. Of course,
it may well be a coordinate singularity, so we have to evaluate a curvature
invariant like

R ¼ RlmabRlmab ð5:41Þ

Moreover, since our geometry is only exact in the scaling limit, we have to
evaluate R in the same limit i.e. s!1, z!1, keeping the ratio v ¼ z

ss=4 fixed.
The resulting expression is quite complicated and can be found in [15]. Its general
structure is

R ¼ Numeratorðv; sÞ

1� DðsÞ2v8
� �4 ð5:42Þ

We see that for generic s, there is a 4th order pole singularity in the curvature. It
turns out that this singularity gets cancelled by the numerator only for a single
value of s:

s ¼ 4
3

ð5:43Þ

which is just the asymptotic scaling characteristic of perfect fluid hydrodynamics.
In this way we see that nonlinear perfect fluid hydrodynamics arises at late stages
of plasma expansion as a consequence of the AdS/CFT correspondence.

Note that in this way we do not approach the ‘horizon’ directly, but approach it
asymptotically along a ‘parallel’ trajectory. An analogous analysis using
Eddington–Finkelstein coordinates enables us to pass through the ‘horizon’ and
require directly the nonsingularity of the metric there. The difference between the
two procedures is summarized in Fig. 5.1. Both methods give equivalent results up
to two subleading orders in the large proper-time expansion. In order to go beyond
that, however, one has to use Eddington–Finkelstein coordinates (currently the
only result in this direction beyond 2nd order is in [39] in the boost-invariant
setting).

5.7.2 Perfect Fluid Geometry

Let us now examine more closely the dual geometry corresponding to the perfect
fluid value of s ¼ 4=3. Then the complicated formulas for the metric coefficients
involving generically irrational powers and square roots obtained above simplify
drastically and we obtain5

5 We reinstated here a trivial dimensional scale e0.

164 R. A. Janik



ds2 ¼ 1
z2
�

1� e0
3

z4

s4=3

� �2

1þ e0
3

z4

s4=3

ds2 þ 1þ e0

3
z4

s4=3

� �

ðs2dy2 þ dx2
?Þ

2

6

4

3

7

5

þ dz2

z2
ð5:44Þ

This geometry is analogous to a black hole (cf. (5.12)) with the position of the
horizon moving into the bulk as

z0 ¼
ffiffiffiffiffi

3
e0

4

r

� s1
3 ð5:45Þ

This has a clear physical interpretation. Recall that for a static black hole, the
position of the horizon in the bulk is inversely proportional to the temperature.
Thus here we have a dual counterpart of the plasma undergoing cooling during
expansion.6 Indeed naively generalizing the static formulas leads to

T ¼
ffiffiffi

2
p

pz0
¼ 2

1
2e

1
4
0

p3
1
4

s�
1
3 ð5:46Þ

A more indepth analysis of these phenomenae using the framework of event [41]
or dynamical [26, 39, 42] horizons has been made, although a complete under-
standing of the notions of temperature and entropy in the fully dynamical case is
still lacking.

5.8 Plasma Dynamics Beyond Perfect Fluid

One of the key discoveries of the AdS/CFT correspondence was the derivation of
the universal value of shear viscosity for plasma at finite nonzero temperature.

Fig. 5.1 The difference
between using Fefferman–
Graham and Eddington–
Finkelstein coordinates for
checking nonsingularity
represented by arrows

6 The dual counterpart of cooling was first suggested qualitatively in [40].
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This was done using linear response theory in [9]. It is thus interesting to examine
how do viscous effects manifest themselves in the current nonlinear setting.

Let us first examine the question whether we can see if the perfect fluid
dynamics is violated from the dual gravitational point of view. Suppose that it is
not and that consequently

eðsÞ ¼ 1

s
4
3

ð5:47Þ

is valid at all proper times without any corrections. Then one can find the next
orders in the large s scaling expansion of the metric coefficients

aðz; sÞ ¼ a0ðvÞ þ
1

s
4
3

a2ðvÞ þ � � � ð5:48Þ

This can be done explicitly since, fortunately, the equations for the corrections are
linear albeit still quite complicated. Performing this calculation, and computing the
curvature R up to this order yields

R ¼ RabcdRabcd ¼ R0ðvÞ
|fflffl{zfflffl}

nonsingular

þ 1

s
4
3

R2ðvÞ
|fflffl{zfflffl}

singular!

þ � � � ð5:49Þ

where the indicated singularity is of the very strong 4th order pole type. This
means that the perfect fluid behaviour (5.47) has to be violated.

Let us now be completely agnostic about viscous hydrodynamics and assume a
completely generic type of corrections:

eðsÞ ¼ 1

s
4
3

1� 2A

sr

� �

ð5:50Þ

Solving the Einstein’s equations with the appropriate boundary conditions set by
(5.50), computing the curvature7 yields

R ¼ RabcdRabcd ¼ R0ðvÞ
|fflffl{zfflffl}

nonsingular

þ 1
sr

R1ðvÞ
|fflffl{zfflffl}

nonsingular

þ 1
s2r

~R2ðvÞ
|fflffl{zfflffl}

singular!

þ 1

s
4
3

R2ðvÞ
|fflffl{zfflffl}

singular!

þ � � � ð5:51Þ

The last two terms are always singular. The only way that we may obtain bounded
curvature is to make those two terms cancel between themselves. This requires

r ¼ 2
3

ð5:52Þ

which is exactly the correct scaling for a correction coming from shear viscosity.
Moreover, we have to fine tune the coefficient A to [44]

7 Various steps of this calculation were done in [43, 44] and [45].
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A ¼ 2�
1
23�

3
4 ð5:53Þ

which is the value corresponding to the value of the shear viscosity to entropy ratio

g
s
¼ 1

4p
ð5:54Þ

In this way we reconfirmed, in a fully nonlinear setting [44], the value of shear
viscosity computed at fixed temperature [9].

The above analysis can be repeated for the NNLO correction [46] with the final
result for eðsÞ:

eðsÞ ¼ 1

s
4
3

� 2

2
1
23

3
4

1
s2
þ 1þ 2 log 2

12
ffiffiffi

3
p 1

s
8
3

þ � � � ð5:55Þ

The coefficient of the NNLO term involves 2nd order transport coefficients. It is at
this stage that the pathologies of Fefferman–Graham coordinates surface, leading
to a leftover logarithmic singularity in the scaling limit of the curvature (appearing
at NNNLO in the metric, which is necessary for obtaining the coefficients of eðsÞ
at one order lower). The singularity was found to be persistent and not associated
with truncating other fields of ten dimensional supergravity [47]. Its origin has
been explained in detail in [25] (see also [26, 27]) and can be associated with the
singular transformation between coordinates regular at the horizon (Eddington–
Finkelstein) and the Fefferman–Graham ones, coupled with performing an
expansion of the geometry w.r.t. those coordinates. In order to proceed further,
which is however rather impractical analytically, one would have to perform the
analysis in Eddington–Finkelstein coordinates (a result in this direction, the
NNNLO term in eðsÞ is given in [39]).

5.9 Interlude: Hydrodynamics Redux

In the above, we have adopted a very agnostic attitude towards the expected
dynamics ruling the time evolution of the energy-momentum tensor of the N ¼ 4
plasma system. We did not assume that one could parametrize the Tlm in terms of
such quantities as flow velocity and energy/pressure. We started off from the most
general Tlm consistent with the assumed symmetries. By proceeding in this way we
have an option of describing dynamics which does not fit at all into a hydrody-
namical language. This is in fact the main reason for presenting such an approach
here, as in the remaining part of the lectures we would like to address the dynamics
of boost-invariant plasma at small proper times where we do not expect hydro-
dynamic description to be a good starting point.

On the other hand such flexibility has also significant drawbacks. The deter-
mination of the transport coefficients of hydrodynamics presented above followed
by first deriving from AdS/CFT the explicit form of eðsÞ. Given that eðsÞ, one
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could ascertain that the leading term is a solution of perfect fluid equations of
motion, and together with the subleading term is a solution of viscous hydrody-
namic equations with a specific value of the shear viscosity (we leave this as an
exercise for the reader).

It is thus very interesting to obtain directly the hydrodynamic equations from
AdS/CFT without making the passage through explicit solutions. This task was
performed in [24] and is presented in detail in the lectures of V. Hubeny at this
school [8]. For completeness, let us just summarize here the main idea.

The static black hole geometry presented in Sect. 5.4 is dual to a plasma at rest,
which can be described by a flow vector ul ¼ ð1; 0; 0; 0Þ and an energy density E
(or equivalently temperature T). By performing a boost one can obtain a dual
geometry to a uniformly moving plasma with four-velocity ul.

In Eddington–Finkelstein coordinates it is given explicitly as

ds2 ¼ �2uldxldr � r2 1� T4

p4r4

� �

ulumdxldxm þ r2ðglm þ ulumÞdxldxm ð5:56Þ

where r ¼ 1 corresponds to the boundary, r ¼ T=p is the horizon while r ¼ 0 is
the position of the singularity (r ¼ 1=zEF cf. Sect. 5.4) This is an exact solution of
Einstein’s equations. Now promote T and ul to slowly varying functions of the
boundary Minkowski coordinates. The geometry (5.56) ceases to be a solution of
Einstein’s equations and has to be corrected by terms proportional to gradients.
These correction terms can be determined with the integration constants fixed by
the requirement of nonsingularity at the horizon.

Now from the corrected geometry one can read off the Tlm which is explicitly
expressed (similarly to the metric) in terms of T , ul and the gradients of ul. The
numerical constants coming from nonsingularity become exactly the transport
coefficients. In this way one obtains

Tlm
rescaled ¼ ðpTÞ4ðglm þ 4ulumÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

perfect fluid

� 2ðpTÞ3rlm

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

viscosity

þ

þ ðpT2Þ log 2Tlm
2a þ 2Tlm

2b þ ð2� log 2Þ 1
3

Tlm
2c þ Tlm

2d þ Tlm
2e

� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

second order hydrodynamics

The energy-momentum conservation olTlm ¼ 0 of such a Tlm is by definition the
hydrodynamic relativistic Navier–Stokes equation.

From the above construction we see that the appearance of hydrodynamics in
the AdS/CFT correspondence is now completely understood. For any solution of
the hydrodynamic equations TðxqÞ, ulðxqÞ, the formula (5.56) and its correction
terms give an explicit dual metric valid to the same order of the derivative
expansion. A similar analysis was performed later in the Fefferman–Graham
coordinates [48].

One final thing to note is that the starting point in the above construction is the
boosted black hole, which means that one assumes that approximately one is

168 R. A. Janik



dealing with an energy-momentum tensor of a hydrodynamic type (i.e. para-
metrizable by a flow velocity and energy density). This does not always need to be
the case, as we shall see shortly, and then one has to return to an ab-initio analysis
of Einstein’s equations of the type presented in Sect. 5.7.

5.10 Plasma Dynamics Beyond Hydrodynamics

The appearance of hydrodynamic behaviour of strongly coupled plasma as a
consequence of the AdS/CFT correspondence is certainly very interesting and
satisfying theoretically, however perhaps the most fascinating feature of AdS/CFT
is its ability to address the behaviour of a plasma system very far from equilibrium,
where in QCD we do not even have a well motivated phenomenological model.

As an example of a configuration which cannot be described, even in any
approximation, by hydrodynamic methods consider the problem of plasma iso-
tropisation, extensively studied in various variations within QCD [49–52]

Suppose we have a plasma system uniform in space with anisotropic pressures.
In weakly coupled gauge theory one could consider a gas of gluons with non
isotropic momentum distributions, like gaussians with different widths for the
different momentum components. Then one expects that the pressures would
isotropise in time. The energy-momentum tensor of such a system would have the
form

Tlm ¼

e 0 0 0
0 pkðtÞ 0 0
0 0 p?ðtÞ 0
0 0 0 p?ðtÞ

0

B

B

@

1

C

C

A

ð5:57Þ

Note that such a system cannot be described by any form of (even all-order
resummed) viscous hydrodynamics, since by symmetry ul ¼ ð1; 0; 0; 0Þ and thus
has vanishing derivatives. So all viscous terms vanish, while the leading term is
clearly of a different form. However nothing stops us from applying the AdS/CFT
analysis using Einstein’s equations to such a system. This has been first proposed
in [53]. Subsequently, a numerical study of this system was performed in [54].

Another interesting problem, which we will discuss in the remaining part of
these lectures, is the behaviour of the boost-invariant plasma system considered
before but now at small proper times. Since the hydrodynamic expansion (5.55)

eðsÞ ¼ 1

s
4
3

� 2

2
1
23

3
4

1
s2
þ 1þ 2 log 2

12
ffiffiffi

3
p 1

s
8
3

þ � � � ð5:58Þ

is an expansion in inverse powers of s, it completely breaks down as we approach
s ¼ 0. Here the situation is more complicated than in the case of uniform iso-
tropisation (5.57) mentioned above as we expect a mixture of non-equilibrium and
hydrodynamic behaviour. In fact it is exactly the question of the transition to
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hydrodynamics, and what factors are important in setting the scale of this transi-
tion, that is very interesting in the context of heavy-ion collisions. A related more
general issue is the observation of thermalization (proposed in [55] to be related to
a formation of a black hole in the bulk) and an analysis of the concrete way in
which this scenario is realised.

5.11 Dynamics at Small Proper Time

For the reasons described above, we will have to deal with the full Einstein’s
equations. From the point of view of hydrodynamics treated as a gradient
expansion these encompass all orders of viscous hydrodynamics together with
an infinite set of higher transport coefficients. But apart from these there is
additional information contained in the Einstein’s equations. Taking the case of
a planar black hole as an example, all order hydrodynamics may be identified,
on the linearized level, with the lowest quasinormal mode and its exact
dependence on spatial momentum. But apart from this lowest mode there is an
infinite set of higher quasinormal modes which decay exponentially (in the AdS/
CFT context, see in particular [56]). And all of these become important in a far
from equilibrium situation such as the early time dynamics of the boost-
invariant flow.

Here we will again go to the boost invariant setting and repeat the analysis of
Sect. 5.7, but now concentrating on the small s regime. We follow the analysis of
[57]. We will adopt the same ansatz for the metric (5.34) and solve Einstein’s
equations with the boundary conditions (5.36).

Before going into the details of this construction, let us comment why we are
using the Fefferman–Graham system of coordinates. In contrast to the late time
expansion, here we will aim at solving the Einstein’s equations to an arbitrary
accuracy—without performing any kind of scaling limit. Therefore any choice of
coordinates works equally well. Moreover the constraint equations for initial data
in the Fefferman–Graham system of coordinates are particularly transparent.

Let us first determine the qualitative behaviour of eðsÞ at small s. We will do it
in two ways.

5.11.1 The Absence of a Scaling Variable

In the large proper time regime, the structure of Einstein’s equations naturally led
to the introduction of a scaling variable, which reduced the problem to solving
ordinary differential equations and a subsequent expansion in inverse powers of s.
Let us now analyze the solution of Einstein’s equations at small s from this point
of view.
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We again start from the exact power series solution

a s; zð Þ ¼ �eðsÞ � z4 þ � e0ðsÞ
4s
� e00ðsÞ

12

� �

� z6 þ
n 1

6
eðsÞ2 þ 1

6
se0ðsÞeðsÞ

þ 1
16

s2e0ðsÞ2 þ e0ðsÞ
128s3

� e00ðsÞ
128s2

� eð3ÞðsÞ
64s

� 1
384

eð4ÞðsÞ
o

� z8 þ � � �

ð5:59Þ
and substitute the asymptotics

eðsÞ� 1
ss

for s! 0 ð5:60Þ

In this way we obtain

�z4 s�s þ z6 1
6

s�s�2s� 1
12

s�s�2s2

� �

þz8 � 1
16

s�2 ss2 � 1
6

s�2 s þ 1=6 s�2 ssþ 1
96

s�s�4s2 � 1
384

s�s�4s4

� �

þ � � �

ð5:61Þ

where the terms dominating for small s are rendered in bold. This analysis was first
done by Kovchegov and Taliotis [58], who deduced that for generic s the dominant
terms at small s are of the form

z4

ss
� f w � z

s

� �

ð5:62Þ

In [58], the scaling solution was found, but due to its complex branch cut struc-
ture,8 Kovchegov and Taliotis argued that the only acceptable solution had s ¼ 0,
which is a very interesting result.

But if we again look at (5.61), we see that the terms resummed by the scaling
variable vanish for s ¼ 0 and are no longer dominant. Hence there is no place for a
scaling variable at small s and for s ¼ 0 one has to reanalyze the Einstein equa-
tions in order to describe the full solution at s� 0.

5.11.2 The Existence of a Regular Initial Condition

One can reach the same conclusion, as well as some more detailed information, on
the small s dependence of eðsÞ assuming that at s ¼ 0 we have a regular initial
condition.9 Recall the expression (5.59) and substitute s ¼ 0. Firstly, we see that

8 And an additional physical bound on s, see [58].
9 This is an assumption which may, or may not be realistic for ultraenergetic collisions. We
prefer to keep the options open and analyze boost invariant flow with regular initial conditions as
an interesting nonequilibrium dynamical system for its own sake.
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the assumption that the metric coefficients are finite leads to a finite limit of eðsÞ as
s! 0, consistent with s ¼ 0. Secondly, the inverse powers of s appearing in the
higher order terms do not lead to a singularity if and only if eðsÞ has an expansion
only in even powers of s:

eðsÞ ¼ e0 þ e2s
2 þ e4s

4 þ � � � ð5:63Þ

A closer analysis reveals that the coefficients e2n are uniquely determined,
through the Einstein’s equations, in terms of the coefficients of the initial condition
for the metric:

aðs ¼ 0; zÞ ¼ a0z4 þ a2z6 þ a4z	 þ � � � ð5:64Þ

In order to complete the analysis of the gravitational setup, we have to analyze
what are the admissible initial conditions (5.64). Once this is done, one can set up
the analysis of the system by evolving the geometry from (5.64) using Einstein’s
equations and read off eðsÞ from the metric. This can be done either numerically
solving Einstein’s equations [59], or analytically by expressing the coefficients e2n

directly in terms of the coefficients of the initial condition a2n [57].

5.11.3 The Classification of Possible Initial Conditions

As is well known, in General Relativity, the initial conditions cannot be arbitrary
but have to satisfy some nonlinear constraint equations. This causes the gravita-
tional initial value problem to be quite nontrivial in general. Fortunately, for the
case of the s ¼ 0 hypersurface in the Fefferman–Graham coordinates, the con-
straints can be solved exactly.

Let us denote by Eab, the components of Einstein’s equations written in the form

Eab � Rab þ 4gab ¼ 0 ð5:65Þ

Then the constraints are contained in equations Esz and Ezz. Denoting a0ðzÞ �
aðs ¼ 0; zÞ etc. we get at once

a0ðzÞ ¼ b0ðzÞ _a0 ¼ _b0 ¼ _c0 ¼ 0 ð5:66Þ

and the only remaining constraint is the single nonlinear equation

a000 þ c000 þ
1
2
ða00Þ

2 þ 1
2
ðc00Þ

2 � 1
z

a00 þ c00
	 


¼ 0 ð5:67Þ

Let us note an extremely surprising feature of the above equation. At the linearized
level, it has a trivial solution a0ðzÞ ¼ �c0ðzÞ. So one may expect that for infini-
tesimal a0, the function c0 would be also very small and only slightly deformed
from �a0 by taking into account the effect of the nonlinear terms. It turns out,
however, that this is never true, and the nonlinearity always causes a blowup of the
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solution for some finite z. To see this introduce vðz2Þ ¼ 1
4z a00ðzÞ and similarly wðz2Þ

for c0. Then the constraint Eq. 5.67 takes the simple form

v0 þ w0 þ v2 þ w2 ¼ 0 ð5:68Þ

Now it is easy to see, that there does not exist an everywhere bounded (v ¼ w ¼ 0
at infinity) solutions of the constraint equations. To this end it is enough to inte-
grate (5.68) to get

0 ¼
Z

1

0

ðv0 þ w0Þ þ
Z

1

0

ðv2 þ w2Þ ¼
Z

1

0

ðv2 þ w2Þ ð5:69Þ

Therefore, at s ¼ 0 with boost invariant symmetry, gravity leads to inherently
nonlinear dynamics—a linearized regime does not exist at all!

It is not difficult to impose conditions on v and w so that the blowup is not a
curvature singularity—at least R stays finite there (see [57] for details). Moreover
one can solve the constraint (5.68) analytically. Indeed, defining vþ ¼ �w� v;
v� ¼ w� v,

v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2v0þ � v2
þ

q

ð5:70Þ

solves (5.68) for any vþ. Let us conclude with an example of a simple particular
solution of the initial value constraints:

a0ðzÞ ¼ b0ðzÞ ¼ 2 log cos az2 c0ðzÞ ¼ 2 log cosh az2 ð5:71Þ

The huge range of initial conditions that can be imposed is in fact quite natural.
On the gauge theory side we may also expect to be able to prepare an initial state
with the same energy density in a multitude of ways. Let us contrast this with the
large s expansion (5.58) of eðsÞ, which only depends on a single scale.10 In other
words, once the dominant asymptotics of eðsÞ is known, all subleading power like
terms are uniquely determined.

The physical interpretation of this difference is quite clear. We expect dissi-
pative effects to wash out differences in initial conditions leaving only a single
scale (under the present symmetry assumptions) governing the large proper time
expansion of eðsÞ. On the gravitational side, these effects can be understood as
nonlinear generalizations of higher quasinormal modes which die off exponentially
(see [60] for some analysis along these lines in the boost invariant setting).

10 In (5.58) this scale has been set to unity, but may be reinstated unambiguously by dimensional
analysis.
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5.11.4 An Analysis of Some Aspects of the Small Proper
Time Behaviour of eðsÞ

Once we have the allowed initial conditions at s ¼ 0, we need to solve Einstein’s
equations with these initial data. Then, as explained in Sect. 5.4, we may read off
eðsÞ from the solution of Einstein’s equations. Since we do not have a scaling
variable at our disposal we have to do it exactly. The ideal way to proceed would be
to solve Einstein’s equations numerically. This study is currently under way [59].
The route followed in [57] was to solve these equations for the metric in a power
series in z and s, obtaining a power series expression for eðsÞ up to the order s100 for
some initial conditions. A drawback of the above method is that the power series in
question has a finite radius of convergence, necessitating the use of Pade approx-
imations as an extrapolation method. Below we will present some analysis of these
extrapolated profiles [57]. We have to emphasize, however, that one would require
a real numerical solution of Einstein’s equation to be sure of all the details.

First let us discuss the transition to hydrodynamics. One possibility of quanti-
fying this is by considering an ‘effective exponent’ of the power law dependence
of eðsÞ defined as

�s
d

ds
log eðsÞ ð5:72Þ

Initially it is zero, and it should rise up to 4=3 for late time expansion. In order to
evaluate it we plot a Pade approximant (of constant large s asymptotics) of the
expression (5.72). The result, for the initial condition (5.71) is shown in Fig. 5.2.

We see that it definitely crosses s ¼ 1 of free streaming and moves upwards.
However, to be sure that it would reach 4=3 a numerical solution for eðsÞ would be
needed.

Now assuming the late time exponent 4=3, we may perform a Pade approxi-
mation of eðsÞ with this asymptotics to see the profiles of eðsÞ for a set of initial
conditions. Example plots are shown in Fig. 5.3.

Fig. 5.2 The effective power
(5.72) of eðsÞ corresponding
to the initial condition (5.71)
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The main interest of the knowledge of the exact profile of eðsÞ for various initial
conditions is that then we would be able to study the transition to hydrodynamics
and its dependence on various features of the initial conditions. Since the Pade
extrapolation introduces some serious systematic uncertainties, we refrain from
doing so until we will have at our disposal a direct numerical solution of Einstein
equations for these various initial conditions. Apart from the reasons mentioned
above, the numerical solution would also allow to analyze the nature of the
apparent singularity in the initial data and, more importantly, analyze the geometry
for the presence of apparent (dynamical) horizons, relevant for the thermodynamic
interpretation. Some of these issues are currently under investigation [59].

Before we close this last part of the lectures let us note a complementary
numerical investigation of boost invariant plasma in [61]. The setup of [61] was
different from the one presented in these lectures in that the gauge theory metric
was perturbed in a boost invariant way at some s� s0 [ 0 and then set again to flat
Minkowski. The metric perturbation produced a change in the geometry which
induced a boost invariant flow on the boundary. The main results observed in [61]
were a transition to hydrodynamics and a formation of an apparent horizon which
moved in from infinity.

Another related work11 was [62], were a perturbation by a boundary scalar
source induced a black hole formation in the bulk.

Looking at all these examples, one sees that Einstein’s equations, through the
AdS/CFT correspondence, have the potential of describing a multitude of far from
equilibrium strongly coupled gauge theory phenomenae. It is however clear that
the majority of problems remain still unsolved.

5.12 Conclusions

In these lectures we have described an approach using the AdS/CFT correspon-
dence as a tool for studying real time dynamics of strongly coupled gauge theory
plasma. The basic theoretical tool is the possibility of translating, in a completely
explicit and constructive way, between the spacetime energy-momentum tensor

Fig. 5.3 Pade resummed profiles of eðsÞ for a set of initial conditions [57]

11 This time not in the boost-invariant setting discussed here.
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characterizing the gauge theory configuration in question and the five-dimensional
metric of the dual geometry. Then one uses the fact, that at strong coupling, the
dynamics of the dual geometry is governed by Einstein’s equations (with a cos-
mological constant following from the full ten dimensional supergravity solution).
A further dynamical input is the requirement of the absence of naked singularities
in the gravity background. This restricts very strongly the allowed spacetime
profiles of the gauge theory energy momentum tensor, and consequently the
possible gauge theory dynamics.

Using these methods, one may establish the appearance of nonlinear hydro-
dynamics, as exhibited here in the form of near perfect fluid dynamics in the large
proper time asymptotics of boost invariant plasma expansion. Moreover, Einstein
equations together with the nonsingularity criterion unambiguously predict viscous
first- and higher-order deviations from perfect fluid dynamics with specific values
of the transport coefficients appropriate to the case of the N ¼ 4 SYM theory
studied here.

Let us note, that we arrived at these results without presupposing anything even
about the general form of the gauge theory energy momentum tensor like the
presence of something like a flow velocity ul etc. This flexibility comes from the
fact that Einstein’s equations on the string side of the AdS/CFT correspondence
require only that the gauge theory energy-momentum tensor is conserved and
traceless (throughout these lectures we are dealing exclusively with the conformal
case of N ¼ 4 SYM). Therefore one can use the same techniques to address the
question of far from equilibrium dynamics where hydrodynamics cannot be used
as a starting point of approximation. We exhibited an example of such a study by
describing some aspects of the behaviour of the boost invariant plasma expansion
in the region of small proper time.

It should be obvious that the majority of questions concerning far from equi-
librium dynamics of strongly coupled plasma remain still unanswered even for the
case of N ¼ 4 plasma. Once more details are understood, it would be very
interesting to address similar problems in more complicated versions of the AdS/
CFT correspondence involving gauge theories which might be closer to QCD.
Apart from this direct ‘application driven’ motivation, the study of such time-
dependent systems leads to fascinating interrelations with General Relativity. On
the one hand, it provides a new setting for investigating such GR concepts as
dynamical apparent horizons, black hole formation, providing these GR phe-
nomenae with new interpretation. On the other hand, the well developed tech-
nology of numerical relativity might be applied to learn more about the properties
of far from equilibrium strongly coupled gauge theory systems.

Last but not least, let us note that the gravity backgrounds obtained as dual
descriptions of evolving plasma systems can very well by themselves form a scene
for the AdS/CFT correspondence enabling one to study various kind of physics
questions. In this way one may study how the expanding plasma system influences
properties of mesons, Wilson loops, various correlation functions. Of course, due
to the time-dependent nature of those backgrounds this may be quite difficult to do
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in practice, but the possibility of doing so is certainly very interesting and the
results may be rewarding.
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Appendix

A.1 Topics Not Covered in the Main Text: A Brief Guide
to the Literature

In this appendix we would like to give pointers to the literature on other devel-
opments related to the approach presented in these lectures.

• Leading a0 corrections (i.e. beyond strong coupling in N ¼ 4 SYM theory) to
the transport coefficients were computed using the boost invariant flow [63, 64].
This task involved using a0 corrected Einstein’s equations.

• Beyond N ¼ 4 SYM. A class of general conformal field theories parametrized
by higher curvature terms in the dual gravitational action was considered in [65].

• Extension to hydrodynamics with conserved charge(s) was considered in [66–
68]. Electric-magnetic equilibration at large proper times was found in [69]. In
addition, dilaton driven hydrodynamics was considered in a general way in [68]
and the onset of turbulence was observed [70].

• Lower dimensional examples. The case of a 1+1 dimensional conformal field
theory allows for an explicit exact dual gravitational solutions [71, 72]. Other
investigations in different number of dimensions were performed in [73].

• Various (exact) solutions for N ¼ 4 gauge theory in curved and possibly time-
dependent backgrounds were obtained [74–76]. The exact solutions which were
found do not involve viscosity effects. An exact gravitational description af a
shearless flow in N ¼ 4 in flat space was obtained in [77].

• Further properties of solutions with boost invariant symmetries were studied in
[78–82].

• Physics in the expanding plasma. Fundamental flavours were introduced
(through D7 brane embeddings) into the late proper time boost invariant
geometry [83], diffusion constant was evaluated [84], drag force was computed
[85]. In addition, various physical questions were addressed in the case of the
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shock wave solutions described in Sect. 5.4 Deep Inelastic Scattering (DIS) was
analyzed [86–89] as well as heavy quark energy loss [90, 91].
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Chapter 6
Fluid Dynamics from Gravity

Veronika E. Hubeny

Abstract We give a brief review of the recently-formulated fluid/gravity corre-
spondence. Originating from the AdS/CFT correspondence, this constitutes a one-
to-one map between configurations of a conformal fluid dynamics in d dimensions
and solutions to Einstein’s equations in d þ 1 dimensions. The map is fully con-
structive; for a given fluid configuration, it is completely algorithmic to write down
the spacetime geometry and deduce its causal properties. In particular, the bulk
solutions describe a regular generic, non-uniform and dynamical, black hole which
at late times settles down to a stationary planar black hole. We briefly indicate the
iterative construction of such solutions, extract the key physical properties, and
discuss further generalizations and open questions.

6.1 Introduction

In these lectures I will review the recent developments in formulating a relation
between fluid dynamics and gravity, which came to be called the fluid/gravity
correspondence. This correspondence is rooted in the well-known AdS/CFT (or
more generally the gauge/gravity) correspondence, reviewed elsewhere in these
proceedings.

As is often the case with important developments, there are several diverse and
complementary takes on the underlying motivation for formulating and using such
a correspondence. Iconically speaking, we were motivated by the need to:
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• probe nature of spacetime in quantum gravity,
• extract universal dynamics of wide class of gravitational theories,
• explore properties of strongly-coupled gauge theories (with particular view to

exploring QCD), and
• elucidate long-standing questions in fluid dynamics.

I will now briefly elaborate on each of these in turn, simultaneously reminding
the reader of the key ingredients of the AdS/CFT correspondence to be used later.

6.1.1 Quantum Gravity

One of the most important long-standing goals of the past few decades has been to
unravel the underlying quantum theory of gravity. Since the classical theory of
gravity, Einstein’s general relativity, identifies gravity with the curvature of
spacetime, the key question of quantum gravity is what is the fundamental nature
of spacetime? Serendipitously, one invaluable tool that came to our aid in tackling
this question during the last decade is the celebrated AdS/CFT correspondence, for
the simple reason that it allows us, in principle, to recast the long-standing
quantum gravitational questions in terms of non-gravitational quantum field
theory.

In its simplest formulation, string theory (which in particular contains gravity
while being a consistent quantum theory), on asymptotically five-dimensional
Anti-de Sitter (AdS) spacetime times a five-sphere, is dual to Super Yang-Mills
gauge theory which is a four-dimensional conformal field theory (CFT). Such a
correspondence is holographic; the CFT may be thought of as living on the
boundary of AdS. We will therefore refer to the AdS side as the ‘‘bulk’’ and the
CFT side as the ‘‘boundary’’ theory. According to the AdS/CFT dictionary, dif-
ferent asymptotically AdS spacetimes manifest themselves by different states in
the boundary theory. For example, the vacuum state in the CFT corresponds to
pure AdS. Metric perturbations from AdS are related to the stress-energy-
momentum tensor expectation value in the CFT.

More relevantly, putting a black hole in the bulk has the effect of heating up the
boundary theory. Specifically, a large1 Schwarzschild-AdS black hole corresponds
to (approximately) thermal state in the gauge theory. Conceptually, this can be
understood as the late-time configuration that a generic state evolves to: in the
bulk, gravity, as well as the negative curvature, tends to make a generic large-
energy configuration collapse and form a black hole which then quickly settles
down to the Schwarzschild-AdS geometry. Correspondingly, in the field theory, a
generic large-energy excitation will eventually thermalize.

1 AdS is a space of constant negative curvature, which introduces a length scale, called the AdS
scale RAdS, corresponding to the radius of curvature. The black hole size is then measured in
terms of this AdS scale; large black holes have horizon radius rþ[ RAdS.
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While appealingly simple, this level of understanding is far too coarse to allow
us to extract the more interesting aspects. We need to probe the AdS/CFT dic-
tionary further to uncover what happens in regions where the classical description
of the black hole breaks down, such as near the curvature singularity, or in the
more general, dynamical, situations. Ultimately, we would like to answer such
questions as: Which CFT configurations admit a dual spacetime description? or
What types of spacetime singularities are physically allowed? More generally, we
wish to probe spacetime dynamics. Although the fluid/gravity correspondence will
not enable us to answer these intriguing questions fully, it will take the first step in
this direction.

6.1.2 Universal Implications

While it is heartening to have a framework wherein we can explore the questions
of interest, it is much more gratifying for that framework to exhibit certain degree
of universality. The fluid/gravity framework does indeed achieve this. Specifically,
the setup which we will consider in the bulk,2 namely Einstein’s gravity with
negative cosmological constant (and no other bulk matter content), is in fact
relevant for a much wider class of theories. This is because Einstein’s equations
(with negative cosmological constant) constitute a consistent truncation of all two-
derivative gravitational theories interacting with other fields (with spin\2) which
have AdS as a solution. This means that for every CFT having SUGRA bulk dual
description, we have a decoupled sector exhibiting universal dynamics for the
stress tensor. In particular, the stress tensor correlators (from which we can extract
the transport coefficients) are in this sense universal. More importantly, since
uncharged planar black holes solve our theory, they likewise lie in this universal
sector, so this universality holds at any temperature.

6.1.3 QCD

A complementary long-standing goal of theoretical physics is to solve QCD. As
observed elsewhere, AdS/CFT provides a convenient window of opportunity even
for this programme, since it allows us to get a handle on certain strongly coupled
field theories. Unfortunately, QCD is in many respects markedly different from
the super Yang-Mills CFT, so it is only for certain universal features that the
AdS/CFT correspondence has any direct relevance. Nevertheless, as remarked
elsewhere in these proceedings, many quantities of interest in QCD, such as its

2 In what follows, the five-sphere of AdS5 � S5 will play a passive role, so we will ignore it and
consider the five-dimensional (asymptotically) AdS bulk spacetime only.
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transport coefficients, do fall into this category, so that while not quantitatively
accurate, the predictions from fluid/gravity do give a reasonable indication of the
qualitative features. This is especially useful since presently we do not have other
means, apart from possibly lattice calculations, to calculate in the strong coupling
regime. This makes the AdS/CFT, and specifically the fluid/gravity, correspon-
dence relevant to high-energy experiments. Indeed, the predictions which will be
described later in these lectures have been used in analysing data from the
Relativistic Heavy Ion Collider.

6.1.4 Fluid Dynamics

Although many detailed questions about the fundamental degrees of freedom in a
given strongly coupled field theory remain well beyond our reach, a more mac-
roscopic effective description is not only more easily accessible, but also is
interesting in its own right. The key observation is that any interacting field theory
admits an effective description in terms of fluid dynamics. Fortuitously, fluid
dynamics is a subject that has been well-studied for more than a century, theo-
retically as well as observationally/experimentally and numerically. Nevertheless,
there are important questions in fluid dynamics which have yet to be understood.
While we have a good handle on near-equilibrium physics, dynamics away from
thermodynamic equilibrium is more difficult to tackle. For example, one of the
famous Clay Millenium Prize Problems concerns the global regularity (existence
and smoothness) of the Navier–Stokes equations. Intriguingly, the solutions often
include turbulence, which, despite its importance in science and engineering, still
remains one of the greatest unsolved problems in physics. Furthermore, there are
causality issues in the conventional Navier–Stokes equations which plague
numerical simulations. As already suggested by its name, the fluid/gravity corre-
spondence is indeed relevant for addressing such important questions in fluid
dynamics.

The structure of these lectures is as follows. We will first review the necessary
background for constructing the fluid/gravity map in Sect. 6.2. In particular, we
will briefly discuss the two sides of the correspondence, conformal fluid dynamics
on the boundary and gravity in the bulk, and then indicate the main idea of
constructing the map between them. In Sect. 6.3 we will sketch the actual con-
struction, which involves expanding in boundary derivatives; in particular, we will
explicitly correct the zeroth order configuration to first order. The second order
solution, calculated in [5], is discussed in Sect. 6.4; in particular, we will present
the boundary stress tensor and transport coefficients for our conformal fluid, fol-
lowed by a discussion of the bulk geometry from which we extract the location and
area of the event horizon. Finally, Sect. 6.5 summarizes the salient points and
indicates several open questions.

These lectures are based primarily on [5] which first formulated the nonlinear
fluid/gravity correspondence and constructed the second order solution, and on [6]
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which analysed the causal structure of this solution, focussing on the event horizon
area and corresponding entropy current in the boundary fluid. This work builds on
earlier derivations of linearized fluid dynamics from linearized gravity [18]
(see [22] for an excellent review), and on earlier examples of the duality between
non-linear fluid dynamics and gravity [14, 4]. Since its inception, the fluid/gravity
correspondence has flourished into an active line or research, with large number of
extensions and generalizations. Some of the key developments and reviews of
further progress include [7, 8, 19], among many others. Since these lectures are
intended as a brief overview serving rather as an invitation into the subject than as a
full, self-contained review (excellent samples of which already exist in the litera-
ture), I am purposefully keeping the list of references to the bare minimum; please
see the above-cited works for a more complete set of background references.

6.2 Background

We begin with a brief review of conformal fluid dynamics, proceed to discuss the
dual gravitational solutions, and then motivate the construction of the explicit
mapping between them. To keep the discussion and formulas as clean as possible,
we will restrict attention to the simplest case of uncharged conformal fluid on
four-dimensional Minkowski spacetime R3;1 (though initially we will quote the
d-dimensional results). Several generalizations to this setup will be mentioned in
Sect. 6.5.

Before proceeding, we make few remarks on notation: the bulk metric will be
denoted by gMN with the capital Latin indices taking values over the d þ 1 bulk
dimensions; we will separate the coordinates into the radial coordinate r and the
remaining ‘‘boundary coordinates’’ xl, where the l index ranges over the d
boundary directions (which includes time). The stress tensor in the boundary
theory is denoted Tlm, and in writing its conservation ðrlTlm ¼ 0Þ, the rl is the
covariant derivative with respect to the boundary metric glm, which in this case
simply reduces to the partial derivative ol.

6.2.1 Conformal Fluid Dynamics

Fluid dynamics is the continuum effective description of any (interacting) micro-
scopic quantum field theory. In order to meaningfully describe the system in terms
of the fluid variables, the fluid description assumes that the system achieves local
thermodynamic equilibrium. This means that the regime of validity where such a
description is valid requires that the scale of variation of the dynamical degrees of
freedom, L, be much larger than the microscopic scale ‘mfp, typically set by the
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temperature, T . In this long-wavelength approximation, local equilibrium then
demands that LT � 1

� � 1.
A conformal fluid is characterized by a traceless symmetric stress tensor, which

in d spacetime dimensions has dðdþ1Þ
2 � 1 degrees of freedom, along with a col-

lection of charge currents (which for simplicity we have set to zero). In a fluid
dynamical characterization of the same system, the number of basic degrees of
freedom is drastically reduced. The conformal invariance fixes the equation of
state, thereby determining the pressure in terms of the energy density, which can in
turn be expressed in terms of the temperature. Hence the basic variables are the
local temperature TðxÞ and velocity ulðxÞ (unit-normalized so that ulul ¼ �1),
which constitute just d degrees of freedom.

The equations of fluid dynamics are then simply the equations of local con-
servation of the stress tensor (as well as the charge currents in more general
situations), supplemented by constitutive relations that express these currents as
functions of the fluid dynamical variables. As fluid dynamics is a long wavelength
effective theory, such constitutive relations are usually specified in a derivative
expansion. At any given order, thermodynamics plus symmetries determine the
form of this expansion up to a finite number of undetermined coefficients. In
general, the coefficients can be obtained either from measurements or from
microscopic computations. However, as we will see, in the present framework
these coefficients are fully determined by the gravity side (which in a sense knows
about the microscopics of the boundary field theory).

Purely based on the symmetries, we can then write down an expression for the
stress tensor of a d-dimensional conformal fluid:

Tlm ¼ aTdðglm þ dulumÞ þ plm
dissipative:

The first two terms describe the ideal conformal fluid stress tensor, while plm
dissipative

incorporates all the dissipative terms, and a is a constant giving the overall nor-
malization. As variations of TðxÞ and ulðxÞ are small, we can expand plm in a
derivative expansion ol � o

oxl in the boundary directions; the leading term will turn
out to be proportional to the shear viscosity. The dynamical content of the fluid
equations is encoded in the conservation of the stress tensor

olTlm ¼ 0: ð6:1Þ

Fluid dynamics viewed in this derivative expansion constructs an effective field
theory for the slowly varying modes TðxÞ and ulðxÞ, analogously to the chiral
Lagrangian for pions.

6.2.2 Gravity in the Bulk

We now turn to the gravitational solutions in asymptotically AdS spacetime.
Motivated by the AdS/CFT correspondence, we will consider two-derivative
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theories of gravity with an AdSdþ1 ‘‘vacuum’’, such as the IIB SUGRA on
AdS5 � S5. As mentioned above, the solution space has a universal sub-sector, pure
gravity with negative cosmological constant, for which the bulk field equations are
simply Einstein’s equations,

EMN � RMN �
1
2

RgMN þ KgMN ¼ 0: ð6:2Þ

(Note that without loss of generality we can measure distances in AdS units, which
amounts to taking RAdS ¼ 1 and thereby sets K ¼ �6 in five dimensions.) We will
focus on this sub-sector in the long-wavelength limit. Apart from the pure AdS5

solution, there is a 4-parameter family of solutions representing asymptotically-
AdS5 boosted planar black holes. We will use these solutions to construct general
dynamical spacetimes characterized by fluid-dynamical configurations.

Roughly speaking, our construction may be thought of as a ‘‘collective coor-
dinate method’’ for black hole horizons. Recall that the isometry group of AdS5 is
SOð4; 2Þ. The Poincare algebra plus dilatations form a distinguished subalgebra of
this group (one that preserves the boundary). Out of these, the SOð3Þ rotations and
translations in world-volume R3;1 leave the static planar AdS black hole invariant,
but the remaining symmetry generators, dilatations and boosts, act nontrivially on
this solution, generating a 4-parameter family of boosted planar black holes,
parameterized by the temperature T and the velocity ul of the brane. Our con-
struction effectively promotes these parameters to Goldstone fields (or collective
coordinate fields) TðxÞ and ulðxÞ, and determines their dynamics, order by order in
the boundary derivative expansion. Note that this is distinct from linearization: we
make no assumptions about the amplitudes of these slow variations.

6.2.3 Fluid/Gravity Map

Before proceeding to sketch the construction in more detail, we pause to stress an
important point in mapping these long-wavelength gravity solutions to corre-
sponding fluid configurations. A well-known procedure of holographic renor-
malization (see e.g. [3, 11]) links the boundary stress tensor to the behaviour of the
bulk metric near the AdS boundary. Given any asymptotically AdS spacetime, we
can read-off the induced stress tensor on the boundary, since the latter is related to
the normalizable modes of the gravitational field in AdS. In particular, expanding
the bulk metric in the Fefferman–Graham form near the boundary z ¼ 0,

ds2 ¼
dz2 þ ðglm þ azdTlmÞdwldwm

z2
;

the stress tensor is simply given by Tlm. Conversely, given a boundary stress
tensor, there is a procedure to holographically reconstruct the bulk metric in a
radial expansion around the boundary.
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Naively, this might seem puzzling: as mentioned above, a conformally invariant

stress tensor in d dimensions has dðdþ1Þ
2 � 1 degrees of freedom. If any such stress

tensor yielded a regular bulk spacetime, we would have a discrepancy between the
fluid side which has only d degrees of freedom and whose dynamics is corre-
spondingly specified by only d equations, and the gravity side that would seem-
ingly allow more degrees of freedom. In other words, passing from a generic
quantum conformal field theory stress tensor to the stress tensor of its effective
description in terms of fluid dynamics constitutes a drastic reduction in the number
of degrees of freedom required to specify the spacetime. How is this manifested in
the bulk? The answer lies in regularity. As a series expansion around the boundary,
the holographic reconstruction cannot guarantee that the metric does not become
nakedly singular at some finite radial value in the bulk. In fact, for a generic stress
tensor it will. The fluid/gravity construction demonstrates that the regular solutions
are given precisely by such stress tensors which are fluid dynamical. Moreover, we
claim that the gravity solutions thus constructed are the most general regular long-
wavelength3 solutions to Einstein’s equations with negative cosmological con-
stant. They typically correspond to deformed and dynamical black holes; i.e. the
solutions admit a regular event horizon which shields a curvature singularity.

The heuristic picture of a generic evolution, on the two sides of the fluid/gravity
correspondence, is as follows. Suppose we start with some generic high energy
initial conditions. On the CFT side, the system quickly settles down to local
thermodynamic equilibrium, whose bulk dual is described by a dynamical, non-
uniform (planar) black hole. On both sides, such configuration is described by
local velocity and temperature fields which exhibit slow variation in the boundary
directions. The subsequent evolution is described by equations of fluid dynamics
on the boundary, which originate from Einstein’s equations governing the bulk
evolution. Finally, at late times, the system relaxes to global thermal equilibrium,
given by a stationary state parameterized by a constant temperature and velocity.
In the bulk, this is one of the well-known stationary solutions describing a planar
black hole in AdS mentioned in the previous subsection and given explicitly
below.

Our construction utilizes the long-wavelength regime of fluid dynamics: we
write Einstein’s equations as a perturbative expansion in boundary derivatives
(however keeping the exact radial dependence). This allows us to solve the
equations order by order in this boundary derivative expansion. In turns out that
Einstein’s equations at a given order implement the fluid stress tensor conservation
equations at lower order. Therefore, order by order, we can use the lower-order
fluid dynamical solution to construct the bulk metric, and then read off the cor-
rected fluid dynamical stress tensor. In [5], we constructed the boundary stress
tensor Tlm and corresponding bulk metric gMN to second order in boundary

3 Note, however, that there are regular solutions which do not fall into the long-wavelength
category, such as small black holes in AdS, which correspondingly are not described by fluid
configurations.
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derivative expansion. This yields a map between fluid dynamics and gravity,
which we now proceed to sketch in more detail.

6.3 Construction of Bulk Metric and Boundary
Stress Tensor

To explain our iterative procedure, we will first review the zeroth order configu-
ration, and then discuss the deformation of this solution to first order.

6.3.1 0th Order

We start with the stationary solution to Einstein’s equations with negative cos-
mological constant corresponding to the boosted planar Schwarzschild-AdS black
hole:

ds2 ¼ �2ul dxl dr þ r2ðglm þ ½1� f ðr=pTÞulumÞ dxl dxm; ð6:3Þ

where f ðrÞ � 1� 1
r4. Albeit perhaps less familiar, this form of the solution is very

convenient since the metric is manifestly regular on the event horizon at r ¼ pT as
well as being boundary-covariant. To obtain it from a more familiar form, we can
start with the static Schwarzschild-AdS black hole in the planar limit:

ds2 ¼ r2 �f ðrÞ dt2 þ
X

i

ðdxiÞ2
 !

þ dr2

r2f ðrÞ ;

change to ingoing Eddington coordinates to avoid the coordinate singularity on the
horizon: v ¼ t þ r� where dr� ¼ dr

r2f ðrÞ, and finally ‘‘covariantize’’ by boosting:

v! ulxl; xi ! Pilxl, where Plm is the spatial projector, Plm ¼ glm þ ulum.
This solution is now parameterized by four parameters: the temperature T and

the boosts ul (which have three independent components in four-dimensions due
to normalization). The metric given in Eq. 6.3 constitutes the 0th order solution in
our iterative procedure. The causal structure of this solution is identical to that of
the static Schwarzschild-AdS black hole: there is a spacelike curvature singularity
at r ¼ 0, cloaked by a regular event horizon, and a timelike boundary. The AdS/
CFT correspondence maps this bulk solution to an ideal fluid characterized by
temperature T and fluid velocity ul. In particular, the induced stress tensor on the
boundary for d ¼ 4 is

Tlm ¼ p4T4ðglm þ 4ulumÞ: ð6:4Þ
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Note that this is an exact solution since the conservation equation (6.1) is
automatically satisfied for this constant stress tensor, and correspondingly the
metric (6.3) satisfies the bulk Einstein’s equations (6.2) for any constant T and ul.

6.3.2 1st Order

A general fluid configuration in local, but not global, equilibrium can be described
by promoting the four parameters T and ul to physical fields dependent on the
boundary coordinates xl, i.e., to TðxÞ and ulðxÞ. If these fields vary slowly
compared to the microscopic scale ‘mfp, i.e. if

ol log T

T
�Oð�Þ; olu

T
�Oð�Þ

for small �, the fluid configuration still satisfies the conditions of local equilibrium.
In each local domain of slow variation, which we refer to as tube, the bulk
gravitational solution is approximately that of a uniform black brane. Remarkably,
the bulk solution can be constructed by patching together these tubular domains!
Of course, if we just replace ul and T in the metric (6.3) by TðxÞ and ulðxÞ, the

resulting metric (call it gð0ÞMN) will no longer solve Einstein’s equations (6.2).

Instead, the metric gð0ÞMN will need to be corrected by higher-order piece (gð1ÞMN , etc.),
which we can obtain iteratively as an expansion in �. We will find that the resulting
corrected metric can be constructed systematically to any desired order, and is
valid well inside the event horizon, thus allowing verification of its regularity. It is
worthwhile to stress that the success of such a procedure rests on the fact the our

seed metric gð0ÞMN is manifestly regular on the horizon, since otherwise the expan-
sion would break down near the coordinate singularity at horizon.

To implement the construction algebraically, we express the line element in a
boundary derivative expansion of the fields ulðxÞ and TðxÞ, and use � as a book-
keeping parameter (counting the number of xl derivatives):

gMN ¼
X

1

k¼0

�kgðkÞMN ; T ¼
X

1

k¼0

�kT ðkÞ; ul ¼
X

1

k¼0

�kuðkÞl : ð6:5Þ

The term gðkÞMN corrects the metric at the kth order, such that Einstein’s equations
will be satisfied to Oð�kÞ provided the functions TðxÞ and ulðxÞ obey a certain set
of equations of motion, which turn out to be precisely the stress tensor conser-
vation equations of boundary fluid dynamics at Oð�k�1Þ.

Specifically, we can obtain the equations for gðkÞMN by substituting the expansion
(6.5) into Einstein’s equations (6.2), and extracting the coefficient of Oð�kÞ.
Schematically, these take the form
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H½gð0Þðuð0Þl ; T ð0ÞÞ�gðkÞðxlÞ ¼ sk ð6:6Þ

where H is a second-order linear differential operator in the variable r alone and sk

are regular source terms which are built out of gðkÞ with n\k � 1. Since gðkÞðxlÞ is
already of Oð�kÞ, and since every boundary derivative appears with an additional
power of �;H is an ultralocal operator in the field theory directions. Moreover, at a
given xl, the precise form of this operator H depends only on the local values of
T and ul but not on their derivatives at xl. Furthermore, the operator H is inde-
pendent of k; we have the same homogeneous operator at every order in pertur-
bation theory. This allows us to find an explicit solution of (6.6) systematically at
any order. The source term sk however gets more complicated with each order, and
reflects the nonlinear nature of the theory.

Bit more explicitly, the equations of motion split up into two kinds: Constraint
equations, Erl ¼ 0 which implement stress-tensor conservation (at one lower
order), and Dynamical equations Elm ¼ 0 and Err ¼ 0 which allow determination
of gðkÞ. We solve the dynamical equations

gðkÞ ¼ particularðskÞ þ homogeneousðHÞ

subject to regularity in the interior and asymptotically AdS boundary conditions.
Using the rotational symmetry group of the seed solution (6.3) it turns out to be
possible to make a judicious choice of variables such that the operator H is
converted into a decoupled system of first order differential operators. It is then
simple to solve the (6.6) for an arbitrary source sk by direct integration. For the
details of the procedure, as well as discussion of convenient gauge choice, etc., we
refer the reader to the original work [5] or the review [19].

Instead, here we simply quote the result for the bulk metric and boundary stress
tensor, corrected to first order in �. To first order the bulk metric takes the form

ds2 ¼� 2ul dxl dr þ r2ðglm þ ½1� f ðr=pTÞ�ulumÞ dxl dxm

þ 2r
r

pT
Fðr=pTÞrlm þ

1
3

ulumokuk � 1
2

ukokðumulÞ
� �

dxl dxm; ð6:7Þ

where TðxÞ and ulðxÞ are any slowly-varying functions which satisfy the con-
servation equation (6.1) for the zeroth order ideal fluid stress tensor (6.4),

FðrÞ �
Z

1

r

dx
x2 þ xþ 1

xðxþ 1Þðx2 þ 1Þ ¼
1
4

ln
ð1þ rÞ2ð1þ r2Þ

r4

 !

� 2 arctanðrÞ þ p

" #

ð6:8Þ

and rlm is the transverse traceless symmetric part of olum called shear, i.e.
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rlm ¼ PlaPmboðaubÞ �
1
3

Plmoaua:

Note that the first line of (6.7) is simply the zeroth order (boundary-derivative-
free) solution (6.3), whereas each of the terms in the second line have exactly one
boundary derivative.4

The induced fluid stress tensor on the boundary, which can be easily obtained5

from the bulk metric (6.7), is given by

Tlm ¼ p4T4ð4ulum þ glmÞ � 2p3T3rlm: ð6:9Þ

Here the first two (derivative-free) terms describe a perfect fluid with pressure (or
negative free energy density) p4T4, and correspondingly (using thermodynamics)
entropy density s ¼ 4p4T3. The shear viscosity g of this fluid may be read off from
the coefficient of rlm and is given by p3T3. Notice that g=s ¼ 1=ð4pÞ, in agreement
with the well-known result of [18].

6.4 Solution to Second Order

In the previous section we have illustrated at first order how our iterative procedure
can be implemented (in principle systematically to any order) to construct a
generic long-wavelength solution. Such a procedure was carried out in [5], where
the bulk metric and boundary stress tensor was calculated explicitly to second
order in the boundary derivative expansion. In this section we will discuss the new
physics which can be extracted from such a construction.

Note that already at first order, the bulk metric (6.7) was a much lengthier
expression than the boundary stress tensor (6.9). This remains true in general; in
fact, already at second order the expression for the metric is far too unwieldy to
write down here. In the following subsections, we will therefore only write the
second order boundary stress tensor explicitly but indicate the bulk metric only
schematically.

4 Note that (6.7) does not have any olT terms appearing explicitly, since by implementing the
zeroth order stress tensor conservation, we have expressed the temperature derivatives in terms
of the velocity derivatives.
5 We use the standard prescription (cf. [3]),

Tl
m ¼ �2 lim

r!1
r4ðKl

m � dl
m Þ

where Klm is the extrinsic curvature tensor on a constant-r surface.
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6.4.1 The Four-Dimensional Conformal Fluid from AdS5

The second order stress tensor can be written as6

Tlm ¼ ðpTÞ4ðglm þ 4ulumÞ � 2ðpTÞ3rlm

þ ðpTÞ2 ðln 2ÞTlm
2a þ 2Tlm

2b þ ð2� ln 2Þ 1
3

Tlm
2c þ Tlm

2d þ Tlm
2e

� �� �

ð6:10Þ

where the expressions in the second line are given in terms of the fluid velocity and
derived quantities,

Tlm
2a ¼ �abcðlrm

cÞuakb; Tlm
2b ¼ rlarm

a �
1
3

Plmrabrab;

Tlm
2c ¼ oauarlm; Tlm

2d ¼ DulDum � 1
3

PlmDuaDua;

Tlm
2e ¼ PlaPmbDðoðaubÞÞ �

1
3

PlmPabDðoaubÞ

ð6:11Þ

with D � ulol; kl � �abcluaobuc where �abcl is the Levi-Civita tensor, and as
before Plm is the spatial projector and rlm is the shear. Note that all of these
expressions are second order in boundary derivatives (denoted by the 2 in the
subscript).

In fact, one can package the expressions in (6.11) more compactly by using the
decomposition of the 4-velocity gradient omul into transverse, traceless and trace
parts,

omul ¼ �alum þ rlm þ xlm þ 1
3

hPlm;

where expansion, acceleration, and vorticity, are respectively defined as:

h ¼ olul; al ¼ Dul; xml ¼ PlaPmbo½aub�:

We can then rewrite the expressions (6.11) as:

Tlm
2a ¼ �2xqhlrmi

q

Tlm
2b ¼ rqhlrmi

q

Tlm
2c ¼ hrlm

Tlm
2d ¼ ahlami

1
3

Tlm
2c þ Tlm

2d þ Tlm
2e ¼ hDrlmi þ 1

3
hrlm

ð6:12Þ

6 Here we quote the stress tensor as written originally in [5]; subsequently, slightly simpler and
more general expressions were found; cf. e.g. [19] for a review. (Also, for simplicity we have

absorbed an overall factor of 16pGð5ÞN which would appear in the conventionally defined stress
tensor as conjugate to boundary time translations.)
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Here we have adopted the notation employed in e.g. [1], using the angular brackets
around the indices Ahlmi to denote the symmetric, transverse, traceless part of Alm.

It however turns out to be most useful to write the second order stress tensor in
a different basis of operators, T lm

k , which are manifestly conformally covariant,
cf. [1, 16]:

Tlm
ð2Þ ¼ spgT lm

1 þ jT lm
2 þ k1T lm

3 þ k2T lm
4 þ k3T lm

5

and whose coefficients are the physically meaningful transport coefficients.
At first order the only nontrivial transport coefficient is the shear viscosity,

g ¼ N2

8p
ðpTÞ3

whereas at second order the fluid parameters (relaxation timescales, etc.) extracted
from the stress tensor (6.10) are

sp ¼
2� ln 2

pT
; k1 ¼

2g
pT

; k2 ¼
2g ln 2

pT
; k3 ¼ 0:

These coefficients agree with the independent results of [1], who in addition derive
the curvature coupling term, j ¼ g

pT. These coefficients correspond to the various
relaxation timescales discussed in the literature (see e.g. [17]) in context of high
energy collider physics. As indicated earlier, the fact that we are dealing with a
particular conformal fluid, namely one that is dual to gravitational dynamics in
asymptotically AdS spacetimes, leads to these coefficients being determined as
fixed numbers.

6.4.2 The Spacetime Geometry Dual to Fluids

Let us now turn to discuss the bulk geometry obtained at the second order in
boundary derivative expansion (whose first order part is given by (6.7)). As
mentioned previously, this bulk solution is ‘‘tubewise’’ approximated by a planar
black hole. This means that in each tube, defined by a small neighbourhood of
given xl, but fully extended in the radial direction r, the radial dependence of the
metric is approximately that of a boosted planar black hole at some temperature
T and horizon velocity ul. These parameters vary from one position xl to another
in a manner consistent with fluid dynamics. Our choice of coordinates is such that
each tube extends along an ingoing radial null geodesic. Apart from technical
advantages, this is conceptually rather pleasing, since it suggests a mapping
between the boundary and the bulk which is natural from causality considerations.

It is worth stressing that although we refer to the metric written in (6.7) and its
second order extension presented in [5] as ‘‘a solution’’ in the singular form rather
than the plural, these expressions actually correspond to not just a single solution
or finite family of solutions, but rather a continuously infinite family of solutions,
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specified by the four functions TðxÞ and ulðxÞ of four variables. The flip side of the
coin is that while very general, such a metric is not fully explicit: in order to be so,
we need to use a given solution to fluid dynamics as input.

However, even in the absence of the explicit functional dependence of TðxÞ and
ulðxÞ, it is possible to extract certain salient features of any such geometry. The
most important feature of our geometry is the presence of an event horizon. In [6]
we have demonstrated explicitly that the event horizon is regular, and determined
its location in terms of the functions TðxÞ and ulðxÞ. Here we only schematically
motivate these results. Intriguingly, it turns out that the location of the event horizon
rHðxlÞ in the bulk is determined locally by the fluid dynamical data at a point xl

(within the derivative expansion), rather than globally as usual in general relativity.
To motivate this physically, within each tube characterized by a given xl, the

position of the horizon is approximately at rH 	 pT corresponding to that tube.
Since T varies as a function of xl, so will the horizon position rHðxlÞ. In the
corrected solution, the surface r ¼ pTðxÞ is not the event horizon (for example, it
is not a null surface in general), but if the variation TðxÞ is slow, the deviation from
the true event horizon is likewise small.

