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Abstract. Some intrusion detection models such as the VPStatic first
construct a behavior model for a program via static analysis, and then
perform intrusion detection by monitoring whether its execution is con-
sistent with this behavior model. These models usually share the highly
desirable feature that they do not produce false alarms but they face the
conflict between precision and efficiency. The high precision of the VP-
Static is at the cost of high space complexity. In this paper, we propose a
new context-sensitive intrusion detection model based on static analysis
and stack walks, which is similar to VPStatic but much more efficient, es-
pecially in memory use. We replace the automaton in the VPStatic with
a state transition table (STT) and all redundant states and transitions
in VPStatic are eliminated. We prove that our STT model is a determin-
istic pushdown automaton (DPDA) and the precision is the same as the
VPStatic. Experiments also demonstrate that our STT model reduces
both time and memory costs comparing with the VPStatic, in particu-
lar, memory overheads are less than half of the VPStatic’s. Thereby, we
alleviate the conflict between precision and efficiency.

1 Introduction

When a program is attacked, such as injected malicious codes, it will behave
in a manner inconsistent with its binary code, which can be made use of to
perform intrusion detection. We can do a static analysis of the binary code to
construct a behavior model, and then different kinds of attacks can be detected
by monitoring whether the execution of this program deviates from this model.
Actually, a lot of IDSs [2, 3, 4, 6, 9, 10, 11, 12] based on this idea has been
proposed since 2000. Because of system calls are easy to be monitored at runtime,
most of these systems use system calls to model the program behavior. These
models usually do not produce any false alarms because they capture all correct
execution behaviors via static analysis. This is the biggest reason why they are
appreciated.

According to [3], the precision of intrusion detection models generated via
static analysis can be divided into at least two levels. Models on the first level
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are flow-sensitive and they just consider the order of execution of statements in
the program, such as the system call sequences. Models on the second level are
context-sensitive, which are more precise. They keep track of calling context of
functions and are able to match the return of a function with the call site that
invoked it. As a result, they are immune to the impossible path problem [4].
However, in most time, accurate is incompatible with efficient. Context-sensitive
models are more accurate at the cost of higher program running time and space
caused by the overheads of maintaining context information. Our purpose in
this paper is right to decrease these overheads to construct an efficient context-
sensitive intrusion detection model via static analysis.

1.1 Previous Work

In 2001, Wanger and Dean [4] proposed a precise abstract stack model generated
via static analysis of C source code. This model uses stack states maintained in
the abstract stack to model the call and return behaviors of function calls. Hence,
this model is context-sensitive. Unfortunately, this model is a non-deterministic
push down automaton (PDA). As a result, the time and space complexities are
so high that it’s not practical.

Feng and Giffin [2] pointed out severe non-determinism in the stack state is
the major contributing factor to the high time and space complexities of PDA
operations. They proposed two different models: Dyck and VPStatic to eliminate
this non-determinism to improve the online detection efficiency.

The Dyck model [2, 12] is based on code instrumentation. It uses binary
rewriting to insert code before and after each function call site to generate extra
symbols needed for stack determinism. However, because the Dyck model is just a
stack-deterministic PDA (sDPDA), not a complete deterministic PDA (DPDA),
it still requires linear time when waking in the automaton. What’s worse, its time
efficiency is also affected by the overheads of new inserted codes. As a result,
the time complexity for the Dyck model is still too high that slowdowns of 56%
and 135% are reported for two linux self-contained programs: cat and htzipd.

The VPStatic [2] is a statically constructed variant of the dynamic context-
sensitive VtPath model [7]. It also uses a statically constructed automaton to
model the call and return behavior of function calls between two consecutive
system calls, but stack walks are used to observe existing context-determining
symbols to eliminate non-determinability. It is a provably DPDA and dose not
do any instrumentation. Thereby, the time efficiency is much higher than the
Dyck model. However, the VPStatic produces much lager automaton structures
than the Dyck model which leads to a higher memory use. Increases of 183%
and 194% are reported for htzipd and cat in memory uses.

