
Bit-Free Collision: Application to APOP Attack

Lei Wang1, Yu Sasaki1,2, Kazuo Sakiyama1, and Kazuo Ohta1

1 The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan

{wanglei,yu339,saki,ota}@ice.uec.ac.jp
2 NTT Information Sharing Platform Laboratories, NTT Corporation

sasaki.yu@lab.ntt.co.jp

Abstract. This paper proposes a new variant of collisions on hash func-
tions named bit-free collision, which can be applied to reduce the number
of chosen challenges in password recovery attacks on hash-based chal-
lenge and response protocols, such as APOP (Authentication Post Office
Protocol). In all previous APOP attacks, the attacker needs to imper-
sonate the server and to send poisoned chosen challenges to the user.
Impersonating the server takes a risk that the user may find out he is
being attacked. Hence, it is important for the attacker to reduce the num-
ber of impersonation in order to lower the probability that the attack will
be detected. To achieve this, reducing the number of chosen challenges
is necessary. This paper is the first approach to improve previous APOP
attacks based on this observation to our best knowledge. With t-bit-free
collisions presented in this paper, the number of chosen challenges to
recover each password character can be reduced by approximately a fac-
tor of 2t. Though our attack utilizing t-bit-free collisions needs higher
offline complexity than previous attacks, the offline computation can be
finished in practical time if the attacker can obtain reasonable compu-
tation power. In this research, we generate 1-bit-free collisions on MD5
practically. As a result, the number of challenges for password recovery
attacks on real APOP is approximately half reduced. Of independent
interest, we apply the bit-free-collision attack on a simpler hash function
MD4, and show that 3-bit-free collisions can be generated practically.

Keywords: hash function, bit-free collision, APOP, MD5, MD4.

1 Introduction

With the development of internet, challenge and response password authentica-
tion protocols have become popular. In the communication through internet, the
user may face several threats: (a) a third party may impersonate the server, and
(b) a third party may eavesdrop on the communication channel. Accordingly,
it is dangerous for the user to send the password itself directly to the server to
get authenticated. As a countermeasure to protect the password, challenge and
response password authentication protocols have been adopted. The crucial idea
is, in every authentication round, randomly generating challenges and comput-
ing responses based on challenges and the password. One popular approach to

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 3–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

4 L. Wang et al.

generate responses is hashing challenges and the password, which will base the
security of the protocols on the underlying hash functions. As far as the hash
function is secure, the protocol is secure.

APOP (Authentication Post Office Protocol) [8] is a challenge and response
password authentication protocol based on MD5 [10], which has been practically
utilized in real mail systems. The responses are generated by hashing the chal-
lenges concatenated with the password. Recently password recovery attacks on
APOP have been proposed [6] [11] [12], which originated from collision attacks
on MD5 [15]. All previous APOP attacks are chosen challenge attacks. The at-
tacker impersonates the server and sends chosen challenges to the user to make
the user provide corresponding responses. The attack scenario is as follows.

1. the user sends access requests to the attacker (impersonating the server).
2. the attacker sends poisoned chosen challenges to the user.
3. the user sends the corresponding responses to the attacker.
4. the attacker responds “No new email” to the user.

Impersonating the server takes a risk that the user may suspect to have being
attacked in the following situations:

(a) the user does not get a new email for a long time if the attacker continuously
impersonates the server.

(b) the user gets a new email delayed even if the attacker impersonates the
server from time to time. Suppose the user accesses to the server once an
hour. The user may get a new email delayed an hour even though the attacker
only impersonates once.

From this observation, the attacker should reduce the times of impersonating in
order to lower the probability that the attack will be detected. This means that
the number of necessary chosen challenges should be reduced. So far, no result
has been published to improve previous APOP attacks on reducing the number
of chosen challenges to our best knowledge.

1.1 Our Results

We will propose the first approach to reduce the number of challenges of APOP
attacks, by presenting a new variant of collisions on hash functions named bit-free
collision.

Conceptually, bit-free collision is a pair of partially-fixed messages, which will
collide regardless of the value of the unfixed bits. The unfixed bits are denoted as
free bits in this paper. We denote by t-bit-free collision a bit-free collision with
t-free bits for simplicity. For example, suppose (M, M ′) is a 1-bit-free collision.
By setting the free bit to 0, we can obtain a pair of messages (M0, M

′
0) from

(M, M ′). By setting the free bit to 1, we can obtain another pair of messages
(M1, M

′
1) from (M, M ′). Both (M0, M

′
0) and (M1, M

′
1) are collisions. So (M, M ′)

will be a collision no matter what the value of the free bit is. Similarly, for t-
bit-free collision, a set of 2t pairs of messages can be derived by setting the

Bit-Free Collision: Application to APOP Attack 5

values of the t-free bits, and each pair of messages from this set is a collision.
Here we will roughly point out the difference between free bit in this paper
and neutral bit proposed by Biham and Chen in [1]. The usage of free bit is
mainly allowing the attacker to freely determine several bit-values of the colliding
messages without affecting the collision, while the usage of neutral bit is mainly
speeding up collision search. Refer to Section 3 for more details.

Bit-free collisions can be utilized to reduce the number of chosen challenges of
APOP attacks. Previous APOP attacks recover the password characters one by
one. One character is 8-bit long, so there are 28 possible candidates for one pass-
word character. The attacker adopts guess-then-verify approach to exhaustively
check the correctness of all possible candidates for one password character. In
order to check one possible candidate, the attacker needs to generate a pair of
challenges. If a possible candidate is the true password character, the responses
of the corresponding pair of challenges will collide. There are in total 28 candi-
dates for a password character, and each candidate needs a pair of challenges.
As a result, (28 − 1) pairs of challenges1 are necessary in the worst case.

On the other hand, our attack utilizes bit-free collisions to reduce the number
of chosen challenges. Our attack will also recover password characters one by
one. The main novelty of our attack is recovering one password character part
by part, which will reduce the number of necessary chosen challenges. The high-
level description of our attack to recover one password character is as follows.
More details are explained in Section 5.2.
1. Locate t-free bits in the targeted password character, which divides the pass-

word character into (8 − t)-non-free bits and t-free bits.
2. Recover the (8− t)-non-free bits first. The attacker adopts exhaustive guess-

then-verify approach: guess the value of (8 − t)-non-free bits, then generate
a pair of challenges, which will lead to a t-bit-free collision after being con-
catenated with the guess value, and finally send the pair of challenges to the
user to check whether the responses collide or not. If the responses collide,
the guess value is true. Otherwise, the guess value is wrong. There are in
total (28−t) possible candidates for the (8 − t)-non-free bits, so (28−t − 1)
pairs of challenges are necessary in the worst case.