One can determine the position of the event horizon within our perturbation
scheme using the fact that the solution settles down at late times to a uniformly
boosted planar black hole. In particular, if we expand the horizon location as a
series in boundary derivatives, tagged as before by �,

r ¼ rHðxÞ ¼ pTðxÞ þ
X

1

k¼1

�krðkÞðxÞ;

then the coefficient functions rðkÞðxÞ are determined algebraically by demanding
that the surface given by r ¼ rHðxÞ be null.

A very simple toy model which captures the gist of this argument is given by a
time-dependent but spherically symmetric black hole, the Vaidya spacetime:

ds2 ¼ � 1� 2mðvÞ
r

� �

dv2 þ 2 dv dr þ r2 dX2:

This metric describes a four-dimensional asymptotically flat black hole accreting
null dust, so that the mass mðvÞ increases with time. Assuming that at late times the
black hole settles down to Schwarzschild, mðvÞ ! mf as v!1, and denoting the
location of event horizon by r ¼ rHðvÞ, we can find its position by demanding that
it describes the null surface which at late times approaches the correct event
horizon rH ! 2mF as v!1. Note that the normal n to a null surface will be
simultaneously tangent to that surface and likewise null. For Vaidya, the normal
1-form n ¼ dr � _r dv (where _� d

dv) is null when

rHðvÞ ¼ 2mðvÞ þ 2rHðvÞ_rHðvÞ:

Of course, the exact solution to this equation yields the horizon rHðvÞ non-locally
in terms of mðvÞ, requiring the knowledge of mðvÞ for all v\1. However, when
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mðvÞ varies slowly, so that _m ¼ Oð�Þ;m€m ¼ Oð�2Þ, etc., we can determine this
location in terms of an � expansion. For the ansatz

rHðvÞ ¼ 2mðvÞ þ amðvÞ _mðvÞ þ bmðvÞ _mðvÞ2 þ cmðvÞ2 €mðvÞ þ 
 
 


this expansion gives a ¼ 8; b ¼ 64; c ¼ 32; . . . This toy model illustrates that in
spite of the event horizon being defined globally (as the boundary of the causal
past of the future null infinity) and therefore requiring knowledge of the mass mðvÞ
for all time v\1, for slowly varying mðvÞ we can nevertheless express rHðv0Þ
solely in terms of m its derivatives at v ¼ v0.

Returning to the problem of interest, we can similarly locate the event horizon
rHðxlÞ in our dynamical non-uniform planar black hole geometry in terms of T; ul,
and all their derivatives, at the given point xl. At first order, the position of the
horizon is unchanged, whereas at second order it is corrected by terms which scale
with square of the shear and vorticity (see [6, 19] for explicit expressions.)

Once we identify the position of the event horizon in our geometry, it is easy to
check that this horizon is regular. In fact, our construction manifestly guarantees
regularity: the only curvature singularity of the seed metric is at r ¼ 0, and the
source terms which appear in correcting the metric order by order do not introduce
any additional singularities. The final issue to check is the regime of validity of our
expansion, and this can be seen to extend well inside the event horizon.

Therefore we have an explicit one-to-one map relating conformal fluid con-
figurations on R3;1 to asymptotically AdS5 inhomogeneous black brane solutions
having regular event horizons. This is a remarkable statement about gravity,
suggesting that fluid dynamical configurations within the AdS/CFT correspon-
dence naturally uphold Cosmic Censorship.

To extract further physics from the position of the event horizon, let us consider
the proper area of its spatial slices. By the second law of black hole mechanics, the
horizon area cannot decrease with time; or equivalently, the expansion of the
horizon generators must be non-negative. A well-known identification with ther-
modynamics translates this statement to that of the entropy increasing, or more
locally, the entropy current having non-negative divergence. Having obtained the
event horizon for our geometry explicitly in terms of the metric functions ulðxÞ
and TðxÞ, we can verify these statements, and identify the entropy current naturally
induced on the boundary.

To obtain the boundary entropy current Jl
S from the bulk geometry, we can pull-

back the area form A on the event horizon to the boundary. We perform this pull-
back along a tube of constant xl, i.e. along ingoing radial null geodesics. This
yields the expression

ð4pgÞ�1Jl
S ¼ ½1þ b2ðA1rabr

ab þ A2xabx
ab þ A3RÞ�ul

þ b2½B1Dkr
lk þ B2Dkx

lk�
þ C1bkl þ C2b2ukDkk

l þ 
 
 
 ð6:13Þ
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with b � 1
pT and

A1 ¼
1
4
þ p

16
þ ln 2

4
; A2 ¼ �

1
8
; A3 ¼

1
8
;

B1 ¼
1
4
; B2 ¼

1
2
; C1 ¼ C2 ¼ 0

ð6:14Þ

which can be easily verified to have non-negative divergence. At leading order, the
divergence is proportional to rlmrlm which is manifestly positive for any non-zero
shear. In case of zero shear, the relations B1 ¼ 2A3 and C1 þ C2 ¼ 0 guarantee
non-negativity. We can readily see that these relations are indeed satisfied for the
entropy current given by our gravity dual construction (6.14).

The expression (6.13) was written suggestively in a most general form yielding
a Weyl-covariant entropy current for any set of constant coefficients Ai;Bi;Ci.
In general, to the order we work, the seven coefficients get reduced to five inde-
pendent ones allowing for Weyl-covariant entropy current with non-negative
divergence. From the field theory side, this would therefore suggest a 5-parameter
ambiguity in constructing a sensible entropy current, purely based on the sym-
metries and the requirement that it correctly reproduces equilibrium physics. This
is at first sight puzzling, since our gravity construction seemingly fixed all these
parameters. In fact, this was not quite the case: there is still an ambiguity even on
the gravity side, corresponding to the freedom to add total derivative terms without
changing the horizon area, and the pull-back being ambiguous to boundary dif-
feomorphisms. However, at second order this results in a 2-parameter ambiguity
for Weyl covariant current with positive divergence, so that some mismatch
remains.7

6.5 Summary

One of the most intriguing features of the fluid/gravity correspondence is that it
provides us with a window into the generic behavior of gravity in a nonlinear
regime, mapping long-wavelength (but arbitrary amplitude) perturbations of AdS
black holes to the more familiar physics of fluid dynamics. Apart from the obvious
conceptual advantages, one has a tremendous computational simplification for
numerical studies of gravitational solutions since the fluid dynamics lives in one
lower dimension.

The bulk spacetime solutions discussed here describe a generic (time-dependent
and non-uniform) planar black hole. We have demonstrated that each of these
solutions (with regular fluid data TðxÞ and ulðxÞ) has its singularities hidden from
the boundary by a regular event horizon. In this sense, all gravitational solutions
dual to regular solutions of fluid dynamics uphold the cosmic censorship

7 Although including higher orders may remedy this discrepancy [21].
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conjecture. Moreover, our construction seems to imply a new variant of Unique-
ness theorem: for a given boundary fluid configuration, there corresponds a unique
regular bulk metric.

At the technical level, the key to our construction lies in utilizing the long-
wavelength regime of fluid dynamics. This allows us to write the bulk metric, and
corresponding boundary stress tensor, to any order in a boundary derivative
expansion in a completely procedural manner. Furthermore, once having obtained
the bulk geometry, this expansion likewise enables us to determine the radial
position of its event horizon, remarkably expressed locally in terms of the fluid
dynamical data. We can then easily verify that the area of this event horizon is
necessarily non-decreasing, in accordance with the Area Theorem. The corre-
sponding entropy current induced from the bulk solution is then guaranteed to
satisfy the Second Law of thermodynamics.

The boundary fluid stress tensor contains new quantities of interest, namely the
various transport coefficients which characterise the fluid. At first order we have
recovered the previously-known value of viscosity and verified that g

s ¼ 1
4p. More

importantly, we have predicted the second order fluid parameters ðsp; k1; k2; k3Þ.
This has been of interest in QCD phenomenology, especially in understanding
certain characteristic features of the quark-gluon plasma.

Although (in interest of familiarity and brevity of presentation) we have sket-
ched the fluid/gravity correspondence in the simplest setting, many useful gener-
alizations have already been carried out. One of the earliest such generalizations
involved extending the correspondence to other dimensions, relating a d-dimen-
sional conformal fluid to asymptotically AdSdþ1 black hole (see [23] for the
interesting case of d ¼ 3 and [8, 13] for general d). More ambitiously, one may
also consider fluids on curved manifolds (rather than just the Minkowski spacetime
Rd�1;1), as has been initiated in [7]. In addition, one can include matter in the bulk.
This allows for richer dynamics, but typically at the expense of losing universality.
Early examples of such extensions include considering the dilaton (which corre-
sponds to forcing of the fluid) in [7], Maxwell Uð1Þ field [2, 12], multiple Maxwell
fields and scalars, magnetic and dyonic charges, as well as more exotic models
(see e.g. [19] for further references). Moreover, one can even extend the corre-
spondence to con-conformal fluids [10, 15] as well as to non-relativistic fluids
[9, 20], which allows us to make closer contact with familiar everyday systems.

Nevertheless, many future directions and puzzles remain, as well the need for
further generalizations. For example, of particular current interest is to understand
the fluid/gravity correspondence for extremal fluids (and in particular superfluids)
which are presently attracting much attention. Also, to mimic many of the familiar
aspects of fluid flows, we need to understand how to confine the fluid within walls in
the gravity dual. Still more ambitiously, to understand the rich phenomena rooted in
quantum processes, we would like to get a better handle on finite-N effects.

More prosaically, even within the original context, several intriguing issues
deserve further investigation. We have established one-to-one map between long-
wavelength gravitational solutions and solutions of fluid dynamics. Naively, one
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might think of this as merely a low-energy effective description of the AdS/CFT
correspondence. However is it not true that any gravitational solution in AdS
admits a fluid description. In particular, it would be useful to understand the role of
non-long-wavelength bulk classical or semiclassical solutions, such as small AdS
black holes. Likewise, there is room for more detailed bulk analysis, such as
probing the allowed horizon topology and dynamics in more general situations, the
nature of curvature singularity, or Cosmic Censorship.

Another intriguing aspect is the striking difference between the phenomenology
of turbulent flows in 3 + 1 and 2 + 1 dimensions, as pointed out in [23]. In the 3 + 1
dimensional turbulent energy cascade, large scale eddies give rise to smaller scale
eddies, eventually transferring energy down to scales where viscosity becomes
important and energy is dissipated. In contrast, the 2 + 1 dimensional turbulent
flows are characterized by an ‘‘inverse cascade,’’ in which smaller scale eddies
merge into large scale eddies, creating large long-lived vortical structures. If these
qualitative differences extend to relativistic fluids, they would suggest a profound
difference in gravitational dynamics between four and five dimensional gravity.
In particular, we might predict that black holes in AdS4 would take much longer to
equilibrate owing to the fact that the fluctuations on the horizon could coalesce in
macroscopic structures. From the gravitational standpoint, this would certainly
seem very surprising and counter-intuitive.

More generally, our correspondence offers new insight into the black hole
membrane paradigm. The conventional membrane paradigm provides a simple
picture of black hole dynamics in terms of classical physics of fluid living on a
‘‘membrane’’ (or stretched horizon) just outside the event horizon. Taking a more
general view of trying to encode the black hole dynamics by fluid dynamics
localized on a membrane in the spacetime, the immediate natural question is:
where should such a membrane live? Perhaps the most obvious candidate is the
event horizon; but this is problematic due to its null nature, and more importantly,
because it is globally defined so we cannot fix its position without knowing the full
future evolution of the spacetime. Alternately, several (quasi)local notions of a
black hole have been proposed, such as the so-called dynamical horizon, which
however are spacelike surfaces inside the event horizon, and therefore do not
admit the standard notion of evolution. A more popular suggestion is the stretched
horizon, which is the formulation given by the membrane paradigm. However,
there likewise remain ambiguities in localizing stretched horizon. Within the fluid/
gravity correspondence, the full spacetime dynamics is mapped to the dynamics of
a conformal fluid, which albeit reminiscent of the membrane paradigm, has one
important twist: the membrane lives on the boundary of the spacetime (which is
unambiguously defined and admits a fluid description with well-defined dynam-
ics), and gives a perfect mirror of the bulk physics. This ‘‘membrane at the end of
the universe’’ picture is a natural consequence of the holographic nature of the
fluid/gravity correspondence.

Finally, we have mentioned in the Introduction that one of the outstanding
problems in fluid dynamics is understanding turbulence. We might therefore ask
how relevant is the fluid/gravity correspondence (appropriately generalized) to
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tackling such a problem. We argue that the correspondence is indeed relevant and
worth vigorously pursuing further (with a handful of proposals already appearing
in the literature). The important point is that the regime where our derivative
expansion is valid corresponds to large Reynolds number (where the viscous terms
are small relative to the leading order terms), so the phenomenology of turbulence
should be directly relevant to the study of near-equilibrium AdS black hole
dynamics. At least for the widely studied case of non-relativistic fluids described
by the Navier–Stokes equations, turbulence has many striking qualitative features,
including the tendency to dynamically break symmetries as Reynolds number is
increased, the sharp onset of turbulence at critical Reynolds numbers, and an
‘‘energy cascade’’ in fully developed turbulence in which energy is transferred in a
predictable way between eddies at different scales. Less is known about turbulence
for the microscopically relativistic fluids relevant in our context, but it would be
fascinating to understand the gravitational interpretation for those features that do
generalize to the relativistic case.
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Chapter 7
The Gauge-Gravity Duality and Heavy
Ion Collisions

Amos Yarom

Abstract This chapter provides a review of two particular applications of the
gauge-gravity duality to heavy ion collisions. The first involves a study of the
wake of a quark as it travels through the quark gluon plasma and its possible
connection to measurements of jet correlations carried out at the relativistic heavy
ion collider at Brookhaven. The second section provides, via the gauge/gravity
duality, a lower bound on the entropy produced in a collision of two energetic
distributions. This is then compared to particle multiplicity in gold–gold collisions.

In its simplest form, the gauge-gravity duality [21, 47, 61] relates the planar limit
of N ¼ 4 super-Yang–Mills (SYM) at large ‘t Hooft coupling to classical gravity
in an asymptotically anti-de-Sitter (AdS) geometry. The particle content of N ¼ 4
super-Yang–Mills is completely determined by super-symmetry and includes
gluons, four Majorana fermions in the adjoint representation of the gauge group
and six real scalars also in the adjoint. While some deformations of the N ¼ 4
SYM theory and their dual are well understood, the string theory dual of quantum
chromodynamics (QCD) is currently unavailable. Nevertheless, there have been
numerous attempts to extract information about the the strongly coupled decon-
fined phase of QCD using AdS/CFT.

A critic may argue that any attempt to compare QCD with N ¼ 4 SYM or its
variants is destined to fail since there is no control parameter for such a com-
parison. However, even though there is no direct means of comparing the two, one
may be able to address open problems in QCD using the gauge-gravity duality.
This can be achieved either by uncovering universal properties of strongly coupled
gauge theories—ones that are shared by all gauge theories with a holographic dual,
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or by providing a precise answer to a question for which even a qualitative solution
is lacking.

In this chapter, two particular applications of AdS/CFT to heavy ion collisions
will be reviewed. The first involves a study of the wake of a quark as it travels
through the quark gluon plasma and its possible connection to measurements of jet
correlations carried out at the relativistic heavy ion collider at Brookhaven. The
second section provides, via the gauge/gravity duality, a lower bound on the
entropy produced in a collision of two energetic distributions. This is then com-
pared to particle multiplicity in gold–gold collisions.

7.1 The Wake of a Quark

7.1.1 Jet Correlations at RHIC

At the relativistic heavy ion collider at brookhaven (RHIC) two gold ions collide
with a total center of mass energy of about 39 TeV. Each gold ion has 197
nucleons. So, in the center of mass frame each nucleon has an energy of roughly

En� 39 TeV=ð2� 197Þ� 100 GeV: ð7:1Þ

Given that the mass of a nucleon is roughly 1 GeV, the Lorentz factor for the ions
is roughly a hundred,

c�En=Mn� 100; ð7:2Þ

which implies that the ions will be Lorentz contracted. For this reason the moving
ions are usually depicted as flat ‘‘pancakes’’. See Fig. 7.1. Shortly after the col-
lision thousands of hadrons reach the detector and it is an experimental challenge
to extract information about the intermediate stages of the collision from the final
particle distribution at the detector. Presumably, at the late stages of the collision a

t<0 t>0

Fig. 7.1 A head on collision of two gold ions. Before the collision there are roughly 400 nucleons,
each one has a center of mass energy of approximately 100 GeV. This is why the heavy ions are
usually depicted as flattened ‘pancakes’. After the collision thousands of hadrons reach the
detector. Presumably a quark-gluon plasma is formed in the intermediate stages of the collision
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strongly coupled quark-gluon plasma (QGP) is formed—a configuration in which
the quarks and gluons are strongly coupled but deconfined. Some indication for the
existence of a QGP is the Boltzman distribution of hadrons reaching the detector at
a temperature which is roughly the deconfinement temperature [37].

One method to quantify the resulting distribution of hadrons is a measurement
of the degree of correlation between the emerging hadrons. In proton–proton
collisions it is expected that correlated hadrons are a result of a pair being created
in the collision region: from momentum conservation, the jets reaching the
detector must come out back to back, as shown in Fig. 7.2. In gold–gold collisions,
at mid-rapidity, and when considering trigger jets with transverse momentum in
the range 2:5 GeV\pT\4 GeV and away-side jets of transverse momentum
1 GeV\pT\2:5 GeV; instead of back-to-back jets one finds a local minimum in
the correlation function at angles of p; and a maximum at an angle of, roughly
p� 1 [2–4, 32, 36, 58, 59]. As depicted in Fig. 7.3, this implies that instead of
back-to-back jets, the jets are ‘‘split’’.

A possible explanation of this phenomenon involves the hydrodynamic exci-
tations of the parton pair as it moves through the quark-gluon plasma [14, 15].
Imagine a pair produced very close to the surface of the plasma such that one of
the quarks/gluons immediately leaves the QGP while its partner has to plow
through the plasma. As the partner particle traverses the plasma it will loose
energy and eventually slow to a halt. But, if its initial velocity is higher than the
speed of sound of the plasma it will create a shock wave. Once hadronization
occurs the energy contained in the shock wave will reach the detector as particles
and the observed signal will be that of a split jet. While such a scenario is con-
sistent with observations, its drawback is that point like excitations such as quarks
also generate a laminar wake far behind them. In the setup we are considering,
such a wake, if it exists, will upon hadronization generate a broad-shoulder like
signal which will be observed, at the detector, at an angle of p instead of the
observed minimum. This is depicted in Fig. 7.4.

While it is true that a point-like source will generate a laminar wake behind it, it is
possible that the collective excitation of the away-side quark, which is what sources
the hydrodynamic modes, is not point-like. It is possible that very close to the quark,
the dynamics of the plasma is not governed by hydrodynamics. On the contrary,

ΔΦ=πFig. 7.2 A schematic
diagram of the detector
(shaded) and two correlated
hadrons reaching it at an
angle of p relative to one
another. One should keep in
mind that this is a highly
oversimplified picture of the
detector and that in practice
the experimental situation is
much more complex
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hydrodynamics describes the long wavelength excitations of the QGP far away from
the moving source. What sources the hydrodynamic modes is not the moving quark
(or parton) but rather the quark plus near-field excitation. As was shown in [14, 15], it
is possible that such an effective source for hydrodynamics will not behave like a
point-like particle and therefore will not generate a wake behind it.

While the phenomenological model in [14, 15] seems to explain some of the
data, it is unsatisfying that one needs to assume that the effective excitation of a
quark moving in a strongly coupled QGP is tuned precisely so that a wake will not
be generated behind the quark. Without some handle over the interaction between
the quark and the QGP it is impossible to know whether or not such a model is
viable. This is where the AdS/CFT correspondence comes in. Some attempts at
treating this problem by more conventional methods can be found in, for example
[10, 35, 46–49, 55, 56].

7.1.2 A Holographic Computation

As explained in the previous section, it is difficult to compute properties of the wake
of a quark moving in a QCD plasma at temperatures above the deconfinement

ΔΦ=π−1
Fig. 7.3 A schematic
diagram of the detector
(shaded) and two correlated
hadrons reaching it at an
angle of p� 1 relative to one
another. One should keep in
mind that this is a highly
oversimplified picture of the
detector and that in practice
the experimental situation is
much more complex

Fig. 7.4 A simplified picture of a proposed mechanism for the generation of the jet-splitting
effect. The detector is depicted by the gray ellipsoid, and the quark gluon plasma is the light gray
region in the center. A quark pair is created very close to the surface of the plasma (far left). One
quark exits the QGP and appears as a trigger jet at the detector. The other quark traverses the
plasma generating a shock wave (middle), or a shock wave and wake (far right). In the first case,
the signal arriving at the detector will have a local minimum at an angle of p relative to the trigger
whereas in the second case the signal will have a broad shoulder-like structure
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temperature where QCD is presumably strongly coupled. However, it is possible to
carry out an exact computation of the linear response of the QGP to a heavy quark in
the N ¼ SYM theory. As emphasized earlier, there is no control parameter which
allows us to go fromN ¼ 4 SYM to QCD. Nevertheless, we will see that the results
of the N ¼ 4 SYM theory computation will provide important information
regarding the possible validity of the scenario described above where the quark
presumably does not create a wake behind it.

The planar limit of strongly coupled N ¼ 4 SYM is equivalent to the super-
gravity limit of type IIB superstring theory in an asymptotically AdS5 � S5

geometry. The string tension a0 is related to the ’t Hooft coupling, k; in the gauge
theory, and the number of colors in the gauge theory, N; is related to the gravi-
tational constant in the bulk GN ;

GN � 1=N2 a0 �
ffiffiffi

k
p

: ð7:3Þ

The duality between N ¼ 4 SYM and type IIB string theory can be succinctly
stated as an equality between the partition function of string theory and the gen-
erating function of the gauge theory. In the supergravity limit this implies that the
on-shell supergravity action of IIB supergravity gives the generating function of
the planar limit of N ¼ 4 SYM. Explaining the duality in detail will take us far
afield, and is beyond the scope of this work. There is an immense body of literature
which explains the internal working of the duality to which the interested reader is
referred to. Some canonical works are [5, 21, 47, 61].

Since the duality provides the generating function for a strongly coupled gauge
theory, we can use it to compute a particular one-point function: that of the stress
tensor hTlmi: The AdS/CFT prescription for carrying out this computation is as
follows [12, 13, 21, 41, 61]. We work in a gauge where the line element takes the
form:

ds2 ¼ L2

z2
glmdxldxm þ L2

z2
dz2 ð7:4Þ

where we have restricted our attention to the five non-compact dimensions and
have omitted an S5 part of the line element. The S5 will play a minor role in the
current analysis. The energy momentum tensor of the boundary theory can be read
off a near boundary (z! 0) expansion of the metric

glm ¼ glm þ � � � þ
3

16pGN
hTlmiz4 þOðz5Þ ð7:5Þ

where g is the Minkowski metric and by . . . we mean intermediate terms in the
series expansion.

Let us see how the prescription (7.5) works in practice. Consider first AdS5

space which, according to the AdS/CFT dictionary is dual to the vacuum of the
SYM gauge theory. The line element for a Poincaré patch of AdS5 can be written
in the form
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ds2 ¼ L2

z2
�dt2 þ

X

i

ðdxiÞ2
 !

þ L2

z2
dz2: ð7:6Þ

where z runs from 0 to1 and the other coordinates run from �1 to1: Note that

apart from the overall warp factor L2

z2 the line element of AdS5 space is identical to
the Minkowski space line element; if we look at a surface of constant z ¼ z0 then
the induced metric on this surface is precisely that of Minkowski space stretched

by an overall warp factor L2

z2
0
: See Fig. 7.5. Going back to the prescription in (7.5)

we obtain immediately

hTlmi ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0

B

B

@

1

C

C

A

ð7:7Þ

as expected for the vacuum state of N ¼ 4 SYM.
Moving on to a more complicated example, we consider the state dual to a

Schwarzschild black hole in AdS which is, presumably, a thermal state with
temperature T [61]. Before carrying out such a computation let us see what sort of
stress-tensor we expect for such a state. From a field theory point of view, we
expect that the stress energy tensor for a large N SUðNÞ gauge theory be pro-
portional to N2 the number of degrees of freedom, and in a conformal theory, in the
absence of any other scales, it should also be proportional to T4; from dimensional
arguments. Finally, by studying the variation of the action by an infinitesimal
dilatation one finds that the stress energy tensor is traceless. Hence, in a conformal
theory on expects that

0

1

z

0

z

z

Fig. 7.5 A cartoon of AdS space. Using the parameterization in (7.6), an observer confined to
z ¼ z0 would not be able to distinguish the surface she lives on from Minkowski space. However,
when moving in the z direction the observer will notice that distances transverse to the z direction
are warped. The boundary of AdS is located at z ¼ 0
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hTlmi ¼ CN2T4

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0

B

B

@

1

C

C

A

ð7:8Þ

where C is a number which depends on the details of the theory.
A thermal state in the gauge theory is dual to a black hole [61]. The line

element of an AdS5 black hole is given by

ds2 ¼ L2

z2
�f ðzÞdt2 þ

X

3

i¼1

ðdxiÞ2 þ dz2

f ðzÞ dz2

 !

ð7:9Þ

where

f ðzÞ ¼ 1� z

z0

� �4

ð7:10Þ

The Hawking temperature of this black hole is T ¼ 1=ð4pz0Þ and is equal to the
temperature of the thermal state of the gauge theory. If f ðzÞ ¼ 1; we obtain the
AdS geometry given in (7.6). When f ðzÞ is as given in (7.10), the patch of
spacetime we are interested in ends at z ¼ z0; where the event horizon of the black
hole is located. See Fig. 7.6.

To use (7.5) we need to bring the metric in (7.9) to the form (7.4).1 This can be
achieved by using a coordinate q such that

L2

z2

dz2

f
¼ L2

q2
dq2 ð7:11Þ

in which case the line element takes the form

ds2 ¼ L2

q2

q4 � 4

4ðq4 þ 4Þz2
0

� �

dt2 þ 1þ q4

4z2
0

� �

X

i

dxi
� �2þ L2dq2

q2
ð7:12Þ

0z

z

0Fig. 7.6 A cartoon of an
AdS black hole. The patch
covered by the coordinate
system in (7.9) covers the
region of space from the
boundary to the event horizon
which is located at z ¼ z0

1 Alternately, we can work in a covariant formalism such as the one discussed in [41].
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Taking the appropriate q! 0 limit of the metric components, we find, in the
notation of (7.4), that

gtt ¼ �1þ 3q4

4z2
0

þOðq5Þ gxixi ¼ 1þ q4

4z2
0

: ð7:13Þ

Thus, the energy momentum tensor is given by

hTlmi ¼
p2

8
N2T4

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0

B

B

@

1

C

C

A

ð7:14Þ

which is precisely the form given in (7.14) with C ¼ p2=8:
Recall that our goal in this section is to compute the response of a thermal

medium to a moving quark and to check whether the laminar wake is strong or
weak. We know what the dual of a thermal state is—it is given by the black hole
geometry in (7.9). What we need to do next is place a quark in the thermal
medium. According to [21, 31, 41], a heavy (infinitely massive) quark is dual to
the endpoint of an open string located at the asymptotically AdS boundary. A
stationary quark, for example, would be dual to a string whose endpoint is standing
still at the boundary of AdS. By symmetry, the string must hang straight down into
the bulk of AdS. To formally derive the profile of the string we need to solve the
string equation of motion, with appropriate boundary conditions.

The dynamics of the string are governed by the Nambu–Goto action:

SNG ¼ �
1

2pa0

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�jGlmoaXloaXmj
q

dsdr ð7:15Þ

where G is the spacetime metric and X is the string embedding function. The
boundary conditions we impose on the string is that its endpoint on the boundary
of AdS is stationary. Just from symmetry, it should be clear that the only solution
to the equations of motion is one where the string hangs straight down into AdS
(see Fig. 7.7) . Thus, if we use a gauge where s ¼ X0 and r ¼ X5; we find that the
solution to the string equations of motion must be:

Xl ¼ s 0 0 0 rð Þ: ð7:16Þ

Of more relevance to the problem at hand is a moving quark. i.e., a string whose
endpoint is not stationary. The simplest case to consider is a configuration where
the string endpoint is moving at constant velocity. In this case, if we insert the
ansatz

Xl ¼ t vt þ nðzÞ 0 0 zð Þ ð7:17Þ

into the Nambu–Goto action (7.15), we find
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SNG ¼ �
1

2pa0

Z

L2

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðzÞðn0ðzÞÞ2 þ 1� v2

f ðzÞ

s

dzdt ð7:18Þ

¼ � 1
2pa0

Z

LNGdzdt: ð7:19Þ

Since the action (7.15) does not depend explicitly on n but only on n0; then there is
a conserved quantity Pn given by

Pn �
oLNG

on0
¼ L2f ðzÞn0ðzÞ

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðzÞðn0Þ2 þ 1� v2=f ðzÞ
q : ð7:20Þ

Inverting (7.20) we obtain the following equation of motion for n0;

ðn0Þ2 ¼
P2

nðv2 � f ðzÞÞ

f ðzÞ2 P2
n � L4

z4 f ðzÞ
� � ð7:21Þ

Unless the solution is trivial, Pn ¼ 0; the only way in which ðn0Þ2 can be real is
that the numerator and denominator on the right hand side of (7.21) flip sign
simultaneously. Thus,

Pn ¼
L4

z4
�

v2 ð7:22Þ

where z� is defined through

0z

z

0

Fig. 7.7 A sketch of an open string hanging into AdS space. The string endpoint located at the
AdS boundary is stationary and its other end stretches into the black hole. Since the boundary
conditions and the equations of motion are rotationally invariant then the solution should have the
same symmetry. Thus, we conclude that the string hangs from its endpoint straight down into
AdS space
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f ðz�Þ ¼ v2: ð7:23Þ

With this value of Pn the solution to (7.21) is

nðzÞ ¼ vz0

4
ln

1� z
z0

1þ z
z0

þ 2 arctan
z

z0

 !

ð7:24Þ

Geometrically what we find is that the string is trailing behind its endpoint. See
Fig. 7.8.

At this point we have all the ingredients to complete our computation: we know
how to compute the stress tensor of the boundary theory QGP and we know how to
represent a moving quark in this background. What we are looking for is the
response of the QGP to the moving quark. From the previous discussion this maps
into the response of the metric to the moving string: like a point particle, the string
warps space–time as it moves through it. In other words, as the string moves
through AdS-space it will source the metric. The metric fluctuations near the
boundary map into the response of the medium to the moving quark. See Fig. 7.9.

0z

z

0Fig. 7.8 A sketch of an open
string hanging into AdS
space. The string endpoint
located at the AdS boundary
and is moving at constant
velocity v to the left. The
causal solution to the
equations of motion is that
the rest of the string trails
behind its endpoint

0z

z

0Fig. 7.9 A sketch of an open
string sourcing the metric as
it moves through AdS space.
The near boundary value of
the response of the metric to
the moving string translates
into the response of the
medium to the moving quark

214 A. Yarom



To solve the coupled, string ? gravity, problem, consider the total action

S ¼ 1
16pGN

Z

ffiffiffiffiffiffiffiffi

�G
p

Rþ 12
L2

� �

d5x� 1
2pa0

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GoXoX
p

dsdr

¼ 1
16pGN

Z

ffiffiffiffiffiffiffiffi

�G
p

Rþ 12
L2

� �	

� 16pGN

2pa0

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GoXoX
p

dð5Þðxl � XlÞdsdr




d5x: ð7:25Þ

The Einstein equations are

Rlm � 1
2

GlmR� 6
L2

Glm ¼ T lm ð7:26Þ

where

T lm ¼ � 8pGN

2pa0

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�jGoXoXj
p

ffiffiffiffiffiffiffiffi

�G
p dð5Þðxl � XlÞoaXloaXmdsdr : ð7:27Þ

We will not write out explicitly the equations of motion for the string. The AdS/
CFT dictionary tells us that

GN ¼
pL3

2N2
a0 ¼ L2

ffiffiffi

k
p ; ð7:28Þ

so

GN

a0
�

ffiffiffi

k
p

N2
: ð7:29Þ

In what follows we will work in the limit where
ffiffiffi

k
p

N2
� 1: ð7:30Þ

The limit (7.30) is useful since it implies that the energy momentum tensor of the
string T lm decouples from gravity and we can treat it as a linear perturbation. From
the boundary theory point of view we will be looking at the linear response of the
medium to the moving quark.

To proceed consider the expansion

Glm ¼ Gð0Þlm þ
ffiffiffi

k
p

N2
Gð1Þlm þO

k
N4

� �

: ð7:31Þ

To leading order, the Einstein equation reduces to

Rð0Þlm � 1
2

Gð0ÞlmRð0Þ � 6
L2

Gð0Þlm ¼ 0 ð7:32Þ

whose solution is the AdS black hole we have encountered previously,
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Gð0Þlm dxldxm ¼ L2

z2
�fdt2 þ

X

3

i¼1

ðdxiÞ2 þ dz2

f

 !

: ð7:33Þ

Since at this order the metric does not back-react on the string, the solution to the
string equations of motion is the same as before,

Xð0Þl ¼ t; vt þ nðzÞ ; 0 ; 0 ; zð Þ ð7:34Þ

where we have expanded the embedding function Xl in the same way we have
expanded the metric, c.f., Eq. 7.33. The function nðzÞ is given in (7.24).

At the next order in
ffiffiffi

k
p

=N2 the equation of motion for the metric takes the form

ffiffiffi

k
p

N2
Rð1Þlm � 1

2
Gð1ÞlmRð0Þ � 1

2
Gð0ÞlmRð1Þ � 6

L2
Gð1Þlm

� �

¼ � 4pGN

pa0

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�jGð0ÞoXð0ÞoXð0Þj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�jGð0Þj
p dð5Þ Xl � xlð ÞoaXð0ÞloaXð0Þmdsdr: ð7:35Þ

Written in components, the resulting equation is a rather complicated second order
linear differential equation. There are many good references that explain how to
decouple the various equations [16, 20, 23, 24]. One straightforward way to
simplify them is to

• Work in Fourier space,

bGð1Þlm ¼
Z

Gð1Þlm e�i k1ðx1�vtÞþk2x2þk3x3ð Þ; ð7:36Þ

so that the partial differential equation reduces to an ordinary differential equation.

• Fix a gauge. A useful gauge is Gð1Þzl ¼ 0 which one might call the axial gauge.

• Use the rotational symmetry in the x2; x3 plane to set Gð1Þl3 ¼ 0 (l 6¼ 3).

Even after implementing these points (or using the fancier methods described in
[24]) the equations of motion are still analytically intractable. (Though solutions
can be obtained for very small or very large momentum see [20, 23, 62, 63].) To
proceed, one must resort to numerics.

In most of what remains of this section we will present the final result of the
numerical analysis. Equation 7.35 was solved numerically and the near boundary
asymptotics of the metric (7.5),

hTmni ¼
L3

4pGN
gð4Þmn ; ð7:37Þ

where used in order to translate the numerical solution into a boundary theory
stress tensor of the form
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hTmni ¼ hTð0Þmn i þ
ffiffiffi

k
p

N2
hT ð1Þmn i þ � � � : ð7:38Þ

In Fig. 7.10 we have plotted the numerical expression for the energy density hT ð1Þ00 i
for v ¼ 3=4 [ 1=

ffiffiffi

3
p

: In this contour plot dark regions signify a positive energy

density relative to the background value hT ð0Þ00 i which has been subtracted. Light
regions correspond to negative energy. The location of the Mach cone is signified
by the dashed line. Clearly, the large distance asymptotics match onto the expected
hydrodynamic behavior, a property which can be confirmed analytically by car-
rying out a large momentum expansion. Since we have good control over the
asymptotic behavior of the solution, we can zoom in on the region near the quark.
At scales which are roughly three orders of magnitude smaller than the ones in
Fig. 7.10 we find that a new structure emerges. This can structure is depicted in
Fig. 7.11. The dashed line in this figure signifies the location of the Mach cone.
The fact that the features of this plot are not associated with the Mach cone
provides evidence that the physical mechanism responsible for the energy distri-
bution close to the quark does not have a hydrodynamical origin. Further evidence
for non hydrodynamical behavior is given by the extra lobes, appearing at
velocities above the speed of sound. In fact, there is an apparent transition from a
configuration where there is a region of energy depletion behind the quark to a
configuration where there is a region of energy depletion in front of the quark. The
physical mechanism responsible for this behavior is unclear at the moment. But, as
we will see shortly, it might play an important role in the jet-splitting effect.

Fig. 7.10 (Reproduced from [24].) A contour plot of the energy density hT00i surrounding a
massive quark moving in the N ¼ 4 SYM plasma. The quark is located at the origin. Dark
regions correspond to a higher energy density the surrounding plasma and light regions to a lower
energy density. The dashed line signifies the location of the Mach cone
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We had set out to find the strength of the wake behind the moving quark. This
wake manifests itself as a flux of energy far behind it. It can be observed by
computing the Poynting vector hT0ii: From Fig. 7.12, we see that there is a strong
wake behind the quark. A closer study shows that the far-field behavior of the

Fig. 7.11 (Reproduced from [24].) Energy density for a massive quark moving through an
N ¼ 4 SYM plasma. The quark is located at the origin. The extra lobes which can be observed in
the figure and the mismatch between the location of the Mach cone and the regions of over-
energy indicate that the physical mechanism responsible for the near field is not hydrodynamical
in origin

Fig. 7.12 (Reproduced from [24].) The Poynting vector Si ¼ hT0ii for a massive quark moving
through an N ¼ 4 SYM plasma. The quark is located at the origin. The magnitude of the
Poynting vector is color coded from light to dark. The arrows signify its direction. The dashed
and thick lines specify the location of the Mach cone and laminar wake—according to a
hydrodynamic analysis
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wake is precisely the one expected of a point particle [25, 27, 29, 30]. Thus, a
heavy quark in N ¼ 4 SYM generates a strong wake behind it—so strong that
once the QGP hadronizes, instead of a minimum at DU ¼ p a broad-shoulder like
structure should appear. At this point it should be mentioned that this sort of
behavior is not unique to the N ¼ 4 theory and that a strong wake will appear for
any theory with a holographic dual [29, 30].

In [11, 51], the AdS/CFT analysis described so far was taken one step further. It
is possible to estimate the final distribution of hadrons reaching the detector from
the energy distribution of the QGP using a mathematical prescription which goes
under the name of ‘Cooper–Frye hadronization’ [17]. Of course, the N ¼ 4 SYM
theory does not have a confined phase, but nevertheless, it is interesting to ask
what the hadron distribution would look like had the N ¼ 4 SYM plasma hadr-
onized. Following the discussion in this section, one would expect that the
appearance of a wake in these theories will result in a high degree of correlation
between events reaching the detector at an angle of p (and with appropriate
transverse momenta) and the trigger jet. It turns out that this is not the case.
Surprisingly, even though there’s a strong wake, jet splitting does seem to occur.
As discussed in [50], this effect comes about in an unexpected way: it is not the far
field behavior that is responsible for the effect but rather the near field which was
observed in [23, 62]. The relation between this observation and the actual data at
RHIC is unclear. One might treat it as an indication that the correct physics
responsible for the jet-splitting effect lies in the near field energy distribution
around the quark and not in the far-field hydrodynamic behavior. Certainly, further
study is warranted.

7.2 Entropy Production

Information about the entropy produced during the collision process can be
obtained my measuring the total particle multiplicity. Recall that before the col-
lision we have two pancake shaped gold ions, and after the collision thousands of
particles are produced (see Fig. 7.1). Certainly, a large amount of entropy is
created in this process. One method of estimating the amount of entropy produced
is to compute the entropy per hadron for a gas of hadrons at the deconfinement
temperature, which according to [26, 52] is

s=N� 7:5; ð7:39Þ

and multiply this ratio by the total amount of charged hadrons reaching the
detector. Figure 7.13 shows a plot of the total number of charged particles pro-
duced in the collision process as a function of the center of mass energy.

In this section we would like to construct a process dual to a collision and then
use the AdS/CFT correspondence to estimate the amount of entropy produced. As
is well known, the N ¼ 4 SYM theory is deconfined, so it would be difficult to
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generate a collision of ions. But, one can consider a collision of two energetic
distributions. If these distributions thermalize and generate a thermal state then
entropy will be produced.

There are many setups one can use to generate a boundary theory configuration
where a thermal state is produced. In this section we use the simplest setup we
could think of: the collision of two light-like particles in the bulk of AdS (see
Fig. 7.14). This is the simplest case to consider since, as we will see shortly, one
has some control of the back-reacted geometry.

Consider the action of gravity coupled to a light-like particle:

S ¼
Z

1
16pGN

Z

ffiffiffiffiffiffiffiffiffiffi

�jGj
p

Rþ 12
L2

� �

d5xþ
Z

1
2e

GlmogXlXmdg ð7:40Þ

where the term on the right hand side is the action for a point particle: e is the
einbein on the particle worldline and g parameterizes it. To start, we wish to
describe a single light like particle moving in the bulk of AdS at some constant
depth z ¼ z� (see Fig. 7.15).

The equation of motion for a light-like particle in AdS admits a solution in
which the particle moves along a line of constant z ¼ z�: The equations of motion
for the metric are

Rlm �
1
2

GlmR�
6
L2

Glm ¼ 8pGNT lm: ð7:41Þ
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NchargedFig. 7.13 Total number of
charged particles reaching the
detector as a function of
center of mass energy. The
total multiplicity is
proportional to the amount of
entropy produced during the
collision process. Data taken
from [7]
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Fig. 7.14 A head-on
collision of two light-like
particles moving along the
light-like geodesic z ¼ z� in
an AdS background
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Working in light-like coordinates:

u ¼ t � x3; v ¼ t þ x3 ð7:42Þ

we find that

T uu ¼
Ez3

L3
dðuÞdðz� z�Þdðx1Þdðx2Þ ð7:43Þ

and all other components of the energy momentum tensor vanish. Plugging the
ansatz

ds2 ¼ L2

z2
�dudvþ

X

2

i¼1

ðdxiÞ2 þ dz2 þ z

L
Uðx1; x2; zÞdðuÞdu2

 !

ð7:44Þ

into the equations of motion (7.41), one finds a single non trivial equation:

z3

L3
oz

1
z
oz þ

z2

L2
o2

1 þ o2
2

� �

� 3
L2

� �

U ¼ � 16pGNEz4

L4
dðz� z�Þdðx1Þdðx2Þ: ð7:45Þ

The solution is

Uðx1; x2; zÞ ¼ 2GN

L

1þ 8qð1þ qÞ � 4
ffiffiffi

q
p

1þ qð1þ 2qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qð1þ qÞ
p

 !

ð7:46Þ

where

q ¼ ðx
1Þ2 þ ðx2Þ2 þ ðz� z�Þ2

4z�z
: ð7:47Þ

Equation 7.46 gives the response of the metric to a moving light like particle.
Moreover, it is a full solution to the fully back-reacted gravity plus lightlike
particle system. One way to see this is to take a black hole solution and boost it to
the speed of light [26]. The first study of such configurations in flat space–time can
be found in [6]. Shock-waves in the context of AdS/CFT were discussed in [19, 33,
34, 54, 57].

*

z

0

z

Fig. 7.15 A single lightlike
particle moving along the
lightlike geodesic z ¼ z� in an
AdS background
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With the solution for a single point-like particle at hand we can easily construct
a solution involving two lightlike particles, as depicted in Fig. 7.14—at least for
spacetime points outside the future light cone of the collision. See Fig. 7.16.
Outside this region causality tells us that we can add the solutions for the two
lightlike particles. In other words the line element

ds2 ¼ L2

z2
�dudvþ

X

2

i¼1

ðdxiÞ2 þ dz2 þ z

L
UdðvÞdv2 þ z

L
UdðuÞdu2

 !

ð7:48Þ

with U given in (7.46) is a solution to the Einstein equations in the presence of two
lightlike particles in the region outside the future light-cone of the collision point.

We would eventually like to see a black hole form, and to compute its area
which is dual to the entropy produced in the collision. To that end we need control
over the metric in the future light cone of the collision. This is because the
definition of an event horizon is non local and requires information on geodesics
reaching future null infinity. Heuristically, the event horizon can be defined as the
boundary of all the causal curves reaching future null infinity. Unfortunately, it is a
difficult problem to solve for the metric in the future light cone of the collision
point. So, instead of carrying out a direct computation, we follow a different
strategy. There is another notion of a horizon called an apparent horizon or a
marginally trapped surface. A marginally trapped surface (in a five dimensional
spacetime) can be heuristically defined as a three dimensional surface for which
the outward pointing null vector propagates neither inward nor outward and the
other null vector propagates inward. A more formal definition of a marginally

x1

x2 x3,

t

t=0

Fig. 7.16 A spacetime
diagram of a constant z slice
of AdS space. Causality
dictates that the two lightlike
particles affect each other
only on or inside the future
light cone of the collision
point
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trapped surface is the following: let ‘l and nl be the null normal vectors to the
surface. Then, a marginally trapped surface satisfies:

H ¼ hlmDm‘l ¼ 0: ð7:49Þ

H is called the expansion, and hlm is the induced metric on the surface. The virtue
of a trapped surface is that its definition is local, so one can compute it even
without knowing the full geometry. Barring some issues regarding cosmic cen-
sorship, one can argue that a trapped surface will also always be on or inside an
event horizon. The latter property turns out to be very useful; the area increase
theorems of general relativity tell us that the area of an event horizon can only
increase. Thus, we can use the following strategy to obtain a lower bound on the
area (and thus the entropy) of the black hole which forms in a collision of two
lightlike particles: We find a marginally trapped surface and compute its area.
Since the marginally trapped surface is located inside or on the event horizon of
the black hole, the area of the black hole should be bigger or equal to the area of
the trapped surface. Following the area increase theorem, this area provides a
lower bound on the final area of the black hole and so on the entropy of the
configuration.

Thus, our main challenge reduces to finding a marginally trapped surface. In
what follows we use an ansatz first suggested by Penrose [53], and elaborated on in
[18, 64]. The ansatz is that the trapped surface is composed of two parts. Part I is
the surface u ¼ 0 and v ¼ �wðqÞ; where q is as given in (7.47) and w is a function
which will be determined shortly. Part II of the surface is given by v ¼ 0 and
u ¼ �wðqÞ: We will find w by requiring that the expansion, defined in (7.49),
vanishes on the surface. A null normal to part I of the surface is given by

‘ðIÞl dxl ¼ Aduþ Bðdvþ dwÞ: ð7:50Þ

Requiring that this vector is lightlike and outward pointing implies that2

A ¼ � 1
4

owð Þ2 B ¼ � z2

L2
: ð7:51Þ

The inward pointing null vector is given by

nðIÞl dxl ¼ � 1
4

owð Þ2duþ z2

L2
ðdvþ dwÞ: ð7:52Þ

From symmetry the normals in part II of the surface will take the form

nðIIÞl dxl ¼ � 1
4

owð Þ2dvþ z2

L2
ðduþ dwÞ: ð7:53Þ

2 Note that the metric is singular at u ¼ 0 and v\0: In order for the metric to be finite we used
the coordinate transformation v! vþ z

L /ðqÞHðuÞ with H the Heaviside step function which is
unity when its argument is positive.
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‘ðIIÞl dxl ¼ � 1
4

owð Þ2dv� z2

L2
ðduþ dwÞ: ð7:54Þ

Once we have the null normals, to compute the expansion we need the induced
metric hlm which, by definition, is orthogonal to both normals. Using an ansatz

hm
l ¼ dm

l þ A‘l‘
m þ B ‘lnm þ nl‘

m
� �

þ Cnlnm ð7:55Þ

for the induced metric, the unknown functions A; B and C can be determined
through the condition that

hm
l‘m ¼ 0 and hm

l‘m ¼ 0: ð7:56Þ

With ‘ and h at hand we can compute the expansion and find a function w for
which the expansion vanishes. Defining W ¼ L

z w the vanishing of the expansion,
H ¼ 0; is equivalent to

qð1þ qÞo2
q þ

3
2
ð1þ 2qÞoq � 3

� �

W� Uð Þ ¼ 0 ð7:57Þ

where U is given by (7.46) and q is as in (7.47).3 The boundary conditions implied
by continuity of the normals are

W C ¼ 0 and oWð Þ2
�

�

�

�

C
¼ 4: ð7:58Þ

where C is the mutual boundary of regions I and II. Note (7.57) and (7.58)
constitute a rather unusual boundary value problem since we are imposing both
Dirichlet and Neumann boundary conditions. The equivalent electrostatic problem
would be to solve the Laplace equation on a surface C where the potential vanishes
and the electric field has a specified non zero value. The problem isn’t over-
determined since to solve such a problem we need to find both the surface C and
the electric potential. Going back to the problem at hand, we note that the
homogenous equation (7.57) admits two solutions only one of which is finite at the
origin:

W� U ¼ ð1þ 2qÞK ð7:59Þ

where K is an undetermined integration constant. From symmetry, the boundary C
should be a surface of constant q; q ¼ qC: Plugging the general solution (7.59) into
the boundary conditions (7.58) we find that the latter turn into algebraic
constraints,

3 It is no coincidence that the resulting equation depends only on q: The variable q can be
thought of as a radial variable of the AdS hyperboloid which one finds when embedding AdS5

in R4;2:
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EGN

L
¼ 2qcð1þ qcÞð1þ 2qcÞ K ¼ � UðqCÞ

1þ 2qC
: ð7:60Þ

Solving (7.60) we can find both W and the surface C:
Recall that our goal was to find a marginally trapped surface, compute its area,

and use that as a lower bound on the entropy of the black hole produced. The area
of the trapped surface is given by

A ¼
Z

ffiffiffiffiffi

hS

p

d3x ¼ � � � ¼ 4pL3
Z

xc

0

x2dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p ð7:61Þ

where xc ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qCð1þ qCÞ
p

: This integral can be computed explicitly, but we will
only need its asymptotic form:

2A

4GN
¼ p

L3

GN

� �

ð2Ez�Þ2=3 1þO ðEz�Þ�1
� �� �

: ð7:62Þ

Using the Bekenstein–Hawking law for the black hole entropy we find that a lower
bound on the entropy of the resulting black hole is given by (7.62),

Sb ¼
A

2GN
ð7:63Þ

We now have an exact solution to a well defined problem in classical gravity. The
next step in our analysis is to map this into a boundary quantities. First, consider
the early stages of the collision. Recall from (7.5) that the boundary theory stress
tensor is related to the metric through

hTmni ¼
L3

4pGN
gð4Þmn ; ð7:64Þ

Expanding the metric in (7.44) in a near boundary Taylor series and extracting the
appropriate coefficient in the series expansion we find that

hTuui ¼
2Ez4

�

p x2
? þ z2

�
� �3 dðuÞ hTvvi ¼

2Ez4
�

pðx2
? þ z2

�Þ
3 dðvÞ: ð7:65Þ

Thus, from the boundary point of view we are looking at the collision of two
energetic objects moving at the speed of light and with an energy distribution
which is spread in the transverse directions. The total energy of such a configu-
ration is given by E and the energy averaged RMS size of the distribution is given
by z2

� ¼
R

hTuuix2
?d3x: It is natural to identify the energy of the lightlike particle E

with the beam energy,

E ¼ 19:7 TeV ð7:66Þ
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and to identify z� with its QCD counterpart which can be estimated using a
standard exponential-like distribution of the nucleus, see, for example [1, 40]. We
find

z� ¼ 4:3 fm ð7:67Þ

To fully convert the entropy bound (7.63) to a boundary quantity we need to
identify GN with N2: For the N ¼ 4 SYM theory one has

GN ¼
pL3

2N2
: ð7:68Þ

A more general version of (7.68) is

GN ¼
V5

2pN2
ð7:69Þ

FIX! where V5 is the volume of a five dimensional compact space. Assuming V5 is
tunable, we have some freedom in choosing G5=L3:4 Recall from (7.5) that

hT00i ¼
3L3

16pGNz4
0

: ð7:70Þ

This can be compared with the lattice prediction,

hT00ilattice� 11T4 ð7:71Þ

for QCD. Comparing (7.70) with (7.71) we obtain

L3

G5
� 2 ð7:72Þ

(which is unfortunately small.)
Using (7.66), (7.67) and (7.72) in (7.62), we find

Sb ¼ 35;000
ffiffiffiffiffiffiffi

sNN
p

200 GeV

� �2=3

: ð7:73Þ

Figure 7.17 shows a comparison of the data obtained at RHIC with the lower
bound on the entropy [converted to total multiplicity using (7.39)]. While the
bound is in surprisingly good agreement with the data, there is some cause for
worry. More traditional models relating the total entropy produced to the beam
energy predict a scaling behavior of the form Sb�E1=2 instead of the E2=3 scaling
given in (7.73). While the current data agrees with both the 2=3 scaling and the
1=2 scaling, at energies as high as the LHC energies, the prediction of (7.73) is

4 Until now we have ignored the compact five dimensional manifold attached to every point in
AdS5 space.
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150% higher than the traditional predictions. It is tempting to speculate that this is
not a problem but a prediction of AdS/CFT. However, a closer look at the
approximation being made shows us that, in the particular problem we are dealing
with, the relation between the gauge-gravity duality and QCD is, perhaps, being
pushed too hard. There are two important features of QCD that the AdS/CFT
duality does not capture. One is asymptotic freedom and the other is confinement.
Both these features of QCD may play an important role in the early stages of the
collision.

So how can we estimate what effect these features have on the entropy bound?
As a general rule of thumb the infrared physics is captured by the geometry far
from the boundary (large values of z) while the ultraviolet physics are captured by
the near boundary geometry. Thus, as a very (very) coarse approximation of UV
and IR effects we can simply chop off the parts of the trapped surface below a
certain IR cutoff and above a UV cutoff. As depicted in Fig. 7.18, the result is that
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Fig. 7.17 (Reproduced from [26].) Various models which predict total multiplicity as a function
of center of mass energy. The bound on the shaded region marks the allowed region according to
the AdS/CFT model described in the main text. The thick blue line follows from Landau’s model
[41] which predicts an Sb�E1=2 behavior. The data points were taken from [7]
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Fig. 7.18 The effects of the UV and IR cutoffs on the area of the trapped surface. The surface is
depicted as a cylinder. Once the energy of the collision is large enough, the trapped surface enters
the UV and IR regions where its area gets modified
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the area of the trapped surface will decrease as it enters the UV and IR region.5

With KUV ¼ 2 GeV and KIR ¼ 0:2 GeV; we find that at RHIC energies Sb�E2=3

as before, but at LHC energies the power law dependence of Sb on E decreases
appreciably until it reaches Sb�E1=3 [28].

Until now we have focused on central collisions. It is also possible to consider
off center ones, i.e., ones where the impact parameter is non zero (see Fig. 7.19).
Ideally one would like to measure the total particle multiplicity as a function of the
impact parameter. In practice the impact parameter is difficult to measure. What is
measured instead is the number of nucleons participating in the collision Npart: Due
to confinement, only those nucleons that are in the interaction region will par-
ticipate in the collision. This is depicted in Fig. 7.20. The other nucleons are
‘‘spectators’’ and are detected by the paddle detectors located along the beam axis.
In practice, the data is usually presented in a plot such as the one in 7.21 where the
dependance of the ratio of the total multiplicity to the number of participating
nucleons is presented as a function of the number of participating nucleons.

From the point of view of the gauge-gravity duality, generating an off center
collision of light-like particles is straightforward: One considers colliding
light-like particles with a non trivial impact parameter. From the bulk point of
view the impact parameter can be both in the radial AdS direction z; and in the

b

Fig. 7.19 A caricature of a
collision of two gold ions
with a non trivial impact
parameter b

b

Fig. 7.20 A cartoon of an off
center collision of two heavy
ions. The nucleons outside
the interaction region (boxed)
are ‘‘spectators’’ and do not
participate in the collision
process

5 Actually, a closer analysis shows that the UV region is more important than the IR region. This
is because the AdS warp factor L=z diverges near the boundary.
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transverse x2; or x3 directions. The former would correspond to a head-on collision
of different sized energy distributions and the latter to an off center collision of
identical nuclei. It is interesting that in a conformal theory these two setups are
related by a conformal transformation. In what follows we will focus on an impact
parameter in the x2; x3 plane.

When dealing with an off center collision, one complication is that the initial
configuration, and the shape of the trapped surface have less symmetry. One way
around this is to solve the problem numerically [42]. Another is to work pertur-
batively in the impact parameter [28]. In the latter case, one finds that

Sb ¼ 35;000
ffiffiffiffiffiffiffi

sNN
p

200 GeV

� �2=3
sinh�1 b

b
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p ð7:74Þ

where b is related to the impact parameter b in the boundary theory through

b ¼ 0:12b=fm: ð7:75Þ

To compare equation (7.74) with the data, we need to somehow convert the value
of the impact parameter to the number of participating nucleons. This can be done
using a standard optical-Glauber method. We once again refer the reader to the
literature [28, 38, 39, 45] for details.

In Fig. 7.21 we have plotted the lower bound on the entropy given in (7.74)
together with the data. As can be clearly seen, once the impact parameter becomes
large the dependance of N on Npart deviates from a linear one. Even if we include a
UV and IR cutoff the situation does not improve by much. One possible reason for
the deviation from linearity is that in the strongly interacting conformal theory
there are no spectator particles: as opposed to a collision of two ions, after the
collision, spatially separated distributions will still interact. To somehow take the
‘‘spectators effect’’ into account we can identify the photon energy E not with
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Fig. 7.21 (Reproduced from [28].) Ratio of the total multiplicity Ncharged to the number of
participating nucleons Npart as a function of Npart: The inner red region marks the allowed region
according to the AdS/CFT model without imposing a UV and IR cutoff. The outer green region
marks the region which is allowed once a cutoff is introduced. The data was taken from [8]
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the beam energy but with the energy of the nucleons participating in the collision.
Thus in (7.74) we should make the substitution

ffiffiffiffiffiffiffi

sNN
p ! ffiffiffiffiffiffiffi

sNN
p

Npart=394: ð7:76Þ

With this substitution the fit to the data seems much better. See Fig. 7.22. How-
ever, one can not escape the feeling that the manipulation that lead to this sort of fit
is somewhat contrived and that one can do better. It would be interesting to carry
out this analysis in a background which does capture effects such as confinement
and asymptotic freedom in a controlled way.
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Chapter 8
AdS/CFT on the Brane

Jiro Soda

Abstract It is widely recognized that the AdS/CFT correspondence is a useful
tool to study strongly coupled field theories. On the other hand, Randall-Sundrum
(RS) braneworld models have been actively discussed as a novel cosmological
framework. Interestingly, the geometrical set up of braneworlds is quite similar to
that in the AdS/CFT correspondence. Hence, it is legitimate to seek a precise
relation between these two different frameworks. In this lecture, I will explain how
the AdS/CFT correspondence is related to the RS braneworld models. There are
two different versions of RS braneworlds, namely, the single-brane model and the
two-brane model. In the case of the single-brane model, we reveal the relation
between the geometrical and the AdS/CFT correspondence approach using the
gradient expansion method. It turns out that the high energy and the Weyl term
corrections found in the geometrical approach correspond to the CFT matter
correction found in the AdS/CFT correspondence approach. In the case of two-
brane system, we also show that the AdS/CFT correspondence play an important
role in the sense that the low energy effective field theory can be described by the
conformally coupled scalar-tensor theory where the radion plays the role of the
scalar field. We also discuss dilatonic braneworld models from the point of view of
the AdS/CFT correspondence.

8.1 Introduction

It is believed that string theory is a candidate of the unified theory of everything.
Remarkably, string theory can be consistently formulated only in 10 dimensions [1].
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This fact requires a mechanism to fill the gap between our real world and the higher
dimensions. Conventionally, the extra dimensions are considered to be compactified
to a small compact space of the order of the Planck scale. However, recent devel-
opments of superstring theory invented a new idea, the so-called braneworld where
matter resides on the hypersurface in higher dimensional spacetime [2–6] (see also
earlier independent works [7, 8]). This hypersurface is called (mem)brane. This idea
originates from D-brane solutions in string theory. Interestingly, the D-brane solu-
tion also gives rise to the AdS/CFT correspondence which claims that classical
gravity in an anti-de Sitter(AdS) spacetime is equivalent to a strongly coupled
conformally invariant field theory (CFT). Since the origin is the same, braneworlds
and the AdS/CFT correspondence may be related to each other. In particular, Randall
and Sundrum (RS) braneworld models [9, 10] have a similar geometrical setup to that
in the AdS/CFT correspondence. Hence, in this lecture, I will try to reveal relations
between the AdS/CFT correspondence and RS braneworld models [11].