1.2 Our Contribution

Our work is focused on constructing a model similar to VPStatic that is a DPDA
and efficient in time but with a much lower memory use. Specifically, we make
the following contributions:
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– We propose a new context-sensitive intrusion detection model called STT
based on static analysis and stack walks. We replace the automaton in
the VPStatic with a state transition table, which records correct transi-
tions among system call sites and corresponding execution contexts directly.
The walk in the automaton is becoming a search in the table, which is
more efficient. We use a delta optimization to solve the state explosion
problem due to the use of the STT. There’re no redundant states and
transitions in our STT model. According to our analysis, the number of
states in the STT is much less than half of that in the VPStatic for
the same program. As a result, the memory overheads are greatly
reduced.

– We formally define the STT model and prove it’s a deterministic push down
automaton (DPDA), which means its time efficiency is at least as high as
the VPStatic.

– We prove our STT model has the same precision with the VPStatic. It ac-
cepts all VPStatic accepts and refuses all VPStatic refuses. So we improve
the efficiency without reducing the precision.

– We implement dynamically-constructed VPStatic models and STT models
for programs gzip and cat. Experiments results show the memory overheads
of the STT models are less than half of the VPStatic models’.

1 char∗ f i l ename ; p i d t [ 2 ] pid ;
2 int prepare ( int index ) {
3 char buf [ 2 0 ] ;
4 pid [ index ] = getp id ( ) ;
5 s t r cpy ( buf , f i l ename ) ;
6 return open ( buf ,ORDWR) ;
7 }
8 void act i on ( ) {
9 u i d t uid = getu id ( ) ;

10 int handle ;
11 i f ( uid != 0)
12 {
13 handle = prepare (1) ;
14 read ( handle , . . . ) ;
15 }
16 else
17 {
18 handle =prepare (0) ;
19 wr i te ( handle , . . . ) ;
20 }
21 c l o s e ( handle ) ;
22 }

Fig. 1. A sample program fragment. This fragment is composed by two functions:
prepare and action. Functions getpid, open, getuid, read, write and close are system
calls.
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2 STT Model

Our model is a statically-constructed context-sensitive intrusion detection model.
We will first use the sample program in Fig.1 to illustrate its basic idea.

2.1 Basic Idea

See Fig.1, assume we capture two consecutive system calls: getuid and getpid in
an execution of the program and corresponding user stacks are presented in Fig.2.
We can perform intrusion detection by checking whether such transitions for
both system calls and stack states are possible according to the program’s binary
code. As we known, the stack state represents the real-time calling context of
functions. According to the source code, the system call getpid is right following
the system call getuid. Between them, only a function prepare is called (in line
13 or 18), so a new stack frame for prepare will be pushed into the call stack,
which means the transition of the stack state is correct, too. Therefore, we say
this program is still running normally by now. Our model is just based on this
idea. We use a state transition table which is constructed via a static analysis
of the binary of a program to record all these correct transitions. We perform
online intrusion detection by verifying whether both the system call and stack
state traces of the execution are consistent with the table. Because we make use
of a state transition table, we name our model STT.

Fig. 2. Abstract stack states when getuid is called (left) and getpid is called (right)

2.2 Structure of the State Transition Table

In our model, we assume that when a system call is invoked, the monitored
program will transfer to a new state. The STT is used to decide what new state
the program should transfer to after a system call is invoked according to the
binary.

