

Lecture Notes in Computer Science 5824
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tsuyoshi Takagi Masahiro Mambo (Eds.)

Advances
in Information
and Computer Security

4th International Workshop on Security, IWSEC 2009
Toyama, Japan, October 28-30, 2009
Proceedings

13

Volume Editors

Tsuyoshi Takagi
Future University Hakodate
School of Systems Information Science
116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan
E-mail: takagi@fun.ac.jp

Masahiro Mambo
University of Tsukuba
Graduate School of Systems and Information Engineering
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
E-mail: mambo@cs.tsukuba.ac.jp

Library of Congress Control Number: 2009935384

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4.1, F.2.1, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-04845-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04845-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12772520 06/3180 5 4 3 2 1 0

Preface

The Fourth International Workshop on Security (IWSEC 2009) was held at
Toyama International Conference Center, Toyama, Japan, October 28–30, 2009.
The workshop was co-organized by CSEC, a special interest group on computer
security of the IPSJ (Information Processing Society of Japan) and ISEC, a
technical group on information security of IEICE (The Institute of Electronics,
Information and Communication Engineers). The excellent Local Organizing
Committee was led by the IWSEC 2009 General Co-chairs, Kazuo Takaragi and
Hiroaki Kikuchi.

IWSEC 2009 received 46 paper submissions from all over the world. We would
like to thank all the authors who submitted papers. Each paper was reviewed by
at least three reviewers. In addition to the Program Committee members, many
external reviewers joined the review process in their particular areas of expertise.
We were fortunate to have this energetic team of experts, and are grateful to
all of them for their hard work. The hard work includes very active discussion;
the discussion phase was almost as long as the initial individual reviewing. The
review and discussion were supported by a very nice Web-based system, iChair.
We thank its developers.

Following the review phases, 13 papers were accepted for publication in this
volume of Advances in Information and Computer Security. Together with the
contributed papers, the workshop featured an invited talk and a hash function
panel both of which were respectively given and chaired by eminent researcher,
Bart Preneel (Katholieke Universiteit Leuven). An abstract of the talk, titled
“The Future of Cryptographic Algorithms,” is included in this volume. We deeply
appreciate his contribution.

Many people contributed to the success of IWSEC 2009. We wish to ex-
press our deep appreciation for their contribution to information and computer
security.

October 2009 Tsuyoshi Takagi
Masahiro Mambo

IWSEC 2009
Fourth International Workshop on Security

Co-organized by

CSEC (Special Interest Group on Computer Security of the Information
Processing Society of Japan)

and
ISEC (Technical Group on Information Security, Engineering Sciences Society,

of the Institute of Electronics, Information and Communication Engineers,
Japan)

General Co-chairs

Kazuo Takaragi Hitachi Ltd., Japan
Hiroaki Kikuchi Tokai University, Japan

Advisory Committee

Norihisa Doi Chuo University, Japan
Akira Hayashi Kanazawa Institute of Technology, Japan
Hideki Imai Chuo University, Japan
Günter Müller University of Freiburg, Germany
Yuko Murayama Iwate Prefectural University, Japan
Eiji Okamoto University of Tsukuba, Japan
Ryoichi Sasaki Tokyo Denki University, Japan
Shigeo Tsujii Chuo University, Japan
Doug Tygar University of California, Berkeley, USA

Program Committee Co-chairs

Tsuyoshi Takagi Future University Hakodate, Japan
Masahiro Mambo University of Tsukuba, Japan

Local Organizing Committee

Venue and Excursion
Co-chairs Takao Okubo (Fujitsu Laboratories Ltd., Japan)

Koutarou Suzuki (NTT Corp., Japan)
Award Co-chairs Hiroshi Doi (Institute of Information Security,

Japan)
Mitsuru Tada (Chiba University, Japan)

VIII Organization

Finance, Registration,
and Liaison Co-chairs Ryuya Uda (Tokyo University of Technology,

Japan)
Hisao Sakazaki (Hitachi Ltd., Japan)
Kazuhisa Sekine (NTT DoCoMo, Inc., Japan)

Publicity Co-chairs Kunihiko Miyazaki (Hitachi Ltd., Japan)
Noboru Kunihiro (The University of Tokyo,

Japan)
System Co-chairs Toshihiro Tabata (Okayama University, Japan)

Yasuharu Katsuno (IBM Tokyo Research
Laboratory, Japan)

Publication Co-chairs Isao Echizen (National Institute of Infomatics,
Japan)

Toru Nakanishi (Okayama University, Japan)

Program Committee

Toru Akishita Sony Corporation, Japan
Gergei Bana Technical University of Lisbon, Portugal
Alexandra Boldyreva Georgia Institute of Technology, USA
Zhenfu Cao Shanghai Jiao Tong University, China
Christian S. Collberg University of Arizona, USA
Bart De Decker K.U.Leuven, Belgium
Chang Ee-Chien National University of Singapore, Singapore
Eiichiro Fujisaki NTT, Japan
Steven Furnell University of Plymouth, UK
Juan A. Garay AT&T Labs - Research, USA
Philippe Golle Palo Alto Research Center, USA
Dieter Gollmann TU Hamburg, Germany
Tetsu Iwata Nagoya University, Japan
Mariusz H. Jakubowski Microsoft, USA
Marc Joye Thomson R&D, France
Angelos D. Keromytis Columbia University, USA and Symantec

Research Labs, France
Seungjoo Kim Sungkyunkwan University, Korea
Takeshi Koshiba Saitama University, Japan
Michiharu Kudo IBM Japan, Japan
Noboru Kunihiro University of Tokyo, Japan
Dong Hoon Lee Korea University, Korea
Javier Lopez University of Malaga, Spain
Mark Manulis TU Darmstadt, Germany
Kanta Matsuura University of Tokyo, Japan
Alfred Menezes University of Waterloo, Canada
Atsuko Miyaji JAIST, Japan
Hirofumi Muratani Toshiba, Japan
David Naccache ENS, France

Organization IX

Mridul Nandi NIST, USA
Masakatsu Nishigaki Shizuoka University, Japan
Kai Rannenberg Goethe University Frankfurt, Germany
Reihaneh Safavi-Naini University of Calgary, Canada
Ryuichi Sakai Osaka Electro-Communication University, Japan
Kouichi Sakurai Kyushu University, Japan
Palash Sarkar Indian Statistical Institute, India
Akashi Satoh AIST, Japan
Takeshi Shimoyama Fujitsu Laboratories, Japan
Willy Susilo University of Wollongong, Australia
Michael Szydlo Akamai, USA
Toshihiro Tabata Okayama University, Japan
Katsuyuki Takashima Mitsubishi Electric Corporation, Japan
Toshiaki Tanaka KDDI R&D Laboratories Inc., Japan
Routo Terada University of Sao Paulo, Brazil
Pim Tuyls Intrinsic ID, The Netherlands
Vijay Varadharajan Macquarie University, Australia
Guilin Wang University of Birmingham, UK
Dai Watanabe Hitachi, Japan
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Sung-Ming Yen National Central University, Taiwan
Maki Yoshida Osaka University, Japan
Hiroshi Yoshiura University of Electro-Communications, Japan
Fangguo Zhang Sun Yat-sen University, China
Jianying Zhou Institute for Infocomm Research, Singapore
Alf Zugenmaier DOCOMO Euro-Labs, Germany

External Reviewers

Joonsang Baek
Chien-Ning Chen
Jae Tark Choi
Kazuhide Fukushima
Teddy Furon
Iftach Haitner
Yoshikazu Hanatani
Xinyi Huang
Yasunori Ishihara
Taichi Isogai
Christian Kahl
Yuichi Kaji
Hyung Chan Kim

Shinsaku Kiyomoto
Yuichi Komano
Woo Kwon Koo
Jun Kurihara
Kwangsu Lee
Wei-Chih Lien
Joseph K. Liu
Takahiro Matsuda
Luke McAven
Ryo Nishimaki
Haruki Ohta
Kazumasa Omote
Souradyuti Paul

Denis Royer
Mehmet Tahir Sandikkaya
Taizo Shirai
Koen Simoens
Isamu Teranishi
Carmela Troncoso
Markus Tschersich
Jheng-Hong Tu
Yamin Wen
Lingling Xu
Tomoko Yonemura

Table of Contents

Invited Talk

The Future of Cryptographic Algorithms (Extended Abstract) 1
Bart Preneel

Block Cipher

Bit-Free Collision: Application to APOP Attack . 3
Lei Wang, Yu Sasaki, Kazuo Sakiyama, and Kazuo Ohta

Impossible Boomerang Attack for Block Cipher Structures 22
Jiali Choy and Huihui Yap

Improved Distinguishing Attacks on HC-256 . 38
Gautham Sekar and Bart Preneel

Cryptographic Protocols

A Generic Construction of Timed-Release Encryption with Pre-open
Capability . 53

Yasumasa Nakai, Takahiro Matsuda, Wataru Kitada, and
Kanta Matsuura

An Efficient Identity-Based Signcryption Scheme for Multiple
Receivers . 71

S. Sharmila Deva Selvi, S. Sree Vivek, Rahul Srinivasan, and
Chandrasekaran Pandu Rangan

Universal Designated Verifier Signatures with Threshold-Signers 89
Pairat Thorncharoensri, Willy Susilo, and Yi Mu

Reducing Complexity Assumptions for Oblivious Transfer 110
K.Y. Cheong and Takeshi Koshiba

Contents Protection and Intrusion Detection

Tamper-Tolerant Software: Modeling and Implementation 125
Mariusz H. Jakubowski, Chit Wei (Nick) Saw, and
Ramarathnam Venkatesan

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code and
Its Security Evaluation . 140

Koji Nuida

XII Table of Contents

Efficient Intrusion Detection Based on Static Analysis and Stack
Walks . 158

Jingyu Hua, Mingchu Li, Kouichi Sakurai, and Yizhi Ren

Authentication

Strongly Secure Authenticated Key Exchange without NAXOS’
Approach . 174

Minkyu Kim, Atsushi Fujioka, and Berkant Ustaoğlu

ID-Based Group Password-Authenticated Key Exchange 192
Xun Yi, Raylin Tso, and Eiji Okamoto

A Proposal of Efficient Remote Biometric Authentication Protocol 212
Taiki Sakashita, Yoichi Shibata, Takumi Yamamoto,
Kenta Takahashi, Wakaha Ogata, Hiroaki Kikuchi, and
Masakatsu Nishigaki

Author Index . 229

The Future of Cryptographic Algorithms
(Extended Abstract)

Bart Preneel1,2

1 Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT/COSIC,
Kasteelpark Arenberg 10, bus 2446, B-3001 Leuven, Belgium

2 IBBT, Van Crommenlaan, B-9000 Gent
bart.preneel@esat.kuleuven.be

Until the early 1970s, cryptology was restricted to closed government and mili-
tary applications; commercial applications of cryptology were very rare. Crypto-
graphic devices were expensive and they were mostly used for the protection of
communications at the data link layer. The invention of public key cryptography
in 1975 and the publication of the DES (Data Encryption Standard) in 1977 by
the US government formed the start of open academic research in cryptology;
these developments were also essential contributions towards the deployment of
cryptography in large scale systems.

The explosion of information and communication technologies at the begin-
ning of the 1990s created applications with important security needs such as elec-
tronic payments, e-commerce and e-government. At the same time, the progress
in technology opened the door to a massive deployment of cryptographic tech-
nologies in both software and hardware. Today, cryptography has become a com-
modity: almost all wireless communication devices use cryptographic protection
(e.g., GSM and 3GSM, Bluetooth, WLAN, and Zigbee); hundreds of million of
users have banking cards with public key cryptography; an increasing number
of countries issues electronic identity cards and passports with public key cryp-
tography; computers use cryptographic libraries for secure VPNs (IPsec), secure
web access (SSL/TLS), file encryption, hard disk encryption, secure software
updates and DRM. Cryptology has become an established scientific discipline:
the IACR (International Association for Cryptologic Research) has close to 1500
members, and in addition to the seven IACR annual conferences and workshops
there is a growing number of conferences with at least one session on cryptology.

In this talk we discuss the state of the art and future of cryptographic al-
gorithms. We revisit progress on block ciphers, stream ciphers, hash functions,
MAC algorithms, public-key encryption and digital signatures. For each of these
we will assess the maturity of the primitive and discuss challenges for future
research. The main challenge is to create better trade-offs between performance,
cost and security. More concretely, the following topics can be identified:

Extremely low cost solutions are essential to get cryptography everywhere,
that is, for applications such as ambient intelligence, sensor networks and
RFIDs. A specific target is encryption with less than 1500 gates or an entity
authentication protocol that consumes less than 50 mJoules.

Extremely fast solutions for applications such as bus encryption, and au-
thenticated encryption for Petabyte storage devices and Terabit networks.

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 B. Preneel

Long term security solutions: for applications such as e-voting, e-health and
national security we need cryptographic algorithms that provide guaranteed
protection for 50 years or more. While this is conceivable for symmetric cryp-
tography, this goal is currently a major challenge for public key cryptography,
in view of progress in research to attack hard mathematical problems and
the anticipated development of quantum computers.

Even if cryptographic algorithms are mathematically secure, attackers can break
applications by exploiting side channel attacks. Passive attacks try to recover key
information by measuring physical parameters such as execution time, power
consumption, or electromagnetic radiation. Active attacks include attacks that
probe the memory or processor bus and attacks that introduce faults during the
calculation. Experience during the last decade has taught us that developing
implementations that remain secure under these powerful attacks is a very chal-
lenging problem. Another challenge is that applications need to be developed in
a way that key lengths can be upgraded and algorithms can be replaced. Finally,
an important decision for each application is whether we adopt open standards,
use proprietary algorithms or even algorithms that are kept secret. This decision
has important implications on security aspects, but it has also an economic and
strategic dimension.

Acknowledgements. This author’s work was supported in part by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy) and
by the European Commission through the IST Programme under contract num-
ber ICT-2007-216676 ECRYPT II.

Bit-Free Collision: Application to APOP Attack

Lei Wang1, Yu Sasaki1,2, Kazuo Sakiyama1, and Kazuo Ohta1

1 The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan

{wanglei,yu339,saki,ota}@ice.uec.ac.jp
2 NTT Information Sharing Platform Laboratories, NTT Corporation

sasaki.yu@lab.ntt.co.jp

Abstract. This paper proposes a new variant of collisions on hash func-
tions named bit-free collision, which can be applied to reduce the number
of chosen challenges in password recovery attacks on hash-based chal-
lenge and response protocols, such as APOP (Authentication Post Office
Protocol). In all previous APOP attacks, the attacker needs to imper-
sonate the server and to send poisoned chosen challenges to the user.
Impersonating the server takes a risk that the user may find out he is
being attacked. Hence, it is important for the attacker to reduce the num-
ber of impersonation in order to lower the probability that the attack will
be detected. To achieve this, reducing the number of chosen challenges
is necessary. This paper is the first approach to improve previous APOP
attacks based on this observation to our best knowledge. With t-bit-free
collisions presented in this paper, the number of chosen challenges to
recover each password character can be reduced by approximately a fac-
tor of 2t. Though our attack utilizing t-bit-free collisions needs higher
offline complexity than previous attacks, the offline computation can be
finished in practical time if the attacker can obtain reasonable compu-
tation power. In this research, we generate 1-bit-free collisions on MD5
practically. As a result, the number of challenges for password recovery
attacks on real APOP is approximately half reduced. Of independent
interest, we apply the bit-free-collision attack on a simpler hash function
MD4, and show that 3-bit-free collisions can be generated practically.

Keywords: hash function, bit-free collision, APOP, MD5, MD4.

1 Introduction

With the development of internet, challenge and response password authentica-
tion protocols have become popular. In the communication through internet, the
user may face several threats: (a) a third party may impersonate the server, and
(b) a third party may eavesdrop on the communication channel. Accordingly,
it is dangerous for the user to send the password itself directly to the server to
get authenticated. As a countermeasure to protect the password, challenge and
response password authentication protocols have been adopted. The crucial idea
is, in every authentication round, randomly generating challenges and comput-
ing responses based on challenges and the password. One popular approach to

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 3–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

4 L. Wang et al.

generate responses is hashing challenges and the password, which will base the
security of the protocols on the underlying hash functions. As far as the hash
function is secure, the protocol is secure.

APOP (Authentication Post Office Protocol) [8] is a challenge and response
password authentication protocol based on MD5 [10], which has been practically
utilized in real mail systems. The responses are generated by hashing the chal-
lenges concatenated with the password. Recently password recovery attacks on
APOP have been proposed [6] [11] [12], which originated from collision attacks
on MD5 [15]. All previous APOP attacks are chosen challenge attacks. The at-
tacker impersonates the server and sends chosen challenges to the user to make
the user provide corresponding responses. The attack scenario is as follows.

1. the user sends access requests to the attacker (impersonating the server).
2. the attacker sends poisoned chosen challenges to the user.
3. the user sends the corresponding responses to the attacker.
4. the attacker responds “No new email” to the user.

Impersonating the server takes a risk that the user may suspect to have being
attacked in the following situations:

(a) the user does not get a new email for a long time if the attacker continuously
impersonates the server.

(b) the user gets a new email delayed even if the attacker impersonates the
server from time to time. Suppose the user accesses to the server once an
hour. The user may get a new email delayed an hour even though the attacker
only impersonates once.

From this observation, the attacker should reduce the times of impersonating in
order to lower the probability that the attack will be detected. This means that
the number of necessary chosen challenges should be reduced. So far, no result
has been published to improve previous APOP attacks on reducing the number
of chosen challenges to our best knowledge.

1.1 Our Results

We will propose the first approach to reduce the number of challenges of APOP
attacks, by presenting a new variant of collisions on hash functions named bit-free
collision.

Conceptually, bit-free collision is a pair of partially-fixed messages, which will
collide regardless of the value of the unfixed bits. The unfixed bits are denoted as
free bits in this paper. We denote by t-bit-free collision a bit-free collision with
t-free bits for simplicity. For example, suppose (M, M ′) is a 1-bit-free collision.
By setting the free bit to 0, we can obtain a pair of messages (M0, M

′
0) from

(M, M ′). By setting the free bit to 1, we can obtain another pair of messages
(M1, M

′
1) from (M, M ′). Both (M0, M

′
0) and (M1, M

′
1) are collisions. So (M, M ′)

will be a collision no matter what the value of the free bit is. Similarly, for t-
bit-free collision, a set of 2t pairs of messages can be derived by setting the

Bit-Free Collision: Application to APOP Attack 5

values of the t-free bits, and each pair of messages from this set is a collision.
Here we will roughly point out the difference between free bit in this paper
and neutral bit proposed by Biham and Chen in [1]. The usage of free bit is
mainly allowing the attacker to freely determine several bit-values of the colliding
messages without affecting the collision, while the usage of neutral bit is mainly
speeding up collision search. Refer to Section 3 for more details.

Bit-free collisions can be utilized to reduce the number of chosen challenges of
APOP attacks. Previous APOP attacks recover the password characters one by
one. One character is 8-bit long, so there are 28 possible candidates for one pass-
word character. The attacker adopts guess-then-verify approach to exhaustively
check the correctness of all possible candidates for one password character. In
order to check one possible candidate, the attacker needs to generate a pair of
challenges. If a possible candidate is the true password character, the responses
of the corresponding pair of challenges will collide. There are in total 28 candi-
dates for a password character, and each candidate needs a pair of challenges.
As a result, (28 − 1) pairs of challenges1 are necessary in the worst case.

On the other hand, our attack utilizes bit-free collisions to reduce the number
of chosen challenges. Our attack will also recover password characters one by
one. The main novelty of our attack is recovering one password character part
by part, which will reduce the number of necessary chosen challenges. The high-
level description of our attack to recover one password character is as follows.
More details are explained in Section 5.2.
1. Locate t-free bits in the targeted password character, which divides the pass-

word character into (8 − t)-non-free bits and t-free bits.
2. Recover the (8− t)-non-free bits first. The attacker adopts exhaustive guess-

then-verify approach: guess the value of (8− t)-non-free bits, then generate
a pair of challenges, which will lead to a t-bit-free collision after being con-
catenated with the guess value, and finally send the pair of challenges to the
user to check whether the responses collide or not. If the responses collide,
the guess value is true. Otherwise, the guess value is wrong. There are in
total (28−t) possible candidates for the (8 − t)-non-free bits, so (28−t − 1)
pairs of challenges are necessary in the worst case.

3. Recover the t-free bits also by guess-then-verify approach. The attacker can
recover the t-free bits one bit by one bit. For example, the attacker sets the
value of the first target bit to 0, then generates a pair of challenges that
leads to a (t− 1)-bit-free collision, and finally sends the pair of challenges to
check whether the responses collide or not. If the responses collide, then the
guess is correct and the value of the first target bit is 0. Otherwise, the value
of the first target bit is 1. Similarly, the attacker can recover the second bit
until the whole t-free bits are obtained. So t pairs of challenges are necessary
in the worst case.

In the above procedure of recovering one password character, the attacker will
first exhaustively guess and recover the values of (8 − t)-non-free bits without

1 The attacker does not need to check the last possible candidate if the attacker has
confirmed all other candidates are not correct.

6 L. Wang et al.

the knowledge of the t-free bits, and then recover the value of the t-free bits. As
shown above, (28−t − 1 + t) pairs of challenges are necessary in the worst case.
The total number of necessary challenges has been reduced by approximately
a factor of 2t compared to previous APOP attacks. Consequently following our
attack strategy, the probability that the user will detect the attack has become
lower, which makes the attack become more realistic.

We will analyze the complexity of generating bit-free collisions. In general, such
bit-free collisions are harder to be found than regular collisions, but can provide
more serious damages to hash-based protocols. We believe that bit-free collisions
have more applications besides APOP attacks. We will use one compression func-
tion computation as a unit to count the complexity. The complexity of generating
t-bit-free collisions on a general Merkle-Damg̊ard hash function is (n

2)2
t × 2

n
2 +t

computations. Here we omit the descriptions. Refer to Section 3.1 for more de-
tails. The complexity of t-bit-free collisions on a general compression function is
22t−1×n+t computations. Refer to Section 3.2 for more details. Moreover, we apply
bit-free-collision attacks on MD5 [10] and MD4 [9] by utilizing previous collision
attacks on MD5 and MD4 [2] [15] [14]. We show that 1-bit-free-collision attacks on
MD5 and 3-bit-free-collision attacks on MD4 are practical.

Finally, we show the effect of applying 1-bit-free collisions on MD5 to pass-
word recovery attacks on APOP in a real environment. The previous paper [6]
assumes that each password character has 6 bits of entropy (they consider a
kind of password most people use). Under this assumption, a password charac-
ter is recovered by generating 25 colliding challenge pairs, and asking 26 queries
impersonating the server. Previous paper [6] assumes that a user runs the au-
thentication protocol once per minute, and estimates that asking 26 queries takes
about 1 hour. In our attack, with the same assumption, we need to generate 24

1-bit-free collisions for recovering non-free bits and a single collision for recover-
ing the free bit. Hence, our attack needs to ask 25+2 queries in the online phase,
which can be finished in roughly 30 minutes2. Another our concern is the validity
of the assumption that the attacker can ask chosen challenges once per minute.
This assumption is not always true. It is typical that a user checks new mails
only several times per day. Let us consider the case that the impersonation can
be done only once per day. Clearly, the previous attack takes roughly 60 days to
recover a password character while our attack takes only 30 days. We therefore
can say that reducing the number of queries is important in a real environment.

1.2 Organization of the Paper

Section 2 explains background and related works. Section 3 defines bit-free col-
lision and analyzes the complexity of generating bit-free collisions. Section 4
shows practical bit-free-collision attacks on MD5 and MD4 based on previous
differential collision attacks. Section 5 applies bit-free collisions to APOP attack.
Section 6 gives the conclusion and discussion of future work.
2 We ignore the offline complexity of generating 1-bit-free collisions. Actually, this can

be finished quickly, e.g. 36 seconds with 14400 PCs (details are discussed in Section
4.2). Hence, the assumption is reasonable.

Bit-Free Collision: Application to APOP Attack 7

2 Background and Related Works

2.1 Merkle-Damg̊ard Hash Function

Many hash functions such as MD5 [10] and MD4 [9] have been designed following
the well-known framework Merkle-Damg̊ard [7] [3]. A Merkle-Damg̊ard hash
function map arbitrary-length messages to short hash digests by iterating a fixed-
input-length component usually described as compression function. Denote by
H , F and M a Merkle-Damg̊ard hash function, underlying compression function
and an input message respectively. The hash procedure is as follows:
1. M will be padded and divided into fixed-length blocks m1, m2, · · · , ml:

pad(M) = m1||m2|| · · · ||ml, where || means concatenation.
2. F takes a public constant IV and m1 as input and outputs an intermediate

value h1. Then F takes h1 and m2 as input and outputs h2. Similarly, the
calculation will be carried out until all the message blocks are used.

3. Finally H outputs hl as the hash digest.
We will describe one property of Merkle-Damg̊ard hash functions, which has
been adopted by APOP attacks.

One property of Merkle-Damg̊ard hash function
Denote by M and M ′ two messages. pad(M) = m1||m2|| · · · ||ml and pad(M ′) =
m′

1||m′
2|| · · · ||m′

l. Moreover there is some t (1 ≤ t ≤ l) such that mi = m′
i

(∀i : t ≤ i ≤ l). According to the above hash procedure, the following relation
holds:

ht = h′
t =⇒ hl = h′

l.

2.2 APOP

APOP is a hash-based challenge and response authentication protocol [8], which
is used in mail system by servers to authenticate users. The procedure of APOP
is detailed as follows. A mail server and a user share one common password.
1. The user sends one access request to the mail server.
2. The mail server generates a random challenge, and sends it to the user.
3. The user calculates one hash digest MD5(challenge||password), and sends

the digest to the mail server.
4. The mail server itself carries out the same calculation, gets another hash

digest, and compares it with the user’s response.
5. If the two digests are the same, authentication succeeds. Otherwise, authen-

tication fails.

2.3 Previous Password Recovery Attacks on APOP

Password recovery attacks on APOP [6] [11] [12] are chosen challenge attacks.
The attacker impersonates the server and sends chosen challenges to the user.
Briefly speaking, the attacker will recover the password characters one by one
based on the property of MD5 (Merkle-Damg̊ard hash function), which has been

8 L. Wang et al.

shown in Section 2.1. Consequently, the complexity of recovering the whole pass-
word will be reduced significantly from the expected complexity. Denote the
password by P1||P2|| . . . ||Pl. Suppose the attacker has recovered the values of
P1, P2, . . ., Pi−2 and Pi−1 (i ≤ l). The high-level description of the procedure
of recovering Pi is as follows.

1. Guess the value of Pi.
2. Generate a pair of challenges (C, C′) satisfying three conditions: C and C′

have the same length; the length of C||P1||P2|| · · · ||Pi is multiple of block-
length; and H(C||P1||P2|| · · · ||Pi) = H(C′||P1||P2|| · · · ||Pi).

3. Send C to the user to obtain the response R.
4. Send C′ to the user to obtain the response R′.
5. If R = R′, then the current guess value is the true Pi.
6. If R �= R′, change the guess value, and go to step 2.

Suppose Pi has n bits. There are 2n possible candidates for Pi. As a result, steps
2-6 will be repeated 2n times in the worst case. So the bit-length of Pi should be
as short as possible. From the specification of APOP [8], the length of challenges
must be a multiple of 8 bits. Therefore, the minimum length of Pi is 8 bits,
namely, one character. So, the previous APOP attacks [6] [11] [12] recover the
password characters one by one. A password character is 8-bit long, so there are
in total 28 possible candidates for one password character. Following the above
previous APOP attack procedure, 28 − 1 pairs of challenges are necessary in
the worst case. This paper will mainly deal with how to reduce the number of
necessary challenges.

3 Bit-Free Collision

Definition 1. If a pair of partially-fixed messages (M, M ′) satisfies the follow-
ing conditions3, it is denoted as a bit-free collision on a hash function H:
1. M and M ′ have the same bit-length.
2. M and M ′ have the unfixed bits at the same bit positions.
3. the unfixed bits of M and the unfixed bits of M ′ are equal.
4. any pair of messages, derived by setting the value of the unfixed-bits of M

and M ′, will be a collision on H.
where the unfixed bits are denoted as free bits.
Denote by t-bit-free collision a bit-free collision with t-free bits for simplicity.
2t pairs of colliding messages can be derived from a t-bit-free collision. So a
t-bit-free collision is a set of 2t independent colliding message pairs.

Picking 1-bit-free collision, denoted as (M, M ′), as an example. M and M ′

have the same bit-length, and have one same bit position (the free bit), where
the value is not fixed. By setting the free bit to 0, a pair of messages (M0, M

′
0) is

3 The conditions are restrictive. In fact we can give more general definition for bit-free
collision. For example, conditions 1, 2 and 3 are not necessary. Since this paper deals
with application to APOP attacks, we define the bit-free collision according to this
application for consistency.

Bit-Free Collision: Application to APOP Attack 9

derived from (M, M ′). By setting the free bit to 1, a pair of messages (M1, M
′
1)

is derived from (M, M ′). Both (M0, M
′
0) and (M1, M

′
1) are collisions on H .

This paper will deal with bit-free-collision attacks on the compression function
of MD5, which makes this concept similar to the neutral bit concept proposed
by Biham and Chen [1]. The concept of the neutral bit has been detailed in
Appendix A. Free bit can be regarded as neutral bit up to the last step of MD5
compression function. Previous works never consider neutral bit up to the last
step. This is because the usage of neutral bits is mainly speeding up the collision
search. So the previous works are interested in finding neutral bits up to some
intermediate step of hash computation. Free bit does not speed up the collision
search. However, it has the following potential advantage: the attacker has the
power to freely control some bit-values of the colliding messages without affecting
the collision. We believe the concept bit-free collision has many applications.

In the following two sections, we will analyze the complexity of generating a
t-bit-free collision on a general iterated hash function and a general compression
function.

3.1 Bit-Free Collisions on a General Merkle-Damg̊ard Hash
Function

Denote by H a general Merkle-Damg̊ard hash function. Denote by n the bit-
length of hash values of H . We will utilize Joux’s multi-collisions [4] to generate
bit-free collisions on H . The format of generated bit-free-colliding messages with
l-block length is as follows: (M = m0||m1|| . . . ||ml−1, M

′ = m0||m′
1|| . . . ||m′

l−1),
and the free bits locate in the m0.

To warm up, we first show how to generate 1-bit-free collisions. We will locate
the free bits in the first message block m0. m0

0 and m1
0 are derived by setting

the 1-free bit of m0 to 0 and 1, respectively.

1. Determine the bit position of the 1-free bit.
2. Set the 1-free bit to 0, and adopt Joux’s multi-collision technique [4] to

obtain 2
n
2 multi-collisions on H as shown in Fig. 1 with l = n

2 . The colliding
messages will be denoted as m0

0||m1,k1 || . . . ||mn
2 ,k n

2
, where k1, k2, . . . , kn

2
∈

{0, 1}.
3. Calculate the hash values of messages m1

0||m1,k1 ||m2,k2 || . . . ||mn
2 ,k n

2
, for all

k1, k2, . . . , kn
2
.

Fig. 1. Joux’s multi-collision

10 L. Wang et al.

4. If a pair of colliding messages is found: (m1
0||m1,k1 ||m2,k2 || . . . ||mn

2 ,k n
2
,

m1
0||m1,k′

1
||m2,k′

2
|| . . . ||mn

2 ,k′
n
2
), where k1, k

′
1, . . . , kn

2
, k′

n
2
∈ {0, 1}, then

(m0||m1,k1 || . . . ||mn
2 ,k n

2
, m0||m1,k′

1
|| . . . ||mn

2 ,k′
n
2
) is 1-bit-free collision.

Similarly, we can utilize Joux’s multi-collision technique to generate t-bit-free
collisions. The high-level description is as follows:

1. Determine the bit positions for the t-free bits in m0. There are 2t possible
values for the t-free bits, which will be denoted as {0, 1, . . . , 2t − 1} for
simplicity.

2. Set the values of the t-free bits to 0.
3. Generate multi-collisions on H as shown in Fig. 1 with l = (n

2)2
t

. The
complexity is (n

2)2
t × 2

n
2 , counting one compression function computation

as a unit.
4. Change the free bits to 1. Denote the new derived first message block as m1

0.
5. First calculate the intermediate hash value at (n

2 + 1)-th block of new mes-
sages (starting with m1

0) to find a collision (M1,0, M1,1). Denote the colliding
intermediate hash value as h. Then fix the intermediate hash value at (n

2 +1)-
th block as h, and calculate the intermediate hash values at (n+1)-th block to
find a collision (M2,0, M2,1). Similar calculation will be carried out until the
last message block. Finally we obtain m0||M1,k1 ||M2,k2 || . . . ||M(n

2)2t−1,k
(n
2)2t−1

(ki ∈ {0, 1}), which will collide when the value of the free bits are 0 or 1.
6. Repeat steps 4 and 5 setting the free bits to the rest possible values.
7. Finally we will obtain a pair of messages, which can collide for any possible

value of the free bits. This pair of message is a t-bit-free collision on H .

The complexity of generating a t-bit-free collision on H is roughly (n
2)2

t × 2
n
2 +t.

3.2 Bit-Free Collisions on a General Compression Function

Denote by F a general compression function. Denote by n the bit-length of the
outputs of F . We will assume that the message space is always large enough
to carry out the exhaustive t-bit-free collision search. We will analyze the com-
plexity of generating a t-bit-free collision on F by the exhaustive search. The
exhaustive search is as follows:

1. Determine the bit positions for the t-free bits. There are in total 2t possible
values for the whole t-free bits, which will be denoted as {0, 1, . . . , 2t − 1}.

2. Randomly select a message M , and expand M to a set of messages {M0, . . . ,
M2t−1}, where Mi differs from M only at the t-free bits and the value of the
t-free bits is i.

3. Search a pair of messages (M , M ′) such that F (Mi) = F (M ′
i) for any i ∈

{0, 1, . . .2t − 1}.
4. (M, M ′) is a pair of t-bit-free collision on F .

Denote by F ∗ a compression function F ∗(M) = F (M0)||F (M1)|| . . . ||F (M2t−1).
The exhaustive search can be regarded as searching a collision on F ∗. The bit-
length of F ∗ is 2t × n. So the complexity of generating a t-bit-free collision on

Bit-Free Collision: Application to APOP Attack 11

a general compression function F with n bit-length hash digests is 2(2t×n)/2 F ∗

computations. One F ∗ computation consists of 2t F computations. As a result,
t-bit-free-collision attacks on F is with a complexity 22t−1×n+t F computations.

4 Bit-Free-Collision Attacks Based on Differential
Collision Attacks on Hash Functions

This section will deal with how to find bit-free collisions based on Wang et al.’s
differential collision attacks.

In 2005, Wang et al. published their differential collision attacks on hash
functions from MD4 family [14] [15]. Here we will briefly recall Wang et al.’s
collision attacks. Refer to Appendix C.1 for more details. The attack procedure
is as follows: first determine a message difference Δ, then determine how the Δ
will propagate during hash computation, which is usually denoted as differential
path, then derive sufficient conditions that make sure the difference propagation
will follow the differential path, and finally search a message M satisfying all
sufficient conditions, which leads to a collision (M, M + Δ).

4.1 Crucial Ideas

We first show a 1-bit-free collision as an example in Fig. 2.Denote byΔ the message
difference of the chosen collision attack on H in Fig. 2. Following Wang et al.’s
collision attacks, if M0 can satisfy all the sufficient conditions, (M0, M0 + Δ) is a
collision. Similarly, if M1 can satisfy all the sufficient conditions, (M1, M1 + Δ) is
a collision. So, as long as both M0 and M1 can satisfy all the sufficient conditions,
(M, M +Δ) will collide no matter what the value of the free bit is. Consequently, 1-
bit-free-collision search can be transformed to search a pair of messages (M0, M1)
satisfying two conditions: M0 and M1 only differ at the free bit, and both M0 and

Fig. 2. a 1-bit-free-collision based on a collision attack

Sufficient conditions are from a collision attack on H . M0 and M1 are
derived by setting a bit-value of M to 0 and 1, respectively. Difference
propagation describes how the 1-bit difference between M0 and M1

propagates during the hash computation.

12 L. Wang et al.

M1 can satisfy all sufficient conditions of a differential path for collision attack.
Usually the difference propagation in Fig. 2 starts from some intermediate step
of hash computation depending on the bit position of the free bit. So after the bit
positions of the free bits are determined, a suitable differentialpath should have the
minimum number of sufficient conditions, whichmight be affected by the difference
propagation in Fig. 2.

A high-level description of t-bit-free-collision attack based on Wang et al.’s
collision attacks is as follows.

1. Pre-determine the bit positions of t-free bits.
2. Choose a differential path of a collision attack with the minimum number of

sufficient conditions, which might be affected by changing the values of the
free bits. Denote by Δ the message difference of the collision attack.

3. Search a message M that can satisfy all the sufficient conditions no matter
what the value of the t-free bits is.

4. (M, M + Δ) is a t-bit-free collision.

4.2 Bit-Free-Collision Attacks on MD5

This section deals with bit-free-collision attacks on MD5. For specification of
MD5, refer to Appendix B.

Pre-determine the bit position of the free bits:
Since we will apply bit-free-collision attacks on MD5 to improve APOP at-
tacks, we locate the free bits in the last 8-bit positions of messages.

Well-suited differential path for collision attacks on MD5:
We adopt a differential path obtained from previous attacks on MD5 as
follows:
-Pseudo-collision attack on the compression function of MD5 proposed by

Den Boer and Bosselaers in [2] has been shown in Appendix C.2. The
differential path for the pseudo-collision attack on MD5 has the least
number of sufficient conditions to our best knowledge. Moreover, Klima
in [5] proposes a fast collision search technique on MD5 named Tunnel.
By using Klima’s tunnel Q9 detailed in Appendix C.3, the bit-free colli-
sion search can be regarded as starting from step 25. So the number of
sufficient conditions, which might be affected by changing the value of
the free bits, will be only 23.

-A so-called technique IV bridge proposed by Sasaki et al. in [12] provides a
pair of messages which can link public constant IV of MD5 to necessary
differences for pseudo-collision attacks in [2]. The pair of messages in [12]
is shown in Table 1: (M0||M1, M0||M ′

1), which provides a pair of inter-
mediate hash values (h, h′) well-suited for pseudo-collision attacks in [2].

Finally there are roughly 23 sufficient conditions that might be affected by chang-
ing the value of the free bits. For one collision on MD5, roughly 223 MD5 compu-
tations are necessary. Hence, for t-bit-free collisions, 223×2t

MD5 computations
are necessary. It seems that 1-bit-free collision with a complexity 246 is practical.

Bit-Free Collision: Application to APOP Attack 13

Table 1. One example of 1-bit-free collision on MD5

(M0||M1||M2, M0||M ′
1||M2) is a 1-bit-free collision, where the free bit locates at the

24-th bit of m15 of M2. Denote by md5 the compression function of MD5.
h = md5(md5(IV,M0), M1) and h′ = md5(md5(IV,M0), M ′

1). h and h′ is well-suited
for pseudo-collision attacks on MD5 [2]: md5(h, M2) = md5(h′, M2).

M0 m4=0x37373936 m5=0x3433302d m6=0x38312d35 m7=0x61704035

m8=0x6f777373 m9=0x645f6472 m10=0x63657465 m11=0x5f726f74

m12=0x2e636264 m13=0x6976746d m14=0x632e7765 m15=0x73752e61

m0=0x986e1da4 m1=0x83707d06 m2=0xa86e1ddd m3=0xe264eedb

M1 m4=0xff68e19f m5=0x120ea5b3 m6=0x7437d3e2 m7=0x600f543d

m8=0x7c63c5ab m9=0xe9ead9d9 m10=0xa9b5c51e m11=0xc309f623

m12=0xfd534f1e m13=0xad33c7ad m14=0xfd0380c6 m15=0x7745f36a

m′
0=0x986e1da4 m′

1=0x83707d06 m′
2=0xa86e1ddd m′

3=0xe264eedb

M ′
1 m′

4=0xff68e19f m′
5=0x120ea5b3 m′

6=0x7437d3e2 m′
7=0x600f543d

m′
8=0x7c63c5ab m′

9=0xe9ead9d9 m′
10=0xa9b5c51e m′

11=0x4309f623

m′
12=0xfd534f1e m′

13=0xad33c7ad m′
14=0xfd0380c6 m′

15=0x7745f36a

h h[a] = 0xbd7ade50; h[b] = 0xe17a619d; h[c] = 0x8e940937; h[d] = 0xfd4af95f;
h′ h′[a] = 0x3d7ade50; h′[b] = 0x617a619d; h′[c] = 0x0e940937; h′[d] = 0x7d4af95f;

m0 = 0xc0797ae2; m1 = 0xe95d42e6; m2 = 0x49fe29af; m3 = 0x3329c9a9;
M2 m4 = 0xa790a55d; m5 = 0x783e6d3; m6 = 0xb906c7b1; m7 = 0x2d63e951;

m8 = 0x9edac296; m9 = 0x26afe101; m10 = 0xd4cfc4fb; m11 = 0xcb0d1667;
m12 = 0x77b75eab; m13 = 0xea993a34; m14 = 0x8c9868ae; m15 = 0x7effffff;

24-th bit of m15 of M2 is free bit: m15 = 0x7effffff or 0x7fffffff.

We implement 1-bit-free collision search. Surprisingly, it takes only 12 hours by
12 computers on average to generate 1-bit-free collision, which is much faster
than the usual time for 246 computations. One reason is that the complexity
calculated by counting the number of sufficient conditions is greater than the
precise complexity. Moreover, due to the biased bit position of sufficient con-
ditions, since all sufficient conditions are located in only MSB of intermediate
values, the complexity should be less than 246.

One example of generated 1-bit-free collision is shown in Table 1.

4.3 Bit-Free-Collision Attacks on MD4

We will also apply bit-free-collision attacks on MD4 [9]. For the specification of
MD4, refer to Appendix B.
Pre-determine the bit position of the free bits:

Similarly with MD5 case, considering the application to APOP attack, we
set the free bits at the last 8-bit positions of messages.

A well-suited differential path for collision attacks on MD4:
We determine to use the differential path on MD4 in [13] detailed in Ap-
pendix C.4, since it has the minimum number of sufficient conditions which
might be affected by changing the value of the free bits to the best of our
knowledge.

14 L. Wang et al.

Table 2. One example of 3-bit-free collision on MD4

m0 = 0x3938313c; m1 = 0xbfdc10ea; m2 = 0xc5708671; m3 = 0xa0196be0;
m4 = 0xa8d2a83a; m5 = 0xfd15dd85; m6 = 0x992e75bc; m7 = 0xabc6ccb8;

M0 m8 = 0x6f6fd206; m9 = 0xfd303797; m10 = 0x764081f6; m11 = 0xd6821ee2;
m12 = 0xcc7e0ed5; m13 = 0x53c72d75; m14 = 0x446d4fe9; m15 = 0x1854dfdc;
m0 = 0x182994f8; m1 = 0xc989fe5e; m2 = 0xe3e086f0; m3 = 0x17eb1082;
m4 = 0x562a7af6; m5 = 0xa6f0e339; m6 = 0xc46682a8; m7 = 0xb817cfa4;

M1 m8 = 0xe5a24a72; m9 = 0x8eca35be; m10 = 0x12c6229e; m11 = 0xaf84be49;
m12 = 0x1a94a2a5; m13 = 0x8a2386b0; m14 = 0x76d2a8b1; m15 = 0x003effff;
27-th, 28-th and 29-th bits of m15 of M1 are the 3-free bits:
m15=0x003effff, 0x083effff, 0x103effff, 0x183effff, 0x203effff,
0x283effff, 0x303effff, 0x383effff

Here we will show one 3-bit-free collision example (M0||M1, M0||(M1 + Δ)),
where M0 and M1 have been shown in Table 2. The message difference ΔM
(M ′

1 −M1) is (Δm0 = 228, Δm2 = 231, Δm4 = 231, Δm8 = 231, Δm12 = 231).
No matter what the value of the 3-free bits (27, 28, 29-th bits of m15 of M1) is,
MD4(M0||M1) = MD4(M0||(M1 + ΔM)).

5 Application to APOP Attacks

5.1 Overview of Our Contribution

Previous APOP attacks [6] [11] [12] are chosen challenge attacks. The attacker
will impersonate the server and send chosen challenges to the user. Imperson-
ating the server takes a risk that the user may suspect being attacked by the
following situation: (a) the user does not get a new email for a long time if
the attacker continuously impersonates the server; (b) the user get a new email
delayed even when the attacker impersonates the server from time to time. To
lower the probability that the attack will be detected, the number of imperson-
ation should be reduced. To achieve this, the number of necessary challenges
has to be reduced. This section will utilize bit-free collisions on MD5 to reduce
the number of necessary chosen challenges. As shown in Section 4.2, 1-bit-free-
collision attack on MD5 is practical. We will adopt 1-bit-free-collisions on MD5
to improve previous APOP attacks. The number of necessary challenges is al-
most half -reduced. For one password character, our attack needs 27 pairs of
challenges in the worst case, while previous APOP attack needs (28 − 1) pairs
of challenges.

5.2 Improved APOP Attack

In this section, we will detail how to improve previous APOP attacks utilizing
bit-free-collisions. Our attacks will also recover the password characters one by
one, following previous attacks. Our attack procedure with a comparison with
previous attacks has been shown in Table 3.

Bit-Free Collision: Application to APOP Attack 15

Table 3. Comparison between our attack and previous attacks
Denote by pr the password characters which have been recovered. De-
note by p a password character which is going to be recovered. Note
that the online work and offline work are parallel and independent.

Our procedure
Our attack utilizes 1-bit-free collision. Set
the bit position of the free bit in p, which
will divide the p into two parts: 1-free bit
and 7-non-free bits denoted as pf and pnf ,
respectively. For simplicity, we assume that
the 1-free bit locates at MSB of p.

Stage 1: recover the value of pnf .
-Chosen challenge collection (offline)

1. For pnf = 0000000 to 1111111
(7-non-free bits)

2. Generate a pair of challenges
(C, C′): (C||pr||pf ||pnf , C′||
pr||pf ||pnf) is a 1-bit-free col-
lision.

3. Store (C, C′, pnf) to Table T .
4. End For

-Impersonating as server (online)
If T is not NULL, then
1. Pick an element (C, C′, pnf)

from T .
2. Erase (C, C′, pnf) from T .
3. Send C to the user to obtain

the response R.
4. Send C′ to the user to obtain

the response R′.
5. If R = R′, then the current

value pnf is the true 7-non-
free bits of p. Goto Stage 2.

6. If R �= R′, continue to run
Stage 1.

Else, the attacker does not imper-
sonate. Continue to run Stage 1.

Stage 2: recover the value of pf .
1. Guess the 1-free bit is 0.
2. Generate a pair of challenges

(C, C′) such that (C||pr||0||pnf ,
C′||pr||0||pnf) is a collision.

3. Send C to the user to obtain the
response R.

4. Send C′ to the user to obtain the
response R′.

5. If R = R′, the value of pf is 0.
Otherwise, the value is 1.

6. Halt the program.

Previous procedure

-Chosen challenge collection (offline)
1. For p=00000000 to 11111111 (8

bits)
2. Generate a pair of challenges

(C, C′): (C||pr||p, C′||pr||p) is a
collision.

3. Store (C, C′, p) to Table T .
4. End For

-Impersonating as server (online)
If T is not NULL, then
1. Pick an element (C, C′, p) from T .
2. Erase (C, C′, p) from T
3. Send C to the user to obtain the

response R.
4. Send C′ to the user to obtain the

response R′.
5. If R = R′, then the current value

p is the target password character.
Halt the program.

6. If R �= R′, continue to run the pro-
gram.

Else, the attacker does not imperson-
ate. Continue to run the program.

16 L. Wang et al.

As shown in Table 3, our procedure generates 27 chosen challenge pairs at Step
1 of the offline phase and 1 chosen challenge pair at Step 2 of Stage 2, whereas,
the previous procedure generates 28 chosen challenge pairs at Step 1 of the offline
phase. Hence, the number of chosen challenges in our attack is roughly half of
the previous attack. Note our attack needs to generate 1-bit-free collisions. This
requires higher complexity than generating collisions, but can be computed at
offline. In the real protocol, it is typical that the protocol is triggered by the user,
not by the server (or the attacker impersonating the server). Therefore, to make
the user provide the responses of chosen challenges, the attacker needs to wait
for the user’s access requests. Such a waiting time might be long, e.g., half day.
During this time, the attacker can process the offline part in parallel. Since 1-
bit-free collisions of MD5 can be generated in 12 hours with 12 PCs as described
in Section 4.2, we can conclude that the extra cost of offline complexity has less
impact than reducing the number of chosen challenges in the real environment.

Application to APOP-MD4
Suppose APOP utilizes MD4 instead of MD5. As shown in Section 4.3, 3-bit-free
collisions on MD4 can be found practically. For APOP-MD4 case, the attacker can
adopt similar attack procedurewith Table 3:first recover the non-free bits and then
recover the free bits. So for one password character (8-bit long) in the worst case,
(28−3−1) pairs of challenges are necessary to recover the (8−3)-non-free bits, and
23 pairs of challenges are necessary to recover the 3-free bits. In total, the number
of necessary challenges is 71 for one password character in the worst case, while
previous attacks need 510 challenges. So the number of necessary challenges has
been reduced by a factor of 7.2 compared with previous attacks.

6 Conclusion and Discussion

In this paper, we presented the first approach of reducing the number of cho-
sen challenges in the APOP attacks. The newly proposed variant of collision
“bit-free collision” enabled us to achieve this. Roughly speaking, when t-bit-free
collisions are available, the number of chosen challenges becomes 1/2t compared
to the previous attacks. We showed how to generate t-bit-free collisions in general
case, 1-bit-free collisions on MD5, and 3-bit-free collisions on MD4 with giving
examples of generated bit-free collisions on MD5 and MD4. We applied bit-free
collisions to APOP attacks, and proposed the improved attack procedure.

Finallywewould like todiscuss potentialapplicationsof bit-free collisions,which
will be our future work. Here we will give one application on distinguishing a com-
pression function family from a random function family. Moreover,all the elements
of the compression function family share the same structure but differ in IV val-
ues. During interacting with the distinguisher, each of the two families changes its
element to calculate responses from time to time. Suppose the attacker has enough
offline computational power. The distinguishing attack procedure is as follows.

1. Locate the free bits in IV , then guess the bit-values of non-free bits of IV , and
finally generate a t-bit-free collision (M, M ′) on the compression function.

Bit-Free Collision: Application to APOP Attack 17

2. Send M and M ′ to a oracle to obtain responses R and R′ respectively.
3. If R is equal to R′, then the oracle is the compression function family.

Denote by n the bit-length of IV . Suppose the distinguisher uses t-bit-free colli-
sions. The bit-length of non-free bits is (n− t), so if the oracle is the compression
function family, after 2n−t pairs of messages are queries, a pair of colliding re-
sponses will be obtained with non-negligible probability. On the other hand, a
pair of colliding responses will be obtained after roughly 2n pairs of messages are
queried. Consequently, utilizing bit-free collisions, the distinguisher can succeed
with non-negligible probability with an online rough complexity 2n−t+1 queries.

We expect more applications of bit-free collisions can be found in future.

References

1. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD-5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

3. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

4. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

5. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006 /105, http://eprint.iacr.org/2006/105.pdf

6. Leurent, G.: Message freedom in MD4 and MD5 collisions: Application to APOP.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309–328. Springer, Heidel-
berg (2007)

7. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

8. Myers, J., Rose, M.: Post Office Protocol - Version 3. RFC 1939 (Standard), Up-
dated by RFCs 1957, 2449 (May 1996),
ftp://ftp.isi.edu/in-notes/rfc1939.txt

9. Rivest, R.L.: The MD4 Message Digest Algorithm. Request for Comments (RFC
1320), Network Working Group (1992)

10. Rivest, R.L.: The MD5 Message Digest Algorithm. Request for Comments (RFC
1321), Network Working Group (1992)

11. Sasaki, Y., Yamamoto, G., Aoki, K.: Practical Password Recovery on an MD5
Challenge and Response. Cryptology ePrint Archive, Report 2007/101

12. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: Security of MD5 challenge and re-
sponse: Extension of APOP password recovery attack. In: Malkin, T.G. (ed.) CT-
RSA 2008. LNCS, vol. 4964, pp. 1–18. Springer, Heidelberg (2008)

13. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: New message difference for MD4. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 329–348. Springer, Heidelberg
(2007)

14. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

15. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://eprint.iacr.org/2006/105.pdf
ftp://ftp.isi.edu/in-notes/rfc1939.txt

18 L. Wang et al.

A Definition of Neutral Bits [1]

Biham and Chen proposed a concept neutral bit to speed up the collision search
on hash functions. Here we will give a brief description. For more detailed de-
scription, refer to [1].

Definition 2. [1] For a pair message M0 and M1, denote by Δi the difference
of intermediate chaining variables at i-th step during hash computations. The
j-th bit of M0 and M1 is a neutral bit with respect to M0 and M1 up to i-th step
if it can satisfy the following property: M ′

0 and M ′
1 are obtained by flipping the

j-th bit of M0 and M1, respectively, and the Δ′
i of M ′

0 and M ′
1 is equal to Δi of

M0 and M1.

B Specification of MD5 and MD4

MD5 [10] and MD4 [9] map arbitrary length messages to 128 bit-length hash di-
gests. At first, the input message is padded and divided into 512-bit blocks. Here
we will omit the description of padding rule. Then the message blocks will be
sent to a primitive called compression function sequentially and hashed. A fixed
128-bit constant initial value (IV) and M1 will be hashed by the compression
function, which outputs a 128 bit-length H1. Then H1 and M2 will be hashed
by the compression function. After the last message block is hashed, the output
of the compression function will be the hash digest.

In the following, we will briefly describe the compression functions of MD5
and MD4 respectively.

Compression function of MD5
The message block M and the intermediate value H will be divided into 32-bit
values denoted as (m0, . . . , m15) and (a0, b0, c0, d0) respectively. The compression
function consists of 64 steps, regrouped into four 16-step rounds. Each step is
defined as follows:

ai = di−1, ci = bi−1, di = ci−1,
bi = bi−1 + (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,

where mk is one of (m0, . . . , m15), the index k being given by a permutation of
{0, . . . , 15} depending on the round, t is a constant defined in each round, ≪ si

means a left-rotation by si bits, and f is a Boolean function depending on the
round.

1R: f(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)
2R: f(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
3R: f(X, Y, Z) = X ⊕ Y ⊕ Z
4R: f(X, Y, Z) = (X ∨ ¬Z)⊕ Y

The final output is (a0 + a64, b0 + b64, c0 + c64, d0 + d64).

Bit-Free Collision: Application to APOP Attack 19

Compression function of MD4
The differences between MD5 and MD4 are the following:

- MD4 consists of 48 steps regrouped into three 16-step rounds.
- Each step is defined as: bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,
where mk is given by different round permutations.
- In the 2nd round: f(X, Y, Z) = (X ∧ Y) ∨ (Y ∧ Z) ∨ (X ∧ Z).

C Previous Related Collision Attacks on MD5 and MD4

C.1 Wang et al.’s Differential Collision Attack

Current popular collision attack on hash functions are mainly differential attacks
following the strategy proposed by Wang et al. [15] [14]. Here we will describe
the procedure of collision attacks.

1. Find the “Message Difference (ΔM)” that yields a collision with high prob-
ability. Let M and M ′ be a pair of messages that yield a collision. Differ-
ence ΔM is defined to be the value yielded by subtracting M from M ′:
ΔM = M ′ −M .

2. Determine how the impact of ΔM propagates. The propagation of the mes-
sage difference at all intermediate statements is fixed and called the “Differ-
ential Path (DP).”

3. Derive “Sufficient Conditions (SC)” from differential path to guarantee that
the message difference will propagate following the differential path at all
intermediate statements.

4. Apply the technique called “Message Modification (MM)” such that a ran-
domly selected message can be modified to make several sufficient conditions
be satisfied.

5. Search a message that satisfies all SCs as follows: first randomly select a
message, then modify it by message modification to make several sufficient
conditions satisfied, and finally check whether the other sufficient conditions
are satisfied or not. Denote the obtained message as M .

6. Calculate M ′ = M + ΔM . M and M ′ will be a collision pair.

Complexity of collision attacks
In the above attack procedure, the first three steps are pre-stage works before
searching collisions, and they are carried out only once. So the complexity of
these three steps is not counted into the complexity of the collision attack. In
steps 4 and 5, based on the technique MM, the SCs are divided into two cases: 1)
the SCs can be satisfied by applying MM to any randomly selected message; 2)
the SCs have to be satisfied by testing randomly selected messages, that is the
exhaustive search. So the current popular approach of calculating the complexity
of collision attacks is counting the number of the SCs of the second case. Denote
the hash function as H . Suppose there are q SCs of the second case. Then the
complexity of the collision attack is roughly regarded as 2q H computations.

20 L. Wang et al.

C.2 Pseudo-Collision Attacks on MD5

A pseudo-collision on the compression function of MD5 has been proposed by
Den Boer and Bosselaers in [2], where the differences exist in the intermediate
hash values instead of the message blocks. Denote the intermediate hash value
as (a0, b0, c0, d0). The XOR differences are

(Δa0, Δb0, Δc0, Δd0) = (0x80000000, 0x80000000, 0x80000000, 0x80000000).

Moreover, An extra condition is that the MSBs of b0, c0 and d0 should be equal.
The sufficient conditions are as follows:

1R and 2R: bi,31 = bi−1,31 (1 ≤ i ≤ 31);
4R: bi,31 = bi−2,31 (48 ≤ i ≤ 63).

In total, there are 46 sufficient conditions.

C.3 Tunnel Technique

We used “Q9 tunnel” in [5], which are based the local collision from step 8 until
step 12. The details are shown in Table 4. The crucial idea of Q9 tunnel is that
for any message m8, the chaining variables after the first round will remain the
same by modifying only m9 and m12. m8, m9 and m12 are used at steps 25,
28 and 32 in the second round, respectively. So the exhaustive search can start
from step 25 in the second round. The number of sufficient conditions from step
25 is 23.

Table 4. Tunnel Q9

step index message fixed chaining variables
7 m7 b8 = b7;
8 m8

9 m9 b10 = 0xffffffff ;
10 m10 b11 = 0x00000000;
11 m11

Bit-Free Collision: Application to APOP Attack 21

C.4 Collision Attacks on MD4

Sasaki et al. [13] published a differential path on MD4 with only 1 sufficient
condition located in the third round, which can not be satisfied by the message
modification. Here we will only show the sufficient conditions. The message dif-
ferences are (Δm0 = 228, Δm2 = 231, Δm4 = 231, Δm8 = 231, Δm12 = 231).

Table 5. Sufficient conditions

Chaining Conditions on bits
variables 31 - 24 23 - 16 15 - 8 7 - 0

b1 1 - a - a - - - - - 0 1
b2 1 - - - - - - - - - - - 0 - - - - - - - a - 1 - 0 - - - - - 0 1
b3 1 - - - - - - 0 - - a a 1 - - - - - - - 1 - 0 - 0 - - - - - 1 0
b4 1 - - - - - - 1 a a 1 0 0 - - - - - - - 0 - 1 a 1 a a a a - - -
b5 a - - - - - - 0 1 1 0 0 0 a - - - - - - 0 - 0 1 1 1 1 1 1 - - -
b6 0 - - - - - - 1 1 1 1 1 0 0 - - - - - - - - 0 0 0 0 0 0 0 a a -
b7 0 - - - - - 1 1 0 0 - 0 1 0 - - - - - - - - 0 1 1 1 1 1 1 1 1 -
b8 1 - - - - - a 0 0 0 - 1 0 1 - - - - - 0 - - 0 0 0 0 0 0 1 0 0 -
b9 0 a a - a a 0 1 0 1 - - - - - - - - - a - - 1 1 1 1 0 1 1 1 1 -
b10 0 1 1 - 1 0 0 - 1 1 - - - - - - - - - 1 - - - - - - - - - - - -
b11 0 0 0 - 1 1 0 - 1 1 - - - - - - - - - 0 - - - - - - - - - - - -
b12 0 1 1 a 0 0 1 - - - - - - - - - - - - 1 - - - - - - - - - - - -
b13 - - 1 0 - - 0 - - - - - - - - - - - - 0 - - - - - - - - - - - -
b14 - - 0 0 - - 0 - - - - - - - - - - - - 0 - - - - - - - - - - - -
b15 a - 1 1 - - 1 -
b16 1 - - a -
b17 b - - 0 -
b18 b - - c -
b19 - - - a -
b20 a -
b21 0 -
b22 c -
b23 a -
b24 -
· · ·
b33 0 -
· · ·

The notation ‘0’ stands for the conditions bi,j = 0, the notation ‘1’
stands for the conditions bi,j = 1, the notation ‘a’ stands for the con-
ditions bi,j = bi−1,j , ‘b’ stands for the condition bi,j �= bi−1,j and ‘c’
stands for the condition bi,j = bi−2,j .

Impossible Boomerang Attack for Block Cipher
Structures

Jiali Choy and Huihui Yap

DSO National Laboratories
20 Science Park Drive, Singapore 118230

{cjiali,yhuihui}@dso.org.sg

Abstract. Impossible boomerang attack [5] (IBA) is a new variant of
differential cryptanalysis against block ciphers. Evident from its name,
it combines the ideas of both impossible differential cryptanalysis and
boomerang attack. Though such an attack might not be the best at-
tack available, its complexity is still less than that of the exhaustive
search. In impossible boomerang attack, impossible boomerang distin-
guishers are used to retrieve some of the subkeys. Thus the security of
a block cipher against IBA can be evaluated by impossible boomerang
distinguishers. In this paper, we study the impossible boomerang distin-
guishers for block cipher structures whose round functions are bijective.
Inspired by the U-method in [3], we provide an algorithm to compute
the maximum length of impossible boomerang distinguishers for general
block cipher structures, and apply the algorithm to known block cipher
structures such as Nyberg’s generalized Feistel network, a generalized
CAST256-like structure, a generalized MARS-like structure, a general-
ized RC6-like structure, etc.

Keywords: Block Ciphers, Impossible Boomerang Attack, Impossible
Boomerang Distinguishers.

1 Introduction

Differential and linear cryptanalysis are the most common cryptanalytic tools
against block ciphers. Provable security against differential and linear cryptanal-
ysis has been an important consideration in the design of block ciphers. However,
this is not sufficient to guarantee the security of the block ciphers as they may be
vulnerable to other types of cryptanalysis. Analysis of new cryptanalytic tech-
niques is thus always desirable since it enhances the evaluation of the security
of a block cipher and the design of more secure ciphers.

Impossible differential cryptanalysis and boomerang-type attacks (including
the boomerang, amplified boomerang and rectangle attacks as well as their
related-key variants) have been used in the cryptanalysis of many block ciphers.
For instance, a 6-round impossible differential attack was mounted on MISTY1
in [2] recently while a full-round related-key rectangle attack was applied to
the KASUMI cipher [1]. Hence the importance of these cryptanalytic techniques
cannot be undermined.

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 22–37, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Impossible Boomerang Attack for Block Cipher Structures 23

In [5], a new extension of differential cryptanalysis, which J. Lu calls the
impossible boomerang attack, was proposed. This attack combines the ideas of
impossible differential cryptanalysis and boomerang attack, and makes use of
an impossible boomerang distinguisher. Similar to a boomerang attack, a block
cipher E is treated as two sub-ciphers E0 ◦ E1. Two (or more) differentials with
probability 1 for E0 and two (or more) differentials with probability 1 for E1

are used, where the XOR of the intermediate differences of these differentials is
not equal to zero. In [5], the impossible boomerang attack was used to break
6-round AES-128, 7-round AES-192 and 7-round AES-256 in a single key attack
scenario, and 8-round AES-192 and 9-round AES-256 in a related-key attack
scenario involving two keys.

As mentioned in [5], the advantages of the IBA over the boomerang attacks are
analogous to those of impossible differential cryptanalysis over differential crypt-
analysis. A block cipher resistant to boomerang-type attack will not necessarily
be resistant against an IBA. In boomerang-type distinguishers, one generally
assumes that the output of one intermediate round of the cipher is uniformly
distributed and is independent from that of the previous rounds. On the other
hand, an impossible boomerang distinguisher does not require this assumption,
which is often not the case. Therefore, an impossible boomerang distinguisher
seems more reasonable than boomerang-type distinguishers [5].

Though we can always obtain an impossible differential from an impossible
boomerang distinguisher for the same number of rounds, this is not true for their
variants in a related-key attack scenario. As explained in [5], the flexibilities in
choosing the key differences may enable more rounds of a block cipher to be
broken using a related-key impossible boomerang attack. Since related-key IBA
is a variant of the basic IBA, we will be concentrating on the study of impossible
boomerang distinguishers which form the core of IBA.

Inspired by the U-method in [3], we introduce the UB-method and provide
an algorithm to compute the maximum length of impossible boomerang distin-
guishers and implement it on some selected block ciphers. As we shall see later
on, the maximum length for impossible boomerang distinguishers are equal to
that for impossible differential distinguishers for certain ciphers, increasing the
likelihood that IBA will be a feasible attack on them. Although the impossi-
ble boomerang attack may not be the best known attack for some of the block
ciphers, we believe that the results are important and useful, since the attack
can be applied to other block ciphers not mentioned here, and the technique
introduced in this paper can be modified and used in other works as well.

The rest of the paper is organized as follows. In Section 2, we briefly describe
the impossible boomerang attack proposed by J. Lu in [5]. Section 3 introduces
some notions, including the UB-method, for the impossible boomerang attack.
In Section 4, we present some additional definitions related to the UB-method
and use them to determine an expression for the maximum length of impossible
boomerang characteristics. An algorithm is proposed in Section 5 to compute the
maximum length of impossible boomerang distinguishers for any general block

24 J. Choy and H. Yap

cipher structure with bijective round functions. The algorithm is then applied
to various block ciphers and the results are summarized in Section 6.

2 The Impossible Boomerang Attack

The attack, described in [5], combines the boomerang attack with impossible
differential cryptanalysis, and is called the impossible boomerang attack (IBA).

2.1 Impossible Boomerang Distinguisher

Similar to a boomerang distinguisher, an impossible boomerang distinguisher,
as depicted in Figure 1, treats a block cipher E: {0, 1}k × {0, 1}B → {0, 1}B as
two sub-ciphers E0 ◦ E1 and consists of

– a differential w → x with probability 1 for E0,
– a differential w′ → x′ with probability 1 for E0,
– a differential y → z with probability 1 for (E1)−1,
– a differential y′ → z′ with probability 1 for (E1)−1,

where w, w′, x, x′, y, y′, z and z′ are all B-bit blocks, and the condition x⊕ x′ ⊕
z ⊕ z′ �= 0 holds.

We state the following theorem from [5], which provides the theoretical ba-
sis for our proposed algorithm to compute the maximum length of impossible
boomerang distinguishers.

P

P *

w

x

y

y’

z

z’

w’

x’

P’

P’*

C

C *

C’

C’*

E0
K E 0

K

E0
K

EK
1EK

EK
 1 EK

E 0
K

1

1

Fig. 1. An impossible boomerang distinguisher

Impossible Boomerang Attack for Block Cipher Structures 25

Theorem 1. [5] Suppose that P and P ′ are B-bit blocks and K is a key for a
B-bit block cipher E, where E = E0 ◦ E1 for some E0 and E1. Let w → x and
w′ → x′ be differentials with probability 1 for E0

K , and, y → z and y′ → z′ be
differentials with probability 1 for (E1

K)−1, where x ⊕ x′ ⊕ z ⊕ z′ �= 0. Then the
following pairs of equations cannot hold at the same time:

EK(P)⊕EK(P ′) = y,

EK(P ⊕ w) ⊕EK(P ′ ⊕ w′) = y′.

The impossible boomerang distinguisher can be written as (w, w′) � (y, y′).
Note that the two differentials for E0 or E1 may be identical as long as the
condition x⊕ x′ ⊕ z ⊕ z′ �= 0 holds.