3. Recover the t-free bits also by guess-then-verify approach. The attacker can
recover the t-free bits one bit by one bit. For example, the attacker sets the
value of the first target bit to 0, then generates a pair of challenges that
leads to a (t− 1)-bit-free collision, and finally sends the pair of challenges to
check whether the responses collide or not. If the responses collide, then the
guess is correct and the value of the first target bit is 0. Otherwise, the value
of the first target bit is 1. Similarly, the attacker can recover the second bit
until the whole t-free bits are obtained. So t pairs of challenges are necessary
in the worst case.

In the above procedure of recovering one password character, the attacker will
first exhaustively guess and recover the values of (8 − t)-non-free bits without

1 The attacker does not need to check the last possible candidate if the attacker has
confirmed all other candidates are not correct.

6 L. Wang et al.

the knowledge of the t-free bits, and then recover the value of the t-free bits. As
shown above, (28−t − 1 + t) pairs of challenges are necessary in the worst case.
The total number of necessary challenges has been reduced by approximately
a factor of 2t compared to previous APOP attacks. Consequently following our
attack strategy, the probability that the user will detect the attack has become
lower, which makes the attack become more realistic.

We will analyze the complexity of generating bit-free collisions. In general, such
bit-free collisions are harder to be found than regular collisions, but can provide
more serious damages to hash-based protocols. We believe that bit-free collisions
have more applications besides APOP attacks. We will use one compression func-
tion computation as a unit to count the complexity. The complexity of generating
t-bit-free collisions on a general Merkle-Damg̊ard hash function is (n

2)2
t × 2

n
2 +t

computations. Here we omit the descriptions. Refer to Section 3.1 for more de-
tails. The complexity of t-bit-free collisions on a general compression function is
22t−1×n+t computations. Refer to Section 3.2 for more details. Moreover, we apply
bit-free-collision attacks on MD5 [10] and MD4 [9] by utilizing previous collision
attacks on MD5 and MD4 [2] [15] [14]. We show that 1-bit-free-collision attacks on
MD5 and 3-bit-free-collision attacks on MD4 are practical.

Finally, we show the effect of applying 1-bit-free collisions on MD5 to pass-
word recovery attacks on APOP in a real environment. The previous paper [6]
assumes that each password character has 6 bits of entropy (they consider a
kind of password most people use). Under this assumption, a password charac-
ter is recovered by generating 25 colliding challenge pairs, and asking 26 queries
impersonating the server. Previous paper [6] assumes that a user runs the au-
thentication protocol once per minute, and estimates that asking 26 queries takes
about 1 hour. In our attack, with the same assumption, we need to generate 24

1-bit-free collisions for recovering non-free bits and a single collision for recover-
ing the free bit. Hence, our attack needs to ask 25+2 queries in the online phase,
which can be finished in roughly 30 minutes2. Another our concern is the validity
of the assumption that the attacker can ask chosen challenges once per minute.
This assumption is not always true. It is typical that a user checks new mails
only several times per day. Let us consider the case that the impersonation can
be done only once per day. Clearly, the previous attack takes roughly 60 days to
recover a password character while our attack takes only 30 days. We therefore
can say that reducing the number of queries is important in a real environment.

1.2 Organization of the Paper

Section 2 explains background and related works. Section 3 defines bit-free col-
lision and analyzes the complexity of generating bit-free collisions. Section 4
shows practical bit-free-collision attacks on MD5 and MD4 based on previous
differential collision attacks. Section 5 applies bit-free collisions to APOP attack.
Section 6 gives the conclusion and discussion of future work.
2 We ignore the offline complexity of generating 1-bit-free collisions. Actually, this can

be finished quickly, e.g. 36 seconds with 14400 PCs (details are discussed in Section
4.2). Hence, the assumption is reasonable.

Bit-Free Collision: Application to APOP Attack 7

2 Background and Related Works

2.1 Merkle-Damg̊ard Hash Function

Many hash functions such as MD5 [10] and MD4 [9] have been designed following
the well-known framework Merkle-Damg̊ard [7] [3]. A Merkle-Damg̊ard hash
function map arbitrary-length messages to short hash digests by iterating a fixed-
input-length component usually described as compression function. Denote by
H , F and M a Merkle-Damg̊ard hash function, underlying compression function
and an input message respectively. The hash procedure is as follows:
1. M will be padded and divided into fixed-length blocks m1, m2, · · · , ml:

pad(M) = m1||m2|| · · · ||ml, where || means concatenation.
2. F takes a public constant IV and m1 as input and outputs an intermediate

value h1. Then F takes h1 and m2 as input and outputs h2. Similarly, the
calculation will be carried out until all the message blocks are used.

3. Finally H outputs hl as the hash digest.
We will describe one property of Merkle-Damg̊ard hash functions, which has
been adopted by APOP attacks.

One property of Merkle-Damg̊ard hash function
Denote by M and M ′ two messages. pad(M) = m1||m2|| · · · ||ml and pad(M ′) =
m′

1||m′
2|| · · · ||m′

l. Moreover there is some t (1 ≤ t ≤ l) such that mi = m′
i

(∀i : t ≤ i ≤ l). According to the above hash procedure, the following relation
holds:

ht = h′
t =⇒ hl = h′

l.

2.2 APOP

APOP is a hash-based challenge and response authentication protocol [8], which
is used in mail system by servers to authenticate users. The procedure of APOP
is detailed as follows. A mail server and a user share one common password.
1. The user sends one access request to the mail server.
2. The mail server generates a random challenge, and sends it to the user.
3. The user calculates one hash digest MD5(challenge||password), and sends

the digest to the mail server.
4. The mail server itself carries out the same calculation, gets another hash

digest, and compares it with the user’s response.
5. If the two digests are the same, authentication succeeds. Otherwise, authen-

tication fails.