Table 1 presents the STT for the sample program in Fig.1. The left header
of the table are states of the program. We assign each an increasing unique id.
Every state is corresponding to a system call site and composed by two parts:
the address of the system call site and the stack state when the program executes
to this site. In order to reduce the memory use of the STT, we use a fixed-length
hash value of the return address list in the stack to represent the stack state. In
this paper, we assume the hash function we use is so perfect that the probability
of conflicts of hash values can be ignored. The first state < h(a), s getuid >
means the program invokes a system call getuid at address s getuid and the
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Table 1. State transition table for the sample program in Fig.1. a, p1 and p0 are return
addresses of action, prepare(1) and prepare(0),respectively. String with the prefix s
represents the address of the corresponding system call.

getuid getpid open read close write

1:< h(a), s getuid > 2,3
2:< h(ap1), s getpid > 4
3:< h(ap0), s getpid > 5
4:< h(ap1), s open > 6
5:< h(ap0), s open > 8
6:< h(a), s read > 7
7:< h(a), s close >
8:< h(a), s write > 7

stack state is h(a) at this site, where h is the hash function. The top header of
the table are system calls that trigger the program transferring from the current
state to a new one. Assume we are at state 1, and then if the system call getpid
is captured, according to the STT, the program should transfer to state 2 or
state 3.

Because we take stack state into consideration, we define different states for
the same system call site when it is executed in different contexts. For example,
in the sample program, the system call open can be invoked either in prepare(0)
or prepare(1). As a result, we define two sates: 4 and 5, for this single system
call site. We do this to make sure our model is context sensitive and immune to
the impossible path problem [4].

2.3 Online Intrusion Detection

If the STT for a program has been statically constructed, we can use it to monitor
the execution of the program. Intrusion detection is performed every time when
a new system call is captured. The whole process contains three steps:

1. Use the new captured system call s and the last state to search for the
expected state set Qe in the STT.

2. Walk the current user stack to extract the return address list B and then
compute the real state q =< h(B), s s > the program is at.

3. Then, if q ∈ Qe, nothing is wrong, but if q /∈ Qe, an attack is considered
having occurred.

Let’s use an overflow attack targeting to the sample program in Fig.1 to illus-
trate this process. Assume when the program is executing in the function call
prepare(1), an attacker overflows buf using strcpy (Line 5) and modifies the
return address of this call to the address of prepare(0), then the system call
sequence will become getpid− > open− > getpid− > open− > write− > · · ·.

The detection process for this attack is presented in Table 2. When the system
call open is captured at the first time, the real state is < h(ap0), s open >.
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Table 2. Online Detection Process for the overflow attack to the sample program in
Fig.1

Captured
System Call

Last State Expected States Real State Detect Result

getpid 1 2,3 < h(ap1), s getpid >= 2 normal
open 2 4 < h(ap0), s open > �= 4 attack

However, the current state is expected to be < h(ap1), s open > according to
the STT. Thereby, we detect the attack.

2.4 Delta Optimization

Fig. 3. A special situation where a system call s is invoked by the first function f1

at some site, f1 itself is invoked at a1 different sites by the second function f2, f2 is
invoked at a2different sites by the third function and so on

2.4.1 State Explosion Problem
By now, our STT model suffers the state explosion problem. Because our model
is context sensitive, we define different states for the same system call site in
different execution contexts. Let’s consider the special case presented in Fig.3.
In this case, the system call s can be invoked in a1 × a2 × · · · × an−1 different
contexts, as a result, the total number of states defined for it is a1×a2×· · ·×an−1.
This is so called state explosion, which means our current model will scale poorly
for large programs because of the soaring number of states. Fortunately, we can
use a method named delta optimization by us to solve this problem.

2.4.2 Delta Optimization
We find that for two consecutive states, they must share a common prefix between
their return address lists in the stack. For example, state 1 and state 2 in Table
1 are consecutive and their return address lists share a as the common prefix.
According to this, we redefine the state:

Definition 1. Let C be the common prefix between the current return address
list B and the last return address list A. Then, the state for the current system
call site in the delta optimized STT is a triple S =< l, d, s >, where:

l is the length of the postfix 1 of B excluding C.
d is the hash value of the postfix of B excluding C.
s is the address of the current system call site.