2.2 A Key Recovery Attack

IBA is a chosen plaintext attack. Let the block cipher E: {0, 1}k × {0, 1}B →
{0, 1}B be a cascade of four sub-ciphers E = Eλ ◦E0 ◦E1 ◦Eμ. Suppose Kλ and
Kμ are the guesses for the subkey used in Eλ and Eμ respectively. The basic
idea of IBA is as follows:

(1) Find an impossible boomerang distinguisher, (w, w′) � (y, y′) for E0 ◦E1.
(2) For a guess of Kλ and Kμ, compute and check whether a candidate quartet

of plaintext/ciphertext pairs ((P, C), (P ∗, C∗)), ((P ′, C′), (P ′∗, C′∗)) satisfies
the following four conditions:

Eλ
Kλ

(P)⊕Eλ
Kλ

(P ∗) = w,

Eλ
Kλ

(P ′)⊕Eλ
Kλ

(P ′∗) = w′,

(Eμ
Kμ

)−1(C) ⊕ (Eμ
Kμ

)−1(C′) = y,

(Eμ
Kμ

)−1(C∗)⊕ (Eμ
Kμ

)−1(C′∗) = y′.

(3) If the quartet does satisfy the above conditions, then discard the subkey guess
(Kλ, Kμ). Go to the previous step until the number of remaining subkeys is
almost one.

As a concluding remark for this section, the basic impossible boomerang attack
can be extended to a related-key impossible boomerang attack. Readers may
refer to [5] for more details.

3 Basic Notions for IBA

In this section, we introduce and establish notions for IBA by modifying and
extending those used in [3].

For a block cipher structure S, let the input and output of one round be
(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) respectively. Throughout this paper, we
consider S whose round function F is bijective.

26 J. Choy and H. Yap

3.1 Basic Definitions and Operations

Definition 1. [3] The n × n Encryption Characteristic Matrix E = (Eij)n×n

and n×n Decryption Characteristic Matrix D = (Dij)n×n are defined as follows.

Ei,j =

⎧⎪⎨
⎪⎩

0, if Yj is not affected by Xi,
1, if Yj is affected by Xi,
1F , if Yj is affected by F (Xi).

Di,j =

⎧⎪⎨
⎪⎩

0, if Xj is not affected by Yi,
1, if Xj is affected by Yi,
1F , if Xj is affected by F (Yi) or F−1(Yi).

Definition 2. [3] A matrix is a 1-property matrix if the number of entries 1
(�= 1F) in each column of the matrix is zero or one.

Example. Consider the CLEFIA-like block cipher structure whereby one F -
function is used for two consecutive subblocks. The transformation can be de-
scribed by

(Y1, Y2, Y3, Y4) = (F (X1) + X2, X3, F (X3) + X4, X1).

Then the encryption and decryption characteristics matrices for CLEFIA-like
block cipher structure are given by

E =

⎛
⎜⎜⎝

1F 0 0 1
1 0 0 0
0 1 1F 0
0 0 1 0

⎞
⎟⎟⎠ ,D =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 1F

0 0 0 1
1 1F 0 0

⎞
⎟⎟⎠ .

Note that the matrices are 1-property matrices.

Definition 3. [3] Given an input difference α = (α1, α2, . . . , αn), the input
difference vector a = (a1, a2, . . . , an) corresponding to α is defined as follows.

ai =

{
0, if αi = 0,
1∗, otherwise.

The output difference after r rounds for α is denoted by αr and the value of the
ith subblock of αr is written as αr

i . The corresponding difference vector after r
rounds is denoted by ar, and its ith entry is denoted by ar

i . For the decryption
process, we use the notations β, βr, βr

i ,b,br and br
i instead.

Given an input difference, the possible output differences of each subblock
after r rounds can be classified by five types of differences: zero difference, a
nonzero nonfixed difference, a nonzero fixed difference, exclusive-or of a nonzero
fixed difference and a nonzero nonfixed difference, and a nonfixed difference.
This is summarized in Table 1.

Impossible Boomerang Attack for Block Cipher Structures 27

Table 1. Entries of difference vectors and corresponding type of differences

ar
i or br

i Corresponding type of difference
0 zero difference, denoted by 0
1 nonzero nonfixed difference, denoted by δ

1∗ nonzero fixed difference, denoted by γ

2∗ nonzero fixed difference ⊕ nonzero nonfixed difference, denoted by γ ⊕ δ

t(≥ 2) nonfixed difference, denoted by ?

The set {0, 1, 1∗, 2∗} is denoted by U .
Computation of ar (similar for br) is as follows:

a1 = a · E ,
a2 = a1 · E ,

...
ar = ar−1 · E .

A multiplication of a and E (similar for b and D) is defined by

a · E = (ai)1×n · (Ei,j)n×n

= (
∑

i

ai · Ei,j)1×n

Table 2 lists all the possible cases of multiplication between an entry of the
difference vector a and an entry of the matrix E ; and addition of ai · Ei,j and
ai′ · Ei′,j.

Table 2. Multiplication (left) and addition (right)(k ∈ {0, 1, 1∗, 2∗, t}, t, t′ ≥ 2)

Multiplication (ai · Ei,j) Addition (ai · Ei,j + ai′ · Ei′,j)
k · 0 = 0 0 + k = k

k · 1 = k 1 + 1 = 2
0 · 1F = 0 1 + 1∗ = 2∗

1∗ · 1F = 1 1 + 2∗ = 3
1 · 1F = 1 1 + t = 1 + t

2∗ · 1F = 2 1∗ + t = 1 + t

t · 1F = t 2∗ + t = 2 + t

t + t′ = t + t′

In this paper, although we concentrate mainly on block ciphers with 1-property
encryption and decryption characteristics matrices, the algorithm proposed in
Section 5 can be modified for block ciphers with non 1-property matrices. We leave
the modification of the algorithm to interested readers. Here, we will just list down
the additional operations required for block ciphers with non 1-property matrices.

28 J. Choy and H. Yap

(1) Since γ ⊕ γ = 0, we have two possible cases:

1∗ + 1∗ =

{
0, if γ = γ′,
1∗, if γ �= γ′.

(2) Since γ′ ⊕ (γ ⊕ δ) = (γ′ ⊕ γ)⊕ δ, we have

1∗ + 2∗ =

{
1, if γ = γ′,
2∗, if γ �= γ′.

(3) 2∗ + 2∗ = 4.

With these new definitions, the addition operation is still always associative
except for certain special cases. For example, for the sum 1+1∗+2∗, (1+1∗)+2∗

gives 4 whereas 1 + (1∗ + 2∗) gives 2 or 3. However, in these special cases, the
sum evaluated both ways always results in a value ≥ 2 and x(∗) + t = x + t
(where t ≥ 2) which always corresponds to a ?. Furthermore, one may check
that the operation is also commutative save for a case where the resulting values
derived both ways are always ≥ 2. Therefore, to sum three or more entries,
always perform the addition from left to right. For example, 1 + 1∗ + 1∗ = 1 or
2∗ since (1 + 1∗) + 1∗ = 2∗ + 1∗.

3.2 Finding Impossible Boomerang Distinguishers

To find impossible boomerang distinguishers, from Theorem 1, we need four
differentials with probability 1 and the XOR of the output difference of each
differential must be non-zero. Also note that the two differentials for E0 or E1

may be identical.
Let UB = {0, 1, 1∗} ⊂ U . Adopting a similar approach to [3], we may use

the elements of UB to find impossible boomerang characteristics. We call this
method related to the impossible boomerang attack the UB-method. In Table
3, we summarize all possible cases that satisfy the necessary conditions stated
above.

Therefore, any of the 16 cases above gives us an impossible boomerang char-
acteristic for r + r′ rounds, (Δα, Δα′) �r+r′ (Δβ, Δβ′).

Example. Consider the CLEFIA-like block cipher structure. Let α = (0, 0, 0, γ),
α′ = (0, 0, 0, γ′), β = (γ′′, 0, 0, 0) and β′ = (γ′′′, 0, 0, 0), where γ ⊕ γ′ �= γ′′ ⊕
γ′′′. It can be checked that α3

1 = γ, α′3
1 = γ′, β4

1 = γ′ and β′4
1 = γ′′. Hence,

corresponding to Case γγγγ in Table 3,

((0, 0, 0, γ), (0, 0, 0, γ′)) �7 ((γ′′, 0, 0, 0), (γ′′′, 0, 0, 0)),

is an impossible boomerang distinguisher with length 7 for CLEFIA.

Impossible Boomerang Attack for Block Cipher Structures 29

Table 3. Possible output differences (αr
i , α

′r
i) for encryption and (βr′

i , β′r′
i) for

decryption

Case Value of (αr
i , α

′r
i) Value of (βr′

i , β′r′
i) Condition

δ000 (δ, 0) (0, 0) -
00δ0 (0, 0) (δ, 0) -
γ000 (γ, 0) (0, 0) -
00γ0 (0, 0) (γ, 0) -
γγ00 (γ, γ′) (0, 0) γ �= γ′

00γγ (0, 0) (γ, γ′) γ �= γ′

γ0γ0 (γ, 0) (γ′, 0) γ �= γ′

γγγ0 (γ, γ′) (γ′′, 0) γ ⊕ γ′ ⊕ γ′′ �= 0
0γγγ (0, γ) (γ′, γ′′) γ ⊕ γ′ ⊕ γ′′ �= 0
γγγγ (γ, γ′) (γ′′, γ′′′) γ ⊕ γ′ �= γ′′ ⊕ γ′′′

γγδ0 (γ, γ′) (δ, 0) γ ⊕ γ′ = 0
δ0γγ (δ, 0) (γ, γ′) γ ⊕ γ′ = 0
γδγ0 (γ, δ) (γ′, 0) γ ⊕ γ′ = 0
γ0γδ (γ, 0) (γ′, δ) γ ⊕ γ′ = 0
γγγδ (γ, γ′) (γ′′, δ) γ ⊕ γ′ ⊕ γ′′ = 0
γδγγ (γ, δ) (γ′, γ′′) γ ⊕ γ′ ⊕ γ′′ = 0

4 Finding the Maximum Length of Impossible
Boomerang Distinguishers

In this section, we introduce more definitions and concepts that will help us
compute the maximum length of impossible boomerang characteristics that can
be found by the UB-method.

Definition 4. [3] Let m ∈ UB. Given an input difference vector a and output
difference vector b, the maximum number of encryption and decryption rounds
with respect to a and b respectively are defined by

ME i(a, m) = max
r
{r|ar

i = m},

and
MDi(b, m) = max

r
{r|br

i = m}.

The maximum number of encryption and decryption rounds with respect to m
are defined as

ME i(m) = max
a �=0

{MEi(a, m)},

and
MDi(m) = max

b �=0
{MDi(b, m)}.

For the purpose of finding the maximum length of impossible boomerang distin-
guishers, we introduce the following definition.

30 J. Choy and H. Yap

Definition 5. Let m ∈ UB. The maximum number of encryption rounds with
respect to m and m′, denoted by ME i(m, m′), is defined as the maximum number
of rounds, r, such that there exist input difference vectors a and a′ with ar

i = m and
a′r

i = m′. Similarly, the maximum number of decryption rounds with respect to m
and m′, denoted byMDi(m, m′), is defined as the maximum number of rounds, r′,
such that there exist input difference vectors b and b′ with br′

i = m and b′r
′

i = m′.

Based on these definitions and the previous section, we may establish the fol-
lowing theorem.

Theorem 2. Consider the round function of a block cipher structure as a bijec-
tive black box. If we use the notation

M1 = max
1≤i≤n

{ME i(1, 0) +MDi(0)},

M2 = max
1≤i≤n

{ME i(0) +MDi(1, 0)},

M3 = max
1≤i≤n

{ME i(1∗) +MDi(0)},

M4 = max
1≤i≤n

{ME i(0) +MDi(1∗)},

M5 = max
1≤i≤n

{ME i(1∗) +MDi(1∗)},

then the maximum length of impossible boomerang distinguishers, M, is given
by

M = max
1≤i≤5

{Mi},

Proof. Referring to Table 3, we know thatM is the maximum length considering
all 16 cases.
Case δ000: Mδ000 = M1.
Case 00δ0: M00δ0 = M2.
Case γ000: Mγ000 = max1≤i≤n{MEi(1∗, 0) + MDi(0)}. Since ME i(1∗, 0) ≤
min{ME i(1∗),ME i(0)},

Mγ000 ≤ max
1≤i≤n

{MEi(1∗) +MDi(0)} = M3.

Case 00γ0: M00γ0 = max1≤i≤n{MEi(0) + MDi(1∗, 0)}. Since MDi(1∗, 0) ≤
min{MDi(1∗),MDi(0)},

M00γ0 ≤ max
1≤i≤n

{MEi(0) +MDi(1∗)} = M4.

Case γγ00: Mγγ00 =M3.
Case 00γγ: M00γγ =M4.
Case γ0γ0:Mγ0γ0 = max1≤i≤n{MEi(1∗, 0)+MDi(1∗, 0)}. Since ME i(1∗, 0) ≤
min{ME i(1∗),ME i(0)} and MDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

Impossible Boomerang Attack for Block Cipher Structures 31

Mγ0γ0 ≤ max
1≤i≤n

{ME i(1∗) +MDi(1∗)} =M5.

Case γγγ0: Mγγγ0 = max1≤i≤n{ME i(1∗) +MDi(1∗, 0)}. Since MDi(1∗, 0) ≤
min{MDi(1∗),MDi(0)},

Mγγγ0 ≤ max
1≤i≤n

{MEi(1∗) +MDi(1∗)} = M5.

Case 0γγγ: M0γγγ = max1≤i≤n{MEi(1∗, 0) +MDi(1∗)}. Since ME i(1∗, 0) ≤
min{ME i(1∗),ME i(0)},

M0γγγ ≤ max
1≤i≤n

{MEi(1∗) +MDi(1∗)} = M5.

Case γγγγ: Mγγγγ = M5.

Case γγδ0: Mγγδ0 = max1≤i≤n{MEi(1∗) + MDi(1, 0)}. Since MDi(1, 0) ≤
min{MDi(1),MDi(0)},

Mγγδ0 ≤ max
1≤i≤n

{MEi(1∗) +MDi(0)} = M3.

Case δ0γγ: Mδ0γγ = max1≤i≤n{MEi(1, 0) + MDi(1∗)}. Since ME i(1, 0) ≤
min{ME i(1),ME i(0)},

Mδ0γγ ≤ max
1≤i≤n

{MEi(0) +MDi(1∗)} = M4.

Case γδγ0: Mγδγ0 = max1≤i≤n{ME i(1∗, 1)+MDi(1∗, 0)}. Since ME i(1∗, 1) ≤
min{ME i(1∗),ME i(1)} and MDi(1∗, 0) ≤ min{MDi(1∗),MDi(0)},

Mγδγ0 ≤ max
1≤i≤n

{MEi(1∗) +MDi(1∗)} = M5.

Case γ0γδ: Mγ0γδ = max1≤i≤n{ME i(1∗, 0)+MDi(1∗, 1)}. Since ME i(1∗, 0) ≤
min{ME i(1∗),ME i(0)} and MDi(1∗, 1) ≤ min{MDi(1∗),MDi(1)},

Mγ0γδ ≤ max
1≤i≤n

{MEi(1∗) +MDi(1∗)} = M5.

Case γγγδ: Mγγγδ = max1≤i≤n{MEi(1∗) +MDi(1∗, 1)}. Since MDi(1∗, 1) ≤
min{MDi(1∗),MDi(1)},

Mγγγδ ≤ max
1≤i≤n

{MEi(1∗) +MDi(1∗)} = M5.

Case γδγγ: Mγδγγ = max1≤i≤n{MEi(1∗, 1) +MDi(1∗)}. Since ME i(1∗, 1) ≤
min{ME i(1∗),ME i(1)},

32 J. Choy and H. Yap

Mγγγδ ≤ max
1≤i≤n

{MEi(1∗) +MDi(1∗)} = M5.

The result now follows immediately. ��

Example. For CLEFIA, we computed ME1((0, 0, 0, 1∗), 1∗) = 3 and
MD1((1∗, 0, 0, 0), 1∗) = 4. By running through all possible difference vectors
a and b, it can be verified that ME1(1∗) = 3 and MD1(1∗) = 4. Checking
through all values of i where 1 ≤ i ≤ 4, we have

M5 = max
1≤i≤4

{MEi(1∗) +MDi(1∗)}

=ME1(1∗) +MD1(1∗)
= 7.

By computing the values of M1 to M4, we obtain M1 = M2 = 5 and M3 =
M4 = 6. These imply that M = M5 = 7. Hence, for CLEFIA, the maximum
length of impossible boomerang distinguishers that can be found in the UB
method is 7, and a corresponding 7-round impossible boomerang characteristic
is ((0, 0, 0, γ), (0, 0, 0, γ)) �7 ((γ′, 0, 0, 0), (γ′′, 0, 0, 0)), where γ′ �= γ′′.

5 An Algorithm to Compute the Length of Impossible
Boomerang Distinguishers

In this section, we present an algorithm to compute the maximum number of
rounds, M, for the impossible boomerang characteristics which can be found by
the UB-method. By modifying this algorithm, we may also identify the specific
forms of impossible boomerang distinguishers.

At the outset, we shall assume that the block cipher structure that the al-
gorithm is applied to has round functions which are bijective. Furthermore, the
encryption and decryption characteristic matrices, E and D are assumed to be
1-property matrices. We employ the same variables as in Tables 6 and 7 of [3].
They are summarized in Tables 4 and 5 below.

Table 4. The meaning of variables used in Algorithm 1. (y ≥ 0)

Variables Meanings
ei,j = 0 Ei,j = 0
ei,j = 1 Ei,j = 1 or 1F

ẽi,j = 0 Ei,j = 1 (x∗ · Ei,j = x∗ preserves ∗.)
ẽi,j = 1 Ei,j = 0 (x∗ · Ei,j = 0) or Ei,j = 1F (x∗ · Ei,j = x)

ar
i = y (resp. x) The ith entry of difference vector ar is y (resp. x∗)

âr
i = 0 The ith entry of difference vector ar has no ∗

âr
i = −1 The ith entry of difference vector ar has ∗

Impossible Boomerang Attack for Block Cipher Structures 33

Table 5. Multiplication between an entry of difference vector and an entry of matrix
in Algorithm 1

An entry c, (âr
i) of An entry d, (ẽi,j) c · d âr

i + ẽi,j = si

difference vectors of E if (si = 1) si ← 0
x∗, (−1) 0, (1) 0 0
x∗, (−1) 1F , (1) x 0
x∗, (−1) 1, (0) x∗ −1
x, (0) 0, (1) 0 0
x, (0) 1F , (1) x 0
x, (0) 1, (1) x 0

Step 1 : Input the encryption characteristic matrix E = (Eij)n×n

for i = 0 to n − 1
for j = 0 to n − 1

if Ei,j = 0, then ei,j ← 0 and ẽi,j ← 1
if Ei,j = 1, then ei,j ← 1 and ẽi,j ← 0
if Ei,j = 1F , then ei,j ← 1 and ẽi,j ← 1

Step 2 : Compute the values of MEi(m) where 0 ≤ i ≤ n − 1 and m ∈ {0, 1∗}.

MEi(0) ← 0, MEi(2) ← 0, for 0 ≤ i ≤ n − 1

/∗ The m’s values 0, 1, and 2 indicate the entries 0, 1, and 1∗ respectively. ∗/

For each input difference vector x /∗ x represents x0. ∗/
for i = 0 to n − 1

if (x0
i = 0) x̂i ← 0

else if (x0
i = 1) x̂i ← −1

MEi(x, 0) ← 0, MEi(x, 2) ← 0
r ← 0
while (there exists some index l such that xr

l ≤ 2)
for j = 0 to n − 1

tj ← 0, t̂j ← 0
/∗ tj and t̂j are the temporary parameters to compute xr+1 and x̂r+1. ∗/

for i = 0 to n − 1
tj ← tj + xr

i · ei,j

si ← x̂r
i + ẽi,j

if (si = 1) si ← 0
t̂j ← t̂j + si

r ← r + 1
xr

i ← ti, x̃r
i ← t̂i, for 0 ≤ i ≤ n − 1

for i = 0 to n − 1
if (xr

i = 0) MEi(x, 0) ← r
if (xr

i = 1 and x̂r
i = −1) MEi(x, 2) ← r

for i = 0 to n − 1
if (MEi(0) ≤ MEi(x, 0)) MEi(0) ← MEi(x, 0)
if (MEi(2) ≤ MEi(x, 2)) MEi(2) ← MEi(x, 2)

Step 3 : Compute the values of MDi(m) where 0 ≤ i ≤ n − 1 and m ∈ {0, 1∗}.

Insert the matrix D into steps 1 and 2.

Step 4 : Compute the values of MEi(1, 0) where 0 ≤ i ≤ n − 1

MEi(1, 0) ← 0, for 0 ≤ i ≤ n − 1

34 J. Choy and H. Yap

For each input difference vector x and each input difference vector y
for i = 0 to n − 1

if (x0
i = 0) x̂i ← 0

else if (x0
i = 1) x̂i ← −1

if (y0
i = 0) ŷi ← 0

else if (y0
i = 1) ŷi ← −1

MEi(x, y, 1, 0) ← 0

r ← 0
while (there exists some index l such that xr

l ≤ 2 or yr
l ≤ 2)

for j = 0 to n − 1
txj ← 0, t̂xj ← 0
tyj ← 0, t̂yj ← 0
for i = 0 to n − 1

txj ← txj + xr
i · ei,j

sxi ← x̂r
i + ẽi,j

if (sxi = 1) sxi ← 0
t̂xj ← t̂xj + sxi

tyj ← tyj + yr
i · ei,j

syi ← ŷr
i + ẽi,j

if (syi = 1) syi ← 0
t̂yj ← t̂yj + syi

r ← r + 1
xr

i ← txi, x̃r
i ← t̂xi, for 0 ≤ i ≤ n − 1

yr
i ← tyi, ỹr

i ← t̂yi, for 0 ≤ i ≤ n − 1

for i = 0 to n − 1
for j = 0 to r

if (xj
i = 1 and x̃j

i = 0 and yj
i = 0 and ỹj

i = 0) MEi(x,y, 1, 0) ← j

if (MEi(x,y, 1, 0) ≤ MEi(1, 0)) MEi(1, 0) ← MEi(x,y, 1, 0)

Step 5 : Compute the values of MDi(1, 0) where 0 ≤ i ≤ n − 1.

Insert the matrix D into step 4.

Step 6 : Compute the length M1.

Output max0≤i≤n−1{MEi(1, 0) + MDi(0)}.

Step 7 : Compute the length M2.

Output max0≤i≤n−1{MEi(0) + MDi(1, 0)}.

Step 8 : Compute the length M3.

Output max0≤i≤n−1{MEi(2) + MDi(0)}.

Step 9 : Compute the length M4.

Output max0≤i≤n−1{MEi(0) + MDi(2)}.

Step 10 : Compute the length M5.

Output max0≤i≤n−1{MEi(2) + MDi(2)}.

Step 11 : Output the length M.

Output max1≤i≤5(Mi).

Algorithm 1. To compute the length M

Impossible Boomerang Attack for Block Cipher Structures 35

6 Results for Some Block Cipher Structures

We applied Algorithm 1 to several block cipher structures such as a generalized
Feistel network, a generalized CAST256-like structure, a generalized MARS-
like structure, a generalized RC6-like structure, CLEFIA, a generalized Feistel
scheme with an substitution-permutation round function, SMS4, as well as a
Skipjack-like structure. All of them have 1-property matrices E and D. The
reader may refer to [7,9,10,4,8] for the details of these cipher structures. We also
found the specific forms of impossible boomerang characteristics which give the
maximum lengths for each structure. Even though the computer simulation was
only tested on a finite number of subblocks, we are able to generalize the results
due to the regular structural feature.

Table 6 gives the specific forms of various impossible boomerang character-
istics for each structure. Table 7 summarizes our cryptanalytic results. In both
tables, n denotes the number of subblocks and in the case of n always even, we
let n = 2m. In Table 7, we also compare the maximum lengths for the impos-
sible differential cryptanalysis (IDC) with that for the impossible boomerang
attack (IBA). As can be observed, these two maximum lengths are equal for the
generalized MARS structure.

Table 6. Impossible boomerang characteristics for some generalized Feistel networks
(All α’s, β’s non-zero, i odd, α �= α′, β �= β′)

Structure Case Impossible Boomerang Characteristics
GFNm γγγγ ((0, . . . , 0, αn), (0, . . . , 0, αn)) �3m ((β1, 0, . . . , 0), (β′

1, 0, . . . , 0))
δ000 Many

E.g. For GFN3, ((0, 0, 0, α4, 0, 0), (0, . . . , 0, α6)) �9 ((0, 0, β3, 0, 0, 0), (0, 0, β′
3, 0, 0, 0))

000δ Many
E.g. For GFN3, ((0, . . . , 0, α6), (0, . . . , 0, α′

6)) �9 ((0, β2, 0, . . . , 0), (β1, 0, . . . , 0))
Generalized CAST256 γγγγ ((0, . . . , 0, αn), (0, . . . , 0, αn)) �n2−1 ((β1, 0, . . . , 0), (β′

1, 0, . . . , 0))
Generalized MARS γγγγ ((0, . . . , 0, αn), (0, . . . , 0, αn)) �2n−1 ((β1, 0, . . . , 0), (β′

1, 0, . . . , 0))
Generalized RC6 γγγγ ((0, . . . , 0, αi, 0, . . . , 0), (0, . . . , 0, αi, 0, . . . , 0)) �4m−1

((0, . . . , 0, βi+1, 0, . . . , 0), (0, . . . , 0, β′
i+1, 0, . . . , 0))

CLEFIA γγγγ ((0, 0, 0, α4), (0, 0, 0, α4)) �7 ((β1, 0, 0, 0), (β′
1, 0, 0, 0))

GFSP4 γγγγ ((α1, 0, 0, 0), (α1, 0, 0, 0)) �15 ((0, 0, 0, β4), (0, 0, 0, β′
4))

SMS4 γγγγ ((α1, 0, 0, 0), (α1, 0, 0, 0)) �5 ((0, 0, 0, β4), (0, 0, 0, β′
4))

Skipjack-like 00γγ Many
E.g. ((0, 0, 0, α4), (0, 0, 0, α4)) �12 ((0, β2, 0, 0), (0, β′

2, 0, 0))

6.1 Additional Comments

Generalized CAST256 : In [3] and [8], the authors conjectured that the maxi-
mum length of the impossible differential distinguisher for generalized CAST256
is n2−1. This value was derived based on Figure 3 in [8]. In contrast, we looked at
the structure shown in Figure 1 of [7]. Based on this diagram, we found the max-
imum length of the impossible differential distinguisher to be n2 + n− 1 instead.

GFSP4 : In [10], the authors only gave the upper bounds of the maximum
differential/linear probabilities of 16-round GFSP4. However, in the light of our

36 J. Choy and H. Yap

Table 7. Summary of our results. (A: The maximum number (r) of rounds for impos-
sible differential characteristics. B: The maximum number (r) of rounds for impossible
boomerang characteristics.)

Block Cipher Structure IDC IBA
A Comment B Comment

GFNm r = 3m + 2 (m ≥ 3) [3] r = 3m (m ≥ 2) This paper
Generalized CAST256 r = n2 + n − 1 (n ≥ 3) This paper r = n2 − 1 (n ≥ 3) This paper
Generalized MARS r = 2n − 1 (n ≥ 3) [3] r = 2n − 1 (n ≥ 3) This paper
Generalized RC6 r = 4m + 1 (m ≥ 2) [3] r = 4m − 1 (m ≥ 2) This paper

CLEFIA 9 [9] 7 This paper
GFSP4 19 This paper 15 This paper
SMS4 6 This paper 5 This paper

Skipjack-like 15 [8] 12 This paper

results, both for IDC and IBA, we recommend the use of at least 25 rounds for
this scheme.

SMS4 : While the maximum lengths of the distinguishers found for IDC and
IBA are quite small, note that this analysis only considers the general structure
of the ciphers without taking into account the specific properties of the round
functions. For example, for SMS4, a 12-round impossible differential character-
istic was published in [6], formed by combining two 6-round differentials. Our
results, however, give a definite lower bound for the number of rounds that can be
attacked with an impossible differential or impossible boomerang distinguisher.

Skipjack-like structure : Our approach also works for the truncated case.
With reference to Figure 1 of [8], a 15-round impossible truncated differential
was found in [8], which agrees with the result which we found by the U-method.
By applying our Algorithm 1, we unveiled a 12-round impossible truncated
boomerang distinguisher.

7 Conclusion

In this paper, we introduced a widely applicable method, called the UB-method,
to find various impossible boomerang characteristics for general block cipher
structures. We presented Algorithm 1 which is used to determine the maxi-
mum length of impossible boomerang distinguishers that can be found by the
UB-method. Algorithm 1 was then applied to find the maximum length of im-
possible boomerang distinguishers for several known block cipher structures. By
modifying Algorithm 1, we found the specific forms of impossible boomerang
characteristics for each structure.

While our research presented in this paper only considers the general struc-
ture of the ciphers, it provides a definite lower bound for the maximum length
of an impossible boomerang distinguisher. It is likely that longer ones may be
found when the specific properties of the round functions are taken into account.

Impossible Boomerang Attack for Block Cipher Structures 37

Furthermore, we saw that the lower bound for the maximum length of an impos-
sible boomerang distinguisher is comparable to that of an impossible differential
characteristic for some block ciphers. Since impossible boomerang attack may
be a feasible attack on certain ciphers, our results will be useful in the study of
the latter, which will in turn shed more light on variants of the attack such as
the related-key version.

Acknowledgements

The authors would like to thank Khoongming Khoo for his helpful comments
and suggestions, and also the anonymous reviewers for their valuable comments.

References

1. Biham, E., Dunkelman, O., Keller, N.: A related-key rectangle attack on the full
KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

2. Dunkelman, O., Keller, N.: An improved impossible differential attack on MISTY1.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 441–454. Springer,
Heidelberg (2008)

3. Kim, J., Hong, S., Sung, J., Lee, S., Lim, J., Sung, S.: Impossible Differential
Cryptanalysis for Block Cipher Structures. In: Johansson, T., Maitra, S. (eds.)
INDOCRYPT 2003. LNCS, vol. 2904, pp. 97–106. Springer, Heidelberg (2003)

4. Liu, F., Ji, W., Hu, L., Ding, J., Lv, S., Pyshkin, A., Weinmann, R.: Analysis of
the SMS4 block cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 158–170. Springer, Heidelberg (2007)

5. Lu, J.: Cryptanalysis of Block Ciphers., Technical Report RHUL-MA-2008-19)
(July 30, 2008) http://www.rhul.ac.uk/mathematics/techreports

6. Lu, J.: Attacking reduced-round versions of the SMS4 block cipher in the chi-
nese WAPI standard. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS,
vol. 4861, pp. 306–318. Springer, Heidelberg (2007)

7. Moriai, S., Vaudenay, S.: On the Pseudorandomness of Top-Level Schemes of Block
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000)

8. Sung, J., Lee, S.-J., Lim, J.-I., Hong, S.H., Park, S.-J.: Provable Security for the
Skipjack-like Structure Against Differential Cryptanalysis and Linear Cryptanal-
ysis. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 274–288.
Springer, Heidelberg (2000)

9. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossi-
ble Differential Cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 398–411. Springer, Heidelberg (2008)

10. Wu, W., Zhang, W., Lin, D.: On the Security of Generalized Feistel Scheme with SP
Round Function. International Journal of Network Security 3(3), 215–224 (2006)

http://www.rhul.ac.uk/mathematics/techreports

Improved Distinguishing Attacks on HC-256�

Gautham Sekar1,2,�� and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

{Gautham.Sekar,Bart.Preneel}@esat.kuleuven.be

Abstract. The software-efficient stream cipher HC-256 was proposed
by Wu at FSE 2004. Due to its impressive performance, the cipher was
also a well-received entrant to the ECRYPT eSTREAM competition.
The closely related stream cipher HC-128, also designed by Wu, went on
to find a place in the final portfolio of the eSTREAM contest. The cipher
HC-256 is word-oriented, with 32 bits in each word, and uses a 256-bit key
and a 256-bit IV. Since HC-256 was published in 2004, barring a cache-
timing analysis of unprotected implementations, there has not been any
attack on the cipher. This paper makes two contributions. First, we build
a class of distinguishers on HC-256, each of which requires testing the
validity of about 2276.8 linear equations involving binary keystream vari-
ables. Thereby, our attacks improve the data complexity of the hitherto
best-known distinguisher (presented by the designer along with the spec-
ifications of the cipher) by a factor of about 12. We also present another
observation that, we believe, can be further exploited to build more ef-
ficient distinguishing attacks on the cipher. It is hoped that the results
of this paper would also find use in future security evaluations of the
closely-related ciphers HC-128 and HC-256’.

1 Introduction

HC-128 and HC-256 are software-oriented synchronous stream ciphers designed
by Wu [15,16]. HC-256 was published in 2004. The ciphers were also submit-
ted to the ECRYPT eSTREAM competition [5] in 2005. On the Pentium M
processor, the speed of HC-128 reaches 3.05 cycles/byte, while HC-256 requires
about 4.15 cycles/byte on the Pentium 4. Due to these impressive performance
figures, the ciphers were seen as forerunners in the stream cipher contest. In the
absence of attacks, both HC-256 and HC-128 were advanced to Phase III of the
competition as ‘focus’ ciphers. Since the main focus of eSTREAM was 128-bit
security, HC-128 was recently selected for the final eSTREAM portfolio under

� This work was supported in part by the IAP Programme P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), and in part by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II.

�� This author is supported by an FWO project.

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 38–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Improved Distinguishing Attacks on HC-256 39

Profile 1 (software-based stream ciphers). The ciphers belong to the family of
array-based stream ciphers that include, among others, the RC4, ISAAC and
Py [2,7].

Barring a few interesting observations, HC-128 and HC-256 have not yet wit-
nessed any serious attacks. The designer himself has presented distinguishers
along with the specifications in [15,16]. In the case of HC-256, each distinguisher
requires testing the validity of 2280 equations (where each equation involves 10
keystream output bits). Another observation, made by Dunkelman in [4], shows
that the keystream words of HC-128 leak information on the internal states.
However, this observation has not yet been exploited to construct distinguishers
or to recover the key. Zenner has presented cache-timing attacks on unprotected
implementations of HC-256 that allow reconstruction of the inner state and also
the key [17]. This attack requires 6148 precise cache-timing measurements, 216

known plaintext bits, 3 MBytes of memory and a computational effort equivalent
to testing about 255 keys. However, the attack uses very strong assumptions -
under these assumptions any unprotected implementation of a cipher based on
lookup tables such as AES or RC4 could be broken easily. Recently, Maitra et
al. presented some observations on HC-128 in [8]. There they exploit the results
of [14] (on linear approximation of modular addition of three integers) to show
that the output generation of HC-128 can be well-approximated by linear func-
tions. Using this they show that for HC-128, the distinguisher presented in [16]
for the least significant bit can be extended for the other bits. Their paper also
studies the aforementioned observation due to Dunkelman [4]. Yet, their paper
does not show any improvement over the existing attacks (i.e., those presented
by the designer along with the specifications of the cipher).

1.1 Contribution of This Paper

The main idea behind our distinguishers is to note that the keystream output
word generation of HC-256 involves two elements of the state array directly which
are 10 places apart. We exploit this to improve the distinguisher presented in [15].
Our attacks do not work immediately for HC-128 as in the keystream output
generation no two elements of the state array are involved directly, but they are
used with some rotation.

For the least significant bit, our analysis is similar to that in [15], but a more
careful analysis shows that the bias probability was underestimated and thus the
requirement of the keystream bits was overestimated in [15]. Our analysis im-
proves the probability and thus our distinguishers require fewer keystream words.
Each of our distinguishers requires examining about 2276.8 equations where each
equation involves 8 keystream output bits.

This paper is organised as follows. Section 2 lists the notations used in the
paper. Section 3 details the specifications of HC-256. Our main observation and
the resulting distinguishing attack are presented in Sect. 4 and Sect. 5, respec-
tively. Our second observation is presented in Sect. 6. Finally, Sect. 7 concludes
the paper and presents a few interesting open problems.

40 G. Sekar and B. Preneel

2 Notation and Convention

We use the following notations and conventions.
The set of natural numbers is denoted by N.
The + operator denotes addition modulo 232.
The − operator denotes subtraction modulo 232.
The symbol � denotes subtraction modulo 1024.
The symbol ⊕ denotes bitwise exclusive-OR.
Concatenation is denoted by ‖.
The complement of event E is denoted by Ec.
x� y: x is shifted to the right by y bit-positions.
x� y: x is shifted to the left by y bit-positions.
x ≫ y: ((x � y)⊕ (x � (32− y)), where y ∈ {0, . . . , 31}, x ∈ {0, . . . , 232 − 1}.
x ≪ y: ((x � y)⊕ (x � (32− y)), where y ∈ {0, . . . , 31}, x ∈ {0, . . . , 232 − 1}.
PRBG denotes the pseudorandom bit generation algorithm of the cipher.

The keystream word generated at round i (i.e., the (i + 1)-th iteration of the
PRBG) is denoted by si.

The terms si(j), (h1(x))j , (h2(x))j , ri(j) and (Q[r])j denote the j-th bits (j = 0
for the least significant bit) of si, h1(x), h2(x), ri and Q[r], respectively.

The term word denotes a 32-bit integer.
If x is a word, then x(i) denotes the i-th byte of x, where x(0) is the least

significant byte and x(3) is the most significant byte.

3 Specifications of HC-256

The cipher uses a 256-bit key K and a 256-bit IV. Let K = K[0]‖ . . .‖K[7] and
IV = IV[0]‖ . . . ‖ IV[7], where each K[i] and IV[i] (i = 0, . . . , 7) is 32 bits in
length. The internal state of HC-256 consists of two tables P and Q, each with
1024 32-bit elements. The following functions are used in the specifications.

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x ≫ 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x ≫ 10),
g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) + Q[(x⊕ y) mod 1024],
g2(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) + P [(x ⊕ y) mod 1024],
h1(x) = Q[x(0)] + Q[256 + x(1)] + Q[512 + x(2)] + Q[768 + x(3)],
h2(x) = P [x(0)] + P [256 + x(1)] + P [512 + x(2)] + P [768 + x(3)].

3.1 K/IV Setup Algorithm

1. The K and the IV are expanded into an array W [0, . . . , 2559] as follows.

W [i] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K[i] 0 ≤ i ≤ 7;
IV [i− 8] 8 ≤ i ≤ 15;
f2(W [i− 2]) + W [i− 7] + f1(W [i− 15])
+W [i− 16] + i 16 ≤ i ≤ 2559.

Improved Distinguishing Attacks on HC-256 41

2. Update the tables P and Q with the array W as follows.

P [i] = W [i + 512], for 0 ≤ i ≤ 1023,

Q[i] = W [i + 1536], for 0 ≤ i ≤ 1023.

3. Run the cipher (i.e., the keystream generation algorithm provided in Sect. 3.2)
4096 steps without generating output.

3.2 The PRBG

The PRBG of HC-256 updates only one of the two tables P and Q in each round
and outputs one word.
i = 0;
repeat until enough keystream bits are generated.
{

k = i mod 1024;
if (i mod 2048) < 1024
{

P [k] = P [k] + P [k � 10] + g1(P [k � 3], P [k � 1023]);
si = h1(P [k � 12])⊕ P [k];

}
else
{

Q[k] = Q[k] + Q[k � 10] + g2(Q[k � 3], Q[k � 1023]);
si = h2(Q[k � 12])⊕Q[k];

}
end-if
i = i + 1;

}
end-repeat

4 Motivational Observation

First, we recall the analysis provided by the designer in [15]. The analysis exploits
weaknesses in the PRBG and is based on the assumption of a flawless K/IV
setup. At the i-th step, if (i mod 2048) < 1024, the S-box P is updated as

P [i mod 1024]← P [i mod 1024] + P [i � 10] + g1(P [i � 3], P [i � 1023]).

Also, si = h1(P [i � 12]) ⊕ P [i mod 1024]. For 10 ≤ (i mod 2048) < 1023, this
can also be written as

si ⊕ h1(zi) = (si−2048 ⊕ h′
1(zi−2048)) + (si−10 ⊕ h1(zi−10)) +

g1(si−3 ⊕ h1(zi−3), si−2047 ⊕ h′
1(zi−2047)), (1)

where h1(x) and h′
1(x) are different functions since they are related to different

S-boxes (see Sect. 3.2) and zi denotes the array element P [i � 12] at the i-th
step.

42 G. Sekar and B. Preneel

Since addition and exclusive-OR are the same at the least significant bit-
position1, from (1) we get:

si(0) ⊕ si−2048(0) ⊕ si−10(0) ⊕ si−3(10) ⊕ si−2047(23)

= (h1(zi))0 ⊕ (h′
1(zi−2048))0 ⊕ (h1(zi−10))0

⊕(h1(zi−3))10 ⊕ (h′
1(zi−2047))23 ⊕ (Q[ri])0, (2)

where 10 ≤ (i mod 2048) < 1023, ri = (si−3 ⊕ h1(zi−3)⊕ si−2047 ⊕ h′
1(zi−2047))

mod 1024. Similarly, when 2048 · α + 10 ≤ i, j < 2048 · α + 1023,2 and i �= j,

sj(0) ⊕ sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23)

= (h1(zj))0 ⊕ (h′
1(zj−2048))0 ⊕ (h1(zj−10))0

⊕(h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj])0. (3)

For the LHS of (2) and (3) to be equal, i.e., for

si(0) ⊕ si−2048(0) ⊕ si−10(0) ⊕ si−3(10) ⊕ si−2047(23) =
sj(0) ⊕ sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) (4)

to hold for 2048 · α + 10 ≤ i, j < 2048 · α + 1023 (i �= j), we require that

(h1(zi))0 ⊕ (h′
1(zi−2048))0 ⊕ (h1(zi−10))0

⊕(h1(zi−3))10 ⊕ (h′
1(zi−2047))23 ⊕ (Q[ri])0 =

(h1(zj))0 ⊕ (h′
1(zj−2048))0 ⊕ (h1(zj−10))0

⊕(h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj])0. (5)

Using the fact that zi = zi−2048 + zi−10 + g1(zi−3, zi−2047) and zj = zj−2048 +
zj−10 + g1(zj−3, zj−2047), we approximate (5) as

H(x1) = H(x2), (6)

where H denotes a random secret 138-bit-to-1-bit S-box, x1 and x2 are two
138-bit random inputs, x1 = zi−3‖zi−10‖zi−2047‖zi−2048‖ri and x2 = zj−3‖zj−10
‖zj−2047 ‖zj−2048‖rj .

We now restate Theorem 1 and its proof from [15].

Theorem 1. Let H be an m-bit-to-n-bit S-box and all those n-bit elements are
randomly generated, where m ≥ n. Let x1 and x2 be two m-bit random inputs to
H. Then H(x1) = H(x2) with probability 2−m + 2−n + 2−m−n.

Proof. Given x1 = x2, H(x1) = H(x2). If x1 �= x2, then H(x1) = H(x2) with
probability 2−n. Since the probability that x1 = x2 is 2−m, then x1 �= x2 with
probability 1 − 2−m. The probability that H(x1) = H(x2) is, therefore, 2−m +
2−n − 2−m−n. ��
1 For more significant bits, addition may be approximated by exclusive-OR with some

biased probability.
2 α is an element in N such that 2048 · α + 1023 < 2123 (since HC-256 generates a

maximum of 2123 outputs or 2128 output bits from a single (K, IV) pair).

Improved Distinguishing Attacks on HC-256 43

From Theorem 1, (6) and hence (4) holds with probability 1/2 + 2−139 given
2048 · α + 10 ≤ i, j < 2048 · α + 1023 and i �= j. In Sect. 4.1, we show that (4)
holds with a marginally higher probability when i = j + 10.

4.1 Our Improvement

Similar to the analysis above, our analysis is also based on the assumption of a
perfect K/IV setup. When 2048·α+10 ≤ i, j < 2048·α+1023 and i = j+10, (4)
and (5) respectively become:

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) =
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) (7)

(h1(zj+10))0 ⊕ (h′
1(zj−2038))0 ⊕ (h1(zj+7))10 ⊕ (h′

1(zj−2037))23 ⊕ (Q[rj+10])0 =
(h1(zj−10))0 ⊕ (h′

1(zj−2048))0 ⊕ (h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj])0. (8)

Let L denote the event that (8) is satisfied. We now examine the following cases
under the assumption of a perfect K/IV setup.

Case 1:
Let E denote the event zj−2038‖zj+7‖zj−2037 = zj−2048‖zj−3‖zj−2047. Since each
z-term is a 32-bit variable distributed uniformly at random, the probability that
E occurs Pr[E] = 2−96. When E occurs, (8) reduces to:

(h1(zj+10))0 ⊕ (Q[rj+10])0 = (h1(zj−10))0 ⊕ (Q[rj])0. (9)

We know that,

(h1(zj+10))0 = (Q[z(0)
j+10])0 ⊕ (Q[256 + z

(1)
j+10])0

⊕(Q[512 + z
(2)
j+10])0 ⊕ (Q[768 + z

(3)
j+10])0. (10)

Similarly,

(h1(zj−10))0 = (Q[z(0)
j−10])0 ⊕ (Q[256 + z

(1)
j−10])0

⊕(Q[512 + z
(2)
j−10])0 ⊕ (Q[768 + z

(3)
j−10])0. (11)

Let z = z(3)‖z(2)‖z(1)‖z(0), where z is a 32-bit integer, z(0) is the least significant
byte of z, and z(3) is the most significant byte of z. Let F denote the event
z
(2)
j+10‖z

(1)
j+10‖z

(0)
j+10 = z

(2)
j−10‖z

(1)
j−10‖z

(0)
j−10. Now, recall that

zj = zj−2048 + zj−10 + g1(zj−3, zj−2047). (12)

Therefore,

zj+10 = zj−2038 + zj + g1(zj+7, zj−2037). (13)

44 G. Sekar and B. Preneel

Observation 1: When event E occurs, it follows from (12) and (13) that
zj+10 and zj−10 take the forms zj+10 = A + B + C mod 232 and zj−10 =
−A + B − C mod 232, respectively. Therefore, the least significant bits of zj+10
and zj−10 are identical and hence Pr[F] = 2−23. Besides, the most significant
bits of zj+10 and zj−10 are equal if and only if zj+10 = zj−10 (which, in turn,
happens with probability 2−31 since their least significant bits are identical). In
other words, Pr[zj+10 = zj−10] = 2−31 = Pr[zj+10(31) = zj−10(31)],3 where zj(k)
denotes the k-th significant bit of zj (k = 0 denotes the least significant bit). We
use this observation throughout the paper.

When F occurs, (9) reduces to

(Q[768 + z
(3)
j+10])0 ⊕ (Q[rj+10])0 = (Q[768 + z

(3)
j−10])0 ⊕ (Q[rj])0. (14)

Now, if z
(3)
j+10(7) �= z

(3)
j−10(7), that is, zj+10(31) �= zj+10(31) (this is because z

(3)
j+10(7)

is the most significant bit of zj+10, i.e., zj+10(31)), then 768+z
(3)
j+10 �= 768+z

(3)
j−10.

Given this, if rj+10‖rj = 768+ z
(3)
j+10‖768+ z

(3)
j−10 (probability is 2−20 since rj is

a 10-bit variable) or rj+10‖rj = 768 + z
(3)
j−10‖768 + z

(3)
j+10, then (14) holds. Note

that we cannot have both the relations rj+10‖rj = 768 + z
(3)
j+10‖768 + z

(3)
j−10 and

rj+10‖rj = 768+z
(3)
j−10‖768+z

(3)
j+10 to be satisfied; otherwise, z

(3)
j+10(7) �= z

(3)
j−10(7)

is violated.

Summarising the above results, we have (8) to be satisfied when the following
set of conditions (say S1) simultaneously occur:

1. zj−2048‖zj+7‖zj−2037 = zj−2038‖zj−3‖zj−2047 (probability 2−96),
2. z

(2)
j+10‖z

(1)
j+10‖z

(0)
j+10 = z

(2)
j−10‖z

(1)
j−10‖z

(0)
j−10 (from Observation 1, this probabil-

ity is 2−23 given condition 1),
3. z

(3)
j+10(7) �= z

(3)
j−10(7), i.e., zj+10(31) �= zj+10(31) (from Observation 1, this prob-

ability is 1− 2−8 given condition 1 and condition 2),
4. rj+10‖rj = 768 + z

(3)
j+10‖768 + z

(3)
j−10 (probability 2−20) or rj+10‖rj = 768 +

z
(3)
j−10‖768 + z

(3)
j+10 (we have just observed that the two events are mutually

exclusive given condition 3; their combined probability is therefore 2−20 +
2−20 = 2−19).

Therefore, Pr[S1] = 2−96 · 2−23 · (1 − 2−8) · 2−19 ≈ 2−138.

3 This is confirmed by our simple experiments with 8-bit and 16-bit integers. We first
considered the equations X = A + B + C mod 256, Y = −A + B − C mod 256,
and evaluated Pr[X = Y], Pr[X(7) = Y(7)] varying A, B, C over all possible 8-bit
values. We obtained Pr[X = Y] = Pr[X(7) = Y(7)] = 2−7. With 16-bit values, when
X = A + B + C mod 216 and Y = −A + B −C mod 216, we obtained Pr[X = Y] =
Pr[X(15) = Y(15)] = 2−15. We performed several similar experiments and the results
are tabulated in Appendix A.

Improved Distinguishing Attacks on HC-256 45

Case 2:
Proceeding along the lines of the above arguments, we define S2 as follows:

1. zj−2038‖zj+7‖zj−2037 = zj−2048‖zj−3‖zj−2047 (probability 2−96),
2. z

(3)
j+10‖z

(2)
j+10‖z

(1)
j+10‖z

(0)
j+10 = z

(3)
j−10‖z

(2)
j−10‖z

(1)
j−10‖z

(0)
j−10, i.e., zj+10 = zj−10

(from Observation 1, this probability is 2−31 given condition 1),
3. rj+10 = rj (probability 2−10).

From (9), (10) and (11), it is easy to see that the event L occurs when S2
occurs. The probability that S2 occurs Pr[S2] = 2−96 ·2−31 ·2−10 = 2−137. From
condition 3 of S1 and condition 2 of S2, we have S1 and S2 to be mutually
exclusive. Therefore, Pr[S1 ∪ S2] = 2−138 + 2−137 = 2−136.4.

Actually, there are a few other such favourable events which result in the
occurrence of L. However, from a large number of experiments we found that
each of them occurs with much lesser probability when compared to Pr[S1] or
Pr[S2]. The combined probability of these mutually exclusive events was found
to be approximately 2−136.35; therefore, the gain over Pr[S1 ∪ S2] is negligible.
When none of these events occur, it follows that we will have at least two terms
of one of the following forms in (8):

(a) (Q[X])m, (Q[Y])m (where X �= Y).
(b) (Q[X])m, (Q[Y])n (where m �= n).

In each case, it is easy to see that the two terms do not cancel out with bi-
ased probability. Besides, at least one of the two terms does not cancel out with
any other term in (8) with biased probability. In other words, when Q is a ran-
dom S-box, if X = Y with probability p �= 0, then (Q[X])m = (Q[Y])m holds
with probability 1/2+p/2 by Theorem 1. When none of the S-like events occurs,
we find that Theorem 1 may, even in the best case, be applied in the same way
to all pairs of terms in (8) except one. We also illustrate it with an example in
Appendix B.

Therefore, when (S1 ∪ S2)c occurs, (8) and hence (7) holds with uniform
probability 1/2 under the assumption of a perfect K/IV setup (also confirmed
by a large number of experiments). Applying Bayes’ rule, we obtain:

Pr[L] = Pr[L|(S1 ∪ S2)] · Pr[S1 ∪ S2] + Pr[L|(S1 ∪ S2)c] · Pr[(S1 ∪ S2)c]
= 1 · 2−136.4 + 0.5 · (1− 2−136.4) = 1/2 + 2−137.4. (15)

Note that:
(i) had HC-256 been an ideal cipher, this probability would have been 1/2,
(ii) in [15], this bias was 1/2 + 2−139.

5 The Distinguisher

A distinguisher is an algorithm that distinguishes one probability distribution
from another. In cryptography, it is an algorithm that distinguishes a stream

46 G. Sekar and B. Preneel

of bits from a stream of bits uniformly distributed at random (i.e., bitstream
generated by an ideal stream cipher). In this section we build a distinguishing
attack on HC-256 using the results of Sect. 4. Let N denote the total number
of equations (7). Let p and p′ respectively denote the probability that (7) holds
given the outputs are collected from HC-256 and the probability that (7) holds
given the outputs are generated by an ideal cipher. That is, p = 0.5 + 2−137.4

(from (15)) and p′ = 0.5. Let D and D′ denote the distributions of the XOR-
sum of the 8 output bits in (7) from HC-256 and an ideal cipher, respectively.
Then, μ = Np and μ′ = Np′ are the respective means of D and D′. Similarly,
σ =

√
Np(1− p) and σ′ =

√
Np′(1− p′) denote the respective standard devi-

ations of D and D′. When N is large, both these binomial distributions can be
approximated with the normal distribution. Now, if |μ − μ′| > 2(σ + σ′), i.e.,
N > 2276.8, the cipher can be distinguished from random signal with success
rate 0.9772 (since the cumulative distribution function gives the value 0.9772
at μ + 2σ). In [15], N > 2280 for the same success rate. In [15], there was one
advantage though. Every 1024 consecutive output words, there are many more
equations (4) when compared to equations (7) and therefore more number of
equations (4) per (K, IV) pair.

Now, each equation (4) has 10 keystream bits, whereas each equation (7)
has only 8 output bits. Therefore, for our distinguisher, 8 · 2276.8 = 2279.8

keystream bits are required. Whereas, in [15], 10 · 2280 = 2283.3 keystream bits
are needed to build the distinguisher. Thus our attacks require about 12 times
fewer keystream bits. We like to point out one issue here. It is actually possi-
ble to mount the distinguishing attack with fewer keystream bits. For example,
if the adversary has 2106 sets of keystream bits (sj−2038(0), sj+10(0), sj+7(10),
sj−2037(23), sj−2048(0), sj−10(0), sj−3(10), sj−2047(23)) from 2170.8 random (K, IV)
pairs, then a total 2279.8 output bits are available and the distinguishing attack
can be mounted.

Thus the conjecture [15] that HC-256 will require more than 2174 keystream
output words (or, equivalently 2179 output bits) for distinguishing attack should
be restated.

6 Another Observation

In this section, we present another observation on the cipher that stems from
Observation 1 (see Sect. 4.1) and the following relation.

rj = (sj−3 ⊕ h1(zj−3)⊕ sj−2047 ⊕ h′
1(zj−2047)) mod 1024. (16)

Hence, for the following equation to hold:

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) ⊕ sj+7(7) ⊕ sj−2037(7) =
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) ⊕ sj−3(7) ⊕ sj−2047(7), (17)

Improved Distinguishing Attacks on HC-256 47

we require that,

(h1(zj+10))0 ⊕ (h′
1(zj−2038))0 ⊕ (h1(zj+7))10 ⊕ (h′

1(zj−2037))23
⊕(Q[rj+10])0 ⊕ (h1(zj+7))7 ⊕ (h′

1(zj−2037))7 ⊕ rj+10(7)

= (h1(zj−10))0 ⊕ (h′
1(zj−2048))0 ⊕ (h1(zj−3))10 ⊕ (h′

1(zj−2047))23
⊕(Q[rj])0 ⊕ (h1(zj−3))7 ⊕ (h′

1(zj−2047))7 ⊕ rj(7), (18)

is satisfied. When event E occurs, (18) reduces to:

(h1(zj+10))0 ⊕ (Q[rj+10])0 ⊕ rj+10(7) = (h1(zj−10))0 ⊕ (Q[rj])0 ⊕ rj(7). (19)

Now, we have the following four possibilities.

1. rj+10(7) = z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

2. rj+10(7) �= z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

3. rj+10(7) = z
(3)
j+10(7) and rj(7) �= z

(3)
j−10(7).

4. rj+10(7) �= z
(3)
j+10(7) and rj(7) �= z

(3)
j−10(7).

Let G denote the event z
(3)
j+10(7) = z

(3)
j−10(7) (note that z

(3)
j+10(7) is the most signifi-

cant bit of zj+10, i.e., zj+10(31)). When E occurs, from Observation 1 in Sect. 4.1,
we get Pr[G] = 2−31 and when G occurs we have zj+10 = zj−10. Given E occurs,
we examine the above cases one by one.

Case 1: rj+10(7) = z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) = rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0. Besides, (19) reduces to:

(Q[rj+10])0 ⊕ rj+10(7) = (Q[rj])0 ⊕ rj(7). (20)

Given this, if rj+10 = rj (probability 2−9), then (20) and hence (17) holds with
probability 1. Else, in (20), we will have two terms (Q[rj+10])0 and (Q[rj])0 from
two different positions in the Q array. Under the assumption that the elements
of Q are uniformly distributed at random, equation (20), therefore, holds with
probability 1/2. This implies that (17) holds with probability 1/2.

(b) When Gc occurs: we get rj+10(7) �= rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 1.

Case 2: rj+10(7) �= z
(3)
j+10(7) and rj(7) = z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) �= rj(7), that is, sj+7(7)⊕sj−2037(7)⊕sj−3(7)⊕
sj−2047(7) = 1.

(b) When Gc occurs: we get rj+10(7) = rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0.

48 G. Sekar and B. Preneel

Case 3: rj+10(7) = z
(3)
j+10(7) and rj(7) �= z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) �= rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 1.

(b) When Gc occurs: we get rj+10(7) = rj(7), i.e., sj+7(7)⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0.

Case 4: rj+10(7) �= z
(3)
j+10(7) and rj(7) �= z

(3)
j−10(7).

(a) When G occurs: we get rj+10(7) = rj(7) ⇒ sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 0. Given this, if rj+10 = rj (probability 2−9), then (20) and
hence (17) holds with probability 1. Else, using similar arguments as in Case 1(a),
it follows that (17) holds with probability 1/2.

(b) When Gc occurs: we get rj+10(7) �= rj(7), i.e., sj+7(7)⊕ sj−2037(7) ⊕ sj−3(7) ⊕
sj−2047(7) = 1.

Suppose rj+10(b) = rj(b) for b ∈ {0, . . . , 9}, b �= 7 and (17) does not hold. Then,
given E occurs, sj+7(7) ⊕ sj−2037(7) ⊕ sj−3(7) ⊕ sj−2047(7) = 0 is satisfied only
in Case 2(b) and Case 3(b). In Case 2(b), rj+10(7) �= z

(3)
j+10(7) (probability 0.5),

rj(7) = z
(3)
j−10(7) (probability 0.5) and Gc occurs (probability is 1 − 2−31 given

E occurs). Therefore, given the occurrence of event E, Case 2(b) happens with
probability 0.5 · 0.5 · (1 − 2−31) = 2−2 · (1 − 2−31) and Case 3(b) also happens
with the same probability. Thereby, we have the following observation.

Observation 2: When the following relations exist among keystream bits:

sj+7(b) ⊕ sj−2037(b) = sj−3(b) ⊕ sj−2047(b), for all b ∈ {0, . . . , 9}, b �= 7, and

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) ⊕ sj+7(7) ⊕ sj−2037(7) �=
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23) ⊕ sj−3(7) ⊕ sj−2047(7),

and event E occurs, then sj+7(7)⊕sj−2037(7)⊕sj−3(7)⊕sj−2047(7) = 0 holds with
probability 1/2 · (1− 2−31). We believe this observation can be further exploited
to construct more efficient distinguishers on the HC-256. Before we conclude, we
make one final remark.

Remark: Suppose the following relations exist among keystream bits:

sj+7(b) ⊕ sj−2037(b) = sj−3(b) ⊕ sj−2047(b), (21)

for all b ∈ {0, . . . , 9}. Then, from (16), we observe that when the conditions 1
and 2 of S2 (see Sect. 4.1) are satisfied, condition 4 is also satisfied. Therefore,
in this case, Pr[S2] = 2−96 · 2−31 = 2−127 and Pr[S1 ∪ S2] = 2−138 + 2−127 ≈
2−127. Therefore, Pr[L] = 1/2 + 2−128. This is a notable improvement over the

Improved Distinguishing Attacks on HC-256 49

probability obtained in (15). The relation (21) was also exploited in [15], but
resulting in a comparatively smaller bias of 2−129 and hence a distinguisher
requiring about 2261 output words (for 0.9772 success rate).

7 Conclusions and Future Work

In this paper, we have presented distinguishing attacks on the stream cipher
HC-256. The hitherto best-known distinguisher on the cipher has been presented
in [15] and requires 2280 equations (each involving 10 keystream output bits) to
be tested for a success rate of 0.9772. Each of our distinguishers requires 2276.8

equations (with 8 keystream bits in every equation) to be examined for the same
success probability. Thereby, we have improved the data requirement in [15] by
a factor of about 12. We have also provided leads for further cryptanalysis of
the cipher.

In [3], Crowley employs a Hidden Markov Model to combine several biases in
the keystream of the cipher Py and improves the attacks described in [11]. Given
the structural similarities between Py and HC-256, it may be possible to apply
similar techniques here to construct a more efficient distinguisher. We leave it
as an open problem.

A variant of HC-256, named HC-256’, was also proposed by Wu in [15, Sec-
tion 6] but without any accompanying cryptanalysis. Investigating whether our
attacks could also applied to HC-256’ is another interesting open problem.

Acknowledgments

It is a great pleasure to thank Hongjun Wu for valuable discussions. We also
thank the anonymous reviewers of IWSEC2009 for their constructive comments
on our work.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

2. Biham, E., Seberry, J.: Py (Roo): A Fast and Secure Stream Cipher using Rolling
Arrays. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/023 (2005)

3. Crowley, P.: Improved Cryptanalysis of Py. In: Workshop Record of SASC 2006 –
Stream Ciphers Revisited, ECRYPT Network of Excellence in Cryptology, Leuven,
Belgium, February 2006, pp. 52–60 (2006)

4. Dunkelman, O.: A Small Observation on HC-128. November 14 (2007),
http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143

5. The eSTREAM Project, http://www.ecrypt.eu.org/stream/
6. Goldreich, O. (ed.): Lecture Notes on Pseudorandomness–Part-I. Department of

Computer Science. Weizmann Institute of Science, Rehovot, Israel (January 2001)
7. Jenkins Jr., R.J.: ISAAC. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp.

41–49. Springer, Heidelberg (1996)

http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143
http://www.ecrypt.eu.org/stream/

50 G. Sekar and B. Preneel

8. Maitra, S., Paul, G., Raizada, S.: Some Observations on HC-128. In: Workshop on
Coding Theory and Cryptography, (to appear, 2009),
http://eprint.iacr.org/2008/499.pdf

9. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

10. Paul, S., Preneel, B.: On the (In)security of Stream Ciphers Based on Arrays and
Modular Addition. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 69–83. Springer, Heidelberg (2006)

11. Paul, S., Preneel, B., Sekar, G.: Distinguishing Attacks on the Stream Cipher Py.
In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 405–421. Springer,
Heidelberg (2006)

12. Sarkar, P.: On Approximating Addition by Exclusive OR,
http://eprint.iacr.org/2009/047.pdf

13. Sekar, G., Paul, S., Preneel, B.: New Weaknesses in the Keystream Generation
Algorithms of the Stream Ciphers TPy and Py. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 249–262. Springer,
Heidelberg (2007)

14. Staffelbach, O., Meier, W.: Cryptographic Significance of the Carry for Ciphers
Based on Integer Addition. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 601–613. Springer, Heidelberg (1991)

15. Wu, H.: A New Stream Cipher HC-256. In: Roy, B., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 226–244. Springer, Heidelberg (2004),
http://eprint.iacr.org/2004/092.pdf

16. Wu, H.: The Stream Cipher HC-128. In: Robshaw, M.J.B., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 39–47. Springer, Heidelberg (2008)

17. Zenner, E.: A Cache Timing Analysis of HC-256. Selected Areas in Cryptography
(2008)(to appear)

A Experimental Results

Here, we elaborate on footnote 4 in Sect. 4.1. Consider the equations:

X = A + B + C mod 2k, (22)
Y = −A + B − C mod 2k, (23)

where X , Y , A, B, C are k-bit random variables. Let X(b) denote the b-th bit
of X (b = 0 denotes the least significant bit and b = k − 1 denotes the most
significant bit). Since the ‘+’ and ‘-’ operators are the same as the exclusive-OR
for the least significant bit position, we have from (22) and (23):

X(0) = A(0) ⊕B(0) ⊕ C(0),

Y(0) = A(0) ⊕B(0) ⊕ C(0).

Therefore, X(0) = Y(0) ⇒ Pr[X = Y] = 2−(k−1). Now, we ran simulations to
evaluate Pr[X(k−1) = Y(k−1)] and Pr[X �= Y |X(k−1) = Y(k−1)] for different
values of k. As there was no need to vary B, we fixed it to zero and varied
A and C over all possible k-bit values. The results are provided in Table 1.
Following this trend, we obtain that for k = 32, Pr[X(31) = Y(31)] = 2−31 and
Pr[X �= Y |X(31) = Y(31)] = 0.

http://eprint.iacr.org/2008/499.pdf
http://eprint.iacr.org/2009/047.pdf
http://eprint.iacr.org/2004/092.pdf

Improved Distinguishing Attacks on HC-256 51

Table 1.

k Pr[X(k−1) = Y(k−1)] Pr[X �= Y |X(k−1) = Y(k−1)]
4 2−3 0
5 2−4 0
6 2−5 0
7 2−6 0
8 2−7 0
9 2−8 0
10 2−9 0
11 2−10 0
12 2−11 0
13 2−12 0
14 2−13 0
15 2−14 0
16 2−15 0
17 2−16 0
18 2−17 0
19 2−18 0

B A Note on the Randomness of Keystream Bits When
S2 Does Not Occur

We restate (7) and (8) here:

sj−2038(0) ⊕ sj+10(0) ⊕ sj+7(10) ⊕ sj−2037(23) =
sj−2048(0) ⊕ sj−10(0) ⊕ sj−3(10) ⊕ sj−2047(23),

(h1(zj+10))0 ⊕ (h′
1(zj−2038))0 ⊕ (h1(zj+7))10 ⊕ (h′

1(zj−2037))23 ⊕ (Q[rj+10])0 =
(h1(zj−10))0 ⊕ (h′

1(zj−2048))0 ⊕ (h1(zj−3))10 ⊕ (h′
1(zj−2047))23 ⊕ (Q[rj])0.

Suppose the 1024 elements of Q are uniformly distributed at random; same
with the elements of Q′. We now examine the case when zj−2037‖zj+7‖zj+10 =
zj−2047‖zj−3‖zj−10, rj+10 = rj , but zj−2038 �= zj−2048, i.e., one of the events
comprising Sc

2. When zj−2037‖zj+7‖ zj+10 = zj−2047‖zj−3‖zj−10 and rj+10 =
rj , (8) reduces to:

(h′
1(zj−2038))0 = (h′

1(zj−2048))0. (24)

Similar to (10) and (11), we have:

(h′
1(zj−2038))0 = (Q′[z(0)

j−2038])0 ⊕ (Q′[256 + z
(1)
j−2038])0

⊕(Q′[512 + z
(2)
j−2038])0 ⊕ (Q′[768 + z

(3)
j−2038])0, (25)

(h′
1(zj−2048))0 = (Q′[z(0)

j−2048])0 ⊕ (Q′[256 + z
(1)
j−2048])0

⊕(Q′[512 + z
(2)
j−2048])0 ⊕ (Q′[768 + z

(3)
j−2048])0. (26)

52 G. Sekar and B. Preneel

Note that on the right-hand side of (25), we have four distinct array indices.
That is, we access four elements of Q′ from four different positions; similarly
in (23). If zj−2038 �= zj−2048, then at least one of the following holds:

1. z
(0)
j−2038 �= z

(0)
j−2048,

2. z
(1)
j−2038 �= z

(1)
j−2048,

3. z
(2)
j−2038 �= z

(2)
j−2048,

4. z
(3)
j−2038 �= z

(3)
j−2048.