The method we will use is the gradient expansion method. Physically, it is a low
energy expansion method. Historically, the method has been used in the cosmo-
logical context [12–15]. In particular, it is known to be useful for analyzing the
evolution of cosmological perturbations during inflation. Since the AdS spacetime
can be regarded as the inflating universe in the spatial direction, the gradient
expansion method is also expected to be useful in the AdS spacetime. First, by
utilizing the gradient expansion method, we approximately solve Einstein equa-
tions in the bulk. Then, the junction conditions at the brane give the effective
equations of motion on the brane. Thus, we can understand the low energy physics
in the braneworld. The similar but slightly different method is also used in the
AdS/CFT correspondence. We will identify a concrete relation between the geo-
metrical and the AdS/CFT correspondence approach by detailed comparison. The
difference shows up when we consider two brane systems. Indeed, we do not have
the conventional AdS/CFT correspondence for the two-brane system. Instead, we
have a conformally coupled radion on the brane which reflects the conformal
symmetry of the theory. This observation is useful for understanding why brane
inflation suffers from the eta problem. It is apparent that the gradient expansion
method can be applicable to various braneworld models. Moreover, as we will see,
the gradient expansion method provides a unified view of branworlds and a useful
tool to make cosmological predictions.

The organization of this lecture is as follows: In Sect. 8.2, we introduce RS
models and derive the effective Friedman equation on the brane. Here, two
important corrections, i.e., the dark radiation and the high energy corrections, are
identified. This sets our starting point. In Sect. 8.3, we review two different views
from the brane, namely, the AdS/CFT correspondence and the geometrical
holography. These two frameworks give us a complementary picture of the
braneworlds. In Sect. 8.4, we present key questions to make our concerns manifest.
In Sect. 8.5, we review the gradient expansion method. In Sects. 8.6 and 8.7, we
apply the gradient expansion method to the single-brane model and to the two-
brane model, respectively. We obtain the effective theory for both cases. In
Sect. 8.8, we give answers to the key questions. This completes explanation of
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relations between the AdS/CFT correspondence and RS braneworld models. In
Sect. 8.9, we extend our analysis to models with a bulk scalar field. Since the
presence of bulk fields would break the conformal invariance, it is interesting to
consider dilatonic braneworlds in conjunction with the AdS/CFT correspondence.
The final section is devoted to the conclusion.

8.2 Braneworlds in AdS Spacetime

In this section, we will introduce RS braneworld models. We will derive the
effective Friedmann equation and identify the effects of extra-dimensions. In this
lecture, we will concentrate on cosmology although we can apply the results to
black hole physics.

8.2.1 RS Models

Randall and Sundrum proposed a simple model where a four-dimensional brane
with the tension r is embedded in the five-dimensional asymptotically anti-de
Sitter (AdS) bulk with a curvature scale ‘. This single-brane model is described by
the action [10]

S ¼ 1
2j2

Z

d5x
ffiffiffiffiffiffiffi�g
p Rþ 12

‘2

� �

� r
Z

d4x
ffiffiffiffiffiffiffi

�h
p

þ
Z

d4x
ffiffiffiffiffiffiffi

�h
p

Lmatter; ð8:1Þ

where R and j2 are the scalar curvature and gravitational constant in five-
dimensions, respectively. We impose Z2 symmetry on this spacetime, with the
brane at the fixed point. The matter Lmatter is confined to the brane. Throughout this
lecture, hlm represents the induced metric on the brane. Remarkably, the internal
dimension is non-compact in this model. Hence, we do not have to care about the
stability problem. The basic equations consist of the equations of motion in the
bulk and junction conditions at the brane position due to the presence of the brane.
Alternatively, the basic equations can be regarded as the 5-dimensional Einstein
equations with singular sources. Let us recall the 4-dimensional components of
5-dimensional Einstein tensor can be expressed by

G
ð5Þ

lm ¼ G
ð4Þ

lm þ Lnl Klm � glmK
� �

þ � � � ; ð8:2Þ

where Lnl denotes the Lie derivative along the unit normal vector to the brane, nl.
Here, we defined the extrinsic curvature by
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Klm ¼ � dq
l � nlnq

� �

rqnm: ð8:3Þ

By integrating Einstein equations along the normal to the brane, we obtain the
jump of the extrinsic curvature ðKþlm � glmKþÞ � ðK�lm � glmK�Þ from the left hand
side and the total energy momentum tensor on the brane from the right hand side
due to the delta function sources. Thus, taking into account the Z2 symmetry
Klm � Kþlm ¼ �K�lm, we obtain the junction conditions

Kl
m � dl

m K
� �

at the brane ¼
j2

2
�rdl

m þ Tl
m

	 


�

�

�

�

ð8:4Þ

Here, Tlm represents the energy-momentum tensor of the matter.
Originally, they proposed the two-brane model as a possible solution of the

hierarchy problem [9]. The action reads

S ¼ 1
2j2

Z

d5x
ffiffiffiffiffiffiffi�g
p Rþ 12

‘2

� �

�
X

i¼�;�
ri

Z

d4x
ffiffiffiffiffiffiffiffi

�hi

p

þ
X

i¼�;�

Z

d4x
ffiffiffiffiffiffiffi

�h
p

Li
matter;

ð8:5Þ

where � and � represent the positive and the negative tension branes, respec-
tively. In principle, one can consider multiple-branes although they are not dis-
cussed in this lecture.

8.2.2 Cosmology

The homogeneous cosmology of the single-brane model is easy to analyze [16].
Because of the Birkoff theorem due to the symmetry on the brane, it is sufficient to
consider AdS black hole spacetime:

ds2 ¼ �hðrÞdt2 þ dr2

hðrÞ þ r2 dv2 þ f 2
k ðvÞ dh2 þ sin2 hd/2	 
� �

; ð8:6Þ

where

fk ¼
sin v for k ¼ 1
v for k ¼ 0
sinh v for k ¼ �1

8

<

:

ð8:7Þ

and

hðrÞ ¼ k �M

r2
þ r2

‘2
: ð8:8Þ
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Note that M is the mass of the black hole, k is the curvature of the horizon and ‘
is the AdS curvature radius. Suppose the brane is moving in this spacetime with a
trajectory t ¼ tðsÞ ; r ¼ aðsÞ, where s is a proper time of the brane (see Fig. 8.1).

The induced metric on the brane becomes

ds2
ind ¼ �ds2 þ a2ðsÞ dv2 þ f 2

k ðvÞ dh2 þ sin2 hd/2	 
� �

: ð8:9Þ

This is nothing but the Friedman-Robertson-Walker spacetime where a is the
scale factor. The motion of the brane cannot be arbitrary. It is constrained by the
junction condition:

Kv
v ¼ �

j2r
6
� j2

2
Tv

v �
1
3

T

� 

; ð8:10Þ

where Kv
v; Tv

v; T are a vv component of the extrinsic curvature, a vv component
and the trace part of the energy momentum tensor of matter on the brane,
respectively. From the normalization condition nlnl ¼ 1 of the unit normal vector
nl ¼ ð� _a; _tÞ, we obtain

_t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
hðaÞ þ

_a2

h2ðaÞ

s

: ð8:11Þ

Here, the dot is a derivative with respect to the proper time s. Now, one can
calculate Kvv as

Kvv ¼ �rvnv ¼ �ovnv þ Cr
vv ¼ �

1
2

nr o

ov
gvv: ð8:12Þ

Fig. 8.1 The Minkowski brane represented by the dotted line is a static brane in the Poincare
coordinate system of the AdS spacetime. While, the cosmological brane represented by the thick
line is moving in the bulk. The motion of the brane induces the expansion of the brane universe.
The Cauchy horizon of AdS spacetime corresponds to the big-bang singularity. In the case of
AdS-Schwarzschild spacetime, the horizon should be the past horizon of the black hole. The big
bang is located beyond the horizon
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Hence, from Eqs. 8.10, 8.11 and 8.12, we have an equation

1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðaÞ þ _a2
p

¼ j2

6
rþ qð Þ: ð8:13Þ

Thus, we get

k

a2
�M

a4
þ ‘2 þ _a2

a2
¼ j4

36
rþ qð Þ2; ð8:14Þ

or

H2 ¼ j4r2

36
� 1
‘2
þ j4r

18
q� k

a2
þM

a4
þ j4

36
q2: ð8:15Þ

By setting j2r‘ ¼ 6, we finally derived the effective Friedmann equation as
[17–21]

H2 ¼ � k

a2
þ j2

3‘
qþM

a4
þ j4

36
q2; ð8:16Þ

where H ¼ _a=a is the Hubble parameter. The Newton’s constant can be identified
as 8pGN ¼ j2=‘. The curvature of the horizon k corresponds spatial curvature of
the universe. The black hole mass M is referred to as the dark radiation [22] which
is not real radiation fluid but a reflection of the bulk geometry. This effect exists
even in the low energy regime. The last term represents the high energy effect of
the braneworld [23].

As to the two-brane model, the same effective Friedmann equation (8.16) can
be expected on each brane because the above Eq. 8.16 has been deduced without
referring to the bulk equations of motion.

Given this cosmological background, it is natural to investigate cosmological
perturbation in the braneworld [24]. In the case of the single-brane model, it is
shown that the gravity in Minkowski brane is localized on the brane in spite of the
noncompact extra dimension. Consequently, it turned out that the conventional
linearized Einstein equation approximately holds at scales large compared with the
curvature scale ‘. It should be stressed that this result can be attained by imposing
the outgoing boundary conditions. It turns out that this is also true in the cos-
mological background [25].

In the case of the two-brane model, Garriga and Tanaka analyzed linearized
gravity and have shown that the gravity on the brane behaves as the Brans-Dicke
theory at low energy [26]. Thus, the conventional linearized Einstein equations do
not hold even on scales large compared with the curvature scale ‘ in the bulk.
Charmousis et al. have clearly identified the Brans-Dicke field as the radion mode
[27].

In the end, we would like to know how nonlinear gravity in the braneworld is
deviated from the conventional Einstein gravity. A partial answer will be given in
the following sections.
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8.3 View from the Brane

In the previous section, we have considered an isotropic and homogeneous uni-
verse and seen that the effective Friedmann equation on the brane can be regarded
as the conventional Friedmann equation with two kind of corrections, i.e., the dark
radiation and high-energy corrections. Here, we review two different approaches to
extend the above result to more general cases.

8.3.1 AdS/CFT Correspondence

Let us start with the AdS/CFT correspondence [28–31]. After solving the equa-
tions of motion in the bulk with the boundary value fixed and substituting the
solution gcl into the 5-dimensional Einstein-Hilbert action S5d, we obtain the
effective action for the boundary field h ¼ gcljboundary. The statement of the AdS/
CFT correspondence is that the resultant effective action can be equated with the
partition functional of some conformally invariant field theory (CFT), namely

exp iS5d½gcl�½ � �\ exp i

Z

hO
� 

[ CFT; ð8:17Þ

where O is the field in CFT. In the right hand side, h should be interpreted as a
source field. This action must be defined at the AdS infinity where the conformal
symmetry exists as the asymptotic symmetry. Hence, there exist infrared diver-
gences which must be subtracted by counter terms. Thus, the correct formula
becomes

exp iS5d½gcl� þ iSct½ � ¼\ exp i

Z

hO
� 

[ CFT; ð8:18Þ

where we added the counter terms

Sct ¼ Sbrane � S4d � ½R2terms�; ð8:19Þ

where Sbrane and S4d are the brane action and the 4-dimensional Einstein-Hilbert
action, respectively. Here, the higher curvature terms ½R2terms� should be under-
stood symbolically.

In the case of the braneworld, the brane acts as the cutoff. Therefore, there is no
divergences in the above expressions. In other words, no counter term is necessary.
We can regard the above relation as the definition of the ‘‘cut off’’ CFT. Thus, we
can freely rearrange the terms as follows

S5d þ Sbrane ¼ S4d þ SCFT þ ½R2terms�; ð8:20Þ

where we have defined

8 AdS/CFT on the Brane 241



exp iSCFT �\ exp i

Z

hO
� 

[ CFT: ð8:21Þ

This tells us that the brane models can be described as the conventional Einstein
theory with the cutoff CFT and higher order curvature terms [32–35]. In terms of
the equations of motion, the AdS/CFT correspondence reads

G
ð4Þ

lm ¼
j2

‘
Tlm þ TCFT

lm

� �

þ ½R2terms�; ð8:22Þ

where the R2 terms represent the higher order curvature terms and TCFT
lm denotes

the energy-momentum tensor of the cutoff version of conformal field theory. When
we apply this result to cosmology, we see CFT corresponds to the dark radiation in
the braneworld and the higher curvature terms can be reduced to the high-energy
corrections.

8.3.2 Geometrical Holography

Here, let us review the geometrical approach [36]. In the Gaussian normal coor-
dinate system:

ds2 ¼ dy2 þ glmðy; xlÞdxldxm; ð8:23Þ

we can write the 5-dimensional Einstein tensor G
ð5Þ

lm in terms of the 4-dimensional

Einstein tensor G
ð4Þ

lm and the extrinsic curvature as

G
ð5Þ

lm ¼ G
ð4Þ

lm þ Klm;y � glmK;y � KKlm þ 2KlkKk
m

þ 1
2

glm K2 þ Ka
bKb

a
	 


¼ 6
‘2

glm;

ð8:24Þ

where we have introduced the extrinsic curvature

Klm ¼ �
1
2

glm;y; ð8:25Þ

and the last equality comes from the 5-dimensional Einstein equations. On the
other hand, the Weyl tensor in the bulk can be expressed as

Cylym ¼ Klm;y � glmK;y þ Kl
kKkm þ glmK

abKab �
3
‘2

glm: ð8:26Þ

Now, one can eliminate Klm;y � glmK;y from (8.24) using (8.26) and obtain
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G
ð4Þ

lm ¼ �Cylym þ KKlm � KlkKk
m

� 1
2

glm K2 � Ka
bKb

a
	 


þ 3
‘2

glm: ð8:27Þ

Taking into account the Z2 symmetry, we also obtain the junction conditions

Kl
m � dl

m K
� �

y¼0 ¼
j2

2
�rdl

m þ Tl
m

	 


�

�

�

�

: ð8:28Þ

Here, Tlm represents the energy-momentum tensor of the matter. Evaluating
Eq. 8.27 at the brane and substituting the junction condition into it, we have the
‘‘effective’’ equations of motion

G
ð4Þ

lm ¼
j2

‘
Tlm þ j4plm � Elm ð8:29Þ

where we have defined the quadratic of the energy momentum tensor

plm ¼ �
1
4

Tl
kTkm þ

1
12

TTlm þ
1
8

glm TabTab �
1
3

T2

� �

ð8:30Þ

and the projection of Weyl tensor Cylym onto the brane

Elm ¼ Cylymjy¼0:

Here, we assumed the relation

j2r ¼ 6
‘

ð8:31Þ

so that the effective cosmological constant vanishes.
Because of the traceless property of Elm, when we consider an isotropic and

homogeneous universe, it is easy to show that this gives the dark radiation com-
ponent / 1=a4. The existence of the high-energy corrections / q2 is apparent in
this approach.

The geometrical approach is useful to classify possible corrections to the
conventional Einstein equations. One defect of this approach is the fact that the
projected Weyl tensor Elm can not be determined without solving the equations in
the bulk.

8.4 Does AdS/CFT Play Any Role in Braneworld?

To make our concerns explicit, we give a sequence of questions. We treat the
single-brane model and two-brane model, separately.
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8.4.1 Single-Brane Model

Is the Einstein theory recovered even in the non-linear rregime?
In the case of the linear theory, it is known that the conventional Einstein

theory is recovered at low energy. On the other hand, the cosmological con-
sideration suggests the deviation from the conventional Friedmann equation even
in the low energy regime. This is due to the dark radiation term. Therefore, we
need to clarify when the conventional Einstein theory can be recovered on the
brane.

How does the AdS/CFT come into the braneworld?
It was argued that the cutoff CFT comes into the braneworld. However, no

one knows what is the cutoff CFT. It is a vague concept at least from the point
of view of the classical gravity. Moreover, it should be noted that the AdS/CFT
correspondence is a specific conjecture. Indeed, originally, Maldacena conjec-
tured that the supergravity on AdS5 	 S5 is dual to the four-dimensional N ¼ 4
super Yang-Mills theory [28, 29]. Nevertheless, the AdS/CFT correspondence
seems to be related to the brane world model as has been demonstrated by
several people [33–42]. Hence, it is important to reveal the role of the AdS/CFT
correspondence starting from the
5-dimensional general relativity.

How are the AdS/CFT and geometrical approach related?
The geometrical approach gives the effective equations of motion (8.29)

G
ð4Þ

lm ¼
j2

‘
Tlm þ j4plm � Elm:

On the other hand, the AdS/CFT correspondence yields the other effective
equations of motion (8.22)

G
ð4Þ

lm ¼
j2

‘
Tlm þ TCFT

lm

� �

þ ½R2terms�:

An apparent difference is remarkable.
It is an interesting issue to clarify how these two descriptions are related.

Shiromizu and Ida tried to understand the AdS/CFT correspondence from the
geometrical point of view [43]. They argued that pl

l corresponds to the trace
anomaly of the cutoff CFT on the brane. However, this result is rather paradoxical
because there exists no trace anomaly in an odd dimensional brane although pl

l

exists even in that case. Thus, the more precise relation between the geometrical
and the AdS/CFT approaches should be given.

Moreover, since both the geometrical and AdS/CFT approaches seem to have
their own merit, it would be beneficial to understand the mutual relationship.
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8.4.2 Two-Brane Model

How is the geometrical approach consistent with the Brans-Dicke picture?
Irrespective of the existence of other branes, the geometric approach gives the

same effective equations (8.29). The effect of the bulk geometry comes into the
brane world only through Elm. In this picture, the two-brane system can be regarded
as the Einstein theory with some corrections due to the Weyl tensor in the bulk.

On the other hand, the linearized gravity on the brane behaves as the Brans-
Dicke theory on scales large compared with the curvature scale ‘ in the bulk [26].
Therefore, the conventional linearized Einstein equations do not hold at low energy.

In the geometrical approach, no radion appears. While, from the linear analysis,
it turns out that the system can be described by the Brans-Dicke theory where the
extra scalar field is nothing but the radion. How can we reconcile these seemingly
incompatible pictures?

What replaces the AdS/CFT correspondence in the two-brane model?
In the single-brane model, there are continuum Kaluza-Klein (KK)-spectrum

around the zero mode. They induce the CFT matter in the 4-dimensional effective
action. In the two-brane system, the spectrum become discrete and then a mass gap
exists. Hence, we can not expect CFT matter on the brane, although KK-modes
exist and affect the physics on the brane. So, it is interesting to know if the AdS/
CFT correspondence play a role in the two-brane system.

8.5 Gradient Expansion Method

Our aim in this lecture is to show the gradient expansion method gives the answers
to all of the questions presented in the previous section. Here, we review the
formalism developed by us [44–47].

We use the Gaussian normal coordinate system (8.23) to describe the geometry
of the brane world. Note that the brane is located at y ¼ 0 in this coordinate system.
Decomposing the extrinsic curvature into the traceless part and the trace part

Klm ¼ Rlm þ
1
4

hlmK; K ¼ � o

oy
log

ffiffiffiffiffiffiffi�g
p

; ð8:32Þ

we obtain the basic equations which hold in the bulk;

Rl
m;y � KRl

m ¼ � R
ð4Þ

l
m �

1
4

dl
m R
ð4Þ� 

; ð8:33Þ

3
4

K2 � Ra
bR

b
a ¼ R

ð4Þ� 

þ 12
‘2
; ð8:34Þ

K;y �
1
4

K2 � RabRab ¼ �
4
‘2
; ð8:35Þ
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rkRl
k � 3

4
rlK ¼ 0; ð8:36Þ

where R
ð4Þ

l
m is the curvature on the brane and rl denotes the covariant derivative

with respect to the metric glm. One also have the junction condition

Kl
m � dl

m K
� �

y¼0 ¼
j2

2
�rdl

m þ Tl
m

	 


�

�

�

�

: ð8:37Þ

Recall that we are considering the Z2 symmetric spacetime.
The problem now is separated into two parts. First, we will solve the bulk

equations of motion with the Dirichlet boundary condition at the brane,

glmðy ¼ 0; xlÞ ¼ hlmðxlÞ: ð8:38Þ

After that, the junction condition will be imposed at the brane. As it is the
condition for the induced metric hlm, it is naturally interpreted as the effective
equations of motion for gravity on the brane.

Along the normal coordinate y, the metric varies with a characteristic length
scale ‘; glm;y
 glm=‘. Denote the characteristic length scale of the curvature fluc-
tuation on the brane as L; then we have R
 glm=L2. For the reader’s reference, let

us take ‘ ¼ 1 mm, for example. Then, the relation (8.31) give the scale, j2 ¼
ð108 GeVÞ�3 and r ¼ 1 TeV4. In this lecture, we will consider the low energy
regime in the sense that the energy density of matter, q, on the brane is smaller
than the brane tension, ıe., q=r� 1. In this regime, a simple dimensional analysis

q
r


‘ j2

‘ q

j2r

 ‘

L

� �2

� 1 ð8:39Þ

implies that the curvature on the brane can be neglected compared with the extrinsic
curvature at low energy. Here, we have used the relation (8.31) and Einstein’s
equation on the brane, R
 glm=L2
 j2q=‘. Thus, the anti-Newtonian or gradient
expansion method used in the cosmological context is applicable to our problem [12].

At zeroth order, we can neglect the curvature term. Then we have

R
ð0Þ

l
m;y � K

ð0Þ
R
ð0Þ

l
m ¼ 0; ð8:40Þ

3
4

K
ð0Þ

2 � R
ð0Þ

a
b R
ð0Þ

b
a ¼

12
‘2
; ð8:41Þ

K
ð0Þ
;y �

1
4

K
ð0Þ

2 � R
ð0Þ

ab R
ð0Þ

ab ¼ �
4
‘2
; ð8:42Þ

rk R
ð0Þ

k
l �

3
4
rl K
ð0Þ
¼ 0: ð8:43Þ
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Equation 8.40 can be readily integrated into

R
ð0Þ

l
m ¼

Cl
mðxlÞ
ffiffiffiffiffiffiffi�g
p ; Cl

l ¼ 0; ð8:44Þ

where Cl
m is the constant of integration. Equation 8.43 also requires Cl

mjl ¼ 0. If
it could exist, it would represent a radiation like fluid on the brane and hence a
strongly anisotropic universe. In fact, as we see soon, this term must vanish in
order to satisfy the junction condition. Therefore, we simply put Cl

m ¼ 0, here-
after. Now, it is easy to solve the remaining equations. The result is

K
ð0Þ
¼ 4
‘
: ð8:45Þ

Using the definition of the extrinsic curvature

K
ð0Þ

lm ¼ �
1
2

o

oy
g
ð0Þ

lm; ð8:46Þ

we get the zeroth order metric as

ds2 ¼ dy2 þ b2ðyÞhlmðxlÞdxldxm; bðyÞ ¼ e�2y
‘; ð8:47Þ

where the tensor hlm is the induced metric on the brane, which conforms to the
boundary condition (8.38).

From the zeroth order solution, we obtain

K
ð0Þ

l
m � dl

m K
ð0Þ� 

y¼0 ¼ �
3
‘
dl

m ¼ �
j2

2
rdl

m

�

�

�

�

ð8:48Þ

Then we get the well known relation

j2r ¼ 6=‘: ð8:49Þ

Here, we will assume that this relation holds exactly. It is apparent that Cl
m is

not allowed to exist.
The iteration scheme consists in writing the metric glm as a sum of local tensors

built out of the induced metric on the brane, the number of gradients increasing
with the order. Hence, we will seek the metric as a perturbative series

glmðy; xlÞ ¼ b2ðyÞ hlmðxlÞ þ g
ð1Þ

lmðy; xlÞ þ g
ð2Þ

lmðy; xlÞ þ � � �
� 

; ð8:50Þ

where b2ðyÞ is extracted and we put the Dirichlet boundary condition

g
ðiÞ

lmðy ¼ 0; xlÞ ¼ 0; ð8:51Þ
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so that glmðy ¼ 0; xÞ ¼ hlmðxÞ holds at the brane. Other quantities can be also
expanded as

Kl
m ¼

1
‘
dl

m þ K
ð1Þ

l
m þ K

ð2Þ
l
m þ � � �

Rl
m ¼ þR

ð1Þ
l
m þ R

ð2Þ
l
m þ � � � :

ð8:52Þ

In our scheme, in contrast to the AdS/CFT correspondence where the Dirichlet
boundary condition is imposed at infinity, we impose it at the finite point y ¼ 0,
the location of the brane. Furthermore, we carefully consider the constants of
integration, i.e., homogeneous solutions. These homogeneous solutions are
ignored in the calculation of AdS/CFT correspondence. However, they play an
important role in the braneworld. Note that the scheme can be applicable to other
systems [48–51].

8.6 Single Brane Model (RS2)

Now, we will apply the gradient expansion method to the single-brane models and
obtain the effective equations on the brane.

8.6.1 Einstein Gravity at Lowest Order

The next order solutions are obtained by taking into account the terms neglected at
zeroth order. At first order, Eqs. 8.33–8.36 become

R
ð1Þ

l
m;y �

4
‘

R
ð1Þ

l
m ¼ � R

ð4Þ
l
m �

1
4
dl

m R
ð4Þ� ð1Þ

; ð8:53Þ

6
‘

K
ð1Þ
¼ R

ð4Þ� ð1Þ

; ð8:54Þ

K
ð1Þ
;y �

2
‘

K
ð1Þ
¼ 0; ð8:55Þ

R
ð1Þ

l
k
jk �

3
4

K
ð1Þ
jl ¼ 0: ð8:56Þ

where the superscript ð1Þ represents the order of the derivative expansion and a stroke

j denotes the covariant derivative with respect to the metric hlm. Here, ½R
ð4Þ

l
m�ð1Þmeans

that the curvature is approximated by taking the Ricci tensor of b2hlm in place of R
ð4Þ

l
m.

It is also convenient to write it in terms of the Ricci tensor of hlm, denoted Rl
mðhÞ.
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Substituting the zeroth order metric into R
ð4Þ

, we obtain

K
ð1Þ
¼ ‘

6b2
RðhÞ: ð8:57Þ

Hereafter, we omit the argument of the curvature for simplicity. Simple inte-
gration of Eq. 8.53 also gives the traceless part of the extrinsic curvature as

R
ð1Þ

l
m ¼

‘

2b2
ðRl

m �
1
4
dl

m RÞ þ vl
mðxÞ
b4

; ð8:58Þ

where the homogeneous solution satisfies the constraints

vl
l ¼ 0 ; vl

mjl ¼ 0: ð8:59Þ

As we see later, this term corresponds to dark radiation at this order. The metric
can be obtained as

g
ð1Þ

lm ¼ �
‘2

2
1
b2
� 1

� �

Rlm �
1
6

hlmR

� �

� ‘
2

1
b4
� 1

� �

vlm; ð8:60Þ

where we have imposed the boundary condition, g
ð1Þ

lmðy ¼ 0; xlÞ ¼ 0.
Let us focus on the role of vl

m in this part. At this order, the junction condition
can be written as

K
ð1Þ

l
m � dl

m K
ð1Þ� 

y¼0 ¼
‘

2
Rl

m �
1
2

dl
m R

� �

þ vl
m

�

�

�

�

¼ j2

2
Tl

m: ð8:61Þ

Using the solutions Eqs. 8.57, 8.58 and the formula

El
m ¼ Kl

m;y � dl
m K;y � Kl

kKk
m þ dl

m Ka
bKb

a �
3
‘2

dl
m ; ð8:62Þ

we calculate the projective Weyl tensor as

E
ð1Þ

l
m ¼

2
‘
vl

m: ð8:63Þ

Then we obtain the effective Einstein equation

Rl
m �

1
2
dl

m R ¼ j2

‘
Tl

m � E
ð1Þ

l
m: ð8:64Þ

8 AdS/CFT on the Brane 249



At this order, we do not have the conventional Einstein equations. Recall that
the dark radiation exists even in the low energy regime. Indeed, the low energy
effective Friedmann equation becomes

H2 ¼ j2

3‘
qþ C

a4
: ð8:65Þ

This equation can be obtained from Eq. 8.64 by imposing the maximal sym-
metry on the spatial part of the brane world and the conditions (8.59). Hence, we
observe that vl

m is the generalization of the dark radiation found in the cosmo-
logical context.

The nonlocal tensor vlm must be determined by the boundary conditions in the
bulk. The natural choice is asymptotically AdS boundary condition. For this
boundary condition, we have vlm ¼ 0. It is this boundary condition that leads to the
conventional Einstein theory in linearized gravity. Assuming this, we have

Rl
m �

1
2
dl

m R ¼ j2

‘
Tl

m: ð8:66Þ

Thus, the conventional Einstein theory is recovered at the leading order!

8.6.2 AdS/CFT Emerges

In this subsection, we do not include the vlm field because we have adopted the
AdS boundary condition. Of course, we have calculated the second order solutions
with the contribution of the vlm field. It merely adds extra terms such as vl

mvm
l, etc.

At second order, the basic equations can be easily deduced. Substituting the
solution up to first order into the Ricci tensor and picking up the second order
quantities, we obtain the solutions at second order. The trace part is deduced
algebraically as

K
ð2Þ
¼ ‘3

8b4
Ra

bRb
a �

2
9

R2

� �

� ‘3

12b2
Ra

bRb
a �

1
6

R2

� �

: ð8:67Þ

By integrating the equation for the traceless part, we have

R
ð2Þ

l
m ¼ �

‘2

2
y

b4
þ ‘

2b2

� �

Sl
m �

‘3

24b2
RRl

m �
1
4
dl

m R2

� �

þ ‘
3

b4
tlm; ð8:68Þ

where Sl
m is defined by

d
Z

d4x
ffiffiffiffiffiffiffi

�h
p 1

2
RabRab �

1
3

R2

� 

¼
Z

d4x
ffiffiffiffiffiffiffi

�h
p

Slmdglm: ð8:69Þ
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The tensor Sl
m is transverse and traceless,

Sl
mjl ¼ 0 ; Sl

l ¼ 0: ð8:70Þ

The homogeneous solution tlm must be traceless. Moreover, it must satisfy the
momentum constraint. To be more precise, we must solve the constraint equation

tlmjl �
1

16
Ra

bRb
ajm þ

1
48

RRjm �
1

24
RjkRk

m ¼ 0: ð8:71Þ

As one can see immediately, there are ambiguities in integrating this equation.
Indeed, there are two types of covariant local tensor whose divergences vanish:

d
Z

d4x
ffiffiffiffiffiffiffi

�h
p 1

2
RabRab ¼

Z

d4x
ffiffiffiffiffiffiffi

�h
p

Hlmdglm; ð8:72Þ

d
Z

d4x
ffiffiffiffiffiffiffi

�h
p 1

2
R2 ¼

Z

d4x
ffiffiffiffiffiffiffi

�h
p

Klmdglm: ð8:73Þ

Notice that Sl
m ¼ Hl

m �Kl
m=3. Hence, only Sl

m and Kl
m are independent.

Thanks to the Gauss-Bonnet topological invariant, we do not need to consider the
Riemann squared term. In addition to these local tensors, we have to take into
account the nonlocal tensor sl

m with the property sl
mjl ¼ 0. Thus, we get

tlm ¼
1

32
dl

m Ra
bRb

a �
1
3

R2

� �

þ 1
24

RRl
m �

1
4
dl

m R2

� �

þ sl
m þ aþ 1

4

� �

Sl
m þ

b
3
Kl

m; ð8:74Þ

where the constants a and b are free parameters representing the degree of initial
conditions in the bulk. Hence, they represents the freedom of gravitational waves
in the bulk. The condition tll ¼ 0 leads to

sl
l ¼ �

1
8

Ra
bRb

a �
1
3

R2

� �

� bhR: ð8:75Þ

This expression is the reminiscent of the trace anomaly of the CFT. It is
possible to use the result of CFT at this point. For example, we can choose the
N ¼ 4 super Yang-Mills theory as the conformal matter. In that case, we simply
put b ¼ 0. This is the way the AdS/CFT correspondence comes into the brane
world scenario.

Up to the second order, the junction condition gives

Rl
m �

1
2
dl

m Rþ 2‘2 sl
m þ aSl

m þ
b
3
Kl

m

� 

¼ j2

‘
Tl

m: ð8:76Þ
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If we define

TCFT
lm ¼ �2

‘3

j2
slm; ð8:77Þ

we can write

G
ð4Þ

lm ¼
j2

‘
Tlm þ TCFT

lm

� �

� 2‘2aSlm �
2‘2

3
bKlm: ð8:78Þ

Let us try to arrange the terms so as to reveal the geometrical meaning of the
above equation. We can calculate the projective Weyl tensor as

E
ð2Þ

l
m ¼ ‘2 Pl

m þ 2sl
m þ 2aSl

m þ
2
3

bKl
m

� 

; ð8:79Þ

where

Pl
m ¼ �

1
4

Rl
kRk

m þ
1
6

RRl
m þ

1
8
dl

m Ra
bRb

a �
1

16
dl

m R2: ð8:80Þ

Substituting this expression into Eq. 8.76 yields our main result

G
ð4Þ

lm ¼
j2

‘
Tlm þ ‘2Plm � E

ð2Þ
lm: ð8:81Þ

Notice that El
m contains the nonlocal part and the free parameters a and b. On

the other hand, Pl
m is determined locally. One can see the relationship in a more

transparent way. Within the accuracy we are considering, we can get Pl
m ¼ pl

m

using the lowest order equation Rl
m ¼ j2=‘ðTl

m � 1=2dl
m TÞ. Hence, we can rewrite

Eq. 8.81 as

G
ð4Þ

lm ¼
j2

‘
Tlm þ j4plm � E

ð2Þ
lm: ð8:82Þ

Now, the similarity between Eqs. 8.29 and 8.82 is apparent. Thus we get an
explicit relation between the geometrical approach and the AdS/CFT approach.
However, we note that our Eq. 8.82 is a closed system of equations provided that
the specific conformal field theory is chosen.

Now we can read off the effective action as

Seff ¼
‘

2j2

Z

d4x
ffiffiffiffiffiffiffi

�h
p

Rþ Smatter þ SCFT

þ a‘2

2j2

Z

d4x
ffiffiffiffiffiffiffi

�h
p

RlmRlm �
1
3

R2

� 

þ b‘2

6j2

Z

d4x
ffiffiffiffiffiffiffi

�h
p

R2; ð8:83Þ

where we have used the relations Eqs. 8.69, 8.72 and 8.73 and we denoted the
nonlocal effective action constructed from sl

m as SCFT.
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8.7 Two-Brane Model (RS1)

In this section, we will apply the gradient expansion method to the two-brane
models and reveal a role of the AdS/CFT correspondence.

8.7.1 Scalar-Tensor Theory Emerges

We consider the two-brane system depicted in Fig. 8.2. Without matter on the
branes, we have the relation g��brane

lm ¼ e�2d=‘g��brane � X2g��brane where d is
the distance between the two branes. Although X is constant for vacuum branes, it
becomes the function of the 4-dimensional coordinates if we put the matter on the
brane.

Adding the energy momentum tensor to each of the two branes, and allowing
deviations from the pure AdS5 bulk, the effective (non-local) Einstein equations on
the branes at low energies take the form [45],

Gl
mðhÞ ¼

j2

‘
T
�

l
m �

2
‘
vl

m; ð8:84Þ

Gl
mðf Þ ¼ �

j2

‘
T
�

l
m �

2
‘

vl
m

X4 : ð8:85Þ

where hlm ¼ g��brane
lm ; flm ¼ g��brane

lm ¼ X2hlm and the terms proportional to vlm

are 5-dimensional Weyl tensor contributions which describe the non-local
5-dimensional effect. Although Eqs. 8.84 and 8.85 are non-local individually,
with undetermined vlm, one can combine both equations to reduce them to

d(x)

y=0 y=l

y

Fig. 8.2 In the two brane
system, the radion is defined
as a distance between two
branes. It could depend on the
position because the brane
could have bending. Hence,
for observers on the brane, it
appears as a scalar field
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local equations for each brane. Since vlm appears only algebraically, one can easily

eliminate vlm from Eqs. 8.84 and 8.85. Defining a new field W ¼ 1� X2, we find

Gl
mðhÞ ¼

j2

‘W
T
�

l
m þ

j2ð1�WÞ2

‘W
T
�

l
m þ

1
W

Wjljm � dl
mW
ja
ja

� �

þ 3
2Wð1�WÞ WjlWjm �

1
2

dl
mW
jaWja

� �

; ð8:86Þ

hW ¼ j2

3‘
ð1�WÞ T

�
þ ð1�WÞT

�
� �

� 1
2ð1�WÞW

jlWjl; ð8:87Þ

where j denotes the covariant derivative with respect to the metric hlm. Since X (or
equivalently W) contains the information of the distance between the two branes,
we call X (or W) the radion.

We can also determine vl
m by eliminating Gl

m from Eqs. 8.84 and 8.85. Then,

vl
m ¼ �

j2ð1�WÞ
2W

T
�

l
m þ ð1�WÞT

�
l
m

� �

� ‘

2W
Wjljm � dl

mW
ja
ja

� �h

þ 3
2ð1�WÞ WjlWjm �

1
2

dl
mW
jaWja

� �

: ð8:88Þ

Note that the index of T
�

l
m is to be raised or lowered by the induced metric on

the �-brane, flm.
The effective action for the �-brane which gives Eqs. 8.86 and 8.87 is

S� ¼
‘

2j2

Z

d4x
ffiffiffiffiffiffiffi

�h
p

WR� 3
2ð1�WÞW

jaWja

� 

þ
Z

d4x
ffiffiffiffiffiffiffi

�h
p

L� þ
Z

d4x
ffiffiffiffiffiffiffi

�h
p

1�Wð Þ2L�: ð8:89Þ

The above action can be used to make cosmological predictions [52]. It should
be stressed that the radion has the conformal coupling. In fact, using the trans-
formation W ¼ 1� w2, we obtain

S� ¼
6‘
j2

Z

d4x
ffiffiffiffiffiffiffi

�h
p 1

12
R� 1

12
w2R� 1

2
wjawja

� 

þ � � � : ð8:90Þ

This is nothing but Einstein theory with a conformally coupled scalar field w.

8.7.2 AdS/CFT in Two-Brane System?

In the two-brane case, it is difficult to proceed to the next order calculations.
Hence, we need to invent a new method [53]. For this purpose, we shall start with
the effective Einstein equation obtained by Shromizu et al. [36]
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Glm ¼ Tlm þ plm � Elm ð8:91Þ

where plm is the quadratic of energy momentum tensor Tlm and Elm represents the
effect of the bulk geometry. Here we have set 8pG ¼ 1. This geometrical pro-
jection approach can not give a concrete prediction, because we do not know Elm

without solving the equations of motion in the bulk. Fortunately, in the case of the
homogeneous cosmology, the property El

l ¼ 0 determines the dynamics as

H2 ¼ 1
3
qþ q2 þ C

a4
: ð8:92Þ

This reflects the interplay between the bulk and the brane dynamics on the brane.
What we want to seek is an effective theory which contains the information of

the bulk as finite number of constant parameters like C in the homogeneous
universe. When we succeed in obtaining it, the cosmological perturbation theory
can be constructed in a usual way. Although the concrete prediction can not be
made, qualitative understanding of the evolution of the cosmological fluctuations
can be obtained. This must be useful to make observational predictions.

In the two-brane system, the mass spectrum is known from the linear analysis
[26]. At low energy, the propagator for the KK mode with the mass m can be
expanded as

�1
h� m2

¼ 1
m2

1þ h

m2
þh2

m4
þ � � �

� 

: ð8:93Þ

However, massless modes can not be expanded in this way, hence we must take
into account all of the massless modes to construct braneworld effective action. It
seems legitimate to assume this consideration is valid even in the non-linear
regime. Thus, at low energy, the action can be expanded by the local terms with
increasing orders of derivatives of the metric glm and the radion W [45].

Let us illustrate our method using the following action truncated at the second
order derivatives:

Seff ¼
1
2

Z

d4x
ffiffiffiffiffiffiffi�g
p

WR� 2KðWÞ � xðWÞ
W
rlWrlW

� 

; ð8:94Þ

which is nothing but the scalar-tensor theory with coupling function xðWÞ and
the potential function KðWÞ. Note that this is the most general local action which
contains up to the second order derivatives and has the general coordinate
invariance. It should be stressed that the scalar-tensor theory is, in general, not
related to the braneworld. However, we know a special type of scalar-tensor theory
corresponds to the low energy braneworld [45, 54–58]. Here, we will present a
simple derivation of this known fact.

For the vacuum brane, we can put Tlm þ plm ¼ �kglm. Hence, the geometrical
effective equation reduces to

Glm ¼ �Elm � kglm: ð8:95Þ
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First, we must find Elm. The above action (8.96) gives the equations of motion
for the metric as

Glm ¼ �
K
W

glm þ
1
W
rlrmW� glmhW
	 


þ x

W2 rlWrmW�
1
2

glmraWraW

� �

: ð8:96Þ

The right hand side of this Eq. 8.96 should be identified with �Elm � kglm.
Hence, the condition El

l ¼ 0 becomes

hW ¼ � x
3W
rlWrlW�

4
3

K� kWð Þ: ð8:97Þ

This is the equation for the radion W. However, we also have the equation for W
from the action (8.94) as

hW ¼ 1
2W
� x0

2x

� �

raWraW�
W
2x

RþW
x

K0; ð8:98Þ

where the prime denotes the derivative with respect to W. In order for these two
Eqs. 8.97 and 8.98 to be compatible, K and x must satisfy

� x
3W
¼ 1

2W
� x0

2x
; ð8:99Þ

4
3

K� kWð Þ ¼ W
x

2k� K0ð Þ; ð8:100Þ

where we used R ¼ 4k which comes from the trace part of Eq. 8.95. Equations
8.99 and 8.100 can be integrated as

KðWÞ ¼ kþ kc 1�Wð Þ2; xðWÞ ¼ 3
2

W
1�W

; ð8:101Þ

where the constant of integration c represents the ratio of the cosmological con-
stant on the negative tension brane to that on the positive tension brane. Here, one
of constants of integration is absorbed by rescaling of W. In doing so, we have
assumed the constant of integration is positive. We can also describe the negative
tension brane if we take the negative signature.

Thus, we get the effective action

Seff ¼
Z

d4x
ffiffiffiffiffiffiffi�g
p 1

2
WR� 3

4ð1�WÞr
lWrlW� k� kcð1�WÞ2

� 

: ð8:102Þ

Surprisingly, this completely agrees with the previous result (8.89). Our simple
symmetry principle El

l ¼ 0 has determined the action completely.
As we have shown in [59], if c \�1 there exists a static deSitter two-brane

solution which turns out to be unstable. In particular, two inflating branes can
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collide at W ¼ 0. This process is completely smooth for the observer on the brane.
This fact led us to the born-again scenario [59, 60]. The similar process occurs also
in the ekpyrotic (cyclic) model [61, 62] where the moduli approximation is used. It
can be shown that the moduli approximation is nothing but the lowest order
truncation of the low energy gradient expansion method developed by us [63–66].
Hence, it is of great interest to see the leading order corrections due to KK modes
to this process.

Let us now apply the conformal symmetry method explained above to the
higher order case. First, we need to write down the most generic action containing
up to fourth order derivatives. Then, we impose the symmetry to determine
unknown functionals. The action reads

Seff ¼
1
2

Z

d4x
ffiffiffiffiffiffiffi�g
p

WR� 2KðWÞ � xðWÞ
W
rlWrlW

� 

þ
Z

d4x
ffiffiffiffiffiffiffi�g
p h

AðWÞ rlWrlW
	 
2þBðWÞ hWð Þ2

þCðWÞrlWrlWhWþ DðWÞRhW

þEðWÞRrlWrlWþ FðWÞRlmrlWrmW

þGðWÞR2 þ HðWÞRlmRlm

þ IðWÞRlmkqRlmkq þ � � �
i

; ð8:103Þ

where A;B; � � � denote arbitrary functionals of the radion.
Now we impose the conformal symmetry on the fourth order derivative terms in

the action (8.103) as we did in the previous example. Starting from the action
(8.103), one can read off the equation for the metric from which Elm can be
identified. The compatibility between the equations of motion for W and the
equation El

l ¼ 0 constrains the coefficient functionals in the action (8.103).
Surprisingly, every coefficient functionals are determined up to constants.

Thus, we find the 4-dimensional effective action with KK corrections as

Seff ¼
Z

d4x
ffiffiffiffiffiffiffi�g
p 1

2
WR� 3

4ð1�WÞr
lWrlW

�

�k� kcð1�WÞ2


þ ‘2
Z

d4x
ffiffiffiffiffiffiffi�g
p 1

4ð1�WÞ4
rlWrlW
	 
2

"

þ 1

ð1�WÞ2
hWð Þ2þ 1

ð1�WÞ3
rlWrlWhW

þ 2
3ð1�WÞRhWþ 1

3ð1�WÞ2
RrlWrlW

þ jR2 þ kRlmRlm

#

; ð8:104Þ
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where constants j and k can be interpreted as the variety of the effects of the bulk
gravitational waves. These constants have the same origin as the previous
parameters a and b. It should be noted that this action becomes non-local after
integrating out the radion field. This fits the fact that KK effects are non-local
usually. In principle, we can continue this calculation to any order of derivatives.

8.8 The Answers

We have developed the low energy gradient expansion scheme to give insights into
the physics of the braneworld such as the black hole physics and the cosmology. In
particular, we have concentrated on the specific questions in this lecture. Here, we
summarize our answers obtained by the gradient expansion method. Our under-
standing of RS braneworlds would be also useful for other brane models.

8.8.1 Single-Brane Model

Is the Einstein theory recovered even in the non-linear regime?
We have obtained the effective theory at the lowest order as

G
ð4Þ

l
m ¼

j2

‘
Tl

m �
2
‘
vl

m: ð8:105Þ

Here we have the correction vlm which can be interpreted as the dark radiation
in the cosmological situation.

On the other hand, in the linearized gravity, the conventional Einstein theory is
recovered at low energy. This is because the out-going boundary condition is
imposed. In other words, the asymptotic AdS boundary condition is imposed. In
the nonlinear case, this corresponds to the requirement that the dark radiation term
vlm must be zero. For this boundary condition, the conventional Einstein theory is
recovered. Hence, the standard Friedmann equation holds.

In this sense, the answer is yes.
How does the AdS/CFT come into the braneworld?
The CFT emerges as the constant of integration which satisfies the trace

anomaly relation

sl
l ¼ �

1
8

Ra
bRb

a �
1
3

R2

� �

� bhR: ð8:106Þ

This constant can not be determined a priori. Here, the AdS/CFT correspon-
dence could come into the braneworld. Namely, if we identify some CFT with slm,
then we can determine the boundary condition.
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How are the AdS/CFT and geometrical approach related?
The key quantity in the geometric approach is obtained as

E
ð2Þ

l
m ¼ ‘2 Pl

m þ 2sl
m þ 2aSl

m þ
2
3

bKl
m

� 

: ð8:107Þ

The above expression contains slm which can be interpreted as the CFT
matter. Hence, once we know Elm, no enigma remains. In particular, Plm � plm

is independent of the slm. In odd dimensions, there exists no trace anomaly, but
Plm exists. In 4-dimensions, pl

l accidentally coincides with the trace anomaly
in CFT.

It is interesting to note that the high energy and the Weyl term corrections
found in the geometrical approach merge into the CFT matter correction found in
the AdS/CFT approach.

8.8.2 Two-Brane Model

How is the geometrical approach consistent with the Brans-Dicke picture?
In the geometrical approach, no radion seems to appear. On the other hand, the

linear theory predicts the radion as the crucial quantity. The resolution can be
attained by obtaining Elm (vlm in our notation). The resultant expression

vl
m ¼ �

j2ð1�WÞ
2W

T
�

l
m þ ð1�WÞT

�
l
m

� �

� ‘

2W
Wjljm � dl

mW
ja
ja

� �

þ 3
2ð1�WÞ WjlWjm �

1
2

dl
mW
jaWja

� �� 

contains the radion in an intriguing way. The dark radiation consists of the radion
and the matter.

We have shown that the radion transforms the Einstein theory with Weyl
correction into the conformally coupled scalar-tensor theory where the radion
plays the role of the scalar field. Thus, it turned out that the radion is hidden by the
projected Weyl tensor Elm in the geometrical approach.

What replaces the AdS/CFT correspondence in the two-brane model?
In the case of the single-brane model, the out-going boundary condition at the

Cauchy horizon is assumed. This conforms to AdS/CFT correspondence. Indeed,
the continuum KK-spectrum are projected on the brane as CFT matter.

On the other hand, the boundary condition in the two-brane system allows
only the discrete KK-spectrum. Hence, we can not expect CFT matter on the
brane. Instead, the radion controls the bulk/brane correspondence in two-brane
model. In fact, the higher derivative terms of the radion mimics the effect of the
bulk geometry (KK-effect) as we have shown explicitly. Hence, the conven-
tional AdS/CFT correspondence does not exist. Instead, there exists the
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AdS/CFT correspondence realized by the conformally coupled radion. The
conformal coupling can be regarded as a reflection of the symmetry of the bulk
geometry.

Here, I would like to mention D-brane inflation models proposed in [67]. There,
the inflaton is identified as the radion which is the distance between a D3-brane
and anti-D3-branes as is shown in Fig. 8.3. Naively, it seems possible to realize a
slow roll inflation due to the warped geometry. However, our result of two-brane
system suggests the existence of the conformal coupling of the radion, which ruins
the slow role inflation of the model. In fact, the curvature coupling gives a large
mass of the inflaton which causes the notorious eta problem. Hence, a fine tuning is
unavoidable.

8.9 AdS/CFT in Dilatonic Braneworld

In the previous sections, we have considered RS braneworlds. If we take into
account bulk fields, the pure AdS bulk would not be expected. Hence, it is
interesting to see the role of AdS/CFT correspondence in those cases. In this
section, we will consider a bulk scalar field and call this kind of models dilatonic
braneworlds [68].

In addition to the above theoretical interest, there is an phenomenological
interest in dilatonic braneworlds. Let us see how the inflationary universe can be
realized in the braneworld. The formula for the effective cosmological constant in
the braneworld reads

Keff ¼
j4r2

12
� 3
‘2
; ð8:108Þ

where r and ‘ are the tension of the brane and the curvature scale in the bulk which
is determined by the bulk vacuum energy, respectively. For j2r ¼ 6=‘, we have
Minkowski spacetime. In order to obtain the inflationary universe, we need the

Fig. 8.3 The warped throat
is attached to Calabi-Yau
manifold. Anti-D3-branes are
stacked at the tip of the
warped throat. A D3-brane
can move in the throat and
the radion, i.e. the distance
between the D3-brane and
anti-D3-branes, plays a role
of the inflaton
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positive effective cosmological constant. In the braneworld model, there are two
possibilities. One is to increase the brane tension and the other is to increase ‘. The
brane tension can be controlled by the scalar field on the brane. The bulk curvature
scale ‘ can be controlled by the bulk scalar field. The former case is a natural
extension of the 4-dimensional inflationary scenario. The latter possibility is a
novel one peculiar to the brane model. Recall that, in the superstring theory, scalar
fields are ubiquitous. Indeed, the dilaton and moduli exists in the bulk generically,
because they arise as the modes associated with the closed string. Moreover, when
the supersymmetry is spontaneously broken, they may have the non-trivial
potential. Hence, it is natural to consider the inflationary scenario driven by these
fields [69, 70]. Therefore, dilatonic braneworlds are phenomenologically inter-
esting. In this section, we would like to discuss this dilatonic braneworld from the
point of view of the AdS/CFT correspondence.

8.9.1 Dilatonic Braneworld

We consider a S1=Z2 orbifold spacetime with the two branes as the fixed points. In
this first Randall-Sundrum (RS1) model, the two flat 3-branes are embedded in

AdS5 and the brane tensions given by r
� ¼ 6=ðj2‘Þ and r

� ¼ �6=ðj2‘Þ. Our system
is described by the action

S ¼ 1
2j2

Z

d5x
ffiffiffiffiffiffiffi�g
p R�

Z

d5x
ffiffiffiffiffiffiffi�g
p 1

2
gABoAuoBuþ UðuÞ

� 

�
X

i¼�;�
r
i
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gi�brane
p

þ
X

i¼�;�

Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gi�brane
p

Li
matter; ð8:109Þ

where gi�brane
lm and r

i
are the induced metric and the brane tension on the i-brane,

respectively. We assume the potential UðuÞ for the bulk scalar field takes the form
UðuÞ ¼ � 6

j2‘2 þ VðuÞ; where the first term is regarded as a 5-dimensional cos-
mological constant and the second term is an arbitrary potential function. The
brane tension r is tuned so that the effective cosmological constant on the brane
vanishes. The above setup realizes a flat braneworld after inflation ends and the
field u reaches the minimum of its potential.

Inflation in the braneworld can be driven by a scalar field either on the brane or
in the bulk. We derive the effective equations of motion which are useful for both
models. Here, we begin with the single-brane system. Since we know the effective
4-dimensional equations hold irrespective of the existence of other branes [47], the
analysis of the single-brane system is sufficient to derive the effective action for the
two-brane system as we see in the next subsection.

We again adopt the Gaussian normal coordinate system to describe the
geometry of the brane model; ds2 ¼ dy2 þ glmðy; xlÞdxldxm; where the brane is
assumed to be located at y ¼ 0. Let us decompose the extrinsic curvature into the
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traceless part Rlm and the trace part K as Klm ¼ � 1
2 glm;y ¼ Rlm þ 1

4 glmK: Then, we
can obtain the basic equations off the brane using these variables. First, the
Hamiltonian constraint equation leads to

3
4

K2 � Ra
bR

b
a ¼ R

ð4Þ
� j2raurauþ j2ðoyuÞ2 � 2j2UðuÞ; ð8:110Þ

where R
ð4Þ

is the curvature on the brane and rl denotes the covariant derivative
with respect to the metric glm. Momentum constraint equation becomes

rkRl
k � 3

4
rlK ¼ �j2oyuolu: ð8:111Þ

Evolution equation in the direction of y is given by

Rl
m;y � KRl

m ¼ � R
ð4Þ

lm � j2rlurmu

� 

traceless

: ð8:112Þ

Finally, the equation of motion for the scalar field reads

o2
yu� Koyuþrarau� U0ðuÞ ¼ 0; ð8:113Þ

where the prime denotes derivative with respect to the scalar field u.
As we have the singular source at the brane position, we must consider the

junction conditions. Assuming a Z2 symmetry of spacetime, we obtain the junction
conditions for the metric and the scalar field

Rl
m �

3
4
dl

m K

� 

y¼0 ¼ �
j2

2
rdl

m þ
j2

2
Tl

m

�

�

�

�

; ð8:114Þ

oyu
� �

y¼0 ¼ 0
�

� ; ð8:115Þ

where Tl
m is the energy-momentum tensor for the matter fields on the brane.

8.9.2 AdS/Radion Correspondence

We assume the inflation occurs at low energy in the sense that the additional
energy due to the bulk scalar field is small, j2‘2VðuÞ � 1, and the curvature on
the brane R is also small, R‘2 � 1. It should be stressed that the low energy does
not necessarily implies weak gravity on the brane. Under these circumstances, we
can use a gradient expansion scheme to solve the bulk equations of motion.

At zeroth order, we ignore matters on the brane. Then, from the junction
condition (8.114), we have
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R
ð0Þ

l
m �

3
4

dl
m K
ð0Þ� 

y¼0 ¼ �
j2

2
rdl

m

�

�

�

�

: ð8:116Þ

As the right hand side of (8.116) contains no traceless part, we get R
ð0Þ

l
m ¼ 0: We

also take the potential for the bulk scalar field UðuÞ to be �6=ðj2‘2Þ. We discard
the terms with 4-dimensional derivatives since one can neglect the long wave-
length variation in the direction of xl at low energies. Thus, the equations to be
solved are given by

3
4

K
ð0Þ

2 ¼ j2ðoy u
ð0Þ
Þ2 þ 12

‘2
; ð8:117Þ

o2
y u
ð0Þ
� K
ð0Þ

oy u
ð0Þ
¼ 0: ð8:118Þ

The junction condition (8.115) at this order oy u
ð0Þ

h i

y¼0¼0j tells us that the solution

of Eq. 8.118 must be u
ð0Þ
¼ gðxlÞ; where gðxlÞ is an arbitrary constant of inte-

gration. Now, the solution of Eq. 8.118 yields K
ð0Þ
¼ 4=‘: Other Eqs. 8.111 and

8.112 are trivially satisfied at zeroth order. Using the definition K
ð0Þ

lm ¼ � g
ð0Þ

lm;y=2,
we have the lowest order metric

g
ð0Þ

lmðy; xlÞ ¼ b2ðyÞhlmðxlÞ; bðyÞ � e�y=‘; ð8:119Þ

where the induced metric on the brane, hlm � glmðy ¼ 0; xlÞ, arises as a constant of
integration. The junction condition for the induced metric (8.116) merely implies
well known relation j2r ¼ 6=‘ and that for the scalar field (8.115) is trivially
satisfied. At this leading order analysis, we can not determine the constants of
integration hlmðxlÞ and gðxlÞ which are constant as far as the short length scale ‘
variations are concerned, but are allowed to vary over the long wavelength scale.
These constants should be constrained by the next order analysis.

Now, we take into account the effect of both the bulk scalar field and the matter
on the brane perturbatively. Our iteration scheme is to write the metric glm and the
scalar field u as a sum of local tensors built out of the induced metric and the
induced scalar field on the brane, in the order of expansion parameters, that is,
OððR‘2ÞnÞ and Oðj2‘2VðuÞÞn, n ¼ 0; 1; 2; � � � [47]. Then, we expand the metric and
the scalar field as

glmðy; xlÞ ¼ b2ðyÞ hlmðxlÞ þ g
ð1Þ

lmðy; xlÞ þ g
ð2Þ

lmðy; xlÞ þ � � �
� 

;

uðy; xlÞ ¼ gðxlÞ þ u
ð1Þ
ðy; xlÞ þ u

ð2Þ
ðy; xlÞ þ � � � :

ð8:120Þ
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Here, we put the boundary conditions g
ðiÞ

lmðy ¼ 0; xlÞ ¼ 0 ; u
ðiÞ
ðy ¼ 0; xlÞ ¼ 0 ;

i ¼ 1; 2; 3; ::: so that we can interpret hlm and g as induced quantities. Extrinsic
curvatures can be also expanded as

K ¼ 4
‘
þ K
ð1Þ
þ K
ð2Þ
þ � � � ; Rl

m ¼ R
ð1Þ

l
m þ R

ð2Þ
l
m þ � � � : ð8:121Þ

Using the formula such as R
ð4Þ
ð g
ð0Þ

lmÞ ¼ RðhlmÞ=b2, we obtain the solution

K
ð1Þ
¼ ‘

6b2
RðhÞ � j2gjagja
� �

� ‘
3
j2VðgÞ; ð8:122Þ

where RðhÞ is the scalar curvature of hlm and j denotes the covariant derivative
with respect to hlm. Substituting the results at zeroth order solutions into Eq. 8.112,
we obtain

R
ð1Þ

l
m ¼

‘

2b2
Rl

mðhÞ � j2gjlgjm
h i

traceless
þ vl

m

b4
; ð8:123Þ

where Rl
mðhÞ denotes the Ricci tensor of hlm and vl

m is a constant of integration
which satisfies the constraint vl

l ¼ 0. Hereafter, we omit the argument of the
curvature for simplicity. Integrating the scalar field equation (8.113) at first order,
we have

oy u
ð1Þ
¼ ‘

2b2
hg� ‘

4
V 0ðgÞ þ C

b4
; ð8:124Þ

where C is also a constant of integration. At first order in this iteration scheme, we
get two kinds of constants of integration, vl

m and C.
Given the matter fields Tlm on the brane, the junction condition (8.114) becomes

R
ð1Þ

l
m �

3
4

dl
m K
ð1Þ� 

y¼0 ¼
j2

2
Tl

m

�

�

�

�

: ð8:125Þ

At this order, the junction condition (8.115) yields

oy u
ð1Þ

� 

y¼0 ¼ 0
�

� : ð8:126Þ

These junction conditions give the effective equations of motion on the brane.
Now, we are in a position to discuss the effective equations of motion for the

dilatonic two-brane models. The point is the fact that the equations of motion on
each brane take the same form if we use the induced metric on each brane [47].
The effective Einstein equations on each positive (�) and negative (�) tension
brane at low-energies yield
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Gl
mðhÞ ¼ j2 gjlgjm �

1
2

dl
m g
jagja �

1
2
dl

m V

� �

� 2
‘
vl

m þ
j2

‘
T
�

l
m; ð8:127Þ

Gl
mðf Þ ¼ j2 g;lg;m �

1
2
dl

m g
;ag;a �

1
2

dl
m V

� �

� 2
‘

vl
m

X4 �
j2

‘
T
�

l
m: ð8:128Þ

where flm is the induced metric on the negative tension brane and ; denotes the
covariant derivative with respect to flm. When we set the position of the positive
tension brane at y ¼ 0, that of the negative tension brane �y in general depends on
xl, i.e. �y ¼ �yðxlÞ. Hence, the warp factor at the negative tension brane XðxlÞ �
bð�yðxÞÞ also depends on xl. Because the metric always comes into equations with
derivatives, the zeroth order relation is enough in this first order discussion. Hence,
the metric on the positive tension brane is related to the metric on the negative
tension brane as flm ¼ X2hlm.