This definition will reduce the number of states in the STT greatly. Let’s consider
the system call open in the sample program in Fig.1 again. Table 3 presents the
1 This postfix is the delta part (different part) of B compared with A. So we call this

optimization method Delta Optimization.
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Table 3. State definitions for the system call open of the sample program in Fig.1 in
two different execution contexts

Context Last System
Call Site

Last Return
Address List

Current Return
Address List

State Definition

prepare(1) s getpid ap1 ap1 < 0, none, s open >
prepare(0) s getpid ap0 ap0 < 0, none, s open >

Table 4. New state transition table for the sample program in Fig.1 after the delta
optimization

getuid getpid open read close write

1:< 1, h(a), s getuid > 1,2
2:< 1, h(p1), s getpid > 4
3:< 1, h(p0), s getpid > 4
4:< 0, none, s open > 5 − (2, p1) 7 − (2, p0)
5:< 0, none, s read > 6
6:< 0, none, s close >
7:< 0, none, s write > 6

state definition for this single site in two different execution contexts. We find
that l, d, s remain the same in the two different contexts. As a result, state 2
and state 3 in Table 1 are merged into one state < 0, none, s open >. In fact,
if a function is called in n different sites, after the delta optimization, we only
define one state for each system call in the function except the first one 2, for
which we still define n states. Thereby, now the total number of states defined
for s in the case presented in Fig.3 is less than a1 + a2 + · · · + an−1 , which is
linear to the number of function calls. So, our new STT model can scale well for
large programs.

Although we redefine the state, the online intrusion detection algorithm de-
scribed in Sec.2.3 remains the same on the whole and the only difference is the
way to compute the real state q. Before the delta optimization, q is computed
based on the current return address list B got from the stack walks. However,
now, we have to compute q based on not only B but also last state’s return ad-
dress list A. As a result, we need to keep track of the last state’s return address
list during the online monitoring.

Table 4 presents the new STT for the sample program in Fig.1 after the delta
optimization. We will describe how to construct it via static analysis in Sec.2.5.

2.4.3 Side Effect of Delta Optimization
Unfortunately, the delta optimization has side effect that it will bring us impos-
sible path problem again. See Table 4, after the optimization, state 4 can either
2 Note that the first system call of a function refers to the first system call the program

will invoke after entering the function, before leaving the function.
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transfer to state 5 or state 7 with out any limit. Actually, state 4 can transfer
to state 5 only when open is called in prepare(1) and to state 7 only when open
is called in prepare(0). We find states suffering this problem are all last system
calls 3 of functions. The reason behind this problem is we neglect the execution
context of the function. When a function is called at different sites, we only de-
fine one state for its last system call (Assume the function will invoke more than
one system call) after the delta optimization. Then, if the program transfers to
different states when the same function returns from different sites, we have no
ways to distinguish among them just based on the triple of the state. However,
we should remember that the return address of the function exits in the return
address list. We can turn to it to identify which call site we are returning from
and then decide which state we should transfer to. So we add a transfer condition
to each transition of these states. A condition specifies the position of the return
address of the function in the return address list and what value it should be
equal to if the program follows the corresponding transition. In Table 4, we add
condition (2, p1) to the transition from state 4 to state 5, which means if this
transition takes place, the second address in the return address list of state 4
should be equal to p1. By this way, we can solve the impossible problem due to
delta optimization completely.

2.5 Model Generation via Static Analysis

Before we can monitor the running of a program, we have to build a STT for
it. The STT model for a program is built via a static analysis of its binary exe-
cutable. We first disassemble the binary, and then we analyze the disassembled
instructions recursively following the control flow of the program. We maintain
a virtual stack to simulate the real stack: when the analyzer enters into a func-
tion, its return address is pushed into the virtual stack and when it leaves the
function, the return address is popped out of the stack. In our algorithm, we
don’t care any other types of instructions except the following three ones:

System Call Instructions: When the analyzer comes to a system call instruc-
tion, we use the instruction address, current return address list in the virtual
stack and the last state’s return address list to create a new state according to
Definition 1. If this state has been already in the STT, which means the current
analysis path has been covered before, we stop going on analyzing along this
path and return. Otherwise, we insert the new state into the STT and update
the last state of the analyzer to be this new state. Then, we continue the analysis
along this path. In addition, in both cases we need to add a new transition from
the last state to the current state in the STT.