If the first case alone happens, from (25) and (26), we get:

(h′
1(zj−2038))0 ⊕ (h′

1(zj−2038))0 = (Q′[z(0)
j−2038])0 ⊕ (Q′[z(0)

j−2048])0. (27)

Since Q′[z(0)
j−2038] and Q′[z(0)

j−2048] are two 32-bit elements from different posi-
tions in the same Q′ array, they are equal with uniform probability. That is,
(Q′[z(0)

j−2038])0 and (Q′[z(0)
j−2048])0 are equal with probability 1/2. This implies

that (27) and hence (24) holds with probability 1/2. This, in turn, implies
that (8) and hence (7) holds with uniform probability 1/2. Now, let us suppose
only two of the above cases occurs; for example, cases 1 and 2. Then, we will
have four terms - (Q′[z(0)

j−2038])0, (Q′[z(0)
j−2048])0, (Q′[z(1)

j−2038])0 and (Q′[z(1)
j−2048])0

- with four different array indices, and hence their XOR-sum is zero with uniform
probability 1/2. Hence, it follows that (7) holds with probability 1/2.

Extending the above argument to other events that result in the outcome
zj−2038 �= zj−2048 (for example, the occurrence of cases 1, 2 and 3 but not
case 4), one can similarly verify that (7) holds with probability 1/2. For the
other events comprising Sc

2, we arrive at the same result; however, a complete
treatment is beyond the scope of this paper.

A Generic Construction of Timed-Release
Encryption with Pre-open Capability

Yasumasa Nakai, Takahiro Matsuda, Wataru Kitada, and Kanta Matsuura

The University of Tokyo, Tokyo, Japan
{tig,tmatsuda,kitada,kanta}@iis.u-tokyo.ac.jp

Abstract. In 2005, Hwang et al. proposed a concept of timed-release
encryption with pre-open capability (TRE-PC), where a receiver can de-
crypt a ciphertext not only by using a time-release key which is provided
after its release-time, but also using a secret information called a pre-
open key provided from a sender even before the release-time. Though
there are several concrete constructions of TRE-PC proposed so far, no
generic construction has been known. In this paper, we show a generic
construciton of TRE-PC. Specifically, we construct a TRE-PC scheme
from a chosen-ciphertext secure public key encryption scheme (PKE),
a chosen plaintext secure identity-based encryption (IBE) scheme with
specific property that we call target collision resistance for randomness,
and a one-time signature scheme.

Interestingly, our proposed construction of TRE-PC is essentially the
same as the generic construciton of (normal) TRE based on multiple
encryption of IBE and PKE. As one of the consequences of our result,
we can build a TRE-PC scheme secure in the standard model based on
weaker assumptions than the ones used by the existing standard model
TRE-PC scheme.

Keywords: timed-release encryption, pre-open capability, generic con-
struction, public key encryption, identity-based encryption.

1 Introduction

Background. Timed-release encryption (TRE) is a kind encryption proposed by
May [17] in 1993. Roughly, the functionality that TRE provides is that even a
legitimated receiver cannot decrypt a ciphertext until the release-time decided
by a sender. Several constructions and its applications have been considered
and proposed so far. In this paper, we only consider public key TRE which is
realized by utilizing the trusted time server (TS) that sends (or broadcasts) a
time-release key at the time decided by a sender. The receiver can decrypt a
ciphertext with the time-release key.

In 2005, Hwang et al. [15] proposed the concept of Timed-Release Encryption
with Pre-Open Capability (TRE-PC). In TRE-PC, a receiver can decrypt a ci-
phertext by using not only a time-release key which is sent (or broadcast) by
the TS at the release-time decided by a sender, but also a secret information

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 53–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 Y. Nakai et al.

called a pre-open key which is sent by the sender before the release-time. This
pre-open capability will provide more flexibility with the use of TRE, and some
application is introduced in the same paper. It is naturally required that even
if the curious TS gets a pre-open key, it should not get any information on a
plaintext, and even a legitimated receiver cannot decrypt a ciphertext until the
release-time or without a pre-open key.

Hwang et al. [15] also gave a first concrete construciton of a TRE-PC scheme
secure in the random oracle model based on the bilinear Diffie-Hellman (BDH)
assumption. Dent et al. [11] revisited and formalized the security definition of
TRE-PC, established a hybrid encryption composition framework, and proposed,
via their composition framework, a concrete TRE-PC scheme which is secure in
the random oracle model based on the BDH assumption. Chow et al. [10] showed
a TRE-PC scheme which is secure in the standard model based on the modified
decisional 3-party Diffie-Hellman (3-MDDH) and the decisional 3-party Diffie-
Hellman (3-DDH) assumptions.

We note that these schemes are based on the hardness of number theoretic
problems, and especially, no generic construction of TRE-PC has been known
so far.

Our Contribution. In this paper, we propose a generic construction of TRE-PC,
and give formal security proofs for our scheme. Specifically, we construct a TRE-
PC scheme, which is secure in the model of [11], from a chosen-ciphertext secure
(IND-CCA secure) public key encryption (PKE) scheme, a chosen-plaintext se-
cure (IND-ID-CPA secure) identity-based encryption (IBE) scheme which satis-
fies a certain mild assumption, and a one-time signature scheme. Interestingly,
the construction of our scheme is essentially the same as a (normal) TRE scheme
based on multiple encryption [12] of a PKE and an IBE schemes introduced in
[7,8], so we do not need any other cryptographic primitives or techniques other
than our mild assumption on IBE, such as the non-interactive zero-knowledge
proofs, to achieve pre-open capability. Therefore, if there is a normal TRE scheme
constructed by the generic construction from PKE and IBE with our assumption,
we can construct TRE-PC without the cost.

We believe that our generic construction will give important insights and be
useful for a first step towards more practical constructions of TRE-PC secure in
the standard model. As evidence of it, due to our results, we can build a TRE-
PC scheme secure in the standard model based on weaker assumptions than the
ones used in [10], by using the existing IBE and PKE schemes.

Though the underlying building blocks from which we construct TRE-PC
are the same as the ones used for the generic construction of (normal) TRE
addressed in [7,8], the security proofs are not a trivial extension from it, since
we have to consider security properties specific to TRE-PC and also we have to
deal with a pre-open key.

Though we introduce the assumption on IBE which is not so standard (we
call it target collision resistance for randomness), many existing IBE schemes
satisfy this assumption, and so we think the generality of our construction is not
lost by this assumption. See Section 2.2 for details.

A Generic Construction of Timed-Release Encryption 55

Related Works. There are two major approaches for realizing TRE. One ap-
proach is to use the time-lock puzzles [19,16]. In this approach a sender makes
a ciphertext which cannot be finished decrypting until the release-time by a re-
ceiver’s environment, even if the receiver keeps computing to decrypt after he
receives the ciphertext. This imposes heavy computational cost on the receiver,
and moreover, it is difficult to estimate the required time that the receiver fin-
ishes decrypting. Hence, it is difficult to ensure that the receiver can decrypt the
ciphertext at the release-time certainly.

The other approach is, as we already mentioned, to use the TS, which is
adopted by many previous works regarding TRE.

There are several TRE schemes that have special functionalities. Blake et al.
[6] proposed the TRE scheme which needs no interaction with the TS, which is
anonymous based on bilinear pairng. Based on this scheme, Hristu-Varsakelis et
al. [14,5] constructed a more efficient anonymous TRE scheme. Hwang et al. [15]
proposed TRE-PC, which we have already mentioned. Cheon et al. [7,8] proposed
TRE with authentication, and introduced a way to construct it generically from
PKE, IBE, and one time signature as well as concrete constructions.

Paper Organization. In Section 2, we briefly review the definitions necessary
for describing our result. We also introduce the target collision resistance for
randomness of IBE schemes. In Section 3, we review the definition of algorithms
and security of TRE-PC schemes, adopted from [11]. In Section 4, we present
our proposed generic construction of a TRE-PC scheme from PKE and IBE and
signature, and show its security proofs. In Section 5, we discuss the consequences
of our result.

2 Preliminaries

In this section, we review the definitions of the terms and security used in this
paper.

Notations. In this paper, “x← y” denotes that x is chosen uniformly at random
from y if y is a finite set, x is output from y if y is a function or an algorithm,
or y is assigned to x otherwise. “x||y” denotes a concatenation of x and y. If A
is probabilistic algorithm then y ← A(x; r) denotes that A computes y as out-
put, taking x as input and using r as randomness. “PPT” denotes probabilistic
polynomial time. We say that a function f(κ) is negligible in κ if f(κ) ≤ 1/p(κ)
for any positive polynomial p(κ) and all sufficiently large κ. In this paper, when
we say a function is negligible then we always mean that it is negligible in the
security parameter κ.

2.1 Public Key Encryption

A public key encryption (PKE) scheme Π consists of the following three (prob-
abilistic) algorithms. A key generation algorithm PKE.KG takes 1κ (security

56 Y. Nakai et al.

parameter κ) as input, and outputs a pair of a secret key sk and a public key
pk. An encryption algorithm PKE.Enc takes a public key pk and a plaintext
m ∈ M as input, and outputs a ciphertext c ∈ C (where M and C are a plain-
text space and a ciphertext space of Π , respectively). A decryption algorithm
PKE.Dec takes a secret key sk and a ciphertext c as input, and outputs a plain-
text m ∈ M∪{⊥}. We require PKE.Dec(sk, PKE.Enc(pk, m)) = m for all (sk, pk)
output from PKE.KG and all m ∈M.

IND-CCA Security. Indistinguishability against adaptive chosen ciphertext at-
tacks (IND-CCA) of a PKE scheme Π is defined using the following IND-CCA
game between an adversary A and the challenger CH:

Setup. CH runs PKE.KG(1κ) and obtains a pair of sk and pk. CH gives pk to
A and keeps sk to itself.

Phase 1. A can adaptively issue decryption queries c to CH. CH responds to
each query c by returning m ← PKE.Dec(sk, c).

Challenge. A chooses two distinct plaintexts (m0, m1) of equal length and
sends them to CH. CH flips a coin bC ∈ {0, 1} uniformly at random, then
returns the challenge ciphertext c∗ ← PKE.Enc(pk, mbC) to A.

Phase 2. A can issue decryption queries in the same way as Phase 1, except
that A is not allowed to issue c∗ as a decryption query.

Guess. A outputs a bit bA as its guess for bC .

We define the IND-CCA advantage of A attacking Π as follows:

AdvIND-CCA
Π,A = |Pr[bA = bC]− 1

2
|.

Definition 1. We say that a PKE scheme Π is IND-CCA secure if AdvIND-CCA
Π,A

is negligible for any PPT algorithm A.

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme Π consists of the following four
(probabilistic) algorithms. A setup algorithm IBE.Setup takes 1κ (security pa-
rameter κ) as input, and outputs a pair of a master secret key msk and global
parameters prm. A key extraction algorithm IBE.Ext takes global parameters
prm, a master secret key msk, and an identity ID ∈ I as input, and outputs
a decryption key dID corresponding to ID (where I is an identity space of
Π). An encryption algorithm IBE.Enc takes global parameters prm, an iden-
tity ID ∈ I, and a plaintext m ∈ M as input, and outputs a ciphertext
c ∈ C (where M and C are a plaintext space and a ciphertext space of Π ,
respectively). A decryption algorithm IBE.Dec takes a decryption key dID and
a ciphertext c as input, and outputs a plaintext m ∈ M ∪ {⊥}. We require
IBE.Dec(IBE.Ext(prm, msk, ID), IBE.Enc(prm, ID, m)) = m for all (msk, prm) out-
put from IBE.Setup, all ID ∈ I, and all m ∈ M.

A Generic Construction of Timed-Release Encryption 57

IND-ID-CPA Security. Indistinguishability against adaptive identity, chosen
plaintext attacks (IND-ID-CPA) of an IBE scheme Π is defined using the fol-
lowing IND-ID-CPA game between an adversary A and the challenger CH:

Setup. CH runs IBE.Setup(1κ) and obtains a pair of msk and prm. CH gives
prm to A and keeps msk to itself.

Phase 1. A can adaptively issue extraction queries ID to CH. CH responds to
each query ID by returning dID ← IBE.Ext(prm, msk, ID).

Challenge. A chooses two distinct plaintexts (m0, m1) of equal length and a
challenge identity ID∗ that has not been issued as an extraction query in
Phase 1, and sends them to CH. CH flips a coin bC ∈ {0, 1} uniformly at
random, then returns the challenge ciphertext c∗ ← IBE.Enc(prm, ID∗, mbC)
to A.

Phase 2. A can issue extraction queries in the same way as Phase 1, except
that A is not allowed to issue ID∗ as an extraction query.

Guess. A outputs a bit bA as its guess for bC .

We define the IND-ID-CPA advantage of A attacking Π as follows:

AdvIND-ID-CPA
Π,A = |Pr[bA = bC]− 1

2
|.

Definition 2. We say that an IBE scheme Π is IND-ID-CPA secure if
AdvIND-ID-CPA

Π,A is negligible for any PPT algorithm A.

Target Collision Resistance for Randomness. We introduce target collision resis-
tance for randomness required for security proof of the proposal scheme. Roughly
speaking, this security ensures that any adversary who is given a randomness,
that is used in an encryption algorithm, and even a master secret key, cannot
come up with a message, an identity, and another randomness such that the en-
cryption using each randomness collides. The reason why we use the term target
collision restance is because an adversary has no control over one of randomness,
as is the same with the target collision resistance for a hash function [18,1].

Formally, we define the advantage of an adversary A against target collision
resistance for randomness of IBE scheme Π (with randomness space RIBE) as
follows.

AdvRand
Π,A =

Pr[(msk, prm) ← IBE.Setup(1κ); RIBE ← RIBE ; (m′, ID′, R′
IBE) ← A(msk, prm, RIBE)

: IBE.Enc(prm, ID′, m′; R′
IBE) = IBE.Enc(prm, ID′, m′; RIBE) ∧ R′

IBE �= RIBE].

Definition 3. We say that an IBE scheme Π has target collision resistance for
randomness if AdvRand

Π,A is negligible for any PPT algorithm A.

Note that most practical IBE schemes, such as [2,21,13], satisfy this security
without any assumption. Actually, target collision resistance for randomness is
satisfied unconditionally by many pairing-based IBE schemes with a pairing e :

58 Y. Nakai et al.

G1×G2 → GT where orders of G1, G2 and GT are a prime p and a generator g1 ∈
G1 and g2 ∈ G2, whose randomness space is Zp and whose ciphertext contains
a random group element gr

1 , gr
2, or e(g1, g2)r with r ∈ Zp as a randomness. In

these schemes, any ciphertext using different randomness will be different from
one another. It is easy to see the schemes [2,21,13] are included in this type of
construction.

2.3 Signature

A signature scheme Σ consists of the following three (probabilistic) algorithms.
A key generation algorithm SigKG takes 1κ (security parameter κ) as input,
and outputs a pair of a signing key SK and a verification key V K. A signing
algorithm Sign takes a signing key SK and a message m ∈ M as input, and
outputs a valid signature σ on m under V K (where M is a message space of Σ).
A verification algorithm Verify takes a verification key V K, a message m, and a
signature σ as input, and outputs accept if σ is a valid signature on m or reject
otherwise. We require Verify(V K, m, Sign(SK, m)) = accept for all (SK, V K)
output from SigKG and all m ∈M.

Strong One-Time Security. Strong one-time (SOT) security of a signature
scheme Σ is defined using the following SOT game between an adversary A
and the challenger CH:

Setup. CH runs SigKG(1κ) and obtains a pair of SK and V K. CH gives V K
to A and keeps SK to itself.

Query. A can issue a signing query m to CH at most once. CH responds to the
query by running σ ← Sign(SK, m) and returning σ.

Output. A outputs a message-signature pair (m′, σ′) as a forgery under the
verification key V K.

We define the SOT advantage of A attacking Σ as follows:

AdvSOT
Σ,A = Pr[Verify(V K, m′, σ′) = accept ∧ (m, σ) �= (m′, σ′)].

Definition 4. We say that a signature scheme Σ is strongly one-time (SOT)
secure if AdvSOT

Σ,A is negligible for any PPT algorithm A. We also say that Σ is
a one-time signature scheme.

3 TRE-PC

In this section, we briefly review the definition of algorithms and security of
TRE-PC schemes. We adopt the model from [11].

Algorithms. A TRE-PC scheme Π consists of the following six (probabilistic)
algorithms.

TRE.Setup: A setup algorithm that takes 1κ (security parameter κ) as input,
and outputs a pair of a master secret key msk and global parameters prm.

A Generic Construction of Timed-Release Encryption 59

TRE.Ext: A time-release key extraction algorithm that takes global parameters
prm, a master secret key msk, and a release-time T ∈ T as input, and outputs
a time-release key sT corresponding to release-time T .

TRE.UKG: A user key generation algorithm that takes 1κ (security parameter
κ) as input, and outputs a pair of a secret key sku and a public key pku.

TRE.Enc: An encryption algorithm that takes global parameters prm, a receiver’s
public key pku, a release-time T ∈ T , and a plaintext m ∈ M as input, and
outputs a ciphertext c ∈ C and a pre-open key V .

TRE.DecRK: A pre-open decryption algorithm that takes global parameters prm,
a receiver’s secret key sku, a pre-open key V , and a ciphertext c as input,
and outputs a plaintext m ∈M∪ {⊥}.

TRE.DecPK: A release-time decryption algorithm that takes global parameters
prm, a receiver’s secret key sku, a time-release key sT , and a ciphertext c as
input, and outputs a plaintext m ∈ M∪ {⊥}.

where T , M, and C are a release-time space, a plaintext space, and a ciphertext
space of Π , respectively. For all (msk, prm) output from TRE.Setup, all (sku, pku)
output from TRE.UKG, all m ∈ M, and all T ∈ T , we require that if (c, V) ←
TRE.Enc(prm, pku, T, m) then TRE.DecPK(prm, sku, TRE.Ext(prm, msk, T), c) =
m and TRE.DecRK(prm, sku, V, c) = m hold.

3.1 Security

For TRE-PC schemes, Dent et al. [11] introduced the following four kinds of se-
curity and gave a formal definition for each of them. Specifically, they considered
outsider security, time server security, insider security, and binding. In [11], it is
proved that the outsider security is implied by the time server security, so we
show the three kinds of security except the outsider security.

Time Server Security. This security ensures that a curious TS who has a mas-
ter key cannot get any information of a plaintext from a ciphertext without a
receiver’s secret key. It is defined by the following game between an adversary
A and the challenger CH.

Setup. CH runs TRE.Setup(1κ) and TRE.UKG(1κ), and obtains (msk, prm) and
(sku, pku), respectively. CH gives (msk, prm, pku) to A and keeps sku to itself.

Phase 1. A can adaptively issue pre-open decryption queries (c, V) and release-
time decryption queries (c, T) to CH. CH responds to each pre-open de-
cryption query (c, V) by returning m ← TRE.DecRK(prm, sku, V, c) to A.
CH responds to each release-time query (c, T) by first computing sT ←
TRE.Ext(prm, msk, T) then returning m ← TRE.DecPK(prm, sku, sT , c) to A.

Challenge. A chooses two distinct plaintexts (m0, m1) of equal length and
a challenge release-time T ∗, and sends them to CH. CH flips a coin bC ∈
{0, 1} uniformly at random, and then returns the challenge ciphertext and
its corresponding pre-open key (c∗, V ∗)← TRE.Enc(prm, pku, T ∗, mbC) to A.

60 Y. Nakai et al.

Phase 2. A can issue pre-open decryption queries and release-time decryption
queries in the same way as Phase 1, except that A is not allowed to is-
sue (c∗, V ∗) as a pre-open decryption query, and (c∗, T ∗) as a release-time
decryption query.

Guess. A outputs a bit bA as its guess for bC .

Note that in Challenge phase, CH gives not only a challenge ciphertext but also
its corresponding pre-open key to A.

We define the IND-TR-CCATS advantage of A attacking Π as:

AdvIND-TR-CCATS
Π,A = |Pr[bA = bC]− 1

2
|.

Definition 5. We say that a TRE-PC scheme Π is IND-TR-CCATS secure if
AdvIND-TR-CCATS

Π,A is negligible for any PPT algorithm A.

Insider Security. This security ensures that the receiver who has his secret key
cannot get any information of a plaintext from a ciphertext without a time-
release key or a pre-open key. It is defined by the following game between an
adversary A and the challenger CH.

Setup. CH runs TRE.Setup(1κ) and TRE.UKG(1κ), and obtains (msk, prm) and
(sku, pku), respectively. CH gives (prm, sku, pku) to A and keeps msk to itself.

Phase 1. A can adaptively issue extraction queries T to CH. CH responds to
each extraction query T by returning sT ← TRE.Ext(prm, msk, T) to A.

Challenge. A chooses twodistinct plaintexts (m0, m1) of equal length and a chal-
lenge release-time T ∗, and sends them to CH. CH flips a coin bC ∈ {0, 1} uni-
formly at random, then computes (c∗, V ∗) ← TRE.Enc(prm, pku, T ∗, mbC),
and sends c∗ to A (but keeps V ∗ to itself). T ∗ chosen here should be larger
than any T issued in Phase 1.

Phase 2. A can issue extraction queries in the same way as Phase 1, except
that A is not allowed to issue T ≥ T ∗ as an extraction query.

Guess. A outputs a bit bA as its guess for bC .

We define the IND-TR-CPAIS
1 advantage of A attacking Π as:

AdvIND-TR-CPAIS
Π,A = |Pr[bA = bC]− 1

2
|.

Definition 6. We say that a TRE-PC scheme Π is IND-TR-CPAIS secure if
AdvIND-TR-CPAIS

Π,A is negligible for any PPT algorithm A.

1 The reason why we only consider the “CPA” adversary in this security can be found
in the original paper [11]. Refer to it for details.

A Generic Construction of Timed-Release Encryption 61

Binding. This is the security that the sender cannot make the ciphertext corre-
sponding to a release-time T that the decryption by running TRE.DecRK with a
pre-open key V is different from the decryption by running TRE.DecPK with a
time-release key sT . It is defined by the following game between A and CH.

Setup. CH runs TRE.Setup(1κ) and TRE.UKG(1κ), and obtains (msk, prm) and
(sku, pku), respectively. CH gives (prm, pku) to A and keeps msk, sku to itself.

Query. A can adaptively issue three kinds of queries. CH responds to pre-open
decryption queries (c, V) by returning m ← TRE.DecRK(prm, sku, V, c) to A,
release-time decryption queries (c, T) by first computing sT ←
TRE.Ext(prm, msk, T) and then returning m ← TRE.DecPK(prm, sku, sT , c)
to A, and extraction queries T by returning sT ← TRE.Ext(prm, msk, T) to
A.

Output. A outputs a pair of (c∗, T ∗, V ∗).

We define the binding advantage of A attacking Π as follows:

AdvBINDING
Π,A = Pr[⊥ �= DecRK(prm, sku, V ∗, c∗) �= DecPK(prm, sku, s∗T , c∗) �= ⊥],

where s∗T ← TRE.Ext(prm, msk, T ∗).

Definition 7. We say that a TRE-PC scheme Π is binding if AdvBINDING
Π,A is

negligible for any PPT algorithm A.

4 A Proposed Generic Construction

In this section, we show a generic construction of TRE-PC, and prove that the
proposed scheme achieves the security we reviewed in Section 3.1. In particular,
we construct our TRE-PC scheme from an IND-CCA secure PKE scheme, an
IND-ID-CPA secure IBE scheme which has the target collision resistance for
randomness, and a one-time signature scheme.

Our construction is as follows. Let Π = (PKE.KG, PKE.Enc, PKE.Dec) be a
PKE scheme, Π ′ = (IBE.Setup, IBE.Ext, IBE.Enc, IBE.Dec) be an IBE scheme,
and Σ = (SigKG, Sign, Verify) be a signature scheme. Then, we construct the
TRE-PC scheme Γ as in Fig. 1. In Fig. 1, M is the message space of Γ , and
RIBE is the randomness space of (an encryption algorithm of) Π ′.

As noted before, this scheme is essentially the same construction as a (normal)
TRE scheme based on multiple encryption with a PKE scheme and an IBE
scheme (which is introduced in [7,8]). In particular, we do not use any other
primitives or techniques such as the non-interactive zero-knowledge proofs.

4.1 Security

Idea. Before we show the formal security proofs, we give an intuitive explana-
tion why this scheme can achieve the security of TRE-PC. The feature of this
scheme is to use (r2, RIBE) as a pre-open key where r2 is one of the shares of

62 Y. Nakai et al.

TRE.Setup(1κ):
Output (msk, prm) ← IBE.Setup(1κ).

TRE.Ext(prm, msk, T):
dT ← IBE.Ext(prm, msk, T)
Output sT ← (dT , T).

TRE.UKG(1κ):
Output (sku, pku) ← PKE.KG(1κ).

TRE.Enc(prm, T, pku, m):
r1 ← M
r2 ← m ⊕ r1

RIBE ← RIBE

(SK, V K) ← SigKG(1κ)
c1 ← PKE.Enc(pku, (V K||r1))
c2 ← IBE.Enc(prm, T, (V K||r2); RIBE)
σ ← Sign(SK, (T ||c1||c2))
CT ← (V K, T, c1, c2, σ)
V ← (r2, RIBE)
Output (CT, V).

TRE.DecRK(prm, sku, V, CT):
(V K, T, c1, c2, σ) ← CT
(r2, RIBE) ← V
If Verify(V K, (T ||c1||c2), σ) = reject

then output ⊥ and stop.
(V K ′||r1) ← PKE.Dec(sku, c1)
c′2 ← IBE.Enc(prm, T, (V K||r2); RIBE)
If c2 = c′2 and V K = V K′

then output m = r1 ⊕ r2 else output ⊥.
TRE.DecPK(prm, sku, sT , CT):

(V K, T, c1, c2, σ) ← CT
(dT , T ′) ← sT

If Verify(V K, (T ||c1||c2), σ) = reject or T �= T ′

then output ⊥ and stop.
(V K′||r1) ← PKE.Dec(sku, c1)
(V K′′||r2) ← IBE.Dec(dT , c2)
If V K = V K′ = V K′′

then output m = r1 ⊕ r2 else output ⊥.

Fig. 1. Proposed TRE-PC Scheme

the plaintext, and RIBE is the randomness used to encrypt r2. That is, a pre-
open key contains all the information about the IBE part c2 of the ciphertext
CT . The reason why this is possible is that the information of the plaintext
of CT cannot be obtained only from the share r2. Moreover, RIBE does not
leak the information of the plaintext more than r2. Therefore, as long as the
adversary (who has even a master key of TRE-PC) does not have the receiver’s
secret key, he cannot obtain the information of the plaintext from (r2, RIBE)
without breaking the IND-CCA security of the underlying PKE scheme, which
leads to the time server security. However, we found that there is a certain type
of the decryption queries we cannot handle only with the power of IND-CCA
security of the underlying PKE scheme. Hence in order to overcome it we had
to require another assumption about the randomness for the underlying IBE
scheme, which we feel is a quite mild assumption (see Section 2.2 for discussion
on it).

The security against a curious receiver, who has the receiver’s secret key and
tries to obtain the information before the release-time, is achieved by the security
of the underlying IBE as is the same with the generic construction of a (normal)
TRE scheme from a PKE scheme and an IBE scheme [8].

When the receiver decrypts the ciphertext by a pre-open key, he cannot de-
crypt c2 because he does not have the time-release key. But he can compute c2
deterministically for checking the validity of the ciphertext by using the pre-open
key (r2, RIBE), and reject if it is different from that in the received ciphertext.
This process leads to the binding property.

V K in a plaintext of c1 and c2 works like a session-identity of a ciphertext
CT , meaning that it strongly binds the ciphertexts of the underlying IBE scheme
and the PKE scheme as a single ciphertext of TRE-PC, and makes it possible
to reject the ill-formed ciphertext.

A Generic Construction of Timed-Release Encryption 63

In the following, we show the formal proofs of the three kinds of security.

Theorem 1. Our scheme Γ is IND-TR-CCATS secure if the underlying PKE
scheme Π is IND-CCA secure, the underlying IBE scheme Π ′ has target colli-
sion resistance for randomness, and the underlying signature scheme Σ is SOT
secure.

Proof. Suppose A is an adversary that breaks IND-TR-CCATS security of Γ ,
which means that A wins the IND-TR-CCATS game with probability 1

2 +
AdvIND-TR-CCATS

Γ,A . Then we construct a simulator S who can break IND-CCA
security of the underlying PKE scheme Π using A. Suppose AdvIND-TR-CCATS

Γ,A
is not negligible in order to show the contradiction. Our simulator S, simulating
the IND-TR-CCATS game for A, plays the IND-CCA game with the IND-CCA
challenger CH as follows.

Setup. S is given pku from CH, and generates (msk, prm) by running
IBE.Setup(1κ). S gives (msk, prm, pku) to A.

Phase 1. S responds to A’s pre-open decryption queries (CT, V) and release-
time decryption queries (CT, T) as follow. In the former case, S decrypts
CT by following the procedure of TRE.DecRK and gives m to A. In the latter
case, S computes sT by running IBE.Ext(prm, msk, T), and then gives m to A
by following the procedure of TRE.DecPK with using sT . In both decryption
procedure, S issues c1 to CH as his decryption query and uses the returned
value from CH, instead of running PKE.Dec by himself.

Challenge. When A submits (m0, m1, T
∗) to S, S returns the challenge cipher-

text CT ∗ to A generated as follows. Run SigKG and get (SK∗, V K∗). Choose
randomness r∗2 ←M (equal length to m0) and R∗

IBE ←RIBE uniformly at
random, and computes c∗2 ← IBE.Enc(prm, T ∗, (V K∗||r∗2); R∗

IBE). Set M0 =
(V K∗||m0⊕r∗2) and M1 = (V K∗||m1⊕r∗2). Submit (M0, M1) to CH as S’s
challenge and obtain c∗1 from CH. Compute σ∗ ← Sign(SK∗, (T ∗||c∗1||c∗2)).
Give CT ∗ = (V K∗, T ∗, c∗1, c

∗
2, σ

∗) to A.
Phase 2. S responds to A’s pre-open decryption queries (CT =(V K,T,c1,c2,σ),

V = (r′2, R′
IBE)) as follows. The followings are done in a sequential way.

(1) If Verify(V K, (T ||c1||c2), σ) = reject: Return m ← ⊥.
(2) If c1 �= c∗1: Return m in the same way as the pre-open decryption queries

in Phase 1.
(3) If c1 = c∗1 ∧ V K = V K∗ ∧ c2 = IBE.Enc(prm, T, (V K||r′2); R′

IBE): Give
up the simulation and abort.

(4) Otherwise: Return m ← ⊥.

Likewise, S responds to A’s release-time decryption queries (CT =
(V K, T, c1, c2, σ), T ′) as follows. The following are done in a sequential way.

(1) If Verify(V K, (T ||c1||c2), σ) = reject or T �= T ′ : Return m← ⊥.
(2) If V K = V K∗: Give up the simulation and abort.
(3) If c1 = c∗1: Return m ← ⊥.

64 Y. Nakai et al.

(4) Otherwise: Return m in the same way as the release-time decryption
queries in Phase 1.

Guess. A outputs a bit bA. S outputs bA as its guess.

We define the three events as follows.

Succ: Finally, S wins the IND-CCA game.
AbortRK: In Phase 2, A issues at least one pre-open decryption query that makes

S abort, that is, A issues at least one query satisfying Verify(V K, (T ||c1||c2),
σ) = accept∧ c1 = c∗1 ∧V K = V K∗∧ c2 = IBE.Enc(prm, T, (V K||r′2); R′

IBE).
AbortPK: In Phase 2, A issues at least one release-time decryption query that

makes S abort, that is, A issues at least one query satisfying Verify(V K,
(T ||c1||c2), σ) = accept ∧ V K = V K∗ ∧ T ′ = T ∗.

The probability S wins its own IND-CCA game is estimated as follows.

Pr[Succ] ≥ Pr[Succ ∧ AbortRK ∧ AbortPK]

= Pr[Succ|AbortRK ∧ AbortPK] · Pr[AbortRK ∨ AbortPK]

≥ Pr[Succ|AbortRK ∧ AbortPK]− Pr[AbortRK]− Pr[AbortPK]

We show the three lemmas to complete the proof as follows.

Lemma 1. Pr[Succ|AbortRK ∧ AbortPK] = 1
2 + AdvIND-TR-CCATS

Γ,A .

Proof. (of Lemma 1) In this game, it is clear that the keys that S gives to A
are distributed identically to those in the IND-TR-CCATS game. S makes the
challenge ciphertext of A in a different way from our scheme. In particular,
though r2 is made from the XOR of m and uniformly chosen r1 in our scheme, S
makes r1 from the XOR of m and uniformly chosen r2 in the above game. But, for
any m in both cases the distribution of r1 and r2 is perfectly indistinguishable.
Therefore, the challenge phase is perfectly simulated for A.

Here, we consider the S’s simulation of the response to decryption queries
when AbortRK and AbortPK do not occur.

(1) The response to the pre-open decryption queries

– If Verify(V K, (T ||c1||c2), σ) = reject, S returns ⊥ and clealy this is a perfect
simulation.

– If c1 �= c∗1, S can issue c1 as a decryption query to CH, and use the returned
value from CH for computing the plaintext of CT . In this case S can perfectly
simulate for A.

– If c1 = c∗1 ∧ c2 �= IBE.Enc(prm, T, (V K||r′2); R′
IBE), S returns ⊥ to A and

this is a perfect simulation, because ⊥ is returned if c2 �= IBE.Enc(prm, T,
(V K||r′2); R′

IBE) in our scheme.
– If c1 = c∗1 ∧ V K �= V K∗, because c1 equals to c∗1, the decryption result of

c1 is (V K∗||r∗1) with r∗1 unknown to S. However, since V K �= V K∗, the
decryption of CT is ⊥, and in this case S also returns ⊥ to A. Therefore, S
can perfectly simulate for A.

A Generic Construction of Timed-Release Encryption 65

(2) The response to the release-time decryption queries

– If Verify(V K, (T ||c1||c2), σ) = reject or T �= T ′, S returns⊥ and clealy this is
a perfect simulation. T �= T ′ implies that the time-release key corresponding
to T ′ includes T ′ itself and this does not satisfy the first check of our release-
time decryption algorithm. (Rejection of the signature of course means that
CT decrypts to ⊥.)

– If c1 = c∗1, though S cannot issue c1 as a decryption query to CH, it can
find that the decryption result is (V K∗||r∗1) with r∗1 unknown to S. However,
since V K �= V K∗, the decryption of CT is ⊥, and in this case S also returns
⊥ to A. Therefore, S can perfectly simulate for A.

– If c1 �= c∗1, S can issue c1 as a decryption query to CH, and use the returned
value from CH for computing the plaintext of CT . In this case S can perfectly
simulate for A.

Since S perfectly simulates the IND-TR-CCATS game for A if both AbortRK and
AbortPK do not occur, S wins the IND-CCA game with the same probability that
A wins the IND-TR-CCATS game, that is, 1

2 +AdvIND-TR-CCATS
Γ,A . This completes

the proof of Lemma 1. ��

Lemma 2. Pr[AbortPK] is negligible.

Proof. (of Lemma 2) First of all, note that if AbortPK occurs, thenA issues at least
one release-time decryption query (CT, T) satisfying CT = (V K∗, T, c1, c2, σ) ∧
Verify(V K∗, (T ||c1||c2), σ) = accept (especially note that T ’s in the ciphertext
CT and in the query are identical). Since A is the adversary of IND-TR-CCATS ,
(CT, T) �= (CT ∗, T ∗) is satisfied, and any query satisfying this condition always
satisfies (T, c1, c2, σ) �= (T ∗, c∗1, c

∗
2, σ

∗).
We construct an adversary F who can break SOT security of the underlying

signature scheme Σ using A who causes the event of AbortPK with Pr[AbortPK] =
pA. Suppose pA is not negligible. The description of F is as follows.
F receives V K∗ from CH. Then, F runs IBE.Setup and PKE.KG, and gets

(msk, prm) and (sku, pku), respectively. F gives (msk, prm, pku) to A. F can
perfectly respond to two kinds of the decryption queries ofA since he has msk and
sku. If A outputs (m0, m1, T

∗) as the challenge, F chooses R∗
IBE ←R, r∗2 ←M,

and bS ← {0, 1} uniformly at random, and computes r∗1 = mbS ⊕ r2. Then F
computes c∗1 ← PKE.Enc(pku, (V K∗||r∗1)) and c∗2 ← IBE.Enc(prm, T ∗, (V K∗||r∗2);
R∗

IBE), then issues (T ∗||c∗1||c∗2) as a signature query and gets σ∗. F gives the
challenge ciphertext CT ∗ = (V K∗, T ∗, c∗1, c

∗
2, σ

∗) and its corresponding pre-open
key V ∗ = (r∗2 , R∗

IBE) to A. After A outputs bA, F finds out the query satisfying
V K = V K∗∧Verify(V K∗, (T ||c1||c2), σ) = accept∧(T, c1, c2, σ) �= (T ∗, c∗1, c∗2, σ∗)
in the release-time decryption queries issued by A in this game, and outputs
((T ||c1||c2), σ). If F cannot find such query, it aborts.

It is easy to see that F can certainly forge the signature if A issues a release-
time decryption query that causes the event AbortPK. Therefore, we have
AdvSUF-OTsig

Σ,F = pA, and it contradicts that Σ is SOT secure. Hence Pr[AbortPK]
is negligible, which completes the proof of Lemma 2. ��

66 Y. Nakai et al.

Lemma 3. Pr[AbortRK] is negligible.

Proof. (of Lemma 3) First of all, note that if AbortRK occurs, then A issues at
least one pre-open decryption query satisfying CT = (V K∗, T, c∗1, c2, σ) ∧ c2 =
IBE.Enc(prm, T, (V K∗||r′2); R′

IBE) ∧ Verify(V K∗, (T ∗||c∗1||c2), σ) = accept. Since
A is the adversary of IND-TR-CCATS , (CT, V) �= (CT ∗, V ∗) is satisfied, and any
query satisfying this condition always satisfies either (i) (T, c2, σ) �= (T ∗, c∗2, σ

∗),
or (ii) (T, c2, σ) = (T ∗, c∗2, σ

∗) ∧ V = (r′2, R
′
IBE) �= (r∗2 , R∗

IBE), and these queries
cover all possibilities. We divide the event AbortRK into two sub-events Forge and
Rand, where the former is that A issues the query that causes (i), and the latter
(ii). Then Pr[AbortRK] is estimated as Pr[AbortRK] = Pr[Forge] + Pr[Rand].

Here, we consider the probability that each sub-event occurs.
(1) Pr[Forge]: This is negligible due to the SOT security of Σ. We omit the proof
because this proof is almost the same as that of Lemma 2.
(2) Pr[Rand]: If Rand occurs, r′2 = r∗2 is satisfied by the correctness of the decryp-
tion of the underlying IBE scheme, because c∗2 = IBE.Enc(prm, T ∗, (V K∗||r′2);
R′

IBE).
We construct an adversary H who can break target collision resistance for

randomness of the underlying IBE scheme Π ′ using A who causes the event
Rand with Pr[Rand] = pB. Suppose pB is not negligible.
H receives (msk, prm, R∗

IBE) from CH. Then, H runs PKE.KG, and gets
(sku, pku). H gives (msk, prm, pku) to A. H can perfectly respond to two kinds of
the decryption queries of A since he has msk and sku. If A outputs (m0, m1, T

∗)
as the challenge, H chooses r∗2 ← M, bS ← {0, 1} uniformly at random, and
computes r∗1 = mbS ⊕ r2. Then H runs SigKG and gets (SK∗, V K∗). H com-
putes c∗1 ← PKE.Enc(pku, (V K∗||r∗1)), c∗2 ← IBE.Enc(prm, T ∗, (V K∗||r∗2); R∗

IBE),
and σ∗ ← Sign(SK∗, (T ∗||c∗1||c∗2)). H gives the challenge ciphertext CT ∗ =
(V K∗, T ∗, c∗1, c

∗
2, σ

∗) and its corresponding pre-open key V ∗ = (r∗2 , R∗
IBE) to

A. After A outputs bA, H finds out the query that causes Rand in the pre-open
decryption queries issued by A in this game, and outputs ((V K∗||r∗2), T ∗, R′

IBE).
If H cannot find such query, it aborts.

It is easy to see that H can certainly break the target collision resistance for
randomness if A issues a pre-open decryption query that causes Rand. There-
fore, we have AdvRand

Π′,H = pB. But it contradicts that Π ′ has the target collision
resistance for randomness, so Pr[Rand] is negligible.

From (1) and (2), Pr[AbortRK] = Pr[Forge] + Pr[Rand] is negligible. This com-
pletes the proof of Lemma 3. ��
From the Lemmas 1 ,2 and 3, we can estimate Pr[Succ] as follows:

Pr[Succ] ≥ 1
2

+ AdvIND-TR-CCATS
Γ,A − Pr[AbortRK]− Pr[AbortPK].

Therefore, since we assumed that AdvIND-TR-CCATS
Γ,A is not negligible,

AdvIND-CCA
Π,S = |Pr[Succ]− 1

2 | is not negligible. However, this contradicts that Π
is an IND-CCA secure PKE scheme. This completes the proof of Theorem 1. ��
Theorem 2. Our scheme Γ is IND-TR-CPAIS secure if the underlying IBE
scheme Π ′ is IND-ID-CPA secure.

A Generic Construction of Timed-Release Encryption 67

Proof. Suppose A is an adversary that breaks IND-TR-CPAIS security of
Γ , which means that A wins the IND-TR-CPAIS game with probability 1

2 +
AdvIND-TR-CPAIS

Γ,A . Then we construct a simulator S who can break IND-ID-CPA
security of the underlying IBE scheme Π ′ using A. Suppose AdvIND-TR-CPAIS

Γ,A is
not negligible in order to show the contradiction. Our simulator S, simulating
the IND-TR-CPAIS game for A, plays the IND-ID-CPA game with the IND-ID-
CPA challenger CH as follows.

Setup. S is given prm from CH, and generates (sku, pku) by running PKE.KG(1κ).
S gives (prm, sku, pku) to A.

Phase 1. S responds to A’s extraction queries T as follows. S regards T as an
identity of IBE, and issues T as an extraction query to CH then receives dT .
S sets sT ← (dT , T) and then returns sT as a time-release key to A.

Challenge. When A submits (m0, m1, T
∗) to S, S returns the challenge ci-

phertext CT ∗ to A as follows. Run SigKG and gets (SK∗, V K∗). Choose
a randomness r1 ← M (equal length to m0) uniformly at random, and
compute c∗1 ← PKE.Enc(pku, (V K∗||r∗1)). Set M0 = (V K∗||m0 ⊕ r∗1) and
M1 = (V K∗||m1⊕ r∗1). Submit (M0, M1) and T ∗ to CH as S’s challenge and
obtain c∗2 from CH. Compute σ∗ ← Sign(SK∗, (T ∗||c∗1||c∗2)). Give CT ∗ =
(V K∗, T ∗, c∗1, c

∗
2, σ

∗) to A.
Phase 2. S responds to A’s extraction queries in the same way as Phase 1.
Guess. A outputs a bit bA. S outputs bA as its guess.

Note that S simulates perfectly to A, because S gives correct key pairs, gives
correct time-release key sT for A’s extraction queries T in both Phase 1 and
Phase 2 by using extraction queries to CH, and gives the correct challenge ci-
phertext to A by receiving c∗2 from CH and giving CT ∗ using c∗2. Consequently,
S’s advantage can be estimated as AdvIND-ID-CPA

Π′,S = AdvIND-TR-CPAIS
Γ,A . Since we

assumed that AdvIND-TR-CPAIS
Γ,A is not negligible, this contradicts that Π ′ is an

IND-ID-CPA secure IBE scheme. This completes the proof of Theorem 2. ��

Theorem 3. Our scheme Γ is binding against any (even computationally un-
bounded) adversary.

Proof. Suppose that an adversary A in the binding game outputs CT =
(V K, T, c1, c2, σ) and V = (r2, RIBE), and suppose dT ← IBE.Ext(prm, msk, T)
and sT = (dT , T). We can estimate AdvBINDING

Γ,A as follows.

AdvBINDING
Γ,A

= Pr[TRE.DecRK(prm, sku, V, CT) �= ⊥ ∧ TRE.DecPK(prm, sku, sT , CT)�= ⊥
∧ TRE.DecRK(prm, sku, V, CT) �= TRE.DecPK(prm, sku, sT , CT)]

= Pr[Verify(V K, (T ||c1||c2), σ) = accept ∧ PKE.Dec(sku, c1) = (V K||r1)
∧ c2 = IBE.Enc(prm, T, (V K||r2); RIBE) ∧ IBE.Dec(dT , c2) = (V K||r′2)
∧ r1 ⊕ r2 �= r1 ⊕ r′2]

≤Pr[c2 = IBE.Enc(prm, T, (V K||r2); RIBE)∧IBE.Dec(dT , c2)=(V K||r′2)∧r2 �=r′2]
= Pr[r2 = r′2 ∧ r2 �= r′2],

68 Y. Nakai et al.

where the last equation is due to the correctness of the underlying IBE scheme
Π ′. Clearly r2 = r′2 ∧ r2 �= r′2 never occurs, and so AdvBINDING

Γ,A is zero for any
adversary of any running time. This completes the proof of Theorem 3. ��

5 Discussions

Here, we discuss the consequences of our result.

Existence of TRE-PC. As was discussed by Cheon et al. [8], the exsitence of
TRE (without pre-open capability) is implied by the exsitence of IBE.

On the other hand, we can say that the existence of TRE-PC secure in the
sense of [11] is, due to our result, implied by the exsitence of IBE which has target
collision resistance for randomness. This is because the existence of IBE trivially
implies the existence of one-way functions, which in turn implies the existence
of the one-time signatures [18,20]. Moreover, the existence of IBE implies the
existence of IND-CCA secure PKE [4].

Thus, it may be challenging to consider whether we can avoid the assumption
about the randomness of the underlying IBE scheme so that we can show the
existence of TRE-PC in the sense of [11] only from the existence of IBE schemes.

Standard Model Constructions from Weaker Assumptions. Chow et al. [10] showed
a TRE-PC scheme secure in the standard model whose time server security and
insider security are proved based on the 3-MDDH assumption and the 3-DDH as-
sumption, respectively, and which has binding without any assumption. 2 We note
that ifwe consider the 3-MDDH and the 3-DDH assumptions in the bilinear groups,
then these assumptions are strictly stronger than the decisional bilinear Diffie-
Hellman (DBDH) assumption.

On the other hand, due to our result, we can construct a TRE-PC scheme
secure in the standard model whose time server security and insider security can
be proven both based on the DBDH assumption and which has binding property
without any assumption. Specifically, we can use the Waters IBE scheme [21]
for the underlying IND-ID-CPA secure IBE scheme, and the Boyen et al. PKE
scheme [3] for the underlying IND-CCA secure PKE scheme. The security of
both schemes are proven based on the DBDH assumption. In addition, as men-
tioned in Section 2.2, the Waters IBE scheme satisfies target collision resistance
for randomness without any computational assumption. We note that the effi-
ciency (the computation costs for encryption and decryption and the ciphertext
overhead) of the TRE-PC scheme obtained via our generic construction will
be worse than that of the Chow et al. scheme [10]. However, we believe that
our generic construction will give important insights and be useful for a first
step towards more practical constructions of TRE-PC secure in the standard
model.

2 Their security model is somewhat different from the one in [11] and actually slightly
stronger in the sense that their model considers the multi-receiver setting. In this paper
we only consider the model of [11].

A Generic Construction of Timed-Release Encryption 69

Acknowledgement

The authors also would like to thank anonymous reviewers of IWSEC’09 for
their invaluable comments. The second anthor Takahiro Matsuda is supported
by the Japan Society for Promotion of Science (JSPS) as a research fellow.

References

1. Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making uOWHFs
practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

3. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM CCS, pp. 320–329 (2005)

4. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

5. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved anonymous timed-
release encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734,
pp. 311–326. Springer, Heidelberg (2007)

6. Chan, A.C.-F., Blake, I.F.: Scalable, server-passive, user-anonymous timed release
cryptography. In: ICDCS, pp. 504–513 (2005)

7. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-release and key-insulated
public key encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

8. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably secure timed-release public
key encryption. ACM Trans. Inf. Syst. Secur. 11(2) (2008)

9. Chow, S.S.M., Roth, V., Rieffel, E.G.: General certificateless encryption and timed-
release encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008.
LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008)

10. Chow, S.S.M., Yiu, S.M.: Timed-release encryption revisited. In: Baek, J., Bao,
F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 38–51. Springer,
Heidelberg (2008)

11. Dent, A.W., Tang, Q.: Revisiting the security model for timed-release encryption
with pre-open capability. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)

12. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

13. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

14. Hristu-Varsakelis, D., Chalkias, K., Stephanides, G.: Low-cost anonymous timed-
release encryption. In: IAS, pp. 77–82 (2007)

15. Hwang, Y.-H., Yum, D.H., Lee, P.J.: Timed-release encryption with pre-open capa-
bility and its application to certified e-mail system. In: Zhou, J., López, J., Deng,
R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer, Heidelberg
(2005)

70 Y. Nakai et al.

16. Mao, W.: Timed-release cryptography. In: Vaudenay, S., Youssef, A.M. (eds.) SAC
2001. LNCS, vol. 2259, pp. 342–358. Springer, Heidelberg (2001)

17. May, T.: Timed-release crypto. (Unpublished manuscript) (1993)
18. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic

Applications.In STOC, pp. 33–43 (1989)
19. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release

Crypto. MIT LCS Tech. Report MIT/LCS/TR-684 (1996)
20. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.

In: STOC, pp. 387–394 (1990)
21. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,

R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

An Efficient Identity-Based Signcryption Scheme
for Multiple Receivers

S. Sharmila Deva Selvi1, S. Sree Vivek1,�, Rahul Srinivasan2,
and Chandrasekaran Pandu Rangan1,∗

1 Theoretical Computer Science Laboratory
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai, India

{sharmila,svivek,prangan}@cse.iitm.ac.in
2 Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai, India

rahul.srinivasan@iitb.ac.in

Abstract. This paper puts forward a new efficient construction for Multi-
Receiver Signcryption in the Identity-based setting.We consider a scenario
where a user wants to securely send a message to a dynamically
changing subset of the receivers in such a way that non-members of this
subset cannot learn the message. One obvious solution is to signcrypt the
message to each member of the subset and transmit it to each of them in-
dividually. This requires a very long transmission (the number of receivers
times the length of the message) and high computation cost. Another sim-
ple solution is to provide a key for every possible subset of receivers. This
requires every user to store a huge number of keys. In this case, the storage
efficiency is compromised. The goal of this paper is to provide a solution
which is efficient in all three measures i.e. transmission length, storage of
keys and computation at both ends.Wepropose anew scheme that achieves
both confidentiality and authenticity simultaneously in this setting and is
the most efficient scheme to date, in the parameters described above. It
breaks the barrier of ciphertext length of linear order in the number of re-
ceivers, and achieves constant sized ciphertext, independent of the size of
the receiver set. This is the first Multi-receiver Signcryption scheme to do
so. We support the scheme with security proofs in the random oracle model
under precisely defined security model.

Keywords: Multiple Receivers, Signcryption, Identity-Based Cryptog-
raphy, Provable Security.

1 Introduction

Two fundamental tools of Public Key Cryptography are privacy and authenticity,
achieved through encryption and signature respectively. Signcryption, introduced
� Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-

cure Communication and Computation sponsored by Department of Information
Technology, Government of India.

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 71–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 S. Sharmila Deva Selvi et al.

by Zheng [16], is a cryptographic primitive that offers confidentiality and unforge-
ability simultaneously similar to the sign-then-encrypt technique, but with lesser
computational complexity and lower communication cost. The security notion for
signcryption was first formally defined in 2002 by Baek et al. in [1].

The concept of an Identity based (ID-based) cryptosystem was introduced by
Shamir [13] in 1984. The idea is that users within a system could use their online
identifiers (combined with certain system-wide information) as their public keys.
This greatly reduces the problems with key management and provides a more
convenient alternative to conventional public key infrastructure. In 2001, the first
fully practical identity-based encryption (IBE) scheme, using bilinear mappings
over elliptic curves was proposed by Boneh et al. [4].

ID-based signcryption schemes achieve the functionality of signcryption with
the added advantage that ID-based cryptography provides. To date, some of the
most efficient ID-based signcryption schemes are that of Chen et al. [5], and
Barreto et al. [2]

1.1 Motivation

Assume that there are n receivers, numbered 1 to n, and that each of them keeps
a private and public key pair denoted by (ski, pki). A sender then encrypts a
message M directed to receiver i using pki for i = 1 to n and sends (C1, . . .Cn) as
the ciphertext. Upon receiving the ciphertext, receiver i extracts Ci and decrypts
it using its private key ski. This setting of public key encryption is generally
referred to as Multi-receiver Public Key Encryption in literature.

The objective of a multi-receiver ID-based signcryption scheme is to efficiently
broadcast a single ciphertext to different receivers while achieving the security
properties of authenticity and unforgeability. In practice, broadcasting a message
to multiple users in a secure and authenticated manner is an important facility for
a group of people who are jointly working on the same project to communicate
with one another. When we consider the case of an organization with several
managers, each of whom wants to securely send messages to employees of the
company, independently, the issue of message authentication will arise, apart
from confidentiality.

1.2 Related Work

In the multi-receiver identity-based setting, we are interested in the situation
where there is not only a single sender to multiple receivers, but also multiple
senders. In such cases, it is desirable to achieve confidentiality and authentic-
ity simultaneously. To our knowledge, identity-based signcryption in the multi-
receiver setting has not been much treated in the literature. One might argue
that by adding sender authentication by using a secure digital signature scheme
to a multi-receiver encryption scheme will achieve this purpose. However, such
combinations may suffer from hidden security weakness as observed by Duan
and Cao in [7]. Also, they proposed the first mIBSC scheme and specified the
formal security notions for the same. The multi-receiver scheme proposed by

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 73

Duan and Cao was shown to be insecure by Tan[14], by demonstrating an at-
tack on the confidentiality of the scheme. Yu et al.[15] also proposed an mIBSC
scheme in 2008. Sharmila et al. in [12] showed that this scheme is not secure in
the sense that it is forgeable and is not confidential. They also provide a fix for
the scheme. To the best of our knowledge the scheme with the fix is the only
secure identity-based scheme available in Multi receiver Signcryption literature
till date.

1.3 Our Contribution

Following the above discussion, a natural question one can ask is how to design
a multi-receiver identity-based signcryption scheme that achieves both confiden-
tiality and authenticity, and broadcasts a message with a high-level of compu-
tational and storage efficiency and optimal transmission length while retaining
security. In this paper, we introduce an efficient scheme to answer this question,
which is inspired by the signcryption scheme proposed by Barreto et. al. [2].
The major advantage of our scheme is, it sends only three components to all the
receivers. That is the size of the ciphertext is a constant and is independent of
the number of receivers. However, all the other systems existing in the literature
have ciphertext size proportional to the number of receivers. But this is achieved
at the cost of storage efficiency. The size of the public key grows as the maxi-
mal size of the subset of receivers in the group (which can be significantly less
than the total number of people in the group). This is the most efficient Identity
based Multi Receiver Scheme to date. This construction, when converted to a
Broadcast Encryption scheme [8], is comparable to the Identity-Based Broad-
cast Encryption (IBBE) schemes proposed by Furukawa [11] and Delerablée [6].
We also provide formal security notions for Multi-receiver Identity-Based Sign-
cryption (mIBSC) schemes and formally prove the construction secure in the
random oracle model by reducing its security to standard assumptions related
to the Bilinear Diffie Hellman Problems.

Storage Cost Computational Cost -
Scheme Public Key Private Key No. of pairings for Header

Size1 Size (Signcrypt, Designcrypt) Size2 Status
Duan and Cao [7] O(1) O(1) (1,4) O(t) Broken

Yu et al.[15] O(1) O(1) (1,3) O(t) Broken
Sharmila et al.[12] O(1) O(1) (1,3) O(t) Secure
Our Construction O(N) O(1) (0,3) O(1) Secure

Remark. It is a common practice in group oriented protocols to ignore the part of
the broadcast ciphertext that identifies the target subset of receivers. We distin-
guish between the set identification transmission and the message signcryption
transmission. Our goal is the study of latter and their requirements. What is
1 N is the maximal size of the receiver set.
2 t is the size of the receiver set.

74 S. Sharmila Deva Selvi et al.

called ciphertext size usually refers to the size of the header that corresponds to
the message signcryption alone.

2 Preliminaries

Let G1 be an additive cyclic group of prime order p, with generators P and Q,
and G2 be a multiplicative cyclic group of the same order p.

2.1 Bilinear Pairing

A bilinear pairing is a map e : G1 ×G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈ G1,
• e(P + Q, R) = e(P, R)e(Q, R)
• e(P, Q + R) = e(P, Q)e(P, R)
• e(aP, bQ) = e(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that e(P, Q) �= IG2 , where
IG2 is the identity element of G2.

– Computability. There exists an efficient algorithm to compute e(P, Q) for
all P, Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear
maps that are relevant to the protocol we discuss.

Let B = (p, G1, G2, GT , e(·, ·)) be a bilinear map group system such that
G1 = G2 = G. Let G0 ∈ G be a generator of G, and set g = e(G0, G0) ∈ GT .

2.2.1 l-Strong Diffie Hellman Problem (l − SDHP)
The l-Strong Diffie-Hellman problem (l−SDHP) in the group G consists of, given
G0, sG0, s

2G0,
. . . , slG0, finding a pair (c, 1

c+sG0) with c ∈ Z∗
p.

Definition 1. The advantage of any probabilistic polynomial time algorithm
A in solving the l − SDHP in G is defined as Advl−SDHP

A =

Pr
[
A(G0, sG0, s

2G0, . . . , s
lG0) = (c, 1

c+sG0) | c ∈ Z∗
p

]
The l-SDHP Assumption

is that, for any probabilistic polynomial time algorithm A, the advantage
Advl−SDHP

A is negligibly small.

2.2.2 The General Diffie-Hellman Exponent Assumption
We make use of the generalization of the Diffie-Hellman exponent assumption
due to Boneh, Boyen and Goh [3]. Let m, n be positive integers and U, V ∈
Fp[X1, ..., Xn]m be two m-tuples of n-variate polynomials over Fp. Thus, U and
V are just two sets containing m multivariate polynomials each. We write U =
(u1, u2, ..., um) and V = (v1, v2, ..., vm) as tuples of polynomials and impose

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 75

that u1 = v1 = 1; that is, the constant polynomials 1. For a set Ω, a function
h : Fp → Ω and vector (x1, ..., xn) ∈ Fn

p , we write

h(U(x1, ..., xn)) = (h(u1(x1, ..., xn)), ..., h(um(x1, ..., xn))) ∈ Ωm

We use a similar notation for the m-tuple V . Let F ∈ Fp[X1, ..., Xn]. It is said
that F depends on (U, V), which we denote by F ∈ 〈U, V 〉, when there exists a
linear decomposition

F =
∑

1≤i,j≤m

ai,j · ui · uj +
∑

1≤i≤m

bi · vi, ai,j , bi ∈ Zp

Let U, V be as above and F ∈ Fp[X1, ..., Xn]. The (U, V, F)-General Diffie-
Hellman Exponent problems are defined as follows.

Definition 2 ((U, V, F)-GDHE). Given the tuple

H(x1, ..., xn) =
(
[U(x1, ..., xn)]G0, gV (x1,...,xn)

)
∈ G

m × G
m
T ,

(U, V, F)-GDHE asks to compute gF (x1,...,xn).

Definition 3 ((U, V, F)-GDDHE). Given H(x1, ..., xn) ∈ G
m×G

m
T as above

and T ∈GT , (U, V, F)-GDDHE problem is to decide whether T =gF (x1,...,xn).

Definition 4. The advantage of any probabilistic polynomial time algorithm A
in solving the (U, V, F)−GDDHE problem in G is defined as

Adv
(U,V,F)−GDDHE
A = |Pr[A(U, V, F, gF (x1,...,xn)) = 1]− Pr [A(U, V, F, T) = 1] |

The (U, V, F)-GDDHE Assumption is that, for any probabilistic polynomial time
algorithm A, the advantage Adv

(U,V,F)−GDDHE
A is negligibly small.

Complexity Bound in Generic Bilinear Groups. We state the following
upper bound in the framework of the generic group model. We are given oracles
to compute the induced group action on G, GT , and an oracle to compute a
non-degenerate bilinear map e : G×G → GT . We refer to G as a generic bilinear
group. The following theorem gives an upper bound on the advantage of a generic
algorithm in solving the decision (U, V, F)−GDDHE problem.

Theorem 1. Let U, V ∈ Fp[X1, ..., Xn] be two m-tuples of n-variate polyno-
mials over Fp and let F ∈ Fp[X1, ..., Xn]. Let dU (respectively. dV , dF) de-
note the maximal degree of elements of U (respectively. of V , F) and pose
d = max(2dU , dV , dF). If F /∈ 〈U, V 〉 then for any generic-model adversary A to-
taling at most q queries to the oracles (group operations in G, GT and evaluations
of e) which is given H(x1, ..., xn) as input and tries to distinguish gF (x1,...,xn)

from a random value in GT , one has

Adv(A) ≤ (q + 2m + 2)2 · d
2p

76 S. Sharmila Deva Selvi et al.

We refer to [3] for a proof that (U, V, F)−GDHE and (U, V, F)−GDDHE have
generic security when F /∈ 〈U, V 〉. In our constructions, the order of the groups
(p) that we consider is exponential in the security parameter λ.

2.3 Multi-receiver Identity-Based Signcryption(mIBSC)

A generic mIBSC for sending a single message to t users consists of the following
probabilistic polynomial time algorithms,

– Setup(k, N). Given a security parameter k and the size of the maximal
set of receivers3 N , the Private Key Generator (PKG) generates the public
parameters params and master private key MSK of the system.

– Extract(ID, MSK). Given an identity ID, the PKG computes the corre-
sponding private key SID

– Signcrypt(m, IDA, ID1, ID2,IDt, SA). To send a message m to
(ID1, ID2,IDt), a user with identity IDA runs this algorithm to obtain
the signcryption σ of m from IDA to (ID1, ID2,, IDt).

– Designcrypt(σ, IDA, IDi, Si). When a user with identity IDi and private
key Si receives a signcryption σ, runs this algorithm to obtain either the plain
text m or ⊥ according as whether σ is a valid signcryption from identity IDA

to (ID1, ID2,, IDt) or not.

2.4 Security Model

The notion of semantic security of public key encryption was extended to identity-
based signcryption scheme by Malone-Lee in [9]. We describe the security models
for confidentiality and unforgeability below.

2.4.1 Confidentiality
The standard notion for confidentiality of mIBSC schemes is Chosen Cipher-
text Security (CCA) and Chosen Plaintext Security (CPA) against Static Ad-
versaries.

A multi-receiver ID-based signcryption scheme is semantically secure against
chosen ciphertext attacks (IND-mIBSC-CCA) if no probabilistic polynomial time
adversary A has a non-negligible advantage in the following game.

1. Setup : The adversary A first outputs the set of target receiver identities
S∗ = {ID∗

1 , ID∗
2 , . . . , ID∗

t } to R. The challenger R runs the Setup algorithm
to generate the master public parameters params and the master private key
MSK. R gives params to the adversary A.

2. In the first phase, A makes polynomially bounded number of queries to the
following oracles.
(a) Extract Oracle (OExtract) — A produces an identity ID and queries

for the private key of ID. The Extract Oracle returns SID to A provided
ID /∈ S∗.

3 This input is optional. Certain specific schemes may not need this input.

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 77

(b) Signcrypt Oracle (OSigncrypt) — A produces a message m, sender
identity IDA and a list of receiver identities ID1, ID2, . . . , IDt. R
computes the private key SA by using Extract(IDA, MSK) and
returns to the adversary A, the signcryption σ by using Signcrypt
(m, IDA, ID1, ID2, . . . , IDt, SA).

(c) Designcrypt Oracle (ODesigncrypt) — A produces a sender identity
IDA, receiver identity IDB and a signcryption σ. The challenger R
computes the private key SB from Extract(IDB , MSK), returning the
result of Designcrypt (σ, IDA, IDB, SB) to A. The result returned is ⊥
if σ is an invalid signcryption from IDA to IDB.

3. A produces two messages m0 and m1 of equal length from the message
space M and an arbitrary sender identity ID∗

A. The challenger R flips a
coin, sampling a bit b ← {0, 1} and computes the challenge signcryption as
σ∗ = Signcrypt (mb, ID∗

A, ID∗
1 , ID∗

2 , . . . , ID∗
t , S∗

A). σ∗ and returns to A .
4. A is allowed to make polynomially bounded number of new queries as in

Step 2 with the restrictions that it should not query the Designcryption
Oracle for the designcryption of σ∗ and the Extract Oracle for the private
keys corresponding to {ID∗

1 , ID∗
2 , . . . , ID∗

t }, but he is allowed to query the
private key of the sender ID∗

A.
5. At the end of this game, A outputs a bit b′. A wins the game if b′ = b.

We define the advantage of the adversary A as

AdvmIBSC−CCA
A = |Pr [b = b′]− 1

2
|

Note. We analogously define security against chosen plaintext attacks (IND-
mIBSC-CPA) by preventing the adversary from issuing Designcryption Queries
in the above game.

2.4.2 Unforgeability
A signcryption scheme is existentially unforgeable under chosen message attack
(EUF-mIBSC-CMA) if no probabilistic polynomial time adversary A has a non-
negligible advantage in the following game.

1. A first outputs the target sender’s identity ID∗ on which he would like to
generate the forgery. The challenger R runs the Setup algorithm to gen-
erate the master public parameters params and master private key MSK
respectively. R gives system public parameters params to A.

2. The adversary A makes polynomially bounded number of queries to the
oracles as described in Step 2 of the confidentiality game with the constraint
that no Extract query is made on ID∗.

3. Finally A produces a signcryption σ∗ from ID∗ to {ID∗
i }(i=1 to t). A wins

the game if
– The result of Designcrypt(σ∗, ID∗

A, ID∗
i) for some 1 ≤ i ≤ t results in a

valid message m∗.
– No query to OSigncrypt involved m∗, ID∗

A and any set of receivers.

78 S. Sharmila Deva Selvi et al.

Note. The above definitions for security in the sense of Confidentiality and
Unforgeability only model the case where the adversary is static. We can analo-
gously define security against adaptive adversaries by not posing the restriction
of specifying the set that the adversary is going to attack beforehand. Modeling
a scheme that is secure against adaptive adversaries is an open problem.

3 Multi-receiver Identity-Based Signcryption(mIBSC)
(mIBSC)

In this section, we present a scheme that achieves constant-sized ciphertexts and
private keys and prove that it is secure in the random oracle model. The size of
the public keys is that of the maximal subset of receivers.

3.1 The Scheme

mIBSC has the following algorithms.

– Setup(λ, N) The security parameter of the scheme is λ and N is the maximal
size of the set of receivers. G1, G2 are two groups of prime order p, where
|p| = λ. P and Q are generators of G1 and e is a bilinear map defined
as e : G1 × G1 → G2. Let n0 and n1 denote the number of bits required
to represent an identity and a message respectively. Three hash functions
H1 : {0, 1}n0 → Z∗

p, H2 : {0, 1}n1 × G2 → Z∗
p, H3 : G2 → {0, 1}(n1)+|G1| are

used. The PKG chooses s ∈R Z∗
p and computes R = sP and g = e(P, Q).

The public parameters are

params = 〈G1, G2, R, Q, sQ, s2Q, . . . , sNQ, g, e(·, ·), H1, H2, H3〉.

The Master Secret Key is

MSK = 〈s, P 〉.

– Extract(ID, MSK) The public key and private key of identity ID are
H1 (ID) and SID = 1

H1(ID)+sP respectively.

– Signcrypt(m, IDA, ID1, ID2, . . . , IDt, SA) Suppose A wants to signcrypt a
message m to t receivers with identities ID1, ID2, . . . , IDt. User A does the
following.
1. Choose r uniformly and random from Z∗

p

2. Compute the following.
(a) α = gr

(b) X = −rR
(c) h = H2 (m, α)
(d) ZA = (r + h)SA

(e) c = m‖ZA ⊕H3 (α)
(f) y =

[∏t
i=1(s + H1 (IDi))

]
rQ

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 79

3. The signcryption is σ = 〈c, X, y,L〉, where L is the list of receivers who
can designcrypt σ.

– Designcrypt(σ, IDA, IDi, Si) A receiver with identity IDi uses his private
key Si to designcrypt σ = 〈c, X, y,L〉 from IDA as follows.
1. Compute the following.

