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Abstract. The software-efficient stream cipher HC-256 was proposed
by Wu at FSE 2004. Due to its impressive performance, the cipher was
also a well-received entrant to the ECRYPT eSTREAM competition.
The closely related stream cipher HC-128, also designed by Wu, went on
to find a place in the final portfolio of the eSTREAM contest. The cipher
HC-256 is word-oriented, with 32 bits in each word, and uses a 256-bit key
and a 256-bit IV. Since HC-256 was published in 2004, barring a cache-
timing analysis of unprotected implementations, there has not been any
attack on the cipher. This paper makes two contributions. First, we build
a class of distinguishers on HC-256, each of which requires testing the
validity of about 2276.8 linear equations involving binary keystream vari-
ables. Thereby, our attacks improve the data complexity of the hitherto
best-known distinguisher (presented by the designer along with the spec-
ifications of the cipher) by a factor of about 12. We also present another
observation that, we believe, can be further exploited to build more ef-
ficient distinguishing attacks on the cipher. It is hoped that the results
of this paper would also find use in future security evaluations of the
closely-related ciphers HC-128 and HC-256’.

1 Introduction

HC-128 and HC-256 are software-oriented synchronous stream ciphers designed
by Wu [15,16]. HC-256 was published in 2004. The ciphers were also submit-
ted to the ECRYPT eSTREAM competition [5] in 2005. On the Pentium M
processor, the speed of HC-128 reaches 3.05 cycles/byte, while HC-256 requires
about 4.15 cycles/byte on the Pentium 4. Due to these impressive performance
figures, the ciphers were seen as forerunners in the stream cipher contest. In the
absence of attacks, both HC-256 and HC-128 were advanced to Phase III of the
competition as ‘focus’ ciphers. Since the main focus of eSTREAM was 128-bit
security, HC-128 was recently selected for the final eSTREAM portfolio under

� This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II.

�� This author is supported by an FWO project.

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 38–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Improved Distinguishing Attacks on HC-256 39

Profile 1 (software-based stream ciphers). The ciphers belong to the family of
array-based stream ciphers that include, among others, the RC4, ISAAC and
Py [2,7].

Barring a few interesting observations, HC-128 and HC-256 have not yet wit-
nessed any serious attacks. The designer himself has presented distinguishers
along with the specifications in [15,16]. In the case of HC-256, each distinguisher
requires testing the validity of 2280 equations (where each equation involves 10
keystream output bits). Another observation, made by Dunkelman in [4], shows
that the keystream words of HC-128 leak information on the internal states.
However, this observation has not yet been exploited to construct distinguishers
or to recover the key. Zenner has presented cache-timing attacks on unprotected
implementations of HC-256 that allow reconstruction of the inner state and also
the key [17]. This attack requires 6148 precise cache-timing measurements, 216

known plaintext bits, 3 MBytes of memory and a computational effort equivalent
to testing about 255 keys. However, the attack uses very strong assumptions -
under these assumptions any unprotected implementation of a cipher based on
lookup tables such as AES or RC4 could be broken easily. Recently, Maitra et
al. presented some observations on HC-128 in [8]. There they exploit the results
of [14] (on linear approximation of modular addition of three integers) to show
that the output generation of HC-128 can be well-approximated by linear func-
tions. Using this they show that for HC-128, the distinguisher presented in [16]
for the least significant bit can be extended for the other bits. Their paper also
studies the aforementioned observation due to Dunkelman [4]. Yet, their paper
does not show any improvement over the existing attacks (i.e., those presented
by the designer along with the specifications of the cipher).

1.1 Contribution of This Paper

The main idea behind our distinguishers is to note that the keystream output
word generation of HC-256 involves two elements of the state array directly which
are 10 places apart. We exploit this to improve the distinguisher presented in [15].
Our attacks do not work immediately for HC-128 as in the keystream output
generation no two elements of the state array are involved directly, but they are
used with some rotation.

For the least significant bit, our analysis is similar to that in [15], but a more
careful analysis shows that the bias probability was underestimated and thus the
requirement of the keystream bits was overestimated in [15]. Our analysis im-
proves the probability and thus our distinguishers require fewer keystream words.
Each of our distinguishers requires examining about 2276.8 equations where each
equation involves 8 keystream output bits.