2.3 Previous Password Recovery Attacks on APOP

Password recovery attacks on APOP [6] [11] [12] are chosen challenge attacks.
The attacker impersonates the server and sends chosen challenges to the user.
Briefly speaking, the attacker will recover the password characters one by one
based on the property of MD5 (Merkle-Damg̊ard hash function), which has been

8 L. Wang et al.

shown in Section 2.1. Consequently, the complexity of recovering the whole pass-
word will be reduced significantly from the expected complexity. Denote the
password by P1||P2|| . . . ||Pl. Suppose the attacker has recovered the values of
P1, P2, . . ., Pi−2 and Pi−1 (i ≤ l). The high-level description of the procedure
of recovering Pi is as follows.

1. Guess the value of Pi.
2. Generate a pair of challenges (C, C′) satisfying three conditions: C and C′

have the same length; the length of C||P1||P2|| · · · ||Pi is multiple of block-
length; and H(C||P1||P2|| · · · ||Pi) = H(C′||P1||P2|| · · · ||Pi).

3. Send C to the user to obtain the response R.
4. Send C′ to the user to obtain the response R′.
5. If R = R′, then the current guess value is the true Pi.
6. If R �= R′, change the guess value, and go to step 2.

Suppose Pi has n bits. There are 2n possible candidates for Pi. As a result, steps
2-6 will be repeated 2n times in the worst case. So the bit-length of Pi should be
as short as possible. From the specification of APOP [8], the length of challenges
must be a multiple of 8 bits. Therefore, the minimum length of Pi is 8 bits,
namely, one character. So, the previous APOP attacks [6] [11] [12] recover the
password characters one by one. A password character is 8-bit long, so there are
in total 28 possible candidates for one password character. Following the above
previous APOP attack procedure, 28 − 1 pairs of challenges are necessary in
the worst case. This paper will mainly deal with how to reduce the number of
necessary challenges.

3 Bit-Free Collision

Definition 1. If a pair of partially-fixed messages (M, M ′) satisfies the follow-
ing conditions3, it is denoted as a bit-free collision on a hash function H:
1. M and M ′ have the same bit-length.
2. M and M ′ have the unfixed bits at the same bit positions.
3. the unfixed bits of M and the unfixed bits of M ′ are equal.
4. any pair of messages, derived by setting the value of the unfixed-bits of M

and M ′, will be a collision on H.
where the unfixed bits are denoted as free bits.
Denote by t-bit-free collision a bit-free collision with t-free bits for simplicity.
2t pairs of colliding messages can be derived from a t-bit-free collision. So a
t-bit-free collision is a set of 2t independent colliding message pairs.

Picking 1-bit-free collision, denoted as (M, M ′), as an example. M and M ′

have the same bit-length, and have one same bit position (the free bit), where
the value is not fixed. By setting the free bit to 0, a pair of messages (M0, M

′
0) is

3 The conditions are restrictive. In fact we can give more general definition for bit-free
collision. For example, conditions 1, 2 and 3 are not necessary. Since this paper deals
with application to APOP attacks, we define the bit-free collision according to this
application for consistency.

Bit-Free Collision: Application to APOP Attack 9

derived from (M, M ′). By setting the free bit to 1, a pair of messages (M1, M
′
1)

is derived from (M, M ′). Both (M0, M
′
0) and (M1, M

′
1) are collisions on H .

This paper will deal with bit-free-collision attacks on the compression function
of MD5, which makes this concept similar to the neutral bit concept proposed
by Biham and Chen [1]. The concept of the neutral bit has been detailed in
Appendix A. Free bit can be regarded as neutral bit up to the last step of MD5
compression function. Previous works never consider neutral bit up to the last
step. This is because the usage of neutral bits is mainly speeding up the collision
search. So the previous works are interested in finding neutral bits up to some
intermediate step of hash computation. Free bit does not speed up the collision
search. However, it has the following potential advantage: the attacker has the
power to freely control some bit-values of the colliding messages without affecting
the collision. We believe the concept bit-free collision has many applications.

In the following two sections, we will analyze the complexity of generating a
t-bit-free collision on a general iterated hash function and a general compression
function.

3.1 Bit-Free Collisions on a General Merkle-Damg̊ard Hash
Function

Denote by H a general Merkle-Damg̊ard hash function. Denote by n the bit-
length of hash values of H . We will utilize Joux’s multi-collisions [4] to generate
bit-free collisions on H . The format of generated bit-free-colliding messages with
l-block length is as follows: (M = m0||m1|| . . . ||ml−1, M

′ = m0||m′
1|| . . . ||m′

l−1),
and the free bits locate in the m0.

To warm up, we first show how to generate 1-bit-free collisions. We will locate
the free bits in the first message block m0. m0

0 and m1
0 are derived by setting

the 1-free bit of m0 to 0 and 1, respectively.

1. Determine the bit position of the 1-free bit.
2. Set the 1-free bit to 0, and adopt Joux’s multi-collision technique [4] to

obtain 2
n
2 multi-collisions on H as shown in Fig. 1 with l = n

2 . The colliding
messages will be denoted as m0

0||m1,k1 || . . . ||mn
2 ,k n

2
, where k1, k2, . . . , kn

2
∈

{0, 1}.
3. Calculate the hash values of messages m1

0||m1,k1 ||m2,k2 || . . . ||mn
2 ,k n

2
, for all

k1, k2, . . . , kn
2
.

Fig. 1. Joux’s multi-collision

10 L. Wang et al.

4. If a pair of colliding messages is found: (m1
0||m1,k1 ||m2,k2 || . . . ||mn

2 ,k n
2
,

m1
0||m1,k′

1
||m2,k′

2
|| . . . ||mn

2 ,k′
n
2
), where k1, k

′
1, . . . , kn

2
, k′

n
2

∈ {0, 1}, then

(m0||m1,k1 || . . . ||mn
2 ,k n

2
, m0||m1,k′

1
|| . . . ||mn

2 ,k′
n
2
) is 1-bit-free collision.

Similarly, we can utilize Joux’s multi-collision technique to generate t-bit-free
collisions. The high-level description is as follows:

1. Determine the bit positions for the t-free bits in m0. There are 2t possible
values for the t-free bits, which will be denoted as {0, 1, . . . , 2t − 1} for
simplicity.