(a) α′ =
[
e (Si, y) .e

(
X, 1

s

[∏ t
j=1,j �=i (s+H1(IDj))−

∏ t
j=1,j �=iH1(IDj)

]
Q
)] 1∏t

j=1,j �=i
H1(IDj)

(b) m‖Z ′
A = c⊕H3 (α′)

(c) h = H2 (m, α′)
2. If α′ = e (Z ′

A, (H1 (IDA) Q + sQ)) g−h, return m. Otherwise, return ⊥.

Note : To compute the expression

1
s

⎡
⎣ t∏

j=1,j �=i

(s + H1 (IDj)) −
t∏

j=1,j �=i

H1 (IDj)

⎤
⎦Q

the explicit knowledge about the component of the master private key, s, is
not necessary. The expression

[∏t
j=1,j �=i (s + H1 (IDj)) −∏t

j=1,j �=i H1 (IDj)
]

is
a polynomial of degree (t− 1) in s, without the presence of a constant term,
and hence is divisible by s. Thus the coefficient expression
1
s

[∏t
j=1,j �=i (s + H1 (IDj)) −∏t

j=1,j �=i H1 (IDj)
]

is a polynomial, say f(s), of

degree (t− 2) in s. Since sQ, s2Q, . . . , s(t−2)Q where t ≤ N , are all available
in master public parameters params, the required expression f(s)Q, can be
computed without the explicit knowledge of s.

Correctness. It is easy to see that the above decryption algorithm is consistent.
Indeed, if σ is a valid ciphertext to IDi,

β = e (Si, y) .e(X,
1
s
[

t∏
j=1,j �=i

(s + H1 (IDj))−
t∏

j=1,j �=i

H1 (IDj)]Q)

= e (P, Q)r·{∏ t
j=1,j �=i [s+H1(IDj)]−[∏ t

j=1,j �=i(s+H1(IDj))−
∏ t

j=1,j �=i H1(IDj)]}

= gr·∏t
j=1,j �=i H1(IDj)

Hence, α = β
1∏t

j=1,j �=i
H1(IDj) .

3.2 Security Properties

Definition 5 ((U, V, F)−GDDHE). Let B = (p, G1, G2, e(,)) be a bilinear map
group system and let f and g be two coprime polynomials with pairwise distinct
roots, of respective orders l and t. Let P0 and Q0 be generators of G1. Given(

P0, sP0, . . . , s
l−1P0 s.f(s)P0, s

2.f(s)P0, s
3.f(s)P0 γ.s.f(s)P0

Q0, sQ0, . . . , s
N+3Q0 γ.s.g(s)Q0

)

and T ∈ G2, solving the (U, V, F) − GDDHE problem consists of deciding
whether T is equal to e(P0, Q0)γ·f(s) or is some random element of G2.

80 S. Sharmila Deva Selvi et al.

Corollary 1 (Generic security of (U, V, F)−GDDHE). For any probabilistic
algorithm A that totalizes of at most q queries to the oracles performing the group
operations in G1, G2 and the bilinear map e(·, ·),

AdvGDDHE(U, V, F,A) ≤ (q + 2(l + N + 9) + 2)2 · d
2p

with d = 2 ·max(N + 3, l + 1).

Proof. Refer Appendix A.

3.2.1 Confidentiality
Theorem 2. Assume that an IND-mIBSC-CCA adversary A has an advantage
ε against mIBSC, asking at most l extraction queries. Then there is an algo-
rithm R to solve the (U, V, F)−GDDHE problem with advantage

ε′ ≥ ε/2

Proof. Both the adversary and the challenger are given as input N, the maximal
size of a set of included users S, and l the total number of extraction queries
and q the total number of random oracle queries that can be issued by the
adversary. Algorithm R is given as input a group system B = (p, G1, G2, e(,)),
and a (U, V, F)−GDDHE instance in B . We thus have f and g, two coprime
polynomials with pairwise distinct roots, of respective orders l and t respectively,
and (

P0, sP0, . . . , s
l−1P0 s.f(s)P0, s

2.f(s)P0, s
3.f(s)P0 γ.s.f(s)P0

Q0, sQ0, . . . , s
N+2Q0 γ.s.g(s)Q0

)

and T ∈ G2 , which is either equal to e(P0, Q0)γ·f(s) or to some random element
of G2

Notations.

– f(X) =
∏l

i=1(X + xi)
– g(X) =

∏l+t
i=l+1(X + xi)

– fi(x) = f(x)
x+xi

for i ∈ [1, l], which is a polynomial of degree l − 1.

Init Phase: The adversary A outputs a t-set S∗ = {ID∗
1 , ..., ID∗

t } of identities
that he wants to attack.

Setup Phase: To generate the system parameters, R formally sets P = f(s)P0
(i.e. without computing it) and sets

– Q = Q0
– R = s.f(s)P0 = sP
– g = e(P0, Q0)f(s) = e(P, Q)

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 81

R then defines the Public Key PK as Q, sQ, s2Q, . . . , sNQ, R, g. Note R cannot
compute the value of P .

Query phase 1: At any time the adversary A can query the following random
oracles. To respond to these queries, R maintains three lists LH1 ,LH2 ,LH3 .

1. H1 Queries: The list LH1 contains at the beginning: (∗, xi)
l
i=1 (IDi, xi)

l+t
i=l+1

(we choose to note * an empty entry in LH1). When the adversary issues a
hash query on identity IDi,
– If IDi already appears in the list LH1 , R responds with the corresponding

xi.
– Otherwise, R picks an xi for some (∗, xi) in LH1 , returns H(IDi) = xi,

and completes the list with (IDi, xi).
2. Extraction query (IDi): The challenger runs Extract on IDi /∈ S∗ and for-

wards the resulting private key to A. To generate the keys,
– If A has already issued a hash query on IDi, then R uses the corre-

sponding xi to compute
SIDi = fi(s)P0 = 1

s+xi
P

– Otherwise, R sets H(IDi) = xi, computes the corresponding SIDi ex-
actly as above, and completes the list LH1 for IDi.

3. H2 queries: To respond to these queriesRmaintains a list of tuples called the
LH2 list. Each entry in the list is a tuple of the form (mi, αi, hi). Initially the
list is empty. To respond to query (mi, αi) algorithm R does the following:
– If the query (mi, αi) already appears in the list in a tuple (mi, αi, hi)

then respond with H2(mi, αi) = hi.
– Otherwise,R just picks a random hi ← Z∗

p and adds the tuple (mi, αi, hi)
to the list

– It responds to A with H2(mi, αi) = hi.
4. H3 queries: To respond to these queries R maintains a list of tuples called

the LH3 list. Each entry in the list is a tuple of the form (αi, hi). Initially
the list is empty. To respond to query αi algorithm R does the following:
– If the query αi already appears in the list in a tuple (αi, hi) then respond

with H3(αi) = hi.
– Otherwise, R just picks a random hi ← {0, 1}n where n is the number

of bits in a message and adds the tuple (αi, hi) to the list
– It responds to A with H3(αi) = hi.

5. Signcryption Queries : Of the form (m, IDA, ID1, ID2, . . . , IDn) If IDA /∈
S∗, R proceeds as in normal Signcrypt algorithm. Otherwise, R does the
following:
– Picks r ∈R Z∗

p and sets ZA = r.sP
– Picks h ∈R Z∗

p

– Computes y = r (s(xA + s)− h)
∏n

i=1(s + xi)Q and
X = r. (s(s + xA)− h) sP

– Computes α = e(ZA, (s + xA)Q).g−h·r and picks a random string V of
length same as the message

– Returns 〈m‖ZA ⊕ V, X, y〉 and enters the tuples (m, α, h · r) and (α, V)
in L2 and L3 respectively.

82 S. Sharmila Deva Selvi et al.

As one can see, the returned ciphertext will pass off as a valid one,

e(ZA, (s + xA)Q).g−h·r = gr·(s(s+xA)−h)

= β
1∏t

j=1,j �=i
H1(IDj)

where β = e (Si, y) .e
(
X, 1

s

[∏n
j=1,j �=i (s + H1 (IDj)) −∏n

j=1,j �=i H1 (IDj)
]
Q
)

and IDi = IDA.

6. Designcryption Queries : Of the form (σ, IDA, IDi) R retrieves ZA from
σ and searches L2 for an entry of the form (mj , αj , hj) and corresponding
entry (αj , Vj) from list L3 that satisfies the following condition,

m‖ZA = c⊕ Vj

αj = e(ZA, H1(IDA)Q + sQ) · g−hj

If such an entry is present, R returns mj . Otherwise, returns ⊥.
We note that if σ is a valid ciphertext, then hj is the correct value of
H2(mj , αj). If A has queried the H2 oracle for these values, then an en-
try of the form (mj , αj , hj) will be present in L2, which R retrieves. The
only other case in which A produces a valid ciphertext is by correctly guess-
ing the hash value. In a perfect simulation, this ciphertext using the correct
guessed value should pass of as a valid one. But in our simulation, this does
not happen. However we note that this event occurs only with a probabil-
ity of 1/p which is of the order of 1/2k, which is negligible in the security
parameter k.

Challenge Phase: When A decides that phase 1 is over, he gives two mes-
sages m0 and m1 and a sender’s identity IDA, algorithm R sets α = T , picks
random c and responds with the challenge ciphertext σ∗ = 〈c, X, y,L〉 where
X = r.s.f(s)P0, y = γ.s.g(s)Q0. Note that if T = gγ , then (X, y) is a valid
encryption of α = gγ , although σ∗ may not be a valid ciphertext.

Query phase 2: The adversary continues to issue queries with the constraint
that no extraction query is made on IDi for IDi ∈ S∗

Guess Phase: Finally, the adversary A outputs a guess b
R ignores the answer and searches LH3 for an entry of the form (T, ∗). If

present, R outputs 1 (indicating that T = gγ). Otherwise, R outputs 0.
We note that if (X, y) is a valid encryption of T , then an adversary with a

non-negligible advantage in the above game must have issued a H3 query on T ,
in which case an entry of the form (T, ∗) will be present in LH3 .

AdvGDDHE
R (U3, V3, F3) = Pr [b = b′|real]− Pr [b = b′|random]

=
1
2
· AdvmIBSC−CCA

A

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 83

3.2.2 Unforgeability
Theorem 3. Assume that an EUF-mIBSC-CMA adversary A making l extrac-
tion queries, q

Hi
queries to random oracles Hi (i= 1,2,3) and qsc signcryption

queries, has an advantage ε ≥ 10(qsc + 1)(qsc + q
H2

)/2k has an advantage ε
against mIBSC. Then there is an algorithm R to solve the (l + N) − SDHP
with advantage

ε′ ≥ 1/9

Proof. Let l be the maximum number of extraction queries that can be queried
by the adversary A and N be the maximal size of the receiver set. Algorithm
R takes as input (Q, sQ, s2Q, . . . , sl+NQ) and aims to find a pair (c, 1

c+sQ). In
a setup phase, it builds a generator G ∈ G1, such that it knows l − 1 pairs
(xi,

1
xi+sG) for x1, . . . , xl−1 ∈R Z∗

p.To do so,

– It picks β ∈R Z∗
p and sets P = βQ

– It picks x1, x2, . . . , xl−1 ∈R Z∗
p and expands f(z) =

∏l−1
i=1(z + xi) to obtain

c0, c1, . . . , cl−1 ∈ Z∗
p so that f(z) =

∑l−1
i=0 ciz

i.
– It sets generators H =

∑l−1
i=0 ci(siQ) = f(s)Q and G = βH = f(s)P . It then

computes
∑l

i=1 ci−1(siQ) = sH, s2H, . . . , sNH and g = e(G, H) and makes
〈sG, H, sH, s2H, s3H, . . . , sNH, g = e(G, H)〉 public.

– For 1 ≤ i ≤ l − 1, R expands fi(z) = f(z)
(z+xi)

=
∑l−2

i=0 diz
i and β · fi(s)P =

1
xi+sG

A provides R the target user identity ID∗ on which A would like to generate
the forgery. R is then ready to answer A’s queries along the course of the game.
It first initializes a counter i to 1. For simplicity, we assume that queries to H1
are distinct, and that any query involving an identifier ID is preceded by the
random oracle query H1(ID).

1. H1 queries: On input of an identity ID by A, R returns a random x∗ ∈R Z∗
p

if ID = ID∗. Otherwise, R answers x = xi and increments i. R stores
(ID, x) in a list LH1 .

2. H2 queries: To respond to these queriesRmaintains a list of tuples called the
LH2 list. Each entry in the list is a tuple of the form (mi, αi, hi). Initially the
list is empty. To respond to query (mi, αi) algorithm R does the following:
– If the query (mi, αi) already appears in the list in a tuple (mi, αi, hi)

then respond with H2(mi, αi) = hi.
– Otherwise,R just picks a random hi ← Z∗

p and adds the tuple (mi, αi, hi)
to the list. Also, R responds to A with H2(mi, αi) = hi.

3. H3 queries: To respond to these queries R maintains a list of tuples called
the LH3 list. Each entry in the list is a tuple of the form (αi, hi). Initially
the list is empty. To respond to query αi algorithm R does the following:
– If the query αi already appears in the list in a tuple (αi, hi) then respond

with H3(αi) = hi.

84 S. Sharmila Deva Selvi et al.

– Otherwise, R just picks a random hi ← {0, 1}n where n is the number
of bits in a message and adds the tuple (αi, hi) to the list, R responds
to A with H3(αi) = hi.

4. Key extraction queries on ID �= ID∗: R recovers the matching pair (ID, x)
from L1 and returns the previously computed 1

s+xG. Note : No extraction
query on ID∗ can be made.

5. Signcryption query on (m, IDA, ID1, ID2, . . . , IDn): If IDA �= ID∗, proceed
normally as in the Signcrypt algorithm. Else, R does the following
– Picks r, h ← Z∗

p and a random string V of length equal to that of the
message.

– Computes ZA = r.G
– Computes y = r(x∗ + s− h)

∏n
i=1(xi + s)H

– Computes X = rs(x∗ + s− h)G
– Computes α = e(ZA, (x∗ + s)H)g−h·r

– Adds the tuple (h · r, m, α) in L2 and (V, α) in L3

– Returns the ciphertext 〈c = m‖ZA ⊕ V, X, y〉.
As one can see, the returned ciphertext will pass off as a valid one,

e(ZA, (s + xA)H).g−h·r = gr·(s+x∗−h)

= β
1∏t

j=1,j �=i
H1(IDj)

where β = e (Si, y) .e
(
X, 1

s

[∏n
j=1,j �=i (s + H1 (IDj)) −∏n

j=1,j �=i H1 (IDj)
]
H
)

6. Designcryption Queries : Queries of the form (σ, IDA, IDi). R searches L2
for an entry of the form (mj , αj , hj) and retrieves ZA from c = m‖ZA ⊕ α
and checks whether it satisfies the following condition

αj = e(ZA, H1(IDA)Q + sQ) · g−hj

If such an entry is present, R returns mj . Otherwise, R returns ⊥.
We note that if σ is a valid ciphertext, then hj is the correct value of
H2(mj , αj), for some (mj , αj). If A has queried the H2 oracle with these
values, then an entry of the form (mj , αj , hj) will be present in L2, which R
retrieves. The only other case in which A can produce a valid ciphertext is by
correctly guessing the hash value of (mj , αj) without querying it. In a perfect
simulation, this ciphertext using the correct guessed value should pass of as
a valid one. But in our simulation, this does not happen, and we return ⊥.
However we note that this event occurs only with a probability of 1/p which
is of the order of 1/2k, which is negligible in the security parameter k.

We are ready to apply the forking lemma that essentially says the following:
consider a scheme producing signatures of the form (M, α, h, ZA), where each
of α, h, ZA corresponds to one of the three moves of a honest-verifier zero-
knowledge protocol. In our setting, from a forger A, we build an algorithm
A′ that replays A sufficient number of times to obtain two suitable forgeries
(M∗, α, h1, Z1), (M∗, α, h2, Z2) on ID∗. The reduction then works as follows.
The simulator R on obtaining two forgeries (M∗, α, h1, Z1), (M∗, α, h2, Z2) for

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 85

the same message M∗ and commitment α recovers the pair (ID∗, x∗) from list
L1. If both forgeries satisfy the verification equation, we obtain the relations

e(Z1, QID∗)e(G, H)−h1 = e(Z2, QID∗)e(G, H)−h2

with QID∗ = H1(ID∗)H + sH = (x∗ + s)H . Then, it comes that e((h1 −
h2)−1(Z1−Z2), QID∗) = e(G, H) and hence T ∗ = (h1−h2)−1(Z1−Z2) = 1

w∗+sG

From T ∗, R first obtains a−1, a0, . . . , al−2 for which f(z)
(z+x∗) = a−1

(z+x∗) +
∑l−2

i=0 aiz
i

and eventually computes

σ∗ =
1

a−1

[
T ∗ −

l−2∑
i=0

ais
iP

]
=

1
x∗ + s

P

and β−1 · σ∗ = 1
x∗+sQ (Since P = βQ) before returning the pair (x∗, 1

x∗+sQ) as
the solution to (l + N)− SDHP .

We note as in [10], if AdvmIBSC
A ≥ 10(qsc + 1)(qsc + q

H2
)/2k, where l extraction

queries, q
Hi

queries to random oracles Hi (i= 1,2,3) and qsc signcryption queries
are made, then

Adv
(l+N)−SDHP
R ≥ 1/9

4 Conclusion

To the best of our knowledge, the only identity-based multi-receiver signcryption
schemes reported in literature are [7] and [15]. However, [14] proved [7] insecure
and [12] showed security flaws in [15] and provided a fix for the same. Hence the
only existing correct scheme in the literature is the scheme reported in [12]. This
paper makes a significant improvement over the scheme [12] and hence is by far
the best available till date. We also formally prove the security of the new scheme
in the sense of confidentiality and unforgeability, based on the l−SDHP and the
GDDHE assumptions. The major flaws in all the broken systems are related to
the insider security of the schemes. In the scheme proposed we have specifically
addressed this issue and designed the scheme with proven insider security.

To our knowledge, no public key multi-receiver encryption scheme is known
to resist fully adaptive adversaries. We leave this as an open problem. Another
interesting problem would be to design a scheme that is secure under weaker
assumptions and achieves efficiency comparable to ours.

References

1. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002)

2. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In:
Roy, B. (ed.) ASIACRYPT2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidelberg
(2005)

86 S. Sharmila Deva Selvi et al.

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

4. Boneh, D., Franklin, M.k.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Chen, L., Malone-Lee, J.: Improved identity-based signcryption. In: Vaudenay, S.
(ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005)

6. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007)

7. Duan, S., Cao, Z.-F.: Efficient and provably secure multi-receiver identity-based
signcryption. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 195–206. Springer, Heidelberg (2006)

8. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

9. Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report
2002/098 (2002)

10. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

11. Sakai, R., Furukawa, J.: Identity-based broadcast encryption. Cryptology ePrint
Archive, Report 2007/217 (2007), http://eprint.iacr.org/

12. Selvi, S.S.D., Vivek, S.S., Gopalakrishnan, R., Karuturi, N.N., Rangan, C.P.:
Cryptanalysis of id-based signcryption scheme for multiple receivers. Cryptology
ePrint Archive, Report 2008/238 (2008)

13. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

14. Tan, C.-H.: On the Security of Provably Secure Multi-Receiver ID-Based Signcryp-
tion Scheme. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences E91-A(7), 1836–1838 (2008)

15. Yu, Y., Yang, B., Huang, X., Zhang, M.: Efficient identity-based signcryption
scheme for multiple receivers. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer,
C., Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 13–21. Springer, Heidelberg
(2007)

16. Zheng, Y.: Digital signcryption or how to achieve cost (Signature & encryption)
<< cost(Signature) + cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

A Intractability of (Ui, Vi, Fi) − GDDHE

In this section, we prove the intractability of distinguishing the two distributions
involved in the (Ui, Vi, Fi)−GDDHE problems in the proofs of Theorems 2, 4
and 6.

In order to prove Corollaries 1, 2 and 3, we need to prove the intractability
of (Ui, Vi, Fi)−GDDHE problem for i = 1, 2, 3 and then subsequently use the

http://eprint.iacr.org/

An Efficient Identity-Based Signcryption Scheme for Multiple Receivers 87

result of Theorem 1. We consider the case when G1 = G2 = G and thus pose
Q0 = βP0 Our problem can be reformulated as (P, Q, F)−GDHE where

P =
(

1, s, s2, . . . , sl−1, s.f(s), s2.f(s), s3.f(s), γ.s.f(s)
β, s.β, s2.β. . . . , sN+2.β, γ.β.g1(s), γ.β.g2(s), γ.β.g3(s), . . . , γ.β.gk(s)

)
Q = 1
F = γ.β.f(s)

We have k = 1, 2 or 3 and deg(gi) = 1, 3 or t for Corollaries 1,2 and 3 respec-
tively. Degree of f is l. We have to show that F is independent of (P, Q), i.e.
that no coefficients {ai,j}n

i,j=1 and b1 exist such that F =
∑n

i,j=1 ai,jpipj + b1q1
where the polynomials pi and q1 are the one listed in P and Q above. By making
all possible products of two polynomials from P which are multiples of γ.β, we
want to prove that no linear combination among the polynomials from the list
R below leads to F :

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ.β.s.f(s), γ.β.s2.f(s), γ.β.s3.f(s), . . . , γ.β.sN+3.f(s),
γ.β.g1(s), γ.β.s.g1(s), . . . , γ.β.sl−1.g1(s)
γ.β.g2(s), γ.β.s.g2(s), . . . , γ.β.sl−1.g2(s)

. . .

. . .

. . .
γ.β.gk(s), γ.β.s.gk(s), . . . , γ.β.sl−1.gk(s)

γ.β.s.f(s).g1(s), γ.β.s.f(s).g2(s), . . . , γ.β.s.f(s).gk(s)
γ.β.s2.f(s).g1(s), γ.β.s2.f(s).g2(s), . . . , γ.β.s2.f(s).gk(s)
γ.β.s3.f(s).g1(s), γ.β.s3.f(s).g2(s), . . . , γ.β.s3.f(s).gk(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the every polynomial on the last three lines can be written as

γ.β.sj .f(s).gi(s) =
i=deg(gi)∑

i=0

ci.γ.β.si+jf(s)

for j = 1, 2, 3 and thus as a linear combination of the polynomials from the
first line. We therefore simplify the task, by finding a linear combination of the
elements of the list R′ below, which leads to f(s)

R′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s.f(s), s2.f(s), . . . , sN+3.f(s),
g1(s), s.g1(s), . . . , sl−1g1(s)
g2(s), s.g2(s), . . . , sl−1g2(s)

. . .

. . .

. . .
gk(s), s.gk(s), . . . , sl−1gk(s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

88 S. Sharmila Deva Selvi et al.

Any linear combination can be written as

f(s) = A(s).f(s) + B1(s)g1(s) + B2(s)g2(s) + . . . + Bk(s)gk(s)

where A and B are polynomials such that A(0) = 0, deg(A) ≤ N + 3 and
deg(B) ≤ l− 1. Since f and gi are coprime by assumption, we must have f/Bi.
Since deg(f) = l and deg(Bi) ≤ l − 1 this implies Bi = 0 for 1 ≤ i ≤ k. Hence
A = 1 which contradicts A(0) = 0. Therefore

Fi /∈ 〈Pi, Qi〉 for i = 1,2,3.

Universal Designated Verifier Signatures with
Threshold-Signers�

Pairat Thorncharoensri, Willy Susilo, and Yi Mu

Centre for Computer and Information Security
School of Computer Science & Software Engineering

University of Wollongong, Australia
{pt78,wsusilo,ymu}@uow.edu.au

Abstract. The privacy and anonymity of a signer and the integrity
and authenticity of a message are important. Generally, whenever the
signer states the authenticity of a message (by producing a signature on
that message), the privacy and anonymity of that signer on the respec-
tive message will immediately be exposed. Universal Designated Verifier
Signature is a cryptographic primitive that is designed to preserve the
signer’s authenticity together with limiting the signer’s privacy. This is
obtained by allowing any signature holder to convince a third party that
the signature produced by the signer is authentic. In this work, we extend
this notion by controlling the ability of the signature holder to convince
any verifier if and only if the signature holder holds sufficient signatures
from n signers on the same message. This kind of primitives is very use-
ful in many scenarios. We formalize this notion as a universal designated
verifier signature with threshold-signers and provide a concrete scheme
to realize it.

1 Introduction

Consider the following scenario. Alice is a member of the online organization
ABC. In order to elevate her status as a premium member, Alice has to show
the organization that she has contributed to at least t out of the possible n
activities provided by the organization. However, Alice does not want to reveal
which t activities that she has chosen due to her privacy. In order to satisfy this
scenario, Alice will obtain t different signatures from the activities providers and
using these signatures, Alice should be able to convince the organization to get
her status elevated.

In this scenario, we require a cryptographic primitive to allow Alice to “ac-
cumulate” the signatures from different vendors, and once the threshold t is
achieved, then she should be able to convince any third party about this fact
without revealing which vendors that have been involved. At the first glance,
the primitive seems to be straightforward, but none of the existing primitives in
the literature can be used to satisfy this requirement.

� This work is partially supported by ARC Linkage Project Grant LP0667899.

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 89–109, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

90 P. Thorncharoensri, W. Susilo, and Y. Mu

A different related scenario is the multi-level marketing (MLM). A MLM
company is willing to reward a distributor based on the point of sale in the
organization. When the distributor wants to convince the company in regards
to his bonus, the distributor will need to convince the company that he has
obtained sufficient points without revealing with identity of the sub-distributors
under his domain. Therefore, this statement is required to be deniable.

Another motivating scenario is from the law-suit. When a group of witnesses
wants to confirm an information or statement to a judge, their identities must
be protected. A lawyer or district attorney will needs to gather the signatures
of this convincing statement and then, after receiving sufficient statements, will
need to convince the jury.

Previous Works
In 1996, Jakobsson, Sako and Impagliazzo introduced the notion of designated
verifier signatures, which provides the integrity of a message, and the authen-
ticity, non-repudiation and privacy of signers [12]. In this notion, a signature is
equipped with a deniability property that allows the signer to deny the signa-
ture. Since a designated verifier signature can always be generated, the desig-
nated verifier is the only party that can be convinced of the authenticity of the
signature on the message. Many researchers have undertaken further studies on
designated verifier signatures areas and the outcomes on various topics include
[16,15,18,19,8,28].

A feature that is very close to the requirements in the scenario mentioned ear-
lier is a signature scheme proposed in Asiacrypt 2003 by Steinfeld, Bull, Wang
and Pieprzyk [27] called the “Universal Designated-Verifier Signature (UDVS)
Scheme”. With additional functionality compared to those in an ordinary desig-
nated verifier signature scheme, a UDVS scheme introduced a signature holder,
who is given the privilege of designating the signature to any verifier that is
chosen by him/her. Similar to an ordinary designated verifier signature scheme,
the UDVS scheme protects the privacy of the original signer, where a designated
verifier signature generated by the signature holder is designed to convince only
the designated verifier. Then, the first UDVS scheme without random oracle
model was proposed by Zhang et al. in [31]. In SCN 2006, Laguillaumie et al.
proposed two efficient UDVS schemes in the standard model [14]. A new formal
definition for universal designated verifier that avoid delegatability attack was
introduced by Huang et al. [9]. The notion of delegatability attack is originally
inspired by Lipmaa et al. in ICALP 2005 [19]. The delegatability attack refers to
the case where the signer or verifier releases some information without revealing
his/her secret key such that a signature holder can generate a designated verifier
signature on any message of his choice. They argued that this notion is necessary
in many applications such as hypothetical e-voting protocol provided in [19]. For
the delegatability of UDVS schemes in [27], they also mentioned in [19].

The notion of ring signatures, which provide the integrity of the message,
and the authenticity, non-repudiation and anonymity of the signer, was intro-
duced and formalized by Rivest, Shamir and Tauman in [23]. In this notion,
signer-ambiguity is a key to achieve the anonymity of the signer. Intuitively, a

Universal Designated Verifier Signatures with Threshold-Signers 91

signer alone (who does not need to cooperate with other signers) can generate
a signature that looks as though it has been signed by one of the signers in
a ring (a set of signers). Hence, from the verifier’s point of view, a ring sig-
nature provides authentication of a message by one signer in the ring. Topics
concerning ring signatures have been widely studied by many researchers, in-
cluding [4,29,7,30,2,25,6,21,20]. A feature that is close to the requirements in
the above-mentioned application for the terms of multi signers and anonymity
is introduced in [4]. Bresson, Stern and Szydlo first formalized the notion of
threshold ring signatures in [4]. Similar to ring signature schemes, threshold
ring signature schemes support multi-signers, whereas ring signature schemes do
not. Many researchers have extended these studies to various areas, including
[29,21,20,11,5].

A related notion has been addressed in the primitive called universal desig-
nated verifier ring signature by Li and Wang [17]. Their goal is to designate a
ring signature to a specific verifier. In general, it seems that this scheme has
met the requirement where t = 1, however, we stress that the subtleties of the
concepts are different. In a universal designated verifier ring signature, a signer
generates a ring signature on a message and provides it to a signature holder.
A signature holder cannot create the ring signature by himself and also he does
not know who actually signed this message (among the signers in the ring). In
our scenario, a signature holder knows who signs the message and the signature
holder is the one who does not want to reveal the signer identity.

Although the existing primitives in the literature resemble several require-
ments that we need as stated in the above motivating scenarios, there is no single
primitive that can be used to capture our requirements entirely. Furthermore,
trivial combination among the existing primitives will not provide us with our
requirements either. Therefore, we will need to create a new notion to capture
these requirements, as we will formalize it as the universal designated verifier
signatures with threshold-signers.

Our Contributions
In this paper, we introduce the notion of universal designated verifier signature
with threshold-signers (TS-UDVS) schemes to capture the above requirements.
We provide a model of the TS-UDVS scheme and its security notions to capture
the integrity of a message, and the authenticity, non-repudiation, privacy and
anonymity of the signers. A concrete scheme is also presented, together with
proof of its security to show that our scheme is secure in our model. This is the
first time this kind of primitive has been introduced into the literature.

Paper Organization
The paper is organized as follows. In the next Section, we will review some
preliminaries that will be used throughout this paper. The definition of TS-
UDVS and its security notations will be described in Sections 3 and 4. We will
provide an overview of the building blocks required for constructing our concrete
TS-UDVS scheme in Section 5. Next, our TS-UDVS scheme will be given in
Section 6. Then, proof of the security of our concrete scheme is described in
Section 7. Finally, we conclude the paper.

92 P. Thorncharoensri, W. Susilo, and Y. Mu

2 Preliminaries

2.1 Notation

For the sake of consistency, the following notations will be used throughout
the paper. Let PPT denote a probabilistic polynomial-time algorithm. When a
PPT algorithm F privately accesses and executes another PPT algorithm E, we
denote it by FE(.)(.). We denote by poly(.) a deterministic polynomial function.
For all polynomials poly(k) and for all sufficiently large k, if q ≤ poly(1k) then
we say that q is polynomial-time in k. We say that a function f : N → R is
negligible if, for all constant c > 0 and for all sufficiently large n, f(n) < 1

nc .

Denote by l
$← L the operation of picking l at random from a (finite) set L. A

collision of a function h(.) refers to the case when there is a message pair m, n
of distinct points in its message space such that h(m) = h(n). We denote by ||
the concatenation of two strings (or integers).

2.2 Bilinear Pairing

Let G1 and G2 be cyclic multiplicative groups generated by g1 and g2, respec-
tively. The order of both generators is a prime p. Let GT be a cyclic multiplicative
group with the same order p. Let ê : G1 ×G2 → GT be a bilinear mapping with
the following properties:

1. Bilinearity: ê(ga
1 , gb

2) = ê(g1, g2)ab for all g1 ∈ G1, g2 ∈ G2 , a, b ∈ Zp.
2. Non-degeneracy: There exists g1 ∈ G1 and g2 ∈ G2 such that ê(g1, g2) �= 1.
3. Computability: There exists an efficient algorithm to compute ê(g1, g2) for

all g1 ∈ G1, g2 ∈ G2.

Note that there exists a ϕ(.) function which maps G1 to G2 or vice versa in one
time unit.

2.3 Complexity Assumptions

Definition 1 (Computation Diffie-Hellman (CDH) Problem). Given a
3-tuple (g, gx,gy) as input, output gx·y. An algorithm A has the advantage ε in
solving the CDH problem if

Pr [A(g, gx, gy) = gx·y] ≥ ε

where the probability is over the random choice of x, y ∈ Z
∗
q and the random bits

consumed by A.

Assumption 1. (t, ε)-Computation Diffie-Hellman Assumption We say
that the (t, ε)-CDH assumption holds if no PPT algorithm with time complexity
t(.) has the advantage of at least ε in solving the CDH problem.

Universal Designated Verifier Signatures with Threshold-Signers 93

3 Notion of Universal Designated Verifier Signature with
Threshold-Signers Schemes (TS-UDVS)

All parties are assumed to comply with a registration protocol with a certificate
of authority CA to obtain certificates on their public parameters prior to com-
munications with others. Let L be a list of all of the signers such that L = {pkSi}
where i is an index of the signer. We give a definition of a universal designated
verifier signature with threshold-signers scheme as outlined below.

Definition 2. A universal designated verifier signature with threshold-signers
scheme Σ is an 7-tuple.

Σ = (SKeyGen, Sign, V erify, V KeyGen, TDesignate, DV erify, DSimulate)

such that

Signature Scheme Setup : A signature scheme comprises three PPT algo-
rithms
(SKeyGen, Sign, V erify).
– Signer’s Public Parameters and Secret Key Generator (Σ.SKeyGen):

On input a security parameter K, Σ.SKeyGen outputs the secret key
(skS) and the public parameter (pkS) of the signer. That is
{pkS , skS} ← Σ.SKeyGen(1K).

– Signature Signing (Σ.Sign):
On input a signer’s secret key skS, public parameters pkS, and a message
M , Σ.Sign outputs the signer’s signature σ. That is
σ ← Σ.Sign(M, skS, pkS).

– Signature Verification (Σ.V erify):
On input the signer’s public parameters pkS, a message M and a sig-
nature σ, Σ.Sign outputs a verification decision d ∈ {Accept, Reject}.
That is d← Σ.V erify(M, σ, pkS).

Verifier’s Public Parameters and Key Generator (Σ.V KeyGen): On in-
put a security parameter K, Σ.V KeyGen outputs the secret key skV and the
public parameter pkV of the verifier. That is {pkV , skV } ← Σ.V KeyGen(1K).

Signature Threshold-Signers Designation (Σ.TDesignate) : Let t denote
a number of signers who a signature holder possessed their signatures and n
is the total number of signers. On input the verifier’s public parameters pkV ,
the signers’ public parameters pkS1 , ..., pkSn, the signers’ signatures σ1, ..., σt,
and a message M , Σ.TDesignate outputs a designated verifier signature σ̂.
That is σ̂ ← Σ.TDesignate(M, σ1, ..., σt, pkV , pkS1 , ..., pkSn).

Designated Verifier Signature Verification (Σ.DV erify): On input the
verifier’s public parameters pkV , the signers’ public parameters pkS1 , ..., pkSn,
a message M and a designated verifier signature σ̂, Σ.DV erify outputs a ver-
ification decision d ∈ {Accept, Reject}. That is
d← Σ.DV erify(M, σ̂, pkV , pkS1 , ..., pkSn).

Simulation of a Designated Verifier Signature (Σ.DSimulate): On input
the verifier’s public parameters pkV , the verifier’s secret key skV , the signers’

94 P. Thorncharoensri, W. Susilo, and Y. Mu

public parameters pkS1 , ..., pkSn , and a message M , Σ.DSimulate outputs a
designated verifier signature σ̄ such that V alid← Σ.DV erify(M, σ̄, pkV , skV ,
pkS1 , ..., pkSn). That is σ̄ ← Σ.DSimulate(M, pkV , skV , pkS1 , ..., pkSn).

For allK∈N, all (pkS , skS)∈Σ.SKeyGen(1K), all (pkV , skV)∈S.V KeyGen(1K)
and all messages M , Σ must satisfy the following properties:

Completeness of a Signature:

∀σ ∈ Σ.Sign(M, skS, pkS), Pr[Σ.V erify(M, σ, pkS) = V alid] = 1. (1)

Completeness of a TS-UDVS:

∀σ̂ ∈ Σ.TDesignate(M, σ1, ..., σt, pkV , pkS1 , ..., pkSn),

Pr[Σ.DV erify(M, σ̂, pkV , pkS1 , ..., pkSn) = V alid] = 1. (2)

Completeness of a Simulated TS-UDVS:

∀σ̄ ∈ Σ.DSimulate(M, pkV , skV , pkS1 , ..., pkSn),

Pr[Σ.DV erify(M, σ̄, pkV , pkS1 , ..., pkSn) = V alid] = 1. (3)

4 Notion of Security

Security notions for universal designated verifier signature with threshold-signers
(TS-UDVS) schemes are described in the following subsections. They include
unforgeability, non-transferable privacy and anonymity. To model the ability of
adversaries in breaking the security of TS-UDVS schemes, the following oracles
are required.

SPO oracle : At most qSP , A can make a query for a public key of a signer.
In response, SPO runs the Σ.SKeyGen algorithm to generate a secret key
skS and public parameters pkS of the signer. SPO replies to A with pkS .

SSO oracle : At most qSS , A can make a query for a signature σ on its choice
of message M under its choice of signer public parameters pkS . In response,
SSO runs the Σ.Sign algorithm to generate a signature σ on a message M
corresponding with pkS . SSO then returns σ, M to A.

VPO oracle : At most qV P , A can make a query for public parameters pkV of
a verifier. In response, VPO runs the Σ.V KeyGen algorithm to generate a
secret key skV and public parameters pkV of the verifier. VPO replies to A
with pkV .

T PO oracle : Let L = {pkS1 , ..., pkSn} and T = {pkSj}, where j is an index of
each signer in a threshold t and T ⊂ L. At most qTD, A can make a query for
a designated verifier signature σ̂ on its choice of message M under its choice
of a group of signer public parameters L, a group of threshold signer public
parameters T and verifier public parameters pkV . In response, T PO runs the
Σ.TDesignate algorithm to generate a designated verifier signature σ̂ on a
message m corresponding with L, T , pkV . T PO then returns σ̂, M to A.

Universal Designated Verifier Signatures with Threshold-Signers 95

SDO oracle : At most qSD, under its choice of signer public parameters pkS1 ,
..., pkSn and verifier public parameters pkV , A can make a query for a (sim-
ulated) designated verifier signature σ̄ on its choice of message M , where
σ̄ must indeed be generated by the verifier. In response, SDO runs the
Σ.DSimulate algorithm to generate a (simulated) designated verifier signa-
ture σ̄ on a message M corresponding with pkS1 , ..., pkSn , pkV . SDO then
returns σ̄, M to A.

SKO oracle : At most qSK , A can make a query for a secret key skS (or skV)
corresponding to the public parameters pkS (or pkV) of the signer (or veri-
fier). SKO responds to A with a corresponding secret key skS (or skV).

4.1 Unforgeability

In this paper, when we discuss the unforgeability property, we are referring to
the “designated verifier unforgeability” in [27,9]. The unforgeability property in
[9] provides security against existential unforgeability under an adaptive chosen
message and chosen public key attack. It intentionally prevents an attacker cor-
rupted with a signature holder from generating a designated verifier signature
σ̂∗ on a new message M∗. Formally, this unforgeability provides an assurance
that one with access to a signing oracle, designation oracle, simulated signa-
ture oracle, and verification oracles, and with the signer public parameters pkS ,
should be unable to produce a designated verifier signature on a new message
even with arbitrarily choosing the verifier’s public parameters pkV and message
M as inputs.

However, for TS-UDVS schemes, unforgeability has a slightly different notion
from that in [27,9]. To provide security of unforgeability against insider corruption
(up to t−1 signers) for TS-UDVS schemes, our unforgeability notion has adapted
the notion of unforgeability in the ring signature schemes in [23,2,21,25,29,20,4].
Intuitively, the unforgeability property of TS-UDVS schemes provides security
against existential unforgeability under an adaptive chosen message, chosen public
key attack and insider corruption. It intentionally prevents an attacker corrupted
with (t − 1) signers and a signature holder from generating a threshold-signers
designated verifier signature σ̂∗ on a new message M∗.

Here, our unforgeability provides assurance that, with access to a signing
oracle, threshold-signers designation oracle, and simulated designated verifier
signature oracle, and with signer public parameters pkS1 , ...pkSn , arbitrarily cho-
sen verifier’s public parameters pk∗

V and the knowledge of t′-signer secret keys
skS∗

1
, ..., skS∗

t′
, one should not able to produce a designated verifier signature on

a new arbitrarily chosen message M∗. Note that t is a threshold, t′ is a number
of colluded signers and t′ < t.

We denote by CM -CPK-A the adaptively chosen message, chosen public
key attack and insider corruption. We also denote by EUF -TS-UDV S the ex-
istential unforgeability of the TS-UDVS scheme. Let ACM−CPK−A

EUF−TS−UDV S be the
adaptively chosen message and chosen public key adversary and let F be a
simulator. The following game between F and A is defined to describe the exis-
tential unforgeability of the TS-UDVS scheme: given a choice of messages M and

96 P. Thorncharoensri, W. Susilo, and Y. Mu

access to oracles SPO, SSO, VPO, T PO, SDO and SKO, A arbitrarily make
queries to the oracles. At the end of these queries, we assume that A outputs a
forged signature σ̂∗ on a new message M∗ with respect to the public parameters
pk∗

S1
, ..., pk∗

Sn
, pk∗

V . We say that A wins the game if:

1. Accept← Σ.DV erify(M∗, σ̂∗, pk∗
V , pk∗

S1
, ..., pk∗

Sn
).

2. pk∗
V has never been submitted as the input of a query for a secret key to the

SKO oracle.
3. At least n− t′ of the challenge signer public keys have never been submitted

as the input of a query for a secret key to the SKO oracle.
4. For each signer public key, A never makes a request for a signature on input

M∗, pk∗
Si

to the SSO oracle, where i is an index of submitted signer public
parameters.

5. A never makes a request for a designated verifier signature on input M∗,
pk∗

S1
, ..., pk∗

Sn
to the T PO oracle.

6. A never makes a request for a simulated designated verifier signature on
input M∗, pk∗

V to the SDO oracle.

Let SuccCM−CPK−A
EUF−TS−UDV S(.) be a success probability function such that

ACM−CPK−A
EUF−TS−UDV S wins the above game.

Definition 3. We say that the TS-UDVS scheme is (t,qH ,qSP ,qSS ,qV P ,qTD,
qSD, qSK ,ε)-secure existentially unforgeable under an adaptive chosen message,
chosen public key attack and insider corruption if there is no PPT CM -CPK-A
adversary ACM−CPK−A

EUF−TS−UDV S such that the success probability
SuccCM−CPK−A

EUF−TS−UDV S(k) = ε is negligible in k, where ACM−CPK−A
EUF−TS−UDV S runs in

time at most t, makes at most qH , qSP , qSS, qV P , qTD, qSD, and qSK queries to
the random oracles, SPO oracle, SSO oracle, VPO oracle, T PO oracle, SDO
oracle, and SKO oracle, respectively.

4.2 Non-transferable Privacy

Building on the non-transferable privacy property in [27,10,9], the non-
transferable privacy property for TS-UDVS schemes is required that even one
obtains many threshold-signers designated verifier signatures σ̂1, ..., σ̂q on its
choice of messages M ∈ {M1, ..., Mq} designated to the same or different veri-
fiers, where σ̂1, ..., σ̂q are generated by the same signature holder using the same
set of signatures σ1, ..., σt, it is hard to convince other party that a signer in-
deed generated a signature σ̂ ∈ {σ̂1, ..., σ̂q} on a message M ∈ {M1, ..., Mq}.
This intentionally prevents a distinguisher from distinguishing a signer from
a (simulated) threshold-signers designated verifier signature σ̂∗ on any new
message M∗.

Let ENT -TS-UDV S denote the existential non-transferable privacy of TS-
UDVS scheme. Let ACM−CPK−A

ENT−TS−UDV S be the adaptively chosen message and cho-
sen public key distinguisher and let F be a simulator. The following experiment
between F and A is prescribed to demonstrate the existential non-transferable
privacy of the TS-UDVS scheme. The experiment is divided into two phases, as
described as follows.

Universal Designated Verifier Signatures with Threshold-Signers 97

1. Phase 1 : With any adaptive strategies, A arbitrarily sends queries to the
SPO, SSO, VPO, T PO, SDO and SKO oracles. The oracles respond as
their design in the prior section.

2. Challenge : At the end of the first phase, A decides to challenge and then
outputs M∗, pk∗

S1
, ..., pk∗

Sn
, pk∗

V such that:
a. On input pk∗

S1
, ..., pk∗

Sn
and M∗, A never issues a request for a signature

to the SSO oracle.
b. On input pk∗

S1
, ..., pk∗

Sn
and M∗,A never issues a request for a designated

verifier signature to the T PO oracle.
c. On input pk∗

V and M∗, A never issues a request for a designated verifier
signature to the SDO oracle.

d. On input pk∗
S1

, ..., pk∗
Sn

, A never issues a request for a secret key to the
SKO oracle.

After this, F chooses a random bit b
$← {0, 1}. If b = 1 then, on input

pk∗
S1

, ..., pk∗
Sn

, pk∗
V and M∗, F makes a request for a designated verifier

signature to the T PO oracle and responds to A with σ̂ as an output from
the T PO oracle. Otherwise, on input pk∗

S1
, ..., pk∗

Sn
, pk∗

V and M∗, F makes
a request for a simulated designated verifier signature to the SDO oracle
and responds to A with σ̂ as an output from the SDO oracle.

3. Phase 2 : In this phase, A can return to Phase 1 or Challenge as many
times as it wants. One condition must be met that A must have at least one
set of the challenge M∗, pk∗

S1
, ..., pk∗

Sn
, pk∗

V such that
a. A never submits a request for a signature on input M∗, pk∗

S1
, ..., pk∗

Sn
to

the SSO oracle.
b. A never submits a request for a designated verifier signature on input

M∗, pk∗
S1

, ...,pk∗
Sn

, pk∗
V to the T PO oracle.

c. A never submits a request for a designated verifier signature on input
M∗, pk∗

V to the SDO oracle.
d. A never submits any request for a secret key sk∗

Si
corresponding with

pk∗
Si

to the SKO oracle, where i is the index and i ∈ {1, ..., n}.
4. Guessing : On the challenge M∗, pk∗

S1
, ..., pk∗

Sn
, pk∗

V , A finally outputs a
guess b′. The distinguisher wins the game if b = b′.

Let SuccCM−CPK−A
ENT−TS−UDV S(.) be the success probability function such that

ACM−CPK−A
ENT−TS−UDV S wins the above game.

Definition 4. We say that the TS-UDVS scheme is (t,qH ,qSP ,qSS ,qV P ,qTD,
qSD, qSK ,ε)-secure existentially non-transferable privacy under a chosen mes-
sage and chosen public key attack if there is no PPT CM -CPK-A distinguisher
ACM−CPK−A

ENT−TS−UDV S such that the success probability SuccCM−CPK−A
ENT−TS−UDV S(k) =

|Pr[b = b′] − Pr[b �= b′]| = ε is negligible in k, where ACM−CPK−A
ENT−TS−UDV S runs in

time at most t, makes at most qH , qSP , qSS, qV P , qTD, qSD, and qSK queries to
the random oracles, SPO oracle, SSO oracle, VPO oracle, T PO oracle, SDO
oracle, and SKO oracle, respectively.

98 P. Thorncharoensri, W. Susilo, and Y. Mu

4.3 Anonymity

We adopt the motivation of the anonymity property from ring signature schemes
[23,2,21,25] and threshold ring signature schemes [29,20,4], and adapt their
notations to realize the security of anonymity against full key exposure for
TS-UDVS schemes. The anonymity property for TS-UDVS schemes requires
that even one obtains all secret keys of both signers and verifiers, and re-
views many designated verifier signatures σ̂1, ..., σ̂q on its choice of a message
m designated to the same or different verifiers, where σ̂1, ..., σ̂q are generated
by the same signature holder using the same set of signatures σ1, ..., σt, it is
hard to persuade the other party which signer is indeed one of the threshold
signers who generated a designated signature σ̂ ∈ {σ̂1, ..., σ̂q} on a message
M ∈ {M1, ..., Mq}.

Let EA-TS-UDV S denote the existential anonymity against a full key expo-
sure of a TS-UDVS scheme. Let ACM−CPK−A

EA−TS−UDV S be the adaptively chosen mes-
sage and chosen public key distinguisher and let F be a simulator. The following
experiment between F and A is prescribed to show the existential anonymity
against a full key exposure of a TS-UDVS scheme.

1. Learning : With any adaptive strategies, A arbitrarily sends queries to the
SPO, SSO, VPO, T PO and SDO oracles. The oracles respond according
to their design.

2. Challenge : Let L∗ = {pk∗
S1

, ..., pk∗
Sn
} and T ∗ = {pk∗

Sj1
, ..., pk∗

Sjt
}, where

j1, ..., jt are indexes of signers in a threshold t and T ⊂ L. When A de-
cides to challenge F , it outputs i0, i1, M

∗,L∗, pk∗
V . In return, F chooses

a random bit b
$← {0, 1}. On input T ∗ : pk∗

Sib
∈ T ∗; pk∗

Si∼b
�∈ T ∗, L∗,

pk∗
V and M∗, F makes a request for a designated verifier signature to

the T PO oracle and responds to A with σ̂ as an output from the T PO
oracle.

3. Guessing : Now, A is given access to the SKO oracles. After this, A finally
outputs a guess b′. The distinguisher wins the game if b = b′.

Let SuccCM−CPK−A
EA−TS−UDV S(.) be the success probability function such that

ACM−CPK−A
EA−TS−UDV S wins the above game.

Definition 5. We say that the TS-UDVS scheme is (t,qH ,qSP ,qSS ,qV P ,qTD,
qSD, qSK ,ε)-secure existentially against a full key exposure attack if there is no
PPT CM -CPK-A distinguisher ACM−CPK−A

EA−TS−UDV S such that the success
probability SuccCM−CPK−A

EA−TS−UDV S(k) = |Pr[b = b′]−Pr[b �= b′]| = ε−t/n is negligible
in k, where t is a threshold of n signers, ACM−CPK−A

EA−TS−UDV S runs in time at most
t, makes at most qH , qSP , qSS, qV P , qTD, qSD, and qSK queries to the random
oracles, SPO oracle, SSO oracle, VPO oracle, T PO oracle, SDO oracle, and
SKO oracle, respectively.

Universal Designated Verifier Signatures with Threshold-Signers 99

5 Cryptographic Tools

5.1 Short Signature Scheme

Introduced by Boneh, Lynn and Shacham [3], a (BLS) short signature scheme
Σ is a triple (KeyGen, Sign, V erify). The definition of this signature scheme
can be found in [3]. We elaborate the BLS signature scheme as follows:

KeyGen : Let param = (p, ê, g ∈ G1, H, ê : G1 × G1 → GT) be a system pa-
rameter. Choose a random secret key x ∈ Zp. Let us denote by X = gx a
public key of the signer. Hence, KeyGen returns pkS = X and skS = x as
the public key and a private key of the signer, respectively.

Sign : Given a message M , pkS and skS , S computes σ = H(M)x as a signature
on message M .

Σ.V erify : Given pkS , σ and a message M , a verifier V checks whether ê(σ, g) ?=
ê(H(M), X) holds or not. If not, then it outputs reject. Otherwise, it out-
puts accept.

5.2 Trapdoor Commitment Scheme

A trapdoor commitment scheme TC is a triple (Setup, Tcom, Topen) such that

Setup(1K) is an algorithm that, on input a security parameter K, generates
public parameters pk and a trapdoor key sk.

Tcom(pk, M, r) is an algorithm that, on input pk, M, r, outputs a commitment
value T .

Topen(sk, pk, M, M ′, r) is an algorithm that, on input sk, pk, M, M ′, r, outputs
r′ such that
T = Tcom(pk, M, r) = Tcom(pk, M ′, r′).

5.3 A Concrete Scheme of a Trapdoor Commitment Scheme

The idea of transforming an identification scheme into a trapdoor commitment
scheme was presented by Kurosawa and Heng in PKC 2006 [13]. We elaborate
the Schnorr trapdoor commitment scheme transformed from the Schnorr iden-
tification scheme [24] as follows:

Setup : On input a security parameter K, Setup randomly selects a prime α
such that α ≈ poly(1K). Next, let Gα be a multiplicative group order α and
then choose a random generator gα ∈ Gα and a random number y ∈ Z∗

α.
Let us denote by param = (α, gα) the system parameters and by Y = gy

α a
public key. Finally, Setup outputs public parameters pk = (param, Y) and a
secret trapdoor key sk = y.

Tcom : On input public parameters pk and two integers M, r ∈ Z∗
α, Tcom

computes an output T = gr
αY M . Then, Tcom responds with T .

Topen : On input public parameters pk, a secret key sk and three integers
M ′, M, r ∈ Z∗

α, Topen computes r′ such that T = gr
αY M = gr′

α Y M ′
. Then,

Topen returns r′.

100 P. Thorncharoensri, W. Susilo, and Y. Mu

We supply the security of the above trapdoor commitment scheme as follows:

Definition 6. We say that a trapdoor commitment scheme TC is secure if, on
input pk, it is computationally infeasible to compute (M, r) and (M ′, r′) such
that Tcom(pk, M, r) = Tcom(pk, M ′, r′) where M �= M ′. [13]

Theorem 1. The above trapdoor commitment scheme is secure if the discrete
logarithm assumption holds.

Proof. The proof can be found in [13].

6 Universal Designated Verifier Signature with
Threshold-Signers Scheme

6.1 Concrete Scheme

In this section, we present our scheme based on the concept outlined above. First,
we define some notations. Let G1, GT be multiplicative groups of prime order p.
We denote by ê : G1 ×G1 → GT an efficient computationally bilinear mapping
function ê which maps G1 to GT . Let us denote by H : {0, 1}∗ → G1 a random
one-way function that maps any string to group G1 and by h : {0, 1}∗ → Z∗

p a
collision-resistant hash function. Then, the scheme works as follows:

Σ.SKeyGen : On input a security parameter K, a signer S randomly chooses
a prime p ≈ poly(1K) and a random generator g ∈ G1. Let param =
(p, ê, g, H, h) denote the system parameters. A private key and the public
parameters of the signer are generated as follows. Choose a random inte-
ger x ∈ Zp. Let us denote by X = gx a public key of the signer. Hence,
SKeyGen returns pkS = (param, X) and skS = x as the public parameters
and a private key of the signer, respectively.

Σ.V KeyGen : On input a security parameter K, a verifier V complies with a
trapdoor commitment scheme’s setup function Setup(1K) to generate α, gα,
Y = gy

α, skV = y. Let h̄ : {0, 1}∗ → Z∗
α denote a collision-resistant hash

function selected by V . V keeps skV as a secret key and then publishes
pkV = (param = (α, gα, h̄), Y) as its public parameters. Note that a reader
should be reminded that both signer and verifier key generation uses the
same security parameter K and, hence, |α| = |p| and α ≈ p.

Σ.Sign : Given a message M , pkS and skS , S computes σ = H(M)x as a BLS
short signature on message M .

Σ.V erify : Given pkS , σ and a message M , a signature holder SH checks
whether ê(σ, g) ?= ê(H(M), X) holds or not. If not, then it outputs reject.
Otherwise, it outputs accept.

TDesignate : Let T be a set of signers where the signature holder holds their
signatures and t be a threshold where t = |T |. Let i represent an index of the
signer in L where T ⊂ L. Given pkV , σ1, ..., σt, pkS1 , ..., pkSn and a message
M , SH computes a designated verifier signature σ̂ on message M as follows:

Universal Designated Verifier Signatures with Threshold-Signers 101

– First, provide the simulated signature of the signers pkSi ∈ L \ T as
follows. Select random integers zi, ci ∈ Z∗

p and compute

Zi = H(M)zi , Ri = ê(Zi, g)ê(H(M), Xi)ci .

– Secondly, for the signers pkSi ∈ T , compute as follows. Select a random
integer ri ∈ Z∗

p and compute Ri = ê(H(M), g)ri .

– Next, let R def
= R1||...||Rn. Then compute the first part of the designated

verifier signature with a verifier public key as follows. Select a random
integer rV ∈ Zα and compute

M ′ def
= M ||R||pkS1 ||...||pkSn , c0 = TV = h(grV

α Y h̄(M ′)).

– Finally, from the Shamir’s secret sharing techinque [26], let f be a poly-
nomial such that it satisfies the following conditions:

deg(f) = n− t
∧

f(0) = c0

∧
∀i ∈ L \ T : f(i) = ci.

Then, for every signer i ∈ T , compute the rest of the designated verifier
signature as follows:

ci = f(i), Zi = H(M)ri · σ−ci

i .

Therefore, a designated verifier signature σ̂ is (L, f, Z1, ..., Zn, rV). Output
σ̂ as a designated verifier signature on message M .

DV erify : Given pkS1 , ..., pkSn , pkV , σ̂ and a message M , the designated verifier
V first computes as follows:

∀i ∈ L
⋃
{0}, ci = f(i).

R = ê(Z1, g)ê(H(M), X1)c1 ||...||ê(Zn, g)ê(H(M), Xn)cn .

M ′ = M ||R||pkS1 ||...||pkSn .

Then V checks whether c0
?= h(grV

α Y h̄(M ′)) holds or not. If not, then it
outputs reject. Otherwise, it outputs accept.

DSimulate : On input skV , pkV , pkS1 , ..., pkSn and a message M , V computes
as follows:
– First, randomly generate c0 as follows: select a random integer k′, r′V ∈

Zα and compute c0 = h(gr′
V

α Y k′
).

– Second, randomly select a polynomial f such that

deg(f) = n− t
∧

f(0) = c0.

Then, for every signer i ∈ L, compute ci = f(i).
– Next, for each signer pkSi ∈ L, compute the first part of the designated

verifier signature as follows:

Zi
$← G1, Ri = ê(Zi, g)ê(H(M), Xi)ci .

102 P. Thorncharoensri, W. Susilo, and Y. Mu

– Finally, recompute rV with the verifier secret key as follows:

M ′ = M ||R||pkS1 ||...||pkSn , rV = r′V + y · k′ − y · h̄(M ′).

Therefore, a simulated designated verifier signature by the verifier is
σ̂ = (L, f, Z1, ..., Zn, rV).

7 Security Analysis

7.1 Completeness

Completeness of a Signature and a TS-UDVS: These are straightforward,
and hence, they are omitted.

Completeness of a Simulated TS-UDVS: Given the public parameters of
the signers L, public parameters of the designated verifier pkV , a secret key of
the designated verifier skV , a message M and a designated verifier signature
σ̂, one first computes as follows:

∀i ∈ L
⋃

{0}, ci = f(i).

R = ê(Z1, g)ê(H(M),X1)c1 ||...||ê(Zn, g)ê(H(M), Xn)cn .

M ′ = M ||R||pkS1 ||...||pkSn .

Then check c0=h(gr′
V

α Y k′
) ?=h(grV

α Y h̄(M′))

h(gr′
V

α gy·k′
α) ?=h(gr′

V +y·k′−y·h̄(M′)
α gy·h̄(M′)

α)

h(gr′
V +y·k′

α) ?=h(gr′
V +y·k′

α).

Hence, the above statements show that the simulated threshold-signers des-
ignated verifier signature does indeed hold.

7.2 Unforgeability

Theorem 2. Our universal designated verifier signature with threshold-signers
scheme is existentially unforgeable under an adaptive chosen message, chosen
public key attack and insider corruption if the CDH assumption holds in the
random oracle model.

Proof. Suppose that there exists a forger algorithm A, which runs the existen-
tially unforgeability game defined in Section 4.1, then we will show that there
exists an adversary F that solves the CDH problem by using A. Start with the
construction oracles as they are designed in Section 4. Then construct F and run
it over A with the existentially unforgeability game defined in Section 4.1. Next,
summarize the success probability of the existentially unforgeability game under
an adaptive chosen message, chosen public key attack and insider corruption. Fi-
nally, from the existentially unforgeability game and its success probability, we
can draw a conclusion that the success probability of solving the CDH problem
is non-negligible if the success probability of the above game is non-negligible.

Universal Designated Verifier Signatures with Threshold-Signers 103

We construct the oracles and run the existentially unforgeability game as
follows: on input g, ga and gb as an instance of the CDH problem, F sets gb

as one of the answers for the hash query to the random oracle. Next, F sets
X∗ = gx∗

= ga in one of the signer public parameters defined as pkS∗ . Our
aim is to obtain gab from running the existentially unforgeability experiment.
Assume that there exists an algorithm managing the list of each queries and
such algorithm will be omitted. Let M ′ = M ||σ1||pkS and M̆ = M∗||σ∗

1 ||pkS .
From the above setting, it is easy for F to construct the SPO, SSO, VPO,
T PO, SDO, SKO and the random oracles HO as follows:

HO oracle : Select d
$← {0, 1} such that the probability of d = 1 is 1

qH
. If

d = 1 then set M = M̆ and H(M) = gb and return H(M). Otherwise,

k
$← Zp; H(M) = gk and return H(M). Then HO keeps a pair of H(M)

and k in the list, which it is accessible only by F . For a query for h(M ′),

HO randomly selects k1
$← Zp; h(M ′) = k1 and return h(M ′).

SPO oracle : Let param = (p, ê, h, H, g) be the system parameters for each

signer. SPO chooses ḋ
$← {0, 1} such that the probability of ḋ = 1 is 1

qSP
.

If ḋ = 1 then set X∗ = ga and return pk∗
S = (param∗, X∗). Otherwise,

t
$← Zp; X = gt and then return pkS = (param, X) and keep t as a secret

key.
SKO oracle : SKO oracle responds to every query on input pkS and pkV with

its corresponding secret key. Expect for pk∗
S , SKO outputs ⊥.

SSO oracle : Let r1
$← Zp. On input pkS and M , SSO outputs σ = H(M)t for

every query except when pkS = pk∗
S and M = M∗. In the case of (pk∗

S , M∗),
it outputs ⊥.

T PO oracle : Let ti be a secret of i-th signer in L. On input L, T , pkV and
M , where pk∗

S �∈ T and M �= M̆ , T PO obtains each signer’s secret key ti of
the public parameters in T from SPO. Then T PO computes a threshold-
signers designated verifier signature as described in Sign and TDesignate
in Section 6.1. In the case of pk∗

S ∈ T and M �= M̆ , F obtains a random
integer k associated with H(M) from a list of H(M) and k maintained by
HO. F then gives it to T PO. T PO computes σi = Xk

i , where i is an index
of each signer in T . Then T PO computes a threshold-signers designated
verifier signature as described in TDesignate in Section 6.1. In the case of
pk∗

S ∈ T and M = M̆ , T PO outputs ⊥.
VPO and SDO oracles : These oracles are straightforward as described in

Section 4.

Access to the above oracles is provided to A. Assume that a hash of message M
from the random oracle HO is always queried before A makes a query to the
SSO, T PO and SDO oracles, or before it outputs a potential forgery, denoted
by (M∗, σ̂∗,L∗, pk∗

V).
In the end, after processing an adaptive strategy with the above oracles, A

outputs a forged threshold-signers designated verifier signature σ̂∗ on a message

104 P. Thorncharoensri, W. Susilo, and Y. Mu

M∗ with respect to L∗, pk∗
V . A wins the game if a message M∗ is never submitted

to the SSO, T PO and SDO oracles and at least n + 1 − t signers’ secret keys
in L have never been queried to the SKO oracle. After condutcting the above
experiment, we obtain a valid threshold-signers designated verifier signature σ̂∗
on a message M∗ with respect to L∗, pk∗

V . From the above signature, we will first
show the probability of success in the next paragraph and then, after running
the second experiment, we will demonstrate how to obtain the original signature
σ∗ = H(M̆)x∗

= (gb)a = gab, which is also an answer for the CDH problem.
Let e denote the base of the natural logarithm and q be a polynomial upper
bound on the number of queries that A makes to the HO and SKO oracles.
Now the probability of events such that F does not abort during the simulation
is analyzed as follows:

– E1: F does not abort during the issuing of queries to the SKO.
The probability of this event is greater than (1− 1

qSP
)qSP −1 ≈ qSP

e·(qSP −1) .
– E2: F does not abort when issuing queries to the SSO.

The fact is that A needs at least one hash value and one signer secret to out-
put a forgery, and hence, qSS ≤ (qH−1)·(qSP−1). Therefore, the probability
of this event is greater than (1− 1

qH ·qSP
)qSS = (1− 1

qH ·qSP
)(qH−1)·(qSP −1) ≈

1
e · (

qH ·qSP

qH ·qSP−1)(qH+qSP −1).
– E3: F does not abort during the issuing of queries to the T PO.

Similar to the E2 event, where qTD ≤ (qH − 1) · (qSP − 1), the probability
of this event is greater than (1− 1

qH ·qSP
)qT D = (1− 1

qH ·qSP
)(qH−1)·(qSP−1) ≈

1
e · (

qH ·qSP

qH ·qSP−1)(qH+qSP −1).

Let SuccCM−CPK−A
EUF−TS−UDV S = ε be the probability that A wins the game.

The probability that A wins the above game and outputs a message M∗

and signer public parameters pk∗
S is ε

qH ·qSP −max(qTD ,qSS) ≤
ε

qH+qSP −1 where
qSS ≤ (qH − 1) · (qSP − 1), qTD ≤ (qH − 1) · (qSP − 1), and qH and qSP are
the maximum number of queries that A made to the random oracle and the
SPO oracle, respectively. Putting the above probabilities together, we resolve
the probability such that F does not abort during the simulation and A wins the
game with M∗, pk∗

S is about ε
qH+qSP−1 ·

qSP

e·(qSP−1) · (
1
e · (

qH ·qSP

qH ·qSP −1)qH+qSP −1)2=
ε

qH+qSP−1 ·
qSP

e3·(qSP −1) · (
qH ·qSP

qH ·qSP −1)2(qH+qSP −1) > ε
e3(qH+qSP−1) .

From the above probability, it is obvious that the probability, where F suc-
cessfully runs the above simulation and A wins the game with M∗ = M̆ and
pk∗

S ∈ L∗, is non-negligible compared with the probability that A wins the game
where q > (qH + qSp − 1).

Hence, with a non-negligible running time due to the forking lemma [22,1],
F also obtains another set of forgeries by rerunning the experiment with A as
follows:

– First, reset A to the initial state.
– Second, provide the same setting as in the previous experiment but with a

new set of verifier public parameters.

Universal Designated Verifier Signatures with Threshold-Signers 105

– Finally, rerun the experiment with the same random tape as the first exper-
iment.

At the end of the second experiment, F , with non-negligible probability, outputs
a forgery (M∗, σ̂∗∗,L∗, pk∗∗

V). Since the setting is the same as the first experiment,
A outputs M∗,L∗ such that pk∗

S ∈ L∗ with the same probability as in the first
experiment. However, in the second experiment, A is given with a new set of
verifier public parameters, hence, A outputs σ̂∗∗, pk∗∗

V which are different outputs
from those in the first experiment.

From the above outputs by A, F obtains Z∗ = H(M̆)r∗ · σ−c∗
∗ and Z∗∗ =

H(M̆)r∗∗ · σ−c∗∗
∗∗ from σ̂∗, σ̂∗∗, where both Z∗ and Z∗∗ are associated with pk∗

S

and H(M̆). Since r∗ = r∗∗, F computes σ∗ = (Z∗/Z∗∗)1/(c∗∗−c∗). In fact,
σ∗ = H(M̆)x∗

= (gb)a = gab. Therefore, F outputs σ∗ as an output for the CDH
problem with non-negligible probability as mentioned above. The above simu-
lation shows that the probability of success in attacking our TS-UDVS scheme
by existentially unforgeability under an adaptive chosen message, chosen public
key attack and insider corruption is negligible since the probability of solving
the CDH problem is negligible.

7.3 Non-transferable Privacy

Theorem 3. In the random oracle model, the proposed universal designated ver-
ifier signature with threshold-signers scheme offers existentially non-transferable
privacy an against adaptively chosen message and chosen public key distinguisher
ACM−CPK−A

ENT−TS−UDV S.