This paper is organised as follows. Section 2 lists the notations used in the
paper. Section 3 details the specifications of HC-256. Our main observation and
the resulting distinguishing attack are presented in Sect. 4 and Sect. 5, respec-
tively. Our second observation is presented in Sect. 6. Finally, Sect. 7 concludes
the paper and presents a few interesting open problems.
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2 Notation and Convention

We use the following notations and conventions.
The set of natural numbers is denoted by N.
The + operator denotes addition modulo 232.
The − operator denotes subtraction modulo 232.
The symbol � denotes subtraction modulo 1024.
The symbol ⊕ denotes bitwise exclusive-OR.
Concatenation is denoted by ‖.
The complement of event E is denoted by Ec.
x� y: x is shifted to the right by y bit-positions.
x� y: x is shifted to the left by y bit-positions.
x ≫ y: ((x� y)⊕ (x� (32− y)), where y ∈ {0, . . . , 31}, x ∈ {0, . . . , 232 − 1}.
x ≪ y: ((x� y)⊕ (x� (32− y)), where y ∈ {0, . . . , 31}, x ∈ {0, . . . , 232 − 1}.
PRBG denotes the pseudorandom bit generation algorithm of the cipher.

The keystream word generated at round i (i.e., the (i + 1)-th iteration of the
PRBG) is denoted by si.

The terms si(j), (h1(x))j , (h2(x))j , ri(j) and (Q[r])j denote the j-th bits (j = 0
for the least significant bit) of si, h1(x), h2(x), ri and Q[r], respectively.

The term word denotes a 32-bit integer.
If x is a word, then x(i) denotes the i-th byte of x, where x(0) is the least

significant byte and x(3) is the most significant byte.

3 Specifications of HC-256

The cipher uses a 256-bit key K and a 256-bit IV. Let K = K[0]‖ . . .‖K[7] and
IV = IV[0]‖ . . . ‖ IV[7], where each K[i] and IV[i] (i = 0, . . . , 7) is 32 bits in
length. The internal state of HC-256 consists of two tables P and Q, each with
1024 32-bit elements. The following functions are used in the specifications.

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x ≫ 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x ≫ 10),
g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) + Q[(x⊕ y) mod 1024],
g2(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) + P [(x ⊕ y) mod 1024],
h1(x) = Q[x(0)] + Q[256 + x(1)] + Q[512 + x(2)] + Q[768 + x(3)],
h2(x) = P [x(0)] + P [256 + x(1)] + P [512 + x(2)] + P [768 + x(3)].

3.1 K/IV Setup Algorithm

1. The K and the IV are expanded into an array W [0, . . . , 2559] as follows.

W [i] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K[i] 0 ≤ i ≤ 7;
IV [i− 8] 8 ≤ i ≤ 15;
f2(W [i− 2]) + W [i− 7] + f1(W [i− 15])
+W [i− 16] + i 16 ≤ i ≤ 2559.
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2. Update the tables P and Q with the array W as follows.

P [i] = W [i + 512], for 0 ≤ i ≤ 1023,

Q[i] = W [i + 1536], for 0 ≤ i ≤ 1023.

3. Run the cipher (i.e., the keystream generation algorithm provided in Sect. 3.2)
4096 steps without generating output.

3.2 The PRBG

The PRBG of HC-256 updates only one of the two tables P and Q in each round
and outputs one word.
i = 0;
repeat until enough keystream bits are generated.
{

k = i mod 1024;
if (i mod 2048) < 1024
{

P [k] = P [k] + P [k � 10] + g1(P [k � 3], P [k � 1023]);
si = h1(P [k � 12])⊕ P [k];

}
else
{

Q[k] = Q[k] + Q[k � 10] + g2(Q[k � 3], Q[k � 1023]);
si = h2(Q[k � 12])⊕Q[k];

}
end-if
i = i + 1;

}
end-repeat

4 Motivational Observation

First, we recall the analysis provided by the designer in [15]. The analysis exploits
weaknesses in the PRBG and is based on the assumption of a flawless K/IV
setup. At the i-th step, if (i mod 2048) < 1024, the S-box P is updated as

P [i mod 1024]← P [i mod 1024] + P [i � 10] + g1(P [i � 3], P [i � 1023]).