2. Set the values of the t-free bits to 0.
3. Generate multi-collisions on H as shown in Fig. 1 with l = (n

2)2
t

. The
complexity is (n

2)2
t × 2

n
2 , counting one compression function computation

as a unit.
4. Change the free bits to 1. Denote the new derived first message block as m1

0.
5. First calculate the intermediate hash value at (n

2 + 1)-th block of new mes-
sages (starting with m1

0) to find a collision (M1,0, M1,1). Denote the colliding
intermediate hash value as h. Then fix the intermediate hash value at (n

2 +1)-
th block as h, and calculate the intermediate hash values at (n+1)-th block to
find a collision (M2,0, M2,1). Similar calculation will be carried out until the
last message block. Finally we obtain m0||M1,k1 ||M2,k2 || . . . ||M(n

2)2t−1,k
(n
2)2t−1

(ki ∈ {0, 1}), which will collide when the value of the free bits are 0 or 1.
6. Repeat steps 4 and 5 setting the free bits to the rest possible values.
7. Finally we will obtain a pair of messages, which can collide for any possible

value of the free bits. This pair of message is a t-bit-free collision on H .

The complexity of generating a t-bit-free collision on H is roughly (n
2)2

t × 2
n
2 +t.

3.2 Bit-Free Collisions on a General Compression Function

Denote by F a general compression function. Denote by n the bit-length of the
outputs of F . We will assume that the message space is always large enough
to carry out the exhaustive t-bit-free collision search. We will analyze the com-
plexity of generating a t-bit-free collision on F by the exhaustive search. The
exhaustive search is as follows:

1. Determine the bit positions for the t-free bits. There are in total 2t possible
values for the whole t-free bits, which will be denoted as {0, 1, . . . , 2t − 1}.

2. Randomly select a message M , and expand M to a set of messages {M0, . . . ,
M2t−1}, where Mi differs from M only at the t-free bits and the value of the
t-free bits is i.

3. Search a pair of messages (M , M ′) such that F (Mi) = F (M ′
i) for any i ∈

{0, 1, . . .2t − 1}.
4. (M, M ′) is a pair of t-bit-free collision on F .

Denote by F ∗ a compression function F ∗(M) = F (M0)||F (M1)|| . . . ||F (M2t−1).
The exhaustive search can be regarded as searching a collision on F ∗. The bit-
length of F ∗ is 2t × n. So the complexity of generating a t-bit-free collision on

Bit-Free Collision: Application to APOP Attack 11

a general compression function F with n bit-length hash digests is 2(2t×n)/2 F ∗

computations. One F ∗ computation consists of 2t F computations. As a result,
t-bit-free-collision attacks on F is with a complexity 22t−1×n+t F computations.

4 Bit-Free-Collision Attacks Based on Differential
Collision Attacks on Hash Functions

This section will deal with how to find bit-free collisions based on Wang et al.’s
differential collision attacks.

In 2005, Wang et al. published their differential collision attacks on hash
functions from MD4 family [14] [15]. Here we will briefly recall Wang et al.’s
collision attacks. Refer to Appendix C.1 for more details. The attack procedure
is as follows: first determine a message difference Δ, then determine how the Δ
will propagate during hash computation, which is usually denoted as differential
path, then derive sufficient conditions that make sure the difference propagation
will follow the differential path, and finally search a message M satisfying all
sufficient conditions, which leads to a collision (M, M + Δ).

4.1 Crucial Ideas

We first showa 1-bit-free collision as an example in Fig. 2.Denote byΔ the message
difference of the chosen collision attack on H in Fig. 2. Following Wang et al.’s
collision attacks, if M0 can satisfy all the sufficient conditions, (M0, M0 + Δ) is a
collision. Similarly, if M1 can satisfy all the sufficient conditions, (M1, M1 + Δ) is
a collision. So, as long as both M0 and M1 can satisfy all the sufficient conditions,
(M, M +Δ) will collide no matter what the value of the free bit is. Consequently, 1-
bit-free-collision search can be transformed to search a pair of messages (M0, M1)
satisfying two conditions: M0 and M1 only differ at the free bit, and both M0 and

Fig. 2. a 1-bit-free-collision based on a collision attack

Sufficient conditions are from a collision attack on H . M0 and M1 are
derived by setting a bit-value of M to 0 and 1, respectively. Difference
propagation describes how the 1-bit difference between M0 and M1

propagates during the hash computation.

12 L. Wang et al.

M1 can satisfy all sufficient conditions of a differential path for collision attack.
Usually the difference propagation in Fig. 2 starts from some intermediate step
of hash computation depending on the bit position of the free bit. So after the bit
positions of the free bits are determined, a suitable differential path should have the
minimum number of sufficient conditions, whichmight be affected by the difference
propagation in Fig. 2.

A high-level description of t-bit-free-collision attack based on Wang et al.’s
collision attacks is as follows.

1. Pre-determine the bit positions of t-free bits.
2. Choose a differential path of a collision attack with the minimum number of

sufficient conditions, which might be affected by changing the values of the
free bits. Denote by Δ the message difference of the collision attack.

3. Search a message M that can satisfy all the sufficient conditions no matter
what the value of the t-free bits is.

4. (M, M + Δ) is a t-bit-free collision.

4.2 Bit-Free-Collision Attacks on MD5

This section deals with bit-free-collision attacks on MD5. For specification of
MD5, refer to Appendix B.

Pre-determine the bit position of the free bits:
Since we will apply bit-free-collision attacks on MD5 to improve APOP at-
tacks, we locate the free bits in the last 8-bit positions of messages.

Well-suited differential path for collision attacks on MD5:
We adopt a differential path obtained from previous attacks on MD5 as
follows:
-Pseudo-collision attack on the compression function of MD5 proposed by

Den Boer and Bosselaers in [2] has been shown in Appendix C.2. The
differential path for the pseudo-collision attack on MD5 has the least
number of sufficient conditions to our best knowledge. Moreover, Klima
in [5] proposes a fast collision search technique on MD5 named Tunnel.
By using Klima’s tunnel Q9 detailed in Appendix C.3, the bit-free colli-
sion search can be regarded as starting from step 25. So the number of
sufficient conditions, which might be affected by changing the value of
the free bits, will be only 23.