Proof. We prove Theorem 3 by running the existentially non-transferable pri-
vacy game defined in Section 4.2 and showing that the success probability of
distinguisher A in that game attacking our TS-UDVS scheme is negligible. Start
with a construction of oracles and the existentially non-transferable privacy game
defined in Section 4.2. Then show that both probabilities of the distribution of
the DVS signature generated by the signature holder and designated verifier are
equal. We will finally conclude the indistinguishability of both valid or simulated
designated verifier signatures in our TS-UDVS scheme.

The following simulation shows that, running on both the signer and the ver-
ifier, a simulator F generates a designated verifier signature which is indistin-
guishable whether a signer or a verifier indeed generated it. In the first step, since
F can arbitrarily generate a public-secret key pair for A, F constructs straight-
forward oracles as described in Section 4. A is given access to those oracles. Note
that for every secret key corresponding to its queried public parameters, F keeps
them secretly to itself.

Then, we analyze the distribution of the T PO oracle. There is one random
integer involved in the production of the signature for each signer, n− t random
integers involved in the production of a polynomial function and one random
integer involved in the production of the designated verifier signature related to
the verifier. Therefore, there are in total 2n− t + 1 uniformly random numbers

106 P. Thorncharoensri, W. Susilo, and Y. Mu

used in the generation of the designated verifier signature besides the secret keys
of the signers. Let σ̂DV denote a designated verifier signature in the distribution
of the T PO oracle. With the above random integers and secret keys of the
signer skS1 , ..., skSt , F randomly produces the designated verifier signature as
described in the TDesignate algorithm in Section 6.1. Hence, since each random
integer is selected from Z

∗
p or G1, if we randomly choose a designated verifier

signature σ̂∗ then the probability that σ̂∗ is in the distribution of the T PO oracle
is Pr[σ̂DV = σ̂∗] = 1

p(2n−t+1) .
Next, we analyze the distribution of the SDO oracle. There is one random

integer involved in the production of the signature for each signer, n − t ran-
dom integers involved in the production of a polynomial function. There are
also other two random integers (k′, r′V) involved in the production of the des-
ignated verifier signature signature related to the verifier; however, these two
integers work to achieve one output, which is rV . Hence, these are viewed to-
gether as one random variable. Therefore, there are in total 2n− t+1 uniformly
random numbers used in the generation of the simulated designated verifier
signature, besides the secret key of the verifier. Let σ̂DS denote a designated
verifier signature in the distribution of the SDO oracle. With the above ran-
dom integers and secret keys of the signer skS1 , ..., skSt , F randomly produces
the designated verifier signature as described in the DSimulate algorithm in
Section 6.1. More precisely, since each random integer is selected from Z∗

p or
G1, if we randomly choose a designated verifier signature σ̂∗ then the prob-
ability that σ̂∗ is in the distribution of the SDO oracle is Pr[σ̂DS = σ̂∗] =

1
p(2n−t+1) .

Finally, the above probabilities claim that one cannot distinguish whether
a randomly given valid universal designated verifier signature is generated by
the T PO or SDO oracles. Hence, our TS-UDVS scheme satisfies the non-
transferable privacy property. ��

7.4 Anonymity

Theorem 4. With probability at most t/n+ ε, where ε is negligible, our univer-
sal designated verifier signature with threshold-signers scheme offers anonymity
against a full key exposer.

Proof. We prove Theorem 4 by showing that the success probability of distin-
guisher A attacking our TS-UDVS scheme when running anonymity against the
full key exposer game defined in Section 4.3 is negligible, when it excludes t/n.
The following simulation shows that, running on signers, a simulator F gener-
ates a designated verifier signature that is indistinguishable in which signer is
in a list of threshold signers. In the first step, since F can arbitrarily generate a
public-secret key pair for A, F constructs straightforward oracles as described
in Section 4. Except for the VPO oracle, since A has taken over control of the
verifier, A can arbitrarily run V KeyGen to generate a public-private key pair
for the verifier by itself. Then, A is given access to those oracles and is run
with anonymity against the full key exposer game defined in Section 4.3. Note

Universal Designated Verifier Signatures with Threshold-Signers 107

that for every secret key corresponding to its queried public parameters, A can
arbitrarily issue a request for the signer’s secret key to the SKO oracle.

Discussion
First, the polynomial f in the TDesignate algorithm in Section 6.1 uniquely
outputs c0 and ci, where i ∈ T . c0 and ci are uniquely generated by the random
oracle and random tapes consumed by F . Therefore, the polynomial f can be
considered as a random function selected from the entire polynomials over GF (p)
with degree n− t. Hence, the distribution of ci, where i ∈ T , is also uniform over
GF (p). Second, for each Zj , where j ∈ L, a random variable (either zj or rj)
is independently chosen and uniformly distributed over GF (p). Therefore, Zj is
uniformly distributed over GF (p). Finally, we can see that, for a fixed message
M and a fixed set of signers’ public keys L, there are pn possible solutions for
F to output (Z1, ..., Zn). The possible solutions above are uniformly and inde-
pendently distributed, hence, it does not matter whether A possesses unbound
computing resources and all the secret keys, and how many participant signers
(t) there are to generate signatures. To identify any one of the participant sign-
ers, advantage over random guessing is negligible. ��

8 Conclusion

In this paper, we introduced the notion of universal designated verifier signa-
ture with threshold-signers schemes to capture the need for the privacy and
anonymity of signers and the authenticity of the message produced by signers.
A model of a TS-UDVS scheme and its security notions that capture the integrity
of the message, and the authenticity, non-repudiation, privacy and anonymity of
the signers was also presented. We provided a concrete scheme and its proof of
security. We showed that our scheme is secure in our model and in its security
notions.

References

1. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM Conference on Computer and Communications Security,
pp. 390–399 (2006)

2. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

3. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

4. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002)

5. Chow, S.S.M., Hui, L.C.K., Yiu, S.M.: Identity based threshold ring signature. In:
Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 218–232. Springer,
Heidelberg (2005)

108 P. Thorncharoensri, W. Susilo, and Y. Mu

6. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007)

7. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003)

8. Huang, X., Mu, Y., Susilo, W., Zhang, F.T.: Short designated verifier proxy sig-
nature from pairings. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S.,
Yang, L.T. (eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 835–844. Springer, Heidel-
berg (2005)

9. Huang, X., Susilo, W., Mu, Y., Wu, W.: Universal designated verifier signature
without delegatability. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 479–498. Springer, Heidelberg (2006)

10. Huang, X., Susilo, W., Mu, Y., Wu, W.: Secure universal designated verifier sig-
nature without random oracles. Int. J. Inf. Sec. 7(3), 171–183 (2008)

11. Isshiki, T., Tanaka, K.: An (n–t)-out-of-n threshold ring signature scheme. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 406–416.
Springer, Heidelberg (2005)

12. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

13. Kurosawa, K., Heng, S.-H.: The power of identification schemes. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 364–
377. Springer, Heidelberg (2006)

14. Laguillaumie, F., Libert, B., Quisquater, J.-J.: Universal designated verifier sig-
natures without random oracles or non-black box assumptions. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 63–77. Springer, Heidelberg (2006)

15. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and
efficient construction from any bilinear map. In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005)

16. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures: anonymity
without encryption. Inf. Process. Lett. 102(2-3), 127–132 (2007)

17. Li, J., Wang, Y.: Universal designated verifier ring signature (Proof) without ran-
dom oracles. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y.,
Lee, D.C., Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006. LNCS,
vol. 4097, pp. 332–341. Springer, Heidelberg (2006)

18. Li, Y., Lipmaa, H., Pei, D.: On delegatability of four designated verifier signatures.
In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783,
pp. 61–71. Springer, Heidelberg (2005)

19. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: Attacks, new
security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459–471.
Springer, Heidelberg (2005)

20. Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme.
In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer,
Heidelberg (2004)

21. Liu, J.K., Wong, D.S.: On the security models of (Threshold) ring signature
schemes. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 204–217.
Springer, Heidelberg (2005)

22. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

Universal Designated Verifier Signatures with Threshold-Signers 109

23. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

24. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

25. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
27. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-

natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003)

28. Susilo, W., Zhang, F., Mu, Y.: Identity-based strong designated verifier signature
schemes. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS,
vol. 3108, pp. 313–324. Springer, Heidelberg (2004)

29. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separa-
ble linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004)

30. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

31. Zhang, R., Furukawa, J., Imai, H.: Short signature and universal designated verifier
signature without random oracles. In: Ioannidis, J., Keromytis, A.D., Yung, M.
(eds.) ACNS 2005. LNCS, vol. 3531, pp. 483–498. Springer, Heidelberg (2005)

Reducing Complexity Assumptions for Oblivious
Transfer

K.Y. Cheong and Takeshi Koshiba

Division of Mathematics, Electronics and Informatics,
Graduate School of Science and Engineering, Saitama University

255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
{kaiyuen,koshiba}@tcs.ics.saitama-u.ac.jp

Abstract. Reducing the minimum assumptions needed to construct
various cryptographic primitives is an important and interesting task
in theoretical cryptography. Oblivious transfer, one of the most basic
cryptographic building blocks, could be also studied under this scenario.
Reducing the minimum assumptions for oblivious transfer seems not
an easy task, as there are a few impossibility results under black-box
reductions.

Until recently, it is widely believed that oblivious transfer can be con-
structed with trapdoor permutations. Goldreich pointed out some flaw
in the folklore and introduced some enhancement to cope with the flaw.
Haitner then revised the enhancement more properly. As a consequence
they showed that some additional properties for trapdoor permutations
are necessary to construct oblivious transfers. In this paper, we discuss
possibilities of basing not on trapdoor permutations but on trapdoor
functions in general. We generalize previous results and give an obliv-
ious transfer protocol based on a collection of trapdoor functions with
some extra properties with respect to the length-expansion and the pre-
image size. We discuss that our reduced assumption is almost minimal
and show the necessity for the extra properties.

Keywords: oblivious transfer, trapdoor one-way functions.

1 Introduction

1.1 Oblivious Transfer

Oblivious Transfer (OT) is an important two-party cryptographic protocol. The
first known OT system was introduced by Rabin [27] in 1981 where a message is
received with probability 1/2 and the sender cannot know whether his message
reaches the receiver. Prior to this, Wiesner [31] introduced a primitive called
multiplexing, which is equivalent to the 1-out-of-2 OT [10] known today, but it
was then not seen as a tool in cryptography. In 1985, Even et al. defined the
1-out-of-2 OT [10], where the sender has two secrets σ0 and σ1 and the receiver
can choose one of them in an oblivious manner. That is, the sender cannot know
the receiver’s choice i ∈ {0, 1} and the receiver cannot know any information

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 110–124, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reducing Complexity Assumptions for Oblivious Transfer 111

on σ1−i. The former property is called receiver’s privacy and the latter sender’s
privacy. Later, Crépeau [7] showed that Rabin’s OT and the 1-out-of-2 OT are
equivalent. Furthermore, the more general 1-out-of-N OT (where the sender has
N secrets), the more specific 1-out-of-2 bit OT (where the secrets are one bit
long), are similarly defined and the reductions among the variants of OT have
been discussed in the literature, e.g. [2,3,8].

OT protocols are fundamental building blocks of modern cryptography. Most
notably, it is known that any multi-party secure computation can be based on
OT [22,14]. Various implementations of OT protocols have been proposed, and
they are all based on some computational assumptions. As an efficient imple-
mentation, Naor and Pinkas has proposed a protocol [24] based on Diffie and
Hellman [9] type of problems. More recently, a universally composable [4] OT
protocol has been constructed based on a variety of assumptions [25].

1.2 Complexity Assumptions of OT

With limited exceptions such as one-time-pad encryption [30] and secret sharing
scheme [29], most cryptographic primitives rely on certain computational assump-
tions. In 1-out-of-2 OT, by simple arguments it can be seen that either sender’s
privacy or receiver’s privacy must be protected by some computational assump-
tions, where the other party may be protected in the information theoretic sense.
The symmetry of 1-out-of-2 bit OT [32] implies that we have the freedom to choose
which side to protect in which way when we are given a protocol.

We are interested to know the minimum computational assumptions neces-
sary for building OT. Unavoidably, for each OT protocol proposed, we may have
to rely on some unproven computational assumptions for its security. To some
extent, this is acceptable, since most cryptographic protocols require the exis-
tence of one-way functions [20]. This in particular implies P �= NP , which is
unproven.

On the other hand, since it is impossible to avoid all the computational as-
sumptions, we would like to construct protocols based upon as little assumptions
as possible. In any cryptographic protocol, less underlying assumptions means
more confidence on the security. Therefore, the study of minimum computational
assumptions of various cryptographic primitives is an important part in cryp-
tographic research. For example, while one-way permutation is known to imply
statistically-hiding commitment [23], this assumption has been reduced in [17].
And finally, Haitner and Reingold [18] recently proved that statistically-hiding
commitment can be constructed from any one-way function. That enables us to
rely on one-way functions to use zero-knowledge arguments.

The situation for OT is more complicated. From the discussion in [19], it
is known that OT can be based on one-way functions if there exists a witness
retrievable compression algorithm for some type of SAT formulas. But on the
other hand, the oracle separation [21] between one-way permutations and OT
rules out the possibility of blackbox reductions from OT to one-way functions.
In general, it is believed that it will be very difficult, if not impossible, to build
OT with one-way functions only.

112 K.Y. Cheong and T. Koshiba

In the original paper of [10], trapdoor permutations with some extra properties
are used to construct OT. In [15], Haitner proposed a similar protocol which in
theory reduced the computational assumptions required by [10]. The protocol
uses a collection of dense trapdoor permutations. In [26], another construction
of [10] is made from a new type of trapdoor functions (called lossy trapdoor
functions) with some specific properties. However, the definition comes rather
from concrete problems such as the Diffie-Hellman problem and lattice problems
than from the theoretical origin.

In this paper, we focus on two issues. We explore the possibility to further
reduce the computational assumptions of OT as stated in [15]. We like to know if
trapdoor functions, rather than trapdoor permutations, can be used to construct
OT. Also, we investigate the essential properties of trapdoor functions necessary
for OT. For example, Bellare et al. showed that many-to-one trapdoor functions
with exponential pre-image size can be constructed from one-way functions [1].
This fact says that many-to-one trapdoor functions with polynomial pre-image
size may have very different properties from those of super-polynomial pre-image
size. It also suggests that OT may not be constructible from many-to-one trap-
door functions with super-polynomial pre-image size.

While public key encryptions can be constructed from many-to-one trapdoor
functions with polynomial pre-image size as stated in [1], there exists an oracle
separation in [11] between public key encryptions and OT. Thus, it is natural to
ask whether OT can be constructed from many-to-one trapdoor functions with
polynomial pre-image size.

As the main result of this paper, we show that the protocol of [15] can be
improved to make it applicable to general trapdoor functions. The permuta-
tion property is thus not essential. This possibility is actually discussed in the
concluding remarks of [15]. But the trapdoor functions used in our protocol
have some extra properties (and restrictions) with respect to pre-image size and
length expansion. Consequently, we have an OT construction based on a weaker
assumption than the previous results, because a trapdoor permutation is a trap-
door function with strictly single pre-image and zero length expansion. Also, we
provide arguments that these extra properties are necessary, and are close to the
minimum in blackbox reductions.

1.3 Relation to Previous Results

The original paper of [10] for 1-out-of-2 OT opens the discussion for the minimum
computational assumptions of OT. In [10], a public key encryption scheme with
an extra property is used to construct OT. Stated explicitly, the property is
that a valid ciphertext can be uniformly sampled from the plaintext domain.
This condition is explained in [15] such that, in general, a trapdoor permutation
suffices for OT if it is possible to sample an image of it without knowing the pre-
image. The term Enhanced Trapdoor Permutation is used in [12] to represent
such a trapdoor permutation.

Following the construction of [10] and discussion of [12], Haitner reduced
the assumption further by using a set of dense trapdoor permutations [15]. This

Reducing Complexity Assumptions for Oblivious Transfer 113

essentially establishes the sampling property without requiring it explicitly. This
seems to be close to minimal, as [21] shows the impossibility for blackbox re-
duction from OT to one-way permutations. In this paper, we follow the insights
and techniques of [15] to further reduce the computational assumptions such
that trapdoor functions, rather than trapdoor permutations, may be used to
construct OT. Near the end of [15], the possibility of using trapdoor functions
for OT has been considered, but the further assumptions required for such a
trapdoor function are not clearly discussed.

Taking the impossibility results implied by [1] and [11], we see that the pre-
image size and length-expansion of the trapdoor function are vital for OT pos-
sibility. Therefore, we consider these issues and try to build OT with what may
be regarded as minimum assumptions in this framework.

2 Preliminaries

2.1 Blackbox Reduction

Our work is about basing OT on a primitive with as few assumptions as possible.
We focus on blackbox reductions only, where the primitive used as the building
block is treated as a blackbox. This means the protocol only deals with the input
and output of the underlying primitive, but not its internal calculations. Most
known reductions and impossibility results are based on blackbox reductions.
The impossibility results initiated by [21] shows that OT cannot be based on
one-way functions in blackbox reductions. In [1] and [11], other impossibility
results concerning OT are also shown based on [21]. These results are related to
our protocol.

As discussed in [21], blackbox reductions may be divided into fully-blackbox
reductions and semi-blackbox reductions. In a fully-blackbox reduction, any ad-
versary who breaks the constructed primitive can be used as a blackbox for an-
other algorithm which breaks the building-block primitive. The semi-blackbox
reduction basically does not have this requirement. Therefore, a fully-blackbox
reduction seems to imply a closer relation between the constructing and con-
structed primitives. On the other hand, [28] shows that the difference between
fully-blackbox and semi-blackbox reductions is not as great as what may be
perceived in [21].

In this paper, we focus on fully-blackbox reductions. Any adversary who
breaks our protocol can be used as a blackbox to break the trapdoor function
used. In fact, in our OT protocol, only the sender’s privacy is protected com-
putationally. The receiver’s privacy is protected in information theoretic sense.
Therefore it is the sender’s privacy that is equivalent to the security of the trap-
door function.

2.2 Semi-honest Model

We limit ourselves to the semi-honest model in our OT protocol. In a semi-honest
protocol, all parties are assumed to follow the protocol properly, except that

114 K.Y. Cheong and T. Koshiba

they may try to extract extra information from the communications, possibly
by performing some computations afterwards. In [12] it is shown that a protocol
for semi-honest model can be used to construct an equivalent protocol in the
general malicious model, where nothing is assumed about the parties. Moreover,
in [16] and [6] it is further shown that such a construction can be done in the
blackbox way, where the semi-honest protocol is used as a blackbox.

These known constructions of protocols for the malicious model from the
semi-honest model are based on commitment schemes or zero-knowledge proofs.
Regarding to complexity assumptions, they also require the existence of one-way
functions, which is a rather basic assumption for most cryptographic primitives
including OT. Using the combination of these results, we can obtain OT in the
general model simply by constructing a semi-honest OT protocol. The use of
semi-honest model can simplify both the definition and the construction of OT.

2.3 1-out-of-2 Bit OT

In this paper, we consider only the 1-out-of-2 bit OT. It is known that other
versions of OT can be constructed using 1-out-of-2 bit OT as building blocks.
The sender has two secret bits (σ0, σ1) and the receiver has a choice bit i. In the
correct output, the receiver will get σi and not σ1−i, whereas the sender will get
no information about i. More formally, let VS(σ0, σ1, i) and VR(σi, σ1−i, i) be the
random variables for the sender’s and receiver’s view of the protocol respectively,
given the receiver’s choice i and the sender’s secrets σ0 and σ1. Note that the
notation of VR(σi, σ1−i, i) is informal because the order of parameters is not
fixed. This is not a problem because the receiver always knows i and the order
of the other two parameters are decided accordingly. Also, these variables have
to exist because we assume the OT protocol is run in a semi-honest way. The
privacy properties of OT can then be defined as, for all possible i, σ0 and σ1:

1. Sender’s privacy: Receiver gains no computational knowledge about σ1−i.
That is, for any probabilistic polynomial time algorithm M ,

|Pr[M(VR(σi, 1, i)) = 1]− Pr[M(VR(σi, 0, i)) = 1]| < neg(n) (1)

where neg(n) stands for a negligible function of n.1
2. Receiver’s privacy: Sender gains no computational knowledge about i.

|Pr[M(VS(σ0, σ1, 0)) = 1]− Pr[M(VS(σ0, σ1, 1)) = 1]| < neg(n) (2)

for any probabilistic polynomial time algorithm M .

The standard definition of OT above requires that both parties are at least
protected computationally. Nonetheless, in an OT system, it is known that at
most one party’s privacy can be perfectly protected in information theoretic
sense. In that case, even if the other party is computationally unbounded, the
first party’s privacy is still maintained.
1 A negligible function of n, denoted by neg(n), is defined as a function of n where
|neg(n)| < | 1

g(n)
| for any polynomial g(n), for large enough n.

Reducing Complexity Assumptions for Oblivious Transfer 115

2.4 Weak OT

A Weak OT protocol (WOT) is a relaxed version of OT. The weakness is de-
scribed by three parameters. In a (ε1, ε2, ε3)-WOT, the secret required by the
receiver is only guaranteed to pass correctly with a probability no less than
1 − ε1. This is called the correctness of the protocol. On the other hand, the
receiver does not gain more computational advantage about σ1−i than ε2, and
the sender does not gain more computational advantage about i than ε3. Similar
to the normal OT, we have:

1. Sender’s privacy: For any probabilistic polynomial time algorithm M ,

|Pr[M(VR(σi, 1, i)) = 1]− Pr[M(VR(σi, 0, i)) = 1]| ≤ ε2. (3)

2. Receiver’s privacy: For any probabilistic polynomial time algorithm M ,

|Pr[M(VS(σ0, σ1, 0)) = 1]− Pr[M(VS(σ0, σ1, 1)) = 1]| ≤ ε3. (4)

Note that, under our definition, a (neg(n), neg(n), neg(n))-WOT is equal to OT.

2.5 Pairwise Independent Universal Hash Functions

In this paper we also need a construction called the pairwise independent uni-
versal hash function. For a parameter n, let there be two sets L1 = {1, 2, . . . , 2n}
and L2 = {1, 2, . . . , l} such that l ≤ 2n. From [5] it is known that, for any choice
of l, there exists an efficient family of hash functions Hn with the following
properties:

1. Any function h ∈ Hn has domain L1 and range L2.
2. There exists a polynomial-time algorithm to sample h ∈ Hn uniformly.
3. There exists a polynomial-time algorithm to evaluate h(x) given h and x ∈

L1.
4. When h is uniformly sampled, for every distinct x1, x2 ∈ L1 and every

y1, y2 ∈ L2,

Pr[h(x1) = y1 ∧ h(x2) = y2] =
1
l2

. (5)

3 Trapdoor Functions for OT

In this paper we are constructing OT based on a special type of trapdoor
function. We first define the normal trapdoor function, and add some extra
restrictions suitable for our purpose. At the same time, we try to minimize the
assumptions we make. In general, a collection of (non-injective) trapdoor func-
tions F have the following properties:

1. There exists an efficient algorithm which uniformly selects a function fα in
F , represented by α, and generates the trapdoor t at the same time.

116 K.Y. Cheong and T. Koshiba

2. Denote the domain of the function by Dα. If x ∈ Dα then fα(x) can be
computed efficiently.

3. Without the trapdoor t, for a uniformly chosen x ∈ Dα, when given fα(x) it
is computationally infeasible to obtain any x′ ∈ Dα such that fα(x′) = fα(x).

4. For any x ∈ Dα, given fα(x) and t, there exist an efficient algorithm to
find one x′ ∈ Dα such that fα(x′) = fα(x). That is, we can calculate x′ =
f−1

α (t, y) where y = fα(x′), if in the first place y = fα(x) for some x in the
domain.

In any practical use of such a trapdoor function, we can assume either Dα =
{0, 1}n or Dα ⊂ {0, 1}n for some parameter n. The former is called full domain
while the latter normally further requires a sampling algorithm for finding el-
ements in Dα. For our trapdoor function, the full domain is preferred, but we
can relax the assumption a bit, due to the results of [15]. Without loss of gener-
ality, Dα ⊂ {0, 1}n. But we also assume that Dα is dense in {0, 1}n. This dense
domain assumption is the first assumption we add to our otherwise general trap-
door function. It means there exist a polynomial p(n) such that, for all α, we
have

|Dα|
2n

>
1

p(n)
. (6)

Next, for all x ∈ {0, 1}n we assume fα(x) can be evaluated in general using the
same algorithm evaluating the function, and the algorithm will halt in polyno-
mial time, producing some output. In practice, this has to be justified by adding
a measure which terminates the algorithm when the running time exceeds some
fixed value, and gives a default output. That is, even if x /∈ Dα the algorithm
will still run and produce a string as output. The definition of fα(x) is extended
to handle any x ∈ {0, 1}n. As we do not assume we can detect x /∈ Dα, nothing
is assumed about the output string in this case.

In the same way, for all x ∈ Dα we assume fα(x) ∈ {0, 1}m for some fixed
m. And for all y ∈ {0, 1}m, we assume the function f−1

α (t, y) can be evaluated
using the same algorithm evaluating the inverse function, and the algorithm will
halt in polynomial time, producing some output. In other words, the definition
of f−1

α (t, y) is extended for all y ∈ {0, 1}m.

3.1 Extra Assumptions

In order to construct our OT protocol, we require the trapdoor functions to
have a few more properties. We call them the Extra Assumptions, in order to
distinguish our trapdoor functions from the general ones.

1. Pre-image assumption: For any α, when x ∈ Dα and y = fα(x), the num-
ber of pre-images of y is bounded by a polynomial. That is, there exists a
polynomial q1(n) such that, for all α and y,

Iα,y = {x ∈ Dα : fα(x) = y} (7)
|Iα,y | ≤ q1(n). (8)

Reducing Complexity Assumptions for Oblivious Transfer 117

2. Expansion assumption: For x ∈ Dα we have fα(x) ∈ {0, 1}m with m =
n + log q2(n) where q2(n) is a polynomial in n. That is equal to saying that
the expansion (in terms of the length of strings) of the function is in O(log n).

3.2 Necessity of the Extra Assumptions

We clarify that our aim is to define a general set of trapdoor functions with spe-
cific restrictions, such that any trapdoor functions meeting these restrictions can
be used to construct OT. Therefore, when we investigate a particular set of such
restrictions, one single counterexample of OT impossibility under a trapdoor
function meeting these restrictions suffices to indicate that the set of restrictions
in question is not tight enough. The counterexamples can be specially designed
for this purpose, and may only exist theoretically.

To see the necessity of the Extra Assumptions, first look at the pre-image
assumption due to [1], where non-injective trapdoor functions are studied. The
following trapdoor function with exponential pre-image size can be blackbox
constructed from a one-way permutation.

1. A one-way permutation f1(x) is given for x ∈ {0, 1}n.
2. Choose a trapdoor value t ∈ {0, 1}n. Let α = f1(t). For v, u, x ∈ {0, 1}n we

define

f2(v, u, x) =
{

v if f1(u) = α
f1(x) otherwise. (9)

3. This is a trapdoor function in the sense that, if t is known, we can calculate
from an image y a value (y, t, x) as a pre-image, using any x. The function
f2 is also one-way because when t is unknown, its inversion requires the
inversion of f1 on either y or α.

On the other hand, it is known that no OT (including semi-honest model) can
be blackbox reduced to one-way permutation [21]. This implies that semi-honest
OT cannot be blackbox constructed from a trapdoor function with exponential
pre-image size.

The expansion assumption is related to [11], which shows an example of a trap-
door function with linear length expansion. Arguments are presented relative to
a world with a PSPACE-complete oracle. The following random (oracle) func-
tions are constructed as the only source of computational hardness, but OT does
not exist in this world. This implies that OT cannot be blackbox constructed
from any such functions in the real world.

1. α = f3(t) is a uniformly distributed, length-tripling function. It generates
an identifier α by inputting trapdoor t, an arbitrary string, to the function.

2. y = f4(x, r, α) is an injective, uniformly distributed, length-tripling function
on the set of valid inputs. Input α is valid if there exists t such that α = f3(t).
Also, x and r are valid if |x| = |r| = |t|. On any invalid input the function
outputs ⊥.

3. f5 is a function basically for inverting f4, such that x = f5(y, t) whenever
y = f4(x, r, f3(t)) for some (x, r). There is at most one such x, as f4 is
injective. When there is no such x, f5(y, t) = ⊥.

118 K.Y. Cheong and T. Koshiba

An injective trapdoor function can be based on f4 simply by fixing r = 0 all
the time. It is length-expanding in O(n). The length-expanding property of this
trapdoor function makes it difficult to sample valid images of the function with-
out knowing the pre-image. This is one main reason why OT cannot be based
on it.

Note that in these two examples of OT impossibility, the trapdoor func-
tion with exponential pre-image size is not length-expanding, and the length-
expanding trapdoor function is injective, as shown above. That means in our
trapdoor function for OT possibility, both the pre-image assumption and the
expansion assumption are required at the same time.

Moreover, our trapdoor function f2 with exponential pre-image size is a full
domain trapdoor function, as it takes any string (in the right format) as in-
put. The length-expanding trapdoor function f4 also has a full domain as we
only consider x as the input. This further shows the necessity of the pre-image
assumption and the expansion assumption, regardless of the dense domain as-
sumption.

On the other hand, we do not rule out OT possibilities based on other assump-
tions. For instance, in [11] it is implied that if α can be sampled independent
of t, then OT may be based on such a trapdoor function, regardless of length
expansion. Although we do not see it as a minimal assumption in general, this
assumption is indeed rather independent of ours.

We also note that there is still space between our construction and the known
impossibility results, for both the pre-image assumption and the expansion as-
sumption. A possible gap between super-polynomial and exponential functions
is neglected up to this point. For pre-image size, while impossibility results are
known for the exponential, our construction is for the polynomial. Similarly, for
length expansion, while impossibility results are for the linear, our construc-
tion is for the logarithm of polynomial. In this sense, we say that our Extra
Assumptions are close, but may not be equal to the real minimum.

4 The Protocol

We point out that the construction of our OT protocol is mostly same as [15].
Every step is basically the same, while there are some modifications only due to
the differences of the trapdoor functions involved. A semi-honest WOT protocol
is first constructed. After that, the process to enhance it to a semi-honest OT is
exactly the same as [15].

First of all, we select a collection of pairwise independent universal hash func-
tions Hn with domain {0, 1}n and range {1, 2, . . . , g(n)p(n)q1(n)} where g(n) > 1
is a relatively large polynomial of our choice. The actual choice of g(n) is related
to the WOT parameters and will be discussed later. The sender has secret bits
(σ0, σ1) and the receiver has the choice bit i. The protocol is:

1. The sender uniformly selects a trapdoor function (α, t) and a hash function
h ∈ Hn.

2. The sender sends (h, α) to the receiver.

Reducing Complexity Assumptions for Oblivious Transfer 119

3. The receiver selects uniformly s ∈ {0, 1}n and calculates fα(s). If fα(s) /∈
{0, 1}m another s is selected iteratively until fα(s) ∈ {0, 1}m. After that the
receiver sets ri = fα(s) and selects uniformly r1−i ∈ {0, 1}m where ri �= r1−i.

4. The receiver sends {r0, r1} in random order to the sender.
5. Not knowing the order of {r0, r1}, for both j = 0, 1 the sender checks that

the following conditions are satisfied.

f−1
α (t, rj) ∈ {0, 1}n (10)

fα(f−1
α (t, rj)) = rj . (11)

If the answer is negative, the sender aborts the current iteration and restarts
the protocol. Otherwise the protocol continues with the sender setting for
j = 0, 1

vj = h(f−1
α (t, rj)). (12)

6. The sender sends {v0, v1} in the same order as he received {r0, r1} from the
receiver before.

7. Receiver checks that vi = h(s). If the result is negative, the current iteration
aborts and the protocol is restarted. Otherwise, the receiver reveals the true
order of (r0, r1) to the sender. From here, both r0 and r1 are thought to
be good candidates as the keys in the OT protocol. The receiver is thought
to know the pre-image of exactly one of them, whereas the sender does not
know which one.

8. For both j = 0, 1 the sender chooses zj ∈ {0, 1}n uniformly and sets

cj = σj ⊕ b(f−1
α (t, rj), zj) (13)

where b(x, y) is the inner product of x, y modulus 2, a hardcore predicate.
9. The sender sends (c0, c1, z0, z1) to the receiver.

10. The receiver outputs σ′
i = b(s, zi)⊕ ci. This is the secret required.

5 Analysis of Protocol

To make the analysis easier, we define the following sets before we proceed.

D′
α = {x ∈ Dα : x = f−1

α (t, fα(x))} (14)
Rα = fα(Dα) = fα(D′

α) (15)

where Rα is the range of the trapdoor function. Also, there is a one-to-one
relationship between D′

α and Rα. Next, we define the following sets, acting as
an extension of the domain of the trapdoor function.

D′′
α = {x ∈ {0, 1}n : x = f−1

α (t, fα(x)) ∧ fα(x) ∈ {0, 1}m} (16)
R′′

α = fα(D′′
α). (17)

Naturally, there is also a one-to-one relationship between elements in D′′
α and

R′′
α. Also we see that D′

α = Dα ∩D′′
α.

120 K.Y. Cheong and T. Koshiba

5.1 Running Time

Observe that, due to the dense property of Dα in {0, 1}n and D′
α in Dα, D′

α

is also dense in {0, 1}n. As |D′
α| = |Rα| and m = n + log q2(n), Rα is dense in

{0, 1}m. To be more precise, in our protocol we have, in each iteration,

Pr(s ∈ D′
α) >

1
p(n)q1(n)

(18)

Pr(r1−i ∈ Rα) >
1

p(n)q1(n)q2(n)
. (19)

In one iteration, if s ∈ D′
α and r1−i ∈ Rα then the protocol will reach the end

successfully. It is easy to see that the total expected number of iterations is
polynomial in n. Thus, we say the protocol runs in expected polynomial time.
To be precise, in order to guarantee that the protocol will come to a halt, we
need to set a counter for the number of iterations. The protocol is terminated
when the counter exceeds some predetermined number. In this case, the running
time will be polynomial, while the weakness parameter for correctness in WOT
will be increased by a negligible amount.

Also, we see how the properties of the trapdoor function affect the running
of the protocol. Both the expansion and pre-image size affect the density of
usable elements in the domain and range of the trapdoor function. Here they
are required for the running time to be polynomial.

5.2 Correctness

With the discussion above, the protocol will be prematurely terminated with a
negligible probability. If this does not happen, the protocol is executed to the
last step. In the last iteration of the protocol, the receiver can get the required
secret correctly if s = f−1

α (t, ri).
For any initial choice of s and r1−i, failure occurs if s �= f−1

α (t, ri) and at the
same time h(s) = vi. This is independent of the choice of r1−i, even though r1−i

may lead to an aborted round in the protocol. For probability we write:

Pr(s = f−1
α (t, ri)) >

1
p(n)q1(n)

(20)

Pr(s �= f−1
α (t, ri) ∧ h(s) = vi) < (1 − 1

p(n)q1(n)
)(

1
g(n)p(n)q1(n)

) (21)

and the remaining probability is that the iteration does not reach the end of
the protocol. Thus, the probability of correctness, given that the protocol is
completely finished, would be

1− ε1 >

1
p(n)q1(n)

1
p(n)q1(n) + (1− 1

p(n)q1(n))(
1

g(n)p(n)q1(n))

=
g(n)

g(n) + (1− 1
p(n)q1(n))

Reducing Complexity Assumptions for Oblivious Transfer 121

> 1− 1
g(n)

(22)

as p(n) ≥ 1 and q1(n) ≥ 1. This gives the required result that ε1 < 1/g(n). If we
also consider the minor case that the protocol may not run through the end, we
have ε1 < 1/g(n) + neg(n).

5.3 Privacy of Receiver

First of all we argue that, when s = f−1
α (t, ri), we have s ∈ D′′

α. On the other
hand, if the protocol is run through the end in an iteration, then it must be that
r1−i ∈ R′′

α. Due to the one-to-one relation between elements of D′′
α and R′′

α, we
conclude in this case that both r0 and r1 will appear uniformly distributed in R′′

α,
protecting the privacy of the receiver. This is guaranteed at the time the order
of (r0, r1) is revealed to the sender. As a result, the only problem occurs when
s �= f−1

α (t, ri). Thus the weakness parameter for receiver’s privacy is bounded
by the same events that determine correctness, giving ε3 < 1/g(n).

At this point, it is important to see that when s = f−1
α (t, ri) the receiver’s

privacy is protected in information theoretic sense, without requiring permuta-
tion properties in the trapdoor functions. In previous works, the permutation
property in trapdoor permutations is usually needed to protect the receiver’s
privacy in information theoretic sense, while the sender’s privacy is protected by
computational hardness of the inverse function.

5.4 Privacy of Sender

The main weakness of our WOT protocol is on the sender’s privacy. After all,
r1−i is finally not even guaranteed to be in Rα with high probability. We can
assume nothing about the computational hardness of inverting fα in that case.

But if r1−i ∈ Rα, the sender’s privacy should be protected. In this case we
can see that if the receiver has non-negligible advantage in guessing σ1−i then he
also has non-negligible advantage guessing b(f−1

α (t, r1−i), z1−i). From the theory
for this hardcore predicate [13], this means the receiver has a non-negligible
advantage to compute f−1

α (t, r1−i).
Note that the receiver is holding r1−i and h(f−1

α (t, r1−i)) to help his com-
putation. But if there is such an efficient algorithm M to find f−1

α (t, r1−i) in
this case, then we also have a polynomial time algorithm solving f−1

α (t, r1−i)
from r1−i alone, by running M with the setting of h(f−1

α (t, r1−i)) = y for each
y ∈ {1, 2, . . . , g(n)p(n)q1(n)}. Each iteration is terminated at a reasonable time
limit if it does not give an output. Any potential solution x for f−1

α (t, r1−i) can
be checked by fα(x).

Finally, if f−1
α (t, r1−i) can be calculated from r1−i in our protocol with non-

negligible probability, the computational hardness of the trapdoor function must
be violated because r1−i is generated by uniform sampling in the first place.
This results in a contradiction. Therefore, we conclude that when r1−i ∈ Rα,
the sender’s privacy is maintained.

122 K.Y. Cheong and T. Koshiba

The event r1−i ∈ Rα is only related to the density of Rα in {0, 1}m. Thus we
have

ε2 < 1− 1
p(n)q1(n)q2(n)

(23)

where again we see that the privacy of sender depends on all properties of our
trapdoor function: the dense property p(n), the pre-image property q1(n) and
expansion property q2(n).

6 Strengthening the Weak OT

As a result, we have a WOT with ε1 < 1
g(n) +neg(n), ε2 < 1− 1

G(n) and ε3 < 1
g(n) ,

where G(n) = p(n)q1(n)q2(n). The value of g(n) is of our choice. It is possible to
strengthen WOT to standard OT [33] under some conditions in general. In our
protocol, exactly the same method of [15] can be used to strengthen the WOT
to OT in the semi-honest model. From [15], it works with g(n) = 3n2G(n).
The WOT is used as a blackbox a number of times to suppress the weakness
parameters until they become negligible. This completes the last step of the
construction of standard OT with blackbox usage of our trapdoor functions.

7 Concluding Remarks

We believe the main contribution of this paper is two-fold. In the constructive
sense, we follow [15] and continue the work to remove the strict permutation
requirement in trapdoor functions for constructing OT. We show that trapdoor
functions with three extra properties are sufficient. They are the dense assump-
tion, pre-image assumption and expansion assumption.

On the other hand, through the known blackbox impossibility results, we
argue that the pre-image assumption and expansion assumption are hard to re-
move. The one question remains is about OT possibility if the dense assumption
is removed, keeping only the other two assumptions. This question can be di-
vided into two cases. The first case is that the trapdoor function is not required
to be a permutation. Then the answer is negative, as a counterexample can eas-
ily be constructed by setting Dα = {0, 1}m

15 with Rα ⊂ {0, 1}m and following
exactly the same arguments for linear expansion mentioned in this paper. If a
trapdoor permutation is used, then we are back to an old question. We know
that the Enhanced Trapdoor Permutation [12] suffices, but OT based on trap-
door permutation only is an interesting open question, and the answer is still
being awaited.

References

1. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 283–299. Springer, Heidelberg (1998)

Reducing Complexity Assumptions for Oblivious Transfer 123

2. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IEEE Transactions on Information Theory 42(6), 1769–1780 (1996)

3. Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification.
Journal of Cryptology 16(4), 219–237 (2003)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proc. 42nd IEEE Symposium on Foundations of Computer Science,
pp. 136–145 (2001)

5. Carter, J., Wegman, M.: Universal classes of hash functions. Journal of Computer
and System Sciences 18(2), 143–154 (1979)

6. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box construc-
tions of adaptively secure protocols. In: Theory of Cryptography Conference 2009.
LNCS, vol. 5444, pp. 387–402 (2009)

7. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988)

8. Crépeau, C., Savvides, G.: Optimal reductions between oblivious transfers using
interactive hashing. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 201–221. Springer, Heidelberg (2006)

9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

10. Even, S., Goldreich, O.: A Lempel: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

11. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: Proc. 41st IEEE
Symposium on Foundations of Computer Science, pp. 325–335 (2000)

12. Goldreich, O.: Foundations of Cryptography, vol II. Cambridge University Press,
Cambridge (2004)

13. Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proc.
21st ACM Symposium on Theory of Computing, pp. 25–32 (1989)

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proc. 19th ACM
Symposium on Theory of Computing, pp. 218–229 (1987)

15. Haitner, I.: Implementing oblivious transfer using collection of dense trapdoor per-
mutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 394–409. Springer,
Heidelberg (2004)

16. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

17. Haitner, I., Horvitz, O., Katz, J., Koo, C.-Y., Morselli, R., Shaltiel, R.: Reducing
complexity assumptions for statistically-hiding commitment. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 58–77. Springer, Heidelberg (2005)

18. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way func-
tion. In: Proc. 39th ACM Symposium on Theory of Computing, pp. 1–10 (2007)

19. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. In: Proc. 47th IEEE Symposium on Foundations of Computer Science,
pp. 719–728 (2006)

20. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography. In: Proc. 30th IEEE Symposium on Foundations of Computer Sci-
ence, pp. 230–235 (1989)

124 K.Y. Cheong and T. Koshiba

21. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proc. 21st ACM Symposium on Theory of Computing, pp. 44–61
(1989)

22. Kilian, J.: Founding cryptography on oblivious tranfer. In: Proc. 20th ACM Sym-
posium on Theory of Computing, pp. 20–31 (1988)

23. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. Journal of Cryptology 11(2), 87–108
(1998)

24. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proc. 12th ACM-
SIAM Symposium on Discrete Algorithms, pp. 448–457 (2001)

25. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

26. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proc.
40th ACM Symposium on Theory of Computing, pp. 187–196 (2008)

27. Rabin, M.: How to exchange secrets by oblivious transfer, Technical Report TR-81,
Aiken Computation Laboratory, Harvard University (1981)

28. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004)

29. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

30. Shannon, C.: Communication theory of secrecy systems. Bell System Technical
Journal 28(4), 656–715 (1949)

31. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
32. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)

EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)
33. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT

2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)

Tamper-Tolerant Software: Modeling and
Implementation

Mariusz H. Jakubowski1, Chit Wei (Nick) Saw1,
and Ramarathnam Venkatesan1,2

1 Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

{mariuszj,chitsaw}@microsoft.com
2 Microsoft Research India

196/36 2nd Main, Sadashivnagar, Bangalore 560 080, India
venkie@microsoft.com

Abstract. Common software-protection systems attempt to detect ma-
licious observation and modification of protected applications. Upon tam-
per detection, anti-hacking code may produce a crash or gradual failure,
rendering the application unusable or troublesome. Such a response is
designed to complicate attacks, but has also caused problems for devel-
opers and end users, particularly when bugs or other problems invoke
anti-tampering measures accidentally. To address these issues, an al-
ternative approach is to detect and fix malicious changes. This paper
presents a scheme to transform programs into tamper-tolerant versions
that use self-correcting operation as a response against attacks. Combin-
ing techniques from the fields of fault tolerance and software security,
the approach transforms programs via code individualization and redun-
dancy. We also describe security enhancements through error correction,
delayed responses and checkpointing. For security analysis, we adapt a
graph-based model of attacks and defenses in the context of software
tamper-resistance. This helps to estimate the difficulty of breaking our
scheme in practical scenarios.

1 Introduction

On modern computing systems, certain software requires protection against ma-
licious tampering and unauthorized usage. For example, DRM (Digital Rights
Management) systems attempt to prevent software piracy, as well as illegal dis-
tribution of music, video and other content. Running on open PCs, however,
such security-sensitive applications are subject to observation and modification
by hackers. Consequently, developers have employed tamper-resistant software
(TRS) [5,9,18,19], which involves a variety of program obfuscation and hard-
ening tactics to complicate hacker eavesdropping and tampering [12,32,4,29].
While no provably secure and practical methods have been deployed, various
TRS heuristics extend the time and effort required to break protection.

Among the most popular protection techniques is integrity checking, or verify-
ing that a program and its execution are tamper-free. Specific methods

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 125–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

126 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

include computation of hashes over program code and data, along with peri-
odic checks for mismatches between pre-computed and runtime values [10,19].
Upon detection of incorrect program code or behavior, a protection system typ-
ically responds by crashing or degrading the application (e.g., via slowdown and
erratic operation) [29]. Often obfuscated, this response mechanism serves both
to delay hackers and deny illegitimate usage of the application.

This typical ”pessimistic” response to tampering has caused issues with ap-
plication development, including testing and debugging, as well as with end-user
experience. For example, application bugs sometimes manifest themselves only in
tamper-protected instances of applications, forcing developers to face their own
(or third-party) protection measures. Bugs in the actual protection system can
be especially troublesome, particularly when interacting with protected appli-
cations. Given random application failures and erratic behavior, legitimate end
users may find it difficult or impractical to file bug reports and receive support.
These and other problems have contributed to general unpopularity of software
protection.

A more constructive response to attacks is not to render an application unus-
able, but to correct the effects of tampering and allow the program to continue.
The basic notion of such tamper-tolerant software (TTS) is appealing from the
perspectives of both developers and end users, since TTS works actively to keep
a program running correctly despite attacks – much like fault-tolerant systems
protect against system breakdown due to malfunctioning components. Along
these lines, some earlier protection schemes have used multiple copies of code to
guard against tampering [9,11].

Fault tolerance [16,21,27] is a rich area that has seen much theoretical and
practical work, but aims mainly to defend against ”random” or unintentional
failures, not against intelligent malicious attackers. However, TTS can derive
from the basic concepts of fault tolerance, including redundancy, failover, and
checkpoints with rollback. Likewise, error-correction methods [24] are geared
mainly towards addressing noisy data transmission, but are useful in TTS as
well. TTS can be considered as an adaptation and extension of fault tolerance
and error correction to the intelligent-attacker scenario in software protection.

Evaluating the real-life effectiveness of software protection has been a tradi-
tionally problematic task. Most implementations in practice tend to use “ad hoc”
techniques that offer only heuristic security assessments, if any. Even schemes
that reduce to solving “difficult” problems can often be broken when attacks
violate their idealized models or assumptions. Nonetheless, a recent line of work
on graph-based modeling of tamper-resistance [15] offers some promise. In this
framework, execution is modeled as a walk on program graphs, while attacks are
analyzed as a “graph game” between hackers and defenders. We provide a simple
adaptation of this model to our tamper-tolerance framework. As a step towards
security analysis, this approach estimates the number of runtime observations
and modifications required by any successful tampering attack.

The rest of this paper is structured as follows. Section 2 describes our basic
TTS approach, including background on fault tolerance and software protection.

Tamper-Tolerant Software: Modeling and Implementation 127

In Section 3, we present a graph-based security model for evaluating the strength
of TTS. Section 4 presents a test implementation and experimental results on
SPEC benchmarks. We provide a final assessment in Section 5.

2 Tamper-Tolerant Software

The essential idea of tamper-tolerant software is to detect tampering and fix its
effects at runtime. This is distinct from traditional anti-tampering responses,
which use techniques such as delayed crashes and graceful degradation [29,15] to
block illegitimate usage and hinder attackers. Much the same effects are achieved
if the program silently corrects its operation instead of failing. However, clear
practical advantages come into play when applications continue to function as
intended despite attacks. As with delayed responses in TRS, TTS may actually
allow some tampered execution, but only temporarily.

To construct TTS schemes, our approach relies on several well known tech-
niques from the fields of fault tolerance and software protection. Below we briefly
review these techniques in the context of software security.

2.1 Building Blocks

Fault-tolerant systems typically use redundant and diversified components to
resist random or non-malicious failures. With some extensions, such methods
also help against intelligent attackers. We leverage the following main elements
of fault tolerance:

– Redundancy: Duplication of system components into distinct, indepen-
dently functioning units. This is a means of implementing failover, or switch-
ing to a fresh component if one stops working correctly. In addition, voting
schemes compute results from multiple redundant components and select
the most frequently occurring values. For example, the well known TMR/V
scheme (triple modular redundancy with voting) uses three duplicate com-
ponents and picks the majority answer [28].

– Individualization: Alteration of software code without affecting its func-
tionality (synonymous with diversification [4]). Such transformations can im-
plement the same operations in different ways, leading to potentially more
robust systems. This can also make the same code appear different to adver-
saries, ideally forcing them to duplicate analysis efforts. Both code and data
may be individualized statically (i.e., prior to runtime [1]) or dynamically
(i.e., periodically during runtime [3]).

– Checkpointing: Upon tamper detection, rollback of execution to an ear-
lier point. Checkpoints (i.e., summaries of program state sufficient to restart
execution) are saved periodically for this purpose. This is the essential idea
behind recovery-block schemes [26,30]. One motivation for this is attacks that
alter program state without patching code, so that canceling and redoing op-
erations can effectively fix the tampering. Alternately, a different redundant

128 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

component can redo the computation. Such checkpointing is also used by so-
called ”time-travel” (or ”omniscient”) debuggers to execute code backwards
or roll execution back to some arbitrary point [8]. We may take advantage
of existing checkpoint technology from such debuggers and simulators.

TTS also uses a number of techniques from the field of software protection:

– Integrity checks: Runtime verification of correct program operation. A tra-
ditional method is to compute checksums or hashes of code bytes, comparing
at runtime against precomputed correct values [18,9]. Without reading in-
struction bytes, the technique of oblivious hashing computes and verifies
hashes based on runtime variable values and control-flow transfers (e.g., by
updating a hash value upon every variable assignment and branch [10,19]).
Similarly, integrity-checking expressions (ICEs) can be used to verify in-
tegrity of execution by computing predicates over runtime state [20].

– Delayed responses: Separation of tamper detection and correction in space
and time. This is to prevent easy identification of the TTS mechanism,
mainly by disguising and hiding corrective response mechanisms [29,15]. One
example technique is corrupting pointers so that future dereferencing will re-
sult in an invalid access, crashing the program [29].

– Result correction: Combination of several (possibly encoded) outputs from
individualized copies of a code block, and output of the block’s correct result
despite tampering with one or more of the copies. This is a generalization of
the idea of majority decoding in error correction (e.g., TMR/V, as described
earlier [24]).

– Data encoding and shuffling: Encryption or scrambling of a program’s
working data, including usage of standard authentication (e.g., hashes or
MACs) and error-correction codes. Variables may be continually transformed
and moved in memory to prevent easy dataflow analysis and tracking [31,2].

2.2 Tamper-Tolerance Schemes

Following the core principles and terminology of fault tolerance, our basic TTS ap-
proachuses the notion of individualized modular redundancy (IMR). In essence, the
methodology duplicates code blocks at various granularities (e.g., basic blocks or
entire functions), transforming the copies into diversified but functionally
equivalent versions.We treat these code blocks as deterministic functions that map
inputs to outputs and have no side effects. At runtime, the different copies may
execute at various times or in parallel, producing individual intermediate outputs
(all of which should be the same if no tampering occurs). Fig. 1 shows the basic
conception of tamper-tolerant software.

This general IMR framework may be specialized in various ways. For con-
creteness, we present three specific practical schemes. We use acronyms and
terminology derived from literature on fault tolerance [28,27,16,21]:

– IMR with voting (IMR/V): This is IMR combined with a baseline form
of result correction (similar to N-version programming [6]). From among the

Tamper-Tolerant Software: Modeling and Implementation 129

Input Program

A

B

C

A

A

A

B

B

B

C

C

C

Modular Redundancy Individualization Tamper Correction

Code Blocks

Fig. 1. High-level overview of tamper-tolerant software

results computed by individualized code blocks, a voting mechanism selects
the final output. Given no tampering, the vote will be unanimous – i.e.,
all redundant copies generate the same output. This voting scheme can be
considered as a simple means of implementing result correction.

For more secure result correction, we use the general concept of a tamper-
correcting transform that accepts a number of encrypted (or scrambled) and
potentially corrupted intermediate results. Individualized copies of a code
block compute such results; the transform then decrypts (or unscrambles)
these values and uses error correction on them to produce one final answer.
As described above, the simplest form of this transform is equivalent to error
correction via majority voting – i.e., the intermediate results are in plaintext,
and the most commonly appearing value is selected as the final output. In
general, however, the decryption (or unscrambling) and error correction (or
voting) may be coalesced into a single transform that performs these distinct
operations implicitly.

– IMR with detection and correction (IMR/DC): In this scheme, the
protection system resorts to redundant execution only if tampering is de-
tected. Using the integrity-verification techniques described earlier, the sys-
tem checks the execution of each code block for correctness (e.g., via verifying
code-byte checksums or oblivious hashes of execution). Upon tamper detec-
tion, the system selects and executes an individualized copy of the block,
also verifying its runtime integrity. The system may simply call another in-
dividualized version of the block, or overwrite the tampered code with new
code from a repository of possibly encrypted redundant blocks. This process

130 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

repeats until some copy of the block executes successfully without tampering
(or until no more individualized blocks are available). Checkpointing may be
used to roll back execution and provide correct program state before a copied
block executes. If side effects are part of block execution, checkpointing with
rollback may be necessary for proper program operation.

IMR/DC has some parallels with the notion of recovery blocks in stan-
dard fault tolerance [26]. The basic idea is to detect and recover from fail-
ures by rolling back to a “last known good” execution state. Fault detection
may be accomplished via algorithm-specific checks [30], which are analogous
to runtime tamper detection via techniques like integrity-checking expres-
sions [20]. Also related is recent work on the Rx system, which survives
software bugs via checkpoint-based rollback and re-execution in a modified
environment [25]. However, these systems are geared against random or non-
malicious faults, while IMR/DC and TTS in general aim to resist intelligent
attackers.

– IMR with randomized execution (IMR/RE): This method selects in-
dividualized code blocks randomly for execution. For example, given three
redundant, functionally equivalent code blocks A, B, and C, the system
chooses and executes one with some probability (e.g., 1/3 for each of A, B,
and C). If an attacker tampers with only A, execution will still be correct
with probability 2/3, since B and C may be picked. Controlled by opaque
predicates or other possibly obfuscated means [14,13], block selection may
vary during runtime and between runs of a program. Such an approach can-
not be used standalone to ensure tamper tolerance, but may be combined
with other methods to enhance security of tolerance. In particular, combin-
ing IMR/RE with checkpointing (or rollback to an earlier point upon tamper
detection) can undo tampering.

In a typical implementation, various other software-protection techniques would
be incorporated into a tamper-tolerance system. These include data transforma-
tions [31,2], delayed responses [29], as well as other applicable tamper-resistance
and obfuscation techniques. The main goal is to strengthen the above basic
schemes, as well as to satisfy “engineering assumptions” required by the security
model we adapt [15], as described later.

2.3 Tamper-Tolerance Algorithms

Using the above concepts, we present a general algorithm outline to implement
TTS in practice. Given a program P to be protected, along with optional user-
specified security and maintenance parameters, the algorithm transforms P into
a new tamper-tolerant version P ′. P is typically a single application, library
module or driver running in either user or kernel mode. The following are general
basic steps of the transformation process to protect P :

1. Break up P into a number of blocks, which may range in granularity from
individual instructions to the entire program P . In practice, subdivision

Tamper-Tolerant Software: Modeling and Implementation 131

into standard basic blocks (i.e., code sections with no incoming or outgoing
internal branches) or functions is likely to suffice.

2. Duplicate, individualize and rearrange the blocks within the program, relying
on user-specified parameters to determine number(s) of copies and specifics
of individualization (e.g., types and degrees of diversifying transformations).

3. Inject appropriate code to implement IMR/V, IMR/DC, IMR/RE, or a com-
bination of two or three thereof, as specified by user parameters. Such code
may include opaque predicates for block selection.

4. Optionally inject code to manage result correction, data transformations,
delayed responses, checkpointing, or a combination of two or more thereof.
Also optional is injection of any additional obfuscation measures.

5. For enhanced security, optionally iterate the above steps two or more times,
so that the tamper-tolerance measures are themselves protected by one or
more layers of tamper tolerance. This is important for leveraging the basic
IMR approach.

3 Security Modeling

This section presents a security model to evaluate the effectiveness of TTS
schemes. Our main goal is a method to estimate the complexity of breaking
TTS in practice (e.g., in terms of the number of observations and modifications
required by any successful attacker). Different applications require different levels
of resistance; e.g., a few weeks without cracks might suffice for copy protection
on some games, while even a few hours may be enough for quickly refreshed
Web-based code. Although “unbreakable” software protection remains an open
problem, this is not necessary in many, if not most, business contexts.

Theoretical treatment of obfuscation has yielded negative general results [7,17].
This indicates that no tool can protect all possible programs, but certain limited
classes of functionality are amenable to obfuscation [22,33]. However, this is in a
very strict “all or nothing” model, where any non-negligible information extracted
efficiently from obfuscated code is considered a break.On the other hand, our mod-
eling approach is geared mainly towards estimating the time and effort required
to defeat protection.

To assess security of TTS, we adapt a graph-game tamper-resistance frame-
work that treats a program as a graph and execution as a walk on the graph [15].
The program is protected by integrity checks contained in some nodes, and the
attacker’s goal is to isolate all such nodes. Although originally intended for mod-
eling tamper-resistant software, this approach can be adapted naturally to TTS.
We provide an informal but self-contained summary of this framework, along
with a description of our changes to model TTS.

3.1 Graph-Game Model

The main elements of the graph-game model [15] are as follows:

132 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

– Program: The program P to be protected is viewed as a graph G, such as
a control-flow graph (CFG). This CFG should be “semi-random,” which is
achieved via transformations that add nodes and edges.

– Execution: This is modeled as a “semi-random” walk on the graph G.
Most program CFGs result in walks that are not particularly random, given
typical patterns of control flow. The model relies on various transformations
to randomize the runtime walk.

– Integrity checks: Unknown to the attacker, some nodes in the CFG execute
probabilistic checks to verify correct program operation at a particular time
and place. In practice, this abstract notion of an integrity check may be
implemented in various ways, such as code-byte checksums [18,9], oblivious
hashing [10,19], and integrity-checking expressions [20]

– Tamper responses: When certain sets of checks fail, a tamper response is
initiated. This is typically a delayed crash, or a program failure designed to
deflect attention away from its causes (i.e., tampering with nodes).

With these elements, the graph game involves an attacker able to run the
protected program, tamper with nodes, and observe program behavior. The pro-
gram’s response to tampering (i.e., time and place of failure) reveals informa-
tion about the placement of integrity checks. Once the attacker identifies a node
containing such a check, he may disable it. His goal is to identify all nodes re-
sponsible for integrity verification, which he can then eliminate to unprotect the
program.

The analysis in [15] essentially shows that in order to achieve success, the
attacker must perform a large number of program observations and node mod-
ifications. This number may be quadratic (or higher) in terms of the workload
required to protect the program. In general, this is our main goal – i.e., the
attacker should expend an order of magnitude more effort than the protector.

3.2 TTS Modeling

The graph-game framework is almost directly applicable to TTS. Our only main
change is to replace the notion of delayed crashes with delayed fixes. More specif-
ically, instead of responding to the attacker’s tampering by eventually crashing,
the program will correct its operation and continue running. When the attacker
tampers with graph nodes, he may observe altered program behavior for some
time, after which the program resumes its untampered operation. Like a delayed
crash, this length of time gives the attacker information about whether any of the
tampered nodes contained integrity checks. With this modification, the original
analysis of the graph-game model [15] essentially applies as is.

For concreteness, we describe a simplified variant of this modeling approach.
Assume the protected program contains n integrity checks, each executed with
probability p. Let d denote the average time required by the attacker to determine
that a node contains an integrity check. To identify all integrity checks, the
attacker must run the program an average of n/p times, each taking time d.

Tamper-Tolerant Software: Modeling and Implementation 133

Thus, the time required by the attacker is dn/p. If we set p to 1/n, the time
becomes dn2, or quadratic in the number of checks.

Like the original graph-game model, this approach makes a number of “engi-
neering assumptions” that must be approximated in practice. For example, all
integrity checks must be distinct, so that an attacker cannot easily use knowl-
edge of one check to identify others. In addition, converting a typical CFG to a
“semi-random” graph, along with approximating execution as a “semi-random”
walk, may incur significant performance and code-size penalties. Nonetheless,
software-protection techniques like individualization and opaque predication can
help satify these requirements. In fact, the previously described elements of TTS
can be viewed as a set of engineering techniques to satisfy the model’s practical
assumptions about tamper-tolerance.

3.3 Impossibility Results

While general-purpose obfuscation has been proved impossible in the model
of Barak et al. [7], we are not aware of analogous work for tamper-resistance.
However, it is straightforward to show that general-purpose tamper-resistance
(or tamper-tolerance) is impossible as well. Informally, if we assume the existence
of a generic tool to tamper-protect any program, we can simply feed such a tool’s
output to itself. Since any tamper protection involves some form of program
transformations, this would essentially force the tool to break its own tamper
protection in order to modify the tamper-resistant program. Thus, such a tool
cannot exist.

The graph-game model [15] actually does propose an approach for general-
purpose tamper-protection. However, this model implicitly assumes that the
input program is not already tamper-protected, thus rendering the above impos-
sibility argument irrelevant. In addition, the argument assumes that the transfor-
mation tool uses no secret key or other non-public information, but the scenario
is somewhat different if this is allowed. A more detailed analysis of related results
for tamper-resistance and -tolerance may appear elsewhere.

4 Implementation and Experiments

We have implemented an initial version of a tool that applies some of the tamper-
tolerance techniques described in this paper by transforming and compiling high-
level source code. The tool is built on top of a code transformation framework
based on Phoenix [23]. Phoenix is a Microsoft program analysis and compiler
framework based on a common intermediate representation (IR) that provides
the building blocks of the program to be transformed.

This current section describes the tool in more detail, and includes some
experimental results obtained by applying the tool to several SPEC CPU2006
benchmarks.

134 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

4.1 Tool Implementation

In this initial version of the tool, we implemented the IMR/RE scheme, which
incorporates many of the building blocks upon which the other schemes may be
built. In addition, we also implemented a stack-based checkpointing and rollback
mechanism in order to illustrate the performance under simulated tampering and
detection conditions. Future work will enhance the tool to implement the IMR/V
and IMR/DC schemes.

The tool processes each function in an input program and creates a config-
urable number of copies of the basic blocks in the function. The number of copies
may be specified in a configuration file. Additionally, the functions to be pro-
cessed may also be specified, and a parameter may be used to control the code
coverage, or percentage of blocks processed within the functions. We could have
instead opted to copy entire functions rather than basic blocks, but copying at
the basic-block level provides a finer level of granularity that could allow for
more targeted applications of the technique.

The multiple copies are each individualized, which in the case of our tool is
achieved by applying a different combination of simple chaff-code injection and
code-substitution transformations to each code block in a way that does not
alter the functionality of the block. In practice, any individualization scheme
that produces functionally equivalent individualized code may be used. Finally,
the tool inserts code to select (randomly, as is the case for the IMR/RE scheme)
one of the multiple copies to execute. In our prototype, a simple pseudo-random
number generator is inlined in the code to select randomly one of the code blocks
to which to transfer control.

4.2 Experimental Results

This section presents experimental results obtained by running the tool on se-
lected SPEC CPU2006 benchmarks (data compression, transportation schedul-
ing, database search, chess and video compression). The benchmarks were run
and timed on a Pentium 3.0 GHz workstation with 3 GB of RAM. In the set
of tables that follow, we measured for each benchmark the binary code size and
runtime performance before and after applying the tamper-tolerance transfor-
mations. We express these measures in the tables as ratios relative to the baseline
benchmark with no tamper-tolerance applied. The results show the impact of
the addition of tamper-tolerance on the code size and runtime performance of
the program.

Tables 1 and 2 show how applying IMR/RE by duplicating a random sampling
of 25% of the code blocks affects the code-size and performance respectively
relative to the baseline. Because not all blocks are the same size, and because we
perform the duplication of blocks in high-level source code, it does not necessarily
follow that the size of the resulting executable file will increase by exactly the
same amount as statically-linked library code is not seen at compile-time and will
not be subjected to the transformation. In addition, the random-block-selection
code will add to both the code size and performance overhead. We repeated the

Tamper-Tolerant Software: Modeling and Implementation 135

Table 1. Code-size impact of block redundancy, 25% code coverage

Benchmark Number of redundant copies (n)
n = 2 n = 4 n = 8 n = 16

401.bzip2 1.650 2.319 3.525 5.875
429.mcf 1.189 1.400 1.611 2.256
456.hmmer 1.879 2.640 4.109 7.298
458.sjeng 1.776 2.475 3.929 6.859
464.h264ref 1.907 2.770 4.414 8.054

Table 2. Performance impact of block redundancy, 25% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16
401.bzip2 2.267 2.674 3.287 4.903
429.mcf 2.010 2.352 2.762 2.238
456.hmmer 2.275 2.389 2.310 4.629
458.sjeng 2.840 3.797 4.858 6.274
464.h264ref 2.222 3.655 3.909 5.274

Table 3. Code-size impact of block redundancy, 50% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16
401.bzip2 2.325 3.394 5.375 10.65
429.mcf 1.333 1.667 2.222 3.644
456.hmmer 2.599 4.119 7.023 13.07
458.sjeng 2.475 3.886 6.529 11.79
464.h264ref 2.701 4.394 7.699 14.32

measurements for number of copies n = 4, 8 and 16. This clearly shows the
increase in code size due to the additional redundant code as more copies are
introduced. The performance overhead may be attributed to the block-selection
code as well as changes to the spatial and temporal ordering of code blocks which
can affect the efficacy of CPU-based optimizations such as caching and branch
prediction. These performance impacts can also vary depending on the profile of
the code running the benchmark and the actual blocks selected for redundancy.
For instance, duplicating a block within a performance-critical, tight inner loop
would cause the block-selection code to be run on every iteration of the loop,
thereby amplifying the performance overhead.

Tables 3 through 6 repeat the measurements for expanded code-coverage
values of 50% and 100%. As the code coverage is increased, both code size
and performance are impacted, the latter due to the increased frequency of
block-selection code execution and the reduced efficacy of CPU-based optimiza-
tions. This can be seen most clearly at the 100% code-coverage level, where the

136 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

Table 4. Performance impact of block redundancy, 50% code coverage

Benchmark Number of redundant copies (n)
n = 2 n = 4 n = 8 n = 16

401.bzip2 3.840 5.580 7.099 9.530
429.mcf 2.388 2.447 3.340 4.301
456.hmmer 2.834 3.738 5.808 4.803
458.sjeng 4.311 6.509 7.547 11.56
464.h264ref 4.364 5.395 6.854 10.04

Table 5. Code-size impact of block redundancy, 100% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16
401.bzip2 3.394 5.725 10.33 19.42
429.mcf 1.722 2.356 3.700 6.533
456.hmmer 4.149 7.235 13.26 25.50
458.sjeng 3.890 6.765 12.00 22.53
464.h264ref 4.307 7.802 14.31 27.45

Table 6. Performance impact of block redundancy, 100% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16
401.bzip2 6.205 9.307 12.13 16.74
429.mcf 3.990 5.324 6.618 10.10
456.hmmer 4.934 7.293 9.651 13.49
458.sjeng 8.255 12.31 16.70 25.71
464.h264ref 6.801 9.880 12.76 18.07

redundancy is applied to every block in the source code. We should also point
out that the block-selection code was not optimized by the compiler, which may
account in part for the slower execution times as the degree of redundancy is
increased. This could be addressed by encoding the block-selection code using
low-level jump tables.