Also, si = h1(P [i � 12]) ⊕ P [i mod 1024]. For 10 ≤ (i mod 2048) < 1023, this
can also be written as

si ⊕ h1(zi) = (si−2048 ⊕ h′
1(zi−2048)) + (si−10 ⊕ h1(zi−10)) +

g1(si−3 ⊕ h1(zi−3), si−2047 ⊕ h′
1(zi−2047)), (1)

where h1(x) and h′
1(x) are different functions since they are related to different

S-boxes (see Sect. 3.2) and zi denotes the array element P [i � 12] at the i-th
step.
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Since addition and exclusive-OR are the same at the least significant bit-
position1, from (1) we get:

si(0) ⊕ si−2048(0) ⊕ si−10(0) ⊕ si−3(10) ⊕ si−2047(23)

= (h1(zi))0 ⊕ (h′
1(zi−2048))0 ⊕ (h1(zi−10))0

⊕(h1(zi−3))10 ⊕ (h′
1(zi−2047))23 ⊕ (Q[ri])0, (2)

where 10 ≤ (i mod 2048) < 1023, ri = (si−3 ⊕ h1(zi−3)⊕ si−2047 ⊕ h′
1(zi−2047))

mod 1024. Similarly, when 2048 · α + 10 ≤ i, j < 2048 · α + 1023,2 and i 	= j,

sj(0) ⊕ sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23)

= (h1(zj))0 ⊕ (h′
1(zj−2048))0 ⊕ (h1(zj−10))0

⊕(h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj ])0. (3)

For the LHS of (2) and (3) to be equal, i.e., for

si(0) ⊕ si−2048(0) ⊕ si−10(0) ⊕ si−3(10) ⊕ si−2047(23) =
sj(0) ⊕ sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) (4)

to hold for 2048 · α + 10 ≤ i, j < 2048 · α + 1023 (i 	= j), we require that

(h1(zi))0 ⊕ (h′
1(zi−2048))0 ⊕ (h1(zi−10))0

⊕(h1(zi−3))10 ⊕ (h′
1(zi−2047))23 ⊕ (Q[ri])0 =

(h1(zj))0 ⊕ (h′
1(zj−2048))0 ⊕ (h1(zj−10))0

⊕(h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj ])0. (5)

Using the fact that zi = zi−2048 + zi−10 + g1(zi−3, zi−2047) and zj = zj−2048 +
zj−10 + g1(zj−3, zj−2047), we approximate (5) as

H(x1) = H(x2), (6)

where H denotes a random secret 138-bit-to-1-bit S-box, x1 and x2 are two
138-bit random inputs, x1 = zi−3‖zi−10‖zi−2047‖zi−2048‖ri and x2 = zj−3‖zj−10

‖zj−2047 ‖zj−2048‖rj .

We now restate Theorem 1 and its proof from [15].

Theorem 1. Let H be an m-bit-to-n-bit S-box and all those n-bit elements are
randomly generated, where m ≥ n. Let x1 and x2 be two m-bit random inputs to
H. Then H(x1) = H(x2) with probability 2−m + 2−n + 2−m−n.

Proof. Given x1 = x2, H(x1) = H(x2). If x1 	= x2, then H(x1) = H(x2) with
probability 2−n. Since the probability that x1 = x2 is 2−m, then x1 	= x2 with
probability 1 − 2−m. The probability that H(x1) = H(x2) is, therefore, 2−m +
2−n − 2−m−n. ��
1 For more significant bits, addition may be approximated by exclusive-OR with some

biased probability.
2 α is an element in N such that 2048 · α + 1023 < 2123 (since HC-256 generates a

maximum of 2123 outputs or 2128 output bits from a single (K, IV) pair).
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From Theorem 1, (6) and hence (4) holds with probability 1/2 + 2−139 given
2048 · α + 10 ≤ i, j < 2048 · α + 1023 and i 	= j. In Sect. 4.1, we show that (4)
holds with a marginally higher probability when i = j + 10.

4.1 Our Improvement

Similar to the analysis above, our analysis is also based on the assumption of a
perfect K/IV setup. When 2048·α+10 ≤ i, j < 2048·α+1023 and i = j+10, (4)
and (5) respectively become:

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) =
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) (7)

(h1(zj+10))0 ⊕ (h′
1(zj−2038))0 ⊕ (h1(zj+7))10 ⊕ (h′

1(zj−2037))23 ⊕ (Q[rj+10])0 =
(h1(zj−10))0 ⊕ (h′

1(zj−2048))0 ⊕ (h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj ])0. (8)

Let L denote the event that (8) is satisfied. We now examine the following cases
under the assumption of a perfect K/IV setup.