Although Eqs. 8.127 and 8.128 are non-local individually, with undetermined
vl

m, one can combine both equations to reduce them to local equations for each
brane. We can therefore easily eliminate vl

m from Eqs. 8.127 and 8.128, since vl
m

appears only algebraically. Eliminating vl
m from both Eqs. 8.127 and 8.128, we

obtain

Gl
m ¼

j2

‘W
T
�

l
m þ

j2ð1�WÞ2

‘W
T
�

l
m

þ 1
W

Wjljm � dl
mW
ja
ja þ

3
2

1
1�W

WjlWjm �
1
2
dl

mW
jaWja

� �� 

þ j2 gjlgjm �
1
2
dl

m g
jagja � dl

m Veff

� �

s ; Veff ¼
2�W

2
V ; ð8:129Þ

where we defined a new field W ¼ 1� X2 which we refer to by the name
‘‘radion’’. The bulk scalar field induces the energy-momentum tensor of the
conventional 4-dimensional scalar field with the effective potential which depends
on the radion.

We can also determine the dark radiation vl
m by eliminating Gl

mðhÞ from Eqs.
8.127 and 8.128,

2
‘
vl

m ¼ �
1
W

Wjljm � dl
mW
ja
ja þ

3
2

1
1�W

WjlWjm �
1
2
dl

mW
jaWja

� �� 

þ j2

2
ð1�WÞdl

m V � j2

‘

1�W
W

T
�

l
m þ 1�Wð ÞT

�
l
m

� 

: ð8:130Þ

Due to the property vl
l ¼ 0, we have

hW ¼ j2

3‘
ð1�WÞ T

�
þ ð1�WÞT

�
� 

� 1
2ð1�WÞW

jaWja �
2j2

3
Wð1�WÞV :

ð8:131Þ
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Note that Eqs. 8.129 and 8.131 are derived from a scalar-tensor type theory
coupled to the additional scalar field.

Similarly, the equations for the scalar field on branes become

hhg�
V 0

2
þ 2
‘

C ¼ 0; ð8:132Þ

hf g�
V 0

2
þ 2
‘

C

X4 ¼ 0; ð8:133Þ

where the subscripts refer to the induced metric on each brane. Notice that the
scalar field takes the same value for both branes at this order. Eliminating the dark
source C from these Eqs. 8.132 and 8.133, we find the equation for the scalar field
takes the form

hhg� V 0eff ¼ �
Wjl

W
gjl: ð8:134Þ

Notice that the radion acts as a source for g. And we can also get the dark source as

2
‘

C ¼ �V 0

2
ð1�WÞ þWjl

W
gjl: ð8:135Þ

Now the effective action for the positive tension brane which gives Eqs. 8.129,
8.131 and 8.134 can be read off as

S ¼ ‘

2j2

Z

d4x
ffiffiffiffiffiffiffi

�h
p

WR� 3
2ð1�WÞW

jaWja � j2W gjagja þ 2Veffðg;WÞ
� �

� 

þ
Z

d4x
ffiffiffiffiffiffiffi

�h
p

L
�
þ
Z

d4x
ffiffiffiffiffiffiffi

�h
p

ð1�WÞ2L
�
;

ð8:136Þ

where the last two terms represent actions for the matter on each brane. Thus, we
found the radion field couples with the induced metric and the induced scalar field
on the brane non-trivially. Surprisingly, at this order, the nonlocality of vlm and C
are eliminated by the radion. We see the radion has a conformal coupling.
However, in the present case, the radion couples to the dilaton field which breaks a
conformal invariance. Hence, this gives non-conformal holography.

As this is a closed system, we can analyze a primordial spectrum to predict the
cosmic background fluctuation spectrum [71]. Interestingly, vl

m and C vanishes in
the single brane limit, W! 1, as can be seen from (8.130) and (8.135). The
dynamics is simply governed by Einstein theory with the single scalar field.
Therefore, we can conclude that the bulk inflaton can drive inflation when the slow
role conditions are satisfied.
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8.9.3 AdS/CFT and KK Corrections: Single-Brane Cases

It would be important to take into account the KK effects as corrections to the
leading order result. It can be accomplished in the single-brane models. Using our
approach, in the single brane limit, we can deduce the effective action with KK
corrections as [47, 72] (see also [73, 74])

S ¼ ‘

2j2

Z

d4x
ffiffiffiffiffiffiffi

�h
p

1þ ‘2

12
j2V

� �

R� j2 1þ ‘2

12
j2V � ‘

2

4
V 00

� �

gjagja

�

�2j2Veff �
‘2

4
RabRab �

1
3

R2

� �

þ
Z

d4x
ffiffiffiffiffiffiffi

�h
p

Lmatter þ SCFT;

ð8:137Þ

where the last term comes from the energy-momentum tensor of CFT matter slm

and the effective potential at this order is defined by

Veff ¼
1
2

V þ ‘
2j2

48
V2 � ‘2

64
V 02: ð8:138Þ

It is interesting to note that the effective potential contains the terms which
looks like F-terms in supersymmetric models.

Thus, even in the dilatonic braneworld, the AdS/CFT correspondence seems to
play an important role in the single-brane case.

8.10 Conclusion

In this lecture, I have reviewed the gradient expansion method in the context of
braneworlds. Using the formalism, I have tried to explain how the AdS/CFT
correspondence is related to the braneworld models.

In the case of the RS single-brane model, we clarified when the conventional
Einstein equations hold at low energy. Moreover, we revealed the relation between
the geometrical and the AdS/CFT correspondence approach using the gradient
expansion method. We have shown that the high energy and the Weyl term
corrections found in the geometrical approach correspond to the CFT matter
corrections found in the AdS/CFT approach.

In the case of the RS two-brane sysytem, we showed that the AdS/CFT cor-
respondence plays an important role in the sense that the low energy effective field
theory can be described by the conformally coupled scalar-tensor theory where the
radion plays the role of the scalar field. We also presented the symmetry method to
derive KK corrections in the two-brane system.

These effective theories for RS braneworlds can be used to make cosmological
predictions. More importantly, it turned out that the gradient expansion method
provides a unified view of RS braneworlds.
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We have also considered the bulk scalar field with a nontrivial potential and
derived the non-linear low energy effective action for the dilatonic two-brane
model using the gradient expansion method. As a result, we have shown that the
effective theory reduces to the scalar-tensor theory with the non-trivial coupling
between the radion and the bulk scalar field. Since the radion has a conformal
coupling, the conformal symmetry is relevant even for the dilatonic braneworlds.
In this sense, the AdS/CFT correspondence is related to dilatonic braneworlds.
However, the radion couples to the scalar field which is non-conformal. Hence, the
conformal invariance is violated.

Our phenomenological motivation to consider dilatonic braneworlds was a
possibility of the bulk inflaton. Concerning to this issue, taking into account the
fact that vlm and C becomes zero when two branes get separated infinitely, one can
conclude that the bulk inflaton can drive the inflation on the brane as far as the
slow roll conditions are satisfied. We also obtained KK corrections in the single
brane limit which contain CFT corrections.

These results tell us that there exist profound relations between braneworlds
and the AdS/CFT correspondence, although the correspondence is slightly
deformed in the dilatonic cases.

In this lecture, we have considered only codimesion-one braneworlds. It is
important to extend the analysis to higher codimension models [75–84]. It is
intriguing to study a role of the AdS/CFT correspondence in these higher codi-
mension braneworlds.
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Chapter 9
Condensed Matter and AdS/CFT

Subir Sachdev

Abstract I review two classes of strong coupling problems in condensed matter
physics, and describe insights gained by application of the AdS/CFT correspon-
dence. The first class concerns non-zero temperature dynamics and transport in the
vicinity of quantum critical points described by relativistic field theories. I describe
how relativistic structures arise in models of physical interest, present results for
their quantum critical crossover functions and magneto-thermoelectric hydrody-
namics. The second class concerns symmetry breaking transitions of two-dimen-
sional systems in the presence of gapless electronic excitations at isolated points or
along lines (i.e. Fermi surfaces) in the Brillouin zone. I describe the scaling
structure of a recent theory of the Ising-nematic transition in metals, and discuss its
possible connection to theories of Fermi surfaces obtained from simple AdS duals.

9.1 Introduction

The past couple of decades have seen vigorous theoretical activity on the quantum
phases and phase transitions of correlated electron systems in two spatial
dimensions. Much of this work has been motivated by the cuprate superconduc-
tors, but the list of interesting materials continues to increase unabated [1].

Methods from field theory have had a strong impact on much of this work.
Indeed, they have become part of the standard toolkit of condensed matter phys-
icists. In these lectures, I focus on two classes of strong-coupling problems which
have not yielded accurate solutions via the usual arsenal of field-theoretic methods.
I will also discuss how the AdS/CFT correspondence, discovered by string
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theorists, has already allowed substantial progress on some of these problems, and
offers encouraging prospects for future progress.

The first class of strong-coupling problems are associated with the real-time,
finite temperature behavior of strongly interacting quantum systems, especially
those near quantum critical points. Field-theoretic or numerical methods often
allow accurate determination of the zero temperature or of imaginary time cor-
relations at non-zero temperatures. However, these methods usual fail in the real-
time domain at non-zero temperatures, particularly at times greater than �h=kBT ,
where T is the absolute temperature. In systems near quantum critical points the
natural scale for correlations is �h=kBT itself, and so lowering the temperature in a
numerical study does not improve the situation.

The second class of strong-coupling problems arise near two-dimensional
quantum critical points with fermionic excitations. When the fermions have a
massless Dirac spectrum, with zero excitation energy at a finite number of points
in the Brillouin zone, conventional field-theoretic methods do allow significant
progress. However, in metallic systems, the fermionic excitations have zeros along
a line in the Brillouin zone (the Fermi surface), allowing a plethora of different low
energy modes. Metallic quantum critical points play a central role in many
experimental systems, but the interplay between the critical modes and the Fermi
surface has not been fully understood (even at zero temperature). Readers inter-
ested only in this second class of problems can jump ahead to Sect. 9.7.

These lectures will start with a focus on the first class of strong-coupling
problems. We will begin in Sect. 9.2 by introducing a variety of model systems
and their quantum critical points; these are motivated by recent experimental and
theoretical developments. We will use these systems to introduce basic ideas on
the finite temperature crossovers near quantum critical points in Sect. 9.3. In Sect.
9.4, we will focus on the important quantum critical region and present a general
discussion of its transport properties. An important recent development has been
the complete exact solution, via the AdS/CFT correspondence, of the dynamic and
transport properties in the quantum critical region of a variety of (supersymmetric)
model systems in two and higher dimensions: this will be described in Sect. 9.5.
The exact solutions are found to agree with the earlier general ideas discussed here
in Sect. 9.4. As has often been the case in the history of physics, the existence of a
new class of solvable models leads to new and general insights which apply to a
much wider class of systems, almost all of which are not exactly solvable. This has
also been the case here, as we will review in Sect. 9.6: a hydrodynamic theory of
the low frequency transport properties has been developed, and has led to new
relations between a variety of thermo-electric transport co-efficients.

The latter part of these lectures will turn to the second class of strong coupling
problems, by describing the role offermions near quantum critical points. In Sect. 9.7
we will consider some simple symmetry breaking transitions in d-wave supercon-
ductors. Such superconductors have fermionic excitations with a massless Dirac
spectrum, and we will show how they become critical near the quantum phase
transition. We will review how the field-theoretic 1=N expansion does allow solution
of a large class of such problems. Finally, in Sect. 9.8 we will consider phase
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transitions of metallic systems with Fermi surfaces. We will discuss how the 1=N
expansion fails here, and review the results of recent work involving the AdS/CFT
correspondence.

Some portions of the discussions below have been adapted from other review
articles by the author [2, 3].

9.2 Model Systems and Their Critical Theories

9.2.1 Coupled Dimer Antiferromagnets

Some of the best studied examples of quantum phase transitions arise in insulators
with unpaired S ¼ 1=2 electronic spins residing on the sites, i, of a regular lattice.
Using Sa

i (a ¼ x; y; z) to represent the spin S ¼ 1=2 operator on site i, the low
energy spin excitations are described by the Heisenberg exchange Hamiltonian

HJ ¼
X

i\j

JijS
a
i � Sa

j þ � � � ð9:1Þ

where Jij [ 0 is the antiferromagnetic exchange interaction. We will begin with a
simple realization of this model is illustrated in Fig. 9.1. The S ¼ 1=2 spins reside
on the sites of a square lattice, and have nearest neighbor exchange equal to either
J or J=k. Here k� 1 is a tuning parameter which induces a quantum phase tran-
sition in the ground state of this model.

At k ¼ 1, the model has full square lattice symmetry, and this case is known to
have a Néel ground state which breaks spin rotation symmetry. This state has a
checkerboard polarization of the spins, just as found in the classical ground state,
and as illustrated on the left side of Fig. 9.1. It can be characterized by a vector
order parameter ua which measures the staggered spin polarization

λλc

Fig. 9.1 The coupled dimer antiferromagnet. The full red lines represent an exchange interaction
J, while the dashed green lines have exchange J=k. The ellispes represent a singlet valence bond
of spins ðj "#i � j #"iÞ=

ffiffiffi

2
p
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ua ¼ giS
a
i ð9:2Þ

where gi ¼ �1 on the two sublattices of the square lattice. In the Néel state we have
huai 6¼ 0, and we expect that the low energy excitations can be described by long
wavelength fluctuations of a field uaðx; sÞ over space, x, and imaginary time s.

On the other hand, for k� 1 it is evident from Fig. 9.1 that the ground state
preserves all symmetries of the Hamiltonian: it has total spin S ¼ 0 and can be
considered to be a product of nearest neighbor singlet valence bonds on the J links.
It is clear that this state cannot be smoothly connected to the Néel state, and so
there must at least one quantum phase transition as a function k.

Extensive quantum Monte Carlo simulations [4–6] on this model have shown
there is a direct phase transition between these states at a critical kc, as in Fig. 9.1.
The value of kc is known accurately, as are the critical exponents characterizing a
second-order quantum phase transition. These critical exponents are in excellent
agreement with the simplest proposal for the critical field theory, [6] which can be
obtained via conventional Landau-Ginzburg arguments. Given the vector order
parameter ua, we write down the action in d spatial and one time dimension,

SLG ¼
Z

ddrds
1
2
ðosu

aÞ2 þ v2ðruaÞ2 þ sðuaÞ2
h i

þ u

4
ðuaÞ2
h i2

� �

; ð9:3Þ

as the simplest action expanded in gradients and powers of ua which is consistent
will all the symmetries of the lattice antiferromagnet. The transition is now tuned
by varying s�ðk� kcÞ. Notice that this model is identical to the Landau-Ginzburg
theory for the thermal phase transition in a d þ 1 dimensional ferromagnet,
because time appears as just another dimension. As an example of the agreement:
the critical exponent of the correlation length, m, has the same value, m ¼ 0:711. . .,
to three significant digits in a quantum Monte Carlo study of the coupled dimer
antiferromagnet, [6] and in a 5-loop analysis [7] of the renormalization group fixed
point of SLG in d ¼ 2. Similar excellent agreement is obtained for the double-layer
antiferromagnet [8, 9] and the coupled-plaquette antiferromagnet [10].

In experiments, the best studied realization of the coupled-dimer antiferro-
magnet is TlCuCl3. In this crystal, the dimers are coupled in all three spatial
dimensions, and the transition from the dimerized state to the Néel state can be
induced by application of pressure. Neutron scattering experiments by Ruegg and
collaborators [11] have clearly observed the transformation in the excitation
spectrum across the transition, and these observations are in good quantitative
agreement with theory [1].

9.2.2 Deconfined Criticality

We now consider an analog of transition discussed in Sect. 9.2.1, but for a
Hamiltonian H ¼ H0 þ kH1 which has full square lattice symmetry at all k. For
H0, we choose a form of HJ , with Jij ¼ J for all nearest neighbor links. Thus at
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k ¼ 0 the ground state has Néel order, as in the left panel of Fig. 9.1. We now want
to choose H1 so that increasing k leads to a spin singlet state with spin rotation
symmetry restored. A large number of choices have been made in the literature,
and the resulting ground state invariably [12] has valence bond solid (VBS) order;
a VBS state has been observed in the organic antiferromagnet EtMe3P½Pd(dmit)2�2
[13, 14]. The VBS state is superficially similar to the dimer singlet state in the right
panel of Fig. 9.1: the spins primarily form valence bonds with near-neighbor sites.
However, because of the square lattice symmetry of the Hamiltonian, a columnar
arrangement of the valence bonds as in Fig. 9.1, breaks the square lattice rotation
symmetry; there are 4 equivalent columnar states, with the valence bond columns
running along different directions. More generally, a VBS state is a spin singlet
state, with a non-zero degeneracy due to a spontaneously broken lattice symmetry.
Thus a direct transition between the Néel and VBS states involves two distinct
broken symmetries: spin rotation symmetry, which is broken only in the Néel state,
and a lattice rotation symmetry, which is broken only in the VBS state. The rules
of Landau-Ginzburg-Wilson theory imply that there can be no generic second-
order transition between such states.

It has been argued that a second-order Néel-VBS transition can indeed occur
[15], but the critical theory is not expressed directly in terms of either order
parameter. It involves a fractionalized bosonic spinor zaða ¼"; #Þ, and an emergent
gauge field Al. The key step is to express the vector field ua in terms of za by

ua ¼ z	ar
a
abzb ð9:4Þ

where ra are the 2
 2 Pauli matrices. Note that this mapping from ua to za is
redundant. We can make a spacetime-dependent change in the phase of the za by
the field hðx; sÞ

za ! eihza ð9:5Þ

and leave ua unchanged. All physical properties must therefore also be invariant
under Eq. 9.5, and so the quantum field theory for za has a U(1) gauge invariance,
much like that found in quantum electrodynamics. The effective action for the za

therefore requires introduction of an ‘emergent’ U(1) gauge field Al (where
l ¼ x; s is a three-component spacetime index). The field Al is unrelated the
electromagnetic field, but is an internal field which conveniently describes the
couplings between the spin excitations of the antiferromagnet. As we did for SLG,
we can write down the quantum field theory for za and Al by the constraints of
symmetry and gauge invariance, which now yields

Sz ¼
Z

d2rds jðol � iAlÞzaj2 þ sjzaj2 þ uðjzaj2Þ2 þ
1

2g2
ð�lmkomAkÞ2

� �

ð9:6Þ

For brevity, we have now used a ‘‘relativistically’’ invariant notation, and scaled
away the spin-wave velocity v; the values of the couplings s; u are different from,
but related to, those in SLG. The Maxwell action for Al is generated from short
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distance za fluctuations, and it makes Al a dynamical field; its coupling g is
unrelated to the electron charge. The action Sz is a valid description of the Néel
state for s\0 (the critical upper value of s will have fluctuation corrections away
from 0), where the gauge theory enters a Higgs phase with hzai 6¼ 0. This
description of the Néel state as a Higgs phase has an analogy with the Weinberg-
Salam theory of the weak interactions—in the latter case it is hypothesized that the
condensation of a Higgs boson gives a mass to the W and Z gauge bosons, whereas
here the condensation of za quenches the Al gauge boson. As written, the s [ 0
phase of Sz is a ‘spin liquid’ state with a S ¼ 0 collective gapless excitation
associated with the Al photon. Non-perturbative effects [12] associated with the
monopoles in Al (not discussed here), show that this spin liquid is ultimately
unstable to the appearance of VBS order.

Numerical studies of the Néel-VBS transition have focussed on a specific lattice
antiferromagnet proposed by Sandvik [16–19]. There is strong evidence for VBS
order proximate to the Néel state, along with persuasive evidence of a second-
order transition. However, some studies [20, 21] support a very weak first order
transition.

9.2.3 Graphene

The last few years have seen an explosion in experimental and theoretical studies
[22] of graphene: a single hexagonal layer of carbon atoms. At the currently
observed temperatures, there is no evident broken symmetry in the electronic
excitations, and so it is not conventional to think of graphene as being in the
vicinity of a quantum critical point. However, graphene does indeed undergo a
bona fide quantum phase transition, but one without any order parameters or
broken symmetry. This transition may be viewed as being ‘topological’ in char-
acter, and is associated with a change in nature of the Fermi surface as a function
of carrier density.

Pure, undoped graphene has a conical electronic dispersion spectrum at two
points in the Brillouin zone, with the Fermi energy at the particle-hole symmetric
point at the apex of the cone. So there is no Fermi surface, just a Fermi point,
where the electronic energy vanishes, and pure graphene is a ‘semi-metal’. By
applying a gate voltage, the Fermi energy can move away from this symmetric
point, and a circular Fermi surface develops, as illustrated in Fig. 9.2. The Fermi
surface is electron-like for one sign of the bias, and hole-like for the other sign.
This change from electron to hole character as a function of gate voltage consti-
tutes the quantum phase transition in graphene. As we will see below, with regard
to its dynamic properties near zero bias, graphene behaves in almost all respects
like a canonical quantum critical system.

The field theory for graphene involves fermionic degrees of freedom. Repre-
senting the electronic orbitals near one of the Dirac points by the two-component
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fermionic spinor Ws, where s is a sublattice index (we suppress spin and ‘valley’
indices), we have the effective electronic action

SW ¼
Z

d2r

Z

ds Wys ðos þ iAs � lÞdss0 þ ivFsx
ss0ox þ ivFsy

ss0oy

� �

Ws0

þ 1
2g2

Z

d2q

4p2

Z

ds
q

2p
Asðq; sÞj j2; ð9:7Þ

where si
ss0 are Pauli matrices in the sublattice space, l is the chemical potential, vF

is the Fermi velocity, and As is the scalar potential mediating the Coulomb
interaction with coupling g2 ¼ e2=� (� is a dielectric constant). This theory
undergoes a quantum phase transition as a function of l, at l ¼ 0, similar in many
ways to that of SLG as a function of s. The interaction between the fermionic
excitations here has coupling g2, which is the analog of the non-linearity u in SLG.
The strength of the interactions is determined by the dimensionless ‘fine structure
constant’ a ¼ g2=ð�hvFÞ which is of order unity in graphene. While u flows to a
non-zero fixed point value under the renormalization group, a flows logarithmi-
cally slowly to zero. For many purposes, it is safe to ignore this flow, and to set a
equal to a fixed value.

9.3 Finite Temperature Crossovers

The previous section has described four model systems at T ¼ 0: we examined the
change in the nature of the ground state as a function of some tuning parameter,
and motivated a quantum field theory which describes the low energy excitations
on both sides of the quantum critical point.

Fig. 9.2 Dirac dispersion
spectrum for graphene
showing a ‘topological’
quantum phase transition
from a hole Fermi surface for
l\0 to a electron Fermi
surface for l [ 0
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We now turn to the important question of the physics at non-zero temperatures.
All of the models share some common features, which we will first explore for the
coupled dimer antiferromagnet. For k[ kc (or s [ 0 in SLG), the excitations
consist of a triplet of S ¼ 1 particles (the ‘triplons’), which can be understood
perturbatively in the large k expansion as an excited S ¼ 1 state on a dimer,
hopping between dimers (see Fig. 9.3). The mean field theory tells us that the
excitation energy of this dimer vanishes as

ffiffi

s
p

upon approaching the quantum
critical point. Fluctuations beyond mean field, described by SLG, show that the
exponent is modified to szm, where z ¼ 1 is the dynamic critical exponent, and m is
the correlation length exponent. Now imagine turning on a non-zero temperature.
As long as T is smaller than the triplon gap, i.e. T\szm, we expect a description in
terms of a dilute gas of thermally excited triplon particles. This leads to the
behavior shown on the right-hand-side of Fig. 9.3, delimited by the crossover
indicted by the dashed line. Note that the crossover line approaches T ¼ 0 only at
the quantum critical point.

Now let us look a the complementary behavior at T [ 0 on the Néel-ordered
side of the transition, with s\0. In two spatial dimensions, thermal fluctuations
prohibit the breaking of a non-Abelian symmetry at all T [ 0, and so spin rotation
symmetry is immediately restored. Nevertheless, there is an exponentially large
spin correlation length, n, and at distances shorter than n we can use the ordered
ground state to understand the nature of the excitations. Along with the spin-
waves, we also found the longitudinal ‘Higgs’ mode with energy

ffiffiffiffiffiffiffiffi

�2s
p

in mean
field theory. Thus, just as was this case for s [ 0, we expect this spin-wave+Higgs
picture to apply at all temperatures lower than the natural energy scale; i.e. for
T\ð�sÞzm. This leads to the crossover boundary shown on the left-hand-side of
Fig. 9.3.

Having delineated the physics on the two sides of the transition, we are left with
the crucial quantum critical region in the center of Fig. 9.3. This is present for

Classical
spin

waves

Dilute
triplon
gas

Quantum
critical

Neel order

Fig. 9.3 Finite temperature
crossovers of the coupled
dimer antiferromagnet in
Fig. 9.1
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T [ jsjzm, i.e. at higher temperatures in the vicinity of the quantum critical point.
To the left of the quantum critical region, we have a description of the dynamics
and transport in terms of an effectively classical model of spin waves: this is the
‘renormalized classical’ regime of [23]. To the right of the quantum critical region,
we again have a regime of classical dynamics, but now in terms of a Boltzmann
equation for the triplon particles. A key property of quantum critical region is that
there is no description in terms of either classical particles or classical waves at the
times of order the typical relaxation time, sr, of thermal excitations. Instead,
quantum and thermal effects are equally important, and involve the non-trivial
dynamics of the fixed-point theory describing the quantum critical point. Note that
while the fixed-point theory applies only at a single point (k ¼ kc) at T ¼ 0, its
influence broadens into the quantum critical region at T [ 0. Because there is no
characteristing energy scale associated with the fixed-point theory, kBT is the only
energy scale available to determine sr at non-zero temperatures. Thus, in the
quantum critical region [24, 25]

sr ¼ C
�h

kBT
ð9:8Þ

where C is a universal constant dependent only upon the universality class of the
fixed point theory i:e: it is universal number just like the critical exponents. This
value of sr determines the ‘friction coefficients’ associated with the dissipative
relaxation of spin fluctuations in the quantum critical region. It is also important
for the transport co-efficients associated with conserved quantities, and this will be
discussed in Sect. 9.4

Let us now consider the similar T [ 0 crossovers for the other models of
Sect. 9.2.

The Néel-VBS transition of Sect. 9.2.2 has crossovers very similar to those in
Fig. 9.3, with one important difference. The VBS state breaks a discrete lattice
symmetry, and this symmetry remains broken for a finite range of non-zero
temperatures. Thus, within the right-hand ’triplon gas’ regime of Fig. 9.3, there is
a phase transition line at a critical temperature TVBS. The value of TVBS vanishes
very rapidly as s& 0, and is controlled by the non-perturbative monopole effects
which were briefly noted in Sect. 9.2.2.

For graphene, the discussion above applied to Fig. 9.2 leads to the crossover
diagram shown in Fig. 9.4, as noted by Sheehy and Schmalian [26]. We have the
Fermi liquid regimes of the electron- and hole-like Fermi surfaces on either side of
the critical point, along with an intermediate quantum critical Dirac liquid. A new
feature here is related to the logarithmic flow of the dimensionless ‘fine structure
constant’ a controlling the Coulomb interactions, which was noted in Sect. 9.2.3.
In the quantum critical region, this constant takes the typical value a� 1= lnð1=TÞ.
Consequently for the relaxation time in Eq. 9.8 we have C� ln2ð1=TÞ. This time
determines both the width of the electron spectral functions, and also the transport
co-efficients, as we will see in Sect. 9.4.
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9.4 Quantum Critical Transport

We now turn to the ‘transport’ properties in the quantum critical region: we
consider the response functions associated with any globally conserved quantity.
For the antiferromagnetic systems in Sect. 9.2.1 and 9.2.2, this requires consid-
eration of the transport of total spin, and the associated spin conductivities and
diffusivities. For graphene, we can consider charge and momentum transport. Our
discussion below will also apply to the superfluid-insulator transition: for bosons
in a periodic potential, this transition is described [27] by a field theory closely
related to that in Eq. 9.3. However, we will primarily use a language appropriate to
charge transport in graphene below. We will describe the properties of a generic
strongly-coupled quantum critical point and mention, where appropriate, the
changes due to the logarithmic flow of the coupling in graphene.

In traditional condensed matter physics, transport is described by identifying
the low-lying excitations of the quantum ground state, and writing down ‘transport
equations’ for the conserved charges carried by them. Often, these excitations have
a particle-like nature, such as the ‘triplon’ particles of Fig. 9.3 or the electron or
hole quasiparticles of the Fermi liquids in Fig. 9.4. In other cases, the low-lying
excitations are waves, such as the spin-waves in Fig. 9.3, and their transport is
described by a non-linear wave equation (such as the Gross-Pitaevski equation).
However, as we have discussed in Sect. 9.3 neither description is possible in the
quantum critical region, because the excitations do not have a particle-like or
wave-like character.

Despite the absence of an intuitive description of the quantum critical
dynamics, we can expect that the transport properties should have a universal
character determined by the quantum field theory of the quantum critical point. In
addition to describing single excitations, this field theory also determines the
S-matrix of these excitations by the renormalization group fixed-point value of the
couplings, and these should be sufficient to determine transport properties [28].

Fig. 9.4 Finite temperature
crossovers of graphene as a
function of electron density n
(which is tuned by l in
Eq. 9.7) and temperature, T .
Adapted from [26]
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The transport co-efficients, and the relaxation time to local equilibrium, are not
proportional to a mean free scattering time between the excitations, as is the case
in the Boltzmann theory of quasiparticles. Such a time would typically depend
upon the interaction strength between the particles. Rather, the system behaves
like a ‘‘perfect fluid’’ in which the relaxation time is as short as possible, and is
determined universally by the absolute temperature, as indicated in Eq. 9.8.
Indeed, it was conjectured in [29] that the relaxation time in Eq. 9.8 is a generic
lower bound for interacting quantum systems. Thus the non-quantum-critical
regimes of all the phase diagrams in Sect. 9.3 have relaxation times which are all
longer than Eq. 9.8.

The transport co-efficients of this quantum-critical perfect fluid also do not
depend upon the interaction strength, and can be connected to the fundamental
constants of nature. In particular, the electrical conductivity, r, is given by (in two
spatial dimensions) [28]

rQ ¼
e	2

h
Ur; ð9:9Þ

where Ur is a universal dimensionless constant of order unity, and we have added
the subscript Q to emphasize that this is the conductivity for the case of graphene
with the Fermi level at the Dirac point (for the superfluid-insulator transition, this
would correspond to bosons at integer filling) with no impurity scattering, and at
zero magnetic field. Here e	 is the charge of the carriers: for a superfluid-insulator
transition of Cooper pairs, we have e	 ¼ 2e, while for graphene we have e	 ¼ e.
The renormalization group flow of the ‘fine structure constant’ a of graphene to
zero at asymptotically low T , allows an exact computation in this case [30–32]:
Ur � 0:05 ln2ð1=TÞ. For the superfluid-insulator transition, Ur is T-independent
(this is the generic situation with non-zero fixed point values of the interaction
[33]) but it has only been computed [28, 29] to leading order in expansions in 1=N
(where N is the number of order parameter components) and in 3� d (where d is
the spatial dimensionality). However, both expansions are neither straightforward
nor rigorous, and require a physically motivated resummation of the bare pertur-
bative expansion to all orders. It would therefore be valuable to have exact
solutions of quantum critical transport where the above results can be tested, and
we turn to such solutions in the next section.

In addition to charge transport, we can also consider momentum transport. This
was considered in the context of applications to the quark-gluon plasma [34];
application of the analysis of [28] shows that the viscosity, g, is given by

g
s
¼ �h

kB
Ug; ð9:10Þ

where s is the entropy density, and again Ug is a universal constant of order unity.
The value of Ug has recently been computed [35] for graphene, and again has a
logarithmic T dependence because of the marginally irrelevant interaction:
Ug � 0:008 ln2ð1=TÞ.
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We conclude this section by discussing some subtle aspects of the physics
behind the seemingly simple result quantum-critical in Eq. 9.9. For simplicity, we
will consider the case of a ‘‘relativistically’’ invariant quantum critical point in
2 + 1 dimensions (such as the field theories of Sects. 9.2.1 and 9.2.2, but mar-
ginally violated by graphene, a subtlety we ignore below). Consider the retarded
correlation function of the charge density, vðk;xÞ, where k ¼ jkj is the wave-
vector, and x is frequency; the dynamic conductivity, rðxÞ, is related to v by the
Kubo formula,

rðxÞ ¼ lim
k!0

�ix
k2

vðk;xÞ: ð9:11Þ

It was argued in [28] that despite the absence of particle-like excitations of the
critical ground state, the central characteristic of the transport is a crossover from
collisionless to collision-dominated transport. At high frequencies or low tem-
peratures, the limiting form for v reduces to that at T ¼ 0, which is completely
determined by relativistic and scale invariance and current conversion upto an
overall constant

vðk;xÞ ¼ e	2

h
K

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2k2 � ðxþ igÞ2
q ; rðxÞ ¼ e	2

h
K; �hx� kBT; ð9:12Þ

where K is a universal number [36, 37]. However, phase-randomizing collisions
are intrinsically present in any strongly interacting critical point (above one spatial
dimension) and these lead to relaxation of perturbations to local equilibrium and
the consequent emergence of hydrodynamic behavior. So at low frequencies, we
have instead an Einstein relation which determines the conductivity with

vðk;xÞ ¼ e	2vc
Dk2

Dk2 � ix
; rðxÞ ¼ e	2vcD ¼ e	2

h
H1H2; �hx� kBT; ð9:13Þ

where vc is the compressibility and D is the charge diffusion constant. Quantum
critical scaling arguments show that the latter quantities obey

vc ¼ H1
kBT

h2v2
; D ¼ H2

hv2

kBT
; ð9:14Þ

where H1;2 are universal numbers. A large number of papers in the literature,
particularly those on critical points in quantum Hall systems, have used the col-
lisionless method of Eq. 9.12 to compute the conductivity. However, the correct
d.c. limit is given by Eq. 9.13, and the universal constant in Eq. 9.9 is given by
Ur ¼ H1H2. Given the distinct physical interpretation of the collisionless and
collision-dominated regimes, we expect that K 6¼ H1H2. This has been shown in a
resummed perturbation expansion for a number of quantum critical points [29].
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9.5 Exact Results for Quantum Critical Transport

The results of Sect. 9.4 were obtained by using physical arguments to motivate
resummations of perturbative expansions. Here we shall support the ad hoc
assumptions behind these results by examining an exactly solvable model of
quantum critical transport.

The solvable model may be viewed as a generalization of the gauge theory in
Eq. 9.6 to the maximal possible supersymmetry. In 2 + 1 dimensions, this is known
as N ¼ 8 supersymmetry. Such a theory with the U(1) gauge group is free, and so
we consider the non-Abelian Yang-Millis theory with a SU(N) gauge group. The
resulting supersymmetric Yang-Mills (SYM) theory has only one coupling con-
stant, which is the analog of the electric charge g in Eq. 9.6. The matter content is
naturally more complicated than the complex scalar za in Eq. 9.6, and also
involves relativistic Dirac fermions as in Eq. 9.7. However all the terms in the
action for the matter fields are also uniquely fixed by the single coupling constant
g. Under the renormalization group, it is believed that g flows to an attractive fixed
point at a non-zero coupling g ¼ g	; the fixed point then defines a supersymmetric
conformal field theory in 2 + 1 dimensions (a SCFT3), and we are interested here
in the transport properties of this SCFT3.

A remarkable recent advance has been the exact solution of this SCFT3 in the
N !1 limit using the AdS/CFT correspondence [38]. The solution proceeds by a
dual formulation as a four-dimensional supergravity theory on a spacetime with
uniform negative curvature: anti-de Sitter space, or AdS4. Remarkably, the solu-
tion is also easily extended to non-zero temperatures, and allows direct compu-
tation of the correlators of conserved charges in real time. At T [ 0 a black hole
appears in the gravity, resulting in an AdS-Schwarzschild spacetime, and T is also
the Hawking temperature of the black hole; the real time solutions also extend to
T [ 0.

The results of a full computation [39] of the density correlation function,
vðk;xÞ are shown in Figs. 9.5 and 9.6. The most important feature of these results
is that the expected limiting forms in the collisionless (Eq. 9.12) and collision-
dominated (Eq. 9.13) are obeyed. Thus the results do display the collisionless to
collision-dominated crossover at a frequency of order kBT=�h, as was postulated in
Sect. 9.4.

An additional important feature of the solution is apparent upon describing the
full structure of both the density and current correlations. Using spacetime indices
(l; m ¼ t; x; y) we can represent these as the tensor vlmðk;xÞ, where the previously
considered v  vtt. At T [ 0, we do not expect vlm to be relativistically covariant,
and so can only constrain it by spatial isotropy and density conservation. Intro-
ducing a spacetime momentum pl ¼ ðx; kÞ, and setting the velocity v ¼ 1, these
two constraints lead to the most general form

vlmðk;xÞ ¼
e	2

h

ffiffiffiffiffi

p2
p

�

PT
lm KTðk;xÞ þ PL

lm KLðk;xÞ
�

ð9:15Þ
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where p2 ¼ glmplpm with glm ¼ diagð�1; 1; 1Þ, and PT
lm and PL

lm are orthogonal
projectors defined by

PT
00 ¼ PT

0i ¼ PT
i0 ¼ 0; PT

ij ¼ dij �
kikj

k2
; PL

lm ¼ glm �
plpm

p2

	 


� PT
lm; ð9:16Þ

with the indices i; j running over the two spatial components. The two functions
KT ;Lðk;xÞ define all the correlators of the density and the current, and the results
in Eqs. 9.13 and 9.12 are obtained by taking suitable limits of these functions. We
will also need below the general identity

KTð0;xÞ ¼ KLð0;xÞ; ð9:17Þ

which follows from the analyticity of the T [ 0 current correlations at k ¼ 0.

Fig. 9.6 As in Fig. 9.5, but
for the collision-dominated
regime

Fig. 9.5 Spectral weight of
the density correlation
function of the SCFT3 with
N ¼ 8 supersymmetry in the
collisionless regime
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The relations of the previous paragraph are completely general and apply to any
theory. Specializing to the AdS-Schwarzschild solution of SYM3, the results were
found to obey a simple and remarkable identity [39]:

KLðk;xÞKTðk;xÞ ¼ K2 ð9:18Þ

where K is a known pure number, independent of x and k. It was also shown that
such a relation applies to any theory which is equated to classical gravity on AdS4,
and is a consequence of the electromagnetic self-duality of its four-dimensional
Maxwell sector. The combination of Eqs. 9.17 and 9.18 fully determines the vlm

correlators at k ¼ 0: we find KLð0;xÞ ¼ KTð0;xÞ ¼ K, from which it follows that
the k ¼ 0 conductivity is frequency independent and that Ur ¼ H1H2 ¼ K ¼ K.
These last features are believed to be special to theories which are equivalent to
classical gravity, and not hold more generally.

We can obtain further insight into the interpretation of Eq. 9.18 by considering
the field theory of the superfluid-insulator transition of lattice bosons at integer
filling. As we noted earlier, this is given by the field theory in Eq. 9.3 with the field
ua having two components. It is known that this two-component theory of rela-

tivistic bosons is equivalent to a dual relativistic theory, eS of vortices, under the
well-known ‘particle-vortex’ duality [39, 40] considered the action of this particle-
vortex duality on the correlation functions in Eq. 9.15, and found the following
interesting relations:

KLðk;xÞeK Tðk;xÞ ¼ 1; KTðk;xÞeK Lðk;xÞ ¼ 1 ð9:19Þ

where eK L;T determine the vortex current correlations in eS as in Eq. 9.15. Unlike
Eq. 9.18, Eq. 9.19 does not fully determine the correlation functions at k ¼ 0: it

only serves to reduce the four unknown functions KL;T , eK L;T to two unknown

functions. The key property here is that while the theories SLG and eS are dual to
each other, they are not equivalent, and the theory SLG is not self-dual.

We now see that Eq. 9.18 implies that the classical gravity theory of SYM3 is
self-dual under an analog of particle-vortex duality [39]. It is not expected that this
self-duality will hold when quantum gravity corrections are included; equivalently,
the SYM3 at finite N is expected to have a frequency dependence in its conductivity
at k ¼ 0. If we apply the AdS/CFT correspondence to the superfluid-insulator
transition, and approximate the latter theory by classical gravity on AdS4, we
immediately obtain the self-dual prediction for the conductivity, Ur ¼ 1. This value
is not far from that observed in numerous experiments, and we propose here that the
AdS/CFT correspondence offers a rationale for understanding such observations.

9.6 Hydrodynamic Theory

The successful comparison between the general considerations of Sect. 9.4, and
the exact solution using the AdS/CFT correspondence in Sect. 9.5, emboldens us to
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seek a more general theory of low frequency (�hx� kBT) transport in the quantum
critical regime. We will again present our results for the special case of a rela-
tivistic quantum critical point in 2 + 1 dimensions (a CFT3), but it is clear that
similar considerations apply to a wider class of systems. Thus we can envisage
applications to the superfluid-insulator transition, and have presented scenarios
under which such a framework can be used to interpret measurements of the
Nernst effect in the cuprates [41]. We have also described a separate set of
applications to graphene [30–32]: while graphene is strictly not a CFT3, the Dirac
spectrum of electrons leads to many similar results, especially in the inelastic
collision-dominated regime associated with the quantum critical region. These
results on graphene are reviewed in a separate paper [42], where explicit micro-
scopic computations are also discussed.

Our idea is to relax the restricted set of conditions under which the results of
Sect. 9.4 were obtained. We will work within the quantum critical regimes of the
phase diagrams of Sect. 9.3 but now allow a variety of additional perturbations.
First, we will move away from the particle-hole symmetric case, allow a finite
density of carriers. For graphene, this means that l is no longer pinned at zero; for
the antiferromagnets, we can apply an external magnetic field; for the superfluid-
insulator transition, the number density need not be commensurate with the
underlying lattice. For charged systems, such as the superfluid-insulator transition
or graphene, we allow application of an external magnetic field. Finally, we also
allow a small density of impurities which can act as a sink of the conserved total
momentum of the CFT3. In all cases, the energy scale associated with these
perturbations is assumed to be smaller than the dominant energy scale of the
quantum critical region, which is kBT . The results presented below were obtained
in two separate computations, associated with the methods described in Sects. 9.4
and 9.5, and are described in the two subsections below.

9.6.1 Relativistic Magnetohydrodynamics

With the picture of relaxation to local equilibrium at frequencies �hx� kBT
developed in [28], we postulate that the equations of relativistic magnetohydro-
dynamics should describe the low frequency transport. The basic principles
involved in such a hydrodynamic computation go back to the nineteenth century:
conservation of energy, momentum, and charge, and the constraint of the positivity
of entropy production. Nevertheless, the required results were not obtained until
our recent work [41]: the general case of a CFT3 in the presence of a chemical
potential, magnetic field, and small density of impurities is very intricate, and the
guidance provided by the dual gravity formulation was very helpful to us. In this
approach, we do not have quantitative knowledge of a few transport co-efficients,
and this is complementary to our ignorance of the effective couplings in the dual
gravity theory to be discussed in Sect. 9.6.2.
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The complete hydrodynamic analysis can be found in [41]. The analysis is
intricate, but is mainly a straightforward adaption of the classic procedure outlined
by Kadanoff and Martin [43] to the relativistic field theories which describe
quantum critical points. We list the steps:

1. Identify the conserved quantities, which are the energy-momentum tensor, Tlm,
and the particle number current, Jl.

2. Obtain the real time equations of motion, which express the conservation laws:

omT
lm ¼ FlmJm; olJl ¼ 0; ð9:20Þ

here Flm represents the externally applied electric and magnetic fields which
can change the net momentum or energy of the system, and we have not written
a term describing momentum relaxation by impurities.

3. Identify the state variables which characterize the local thermodynamic state—
we choose these to be the density, q, the temperature T , and an average velocity
ul.

4. Express Tlm and Jl in terms of the state variables and their spatial and temporal
gradients; here we use the properties of the observables under a boost by the
velocity ul, and thermodynamic quantities like the energy density, e, and the
pressure, P, which are determined from T and q by the equation of state of
the CFT. We also introduce transport co-efficients associated with the gradient
terms.

5. Express the equations of motion in terms of the state variables, and ensure that
the entropy production rate is positive [44]. This is a key step which ensures
relaxation to local equilibrium, and leads to important constraints on the
transport co-efficients. In d ¼ 2, it was found that situations with the velocity ul

spacetime independent are characterized by only a single independent transport
co-efficient [41]. This we choose to be the longitudinal conductivity at B ¼ 0.

6. Solve the initial value problem for the state variables using the linearized
equations of motion.

7. Finally, translate this solution to the linear response functions, as described in
[43].

9.6.2 Dyonic Black Hole

Given the success of the AdS/CFT correspondence for the specific supersymmetric
model in Sect. 9.5, we boldly assume a similar correspondence for a generic CFT3.
We assume that each CFT3 is dual to a strongly-coupled theory of gravity on
AdS4. Furthermore, given the operators associated with the perturbations away
from the pure CFT3 we want to study, we can also deduce the corresponding
perturbations away from the dual gravity theory. So far, this correspondence is
purely formal and not of much practical use to us. However, we now restrict our
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attention to the hydrodynamic, collision dominated regime, �hx� kBT of the
CFT3. We would like to know the corresponding low energy effective theory
describing the quantum gravity theory on AdS4. Here, we make the simplest
possible assumption: the effective theory is just the Einstein-Maxwell theory of
general relativity and electromagnetism on AdS4. As in Sect. 9.5, the temperature
T of CFT3 corresponds to introducing a black hole on AdS4 whose Hawking
temperature is T . The chemical potential, l, of the CFT3 corresponds to an electric
charge on the black hole, and the applied magnetic field maps to a magnetic charge
on the black hole. Such a dynoic black hole solution of the Einstein-Maxwell
equations is, in fact, known: it is the Reissner-Nordstrom black hole.

We solved the classical Einstein-Maxwell equations for linearized fluctuations
about the metric of a dyonic black hole in a space which is asymptotically AdS4.
The results were used to obtain correlators of a CFT3 using the prescriptions of the
AdS/CFT mapping. As we have noted, we have no detailed knowledge of the
strongly-coupled quantum gravity theory which is dual to the CFT3 describing
the superfluid-insulator transition in condensed matter systems, or of graphene.
Nevertheless, given our postulate that its low energy effective field theory
essentially captured by the Einstein-Maxwell theory, we can then obtain a pow-
erful set of results for CFT3s.

9.6.3 Results

In the end, we obtained complete agreement between the two independent com-
putations in Sects. 9.6.1 and 9.6.2, after allowing for their distinct equations of
state. This agreement demonstrates that the assumption of a low energy Einstein-
Maxwell effective field theory for a strongly coupled theory of quantum gravity is
equivalent to the assumption of hydrodynamic transport for �hx� kBT in a
strongly coupled CFT3.

Finally, we turn to our explicit results for quantum critical transport with
�hx� kBT .

First, consider adding a chemical potential, l, to the CFT3. This will induce a
non-zero number density of carriers q. The value of q is defined so that the total
charge density associated with q is e	q. Then the electrical conductivity at a
frequency x is

rðxÞ ¼ e	2

h
Ur þ

e	2q2v2

ðeþ PÞ
1

ð�ixþ 1=simpÞ
: ð9:21Þ

In this section, we are again using the symbol v to denote the characteristic
velocity of the CFT3 because we will need c for the physical velocity of light
below. Here e is the energy density and P is the pressure of the CFT3. We have
assumed a small density of impurities which lead to a momentum relaxation time
simp [41, 45]. In general, Ur, q, e, P, and 1=simp will be functions of l=kBT which
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cannot be computed by hydrodynamic considerations alone. However, apart from
Ur, these quantities are usually amenable to direct perturbative computations in
the CFT3, or by quantum Monte Carlo studies. The physical interpretation of Eq.
9.21 should be evident: adding a charge density q leads to an additional Drude-like
contribution to the conductivity. This extra current cannot be relaxed by collisions
between the unequal density of particle and hole excitations, and so requires an
impurity relaxation mechanism to yield a finite conductivity in the d.c. limit.

Now consider thermal transport in a CFT3 with a non-zero l. The d.c. thermal
conductivity, j, is given by

j ¼ Ur
k2

BT

h

	 


eþ P

kBTq

	 
2

; ð9:22Þ

in the absence of impurity scattering, 1=simp ! 0. This is a Wiedemann-Franz-like
relation, connecting the thermal conductivity to the electrical conductivity in the
l ¼ 0 CFT. Note that j diverges as q! 0, and so the thermal conductivity of the
l ¼ 0 CFT is infinite.

Next, turn on a small magnetic field B; we assume that B is small enough that
the spacing between the Landau levels is not as large as kBT . The case of large
Landau level spacing is also experimentally important, but cannot be addressed by
the present analysis. Initially, consider the case l ¼ 0. In this case, the result
Eq. 9.22 for the thermal conductivity is replaced by

j ¼ 1
Ur

k2
BT

h

	 


eþ P

kBTB=ðhc=e	Þ

	 
2

ð9:23Þ

also in the absence of impurity scattering, 1=simp ! 0. This result relates j to the
electrical resistance at criticality, and so can be viewed as Wiedemann-Franz-like
relation for the vortices. A similar 1=B2 dependence of j appeared in the Boltz-
mann equation analysis of [46, 47], but our more general analysis applies in a
wider and distinct regime [30–32], and relates the co-efficient to other observables.

We have obtained a full set of results for the frequency-dependent thermo-
electric response functions at non-zero B and l. The results are lengthy and we
refer the reader to [41] for explicit expressions. Here we only note that the
characteristic feature [41, 48] of these results is a new hydrodynamic cyclotron
resonance. The usual cyclotron resonance occurs at the classical cyclotron fre-
quency, which is independent of the particle density and temperature; further, in a
Galilean-invariant system this resonance is not broadened by electron-electron
interactions alone, and requires impurities for non-zero damping. The situation for
our hydrodynamic resonance is very different. It occurs in a collision-dominated
regime, and its frequency depends on the density and temperature: the explicit
expression for the resonance frequency is
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xc ¼
e	Bqv2

cðeþ PÞ : ð9:24Þ

Further, the cyclotron resonance involves particle and hole excitations moving in
opposite directions, and collisions between them can damp the resonance even in
the absence of impurities. Our expression for this intrinsic damping frequency is
[41, 48]

c ¼ e	2

h
Ur

B2v2

c2ðeþ PÞ ; ð9:25Þ

relating it to the quantum-critical conductivity as a measure of collisions between
counter-propagating particles and holes. We refer the reader to a separate dis-
cussion [30–32] of the experimental conditions under which this hydrodynamic
cyclotron resonance may be observed.

9.7 d-Wave Superconductors

We now turn to the second class of strong-coupling problems outlined in Sect. 9.1:
those involving quantum critical points with fermionic excitations. This section
will consider the simpler class of problems in which the fermions have a Dirac
spectrum, and the field-theoretic 1=N expansion does allow for substantial
progress.

We will begin in Sect. 9.7.1 by an elementary discussion of the origin of these
Dirac fermions. Then we will consider two quantum phase transitions, both
involving a simple Ising order parameter. The first in Sect. 9.7.2, with time-
reversal symmetry breaking, leads to a relativistic quantum field theory closely
related to the Gross-Neveu model. The second model of Sect. 9.7.3 involves
breaking of a lattice rotation symmetry, leading to ‘‘Ising-nematic’’ order. The
theory for this model is not relativistically invariant: it is strongly coupled, but can
be controlled by a traditional 1=N expansion.

We note that symmetry breaking transitions in graphene are also described by
field theories similar to those discussed in this section [49, 50].

9.7.1 Dirac Fermions

We begin with a review of the standard BCS mean-field theory for a d-wave
superconductor on the square lattice, with an eye towards identifying the fermionic
Bogoliubov quasiparticle excitations. For now, we assume we are far from any
QPT associated with SDW, Ising-nematic, or other broken symmetries. We con-
sider the Hamiltonian
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HtJ ¼
X

k

ekcykacka þ J1

X

hiji
Si � Sj ð9:26Þ

where cja is the annihilation operator for an electron on site j with spin a ¼"; #, cka

is its Fourier transform to momentum space, ek is the dispersion of the electrons
(it is conventional to choose ek ¼ �2t1ðcosðkxÞ þ cosðkyÞÞ � 2t2ðcosðkx þ kyÞþ
cosðkx � kyÞÞ � l, with t1;2 the first/second neighbor hopping and l the chemical
potential), and the J1 term is similar to that in Eq. 9.1 with

Sja ¼
1
2

cyjar
a
abcjb ð9:27Þ

and ra the Pauli matrices. We will consider the consequences of the further
neighbor exchange interactions for the superconductor in Sect. 9.7.2 below.
Applying the BCS mean-field decoupling to HtJ we obtain the Bogoliubov
Hamiltonian

HBCS ¼
X

k

ekcykacka �
J1

2

X

jl

Dl cyj"c
y
jþl̂;# � cyj#c

y
jþl̂;"

� �

þ h.c.: ð9:28Þ

For a wide range of parameters, the ground state energy optimized by a dx2�y2

wavefunction for the Cooper pairs: this corresponds to the choice Dx ¼ �Dy ¼
Dx2�y2 . The value of Dx2�y2 is determined by minimizing the energy of the BCS
state

EBCS ¼ J1jDx2�y2 j2 �
Z

d2k

4p2
Ek � ek½ � ð9:29Þ

where the fermionic quasiparticle dispersion is

Ek ¼ e2
k þ J1Dx2�y2ðcos kx � cos kyÞ

�

�

�

�

2
h i1=2

: ð9:30Þ

The energy of the quasiparticles, Ek, vanishes at the four points ð�Q;�QÞ at
which ek ¼ 0. We are especially interested in the low energy quasiparticles in the
vicinity of these points, and so we perform a gradient expansion of HBCS near each
of them. We label the points Q1 ¼ ðQ;QÞ, Q2 ¼ ð�Q;QÞ, Q3 ¼ ð�Q;�QÞ, Q4 ¼
ðQ;�QÞ and write

cja ¼ f1aðrjÞeiQ1�rj þ f2aðrjÞeiQ2�rj þ f3aðrjÞeiQ3�rj þ f4aðrjÞeiQ4�rj ; ð9:31Þ

while assuming the f1�4;aðrÞ are slowly varying functions of x. We also introduce

the bispinors W1 ¼ ðf1"; f
y
3#; f1#;�f y3"Þ, and W2 ¼ ðf2"; f

y
4#; f2#;�f y4"Þ, and then

express HBCS in terms of W1;2 while performing a spatial gradient expansion. This
yields the following effective action for the fermionic quasiparticles:
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SW ¼
Z

dsd2r Wy1 os � i
vF
ffiffiffi

2
p ðox þ oyÞsz � i

vD
ffiffiffi

2
p ð�ox þ oyÞsx

	 


W1

�

þWy2 os � i
vF
ffiffiffi

2
p ð�ox þ oyÞsz � i

vD
ffiffiffi

2
p ðox þ oyÞsx

	 


W2

�

: ð9:32Þ

where the sx;z are 4
 4 matrices which are block diagonal, the blocks consisting of
2
 2 Pauli matrices. The velocities vF;D are given by the conical structure of Ek

near the Q1�4: we have vF ¼ jrkekjk¼Qa
j and vD ¼ jJ1Dx2�y2

ffiffiffi

2
p

sinðQÞj. In this

limit, the energy of the W1 fermionic excitations is Ek ¼ ðv2
Fðkx þ kyÞ2=2þ

v2
Dðkx � kyÞ2=2Þ1=2 (and similarly for W2), which is the spectrum of massless Dirac

fermions.

9.7.2 Time-Reversal Symmetry Breaking

We will consider a simple model in which the pairing symmetry of the super-
conductor changes from dx2�y2 to dx2�y2 � idxy. The choice of the phase between
the two pairing components leads to a breaking of time-reversal symmetry. Studies
of this transition were originally motivated by the cuprate phenomenology, but we
will not explore this experimental connection here because the evidence has
remained sparse.

The mean field theory of this transition can be explored entirely within the
context of BCS theory, as we will review below. However, fluctuations about the
BCS theory are strong, and lead to non-trivial critical behavior involving both
the collective order parameter and the Bogoliubov fermions: this is probably the
earliest known example [23, 51, 52] of the failure of BCS theory in two (or higher)
dimensions in a superconducting ground state. At T [ 0, this failure broadens into
the ‘‘quantum critical’’ region.

We extend HtJ in Eq. 9.26 so that BCS mean-field theory permits a region with
dxy superconductivity. With a J2 second neighbor interaction, Eq. 9.26 is modified
to:

eHtJ ¼
X

k

ekcykrckr þ J1

X

hiji
Si � Sj þ J2

X

nnn ij

Si � Sj: ð9:33Þ

We will follow the evolution of the ground state of eHtJ as a function of J2=J1.
The mean-field Hamiltonian is now modified from Eq. 9.28 to

eHBCS ¼
X

k

ekcykrckr �
J1

2

X

j;l

Dlðcyj"c
y
jþl̂;# � cyj#c

y
jþl̂;"Þ þ h.c.

� J2

2

X

j;m

0
Dmðcyj"c

y
jþm̂;# � cyj#c

y
jþm̂;"Þ þ h.c.; ð9:34Þ
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where the second summation over m is along the diagonal neighbors x̂þ ŷ and
�x̂þ ŷ. To obtain dxy pairing along the diagonals, we choose Dxþy ¼ �D�xþy ¼
Dxy. We summarize our choices for the spatial structure of the pairing amplitudes
(which determine the Cooper pair wavefunction) in Fig. 9.7. The values of Dx2�y2

and Dxy are to be determined by minimizing the ground state energy (generalizing
Eq. 9.29)

EBCS ¼ J1jDx2�y2 j2 þ J2jDxyj2 �
Z

d2k

4p2
Ek � ek½ � ð9:35Þ

where the quasiparticle dispersion is now (generalizing Eq. 9.30)

Ek ¼ e2
k þ J1Dx2�y2ðcos kx � cos kyÞ þ 2J2Dxy sin kx sin ky

�

�

�

�

2
h i1=2

: ð9:36Þ

Notice that the energy depends upon the relative phase of Dx2�y2 and Dxy: this
phase is therefore an observable property of the ground state.

It is a simple matter to numerically carry out the minimization of Eq. 9.36, and
the results for a typical choice of parameters are shown in Fig. 9.8 as a function
J2=J1. One of the two amplitudes Dx2�y2 or Dxy is always non-zero and so the
ground state is always superconducting. The transition from pure dx2�y2 super-
conductivity to pure dxy superconductivity occurs via an intermediate phase in
which both order parameters are non-zero. Furthermore, in this regime, their rel-
ative phase is found to be pinned to �p=2 i.e.

argðDxyÞ ¼ argðDx2�y2Þ � p=2: ð9:37Þ

The reason for this pinning can be intuitively seen from Eq. 9.36: only for these
values of the relative phase does the equation Ek ¼ 0 never have a solution. In
other words, the gapless nodal quasiparticles of the dx2�y2 superconductor acquire a
finite energy gap when a secondary pairing with relative phase �p=2 develops. By

Δx2-y2Δx2-y2

−Δx2-y2

−Δx2-y2

−Δxy

−Δxy

Δxy

Δxy

Fig. 9.7 Values of the
pairing amplitudes,
�hci"cj# � ci#cj"i with i the
central site, and j is one of its
eight near neighbors
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a level repulsion picture, we can expect that gapping out the low energy excitations
should help lower the energy of the ground state. The intermediate phase obeying
Eq. 9.37 is called a dx2�y2 þ idxy superconductor.

The choice of the sign in Eq. 9.37 leads to an overall two-fold degeneracy in the
choice of the wavefunction for the dx2�y2 þ idxy superconductor. This choice is
related to the breaking of time-reversal symmetry, and implies that the dx2�y2 þ
idxy phase is characterized by the non-zero expectation value of a Z2 Ising order
parameter; the expectation value of this order vanishes in the two phases (the
dx2�y2 and dxy superconductors) on either side of the dx2�y2 þ idxy superconductor.
As is conventional, we will represent the Ising order by a real scalar field /.
Fluctuations of / become critical near both of the phase boundaries in Fig. 9.8. As
we will explain below, the critical theory of the dx2�y2 to dx2�y2 þ idxy transition is

not the usual /4 field theory which describes the ordinary Ising transition in three
spacetime dimensions. (For the dispersion ek appropriate to the cuprates, the dxy

superconductor is fully gapped, and so the dx2�y2 þ idxy to dxy transition in Fig. 9.8
will be ordinary Ising.)