In order to illustrate in general how checkpointing and rollback could be
used in conjunction with IMR/RE as an effective means of result correction
in the presence of tampering, we implemented a simple stack-based scheme to
checkpoint the execution environment of the program before a function call, and
rollbacks to restore the execution to the most recent checkpoint. This scheme
does not currently support saving and restoring global state, so we are limited
to applying this only in the absence of global side-effects.

We assume different probabilities of tampering within the program, and simu-
late detection and correction by injecting code in each function to perform a roll-
back to the previous checkpoint with probability p. Upon a successful rollback,

Tamper-Tolerant Software: Modeling and Implementation 137

Table 7. Performance impact of rollback

Benchmark
Probability of tampering (p)

p = 0.9 p = 0.8 p = 0.7 p = 0.6 p = 0.5
401.bzip2 2.720 1.875 1.571 1.432 1.324
429.mcf 5.735 3.373 2.578 2.137 1.863
456.hmmer 2.175 1.611 1.415 1.332 1.262
458.sjeng 6.132 3.755 2.943 2.542 2.222
464.h264ref 9.679 5.395 3.936 3.159 2.651

execution will resume from the previous checkpoint, and will have a probability
of (1−p) of successfully proceeding beyond the tampered block. In the IMR/RE
scheme, the probability that the same tampered block will be executed is 1/n,
where n corresponds to the number of copies made of the code block.

The performance impact of checkpointing and rollback under different tam-
pering probabilities is presented in Table 7. The values in the table are again
expressed as a ratio relative to the baseline execution with no tampering or
rollback. As the probability p of encountering tampering decreases, the perfor-
mance improves due to a greater likelihood that the tampered code is avoided
upon restoration of execution following a rollback.

In all of the experiments, we applied the transformation over a set percentage
of all code blocks in order to be able to perform relative measurements across
the selected benchmarks. More realistic usage may involve targeted selection of
sensitive code sections on which to apply tamper-tolerance, as well as protecting
less critical parts of the program to avoid drawing attention to the former. As
with other software-protection schemes, these need to be balanced with the code-
size and performance impacts. While the current version of the tool applies the
transformations to high-level source code for cross-platform compatibility, the
methods described in this paper may equally be applied to low-level machine
code. Finally, practical application of this and other tamper-tolerance schemes
should always be done in conjunction with other protection methods as part of
an overall software-protection solution.

5 Conclusion

This paper proposed the general concept of tamper-tolerant software, or the
notion of an attacked program correcting its own operation upon tamper de-
tection, as opposed to traditional responses that involve crashes or graceful
degradation. Tamper-tolerance enables a program to continue executing rather
than to fail upon attack detection. TTS is based on individualized modular
redundancy, namely a combination of software protection and fault-tolerance
techniques adapted to the malicious-attacker scenario. The approach detects
tampering and fixes malicious changes via voting, result correction, random-
ized re-execution, or rollback. We model TTS by adapting a graph-based

138 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

tamper-resistance framework [15], enabling security analysis and estimation of
attack resistance in practice.

Future work will analyze possibility and impossibility results for TRS and
TTS, extending the informal discussion from Section 3. In particular, we are
investigating classes of programs in terms of how well TRS and TTS can protect
them, both with and without secret keys and other auxiliary information. A main
goal is to put TRS and TTS on a sound yet practically useful formal foundation,
eliminating the need for “ad hoc” heuristics and unpredictable security in real-
world contexts.

References

1. Anckaert, B., Jakubowski, M.H., Venkatesan, R.: Proteus: Virtualization for di-
versified tamper-resistance. In: DRM 2006: Proceedings of the ACM Workshop on
Digital Rights Management, pp. 47–58. ACM Press, New York (2006)

2. Anckaert, B., Jakubowski, M.H., Venkatesan, R.: Runtime protection via dataflow
flattening. In: IARIA SECURWARE 2009 (to appear, 2009)

3. Anckaert, B., Jakubowski, M.H., Venkatesan, R., De Bosschere, K.: Run-time ran-
domization to mitigate tampering. In: Miyaji, A., Kikuchi, H., Rannenberg, K.
(eds.) IWSEC 2007. LNCS, vol. 4752, pp. 153–168. Springer, Heidelberg (2007)

4. Anckaert, B., De Sutter, B., De Bosschere, K.: Software piracy prevention through
diversity. In: DRM 2004: Proceedings of the 4th ACM Workshop on Digital Rights
Management, pp. 63–71. ACM Press, New York (2004)

5. Aucsmith, D.: Tamper resistant software: An implementation. In: Anderson, R.
(ed.) IH 1996. LNCS, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

6. Avizienis, A.: The methodology of N-version programming. In: Lyu, M.R. (ed.)
Software Fault Tolerance,ch. 2, pp. 23–46. Wiley, Chichester (1995)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

8. Bhansali, S., Chen, W.-K., de Jong, S., Edwards, A., Murray, R., Drinić, M.,
Mihočka, D., Chau, J.: Framework for instruction-level tracing and analysis of pro-
gram executions. In: VEE 2006: Proceedings of the 2nd international conference
on Virtual execution environments, pp. 154–163. ACM, New York (2006)

9. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Digital Rights
Management Workshop, pp. 160–175 (2001)

10. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.: Obliv-
ious hashing: A stealthy software integrity verification primitive. In: Information
Hiding 2002, Noordwijkerhout, The Netherlands (October 2002)

11. Cloakware Corporation. Software Security Suite (2009)
12. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-

tions. Technical Report 148, Department of Computer Science, The University of
Auckland, New Zealand (July 1997)

13. Collberg, C., Thomborson, C., Low, D.: Breaking abstractions and unstructuring
data structures. In: International Conference on Computer Languages, pp. 28–38
(1998)

14. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Principles of Programming Languages, POPL 1998,
pp. 184–196 (1998)

Tamper-Tolerant Software: Modeling and Implementation 139

15. Dedić, N., Jakubowski, M.H., Venkatesan, R.: A graph game model for software
tamper protection. In: Proceedings of the 2007 Information Hiding Workshop (June
2007)

16. Denning, P.J.: Fault tolerant operating systems. ACM Comput. Surv. 8(4), 359–
389 (1976)

17. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS 2005: Proceedings of the 46th IEEE Symposium on Foundations
of Computer Science (2005)

18. Horne, B., Matheson, L.R., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper resistance. In: Digital Rights Management Workshop,
pp. 141–159 (2001)

19. Jacob, M., Jakubowski, M.H., Venkatesan, R.: Towards integral binary execution:
Implementing oblivious hashing using overlapped instruction encodings. In: 2007
ACM Multimedia and Security Workshop, Dallas, TX (September 2007)

20. Jakubowski, M.H., Naldurg, P., Patankar, V., Venkatesan, R.: Software integrity
checking expressions (ICEs) for robust tamper detection. In: Furon, T., Cayre, F.,
Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 96–111. Springer, Heidelberg
(2008)

21. Linden, T.A.: Operating system structures to support security and reliable soft-
ware. ACM Comput. Surv. 8(4), 409–445 (1976)

22. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

23. Microsoft Corporation. Phoenix compiler framework (2008)
24. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms.

Wiley-Interscience, Hoboken (2005)
25. Feng, Q., Joseph, T., Yuanyuan, Z., Jagadeesan, S.: Rx: Treating bugs as allergies—

a safe method to survive software failures. ACM Trans. Comput. Syst. 25(3), 7
(2007)

26. Randell, B.: System structure for software fault tolerance. In: Proceedings of the
International Conference on Reliable Software, Los Angeles, California, pp. 437–
449. ACM, New York (1975)

27. Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Comput. Surv. 10(2), 123–165 (1978)

28. Siewiorek, D.P., Swarz, R.S.: Theory and Practice of Reliable System Design. Dig-
ital Press, Bedford (1982)

29. Tan, G., Chen, Y., Jakubowski, M.H.: Delayed and controlled failures in tamper-
resistant software. In: Proceedings of the 2006 Information Hiding Workshop (july
2006)

30. Tyrrell, A.M.: Recovery blocks and algorithm-based fault tolerance. In: EUROMI-
CRO Conference, vol. 0, p. 292 (1996)

31. Varadarajan, A.V., Venkatesan, R., Rangan, C.P.: Data structures for limited
oblivious execution of programs while preserving locality of reference. In: DRM
2007: Proceedings of the 2007 ACM workshop on Digital Rights Management, pp.
63–69. ACM, New York (2007)

32. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resistance: Obstruct-
ing static analysis of programs. Technical Report CS-2000-12, University of Virginia
(December 2000)

33. Wee, H.: On obfuscating point functions. In: STOC 2005: Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 523–532.
ACM Press, New York (2005)

An Error-Tolerant Variant of a Short 2-Secure
Fingerprint Code and Its Security Evaluation�

Koji Nuida

Research Center for Information Security (RCIS), National Institute of Advanced
Industrial Science and Technology (AIST)

Akihabara-Daibiru Room 1003, 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021,
Japan

k.nuida@aist.go.jp

Abstract. In recent research on collusion-secure fingerprint codes, some
relaxation of the conventional security assumption (Marking Assump-
tion) have been introduced from a viewpoint of reality in practical sit-
uations, and several fingerprint codes have been proposed under those
assumptions. In this article, we consider such a relaxed assumption and
give an extension of short 2-secure codes (under Marking Assumption)
recently proposed by Nuida et al. (IEICE Trans. A, 2009) to our as-
sumption. We perform theoretical and numerical evaluation of security
and required code lengths. For example, to bound the error probability
by 0.01% for 10, 000 users, 162-bit, 220-bit and 329-bit lengths are suf-
ficient even if each bit of the fingerprint codeword is either flipped (in
addition to other collusion attacks) with probabilities 1%, 2.5% and 5%,
respectively, or erased with probabilities 2%, 5% and 10%, respectively.

Keywords: Digital fingerprint, collusion-attack, 2-secure code, error-
tolerance, digital rights management.

1 Introduction

1.1 Backgrounds

Recently, digital content distribution services have been widespread with support
of the progress of information processing/communication technology. Digitiza-
tion of contents and content distribution has been promoted convenience for
many people. However, it does also work better for malicious pirates, and the
number of illegal content copying/redistribution has increased very rapidly. Thus
technical countermeasures for such illegal activities are strongly desired.

Digital fingerprinting is a possible solution for the above problems. Here we fo-
cus on code-based schemes; a content server first encodes each user’s ID and then
embeds each codeword into a content that will be sent to the user. This intends
to be able to determine the pirate from the codeword in a pirated content when a
� This work was supported by 2007 Research Grants of the Science and Technology

Foundation of Japan (JSTF).

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 140–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 141

single pirate redistributes the received content. However, it has been pointed out
that, if two or more pirates collude, then strong attacks (collusion attacks) to the
embedded codeword are possible. Thus any fingerprint code should be equipped
with an appropriate pirate tracing algorithm that determines a pirate correctly
with an overwhelming probability even from an attacked codeword. Such a code
is called c-secure [4] if it works properly against at most c pirates. Under the con-
ventional Marking Assumption [4] several c-secure codes (e.g., [4,8,9,12,14,15]),
including 2-secure ones (e.g., [2,5,7,11,13,16]), have been proposed. In particu-
lar, to our best knowledge, the 2-secure codes recently proposed by Nuida et al.
[11] have shortest code lengths under several practical parameters among those
existing codes in the present time.

1.2 Motivation

The conventional Marking Assumption [4] mentioned in the previous subsection
is, roughly speaking, the following: If existence of a bit in a pirate’s codeword
cannot be detected by mutual comparison of all pirates’ codewords, then this
bit will be left unchanged in the pirated codeword (the codeword embedded
into the pirated content). See Sect. 2 for a precise description. The Marking
Assumption has been standard in the research on fingerprint codes, and sev-
eral fingerprint codes (including the above-mentioned ones [11]) have been pro-
posed under the Marking Assumption as we have mentioned in the previous
subsection.

However, it has also been pointed out that Marking Assumption somewhat
lacks practicality, as it is difficult to realize a fingerprint embedding scheme
that ensures Marking Assumption. Thus there have been proposed some relax-
ation of the Marking Assumption to consider more practical situations. Guth
and Pfitzmann [8] considered the situation that each bit of a pirate’s codeword
is changed independently with a certain probability, even if this bit is unde-
tectable in the above sense. The robustness of the fingerprint embedding scheme
required by the relaxed Marking Assumption is weaker than that required by
the original (strict) Marking Assumption, therefore the fingerprint codes become
more practical by basing on the relaxed Marking Assumption instead of the orig-
inal Marking Assumption. The aim of this article is to give a modification of the
above-mentioned short 2-secure codes [11], together with its security evaluation,
under a relaxed Marking Assumption that is closely related to the assumption
in [8].

A part of significance of studying 2-secure codes can be explained as follows.
First, in some situations where the users are less anonymous for the content
server (e.g., a case to prevent information leakage in development of a new
product, where the “content server” is a company and “users” are the devel-
opment staffs), it would be difficult to make a large malicious coalition confi-
dentially, hence the 2-secure property would make sense. On the other hand,
the code lengths can be significantly reduced by restricting the construction to
2-secure case than applying c-secure codes (valid for any c) to the special case
c = 2.

142 K. Nuida

1.3 Our Contributions and Organization of the Article

In Sect. 2, we give a formulation of the notion of fingerprint codes, definitions of
some notations and terminology, and formal descriptions of Marking Assump-
tion and its relaxed variant considered in this article, called Marking Assumption
with (δf , δe)-Error. The relaxed assumption states that, in addition to perform
any attack allowed under Marking Assumption, the pirates flip and erase each
bit of the codeword with probabilities δf and δe, respectively. We call a finger-
print code (δf , δe)-tolerant c-secure if it is secure under this assumption against
at most c pirates. Then in Sect. 3, we summarize the construction and some
properties of 2-secure codes in [11], in particular, a special subroutine of the
pirate tracing algorithm called Partner Search that is a main ingredient of the
2-secure codes.

In Sect. 4, we give the construction of the fingerprint codes of our proposal.
First, in Sect. 4.1 we introduce a variant of the above Partner Search, called
T -Tolerant Partner Search, where T is a parameter that will be related to the
quantities δf and δe. Its difference from the original Partner Search is motivated
by that we are now concerning Marking Assumption with (δf , δe)-Error instead
of the original Marking Assumption. The definition of our fingerprint codes is
given in Sect. 4.2 by modifying the definition of the original 2-secure codes [11].
Their difference (except some technical points) is that our codes use T -Tolerant
Partner Search instead of Partner Search used in the original codes.

In Sect. 5, we give a formula of error probabilities of our fingerprint codes
under Marking Assumption with (δf , δe)-Error, for each of the cases with one
pirate or two pirates, respectively (Sect. 5.1). We also give proofs of the formulae
in Sect. 5.2 and Sect. 5.3. Note that, in our security evaluation, α% bit flipping
and 2α% bit erasure by the pirates are equivalent with each other.

Finally, Sect. 6 deals with a choice of the parameter T and gives numerical
examples for our fingerprint codes. First, in Sect. 6.1, we discuss how to choose
an appropriate parameter T for given values of the code length m, the bound ε of
error probability, and the parameter δ = δf+δe/2 for our assumption. We propose
a “formula” of the parameter T from a viewpoint of a certain statistical property
of the pirates’ codewords and its approximation by Central Limit Theorem. By
using the parameter T , in Sect. 6.2 we derive the required code lengths of our
codes for some parameters N (the number of users), ε, and δ = δf + δe/2 by
computer calculation. For example, when N = 104, and δ = 0.01, 0.025 and 0.05
(i.e., each bit of the codeword is either flipped by pirates with probabilities 1%,
2.5% and 5%, or erased with probabilities 2%, 5% and 10%, respectively), the
bit lengths m = 162, 220 and 329 are sufficient to bound the error probability
by ε = 10−4, respectively. On the other hand, the code length for the original
2-secure code [11] is m = 88 for the same parameters N and ε under Marking
Assumption. Which of the two codes is more efficient depends on, for example,
whether or not embedding 329-bit fingerprint into a content with tolerance of
5% bit flipping or 10% bit erasure is more practical than embedding 88-bit
fingerprint without such tolerance. The author thinks that our result in this
article would in fact increase practicality of the fingerprint codes significantly.

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 143

1.4 Related Works

As we have mentioned in Sect. 1.2, several relaxation of Marking Assumption
have been already studied. First, Guth and Pfitzmann [8] proposed a modifi-
cation of c-secure codes by Boneh and Shaw [4] under the relaxed assumption
mentioned in Sect. 1.2. On the other hand, Nuida et al. [12] considered a sim-
ilar but different situation that at most a limited number of undetectable bits
in pirates’ codewords may be changed, where whether each bit is changed or
not may depend on the other bits. They also constructed c-secure codes under
their relaxed assumption. Moreover, recently Sirvent [17] considered another re-
laxation of Marking Assumption (that is very similar to the one by Nuida et
al.) in connection with traitor tracing schemes with short ciphertext. He also
proposed a modification of the c-secure codes by Boneh and Shaw under his
assumption (see also Boneh and Naor [3]). Note that the assumption by Guth
and Pfitzmann (relevant to our proposal) and the remaining two assumptions
may be closely related, but there seems not to exist a simple implication from
one to the other. Despite of those works, to the author’s best knowledge there
have not been fingerprint codes that focus on the case of two pirates under such
relaxed assumptions; when restricted to the case of two pirates, such preceding
fingerprint codes have much longer code lengths than our proposal in this article.

2 Fingerprint Codes

2.1 Basic Formulation

In this article, we define a fingerprint code as a pair (Gen, Tr) of a codeword
generation algorithm Gen and a tracing algorithm Tr. The algorithm Gen outputs
an N × m binary matrix W , with each row corresponding to a user for the
code, where N denotes the number of users and m denotes the code length.
(In general Gen may also output some auxiliary parameter for performing the
tracing algorithm later, but here we omit the issue since the fingerprint codes
considered in this article do not use such an auxiliary parameter.) Let wi denote
the codeword of i-th user ui, i.e., the i-th row of W . On the other hand, the
algorithm Tr takes the matrix W and a codeword y of length m as input, and
outputs a (possibly empty) set of users. This y signifies the pirated codeword;
and the codeword y is supposed to have an expanded alphabet {0, 1, ?} instead
of the binary alphabet {0, 1}, since we also deal with the case that some bit in
the pirated codeword is not only flipped but also made unreadable (erased). We
write such a bit as ‘?’, and call each ‘?’ in y an unreadable bit.

Now we consider the situation that � of the N users ui1 , . . . , ui�
are adversaries,

called pirates, who create a codeword y ∈ {0, 1, ?}m as above (called a pirated
codeword) from their codewords wi1 , . . . , wi�

by using an attack algorithm. Let
U and UP denote the sets of all users and of all pirates, respectively. Users in
U \UP are called innocent users. In this article, superscripts ‘P’ and ‘I’ (such as
uP and wI) indicate “pirate” and “innocent user”, respectively. We assume that
� ≤ c for a fixed constant c. The events Tr(W, y) ∩ UP = ∅ and Tr(W, y) �⊂ UP

144 K. Nuida

are called false-negative and false-positive, respectively, and their union is called
a tracing error (or an error in short). Assumptions on the choice of the pirates’
attack algorithm are described in the next subsection.

2.2 Assumptions on Attack Algorithms

We say that j-th position in the codewords (1 ≤ j ≤ m) is undetectable if the
j-th bits wi1,j , . . . , wi�,j of all pirates’ codewords coincide with each other. Then
the conventional Marking Assumption [4] is described as follows:

Marking Assumption: If j-th position is undetectable, then the j-th bit yj

of the pirated codeword y satisfies that yj = wi1,j.

A fingerprint code is called c-secure (with ε-error) [4] if the tracing error proba-
bility is not higher than a sufficiently small value ε under Marking Assumption
(and the implicit assumption � ≤ c). As we have mentioned in Sect. 1, most of
the preceding fingerprint codes are based on the Marking Assumption.

On the other hand, Guth and Pfitzmann [8] considered a relaxed variant of
the Marking Assumption. Following their idea, here we introduce the following
assumption, where δf ≥ 0 and δe ≥ 0 are parameters:

Marking Assumption with (δf , δe)-Error: If j-th position is undetectable,
then the j-th bit yj of the pirated codeword y satisfies Pr[yj = 1− wi1,j] = δf
and Pr[yj = ?] = δe. Moreover, the behavior of each undetectable bit in y is
independent of the remaining positions.

Note that the above assumption is not exactly the same as the one in [8]; here
we adopt the assumption to simplify the argument. Note also that the case δf =
δe = 0 coincides with the original Marking Assumption. We say that a fingerprint
code is (δf , δe)-tolerant c-secure (with ε-error) if the tracing error probability is
not higher than a sufficiently small value ε under Marking Assumption with
(δf , δe)-Error (whenever � ≤ c). As we have mentioned in Sect. 1, the aim of this
article is to modify 2-secure codes in [11] for making them (δf , δe)-tolerant. See
Sect. 1.4 for other relaxed variants of Marking Assumption.

3 The Original Codes

This section summarizes the construction of 2-secure codes proposed by Nuida et
al. in [11] that can be regarded as an improvement of Tardos’s c-secure codes [15]
(specialized to the case c = 2). Based on this, in later sections we will propose
a (δf , δe)-tolerant variant of the codes. In fact, they proposed two variants of
the 2-secure codes (called “basic codes” and “advanced codes” in [11]); here we
focus on the latter “advanced” one since that was the main proposal of [11].

3.1 The Codeword Generation Algorithm

The codeword generation algorithm Genorg of the original 2-secure code [11] out-
puts an N ×m binary matrix W uniformly at random. Thus each bit wi,j of each
user’s codeword wi is chosen from {0, 1} independently and uniformly at random.

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 145

3.2 The Tracing Algorithm

The following subroutine PS, called Partner Search, is a main ingredient of the
tracing algorithm Trorg of the original 2-secure code [11]:

Definition 1. Given a pirated codeword y and a user ID (say, of i-th user ui),
the subroutine PS(ui) returns YES if there is another (say, i′-th) user ui′ such
that their codewords wi and wi′ satisfy the following condition:

For each 1 ≤ j ≤ m, we have yj = wi,j if wi,j = wi′,j ; (1)

and returns NO if there does not exist such a user.

The key observation is that, under the Marking Assumption and the assumption
� ≤ c = 2, the condition (1) is a necessary condition for two users ui and ui′

being the two pirates. By using this subroutine, the tracing algorithm Trorg is
constructed as follows:

Definition 2. Given a pirated codeword y and the users’ codewords as input,
the tracing algorithm Trorg proceeds as follows:

1. Replace all the unreadable bits ‘?’ in y with ‘0’.
2. For each user ui, calculate the score Si = Sui of ui by

Si = |{j ∈ {1, 2, . . . , m} | yj = wi,j}| ,

i.e., Si = m− (Hamming distance of y and wi).
3. Sort all users in decreasing order of scores, as ui1 , ui2 , . . . , uiN . (If two or

more users have the same score, the order of them may be arbitrarily chosen.)
4. Set h ← 1.
5. If Partner Search PS(uih

) for the user uih
returns YES, then output the user

uih
and halt. If PS(uih

) returns NO, then set h ← h + 1 and repeat this step
unless h = N ; otherwise (i.e., if h = N), output the empty set and halt.

Table 1 shows code lengths of the 2-secure codes (Genorg, Trorg) (quoted from
[11]) for achieving given bounds of error probabilities under the Marking As-
sumption.

Table 1. Required code lengths of 2-secure codes in [11]

tracing error probability
number N of users 10−4 10−5 10−6 10−7 10−9 10−11

102 61 71 81 91 112 133
103 74 83 93 102 123 144
104 88 97 105 114 134 155
105 103 111 119 127 145 166
106 118 126 134 141 158 177

146 K. Nuida

4 Our Proposal

In this section, we present a modification of the 2-secure codes [11] summarized in
Sect. 3. By the modification, the 2-secure codes will be (δf , δe)-tolerant for given
parameters δf and δe (see Sect. 2.2 for the terminology). Analyses of security
properties of the modified codes will be given in later sections.

4.1 T -Tolerant Partner Search

To make the codes (δf , δe)-tolerant, we modify the Partner Search algorithm
(Definition 1) used in the original tracing algorithm Trorg in the following man-
ner, where T ≥ 0 is a parameter:

Definition 3. Given a pirated codeword y and a user ID (say, of i-th user ui),
the subroutine PST (ui) returns YES if there is another (say, i′-th) user ui′ such
that their codewords wi and wi′ satisfy the following condition:

|{j ∈ {1, 2, . . . , m} | yj �= wi,j = wi′,j}| ≤ T , (2)

and returns NO if there does not exist such a user.

We call this subroutine PST T -Tolerant Partner Search. A key observation for
the following construction is the following: Under Marking Assumption with
(δf , δe)-Error, if T is significantly larger than the average number of undetectable
positions in which the pirated codeword differs from codewords of pirates, then
the codewords of the two pirates will satisfy the condition (2) with high prob-
ability. Roughly speaking, the condition (2) is almost a necessary condition for
two users being the pirates if T is sufficiently large.

4.2 Construction of Our Codes

From now, we present our construction of (δf , δe)-tolerant 2-secure codes (Gen, Tr)
based on the T -tolerant Partner Search introduced in the previous subsection.
First, the codeword generation algorithmGen is the same as the original oneGenorg:
Each bit wi,j of each user’s codeword wi is chosen from {0, 1} independently and
uniformly at random. We note that under some assumptions, the “worst-case at-
tack” by two pirates is shown to be the uniform choice for each bit of a pirated
codeword from the two codewords [1,6], and it can be shown that the evenness of
occurrence probabilities of the bits 0 and 1 in codewords maximizes the mutual
information between the pirate’s codeword and the pirated codeword against this
attack, suggesting the advantage of our codeword generation algorithm.

Secondly, the tracing algorithm Tr is obtained from the original one Trorg
mainly by replacing the Partner Search with T -Tolerant Partner Search. Then
the whole description of the algorithm Tr is the following:

Definition 4. Given a parameter T , a pirated codeword y, and the users’ code-
words as input, the tracing algorithm Tr proceeds as follows:

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 147

1. Replace each unreadable bit ‘?’ in y with ‘0’ or ‘1’ independently and uni-
formly at random.

2. For each user ui, calculate the score Si = Sui of ui by

Si = |{j ∈ {1, 2, . . . , m} | yj = wi,j}| ,

i.e., Si = m− (Hamming distance of y and wi).
3. Sort all users in decreasing order of scores, as ui1 , ui2 , . . . , uiN . (If two or

more users have the same score, the order of them may be arbitrarily chosen.)
4. Set h ← 1.
5. If T -Tolerant Partner Search PST (uih

) for the user uih
returns YES, then

output the user uih
and halt. If PS(uih

) returns NO, then set h← h+ 1 and
repeat this step unless h = N ; otherwise (i.e., if h = N), output the empty
set and halt.

An appropriate choice of the parameter T will be discussed in Sect. 6. Note that
the scoring rule in the second step is essentially the same as Tardos’s scoring
rule [15] (specialized to the case that the occurrence probability of ‘1’ is 1/2)
up to affine transformation S ↔ 2S − m. Thus our tracing algorithm can be
thought of as an improvement of that of Tardos’s codes [15] implied by an idea
of “joint decoding” (e.g., [1,10]). In contrast to some preceding works [2,13] that
intend to almost perform an exhaustive decoding, which increases the running
time significantly, a novel idea of the present work and the original one [11] is
to reduce the running time of an exhaustive decoding by combining it with a
“Tardos-like” scoring technique.

Remark 1. In the fifth step of the above tracing algorithm Tr, in the T -Tolerant
Partner Search PST (uih

) for the user uih
, it suffices to check whether there is

another user uih′ with h′ > h such that their codewords wi = wih
and wi′ = wih′

satisfy the condition (2). Indeed, if there is another user uih′ such that the
condition (2) holds and h′ < h, then the T -Tolerant Partner Search PST (uih′)
that has been performed prior to PST (uih

) should have returned YES, hence
the tracing algorithm should have halted in that time. This fact is obvious but
worthy to reduce the running time of the tracing algorithm Tr.

Remark 2. In contrast to the case of the original tracing algorithm Trorg, in
the algorithm Tr each ‘?’ in y is replaced with either ‘0’ or ‘1’ with the same
probability by a technical reason. However, if no information on which of ‘0’
and ‘1’ is assigned to each undetectable position in the pirates’ codewords is
available by the pirates, then it can be seen that every ‘?’ in y may be safely
replaced with ‘0’, as it is done in the original algorithm Trorg. This is also useful
for simplifying the construction of the algorithm. (Note that another possible
modification about the treatment of the symbols ‘?’ is to ignore such symbols
instead of replacing them with ‘0’ or ‘1’. Evaluation of tracing performance based
on this modification will be a future research topic.)

148 K. Nuida

5 Error Probabilities of Our Codes

In this section, we evaluate theoretically the error probabilities of our fingerprint
codes proposed in Sect. 4 under the Marking Assumption with (δf , δe)-Error.
Some numerical examples based on the result of this section will be given in
Sect. 6. In what follows, we put δ = δf + δe/2 and assume that N ≥ 2 for
simplicity.

5.1 The Formulae

First, we summarize the result of this section as two formulae; proofs of them will
be given in the following subsections. Before giving the formulae, we introduce
some notations. For 0 ≤ x ≤ 1 and k > 0, put k ∗ x = 1− (1− x)k. For any real
number x, put [x]∧1 = min{x, 1}. For any integer a, put

χo(a) =

{
1 if a is odd,

0 if a is even,
χe(a) =

{
0 if a is odd,

1 if a is even.

Moreover, for any 0 ≤ x ≤ 1 and integers a, b, put Px(a, b) =
(
a
b

)
xb(1 − x)a−b.

By using these notations, the formulae are described as follows:

Theorem 1. Assume that there is precisely one pirate. Then, under the Mark-
ing Assumption with (δf , δe)-Error, the tracing error probability perr is bounded
by

perr ≤
T∑

a=0

Pδ(m, a) ((N − 1) ∗ f1(a))

+
m∑

a=T+1

Pδ(m, a)
[
(N − 1) ∗ f1(a) + (1− f2(a))N−1]

∧1 ,

(3)

where δ = δf + δe/2 and

f1(a) =
1

2m

a∑
b=0

(
m

b

)
, f2(a) =

1
2a

T∑
a0=0

(
a

a0

)
− 1

2m

T∑
a0=0

(
a

a0

) a−a0∑
b0=0

(
m− a

b0

)

(see above for the other notations).

Theorem 2. Assume that there are precisely two pirates. Then, under the Mark-
ing Assumption with (δf , δe)-Error, the tracing error probability perr is bounded by

perr ≤
1

2m

m∑
a0=0

(
m

a0

)(a0−T−1∑
b1=0

P1−δ(a0, b1) [max∗G1(a0, a1, b1)]∧1

+
a0∑

b1=a0−T

P1−δ(a0, b1) [max∗G2(a0, a1, b1)]∧1

)
,

(4)

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 149

where

G1(a0, a1, b1) = (N − 2− χe(N))
(

N − 2− χo(N)
2

∗ g0

)
+ (N − 2) ∗ g2(a1, b1) + (N − 2) ∗ g3(a0, a1, b1) + (1− g4(a1, b1))N−2 ,

G2(a0, a1, b1) = (N − 2− χe(N))
(

N − 2− χo(N)
2

∗ g1(a1, b1)
)

+ (N − 2) ∗ g2(a1, b1) + (N − 2) ∗ g3(a0, a1, b1) ,

g0 =
(

3
4

)m T∑
k=0

(
m

k

)
1
3k

,

g1(a1, b1) = g0

− 1
4m

b1+a1−1∑
s=m+1−T−b1−a1

(
m

s

) T∑
�=m+1−s−b1−a1

(
m− s

�

) b1+a1+s+�−m−1∑
k=0

(
s

k

)
,

g2(a1, b1) =
1

2m

T∑
�=0

(
m− b1 − a1

�

) b1+a1∑
k=2b1+2a1+�−m

(
b1 + a1

k

)
,

g3(a0, a1, b1) =
1

2m

T∑
�=0

(
a0 + a1 − b1

�

)m+b1−a0−a1∑
k=2b1+�−a0

(
m + b1 − a0 − a1

k

)
,

g4(a1, b1) =
1

2m−a1−b1

T∑
�=0

(
m− a1 − b1

�

)
,

and max∗ denotes the maximum over all integers a1 such that (m−a0)/2 ≤ a1 ≤
m− a0 (see above for the other notations).

5.2 Proof of Theorem 1

The outline of the proof of Theorem 1 is as follows. Let y denote the pirated
codeword after the replacing process in the first step of Tr; thus y ∈ {0, 1}m.
Let a be the number of positions in which y differs from the codeword wP of
the pirate uP (note that now there is just one pirate, thus every position is
undetectable). By the definition of the first step of Tr and Marking Assumption
with (δf , δe)-Error, in each position y differs from wP with probability δ (since a
‘?’ in j-th position is replaced with wP

j ∈ {0, 1} with probability 1/2), therefore
the probability that y differs from wP in a positions is Pδ(m, a).

In the case a ≤ T , T -Tolerant Partner Search PST (uP) for the pirate uP

always returns YES by the definition. Thus only the possibility of tracing error
is that some innocent user uI comes prior to uP by the sorting in the third step
of Tr and then PST (uI) returns YES. Hence tracing error occurs only if the score
SuI of some uI is not less than m−a (= SuP). We will prove the following lemma
later, which shows that the tracing error probability conditioned on this case is
not higher than (N − 1) ∗ f1(a):

150 K. Nuida

Lemma 1. In the above setting, the probability that SuI ≥ m − a for some uI,
conditioned on the choice of wP, is not higher than (N − 1) ∗ f1(a).

On the other hand, in the case T + 1 ≤ a ≤ m, only the possibility of tracing
error is either (I) some uI comes prior to uP by the sorting and then PST (uI)
returns YES; or (II) PST (uP) returns NO. A bound of the probability of (I) is
given by Lemma 1. On the other hand, the case (II) occurs only if there does
not exist a uI such that wP and wI satisfy the condition (2). Since the case
SuI ≥ m − a is already included in Lemma 1, it suffices to consider the case
(II’) there does not exist a uI such that wP and wI satisfy the condition (2) and
SuI < m − a. We will prove the following lemma later, which (together with
Lemma 1) shows that the tracing error probability conditioned on this case is
not higher than

[
(N − 1) ∗ f1(a) + (1− f2(a))N−1

]
∧1 (note that the probability

is not higher than 1):

Lemma 2. In the above setting, the probability of the case (II’), conditioned on
the choice of wP, is not higher than (1− f2(a))N−1.

Now Theorem 1 follows from the above argument. Finally, we give the proofs of
the above two lemmas.

Proof (Lemma 1). By the definition of the operation ∗, since each user’s code-
word is generated independently, it suffices to show that Pr[SuI ≥ m− a] =
f1(a) for each uI. This follows immediately from the definition of f1(a) (where
the index b signifies the number of positions in which wI differs from y), since
each bit of wI is chosen from {0, 1} independently and uniformly at random. ��
Proof (Lemma 2). It suffices to show that, for each uI, the probability that wP

and wI satisfy the condition (2) and SuI < m− a is f2(a). Let

a0 = |{1 ≤ j ≤ m | wP
j �= yj �= wI

j}| , b0 = |{1 ≤ j ≤ m | wP
j = yj �= wI

j}| .

Then wP and wI satisfy the condition (2) if and only if a0 ≤ T ; while SuI =
m−a0−b0, therefore SuI < m−a if and only if b0 > a−a0. Thus the probability
is

T∑
a0=0

1
2a

(
a

a0

) m−a∑
b0=a−a0+1

1
2m−a

(
m− a

b0

)

=
T∑

a0=0

1
2a

(
a

a0

)(
1−

a−a0∑
b0=0

1
2m−a

(
m− a

b0

))
= f2(a) .

Hence Lemma 2 holds. ��

5.3 Proof of Theorem 2

The outline of the proof of Theorem 2 is as follows. Let uP
1 and uP

2 denote the
two pirates. Let y be as in Sect. 5.2. Put [m] = {1, 2, . . . , m}, and define

Ay,y = {j ∈ [m] | wP
1,j = yj = wP

2,j} , Ay,× = {j ∈ [m] | wP
1,j = yj �= wP

2,j} ,

A×,y = {j ∈ [m] | wP
1,j �= yj = wP

2,j} , A×,× = {j ∈ [m] | wP
1,j �= yj �= wP

2,j} .

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 151

Then, since wP
1 and wP

2 coincide in a fixed position with probability 1/2, the prob-
ability that |Ay,y|+ |A×,×| = a0 (i.e., the number of undetectable positions is a0)
is
(

m
a0

)
/2m. On the other hand, by an argument similar to Sect. 5.2, the proba-

bility that |Ay,y| = b1 conditioned on |Ay,y|+ |A×,×| = a0 is P1−δ(a0, b1). Thus
it suffices to prove that, conditioned on the case that |Ay,y| + |A×,×| = a0 and
|Ay,y| = b1, the tracing error probability is not higher than max∗G1(a0, a1, b1)
if b1 < a0 − T and max∗G2(a0, a1, b1) if b1 ≥ a0 − T , respectively (note that
the probability is not higher than 1). In what follows, for any pair (ui, ui′) of
two users we write ui ∼ ui′ if and only if their codewords wi and wi′ satisfy the
condition (2).

First, we consider the case b1 < a0 − T . Suppose that |Ay,×| = a1. We may
assume without loss of generality that a1 ≥ (m− a0)/2 by symmetry on the two
pirates. It suffices to show that the tracing error probability conditioned on this
case is not higher than G1(a0, a1, b1). Note that SuP

1
= |Ay,y|+ |Ay,×| = b1 + a1

and SuP
2

= |Ay,y| + |A×,y| = b1 + m − a0 − a1, therefore SuP
1
≥ SuP

2
. Note also

that uP
1 �∼ uP

2 since |A×,×| = a0 − b1 > T . Now tracing error occurs only if one
of the following four conditions is satisfied:

(I) There are two innocent users uI
1 �= uI

2 such that uI
1 ∼ uI

2.
(II) There is a uI such that uI ∼ uP

1 and SuI ≥ b1 + a1.
(III) There is a uI such that uI ∼ uP

2 and SuI ≥ b1 + a1.
(IV) There does not exist a uI such that uI ∼ uP

1 .

Indeed, if all of the four conditions fail, then PST (uI) returns NO for any innocent
user uI coming prior to uP

1 by the sorting process (by the absence of (I)–(III)),
while PST (uP

1) returns YES (by the absence of (IV)); therefore this assertion
follows. Thus the claim for the case b1 < a0 − T is derived from the following
four lemmas, which will be proven later:

Lemma 3. In the above setting, the probability of the case (I), conditioned on
the choice of wP

1 and wP
2 , is not higher than

(N − 2− χe(N))
(

N − 2− χo(N)
2

∗ g0

)
.

Lemma 4. In the above setting, the probability of the case (II), conditioned on
the choice of wP

1 and wP
2 , is not higher than (N − 2) ∗ g2(a1, b1).

Lemma 5. In the above setting, the probability of the case (III), conditioned on
the choice of wP

1 and wP
2 , is not higher than (N − 2) ∗ g3(a0, a1, b1).

Lemma 6. In the above setting, the probability of the case (IV), conditioned on
the choice of wP

1 and wP
2 , is not higher than (1 − g4(a1, b1))N−2.

Secondly, we consider the case b1 ≥ a0 − T . Suppose that |Ay,×| = a1. We may
assume without loss of generality that a1 ≥ (m − a0)/2 by symmetry on the
two pirates. It suffices to show that the tracing error probability conditioned
on this case is not higher than G2(a0, a1, b1). Note that SuP

1
= b1 + a1 and

152 K. Nuida

SuP
2

= b1 + m − a0 − a1, therefore SuP
1
≥ SuP

2
. Note also that uP

1 ∼ uP
2 since

|A×,×| = a0−b1 ≤ T . Now tracing error occurs only if one of the three conditions
(II), (III) above and (I’) below is satisfied:

(I’) There are two innocent users uI
1 �= uI

2 such that uI
1 ∼ uI

2 and either SuI
1
≥

b1 + a1 or SuI
2
≥ b1 + a1.

Indeed, if all of the three conditions fail, then PST (uI) returns NO for any in-
nocent user uI coming prior to uP

1 by the sorting process (by the absence of the
three conditions), while PST (uP

1) returns YES (since uP
1 ∼ uP

2); therefore this
assertion follows. Thus the claim for the case b1 ≥ a0−T is derived from Lemma
4, Lemma 5 and the following lemma, which will be proven later:

Lemma 7. In the above setting, the probability of the case (I’), conditioned on
the choice of wP

1 and wP
2 , is not higher than

(N − 2− χe(N))
(

N − 2− χo(N)
2

∗ g1(a1, b1)
)

.

Hence Theorem 2 follows from the above argument. From now, we give the proofs
of the above lemmas. In the proof, we use the following auxiliary fact:

Lemma 8. Let x1, . . . , xk be i.i.d. random variables, and let P be a property
such that each unordered pair xixj (i �= j) satisfies P with common probability
p. Then Pr[at least one xixj satisfies P] ≤ (k − χe(k))(k−χo(k)

2 ∗ p).

Proof. First, the set of the
(
k
2

)
unordered pairs xixj (i �= j) has a partition into

k′ = k−χe(k) subsets X1, . . . , Xk′ of (k−χo(k))/2 mutually disjoint pairs. This
is an easy consequence of the well-known fact (see e.g., [18]) that the k-vertex
complete graph Kk has an edge k′-coloring. Now for each h, the events that xixj

satisfies P are independent for all xixj ∈ Xh, therefore at least one xixj ∈ Xh

satisfies P with probability k−χo(k)
2 ∗ p. This implies the desired bound. ��

This lemma is applied to prove Lemma 3 and Lemma 7, where the codewords
of innocent users play the role of i.i.d. random variables x1, . . . , xk (k = N − 2).
More precisely, by the lemma it suffices to show that, for each pair (uI

1, u
I
2) of

two innocent users, we have uI
1 ∼ uI

2 with probability g0, and we have uI
1 ∼ uI

2
and either SuI

1
≥ b1 + a1 or SuI

2
≥ b1 + a1 with probability g1(a1, b1) (note that

χe(N−2) = χe(N) and χo(N−2) = χo(N)). Since j-th bits of wI
1 and wI

2 satisfy
yj ∈ {wI

1,j , w
I
2,j} with probability 3/4, we have |{j ∈ [m] | wI

1,j �= yj �= wI
2,j}| = k

with probability P1/4(m, k) = (3/4)m
(
m
k

)
/3k for each 0 ≤ k ≤ T . Thus the

former assertion holds. For the latter assertion, it now suffices to show that we
have uI

1 ∼ uI
2, SuI

1
< b1 + a1 and SuI

2
< b1 + a1 with probability equal to the

second term of the definition of g1(a1, b1). Put

s = |{j ∈ [m] | wI
1,j = yj}| , k = |{j ∈ [m] | wI

1,j = yj = wI
2,j}| ,

� = |{j ∈ [m] | wI
1,j �= yj �= wI

2,j}| .

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 153

Then the probability of wI
1 and wI

2 realizing these quantities is
(
m
s

)(
m−s

�

)(
s
k

)
/4m.

On the other hand, the conditions uI
1 ∼ uI

2, SuI
1

< b1 + a1 and SuI
2

< b1 + a1 are
equivalent to 0 ≤ � ≤ T , 0 ≤ s < b1 + a1 and 0 ≤ k + m− s− � < b1 + a1. Now
by using the implicit conditions k ≥ 0 and s + � ≤ m, the above conditions for
s, � and k are equivalent to

max{0, m + 1− T − b1 − a1} ≤ s ≤ b1 + a1 − 1 ,

max{0, m + 1− s− b1 − a1} ≤ � ≤ T , 0 ≤ k ≤ b1 + a1 + s + �−m− 1 .

Since the sum of
(
m
s

)(
m−s

�

)(
s
k

)
/4m over the indices s, � and k in this range is

equal to the second term of g1(a1, b1), the latter assertion holds. Hence Lemma
3 and Lemma 7 have been proven.

To prove Lemma 4 and Lemma 6, let uI be a fixed innocent user, and put

� = |{j ∈ A×,y ∪A×,× | uI
j �= yj}| , k = |{j ∈ Ay,y ∪Ay,× | uI

j = yj}| .

Then we have uI ∼ uP
1 if and only if � ≤ T , while wI realizes the quantity � with

probability
(
m−a1−b1

�

)
/2m−a1−b1 . Thus uI ∼ uP

1 holds with probability g4(a1, b1),
therefore Lemma 6 is proven. Moreover, we have SuI = k + m − a1 − b1 − �,
therefore SuI ≥ b1 + a1 if and only if k ≥ 2b1 + 2a1 + �−m. Since wI realizes the
quantities � and k with probability

(
m−a1−b1

�

)(
b1+a1

k

)
/2m, it follows that uI ∼ uP

1
and SuI ≥ b1 + a1 hold with probability g2(a1, b1). Hence Lemma 4 is proven.

Finally, to prove Lemma 5, let uI be a fixed innocent user, and put

� = |{j ∈ Ay,× ∪A×,× | uI
j �= yj}| , k = |{j ∈ Ay,y ∪A×,y | uI

j = yj}| .

Then we have uI ∼ uP
2 if and only if � ≤ T , while wI realizes the quantities �

and k with probability
(
a0+a1−b1

�

)(
m+b1−a0−a1

k

)
/2m (note that |A×,×| = a0−b1).

Moreover, we have SuI = k + a0 + a1 − b1 − �, therefore SuI ≥ b1 + a1 if and
only if k ≥ 2b1 + �− a0. Thus uI ∼ uP

2 and SuI ≥ b1 + a1 hold with probability
g3(a0, a1, b1), therefore Lemma 5 is proven.

Hence the proof of Theorem 2 is concluded.

6 Numerical Examples

6.1 On Choices of Parameter T

In this subsection, we discuss appropriate choices of the parameter T for the
tracing algorithm Tr of our (δf , δe)-tolerant 2-secure codes. Note that the fol-
lowing argument is somewhat informal, however it still gives us a “yardstick”
of how to decide the parameter T . In what follows, we focus on the case of two
pirates.

First, recall from the argument in Sect. 5.3 that for each of m positions in
the codewords, the probability that it is undetectable and the pirated codeword
y (after the replacing process in the first step of Tr) differs from the pirates’
codewords in this position is δ = δf + δe/2. Let a denote the number of such

154 K. Nuida

positions. A natural requirement for the parameter T is that Pr[a > T] does not
exceed the parameter ε for the bound of error probability (hence T is not too
small); if a > T , then the codewords of two pirates do not satisfy the condi-
tion (2), therefore it is not expected that Tr outputs a pirate correctly (except
some accidental case that codewords of a pirate and an innocent user satisfy the
condition (2)). On the other hand, it is also desirable that the parameter T is
not too large; if T becomes too large, then the probability of codewords of two
innocent users satisfying the condition (2) accidentally is also getting too high,
which causes that false-positive probability increases as well.

Now we consider approximation of the distribution of a by the normal dis-
tribution. Since a follows the binomial distribution B(m, δ), the Central Limit
Theorem implies that the distribution of a is approximately the normal distri-
bution N(μ, σ2) (under a certain condition) with mean μ and variance σ2 given
by

μ = mδ , σ2 = mδ(1− δ) .

Under the approximation, we have

Pr[a > T] ≈ Pr
[
N(μ, σ2) > T

]
= Pr[N(0, 1) > T ′] where T ′ =

T − μ

σ
.

Note that T = σT ′+μ =
√

mδ(1− δ)T ′+mδ. By this observation, we determine
the value of T in the following manner: First calculate the value x such that
Pr[N(0, 1) > x] = ε0 where ε0 is a certain value with 0 ≤ ε0 < ε (by using the
relation Pr[N(0, 1) > x] = erfc(x/

√
2)/2 where erfc(x) is the complementary

error function) and then put

T =
⌈√

mδ(1− δ)x + mδ
⌉

. (5)

We use this rule of determining T in the following examples.

6.2 Code Lengths of Our Codes

Table 2 shows sufficient code lengths m of our (δf , δe)-tolerant 2-secure codes for
some parameters N , ε and δ = δf + δe/2, where the parameter T is determined
by the rule (5) with Pr[N(0, 1) > x] = ε0 = ε/2. In the calculation of code
lengths here, we mainly concern the tracing error probabilities in the case of two
pirates (see Theorem 2); it is checked that the error probabilities in the case
of one pirate (see Theorem 1) are much lower than ε for the parameters in the
table. Table 2 also includes the corresponding values of the parameter T . Due to
the intricate shapes of the formulae of error probabilities, it is difficult to obtain
a simple approximated formula of the code lengths of our codes in terms of the
other parameters, which will be a future research topic.

Table 3 shows a comparison of code lengths for our (δf , δe)-tolerant codes and
the original codes [11] for the same error probability ε = 10−4 (cf. Table 1).
Although the code lengths of our codes themselves are longer than those of the
original codes [11], which of the two codes is more efficient actually depends on,

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 155

Table 2. Code lengths of the (δf , δe)-tolerant 2-secure codes (where δ = δf + δe/2)

δ = 0.005 δ = 0.01 δ = 0.025 δ = 0.05
tracing error probability ε

N 10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

102 m 66 84 101 81 99 116 102 133 157 152 195 237
T 2 3 4 4 5 6 7 10 12 15 20 25

103 m 92 102 119 100 118 135 130 161 192 195 238 286
T 3 3 4 4 5 6 8 11 14 18 23 29

104 m 110 127 145 127 144 162 164 189 220 237 286 329
T 3 4 5 5 6 7 10 12 15 21 27 32

105 m 127 145 163 145 163 180 192 224 248 279 329 378
T 3 4 5 5 6 7 11 14 16 24 30 36

106 m 145 163 181 163 189 207 219 251 283 321 371 414
T 3 4 5 5 7 8 12 15 18 27 33 38

Table 3. Comparison of code lengths for ε = 10−4 (where δ = δf + δe/2)

N original [11] δ = 0.005 δ = 0.01 δ = 0.025 δ = 0.05
102 61 101 116 157 237
103 74 119 135 192 286
104 88 145 162 220 329
105 103 163 180 248 378
106 118 181 207 283 414

for example, whether or not embedding 329-bit fingerprint into a content with
tolerance of 5% bit flipping or 10% bit erasure is more practical than embedding
88-bit fingerprint without such tolerance. The author’s naive opinion is that the
former embedding with such tolerance would be much more practical than the
latter embedding without such tolerance, hence our result in this article would
in fact increase practicality of the fingerprint codes significantly. Theoretical
or experimental consideration of such a comparison between the practicality of
fingerprint embedding schemes with and without error tolerance, respectively,
would be an interesting future research topic.

Finally, we give one more remark on the choice of the parameter T . Since this
parameter T is determined by using estimated values of the error rates δf and
δe, a problem in use of our codes is in fact how to estimate the values of δf and
δe in practical situations. A naive idea to resolve the problem is to append some
common dummy bits to every user’s codewords (that will always be undetectable
bits). If the positions of dummy bits among the entire codeword can be hidden
from the pirates (by, for instance, using secret random permutations), it would
be possible to use the error rates restricted to the dummy bits (that can be
explicitly determined) as a hint on what the actual error rates for non-dummy
bits of the pirated codeword are. A rigorous evaluation of such an idea will be
an interesting future research topic as well.

156 K. Nuida

7 Conclusion

In this article, we studied 2-secure fingerprint codes in the situation that each
bit is flipped or erased by the pirates with a certain probability in addition to
other attacks, which is a more practical situation than that considered by the
conventional Marking Assumption. We proposed a construction of such an error-
tolerant 2-secure code based on the preceding scheme in [11], and evaluated its
code length and security property. By comparing the code length of our code with
the original scheme [11] that is not error-tolerant, the author conjectured that our
code is more practical than the original scheme in a viewpoint of implementation.
A theoretical or experimental evaluation of this conjecture will be a topic in
future research.

Acknowledgments

The author would like to thank Professor Keiichi Iwamura, Dr. Hyunho Kang,
Dr. Takashi Kitagawa, Dr. Manabu Hagiwara, Dr. Hajime Watanabe, and Pro-
fessor Hideki Imai, for their invaluable comments. Also, the author would like
to thank the anonymous referees for their acute comments and suggestions.

References

1. Amiri, E., Tardos, G.: High Rate Fingerprinting Codes and the Fingerprinting
Capacity. In: Proc. SODA 2009, pp. 336–345. ACM, New York (2009)

2. Blakley, G.R., Kabatiansky, G.: Random Coding Technique for Digital Fingerprint-
ing Codes. In: Proc. IEEE ISIT 2004, p. 202. IEEE, Los Alamitos (2004)

3. Boneh, D., Naor, M.: Traitor Tracing with Constant Size Ciphertext. In: Proc.
ACM CCS 2008, pp. 501–510. ACM, New York (2008)

4. Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. IEEE Trans.
Inform. Th. 44, 1897–1905 (1998)

5. Cotrina-Navau, J., Fernandez, M., Soriano, B.M.: A Family of Collusion 2-Secure
Codes. In: Barni, M., Herrera-Joancomart́ı, J., Katzenbeisser, S., Pérez-González,
F. (eds.) IH 2005. LNCS, vol. 3727, pp. 387–397. Springer, Heidelberg (2005)

6. Furon, T., Pérez-Freire, L.: Worst Case Attacks against Binary Probabilistic
Traitor Tracing Codes. Preprint, arXiv:0903.3480v1 (2009)

7. Fernandez, M., Soriano, M.: Fingerprinting Concatenated Codes with Efficient
Identification. In: Chan, A.H., Gligor, V. (Eds.), ISC 2002. LNCS, vol. 2433, pp.
459–470. Springer (2002)

8. Guth, H.-J., Pfitzmann, B.: Error- and Collusion-Secure Fingerprinting for Digital
Data. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 134–145. Springer,
Heidelberg (2000)

9. Hagiwara, M., Hanaoka, G., Imai, H.: A short random fingerprinting code against
a small number of pirates. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.)
AAECC 2006. LNCS, vol. 3857, pp. 193–202. Springer, Heidelberg (2006)

10. Moulin, P.: Universal Fingerprinting: Capacity and Random-Coding Exponents.
Preprint, arXiv:0801.3837v2 (2008)

An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code 157

11. Nuida, K., Fujitsu, S., Hagiwara, M., Imai, H., Kitagawa, T., Ogawa, K., Watanabe,
H.: An Efficient 2-Secure and Short Random Fingerprint Code and Its Security
Evaluation. IEICE Trans. Fundamentals E92-A(1), 197–206 (2009)

12. Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K.,
Imai, H.: An Improvement of Discrete Tardos Fingerprinting Codes. Des. Codes
Cryptogr. 52, 339–362 (2009)

13. Nuida, K., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Fujitsu, S., Imai,
H.: A Tracing Algorithm for Short 2-Secure Probabilistic Fingerprinting Codes
Strongly Protecting Innocent Users. In: Proc. IEEE CCNC 2007, pp. 1068–1072.
IEEE, Los Alamitos (2007)

14. Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimization of Tardos’s Fin-
gerprinting Codes in a Viewpoint of Memory Amount. In: Furon, T., Cayre, F.,
Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 279–293. Springer, Heidel-
berg (2008)

15. Tardos, G.: Optimal Probabilistic Fingerprint Codes. J. ACM 55(2), 1–24 (2008)
16. Tô, V.D., Safavi-Naini, R., Wang, Y.: A 2-secure code with efficient tracing algo-

rithm. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp.
149–162. Springer, Heidelberg (2002)

17. Sirvent, T.: Traitor Tracing Scheme with Constant Ciphertext Rate against Pow-
erful Pirates. In: Proc. WCC 2007, pp. 379–388. INRIA (2007)

18. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood
Cliffs (2001)

Efficient Intrusion Detection Based on Static
Analysis and Stack Walks

Jingyu Hua1, Mingchu Li1, Kouichi Sakurai2, and Yizhi Ren1,2

1 School of Software, Dalian University of Technology,
Dalian 116620, China

huajingyu@gmail.com, li mingchu@yahoo.com
2 Dept.of Computer Science and Communication Engineering, kyushu University,

Fukuoka 812-0053, Japan
sakurai@csce.kyushu-u.ac.jp, renyizhi@gmail.com

Abstract. Some intrusion detection models such as the VPStatic first
construct a behavior model for a program via static analysis, and then
perform intrusion detection by monitoring whether its execution is con-
sistent with this behavior model. These models usually share the highly
desirable feature that they do not produce false alarms but they face the
conflict between precision and efficiency. The high precision of the VP-
Static is at the cost of high space complexity. In this paper, we propose a
new context-sensitive intrusion detection model based on static analysis
and stack walks, which is similar to VPStatic but much more efficient, es-
pecially in memory use. We replace the automaton in the VPStatic with
a state transition table (STT) and all redundant states and transitions
in VPStatic are eliminated. We prove that our STT model is a determin-
istic pushdown automaton (DPDA) and the precision is the same as the
VPStatic. Experiments also demonstrate that our STT model reduces
both time and memory costs comparing with the VPStatic, in particu-
lar, memory overheads are less than half of the VPStatic’s. Thereby, we
alleviate the conflict between precision and efficiency.

1 Introduction

When a program is attacked, such as injected malicious codes, it will behave
in a manner inconsistent with its binary code, which can be made use of to
perform intrusion detection. We can do a static analysis of the binary code to
construct a behavior model, and then different kinds of attacks can be detected
by monitoring whether the execution of this program deviates from this model.
Actually, a lot of IDSs [2, 3, 4, 6, 9, 10, 11, 12] based on this idea has been
proposed since 2000. Because of system calls are easy to be monitored at runtime,
most of these systems use system calls to model the program behavior. These
models usually do not produce any false alarms because they capture all correct
execution behaviors via static analysis. This is the biggest reason why they are
appreciated.

According to [3], the precision of intrusion detection models generated via
static analysis can be divided into at least two levels. Models on the first level

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 158–173, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 159

are flow-sensitive and they just consider the order of execution of statements in
the program, such as the system call sequences. Models on the second level are
context-sensitive, which are more precise. They keep track of calling context of
functions and are able to match the return of a function with the call site that
invoked it. As a result, they are immune to the impossible path problem [4].
However, in most time, accurate is incompatible with efficient. Context-sensitive
models are more accurate at the cost of higher program running time and space
caused by the overheads of maintaining context information. Our purpose in
this paper is right to decrease these overheads to construct an efficient context-
sensitive intrusion detection model via static analysis.

1.1 Previous Work

In 2001, Wanger and Dean [4] proposed a precise abstract stack model generated
via static analysis of C source code. This model uses stack states maintained in
the abstract stack to model the call and return behaviors of function calls. Hence,
this model is context-sensitive. Unfortunately, this model is a non-deterministic
push down automaton (PDA). As a result, the time and space complexities are
so high that it’s not practical.

Feng and Giffin [2] pointed out severe non-determinism in the stack state is
the major contributing factor to the high time and space complexities of PDA
operations. They proposed two different models: Dyck and VPStatic to eliminate
this non-determinism to improve the online detection efficiency.

The Dyck model [2, 12] is based on code instrumentation. It uses binary
rewriting to insert code before and after each function call site to generate extra
symbols needed for stack determinism. However, because the Dyck model is just a
stack-deterministic PDA (sDPDA), not a complete deterministic PDA (DPDA),
it still requires linear time when waking in the automaton. What’s worse, its time
efficiency is also affected by the overheads of new inserted codes. As a result,
the time complexity for the Dyck model is still too high that slowdowns of 56%
and 135% are reported for two linux self-contained programs: cat and htzipd.

The VPStatic [2] is a statically constructed variant of the dynamic context-
sensitive VtPath model [7]. It also uses a statically constructed automaton to
model the call and return behavior of function calls between two consecutive
system calls, but stack walks are used to observe existing context-determining
symbols to eliminate non-determinability. It is a provably DPDA and dose not
do any instrumentation. Thereby, the time efficiency is much higher than the
Dyck model. However, the VPStatic produces much lager automaton structures
than the Dyck model which leads to a higher memory use. Increases of 183%
and 194% are reported for htzipd and cat in memory uses.

1.2 Our Contribution

Our work is focused on constructing a model similar to VPStatic that is a DPDA
and efficient in time but with a much lower memory use. Specifically, we make
the following contributions:

160 J. Hua et al.

– We propose a new context-sensitive intrusion detection model called STT
based on static analysis and stack walks. We replace the automaton in
the VPStatic with a state transition table, which records correct transi-
tions among system call sites and corresponding execution contexts directly.
The walk in the automaton is becoming a search in the table, which is
more efficient. We use a delta optimization to solve the state explosion
problem due to the use of the STT. There’re no redundant states and
transitions in our STT model. According to our analysis, the number of
states in the STT is much less than half of that in the VPStatic for
the same program. As a result, the memory overheads are greatly
reduced.

– We formally define the STT model and prove it’s a deterministic push down
automaton (DPDA), which means its time efficiency is at least as high as
the VPStatic.

– We prove our STT model has the same precision with the VPStatic. It ac-
cepts all VPStatic accepts and refuses all VPStatic refuses. So we improve
the efficiency without reducing the precision.

– We implement dynamically-constructed VPStatic models and STT models
for programs gzip and cat. Experiments results show the memory overheads
of the STT models are less than half of the VPStatic models’.

1 char∗ f i l ename ; p i d t [2] pid ;
2 int prepare (int index) {
3 char buf [2 0] ;
4 pid [index] = getp id () ;
5 s t r cpy (buf , f i l ename) ;
6 return open (buf ,ORDWR) ;
7 }
8 void act i on () {
9 u i d t uid = getu id () ;

10 int handle ;
11 i f (uid != 0)
12 {
13 handle = prepare (1) ;
14 read (handle , . . .) ;
15 }
16 else
17 {
18 handle =prepare (0) ;
19 wr i te (handle , . . .) ;
20 }
21 c l o s e (handle) ;
22 }

Fig. 1. A sample program fragment. This fragment is composed by two functions:
prepare and action. Functions getpid, open, getuid, read, write and close are system
calls.

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 161

2 STT Model

Our model is a statically-constructed context-sensitive intrusion detection model.
We will first use the sample program in Fig.1 to illustrate its basic idea.

2.1 Basic Idea

See Fig.1, assume we capture two consecutive system calls: getuid and getpid in
an execution of the program and corresponding user stacks are presented in Fig.2.
We can perform intrusion detection by checking whether such transitions for
both system calls and stack states are possible according to the program’s binary
code. As we known, the stack state represents the real-time calling context of
functions. According to the source code, the system call getpid is right following
the system call getuid. Between them, only a function prepare is called (in line
13 or 18), so a new stack frame for prepare will be pushed into the call stack,
which means the transition of the stack state is correct, too. Therefore, we say
this program is still running normally by now. Our model is just based on this
idea. We use a state transition table which is constructed via a static analysis
of the binary of a program to record all these correct transitions. We perform
online intrusion detection by verifying whether both the system call and stack
state traces of the execution are consistent with the table. Because we make use
of a state transition table, we name our model STT.

Fig. 2. Abstract stack states when getuid is called (left) and getpid is called (right)

2.2 Structure of the State Transition Table

In our model, we assume that when a system call is invoked, the monitored
program will transfer to a new state. The STT is used to decide what new state
the program should transfer to after a system call is invoked according to the
binary.

Table 1 presents the STT for the sample program in Fig.1. The left header
of the table are states of the program. We assign each an increasing unique id.
Every state is corresponding to a system call site and composed by two parts:
the address of the system call site and the stack state when the program executes
to this site. In order to reduce the memory use of the STT, we use a fixed-length
hash value of the return address list in the stack to represent the stack state. In
this paper, we assume the hash function we use is so perfect that the probability
of conflicts of hash values can be ignored. The first state < h(a), s getuid >
means the program invokes a system call getuid at address s getuid and the

162 J. Hua et al.

Table 1. State transition table for the sample program in Fig.1. a, p1 and p0 are return
addresses of action, prepare(1) and prepare(0),respectively. String with the prefix s
represents the address of the corresponding system call.

getuid getpid open read close write

1:< h(a), s getuid > 2,3
2:< h(ap1), s getpid > 4
3:< h(ap0), s getpid > 5
4:< h(ap1), s open > 6
5:< h(ap0), s open > 8
6:< h(a), s read > 7
7:< h(a), s close >
8:< h(a), s write > 7

stack state is h(a) at this site, where h is the hash function. The top header of
the table are system calls that trigger the program transferring from the current
state to a new one. Assume we are at state 1, and then if the system call getpid
is captured, according to the STT, the program should transfer to state 2 or
state 3.

Because we take stack state into consideration, we define different states for
the same system call site when it is executed in different contexts. For example,
in the sample program, the system call open can be invoked either in prepare(0)
or prepare(1). As a result, we define two sates: 4 and 5, for this single system
call site. We do this to make sure our model is context sensitive and immune to
the impossible path problem [4].

2.3 Online Intrusion Detection

If the STT for a program has been statically constructed, we can use it to monitor
the execution of the program. Intrusion detection is performed every time when
a new system call is captured. The whole process contains three steps:

1. Use the new captured system call s and the last state to search for the
expected state set Qe in the STT.

2. Walk the current user stack to extract the return address list B and then
compute the real state q =< h(B), s s > the program is at.

3. Then, if q ∈ Qe, nothing is wrong, but if q /∈ Qe, an attack is considered
having occurred.

Let’s use an overflow attack targeting to the sample program in Fig.1 to illus-
trate this process. Assume when the program is executing in the function call
prepare(1), an attacker overflows buf using strcpy (Line 5) and modifies the
return address of this call to the address of prepare(0), then the system call
sequence will become getpid− > open− > getpid− > open− > write− > · · ·.

The detection process for this attack is presented in Table 2. When the system
call open is captured at the first time, the real state is < h(ap0), s open >.

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 163

Table 2. Online Detection Process for the overflow attack to the sample program in
Fig.1

Captured
System Call

Last State Expected States Real State Detect Result

getpid 1 2,3 < h(ap1), s getpid >= 2 normal
open 2 4 < h(ap0), s open > �= 4 attack

However, the current state is expected to be < h(ap1), s open > according to
the STT. Thereby, we detect the attack.

2.4 Delta Optimization

Fig. 3. A special situation where a system call s is invoked by the first function f1

at some site, f1 itself is invoked at a1 different sites by the second function f2, f2 is
invoked at a2different sites by the third function and so on

2.4.1 State Explosion Problem
By now, our STT model suffers the state explosion problem. Because our model
is context sensitive, we define different states for the same system call site in
different execution contexts. Let’s consider the special case presented in Fig.3.
In this case, the system call s can be invoked in a1 × a2 × · · · × an−1 different
contexts, as a result, the total number of states defined for it is a1×a2×· · ·×an−1.
This is so called state explosion, which means our current model will scale poorly
for large programs because of the soaring number of states. Fortunately, we can
use a method named delta optimization by us to solve this problem.

2.4.2 Delta Optimization
We find that for two consecutive states, they must share a common prefix between
their return address lists in the stack. For example, state 1 and state 2 in Table
1 are consecutive and their return address lists share a as the common prefix.
According to this, we redefine the state:

Definition 1. Let C be the common prefix between the current return address
list B and the last return address list A. Then, the state for the current system
call site in the delta optimized STT is a triple S =< l, d, s >, where:

l is the length of the postfix 1 of B excluding C.
d is the hash value of the postfix of B excluding C.
s is the address of the current system call site.

This definition will reduce the number of states in the STT greatly. Let’s consider
the system call open in the sample program in Fig.1 again. Table 3 presents the
1 This postfix is the delta part (different part) of B compared with A. So we call this

optimization method Delta Optimization.

164 J. Hua et al.

Table 3. State definitions for the system call open of the sample program in Fig.1 in
two different execution contexts

Context Last System
Call Site

Last Return
Address List

Current Return
Address List

State Definition

prepare(1) s getpid ap1 ap1 < 0, none, s open >
prepare(0) s getpid ap0 ap0 < 0, none, s open >

Table 4. New state transition table for the sample program in Fig.1 after the delta
optimization

getuid getpid open read close write

1:< 1, h(a), s getuid > 1,2
2:< 1, h(p1), s getpid > 4
3:< 1, h(p0), s getpid > 4
4:< 0, none, s open > 5 − (2, p1) 7 − (2, p0)
5:< 0, none, s read > 6
6:< 0, none, s close >
7:< 0, none, s write > 6

state definition for this single site in two different execution contexts. We find
that l, d, s remain the same in the two different contexts. As a result, state 2
and state 3 in Table 1 are merged into one state < 0, none, s open >. In fact,
if a function is called in n different sites, after the delta optimization, we only
define one state for each system call in the function except the first one 2, for
which we still define n states. Thereby, now the total number of states defined
for s in the case presented in Fig.3 is less than a1 + a2 + · · · + an−1 , which is
linear to the number of function calls. So, our new STT model can scale well for
large programs.