Case 1:
Let E denote the event zj−2038‖zj+7‖zj−2037 = zj−2048‖zj−3‖zj−2047. Since each
z-term is a 32-bit variable distributed uniformly at random, the probability that
E occurs Pr[E] = 2−96. When E occurs, (8) reduces to:

(h1(zj+10))0 ⊕ (Q[rj+10])0 = (h1(zj−10))0 ⊕ (Q[rj ])0. (9)

We know that,

(h1(zj+10))0 = (Q[z(0)
j+10])0 ⊕ (Q[256 + z

(1)
j+10])0

⊕(Q[512 + z
(2)
j+10])0 ⊕ (Q[768 + z

(3)
j+10])0. (10)

Similarly,

(h1(zj−10))0 = (Q[z(0)
j−10])0 ⊕ (Q[256 + z

(1)
j−10])0

⊕(Q[512 + z
(2)
j−10])0 ⊕ (Q[768 + z

(3)
j−10])0. (11)

Let z = z(3)‖z(2)‖z(1)‖z(0), where z is a 32-bit integer, z(0) is the least significant
byte of z, and z(3) is the most significant byte of z. Let F denote the event
z
(2)
j+10‖z(1)

j+10‖z(0)
j+10 = z

(2)
j−10‖z(1)

j−10‖z(0)
j−10. Now, recall that

zj = zj−2048 + zj−10 + g1(zj−3, zj−2047). (12)

Therefore,

zj+10 = zj−2038 + zj + g1(zj+7, zj−2037). (13)
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Observation 1: When event E occurs, it follows from (12) and (13) that
zj+10 and zj−10 take the forms zj+10 = A + B + C mod 232 and zj−10 =
−A + B − C mod 232, respectively. Therefore, the least significant bits of zj+10

and zj−10 are identical and hence Pr[F ] = 2−23. Besides, the most significant
bits of zj+10 and zj−10 are equal if and only if zj+10 = zj−10 (which, in turn,
happens with probability 2−31 since their least significant bits are identical). In
other words, Pr[zj+10 = zj−10] = 2−31 = Pr[zj+10(31) = zj−10(31)],3 where zj(k)

denotes the k-th significant bit of zj (k = 0 denotes the least significant bit). We
use this observation throughout the paper.

When F occurs, (9) reduces to

(Q[768 + z
(3)
j+10])0 ⊕ (Q[rj+10])0 = (Q[768 + z

(3)
j−10])0 ⊕ (Q[rj ])0. (14)

Now, if z
(3)
j+10(7) 	= z

(3)
j−10(7), that is, zj+10(31) 	= zj+10(31) (this is because z

(3)
j+10(7)

is the most significant bit of zj+10, i.e., zj+10(31)), then 768+z
(3)
j+10 	= 768+z

(3)
j−10.

Given this, if rj+10‖rj = 768+ z
(3)
j+10‖768+ z

(3)
j−10 (probability is 2−20 since rj is

a 10-bit variable) or rj+10‖rj = 768 + z
(3)
j−10‖768 + z

(3)
j+10, then (14) holds. Note

that we cannot have both the relations rj+10‖rj = 768 + z
(3)
j+10‖768 + z

(3)
j−10 and

rj+10‖rj = 768+z
(3)
j−10‖768+z

(3)
j+10 to be satisfied; otherwise, z

(3)
j+10(7) 	= z

(3)
j−10(7)

is violated.

Summarising the above results, we have (8) to be satisfied when the following
set of conditions (say S1) simultaneously occur:

1. zj−2048‖zj+7‖zj−2037 = zj−2038‖zj−3‖zj−2047 (probability 2−96),
2. z

(2)
j+10‖z(1)

j+10‖z(0)
j+10 = z

(2)
j−10‖z(1)

j−10‖z(0)
j−10 (from Observation 1, this probabil-

ity is 2−23 given condition 1),
3. z

(3)
j+10(7) 	= z

(3)
j−10(7), i.e., zj+10(31) 	= zj+10(31) (from Observation 1, this prob-

ability is 1− 2−8 given condition 1 and condition 2),
4. rj+10‖rj = 768 + z

(3)
j+10‖768 + z

(3)
j−10 (probability 2−20) or rj+10‖rj = 768 +

z
(3)
j−10‖768 + z

(3)
j+10 (we have just observed that the two events are mutually

exclusive given condition 3; their combined probability is therefore 2−20 +
2−20 = 2−19).

Therefore, Pr[S1] = 2−96 · 2−23 · (1 − 2−8) · 2−19 ≈ 2−138.