Jump Instructions: When the analyzer comes to a jump instruction, we first
recursively invoke the analysis algorithm from the target address. Then, after
that process returns, we continue at the address following the jump instruction.
3 Note that the last system call of a function refers to the last system call the program

will invoke after entering the function, before leaving the function.
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Function Call Instructions: As we said before, except the first one, we only
define one state for each system call site in the same function after the delta
optimization. As a result, no need to analyze the same function repeatedly.
When the analyzer comes to a function call, we first judge whether this function
has been analyzed before. If not, we enter it and recursively invoke the analysis
algorithm from the beginning of the function. When we create the first state of
this function, we store the address s of the system call and the postfix R of its
return address list, which starts after the return address of the function. After
finishing the analysis, we store the last state of the function and the postfix
R′ of its return address list, which also starts after the return address of the
function. Then, when we revisit this function at other site t, no need to re-
analyze this function but just do two things. Firstly, we create a new state
< length(R) + 1, h(tR), s >, where length(R) means the length of R, and then
add a new transition from the last state before we come to the function to this
new state in the STT. Secondly, we update the last state of the analyzer to be
the last state of the function stored earlier and its return address list should
be modified to V tR′, where V is the address list in the virtual stack. Then, we
go on analyzing at the address after the function call. When we come to a new
state and add a new transition to the last state of the function, we have to add
a transfer condition (length(V ) + 1, t) to this transition to avoid the side effect
described in Sec.2.4.3.

3 Formal Proof That the STT Model Is a DPDA

Our STT model can be considered as a push down automaton (PDA). We use
the formal language described in [2, 14] to define it formally and prove that it’s
deterministic.

Definition 2. The STT model is a push down automaton P = (Q, Σ, Γ, δ, q0, z0,
F ), where:

Q is the set of states. Every state is a triple defined as Definition 1.
Σ is the input alphabet to the automaton. If a ∈ Σ, then a = (s, z′), where: s

is the address of the current system call site and z′is the real return address list
got from stack walks.

Γ is the stack alphabet. z ∈ Γ is the last state’s return address list.
δ is the transition relation mapping Q×Σ × Γ to Q×Γ . Let z′ = b1b2 · · · bn,

z = a1a2 · · · am and l be the length of the common prefix of z′ and z. Then, the
real state the program located at is q′ =< n − l, hash(blbl+1 · · · bn), s >. On the
other hand, we can search the STT and find the expected state set Qe. Then,

δ(q, a, z) =
{

none q′ /∈ Qe

(q′, z′) q′ ∈ Qe
(1)

q0 ∈ Q is the unique initial state and z0 ∈ Γ is the initial stack state. F ⊆ Q is
the set of accepting states.

Theorem 1. The STT Model is a deterministic PDA (DPDA).
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Proof. A PDA is called deterministic if the transition relation δ satisfies the
following two conditions [2, 14]:

Condition 1: For all q ∈ Q and z ∈ Γ , whenever δ(q, ε, z) is nonempty, then
δ(q, a, z) is empty for all a ∈ Σ.

Condition 2: For all q ∈ Q, a ∈ Σ ∪ {ε} and z ∈ Γ , δ(q, a, z) contains at most
one element.

First, ε-transition doesn’t exist in our model. So Condition 1 is satisfied.
Second, according to (1), δ(q, a, z) contains none element or one element, so

Condition 2 is also satisfied.
Therefore, we obtain the conclusion that the STT Model is a DPDA.

According to [2], the time complexity for processing an input symbol with a non
deterministic PDA is O(nm2), where n and m denote the number of states and
transitions, respectively. However, if the PDA is deterministic, the time com-
plexity will be reduced to O(1). So our STT model is efficient in PDA operation.