Although we redefine the state, the online intrusion detection algorithm de-
scribed in Sec.2.3 remains the same on the whole and the only difference is the
way to compute the real state q. Before the delta optimization, q is computed
based on the current return address list B got from the stack walks. However,
now, we have to compute q based on not only B but also last state’s return ad-
dress list A. As a result, we need to keep track of the last state’s return address
list during the online monitoring.

Table 4 presents the new STT for the sample program in Fig.1 after the delta
optimization. We will describe how to construct it via static analysis in Sec.2.5.

2.4.3 Side Effect of Delta Optimization
Unfortunately, the delta optimization has side effect that it will bring us impos-
sible path problem again. See Table 4, after the optimization, state 4 can either
2 Note that the first system call of a function refers to the first system call the program

will invoke after entering the function, before leaving the function.

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 165

transfer to state 5 or state 7 with out any limit. Actually, state 4 can transfer
to state 5 only when open is called in prepare(1) and to state 7 only when open
is called in prepare(0). We find states suffering this problem are all last system
calls 3 of functions. The reason behind this problem is we neglect the execution
context of the function. When a function is called at different sites, we only de-
fine one state for its last system call (Assume the function will invoke more than
one system call) after the delta optimization. Then, if the program transfers to
different states when the same function returns from different sites, we have no
ways to distinguish among them just based on the triple of the state. However,
we should remember that the return address of the function exits in the return
address list. We can turn to it to identify which call site we are returning from
and then decide which state we should transfer to. So we add a transfer condition
to each transition of these states. A condition specifies the position of the return
address of the function in the return address list and what value it should be
equal to if the program follows the corresponding transition. In Table 4, we add
condition (2, p1) to the transition from state 4 to state 5, which means if this
transition takes place, the second address in the return address list of state 4
should be equal to p1. By this way, we can solve the impossible problem due to
delta optimization completely.

2.5 Model Generation via Static Analysis

Before we can monitor the running of a program, we have to build a STT for
it. The STT model for a program is built via a static analysis of its binary exe-
cutable. We first disassemble the binary, and then we analyze the disassembled
instructions recursively following the control flow of the program. We maintain
a virtual stack to simulate the real stack: when the analyzer enters into a func-
tion, its return address is pushed into the virtual stack and when it leaves the
function, the return address is popped out of the stack. In our algorithm, we
don’t care any other types of instructions except the following three ones:

System Call Instructions: When the analyzer comes to a system call instruc-
tion, we use the instruction address, current return address list in the virtual
stack and the last state’s return address list to create a new state according to
Definition 1. If this state has been already in the STT, which means the current
analysis path has been covered before, we stop going on analyzing along this
path and return. Otherwise, we insert the new state into the STT and update
the last state of the analyzer to be this new state. Then, we continue the analysis
along this path. In addition, in both cases we need to add a new transition from
the last state to the current state in the STT.

Jump Instructions: When the analyzer comes to a jump instruction, we first
recursively invoke the analysis algorithm from the target address. Then, after
that process returns, we continue at the address following the jump instruction.
3 Note that the last system call of a function refers to the last system call the program

will invoke after entering the function, before leaving the function.

166 J. Hua et al.

Function Call Instructions: As we said before, except the first one, we only
define one state for each system call site in the same function after the delta
optimization. As a result, no need to analyze the same function repeatedly.
When the analyzer comes to a function call, we first judge whether this function
has been analyzed before. If not, we enter it and recursively invoke the analysis
algorithm from the beginning of the function. When we create the first state of
this function, we store the address s of the system call and the postfix R of its
return address list, which starts after the return address of the function. After
finishing the analysis, we store the last state of the function and the postfix
R′ of its return address list, which also starts after the return address of the
function. Then, when we revisit this function at other site t, no need to re-
analyze this function but just do two things. Firstly, we create a new state
< length(R) + 1, h(tR), s >, where length(R) means the length of R, and then
add a new transition from the last state before we come to the function to this
new state in the STT. Secondly, we update the last state of the analyzer to be
the last state of the function stored earlier and its return address list should
be modified to V tR′, where V is the address list in the virtual stack. Then, we
go on analyzing at the address after the function call. When we come to a new
state and add a new transition to the last state of the function, we have to add
a transfer condition (length(V) + 1, t) to this transition to avoid the side effect
described in Sec.2.4.3.

3 Formal Proof That the STT Model Is a DPDA

Our STT model can be considered as a push down automaton (PDA). We use
the formal language described in [2, 14] to define it formally and prove that it’s
deterministic.

Definition 2. The STT model is a push down automaton P = (Q, Σ, Γ, δ, q0, z0,
F), where:

Q is the set of states. Every state is a triple defined as Definition 1.
Σ is the input alphabet to the automaton. If a ∈ Σ, then a = (s, z′), where: s

is the address of the current system call site and z′is the real return address list
got from stack walks.

Γ is the stack alphabet. z ∈ Γ is the last state’s return address list.
δ is the transition relation mapping Q×Σ× Γ to Q×Γ . Let z′ = b1b2 · · · bn,

z = a1a2 · · · am and l be the length of the common prefix of z′ and z. Then, the
real state the program located at is q′ =< n− l, hash(blbl+1 · · · bn), s >. On the
other hand, we can search the STT and find the expected state set Qe. Then,

δ(q, a, z) =
{

none q′ /∈ Qe

(q′, z′) q′ ∈ Qe
(1)

q0 ∈ Q is the unique initial state and z0 ∈ Γ is the initial stack state. F ⊆ Q is
the set of accepting states.

Theorem 1. The STT Model is a deterministic PDA (DPDA).

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 167

Proof. A PDA is called deterministic if the transition relation δ satisfies the
following two conditions [2, 14]:

Condition 1: For all q ∈ Q and z ∈ Γ , whenever δ(q, ε, z) is nonempty, then
δ(q, a, z) is empty for all a ∈ Σ.

Condition 2: For all q ∈ Q, a ∈ Σ ∪ {ε} and z ∈ Γ , δ(q, a, z) contains at most
one element.

First, ε-transition doesn’t exist in our model. So Condition 1 is satisfied.
Second, according to (1), δ(q, a, z) contains none element or one element, so

Condition 2 is also satisfied.
Therefore, we obtain the conclusion that the STT Model is a DPDA.

According to [2], the time complexity for processing an input symbol with a non
deterministic PDA is O(nm2), where n and m denote the number of states and
transitions, respectively. However, if the PDA is deterministic, the time com-
plexity will be reduced to O(1). So our STT model is efficient in PDA operation.

4 Comparison between STT and VPStatic

Both the STT and the VPStatic perform intrusion detection by monitoring
the system call events of the program. The VPStatic uses a virtual path in a
statically-constructed automaton to record the call and return behaviors of func-
tion calls between two consecutive system calls. In our STT model, we replace
this automaton with a state transition table, which records context-sensitive
transitions between two consecutive system calls directly. We do a comparison
between the two models in precision, time complexity and space complexity.

4.1 Precision

STT performs intrusion detection each time a system call is made. Assume sB

is the new captured system call and bn+1 is its address. The return address list
got from stack walks is b1b2 · · · bn. Also assume sA, am+1 are the last system call
and its address, respectively. Its return address list is a1a2 · · · bm. Suppose l is
the length of the common prefix of A and B. We assume everything is ok when
the program is at am+1.

Then, for the STT, if the following two conditions are both satisfied, it will
accept the new system call sB and consider the program is running normally:

Condition 1: SB =< n− l, h(blbl+1 · · · bn) > is in the STT.
Condition 2: Let SA be the state corresponding to the last system call. Then,

SA has a transition to SB in the STT and if this transition contains a condition-
the return address list A has to satisfy it.

For the VPStatic, it will generate a sequence of input symbols using A and B,
and then feed them to its automaton one by one. If every symbol in the sequence
is accepted by this automaton, the new system call sB will be accepted, otherwise
an alarm is raised. There are three kinds of input symbols: e, g and f in the
VPStatic. The automaton for the sample program in Fig.1 is presented on the
right side of Fig.4.

168 J. Hua et al.

Theorem 2. The STT Model has the same precision with the VPStatic Model,
which means if sB is accepted by the VPStatic, it will also be accepted by the
STT, and if it is refused by the VPStatic, it will be refused by the STT, too.

Proof. First, assume the input sequence is accepted by VPStatic, which means
sA and sB are really consecutive and the correct return address list at bn+1 is
truly B. So, according to the Definition 1 and the construction algorithm of the
STT described in Sec.2.5, the state SB must be in STT and SA must have a
transition to SB. In addition, if this transition contains a condition, A must also
satisfy it. So we satisfy the two conditions above and sB is also accepted by the
STT.

Secondly, assume the input sequence is not accepted by the VPStatic. Then,
there’re three cases:

Case 1: One g symbol in the input sequence is not accepted. Let this incorrect
symbol be g(none, ai, ai), where i > l. This means ai dose not match the top
symbol on the virtual stack of the VPStatic and the program returns to a wrong
address. Thereby, this execution path does not exist in the real. In this situation,
if SB is still in the STT, there is only one possibility: sA at am+1 can be invoked
in another context 4, in which there is an execution path from am+1 to bn+1,
and we just define one state SA for them because of the delta optimization,
which is similar to the state 4 in Table 4. However, we add transfer conditions
to all the transitions of this kind of states, based on which we can distinguish
between different contexts. So even if Condition 1 can be satisfied in this case,
Condition 2 can’t be satisfied because the corresponding transition condition
can’t be satisfied. So sB is not accepted by the STT, too.

Case 2: One f symbol in the input sequence is not accepted. We can use the
similar way in Case 1 to prove the transition either will not be accepted by our
STT model. We omit it here.

Case 3: One e symbol is not accepted. There’re three sub-cases in this situa-
tion. If the incorrect symbol is e(none, Exit(Func(ai))), which means we can’t
return from the corresponding function at that time according to the binary.
We may enter a new function or make a system call, which means the next
symbol g(none, ai−1, ai−1) is either wrong. So we come to Case 1, which has
been proved above. Else if the incorrect symbol is e(none, bi), which means
we can’t enter the function Func(bi) at present. Thereby, the last transition
f(none, Entry(Func(bi)), bi−1) must be either wrong and we come to Case 2.
At last if the incorrect symbol is e(sB, bn+1), which means we can’t reach to
bn+1 at present following this execution path. Then, either SB is not in the STT
or the corresponding transition condition is not satisfied, which can be proved
similarly to Case 1. So an intrusion alarm will still be raised by the STT in this
case.

Therefore, we obtain the result our STT model is as precious as the VPStatic.
It accepts all VPStatic accepts and refuses all VPStatic refuses.

4 To be more precise, the function corresponding to ai can be called at another site
in the program.

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 169

4.2 Space Complexity

We can learn from Case 3 in the proof of Theorem 2 that all e transitions except
the last one are all redundant in the VPStatic Model. They are just equivalent
to the next g transitions or the last f transitions. Therefore, all these transitions
and corresponding states can be eliminated to compact the automaton. In STT,
we replace the automaton in the VPStatic with a state transition table, which
records the context-sensitive transitions among system calls directly. Every state
in the STT is corresponding to a system call site and all those intermediate states
and transitions between any two system call states, which are called virtual paths
in the VPStatic, are all eliminated. As a result, the STT is much smaller than
the VPStatic.

Theorem 3. States in the STT are fewer than that in the VPStatic.

Proof. The exact numbers of states in the two models for the same program are
presented in Table 5, respectively. The VPStatic defines two states (’Entry’ and
’Exit’) for each function, two states (’f’ and ’g’) for each call site, and one state
for each system call site. So there are totally 2m+2n+p states in the VPStatic,
where m, n, p denote the number of function call sites, functions and system call
sites in a program, respectively. The STT defines one state for each system call
site if it is not the first one of a function. For those first system calls, the STT
defines t states for each one if the corresponding function is called in t different
sites. So there’re totally q + p− k states in the STT, where k and q denote the

Fig. 4. STT and VPStatic automatons for the sample program in Fig.1. The left one
is for the STT and the right one is for the VPStatic.

170 J. Hua et al.

Table 5. Numbers of states in the STT and the VPStatic. Assume there are n func-
tions, m call sites and p system call sits in the monitored program. Among the n
functions, assume only k ones invoke system calls and they are called at q sites.

VPStatic STT

Number of States q + p − k 2m+2n+p

Table 6. Time complexities for every step of processing a system call with the STT
and the VPStatic. The lengths of the return address lists of the last state and the
current state are denoted by m and n, respectively. The length of the common prefix
of the two lists is denoted by l.

Model Intrusion Detection Step Time Complexity

STT
Search expected states in the STT O(1)
Compute the real state O(n)
Compare between the real state and
a expected state

O(1)

VPStatic
Generate the input sequence O(l)
Walk the automaton O(m + n − 2 ∗ l)

number of functions which invoke system calls5 and call sites of these special
functions, respectively. Due to the fact q < m, the number of states in the STT
are much fewer than that in the VPStatic (In most time much fewer than half).

In Fig.4 we present two automatons for the sample program in Fig.1. The right
one describes the VPStatic and the left one describes our STT model. We can
find the STT has been greatly compacted compared with the VPStatic.

4.3 Time Complexity

Theorem 4. The time complexity of the STT is lower than that of the VPStatic.

Proof. For both models, intrusion detection is performed every time when a sys-
tem call is captured at runtime. So we compare the time costs for the two models
to process a single system call. We divide this time cost into two components:
the time to perform stack walks and the time to perform verification whether
the new system call is accepted. Because the time to perform stack walks to
extract the return address list on the stack is the same for the two models, we
just consider the later here. The time complexities for every step of verifying a
system call with the two models are presented respectively in Table 6. The total
time for the STT is O(n), while for the VPStatic it is O(m + n − l). Because

5 Note that we say a function invokes system calls so long as the program invokes any
system calls after entering the function, before leaving the function.

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 171

m > l, we obtain the result that the time complexity of the STT is lower than
that of the VPStatic.

Although we do improve the time efficiency, the improvement is not obvious:
the time complexity to process a single system call is linear to the length of the
return address list on the stack for both models. This is because the VPStatic is
also a DPDA and its time efficiency is already very high. Actually, as we can see
from the experiment results described in Sec.5, time overheads for both models
are dominated by the time to perform stack walks and the time to perform
verification is so small that can be ignored.

5 Experiments

Experiments are conducted to compare the time and memory overheads of the
STT and VPStatic models. In this respect, we analyze two test programs: gzip
and cat. Currently, we build the two models for these test programs via dynamic
analysis but not static analysis. For every test program, we first execute it to
finish a specific workload and capture all system calls and the corresponding
stack states, based on which, we construct the STT and the VPStatic for this
program. Then, for every model, we execute the program with the same workload
for the second time. At this time, we use the model to monitor the execution of
the program.

Due to the fact we can’t cover all possible execution paths, these models
built via dynamic analysis are far from complete and the true memory costs of
models built via static analysis are much larger. However, comparisons between
these dynamically constructed models still make sense. This is because they are
constructed based on the same data. In addition, we can consider test programs
we analyze are not gzip or cat, but just two new programs that formed by
execution paths of gzip and cat we cover in the experiments. From this point,
our models are truly complete.

Our experiments are carried on Fedora 7.0. We monitor the execution of a
program in user space and process tracing is used to capture system call events.
The workloads and corresponding execution statistics for each test program are
presented in Table 7. Base time in the table refers to the time a program finishes
its workload with process tracing enabled but doing nothing at each system call
stop. We regard it as the execution time of a program without IDS.

Table 8 presents the accumulated time overheads for the dynamically con-
structed VPStatic and STT models to monitor the two test programs finishing
their own workloads. We separate the models’ runtime into two components:
the time to perform stack walks and the time to perform verification. From this
table, we find time overheads for both models are dominated by the time to
perform stack walks. The STT does improve the time efficiency to perform ver-
ification but not obviously. Actually, compared with the overheads caused by
stack walks, those caused by verification are so small that can be even ignored.

Numbers of states and memory overheads for the dynamically constructed
VPStatic and STT models are presented in Table 9. From that we find our

172 J. Hua et al.

Table 7. Workloads and corresponding execution statistics for test programs. Based
times are measured in seconds.

Program Workloads System Call Events Base Time

gzip Compress a 24.4 MB tar
file

2281 11.72

cat Concatenate 40 files
totaling 500MB to a file

520131 85.19

Table 8. Model execution times in seconds. Percentages compare against base
execution.

Program Model Stack Walks % Verification %

gzip
STT 9.25 79 0.03 0

VPStatic 9.21 79 0.03 0

cat
STT 22.73 27 3.2 4

VPStatic 22.75 27 5.12 6

Table 9. Numbers of states and memory uses in KB for models

Program Model Number of States Memory Use

gzip
STT 41 0.750

VPStatic 109 1.58

cat
STT 28 0.460

VPStatic 87 0.94

STT models do reduce the numbers of states greatly. As a result, the memory
overheads due to monitoring are also greatly reduced. In our experiments, all
the memory uses of the STT models are less than half of the VPStatic models’.

6 Conclusion

We propose a novel efficient context-sensitive intrusion detection model via static
analysis. It uses stack walks to eliminate non-determinability and is a provably
DPDA, which is similar to the VPStatic. We replace the automaton in the VP-
Static with a state transition table and the automaton walk in VPStatic is
replaced by a search in the STT, which is more efficient. We perform a delta
optimization to solve the state explosion problem of the STT and no redundant
states and corresponding transitions, which exist in the automaton of the VP-
Static, exist in our STT model. As a result, the memory use is greatly reduced.
In our experiments, the memory overheads of the dynamically-constructed STT

Efficient Intrusion Detection Based on Static Analysis and Stack Walks 173

models for programs gzip and cat are both samller than half of the corresponding
VPStatic models’. We prove that our STT model has the same precision with
the VPStatic. Thereby, we improve the efficiency of the VPStatic greatly with-
out reducing its precision, which alleviates the historical conflict between the
efficiency and precision, which is suffered by similar intrusion detection models.

References

[1] Forrest, S., Longstaff, T.: A sense of self for unix processes. In: 1996 IEEE Sym-
posium on Security and Privacy, pp. 120–128. IEEE Press, Oakland (1996)

[2] Feng, H.H., Giffin, J.T., Huang, Y., Jha, S., Lee, W., Miller, B.P.: Formalizing
sensitivity in static analysis for intrusion detection. In: 2004 IEEE Symposium on
Security and Privacy, pp. 194–208. IEEE Press, California (2004)

[3] Gopalakrishna, R., Spafford, E.H., Vitek, J.: Efficient Intrusion Detection using
Automaton Inlining. In: 2005 IEEE Symposium on Security and Privacy, pp. 18–
21. IEEE Press, Washington (2005)

[4] Wagner, D., Dean, D.: Intrusion detection via static analysis. In: 2001 IEEE Sym-
posium on Security and Privacy, p. 156. IEEE Press, Oakland (2001)

[5] Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: 9th ACM Conference on Computer and Communications Security, pp. 255–
264. ACM Press, Washington (2002)

[6] Saidi, H.: Guarded Models for Intrusion Detection. In: 2007 Workshop on Pro-
gramming languages and analysis for security, pp. 85–94. ACM Press, San Diego
(2007)

[7] Feng, H., Kolesnikov, P.F., Lee, W.: Anomaly detection using call stack informa-
tion. In: 2003 IEEE Symposium on Security and Privacy, p. 62. IEEE Press, Los
Alamitos (2003)

[8] Gao, D., Reiter, M.K., Song, D.: Gray-box extraction of execution graphs for
anomaly detection. In: 11th ACM Conference on Computer and Communications
Security, pp. 318–329. ACM Press, Washington (2004)

[9] Giffin, J.T., Dagon, S., Jha, S., Lee, W., Miller, B.P.: Environment-sensitive in-
trusion detection. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858,
pp. 185–206. Springer, Heidelberg (2006)

[10] Feng, H.: Dynamic monitoring and static analysis: new approaches for intrusion
detection. PhD Dissertation, University of Massachusetts Amherst (2005)

[11] Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow in-
tegrity. In: 6th Symposium on Operating Systems Design and Implementation,
pp. 147–160. USENIX Association, Seattle (2006)

[12] Giffin, J.T., Jha, S., Lee, W., Miller, B.P.: Efficient context-sensitive intrusion
detection. In: 11th Annual Network and Distributed Systems Security Symposium.
Internet Society, San Diego (2004)

[13] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iver, R.K.: Non-control- data attacks
are realistic threats. In: 14th USENIX Security Symposium, pp. 1–12. USENIX
Association, Baltimore (2005)

[14] Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, New Jersey (2001)

Strongly Secure Authenticated Key Exchange
without NAXOS’ Approach

Minkyu Kim1,�, Atsushi Fujioka2, and Berkant Ustaoğlu2

1 ISaC and Department of Mathematical Sciences
Seoul National University, Seoul 151-747, Korea

minkyu97@snu.ac.kr
2 NTT Information Sharing Platform Laboratories

3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan
{fujioka.atsushi,ustaoglu.berkant}@lab.ntt.co.jp

Abstract. LaMacchia, Lauter and Mityagin [15] proposed the extended
Canetti-Krawczyk (eCK) model and an AKE protocol, called NAXOS.
Unlike previous security models, the adversary in the eCK model is al-
lowed to obtain ephemeral secret information related to the test session,
which makes the security proof difficult. To overcome this NAXOS com-
bines an ephemeral private key x with a static private key a to generate
an ephemeral public key X; more precisely X = gH(x,a). As a result,
no one is able to query the discrete logarithm of X without knowing
both the ephemeral and static private keys. In other words, the discrete
logarithm of an ephemeral public key, which is typically the ephemeral
secret, is hidden via an additional random oracle.

In this paper, we show that it is possible to construct eCK-secure
protocol without the NAXOS’ approach by proposing two eCK-secure
protocols. One is secure under the GDH assumption and the other under
the CDH assumption; their efficiency and security assurances are com-
parable to the well-known HMQV [12] protocol. Furthermore, they are
at least as secure as protocols that use the NAXOS’ approach but un-
like them and HMQV, the use of the random oracle is minimized and
restricted to the key derivation function.

Keywords: AKE, eCK model, NAXOS’ approach, trapdoor test.

1 Introduction

Using key exchange two parties can establish a common secret, called a session
key, via a public communication channel. Diffie and Hellman [10] proposed the
first key exchange protocol in which two parties exchange X = gx, Y = gy and
derive a session key from gxy = Y x = Xy. The original Diffie-Hellman (DH)
protocol does not provide authentication and is vulnerable to active person-
in-the-middle attacks. A key exchange protocol is authenticated key exchange
� This work was done while the first author was visiting NTT Information Sharing

Platform Laboratories. He was partially supported by NAP of Korea Research Coun-
cil of Fundamental Science and Technology.

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 174–191, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 175

(AKE) if both parties are assured that only their intended peers can derive the
session key.

Bellare and Rogaway [5] proposed the first security model and definition for
authenticated key exchange that allows a rigorous analysis. Their model is indis-
tinguishability based, where an adversary is required to differentiate between a
random key and a session key. There have been several variations to the Bellare-
Rogaway model and until recently, the Canetti-Krawczyk [8] (CK) model was
regarded as one of the most significant BR modifications.

The CK model, however, fails to capture some desirable AKE properties.
CK-secure protocols may still be vulnerable to key compromise impersonation
(KCI) attack or may not be resilient to the leakage of ephemeral private keys
(LEP). Resilience to LEP is motivated by scenarios where the session specific
information is stored in an insecure place or the random number generator used
by a party is corrupt.

To bring these attacks and properties within the scope of analysis, LaMacchia,
Lauter and Mityagin changed the CK model, to the so called eCK model, and
proposed NAXOS as an example of an eCK-secure protocol. Informally, the
eCK aims to allow all adversary queries, except those that trivially break AKE
protocols. In particular the eCK adversary is allowed to obtain ephemeral secret
information related to the test session, which makes the security arguments in
the eCK model difficult. To achieve eCK security, NAXOS requires that the
ephemeral public key X be computed from an exponent made up by hashing an
ephemeral private key x and the static private key a, more precisely, X = gH(x,a)

instead of X = gx. In this paper generating ephemeral public key as X = gH(x,a)

is called NAXOS’ approach. In NAXOS’ approach no one is able to query the
discrete logarithm of an ephemeral public key X without the pair (x, a); thus the
discrete logarithm of X is hidden via an extra random oracle. Using NAXOS’
approach many protocols [25,11,16,17] were argued secure in the eCK model
under the random oracle assumption. In the standard model, the only (to our
knowledge) eCK-secure protocol is due to Okamoto [22]; it uses pseudo-random
functions instead of hash functions.

In this paper, we show that it is possible to construct eCK-secure AKE pro-
tocols without NAXOS’ approach by giving two example protocols. Protocol 1
relies on the Gap Diffie-Hellman and the random oracle assumptions. Protocol 2
is derived by applying the trapdoor technique introduced by Cash, Kiltz and
Shoup [9] to Protocol 1, and thus uses Computational Diffie-Hellman assump-
tion instead of the gap assumption.

Our protocols provide no less security assurances than protocols utilizing the
NAXOS’ approach in the sense that our analysis considers leakage of the discrete
logarithm of ephemeral public keys. One advantage of this method (see [26]) is to
reduce the risk of leaking the static private key, since the derivation of the
ephemeral public key is independent from the static private key. This is in contrast
to protocols that use the NAXOS’ approach. In addition, unlike other eCK secure
protocols and HMQV, which require at least two random oracles, we minimize the
use of the random oracle, by applying it only to the session key derivation.

176 M. Kim, A. Fujioka, and B. Ustaoğlu

Organization. In section 2, we recall the security assumptions and the trapdoor
test, which we use in this paper. In section 3, we briefly outline the eCK model
and then propose our new protocols with security arguments in sections 4 and 5.
In section 6 we compare our protocols with other relevant protocols and conclude
in section 7.

2 Preliminaries

Let G be a cyclic group of prime order q and generator g. Let dlg : G → Zq be
the discrete logarithm (DL) function which takes an input X ∈ G and returns
x ∈ Zq such that X = gx. Define the computational Diffie-Hellman (CDH)
function dhg : G2 → G as dhg(X, Y) = gdlg(X)dlg(Y), and the corresponding
decisional predicate ddhg : G3 → {0, 1} as a function which takes an input
(X, Y, Z) ∈ G3 and returns 1 if Z = dhg(X, Y) and 0 otherwise.

The advantage of an algorithm S in solving the CDH problem, AdvCDH(S), is
the probability that, given input X, Y selected uniformly at random from G, S
returns dhg(X, Y). Similarly, the advantage of an algorithm S in solving the Gap
Diffie-Hellman (GDH) problem, AdvGDH(S), is the probability that, given input
X, Y selected uniformly at random in G and oracle access to ddhg(· , · , ·), S
returns dhg(X, Y).

We say that G satisfy the CDH (resp. GDH) assumption if no probabilistic
polynomial-time bounded algorithm can solve the CDH (resp. GDH) problem
on G with non-negligible advantage.

In the security argument of Protocol 2 we will use the following theorem,
called the trapdoor test, (see [9] for theorem details).

Theorem 1 (Trapdoor Test in [9]). Let G be a cyclic group of prime order q,
generated by g ∈ G. Suppose X1, r, s are mutually independent random variables,
where X1 takes values in G, and each of r, s is uniformly distributed over Zq,
and define the random variable X2 := gs/Xr

1 . Further, suppose that Ŷ , Ẑ1, Ẑ2 are
random variables taking values in G, each of which is defined as some function
of X1 and X2. Then we have:

1. X2 is uniformly distributed over G;
2. X1 and X2 are independent;
3. if X1 = gx1 and X2 = gx2 , then the probability that the truth value of

Ẑr
1 Ẑ2

?= Ŷ s (1)

does not agree with the truth value of

Ẑ1
?= Ŷ x1 ∧ Ẑ2

?= Ŷ x2 (2)

is at most 1/q; moreover, if (2) holds, then (1) certainly holds.

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 177

3 Security Model

For further eCK details and explanations see [15].
In the eCK model, each party is a probabilistic polynomial-time Turing ma-

chine and is assigned a static public and private key pair together with a certifi-
cate that binds party’s identity to its public key. We denote a party’s identity
A,B, C, . . . 1. We assume that, the certificate authority (CA) does not require
proof of possession of the corresponding private key included in a certificate.
However, CA verifies that the public key is in G× = G−{idG}, where idG is the
identity element of G.

We outline the eCK model for two-pass Diffie-Hellman protocols, where two
parties A and B exchange static and ephemeral public keys and thereafter com-
pute a session key that depends on the exchanged public keys and identities of
the parties.

Session. An invocation of a protocol is called a session. Session activation
is made via an incoming message of the forms (I,A,B) or (R,A,B, Y). If A
was activated with (I,A,B), then A is called the session initiator, otherwise
it is called the session responder. After activation, session initiator A creates
ephemeral public key X and sends (R,B,A, X) to the session responder B,
who then prepares ephemeral public key Y , computes the session key and sends
(I,A,B, X, Y) to A. Upon receiving (I,A,B, X, Y), A also computes a session
key for the session A owns. We say that a session is completed if its owner
computes a session key.

If A is the initiator of a session, the session is identified via (I,A,B, X,×) or
(I,A,B, X, Y). For a responder A the session is identified via (R,A,B, Y, X).
The matching session of (I,A,B, X, Y) is a session with identifier (R,B,A, X, Y)
and vice versa. In the remainder of the paper we will omit I and R since these
“role markers” are implicitly defined from the order of ephemeral public keys.

Adversary. The adversary M is modeled as a probabilistic Turing machine
that controls all communications including session activation, performed via
Send(message) query. The message has one of the following forms: (pid, pid),
(pid, pid, X), or (pid, pid, X, Y), where pid and pid are identities. Each party
submits its responses to the adversary, who decides the global delivery order.

The adversary does not have immediate access to a party’s private infor-
mation. However, leakage of private information is captured via the following
adversary queries:

– EphemeralKeyReveal(sid) The adversary obtains the ephemeral secret key
associated with the session sid.

– SessionKeyReveal(sid) The adversary obtains the session key for the ses-
sion sid, provided that the session holds a session key.

1 In the eCK model the adversary selects these identifier strings.

178 M. Kim, A. Fujioka, and B. Ustaoğlu

– StaticKeyReveal(pid) The adversary learns the static secret key of the
party pid.

– EstablishParty(pid)2 This query allows the adversary to register a static
public key on behalf of a party pid; the adversary totally controls that party.
If a party pid is established by EstablishParty(pid) query issued by adver-
sary, then we call the party dishonest. If not, we call the party honest. This
query models malicious insider.

To define eCK security we need the following definition.

Definition 1 (Freshness). Let sid∗ be the session identifier of a completed
session, owned by an honest party A with peer B, who is also honest. If the
matching session exists, then let sid∗ be the session identifier of the matching
session of sid∗. Define sid∗ to be fresh if none of the following conditions hold:

1. Adversary issues a SessionKeyReveal(sid∗) or SessionKeyReveal(sid∗)
query (if sid∗ exists)

2. sid∗ exists and Adversary makes either of the following queries
– both StaticKeyReveal(A) and EphemeralKeyReveal(sid∗), or
– both StaticKeyReveal(B) and EphemeralKeyReveal(sid∗)

3. sid∗ does not exist and Adversary makes either of the following queries
– both StaticKeyReveal(A) and EphemeralKeyReveal(sid∗), or
– StaticKeyReveal(B)

Security Experiment. Initially, the adversary M is given a set of honest
parties, for whom M selects identifiers. Then the adversary makes any sequence
of the queries described above. During the experiment,M makes a special query
Test(sid∗), where sid∗ is a fresh session, and is given with equal probability either
the session key held by sid∗ or a random key; the query does not terminate the
experiment. The experiment continues until M makes a guess whether the key
is random or not. The adversary wins the game if the test session sid∗ is still
fresh and if M guess was correct.

Definition 2 (eCK security). The advantage of the adversary M in the AKE
experiment with AKE protocol Π is defined as

AdvAKE
Π (M) = Pr[M wins]− 1

2
.

We say that an AKE protocol Π is secure in the eCK model if the following
conditions hold:
2 Formally, this query is not available in the eCK model [15], where the adversary is

only allowed to selects identities of parties and establishes dishonest parties before
starting the interaction with the parties. This does not present a deficiency in the
model since the query gives the addition power to the adversary to decide (dishonest)
party specific information after observing the behavior of honest parties.

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 179

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.

2. For any probabilistic polynomial-time bounded adversary M, AdvAKE
Π (M)

is negligible.

4 Protocol 1

In sections 4 and 5, we offer two eCK-secure protocols without NAXOS’ ap-
proach. The following are parameters used in the protocol descriptions.

Parameters. Let k/2 be the security parameter and G be a cyclic group with
generator g and order a k-bit prime q. Let H : {0, 1}∗ → {0, 1}k be a crypto-
graphic hash function modeled as a random oracle. Party A’s static private key
is a pair a1, a2 ∈ Z×

q and his public key is the pair A1 = ga1 , A2 = ga2 ∈ G×.
Similarly, the party B’s static keys are b1, b2 ∈ Z×

q , B1 = gb1 , B2 = gb2 ∈ G×.

4.1 Protocol 1 Description

In the description, A is the session initiator and B is the session responder.

1. A chooses at random an ephemeral private key x ∈ Z×
q , computes the

ephemeral public key X = gx and sends (B,A, X) to B.

2. Upon receiving (B,A, X), B verifies that X ∈ G×. If so, B chooses at
random an ephemeral private key y ∈ Z×

q and computes the ephemeral
public key Y = gy. After computing the shared secrets Z1 = (XA1)y+b1 ,
Z2 = (XA2)y+b2 , the session key SK = H(Z1, Z2, X, Y,A,B) and sending
(A,B, X, Y) to A, B completes the session with session key SK.

3. Upon receiving (A,B, X, Y), A checks if he owns a session with session
identifier (A,B, X , ×). If so, A verifies that Y ∈ G× and computes Z1 =
(Y B1)x+a1 , Z2 = (Y B2)x+a2 and completes the session (A,B, X, Y) with
session key SK = H(Z1, Z2, X, Y,A,B).

Both parties compute the shared secrets Z1 = g(x+a1)(y+b1), Z2 = g(x+a2)(y+b2)

and therefore compute the same session key SK.

4.2 Protocol 1 Security Argument

Theorem 2. If the GDH assumption holds in G and H is a random oracle,
then the Protocol 1 is eCK-secure.

Proof. Let M be a polynomially bounded adversary against Protocol 1, that
runs in time t(k), activates at most n(k) honest parties, at most s(k) sessions
and makes at most h(k) queries to the oracle H , where t(k), n(k), s(k), and
h(k) are polynomially bounded in k. Assume also that AdvAKE

Protocol 1(M) is non-
negligible. Since H is modeled as a random oracle, the adversary M has only
three ways to distinguish a session key of the test session from a random string.

180 M. Kim, A. Fujioka, and B. Ustaoğlu

– A1. Guessing attack: M correctly guesses the session key.
– A2. Key replication attack: M creates a session that is not matching to the

test session, but has the same session key as the test session.
– A3. Forging attack: M computes Z1 and Z2 used in the test session, and

queries H with (Z1, Z2, X, Y,A,B).

Since H is a random oracle, the probability of guessing the output of H is
O
(
1/2k

)
, which is negligible. Since non-matching sessions have different commu-

nicating parties or ephemeral public keys, key replication is equivalent to finding
an H-collision; therefore the probability, that event A2 occurs, is O

(
s(k)2/2k

)
,

which is also negligible. Thus events A1 and A2 can be ruled out.
Let M be the event that M wins the security game, H be the event that M

queries H with (Z1, Z2, X, Y,A,B), and H the complementary event of H. Since
H is a random oracle and events A1 and A2 were ruled out, we have Pr[M|H] = 1

2
except with negligible difference. Then

Pr[M] = Pr[M ∧H] + Pr[M| H] Pr[H] ≤ Pr[M ∧H] +
1
2

AdvAKE
Protocol 1(M) ≤ Pr[M ∧H] = Pr[A3]

Since AdvAKE
Protocol 1(M) is non-negligible, Pr[A3] is also non-negligible.

Now, consider the following complementary sub-events of A3.

– E1. A3 occurs and the test session has no matching session.
– E2. A3 occurs and the test session has a matching session.

Then
Pr[A3] = Pr[E1] + Pr[E2]

Consider also the following sub-events of E1 so that E1 = E1a ∨ E1b.

– E1a. E1 occurs and M does not reveal the ephemeral private key of the
owner of the test session, but may query for the static private key of the test
session owner.

– E1b. E1 occurs and the owner’s static private key of the test session has
never been revealed by M, but may query for the ephemeral private key of
the test session owner.

Consider also the following sub-events of E2 so that E2 = E2a∨E2b∨E2c∨E2d.

– E2a. E2 occurs andM does not reveal the ephemeral private keys of both the
owner of the test session and its peer, but may query for the static private
keys of the test session peers.

– E2b. E2 occurs andM does not reveal the static private keys of both the test
session and its matching session, but may query for the ephemeral private
keys of the test session peers.

– E2c. E2 occurs and the owner’s ephemeral private key and the peer’s static
private key of the test session have never been revealed by M, but M may
query StaticKeyRevealwith the identity of the test session owner and query
EphemeralKeyReveal with the session matching to the test session.

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 181

– E2d. E2 occurs and the owner’s static private key and the peer’s ephemeral
private key of the test session have never been revealed by M, but M
may query StaticKeyReveal with the identity of the test session peer and
EphemeralKeyReveal with the test session.

We then have

Pr[E1] ≤ Pr[E1a] + Pr[E1b] (3)
Pr[E2] ≤ Pr[E2a] + Pr[E2b] + Pr[E2c] + Pr[E2d]. (4)

We will show how to construct a GDH solver S that uses a Protocol 1 adversary
M. The solver S is given a CDH instance (U, V), where U and V are selected
uniform randomly in G, access to a ddhg(· , · , ·) oracle and has to compute
dhg(U, V). Without loss of generality in the analysis, we denote the test session
owner and peer by A and B, respectively, and assume that A is the initiator.

Analysis of E1a. We use M to construct a GDH solver S that succeeds with
non-negligible probability provided that event E1a occurs. S prepares n(k) hon-
est parties, selects one party B to whom S assigns static public key B1 = V, B2 =
V r, where S randomly chooses r ∈ Zq. The remaining n(k) − 1 parties are as-
signed random static public and private key pairs. S also chooses a session sid∗,
owned by an honest party A.

When M activates sessions between honest peers S follows the protocol de-
scription. Since S knows static private keys of at least one peer, it can respond
all queries faithfully. The only exception is the session sid∗, for which S sets the
ephemeral public key of sid∗ to U , and chooses a random ζ ∈ {0, 1}k as the
session key of sid∗.

The simulator has difficulty in responding queries related to B because S
does not know the static private key of B. More precisely, for sessions owned
by B with peer C controlled by M, S cannot compute shared secrets Z1, Z2,
but may have to answer SessionKeyReveal queries. Note that M can obtain
session keys of these session by computing the shared secrets Z1, Z2 and query
H . If two values do not coincide, then S fails its simulation. To handle this
situations, S prepares Rlist with entries of the form (pid, pid, W, W ′, SK) ∈
{0, 1}∗ × {0, 1}∗ × G2 × {0, 1}k, which is maintained for consistent responses
to H and SessionKeyReveal queries.

We next describe the action of S when M makes queries related to B. In the
following, Y is generated by the party B. Recall that if the session identifier is
(B, C, X, Y) (resp. (B, C, Y, X)), then B is the session responder (resp. initiator).

– Send(B, C): S randomly selects y ∈ Z×
q , computes Y = gy, creates a new

session with sid (B, C, Y,×) and returns (C,B, Y) to M.

– Send(B, C, X): S randomly selects y ∈ Z×
q , compute Y = gy, creates a new

session with sid (B, C, X, Y) and returns (C,B, X, Y) to M.

182 M. Kim, A. Fujioka, and B. Ustaoğlu

– Send(B, C, Y, X): S checks if B owns a session with sid (B, C, Y,×). If not,
the session is aborted; otherwise, S updates sid to (B, C, Y, X).

– H(·): S maintains an initially empty list Hlist with entries of the form
(Ẑ1, Ẑ2, W, W ′, pid, pid, SK) ∈ G4 × {0, 1}∗ × {0, 1}∗ × {0, 1}k and sim-
ulates a random oracle in the usual way except for queries of the form
(Ẑ1, Ẑ2, X, Y, C,B) and (Ẑ1, Ẑ2, Y, X,B, C). When (Ẑ1, Ẑ2, X, Y, C,B) (resp.
(Ẑ1, Ẑ2, Y, X,B, C)) is queried, S does one of the following.
1. If (Ẑ1, Ẑ2, X, Y, C,B, SK) (resp. (Ẑ1, Ẑ2, Y, X,B, C, SK)) ∈ Hlist for some

SK, then S returns SK to M.
2. Otherwise, S checks if there exists (B, C, X, Y, SK) (resp. (B, C, Y, X, SK))
∈ Rlist such that ddhg(XC1, Y B1, Ẑ1) = 1 and ddhg(XC2, Y B2, Ẑ2) = 1.
If such a pair exists, S returns SK from Rlist, and stores the new tuple
(Ẑ1, Ẑ2, X, Y, C,B, SK) (resp. (Ẑ1, Ẑ2, Y, X,B, C, SK)) in Hlist.

3. If neither of the above two cases hold, then S chooses SK ∈ {0, 1}k at
random, returns it toM and stores the new tuple (Ẑ1, Ẑ2, X, Y, C,B, SK)
(resp. (Ẑ1, Ẑ2, Y, X,B, C, SK)) in Hlist.

– SessionKeyReveal(B, C, X, Y) or SessionKeyReveal(B, C, Y, X): S main-
tains an initially empty list Rlist with entries of the form (pid, pid, W, W ′, SK)
∈ {0, 1}∗×{0, 1}∗×G2×{0, 1}k. When SessionKeyReveal(B, C, X, Y) (resp.
(B, C, Y, X)) is queried, S does one of the following.
1. If there is no session with identifier (B, C, X, Y) (resp. (B, C, Y, X)), the

query is aborted.
2. If (B, C, X, Y, SK) (resp. (B, C, Y, X, SK)) ∈ Rlist for some SK, S returns

SK to M.
3. Otherwise, go through Hlist to find (Ẑ1, Ẑ2, X, Y, C,B, SK) (resp. (Ẑ1, Ẑ2,

Y, X,B, C, SK)) satisfying ddhg(XC1, Y B1, Ẑ1) = 1 and ddhg(XC2,

Y B2, Ẑ2) = 1. If such a pair exists, S returns SK, and stores the new tuple
(B, C, X, Y, SK) (resp. (B, C, Y, X, SK)) in Rlist.

4. If none of the above three cases hold, then S chooses SK ∈ {0, 1}k at
random, returns it to M and stores the new tuple (B, C, X, Y, SK) (resp.
(B, C, Y, X, SK)) in Rlist.

– EphemeralKeyReveal(·): S responds to the query faithfully.

– StaticKeyReveal(B) or EstablishParty(B): S aborts.

– Test(sid): If sid �= sid∗, S aborts. Otherwise, S randomly chooses ζ ∈ {0, 1}k

and returns it to the adversary M.

Provided that event E1a occurs andM selects the session sid∗ as the test session
with peer B, the simulation does not fail; let Y denote the test session incoming
ephemeral public key. If M is successful with non-negligible probability it must
have queried H with inputs Ẑ1 = (Y B1)x∗+a1 and Ẑ2 = (Y B2)x∗+a2 , where
x∗ ≡ dlg(U) mod q, because S sets the ephemeral public key X∗ of sid∗ as U .

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 183

To solve the CDH instance, S checks if there is an H query made byM of the form
(Z1, Z2, U, Y,A,B), such that ddhg(UA1, Y B1, Z1) = 1 and ddhg(UA2, Y B2,
Z2) = 1. If such an H query exists, S computes3 Z∗

1 = Z1/(Y B1)a1 and Z∗
2 =

Z2/(Y B2)a2 . If Z1, Z2 are correct, then since B1 = V and dlg(B2) ≡ r · dlg(B1)
mod q we have,

Z∗
1/Z∗

2 = (B1/B2)x = Udlg(B1)−dlg(B2).

Therefore, by computing
(
Z∗

1/Z∗
2

)1/(1−r)
, S can find Udlg(B1) = dhg(U, V).

With probability at least 1
s(k)n(k) , the test session is sid∗ with peer B. Thus,

the advantage of S is

AdvGDH(S) ≥ 1
s(k)n(k)

Pr[E1a]. (5)

Analysis of E1b. S prepares n(k) honest parties, selects two distinct parties,
say A and B, and assigns A’s and B’s static public keys as A1 = U, A2 = Us and
B1 = V, B2 = V r, respectively, where r and s are random elements of Zq. The
remaining n(k) − 2 parties are assigned random static and private key pairs. If
M activates sessions owned by any honest party except A and B, then S follows
the protocol description. The parties A and B are simulated as in the case E1a.

If M selected the session sid∗ as the test session with owner A and peer
B, this simulation does not fail provided that the event E1b occurs. If M
is successful with non-negligible probability, it must have queried H with in-
puts of the form Z1 = (Y B1)x+dlg(A1), Z2 = (Y B2)x+dlg(A2). To solve CDH,
S checks if there is an H query made by M of the form (Z1, Z2, X, Y,A,B),
such that ddhg(XA1, Y B1, Z1) = 1 and ddhg(XA2, Y B2, Z2) = 1. If such
an H query exists, S computes Z∗

1 = Z1/(Y B1)x, Z∗
2 = Z2/(Y B2)x. Since

(Z∗
2)1/s = ((Y B2)dlg(A2))1/s = (Y B2)dlg(A1),

Z∗
1/(Z∗

2)1/s = A
dlg(B1)−dlg(B2)
1 .

Therefore, from
(
Z∗

1/(Z∗
2)1/s

)1/(1−r)
, S can find A

dlg(B1)
1 = dhg(U, V).

With probability at least 1
n(k)2 , M will select a test session with owner and

peer A and B, respectively. Thus the advantage of S is

AdvGDH(S) ≥ 1
n(k)2

Pr[E1b]. (6)

Analysis of E2a. S prepares n(k) honest parties, and assigns random static
public and private key pairs for these parties. S also chooses two session sid∗, sid∗.
Let A be the owner of sid∗ and B owner of sid∗. S sets the ephemeral public key

3 Note that the computation requires the knowledge of a1 and a2, and therefore it must
be the case that A �= B.

184 M. Kim, A. Fujioka, and B. Ustaoğlu

of sid∗ to be U and of sid∗ to be V . Hence S’s simulation for M can fail only if
M issues EphemeralKeyReveal against sid∗ or sid∗.

Provided that M selects the session sid∗ as the test session with owner A
and peer B and sid∗ as its matching session, and event E2a occurs, then the
simulation does not fail. If M is successful with non-negligible probability it
must have queried H with Z1 = (Y B1)dlg(U)+a1 , Z2 = (Y B2)dlg(U)+a2 . To solve
the CDH instance, S checks if there is an H query (Z1, Z2, U, V,A,B), such
that ddhg(UA1, V B1, Z1) = 1 and ddhg(UA2, V B2, Z2) = 1. If such an H query
exists, S computes dhg(U, V) by computing Z1/(U b1V a1Ab1

1).
With probability 1

s(k)2 , M selects sid∗ as the test session and sid∗ as its
matching session. Thus, the advantage of S is

AdvGDH(S) ≥ 1
s(k)2

Pr[E2a]. (7)

Analysis of E2b, E2c and E2d. For event E2b, E2c, E2d, S’s simulation is
similar to E1b, E1a, E1a, respectively. We omit the details and provide only the
conclusion:

AdvGDH(S) ≥ 1
n(k)2

Pr[E2b] (8)

AdvGDH(S) ≥ 1
s(k)n(k)

Pr[E2c] (9)

AdvGDH(S) ≥ 1
s(k)n(k)

Pr[E2d]. (10)

Combining equations (5), (6), (7), (8), (9), and (10), the advantage of S is

AdvGDH(S) ≥ max
{ 1

s(k)n(k)
Pr[E1a],

1
n(k)2

Pr[E1b],
1

s(k)2
Pr[E2a],

1
n(k)2

Pr[E2b],
1

s(k)n(k)
Pr[E2c],

1
s(k)n(k)

Pr[E2d]
}
.

Since Pr[A3] is non-negligible, from (3), (4), at least one of Pr[E1a], · · · , Pr[E2d]
is non-negligible, and therefore AdvGDH(S) is non-negligible. During the simula-
tion, S performs group exponentiations, queries the DDH oracle, and simulates
H . All of these take polynomially bounded time because a group exponentia-
tion takes time O(k) and t(k), n(k), s(k), h(k) are polynomial in k. Therefore,
the running time of S is polynomially bounded. Hence, S is a polynomial-time
algorithm that solves the GDH problem in G with non-negligible probability,
which contradicts the assumed security of GDH problem in G. This completes
the argument.

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 185

5 Protocol 2

5.1 Protocol 2 Description

Protocol 2 is similar to Protocol 1 and follows below. The difference between the
two protocols is that Protocol 2 computes two additional shared secrets. In the
description, A is the session initiator and B session responder.

1. A chooses at random an ephemeral private key x ∈ Z×
q , computes the

ephemeral public key X = gx and sends (B,A, X) to B.

2. Upon receiving (B,A, X), B verifies that X ∈ G×. If so, B chooses at
random an ephemeral private key y ∈ Z×

q , computes the ephemeral pub-
lic key Y = gy. After computing the shared secrets Z1 = (XA1)y+b1 ,
Z2 = (XA1)y+b2 , Z3 = (XA2)y+b1 , Z4 = (XA2)y+b2 , the session key
SK = H(Z1, Z2, Z3, Z4, X, Y,A,B) and sending (A,B, X, Y) to A, B com-
pletes the session with session key SK.

3. Upon receiving (A,B, X, Y), A checks if he owns a session with identifier
sid = (A,B, X,×). If so, A verifies Y ∈ G× and computes Z1 = (Y B1)x+a1 ,
Z2 = (Y B2)x+a1 , Z3 = (Y B1)x+a2 , Z4 = (Y B2)x+a2 and completes the ses-
sion sid = (A,B, X, Y) with session key SK = H(Z1, Z2, Z3, Z4, X, Y,A,B).

Both parties compute the same Z1 = g(x+a1)(y+b1), Z2 = g(x+a1)(y+b2), Z3 =
g(x+a2)(y+b1), Z4 = g(x+a2)(y+b2) and therefore compute the same session key
SK.

5.2 Security Proof

Theorem 3. If the CDH assumption for G holds and H is a random oracle,
then the Protocol 2 is eCK-secure.

Proof. The security proof of Protocol 2 is similar to that of Protocol 1; only
the differences are explained here. Let M be a polynomially bounded adversary
against Protocol 2, that runs in time t(k), activates at most n(k) honest parties,
at most s(k) sessions and makes at most h(k) queries to the oracle H , where t(k),
n(k), s(k) and h(k) are polynomially bounded in k. Assume also thatM succeeds
with non-negligible advantage. As the case of Protocol 1, the adversary has only
three ways to distinguish a session key of a test session from a random string:
guess, key replication or forging attack. Since H is a random oracle guessing and
key replication occur only with negligible probability.

We use the same events and notation as in the security proof of Protocol 1. In
event A3,M computes Z1, Z2, Z3 and Z4 used in the test session and queries H
with (Z1, Z2, Z3, Z4, X, Y,A,B). As in the security proof of Protocol 1 we show
how to construct a CDH solver S.

In the S’s simulations of environment of M, the most important point is to
maintain consistency between H and SessionKeyReveal queries when S does

186 M. Kim, A. Fujioka, and B. Ustaoğlu

not know static private key of the honest party that is activated. Such situations
occur when S embeds the CDH instance into the honest party’s static public key.
So, ifM queries H with (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, C,B) or (Ẑ1, Ẑ2, Ẑ3, Ẑ4, Y, X,B, C),
then S has to be able to check the correctness of Ẑ1, Ẑ2, Ẑ3, Ẑ4.

We now explain how S maintains the consistency. Let B be an honest party
whose static public key is B1 = V , B2 = gs/V r, where s and r are randomly
selected from Zq by S. Let C be a party (not necessarily an honest one) whose
static public key is C1, C2. WhenM queries H with (Ẑ1, Ẑ2, Ẑ3, Ẑ4, X, Y, C,B) or
(Ẑ1, Ẑ2, Ẑ3, Ẑ4, Y, X,B, C), we may assume that there is a session with identifier
(B, C, X, Y) or (B, C, Y, X). Otherwise, it is sufficient for S to return a random
string to M. Suppose there is a session with identifier (B, C, X, Y), since B is
honest, Y is generated by S, so dlg(Y) is known to S, who can compute

Z̄1 = Ẑ1/(XC1)y, Z̄2 = Ẑ2/(XC1)y, Z̄3 = Ẑ3/(XC2)y , Z̄4 = Ẑ4/(XC2)y

The values Ẑ1, Ẑ2, Ẑ3, Ẑ4 are generated according to the protocol if and only if
Z̄1 =(XC1)dlg(B1), Z̄2 =(XC1)dlg(B2), Z̄3 =(XC2)dlg(B1) and Z̄4 =(XC2)dlg(B2).
The algorithm S can check if Ẑ1, Ẑ2, Ẑ3 and Ẑ4 are generated according to the
protocol specifications by verifying

Z̄r
1 Z̄2 = (XC1)s, Z̄r

3 Z̄4 = (XC2)s;

the verification holds with probability at least
(
1 − 1

q

)2 when r, s are randomly
choosen from Z×

q (see Theorem 1). When there is a session with identifier
(B, C, Y, X), similar verification can be performed. In this case, Z̄1 = Ẑ1/(XC1)y ,
Z̄2 = Ẑ2/(XC2)y, Z̄3 = Ẑ3/(XC1)y , Z̄4 = Ẑ4/(XC2)y and S checks if Z̄r

1 Z̄3 =
(XC1)s and Z̄r

2 Z̄4 = (XC2)s.
To complete the security proof, an explanation of how to embed and solve

CDH instance in the cases E1a, E1b, E2a, E2b, E2c and E2d is still needed.

E1a case. Suppose that the test session is (A,B, X, Y), where A �= B, X = U ,
and party B’s static public key is B1 = V, B2 = gs/V r with randomly choosen
r, s ∈ Z×

q . In the event E1a, the ephemeral public key Y is controlled by
M. If M is successful with non-negligible probability, it must have queried
H with inputs of the form Z1 = (Y B1)dlg(U)+a1 , Z2 = (Y B2)dlg(U)+a1 , Z3 =
(Y B1)dlg(U)+a2 and Z4 = (Y B2)dlg(U)+a2 . From these values, S can compute
Z∗

1 = Z1/(Y B1)a1 , Z∗
2 = Z2/(Y B2)a1 ; note that

Z∗
1/Z∗

2 = Udlg(B1)−dlg(B2) = U (1+r)dlg(B1)−s

because rdlg(B1) + dlg(B2) ≡ s mod q. Therefore, from
(
(Z∗

1/Z∗
2) · Us

)1/(1+r)
,

S can compute Udlg(B1) = dhg(U, V). With probability at least 1
s(k)n(k) , U is the

test session outgoing ephemeral public key and B is the test session peer. Since
the probability that some trapdoor test yields an incorrect answer is at most
2h(k)/q, the advantage of S is

AdvCDH(S) ≥ 1
s(k)n(k)

Pr[E1a]−
2h(k)

q
. (11)

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 187

E1b case. Suppose that the test session is (A,B, X, Y), where A �= B and
A’s static public key is A1 = U, A2 = gs′

/U r′
and B’s static public key is

B1 = V, B2 = gs/V r with randomly choosen r, s, r′, s′ ∈ Z×
q . In the event

E1b, Y is controlled by M, but S selects X and so S knows dlg(X). If M
is successful with non-negligible probability, it must have queried H with in-
puts of the form Z1 = (Y B1)dlg(U)+dlg(A1), Z2 = (Y B2)dlg(U)+dlg(A1), Z3 =
(Y B1)dlg(U)+dlg(A2) and Z4 = (Y B2)dlg(U)+dlg(A2). From these values, S can
compute Z∗

1 = Z1/(Y B1)x, Z∗
2 = Z2/(Y B2)x; note that

Z∗
1/Z∗

2 = A
dlg(B1)−dlg(B2)
1 = A

(1+r)dlg(B1)−s
1

Therefore, from
(
(Z∗

1/Z∗
2) · As

1

)1/(1+r)
, S can compute A

dlg(B1)
1 = dhg(U, V).

With probability at least 1
n(k)2 , the test session peers are A and B, and hence

the advantage of S is

AdvCDH(S) ≥ 1
n(k)2

Pr[E1b]− 2h(k)
q

. (12)

E2a case. Suppose that the test session and its matching sessions are (A,B, X, Y)
and (B,A, X, Y), respectively, where X = U and Y = V (the case where X = V
and Y = U is similar). The simulator S knows the static private key of all hon-
est parties including A and B. If M is successful with non-negligible probabil-
ity, it must have queried H with inputs of the form Z1 = (Y B1)dlg(U)+a1 , Z2 =
(Y B2)dlg(U)+a1 , Z3 = (Y B1)dlg(U)+a2 and Z4 = (Y B2)dlg(U)+a2 . From these, S
can obtain dhg(U, V) by computing Z1/(U b1V a1Ab1

1). With probability at least
1

s(k)2 , the test session has ephemeral public keys U and V , and hence the advan-
tage of S is

AdvCDH(S) ≥ 1
s(k)2

Pr[E2a]. (13)

E2b, E2c, E2d cases. For cases E2b, E2c and E2d, the arguments are similar
to E1b, E1a, and E1a, respectively; therefore

AdvCDH(S) ≥ 1
n(k)2

Pr[E2b]− 2h(k)
q

(14)

AdvCDH(S) ≥ 1
s(k)n(k)

Pr[E2c]−
2h(k)

q
(15)

AdvCDH(S) ≥ 1
s(k)n(k)

Pr[E2d]− 2h(k)
q

(16)

Combining equations (11), (12), (13), (14), (15), and (16), the advantage of S is

AdvCDH(S)≥max
{ 1

s(k)n(k)
Pr[E1a],

1
n(k)2

Pr[E1b],
1

s(k)2
Pr[E2a],

1
n(k)2

Pr[E2b],
1

s(k)n(k)
Pr[E2c],

1
s(k)n(k)

Pr[E2d]
}
−2h(k)

q
.

188 M. Kim, A. Fujioka, and B. Ustaoğlu

As the security proof of Protocol 1, if AdvAKE
Protocol 2(M) is non-negligible, then

Pr[A3] is also non-negligible and thus at least one of Pr[E1a], . . . , Pr[E2d] is
non-negligible. Therefore, AdvCDH(S) is non-negligible. Moreover, during the
simulation, S performs group exponentiations and simulates H , all of which
take polynomially bounded in k time . Thus, the running time of S is bounded
by a polynomial in k time. Therefore, S is a polynomial-time algorithm that
solves the CDH problem in G with non-negligible advantage, which contradicts
the hardness of the CDH problem in G. This concludes the argument.

Remark 1. In the security argument of Protocol 1 and Protocol 2, for simplicity
we do not allow the test session to be of the form (A,B, X, Y), where A = B.
However, if we allow the session of the form (A,A, X, Y), then the arguments
can be modified to solve the Square computational Diffie-Hellman (SCDH) prob-
lem. The SCDH problem is given X ∈ G, compute Xdlg(X)2 . More precisely, in
Protocol 1 this case is reduced to solve SCDH problem given DDH oracle, and
in Protocol 2 reduced to solve SCDH problem. Also, note that CDH problem is
equivalent to SCDH problem in prime order cyclic group G, see [2].

6 Comparison

In this section, we compare our protocols with other related PKI-based two-pass
AKE protocols in terms of underlying assumption, computational efficiency and
security model. In Table 1 number of exponentiation in G, number of static
public keys in terms of group elements and number of ephemeral public key
in terms of group elements are denoted by E, sPK and ePK, respectively. All
protocols are eCK secure except for HMQV, which is a modification of MQV [13].
It is secure in a modified CK [8] model and has additional security properties
like resistance to KCI attack, wPFS, and resistance to LEP under GDH and
knowledge of exponent assumptions (KEA1) [3].

When comparing computational efficiency, we do not take into account public-
key validation, which is a necessary procedure to prevent potential leakage of
private information similar to invalid-curve attacks [1] and small subgroup at-
tacks [14]; see also [19,21].

Table 1 presents the naive group exponentiations count; the numbers in paren-
theses reflect exponentiations using speedup techniques from [18, §2.3] and [20,
Alg. 14.88]. The reduced numbers follow from: (i) HMQV, CMQV, and Okamoto’s
protocol can use simultaneous exponentiation [20, Alg. 14.88]; and (ii) NAXOS,
NAXOS+, Huang-Cao protocol, and Protocol 2 have the same base and can save
time when applying Right-to-Left binary method. More precisely, in our Protocol
2, from the point of view of protocol initiator, Z1, Z3 and Z2, Z4 have the same base
Y B1 and Y B2, respectively. Thus, when applying Right-to-Left binary method
the value (Y B1)2

i

(resp. (Y B2)2
i

) can be reused for Z1, Z3 (resp. Z2, Z4). Similar
arguments apply to NAXOS, NAXOS+ and Huang-Cao’s protocol.

Okamoto’s protocol is secure in the standard model, but the proof depends
on a rather strong assumption of the existence of πPRF family. In the security

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 189

Table 1. Protocol Comparison

Protocol Computation Security
Model

Assumption NAXOS Num. of
approach sPK/ePK

Okamoto [22] 8E
(4.14E)

eCK
πPRF,

O 2/3
DDH, Standard

HMQV [12]
2.5E

(2.17E)
CK, wPFS, KEA1, × 1/1
KCI, LEP GDH, RO

CMQV [25] 3E (2.17E) eCK GDH, RO O 1/1
NAXOS [15] 4E (3.17E) eCK GDH, RO O 1/1
NETS [17] 3E eCK GDH, RO O 1/1

SMEN− [26] 6E (2.46E) eCK GDH, RO × 2/2
Protocol 1 3E eCK GDH, RO × 2/1

NAXOS+ [16] 5E (3.34E) eCK CDH, RO O 1/1
Huang-Cao [11] 5E (4.17E) eCK CDH, RO O 2/1

Protocol 2 5E (3.34E) eCK CDH, RO × 2/1

proof of HMQV and CMQV, the reduction argument is less tight since the
Forking Lemma [24] is essential for the arguments. In comparison, the rest of the
protocols in Table 1, including Protocol 1 and Protocol 2, have tighter security
reductions and do not use the Forking Lemma.

No NAXOS’ approach. As shown in Table 1, Protocol 1 has the same char-
acteristic as NETS and Protocol 2 has the same characteristic as NAXOS+ in
computation efficiency, security model, and underlying assumption. The differ-
ence is that our protocols dispenses with NAXOS’ approach, at the expense of
an additional group element in the static key. SMEN− also has features similar
to Protocol 1: it is eCK-secure in the random oracle model under the GDH as-
sumption, does not use NAXOS’ approach and a static public key is a pair of
group elements. It achieves better computational performance (2.46 vs 3 expo-
nentiations), but requires that the an ephemeral key constitutes of two group
elements. Therefore it provides a trade-off between computation and communi-
cation efficiencies.

We showed that it is possible to construct eCK-secure AKE protocols without
using NAXOS’ approach, so our protocols are secure even when the discrete log-
arithm of the ephemeral public key is revealed. As pointed out in [26], protocols
that do not rely on NAXOS’ approach decrease the risk of leaking the static
private key in comparison with protocols that ustilize the NAXOS’ approach.
This feature makes protocols like ours, SMEN− and HMQV more practical.

Another advantage of our protocols is the use of single random oracle as
opposed to two for HMQV and CMQV. The random oracle is needed for the
session key derivation, which is typical way to attain indistinguishability in ran-
dom oracle model. As pointed in [7], although protocols secure in the random

190 M. Kim, A. Fujioka, and B. Ustaoğlu

oracle model produce assurance for the scheme’s correctness, there may remain
some fear since concrete hash function instantiations differ from a truly random
function. In the sense of minimal reliance on random oracles, our protocols and
SMEN− are the best among protocols in Table 1.

7 Conclusion

The extended Canetti-Krawczyk (eCK) definition introduced by LaMacchia,
Lauter and Mityagin is a strong security model for authenticated key exchange.
This paper presented two eCK-secure AKE protocols without using NAXOS’
approach. As a result, our protocols provide strong security assurances without
compromising too much on efficiency. In addition, we minimized the reliance
on the random oracle for the security argument and were able to utilize the
trap-door test to assume only computational assumptions.

References

1. Antipa, A., Brown, D., Menezes, A., Struik, R., Vanstone, S.: Validation of elliptic
curve public keys. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 211–
223. Springer, Heidelberg (2002)

2. Bao, F., Deng, R.H., Zhu, H.: Variations of diffie-hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2001)

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125. Springer, Heidelberg
(1993)

6. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: STOC 1995, pp. 57–66 (1995)

7. Bellare, M., Rogaway, P.: Minimizing the use of random oracles in authenticated
encryption schemes. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334,
pp. 1–16. Springer, Heidelberg (1997)

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

9. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

10. Diffie, W., Hellman, H.: New directions in cryptography. IEEE transactions of
Information Theory 22(6), 644–654 (1976)

11. Huang, H., Cao, Z.: Strongly secure authenticated key exchange protocol based on
computational Diffie-Hellman problem. In: Inscrypt 2008 (2008)

Strongly Secure Authenticated Key Exchange without NAXOS’ Approach 191

12. Krawczyk, H.: HMQV: A high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

13. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

14. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249–263. Springer, Heidelberg (1994)

15. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

16. Lee, J., Park, J.: Authenticated key exchange secure under the computational
Diffie-Hellman assumption, http://eprint.iacr.org/2008/344

17. Lee, J., Park, C.: An efficient key exchange protocol with a tight security reduction,
http://eprint.iacr.org/2008/345

18. M’Räıhi, D., Naccache, D.: Batch exponentiation: a fast DLP-based signature gen-
eration strategy. In: CCS 1996: Proceedings of the 3rd ACM conference on Com-
puter and communications security, pp. 58–61 (1993)

19. Menezes, A.: Another look at HMQV. Journal of Mathematical Cryptology 1(1),
47–64 (2007)

20. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of applied cryptography,
Florida, USA. CRC Press, Boca Raton (1997)

21. Menezes, A., Ustaoglu, B.: On the importance of public-key validation in the MQV
and HMQV key agreement protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)

22. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

23. Okamoto, T., Pointcheval, D.: The Gap-Problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

24. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. J. of Cryptology 13(3), 361–396 (2000)

25. Ustaoğlu, B.: Obtaining a secure and efficient key agreement protocol for
(H)MQV and NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008),
http://eprint.iacr.org/2007/123

26. Wu, J., Ustaoğlu, B.: Efficient Key Exchange with Tight Security Reduction, Tech-
nical Report CACR 2009-23, University of Waterloo (2009),
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-23.pdf

http://eprint.iacr.org/2008/344
http://eprint.iacr.org/2008/345
http://eprint.iacr.org/2007/123
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-23.pdf

ID-Based Group Password-Authenticated
Key Exchange

Xun Yi1, Raylin Tso2, and Eiji Okamoto3

1 School of Engineering and Science, Victoria University
Melbourne, Victoria 8001, Australia

Xun.Yi@vu.edu.au
2 Department of Computer Science, National Chengchi University

Taipei 11605, Taiwan
raylin@cs.nccu.edu.tw

3 Department of Risk Engineering, University of Tsukuba
Tsukuba, Ibaraki, 305-8573, Japan
okamoto@risk.tsukuba.ac.jp

Abstract. Password-authenticated key exchange (PAKE) protocols are
designed to be secure even when the secret key used for authentication is
a human-memorable password. In this paper, we consider PAKE proto-
cols in the group scenario, in which a group of clients, each of them shares
his password with an “honest but curious” server, intend to establish a
common secret key (i.e., a group key) with the help of the server. In
this setting, the key established is known to the clients only and no one
else, including the server. Each client needs to remember the password
only while the server keeps passwords in addition to private keys related
to its identity. Towards our goal, we present a compiler that transforms
any group key exchange (KE) protocol which is secure against a passive
eavesdropping to a group PAKE which is secure against an active ad-
versary who controls all communications in the network. This compiler
is built on a group KE protocol, an identity-based encryption (IBE)
scheme, and an identity-based signature (IBS) scheme. It adds only two
rounds and O(1) communication (per client) to the original group KE
protocol. As long as the underlying group KE protocol, IBE scheme and
an IBS scheme have provable security without random oracles, the group
PAKE constructed by our compiler can be proven to be secure without
random oracles.