3 This is confirmed by our simple experiments with 8-bit and 16-bit integers. We first
considered the equations X = A + B + C mod 256, Y = −A + B − C mod 256,
and evaluated Pr[X = Y ], Pr[X(7) = Y(7)] varying A, B, C over all possible 8-bit
values. We obtained Pr[X = Y ] = Pr[X(7) = Y(7)] = 2−7. With 16-bit values, when
X = A + B + C mod 216 and Y = −A + B −C mod 216, we obtained Pr[X = Y ] =
Pr[X(15) = Y(15)] = 2−15. We performed several similar experiments and the results
are tabulated in Appendix A.
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Case 2:
Proceeding along the lines of the above arguments, we define S2 as follows:

1. zj−2038‖zj+7‖zj−2037 = zj−2048‖zj−3‖zj−2047 (probability 2−96),
2. z

(3)
j+10‖z(2)

j+10‖z(1)
j+10‖z(0)

j+10 = z
(3)
j−10‖z(2)

j−10‖z(1)
j−10‖z(0)

j−10, i.e., zj+10 = zj−10

(from Observation 1, this probability is 2−31 given condition 1),
3. rj+10 = rj (probability 2−10).

From (9), (10) and (11), it is easy to see that the event L occurs when S2

occurs. The probability that S2 occurs Pr[S2] = 2−96 ·2−31 ·2−10 = 2−137. From
condition 3 of S1 and condition 2 of S2, we have S1 and S2 to be mutually
exclusive. Therefore, Pr[S1 ∪ S2] = 2−138 + 2−137 = 2−136.4.

Actually, there are a few other such favourable events which result in the
occurrence of L. However, from a large number of experiments we found that
each of them occurs with much lesser probability when compared to Pr[S1] or
Pr[S2]. The combined probability of these mutually exclusive events was found
to be approximately 2−136.35; therefore, the gain over Pr[S1 ∪ S2] is negligible.
When none of these events occur, it follows that we will have at least two terms
of one of the following forms in (8):

(a) (Q[X ])m, (Q[Y ])m (where X 	= Y ).
(b) (Q[X ])m, (Q[Y ])n (where m 	= n).

In each case, it is easy to see that the two terms do not cancel out with bi-
ased probability. Besides, at least one of the two terms does not cancel out with
any other term in (8) with biased probability. In other words, when Q is a ran-
dom S-box, if X = Y with probability p 	= 0, then (Q[X ])m = (Q[Y ])m holds
with probability 1/2+p/2 by Theorem 1. When none of the S-like events occurs,
we find that Theorem 1 may, even in the best case, be applied in the same way
to all pairs of terms in (8) except one. We also illustrate it with an example in
Appendix B.

Therefore, when (S1 ∪ S2)c occurs, (8) and hence (7) holds with uniform
probability 1/2 under the assumption of a perfect K/IV setup (also confirmed
by a large number of experiments). Applying Bayes’ rule, we obtain:

Pr[L] = Pr[L|(S1 ∪ S2)] · Pr[S1 ∪ S2] + Pr[L|(S1 ∪ S2)c] · Pr[(S1 ∪ S2)c]
= 1 · 2−136.4 + 0.5 · (1− 2−136.4) = 1/2 + 2−137.4. (15)

Note that:
(i) had HC-256 been an ideal cipher, this probability would have been 1/2,
(ii) in [15], this bias was 1/2 + 2−139.

5 The Distinguisher

A distinguisher is an algorithm that distinguishes one probability distribution
from another. In cryptography, it is an algorithm that distinguishes a stream
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of bits from a stream of bits uniformly distributed at random (i.e., bitstream
generated by an ideal stream cipher). In this section we build a distinguishing
attack on HC-256 using the results of Sect. 4. Let N denote the total number
of equations (7). Let p and p′ respectively denote the probability that (7) holds
given the outputs are collected from HC-256 and the probability that (7) holds
given the outputs are generated by an ideal cipher. That is, p = 0.5 + 2−137.4

(from (15)) and p′ = 0.5. Let D and D′ denote the distributions of the XOR-
sum of the 8 output bits in (7) from HC-256 and an ideal cipher, respectively.
Then, μ = Np and μ′ = Np′ are the respective means of D and D′. Similarly,
σ =

√
Np(1− p) and σ′ =

√
Np′(1− p′) denote the respective standard devi-

ations of D and D′. When N is large, both these binomial distributions can be
approximated with the normal distribution. Now, if |μ − μ′| > 2(σ + σ′), i.e.,
N > 2276.8, the cipher can be distinguished from random signal with success
rate 0.9772 (since the cumulative distribution function gives the value 0.9772
at μ + 2σ). In [15], N > 2280 for the same success rate. In [15], there was one
advantage though. Every 1024 consecutive output words, there are many more
equations (4) when compared to equations (7) and therefore more number of
equations (4) per (K, IV) pair.