4 Comparison between STT and VPStatic

Both the STT and the VPStatic perform intrusion detection by monitoring
the system call events of the program. The VPStatic uses a virtual path in a
statically-constructed automaton to record the call and return behaviors of func-
tion calls between two consecutive system calls. In our STT model, we replace
this automaton with a state transition table, which records context-sensitive
transitions between two consecutive system calls directly. We do a comparison
between the two models in precision, time complexity and space complexity.

4.1 Precision

STT performs intrusion detection each time a system call is made. Assume sB

is the new captured system call and bn+1 is its address. The return address list
got from stack walks is b1b2 · · · bn. Also assume sA, am+1 are the last system call
and its address, respectively. Its return address list is a1a2 · · · bm. Suppose l is
the length of the common prefix of A and B. We assume everything is ok when
the program is at am+1.

Then, for the STT, if the following two conditions are both satisfied, it will
accept the new system call sB and consider the program is running normally:

Condition 1: SB =< n − l, h(blbl+1 · · · bn) > is in the STT.
Condition 2: Let SA be the state corresponding to the last system call. Then,

SA has a transition to SB in the STT and if this transition contains a condition-
the return address list A has to satisfy it.

For the VPStatic, it will generate a sequence of input symbols using A and B,
and then feed them to its automaton one by one. If every symbol in the sequence
is accepted by this automaton, the new system call sB will be accepted, otherwise
an alarm is raised. There are three kinds of input symbols: e, g and f in the
VPStatic. The automaton for the sample program in Fig.1 is presented on the
right side of Fig.4.
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Theorem 2. The STT Model has the same precision with the VPStatic Model,
which means if sB is accepted by the VPStatic, it will also be accepted by the
STT, and if it is refused by the VPStatic, it will be refused by the STT, too.

Proof. First, assume the input sequence is accepted by VPStatic, which means
sA and sB are really consecutive and the correct return address list at bn+1 is
truly B. So, according to the Definition 1 and the construction algorithm of the
STT described in Sec.2.5, the state SB must be in STT and SA must have a
transition to SB. In addition, if this transition contains a condition, A must also
satisfy it. So we satisfy the two conditions above and sB is also accepted by the
STT.

Secondly, assume the input sequence is not accepted by the VPStatic. Then,
there’re three cases:

Case 1: One g symbol in the input sequence is not accepted. Let this incorrect
symbol be g(none, ai, ai), where i > l. This means ai dose not match the top
symbol on the virtual stack of the VPStatic and the program returns to a wrong
address. Thereby, this execution path does not exist in the real. In this situation,
if SB is still in the STT, there is only one possibility: sA at am+1 can be invoked
in another context 4, in which there is an execution path from am+1 to bn+1,
and we just define one state SA for them because of the delta optimization,
which is similar to the state 4 in Table 4. However, we add transfer conditions
to all the transitions of this kind of states, based on which we can distinguish
between different contexts. So even if Condition 1 can be satisfied in this case,
Condition 2 can’t be satisfied because the corresponding transition condition
can’t be satisfied. So sB is not accepted by the STT, too.

Case 2: One f symbol in the input sequence is not accepted. We can use the
similar way in Case 1 to prove the transition either will not be accepted by our
STT model. We omit it here.

Case 3: One e symbol is not accepted. There’re three sub-cases in this situa-
tion. If the incorrect symbol is e(none, Exit(Func(ai))), which means we can’t
return from the corresponding function at that time according to the binary.
We may enter a new function or make a system call, which means the next
symbol g(none, ai−1, ai−1) is either wrong. So we come to Case 1, which has
been proved above. Else if the incorrect symbol is e(none, bi), which means
we can’t enter the function Func(bi) at present. Thereby, the last transition
f(none, Entry(Func(bi)), bi−1) must be either wrong and we come to Case 2.
At last if the incorrect symbol is e(sB, bn+1), which means we can’t reach to
bn+1 at present following this execution path. Then, either SB is not in the STT
or the corresponding transition condition is not satisfied, which can be proved
similarly to Case 1. So an intrusion alarm will still be raised by the STT in this
case.