Near the phase boundary from dx2�y2 to dx2�y2 þ idxy superconductivity it is
clear that we can identify

/ ¼ iDxy; ð9:38Þ

0.000

0.010

0.020

0.030

0.40 0.50 0.60 0.70 0.80 0.90
J2

Δx2-y2

Δxy

dx2-y2 dx2-y2+idxy

dxy

Fig. 9.8 BCS solution of the phenomenological Hamiltonian eHtJ in Eq. 9.33. Shown are the
optimum values of the pairing amplitudes jDx2�y2 j and jDxyj as a function of J2 for t1 ¼ 1,
t2 ¼ �0:25, l ¼ �1:25, and J1 fixed at J1 ¼ 0:4. The relative phase of the pairing amplitudes
was always found to obey Eq. 9.37. The dashed lines denote locations of phase transitions
between dx2�y2 , dx2�y2 þ idxy, and dxy superconductors. The pairing amplitudes vanishes linearly
at the first transition corresponding to the exponent bBCS ¼ 1 in Eq. 9.40. The Brillouin zone
location of the gapless Dirac points in the dx2�y2 superconductor is indicated by filled circles. For
the dispersion ek appropriate to the cuprates, the dxy superconductor is fully gapped, and so the
second transition is ordinary Ising
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(in the gauge where Dx2�y2 is real). We can now expand EBCS in Eq. 9.35 for small
/ (with Dx2�y2 finite) and find a series with the structure [53, 54]

EBCS ¼ E0 þ s/2 þ vj/j3 þ . . .; ð9:39Þ

where s, v are coefficients and the ellipses represent regular higher order terms in
even powers of /; s can have either sign, whereas v is always positive. Notice the

non-analytic j/j3 term that appears in the BCS theory—this arises from an infrared
singularity in the integral in Eq. 9.35 over Ek at the four nodal points of the dx2�y2

superconductor, and is a preliminary indication that the transition differs from that
in the ordinary Ising model, and that the Dirac fermions play a central role. We can
optimize / by minimizing EBCS in Eq. 9.39— this shows that h/i ¼ 0 for s [ 0,
and h/i 6¼ 0 for s\0. So s�ðJ2=J1Þc � J2=J1 where ðJ2=J1Þc is the first critical
value in Fig. 9.8. Near this critical point, we find

h/i� ðsc � sÞb; ð9:40Þ

where we have allowed for the fact that fluctuation corrections will shift the
critical point from s ¼ 0 to s ¼ sc. The present BCS theory yields the exponent
bBCS ¼ 1; this differs from the usual mean-field exponent bMF ¼ 1=2, and this is of

course due to the non-analytic j/j3 term in Eq. 9.39.
We can now write down the required field theory of the onset of dxy order. In

addition to the order parameter /, the field theory should also involve the low
energy nodal fermions of the dx2�y2 superconductor, as described by SW in Eq.
9.32. For the / fluctuations, we write down the usual terms permitted near a phase
transition with Ising symmetry:

S/ ¼
Z

d2rds
1
2
ðos/Þ2 þ c2ðox/Þ2 þ c2ðoy/Þ2 þ s/2
� �

þ u

24
/4

� �

: ð9:41Þ

Note that, unlike Eq. 9.39, we do not have any non-analytic j/j3 terms in the
action: this is because we have not integrated out the low energy Dirac fermions,
and the terms in Eq. 9.41 are viewed as arising from high energy fermions away
from the nodal points. Finally, we need to couple the / and W1;2 excitations. Their
coupling is already contained in the last term in Eq. 9.34: expressing this in terms
of the W1;2 fermions using Eq. 9.31 we obtain

SW/ ¼ #xy

Z

d2rds / Wy1s
yW1 �Wy2s

yW2

� �h i

; ð9:42Þ

where #xy is a coupling constant. The partition function of the full theory is now

Zdid ¼
Z

D/DW1DW2 exp �SW � S/ � SW/
� 

; ð9:43Þ
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where SW was in Eq. 9.32. It can now be checked that if we integrate out the W1;2

fermions for a spacetime independent /, we do indeed obtain a j/j3 term in the
effective potential for /.

We begin our analysis of Zdid by assuming that the transition is described by a
fixed point with #xy ¼ 0: then the theory for the transition would be the ordinary

/4 field theory S/, and the nodal fermions would be innocent spectators. The
scaling dimension of / at such a fixed point is ð1þ gIÞ=2 (where gI is the
anomalous order parameter exponent at the critical point of the ordinary three
dimensional Ising model), while that of W1;2 is 1. Consequently, the scaling
dimension of #xy is ð1� gIÞ=2 [ 0. This positive scaling dimension implies that
#xy is relevant and the #xy ¼ 0 fixed point is unstable: the Dirac fermions are fully
involved in the critical theory.

Determining the correct critical behavior now requires a full renormalization
group analysis of Zdid. This has been described in some detail in [55], and we will
not reproduce the details here. The main result we need for our purposes is that
couplings #xy, u, vF=c and vD=c all reach non-zero fixed point values which define
a critical point in a new universality class. These fixed point values, and the
corresponding critical exponents, can be determined in expansions in either
ð3� dÞ [51, 52, 55] (where d is the spatial dimensionality) or 1=N [56] (where N is
the number of fermion species). An important simplifying feature here is that the
fixed point is actually relativistically invariant. Indeed the fixed point has the
structure of the so-called Higgs-Yukawa (or Gross-Neveu) model which has been
studied extensively in the particle physics literature [57] in a different physical
context: quantum Monte Carlo simulation of this model also exist [58], and pro-
vide probably the most accurate estimate of the exponents.

The non-trivial fixed point has strong implications for the correlations of the

Bogoliubov fermions. The fermion correlation function G1 ¼ hW1W
y
1i obeys

G1ðk;xÞ ¼
xþ vFkxsz þ vDsx

ðv2
Fk2

x þ v2
Dk2

y � x2Þð1�gf Þ=2
ð9:44Þ

at low frequencies for s� sc. Away from the critical point in the dx2�y2 super-
conductor with s [ sc, Eq. 9.44 holds with gf ¼ 0, and this is the BCS result, with
sharp quasi-particle poles in the Green’s function. At the critical point s ¼ sc

Eq. 9.44 holds with the fixed point values for the velocities (which satisfy
vF ¼ vD ¼ c) and with the anomalous dimension gf 6¼ 0—the ð3� dÞ expansion
[51, 52] estimate is gf � ð3� dÞ=14, and the 1=N expansion estimate [56] is

gf � 1=ð3p2NÞ, with N ¼ 2. This is clearly non-BCS behavior, and the fermionic
quasiparticle pole in the spectral function has been replaced by a branch-cut
representing the continuum of critical excitations. The corrections to BCS extend
also to correlations of the Ising order /: its expectation value vanishes as Eq. 9.40
with the Monte Carlo estimate b � 0:877 [58]. The critical point correlators of /
have the anomalous dimension g � 0:754 [58], which is clearly different from the
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very small value of the exponent gI at the unstable #xy ¼ 0 fixed point. The value
of b is related to g by the usual scaling law b ¼ ð1þ gÞm=2, with m � 1:00 the
correlation length exponent (which also differs from the exponent mI of the Ising
model).

9.7.3 Nematic Ordering

We now consider an Ising transition associated with ‘‘Ising-nematic’’ ordering in
the d-wave superconductor. This is associated with a spontaneous reduction of the
lattice symmetry of the Hamiltonian from ‘‘square’’ to ‘‘rectangular’’. Our study is
motivated by experimental observations of such a symmetry breaking in the
cuprate superconductors [59–61].

The ingredients of such an ordering are actually already present in our simple
review of BCS theory in Sect. 9.7.1. In Eq. 9.28, we introduce 2 variational pairing
amplitudes Dx and Dy. Subsequently, we assumed that the minimization of the
energy led to a solution with dx2�y2 pairing symmetry with Dx ¼ �Dy ¼ Dx2�y2 .
However, it is possible that upon including the full details of the microscopic
interactions we are led to a minimum where the optimal solution also has a small
amount of s-wave pairing. Then jDxj 6¼ jDyj, and we can expect all physical
properties to have distinct dependencies on the x and y co-ordinates. Thus, one

measure of the the Ising nematic order parameter is jDxj2 � jDyj2.
The derivation of the field theory for this transition follows closely our pre-

sentation in Sect. 9.7.2. We allow for small Ising-nematic ordering by introducing
a scalar field / and writing

Dx ¼ Dx2�y2 þ /; Dy ¼ �Dx2�y2 þ /: ð9:45Þ

The evolutions of the Dirac fermion spectrum under such a change is indicated in
Fig. 9.9. We now develop an effective action for / and the Dirac fermions W1;2.
The result is essentially identical to that in Sect. 9.7.2, apart from a change in the
structure of the Yukawa coupling. Thus we obtain a theory SW þ S/ þ SW/,
defined by Eqs. 9.32 and 9.41, and where Eq. 9.42 is now replaced by

Fig. 9.9 Phase diagram of
Ising nematic ordering in a
d-wave superconductor as a
function of the coupling s in
S/. The filled circles indicate
the location of the gapless
fermionic excitations in the
Brillouin zone. The two
choices for s\sc are selected
by the sign of h/i:
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SW/ ¼ #I

Z

d2rds / Wy1s
xW1 þWy2s

xW2

� �h i

: ð9:46Þ

The seemingly innocuous change between Eqs. 9.42 and 9.46 however has
strong consequences. This is partly linked to the fact with SW/ cannot be rela-
tivistically invariant even after all velocities are adjusted to equal. A weak-cou-
pling renormalization group analysis in powers of the coupling #I was performed
in ð3� dÞ dimensions in [51, 52, 55], and led to flows to strong coupling with no
accessible fixed point: thus no firm conclusions on the nature of the critical theory
were drawn.

This problem remained unsolved until the recent works of [62, 63]. It is
essential that there not be any expansion in powers of the coupling #I . This is
because it leads to strongly non-analytic changes in the structure of the / prop-
agator, which have to be included at all stages. In a model with N fermion flavors,
the 1=N expansion does avoid any expansion in #I . The renormalization group
analysis has to be carried out within the context of the 1=N expansion, and this
involves some rather technical analysis which is explained in [63]. In the end, an
asymptotically exact description of the vicinity of the critical point was obtained.
It was found that the velocity ratio vF=vD diverged logarithmically with energy
scale, leading to strongly anisotropic ‘arc-like’ spectra for the Dirac fermions.
Associated singularities in the thermal conductivity have also been computed [64].

9.8 Metals

This section considers symmetry breaking transitions in two-dimensional metals.
Away from the quantum critical point, the phases will be ordinary Fermi liquids.
We will be interested in the manner in which the Fermi liquid behavior breaks
down at the quantum critical point. Our focus will be exclusively on two spatial
dimensions: quantum phase transitions of metals in three dimensions are usually
simpler, and the traditional perturbative theory appears under control.

In Sect. 9.7 the fermionic excitations had vanishing energy only at isolated
nodal points in the Brillouin zone: see Figs. 9.8 and 9.9. Metals have fermionic
excitations with vanishing energy along a line in the Brillouin zone. Thus we can
expect them to have an even stronger effect on the critical theory. This will indeed
be the case, and we will be led to problems with a far more complex structure.
Unlike the situation in insulators and d-wave superconductor, many basic issues
associated with ordering transition in two dimensional metals have not been fully
resolved. The problem remains one of active research and is being addressed by
many different approaches. In recent papers [65, 66], Metlitski and the author have
argued that the problem is strongly coupled, and proposed field theories and
scaling structures for the vicinity of the critical point. We will review the main
ingredients for the transition involving Ising-nematic ordering in a metal. Thus the
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symmetry breaking will be just as in Sect. 9.7.3, but the fermionic spectrum will be
quite different. Our study here is also motivated by experimental observations in
the cuprate superconductors [59–61].

As in Sect. 9.7, let us begin by a description of the non-critical fermionic sector,
before its coupling to the order parameter fluctuations. We use the band structure
describing the cuprates in the over-doped region, well away from the Mott insu-
lator. Here the electrons cka are described by the kinetic energy in Eq. 9.26, which
we write in the following action

Sc ¼
Z

ds
X

k

cyka
o

os
þ ek

	 


cka; ð9:47Þ

As in Sect. 9.7.3, we will have an Ising order parameter represented by the real
scalar field /, which is described as before by S/ in Eq. 9.41. Its coupling to the
electrons can be deduced by symmetry considerations, and the most natural cou-
pling (the analog of Eqs. 9.46) is

Sc/ ¼
1
V

Z

ds
X

k;q

ðcos kx � cos kyÞ/ðqÞcykþq=2;ack�q=2;a: ð9:48Þ

where V is the volume. The momentum dependent form factor is the simplest
choice which changes sign under x$ y, as is required by the symmetry properties
of /. The sum over q is over small momenta, while that over k extends over the
entire Brillouin zone. The theory for the nematic ordering transition is now
described by Sc þ S/ þ Sc/. The phase diagram as a function of the coupling s in
S/ and temperature T is shown in Fig. 9.10. Note that there is a line of Ising phase
transitions at T ¼ Tc: this transition is in the same universality class as the classical
two-dimensional Ising model. However, quantum effects and fermionic excitations
are crucial at T ¼ 0 critical point at s ¼ sc and its associated quantum critical
region.

A key property of Eq. 9.48 is that small momentum critical / fluctuations can
efficiently scatter fermions at every point on the Fermi surface. Thus the non-
Fermi singularities in the fermion Green’s function will extend to all points on the
Fermi surface. This behavior is dramatically different from all the field theories we
have met so far, all of which had singularities only at isolated points in momentum
space. We evidently have to write down a long-wavelength theory which has
singularities along a line in momentum space.

We describe the construction of [65] of a field theory with this unusual prop-
erty. Pick a fluctuation of the order parameter / at a momentum q. As shown in
Fig. 9.11 this fluctuation will couple most efficiently to fermions near two points
on the Fermi surface, where the tangent to the Fermi surface is parallel to q.
A fermion absorbing momentum q at these points, changes its energy only by � q2;
at all other points on the Fermi surface the change is � q. Thus we are led to focus
on different points on the Fermi surface for each direction of q. In the continuum
limit, we will therefore need a separate field theory for each pair of points �k0 on
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the Fermi surface. We conclude that the quantum critical point is described by an
infinite number of field theories.

There have been earlier descriptions of Fermi surfaces by an infinite number of
field theories [67–73]. However many of these earlier works differ in a crucial
respect from the the theory to be presented here. They focus on the motion of
fermions transverse to Fermi surface, and so represent each Fermi surface point by
a 1 + 1 dimensional chiral fermion. Thus they have an infinite number of 1 + 1
dimensional field theories, labelled by points on the one dimensional Fermi sur-
face. The original problem was 2 + 1 dimensional, and so this conserves the total
dimensionality and the number of degrees of freedom. However, we have already

Fig. 9.11 A / fluctuation at
wavevector q couples most
efficiently to the fermions w�
near the Fermi surface points
�k0

Quantum
critical

Fig. 9.10 Phase diagram of Ising nematic ordering in a metal as a function of the coupling s in
S/ and temperature T . The Fermi surface for s [ 0 is as in the overdoped region of the cuprates,
with the shaded region indicating the occupied hole (or empty electron) states. The choice
between the two quadrapolar distortions of the Fermi surface is determined by the sign of h/i.
The line of T [ 0 phase transitions at Tc is described by Onsager’s solution of the classical two-
dimensional Ising model. We are interested here in the quantum critical point at s ¼ sc, which
controls the quantum-critical region
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argued above that the dominant fluctuations of the fermions are in a direction
transverse to the Fermi surface, and so we believe this earlier approach is not
suited for the vicinity of the nematic quantum critical point. As we will see in
Sect. 9.8.1, we will need an infinite number of 2 + 1 dimensional field theories
labelled by points on the Fermi surface. (Some of the earlier works included
fluctuations transverse to the Fermi surface [72, 73], but did not account for the
curvature of the Fermi surface; it is important to take the scaling limit at fixed
curvature, as we will see.) Thus we have an emergent dimension and a redundant
description of the degrees of freedom. We will see in Sect. 9.8.2 how compatibility
conditions ensure that the redundancy does not lead to any inconsistencies. The
emergent dimensionality suggests a connection to the AdS/CFT correspondence,
as will be discussed in Sect. 9.8.5.

9.8.1 Field Theories

Let us now focus on the vicinity of the points �k0, by introducing fermionic field
w� by

wþðkÞ ¼ ck0þk; w�ðkÞ ¼ c�k0þk: ð9:49Þ

Then we expand all terms in Sc þ S/ þ Sc/ in spatial and temporal gradients.
Using the co-ordinate system illustrated in Fig. 9.11, performing appropriate
rescaling of co-ordinates, and dropping terms which can later be easily shown to
be irrelevant, we obtain the 2 + 1 dimensional Lagrangian

L ¼ wyþa

�

fos � iox � o2
y

�

wþa þ wy�a

�

fos þ iox � o2
y

�

w�a

� k/ wyþawþa þ wy�aw�a

� 

þ N

2
ðoy/Þ2 þ

Ns

2
/2: ð9:50Þ

Here f, k and s are coupling constants, with s the tuning parameter across the
transition; we will see that all couplings apart from s can be scaled away or set
equal to unity. We now allow the spin index a ¼ 1; . . .;N, as we will be interested
in the structure of the large N expansion. Note that Eq. 9.50 has the same basic
structure as the models considered in Sect. 9.7, apart from differences in the spatial
gradients and the matrix structure. We will see that these seemingly minor dif-
ferences will completely change the physical properties and the nature of the large
N expansion.

9.8.2 Symmetries

A first crucial property of L is that the fermion Green’s functions do indeed have
singularities along a line in momentum space, as was required by our discussion
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above. This singularity is a consequence of the invariance of L under the following
transformation

/ðx; yÞ ! /ðx; yþ hxÞ; wsðx; yÞ ! e�isðh2yþh2
4 xÞwsðx; yþ hxÞ; ð9:51Þ

where h is a constant. Here we have dropped time and a indices because they play
no role, and s ¼ �. We can view this transformation as one which performs a
‘rotation’ of spatial co-ordinates, moving the point k0 to neighboring points on the
Fermi surface. We are not assuming the Fermi surface is circular, and so the
underlying model is not rotationally invariant. However, we are considering a
limiting case of a rotation, precisely analogous to the manner in which Galilean
transformations emerge as a limiting case of a relativistic transformation (x
behaves like time, and y as space, in this analogy). This ‘Galilean’ symmetry is an
emergent symmetry of L for arbitrary shapes of the Fermi surface. It is not difficult
to now show from (9.51) that the / Green’s function D, and the fermion Green’s
functions Gs obey the exact identities

Dðqx; qyÞ ¼ DðqyÞ ð9:52Þ

Gsðqx; qyÞ ¼ Gðsqx þ q2
yÞ: ð9:53Þ

So we see that the Wþ Green’s function depends only on qx þ q2
y . The singularities

of this function appear when qx þ q2
y ¼ 0, and this is nothing but the equation of

the Fermi surface passing through the point k0 in Figs. 9.11 and 9.12. Thus we
have established the existence of a line of singularities in momentum space.

The identities in Eq. 9.51 also help establish the consistency of our description
in terms of an infinite number of 2 + 1 dimensional field theories. Consider the
fermion Green’s function at the point P in Fig. 9.12. This can be computed in
terms of the 2 + 1 dimensional field theory defined at the point k0, or from that at a

P
Fig. 9.12 The fermion
correlator at the point P can
be described either in terms
of the 2 + 1 dimensional field
theory at k0, or that at k1
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neighboring point k1. Equation 9.53 ensures that both methods yield the same
result. A little geometry [65] shows that qx þ q2

y is an invariant that measures the
distance between P and the closest point on the Fermi surface: thus it takes the
same value in the co-ordinates systems at k0 and k1, with qx þ q2

y ¼ q0x þ q02y ,
establishing the identity of the two computations.

9.8.3 Scaling Theory

Let us now discuss the behavior of L under renormalization group scaling trans-
formations. The structure of the spatial gradient terms in the Lagrangian indicates
that the rescaling of spatial co-ordinates should be defined by

x0 ¼ x=b2; y0 ¼ y=b: ð9:54Þ

The invariance in Eq. 9.53 implies that these scalings are exact, and the spatial
anisotropy acquires no fluctuation corrections. Or, in other words

dim½y� ¼ �1; dim½x� ¼ �2: ð9:55Þ

For now, let us keep the rescaling of the temporal co-ordinate general:

dim½s� ¼ �z: ð9:56Þ

Note that the dynamic critical exponent z is defined relative to the spatial co-
ordinate y tangent to the Fermi surface (other investigators sometimes define it
relative to the co-ordinate x normal to the Fermi surface, leading to a difference in
a factor of 2). We define the engineering dimensions of the fields so that co-
efficients of the y derivatives remain constant. Allowing for anomalous dimensions
g/ and gw from loop effects we have

dim½/� ¼ ð1þ zþ g/Þ=2; dim½w� ¼ ð1þ zþ gwÞ=2: ð9:57Þ

Using these transformations, we can examine the scaling dimensions of the cou-
plings in L at tree level

dim½f� ¼ 2� z� gw; dim½k� ¼ ð3� z� g/ � 2gwÞ=2: ð9:58Þ

We will see in Sect. 9.8.4 that low order loop computations suggest that the
anomalous dimensions g/ and gw are small, and that z � 3. Assuming these
estimates are approximately correct, we see that the coupling f is strongly irrel-
evant. Thus we can send f! 0 in all our computations. However, we do not set
f ¼ 0 at the outset, because the temporal derivative term is needed to define the
proper analytic structure of the frequency loop integrals [74]. As we will discuss
later, the limit f! 0, also dramatically changes the counting of powers of 1=N in
the loop expansion [74].
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Also note that these estimates of the scaling dimensions imply dim½k� � 0. Thus
the fermion and order parameter fluctuations remain strongly coupled at all scales.
Conversely, we can also say that the requirement of working in a theory with fixed
k implies that z � 3; this circumvents the appeal to loop computations for taking
the f! 0 limit. With a near zero scaling dimension for k, we cannot expand
perturbatively in powers of k. This features was also found in Sect. 9.7.3, but there
we were able to use the 1=N expansion to circumvent this problem.

Moving beyond tree level considerations, we note that another Ward identity
obeyed by the theory L allows us to fix the scaling dimension of / exactly. This
Ward identity is linked to the fact that / appears in the Yukawa coupling like the x
component of a gauge field coupled to the fermions [65]. The usual arguments
associated with gauge invariance then imply that dim½/� ¼ 2 (the same as the
scaling dimension of ox), and that we can work in theory in which the ‘‘gauge
coupling’’ k set equal to unity at all scales. Note that with this scaling dimension,
we have the exact relation

g/ ¼ 3� z: ð9:59Þ

Note also that Eq. 9.57 now implies that dim½k� ¼ gw at tree level, which is the
same as the tree level transformation of the spatial derivative terms. The latter
terms have been set equal to unity by rescaling the fermion field, and so it is also
consistent to set k ¼ 1 from now on.

We reach the remarkable conclusion that at the critical point s ¼ sc, L is
independent of all coupling constants. The only parameter left is N, and we have
no choice but to expand correlators in powers of 1=N. The characterization of the
critical behavior only requires computations of the exponents z and gw, and
associated scaling functions.

We can combine all the above results into scaling forms for the / and W
Green’s functions at the quantum critical point at T ¼ 0. These are, respectively

D�1ðqx; qy;xÞ ¼ qz�1
y FD

x
qz

y

 !

ð9:60Þ

G�1ðqx; qy;xÞ ¼ ðqx þ q2
yÞ

1�gw=2FG
x

ðqx þ q2
yÞ

z=2

 !

; ð9:61Þ

where FD and FG are scaling functions.

9.8.4 Large N Expansion

We have come as far as possible by symmetry and scaling analyses alone on L.
Further results require specific computations of loop corrections, and these can
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only be carried out within the context of the 1=N expansion. At N ¼ 1, the /
propagator at criticality is

D�1

N
¼ q2

y þ
jxj

4pjqyj
ð9:62Þ

for imaginary frequencies x. This is clearly compatible with Eq. 9.60 with z ¼ 3.
The leading correction to the fermion propagator comes from the self energy
associated with one / exchange, and this leads to

G�1
þ ¼ �ifxþ qx þ q2

y � isgnðxÞ 2
ffiffiffi

3
p
ð4pÞ2=3N

jxj2=3; ð9:63Þ

which is also compatible with Eq. 9.61 with z ¼ 3 and gw ¼ 0. Notice also that as

x! 0, the fx term in Eq. 9.63 is smaller than the jxj2=3 term arising from the self
energy at order 1=N; this relationship is equivalent to our earlier claim that f is
irrelevant at long scales, and so we should take the limit f! 0 to obtain our
leading critical scaling functions.

The structure of Eq. 9.63 also illustrates a key difficulty associated with the

f! 0 limit. At f ¼ 0, the leading x dependence of G�1 is � jxj2=3=N. Feynman
graphs which are sensitive to this x dependence will therefore acquire additional
factors of N, leading to a breakdown of the conventional counting of powers of
1=N in the higher loop graphs.

This breakdown of the 1=N expansion was investigated by Lee [74] for a
‘single patch’ theory with fermions only at k0 (and not at �k0). We see from
Eq. 9.63 that the 1=N term in G�1 becomes important when qx ¼ qy ¼ 0 i.e. the
fermion is precisely on the Fermi surface. Thus the power of N is maximized
when fermions in all internal lines are on the Fermi surface. Such a Fermi
surface restriction is satisfied only in a subspace of reduced dimension in the
momentum space integral of any Feynman graph. Lee presented an algorithm
for computing the dimensionality of this restricted subspace: he demonstrated
that the power of 1=N was determined by the genus of the surface obtained after
drawing the graph in a double-line representation. So determining the leading
1=N terms in Eqs. 9.62 and 9.63 requires summation of the infinite set of planar
graphs. This problem remains unsolved, but the unexpected appearance of planar
graphs does suggest an important role for the AdS/CFT correspondence.

The structure of the loop expansion for the ‘two patch’ theory with fermions at
�k0, as written in Eq. 9.50, was studied in [65]. It was found that z ¼ 3 was
preserved upto three loops, but a small non-zero value for gw did appear at three
loop order. Also, the genus counting of powers of 1=N was found to break down,
with larger powers of N appearing in some three loop graphs.
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9.8.5 AdS/CFT Correspondence

There has been a great deal of recent work [75–93] investigating the structure of
Fermi surfaces using the AdS/CFT correspondence. The results obtained so far do
have features that resemble our results above for the Ising-nematic transition in
two dimensional metals. However, the precise connection remains obscure, and is
an important topic for future research. In particular, a microscopic understanding
of the field content of the CFT dual of the AdS theory is lacking, although there
has been interesting progress very recently [88, 92].

One of the main results of the analysis of [77, 78] is the general structure of the
fermion Green’s function obtained in a theory dual to a Reissner-Nordstrom black
hole in AdS4. This had the form

G�1ðk;xÞ ¼ �ixþ vFðjkj � kFÞ � c1x
h; ð9:64Þ

where the momentum k is now measured from the origin of momentum space (and
not from a Fermi surface), and the complex number c1 and exponent h are com-
putable functions of the ultraviolet scaling dimension of the fermion field. The
AdS theory only considers a circular Fermi surface, and for this geometry (after
appropriate rescaling)

vFðjkj � kFÞ ¼ vFðjqþ k0j � kFÞ � qx þ q2
y ; ð9:65Þ

now Eq. 9.64 is seen to be strikingly similar to Eq. 9.63. Liu et al. [77], and
Faulkner et al. [78] also argued that Eq. 9.64 was a generic property of the near
horizon geometry of the Reissner-Nordstrom black hole: the geometry changes
from AdS4 near the boundary to AdS2 
 R2 near the black hole horizon.

It is interesting to compare the structure of the critical theory in the AdS/CFT
framework to that found in the subsections above for the Ising-nematic transition
in a metal. The latter was described by an infinite set of 2 + 1 dimensional field
theories labelled by pairs of momenta on a one-dimensional Fermi surface i:e: a
S1=Z2 set of 2 + 1 dimensional field theories. In the low-energy limit, the AdS/CFT
approach yields [77, 78] a AdS2 
 R2 geometry: this can be interpreted as an
infinite set of chiral 1 + 1 dimensional theories labelled by a R2 set of two-
dimensional momenta k. It is notable, and perhaps significant, that both approa-
ches have an emergent dimension not found in the underlying degrees of freedom.
The Ising nematic theory began with a 2 + 1 dimensional Hamiltonian Sc þ S/ þ
Sc/ in Eqs. (9.41, 9.47, 9.48), and ended up with a S1=Z2 set of 2+1 dimensional
field theories. In AdS/CFT, there is the emergent radial direction representing
energy scale. These emergent dimensions imply redundant descriptions, and
require associated consistency conditions: we explored such consistency condi-
tions in Sect. 9.8.2, while in AdS/CFT the consistency conditions are Einstein’s
equations representing the renormalization group flow under changes of energy
scale. It would be interesting to see if fluctuations about the classical gravity theory
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yield corrections to the AdS2 
 R2 geometry which clarify the connection to our
Ising-nematic theory.
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Chapter 10
Introduction to Holographic
Superconductors

Gary T. Horowitz

Abstract These lectures give an introduction to the theory of holographic
superconductors. These are superconductors that have a dual gravitational
description using gauge/gravity duality. After introducing a suitable gravitational
theory, we discuss its properties in various regimes: the probe limit, the effects of
backreaction, the zero temperature limit, and the addition of magnetic fields. Using
the gauge/gravity dictionary, these properties reproduce many of the standard
features of superconductors. Some familiarity with gauge/gravity duality is
assumed. A list of open problems is included at the end.

10.1 Introduction

The name ‘‘holographic superconductor’’ suggests that one can look at a two
(spatial) dimensional superconductor and see a three dimensional image. We will
see that there is a class of superconductors for which this is true, but the image one
‘‘sees’’ is quite striking. It involves a charged black hole with nontrivial ‘‘hair’’.
This remarkable connection between condensed matter and gravitational physics
was discovered just a few years ago. It grew out of the gauge/gravity duality which
has emerged from string theory [54, 26]. Although this duality was first formulated
as a equivalence between a certain gauge theory and a theory of quantum gravity
(and provided new insights into each of these theories), over the past decade it
has been applied with notable success to other areas of physics as well. Many of
these new applications are discussed in other lectures in this school. I will focus
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on the application to superconductivity. These lectures will be heavily based on
[36, 37, 44, 38]. For a more general discussion of applying gauge/gravity duality to
condensed matter, see the excellent reviews by Hartnoll [33], Herzog [39] and
McGreevy [55].

I will start with a brief introduction to superconductivity. In Sect. 10.2, I will
introduce a simple model for a holographic superconductor. Most of our discussion
will be devoted to exploring the consequences of this model, beginning in Sect.
10.3 with the probe limit—a simplification of the model which preserves most of
the physics. In Sect. 10.4 we will discuss the full solution with backreaction. We
next examine the ground state of the superconductor Sect. 10.5, and study its
behavior when magnetic fields are added (Sect. 10.6). We conclude with a brief
discussion of recent developments (Sect. 10.7) and a list of open problems (Sect.
10.8).

10.1.1 Superconductivity

It was noticed in the early part of the 20th century that the electrical resistivity of
most metals drops suddenly to zero as the temperature is lowered below a critical
temperature Tc. These materials were called superconductors.1 A second inde-
pendent property of these materials was the Meissner effect: A magnetic field is
expelled when T\Tc. This is perfect diamagnetism and does not follow from the
perfect conductivity (which alone would imply that a pre-existing magnetic field is
trapped inside the sample). A phenomenological description of both of these
properties was first given by the London brothers in 1935 with the simple equation
Ji / Ai [51]. Taking a time derivative yields Ei / oJi=ot, showing that electric
fields accelerate superconducting electrons rather than keeping their velocity
constant as in Ohm’s law with finite conductivity. Taking the curl of both sides and
combining with Maxwell’s equations yields r2Bi / Bi showing the decay of
magnetic fields inside a superconductor.

In 1950, Landau and Ginzburg described superconductivity in terms of a second
order phase transition whose order parameter is a complex scalar field u [22]. The

density of superconducting electrons is given by ns ¼ juðxÞj2. The contribution of
u to the free energy is assumed to take the form

F ¼ aðT � TcÞjuj2 þ
b
2
juj4 þ � � � ð10:1Þ

where a and b are positive constants and the dots denote gradient terms and higher
powers of u. Clearly for T [ Tc the minimum of the free energy is at u ¼ 0 while
for T\Tc the minimum is at a nonzero value of u. This is just like the Higgs

1 A good general reference is [63].
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mechanism in particle physics, and is associated with breaking a Uð1Þ symmetry.
The London equation follows from this spontaneous symmetry breaking [66].

A more complete theory of superconductivity was given by Bardeen, Cooper
and Schrieffer in 1957 and is known as BCS theory [7]. They showed that inter-
actions with phonons can cause pairs of elections with opposite spin to bind and
form a charged boson called a Cooper pair. Below a critical temperature Tc, there
is a second order phase transition and these bosons condense. The DC conductivity
becomes infinite producing a superconductor. The pairs are not bound very tightly
and typically have a size which is much larger than the lattice spacing. In the
superconducting ground state, there is an energy gap D for charged excitations.
This gap is typically related to the critical temperature by D � 1:7Tc. The charged
excitations are ‘‘dressed electrons’’ called quasiparticles. The gap in the spectrum
results in a gap in the (frequency dependent) optical conductivity. If a photon of
frequency x hits the superconductor, it must produce two quasiparticles. The
binding energy of the Cooper pair is very small, but the energy of each quasi-
particle is D, so the gap in the optical conductivity is xg ¼ 2D � 3:5Tc.

It was once thought that the highest Tc for a BCS superconductor was around
30 K. But in 2001, MgB2 was found to be superconducting at 40 K and is believed
to be described by BCS. Some people now speculate that BCS could describe a
superconductor with Tc = 200 K2.2

A new class of high Tc superconductors were discovered in 1986 [9]. They are
cuprates and the superconductivity is along the CuO2 planes. The highest Tc

known today (at atmospheric pressure) is Tc = 134 K for a mercury, barium,
copper oxide compound. If you apply pressure, Tc climbs to about 160 K. Another
class of superconductors were discovered in 2008 based on iron and not copper
[47]. The highest Tc so far is 56 K. These materials are also layered and the
superconductivity is again associated with the two dimensional planes. They are
called iron pnictides since they involve other elements like arsenic in the nitrogen
group of the periodic table.

There is evidence that electron pairs still form in these high Tc materials, but the
pairing mechanism is not well understood. Unlike BCS theory, it involves strong
coupling. Gauge/gravity duality is an new tool to study strongly coupled field
theories. In particular, it allows one to compute dynamical transport properties of
strongly coupled systems at nonzero temperature. Condensed matter theorists have
very few tools to do this. We will describe below the first steps toward applying
this new tool to better understand high Tc superconductivity. I must stress at the
beginning that we are still at the early stages of this endeavor. We will construct
simple gravity models and show that they reproduce basic properties of super-
conductors. But our models are too crude to make detailed comparisons with any
real-world material.

2 Discussion at the KITP program on Quantum Criticality and the AdS/CFT Correspondence,
July 2009.
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10.2 A Gravitational Dual

How do we go about constructing a holographic dual for a superconductor? The
minimal ingredients are the following. In the superconductor we need a notion of
temperature. On the gravity side, that role is played by a black hole. Recall that in
the 1970s Hawking (following work by Bekenstein and others) showed that sta-
tionary black holes are thermodynamic objects with a temperature T related to the
surface gravity j via T ¼ j=2p. In gauge/gravity duality, the Hawking tempera-
ture of the black hole is identified with the temperature of the dual field theory.3

Since gauge/gravity duality traditionally requires that spacetime asymptotically
approach anti de Sitter (AdS) space at infinity, we will be studying black holes in
AdS. Unlike asymptotically flat black holes, these black holes have the property
that at large radius, their temperature increases with their mass, i.e., they have
positive specific heat, just like familiar nongravitational systems. There are also
planar AdS black holes, which will be of most interest. These black holes always
have positive specific heat.

In the superconductor, we also need a condensate. In the bulk, this is described
by some field coupled to gravity. A nonzero condensate corresponds to a static
nonzero field outside a black hole. This is usually called black hole ‘‘hair’’. So to
describe a superconductor, we need to find a black hole that has hair at low
temperatures, but no hair at high temperatures. More precisely, we need the usual
Schwarzschild or Reissner–Nordstrom AdS black hole (which exists for all tem-
peratures) to be unstable to forming hair at low temperature. At first sight, this is
not an easy task. There are ‘‘no-hair theorems’’ which say that certain matter fields
must be trivial outside a black hole (see, e.g., [10, 42]). The idea behind these
theorems is simply that matter outside a black hole wants to fall into the horizon
(or radiate out to infinity in the asymptotically flat case). However, there is no
general ‘‘no-hair theorem’’. Each matter field must be considered separately. The
result is a set of black hole uniqueness theorems showing that when gravity is
coupled to certain matter fields, stationary black holes are uniquely characterized
by their conserved charges: mass, angular momentum and electromagnetic charge.
These theorems usually require linear matter fields or scalars with certain poten-
tials Vð/Þ. Counterexamples to a general no-hair theorem have been known since
the early 1990s. (So our task is not impossible.) For example, it was shown that
static Yang–Mills fields can exist outside the horizon [65].

String theory has many dilatonic black holes with scalar hair, and one might be
tempted to try to use one of these to model a superconductor. But if the action
includes a term like e2a/FlmFlm, this is doomed to failure. In this case, F2 is a
source for /, so all charged black holes have nonzero /. This ‘‘secondary hair’’ is
not what we want, since we want the hair to go away at high temperatures.
(Theories with more general coupling f ð/ÞFlmFlm are possible candidates provided

3 I will assume that the reader is familiar with the basics of gauge/gravity duality. If not, see
other contributions in this book.

316 G. T. Horowitz



f does not have a linear term in /. However, the example we will study uses a
standard Maxwell action.) A general argument against AdS black holes developing
scalar hair was given by Hertog [38]. He considered a real scalar field with
arbitrary potential Vð/Þ (with negative extremum so AdS is a solution), and
showed that neutral AdS black holes can have scalar hair if and only if AdS itself
is unstable. This is clearly unacceptable.

A surprisingly simple solution to this problem was found by Gubser [25]. He
argued that a charged scalar field around a charged black hole in AdS would have
the desired property. Consider

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g
p

Rþ 6
L2
� 1

4
FlmF

lm � jrW� iqAWj2 � m2jW2j
� �

: ð10:2Þ

This is just general relativity with a negative cosmological constant K ¼ �3=L2,
coupled to a Maxwell field and charged scalar with mass m and charge q. It is easy
to see why black holes in this theory might be unstable to forming scalar hair: For an
electrically charged black hole, the effective mass of W is m2

eff ¼ m2 þ q2gttA2
t . But

the last term is negative, so there is a chance that m2
eff becomes sufficiently negative

near the horizon to destabilize the scalar field. Furthermore, as one lowers the
temperature of a charged black hole, it becomes closer to extremality which means
that gtt is closer to developing a double zero at the horizon. This means that jgttj
becomes larger and the potential instability becomes stronger at low temperature.

We will see that black holes in this theory indeed develop scalar hair at low
temperature. One might wonder why such a simple type of hair was not noticed
earlier. One reason is that this does not work for asymptotically flat black holes.
The AdS boundary conditions are crucial. One way to understand the difference is
by the following quantum argument. Let Qi be the initial charge on the black hole.
If qQi is large enough, even maximally charged black holes with zero Hawking
temperature create pairs of charged particles. This is simply due to the fact that the
electric field near the horizon is strong enough to pull pairs of oppositely charged
particles out of the vacuum via the Schwinger mechanism of ordinary field theory.
The particle with opposite charge to the black hole falls into the horizon, reducing
Qi while the particle with the same sign charge as the black hole is repelled away.
In asymptotically flat spacetime, these particles escape to infinity, so the final
result is a standard Reissner–Nordstrom black hole with final charge Qf \Qi. In
AdS, the charged particles cannot escape since the negative cosmological constant
acts like a confining box, and they settle outside the horizon. This gas of charged
particles is the quantum description of the hair. This quantum process has an
entirely classical analog in terms of superradiance of the charged scalar field.

The four dimensional bulk theory (10.2) is dual to a 2 + 1 dimensional bound-
ary theory. This is the right context to try to understand the superconductivity
associated with two dimensional planes in the high Tc cuprates or iron pnictides.
One can also study this theory in five dimensions to describe 3þ 1 dimensional
superconductors. I should emphasize that at the moment we are not trying to derive
the gravitational theory from string theory. The idea is to find a simple gravity
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theory with the properties we want, and analyze it using standard entries in the
gauge/gravity duality dictionary. However, we will see later that this simple model
can, in fact, be realized as a consistent truncation of string theory.

Before we proceed, I should comment on the following confusing point. In
gauge/gravity duality, gauge symmetries in the bulk correspond to global sym-
metries in the dual field theory. So although the scalar hair breaks a local Uð1Þ
symmetry in the bulk, the dual description consists of a condensate breaking a
global Uð1Þ symmetry. Thus strictly speaking, the dual theory is a superfluid rather
than a superconductor. The superfluid properties of this model have indeed been
investigated [4, 8, 41]. However, one can still view the dual theory as a super-
conductor in the limit that the Uð1Þ symmetry is ‘‘weakly gauged’’.4 In fact, most
of condensed matter physics does not include dynamical photons, since their
effects are usually small. In particular, BCS theory only includes the electrons and
phonons. Electromagnetic fields are usually introduced as external fields, as we
will do here. (Unfortunately, our electromagnetic fields will not be dynamical on
the boundary.)

10.3 Probe Limit

If one rescales Al ¼ ~Al=q and W ¼ ~W=q, then the matter action in (10.2) has a
1=q2 in front, so the backreaction of the matter fields on the metric is suppressed
when q is large. The limit q!1 with ~Al and ~W fixed is called the probe limit. It
simplifies the problem but retains most of the interesting physics since the non-
linear interactions between the scalar and Maxwell field are retained. In this
section, we will explore this probe limit. We first discuss the formation of the
condensate and then compute the conductivity. To simplify the presentation, we
will drop the tildes.

10.3.1 Condensate

We start with the planar Schwarzschild anti-de Sitter black hole in four dimensions

ds2 ¼ �f ðrÞdt2 þ dr2

f ðrÞ þ r2ðdx2 þ dy2Þ ; ð10:3Þ

where

4 This means that one imagines that the dual action includes terms like jri � ieAiÞuj2 with very
small charge e.
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f ¼ r2

L2
1� r3

0

r3

� �

: ð10:4Þ

L is the AdS radius, and the Schwarzschild radius r0 determines the Hawking
temperature of the black hole:

T ¼ 3r0

4pL2
: ð10:5Þ

In the probe approximation this metric is a fixed background in which we solve the
Maxwell-scalar equations.

We assume a plane symmetric ansatz,

W ¼ wðrÞ; At ¼ /ðrÞ: ð10:6Þ

With Ar ¼ Ax ¼ Ay ¼ 0, the Maxwell equations imply that the phase of w must be
constant. Without loss of generality we therefore take w to be real. The Maxwell-
scalar field equations reduce to the following coupled, nonlinear, ordinary dif-
ferential equations:

w00 þ f 0

f
þ 2

r

� �

w0 þ /2

f 2
w� m2

f
w ¼ 0; ð10:7Þ

/00 þ 2
r
/0 � 2w2

f
/ ¼ 0: ð10:8Þ

The key term in the first equation is ð/2=f 2Þw. This comes in with the opposite
sign of the mass term and will cause the scalar hair to form at low temperature.

We first consider the case m2 ¼ �2=L2. It might seem strange to make the
scalar field tachyonic, but this mass is perfectly allowed in gauge/gravity duality.
First note that a tachyonic mass in field theory does not describe particles moving
faster than the speed of light. Instead, it usually describes an instability. The value
w ¼ 0 is unstable and the field rolls off the potential. However, Breitenlohner and
Freedman [9] showed that AdSdþ1 spacetime is stable even with scalar fields with
m2\0 provided m2�m2

BF with

m2
BF ¼ �

d2

4L2
: ð10:9Þ

This is because there is so much volume at large radius that the positive gradient
energy can compensate for a negative m2. Our choice of mass satisfies this bound
and in fact corresponds to a conformally coupled scalar in AdS4. The standard
compactification of 11D supergravity on S7 produces many fields with this mass.

We now consider the boundary conditions. At the horizon, one often argues that
/ ¼ At must vanish in order for glmAlAm to remain finite. This is correct, but Al is
gauge dependent, so it is not obvious that a diverging vector potential is a problem
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if the Maxwell field remains finite. A better argument for setting At ¼ 0 at the
horizon is the following.5 The source for Maxwell’s equations in the bulk is, of
course, gauge invariant. But in a gauge in which w is real, the current is just w2Al.
Since the current must remain finite at the horizon, we need Al to remain finite,
and hence / ¼ At ¼ 0. Even in Einstein–Maxwell theory (without charged sour-
ces) At must vanish at a static black hole horizon by the following argument: For
describing thermal properties of the black hole, one should use the Euclidean
solution. The Wilson loop of Al around the Euclidean time circle is finite and
gauge invariant. If At is nonzero at the horizon, the Wilson loop is nonzero around
a vanishing circle which implies that the Maxwell field is singular.

There is another constraint that must be satisfied in order for the solution to be
smooth at the horizon. Mutliplying (10.7) by f and evaluating at r ¼ r0 one finds
f 0w0 ¼ m2w, so wðr0Þ and w0ðr0Þ are not independent. As a result, even though we
start with two second order equations which have a four parameter family of
solutions, there is only a two parameter subfamily which is regular at the horizon.
They can be labelled by wðr0Þ and /0ðr0Þ. (Note that /0ðr0Þ is essentially the

electric field at the horizon: ð/0Þ2 ¼ FlmFlm.)
We now turn to the boundary condition at infinity. Asymptotically:

w ¼ wð1Þ

r
þ wð2Þ

r2
þ � � � : ð10:10Þ

and

/ ¼ l� q
r
þ � � � : ð10:11Þ

Usually, normalizability requires that the leading coefficient in w must vanish.
However, since we have chosen a mass close the the BF bound, even the leading
term in w is normalizable. In this case, one has a choice: One can consider

solutions with wð1Þ ¼ 0 or wð2Þ ¼ 0. For definiteness, we will mostly consider

standard boundary conditions, wð1Þ ¼ 0 .
After imposing this asymptotic boundary condition, we have a one parameter

family of solutions, which can be found numerically [36]. (See [24] for an accurate
analytic approximation and [50] for an analytic solution of a related model.) We
will not present any plots of wðrÞ and /ðrÞ since they look rather boring. It is easy to
see from (10.8) that / is a monotonic function. It starts at zero at the horizon and at
any local extremum /00 / /. So it cannot have a positive maximum or a negative
minimum. If it starts increasing away from the horizon, it continues to increase and
asymptotically approaches the constant l. wðrÞ does not have to be monotonic.
There is a discrete infinite family of solutions for wðrÞ that satisfy our asymptotic
boundary conditions. They can be labelled by the number of times w vanishes. It is
believed that only the lowest solution which monotically decreases from wðr0Þ to

5 I thank Karl Landsteiner for suggesting this.
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zero is stable, although I do not think a stability analysis has been performed yet.
Despite the fact that the solutions of interest are simple monotonic functions, they
have important consequences for the dual field theory as we now discuss.

Since we have not started with a consistent truncation of string theory, we do
not have a detailed microscopic description of the dual field theory. Nevertheless,
basic elements of the gauge/gravity duality dictionary allow us to say the fol-
lowing. The dual theory is a 2 + 1 dimensional conformal field theory (CFT) at
temperature T given by (10.5). The local gauge symmetry in the bulk corresponds
to a global Uð1Þ symmetry in the CFT. The asymptotic behavior of the bulk
solution determines certain properties of the dual field theory. For example, from
(10.11), l is the chemical potential and q is the charge density. It may seem
strange that our superconductor has a nonzero charge density. After all, ordinary
superconductors are electrically neutral. Perhaps the best analogy is to say that our
holographic superconductor is modeling the electrons, but does not include the
(positively charged) atomic lattice. Indeed, our model has translational symmetry,
and there is no sign of any lattice. From a practical standpoint, we need the charge
since neutral black holes in the bulk are not unstable to forming scalar hair. In
addition, without the charge (or chemical potential), the dual theory is scale
invariant and cannot have a phase transition.

The dual theory also has an operator charged under the Uð1Þ which is dual to w.
Since we have chosen m2 close to the BF bound, there are two possible operators
depending on how one quantizes w in the bulk.6 [49] If the modes are defined with
the standard boundary condition (faster falloff) for w in the bulk, the dual operator

has dimension two. In this case, a nonzero wð1Þ corresponds to adding a source for

this operator in the CFT, and a nonzero wð2Þ corresponds to a nonzero expectation
value7

O2 ¼ wð2Þ: ð10:12Þ

Since we want the condensate to turn on without being sourced, we have set

wð1Þ ¼ 0. There is an alternative quantization of w in the bulk in which the roles of

wð1Þ and wð2Þ are reversed. w is now dual to a dimension one operator. If one

wishes to study this case, one should impose the boundary condition wð2Þ ¼ 0.
We want to know how the condensate O2 behaves as a function of temperature.

Before presenting the results we have to discuss an important scaling symmetry of
our problem. In any conformal field theory on Rn, one can change the temperature
by a simple rescaling. In the bulk, this is reflected in the statement that the
rescaling

r ! ar; ðt; x; yÞ ! ðt; x; yÞ=a; r0 ! ar0 ð10:13Þ

6 We will work in the classical limit, but the correspondence applies to the full quantum theory.
7 This normalization of O differs from that of [36] by a factor of

ffiffiffi

2
p

.
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leaves the form of the black hole (10.3) invariant with f ! a2f . It is easy to check
that the Maxwell-scalar field equations (10.7, 10.8) are invariant under this
rescaling if /! a/ (so A ¼ /dt is invariant) and w is unchanged w! w. Rather
than discuss this trivial dependence on temperature which simply reflects the
scaling dimension, we are interested in the dependence of a dimensionless measure
of the condensate as a function of a dimensionless measure of the temperature. It is
convenient to use the chemical potential to fix a scale and consider

ffiffiffiffiffiffi

O2
p

=l as a
function of T=l. When one does this, one finds that the condensate is nonzero only
when T=l is small enough. Setting Tc equal to the critical temperature when the
condensate first turns on, we get Fig. 10.1.

This curve is qualitatively similar to that obtained in BCS theory, and observed
in many materials, where the condensate rises quickly as the system is cooled
below the critical temperature and goes to a constant as T ! 0. Near Tc, there is a

square root behavior O2 ¼ 100T2
c ð1� T=TcÞ1=2. This is the standard behavior

predicted by Landau–Ginzburg theory.
A nonzero condensate means that the black hole in the bulk has developed

scalar hair. One can compute the free energy (Euclidean action) of these hairy
configurations and compare with the solution w ¼ 0;/ ¼ qð1=r0 � 1=rÞ with
describes a black hole with the same charge or chemical potential, but no scalar
hair. It turns out that the free energy is always lower for the hairy configurations
and becomes equal as T ! Tc [36]. The difference of free energies scales like

ðTc � TÞ2 near the transition, showing that this is a second order phase transition.
Actually, you can compare the free energy at fixed charge or fixed chemical
potential. These correspond to two different ensembles. In both cases, the free
energy is lower for the hairy configuration.

We now generalize to other masses. Recall that the asymptotic behavior of a
scalar field of mass m in AdS4 is

w ¼ w�
rk�
þ wþ

rkþ
þ � � � ð10:14Þ

Fig. 10.1 The condensate as
a function of temperature.
The critical temperature is
proportional to the chemical
potential
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where

k� ¼
1
2

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 4ðmLÞ2
q

� �

: ð10:15Þ

For m2�m2
BF þ L�2, only the mode with kþ falloff is normalizable, and so we

interperet wþ ¼ O, where O is the expectation value of the operator dual to the
scalar field, and kþ is the dimension of the operator. w� is dual to a source for this
operator, so we only consider solutions with the standard boundary condition
w� ¼ 0. For m2

BF\m2\m2
BF þ L�2 one can also consider the alternative boundary

condition wþ ¼ 0, and the dual operator has dimension k�.
Figure 10.2 shows the results for the condensate for various masses. It is

convenient to label the curves in terms of the dimension of the condensate k, rather
than the mass to distinguish the two possible cases when m2 ¼ �2=L2. The masses
range from the BF bound to m2 ¼ 0. Similar behavior is found for m2 [ 0 [48].

The qualitative behavior is the same as before. In all cases, there is a critical
temperature Tc (proportional to the chemical potential) above which the conden-

sate is zero. Near the critical temperature, O / ðTc � TÞ1=2. In all but one case, the
condensate saturates as T ! 0. The exceptional case is the dimension one curve
which starts to grow at low temperature. When the condensate becomes very large,
the backreaction on the bulk metric can no longer be neglected. We will see later
that in the full solution with backreaction, the condensate approaches a finite limit
at zero temperature.

It turns out that the ratio Tc=l increases as the dimension of the operator
decreases. For k[ 3=2, one can understand this since a smaller k corresponds to a
smaller m2 making is easier for the scalar hair to form. However, this continues for
k\3=2 when one must increase m2 (and use the alternative boundary conditions)
to decrease the dimension. In fact, as observed in [14] , Tc=l appears to diverge as
k approaches the unitarity bound, 1=2. The reason for this is not clear. But the

Fig. 10.2 Condensates with
different dimension, k, as a
function of temperature. The
condensate tends to increase
with k. Figure is taken from
[44]
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lesson is that, at least in this simple model, to have a higher temperature super-
conductor, one should lower the dimension of the condensate.

10.3.2 Conductivity

We want to compute the optical conductivity, i.e. the conductivity as a function of
frequency. By symmetry, it suffices to consider just the conductivity in the x
direction. According to the gauge/gravity dictionary, this is obtained by solving for
fluctuations in the Maxwell field in the bulk. Maxwell’s equation with zero spatial
momentum and time dependence e�ixt gives the following equation for AxðrÞ:

A00x þ
f 0

f
A0x þ

x2

f 2
� 2w2

f

� �

Ax ¼ 0: ð10:16Þ

We want to solve this with ingoing wave boundary conditions at the horizon, since
this corresponds to causal propagation on the boundary, i.e., yields the retarded
Green’s function [61]. Asymptotically,

Ax ¼ Að0Þx þ
Að1Þx

r
þ � � � ð10:17Þ

The gauge/gravity dictionary says the limit of the electric field in the bulk is the

electric field on the boundary: Ex ¼ � _Að0Þx , and the expectation value of the

induced current is the first subleading term: Jx ¼ Að1Þx . From Ohm’s law we get:

rðxÞ ¼ Jx

Ex
¼ � Jx

_Að0Þx

¼ � iJx

xAð0Þx

¼ � iAð1Þx

xAð0Þx

: ð10:18Þ

The real part of the conductivity is given in Fig. 10.3 for the case k ¼ 2. Above
the critical temperature, the conductivity is constant [40]. As you start to lower the

Fig. 10.3 The formation of a
gap in the real part of the
conductivity as the
temperature is lowered below
the critical temperature. The
curves describe successively
lower temperatures. There is
also a delta function at
x ¼ 0. Figure is for the
dimension two condensate
and is taken from [36]
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temperature below Tc a gap opens up at low frequency. When these curves were
first obtained, it was thought that Re½r� was given by e�D=T at small x, which is
what one expects from a BCS type description with an energy gap D. This would
imply that at T ¼ 0;Re½r� should vanish inside the gap. We will see that this is not
the case.

There is also a delta function at x ¼ 0 for all T\Tc. This cannot be seen from a
numerical solution of the real part, but it can be seen by looking for a pole in Im½r�.
A simple argument for this comes from the Drude model of a conductor. Suppose
we have charge carriers with mass m, charge e, and number density n in a normal
conductor. They satisfy

m
dv

dt
¼ eE � m

v

s
ð10:19Þ

where the last term is a damping term and s is the relaxation time due to scattering.
The current is J ¼ env, so if EðtÞ ¼ Ee�ixt, the conductivity is

rðxÞ ¼ ks
1� ixs

ð10:20Þ

where k ¼ ne2=m. So

Re½r� ¼ ks
1þ x2s2

; Im½r� ¼ kxs2

1þ x2s2
: ð10:21Þ

For superconductors, s!1, so Re½r� / dðxÞ and Im½r� / 1=x. A more general
derivation comes from the Kramers–Kronig relations. These relate the real and
imaginary parts of any causal quantity, such as the conductivity, when expressed in
frequency space. One of the relations is

Im½rðxÞ� ¼ � 1
p
P
Z

1

�1

Re½rðx0Þ�dx0

x0 � x
: ð10:22Þ

From this formula we can see that the real part of the conductivity contains a delta
function, if and only if the imaginary part has a pole. One finds that there is indeed
a pole in Im½r� at x ¼ 0 for all T\Tc.

Figure 10.4 shows the low temperature limit of the optical conductivity. The
solid line denotes the real part and the dashed line denotes the imaginary part. The
pole at x ¼ 0 is clearly visible.

A finite conductivity implies dissipation. In the bulk, this is reflected by the
ingoing wave boundary conditions at the horizon. A standard normalizable per-
turbation of the Maxwell field would decay and get swallowed by the black hole.
We maintain a constant amplitude and purely harmonic time dependence by
driving the mode with an applied electric field at the boundary. Dissipation nor-
mally causes a system to heat up, and indeed if we had included the backreaction
of the Maxwell perturbation on the metric, the flow of energy into the horizon
would cause the black hole to grow and increase its temperature.

10 Introduction to Holographic Superconductors 325



When you approach the BF bound something interesting happens. As shown in
Fig. 10.5, a new spike appears inside the gap. This looks like a bound state of
quasiparticles with the binding energy given by distance between the pole and the
edge of the gap. However, one must keep in mind that quasiparticles are a weak
coupling concept and may not be well defined at strong coupling. We will have
more to say about this spike in the next section.

Although we have focussed on the case of 2þ 1 dimensional superconductors
with a 3þ 1 dimensional bulk dual, everything we have done is easily generalized
to higher dimensions [44]. The results are qualitatively the same.

A robust feature that holds in both 2þ 1 and 3þ 1 superconductors and all
k[ kBF is that

xg

Tc
� 8 ð10:23Þ

Fig. 10.5 The low
temperature limit of the
conductivity for the
dimension 3/2 condensate.
Note the extra spike that
appears inside the gap. Figure
is taken from [44]

Fig. 10.4 The low
temperature limit of the
optical conductivity for the
dimension two condensate.
The solid line denotes the real
part and the dashed line
denotes the imaginary part.
Figure is taken from [44]
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with deviations of less than 10%.8 This is more than twice the weakly coupled
BCS value of 3:5. Remarkably, measurements of this ratio in the high Tc super-
conductors give roughly this value [23]!

10.4 Full Solution with Backreaction

We now discuss the full solution to action (10.2) including the backreaction on the
spacetime geometry. We start with the following ansatz for the metric

ds2 ¼ �gðrÞe�vðrÞdt2 þ dr2

gðrÞ þ r2ðdx2 þ dy2Þ ð10:24Þ

and use the same ansatz for the matter fields as before:

A ¼ /ðrÞdt; W ¼ wðrÞ: ð10:25Þ

The equations of motion are9:

w00 þ g0

g
� v0

2
þ 2

r

� �

w0 þ q2/2ev

g2
w� m2

g
w ¼ 0; ð10:26Þ

/00 þ v0

2
þ 2

r

� �

/0 � 2q2w2

g
/ ¼ 0; ð10:27Þ

v0 þ rw02þ rq2/2w2ev

g2
¼ 0; ð10:28Þ

g0 þ 1
r
� v0

2

� �

gþ r/02ev

4
� 3r þ rm2w2

2
¼ 0: ð10:29Þ

The first two are the scalar and Maxwell equations as before. The last two are the
two independent components of Einstein’s equation. (There are three nonzero
components of Einstein’s equation but only two are independent.) Note that the
equations for g and v are first order, and v is monotonically decreasing. These
equations are invariant under a scaling symmetry analogous to (10.13):

r ! ar ; ðt; x; yÞ ! ðt; x; yÞ=a ; g! a2g ; /! a/ : ð10:30Þ

8 A few caveats should be noted: If one adds scalar interactions in the bulk by introducing a more
general potential VðWÞ, the gap in the low temperature optical conductivity can become much
less pronounced, so that this ratio becomes ill defined [28, 29]. We will see in the next section
that it also becomes ill defined at small q. Even when it is well defined, it is modified by higher
order curvature corrections in bulk [24].
9 We will set L ¼ 1 for the rest of our discussion.
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When the horizon is at nonzero r, this can be used to set r0 ¼ 1. These equations
are also invariant under

ev ! a2ev; t! at; /! /=a: ð10:31Þ

This symmetry can be used to set v ¼ 0 at the boundary at infinity, so the metric
takes the standard AdS form asymptotically.

The qualitative behavior of the solutions is similar to the probe limit, i.e., the
probe limit indeed captures most of the physics. However, there are a few
important differences [37]. First, the apparent divergence in the dimension one
condensate at low T is gone. Figure 10.6 shows a plot of qO1 as a function of
temperature. We have multiplied the condensate by the charge q since this is the
quantity which is represented by the probe limit at large q. For q of order one, the
curves are similar to the other condensates in the probe limit. But for large q, they
grow at low temperature. One can show that for all q, the condensate still
approaches a finite limit at T ¼ 0. It is not clear why the dimension one condensate
behaves differently in the probe limit from other masses.

The second difference is more surprising. As explained earlier, the origin of the
instability responsible for the scalar hair is the coupling of the charged scalar to the
charge of the black hole. It was therefore expected that as q! 0 the instability
would turn off. This is not what happens. A nearly extremal Reissner–Nordstrom
AdS black hole remains unstable to forming neutral scalar hair, provided that m2 is
close to the Breitenlohner–Freedman (BF) bound. This means that there is a new
source of instability which can be understood as follows: An extremal Reissner–
Nordstrom AdS black hole has a near horizon geometry AdS2 � R2. The BF bound
for AdSdþ1 is m2

BF ¼ �d2=4. So scalars which are slightly above the BF bound for
AdS4, can be below the bound for AdS2. This instability to forming neutral scalar
hair is not associated with superconductivity (or superfluidity) since it does not
break a Uð1Þ symmetry. At most it breaks a Z2 symmetry corresponding to
w! �w. Its interpretation in the dual field theory is not clear.