Now, each equation (4) has 10 keystream bits, whereas each equation (7)
has only 8 output bits. Therefore, for our distinguisher, 8 · 2276.8 = 2279.8

keystream bits are required. Whereas, in [15], 10 · 2280 = 2283.3 keystream bits
are needed to build the distinguisher. Thus our attacks require about 12 times
fewer keystream bits. We like to point out one issue here. It is actually possi-
ble to mount the distinguishing attack with fewer keystream bits. For example,
if the adversary has 2106 sets of keystream bits (sj−2038(0), sj+10(0), sj+7(10),
sj−2037(23), sj−2048(0), sj−10(0), sj−3(10), sj−2047(23)) from 2170.8 random (K, IV)
pairs, then a total 2279.8 output bits are available and the distinguishing attack
can be mounted.

Thus the conjecture [15] that HC-256 will require more than 2174 keystream
output words (or, equivalently 2179 output bits) for distinguishing attack should
be restated.

6 Another Observation

In this section, we present another observation on the cipher that stems from
Observation 1 (see Sect. 4.1) and the following relation.

rj = (sj−3 ⊕ h1(zj−3)⊕ sj−2047 ⊕ h′
1(zj−2047)) mod 1024. (16)

Hence, for the following equation to hold:

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) ⊕ sj+7(7) ⊕ sj−2037(7) =
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) ⊕ sj−3(7) ⊕ sj−2047(7), (17)
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we require that,

(h1(zj+10))0 ⊕ (h′
1(zj−2038))0 ⊕ (h1(zj+7))10 ⊕ (h′

1(zj−2037))23
⊕(Q[rj+10])0 ⊕ (h1(zj+7))7 ⊕ (h′

1(zj−2037))7 ⊕ rj+10(7)

= (h1(zj−10))0 ⊕ (h′
1(zj−2048))0 ⊕ (h1(zj−3))10 ⊕ (h′

1(zj−2047))23
⊕(Q[rj ])0 ⊕ (h1(zj−3))7 ⊕ (h′

1(zj−2047))7 ⊕ rj(7), (18)

is satisfied. When event E occurs, (18) reduces to:

(h1(zj+10))0 ⊕ (Q[rj+10])0 ⊕ rj+10(7) = (h1(zj−10))0 ⊕ (Q[rj ])0 ⊕ rj(7). (19)

Now, we have the following four possibilities.

1. rj+10(7) = z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

2. rj+10(7) 	= z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

3. rj+10(7) = z
(3)
j+10(7) and rj(7) 	= z

(3)
j−10(7).

4. rj+10(7) 	= z
(3)
j+10(7) and rj(7) 	= z

(3)
j−10(7).

Let G denote the event z
(3)
j+10(7) = z

(3)
j−10(7) (note that z

(3)
j+10(7) is the most signifi-

cant bit of zj+10, i.e., zj+10(31)). When E occurs, from Observation 1 in Sect. 4.1,
we get Pr[G] = 2−31 and when G occurs we have zj+10 = zj−10. Given E occurs,
we examine the above cases one by one.

Case 1: rj+10(7) = z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) = rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0. Besides, (19) reduces to:

(Q[rj+10])0 ⊕ rj+10(7) = (Q[rj ])0 ⊕ rj(7). (20)

Given this, if rj+10 = rj (probability 2−9), then (20) and hence (17) holds with
probability 1. Else, in (20), we will have two terms (Q[rj+10])0 and (Q[rj ])0 from
two different positions in the Q array. Under the assumption that the elements
of Q are uniformly distributed at random, equation (20), therefore, holds with
probability 1/2. This implies that (17) holds with probability 1/2.

(b) When Gc occurs: we get rj+10(7) 	= rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 1.

Case 2: rj+10(7) 	= z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) 	= rj(7), that is, sj+7(7)⊕sj−2037(7)⊕sj−3(7)⊕
sj−2047(7) = 1.

(b) When Gc occurs: we get rj+10(7) = rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0.
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Case 3: rj+10(7) = z
(3)
j+10(7) and rj(7) 	= z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) 	= rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 1.

(b) When Gc occurs: we get rj+10(7) = rj(7), i.e., sj+7(7)⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0.