-A so-called technique IV bridge proposed by Sasaki et al. in [12] provides a
pair of messages which can link public constant IV of MD5 to necessary
differences for pseudo-collision attacks in [2]. The pair of messages in [12]
is shown in Table 1: (M0||M1, M0||M ′

1), which provides a pair of inter-
mediate hash values (h, h′) well-suited for pseudo-collision attacks in [2].

Finally there are roughly 23 sufficient conditions that might be affected by chang-
ing the value of the free bits. For one collision on MD5, roughly 223 MD5 compu-
tations are necessary. Hence, for t-bit-free collisions, 223×2t

MD5 computations
are necessary. It seems that 1-bit-free collision with a complexity 246 is practical.

Bit-Free Collision: Application to APOP Attack 13

Table 1. One example of 1-bit-free collision on MD5

(M0||M1||M2, M0||M ′
1||M2) is a 1-bit-free collision, where the free bit locates at the

24-th bit of m15 of M2. Denote by md5 the compression function of MD5.
h = md5(md5(IV,M0), M1) and h′ = md5(md5(IV,M0), M

′
1). h and h′ is well-suited

for pseudo-collision attacks on MD5 [2]: md5(h, M2) = md5(h′, M2).

M0 m4=0x37373936 m5=0x3433302d m6=0x38312d35 m7=0x61704035

m8=0x6f777373 m9=0x645f6472 m10=0x63657465 m11=0x5f726f74

m12=0x2e636264 m13=0x6976746d m14=0x632e7765 m15=0x73752e61

m0=0x986e1da4 m1=0x83707d06 m2=0xa86e1ddd m3=0xe264eedb

M1 m4=0xff68e19f m5=0x120ea5b3 m6=0x7437d3e2 m7=0x600f543d

m8=0x7c63c5ab m9=0xe9ead9d9 m10=0xa9b5c51e m11=0xc309f623

m12=0xfd534f1e m13=0xad33c7ad m14=0xfd0380c6 m15=0x7745f36a

m′
0=0x986e1da4 m′

1=0x83707d06 m′
2=0xa86e1ddd m′

3=0xe264eedb

M ′
1 m′

4=0xff68e19f m′
5=0x120ea5b3 m′

6=0x7437d3e2 m′
7=0x600f543d

m′
8=0x7c63c5ab m′

9=0xe9ead9d9 m′
10=0xa9b5c51e m′

11=0x4309f623

m′
12=0xfd534f1e m′

13=0xad33c7ad m′
14=0xfd0380c6 m′

15=0x7745f36a

h h[a] = 0xbd7ade50; h[b] = 0xe17a619d; h[c] = 0x8e940937; h[d] = 0xfd4af95f;

h′ h′[a] = 0x3d7ade50; h′[b] = 0x617a619d; h′[c] = 0x0e940937; h′[d] = 0x7d4af95f;

m0 = 0xc0797ae2; m1 = 0xe95d42e6; m2 = 0x49fe29af; m3 = 0x3329c9a9;

M2 m4 = 0xa790a55d; m5 = 0x783e6d3; m6 = 0xb906c7b1; m7 = 0x2d63e951;

m8 = 0x9edac296; m9 = 0x26afe101; m10 = 0xd4cfc4fb; m11 = 0xcb0d1667;

m12 = 0x77b75eab; m13 = 0xea993a34; m14 = 0x8c9868ae; m15 = 0x7effffff;

24-th bit of m15 of M2 is free bit: m15 = 0x7effffff or 0x7fffffff.

We implement 1-bit-free collision search. Surprisingly, it takes only 12 hours by
12 computers on average to generate 1-bit-free collision, which is much faster
than the usual time for 246 computations. One reason is that the complexity
calculated by counting the number of sufficient conditions is greater than the
precise complexity. Moreover, due to the biased bit position of sufficient con-
ditions, since all sufficient conditions are located in only MSB of intermediate
values, the complexity should be less than 246.

One example of generated 1-bit-free collision is shown in Table 1.

4.3 Bit-Free-Collision Attacks on MD4

We will also apply bit-free-collision attacks on MD4 [9]. For the specification of
MD4, refer to Appendix B.
Pre-determine the bit position of the free bits:

Similarly with MD5 case, considering the application to APOP attack, we
set the free bits at the last 8-bit positions of messages.

A well-suited differential path for collision attacks on MD4:
We determine to use the differential path on MD4 in [13] detailed in Ap-
pendix C.4, since it has the minimum number of sufficient conditions which
might be affected by changing the value of the free bits to the best of our
knowledge.

14 L. Wang et al.

Table 2. One example of 3-bit-free collision on MD4

m0 = 0x3938313c; m1 = 0xbfdc10ea; m2 = 0xc5708671; m3 = 0xa0196be0;

m4 = 0xa8d2a83a; m5 = 0xfd15dd85; m6 = 0x992e75bc; m7 = 0xabc6ccb8;

M0 m8 = 0x6f6fd206; m9 = 0xfd303797; m10 = 0x764081f6; m11 = 0xd6821ee2;

m12 = 0xcc7e0ed5; m13 = 0x53c72d75; m14 = 0x446d4fe9; m15 = 0x1854dfdc;

m0 = 0x182994f8; m1 = 0xc989fe5e; m2 = 0xe3e086f0; m3 = 0x17eb1082;

m4 = 0x562a7af6; m5 = 0xa6f0e339; m6 = 0xc46682a8; m7 = 0xb817cfa4;

M1 m8 = 0xe5a24a72; m9 = 0x8eca35be; m10 = 0x12c6229e; m11 = 0xaf84be49;

m12 = 0x1a94a2a5; m13 = 0x8a2386b0; m14 = 0x76d2a8b1; m15 = 0x003effff;

27-th, 28-th and 29-th bits of m15 of M1 are the 3-free bits:

m15=0x003effff, 0x083effff, 0x103effff, 0x183effff, 0x203effff,

0x283effff, 0x303effff, 0x383effff

Here we will show one 3-bit-free collision example (M0||M1, M0||(M1 + Δ)),
where M0 and M1 have been shown in Table 2. The message difference ΔM
(M ′

1 − M1) is (Δm0 = 228, Δm2 = 231, Δm4 = 231, Δm8 = 231, Δm12 = 231).
No matter what the value of the 3-free bits (27, 28, 29-th bits of m15 of M1) is,
MD4(M0||M1) = MD4(M0||(M1 + ΔM)).