One can make the following general argument for when an extremal Reissner–
Nordstrom AdS black hole will be unstable to forming scalar hair [14]. Consider a

Fig. 10.6 From bottom to
top, the various curves
correspond to q ¼ 1, 3, 6, and
12. Figure is taken from [37]
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scalar field with mass m and charge q in the near horizon geometry of an extremal
Reissner–Nordstrom AdS black hole. Its field equation reduces to a wave equation
in AdS2 with effective mass m2

eff ¼ ðm2 � 2q2Þ=6. The �2q2 is the usual coupling
to the electric charge and the factor of six comes from the difference between the
radius of curvature in AdS4 and AdS2. The instability to form scalar hair at low
temperature is then just the instability of scalar fields below the BF bound for
AdS2: m2

BF ¼ �1=4. Thus the condition for instability is

m2 � 2q2\�3=2: ð10:32Þ

Of course, the mass must be above the four-dimensional BF bound, m2 [ �9=4,
so that the asymptotic AdS4 geometry remains stable. Equation 10.32 is a sufficient
condition to guarantee instability, but it is not necessary.

To compute the conductivity, we again perturb the Maxwell field in the bulk.
Assuming zero momentum and harmonic time dependence, the perturbed Maxwell
field Ax now couples to the perturbed metric component gtx. Physically, this is
what one expects from the standpoint of the dual field theory. We are applying an
electric field and inducing a current. The current carries momentum, so Ttx should
be nonzero. This requires that the metric perturbation gtx must also be nonzero.10

However, this also means that one has to solve for the thermal conductivity at the
same time as the electrical conductivity. Fortunately, for homogeneous perturba-
tions with harmonic time dependence, one can solve for gtx in terms of Ax and get

A00x þ
g0

g
� v0

2

� �

A0x þ
x2

g2
� /02

g

� �

ev � 2q2w2

g

� �

Ax ¼ 0 : ð10:33Þ

This is similar to (10.16) except for the form of the metric and the extra term /02=g
coming from the metric perturbation gtx. The conductivity is still

rðxÞ ¼ � i

x
Að1Þx

Að0Þx

: ð10:34Þ

The results for the optical conductivity are qualitatively similar to the probe limit,
and shown in Fig. 10.7. There are a few differences. One is that the conductivity in
the normal phase is no longer constant. Another difference is that in the low tem-
perature limit, the gap in RerðxÞ for small x becomes less pronounced at small q.
The robust feature xg=Tc � 8 seen in the probe limit continues to hold for q [ 3, but
is less robust for q\3 mainly because the gap becomes less well defined. Perhaps
the most important difference is that Rer now has a delta function contribution at
x ¼ 0 even in the normal phase when T [ Tc. This infinite DC conductivity is not
superconductivity, but just a consequence of translational invariance. A transla-
tionally invariant, charged system does not have a finite DC conductivity because
application of an electric field will cause uniform acceleration. One does not see this

10 I thank Hong Liu for this comment.
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in the probe limit, since we fixed the gravitational background which implicitly
breaks translation invariance. One indication of this is that we get an electric current
without momentum flow as we mentioned earlier. Although there is a delta function
at x ¼ 0 for all temperature, its coefficient grows as the temperature is lowered
below Tc. This indicates the presence of a new contribution coming from the onset of
superconductivity.

10.4.1 Reformulation of the Conductivity

Equation 10.33 can be simplified by introducing a new radial variable

dz ¼ ev=2

g
dr: ð10:35Þ

At large r; dz ¼ dr=r2, and we can choose the additive constant so that z ¼
�1=r þ Oð1=r2Þ. Since g vanishes at least linearly at a horizon and v is mono-
tonically decreasing, the horizon corresponds to z ¼ �1. In terms of z, (10.33)
takes the form of a standard Schrödinger equation with energy x2:

�Ax;zz þ VðzÞAx ¼ x2Ax ð10:36Þ

where

VðzÞ ¼ g½/2
;r þ 2q2w2e�v�: ð10:37Þ

From the known asymptotic behavior of the solution near infinity, one can show
that Vð0Þ ¼ 0 if the dimension of the condensate, k, is greater than one, Vð0Þ is a
nonzero constant if k ¼ 1, and VðzÞ diverges as z! 0 if 1=2\k\1. One can also
show that the potential always vanishes at the horizon [45].

We want to solve (10.36) with boundary conditions at z ¼ �1 corresponding
to waves propagating to the left. This corresponds to ingoing boundary conditions

Fig. 10.7 Conductivity for
the dimension two
condensate with q ¼ 3. The
dashed line is the real part of
the conductivity at T ¼ Tc

and the solid lines are the
same conductivities at
successively lower
temperature
T=Tc ¼ 0:651; 0:304. There
is a delta function at the
origin in all cases. Figure is
taken from [37]
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at the horizon which is needed to extract causal results. The easiest way to do this
is to first extend the definition of the potential to all z by setting V ¼ 0 for z [ 0.
An incoming wave from the right will be partly transmitted and partly reflected by
the potential barrier. Since the transmitted wave is purely ingoing at the horizon,
this satisfies our desired boundary conditions. Writing the solution for z [ 0 as
Ax ¼ e�ixz þReixz, we clearly have Axð0Þ ¼ 1þR and Ax;zð0Þ ¼ �ixð1�RÞ.
In terms of z;Að1Þx ¼ �Ax;zð0Þ, so from (10.34)

rðxÞ ¼ 1�R
1þR : ð10:38Þ

The conductivity is directly related to the reflection coefficient, with the frequency
simply giving the incident energy [45]! The qualitative behavior of rðxÞ is now
clear. Let us first assume that the dimension of the condensate is k� 1 so that V is
bounded. At frequencies below the height of the barrier, the probability of trans-
mission will be small,Rwill be close to one, and rðxÞwill be small. At frequencies
above the height of the barrier,R will be very small and rðxÞ	 1 (the normal state
value). Clearly the size of the gap in rðxÞ is set by the height of the barrier:
xg	

ffiffiffiffiffiffiffiffiffi

Vmax

p
. The case 1=2\k\1 is qualitatively similar. Even though the potential

is not bounded,
ffiffiffiffi

V
p

is integrable, so there is still tunneling through the barrier.
As one lowers the temperature, the condensate w increases and the potential

becomes both higher and wider (see Fig. 10.8). This causes an increasing expo-
nential suppression which was erroneously interpreted as evidence for Re r	 e�D=T

in the original papers on holographic superconductors. However, as T ! 0, the
potential approaches a finite, limiting form which still vanishes at z ¼ �1. This
means that there will always be nonzero tunnelling probability and hence a nonzero
conductivity even at small frequency. In other words, there is no hard gap in the

optical conductivity at T ¼ 0. This conclusion continues to hold if the m2jWj2 term
in our bulk lagrangian is replaced by a general potential VðWÞ. The fact that there is
not a hard gap is consistent with calculations of the specific heat which show that it
vanishes as a power law at low temperature and not exponentially.

Fig. 10.8 Schrödinger
potential for k ¼ 2; q ¼ 10.
The top curve as T ¼ 0 and
the bottom curve has T ¼ Tc.
Figure is taken from [45]
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As discussed in Sect. 3.2, in order for Rer to have a delta function at x ¼ 0
representing the infinite DC conductivity, one needs Im r to have a pole at x ¼ 0.
It is easy to see that this is indeed the case, for any positive Schrödinger potential
VðzÞ that vanishes at z ¼ �1. Imagine solving (10.36) with x ¼ 0, and Ax ¼ 1 at
z ¼ �1. (This represents the normalizable solution and is the zero frequency limit
of the ingoing wave boundary condition.) Since Ax;zz [ 0, the solution will be

monotonically increasing. At z ¼ 0;Að0Þx ¼ Axð0Þ and Að1Þx ¼ �Ax;zð0Þ. These are
both real and nonzero. From (10.34) it then follows that Im r has a pole at x ¼ 0.
Even in the normal phase when w ¼ 0, the potential is nonzero due to the con-
tribution from the electric field. This is precisely the term which arises due to the
backreaction on the metric and is absent in the probe approximation. This is
another way to see why the probe limit does not have a delta function at x ¼ 0 in
the normal phase while the full backreacted solution does. Note that the
Schrödinger potential remains finite in the probe limit q!1, since qw is held
fixed.

This approach also explains the spike in the conductivity that was seen in
Fig. 10.5. At low frequency, the incoming wave from the right is almost entirely
reflected. If the potential is high enough, one can raise the frequency so that about
one wavelength fits between the potential and z ¼ 0. In this case, the reflected
wave can interfere destructively with the incident wave and cause its amplitude at
z ¼ 0 to be exponentially small. This produces a spike in the conductivity. If one
can raise the frequency so that two wavelengths fit between the potential and z ¼ 0
one gets a second spike, etc. More precisely, using standard WKB matching
formula, spikes will occur when there exists x satisfying

Z

0

�z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � VðzÞ
p

dzþ p
4
¼ np ð10:39Þ

for some integer n, where Vð�z0Þ ¼ x2. It is now clear that the spike which we
saw in the probe approximation with m2 saturating the BF bound, also appears in
the full backreacted solution, and for some m2 slightly above the BF bound. When
the spikes were first seen, it was speculated that they corresponded to vector
normal modes of the hairy black hole. It is now clear that they are not true normal
modes even at T ¼ 0, since Ax does not actually vanish at infinity. The actual
modes all have complex frequency and correspond to familiar quasinormal modes.
In other words, there are no bound states in this potential (with boundary condition
Ax ¼ 0 at z ¼ 0) since the potential vanishes at z ¼ �1.

10.5 Zero Temperature Limit

The extremal Reissner–Nordstrom AdS black hole has large entropy at T ¼ 0. If
this was dual to a condensed matter system, it would mean the ground state was
highly degenerate. The extremal limit of the hairy black holes dual to the
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superconductor is not like Reissner–Nordstrom. It has zero horizon area, consistent
with a nondegenerate ground state [45]. One might wonder how this could be the
limit of the T [ 0 black holes since we have seen that for all T 6¼ 0, one can scale
r so that r0 ¼ 1. The point is simply that the dimensionless ratio r0=l! 0 as
T ! 0.

The extremal limit also has zero charge inside the horizon (except in the case
q ¼ 0 when the scalar hair cannot carry the charge). This is an expected conse-
quence of the horizon having zero area. If the black hole tried to keep a nonzero
charge as the temperature was lowered and its horizon shrunk to zero, the electric
field on the surface would grow arbitrarily large. Eventually this would pair create
charged particles via the Schwinger mechanism and neutralize the black hole. This
is a quantum argument involving pair creation, but it has a classical analog in
terms of a superradiant instability for charged scalar fields.

The near horizon behavior of the zero temperature solution depends on the mass
and charge of the bulk scalar field. We will discuss two classes of solutions below.
In both cases, one can solve for the solutions analytically near r ¼ 0. These
leading order solutions depend on a free parameter which can be adjusted so that
the solution asymptotically satisfies the desired boundary condition. In the cases
we study, the solution is typically not smooth at r ¼ 0, but since they are the limit
of smooth black holes, they are physically allowed. If one modifies the potential
for W so that it has more than one extremum, then smooth, zero temperature
solutions exist in which W rolls from one extremum to another [28, 29].

10.5.1 m2 ¼ 0

This corresponds to a marginal, dimension three operator developing a nonzero
expectation value in the dual superconductor. To determine the leading order
behavior near r ¼ 0, we try an ansatz

/ ¼ r2þa; w ¼ w0 � w1r2ð1þaÞ; v ¼ v0 � v1r2ð1þaÞ; g ¼ r2ð1� g1r2ð1þaÞÞ
ð10:40Þ

We have used the scaling symmetries (10.30) and (10.31) to set the coefficients in
/ and g to one. Substituting this into the field equations and equating the dominant
terms for small r (assuming a[ �1), one finds:

qw0 ¼
a2 þ 5aþ 6

2

� �1=2

; v1 ¼
a2 þ 5aþ 6

4ðaþ 1Þ evo ð10:41Þ

g1 ¼
aþ 2

4
evo ; w1 ¼

qevo

2ð2a2 þ 7aþ 5Þ
a2 þ 5aþ 6

2

� �1=2

: ð10:42Þ

10 Introduction to Holographic Superconductors 333



One can now numerically integrate this solution to large radius and adjust a so
that the solution for w is normalizable. One finds that this is possible provided
q2 [ 3=4. This is consistent with the condition for instability (10.32). The value of
a depends weakly on q (see Fig. 10.9). In all cases, jaj\:3. Figure 10.10 shows
the results for w and g for the zero temperature solution, and shows how the T [ 0
solutions approach it as T ! 0.

Near r ¼ 0; v approaches a constant and g ¼ r2. Thus the metric approaches
AdS4 with the same value of the cosmological constant as the asymptotic region.
The extremal horizon is just the Poincare horizon of AdS4. The scalar field
approaches a constant and the Maxwell field vanishes. In terms of the dual field
theory, this means that the full conformal symmetry is restored in the infrared.

These solutions are not singular at r ¼ 0 since all curvature invariants remain
finite. They can be viewed as static, charged domain walls. Even though they are

Fig. 10.9 Values of a for
various charges. Note that it
approaches a constant as
q!1. Figure taken from
[45]

Fig. 10.10 Zero temperature, k ¼ 3 and q ¼ 1 solution (dashed line), compared to successively
lower temperature hairy black holes (solid lines). Note that g almost has a double zero at
r=l ¼ 1=2

ffiffiffi

3
p

which is the extremal horizon for Reissner–Nordstrom AdS. In the limit q!
ffiffiffi

3
p

=2 the solution becomes extremal Reissner–Nordstrom AdS with all hair behind the horizon.
Figure is taken from [45]
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not singular, when a 6¼ 0 the solutions are not C1 across r ¼ 0. Some derivatives
of the curvature will blow up. However, there is a special value of the charge,
q ¼ 1:018, where a ¼ 0. This solution is completely smooth across the horizon. It
is not clear what the significance of this value is for the dual field theory.

10.5.2 q2 [ jm2j=6 ðm2\0Þ

We try the following ansatz near r ¼ 0:

w ¼ Að� log rÞ1=2; g ¼ g0r2ð� log rÞ; / ¼ /0rbð� log rÞ1=2 ð10:43Þ

where we have used the radial scaling symmetry (10.30) to set an arbitrary
length scale in the logarithm to one. The behavior of v is determined by (10.28)
and whether we expect rw02 or rq2/2w2ev=g2 to dominate. We assume rw02
dominates, so

ev ¼ Kð� log rÞA
2=4 ð10:44Þ

with K a constant of integration. The second term in (10.28) is indeed negligible
provided b[ 1. Equating the dominant terms in the equations of motion leads to

A ¼ 2; g0 ¼ �
2
3

m2; b ¼ � 1
2
� 1

2
1� 48q2

m2

� �1=2

: ð10:45Þ

It is clear that for appropriate metric signature we need positive g0 which tells
us this ansatz is only appropriate for negative m2. Since we require b [ 1, only the
plus sign in (10.45) is allowed and we require

q2 [ � m2=6: ð10:46Þ

With these restrictions, our near horizon solution is

w ¼ 2ð� log rÞ1=2; g ¼ ð2m2=3Þr2 log r; ev ¼ �K log r ð10:47Þ

/ ¼ /0rbð� log rÞ1=2; ð10:48Þ

The one remaining free parameter is /0. This parameter can be tuned so that the
asymptotic boundary condition on w is satisfied.

The horizon at r ¼ 0 has a mild singularity. The scalar field diverges loga-
rithmically and the metric takes the form (after rescaling t)

ds2 ¼ r2ð�dt2 þ dxidxiÞ þ dr2

g0r2ð� log rÞ : ð10:49Þ
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Notice that Poincare invariance is restored near the horizon, but not the full
conformal invariance. (Some early indications of emergent Poincare symmetry

were found in [28, 29].) Introducing a new radial coordinate, ~r ¼ �2ð� log rÞ1=2=

g1=2
0 the metric becomes

ds2 ¼ e�g0~r2=2ð�dt2 þ dxidxiÞ þ d~r2 ð10:50Þ

near the horizon which is now at ~r ¼ �1.

10.6 Adding Magnetic Fields

As we mentioned in the introduction, one of the characteristic properties of
superconductors is that they expel magnetic fields. However, a superconductor can
expel a magnetic field only up to a point. A sufficiently strong field will destroy the
superconductivity. One defines the thermodynamic critical field Bc by setting the
energy it takes to expel the magnetic field equal to the difference in free energy
between the normal and superconducting states:

B2
cðTÞV

8p
¼ FnðTÞ � FsðTÞ ð10:51Þ

where V is the volume. Superconductors are divided into two classes depending on
how they make the transition from a superconducting to a normal state as the
magnetic field is increased. In type I superconductors, there is a first order phase
transition at B ¼ Bc, above which magnetic field lines penetrate uniformly and the
material no longer superconducts. In type II superconductors, there is a more
gradual second order phase transition. The magnetic field starts to penetrate the
superconductor in the form of vortices with quantized flux when B ¼ Bc1\Bc. The
vortices become more dense as the magnetic field is increased, and at an upper
critical field strength, B ¼ Bc2 [ Bc, the material ceases to superconduct.

We now show that our 2 + 1 dimensional holographic superconductors are type
II. (Interestingly enough, the high Tc superconductors are also type II.) We will
view this superconductor as a thin film superconductor in 3 + 1 dimensions with a
perpendicular magnetic field. Suppose the 2 + 1 dimensional sample is a disk of
radius R. In order for the disk to expel the magnetic field, it must produce a current
circulating around the perimeter. Solving Maxwell’s equations, this current will
expel a field not only in the area pR2 of the disk but in a larger volume of size
V3	R3. Since the difference in free energies between the normal and supercon-
ducting state scales like R2, in the large R (thermodynamic) limit, the supercon-
ductor does not have enough free energy available to expel a magnetic field. Thus
magnetic fields of any non-vanishing strength will penetrate a thin superconduc-
ting film and Bc ¼ 0.
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To show that the holographic superconductor is type II, we start in the normal
phase with a large applied magnetic field, and slowly lower B. We will see that
parts of the system start to become superconducting at a value Bc2 [ 0 [1, 44]. To
model the normal phase with an applied magnetic field, we use a black hole in AdS
with both electric and magnetic charges (but no scalar hair). The magnetic field in
the bulk corresponds to applying a background magnetic field on the boundary.
The metric takes the form (10.24) with v ¼ 0 and

gðrÞ ¼ r2 � 1
4rr0

4r4
0 þ q2 þ B2

� �

þ 1
4r2
ðq2 þ B2Þ : ð10:52Þ

The black hole temperature is

T ¼ 12r4
0 � q2 � B2

16pr3
0

: ð10:53Þ

The vector potential is

A ¼ q
1
r0
� 1

r

� �

dt þ Bxdy: ð10:54Þ

Since we are interested in the onset of superconductivity which is a second
order phase transition, the condensate will be small and we can ignore the back-
reaction of w on the metric. (Note that this is different from the probe approxi-
mation since the backreaction of the Maxwell field is included here.) Since the
gauge potential now depends on x, we separate variables as follows

wðr; x; yÞ ¼ RðrÞXðxÞeiky: ð10:55Þ

The equation for XðxÞ turns out to be a simple harmonic oscillator centered at k=qB

with width ðqBÞ�1=2. The eigenvalues are 2qBðnþ 1
2Þ but only the lowest mode is

expected to be stable. Note that the momentum k shifts the origin of the harmonic
oscillator, but does not change its energy. This is just the degeneracy of Landau
levels. The radial equation becomes:

ðr2gR0Þ0 þ q2q2

g

r

r0
� 1

� �

þ qB� m2r2

� �

R ¼ 0: ð10:56Þ

One can now choose B so that there is a normalizable solution. This defines the
upper critical field Bc2. One finds that Bc2 is a decreasing function of temperature
and vanishes at T ¼ Tc. This is what one expects: At lower temperatures, a
superconductor can support a larger magnetic field. Due to the degeneracy in k, the
actual condensate involves a superposition of these modes for all k and forms a
lattice of vortices. Maeda et al. [53] have recently studied the free energy as a
function of the two parameters which govern the shape of the vortex array and
shown that the minimum of the free energy at long wavelength corresponds to a
triangular array which is what is predicted by the Landau–Ginzburg model.
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10.6.1 London Equation

As mentioned in Sect. 10.2, the boundary theory does not have dynamical Max-
well fields, so one cannot actually see the Meisner effect. However, one can show
that in the superconducting state, static magnetic fields induce currents whose
backreaction would cancel the applied magnetic field [52, 37]. In fact, one can
show that these currents are proportional to Ai and thus reproduce London’s
equation.

To make life easier, in this section we shall work in the probe limit (q!1) in
which the metric is kept fixed to be simply the Schwarzschild AdS black hole
(10.3). Assume that we have solved for At and w in this background as described in
Sect. 3.1. We then wish to add a static perturbation Ax that has nonzero
momentum. We will take the momentum to lie in a direction orthogonal to Al, so
we can consistently perturb the gauge field without sourcing any other fields. This
perturbation corresponds to adding a static magnetic field in the bulk, and the
asymptotic value of this magnetic field corresponds to the magnetic field added to
the boundary theory. As before, the first subleading term in AxðrÞ corresponds to
the induced current.

Rather than doing this calculation explicitly, we can obtain the answer by
relating it to the calculation in Sect. 3.2. Let Ax have both momentum and fre-
quency dependence of the form Ax	 e�ixtþiky. The radial equation for AxðrÞ
reduces to

ðfA0xÞ
0 þ x2

f
� k2

r2

� �

Ax ¼ 2w2Ax ; ð10:57Þ

where 0 denotes differentiation with respect to r. We studied this equation with
k ¼ 0 in Sect. 3.2, and found a pole in Imr½x� at x ¼ 0. Let the residue of this pole

be ns, the superfluid density. From (10.18) this means that Að1Þx ¼ �nsA
ð0Þ
x . But

Jx ¼ Að1Þx and Að0Þx is just the vector potential in the boundary theory, so

Jxðx; k ¼ 0Þ ¼ �nsAxðx; k ¼ 0Þ: ð10:58Þ

It is clear from the form of Eq. 10.57 that the limits x! 0 and k ! 0 must
commute. To compute ns, we simply set both x and k to zero and solve (10.57).
Thus for small k, we directly obtain the London equation

Jiðx; kÞ ¼ �nsAiðx; kÞ ð10:59Þ

where we have used the isotropy of space. This equation is clearly not gauge
invariant. It is expected to hold in a gauge where riAi ¼ 0.
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10.6.2 Correlation Length

The gauge/gravity dictionary says that the retarded Green’s function (for Jx) in the
dual field theory is

GRðx; kÞ ¼ Að1Þx ðx; kÞ
Að0Þx ðx; kÞ

: ð10:60Þ

We can define a correlation length n by expanding

Re GRð0; kÞ ¼ �nsð1þ n2k2 þ � � �Þ ð10:61Þ

By solving (10.57) numerically, including the k dependence, one can compute this
correlation length. One finds that it diverges near the critical temperature like

nTc � 0:1ð1� T=TcÞ�1=2 [44]. A similar divergence is found in a correlation
length obtained from fluctuations in the condensate [52].

10.6.3 Vortices

As we discussed above, at the onset of superconductivity when B ¼ Bc2, there is a
lattice of vortices. However, at this point, the condensate is small everywhere and
the equations could be linearized. It is of interest to find the bulk solution
describing a vortex lattice away from B ¼ Bc2. The first step is to find the single
vortex solution. This corresponds to a something like a cosmic string stretching
from the black hole horizon to infinity. However, there is a crucial difference
between a cosmic string and the dual of a vortex. A standard cosmic string has a
fixed proper radius. This means that its size in the x; y coordinates used in (10.24)
goes to zero at large r. In terms of the boundary theory, this is a point-like object.
We want a solution in which the cosmic string is a fixed size in the x; y coordi-
nates, so it has a finite radius in the superconductor. This looks more like a funnel
in the bulk with a proper radius that grows as one increases r.

Such a solution has recently been found in the probe limit [56].11 Let us write
the background metric using polar coordinates for the flat transverse space:

ds2 ¼ �f ðrÞdt2 þ dr2

f ðrÞ þ r2 d~r2 þ ~r2du2
� �

: ð10:62Þ

Assume an ansatz

W ¼ wðr;~rÞeinu; At ¼ Atðr;~rÞ; Au ¼ Auðr;~rÞ: ð10:63Þ

11 See [2, 3] for another approach.
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Substituting this into the field equations, one obtains a set of nonlinear PDE’s. The
condensate is now a function of radius ~r. It vanishes at ~r ¼ 0 which represents the
center of the vortex, and approaches a constant at large ~r. This shows that there is
no superconductivity inside the vortex. Since the Maxwell field is not dynamical
on the boundary, the magnetic field is not localized inside the vortex as one would
expect. Instead, the authors of [56] work in finite volume and assume a uniform
magnetic field on the boundary with total flux equal to 2pn as expected for the
vortex.

10.7 Recent Developments

So far, we have discussed planar black holes in the bulk. Spherical black holes
have the same instability and describe spherical superconductors. One can add
rotation to a spherical black hole, and the effect of this rotation on the dual
superconductor has recently been studied [62]. It was found that for T\Tc (the
transition temperature at zero rotation), there is a critical value of the rotation
which destroys the superconductivity in analogy to the critical magnetic field.

The bulk gravitational theory that we have studied was not derived from string
theory. It was just the simplest model that could describe a dual superconductor,
and we have seen that it works rather well. It predicts that a charged condensate
forms at low temperature (in a second order phase transition), that the DC con-
ductivity is infinite, and that there is a gap in the optical conductivity at low
frequency—all basic properties of superconductors. However, to go beyond this
and have a more detailed microscopic understanding of the dual superconductor,
one needs to embed this model in string theory. A linearized instability of the type
needed to describe a holographic superconductor was found in a string compac-
tification in [14]. This has now been extended to a full description by two different
groups. Gauntlett et al. [20, 21] realized the m2 ¼ �2; q ¼ 2 model in M theory. In
other words, they found a consistent truncation of eleven dimensional supergravity
in which the four dimensional fields were just a metric, Maxwell field and charged
scalar with this mass and charge.12 Gubser et al. [32] realized the same model in
one higher dimension (a five dimensional bulk which is dual to a 3þ 1 dimen-
sional superconductor) with m2 ¼ �3; q ¼ 2 in type IIB string theory. Both groups
used Sasaki–Einstein compactifications with Uð1Þ symmetry, where the charged
scalar is related to the size of the U(1) fibration.

There are two main differences between the models obtained from string theory
and our simple model. The first is that the kinetic term for the charged scalar
involves nonminimal coupling. (This was investigated earlier by Franco et al.
[18, 19].) The second difference is that the scalar potentials VðwÞ coming from

12 In general, there is an additional neutral scalar, but for purely electrically charged black holes,
this field can be set to zero.
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supergravity are more complicated than the simple mass terms we have considered
so far. This does not affect the onset of superconductivity: since the scalar field is
small near Tc, the critical temperature is just determined by the mass term in the
potential. However, the low temperature limit is different. The potentials coming
from supergravity have more than one extremum. In this case, the zero tempera-
ture limit of the hairy black hole is a smooth domain wall in which the scalar rolls
from one extremum in the UV to another extremum in the IR [49]. The IR limit is
another copy of AdS with, in general, a different cosmological constant. These
examples all have emergent conformal symmetry in the IR.

The optical conductivity in these theories never show a pronounced gap at low
temperature. Typically, RerðxÞ ¼ kxd for small x with a coefficient k of order
one. From our Schrödinger equation reformulation this is a bit surprising. Why is
not there an exponential suppression due to tunnelling through the barrier? The
answer is simply that the effective potential in the Schrödinger equation never gets
very large in these solutions since all fields are order one.

Even though embedding in string theory makes it possible to study the dual
field theory in more detail, this is still difficult in 2þ 1 dimensions. It is somewhat
easier in 3þ 1 dimensions since the dual theories are related to ordinary gauge
theory. One particularly interesting aspect of the 3þ 1 superconductor is that the
condensate includes a term bilinear in the fermions, like a Cooper pair [26].

It was shown in [27] that one can replace the Maxwell field and charged scalar
in the bulk with an SUð2Þ gauge field and still have a dual description of a
superconductor. The main difference is the following: The symmetry of a super-
conductor refers to the energy gap above the Fermi surface. The holographic
superconductors we have discussed here all have S-wave symmetry since they do
not prefer a direction. With an SUð2Þ gauge field in the bulk, one obtains a P-wave
superconductor.13 This leads to another way to realize holographic superconduc-
tors (in the probe limit) in string theory: one can use the SUð2Þ gauge field realized
on a pair of branes [5, 6, 58].

This is a rapidly evolving field and there have been several developments since
the Milos summer school in September 2009, including:

• A key property of condensed matter systems is, of course, the atomic lattice.
This gives rise to the phonons in the BCS theory which cause the electrons to
pair. Our simple model has translational symmetry and no sign of a lattice.
However, some interesting ideas on how to include a lattice have been discussed
by Kachru et al. [46].

• Some superconductors exhibit striped phases associated with charged density
waves. It was shown in [57] that the Chern–Simons term in five dimensional

13 One cannot compute the energy gap directly. Indeed, as we have seen, there probably is not
a strict gap. The interpretation as a P-wave superconductor comes from the fact that there is
a vector order parameter and the conductivity is strongly anisotropic in a manor consistent with
P-wave nodes on the Fermi surface.
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supergravity can lead to an instability at nonzero momentum in which a spatially
modulated condensate forms.

• The response of fermions to the superconducting phase has been studied [13, 17,
31]. It was found that with a suitable coupling between the bulk fermions and
scalar, there are stable quasiparticles with a gap [17].

10.8 Conclusions and Open Problems

For 90 years after its discovery in 1915, general relativity was viewed as a theory
of gravity. It has proved very successful in describing a wide range of gravitational
phenomena from the bending of light to gravitational waves and black holes. But
in the last few years we have seen that this same theory can describe other areas of
physics as well, including superconductivity. This is all due to the magic of gauge/
gravity duality. Although the full power of gauge/gravity duality relates a quantum
theory of gravity (indeed string theory) in the bulk to a nongravitational theory on
the boundary, we have worked in a large N limit in which the bulk theory is just
classical general relativity. This large N limit also explains how we can have
spontaneous symmetry breaking in a 2þ 1 dimensional field theory, in apparent
contradiction to the Coleman–Mermin–Wagner theorem. The large N limit sup-
presses fluctuations in the fields.14

It is natural to ask how surprised one should be that general relativity can
reproduce the basic properties of superconductors. After all, Weinberg [66] has
shown that much of the phenomenology of superconductivity follows just from the
spontaneous breaking of the Uð1Þ symmetry. Once we have found the instability
that leads to charged scalar hair, does not everything else follow? There are
indications that something deeper is going on. For example, order one dimen-
sionless ratios can be computed and compared with experiment. In particular, the
ratio xg=Tc � 8 discussed in Sect. 3.2, is close to the observed value. This does
not follow from symmetry arguments alone.

Since our bulk dual of a superconductor just involves gravity interacting with
a Maxwell field and a charged scalar, there is a superficial similarity to a
Landau–Ginzburg description. However, it is important to keep in mind two key
differences. First, the low temperature instability must be put in by hand in the
Landau–Ginzburg model, whereas it arises naturally in our gravitational
description. Indeed, we have seen that there are two physically distinct insta-
bilities which can trigger the phase transition. Second, the Landau–Ginzburg
model is only valid near the transition temperature, since it involves a power
series in the order parameter u. To go beyond T � Tc, one would need to specify
an entire potential VðuÞ. Initially, our bulk theory also had the freedom to add an
arbitrary potential VðWÞ. We chose just a mass term for simplicity. However,

14 This is not an issue for the 3þ 1 dimensional superconductor, which can be holographically
described by the bulk gravitational theory (10.2) in one higher dimension.
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once one embeds the bulk theory into string theory, the potential is fixed and is
no longer arbitrary.

10.8.1 Open Problems

We close with a list of open problems.15 They are roughly ordered in difficulty
with the easier problems listed first. (Of course, this is my subjective impression.
With the right approach, an apparently difficult problem may become easy!)

1. In the probe limit below the critical temperature, there is an infinite discrete set
of solutions for w which are all regular on the horizon and satisfy the required
boundary condition at infinity. (When backreaction is included, there is only a
finite number of such solutions.) They can be labelled by the number of nodes
(zeros) they contain. It is widely believed that only the lowest solution with no
nodes is stable. Is this true in the theory we have discussed where the scalar
potential VðwÞ just contains a mass term? Is it true if the theory contains scalar
self interactions, like the potentials derived from string theory?

2. We have seen that an extreme Reissner–Nordstrom AdS black hole is unstable
to forming neutral scalar hair if the scalar has mass close to the BF bound (9).
Under evolution, as the black hole is developing scalar hair, the total charge
and mass at infinity are conserved. Since the scalar field can carry energy, but
not charge, the final black hole (which need not be extremal) has the same
charge, but less mass than the initial extremal limit. How is this consistent
with the original black hole being extremal? What is the extremal limit in this
Einstein–Maxwell-scalar theory? A related question is: what is the interpre-
tation of this neutral scalar hair in the dual field theory?

3. We studied magnetic fields in 2 + 1 dimensional superconductors in Sect.
10.6. What happens if you add a magnetic field to 3 + 1 superconductors? One
immediate difference is that Bc is no longer zero. Are the holographic
superconductors still type II? The new magnetic brane solutions in [15, 16]
may be useful.

4. As discussed in Sect. 6.2, a vortex solution has recently been found in the
probe approximation. Find the vortex solution with backreaction. More gen-
erally, find the solution describing a lattice of vortices in the bulk. This would
correspond to a magnetically charged black hole in which the magnetic flux is
confined to ‘‘cosmic strings’’ stretching from the horizon to infinity. To solve
this problem, one must solve nonlinear partial differential equations.

5. Recall that the symmetry of a superconductor refers to the energy gap on the
Fermi surface. The holographic superconductors we have discussed here all
have S-wave symmetry since they do not prefer a direction. P-wave holo-
graphic superconductors have been found [27, 60]. The high Tc cuprates are

15 I thank Sean Hartnoll for suggesting some of these problems.
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known to have D-wave symmetry. Can one find a holographic superconductor
with D-wave symmetry? It is natural to try to condense a charged spin two
field. Interestingly enough, the newly discovered iron pnictides appear to have
S-wave symmetry, but it is complicated by multiple Fermi surfaces [12].

6. It was discovered recently that there are materials in which the (DC) con-
ductivity goes to zero for T\Tc [64]. This is the opposite of a superconductor
and is called a ‘‘superinsulator’’. Can one find a holographic description of a
superinsulator? It is tempting to use the fact that under electromagnetic duality
in AdS4, the conductivity transforms as r! �1=r [35]. However, one must
start with a bulk action which is invariant under electromagnetic duality. The
action (10.2) is not, since it explicitly involves Al.

7. As we discussed in Sect. 10.7, it has recently been shown that the holographic
superconductors can be derived from string theory, so in some cases the dual
microscopic theory is known. Can one understand the pairing mechanism in
these cases (if indeed ‘‘pairing mechanism’’ is the right concept at strong
coupling)? This remains one of the main open questions in understanding the
high Tc materials.

8. As mentioned above, the large N limit is responsible for allowing spontaneous
symmetry breaking in our 2 + 1 dimensional field theory. Can one show that
away from this limit, massless fluctuations lead to infrared diverges which
destroy the long range order?

9. In gauge/gravity duality, one takes a large N limit to justify using classical
general relativity in the bulk. What is the analog of this large N limit in
condensed matter systems? In other words, what types of materials are likely
to have a (tractable) dual gravitational gravitational description? (See [59] for
a discussion of some of the issues.)

10. The high temperature cuprate superconductors satisfy a simple scaling law
relating the superfluid density, the normal state (DC) conductivity and the
critical temperature [43]. Can this be given a dual gravitational interpretation?
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Chapter 11
Flavor Superconductivity and
Superfluidity

Matthias Kaminski

Abstract In these lecture notes we derive a generic holographic string theory
realization of a p-wave superconductor/superfluid. For this purpose we also review
basic D-brane physics, gauge/gravity methods at finite temperature, key concepts
of superconductivity and recent progress in distinct realizations of holographic
superconductors and superfluids. The gravity dual is a D3/D7-brane construction
yielding a superconducting or superfluid vector-condensate. The corresponding
gauge theory is 3 + 1-dimensional N ¼ 2 supersymmetric Yang-Mills theory with
SUðNcÞ color and SUð2Þ flavor symmetry. It shows a second order phase transition
to a phase in which a Uð1Þ subgroup of the SUð2Þ symmetry is spontaneously
broken and typical superconductivity signatures emerge. For example an infinite
dc conductivity, a conductivity (pseudo-)gap and the Meissner-Ochsenfeld effect
are found. Condensates of this nature are comparable to those recently found
experimentally in p-wave superconductors such as a ruthenate compound. A string
picture of the pairing mechanism and condensation is given using the exact
knowledge of the corresponding field theory degrees of freedom.

11.1 Introduction

In these lecture notes1 we generically construct a holographic p-wave supercon-
ductor. This introductory section serves to explain why this particular setup is of
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interest both from a string-theoretical as well as from a condensed matter physics
point of view. In order to guide the unexperienced reader in Sect. 11.2 we will
describe the basic concepts in words and motivate the project. Detailing this
overview we build the full holographic setup from scratch in a self-contained
manner in Sect. 11.3. Section 11.4 briefly introduces common holographic
methods and then summarizes the major results known for the thermodynamics
and the spectrum of D-brane systems. With these outcomes in the back of our
minds we will understand how our system develops a new ground state and why it
can be interpreted as a q meson superfluid or superconductor. We compute and
discuss thermodynamic observables, conductivities and the spectrum of our
holographic superconductor in Sect. 11.5. Finally, we put together all of our
findings in order to draw a string theory picture for the pairing mechanism in
our p-wave superconductor. These notes are self-contained and widely comple-
mentary to the notes focusing on holographic s-wave superconductors [1, 2].

11.1.1 String Motivation

The setup of intersecting D-branes and especially the particular D3-D7 con-
struction presented here is interesting because of its diverse applications. It has
been successfully used to model strongly coupled particle physics phenomena such
as a deconfinement, or rather meson melting phase transition for fundamental
matter and transport coefficients in the quark gluon plasma experimentally created
at the RHIC collider in Brookhaven (see [3] for an introductory review and further
references). On the other hand it has recently been used to model strongly cor-
related electron systems as they appear in superfluids and superconductors in the
realm of condensed matter physics [4, 5]. All these applications are also crucial
checks of the basic principles and methods coming from the conjectured gauge/
gravity correspondence. Receiving physically meaningful outcomes when apply-
ing these holographic methods to various systems accessible by experiment,
strengthens our confidence in the gauge/gravity conjecture.

From the string-theoretic point of view this particular setup is interesting
because of its simplicity, uniqueness (explained below) and the naturalness with
which the symmetry is broken spontaneously here. The flavor2 superfluid/super-
conductor3 examined here was the first generic top-down string theory realization
of a superfluid/superconducting phase. In contrast to this the pioneering papers on

2 The term ‘‘flavor’’ superconductor stems from earlier applications of this setup to model
strongly correlated high energy systems such as the quark gluon plasma. In the present case the
name is not important and possibly misguiding, since it is really only essential that the system has
a non-Abelian SUð2Þ symmetry.
3 We are using the terms superfluid and superconductor interchangably here. For the considered
phenomena this distinction does not make any difference. Some details to this distinction are
given in Sect. 11.2.1.
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holographic superconductors [6, 7] had exclusively treated gravity toy models
which were not directly obtained from string theory, i.e. bottom-up models.
Therefore the gauge/gravity correspondence could not be used to identify the exact
gauge theory dual. This fact obstructed the interpretation of the outcomes. Fur-
thermore these toy models had few restrictions on their parameters such that in
principle a large parameter space needed to be scanned, see e.g. [8]. Our string-
derived flavor superfluid/superconductor overcomes those two problems: First the
field theory degrees of freedom are exactly known since it is simply N ¼ 2
supersymmetric Yang-Mills theory with an SUð2Þ flavor-symmetry. Second, the
values of parameters, such as for example the dimension of the condensing
operator, in our setup are severely restricted by their string theoretic derivation. In
this sense this setup is ‘‘unique’’ compared to the big parameter space to be
scanned in bottom-up toy models. Later, other top-down string realizations have
been suggested and for example involve a consistent truncation of type IIB
supergravity with a chemical potential for the R-charge [9], and domain-wall
solutions interpolating between AdS solutions with distinct radii which may be
lifted to IIB supergravity or eleven-dimensional supergravity [10].

11.1.2 Condensed Matter Motivation

From a condensed-matter physics point of view our flavor superconductor is highly
interesting because it reproduces features which have been measured in experi-
ments with unconventional superconductors, such as p-wave superconductivity, a
system of strongly-correlated particles, a pseudo-gap in the frequency-dependent
conductivity (found in high temperature d-wave superconductors). Most of these
phenomena lack a widely-accepted microscopic explanation by conventional
approaches, so there is the hope that gauge/gravity can shed some light on the
nature of these systems. These systems usually contain strongly correlated elec-
trons, so the dual weak gravity description is in principle accessible. Our system
has a vector operator which condenses upon breaking a residual Abelian flavor
symmetry spontaneously. This gives the vector order parameter as described
below. So there is a preferred spatial direction in the superfluid/superconducting
condensate. This is exactly the situation recently found experimentally in the
p-wave (explained below in Sect. 11.2.1) superconductor Sr2RuO4 [11]. These
materials are investigated with great excitement in the condensed-matter com-
munity because they are hoped to be usable for quantum computing [12]. The
reason is that the p-wave structure implies the presence of non-Abelian quasi-
particles in the ruthenate compound. These non-Abelian quasi-particles can be
used as the states to be manipulated in a topological quantum computer. The
biggest practical obstacle for quantum computation are the errors which may occur
during a calculation due to materials being not ideal. Topological quantum com-
puters minimize this source of error because they carry out operations by braiding
the non-Abelian quasi-particles in a Hilbert-subspace containing degenerate
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ground states. Due to an energy gap between this subspace and the rest of the
Hilbert space it virtually decouples from all local perturbations [13]. Another
confirmed and well-studied condensed-matter example for an emerging p-wave
structure is superfluid 3He-A [14].

11.2 Superconductivity and Holography

This section is a primer on the subject of spontaneous symmetry breaking,
superconductivity and superfluidity in the holographic context of the gauge/gravity
correspondence. Little formalism is used, while we introduce all the necessary
concepts.

11.2.1 Basics of Superconductivity and Our Field Theory Idea

Let us review the essential concepts of superconductivity and understand how to
build a p-wave superconductor. We are going to need this knowledge in order to
appreciate the fact that our holographic setup reproduces this behavior in great
detail.

11.2.1.1 Superconductor Basics and the P-Wave

Superconductivity is the phenomenon associated with infinite dc conductivity in
materials at low temperatures. It is caused by the formation of a charged condensate
in which directed currents do not experience resistivity. A defining criterion for
superconductivity is the Meissner-Ochsenfeld effect described below. In
conventional superconductors the superconducting condensate consists of electron
pairs called Cooper pairs. So there are two simultaneous steps: the fermionic
electrons have to pair up to form bosonic Cooper pairs, and these pairs do condense.
This condensation happens in a second order phase transition (at vanishing mag-
netic field) when the temperature is lowered through its critical value Tc. Due to the
requirement for the fermionic state to be antisymmetric there are only certain
symmetry combinations allowed for the two electron state describing a Cooper pair.
As seen from Table 11.1 the name ‘‘p-wave’’ superconductor refers to those pairs in
which the relative orbital angular momentum between the two electrons is L ¼ 1,
the spatial part of the parity is odd and the spin state is a triplet.

The mechanism pairing electrons in conventional superconductors is well
described by a mean field theory approach and the microscopic BCS-theory. Recall
that condensed matter systems are conveniently described in terms of lattices with
many (about 1023) sites. Then conventional BCS-theory tells us that the lattice is
slightly deformed by the presence of an electron. This deformation can be
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described by a quasi-particle excitation, a phonon. We can imagine the phonon to
create a small potential well near the electron in which another electron can be
caught. So lattice vibrations (phonons) mediate a weakly attractive interaction
between the electrons which then form pairs. Conventional BCS-theory with
phonons is only valid at low temperatures because around 30 K the phononic
lattice vibrations caused by the temperature already destroy the weakly attractive
interaction between the electrons. Note that BCS-theory itself does not depend on
the origin of the attractive interaction.

A superconductor is simply a charged superfluid

The crucial defining property for any kind of superconductivity or superfluidity is
that a symmetry is spontaneously broken. In superfluids this symmetry is global
while in superconductors it is local, i.e. a gauge symmetry. Therefore in super-
conductors there are a few additional effects related to the gauge symmetry and the
corresponding gauge field. But besides that those two phenomena are very similar.
Especially in both cases there is a Goldstone boson created for each spontaneously
broken symmetry of the describing field theory. For a broken global symmetry this
Goldstone boson survives and is visible in the spectrum as a hydrodynamic mode
[15]. For a broken local symmetry however the Goldstone boson is eaten by the
gauge field which couples to the charge belonging to the broken symmetry. In
superconductors this causes the gauge boson, i.e. the photon for the broken
electromagnetic Uð1Þ to become massive. Since these heavy photons can travel
only an exponentially small distance, the electromagnetic interaction becomes
short-ranged. Therefore magnetic fields, which can be thought of as consisting of
photons, can only penetrate the system up to a certain distance, the penetration
depth. This is called Meissner-Ochsenfeld effect and it is a defining criterion for
superconductivity. In the Anderson-Higgs mechanism particles acquire a mass by
the same mechanism. Thus it is sometimes described as the superfluidity of the
vacuum. See [16] for a more precise review.

There is a class of experimentally well-studied but theoretically less understood
unconventional superconductors, such as copper or ruthenate compounds. Some of
these materials show superconducting phases at high temperatures4 up to 138 K.

Table 11.1 Nomenclature of
superconducting states

Orbital angular
momentum

Name Parity of
spatial part

Spin state

0 s-wave even singlet
1 p-wave odd triplet
2 d-wave even singlet

4 Sr2RuO4 is superconducting at low temperatures around 2 K but the pairing mechansim is
not microscopically understood. The simplified argument is that the phonon-interaction of
conventional Cooper pairing is isotropic, thus not providing an anisotropic p-wave structure.
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The conventional BCS-theory does not apply to such high temperatures as men-
tioned above. So the biggest mystery remains to understand the pairing mechanism
of electrons in these high temperature superconductors. Pairing and condensation
need not occur at the same temperature here. Most important for the application of
gauge/gravity duality: In these unconventional superconductors the coupling
strength of the electrons to each other is strong. Thus these are experimentally
accessible systems governed by strongly coupled field theory.

Another clear signature for superconductivity is of course an infinite dc con-
ductivity. Together with that there is a conductivity gap in the frequency-dependent
conductivity. This is caused by the fact that the conductivity at small frequencies or
energies vanishes until there is enough energy to break up one Cooper pair. From
that energy on the material is a normal conductor with individual electrons being
the charge carriers. In unconventional superconductors there is a surprising phe-
nomenon called pseudo-gap. This means that the experiments carried out in
unconventional superconductors show a gap in the conductivity even at and above
the transition temperature where the superconducting condensate forms. Inside this
pseudo-gap the conductivity does not drop to zero but to a small finite value.

11.2.1.2 How to Build a Feld Theory with P-wave Superconductivity

As stressed above the crucial thing to do in order to get a superconductor or
superfluid is to spontaneously break a symmetry. We are going to accomplish this
by allowing our system to develop a charged condensate.

Let us assume a particle physics point of view for a while. In these notes we
will focus on a 3 + 1-dimensional N ¼ 2 supersymmetric SUðNcÞ Yang-Mills
theory at temperature T , consisting of a N ¼ 4 gauge multiplet as well as Nf

massive N ¼ 2 supersymmetric hypermultiplets ðwi;/iÞ: The hypermultiplets
give rise to the flavor degrees transforming in the fundamental representation of
the gauge group. The action is written down explicitly for instance in [17]. In
particular, we work in the large Nc limit with Nf � Nc at strong coupling, i.e. with
k� 1; where k ¼ g2

YMNc is the ’t Hooft coupling constant. In the following we
will consider only two flavors, i.e. Nf ¼ 2: The flavor degrees of freedom are
called u and d. If the masses of the two flavor degrees are degenerate, the theory
has a global Uð2Þ flavor symmetry, whose overall Uð1ÞB subgroup can be iden-
tified with the baryon number.

In the following we will consider the theory at finite isospin chemical potential
l, which is introduced as the source of the operator

J3
0 / �wr3c0wþ /r3o0/ ¼ nu � nd ; ð11:1Þ

where nu=d is the charge density of the isospin fields, ð/u;/dÞ ¼ / and
ðwu;wdÞ ¼ w. ri are the Pauli matrices. A non-zero vev hJ3

0i introduces an isospin
density as discussed in [18]. The isospin chemical potential l explicitly breaks the
Uð2Þ ’ Uð1ÞB � SUð2ÞI flavor symmetry down to Uð1ÞB � Uð1Þ3, where Uð1Þ3 is
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generated by the unbroken generator r3 of the SUð2ÞI . Under the Uð1Þ3 symmetry
the fields with index u and d have positive and negative charge, respectively.

However, the theory is unstable at large isospin chemical potential [18]. The
new phase is sketched in Fig. 11.1. We show in this lecture (see also [4]), that the
new phase is stabilized by a non–vanishing vacuum expectation value of the
current component

J1
3 / �wr1c3wþ /r1o3/ ¼ �wuc3wd þ �wdc3wu þ bosons : ð11:2Þ

This current component breaks both the SOð3Þ rotational symmetry as well as the
remaining Abelian Uð1Þ3 flavor symmetry spontaneously. The rotational SOð3Þ is
broken down to SOð2Þ3, which is generated by rotations around the x3 axis. Due to
the non-vanishing vev for J1

3 ; flavor charged vector mesons condense and form a
superfluid. Let us emphasize that we do not describe a color superconductor on the
field theory side, since the condensate is a gauge singlet. Figure 11.1 shows a ‘‘not
accessible’’ parameter region in which we get divergent quantities. This is due to
the fact that at such large charge densities we would need to take in account the
backreaction of the D7-branes on the AdS geometry.

In a condensed matter context our model can be considered as a holographic
p-wave superconductor in the following way. The global Uð1Þ3 in our model is the
analog of the local Uð1Þem symmetry of electromagnetic interactions. So far in all
holographic models of superconductors the breaking of a global symmetry on the
field theory side is considered. In our model, the current J3 corresponds to the
electric current Jem: The condensate hJ1

3i breaks the Uð1Þ3 spontaneously.
Therefore it can be viewed as the superconducting condensate, which is analogous

0.0

stable mesons

not reachable

superconducting phase

meson melting

0.5 1.0 1.5 2.0
0

2

4

6

8

Fig. 11.1 Phase diagram of our field theory depending on the temperature parametrized by
m�1 / T and on the isospin chemical potential lI scaled by the quark mass Mq. At low
temperatures and chemical potentials a phase of stable mesons forms which melts at higher lI

and m�1. Above a critical density we find a superconducting or superfluid phase with a vector
order parameter
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to the Cooper pairs. Since the condensate hJ1
3i transforms as a vector under spatial

rotations, it is a p-wave superconductor. Strictly speaking, for a superconductor
interpretation it would be necessary to charge the superfluid, i.e. gauge the global
Uð1Þ3 symmetry which is broken spontaneously in our model. A spontaneously
broken global symmetry corresponds to a superfluid. However, as we mentioned
before many features of superconductivity do not depend on whether the Uð1Þ3 is
gauged. One exception to this is the Meissner–Ochsenfeld effect. To generate the
currents expelling the magnetic field, the Uð1Þ3 symmetry has to be gauged. This
matter is discussed further below in Sect. 11.5.4 where we will be able to see the
onset of the Meissner–Ochsenfeld effect within our holographic setup.

11.2.2 Holographic Realization

Holographic superconductors have first been studied in [6, 7, 19, 20]. The initial
idea presented in [19] was that the Abelian Higgs model coupled to gravity with a
negative cosmological constant provides a charged scalar condensate near but
outside a charged black hole horizon. The charged condensate spontaneously
breaks the Abelian gauge symmetry of the theory. Later studies revealed that this
breaking also occurs in setups with neutral black holes but with a negative mass
for the charged scalar [6]. The basic idea for a holographic p-wave superconductor
has been outlined in [7]. Let us review the basic ideas.

11.2.2.1 Holographic Superconductor Basics

In order to spontaneously break a symmetry we need a gravity theory with a gauge
symmetry. Note that this is not the usual gauge symmetry SUðNÞ of the corre-
spondence where N !1, but an additional one with a finite rank, for example an
Abelian Uð1Þ. Furthermore we need a black hole background in order to introduce
finite temperature in the dual field theory, see [3] for details. Most importantly we
need a charged condensate hovering in the bulk over the horizon. To be more
precise, we need a bulk field / charged under the gauge symmetry which is to be
broken. / has to have the typical expansion / ¼ /normalizable þ /non�normalizable þ
. . . near the AdS boundary, but with /non-normalizable � 0. Why do we require this
particular structure? Recall that in the gauge/gravity correspondence the normal-
izable mode is identified with the field theory expectation value hO/i of the
operator O/ dual to the gravity field /. This is our condensate in the field theory,
which we want to be non-zero. The normalizable mode on the other hand is dual to
a source in the field theory. Therefore we want it to vanish since it would break the
symmetry explicitly. The role of the field / providing the condensate could be
played for example by a charged scalar or by one component of a gauge field.
These concepts are illustrated in the following example.
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Example Consider the bottom-up toy model p-wave superconductor introduced in
[7]. There we have an Einstein Yang-Mills theory with a negative cosmological
constant

S�
Z

D4x R� 1
4
ðFa

lmÞ
2 þ 6

L2
;

� �

ð11:3Þ

with F being the field strength of an SUð2Þ gauge field A. This SUð2Þ in this case is
the gauge group that we want to break. Actually we break only a Uð1Þ subgroup of
it. But let us not worry about the details now. Only note that this theory is placed in
an AdS4 charged black hole background. Our gauge field A now plays the role of the
field / providing the condensate. The operator dual to the gauge field A is the
electromagnetic current O/ ¼ Jl. The boundary behavior of the gravity field’s
components according to the equations of motion derived from Eq. 11.3 is given by

A3
t ¼ lþ d

r
; A1

x ¼ 0þ hJ
1
x i
r
; ð11:4Þ

with the radial AdS coordinate r. In principle we could allow more non-vanishing
components but this combination turns out to be both sufficient and consistent. As
usual in thermal AdS/CFT the temporal component At introduces a chemical
potential l in the dual field theory. This chemical potential sources the corre-
sponding operator Jt ¼ d which is simply the charge density of the SUð2Þ charge
in the field theory at the boundary. This explicitly breaks SUð2Þ ! Uð1Þ3.
However the spatial component A1

x spontaneously breaks the remaining Uð1Þ3 with
the condensate hJ1

x i.

11.2.2.2 How to Build a Gravity Dual to P-Wave Superconductivity

As mentioned several times before, we need a vector condensate for our p-wave
superconductor. Conveniently the previous example already showed us what the
structure for the dual gravity theory has to be in order to realize a vector con-
densate. Unfortunately that example has not been derived from string theory.
Probably the most difficult task in building a holographic superconductor is finding
a gravity setup with all the necessary features, which is actually stable and ther-
modynamically favored. We are going to see that the system of intersecting D3
and D7 branes provides exactly such a stable configuration. Since we are going to
review Dp/Dq-brane systems below, let us here spot only those features which are
of importance to superconductivity. The SUð2Þ ‘‘flavor’’ gauge group which we
are going to break (partly spontaneously) is created by using two coincident D7
branes. By introducing a gauge field Aa

l living on these D7-branes and giving its
temporal component a non-trivial profile in one of the flavor directions, we
introduce a chemical potential in the dual field theory. This is completely analo-
gous to the introducing the non-trivial A3

t in the previous example. All this is going
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to take place in the background of a stack of Nc black D3-branes. They introduce
the temperature into the dual field theory. Finally, the gravity field which is going
to break the residual flavor symmetry is going to be a spatial component of the
gauge field just as A1

x in the previous example. Our analysis of the thermodynamic
potentials is going to show that this phase is thermodynamically preferred over the
phase without the symmetry-breaking condensate. Furthermore it is stable against
all obvious gauge field fluctuations.

11.3 Holographic Setup

In this section we carry out exactly the D3-D7 brane construction outlined in Sect.
11.2.2. The result will be a gravity setup being holographically dual to a p-wave
superfluid/superconductor. But let us first review how to add flavor to the gauge/
gravity correspondence.

11.3.1 Flavor from Intersecting Branes

Let us imagine for this subsection that we want to use gauge/gravity in order to
model QCD or the quark gluon plasma state of matter produced at the RHIC
Brookhaven heavy-ion collider. The original AdS/CFT conjecture does not include
matter in the fundamental representation of the gauge group but only adjoint
matter. In order to come closer to a QCD-like behavior one can therefore inves-
tigate how to incorporate quarks and their bound states in this section. We focus on
the main results of [21] and [22], however for a concise review the reader is
referred to [17].

Since AdS/CFT has been discovered a lot of modifications of the original
conjecture have been proposed and analyzed. This is always achieved by modi-
fying the gravity theory in an appropriate way. For example the metric on which
the gravity theory is defined may be changed to produce chiral symmetry breaking
in the dual gauge theory [23, 24]. Other modifications put the gauge theory at finite
temperature and produce confinement [25]. Besides the introduction of finite
temperature the inclusion of fundamental matter, i.e. quarks, is the most relevant
extension for us since we are aiming at a qualitative description of strongly
coupled QCD effects at finite temperature. These effects are similar to the ones
observed at the RHIC heavy ion collider.

11.3.1.1 Adding Flavor to AdS/CFT

The change we have to make on the gravity side in order to produce fundamental
matter on the gauge theory side is the introduction of a small number Nf of
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D7-branes. These are also called probe branes since their backreaction on the
geometry originally produced by the stack of N D3-branes is neglected. Strings
within this D3/D7-setup now have the choice of starting (ending) on the D3- or
alternatively on the D7-brane. Note that the two types of branes share the four
Minkowski directions 0; 1; 2; 3 in which also the dual gauge theory will extend on
the boundary of AdS as visualized in Fig. 11.2.

The configuration of one string ending on N coincident D3-branes produces an
SUðNÞ gauge symmetry of rotations in color space. Similarly the Nf D7-branes
generate a UðNf Þ flavor gauge symmetry. We will call the strings starting on the
stack of Dp-branes and ending on the stack of Dq-branes p-q strings. The
original 3–3 strings are unchanged while the 3–7- or equivalently 7–3 strings are
interpreted as quarks on the gauge theory side of the correspondence. This can be
understood by looking at the 3–3 strings again. They come in the adjoint
representation of the gauge group which can be interpreted as the decomposition
of a bifundamental representation ðN2 � 1Þ � 1 ¼ N 	 �N. So the two string ends
on the D3-brane are interpreted as one giving the fundamental, the other giving
the anti-fundamental representation in the gauge theory. In contrast to this the
3–7 string has only one end on the D3-brane stack corresponding to a single
fundamental representation which we interpret as a single quark in the gauge
theory.

We can also give mass to these quarks by separating the stack of D3-branes
from the D7-branes in a direction orthogonal to both branes. Now 3–7 strings are
forced to have a finite length L which is the minimum distance between the two
brane stacks. On the other hand a string is an object with tension and if it assumes
a minimum length, it needs to have a minimum energy being the product of its
length and tension. The dual gauge theory object is the quark and it now also has a
minimum energy which we interpret as its mass Mq ¼ L=ð2pa0Þ.

The 7–7 strings decouple from the rest of the theory since their effective
coupling is suppressed by Nf =N. In the dual gauge theory this limit corresponds to
neglecting quark loops which is often called the quenched approximation. Nev-
ertheless, they are important for the description of mesons as we will see below.

Let us be a bit more precise about the fundamental matter introduced by 3–7
strings. The gauge theory introduced by these strings (in addition to the original
setup) gives a N ¼ 2 supersymmetric UðNÞ gauge theory containing Nf funda-
mental hypermultiplets.

Fig. 11.2 Coordinate directions in which the Dp-branes extend are marked by ‘x’. D3- and D7-
branes always share the four Minkowski directions and may be separated in the 8; 9-directions
which are orthogonal to both brane types
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11.3.1.2 D7 Embeddings and Meson Excitations

Mesons correspond to fluctuations of the D7-branes5 embedded in the AdS5 � S5-
background generated by the D3-branes. From the string-point of view these
fluctuations are fluctuations of the hypersurface on which the 7� 7 strings can
end, hence these are small oscillations of the 7� 7 string ends. The 7� 7 strings
again lie in the adjoint representation of the flavor gauge group for the same reason
which we employed above to argue that 3� 3 strings are in the adjoint of the
(color) gauge group. Mesons are the natural objects in the adjoint flavor repre-
sentation. Vector mesons correspond to fluctuations of the gauge field on the
D7-branes.