Case 4: rj+10(7) 	= z
(3)
j+10(7) and rj(7) 	= z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) = rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0. Given this, if rj+10 = rj (probability 2−9), then (20) and
hence (17) holds with probability 1. Else, using similar arguments as in Case 1(a),
it follows that (17) holds with probability 1/2.

(b) When Gc occurs: we get rj+10(7) 	= rj(7), i.e., sj+7(7)⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 1.

Suppose rj+10(b) = rj(b) for b ∈ {0, . . . , 9}, b 	= 7 and (17) does not hold. Then,
given E occurs, sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕ sj−2047(7) = 0 is satisfied only
in Case 2(b) and Case 3(b). In Case 2(b), rj+10(7) 	= z

(3)
j+10(7) (probability 0.5),

rj(7) = z
(3)
j−10(7) (probability 0.5) and Gc occurs (probability is 1 − 2−31 given

E occurs). Therefore, given the occurrence of event E, Case 2(b) happens with
probability 0.5 · 0.5 · (1 − 2−31) = 2−2 · (1 − 2−31) and Case 3(b) also happens
with the same probability. Thereby, we have the following observation.

Observation 2: When the following relations exist among keystream bits:

sj+7(b) ⊕ sj−2037(b) = sj−3(b) ⊕ sj−2047(b), for all b ∈ {0, . . . , 9}, b 	= 7, and

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) ⊕ sj+7(7) ⊕ sj−2037(7) 	=
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) ⊕ sj−3(7) ⊕ sj−2047(7),

and event E occurs, then sj+7(7)⊕sj−2037(7)⊕sj−3(7)⊕sj−2047(7) = 0 holds with
probability 1/2 · (1− 2−31). We believe this observation can be further exploited
to construct more efficient distinguishers on the HC-256. Before we conclude, we
make one final remark.

Remark: Suppose the following relations exist among keystream bits:

sj+7(b) ⊕ sj−2037(b) = sj−3(b) ⊕ sj−2047(b), (21)

for all b ∈ {0, . . . , 9}. Then, from (16), we observe that when the conditions 1
and 2 of S2 (see Sect. 4.1) are satisfied, condition 4 is also satisfied. Therefore,
in this case, Pr[S2] = 2−96 · 2−31 = 2−127 and Pr[S1 ∪ S2] = 2−138 + 2−127 ≈
2−127. Therefore, Pr[L] = 1/2 + 2−128. This is a notable improvement over the
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probability obtained in (15). The relation (21) was also exploited in [15], but
resulting in a comparatively smaller bias of 2−129 and hence a distinguisher
requiring about 2261 output words (for 0.9772 success rate).

7 Conclusions and Future Work

In this paper, we have presented distinguishing attacks on the stream cipher
HC-256. The hitherto best-known distinguisher on the cipher has been presented
in [15] and requires 2280 equations (each involving 10 keystream output bits) to
be tested for a success rate of 0.9772. Each of our distinguishers requires 2276.8

equations (with 8 keystream bits in every equation) to be examined for the same
success probability. Thereby, we have improved the data requirement in [15] by
a factor of about 12. We have also provided leads for further cryptanalysis of
the cipher.

In [3], Crowley employs a Hidden Markov Model to combine several biases in
the keystream of the cipher Py and improves the attacks described in [11]. Given
the structural similarities between Py and HC-256, it may be possible to apply
similar techniques here to construct a more efficient distinguisher. We leave it
as an open problem.

A variant of HC-256, named HC-256’, was also proposed by Wu in [15, Sec-
tion 6] but without any accompanying cryptanalysis. Investigating whether our
attacks could also applied to HC-256’ is another interesting open problem.
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A Experimental Results

Here, we elaborate on footnote 4 in Sect. 4.1. Consider the equations:

X = A + B + C mod 2k, (22)
Y = −A + B − C mod 2k, (23)

where X , Y , A, B, C are k-bit random variables. Let X(b) denote the b-th bit
of X (b = 0 denotes the least significant bit and b = k − 1 denotes the most
significant bit). Since the ‘+’ and ‘-’ operators are the same as the exclusive-OR
for the least significant bit position, we have from (22) and (23):

X(0) = A(0) ⊕B(0) ⊕ C(0),

Y(0) = A(0) ⊕B(0) ⊕ C(0).