5 Application to APOP Attacks

5.1 Overview of Our Contribution

Previous APOP attacks [6] [11] [12] are chosen challenge attacks. The attacker
will impersonate the server and send chosen challenges to the user. Imperson-
ating the server takes a risk that the user may suspect being attacked by the
following situation: (a) the user does not get a new email for a long time if
the attacker continuously impersonates the server; (b) the user get a new email
delayed even when the attacker impersonates the server from time to time. To
lower the probability that the attack will be detected, the number of imperson-
ation should be reduced. To achieve this, the number of necessary challenges
has to be reduced. This section will utilize bit-free collisions on MD5 to reduce
the number of necessary chosen challenges. As shown in Section 4.2, 1-bit-free-
collision attack on MD5 is practical. We will adopt 1-bit-free-collisions on MD5
to improve previous APOP attacks. The number of necessary challenges is al-
most half -reduced. For one password character, our attack needs 27 pairs of
challenges in the worst case, while previous APOP attack needs (28 − 1) pairs
of challenges.

5.2 Improved APOP Attack

In this section, we will detail how to improve previous APOP attacks utilizing
bit-free-collisions. Our attacks will also recover the password characters one by
one, following previous attacks. Our attack procedure with a comparison with
previous attacks has been shown in Table 3.

Bit-Free Collision: Application to APOP Attack 15

Table 3. Comparison between our attack and previous attacks

Denote by pr the password characters which have been recovered. De-
note by p a password character which is going to be recovered. Note
that the online work and offline work are parallel and independent.

Our procedure

Our attack utilizes 1-bit-free collision. Set
the bit position of the free bit in p, which
will divide the p into two parts: 1-free bit
and 7-non-free bits denoted as pf and pnf ,
respectively. For simplicity, we assume that
the 1-free bit locates at MSB of p.

Stage 1: recover the value of pnf .
-Chosen challenge collection (offline)

1. For pnf = 0000000 to 1111111
(7-non-free bits)

2. Generate a pair of challenges
(C, C′): (C||pr||pf ||pnf , C′||
pr||pf ||pnf) is a 1-bit-free col-
lision.

3. Store (C, C′, pnf) to Table T .
4. End For

-Impersonating as server (online)
If T is not NULL, then
1. Pick an element (C, C′, pnf)

from T .
2. Erase (C, C′, pnf) from T .
3. Send C to the user to obtain

the response R.
4. Send C′ to the user to obtain

the response R′.
5. If R = R′, then the current

value pnf is the true 7-non-
free bits of p. Goto Stage 2.

6. If R �= R′, continue to run
Stage 1.

Else, the attacker does not imper-
sonate. Continue to run Stage 1.

Stage 2: recover the value of pf .
1. Guess the 1-free bit is 0.
2. Generate a pair of challenges

(C, C′) such that (C||pr||0||pnf ,
C′||pr||0||pnf) is a collision.

3. Send C to the user to obtain the
response R.

4. Send C′ to the user to obtain the
response R′.

5. If R = R′, the value of pf is 0.
Otherwise, the value is 1.

6. Halt the program.

Previous procedure

-Chosen challenge collection (offline)
1. For p=00000000 to 11111111 (8

bits)
2. Generate a pair of challenges

(C, C′): (C||pr||p, C′||pr||p) is a
collision.

3. Store (C, C′, p) to Table T .
4. End For

-Impersonating as server (online)
If T is not NULL, then
1. Pick an element (C, C′, p) from T .
2. Erase (C, C′, p) from T
3. Send C to the user to obtain the

response R.
4. Send C′ to the user to obtain the

response R′.
5. If R = R′, then the current value

p is the target password character.
Halt the program.

6. If R �= R′, continue to run the pro-
gram.

Else, the attacker does not imperson-
ate. Continue to run the program.

16 L. Wang et al.

As shown in Table 3, our procedure generates 27 chosen challenge pairs at Step
1 of the offline phase and 1 chosen challenge pair at Step 2 of Stage 2, whereas,
the previous procedure generates 28 chosen challenge pairs at Step 1 of the offline
phase. Hence, the number of chosen challenges in our attack is roughly half of
the previous attack. Note our attack needs to generate 1-bit-free collisions. This
requires higher complexity than generating collisions, but can be computed at
offline. In the real protocol, it is typical that the protocol is triggered by the user,
not by the server (or the attacker impersonating the server). Therefore, to make
the user provide the responses of chosen challenges, the attacker needs to wait
for the user’s access requests. Such a waiting time might be long, e.g., half day.
During this time, the attacker can process the offline part in parallel. Since 1-
bit-free collisions of MD5 can be generated in 12 hours with 12 PCs as described
in Section 4.2, we can conclude that the extra cost of offline complexity has less
impact than reducing the number of chosen challenges in the real environment.

Application to APOP-MD4
Suppose APOP utilizes MD4 instead of MD5. As shown in Section 4.3, 3-bit-free
collisions on MD4 can be found practically. For APOP-MD4 case, the attacker can
adopt similar attack procedurewith Table 3: first recover the non-free bits and then
recover the free bits. So for one password character (8-bit long) in the worst case,
(28−3−1) pairs of challenges are necessary to recover the (8−3)-non-free bits, and
23 pairs of challenges are necessary to recover the 3-free bits. In total, the number
of necessary challenges is 71 for one password character in the worst case, while
previous attacks need 510 challenges. So the number of necessary challenges has
been reduced by a factor of 7.2 compared with previous attacks.

6 Conclusion and Discussion

In this paper, we presented the first approach of reducing the number of cho-
sen challenges in the APOP attacks. The newly proposed variant of collision
“bit-free collision” enabled us to achieve this. Roughly speaking, when t-bit-free
collisions are available, the number of chosen challenges becomes 1/2t compared
to the previous attacks. We showed how to generate t-bit-free collisions in general
case, 1-bit-free collisions on MD5, and 3-bit-free collisions on MD4 with giving
examples of generated bit-free collisions on MD5 and MD4. We applied bit-free
collisions to APOP attacks, and proposed the improved attack procedure.