Before we can examine mesons as D7-fluctuations we need to find out how the
D7-branes are embedded into the 10-dimensional geometry without any fluctua-
tions. Such a stable configuration needs to minimize the effective action. The
effective action to consider is the world volume action of the D7-branes which is
composed of a Dirac-Born-Infeld and a topological Chern-Simons part

SD7 ¼� TD7

Z

D8re�U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� det P½gþ B
ab þ ð2pa0ÞFab

n o

r

þ ð2pa0Þ2

2
TD7

Z

P½C4
 ^ F ^ F: ð11:5Þ

The preferred coordinates to examine the fluctuations of the D7 are obtained from
the standard AdS coordinates

Ds2 ¼ R2

.2
D.2 þ .2

R2
ð�Dt2 þDx2Þ; ð11:6Þ

with the AdS radius R and the dimensionful radial AdS coordinate ..

Exercise Show that the standard AdS metric (11.6) transforms to

Ds2 ¼ r2

R2
Dx2 þ R2

r2
ðD.2 þ .2DX3

2 þDw5
2 þDw2

6Þ; ð11:7Þ

coord. names

indices

Fig. 11.3 This figure
summarizes our coordinates
and indices

5 To be precise the fluctuations correspond to the mesons with spins 0, 1/2 and 1 [22, 26].
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under the transformation.2 ¼ w1
2 þ � � � þ w4

2; r2 ¼ .2 þ w5
2 þ w6

2;where x is a
four vector in Minkowski directions0; 1; 2; 3 and R is the AdS radius. The coor-
dinateris the radial AdS coordinate while. is the radial coordinate on the coinci-
dent D7-branes.

Let us follow [22]: For a static D7 embedding with vanishing field strength F
on the D7 world volume the equations of motion are

0 ¼ DD.
.3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w05
2 þ w06

2
q

Dw5;6

D.

0

B

@

1

C

A

; ð11:8Þ

where w5;6 denotes that these are two equations for the two possible directions of
fluctuation. Since (11.8) is the equation of motion of a supergravity field in the
bulk, the solution near the AdS boundary takes the standard form with a non-
normalizable and a normalizable mode, or source and expectation value
respectively

w5;6 ¼ mþ c

.2
þ � � � ; ð11:9Þ

with m being the quark mass acting as a source and c being the expectation value
of the operator which is dual to the field w5;6. While c can be related to the scaled

quark condensate c / h�qqið2pa0Þ3.
If we now separate the D7-branes from the stack of D3-branes the quarks

become massive and the radius of the S3 on which the D7 is wrapped becomes a
function of the radial AdS coordinate r. The separation of stacks by a distance m
modifies the metric induced on the D7 P½g
 such that it contains the term
R2.2=ð.2 þ m2ÞDX3

2. This expression vanishes at a radius .2 ¼ r2 � m2 ¼ 0 such
that the S3 shrinks to zero size at a finite AdS radius.

Fluctuations about these w5 and w6 embeddings give scalar and pseudoscalar
mesons. We take

w5 ¼ 0þ 2pa0v ; w6 ¼ mþ 2pa0u ð11:10Þ

After plugging these into the effective action (11.5) and expanding to quadratic
order in fluctuations we can derive the equations of motion for u and v. As an
example we consider scalar fluctuations using an Ansatz

u ¼ /ð.Þeik�xYlðS3Þ ; ð11:11Þ

where YlðS3Þ are the scalar spherical harmonics on the S3;/ solves the radial part
of the equation and the exponential represents propagating waves with real
momentum k. We additionally have to assume that the mass-shell condition

M2 ¼ �k2 ð11:12Þ
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is valid. Solving the radial part of the equation we get the hypergeometric function

/ / Fð�a; �aþ lþ 1; ðlþ 2Þ; �.2

m2 Þ and the parameter

a ¼ � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2R4=m2
p

2
ð11:13Þ

summarizes a factor appearing in the equation of motion. In general this hyper-
geometric function may diverge if we take .!1. But since this is not com-
patible with our linearization of the equation of motion in small fluctuations, we
further demand normalizability of the solution. This restricts the sum of param-
eters appearing in the hypergeometric function to take the integer values

n ¼ a� l� 1 ; n ¼ 0; 1; 2; . . . : ð11:14Þ

With this quantization condition we determine the scalar meson mass spectrum to
be

MðpseudoÞscalar ¼
2m

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ lþ 1Þðnþ lþ 2Þ
p

; ð11:15Þ

where n is the radial excitation number found for the hypergeometric function.
Similarly we can determine pseudoscalar masses and find the same formula
(11.15). For vector meson masses we need to consider fluctuations of the gauge
field A appearing in the field strength F in Eq. 11.5. The formula for vector mesons
(corresponding to e.g. the .-meson of QCD) is

Mv ¼
2m

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ lþ 1Þðnþ lþ 2Þ
p

: ð11:16Þ

Note that the scalar, pseudoscalar and vector mesons computed within this
framework show identical mass spectra. Further fluctuations corresponding to
other mesonic excitations can be found in [22, 26].

11.3.1.3 Brane Embeddings at Finite Temperature

In order to get a finite temperature in the dual field theory, the gravity theory
needs to be put into a black hole or black brane background geometry. It was found
in [24, 27, 28] that at finite temperature our Nf probe flavor branes can be
embedded in two distinct ways. There are high temperature configurations called
black hole embeddings in which part of the brane falls into the black hole horizon.
On the other hand there are low-temperature configurations called in which the
brane stays outside the black hole horizon. These two configurations are separated
by a geometric transition, i.e. the configuration in which the brane just barely
touches the black hole horizon. This geometric transition corresponds to the meson
melting transition for the fundamental matter of the dual field theory. Note that the
adjoint matter of this field theory is always deconfined in this setup.
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At finite charge density however there is only one kind of embedding and that is
the black hole embedding. The heuristic argument is that introducing a finite
charge on the brane there have to be field lines for the associated field strength.
These lines have to end somewhere. Our setup has rotational symmetry in the
spatial directions. Imagine the radial AdS coordinate and field lines running along
it. If they are supposed to end somewhere, there has to be a horizon. Otherwise
they would all meet in the origin at q ¼ 0. Note that field lines ending at the
horizon means, that we can interpret the horizon as being charged. In these lecture
notes we will exclusively deal with non-vanishing density and thus only encounter
black hole embeddings.

11.3.2 Background and Brane Configuration

We aim to have a field theory dual at finite temperature. This is holographically
accomplished by placing the gravity theory in a black hole or black brane back-
ground. Here the black hole’s Hawking temperature can be identified with the field
theory temperature. We consider asymptotically AdS5 � S5 space-time. The
AdS5 � S5 geometry is holographically dual to the N ¼ 4 Super Yang-Mills
theory with gauge group SUðNcÞ. The dual description of a finite temperature field
theory is an AdS black hole. We use the coordinates of [29] to write the AdS black
hole background in Minkowski signature as

Ds2 ¼ .2

2R2
� f 2

~f
dt2 þ~fdx2

� �

þ R

.

� �2

ðd.2 þ .2dX2
5Þ ; ð11:17Þ

with dX2
5 the metric of the unit 5-sphere and

f ð.Þ ¼ 1� .4
H

.4
; ~f ð.Þ ¼ 1þ .4

H

.4
; ð11:18Þ

where R is the AdS radius, with R4 ¼ 4pgsNc a02 ¼ 2k a02.

Exercise Show that the metric (11.17) can be obtained from the standard finite
temperature AdS metric

Ds2 ¼ ðpTRÞ2

u
½�f ðuÞDt2 þDx2
 þ R2

4u2f ðuÞDu2 þ R2DX5
2 ; f ðuÞ ¼ 1� u2;

ð11:19Þ

by the transformationðr0qÞ2 ¼ 2r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 � r0
4

p

;with r being the original radial
AdS coordinate andr0the location of the black hole horizon.

Exercise The temperature of the black hole given by (11.17) may be determined
by demanding regularity of the Euclidean section. Show that it is given by
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T ¼ .H

pR2
: ð11:20Þ

In the following we may use the dimensionless coordinate q ¼ .=.H , which
covers the range from the event horizon at q ¼ 1 to the boundary of the AdS space
at q!1. To include fundamental matter, we embed Nf coinciding D7-branes
into the ten-dimensional space-time as illustrated in Fig. 11.2. These D7-branes
host flavor gauge fields Al with gauge group UðNf Þ. To write down the DBI action
for the D7-branes, we introduce spherical coordinates fr;X3g in the 4567-
directions and polar coordinates fL;/g in the 89-directions [29]. The angle
between these two spaces is denoted by h (0\h\p=2). The six-dimensional space
in the 456789-directions is given by

d.2 þ .2dX2
5 ¼ dr2 þ r2dX2

3 þ dL2 þ L2d/2

¼ d.2 þ .2ðdh2 þ cos2 hd/2 þ sin2 hdX2
3Þ; ð11:21Þ

where r ¼ . sin h; .2 ¼ r2 þ L2 and L ¼ . cos h. D3- and D7-branes always share
the four Minkowski directions and may be separated in the 8; 9-directions which
are orthogonal to both brane types. That separation is dual to the mass of the
fundamental flavor fields in the dual gauge theory, i.e. the quarks.

Due to the SOð4Þ rotational symmetry in the 4567 directions, the embedding of
the D7-branes only depends on the radial coordinate q. Defining v ¼ cos h, we
parametrize the embedding by v ¼ vðqÞ and choose / ¼ 0 using the SOð2Þ
symmetry in the 89-direction. The induced metric G on the D7-brane probes is
then

ds2ðGÞ ¼ .2

2R2
� f 2

~f
dt2 þ~fdx2

� �

þ R2

.2

1� v2 þ .2ðo.vÞ2

1� v2
d.2 þ R2ð1� v2ÞdX2

3:

ð11:22Þ

The square root of the determinant of G is given by

ffiffiffiffiffiffiffiffi

�G
p

¼
ffiffiffiffiffi

h3
p

4
.3f~f ð1� v2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ .2ðo.vÞ2
q

; ð11:23Þ

where h3 is the determinant of the 3-sphere metric.
As in [18] we introduce a SUð2Þ isospin chemical potential l by a non-

vanishing time component of the non-Abelian background field on the D7-brane.
The generators of the SUð2Þ gauge group are given by the Pauli matrices ri. Due to
the gauge symmetry, we may rotate the flavor coordinates until the chemical
potential lies in the third flavor direction,

l ¼ lim
q!1

A3
0ðqÞ: ð11:24Þ
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This non-zero gauge field breaks the SUð2Þ gauge symmetry down to Uð1Þ3
generated by the third Pauli matrix r3. The spacetime symmetry on the boundary is
still SOð3Þ. Notice that the Lorentz group SOð3; 1Þ is already broken down to
SOð3Þ by the finite temperature. In addition, we consider a further non-vanishing
background gauge field which stabilizes the system for large chemical potentials.
Due to the symmetry of our setup we may choose A1

3dx3r1 to be non-zero. To
obtain an isotropic configuration in the field theory, this new gauge field A1

3 only
depends on q. Due to this two non-vanishing gauge fields, the field strength tensor
on the branes has the following non-zero components,

F1
.3 ¼ �F1

3. ¼ o.A1
3 ð7� 7stringsÞ; ð11:25Þ

F3
.0 ¼ �F3

0. ¼ o.A3
0 ð3� 7stringsÞ; ð11:26Þ

F2
03 ¼ �F2

30 ¼
c
ffiffiffi

k
p A3

0A1
3 ðinteractionÞ: ð11:27Þ

The labels behind those equations refer to the sort of strings which generate the
corresponding gauge fields. The field strength F2

03 can be understood as an inter-
action term between 7–7 and 3–7 strings. We derive this interpretation in
Sect. 11.6.1.

11.3.3 DBI Action and Equations of Motion

In this section we calculate the equations of motion which determine the profile of
the D7-brane probes and of the gauge fields on these branes. A discussion of the
gauge field profiles, which we use to give a geometrical interpretation of the
stabilization of the system and the pairing mechanism, may be found in
Sect. 11.6.1.

The DBI action determines the shape of the brane embeddings, i.e. the scalar
fields /, as well as the configuration of the gauge fields A on these branes. We
consider the case of Nf ¼ 2 coincident D7-branes for which the non-Abelian DBI
action reads [30]

SDBI ¼ �TD7Str

Z

d8n
ffiffiffiffiffiffiffiffiffiffiffi

det Q
p

det Pab Elm þ EliðQ�1 � dÞijEjm

h i

þ 2pa0Fab

� �h i1
2

ð11:28Þ

with

Qi
j ¼ di

j þ i2pa0½Ui;Uk
Ekj ð11:29Þ

and Pab the pullback to the Dp-brane, where for a Dp-brane in d dimensions we
have l; m ¼ 0; . . .; ðd � 1Þ; a; b ¼ 0; . . .; p; i; j ¼ ðpþ 1Þ; . . .; ðd � 1Þ;Elm ¼ glmþ
Blm. In our case we set p ¼ 7; d ¼ 10;B � 0. As in [18] we can simplify this action
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significantly by using the spatial and gauge symmetries present in our setup. The
action becomes

SDBI ¼ �TD7

Z

d8nStr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detðGþ 2pa0FÞj
p

ð11:30Þ

¼ � TD7

Z

d8n
ffiffiffiffiffiffiffiffi

�G
p

Str 1þ G00G44 F3
.0

� �2

r3
	 
2þG33G44 F1

.3

� �2

r1
	 
2

�

þG00G33 F2
03

	 
2
r2
	 
2

i1
2 ð11:31Þ

where in the second line the determinant is calculated. Due to the symmetric trace,
all commutators between the matrices ri vanish. It is known that the symmetrized
trace prescription in the DBI action is only valid up to fourth order in a0 [31, 32].
However the corrections to the higher order terms are suppressed by N�1

f [33] (see
also [34]). Here we use two different approaches to evaluate the non-Abelian DBI
action (11.30). First, we modify the symmetrized trace prescription by omitting the

commutators of the generators ri and then setting ðriÞ2 ¼ 1 (see Sect. 11.3.3.1
below). This prescription makes the calculation of the full DBI action feasible.
This prescription is not verified in general but we obtain physically reasonable
results as discussed in Sects. 11.5.1 and 11.5.2. Second, we expand the non-
Abelian DBI action to fourth order in the field strength F (see Sect. 11.3.3.2). Here
it should be noted that in general the higher terms of this expansion need not be
smaller than the leading ones. However, we again get physical results in our
specific case which confirm this approach. We further motivate the validity of our
two approaches below.

11.3.3.1 Adapted Symmetrized Trace Prescription

Using the adapted symmetrized trace prescription defined above, the action
becomes

SDBI ¼� TD7Nf

Z

d8n
ffiffiffiffiffiffiffiffi

�G
p

1þ G00G44 F3
.0

� �2

þG33G44 F1
.3

� �2
�

þG00G33 F2
03

	 
2
i1

2

¼� TD7Nf

4

Z

d8n .3f~f ð1� v2Þ!ðq; v; ~AÞ; ð11:32Þ

with

366 M. Kaminski



!ðq; v; ~AÞ ¼ 1� v2 þ q2ðoqvÞ2 �
2~f

f 2
ð1� v2Þ oq

~A3
0

	 
2þ 2
~f
ð1� v2Þ oq

~A1
3

	 
2
�

� 2c2

p2q4f 2
ð1� v2 þ q2ðoqvÞ2Þ ~A3

0
~A1

3

	 
2
�

1
2

; ð11:33Þ

where the dimensionless quantities q ¼ .=.H and ~A ¼ ð2pa0ÞA=.H are used. To
obtain first order equations of motion for the gauge fields which are easier to solve
numerically, we perform a Legendre transformation. Similarly to [18, 29] we
calculate the electric displacement p3

0 and the magnetizing field p1
3 which are given

by the conjugate momenta of the gauge fields A3
0 and A1

3,

p3
0 ¼

dSDBI

dðo.A3
0Þ
; p1

3 ¼
dSDBI

dðo.A1
3Þ
; : ð11:34Þ

In contrast to [18, 29, 35, 36], the conjugate momenta are not constant any more
but depend on the radial coordinate . due to the non-Abelian term A3

0A1
3 in the DBI

action. For the dimensionless momenta ~p3
0 and ~p1

3 defined as

~p ¼ p

2pa0Nf TD7.3
H

; ð11:35Þ

we get

~p3
0 ¼

q3~f 2ð1� v2Þ2oq~A3
0

2f !ðq; v; ~AÞ
; ~p1

3 ¼ �
q3f ð1� v2Þ2oq~A1

3

2!ðq; v; ~AÞÞ
: ð11:36Þ

Finally, the Legendre-transformed action is given by

~SDBI ¼ SDBI �
Z

d8n o.A3
0

	 
 dSDBI

d o.A3
0

	 
þ o.A1
3

	 
 dSDBI

d o.A1
3

	 


" #

ð11:37Þ

¼ � TD7Nf

4

Z

d8n.3f~f ð1� v2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ q2ðoqvÞ2
q

Vðq; v; ~A; ~pÞ; ð11:38Þ

with

Vðq; v; ~A; ~pÞ ¼ 1� 2c2

p2q4f 2
~A3

0
~A1

3

	 
2
� �

"

� 1þ
8 ~p3

0

	 
2

q6~f 3ð1� v2Þ3
�

8 ~p1
3

	 
2

q6~f f 2ð1� v2Þ3

 !#
1
2

:

ð11:39Þ

Then the first order equations of motion for the gauge fields and their conjugate
momenta are
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oq~A3
0 ¼

2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ q2ðoqvÞ2
q

q3~f 2ð1� v2Þ2
~p3

0Wðq; v; ~A; ~pÞ; ð11:40Þ

oq
~A1

3 ¼ �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ q2ðoqvÞ2
q

q3f ð1� v2Þ2
~p1

3Wðq; v; ~A; ~pÞ; ð11:41Þ

oq~p3
0 ¼

~f ð1� v2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ q2ðoqvÞ2
q

c2

2p2qfWðq; v; ~A; ~pÞ
~A1

3

	 
2~A3
0; ð11:42Þ

oq~p1
3 ¼

~f ð1� v2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ q2ðoqvÞ2
q

c2

2p2qfWðq; v; ~A; ~pÞ
~A3

0

	 
2~A1
3; ð11:43Þ

with

Wðq; v; ~A; ~pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2c2

p2q4f 2
~A3

0
~A1

3

	 
2

1þ 8 ~p3
0ð Þ

2

q6~f 3ð1�v2Þ3 �
8 ~p1

3ð Þ
2

q6~f f 2ð1�v2Þ3

v

u

u

u

t

: ð11:44Þ

For the embedding function v we get the second order equation of motion

oq
q5f~f ð1� v2ÞðoqvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ q2ðoqvÞ2
q V

2

6

4

3

7

5

¼� q3f~fv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2 þ q2ðoqvÞ2
q 3 1� v2

	 


þ 2q2ðoqvÞ2
h i

V

"

�
24 1� v2 þ q2ðoqvÞ2
� �

~f 3q6 1� v2ð Þ3
W ~p3

0

	 
2�
~f 2

f 2
~p1

3

	 


� �

#

:

ð11:45Þ

We solve the equations numerically and determine the solution by integrating the
equations of motion from the horizon at q ¼ 1 to the boundary at q ¼ 1. The
initial conditions may be determined by the asymptotic expansion of the gravity
fields near the horizon

~A3
0 ¼

c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� v2
0Þ

3 þ c2
0

q ðq� 1Þ2 þO ðq� 1Þ3
� �

; ð11:46Þ

~A1
3 ¼ b0 þO ðq� 1Þ3

� �

; ð11:47Þ

~p3
0 ¼ c0 þ

c2b2
0c0

8p2
ðq� 1Þ2 þO ðq� 1Þ3

� �

; ð11:48Þ
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~p1
3 ¼ þO ðq� 1Þ3

� �

; ð11:49Þ

v ¼ v0 �
3v0ð1� v2

0Þ
3

4½ð1� v2
0Þ

3 þ c2
0

ðq� 1Þ2 þO ðq� 1Þ3

� �

; ð11:50Þ

where the terms in the expansions are arranged according to their order in q� 1.
For the numerical calculation we consider the terms up to sixth order in q� 1. The
three independent parameter b0; c0 and v0 may be determined by field theory
quantities defined via the asymptotic expansion of the gravity fields near the
boundary,

~A3
0 ¼ ~l�

~d3
0

q2
þO q�4

	 


; ð11:51Þ

~A1
3 ¼ �

~d1
3

q2
þO q�4

	 


; ð11:52Þ

~p3
0 ¼ ~d3

0 þO q�4
	 


; ð11:53Þ

~p1
3 ¼ �~d1

3 þ
c2~l2~d1

3

4p2q2
þO q�4

	 


; ð11:54Þ

v ¼ m

q
þ c

q3
þO q�4

	 


: ð11:55Þ

According to the AdS/CFT dictionary, l is the isospin chemical potential. The
parameters ~d are related to the vev of the flavor currents J by

~d3
0 ¼

2
5
2hJ3

0i
Nf Nc

ffiffiffi

k
p

T3
; ~d1

3 ¼
2

5
2hJ1

3i
Nf Nc

ffiffiffi

k
p

T3
ð11:56Þ

and m and c to the bare quark mass Mq and the quark condensate h�wwi,

m ¼ 2Mq
ffiffiffi

k
p

T
; c ¼ � 8h�wwi

ffiffiffi

k
p

Nf NcT3
; ð11:57Þ

respectively. There are two independent physical parameters, e. g. m and l, in the
grand canonical ensemble. From the boundary asymptotics (11.51), we also obtain
that there is no source term for the current J1

3 . Therefore as a non-trivial result we
find that the Uð1Þ3 symmetry is always broken spontaneously. In contrast, in the
related works on p-wave superconductors in 2þ 1 dimensions [7, 37], the spon-
taneous breaking of the Uð1Þ3 symmetry has to be put in by hand by setting the

source term for the corresponding operator to zero. With the constraint ~A1
3jq!1 ¼ 0

and the two independent physical parameters, we may fix the three independent
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parameters of the near-horizon asymptotics and obtain a solution to the equations of
motion.

11.3.3.2 Expansion of the DBI Action

We now outline the second approach which we use. Expanding the action (11.30)
to fourth order in the field strength F yields

SDBI ¼ �TD7Nf

Z

d8n
ffiffiffiffiffiffiffiffi

�G
p

1þ T 2

2
� T 4

8
þ � � �

� �

; ð11:58Þ

where T i consists of the terms with order i in F. To calculate the T i, we use the
following results for the symmetrized traces

2r : Str ri
	 
2
h i

¼ Nf ; ð11:59Þ

4r : Str ri
	 
4
h i

¼ Nf ; Str ri
	 
2

rj
	 
2

h i

¼ Nf

3
; ð11:60Þ

where the indices i; j are distinct. Notice that the symmetric trace of terms with
unpaired r matrices vanish, e.g. Str½rirj
 ¼ Nfd

ij. The T i are given in the appendix
of [5].

To perform the Legendre transformation of the above action, we determine the
conjugate momenta as in (11.34). However, we cannot easily solve these equations
for the derivative of the gauge fields since we obtain two coupled equations of
third degree. Thus we directly calculate the equations of motion for the gauge
fields on the D7-branes. The equations are given in the appendix of [5].

To solve these equations, we use the same strategy as in the adapted symme-
trized trace prescription discussed above. We integrate the equations of motion
from the horizon at q ¼ 1 to the boundary at q ¼ 1 numerically. The initial
conditions may be determined by the asymptotic behavior of the gravity fields near
the horizon

~A3
0 ¼ a2ðq� 1Þ2 þO ðq� 1Þ3

� �

; ð11:61Þ

~A1
3 ¼ b0 þO ðq� 1Þ3

� �

; ð11:62Þ

v ¼ v0 þ
3ða4

2 þ 4a2
2 � 8Þv0

4ð3a4
2 þ 4a2

2 þ 8Þ ðq� 1Þ2 þO ðq� 1Þ3
� �

: ð11:63Þ

For the numerical calculation we use the asymptotic expansion up to sixth order.
As in the adapted symmetrized trace prescription, there are again three indepen-
dent parameters a2; b0; v0. Since we have not performed a Legendre transforma-
tion, we trade the independent parameter c0 in the asymptotics of the conjugate
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momenta ~p3
0 in the symmetrized trace prescription with the independent parameter

a2 (cf. asymptotics in Eq. 11.46). However, the three independent parameters may
again be determined in field theory quantities which are defined by the asymptotics
of the gravity fields near the boundary

~A3
0 ¼ l�

~d3
0

q2
þO q4

	 


; ð11:64Þ

~A1
3 ¼ �

~d1
3

q2
þO q4

	 


; ð11:65Þ

v ¼ m

q
þ c

q3
þO q4

	 


: ð11:66Þ

The independent parameters l; ~d3
0 ;

~d1
3;m; c are given by field theory quantities as

presented in (11.56) and (11.57). Again we find that there is no source term for the
current J1

3 , which implies spontaneous symmetry breaking. Therefore the inde-
pendent parameters in both prescriptions are the same and we can use the same
strategy to solve the equations of motion as described below (11.57).

Exercise In [38] only the leading order of the action (11.58) quadratic in field
fluctuations was considered. For a specific chemical potential an analytic solution
with non-zero A3

0 and A1
3 can be found. Show that the analytic solution found there

(adapted to our AdS5 case)

A3
0 ¼ lð1� q4Þ ; A1

3 ¼ �
q4

ð1þ q4Þ2
; ð11:67Þ

indeed solves the equations of motion derived from the action expanded to qua-
dratic order for the chemical potential l ¼ 4. � is a constant formed from the
coupling constant and the vacuum expectation value of the dual currenthJ1

3i: Note:
This exercise requires some work.

11.4 D-Brane Thermodynamics and Spectrum

In this section we briefly review the results obtained for the thermodynamics and
the spectrum of our setup with a baryonic, and later an isospin chemical potential.

11.4.1 Baryon Chemical Potential

Figure 11.4 shows the phase diagram of the field theory dual to the gravity setup we
have constructed in the previous Sect. 11.3. In this field theory we have introduced a
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baryonic chemical potential lq which is shown on the vertical axis scaled by the
quark mass Mq defined by Eq. 11.57. It is introduced by a non trivial background
gauge field solving the equation of motion derived from the DBI-action and
asymptoting to the chemical potential near the boundary as limq!qB

AtðqÞ ¼ lq.

The horizontal axis shows the scaled temperature T= �M ¼ m�1. Recall that m is the
asymptotic value of the D7-brane embedding near the AdS boundary. In other
words it is the source term for a quark condensate, or the non-normalizable mode of
the brane embedding function. Here however we use it merely as a temperature
scale. The lines in the diagram in Fig. 11.4 are lines of equal baryon density ~d. At
low temperature and chemical potential there is a triangle-shaped phase of zero
density. Its diagonal borderline to the white region with finite baryon density is the
location of the so-called meson-melting transition. This is the transition where the
fundamental matter melts, i.e. quark bound states, the mesons, acquire an increasing
decay width becoming quasi-particles. In the grey phase we therefore have stable
mesons with zero decay width. The deeper we go into the white phase away from
the transition line, the mesons melt. We will also see this in the spectral functions
computed below. As explained at the end of Sect. 11.3.1 we are going to stay
entirely in the white phase at finite temperature where the brane embeddings are of
black hole type, which means that part of them falls into the black hole horizon (see
Sect. 11.3.1).

11.4.1.1 Correlator Recipe

We need to examine fluctuations of the fields in our setup in order to determine its
spectrum and stability. There might be a fluctuation which is tachyonic and
therefore could destabilize the whole system. For this purpose we quickly review
how to compute real-time correlation functions in gauge/gravity.

Let us work along the example of a gauge field fluctuation al. This appears in
the action, in our case the Dirac-Born-Infeld action, in the field strength
F ¼ Daþ a ^ a. Note that a background gauge field A would appear in this field

Fig. 11.4 The phase diagram
in the canonical ensemble
plotted against the variables
of the grand canonical
ensemble. On the axes the
scaled chemical potential
lq=Mq, with the quark mass
Mq is shown versus the scaled
temperature T= �M ¼ m�1

from [39]

372 M. Kaminski



strength too, as we will see in later sections. For simplicity we consider Abelian
gauge field fluctuations without background A, i.e. Flm ¼ olam � omal. The action
then reads something like

S�
Z

D8n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P½glm
 þ Flm

q

; ð11:68Þ

with the P being the pullback of the metric g to the flavor brane. Expanding this
action to quadratic order in fluctuations a, we get the linearized equation of
motion for example for the spatial fluctuation ay which in Fourier space looks like
this

0 ¼ oq
2ay þ

oq½
ffiffiffiffiffiffiffi�g
p

gyygqq

ffiffiffiffiffiffiffi�g
p

gyygqq
oqay þ

gtt

gqq
w2ay; ð11:69Þ

where w is the dimensionless frequency of the fluctuation. Also for other fields we
end up with a second order differential equation that we need to solve. Usually
these equations have singular (at the horizon qH) coefficients which need to be
regularized by an appropriate ansatz. In order to find the most singular behavior

solving this equation, we plug the ansatz ðq� qHÞb into Eq. 11.69 and expand.
The leading order is a quadratic equation which can be solved for b giving bin or
bout. Only one of those two solutions, bin describes a fluctuation falling into the
horizon, the other one is outgoing. We discard the outgoing one because nothing is
supposed to leave a classical black hole. b is sometimes called the indicial

exponent. Now we plug a ¼ ðq� qHÞbin FðqÞ, with FðqÞ ¼
P1

n¼0 fnðq� qHÞn
being a regular function of q, into the equation of motion (11.69). Note that there
might be logarithmic terms present as explained in general for example in [40] and
discussed in detail in [3]. Picking the fixes one of the two boundary conditions.
The other boundary condition may be fixed by choosing the normalization of FðqÞ,
i.e. the value f0. All the higher fn depend recursively on f0 and the indicial exponent
b. Now we solve the equation for F analytically or numerically. The correlator is
then obtained from the quadratic part of the on-shell action, which in our case has
the structure Son-shell�

R

DqBðqÞaoqa, where B is a function of q depending on
metric coefficients. The recipe developed in [41, 42] tells us to strip the boundary
values abdy off from the fields a ¼ abdyA and identify what remains of the inte-
grand with the Green function at the boundary q ¼ qB

GR
lm ¼ lim

q!qB

BðqÞAloqAm: ð11:70Þ

Now we only need to plug in our solutions a ¼ abdyA. More details on the analytic
and numerical procedures are explained in [3].
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11.4.1.2 Spectral Function and Quasi-Normal Modes

The spectral function R is obtained from the imaginary part of the Green function
R ¼ �2ImGR. It encodes the spectrum of our thermal field theory. In particular in
Fig. 11.5 we are able to identify pretty stable quasi-particle excitations at a low
finite temperature parametrize by v0 and at finite baryon density ~d ¼ 0:25. Low-
ering the temperature these quasiparticles approach the line spectrum (11.16)
indicated here as dashed vertical lines. The reason is that at lower temperature our
theory restores its original supersymmetry. This also tells us that the vector quasi-
particles we see in the thermal spectral function are vector mesons. Our mesons
melt in the finite temperature, finite density phase as mentioned above in the
discussion of the phase diagram (11.4).

Quasi Normal Modes (QNM)

The difference between the zero temperature line spectrum and the finite tem-
perature spectrum of quasi-particle excitations lies in the nature of the corre-
sponding eigenmodes. In the zero temperature case there is no black hole, thus no
dissipation on the gravity side. The system has well-defined normal modes at real
frequencies w 2 R. At finite temperature however the (quasi) eigenfrequencies are
complex w 2 C owing to the dissipation into the field theory plasma or in the dual
gravity picture: dissipation into the black hole. The modes travelling with these
(quasi) eigenfrequencies are called quasi-normal modes (QNM). We can roughly
think of quasi-normal modes as being those solutions to the gravity fluctuation
equations which vanish at the AdS boundary. These QNMs have been found to be
identical to the poles in the field theory Green function. Therefore the location of
the QNMs is closely related to the location of the peaks in the spectral function. At
least some of the quasi-normal modes create quasi-particle peaks in the spectral
function. In the zero temperature limit we can think of those QNMs as approaching
the real frequency axis and reaching it in the limit, becoming real-valued.

0 5 10 15 20 25 30 35
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000Fig. 11.5 The spectral
function R (in units of
Nf NcT2=4) at finite baryon
density ~d versus
dimensionless frequency w.
At large v0 here the peaks
approach the dashed drawn
line spectrum given by
(11.16)
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The corresponding quasiparticles become stable which means line-shaped in the
spectrum. A more complete picture of QNMs is given in [43].

11.4.2 Isospin Chemical Potential

We can equally well introduce a chemical potential with SUð2Þ—let’s call it
isospin—structure, represented by the Pauli matrices ri. Choosing the chemical
potential to point along the third flavor direction this background boils down to
having two copies of the Abelian background gauge field AtðqÞ explored above in
the following way

l3 ¼ AtðqÞr3 ¼ AtðqÞ 0
0 �AtðqÞ

� �

: ð11:71Þ

However we get some interesting new signatures through the SUð2Þ structure. For
example the spectrum shown in Fig. 11.6 shows a triplet splitting for our mesons.
In particular we observe a splitting of the line expected at the lowest meson mass
at w ¼ 4:5360 (n ¼ 0). The resonance is shifted to lower frequencies for RXY and
to higher ones for RYX , while it remains in place for RE3E3 . The second meson
resonance peak (n ¼ 1) shows a similar behavior. So the different flavor combi-
nations propagate differently and have distinct quasi-particle resonances. This
behavior is analogous to that of QCD’s q meson which is vector meson and a
triplet under the isospin SUð2Þ of QCD. Thus we have modelled the melting
process of vector mesons in a quark gluon plasma at finite isospin density.

Fig. 11.6 A comparison between the finite temperature part of the spectral functions RXY and
RYX (solid lines) in the two flavor directions X and Y transversal to the chemical potential is
shown in units of NcT2Tr=4 for large quark mass to temperature ratio v0 ¼ 0:99 and ~d ¼ 0:25.
The spectral function RE3E3 along the a ¼ 3-flavor direction is shown as a dashed line
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11.4.3 Instabilities and the New Phase

What does all this have to do with our condensed matter motivation? The crucial
thing is that the isospin setup described above develops an instability at large
enough isospin density. This means that the modes X and Y develop quasi-normal
modes (QNM) which have a positive imaginary part, i.e. which are enhanced
instead of being damped. This suggests that exactly the mesons corresponding to
the X; Y fluctuations condense. This instability comes about naturally if we think
about the fact, that we are trying to push more and more charge density into a
confined volume. In particular the 3–7 strings charging the D7-brane are located at
the black hole horizon as motivated earlier in Sect. 11.3.1. Our current setup does
not allow the strings to move into the bulk because we are forcing all the back-
ground fields they would create there to be zero. Up to now we have required
A3

0 6¼ 0 and Aa
l � 0 for all other field components. But we are going to relax that

restriction by allowing a non-trivial A1
3. We will see below that this is sufficient to

stabilize the theory in a new phase which we will prove to be superconducting/
superfluid. This setup naturally produces a p-wave structure since we have seen
above that the condensing vector mesons have a triplet structure. According to
Table 11.1 this implies a p-wave (at least to leading order).

11.5 Signatures of Super-Something

Finally we put together everything we have learned about D-branes, supercon-
ductors and holographic methods. We discuss the holographic results and interpret
them in the condensed matter context. Section 11.5.1 starts with the thermody-
namics and Sect. 11.5.2 continues with the details of the fluctuation computation.
The spectrum and conductivity is Examined in Sect. 11.5.3 and all the signatures
will be pointing to the fact that we have indeed created a holographic p-wave
superconductor/superfluid.

11.5.1 Thermodynamics of the Broken Phase

Figure 11.7 shows the background field configuration. The different curves cor-
respond to the temperatures T ¼ Tc and T � 0:9Tc. The plots are obtained at zero
quark mass m ¼ 0 and by using the adapted symmetrized trace prescription.
Similar plots may also be obtained at finite mass m 6¼ 0 and by using the DBI
action expanded to fourth order in F. These plots show the same features: (top left)
The gauge field ~A3

0 increases monotonically towards the boundary. At the
boundary, its value is given by the dimensionless chemical potential ~l. The gauge
field ~A1

3 is zero for T  Tc. For T\Tc, its value is non-zero at the horizon and
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decreases monotonically towards the boundary where its value has to be zero. (top
right) The conjugate momentum ~p3

0 of the gauge field ~A3
0 is constant for T  Tc. For

T\Tc, its value increases monotonically towards the boundary. Its boundary value
is given by the dimensionless density ~d3

0. (bottom left) The conjugate momentum
~p1

3 of the gauge field ~A1
3 is zero for T  Tc. For T\Tc, its value increases mono-

tonically towards the boundary. Its boundary value is given by the dimensionless
density �~d1

3. (bottom right)
All thermodynamic quantities are determined in terms of the relevant ther-

modynamic potential. We use the grand potential W7 in the grand canonical and
the free energy F7 in the canonical ensemble. Both stem from the D7-brane action.
They are related through a Legendre transformation in the background gauge field
A3

0 on the gravity side. We obtain both potentials due to the gauge/gravity dic-
tionary from the Euclideanized gravity on-shell action according to Z ¼ E�Ion-shell ,
with the partition function Z of the boundary field theory. So the for example
W7 ¼ TSeuclideanized

D7;on-shell .
Comparison of the grand potentials in Fig. 11.8 then shows that the new phase

with a finite value for A1
3 is thermodynamically preferred below a temperature

T ¼ Tc and does not exist above. The transition seems numerically smooth, i.e. it
is a continuous phase transition. In these respects both computation schemes, the
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Fig. 11.7 Profiles of the relevant dimensionless gauge fields ~A on the D7-branes and their
dimensionless conjugate momenta ~p versus the dimensionless AdS radial coordinate q near the
horizon at q ¼ 1. (top left) the lower curve is T ¼ 0:9Tc, (bottom left) the constant is at T ¼ Tc

since there are no charges in the bulk, the other curve shows that the charge proportional to ~p3
0

increases towards the boundary
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symmetrized trace prescription as well as the DBI expansion to fourth order give
the same qualitative behavior. Figure 11.9 confirms this result and at least
numerically determines the transition to be of second order. The order parameter
~d1

3 vanishes with a critical exponent of 1=2 to numerical accuracy. It has been
explicitly verified that this condensation of vector particles occurs before, i.e. at
higher temperature than the condensation of the scalars in our theory (see remarks
in [5]). If this was QCD the scalar pions would condense before the vector mesons
did. However, there might be other instabilities and also other symmetry breaking
configurations may be possible.

Using some intuition to define the superconducting density ~ds ¼ ð~d3
0 � c0Þ=~d3

0,
we find that it vanishes linearly at the critical temperature as shown in Fig. 11.10

All these signatures are those of a superconducting/superfluid phase transition. The order
parameter ~d1

3 has vector structure by construction, which implies the p-wave.

We can also compute the specific heat which the flavor branes contribute to the
theory as C7 ¼ �To2F7=oT2. In Fig. 11.11 the higher curve corresponds to the
normal phase with A1

3 ¼ 0; while the lower one corresponds to the superconduc-
ting phase with A1

3 6¼ 0. Note that the total specific heat is always positive although
the flavor brane contribution is negative. The divergences near T ¼ 0 in both
phases can be attributed to the missing backreaction in our setup.6 We read off
from the numerical result that near the critical temperature, the dimensionless
specific heat C7 ¼ 32C7=ðkNf NcT3Þ is constant in the superconducting phase.

This implies that the dimensionful specific heat C7 is proportional to T3. This temperature
dependence is characteristic for Bose liquids. There is also a finite jump in the specific
heat at Tc.

Fig. 11.8 Grand canonical potential computed a from the symmetrized trace prescription and
b from the expanded DBI action, both at vanishing quark mass Mq ¼ 0. The qualitative behavior
agrees for both prescriptions: At T ¼ Tc the energy curve splits into a lower and a higher energy
branch. The branch with lower energy in both cases is the one with a finite new condensate ~d1

3
below Tc

6 The backreaction of the gauge field on the geometry, i.e. on the Einstein equations for metric
components has been considered in [44].
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Fig. 11.9 The order parameter ~d1
3 defined in (11.51) as obtained from the adapted symmetrized

trace prescription versus temperature: The case of vanishing quark mass (top solid curve) shows
the same behavior near Tc as that where l=Mq ¼ 3 is fixed (lower solid curve). Both curves go to

zero with a critical exponent of 1=2 near Tc, as visualized by the fit 55ð1� T=TcÞ1=2 (dashed
curve)

Fig. 11.10 Superconducting
density ~ds ¼ ð~d3

0 � c0Þ=~d3
0

versus temperature T: In
both, the massless and the
massive case at l=Mq ¼ 3
(both curves coincide on the
plot), the superconducting
density ~ds vanishes linearly at
the critical temperature. This
is visualized by the fit
6:8ð1� T=TcÞ (dashed blue
curve)

Fig. 11.11 The flavor brane
contribution to the specific
heat as computed from the
adapted symmetrized trace
prescription in the massless
case. The lower curve starting
at T ¼ Tc is the heat capacity
in the superconducting phase.
The other curve is computed
in the normal phase
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11.5.2 Fluctuations in the Broken Phase

Let us now investigate fluctuations of this system. We are going to see that the
computation of the non-Abelian DBI-action is a very subtle issue. We argue for a
novel prescription which actually gives reasonable results. The full gauge field Â
on the branes consists of the field A and fluctuations a,

Â ¼ A3
0s

3Dt þ A1
3s

1Dx3 þ aa
ls

aDxl; ð11:72Þ

where sa are the SUð2Þ generators. The linearized equations of motion for the
fluctuations a are obtained by expanding the DBI action in a to second order. We
will analyze the fluctuations a3

2 and X ¼ a1
2 þ ia2

2; Y ¼ a1
2 � ia2

2.
Including these fluctuations, the DBI action reads

S ¼ �T7

Z

D8nStr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ½Gþ ð2pa0ÞF̂

q

; ð11:73Þ

with the non-Abelian field strength tensor

F̂a
lm ¼ Fa

lm þ �Fa
lm; ð11:74Þ

where the background is collected in

Fa
lm ¼ 2o½lAa

m
 þ
c
ffiffiffi

k
p f abcAb

lAc
m; ð11:75Þ

and all terms containing fluctuations in the gauge field are summed in

�Fa
lm ¼ 2o½laa

m
 þ
c
ffiffiffi

k
p f abcab

lac
m þ

c
ffiffiffi

k
p f abcðAb

lac
m þ ab

lAc
mÞ: ð11:76Þ

Index anti-symmetrization is always defined with a factor of two in the following
way o½lAm
 ¼ ðolAm � omAlÞ=2.

11.5.2.1 Adapted Symmetrized Trace Prescription

In this section we use the adapted symmetrized trace prescription to determine the
fluctuations about the background we discussed in Sect. 11.3.3.1. To obtain the
linearized equations of motion for the fluctuations a, we expand the action (11.73)
to second order in fluctuations,

Sð2Þ ¼�T7

Z

D8n Str

"

ffiffiffiffiffiffiffi

�G
p

þ ð2pa0Þ
2

ffiffiffiffiffiffiffi

�G
p

GlmFml:

�ð2pa0Þ2

4

ffiffiffiffiffiffiffi

�G
p

Gll0 �Fl0mGmm0 �Fm0l þ
ð2pa0Þ2

8

ffiffiffiffiffiffiffi

�G
p

Glm �Fml
	 
2

#

: ð11:77Þ
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As in [39], we collect the metric and gauge field background in the tensor
G ¼ Gþ ð2pa0ÞF. Using the Euler-Lagrange equation, we get the linearized
equation of motion for fluctuations ad

j in the form

0 ¼ okStr
ffiffiffiffiffiffiffi

�G
p

sd G½jk
 þ ð2pa0Þ Gl½jGk
m þ 1

2
GlmG½jk


� �

Fml

� �� �

� Str
c
ffiffiffi

k
p fabdsa

ffiffiffiffiffiffiffi

�G
p

� G½jk
ðaþ AÞbk þ ð2pa0Þ Gl½jGk
m
�n

�

þ 1
2
GlmG½jk


�

�FmlAb
k

��

: ð11:78Þ

Note that the linearized version of the fluctuation field strength used in Eq. 11.78 is
given by

�Fa
lm ¼ 2o½laa

m
 þ
c
ffiffiffi

k
p f abcðAb

lac
m þ ab

lAc
mÞ þ Oða2Þ: ð11:79Þ

In our specific case the background tensor in its covariant form is given by

Glm ¼ Glms
0 þ ð2pa0Þ 2o.A3

0d4½ldm
0s
3 þ 2o.A1

3d4½ldm
3s
1 þ 2

c
ffiffiffi

k
p A3

0A1
3d0½ldm
3s

2

� �

:

ð11:80Þ

Inversion yields the contravariant form needed to compute the explicit equations
of motion. The inverse of G is defined as GlmGml0 ¼ dl

l0s
0:7 The non-zero com-

ponents of Glm may be found in the appendix of [5].
Fluctuations in a3

2: For the fluctuation a3
2 with zero spatial momentum, we

obtain the equation of motion

0 ¼ ða3
2Þ
00 þ oqH

H
ða3

2Þ
0 � 4.4

H

R4

G33

G44 ðM
1
3Þ

2 þ G
00

G44 w2

� ��

�16
oq

H
q4f 2

~A3
0ðoq

~A3
0ÞðM1

3Þ
2

� �

H 1� 2c2

p2q4f 2 ð~A1
3
~A3

0Þ
2

� �

3

5a3
2; ð11:81Þ

with M1
3 ¼ c~A1

3=ð2
ffiffiffi

2
p

pÞ and H ¼
ffiffiffi

G
p

G22G44.
Fluctuations in X ¼ a1

2 þ ia2
2; Y ¼ a1

2 � ia2
2: For the fluctuations X and Y with

zero spatial momentum, we obtain the coupled equations of motion

7 We calculate the inverse of G by ignoring the commutation relation of the s’s because of the
symmetrized trace. It is important that sasb must not be simplified to �abcsc since the
symmetrization is not the same for these two expressions.
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0 ¼X00 þ oqH

H
X0 � 4.4

H

R4

G00

G44 w�M3
0

	 
2þG
f03g

G44 M
1
3w

" #

X þ 4.4
H

R4

Gf03g

G44 M
1
3M3

0

"

þ R2

4.2
H

oq
ffiffiffiffiffiffiffi

�G
p

G22Gf34gM1
3

h i

H
� G

33

2G44 M
1
3

	 
2

3

5ðX � YÞ þ 4.2
H

R2

Gf04g

G44 wY 0

þ 2.2
H

R2

oq
ffiffiffiffiffiffiffi

�G
p

G22Gf04g wþM3
0

	 


h i

H
Y ;

ð11:82Þ

where the component of the inverse background tensor may be found in the
appendix of [5] (just like the corresponding formula for Y which is only different

from (11.82) by a few signs), index symmetrization is defined Gfijg ¼ ðGij þ G jiÞ=2
and M3

0 ¼ c~A3
0=ð2

ffiffiffi

2
p

pÞ.

11.5.2.2 Expansion of the DBI Action

In this section we determine the equation of motion for the fluctuation a3
2 in the

background determined by the DBI action expanded to fourth order in F (see Sect.
11.3.3.2). To obtain the quadratic action in the field a3

2, we first have to expand the

DBI action (11.73) to fourth order in the full gauge field strength F̂, and expand the
result to second order in a3

2. Due to the symmetries of our setup, the equation of
motion for the fluctuation a3

2 at zero spatial momentum decouples from the other
equations of motion, such that we can write down an effective Lagrangian for the
fluctuation a2

3. This effective Lagrangian is given in the appendix of [5]. The
equation of motion for a3

2 with zero spatial momentum determined by the Euler-
Lagrange equation is given by

0 ¼ða3
2Þ
00 þ oqH

H ða
3
2Þ
0 � .4

H

R4
4
H00

H44 w2 þH
33

H44 ðM
1
3Þ

2
� ��

þ 8
3

oq½
ffiffiffiffiffiffiffiffi

�G
p

G00G22G33G44~A3
0ðoq

~A3
0ÞðM1

3Þ
2


H

#

a3
2; ð11:83Þ

where H ¼
ffiffiffiffiffiffiffiffi

�G
p

G22H44. We introduce the factors Hij which may be found in the
appendix of [5] to emphasize the similarity to the equation of motion obtained by
the adapted symmetrized trace prescription (11.81).
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11.5.3 Conductivity and Spectrum

We calculate the frequency-dependent conductivity rðxÞ using the Kubo formula,

rðxÞ ¼ i

x
GRðx; q ¼ 0Þ ; ð11:84Þ

where GR is the retarded Green function of the current J3
2 dual to the fluctuation a3

2,
which we calculate using the method obtained in [41]. The current J3

2 is the analog
to the electric current since it is charged under the Uð1Þ3 symmetry. In real space it
is transverse to the condensate. Since this fluctuation is the only one which
transforms as a vector under the SOð2Þ rotational symmetry, it decouples from the
other fluctuations of the system.

Exercise Prove Eq. 11.84 for the current J3
2 assuming that the gauge gravity

correspondence is correct. Recall that in regular electrodynamics r ¼ J=E with the
electric current J and the electric field E. Also recall that the two-point Green
function for a current J dual to the gauge field A can holographically be written in
the form GR / oqA=A.

11.5.3.1 (Pseudo) Gap

An analysis of the imaginary part of the conductivity using Kramers-Kronig
relations shows a delta peak at vanishing frequency w ¼ 0 in the real part. The
frequency-dependent conductivity is shown for our two distinct computation
schemes in Fig. 11.12. Independent from the scheme we see an energy gap develop
and grow while the temperature is decreased. The temperature of the black hole
horizon induced on the D7-branes is proportional to the inverse particle mass
parameter m�1 / T . Therefore from the trivial flat brane embedding at m ¼ 0 we
get an infinite temperature in Fig. 11.12b. Both schemes show the development of
peaks in the conductivities. The peaks coming from fluctuations around the

(a) (b)

Fig. 11.12 Conductivity a from the symmetrized trace prescription at T=Tc ¼ 10; 1; 0:5; 0:28
(from left to right), b from the DBI action expanded to fourth order at T=Tc ¼ 1; 1; 0:6; 0:5; 0:39
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symmetrized trace prescription background are a lot more pronounced. Taking into
account only second order terms in the expanded DBI action as in [38] would hide
the peak structures completely. Therefore we conclude that these peaks are higher
order effects. Since the conductivity is closely related to the spectral functions, we
interpret the peaks as quasiparticles just as described in Sects. 11.4.1.2 and 11.4.2.
In particular these are again vector mesons. This identification is confirmed by the
spectral function in Fig. 11.13. The peaks in that figure are identical with those in
the conductivity and they approach the supersymmetric line spectrum for vector
mesons, as in Sect. 11.4.2.

11.5.3.2 Dynamical Mass Generation

Even if we choose the two D7 branes to coincide with the stack of D3-branes, i.e. if
we choose the quark mass to vanish, we observe the quasi-particle peaks mentioned
before. This is due to a Higgs-like mechanism which dynamically generates masses
for the bulk field fluctuations, which in turn give massive quasi-particles in the
boundary theory. In the bulk our fields A3

0 and A1
3 break the SUð2Þ symmetry

spontaneously since the bulk action is still SUð2Þ-invariant. Thus there are three
Nambu-Goldstone bosons which are immediately eaten by the bulk gauge fields,
giving them mass. This can be seen explicitly in the action where the following

mass terms for the gauge field fluctuations appear: ðA3
0Þ

2ða1;2Þ2 and ðA1
3Þ

2ða3Þ2.

11.5.4 Meissner-Ochsenfeld-Effect

The Meissner effect is a distinct signature of conventional and unconventional
superconductors. It is the phenomenon of expulsion of external magnetic fields. An
induced current in the superconductor generates a magnetic field counter-acting

0 5 10 15 20 25 30

0

200

400

600

200

Fig. 11.13 Finite temperature part of the spectral function R�R0 with R0 ¼ 4pw2in units of
Nf NcT2=8 versus the dimensionless frequency w ¼ x=ð2pTÞ at finite quark mass m ¼ 2:842 and
chemical potential ~l ¼ 3:483. The grey lines correspond to the supersymmetric mass spectrum
calculated in [22]
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the external magnetic field H. In AdS/CFT we are not able to observe the gen-
eration of counter-fields since the symmetries on the boundary are always global.
Nevertheless, we can study their cause, i.e. the current induced in the supercon-
ductor. As usual [45–48] the philosophy here is to weakly gauge the boundary
theory afterwards. In order to investigate how an external magnetic field influences
our p-wave superconductor, we have two choices. Either we introduce the field
along the spatial z-direction H3

3s
3 or equivalently one along the y-direction i.e.

H3
2s

3. Both are ‘‘aligned’’ with the spontaneously broken Uð1Þ3-flavor direction.
As an example here we choose a non-vanishing H3

3s
3. This requires inclusion of

some more non-vanishing field strength components in addition to those given in
Eq. 11.25. In particular we choose A3

0ð.; xÞ; A1
3ð.; xÞ and A3

2ðxÞ ¼ x1 H3
3 yielding

the additional components8

H3
3 ¼ F3

12 ¼ �F3
21 ¼ o1A3

2; ð11:85Þ

F1
13 ¼ �F1

31 ¼ o1A1
3; ð11:86Þ

F2
23 ¼ �F2

32 ¼
c
ffiffiffi

k
p A3

2A1
3; ð11:87Þ

F3
10 ¼ �F3

01 ¼ o1A3
0: ð11:88Þ

Recall that the radial AdS-direction is designated by the indices . or 4 synony-
mously. Amending the DBI-action (11.30) with the additional components (11.85),
we compute the determinant in analogy to Eq. 11.30. We then choose to expand
the new action to second order in F, i.e. we only consider terms being at most
quadratic in the fields. This procedure gives the truncated DBI action

SDBI ¼� TD7 Nf

Z

d8n
ffiffiffiffiffiffiffiffi

�G
p

1þ ð2pa0Þ2

2
G00G33ðF2

03Þ
2 þ G33G44ðF1

.3Þ
2

�

"

þ G00G44ðF3
.0Þ

2 þ ðG33Þ2ðF1
13Þ

2 þ ðG33Þ2ðF2
23Þ

2

þG00G33ðF3
10Þ

2 þ ðG33Þ2ðF3
12Þ

2
�

þ � � �
#

:

ð11:89Þ

Respecting the symmetries and variable dependencies in our specific system, this
can be written as

8 Close to the phase transition, it is consistent to drop the dependence of the field H3
3 on .. Away

from the phase transition the . dependence must be included. From the boundary asymptotics it
will be possible to extract the magnetic field and the magnetization of the superconductor.
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SDBI ¼�TD7Nf

Z

d8n
ffiffiffiffiffiffiffiffi

�G
p

"

1þ 1

2
G00G33ðo1

~A3
0Þ

2 þ G33G44ðo. ~A1
3Þ

2
�

:

þ G00G44ðo.
~A3

0Þ
2 þ ðG33Þ2ðo�1

~A1
3Þ

2 þ ðG33Þ2ð�H3
3Þ

2

þG00G33 .H
4c2

ð2pa0Þ2k
ð~A3

0
~A1

3Þ
2 þ ðG33Þ2 .H

4c2

ð2pa0Þ2k
ð~A1

3
�H3

3Þ
2�x2

!

þ � � �
#

;

ð11:90Þ

with the convenient redefinitions

~A ¼ 2pa0

.H
A ; x ¼ .H�x ; �H3

3 ¼ 2pa0H3
3 ; . ¼ .Hq: ð11:91Þ

Rescaling the �x-coordinate once more

~x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�H3
3.H

2c

2pa0
ffiffiffi

k
p

s

�x; ð11:92Þ

the equations of motion derived from the action (11.90) take a simple form

0 ¼ o2
q
~A3

0 þ
oq

ffiffiffiffiffiffiffiffi

�G
p

G00G44
 �

ffiffiffiffiffiffiffiffi

�G
p

G00G44
oq

~A3
0 þ

c~H3
3

2
ffiffiffi

2
p

p

G33

G44
o~x

~A3
0 �

c2

2p2

G33

G44
~A3

0ð~A1
3Þ

2;

0 ¼ o2
q
~A1

3 þ
oq

ffiffiffiffiffiffiffiffi

�G
p

G33G44
 �

ffiffiffiffiffiffiffiffi

�G
p

G33G44
oq

~A1
3 þ

c~H3
3

2
ffiffiffi

2
p

p

G33

G44
o2

~x
~A1

3 � ~x2~A1
3

 �

� c2

2p2

G00

G44
ð~A3

0Þ
2~A1

3:

ð11:93Þ

Here all metric components are to be evaluated at R ¼ 1 and .! q.
We aim at decoupling and solving the system of partial differential equations

(11.93) by the product ansatz
~A1

3ðq;~xÞ ¼ vðqÞ uð~xÞ: ð11:94Þ

For this ansatz to work, we need to make two assumptions: First we assume that ~A3
0

is constant in ~x. Second we assume that A1
3 is small, which clearly is the case near

the transition T ! Tc. Our second assumption prevents A3
0 from receiving a

dependence on ~x through its coupling to A1
3ðq;~xÞ. These assumptions allow to write

the second equation in (11.93) as

0 ¼ o2
qvðqÞ þ

oq

ffiffiffiffiffiffiffiffi

�G
p

G33G44
 �

ffiffiffiffiffiffiffiffi

�G
p

G33G44
oqvðqÞ � c2

2p2

G00

G44
ð~A3

0Þ
2vðqÞ

þ c~H3
3

2
ffiffiffi

2
p

p

G33

G44
vðqÞ o2

~xuð~xÞ � ~x2uð~xÞ
uð~xÞ : ð11:95Þ
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All terms but the last one are independent of ~x, so the product ansatz (11.94) is
consistent only if

o2
~xuð~xÞ � ~x2uð~xÞ

uð~xÞ ¼ C; ð11:96Þ

where C is a constant. The differential Eq. 11.96 has a particular solution if
C ¼ �ð2nþ 1Þ ; n 2 N. The solutions for uð~xÞ are Hermite functions

unð~xÞ ¼
e�
j~xj2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!2n
ffiffiffi

p
pp Hnð~xÞ ; Hnð~xÞ ¼ ð�1Þne

j~xj2
2

dn

dxn
e�
j~xj2

2 ; ð11:97Þ

which have Gaussian decay at large j~xj � 1. Choosing the lowest solution with
n ¼ 0 and H0 ¼ 1, which has no nodes, is most likely to give the configuration
with lowest energy content. So the system we need to solve is finally given by

0 ¼ o2
q
~A3

0 þ
oq

ffiffiffiffiffiffiffiffi

�G
p

G00G44
 �

ffiffiffiffiffiffiffiffi

�G
p

G00G44
oq

~A3
0

c2

2p2

G33

G44
~A3

0ðu0ð~xÞvðqÞÞ2; ð11:98Þ

0 ¼ o2
qvþ

oq

ffiffiffiffiffiffiffiffi

�G
p

G33G44
 �

ffiffiffiffiffiffiffiffi

�G
p

G33G44
oqv� c2

2p2

G00

G44
ð~A3

0Þ
2v� c~H3

3

2
ffiffiffi

2
p

p

G33

G44
v: ð11:99Þ

Asymptotically near the horizon the fields take the form

~A3
0 ¼ þa2ðq� 1Þ2 þOððq� 1Þ3Þ; ð11:100Þ

v ¼ b0 þ
b0H3

3

4
ðq� 1Þ2 þOððq� 1Þ�3Þ; ð11:101Þ

while at the boundary we obtain

~A3
0 ¼ ~lþ

~d3
0

q2
þOðq�4Þ; ð11:102Þ

v ¼ þ
~d1

3

q2
þOðq�4Þ: ð11:103Þ

We succeed in finding numerical solutions vðqÞ and A3
0ðqÞ to the set of equations

(11.98) obeying the asymptotics given by Eqs. 11.100 and 11.102. These
numerical solutions are used to approach the phase transition from the super-
conducting phase by increasing the magnetic field. We map out the line of critical
temperature-magnetic field pairs in Fig. 11.14. In this way we obtain a phase
diagram displaying the Meissner effect. The critical line in Figs. 11.14 and 11.15
separates the phase with and without superconducting condensate ~d1

3.
We emphasize that this is a background calculation involving no fluctuations.

Complementary to the procedure described above we also confirmed the phase
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diagram using the instability of the normal phase against fluctuations. Starting at
large magnetic field and vanishing condensate ~d1

3, we determine for a given
magnetic field H3

3 the temperature TcðH3
3Þ at which the fluctuation a3

1 becomes
unstable. That instability signals the condensation process into the superconduc-
ting phase.

The presence of the coexistence phase below the critical line, where the system
is still superconducting despite the presence of an external magnetic field, is the
signal of the Meissner effect in the case of a global symmetry considered here. If
we now weakly gauged the flavor symmetry at the boundary, the superconducting
current J1

3 would generate a magnetic field opposite to the external field. Thus the

Fig. 11.14 The line of
critical magnetic field versus
critical temperature. Below
this line the external magnetic
field coexists with the
superconducting condensate.
Above the line the
superconducting condensate
vanishes. We set the spatial
position arbitrarily to ~x ¼ 0:1
since the critical line does not
depend on ~x

Fig. 11.15 Sketch of our string setup: The figure shows the two coincident D7 branes stretched
from the black hole horizon to the boundary as a green and a blue plane, respectively. Strings
spanned from the horizon of the AdS black hole to the D7-branes induce a charge at the horizon
[18, 29, 35]. However, above a critical charge density, the strings charging the horizon recombine
to D7–D7 strings. These D7–D7 strings are shown in the figure. Whereas the fundamental strings
stretched between the horizon and the D7-brane are localized near the horizon, the D7–D7 strings
propagate into the bulk balancing the flavorelectric and gravitational, i.e. tension forces (see
text). Thus these D7–D7 strings distribute the isospin charges along the AdS radial coordinate,
leading to a stable configuration of reduced energy. This configuration of D7–D7 strings
corresponds to a superconducting condensate
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phase observed is a necessary condition in the case of a global symmetry for
finding the standard Meissner effect when gauging the symmetry.