Therefore, we obtain the result our STT model is as precious as the VPStatic.
It accepts all VPStatic accepts and refuses all VPStatic refuses.

4 To be more precise, the function corresponding to ai can be called at another site
in the program.
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4.2 Space Complexity

We can learn from Case 3 in the proof of Theorem 2 that all e transitions except
the last one are all redundant in the VPStatic Model. They are just equivalent
to the next g transitions or the last f transitions. Therefore, all these transitions
and corresponding states can be eliminated to compact the automaton. In STT,
we replace the automaton in the VPStatic with a state transition table, which
records the context-sensitive transitions among system calls directly. Every state
in the STT is corresponding to a system call site and all those intermediate states
and transitions between any two system call states, which are called virtual paths
in the VPStatic, are all eliminated. As a result, the STT is much smaller than
the VPStatic.

Theorem 3. States in the STT are fewer than that in the VPStatic.

Proof. The exact numbers of states in the two models for the same program are
presented in Table 5, respectively. The VPStatic defines two states (’Entry’ and
’Exit’) for each function, two states (’f’ and ’g’) for each call site, and one state
for each system call site. So there are totally 2m+2n+p states in the VPStatic,
where m, n, p denote the number of function call sites, functions and system call
sites in a program, respectively. The STT defines one state for each system call
site if it is not the first one of a function. For those first system calls, the STT
defines t states for each one if the corresponding function is called in t different
sites. So there’re totally q + p − k states in the STT, where k and q denote the

Fig. 4. STT and VPStatic automatons for the sample program in Fig.1. The left one
is for the STT and the right one is for the VPStatic.
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Table 5. Numbers of states in the STT and the VPStatic. Assume there are n func-
tions, m call sites and p system call sits in the monitored program. Among the n
functions, assume only k ones invoke system calls and they are called at q sites.

VPStatic STT

Number of States q + p − k 2m+2n+p

Table 6. Time complexities for every step of processing a system call with the STT
and the VPStatic. The lengths of the return address lists of the last state and the
current state are denoted by m and n, respectively. The length of the common prefix
of the two lists is denoted by l.

Model Intrusion Detection Step Time Complexity

STT
Search expected states in the STT O(1)
Compute the real state O(n)
Compare between the real state and
a expected state

O(1)

VPStatic
Generate the input sequence O(l)
Walk the automaton O(m + n − 2 ∗ l)

number of functions which invoke system calls5 and call sites of these special
functions, respectively. Due to the fact q < m, the number of states in the STT
are much fewer than that in the VPStatic (In most time much fewer than half).

In Fig.4 we present two automatons for the sample program in Fig.1. The right
one describes the VPStatic and the left one describes our STT model. We can
find the STT has been greatly compacted compared with the VPStatic.

4.3 Time Complexity

Theorem 4. The time complexity of the STT is lower than that of the VPStatic.

Proof. For both models, intrusion detection is performed every time when a sys-
tem call is captured at runtime. So we compare the time costs for the two models
to process a single system call. We divide this time cost into two components:
the time to perform stack walks and the time to perform verification whether
the new system call is accepted. Because the time to perform stack walks to
extract the return address list on the stack is the same for the two models, we
just consider the later here. The time complexities for every step of verifying a
system call with the two models are presented respectively in Table 6. The total
time for the STT is O(n), while for the VPStatic it is O(m + n − l). Because

5 Note that we say a function invokes system calls so long as the program invokes any
system calls after entering the function, before leaving the function.
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m > l, we obtain the result that the time complexity of the STT is lower than
that of the VPStatic.