Finallywewould like todiscuss potential applications ofbit-free collisions,which
will be our future work. Here we will give one application on distinguishing a com-
pression function family from a random function family. Moreover, all the elements
of the compression function family share the same structure but differ in IV val-
ues. During interacting with the distinguisher, each of the two families changes its
element to calculate responses from time to time. Suppose the attacker has enough
offline computational power. The distinguishing attack procedure is as follows.

1. Locate the free bits in IV , then guess the bit-values of non-free bits of IV , and
finally generate a t-bit-free collision (M, M ′) on the compression function.

Bit-Free Collision: Application to APOP Attack 17

2. Send M and M ′ to a oracle to obtain responses R and R′ respectively.
3. If R is equal to R′, then the oracle is the compression function family.

Denote by n the bit-length of IV . Suppose the distinguisher uses t-bit-free colli-
sions. The bit-length of non-free bits is (n− t), so if the oracle is the compression
function family, after 2n−t pairs of messages are queries, a pair of colliding re-
sponses will be obtained with non-negligible probability. On the other hand, a
pair of colliding responses will be obtained after roughly 2n pairs of messages are
queried. Consequently, utilizing bit-free collisions, the distinguisher can succeed
with non-negligible probability with an online rough complexity 2n−t+1 queries.

We expect more applications of bit-free collisions can be found in future.

References

1. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD-5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

3. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

4. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

5. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006 /105, http://eprint.iacr.org/2006/105.pdf

6. Leurent, G.: Message freedom in MD4 and MD5 collisions: Application to APOP.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309–328. Springer, Heidel-
berg (2007)

7. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

8. Myers, J., Rose, M.: Post Office Protocol - Version 3. RFC 1939 (Standard), Up-
dated by RFCs 1957, 2449 (May 1996),
ftp://ftp.isi.edu/in-notes/rfc1939.txt

9. Rivest, R.L.: The MD4 Message Digest Algorithm. Request for Comments (RFC
1320), Network Working Group (1992)

10. Rivest, R.L.: The MD5 Message Digest Algorithm. Request for Comments (RFC
1321), Network Working Group (1992)

11. Sasaki, Y., Yamamoto, G., Aoki, K.: Practical Password Recovery on an MD5
Challenge and Response. Cryptology ePrint Archive, Report 2007/101

12. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: Security of MD5 challenge and re-
sponse: Extension of APOP password recovery attack. In: Malkin, T.G. (ed.) CT-
RSA 2008. LNCS, vol. 4964, pp. 1–18. Springer, Heidelberg (2008)

13. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: New message difference for MD4. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 329–348. Springer, Heidelberg
(2007)

14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

15. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://eprint.iacr.org/2006/105.pdf
ftp://ftp.isi.edu/in-notes/rfc1939.txt

18 L. Wang et al.

A Definition of Neutral Bits [1]

Biham and Chen proposed a concept neutral bit to speed up the collision search
on hash functions. Here we will give a brief description. For more detailed de-
scription, refer to [1].

Definition 2. [1] For a pair message M0 and M1, denote by Δi the difference
of intermediate chaining variables at i-th step during hash computations. The
j-th bit of M0 and M1 is a neutral bit with respect to M0 and M1 up to i-th step
if it can satisfy the following property: M ′

0 and M ′
1 are obtained by flipping the

j-th bit of M0 and M1, respectively, and the Δ′
i of M ′

0 and M ′
1 is equal to Δi of

M0 and M1.

B Specification of MD5 and MD4

MD5 [10] and MD4 [9] map arbitrary length messages to 128 bit-length hash di-
gests. At first, the input message is padded and divided into 512-bit blocks. Here
we will omit the description of padding rule. Then the message blocks will be
sent to a primitive called compression function sequentially and hashed. A fixed
128-bit constant initial value (IV) and M1 will be hashed by the compression
function, which outputs a 128 bit-length H1. Then H1 and M2 will be hashed
by the compression function. After the last message block is hashed, the output
of the compression function will be the hash digest.

In the following, we will briefly describe the compression functions of MD5
and MD4 respectively.

Compression function of MD5
The message block M and the intermediate value H will be divided into 32-bit
values denoted as (m0, . . . , m15) and (a0, b0, c0, d0) respectively. The compression
function consists of 64 steps, regrouped into four 16-step rounds. Each step is
defined as follows:

ai = di−1, ci = bi−1, di = ci−1,
bi = bi−1 + (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,

where mk is one of (m0, . . . , m15), the index k being given by a permutation of
{0, . . . , 15} depending on the round, t is a constant defined in each round, ≪ si

means a left-rotation by si bits, and f is a Boolean function depending on the
round.

1R: f(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
2R: f(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
3R: f(X, Y, Z) = X ⊕ Y ⊕ Z
4R: f(X, Y, Z) = (X ∨ ¬Z) ⊕ Y

The final output is (a0 + a64, b0 + b64, c0 + c64, d0 + d64).

Bit-Free Collision: Application to APOP Attack 19

Compression function of MD4
The differences between MD5 and MD4 are the following:

- MD4 consists of 48 steps regrouped into three 16-step rounds.
- Each step is defined as: bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,
where mk is given by different round permutations.
- In the 2nd round: f(X, Y, Z) = (X ∧ Y) ∨ (Y ∧ Z) ∨ (X ∧ Z).

C Previous Related Collision Attacks on MD5 and MD4

C.1 Wang et al.’s Differential Collision Attack

Current popular collision attack on hash functions are mainly differential attacks
following the strategy proposed by Wang et al. [15] [14]. Here we will describe
the procedure of collision attacks.

1. Find the “Message Difference (ΔM)” that yields a collision with high prob-
ability. Let M and M ′ be a pair of messages that yield a collision. Differ-
ence ΔM is defined to be the value yielded by subtracting M from M ′:
ΔM = M ′ − M .

2. Determine how the impact of ΔM propagates. The propagation of the mes-
sage difference at all intermediate statements is fixed and called the “Differ-
ential Path (DP).”

3. Derive “Sufficient Conditions (SC)” from differential path to guarantee that
the message difference will propagate following the differential path at all
intermediate statements.

4. Apply the technique called “Message Modification (MM)” such that a ran-
domly selected message can be modified to make several sufficient conditions
be satisfied.