11.6 Interpretation and Conclusion

Our findings merge to a string theory picture of the pairing mechanism and the
subsequent condensation process in Sect. 11.6.1. Finally we summarize what we
have learned about holographic p-wave super-somethings and propose some future
territories to be conquered.

11.6.1 String Theory Picture

We now develop a string theory interpretation, i.e. a geometrical picture, of the
formation of the superconducting/superfluid phase, for which the field theory is
discussed in Sect. 11.2.1. We show that the system is stabilized by dynamically
generating a non-zero vev of the current component J1

3 dual to the gauge field A1
3

on the brane. Moreover, we find a geometrical picture of the pairing mechanism
which forms the condensate hJ1

3i, the Cooper pairs. Let us first describe the
unstable configuration in absence of the field A1

3. As known from [18, 29, 35], the
non-zero field A3

0 is induced by fundamental strings which are stretched from the
D7-brane to the horizon of the black hole. In the subsequent we call these strings
‘horizon strings’. Since the tension of these strings would increase as they move to
the boundary, they are localized at the horizon, i.e. the horizon is effectively
charged under the isospin charge given by (11.1). By increasing the horizon string
density, the isospin charge on the D7-brane at the horizon and therefore the energy
of the system grows. In [18], the critical density was found beyond which this
setup becomes unstable. In this case, the strings would prefer to move towards the
boundary due to the repulsive force on their charged endpoints generated by the
flavorelectric field E3

. ¼ F3
0. ¼ �o.A3

0.

The setup is now stabilized by the new non-zero field A1
3. This field is induced by

D7-D7 strings moving in the x3 direction. This movement of the strings may be
interpreted as a current in x3 direction which induces the magnetic field
B1

3. ¼ F1
3. ¼ �o.A1

3. Moreover, the non-Abelian interaction between the D7–D7

strings and the horizon strings induces a flavorelectric field E2
3 ¼ F2

30 ¼ c=
ffiffiffi

k
p

A3
0A1

3.
From the profile of the gauge fields and their conjugate momenta (see Fig. 11.7)

we obtain the following: For A1
3 ¼ 0, i.e. in the normal phase (T  Tc), the isospin

density ~d3
0 is exclusively generated at the horizon by the horizon strings. This

can also be understood by the profile of the conjugate momenta p3
0

(see Fig. 11.7c). We interpret p3
0ðq�Þ as the isospin charge located between the
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horizon at q ¼ 1 and a fictitious boundary at q ¼ q�. In the normal phase, the
momentum p3

0 is constant along the radial direction q (see Fig. 11.7c, blue curve),
and therefore the isospin density is exclusively generated at the horizon. In the
superconducting phase where A1

3 6¼ 0, i.e. T\Tc, the momentum p3
0 is not constant

any more. Its value increases monotonically towards the boundary and asymptotes
to ~d3

0 (see Fig. 11.7c, red curve). Thus the isospin charge is also generated in the
bulk and not only at the horizon. This decreases the isospin charge at the horizon
and stabilizes the system.

Now we describe the string dynamics which distributes the isospin charge into
the bulk. Since the field A1

3 induced by the D7–D7 strings is non-zero in the
superconducting phase, these strings must be responsible for stabilizing this phase.
In the normal phase, there are only horizon strings. In the superconducting phase,
some of these strings recombine to form D7–D7 strings which correspond to the
non-zero gauge field A1

3 and carry isospin charge.9 There are two forces acting on
the D7–D7 strings, the flavorelectric force induced by the field E3

. and the grav-
itational force between the strings and the black hole. The flavorelectric force
points to the boundary while the gravitational force points to the horizon. The
gravitational force is determined by the change in effective string tension, which
contains the . dependent warp factor. The position of the D7–D7 strings is
determined by the equilibrium of these two forces. Therefore the D7–D7 strings
propagate from the horizon into the bulk and distribute the isospin charge.

Since the D7–D7 strings induce the field A1
3, they also generate the density ~d1

3

dual to the condensate hJ1
3i, the Cooper pairs. This density ~d1

3 is proportional to the

D7–D7 strings located in the bulk, in the same way as the density ~d3
0 counts the

strings which carry isospin charge [29]. This suggest that we can also interpret
p1

3ðq�Þ as the number of D7–D7 strings which are located between the horizon at
q ¼ 1 and the fictitious boundary at q ¼ q�. The momentum p1

3 is always zero at
the horizon and increases monotonically in the bulk (see Fig. 11.7d). Thus there
are no D7–D7 strings at the horizon.

The double importance of the D7-D7 strings is given by the fact that they are both
responsible for stabilizing the superconducting phase by lowering the isospin charge
density at the horizon, as well as being the dual of the Cooper pairs since they break the
Uð1Þ3 symmetry. In QCD-language they correspond to quarks pairing up to form charged
vector mesons which condense subsequently.

11.6.2 Summary

In conclusion we have derived from the top (string theory) down to the gravity
theory a holographic p-wave superconductor. Thus we were able to directly

9 Note that the D7–D7 strings are of the same order as the horizon strings, namely Nf =Nc, since
they originate from the DBI action [35].
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identify the degrees of freedom in the boundary field theory, allowing us to
translate geometric features directly into field theory features. In particular we
have found a string theory picture of the pairing mechanism. The Cooper pairs are
modeled by strings spanned between the two flavor D7-branes corresponding to
quasi-particles in the vector bi-fundamental representation, i.e. vector mesons. The
dual thermal field theory is 3 + 1-dimensional N ¼ 2 supersymmetric Yang-Mills
theory with SUðNcÞ color and SUð2Þ flavor symmetry coupled to an N ¼ 4 gauge
multiplet. It shows a conductivity gap at low temperatures. A pseudo-gap forms
even above Tc. The onset of the Meissner-Ochsenfeld effect is visible and in the
conductivity spectrum we find massive quasi-particles even at vanishing quark
mass. Their masses are generated through a Higgs-like mechanism in the bulk.

Note that our results can also be interpreted using this very setup as a model for
the quark gluon plasma as introduced in Sect. 11.3.1. In that case we have found a
flavor superfluid phase. This should not be confused with the color-supercon-
ducting phase theoretically found in QCD at high baryon density.

11.6.3 Outlook

Some directions for promising future investigation are the study of critical
exponents near the phase transition. Transport coefficients such as the speeds of
second, fourth and other sounds can be determined. For some of these it will be
necessary or convenient to use the backreacted solutions for this D3/D7 system
given in [44]. Similar to earlier semi-classical drag computations it might be
instructive to compute the drag on the various strings near the superconducting
phase transition. It would be interesting to see what happens to the Fermi surface
formed by the background fermions when the superconducting/superfluid phase is
entered. Adventurous spirits may also take this setup as a serious model for p-wave
superconductors such as the ruthenate compounds mentioned in the introduction.
The geometric insights we gain from the dual gravity description can in principle
be directly translated to precise field theory statements. Again this pleasant fact is
due to knowing the field theory degrees of freedom exactly by using the gauge/
gravity correspondence. A different setup in which vector mesons condense is the
Sakai-Sugimoto model as shown in [49]. It could be illuminating to study all
aforementioned effects in this model as well.
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Chapter 12
Holographic Torsion and the Prelude
to Kalb–Ramond Superconductivity

Anastasios C. Petkou

Abstract We discuss the holographic implications of torsional degrees of freedom
in the context of AdS4=CFT3; emphasizing in particular the physical interpretation
of the latter as carriers of the non-trivial gravitational magnetic field, i.e. the part of
the magnetic field not determined by the frame field. As a concrete example we
present a new exact four-dimensional gravitational background with torsion and
argue that it corresponds to the holographic dual of a 3D system undergoing parity
symmetry breaking. Finally, we compare our new gravitational background with
known wormhole solutions—with and without cosmological constant—and argue
that they can all be unified under an intriguing ‘‘Kalb–Ramond superconductivity’’
framework.

12.1 Introduction and Summary of the Results

AdS4=CFT3 is currently emerging as a novel paradigm of holography that has
qualitatively different properties from the more familiar AdS5=CFT4 correspon-
dence. Particularly intriguing is the recent accumulation of evidence that
AdS4=CFT3 can be used to describe a plethora of phenomena in 2þ 1 dimensional
systems, such as quantum criticality [1, 2], Quantum Hall transitions [3–6],
superconductivity [7–11], supefluidity [12, 13] and spontaneous symmetry
breaking [14–16]. This has given rise to a whole new research area that goes under
the name of AdS/C(ondensed) M(atter) T(heory). Furthermore, AdS4=CFT3 is the
appropriate setup to study the holographic consequences of generalized electric–
magnetic duality of gravity and higher-spin gauge fields [17–22].
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In the absence of an explicit AdS4=CFT3 correspondence example1 various toy
models have been used to study its general qualitative aspects. This work presents
yet another model of AdS4=CFT3 which possesses a novel feature. Namely, it can
describe the gravity dual of parity symmetry breaking in a 3D system. However,
this is not our only aim. We also wish to shed light into torsion from a holographic
point of view. The study of torsion is an interesting subject in itself that poses
formal and phenomenological challenges.2 In the context of string theory, torsion
is omnipresent through antisymmetric tensor fields, therefore AdS4=CFT3 provides
the basic setup where it can be holographically investigated.

This review presents in a slightly expanded form the results of [34]. We con-
sider a simple toy model where torsion is introduced via the topological Nieh–Yan
class. In particular, we consider the modification of the Einstein–Hilbert action
with a negative cosmological constant by the Nieh–Yan class, the latter having a
spacetime-dependent coefficient. In the context of the 3 ? 1-split formalism for
gravity [17] we emphasize that the torsional degrees of freedom carry the non-
trivial ‘gravitational magnetic field.’ In pure gravity the gravitational magnetic
field is fully determined by the frame field and hence torsion vanishes. In our
model, the spacetime dependence of the Nieh–Yan coefficient makes some of the
components of the magnetic field dynamical and as a consequence torsional
degrees of freedom enter the theory. Our toy model is simple enough such that
only one of the torsional degrees of freedom becomes dynamical. This degree of
freedom can be either carried by a pseudoscalar, in which case our model is
equivalent to a massless pseudoscalar coupled to gravity, or by a two-form gauge
potential. In the latter case our model becomes equivalent to a Kalb–Ramond field
coupled to gravity.

Next, we find an exact solution of the equations of motion in Euclidean sig-
nature. Our metric ansatz is that of a bulk domain wall (DW). The solution, the
torsion DW, has two distinct asymptotically AdS4 regimes along the ‘‘radial’’
coordinate. The pseudoscalar has a kink-like profile and it is finite at both of the
asymptotic regimes. Our torsion DW can be viewed as a generalization of the
axionic wormhole solution of [35] in the case of non-zero cosmological constant.
See also [36] for recent work on AdS wormholes.

Having in mind the holographic interpretation of our model we focus mainly on
the case where the torsional degree of freedom is carried by a pseudoscalar field.
Following standard holographic recipes we find that the torsion DW is the gravity
dual of a 3D system that possesses two distinct parity breaking vacua. The two
vacua are distinguished by the relative sign of the pseudoscalar order parameter.
Our bulk picture suggests that the transition from one vacuum to the other can be
done by a marginal deformation of the boundary theory. In the Appendix we

1 The recently suggested field theoretic models for M2 branes [23–28] are important steps
towards the understanding of the boundary side of AdS4=CFT3:
2 See [29–31] for recent reviews and [32, 33] for other recent works.
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suggest that the above qualitative properties can be realized in the boundary by the
3D Gross–Neveu model coupled to U(1) gauge fields.

Further, we point out that the bulk physics of our DW solution bears some
intriguing resemblance to the standard Abrikosov vortex in superconducting sys-
tems. There is a natural mapping of the parameters of the torsion DW to those of
the Abrikosov vortex. We show that the gravitational parameter that is interpreted
as an order parameter satisfies a /4-like equation and this motivates us to suggest
that the cosmological constant is related to the ‘‘distance from the critical tem-
perature’’ as K� Tc � T : However, there is an important difference in that the
Abrikosov vortex is a one-dimensional defect while our DW is codimension one
i.e. three-dimensional in AdS4: We also discuss multi-DW configurations and DW
condensation and show that H-flux supports bubbles of flat spacetime.

Quite intriguing is our result that DW condensation occurs at a critical value of
the magnetic field. This motivates us to reconsider the known Euclidean solutions
of an Einstein-axion system with [36] and without [35] cosmological constant.
These are wormhole solutions whose salient properties include a quantized electric
and (possibly) magnetic flux. Moreover, the K 6¼ 0 solutions possess a lower bound
on their electric flux. Using our intuition that K plays the role of ‘‘temperature’’, we
place the known wormhole and DW solutions on a (‘‘Temperature’’,‘‘Magnetic
Field’’) graph and observe that it resembles a standard superconductivity graph. We
call such a system a ‘‘Kalb–Ramond superconductor’’ and we will present more
details on its properties in a forthcoming work [43].

12.2 Torsion as the Non-trivial Magnetic Field of Gravity

In this section, we discuss the physical interpretation of torsion which is that it
carries the non-trivial magnetic degrees of freedom of gravity, namely those that
are not determined by the frame field (or, equivalently, by the metric in a second
order formulation). To motivate things we recall the first order formalism of
electromagnetism in the presence of an x-dependent h-angle, in a non-trivial
background here taken to be AdS4: Then we present the 3 ? 1-split formalism for
gravity introduced in [17]. This formalism is a refined form of the standard ADM
formalism, which however unveils the physical importance of the gravitational
torsional d.o.f. As we will see, such a point of view is crucial in order to under-
stand the holographic interpretation of torsion.

12.2.1 Electromagnetism with a hðxÞ-Angle in AdS4

The vierbeins and metric of AdS4 are

e0 ¼ dt; ea ¼ e�t=Ldxa; ds2 ¼ r?dt2 þ e�2t=Lgabdxadxb; ð12:1Þ
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with a; b ¼ 1; 2; 3: Throughout this work we are being flexible with the both the
overall signature and also the nature (spacelilke or timelike) of the t-direction i.e.
we set gab ¼ diagð1; 1; r3Þ; r?r3 ¼ r ¼ �1: The gauge potential and field strength
are one-forms

A ¼ A0dt þ ~A F ¼ �dt ^ E þ ~F ¼ 1
2

Fabea ^ eb; ð12:2Þ

where a; b ¼ 0; 1; 2; 3 and E ¼ �F0aea is the electric field. The tilde will always
denote quantities along the three directions 1; 2; 3: With the above definitions we
find

�4F ¼ dt ^ �3 ~F � r? �3 E; dA ¼ dt ^ ð _~A� ~dA0Þ þ ~d~A: ð12:3Þ

Recall e.g. that �3ei ¼ 1
2 �

i
jkej ^ ek and �3ei ^ ek ¼ �ij

kek: Note also that �2
4 ¼

r?; �2
3 ¼ r3 and �0123 ¼ 1: The first order action is

I ¼
Z

�dA ^ �4F þ 1
2

F ^ �4F þ h
2

dA ^ dA: ð12:4Þ

Notice that due to the x-dependance of h the last term in (12.4) is not a total
derivative and will give contributions to the e.o.m. After some work the action
above takes the more familiar form

I ¼ r?

Z

dt ^ _~A ^ �3E þ r?h~d~A
� �

þ 1
2

E ^ �3E � r?~F ^ �3 ~F
� �

�

þA0
~d �3 E þ r?~dh ^ ~d~A
� �

�

: ð12:5Þ

This gives the Hamiltonian e.o.m.

E ¼ � _~A; ~dB ¼ �r? _�3Eð Þ � _hr3 �3 B� ~dh ^ E; ð12:6Þ

where we have defined the magnetic field (also a one-form) as

~F ¼ ~d~A � r3ð�3BÞ: ð12:7Þ

We also have the Gauss law and Bianchi identity, respectively

~d �3 E þ r?~dh ^ ~d~A ¼ 0; ~d �3 B ¼ 0: ð12:8Þ

It is straightforward to show that the above give the Maxwell equations in the more
familiar form

$� E ¼ �r3
oB

ot
; $ � E ¼ �r?r3$h � B; ð12:9Þ

$� B ¼ �r
oE

ot
� _hBþ $h� E
h i

; $ � B ¼ 0: ð12:10Þ
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We summarize the effects of an x-dependent h-angle in electromagnetism:

• The modification of the canonical momentum as we see in (5)

�3E 7! �3 E þ rh �3 B: ð12:11Þ

• The presence of a source term for Gauss law.

In particular, there is no additional d.o.f. introduced by the h-angle. We will
compare this situation with gravity in the following.

12.3 Details on the 3 1 1-Split Formalism

In this section, we present a concise version of the 3 ? 1-split formalism of [17]
for gravity in the presence of non-zero cosmological constant. We consider a
globally hyperbolic Lorentzian manifold M and take the Einstein–Hilbert action
with cosmological constant in the first-order Palatini formalism as

SEH ¼ �
1

32pG

Z

M

�abcd Rab þ K
2

ea ^ eb

� �

^ ec ^ ed: ð12:12Þ

This is thus equivalent to the standard second-order gravitational action

Ssecond ¼ �
1

16pG

Z

d4x
ffiffiffiffiffiffiffi�g
p

Rþ 6Kð Þ; ð12:13Þ

and hence the cosmological constants is related to the parameter K as Kcosm: ¼
�3K: The curvature and torsion two-forms are defined in terms of the vielbein ea

and spin-connection xab as

Rab ¼ dxab þ xa
c ^ xcb; Ta ¼ dea þ xa

b ^ eb: ð12:14Þ

We define as before gab ¼ diagðr?;þ;þ; r3Þ;where r?r3 ¼ r ¼ �1; r2
? ¼ r2

3 ¼ 1
and set K ¼ r?=‘2 such that K\0 (K [ 0) yields the de Sitter (Anti-de Sitter)
vacuum. Next, we split the vielbein and the spin connection as

e0 ¼ Ndt; ea ¼ Nadt þ ~ea; ð12:15Þ

x0a ¼ q0adt þ r?Ka; xab ¼ ��abc Qcdt þ Bc
� �

: ð12:16Þ

The novelty of the formalism is the introduction of the gravitational electric Ka

and magnetic fields Ba; which are both vector-valued one-forms on the slices. We
then find for the torsion

Ta ¼ ~Ta þ dt ^ _~ea � ~dNa þ NKa � r�abcQ
bec � r�abcN

bBc
	 


; ð12:17Þ
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T0 ¼ r?Ka ^ ~ea þ dt ^ �~dN � r?NaKa þ q0
b~eb

	 


; ð12:18Þ

and we write

Ra
b ¼ ~Ra

b þ dtxra
b; ð12:19Þ

~R0
a ¼ r?ð~dKa þ Kb ^ ~xb

aÞ � r?ð~DKÞa; ð12:20Þ

~Ra
b ¼ ð3ÞRa

b � r?Ka ^ Kb; ð12:21Þ

with

ð3ÞRab ¼ r �abcdBc � r?BaxBb
� �

; ð12:22Þ

and

2�abcr
0a ^ ~eb ^ ~ec ¼ 2r?�abc _Ka ^ ~eb ^ ~ec þ 4QaKb ^ ~eb ^ ~ea

þ 4q0a �abc~Tb ^ ~ec
� �

:
ð12:23Þ

After some tedious but straightforward calculations we find

SEH ¼�
r?

8pG

Z

dt ^ _~ea ^ ð4r?�abcK
c ^ ~ebÞ � 4r?Na�abcð~DKÞb ^ ~ec

n

þ 2N�abc
ð3ÞRab � r?Ka ^ Kb � K

3
~ea ^ ~eb

� �

^ ~ec

� 4q0a�abc~Tbx~ec þ 4Qa~e
axKbx~eb




� SGH ð12:24Þ

where the last term is exactly the usual Gibbons–Hawking surface term

SGH ¼ �
1

16pG

Z

oM

q0adt þ r?Ka
� �

^ �abc~e
b ^ ~ec: ð12:25Þ

Adding then the Gibbons–Hawking term in (12.24) we obtain

ŜEH ¼�
r?

8pG

Z

M

dt ^ �Ka ^ _Ra þ N ~Wa ^ ~ea þ r?Q̂ ^ Kb ^ ~eb
	

þr?q0a ~DRa � Na�abc ~DKb ^ ~ec



; ð12:26Þ

where Q̂ � Qa~ea: We have introduced the two-form

~Wa � qa �
1
2
�abcK

b ^ Kc þ 1
‘2

Ra: ð12:27Þ

and have defined the oriented surface element as

Ra ¼ �3~e
a ¼ 1

2
�abc~e

b ^ ~ec; ð12:28Þ
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with �3 the three-dimensional Hodge dual defined in terms of ~ea only. The three-
dimensional component of the curvature two-form

qa ¼ ~dBa þ
1
2
�abcB

b ^ Bc; ð12:29Þ

is made out of Ba only. Recall (i.e. 19) that ~D is a covariant derivative with respect
to the one-form field Ba as

~DVa ¼ ~dVa þ �abcB
b ^ Vc; ð12:30Þ

if Va is a generic vector-valued one-form (with respect to either SOð3Þ or SOð2; 1Þ
depending on whether r? ¼ 	1; respectively) defined on Rt: Comparing the
action (12.26) to the electromagnetic action (12.4) motivates calling the vector-
valued one-forms Ka and Ba the ‘‘electric’’ and ‘‘magnetic’’ fields, respectively.

The action (12.26) is stationary on-shell when d~ea ¼ 0 in the boundary, i.e. it
provides a good Dirichlet variational principle with respect to the vielbein. The
form of the action (12.26) appears to indicate that the proper conjugate dynamical
variables are Ra (or, equivalently, ~ea) and Ka: It has been shown in [19, 20] that the
proper identification of the dynamical variables is slightly more involved than this.
The remaining fields fN;Na; q0a; Q̂;Bag enter the action as Lagrange multipliers
of the following constraints:

�8pGr?
dS

dN
¼ ~Wa ^ ~ea ¼ 0; ð12:31Þ

�8pGr?
dS

dNa
¼ ��abc ~DKb ^ ~ec ¼ 0; ð12:32Þ

�8pGr?
dS

dq0a
¼ r? ~DRa ¼ r?�abc~Tb ^ ~ec ¼ 0; ð12:33Þ

�8pGr?
dS

dQ̂
¼ r?Ka ^ ~ea ¼ 0; ð12:34Þ

�8pGr?
dS

dBa
¼ N ~Ta þ ~dN þ r?KbNb � q̂

� �

^ ~ea ¼ 0; ð12:35Þ

where q̂ � q0
a~ea: The exterior multiplication of (12.35) by �abc~ec gives, by virtue

of (12.33),

~dN þ r?KbNb � q̂ ¼ 0; ð12:36Þ

and hence we obtain the zero torsion condition
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~Ta ¼ ~D~ea ¼ 0; ð12:37Þ

The last equation unveils the physical meaning of the gravitational magnetic field
Ba: it is a Lagrange multiplier which is algebraically related to the vielbein via the
vanishing of torsion (12.37). This is exactly analogous to electromagnetism and
gives an important hint regarding the relevance of torsion to holography and
gravitational duality [34].

12.3.1 The Analog of h-Angle in Gravity

There is a number of topological terms built from the gravitational dynamical
variables that one may consider in four dimension. These are all of potential
interest to holography because being total derivatives they may induce interesting
boundary effects. We may parameterize these terms as follows (writing all possible
SOð3; 1Þ-invariant four-forms constructed from ea;Ra

b; Ta):

Itop ¼ n

Z

M

CNY þ 2c�1
Z

M

CIm þ p

Z

M

P4 þ q

Z

M

E4; ð12:38Þ

where

CNY ¼ Ta ^ Ta � Rab ^ ea ^ eb ¼ dðTa ^ eaÞ; ð12:39Þ

is the Nieh–Yan form. The parameter c is often referred to as the Immirzi
parameter with

CIm ¼ Ra
b ^ eb ^ ea: ð12:40Þ

The remaining objects are the Pontryagin form

P4 ¼ �
1

8p2
Ra

bxRb
a ¼ �

1
8p2

d xa
b ^ Rb

a �
1
3
xa

bxxb
cxxc

a

� �

; ð12:41Þ

and the Euler form

E4 ¼ �
1

32p2
�abcdRabxRcd: ð12:42Þ

We note that P4 þ r?a2

4p2 CNY and CNY � CIm are actually SOð3; 2Þ invariants [30].
These terms become very interesting even in gravity if we allow the coefficients
to become fields (for some interesting recent literature on the matter see
[32, 33]).
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12.3.2 Torsion and the Magnetic Field of Gravity

In pure Eistein–Hilbert gravity the torsional d.o.f. are not dynamical and are
carried by the magnetic field Ba. This is seen for example if we recall the definition
of the non-trivial ‘spatial’ torsion as

~Ta ¼ ~d~ea � r�abcBb ^ ~ec: ð12:43Þ

Moreover, it is seen from (12.18) that the radial component of torsion T0 is
determined by ~ea and Ka: Notice that (12.43) implies that the tensor Bab is odd
under ‘spatial’ parity, hence its trace Ba

a is a pseudoscalar. Hence, although a
priori the torsional degrees of freedom are not connected with the pair of conjugate
variables ~ea and Ka; they are not dynamical as there is no kinetic term for Ba:
Rather, they enter (12.26) algebraically and as such they give via (12.35) and
(12.36) the algebraic zero torsion condition (12.37) by virtue of which the mag-
netic field is related to the frame field. This is the gravitational analogue of the
electromagnetic case where the magnetic field is related to the gauge potential via
the Bianchi identity.

Consider now adding to the Einstein–Hilbert action the Nieh–Yan class CNY

with a constant coefficient h: Over a compact manifold, the NY class is a topo-
logical invariant and takes integer values3 [30]. Having in mind holography, we
are interested here in manifolds with boundary. In particular, the 3 þ 1 split has
been set up so that the boundary is a constant-t slice. The NY term reduces to a
boundary contribution. The explicit calculation yields

INY � �2r?h
Z

CNY ¼ 2r?h
Z

dt ^ 2�abc
_~ea ^ ~eb ^ Bc þ �abc _Ba ^ ~eb ^ ~ec

� �

ð12:44Þ

Adding (12.44) to (12.26) we obtain

ŜEH þ INY /
Z

dt ^ _~ea ^ ð�4r?�abc~e
b ^ Kc � hBc½ 
Þ

�

þ 2r?h�abc _Ba ^ ~eb ^ ~ec þ constraint terms
�

: ð12:45Þ

Notice that the INY term has two effects. One is to modify the canonical
momentum variable Ka 7!Ka � hBa: This is analogous to the effect of the h-angle
in the canonical description of electromagnetism in Sect. 2.1. The other is to
provide a kinetic term for the singlet component of the magnetic field [one easily
verifies that only Ba

a contributes in the second term in the first line of (12.45)].
This second effect has no analogue in electromagnetism. Taking the variation of
(12.45) with respect to Ba; one finds that the zero torsion condition still holds.

3 More precisely, CNY=ð2pLÞ2 is integral, as it is equal to the difference of two Pontryagin
forms, one SOð3; 2Þ and one SOð3; 1Þ:
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This is expected of course since the INY term is purely a boundary term. As a
consequence, the true dynamical variables remain ~ea and Ka: However, the
holography is slightly modified. The variation of (12.45) gives on-shell

d ŜEH þ INY

� �

onshell
/
Z

oM

d~ea ^ �4r?�abc~e
b ^ Kc � hBc½ 


� �

onshell
: ð12:46Þ

After the appropriate subtraction of divergences [19, 20], (12.46) yields a modified
boundary energy momentum tensor. The modification is due to the term
4r?h�abc~eb ^ Bc which is parity odd and corresponds to the unique symmetric,
conserved and traceless tensor of rank two and scaling dimension three that can be
constructed from the three-dimensional metric [38]

Tbdry
ab 7! Tbdry

ab þ hT top
ab ; T top

ab / �‘mðao‘o
2gbÞm ð12:47Þ

where gab being the boundary metric. It is the exact analogue of the topological
spin-1 current constructed from the 3D gauge potential [38, 42].

The form of the action (12.45) unveils an intriguing possibility. The above
holographic interpretation was based on the zero torsion condition that connects Ba

to the frame field. However, to get the zero torsion condition from (12.45) we
needed to integrate by parts the last term in the first line. Hence, if h were t-
dependent, the torsion would no longer be zero and the trace Ba

a would become a
proper dynamical degree of freedom independent of ~ea: In such a case the holo-
graphic interpretation of (12.45) would change. The new bulk degree of freedom
would couple to a new pseudoscalar boundary operator. As a consequence, we
have the possibility to probe additional aspects of the boundary physics and
describe new 2 ? 1 dimensional phenomena. That we do in the next section.

12.4 The Nieh–Yan Models

12.4.1 General Aspects

In the previous section we sketched a mechanism by which torsional degrees of
freedom become dynamical. In particular, we have argued that the addition of the
Nieh–Yan class with a space–time-dependent coefficient in the Einstein–Hilbert
action makes dynamical one pseudoscalar degree of freedom which is connected to
the trace of the gravitational magnetic field. Adding boundary terms to the bulk
action corresponds to a canonical transformation. Consequently, by adding
boundary terms we can change the canonical interpretation and the variational
principle. Consider first the action

I0NY ¼ ŜEH½e;x
 þ IGH½e;x
 þ 2
Z

M

FðxÞCNY; ð12:48Þ
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where F is a pseudoscalar ‘axion’ field with no kinetic term. If F � �r?h were a
constant, this theory would be equivalent to that studied in the last section. With
F ¼ FðxÞ; we have additional terms in the action involving gradients of F: If we
perform the 3þ 1 split on this action, we will find that ~ea and Ba are canonical
coordinates, and their conjugate momenta will depend on F:

The action as given may be supplemented by additional boundary terms. Such
boundary terms are analogous to the Gibbons–Hawking term in gravity, but here
involve the torsional degrees of freedom. In particular, we can replace I0NY by

INY ¼ ŜEH½e;x
 þ IGH½e;x
 � 2
Z

M

dFxTaxea: ð12:49Þ

This action is such that ~ea and F are canonical coordinates with appropriate
boundary conditions, while Ba appears in the momentum conjugate to F: To
investigate this theory, we note that the variation of the action takes the form

dINY ¼ 2
Z

M

dedx �abcdebx Rcd � 1
3
Kecxed

� �

þ 2dFxTd

� �

þ 2
Z

M

dxabx �abcdTcxed þ dFxebxea

� �

þ 2
Z

M

dF CNY

þ 2
Z

M

d½dea ^ �abcdebxxcd � dFxea

� �

� TaxeadF
: ð12:50Þ

A non-trivial configuration of F sources a particular component of the torsion.
Indeed the classical equations of motion can be manipulated to yield in the bulk

Taxea ¼ 3 �4 dF; ð12:51Þ

where �4 denotes the Hodge-� operation. However, as d’Auria and Regge [37]
showed, this classical system is equivalent to a pseudoscalar coupled to torsionless
gravity.

IPS ¼ ŜEH½e;x
� 
 þ IGH½e;x

� 
 � 3
Z

M

dFx �4 dF: ð12:52Þ

This comes about as follows. We write the connection as x ¼ x
� þ X; where x

�
is

torsionless, and insert the equation of motion (12.51). The latter becomes an
equation4 for X; and we obtain (12.52).

A massless pseudoscalar field coupled to torsionless gravity is holographically
dual to composite pseudoscalar operators of dimensions D ¼ 3; 0 in the boundary.
The usual holographic dictionary then says that only the D ¼ 3 operator appears in

4 Explicitly this is Xa
b ¼ r

4 �
acd

bocFed:
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the boundary theory since only this is above the unitarity bound of the 3D con-
formal group SOð3; 2Þ: A scalar operator with dimension D ¼ 0 would simply
correspond to a constant in the boundary. Hence, the sensible holographic inter-
pretation of the massless bulk pseudoscalar is that its leading behaviour determines
the marginal coupling of a D ¼ 3 operator; the expectation value of the operator
itself is determined by the subleading behaviour of the bulk pseudoscalar.

Another equivalent formulation of this bulk theory is obtained by writing

�4dF ¼ 1
3

H: ð12:53Þ

with H a three-form field. This is the parameterization that would be most familiar
from string theory, as the system simply corresponds to an antisymmetric two-
form field. In this formulation, we write

IKR ¼ ŜEH½e;x
� 
 þ IGH½e;x

� 
 þ 1
3

Z

M

Hx �4 H þ
ffiffiffi

2
3

r

Z

M

Cxd �4 H

¼ ŜEH½e;x
� 
 þ IGH½e;x

� 
 � 1
2

Z

M

dC ^ �4dC þ
Z

M

dðCx �4 dCÞ: ð12:54Þ

In the first equation, C appears as a Lagrange multiplier for the ‘Gauss constraint’
and in the second expression, we have solved for the H equation of motion in the

bulk, which is just H ¼
ffiffi

3
2

q

dC:

12.4.2 The 3 1 1-Split of the Pseudoscalar Nieh–Yan Model

To investigate the holographic aspects of our model it is most useful to use the
‘radial quantization’ in which we think of the radial coordinate as ‘time’ t: The
Nieh–Yan deformation gives

�2
Z

dF ^ Ta ^ ea ¼ 2
Z

dtx � _F~Tax~ea � _~eax~dFx~ea
	

þN½2~dFxKax~ea
 þ Na½2~dFx~Ta
 þ Qa½�r�abc
~dFx~ebx~ec





:

ð12:55Þ

We see that the F field makes a contribution to the constraints, and has a conjugate
momentum proportional to the scalar part of the torsion (the part transverse to the
radial direction). The full bulk action becomes

I ¼
Z

dt ^
 

_~ea ^ ð4r?�abcK
c ^ ~eb � 2~dF ^ ~eaÞ � 2 _Fð~ea ^ ~TaÞ:

þ N 2�abc
ð3ÞRab � r?Ka ^ Kb � K

3
~ea ^ ~eb

� �

^ ~ec þ 4~dF ^ Ka ^ ~ea

 �
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þ 4Na �r?�abcð~DKÞb ^ ~ec þ ~dF ^ ~Ta

n o

þ 4Qa ðKb ^ ~ebÞ ^ ~ea �
1
2
r�abc

~dF ^ ~eb ^ ~ec

 �

þ 4q0
a �abc~Tb ^ ~ec
	 


!

: ð12:56Þ

We notice that the Q-constraint term can be written in the form

4Qa~e
ax Kb ^ ~eb � r �3

~dF
� �

: ð12:57Þ

Because of this constraint (which relates the antisymmetric part of the extrinsic
curvature to the vorticity of F), the momentum conjugate to ~ea is symmetric, i.e.

Pa ¼ 4r?�abcK
c ^ ~eb � 2~dF ^ ~ea

¼ 4r? �abcK
c ^ ~eb � 1

2
r3 �3 ðKbx~ebÞx~ea

� �

: ð12:58Þ

When written out in components, one finds that the antisymmetric part K½ab

cancels

Pa ¼ 4r?ðKðbaÞ � trK gbaÞ~eb: ð12:59Þ

This result is consistent with the fact noted above, that the system may be
equivalently described as a pseudoscalar field coupled to torsionless gravity.
Moreover, if we take the deDonder gauge dy~ea ¼ 0; the torsion constraint implies
that B is symmetric.

The q0
a constraint yields ~Tb

ab ¼ 0: Out of the nine components of ~T ; which
transform as 5þ 3þ 1 under SOð3Þ (or SOð2; 1Þ), this sets the triplet to zero (the 5
also vanishes on an equation of motion). The momentum conjugate to F is given by

PF ¼ �2�abc~Tabc: ð12:60Þ

This is the singlet part of the torsion, which has become dynamical in this
description of the theory, in the sense that it is canonically conjugate to F:

12.5 The Torsion Domain Wall

We will now simplify the analysis by taking a coordinate basis and looking for
solutions of the form

~ea ¼ eAðtÞdxa; N ¼ 1; Na ¼ 0; ð12:61Þ
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and we will further suppose that F ¼ FðtÞ: In this case Ka and Ba reduce to one
degree of freedom each as a result of the constraints

Ka ¼ k~ea; Ba ¼ b~ea; ð12:62Þ

and one finds PA ¼ �4r?k and PF ¼ 2rb: The action then takes the following
relatively simple Hamiltonian form

INY /
Z

dt d3x e3AðtÞ _APA þ _FPF �
1
2
r3P

2
F þ

1
8

r?P2
A þ

2
3
K

� �� �

: ð12:63Þ

and the equations of motion give

_PA ¼ 3 _FPF; _PF þ 3PF
_A ¼ 0; PA ¼ 4r? _A; PF ¼ r3 _F;

P2
A þ 4rP2

F þ
16
3

r?K ¼ 0:
ð12:64Þ

These equations of motion could of course alternatively be obtained by consid-
ering the theory in the form (12.52). It is convenient to rescale FðtÞ ¼ 1

3 HðtÞ: Then
the equations of motion can be put in the form

_Aþ 3 _A2 � 3a2 ¼ 0; _A ¼ 1
12

r _H2; _Hþ 3 _H _A ¼ 0: ð12:65Þ

where we have set K ¼ �3r?a2 with a ¼ 1=L: These are of the standard form of
domain wall equations that have appeared numerous times in the AdS/CFT lit-
erature. However, there is a crucial difference. Notice that the first two of (12.65)
imply

_A2 þ 1
36

r _H2 � a2 ¼ 0: ð12:66Þ

For Euclidean signature (r ¼ r3 ¼ 1) the second term in (12.66) has positive
sign in contrast to most of the other holographic studies. This is due to the fact that
in passing from Lorentzian to Euclidean signature the pseudoscalar kinetic term
acquires the ‘wrong sign’ [39]. This property allows for a remarkable exact
solution to the above system of non-linear equations in Euclidean signature, which
we refer to as the torsion DW. To obtain it we define

hðtÞ ¼ _AðtÞ; ð12:67Þ

at which point we have

_h ¼ 1
12

_H2; _hþ 3ðh2 � a2Þ ¼ 0: ð12:68Þ

The general solution is of the form (Fig. 12.1)

hðtÞ ¼ a tanh 3aðt � t0Þ ð12:69Þ
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and we then have

PF ¼ _F ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � h2ðtÞ
p

¼ �2a sech 3aðt � t0Þ ð12:70Þ

which gives

HðtÞ ¼ H0 � 4 arctan e3aðt�t0Þ
� �

: ð12:71Þ

The � sign corresponds to kink/antikink and we will without loss of generality
choose the þ sign. We may also solve for

eAðtÞ ¼ að2 cosh 3aðt � t0ÞÞ1=3 ð12:72Þ

The parameter a is an arbitrary positive integration constant that sets the overall
scale of the spatial part of the metric. t0 may be interpreted as the position of the
DW; when t0 ¼ 0 the torsion DW sits in the middle between the two asymptoti-
cally AdS4 regimes. Below, we will discuss the interesting holographic interpre-
tation of the torsion DW.

Note the curvature and torsion of this solution:

Ra
b ¼ � _F _A�abcdtxec � a2eaxeb; ð12:73Þ

Ra
0 ¼ _hþ h2

� �

dtxea � 1
2

_F _A�abce
bxec; ð12:74Þ

Ta ¼ � 1
2

_F�abce
bxec; ð12:75Þ

T0 ¼ 0: ð12:76Þ

These are non-singular for all t 2 ð�1;1Þ: The torsion DW solution has
divergent action, but this divergence is cancelled by boundary counterterms, the
same counterterms which render the action of AdS4 finite. To see this, the energy

Fig. 12.1 Horizon versus
parameter r0 for g ¼ 3 (left
panel) and g ¼ 0:0005 (right
panel)
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of the torsion DW can be computed by evaluating the Euclidean action on the
solution. Introducing a cutoff at t ¼ �L; we find

Itv;on-shell ¼ 4a2
Z

�abcdxaxdxbxdxc
Z

dte3AðtÞ ð12:77Þ

¼ 6
Z

dVol3

� �

� 4
3

aa3e3aL þ � � �
� �

; ð12:78Þ

where the ellipsis contains terms that vanish when the cutoff is removed. As in
pure AdS4; an appropriate counterterm is of the form [40, 41]

Ic:t: ¼ �
4a

3

Z

oM

�abc~e
ax~ebx~ec: ð12:79Þ

In the present case, we have such a counterterm on each asymptotic boundary, and
thus we find

Ic:t: ¼ �2
2a

3
a3e3aL � 6

Z

dVol3

� �

; ð12:80Þ

which exactly cancels the divergent energy of the torsion DW.
Furthermore, we note that in the Kalb–Ramond representation, the solution has

H ¼ _HVol3 ¼ �6aa3
dVol3 � ĤdVol3; ð12:81Þ

where dVol3 ¼ 1
6 �abcdxaxdxbxdxc: This corresponds to a ‘topological quantum

number’ of the kink
Z

�4H ¼ �DH ¼ �2p: ð12:82Þ

12.6 The Gravity Dual of Parity Symmetry Breaking

The holographic interpretation of the torsion DW is rather interesting. To study
this, we set to zero without loss of generality the integration constant H0 ¼ 0 and
pick the plus sign in (12.70), (12.71). Next we need the asymptotic expansion of
the vierbein which reads

~ea ¼ 2�1=3ae�aðt�t0Þ 1þ 1
3

e	6aðt�t0Þ þ � � �
� �

dxa for t! �1: ð12:83Þ

This shows that our solution is asymptotically anti-de Sitter for both t! �1: The
two asymptotic AdS spaces have the same cosmological constant. From this
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expansion we could read the expectation value of the renormalized boundary
energy momentum tensor which would be given by the coefficient of the e�3at term
(see e.g. [19, 20]). Such a term is missing in (12.83), hence the expectation value
of the boundary energy momentum tensor is zero.

It is not immediately apparent how to interpret these two asymptotic regimes.
Are they truly distinct, or should they be identified in some way? We note that the
pseudoscalar behaves in these asymptotic regimes as

HðtÞ ! 4e�3aðt�t0Þ � 4
3

e�9aðt�t0Þ þ � � � for t! �1; ð12:84Þ

HðtÞ ! 2p� 4e3aðt�t0Þ þ 4
3

e9aðt�t0Þ þ � � � for t! þ1: ð12:85Þ

From the above we confirm that HðtÞ is dual to a dimension D ¼ 3 boundary
pseudoscalar that we denote O3: In each one of the asymptotically AdS regimes,
the leading constant behavior of HðtÞ corresponds to the source (i.e., coupling
constant) for O3 and the subleading term proportional to e	3aðt�t0Þ to the expec-
tation value hO3i: The two asymptotic regimes are distinguished by the behavior
of H: In fact, the essential difference is parity:

We can now describe the holography of our torsion DW. In the t! �1
boundary sits a three-dimensional CFT at a parity breaking vacuum state. The
order parameter is the expectation value of the pseudoscalar which is hO3i ¼ 4 in
units of the AdS radius. The expectation value breaks of course the conformal
invariance of the boundary theory. Then, the theory is deformed by the same
pseudoscalar operator gO3 where g is a marginal coupling. The torsion DW
provides the holographic description of that deformation. Nevertheless, our solu-
tion should not be interpreted in terms of the usual holographic renormalization
group flow. In our case, at t! þ1 the space becomes AdS with the same radius
as at t! �1: Hence, the two boundary theories have the same ‘central charges’.5

We suggest that instead of interpreting the solution in terms of an RG flow, we
should think of it as a domain wall transition between two inequivalent vacua of a
single theory. This statement is supported by the behavior of HðtÞ in the two
asymptotic regimes. For t!1 the pseudoscalar asymptotes to the configuration
(12.85). The interpretation is now that when the marginal coupling takes the fixed
value g� ¼ 2p we are back to the same CFT (i.e. having the same central charge)
however in a distinct parity breaking vacuum such that hO3i ¼ �4: In others
words, the two asymptotic AdS regimes seem to describe two distinct parity
breaking vacua of the same theory. The two vacua are distinguished by the
expectation value of the parity breaking order parameter being hO3i ¼ �4: Quite
remarkably, we also seem to find that starting in one of the two vacua, we can

5 We use ‘‘central charge’’ in d ¼ 3 for a quantity that counts the massless degrees of freedom
at the fixed point. Such a quantity may be taken to be the coefficient in the two-point function of
the energy momentum tensor or the coefficient of the free energy density. There is no
conformal anomaly in d ¼ 3:
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reach the other by a marginal deformation with a fixed value of the deformation
parameter.

Since the marginal operator is of dimension D ¼ 3 and parity odd, we tenta-
tively identify it with a Chern–Simons operator of a boundary gauge field. In this
case the torsion DW induces the T-transformation in the boundary CFT [38, 42]. In
Appendix we will argue that the 3D Gross–Neveu model coupled to abelian gauge
fields exhibits a large-N vacuum structure that matches our holographic findings.
Although our bulk model is extremely simple to provide details for its possible
holographic dual, we regard this remarkable similarity as strong qualitative evi-
dence that our torsion DW is the gravity dual of the ‘tunnelling’ between different
parity breaking vacua in three dimensions. However, in a three-dimensional
quantum field theory, we do not expect that tunnelling can occur because of large
volume effects, and distinct vacua remain orthogonal. Thus, referring to the torsion
DW as a tunnelling event should be taken figuratively. We leave to future work a
more careful study of the boundary interpretation of the torsion DW solution. An
interpretation will depend on the precise topology of the boundary [43]. Moreover,
embedding our model into M-theory could provide additional clues regarding its
holography.

12.7 Physics in the Bulk: The Superconductor Analogy

The bulk interpretation of the exact solution is also interesting. Because the
pseudoscalar field undergoes HðtÞ ! HðtÞ þ 2p under t goes from �1 to þ1;
the exact solution corresponds to a topological kink. It satisfies

Z

dt _H ¼ 2p

In Fig. 12.2, we plot the solution.

Fig. 12.2 The blue dashed
line is jhðtÞj; resembling the
order parameter of a
superconductor, while the
solid red line is PF ;
analogous to the magnetic
induction of an Abrikosov
DW
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12.7.1 Torsion Domain Wall Versus Abrikosov Vortex

The gravity DW solution (12.68–12.71) bears some resemblance to the Abrikosov
vortex of superconducting systems. To avoid confusion we emphasize here that
this is not a holographic interpretation i.e. the Abrikosov vortex (or more precisely,
domain wall) is in the bulk. In this section, we will explore this and point out some
possibly interesting features. The first thing to notice is that the plot in Fig. 12.2 is
identical to the profile of an Abrikosov vortex (see for example Fig. 5.1 in Ref.
[44].) The codimension differs and this is expected; the torsion DW supports a
three-form field strength in contrast to a two-form field strength supported by the
Abrikosov vortex. Nevertheless, there is a correspondence between our radial
t-direction and the radial direction in the Abrikosov vortex, and jhj and PF

correspond to the condensate and magnetic induction of the superconductor,
respectively. Table 12.1 summarizes the correspondence. In this correspondence,
since the order parameter is h ¼ _A; the superconducting phase (constant order
parameter) corresponds to AdS4; while the normal phase corresponds to flat space
(h ¼ 0). Far away from the core of the torsion DW, the geometry is asymptotically
AdS; but at the core the spatial slice (at t! t0) becomes flat. To see this, note that
if we think of the system as a pseudoscalar coupled to torsionless gravity, the

torsion DW has x
� a

b ¼ 0 and x
� a

0 ¼ _A~ea; and so

R
� a

b ¼ �h2~eax~eb; ð12:86Þ

R
� a

0 ¼ ð _hþ h2Þdtx~ea; ð12:87Þ

T
� a

¼ 0: ð12:88Þ

Thus, at the core, we find that the Riemann tensor has components

Ra
0a0 ! �3a2a; ð12:89Þ

Ra
bab ! 0: ð12:90Þ

This behavior is in line with an Abrikosov vortex in which there is normal phase at
the core and superconducting phase away from the core.

Table 12.1 Abrikosov
vortex versus torsion DW

Abrikosov vortex Torsion DW

Order parameter U Order parameter jhj ¼ j _Aj
T � Tc K
Magnetic induction B PF

Magnetic field H Ĥ
Z-quantized magnetic flux Z2-quantized electric flux
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The analogue of the magnetic field is what we have called Ĥ; proportional to
the constant a3: In the DW, the magnetic induction, analogous to PF ; has a
penetration length k� 1=3a; and the coherence length of the order parameter is
n� 1=6a: The penetration and coherence lengths are obtained by looking at the
exponential fall-off of these quantities in the core of the DW, away from their
values in the superconducting phase.

The torsion DW also has a quantized flux
R

�4H ¼ DH ¼ 2p: This flux is inde-
pendent of any parameters of the solution and of any rescaling of fields in the theory.
Thus, this is an analogue of the quantized magnetic flux in superconductivity.

Finally, note the following interesting feature. If we take a derivative of the
second equation in (12.68), we arrive at

€h� 6Kh� 18h3 ¼ 0: ð12:91Þ

This looks like a Landau–Ginzburg equation of motion of an effective /4 theory.
This leads us to interpret

K ¼ �3r?a2 ¼ �3r?
1
L2
� Tc � T ð12:92Þ

Of course, there is no real temperature in the case of the torsion DW, but we note
that this implies that the penetration and coherence lengths diverge as

ðT � TcÞ1=2 ð12:93Þ

i.e. with a mean field theory critical exponent 1=2; as in superconductivity.

12.7.2 Domain Wall Condensation

In the last section, we noted that there is a strong analogue between the torsion DW
solution and superconductivity. It is intriguing to carry the analogy further and
consider multi-DW configurations. We have noted that at the core of the torsion
DW, the spatial sections are flat. Thus, one might imagine that if it was favourable
for torsion DWs to condense, as DWs do in Type I superconductors, then finite
regions of normal phase (corresponding to K ¼ 0) would be obtained. We will
argue below that this can in fact occur, although the system appears not to be
unstable.

To understand the physics involved, the first step is to consider a configuration
of two DWs. In the superconductivity literature, this is a standard computation.
One takes two DWs separated by a distance ‘ and computes the Euclidean action.
More precisely, we will treat this here as follows. Put the system in a box by
restricting the t 2 ½�L;L
: In such a case, a DW located at t0 has on-shell action

eAðt�t0Þ ¼ að2 cosh 3aðt � t0ÞÞ
1
3 ) IL

on-shell ¼ 6V̂ol3
� � 4

3
aa3e3aðL�t0Þ: ð12:94Þ
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We then consider a piecewise solution of two DWs located at t ¼ � L
2 This is not a

solution of the e.o.m. because solutions of non-linear equations cannot be simply
superimposed i.e. it fails at the midpoint between the DWs. However, if we simply
evaluate the Euclidean action, we find

I�ðL=2Þ
on-shell ¼

4
3

a2V̂ol3

� �

4aa3 sinh
3aL

2
: ð12:95Þ

Note that this is positive, so one might naively conclude that the DWs repel each
other. However, recall that the DW profile exists not in flat space–time, but in the
metric given by (12.72), which rises asymptotically. As a result, as we move the
DWs further apart, there is a corresponding rise in the metric between the DWs.
So, we should directly evaluate the force at a point t ¼ ‘ as

F ¼ � dI�ðL=2Þ

d‘
/ coshð3a‘=2Þ\0: ð12:96Þ

Thus we conclude that the DWs in fact attract each other. In the superconducting
analogue we would conclude that we have a Type I superconductor where the
vortices clump together forming (potentially) finite regions of normal phase. In
such a superconductor, the number of vortices is determined by the total magnetic
flux.

We now describe the analogous situation in our gravitational system. We have
noted that the constant Ĥ plays the role of the external magnetic induction, while
H is the magnetic field, varying within the DW, with DH ¼

R

�4H: Following the
superconducting analogue, if we put the system in a box of size 2L (that is we
impose a cutoff on each AdS asymptotic) the flux conservation equation is of the
form

DH ¼ 2LĤ ð12:97Þ

The DWs carry the flux in the superconductor, and so it is natural to ask what is the
lowest energy configuration satisfying (12.97)? To analyze this, consider an array
of n DWs in a region of size L0: We take the DWs to be equally spaced, as one can
show that deviating from such a configuration causes a rise in energy. For such a
configuration, the flux quantization condition (12.97) gives a relation between
n; L0 and Ĥ: Such a representative curve is shown in Fig. 12.3.

If we solve this equation for L0 as a function of n and Ĥ; we can then compute
the energy as a function of n: One obtains a curve as in Fig. 12.4.

One notes that the energy is minimized for large n; and in that case, the size L0

asymptotes to a fixed value, which is found to be

L0 ¼
Ĥ

6a
� 2L ¼ a3 � 2L ð12:98Þ
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We conclude that the preferred configuration, given a fixed external flux, is a
continuum of DWs arrayed over a finite size region. Within this droplet, the system
is in the normal phase. We have noted that the DW core is spatially flat, and so we
surmise that within the droplet, the space–time is flat. The asymptotic value of
energy in Fig. 12.3 is precisely minus that contributed by the cosmological con-
stant. Again, the size of the droplet is set by the value of the external H-flux, and
the boundary conditions are AdS. Note that for a fixed cutoff, there is a critical
field (given by Ĥ ¼ 6a) for which the entire spacetime is flat.

The result above motivate us to take a further step and suggest rather appealing
physical picture that we may call Kalb-Ramond superconductivity: Here we present

Fig. 12.3 Size of normal state droplet versus n for multi-domain walls

Fig. 12.4 A sketch of the
phase diagram for a Kalb–
Ramond superconductor
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a qualitative description of Kalb–Ramond superconductivity. A detailed descrip-
tion will appear shortly in [43]. As discussed above, minus the cosmological con-
stant may be interpreted as T � Tc: This, together with the interpretation of H as a
magnetic induction and Ĥ ¼ 6a as a critical magnetic field above which the
spacetime is flat due to DW condensation, motivates to draw a �K; �H graph
analogously with the T � Tc; magnetic field graph in superconductivity. To do so,
we need to consider all known solutions of an Einstein-axion system in d ¼ 4 with
and without cosmological constant. For K ¼ 0 we recall the axionic DW solutions
of [35]. For K\0 DW wormhole-like solutions were found in [36].

These solutions have the following properties (to be discussed in more detail in
[43]).

The K ¼ 0 wormhole solution [35] is asymptotically flat. Its magnetic flux is
proportional to an arbitrary constant g which was speculated to be quantized via a
string theory embedding of the Einstein-axion system in [35]. Its electric flux is
Z2-quantized to �3p; but the electric field varies along the wormhole.

The K\0 wormhole solution [36] is asymptotically AdS. Its magnetic flux is
also proportional to the arbitrary constant g; and hence possibly quantized in a
string theory embedding. Quite intriguingly, the electric flux on the wormhole
solution interpolates between the value �3p for g! 0 and �2p as g!1:
Moreover, there is a lower bound for magnetic field of the wormhole solution.
Remarkably, this lower bound is the value 6a and coincides with the maximal
magnetic field of the torsion DW.

In Fig. 5 we sketch the possible phase diagram of the Kalb–Ramond super-
conductor. Our torsion DW solution seems to play the role of the superconducting
phase, while the wormhole solutions of [35] and [36] appear to correspond to the
normal phase.

12.8 Conclusions

In this work we have presented in detail a simple toy model, the Nieh–Yan model,
where torsion enters through the spacetime dependence of the coupling constant of
the Nieh–Yan topological invariant. Although we have discussed the model directly
in terms of torsion, it can classically be put into equivalent forms as either a
massless pseudoscalar or a Kalb–Ramond field coupled to gravity. The model has
an interesting and non-trivial holographic interpretation. In particular, we have
shown that it possesses an exact bulk solution in Euclidean signature, termed the
torsion DW, having two asymptotically AdS4 regimes, while the pseudoscalar
acquires a kink profile. We have argued then that the holographic interpretation of
this torsion DW is a three-dimensional CFT with two distinct parity breaking vacua.
Moreover, our bulk solution may imply that the deformation by a classically
marginal pseudoscalar with a fixed coupling constant induces a transition between
the two parity breaking vacua separated by a domain wall, which would be at
infinity in the boundary components [43]. Remarkably, this qualitative behaviour is
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seen already in the three-dimensional Gross–Neveu model coupled to Uð1Þ gauge
fields. The economy of our bulk model does not allow a detailed identification of
the bulk and boundary theories, nevertheless we believe that our results provide a
strong base where an exact bulk/boundary dictionary for AdS4=CFT3 can be based.
A further rather intriguing property of the torsion DW is that it can be mapped into
the standard Abrikosov vortex of superconductivity. Such a map identifies flat
spacetime with a superconductor’s normal phase, while AdS is identified with a
superconducting phase. The cosmological constant would then measure the devi-
ation from the ‘critical temperature’. A phenomenon of DW condensation is found,
similar to the analogous case in type I superconductors. Finally, we have briefly
discussed a picture of ‘‘Kalb–Ramond superconductivity’’ that emerges if we view
in a unified way all known four-dimensional Euclidean solutions of the Einstein-
axion system. This picture will be further analysed in [43].

Our results indicate that the torsional degrees of freedom of four dimensional
gravity can provide holographic descriptions for a number of interesting properties
of 3D critical systems. It would be interesting to extend our analysis to more
elaborate models where more torsional degrees of freedom become dynamical. It is
also of interest to discuss whether our simple model can be embedded into
M-theory.
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Appendix

A.1 Parity Breaking in Three Dimensions

Consider the 3D Gross–Neveu model coupled to abelian gauge fields. The
Euclidean action is6

I ¼ �
Z

d3x �wa =o� ie=A
� �

wa þ G

2N
�wawa� �2þ 1

4M
FlmFlm

� �

: ðA:1Þ

M is an UV mass scale. Introducing the usual Lagrange multiplier field r; whose
equation of motion is r ¼ �2G

N
�wawa we can make the action quadratic in the

fermions

6 We use �wi;wiða ¼ 1; 2; . . .;NÞ two-component Dirac fermions. The c-matrices are defined in
terms of the usual Pauli matrices as ci ¼ ri i ¼ 1; 2; 3:
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I ¼ �
Z

d3x �wa =oþ r� ie=A
� �

wa � N

2G
r2 � 1

4M
FlmFlm

� �

: ðA:2Þ

The model possesses two parity breaking vacua distinguished by the value of the
pseudoscalar order parameter hri: This is seen as follows: switching off the gauge
fields momentarily one integrates over the fermions to produce a large-N effective
action as

Z ¼
Z

ðDrÞeN Tr log =oþrð Þ� 1
2G

R

d3xr2
� �

: ðA:3Þ

The path integral has a non-zero large-N extremum r� found by setting
r ¼ r� þ 1

ffiffiffi

N
p k

Z ¼
Z

ðDkÞe
N Tr log =oþr�ð Þ� 1

2G

R

d3xr�þ 1
ffiffi

N
p Tr k

=oþr�
�r�

G

R

d3xk

n o

þOð1=NÞ
h i

ðA:4Þ

The term in the curly brackets is the gap equation. To study it one considers a
uniform momentum cutoff K to obtain

1
G
¼
Z K d3p

ð2pÞ3
2

p2 þ r2
�
¼ ðTr1Þ K

p2
� jr�j

p2
arctan

K
jr�j

� �

: ðA:5Þ

Defining the critical coupling as

1
G�
¼ K

p2
; ðA:6Þ

(A.5) possesses a non-zero solution for r� when G [ G� given by

jr�j ¼
2p
G

G

G�
� 1

� �

� m: ðA:7Þ

The two distinct parity breaking vacua then have

r� ¼ �
2G

N
h�wawai ¼ �m: ðA:8Þ

Going back to (A.2) one can tune G [ G� and start in any of the two parity
breaking vacua. Suppose we start from r� ¼ þm: To leading order in N we have

Z ¼
Z

ðDAlÞðD�waÞðDwaÞ exp½S


S ¼
Z

d3x �wa =oþ m� ie=A
� �

wa � N

2G
m2 þ Oð1=

ffiffiffiffi

N
p
Þ � 1

4M
FlmFlm

� � ðA:9Þ
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As is well known [45, 46] for N fermions the path integral (A.9) yields an effective
action for the gauge fields which for low momenta is dominated by the Chern–
Simons term i.e.

Z �
Z

eSCS ; ðA:10Þ

with

SCS ¼ i
ke2

4p

Z

d3x�lmqAlomAq; k ¼ N

2
: ðA:11Þ

Had we started from the r� ¼ �m vacuum, we would have found again (A.10–
A.11), however with k ¼ � N

2 ; i.e. the vacuum with r� ¼ �m yields an effective
Chern–Simons action with k ¼ � N

2 :

Consider now deforming the action (A.9) by the Chern–Simons term with a
fixed coefficient as

Zdeform ¼
Z

ðDAlÞðD�wiÞðDwiÞ exp½Sdef 


Sdef ¼ S � iq
Z

d3x�lmqAlomAq

ðA:12Þ

If q is fixed to

q ¼ Ne2

4p
; ðA:13Þ

the effective action for the gauge fields resulting from the fermionic path integrals
in (A.12) is going to be equal to the one obtained had we started at the r� ¼ �m
vacuum. In other words, deforming the r� ¼ þm vacuum with a Chern–Simons
term with a fixed coefficient is equivalent to being in the r� ¼ �m vacuum. This is
exactly analogous to the holographic interpretation of our torsion DW.
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