Although we do improve the time efficiency, the improvement is not obvious:
the time complexity to process a single system call is linear to the length of the
return address list on the stack for both models. This is because the VPStatic is
also a DPDA and its time efficiency is already very high. Actually, as we can see
from the experiment results described in Sec.5, time overheads for both models
are dominated by the time to perform stack walks and the time to perform
verification is so small that can be ignored.

5 Experiments

Experiments are conducted to compare the time and memory overheads of the
STT and VPStatic models. In this respect, we analyze two test programs: gzip
and cat. Currently, we build the two models for these test programs via dynamic
analysis but not static analysis. For every test program, we first execute it to
finish a specific workload and capture all system calls and the corresponding
stack states, based on which, we construct the STT and the VPStatic for this
program. Then, for every model, we execute the program with the same workload
for the second time. At this time, we use the model to monitor the execution of
the program.

Due to the fact we can’t cover all possible execution paths, these models
built via dynamic analysis are far from complete and the true memory costs of
models built via static analysis are much larger. However, comparisons between
these dynamically constructed models still make sense. This is because they are
constructed based on the same data. In addition, we can consider test programs
we analyze are not gzip or cat, but just two new programs that formed by
execution paths of gzip and cat we cover in the experiments. From this point,
our models are truly complete.

Our experiments are carried on Fedora 7.0. We monitor the execution of a
program in user space and process tracing is used to capture system call events.
The workloads and corresponding execution statistics for each test program are
presented in Table 7. Base time in the table refers to the time a program finishes
its workload with process tracing enabled but doing nothing at each system call
stop. We regard it as the execution time of a program without IDS.

Table 8 presents the accumulated time overheads for the dynamically con-
structed VPStatic and STT models to monitor the two test programs finishing
their own workloads. We separate the models’ runtime into two components:
the time to perform stack walks and the time to perform verification. From this
table, we find time overheads for both models are dominated by the time to
perform stack walks. The STT does improve the time efficiency to perform ver-
ification but not obviously. Actually, compared with the overheads caused by
stack walks, those caused by verification are so small that can be even ignored.

Numbers of states and memory overheads for the dynamically constructed
VPStatic and STT models are presented in Table 9. From that we find our
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Table 7. Workloads and corresponding execution statistics for test programs. Based
times are measured in seconds.

Program Workloads System Call Events Base Time

gzip Compress a 24.4 MB tar
file

2281 11.72

cat Concatenate 40 files
totaling 500MB to a file

520131 85.19

Table 8. Model execution times in seconds. Percentages compare against base
execution.

Program Model Stack Walks % Verification %

gzip
STT 9.25 79 0.03 0

VPStatic 9.21 79 0.03 0

cat
STT 22.73 27 3.2 4

VPStatic 22.75 27 5.12 6

Table 9. Numbers of states and memory uses in KB for models

Program Model Number of States Memory Use

gzip
STT 41 0.750

VPStatic 109 1.58

cat
STT 28 0.460

VPStatic 87 0.94

STT models do reduce the numbers of states greatly. As a result, the memory
overheads due to monitoring are also greatly reduced. In our experiments, all
the memory uses of the STT models are less than half of the VPStatic models’.

6 Conclusion

We propose a novel efficient context-sensitive intrusion detection model via static
analysis. It uses stack walks to eliminate non-determinability and is a provably
DPDA, which is similar to the VPStatic. We replace the automaton in the VP-
Static with a state transition table and the automaton walk in VPStatic is
replaced by a search in the STT, which is more efficient. We perform a delta
optimization to solve the state explosion problem of the STT and no redundant
states and corresponding transitions, which exist in the automaton of the VP-
Static, exist in our STT model. As a result, the memory use is greatly reduced.
In our experiments, the memory overheads of the dynamically-constructed STT
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models for programs gzip and cat are both samller than half of the corresponding
VPStatic models’. We prove that our STT model has the same precision with
the VPStatic. Thereby, we improve the efficiency of the VPStatic greatly with-
out reducing its precision, which alleviates the historical conflict between the
efficiency and precision, which is suffered by similar intrusion detection models.
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