5. Search a message that satisfies all SCs as follows: first randomly select a
message, then modify it by message modification to make several sufficient
conditions satisfied, and finally check whether the other sufficient conditions
are satisfied or not. Denote the obtained message as M .

6. Calculate M ′ = M + ΔM . M and M ′ will be a collision pair.

Complexity of collision attacks
In the above attack procedure, the first three steps are pre-stage works before
searching collisions, and they are carried out only once. So the complexity of
these three steps is not counted into the complexity of the collision attack. In
steps 4 and 5, based on the technique MM, the SCs are divided into two cases: 1)
the SCs can be satisfied by applying MM to any randomly selected message; 2)
the SCs have to be satisfied by testing randomly selected messages, that is the
exhaustive search. So the current popular approach of calculating the complexity
of collision attacks is counting the number of the SCs of the second case. Denote
the hash function as H . Suppose there are q SCs of the second case. Then the
complexity of the collision attack is roughly regarded as 2q H computations.

20 L. Wang et al.

C.2 Pseudo-Collision Attacks on MD5

A pseudo-collision on the compression function of MD5 has been proposed by
Den Boer and Bosselaers in [2], where the differences exist in the intermediate
hash values instead of the message blocks. Denote the intermediate hash value
as (a0, b0, c0, d0). The XOR differences are

(Δa0, Δb0, Δc0, Δd0) = (0x80000000, 0x80000000, 0x80000000, 0x80000000).

Moreover, An extra condition is that the MSBs of b0, c0 and d0 should be equal.
The sufficient conditions are as follows:

1R and 2R: bi,31 = bi−1,31 (1 ≤ i ≤ 31);
4R: bi,31 = bi−2,31 (48 ≤ i ≤ 63).

In total, there are 46 sufficient conditions.

C.3 Tunnel Technique

We used “Q9 tunnel” in [5], which are based the local collision from step 8 until
step 12. The details are shown in Table 4. The crucial idea of Q9 tunnel is that
for any message m8, the chaining variables after the first round will remain the
same by modifying only m9 and m12. m8, m9 and m12 are used at steps 25,
28 and 32 in the second round, respectively. So the exhaustive search can start
from step 25 in the second round. The number of sufficient conditions from step
25 is 23.

Table 4. Tunnel Q9

step index message fixed chaining variables

7 m7 b8 = b7;

8 m8

9 m9 b10 = 0xffffffff ;

10 m10 b11 = 0x00000000;

11 m11

Bit-Free Collision: Application to APOP Attack 21

C.4 Collision Attacks on MD4

Sasaki et al. [13] published a differential path on MD4 with only 1 sufficient
condition located in the third round, which can not be satisfied by the message
modification. Here we will only show the sufficient conditions. The message dif-
ferences are (Δm0 = 228, Δm2 = 231, Δm4 = 231, Δm8 = 231, Δm12 = 231).

Table 5. Sufficient conditions

Chaining Conditions on bits

variables 31 - 24 23 - 16 15 - 8 7 - 0

b1 1 - a - a - - - - - 0 1

b2 1 - - - - - - - - - - - 0 - - - - - - - a - 1 - 0 - - - - - 0 1

b3 1 - - - - - - 0 - - a a 1 - - - - - - - 1 - 0 - 0 - - - - - 1 0

b4 1 - - - - - - 1 a a 1 0 0 - - - - - - - 0 - 1 a 1 a a a a - - -

b5 a - - - - - - 0 1 1 0 0 0 a - - - - - - 0 - 0 1 1 1 1 1 1 - - -

b6 0 - - - - - - 1 1 1 1 1 0 0 - - - - - - - - 0 0 0 0 0 0 0 a a -

b7 0 - - - - - 1 1 0 0 - 0 1 0 - - - - - - - - 0 1 1 1 1 1 1 1 1 -

b8 1 - - - - - a 0 0 0 - 1 0 1 - - - - - 0 - - 0 0 0 0 0 0 1 0 0 -

b9 0 a a - a a 0 1 0 1 - - - - - - - - - a - - 1 1 1 1 0 1 1 1 1 -

b10 0 1 1 - 1 0 0 - 1 1 - - - - - - - - - 1 - - - - - - - - - - - -

b11 0 0 0 - 1 1 0 - 1 1 - - - - - - - - - 0 - - - - - - - - - - - -

b12 0 1 1 a 0 0 1 - - - - - - - - - - - - 1 - - - - - - - - - - - -

b13 - - 1 0 - - 0 - - - - - - - - - - - - 0 - - - - - - - - - - - -

b14 - - 0 0 - - 0 - - - - - - - - - - - - 0 - - - - - - - - - - - -

b15 a - 1 1 - - 1 -

b16 1 - - a -

b17 b - - 0 -

b18 b - - c -

b19 - - - a -

b20 a -

b21 0 -

b22 c -

b23 a -

b24 -

· · ·
b33 0 -

· · ·

The notation ‘0’ stands for the conditions bi,j = 0, the notation ‘1’
stands for the conditions bi,j = 1, the notation ‘a’ stands for the con-
ditions bi,j = bi−1,j , ‘b’ stands for the condition bi,j �= bi−1,j and ‘c’
stands for the condition bi,j = bi−2,j .

	Bit-Free Collision: Application to APOP Attack
	Introduction
	Our Results
	Organization of the Paper

	Background and Related Works
	Merkle-Damgård Hash Function
	APOP
	Previous Password Recovery Attacks on APOP

	Bit-Free Collision
	Bit-Free Collisions on a General Merkle-Damgård Hash Function
	Bit-Free Collisions on a General Compression Function

	Bit-Free-Collision Attacks Based on Differential Collision Attacks on Hash Functions
	Crucial Ideas
	Bit-Free-Collision Attacks on MD5
	Bit-Free-Collision Attacks on MD4

	Application to APOP Attacks
	Overview of Our Contribution
	Improved APOP Attack

	Conclusion and Discussion
	References
	A Definition of Neutral Bits [1]
	B Specification of MD5 and MD4
	C Previous Related Collision Attacks on MD5 and MD4
	C.1 {\it Wang et al.'s} Differential Collision Attack
	C.2 Pseudo-Collision Attacks on MD5
	C.3 Tunnel Technique
	C.4 Collision Attacks on MD4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