Therefore, X(0) = Y(0) ⇒ Pr[X = Y ] = 2−(k−1). Now, we ran simulations to
evaluate Pr[X(k−1) = Y(k−1)] and Pr[X 	= Y |X(k−1) = Y(k−1)] for different
values of k. As there was no need to vary B, we fixed it to zero and varied
A and C over all possible k-bit values. The results are provided in Table 1.
Following this trend, we obtain that for k = 32, Pr[X(31) = Y(31)] = 2−31 and
Pr[X 	= Y |X(31) = Y(31)] = 0.

http://eprint.iacr.org/2008/499.pdf
http://eprint.iacr.org/2009/047.pdf
http://eprint.iacr.org/2004/092.pdf
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Table 1.

k Pr[X(k−1) = Y(k−1)] Pr[X �= Y |X(k−1) = Y(k−1)]

4 2−3 0
5 2−4 0
6 2−5 0
7 2−6 0
8 2−7 0
9 2−8 0
10 2−9 0
11 2−10 0
12 2−11 0
13 2−12 0
14 2−13 0
15 2−14 0
16 2−15 0
17 2−16 0
18 2−17 0
19 2−18 0

B A Note on the Randomness of Keystream Bits When
S2 Does Not Occur

We restate (7) and (8) here:

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) =
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23),

(h1(zj+10))0 ⊕ (h′
1(zj−2038))0 ⊕ (h1(zj+7))10 ⊕ (h′

1(zj−2037))23 ⊕ (Q[rj+10])0 =
(h1(zj−10))0 ⊕ (h′

1(zj−2048))0 ⊕ (h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj ])0.

Suppose the 1024 elements of Q are uniformly distributed at random; same
with the elements of Q′. We now examine the case when zj−2037‖zj+7‖zj+10 =
zj−2047‖zj−3‖zj−10, rj+10 = rj , but zj−2038 	= zj−2048, i.e., one of the events
comprising Sc

2. When zj−2037‖zj+7‖ zj+10 = zj−2047‖zj−3‖zj−10 and rj+10 =
rj , (8) reduces to:

(h′
1(zj−2038))0 = (h′

1(zj−2048))0. (24)

Similar to (10) and (11), we have:

(h′
1(zj−2038))0 = (Q′[z(0)

j−2038])0 ⊕ (Q′[256 + z
(1)
j−2038])0

⊕(Q′[512 + z
(2)
j−2038])0 ⊕ (Q′[768 + z

(3)
j−2038])0, (25)

(h′
1(zj−2048))0 = (Q′[z(0)

j−2048])0 ⊕ (Q′[256 + z
(1)
j−2048])0

⊕(Q′[512 + z
(2)
j−2048])0 ⊕ (Q′[768 + z

(3)
j−2048])0. (26)



52 G. Sekar and B. Preneel

Note that on the right-hand side of (25), we have four distinct array indices.
That is, we access four elements of Q′ from four different positions; similarly
in (23). If zj−2038 	= zj−2048, then at least one of the following holds:

1. z
(0)
j−2038 	= z

(0)
j−2048,

2. z
(1)
j−2038 	= z

(1)
j−2048,

3. z
(2)
j−2038 	= z

(2)
j−2048,

4. z
(3)
j−2038 	= z

(3)
j−2048.

If the first case alone happens, from (25) and (26), we get:

(h′
1(zj−2038))0 ⊕ (h′

1(zj−2038))0 = (Q′[z(0)
j−2038])0 ⊕ (Q′[z(0)

j−2048])0. (27)

Since Q′[z(0)
j−2038] and Q′[z(0)

j−2048] are two 32-bit elements from different posi-
tions in the same Q′ array, they are equal with uniform probability. That is,
(Q′[z(0)

j−2038])0 and (Q′[z(0)
j−2048])0 are equal with probability 1/2. This implies

that (27) and hence (24) holds with probability 1/2. This, in turn, implies
that (8) and hence (7) holds with uniform probability 1/2. Now, let us suppose
only two of the above cases occurs; for example, cases 1 and 2. Then, we will
have four terms - (Q′[z(0)

j−2038])0, (Q′[z(0)
j−2048])0, (Q′[z(1)

j−2038])0 and (Q′[z(1)
j−2048])0

- with four different array indices, and hence their XOR-sum is zero with uniform
probability 1/2. Hence, it follows that (7) holds with probability 1/2.

Extending the above argument to other events that result in the outcome
zj−2038 	= zj−2048 (for example, the occurrence of cases 1, 2 and 3 but not
case 4), one can similarly verify that (7) holds with probability 1/2. For the
other events comprising Sc

2, we arrive at the same result; however, a complete
treatment is beyond the scope of this paper.
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