Keywords: Password-authenticated key exchange, group key agreement,
protocol compiler, common reference model.

1 Introduction

Popularity of group-oriented applications and protocols is currently on the in-
crease and, as a result, group communication is taking place in many different
settings, from network layer multicasting to application layer tele- and video-
conferencing. Securing group communication makes demands of protocols for

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 192–211, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ID-Based Group Password-Authenticated Key Exchange 193

group authenticated key exchange (AKE), which allows a group of users com-
municating over an insecure public network to establish a common secret key
(i.e., a group key) and furthermore to be guaranteed that they are indeed sharing
this key with each other.

Protocols for 2-party AKE has been extensively investigated in
[36,15,37,13,11,32,33,34]. A number of works have considered extending the 2-
partyDiffie-Hellmanprotocol [36] to themulti-party setting [43,57,29,58,10,50,51].
Among them, the works of Ingemarsson et al. [43], Burmester and Desmedt [29],
and Steiner et al. [58] may be the most well-known. They are merely key exchange
(KE) protocols, intended to be secure against a passive adversary only. However,
AKE protocols aim to be secure against more powerful adversaries, who - in ad-
dition to eavesdropping - control all communications in the network. A number of
initial protocols for group AKE were suggested in [44,19,7,8,59]. But none of these
works have rigorous security proofs in a well-defined model.

Bresson et al. [22,23,24] were the first to define a formal model of security for
group AKE and give the first provably secure protocols for this setting. Their
model was built on the earlier work of Bellare and Rogaway in the two-party
setting [12,13,11] and their protocols were based on the work of Steiner et al.
[58], which requires O(n) rounds to establish a key among n users, and therefore
not scalable. A constant-round group AKE with a security proof in the random
oracle model was given in [20], but it was shown to be insecure in [56].

Katz and Yung [48] were the first to give scalable protocol for group AKE
along with a rigorous proof of security in the standard model. They also pre-
sented the first efficient compiler that transforms any group KE protocols secure
against a passive eavesdropping to authenticated protocols by signing message
flows. Their compiler adds only one round to the original protocol. However, this
compiler requires each user to have a pair of public and private keys for digital
signature. The (high-entropy) private key is not human-memorable and needs
additional cryptographic devices to store it.

Bellovin and Merritt [14] were the first to consider AKE based on (low-
entropy) password only and introduced a series of so-called “encrypted key
exchange” (EKE) protocols for two-party AKE. A password-based AKE (i.e.,
PAKE) has to be immune to the dictionary attack, in which an adversary ex-
haustively tries all possible passwords from a dictionary in order to determine
the correct one. Even though these attacks are not very effective in the case of
high-entropy keys, they can be very damaging when the secret key is a password
since the attacker has a non-negligible chance of winning. Dictionary attacks are
usually divided into two categories: offline and online dictionary attacks.

Formal models of security for two-party PAKE were firstly given indepen-
dently by Bellare, Pointcheval and Rogaway [11], and Boyko, MacKenzie, Patel
and Swaminathan [21] in 2000. Since then, protocols for two-party PAKE have
been continuously proposed and proven to be secure in either the random oracle
model (e.g.,[26,27,3,4,5]) or the standard model (e.g., [40,46,45]).

Bresson et al. [25,28] were the first to adapt a group KE protocol to the
password-based scenario. As the original protocol, the first group PAKE protocol

194 X. Yi, R. Tso, and E. Okamoto

was not scalable and practical for large groups. In addition, their security proof
required ideal models. Recently, a number of constant-round group PAKE have
been proposed in the literature by Abdalla et al. [2,6], by Bohli et al. [16], and
by Kim, Lee and Lee [49]. All of these constructions are built on the Burmester-
Desmedt protocol [29,31] and are rather efficient. Among them, the works of
Abdalla et al. [6] and Bohli et al. [16] enjoy security proofs in the standard
model.

Most of existing group PAKE protocols assume that users of a group share
the same password, e.g., [25,28,2,6]. In the scenarios where a user wants to
participate in many groups, the number of passwords that he would need to
remember would be linear in the number of possible groups. In order to cut
down the number of passwords that a user has to remember, a couple of group
PAKE protocols [3,4,52] assume that each user shares his own password with a
server, which helps users of a group with establishment of a common secret key
(i.e., a group key). The server is assumed to behave in an “honest but curious”
manner (i.e., the server may attempt to learn the group key only by passive
eavesdropping) and the group key is required to be private to the server. Note
that key distribution protocols usually do not achieve this property. The setting
with different passwords seems to be more practical in the real world than the
setting with the same password.

More recently, Abdalla et al. [1] presented a protocol compiler that transforms
any two-party AKE into a group AKE with two more rounds of communication.
Their idea is inspired by the construction of Burmester and Desmedt [29], where
the trick of constructing a group key from pairwise agreed keys among users of a
group was firstly introduced. In particular, applying this compiler to a two-party
PAKE protocol yields a group PAKE protocol. The primary motivation of this
compiler was the two-party setting. As implied in [48], a compiler tailored from
the group setting scales better than the compiler from two-party setting. This
leads a question, is there any protocol compiler that transforms any group KE
protocol directly to a group PAKE protocol?

Contribution. To the best of our knowledge, there has not yet been any protocol
compiler that can transform any group KE protocol directly into a group PAKE
protocol at present. In this paper, we present such a compiler on the basis of
the “state-of-the-art” identity-based cryptosystem, a public-key cryptosystem in
which an arbitrary string (e.g., user identity) can be used as the public key.

We assume that clients of a group, each of them shares his own password with
an “honest but curious” server, intend to establish a common secret key (i.e., a
group key) with the help of the server, where the key established is required to
be known to the clients only and no one else, including the server.

Note that our setting for PAKE is, in fact, the extension of the three-party
PAKE setting suggested in [3], where two clients do not share a password be-
tween themselves but only with a “honest but curious” server, which helps with
establishing a session key between them, but gains no information on the value
of that session key. For more details of the “honest but curious” server, we can
refer to the work of Abdalla et al. in [3].

ID-Based Group Password-Authenticated Key Exchange 195

Our compiler employs any group KE protocol secure against passive eaves-
dropping, any identity-based encryption scheme (IBE) with chosen-ciphertext
security and any identity-based signature scheme (IBS) with existential unforge-
ability.

The basic idea of our compiler is that users of a group firstly run the group
KE protocol to establish a group key without any help of the server, and then the
server helps users of the group with mutual authentication and key confirmation
by the shared passwords (protected with the IBE scheme), and finally each user
authenticates the server, along with partnered users and the established key
during the group KE, by the IBS scheme.

To analyze the security of our compiler, we put forth a formal model of security
for ID-based PAKE in the group setting, by embedding Boneh et al.’s ID-based
model [17][18] into the group PAKE model given by Bresson et al. in [25,28] and
improved by Abdalla et al. [1].

Our model assumes that all users and servers refer to the common public
parameters including the public key of a Private Key Generator (commonly used
in ID-based model). Thus, our model is between the Halevi-Krawczyk model [42]
(where each user needs to keep the public key of each server or to authenticate
it on the basis of a public key certificate and the public key of a certificate
authority) and the Katz-Ostrovsky-Yung model [48] (where all users and servers
refer the common public parameters only). Different from the Halevi-Krawczyk
model, our model is ID-based, where the public key of a server is its identity
(which is meaningful, like an e-mail address, and easy to remember and keep) and
public key authentication is unnecessary. Thus, the Public Key Infrastructure
(PKI) is not needed in our model. Similar to the Katz-Ostrovsky-Yung model,
our model includes the public key of a parameter generator in the common public
parameters. Although the Katz-Ostrovsky-Yung model assumes that the public
parameter generator uses random numbers as the public key of Cramer-Shoup
cryptosystem [35], the generator can, in fact, choose the private key at first
and then compute the public key without being detected. Furthermore, if the
private key corresponding to the public key in the common public parameters is
compromised, both the Katz-Ostrovsky-Yung protocol and our protocol have to
reset.

We provide a rigorous proof of security for our compiler. Our compiler does not
rely on the random oracle model as long as the underlying primitives themselves
do not rely on it. For example, by using Burmester-Desmedt group KE protocol
[29], Gentry IBE scheme [39], Paterson-Schuldt IBS scheme [54], our compiler
can construct a group PAKE with provable security in the standard model.

Organization. In Section 2, we introduce a new model for ID-based group
PAKE. In Section 3, we present a new ID-based group PAKE compiler. After
that, in Section 3, the brief security proof for our protocol is described. We
conclude this paper in Section 4. In addition, we describe the underlying cryp-
tographic primitives to build our group PAKE in Appendix A.

196 X. Yi, R. Tso, and E. Okamoto

2 Definitions

A formal model of security for group PAKE was firstly given by Bresson et al.
in [25,26] (based on Bellare et al.’s formal model for 2-party PAKE [12]), and
improved by Abdalla et al. in [1].

Boneh and Franklin were the first to define chosen ciphertext security for
IBE under chosen identity attack [17,18]. In this section, we put forward a new
model of security for ID-based group PAKE, on the basis of definitions given by
Bresson et al., Abdalla et al. and Boneh et al.

Participants, Initialization and Passwords. An ID-based group PAKE pro-
tocol involves three kinds of participants: (1) A set of clients (denoted as Client);
(2) A set of servers (denoted as Server), which behave in an honest but curious
manner; (3) A Private Key Generator (PKG), which generates public parameters
and corresponding private keys for servers, and behaves in an honest but curious
manner as well. We assume that ClientServerPair is the set of pairs of the client
and the server, who share a password. In addition, User = Client

⋃
Server and

Client
⋂

Server = ∅.
Prior to any execution of the protocol, we assume that an initialization phase

occurs. During initialization, PKG generates public parameters for the protocol,
which are available to all participants, and issues private keys for each server. The
private keys are related to the identity of the server (which is public, meaningful,
like an e-mail address, and easy to remember or keep). For any pair (A, S) ∈
ClientServerPair, the client A and the server S are assumed to share the same
password pwS

A. We assume that the client A chooses pwS
A independently and

uniformly at random from a “dictionary” D = {pw1, pw2, · · · , pwN} of size N ,
where N is a fixed constant which is independent of the security parameter.
The client then stores his password pwS

A at the server S for authentication, and
remembers or keeps the identity of S for identity-based encryption.

After initialization, a server can be still added to the system as long as it
obtains its private key related to its identity from PKG. A client can join the
system once he shares his password with a server.

Execution of the Protocol. In the real world, a protocol determines how users
behave in response to input from their environments. In the formal model, these
inputs are provided by the adversary. Each user is assumed to be able to execute
the protocol multiple times (possibly concurrently) with different partners. This
is modeled by allowing each user to have unlimited number of instances with
which to execute the protocol. We denote instance i of user U as U i. A given
instance may be used only once. The adversary is given oracle access to these
different instances. Furthermore, each instance maintains (local) state which is
updated during the course of the experiment. In particular, each instance U i

has associated with it the following variables, initialized as NULL or FALSE (as
appropriate) during the initialization phase.

– sidi
U and pidi

U are variables (initialized as NULL) denoting the session identity
and partner identity for an instance, respectively. The session identity sidi

U is

ID-Based Group Password-Authenticated Key Exchange 197

simply a way to keep track of the different executions of a particular user U .
The partner identity pidi

U is the set of user instances with whom U i believes
it is interacting to establish a session key (including U i itself).

– acci
U and termi

U are boolean variables (initialized as FALSE) denoting if a
given instance has been accepted or terminated, respectively. Termination
means that the given instance has done receiving and sending messages,
acceptance indicates successful termination. In our case, acceptance means
that the instance is sure that a group key has been established, thus, when
an instance U i accepts, sidi

U and pidi
U are no longer NULL.

– usedi
U is a boolean variable (initialized as FALSE) denoting whether an in-

stance has begun executing the protocol. This is a formalism which will
ensure each instance is used only once.

– statei
U (initialized as NULL) records any state necessary for execution of the

protocol by a user instance U i.
– ski

A is a variable (initialized as NULL) denoting the session key for a client
instance Ai. Computation of the session key is, of course, the ultimate goal of
the protocol. When Ai accepts (i.e., acci

A = TRUE), ski
A is no longer NULL.

The adversary A is assumed to have complete control over all communications
in the network and the adversary’s interaction with the users (more specifically,
with various instances) or PKG is modeled via access to oracles which we describe
now. The state of an instance may be updated during an oracle call, and the
oracle’s output may depend upon the relevant instance. The oracle types are as
follows:

– Execute(Ai1
1 , Ai2

2 , · · · , Ain
n , Sj) – If Ai�

� and Sj have not yet been used (where
A� ∈ Client, S ∈ Server, (A�, S) ∈ ClientServerPair, � = 1, 2, · · · , n), this
oracle executes the protocol among these instances and outputs the tran-
script of this execution. This oracle call represents passive eavesdropping of
a protocol execution. In addition to the transcript, the adversary receives
the values of sid, pid, acc, and term for all instances, at each step of protocol
execution.

– Send(U i, M) – This sends message M to instance U i. Assuming termi
U =

FALSE, this instance runs according to the protocol specification, updating
state as appropriate. The output of U i (i.e., the message sent by the instance)
is given to the adversary, who receives the updated values of sidi

U , pidi
U , acci

U ,
and termi

U . This oracle call models the active attack to a protocol.
– KeyGen(PKG, S) – This sends the identity of the server S to PKG, which

generates private keys dS corresponding to the identity of S and forwards
it to the adversary. This oracle models possible compromising of a server
due to, for example, hacking into the server. This implies that all passwords
stored in the server are disclosed as well.

– Corrupt(A) – This query allows the adversary to learn the passwords of the
client A, which models the possibility of subverting a client by, for example,
witnessing a user type in his password, or installing a “Trojan horse” on his
machine. This implies that all passwords held by A are disclosed.

198 X. Yi, R. Tso, and E. Okamoto

– Reveal(Ai) – This outputs the current value of session key ski
A for a client

instance if acci
A = TRUE. This oracle call models possible leakage of ses-

sion keys due to, for example, improper erasure of session keys after use, or
cryptanalysis.

– Test(Ai) – This oracle does not model any real-world capability of the ad-
versary, but is instead used to define security of the session key of client
instance Ai. If acci

A = TRUE and ski
A �= NULL, a random bit b is generated.

If b = 0, the adversary is given ski
A, and if b = 1 the adversary is given a

random session key. The adversary is allowed a single Test query, at any time
during its execution.

A passive adversary is given access to the Execute, KeyGen, Reveal, Corrupt, and
Test oracles, while an active adversary is additionally given access to the Send
oracles. We assume that all servers and the PKG behave in a honest but curious
manner. We can imagine a server or the PKG as a passive adversary who have
already queried a KeyGen oracle to retrieve the server’s private keys and all
passwords stored in it. In addition, we assume that all servers and the PKG
have no access to any form of Send oracles. In the definition of Execute and Send
oracles, we reasonably require that A1, A2, · · · , An share different passwords with
the same server S.

Partnering. We say that client instances Ai and Bj are partnered if (1) pidi
A =

pidj
B �= NULL; (2) sidi

A = sidj
B �= NULL; (3) ski

A = skj
B �= NULL; and (4)

acci
A = acci

B = TRUE.

Correctness. To be viable, an authenticated group key exchange protocol must
satisfy the following notion of correctness: At the presence of both passive and
active adversaries, for any two client instances Ai and Bj , if sidi

A = sidj
B �= NULL

and acci
A = accj

B = TRUE, then it must be the case that ski
A = skj

B �= NULL

(i.e., they conclude with the same session key) and pidi
A = pidj

B �= NULL (i.e.,
they conclude with the same group).

Freshness. Informally, the adversary succeeds if it can guess the bit b used by a
Test oracle. Before formally defining the adversary’s success, we must first define
a notion of freshness. A client instance Ai is fresh unless one of the following is
true at the conclusion of the experiment, namely, at some point,

– The adversary queried Reveal(Ai) or Reveal(Bj) with the client instances Ai

and Bj being partnered.
– The adversary queried KeyGen(PKG, S) where there exists a server instance

Sj ∈ pidi
A, before a query of the form Send(U �, M), where U � ∈ pidi

A, has
taken place, for some message M (or identities).

– The adversary queried Corrupt(A) or Corrupt(B) where there is a client in-
stance Bj ∈ pidi

A, before a query of the form Send(U �, M), where U � ∈ pidi
A,

has taken place, for some message M (or identities).

Note that a passive adversary (e.g., the server or the PKG) has no access to any
Send oracles. Therefore, a client instance is fresh to a passive adversary as long
as the first event did not happen.

ID-Based Group Password-Authenticated Key Exchange 199

The adversary is thought to succeed only if its Test query is made to a fresh
instance. Note that this is necessary for any reasonable definition of security,
otherwise, the adversary could always succeed, e.g., submitting a Test query for
an instance for which it had already submitted a Reveal query.

Advantage of the adversary. We say an adversary A succeeds if it makes a
single query Test(Ai) to a fresh client instance Ai, with acci

A = TRUE at the
time of this query, and outputs a single bit b′ with b′ = b (recall that b is the
bit chosen by the Test oracle). We denote this event by Succ. The advantage of
adversary A in attacking protocol P is a function in the security parameter k,
defined as

AdvP
A(k) = 2 · PrPA[Succ]− 1

where the probability is taken over the random coins used by the adversary and
the random coins used during the course of the experiment (including the ini-
tialization phase). It remains to define what we mean by a secure protocol. Note
that a probabilistic polynomial-time (PPT) adversary can always succeed by
trying all passwords one-by-one in an online impersonation attack. This is possi-
ble since the size of the password dictionary is constant. Informally, a protocol is
secure if this is the best an adversary can do. Formally, an instance U i represents
an online attack if both the following are true at the time of the Test query: (1)
at some point, the adversary queried Send(U i, ∗), and (2) at some point, the
adversary queried Reveal(Aj) or Test(Aj), where the client instance Aj ∈ pidi

U .
In particular, instances with which the adversary interacts via Execute, KeyGen,
Reveal and Corrupt queries are not counted as online attacks. The number of
online attacks represents a bound on the number of passwords the adversary
could have tested in an online fashion.

Definition 1. Protocol P is a secure protocol for password-authenticated key
exchange if, for all dictionary size N and for all PPT adversaries A making at
most Q(k) online attacks, there exists a negligible function ε(·) such that

AdvP
A(k) ≤ Q(k)/N + ε(k)

The above definition ensures that the adversary can (essentially) do no better
than guess a single password during each online attack. Calls to the Execute,
KeyGen, Reveal and Corrupt oracles, which are not included in Q(k), are of no
help to the adversary in breaking the security of the protocol.

Forward secrecy. We follow the definition of forward secrecy from [47,1] and
consider the weak corrupt model of [12]. An adversary can corrupt a client (i.e.,
retrieving his password via Corrupt query) or corrupt a server(i.e., retrieving both
its private key and all passwords stored in it via KeyGen query). After that, as
long as the adversary does not query Send or Reveal oracles, he can still make
a Test query on a client instance. If such queries do not give the adversary any
information about previous agreed session keys, forward secrecy is achieved.

Key privacy with respect to the server. The notion of key privacy respect
to the server was introduced in the three-party setting [3] to capture the idea

200 X. Yi, R. Tso, and E. Okamoto

where the session key shared between two client instances should only be known
to these two instances and no one else, including the server, who behaves in an
honest but curious manner. In our model, a server or the PKG can be imagined
as an adversary who has already queried a KeyGen oracle but never queries Send
oracle. If such queries do not give the server any information about the session
key, key privacy with respect to the server is achieved. In fact, forward secrecy
implies key privacy with respect to the server.

3 An Efficient Compiler for Group PAKE

3.1 Description of the Compiler

In this section, we present an efficient compiler transforming any group KE
protocol P to a group PAKE protocol P ′. Following the communication model
given in [48], we assume that every message is sent - via point-to-point links -
to every user of the group taking part in the execution of the protocol P , in
other word, Ai sends each message to all users in the group. For simplicity, we
refer to this as “broadcasting message”, but stress that we do not assume a
broadcast channel and, in particular, an active adversary can deliver different
messages to different users of the group or refuse to deliver a message to some
of participants.

Round 0 (Group Key Exchange (P))

Clients A�, 	 = 1, 2, · · · , n

(sidP
A1 |skP

A1 , sidP
A2 |skP

A2 , · · · , sidP
An

|skP
An

) ← ExecuteP (A1, A2, · · · , An)

pidA�
← (A1, A2, · · · , An)

Round 1 (Client Authentication)

Client A�, 	 ∈ {1, 2, · · · , n}, pidA�
← pidA�

∪ {S}, sidA� ← h(gskP
A� |sidP

A�
)

Auth� ← EIDS [H(sidA� |pidA�
|pwS

A�
)]

{S} ⇐ msgA�
= A�|sidA� |Auth�

Server S, pidS ← (A1, A2, · · · , An, S), sidS ← sidA1

If ∃	 such that DdS [Auth�] �= H(sidS |pidS |pwS
A�

), then return ⊥
Round 2 (Server Authentication)

Server S

AuthS ← Sd′
S
[pidS |sidS]

{A1, A2, · · · , An} ⇐ msgS = S|AuthS

Client A�, 	 = 1, 2, · · · , n
If VIDS [pidA�

|sidA� , AuthS] �= 1, then return ⊥
Else accept ← TRUE, skP ′

A�
← g

skP
A�

2

Fig. 1. ID-based group PAKE protocol P ′

ID-Based Group Password-Authenticated Key Exchange 201

Given a group KE protocol P , our compiler constructs a group PAKE protocol
P ′ as shown in Fig. 1, in which n clients A1, A2, · · · , An (in lexicographic order)
establish a common authenticated secret key (i.e., a group key) with the help of a
server S.

A completely formal specification of the group PAKE protocol will appear in
Section 4, where we give a brief proof of security for the protocol in the security
model described in Section 2.

We present the protocol by describing initialization and execution. In our
protocol, the cryptographic building blocks include a group KE protocol, an
IBE scheme and an IBS scheme, which are described in Appendix A. We assume
that the group KE protocol requires neither public nor private keys. Otherwise,
clients needs to remember their private keys besides passwords. This contradicts
with our model, where clients needs to remember their passwords only. We let
k be the security parameter given to the setup algorithm.

Initialization. Given a security parameter k ∈ Z∗, the initialization includes:

Parameter Generation: On input k, (1) PKG runs SetupP of the group KE proto-
col P to generate system parameters, denoted as paramsP ; (2) PKG runs SetupE

of the IBE scheme to generate public system parameters for the IBE scheme,
denoted as paramsE , and the secret master-keyE for itself; (3) PKG runs SetupS

of the IBS scheme to generate public system parameters for the IBS scheme, de-
noted as paramsS , and the secret master-keyS for itself; In addition, PKG chooses
two hash functions H : {0, 1}∗ → M (where M is the plaintext space of IBE)
and h : {0, 1}∗ → {0, 1}λ from a collision-resistant hash family, and a large
cyclic group G with a prime order q and a generator g. We assume that group
keys established by the group KE protocol P fall into Z∗

q . The public system
parameters for the protocol P ′ is params = {H, h, G, q, g}

⋃
paramsP,E,S and the

secret (master-keyE , master-keyS) known only to PKG.

Key Generation: On input the identity IDS of a server S ∈ Server, params, and
(master-keyE , master-keyS), PKG runs ExtractE of the IBE scheme and sets the
decryption key of S to be dS, and runs ExtractS of the IBS scheme and sets the
signing key of S to be d′S.

Password Generation: On input (A, S) ∈ ClientServerPair, a string pwS
A, the pass-

word, is uniformly drawn from the dictionary Password = {pw1, pw2, · · · , pwN},
and shared by A and S. We implicitly assume that N < q, which will certainly
be true in practice.

Protocol Execution. A group of clients A1, A2, · · · , An (in lexicographic or-
der), each of them shares a password pwS

A�
with a server S (� = 1, 2, · · · , n), run

the protocol to establish a common secret key (i.e., a group key) via S. At first,
they run the group KE protocol P and each client A� derives the initial group
key skP

A�
. In addition, let sidP

A�
be the (ordered) concatenation of all messages

sent and received by the client A�.
Note that the clients may not be authentic and the initial group key derived

by different clients in the same session may not be equal. Next, mutual authen-
tication and key confirmation run as follows.

202 X. Yi, R. Tso, and E. Okamoto

Each client A� computes sidA�
= h(gskP

A� |sidP
A�

) and encrypts H(sidA�
|pidA�

|pwS
A�

) on the basis of the identity IDS of the server, where pidA�
= (A1, A2, · · · ,

An, S). The encryption result is denoted as Auth�. Then A� submits msgA�
=

A�|sidA�
|Auth� to the server S.

Upon receiving all messages msgA�
(� = 1, 2, · · · , n), the server S lets sidS =

sidA1 , pidS = (A1, A2, · · · , An, S) and decrypts the ciphertexts with its decryp-
tion key dS, and verifies whether

DdS
[Auth�] = H(sidS |pidS |pwS

A�
) (1)

If equation (1) holds for � = 1, 2, · · · , n, S generates a signature AuthS =
Sd′

S
[pidS |sidS] with its signing key d′S and then broadcasts msgS = S|AuthS .
Upon receiving msgS, each client A� verifies if

VIDS
[pidA�

|sidA�
, AuthS] = 1 (2)

If equation (2) holds, A� computes the final authenticated group key, that is,

skP ′
A�

= gskP
A�

2

.

3.2 Correctness, Explicit Authentication, Trust Model and
Efficiency

Correctness. At the presence of both passive and active adversaries, for
any two clients Ai and Aj , if sidAi = sidAj �= NULL, i.e., h(gskP

Ai |sidP
Ai

) =

h(gskP
Aj |sidP

Aj
). Because h is a collision-resistant hash function, we have gskP

Ai =

g
skP

Aj . Thus, skP
Ai

= skP
Aj

and then gskP
Ai

2

= g
skP

Aj

2

, i.e., skP ′
Ai

= skP ′
Aj

; If accAi =
accAj = TRUE, the signature of the server on pidS |sidS (= pidAi

|sidAi = pidAj

|sidAj) ensures that pidAi
= pidAj

. Thus, our protocol meets correctness.

Explicit authentication. By verifying equation (1) which involves the pass-
word pwS

A�
, the partner identity pidS and the initial group key skP

A�
for � =

1, 2, · · · , n, the server S can make sure the authenticity of each client A� and the
agreement of the same initial group key. By verifying equation (2) which involves
the signature of the server, each client A� is convinced of the authenticity of the
server S, other partners and the initial group key. If both equations (1) and (2)
hold for � = 1, 2, · · · , n, all clients are legitimate, the initial group key is genuine
and thus the final group key gskP

A�

2

is authentic. This shows that the group PAKE
protocol P ′ achieves explicit authentication, that is, when accAi = TRUE, the
client Ai knows that its intended partners have successfully computed a match-
ing session key (i.e, a group key).

Trust model. The protocol compiler for group PAKE given by Abdalla et
al. [1] is applicable where each user of the group is honest. If two adjacent
users are dishonest, they can conspire to include one (or several) impersonating
attacker(s) between them, while other users are unaware of this attack. Our
compiler assumes that there exist “honest but curious” servers, which are trusted

ID-Based Group Password-Authenticated Key Exchange 203

to authenticate users of the group, but may perform passive attacks on the
protocol to retrieve the group key. In terms of trust management, we believe
that our compiler is more practical than Abdalla et al.’s compiler.

Efficiency consideration. The efficiency of our group PAKE protocol depends
on performance of the underlying group KE protocol, IBE and IBS schemes. Only
two rounds are added to the original group KE protocol P . In these two rounds,
each client sends out one message and receives one message only. This compiler
adds only O(1) communication (per client) to the original group KE protocol.
If our compiler employs Burmester-Desmedt group key exchange protocol, our
group PAKE protocol has 4 rounds only. The communication cost of each client
is O(2n) bits, where n is the number of clients. If Abdalla et al.’s compiler em-
ploys KOY 2-PAKE protocol [46] and constructs the commitment scheme with
Cramer-Shoup public key encryption scheme [35], their group PAKE protocol
has 5 rounds. The communication cost of each user is O(6n) bits. In this sense,
we believe that our compiler is more efficient than Abdalla et al.’s compiler.
Note that we take into account cryptographic blocks with provable security in
the standard model only.

4 Proof of Security

First of all, we provide a formal specification of the group PAKE protocol by
specifying the initialization phase and the oracles to which the adversary has
access, as shown in Fig. 2−4.

During the initialization phase for security parameter k, algorithm Initialize
generates params = {H, h, G, q, g}

⋃
paramsP

⋃
paramsE

⋃
paramsS and the se-

cret (master-keyE , master-keyS) at first. Furthermore, the sets Client, Server, and
ClientServerPair are determined. Passwords for clients are chosen at random, and
then stored at corresponding servers.

The description of the Execute oracle matches the high-level protocol described
in Fig. 1, but additional details (for example, the updating of state information)

Initialize(1k)

(paramsP,E,S , master-keyE,S) R← SetupP,E,S(1k)

(Client, Server, ClientServerPair) R← UserGen(1k)

(G, q, g) R← GGen(1k), {H, h} R← CRHF(1k)

For each i ∈ {1, 2, · · ·} and each U ∈ User

acci
U ← termi

U ← usedi
U ← FALSE, sidi

U ← pidi
U ← ski

U ← NULL

For each S ∈ Server, dS, d
′
S ← ExtractE,S(IDS , paramsE,S , master-keyE,S)

For each (A, S) ∈ ClientServerPair, pwS
A

R← {pw1, pw2, · · · , pwN}
Return Client, Server, ClientServerPair, H, h, G, q, g, paramsP,E,S

Fig. 2. Specification of the initialize

204 X. Yi, R. Tso, and E. Okamoto

Execute(Ai1
1 , · · · , Ain

n , Sj), where A� ∈ Client, S ∈ Server

If (∃	 such that (A�, S) �∈ ClientServerPair ∨ usedi�
A�

) ∨ usedj
S , return ⊥

usedi�
A�

← usedj
S ← TRUE, pidi�

A�
← pidj

S ← {Ai1
1 , · · · , Ain

n , Sj}, 	 = 1, 2, · · · , n
(sidP

A1 |skP
A1 , sidP

A2 |skP
A2 , · · · , sidP

An
|skP

An
) ← ExecuteP (Ai1

1 , Ai2
2 , · · · , Ain

n)

sidi�
A�

← h(gskP
A� |sidP

A�
), Auth� ← EIDS [H(sidi�

A�
|pidi�

A�
|pwS

A�
)]

msgA�
← A

i�
� |sidi�

A�
|Auth�, 	 = 1, 2, · · · , n

sidj
S ← sidi1

A1
, AuthS ← Sd′

S
[pidj

S |sidj
S], msgS ← Sj |AuthS

acci�
A�

← termi�
A�

← accj
S ← termj

S ← TRUE, ski�
A�

← g
skP

A�

2

, 	 = 1, 2, · · · , n
Return statusi1

A1
, · · · , statusin

An
, statusj

S

KeyGen(PKG, S)
Return dS, d

′
S and pwS

A for any A

Corrupt(A)
Return pwS

A for any S

Reveal(Ai)
Return ski

A

Test(Ai)
b

R← {0, 1}, sk′ R← G. If b = 1 return sk′ else return ski
A

Fig. 3. Specification of the Execute, KeyGen, Corrupt, Reveal, Test oracles

are included. We let statusi
U denote the vector of values (sidi

U , pidi
U , acci

U , termi
U)

associated with instance U i.
Given an adversary A, we imagine a simulator that runs the protocol for A.

More preciously, the simulator begins by running algorithm Initialize(1k) (which
includes choosing passwords for clients) and giving the public output of the
algorithm to A.

When A queries an oracle, the simulator also responds by executing the ap-
propriate algorithm. The simulator also records all state information defined
during the course of the experiment.

In particular, when the adversary completes its execution and outputs a bit
b′, the simulator can tell whether the adversary succeeds by checking whether
(1) a single Test query was made, for some client instance U i; (2) acci

U was true
at the time of Test query; (3) instance U i is fresh; and (4) b′ = b. Success of the
adversary is denoted by event Succ. For any experiment P ′ we define

AdvP ′
A (k) = 2 · PrP

′
A [Succ]− 1

Based on the model described in Section 2, we have

Theorem 1. Assume that (1) the group KE protocol is secure against passive
eavesdropping; (2) the IBE scheme is secure against the chosen-ciphertext attack;
(3) the IBS scheme is existential unforgeability under the chosen-message attack;
(4) the squaring decisional Diffie-Hellman (SDDH) problem is hard over a cyclic
group G with a prime order q and a generator g; (5) CRHF is a collision-resistant
hash family; then the protocol P ′ described in Fig. 1 is a secure group PAKE
protocol.

ID-Based Group Password-Authenticated Key Exchange 205

Send0(A
i�
� , (Ai1

1 , · · · , Ain
n))

If usedi�
A�

, return ⊥
usedi�

A�
← TRUE

· · · · · · · · ·
Send′

0(A
i�
� , Sj)

If ¬usedi�
A�

∨ (A�, S) �∈ ClientServerPair ∨ termi�
A�

, return ⊥
pidi�

A�
← {Ai1

1 , · · · , Ain
n , Sj}, sidi�

A�
← h(gskP

A� |sidP
A�

)

Auth� ← EIDS [H(sidi�
A�

|pidi�
A�

|pwS
A�

)]

MsgOut ← A
i�
� |sidi�

A�
|Auth�, state

i�
A�

← (pidi�
A�

, skP
A�

, MsgOut)

Return statusi�
A�

Send′
1(Sj , (Ai�

� |sidi�
A�

|Auth�)�=1,2,···,n)

If (∃	 such that (A�, S) �∈ ClientServerPair) ∨ usedj
S , return ⊥

usedj
S ← TRUE, pidj

S ← {Ai1
1 , Ai2

2 , · · · , Ain
n , Sj}, sidj

S ← sidi1
A1

If ∃	 such that DdS [Auth�] �= H(sidj
S |pidj

S |pwS
A�

), reject and return statusj
S

AuthS ← Sd′
S
[pidj

S |sidj
S], accj

S ← termj
S ← TRUE, MsgOut ← Sj |AuthS

Return statusj
S

Send′
2(A

i�
� , Sj |AuthS)

statei�
A�

← (pidi�
A�

, skP
A�

, FirstMsgOut)

If ¬usedi�
A�

∨ termi�
A�

∨ (Sj �∈ pidi�
A�

), return ⊥
If VIDS [pidi�

A�
|sidi�

A�
, AuthS] �= 1, reject and return statusi�

A�

acci�
A�

← termi�
A�

← TRUE, ski�
A�

← g
skP

A�

2

Return statusi�
A�

Fig. 4. Specification of the Send oracles

We follow the methods of the security proofs given in [48,46] to prove the
security of our compiler without random oracles. The detail proof of Theorem 1
can be provided upon request.

Note: The squaring decisional Diffie-Hellman (SDDH) problem is detailed in
Appendix A.

5 Conclusion

In this paper, we present an efficient compiler to transform any group KE proto-
col to a group PAKE protocol from identity-based cryptosystem. In addition, we
can provide a rigorous proof of security for our compiler. As long as our group
PAKE protocol is built on a group KE protocol, and IBE and IBS schemes with
provable security without random oracles, it can be proven to be secure without
random oracles.

206 X. Yi, R. Tso, and E. Okamoto

References

1. Abdalla, M., Bohli, J.-M., González Vasco, M.I., Steinwandt, R. (Password) au-
thenticated key establishment: From 2-party to group. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 499–514. Springer, Heidelberg (2007)

2. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based group
key exchange in a constant number of rounds. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006)

3. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

4. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key ex-
change in the three-party setting. In: IEE Proceedings in Information Security,
vol. 153(1), pp. 27–39 (2006)

5. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005)

6. Abdalla, M., Pointcheval, D.: A scalable password-based group key exchange pro-
tocol in the standard model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 332–347. Springer, Heidelberg (2006)

7. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key agreement and
friends. In: Proc. CCS 1998, pp. 17–26 (1998)

8. Ateniese, G., Steiner, M., Tsudik, G.: New multi-party authentication services and
key agreement protocol. IEEE Journal on Selected Areas in Communications 4(18),
628–639 (2000)

9. Bao, F., Deng, R.H., Zhu, H.: Variations of diffie-hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

10. Becker, C., Wille, U.: Communication complexity of group key distribution. In:
Proc. CCS 1998, pp. 1–6 (1998)

11. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocol. In: Proc. 30th Annual ACM
Symposium on Theory of Computing, pp. 419–428 (1998)

12. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

13. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1993)

14. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocol
secure against dictionary attack. In: Proc. 1992 IEEE Symposium on Research in
Security and Privacy, May 1992, pp. 72–84 (1992)

15. Bird, R., Gopal, I., Herzberg, A., Janson, P., Kutten, S., Molva, R., Yung, M.:
Systematic design of two-party authentication protocols. IEEE Journal on Selected
Areas in Communications 11(5), 679–693 (1993)

16. Bohli, J.M., Vasco, M.I.G., Steinwandt, R.: Password-authenticated constant-
round group key establishment with a common reference string. Cryptology ePrint
Archive, Report 2006/214 (2006), http://eprint.iacr.org/

http://eprint.iacr.org/

ID-Based Group Password-Authenticated Key Exchange 207

17. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

18. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

19. Boyd, C.: On key agreement and conference key agreement. In: Mu, Y., Pieprzyk,
J.P., Varadharajan, V. (eds.) ACISP 1997. LNCS, vol. 1270, pp. 294–302. Springer,
Heidelberg (1997)

20. Boyd, C., Nieto, J.M.G.: Round-optimal contributory conference key agreement.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer, Hei-
delberg (2003)

21. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

22. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group diffie-
hellman key exchange - the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)

23. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proc. CCS 2001, pp. 255–264 (2001)

24. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group diffie-hellman key ex-
change under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)

25. Bresson, E., Chevassut, O., Pointcheval, D.: Group diffie-hellman key exchange
secure against dictionary attacks. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 497–514. Springer, Heidelberg (2002)

26. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: Proc. CCS 2003, pp. 241–250 (2003)

27. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)

28. Bresson, E., Chevassut, O., Pointcheval, D.: A security solution for IEEE 802.11s
ad-hoc mode: password-authentication and group-Diffie-Hellman key exchange. In-
ternational Journal of Wireless and Mobile Computing 2(1), 4–13 (2007)

29. Burmester, M., Desmedt, Y.G.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

30. Burmester, M., Desmedt, Y.G., Seberry, J.: Equitable key escrow with limited time
span. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 380–391.
Springer, Heidelberg (1998)

31. Burmester, M., Desmedt, Y.: A secure and scalable group key exchange system.
Information Processing Letters 94(3), 137–143 (2005)

32. Canetti, R., Krawczyk, H.: Key-exchange protocols and their use for building secure
channels. In: Proc. Eurocrypt 2001, pp. 453–474 (2001)

33. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002)

34. Canetti, R., Krawczyk, H.: Security analysis of iKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002)

35. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

208 X. Yi, R. Tso, and E. Okamoto

36. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 32(2), 644–654 (1976)

37. Diffie, W., van Oorschot, P., Wiener, M.: Authentication and authenticated key
exchange. Designs, Codes, and Cryptography 2(2), 107–125 (1992)

38. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006)

39. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

40. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

41. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attack. SIAM J. Computing 17(2), 281–308 (1988)

42. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Transactions on Information and System Security 2(3), 230–268 (1999)

43. Ingemarsson, I., Tang, D.T., Wong, C.K.: A conference key distribution system.
IEEE Transactions on Information Theory 28(5), 714–720 (1982)

44. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Proc. Asi-
acrypt 1996, pp. 36–49 (1996)

45. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004)

46. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

47. Katz, J., Ostrovsky, R., Yung, M.: Forward secrecy in password-only key exchange
protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 29–44. Springer, Heidelberg (2003)

48. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

49. Kim, H.-J., Lee, S.-M., Lee, D.-H.: Constant-round authenticated group key ex-
change for dynamic groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 245–259. Springer, Heidelberg (2004)

50. Kim, Y., Perig, A., Tsudik, G.: Simper and fault-tolerant key agreement for dy-
namic collaborative groups. In: Proc. CCS 2000, pp. 235–244 (2000)

51. Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement.
In: Proc. IFIP TC11 16th Annual Working Conference on Information Security
(IFIP/SEC), pp. 229–244 (2001)

52. Kown, J.O., Jeong, I.R., Sakurai, K., Lee, D.H.: Password-authenticated multi-
party key exchange with different passwords. Cryptology ePrint Archive, Report
2006/476, http://eprint.iacr.org

53. Maurer, U.M., Wolf, S.: Diffie-hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

54. Paterson, K.G., Schuldt, J.C.N.: Efficient identity-based signatures secure in the
standard model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 207–222. Springer, Heidelberg (2006)

55. Patel, S.: Number-theoretic attack on secure password scheme. In: Proc. IEEE
Symposium on Research in Security and Privacy, pp. 236–247 (1997)

http://eprint.iacr.org

ID-Based Group Password-Authenticated Key Exchange 209

56. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Errors in computational complexity proofs
for protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 624–643.
Springer, Heidelberg (2005)

57. Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.: A secure audio teleconference
system. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528.
Springer, Heidelberg (1998)

58. Steiner, M., Tsudik, G., Widner, M.: Key agreement in dynamic peer groups. IEEE
Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)

59. Tzeng, W.-G.: A practical and secure fault-tolerant conference-key agreement pro-
tocol. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 1–13. Springer,
Heidelberg (2000)

60. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

6 Appendix A: Cryptographic Building Blocks

6.1 Group Key Exchange

A group key exchange (KE) protocols allow users of a group communicating
over an insecure public network to establish a common secret key (i.e., a group
key), where the shared secret key is derived by two or more users as a function
of the information contributed by, or associated with, each of these, (ideally)
such that no user can predetermine the resulting key. They are intended to be
secure against the passive adversary only. A passive adversary is given access to
the Execute, Reveal, and Test oracles as defined in Section 2. In the definition
of Execute oracle, we reasonably require that different executions yield different
group session keys.

We say a passive adversary A succeeds if it makes a single query Test(Ai)
to a fresh instance Ai (i.e., no Reveal oracle is queried to Ai and his partnered
instances), and outputs a single bit b′ with b′ = b (recall that b is the bit chosen
by the Test oracle). We denote this event by Succ. The advantage of a passive
adversary A in attacking a group KE protocol P is a function in the security
parameter k, defined as AdvP

A(k) = 2 · PrPA[Succ]− 1.
A group KE protocol P is secure against passive eavesdropping if no polyno-

mial bounded adversary A has a non-negligible advantage in attacking it.
The group KE protocols proposed by Ingemarsson et al. [43], Burmester and

Desmedt [29], and Steiner et al. [58] may be the most well-known. Among them,
Burmester-Desmedt protocol has been shown to be secure against passive eaves-
dropping in the standard model by Katz and Yung [48].

6.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme is specified by four randomized al-
gorithms: Setup, Extract, Encrypt, Decrypt as follows.

– Setup: On input a security parameter k, it returns params (public system
parameters) and master-key (known only to the “Private Key Generator”).

210 X. Yi, R. Tso, and E. Okamoto

– Extract: On inputs params, master-key and a public identity ID ∈ {0, 1}∗, it
returns a private key dID.

– Encrypt: On inputs params, ID, and a message M ∈ M (the plaintext space),
it returns a ciphertext C ∈ C (the ciphertext space).

– Decryption: On inputs params, C ∈ C, and a private key dID, it returns
M ∈M.

Chosen ciphertext security is the standard acceptable notion of security for a
public key encryption scheme. An IBE scheme is semantically secure against the
adaptive chosen ciphertext attack if no polynomial bounded adversary A has a
non-negligible advantage against the challenger in the following game:

– Initialize: The challenger runs the Setup algorithm, gives params to the
adversary, but keeps the master-key to itself.

– Phase 1: The adversary adaptively asks a number of different queries q1, q2,
· · · , qm, where qi is either Extract(IDi) or Decrypt(IDi, Ci).

– Challenge: Once the adversary decides that Phase 1 is over, it outputs a pair
of equal length plaintexts (M0, M1) and an identity ID on which it wishes to
be challenged, where ID must not appear in Phase 1. The challenger picks
a random bit b ∈ {0, 1} and sends C = Encrypt(ID, Mb) as the challenge to
the adversary.

– Phase 2: The adversary issues more queries qm+1, qm+2, · · · , qn adaptively
as in Phase 1, except that the adversary may not request a private key for
ID or the decryption of (ID, C).

– Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game
if b′ = b.

We define the adversaryA’s advantage in attacking the IBE scheme as a function
of the security parameter k, AdvE

A(k) = |PrEA[b′ = b] − 1/2|, where the proba-
bility is over the random bits used by the challenger and the adversary. The
most efficient identity-based encryption schemes are currently based on bilinear
pairings on elliptic curves, such as the Weil or Tate pairings. Boneh and Franklin
[17,18] were the first to give an IBE scheme from Weil pairing and prove it to be
adaptive chosen-ciphertext security in the random oracle model. More recently,
several new IBE schemes from pairing (e.g., [60][39]) were proposed and proven
to be adaptive chosen-ciphertext security in the standard model. A common fea-
ture of the latest IBE schemes is that the plaintext space is a cyclic group of
prime order.

6.3 Identity-Based Signature

An identity-based signature (IBS) scheme can be described by four algorithms
Setup, Extract, Sign, Verify as follows.

– Setup: On input a security parameter k, it returns params (public system
parameters) and master-key (known only to the “Private Key Generator”).

ID-Based Group Password-Authenticated Key Exchange 211

– Extract: Given params, master-key and a public identity ID ∈ {0, 1}∗, it re-
turns a private key dID.

– Sign: Given a message M , params, ID and a private key dID, it generates a
signature σ of the user (with identity ID) on M .

– Verify: Given a signature σ, a message M , and params, ID, it outputs accept
if σ is a valid signature of the user (with identity ID) on M , and outputs
reject otherwise.

An IBS scheme is existential unforgeability under the chosen message attack [41]
if no polynomial bounded adversary A has a non-negligible advantage against
the challenger in the following game:

– Initialize: The challenger runs the Setup algorithm, gives params to the
adversary, but keeps the master-key to itself.

– Queries: The adversary adaptively asks a number of different queries q1, q2,
· · · , qm, where qi is either Extract(IDi) or Sign(IDi, M).

– Forgery: Once the adversary decides that queries are over, it outputs a
message M ′, an identity ID′ and a string σ′. The adversary succeeds (denoted
as Succ) if Verify(ID′, M ′, σ′) = 1, where ID′ cannot appear in Extract queries
and (ID′, M ′) cannot appear in Sign queries.

We define the adversaryA’s advantage in attacking the IBS scheme as a function
of the security parameter k, AdvS

A(k) = PrSA[Succ], where the probability is over
the random bits used by the challenger and the adversary.

A generic approach to construct IBS schemes is to use an ordinary (i.e., non-
identity-based) signature scheme and simply attach a certificate containing the
public key of the signer to the signature [38]. An IBS scheme with provable
security in the standard model was given by Paterson and Schuldt in [54].

6.4 Squaring Decisional Diffie-Hellman Problem

The squaring computational Diffie-Hellman (SCDH) problem in a cyclic group
G with a prime order q and a generator g is: Given g, ga where a is randomly
chosen from Z∗

q , determine ga2
. The problem is as hard as Diffie-Hellman problem

[53,30,9].
The squaring decisional Diffie-Hellman (SDDH) problem in a cyclic group G

with a prime order q and a generator g is to distinguish between two distributions
(g, ga, ga2

) and (g, ga, z), where a is randomly chosen from Z
∗
q and z is randomly

chosen from G. This problem is not harder than the decisional DH problem, but
it is believed that this problem can still be hard, that is, we can assume that the
advantage of any PPT algorithm A that outputs b ∈ {0, 1} in solving the SDDH
problem is negligible, namely,

|Pr[A(g, ga, ga2
) = 0]− Pr[A(g, ga, z) = 0]|

is negligible, where the probability is over the random choice of a in Z∗
q and z in

G, and the random bits consumed by A.

A Proposal of Efficient Remote Biometric
Authentication Protocol

Taiki Sakashita1, Yoichi Shibata2, Takumi Yamamoto2, Kenta Takahashi3,
Wakaha Ogata4, Hiroaki Kikuchi5, and Masakatsu Nishigaki2

1 Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1, Tenoudai Tsukuba science city, Ibaraki 305-0006, Japan

sakashita@cipher.risk.tsukuba.ac.jp
2 Graduate School of Science and Technology, Shizuoka University,

3-5-1 Johoku, Hamamatsu-shi, Naka-ku, Shizuoka-ken, 432-8011, Japan
f5745037@ipc.shizuoka.ac.jp, nisigaki@inf.shizuoka.ac.jp

3 Hitachi, Ltd., System Development, Lab.,
292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0817, Japan

kenta.takahashi.bw@hitachi.com
4 Graduate School of Innovation Management, Tokyo Institute of Technology,

2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
wakaha@mot.titech.ac.jp

5 School of Information Technology and Electronics, Tokai University,
1117 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan

kikn@tokai.ac.jp

Abstract. ZeroBio has been proposed for a secure biometric authenti-
cation over the network by conducting secret computing between prover
and verifier. The existing ZeroBio are based on zero-knowledge proof
that a committed number lies in an interval, or on oblivious neural net-
work evaluation. The purpose of ZeroBio is to give verifier a mean to
authenticate provers with perfectly concealing provers’biometric infor-
mation from verifier. However, these methods need high computational
complexity and heavy network traffic. In this paper, we propose another
type of ZeroBio protocol that can accomplish remote biometric authen-
tication with lower computational complexity and lighter network traffic
by tolerating small decline of security level.

Keywords: biometrics, authentication, zero knowledge interactive proof,
secret computing.

1 Introduction

Recently, biometric authentication has been applied to our daily life, and its ap-
plication range and usage amount have kept growing. In contrast to conventional
authentication with password or security token, biometric authentication has an
advantage that they don’t suffer from forgetting password and loss of token.
However, it is needed for biometric authentication to store prover’s biometric
information to verifier as a template. Since biometric information is unique and

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 212–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Proposal of Efficient Remote Biometric Authentication Protocol 213

unchangeable over the life time of the individual, it could be a serious problem of
privacy if the prover’s biometric information and/or templates are compromised.
To cope with the leakage of biometric information from the prover’s side, the use
of biometric information which will not remain and can not be lifted (e.g., veins
of the finger or the palm) is recommended. On the other hand, the protection of
the templates stored in verifier’s side may be more serious. Particularly, when
biometric authentication is carried out over the network, verifiers are not always
trusted (e.g., phishing site) and giving biometric information as it is to verifiers
is not considered to be secure. Therefore protecting biometric templates is an
essential issue.

To solve this problem, Ratha et al. introduced the concept of cancelable bio-
metrics in which biometric information in transformed form is stored and ver-
ifies it in transformed space [1], and proposed an image block transformation
and a minutia nonlinear transformation. Cambier et al. also proposed a method
transforming the iris date by rotating and distorting [2]. Hirata et al. proposed a
transformation for two-dimensional image matching based biometrics [3]. Cance-
lable biometrics makes it possible to (i) protect biometric information by storing
it in transformed form as a template and (ii) update the template by alternat-
ing the transforming function, or the random numbers used in the transforming
function. However, there is a concern in cancelable biometrics that the matching
score (the difference between biometric information presented at the authenti-
cation phase and the template) is not concealed from the verifier, which could
be a potential vulnerability such as hill-climbing attack [4].

Nagai et al. proposed the concept of asymmetric biometric authentication,
or ZeroBio, where information stored by prover and verifier are asymmetric [5].
They show an authentication method with neural networks that can authenti-
cate prover through zero knowledge interactive proof (ZKIP) without revealing
prover’s biometric information even to the verifier. Ogata et al. also proposed an-
other ZeroBio which is based on ZKIP to prove that difference between prover’s
biometric information and stored template is sufficiently small [6]. Both methods
above can perfectly conceal provers’biometric information from verifier, but they
also have shortcomings that they need high computational complexity and heavy
network traffic. Therefore in this paper, we propose a different type of ZeroBio
with lower computational complexity and lighter network traffic by tolerating
small decline of security level. Our proposed method calculates the difference
between the presented biometric information and the enrolled biometric infor-
mation with secret computing based on the encryption function with a property
of homomorphism. Then the significance of the difference is checked secretly and
efficiently by using blinded decryption and hash function.

The remainder of this paper is organized as follow. In Section 2, we dis-
cuss remote biometric authentication model. In Section 3, we describe related
works. In Section 4, we propose an asymmetric biometric authentication protocol
based on secure computation, blinded decryption and hash function. In Section
5, we discuss security evaluation, and show our method has superior in compu-
tationalcomplexity and network traffic compared to other asymmetric biometric

214 T. Sakashita et al.

authentication presented in Section 3. In Section 6, we show an improvement to
our protocol. Finally, we conclude our study in Section 7.

2 Remote Biometric Authentication Models

Remote biometric authentication model is classified into server (verifier) au-
thentication model and client (prover) authentication model according to where
templates are stored. Templates for all clients are managed centrally by a server
for the server authentication model, while the template for each client is stored
individually in client’s smart card for the client authentication model. Although
the client authentication model has an advantage of lower privacy concern, it
is reported that information stored in a smart card can be revealed with good
accuracy by side-channel attack [7]. Therefore this paper targets and discusses
the server authentication model.

One of the biggest issues in the server authentication model is privacy. Obvi-
ously, it is not desirable in a sense of privacy to store and/or present biometric
information to server without encryption. In this paper, we propose a remote
biometric authentication method which can verify the authenticity of biometric
information by conducting secret computing between prover and verifier. Our
proposed method requires clients to have a smart card to carry helper infor-
mation such as an encryption key to conceal biometric information itself from
server. Note that it is impossible to derive biometric information from the helper
information stored in the smart card.

3 Related Works

3.1 Cancelable Biometrics

In cancelable biometrics proposed in [2,3], the biometric information is masked
by a random number, and then, the masked information is stored in server as a
template. For security reason, the random number used for masking is needed
to have a certain level of entropy, and to be stored in a smart card carried by
authorized user. Biometric information presented at the authentication phase
is also masked by the same random number, and compared with the template
(biometric information masked by the random number). Therefore it is impor-
tant to select proper masking methods appropriate for the comparison of target
biometric information.

These methods mask the template by a random number, and thus no bio-
metric information will leak out even if the templates are compromised. Also,
in these methods no information except for the random number is stored in a
smart card, so biometric information will not leak out even if the smart card
is stolen. However, these methods allow server to compute the difference be-
tween masked biometric information presented at the authentication phase and
the masked template to verify the authenticity of presented biometric informa-
tion. Therefore, the server can get information of the difference of two biometric
information.

A Proposal of Efficient Remote Biometric Authentication Protocol 215

3.2 ZeroBio Proposed by Nagai et al.

Nagai et al. proposed a method that can prove the authenticity of user’s bio-
metric information while perfectly concealing the biometric information by using
oblivious neural networks evaluation [5]. We call the method Nagai scheme.

At enrollment phase, user trains his/her neural network with a set of feature
extracted from his/her own biometric information and a set of feature for other
users. Throughout the training, the weights of neural network are adjusted so
that the neural network can output 1 for authorized user’s biometrics information
and 0 for unauthorized user’s biometric information. After training, the weights
of the output layer wj and the commitments of weights of hidden layer Com(wij)
in the neural network are enrolled.

At authentication phase, user is authenticated if the user can prove by zero
knowledge interactive proof (ZKIP) that the neural network outputs 1 when
his/her biometric information are inputted to the neural network without re-
vealing his/her private biometric information. Note that the input biometric
features are not exactly identical to that used to train the neural network. The
variations will be absorbed by the property that neural networks can accept
similar inputs.

3.3 ZeroBio Proposed by Ogata et al.

In cancelable biometrics, biometric information is masked by random number to
generate template, while Fuzisaki-Okamoto commitment [8] is used for masking
in Ogata et al’s method [6]. We call the method Ogata scheme.

At enrollment phase, authorized user computes E = Com(x, r), commitment
of biometric information x, and stores it in server as a template. Then, ran-
dom number r is stored in the user’s smart card. From the characteristic of
commitment, biometric information will not leak out from the template.

At authentication phase, user computes E′ = Com(x′, r′), commitment of
presented biometric information x′, and transmits it to the server. The server
can calculate the commitment of x−x′ by secret computing. Then, the user con-
ducts zero knowledge interactive proof protocol (ZKIP) which proves “difference
between two committed biometric information is sufficiently small”

Note that the enrolled biometric information x is not stored in the authorized
user’s smart card. This means that the authorized user can not calculate the
difference between x and x′ in the authentication phase. Therefore, in Ogata
scheme, the authorized user generates 2θ + 1 estimated values x̃ ∈ {x′, x′ ±
1, x′±2, . . . , x′±θ} from the presented biometric information x′, and uses x̃−x′

instead x − x′ when proving the difference between x (committed in E) and x′

(committed in E′) calculated by the server is in the (small) interval [−θ, θ] using
“ZKIP for proving interval.”In other words, ZKIP for proving interval composes
of 2θ+1 proofs. The server accepts authentication if at least one of 2θ+1 proofs
is accepted.

216 T. Sakashita et al.

4 Proposed Method

4.1 Elemental Technique

Proposed method uses the (slightly modified) ElGamal encryption which has
homomorphism to encrypt biometric information.

Let p be a large prime and g be a primitive element of Z∗
p . The user chooses a

random integer s from 1 ≤ s ≤ p− 1 as a secret key, which is kept secret. Then
the user computes y = gs in Z∗

p . Public key of the user is y, p and g.
The ciphertext Enc(x) of biometric information x is computed as Enc (x) =

(gr, gx · yr) = (G, M) (mod p). Here, r ∈ Zp is a random number. The decryp-
tion is done by gx = M/Gs (mod p).

It is important to note that the encryption function has a property of homo-
morphism. For two ciphertexts Enc(x1) = (G1, M1) and Enc(x2) = (G2, M2),
let Enc(x1) ·Enc(x2) be defined as (G1×G2, M1×M2). Then we have Enc(x1) ·
Enc(x2) = Enc(x1 + x2). Similarly, we have
Enc(x1)/Enc(x2) = (G1/G2, M1/M2) = Enc(x1 − x2).

In this way, anyone can compute a ciphertext of difference between two bio-
metric information x1 and x2 without decrypting Enc(x1) nor Enc(x2).

4.2 Outline

We propose an asymmetric biometric authentication which can be executed with
lower computational complexity and lighter network traffic than these Nagai
scheme and Ogata scheme.

Our method consists of enrollment phase and authentication phase. Authentic
biometric information is encrypted and submitted to the server at the enrollment
phase. At the authentication phase, the user encrypts his/her biometric infor-
mation and sends it to the server. The server computes a ciphertext of difference
between enrolled biometric information and presented biometric information us-
ing secret computing based on homomorphism of the encryption function. Then
the server multiplies the ciphertext by a blind constant and sends it back to the
user. The user proves to the server that the decryption of the blinded ciphertext
(difference of two biometric information) is smaller than the threshold without
disclosing the decryption to the verifier. In this paper, for simplifying explana-
tion, we assume that difference between biometric information is formularized
by absolute value of difference.

The outline of the proposed method is shown in Fig. 1.

4.3 Authentication Method

Authorized user and server share the following common parameters: prime num-
ber p, primitive root g ∈ Z∗

p , hash function Hash(), threshold θ, set of possible
difference Δ = {0,±1,±2, · · · ,±θ}. If difference between two biometric infor-
mation is in Δ, then two biometric information are considered to be sufficiently
close. Every calculations in the protocol are computed in Z∗

p .

A Proposal of Efficient Remote Biometric Authentication Protocol 217

Fig. 1. Outline of our proposed method

Enrollment Phase

Step 1-1: Authorized user chooses random integers k, r ∈ Zp (k �= 0).
Step 1-2: The user generates secret key s of ElGamal encryption and corre-

sponding public key y = gs.
Step 1-3: The user puts his/her authentic biometric sample to the biomet-

ric reader to obtain biometric information x, and computes the ciphertext
(t1, t2) = (gr, gkx · yr). Note that the user encrypts not the biometric in-
formation x but kx. The reason why kx is encrypted will be explained in
Sec.5.1.

Step 1-4: The user transmits y and (t1, t2) to the server.
Step 1-5: The server stores y and (t1, t2)together with the user ID, while the

user stores s,y,k in his/her smart card.

Authentication Phase

Step 2-1: A user chooses random integer r′ ∈ Zp.
Step 2-2: The user puts his/her biometric sample to the biometric reader to

obtain biometric information x′ . Then, the user retrieves s,y,k from his/her
smart card, and computes the ciphertext (t′1, t

′
2) = (gr′

, gkx′ · yr′
).

Step 2-3: The user transmits (t′1, t
′
2) to the server.

Step 2-4: The server chooses random integers z, α ∈ Zp as blind factors. Then
the server computes (w1, w2) = (gzt1/t′1, αyzt2/t′2) and sends back it to the
user. Note that (w1, w2), the encrypted difference of (t1, t2) and (t′1, t′2), is
concealed from the user by z and R.

Step 2-5: The user decrypts (w1, w2) with secret key s to obtain m = α ·
gk(x−x′).

Step 2-6: The user chooses a random number u ∈ Zp as a blind factor. Then
the user computes
Γ =

{
Hash

(
u‖m · g0

)
, Hash

(
u‖m · g±k

)
, . . . , Hash

(
u‖m · g±kθ

)}
and

transmits Γ and u to the server, where ‘‖’ denotes concatenation. Here,

218 T. Sakashita et al.

Fig. 2. Proposed protocol

the order of elements of Γ is permuted before transmitting. The reason why
the hashing and permutation are needed will be explained in Sec.5.1.

Step 2-7: The server computes Hash (u||α). The server authenticates the user
if Hash (u||α) ∈ Γ is satisfied. If x − x′ ∈ Δ, then there exists d ∈ Δ such
that (x− x′) + d = 0. That is why, the server can understand that the pre-
sented biometric information x′ is sufficiently close to the enrolled biometric
information x if there exists d ∈ Δ such that m · gkd = α.

Fig. 2 illustrates the above protocol.

5 Property of Proposed Protocol

5.1 Remarks

The proposed protocol uses some techniques to prevent attack. In this section,
we explain how our techniques work.

Necessity of Hash Function. In Step 2-6 in the authentication phase, every
elements of Γ are hashed. If they were not hashed, then the server could abuse
the authentication protocol as a decryption machine in the following way.

Assume that the server has a ciphertext (w1, w2) and wants to know the
plaintext. Then the protocol would be the followings: The server sends (w1, w2)
back to the user in Step 2-4. The user decrypts (w1, w2) to obtain plaintext m
in Step 2-5, and generate u ∈ Zp to compute
Γ =

{(
u‖m · g0

)
,
(
u‖m · g±k

)
, . . . ,

(
u‖m · g±kθ

)}
in Step 2-6.

A Proposal of Efficient Remote Biometric Authentication Protocol 219

In this case, all the values {. . . , m · g−2k, m · g−k, m · gk, m · g2k, . . .} are
disclosed to the server since Γ and u are transmitted to the server in Step 2-6.
Here, the server knows a “knowledge about Γ”that one of the elements of Γ is
m(= m · g0) and Γ forms

{
..., u‖m · g−2k, u‖m · g−k, u‖m · gk, u‖m · g2k, ...

}
.

Such knowledge helps the server to decide which one in Γ is m, even if the order
of elements is permuted.

When the value of each element in Γ is not disclosed, the server can’t deduce
m even if the server knows the “knowledge about Γ .”Thus, this attack can be
prevented by hashing each element in Γ , in this case, server no longer treat the
user as decryption machine.

Necessity of permutation of elements of Γ . In Step 2-6 in the authen-
tication phase, the elements of Γ are permuted and then transmitted to the
server. If elements of Γ were not permuted, then the server could derive the dif-
ference between the enrolled biometric information and the presented biometric
information x− x′ in the following way.

Assume that the lth element of Γ is equal to Hash (u||α). This means that
Hash(u‖α ·gk(x−x′) ·gkl) = Hash(u‖α), i.e., x−x′+ l = 0. Therefore the server
can derive x− x′.

This is caused by the fact that the server can deduce the preimage of the
hashed value from the order of elements of Γ . Therefore, this attack can be
prevented by the permutation of elements of Γ in every authentication.

Necessity of k. In Step 1-3 in the enrollment phase and Step 2-2 in the au-
thentication phase, the user encrypts not the biometric information x or x′, but
kx or kx′. If ciphertext of x or x′ were used, then the server could derive the dif-
ference between the enrolled biometric information and the presented biometric
information x− x′ in the following way.

Assume that we do not use k, that is, k = 1 in our protocol. In this case,
the elements in Γ transmitted from the user to the server in Step 2-6 are{
Hash

(
u||α ·g(x−x′)±0

)
, Hash

(
u||α ·g(x−x′)±1

)
, ...,Hash

(
u||α · g(x−x′)±θ

)}
.

Here, the server who knows g, α and u could try to compute{
Hash

(
u||α · g(x−x′)±0

)
, Hash

(
u||α · g(x−x′)±1

)
, ...,Hash

(
u||α · g(x−x′)±θ

)}
by guessing x − x′. This means that the server can know the guess is correct
when the server’s calculation is identical to Γ transmitted from the user.

This attack is caused by the fact that the server also can compute the elements
of Γ . Therefore, this attack can be prevented by introducing a random number
k which is secret from the server.

5.2 Security

In this section, we evaluate the security of our proposed protocol. Here we first
define the attack model to derive security requirements for biometric authenti-
cation system, and then confirm that proposed protocol satisfies these require-
ments.

220 T. Sakashita et al.

Table 1. List of attacks

Attack model and requirements for biometric authentication system
Attack model can be divided into attacker’s objectives and means of attack.

Attacker’s objectives : One of the biggest attacker’s objectives is “imper-
sonatio”of a certain system itself. Also, attackers try “acquisition of biometric
information”of authorized users in a certain system to use them for further frauds
such as impersonation of the other system or trace of the users.

Means of attack : We consider that attackers can attack the server, the au-
thorized user, or the communication line. The first type of attack is a kind of
“server hijacking.”If an attacker succeeds in hijacking a server, the attacker can
access all information in the server. Note that hijack means impersonation of
the server administrator (or, maybe cheating by the server administrator). So,
impersonation has no meaning for hijackers. The second type of attack is done
by “theft of a smart card.”We assume that the attacker can extract the infor-
mation stored in the smart card that he/she steals. The third type of attack is
“wiretapping of communication line.”In remote authentication protocols, every
information transmitted in the communication line are received or generated by
the server. Therefore, if an authentication system can protect biometric informa-
tion from the server hijackers, the system is robust also against the acquisition
of biometric information by the wiretapping of communication line.
The combination of attacker’s objectives and means of attack indicates us that
we have to consider security against 4 types of attacks showed in Table1. Here,
we assume that more than one of the above attacks are not conducted by attack-
ers at the same time. Note that the security analysis described here is a kind of
informal analysis. For instance, if the server is malicious, the attacker (server)
who get the information stored in the smart card will be able to impersonate.
Therefore, to be precise, the formal security analysis should be conducted.

From Table1, biometric authentication system has to satisfy following require-
ments.

Requirement 1 (against attack 1) : The server can not obtain any informa-
tion about biometric information of authorized users from the enrolled data
and/or through authentication protocol.

Requirement 2 (against attack 2) : Anyone can not derive any information
about biometric information from data stored in a smart card.

A Proposal of Efficient Remote Biometric Authentication Protocol 221

Requirement 3 (against attack 3) : Even if attacker gets a smart card of an
authorized user, it is impossible to impersonate the user without knowing
biometric information sufficiently close to the enrolled biometric information.

Requirement 4 (against attack 4) : Even if attacker uses information obtained
by wiretapping the communication line, it is impossible to impersonate any-
one.

Security Evaluation. We show the proposed protocol in Section 4 satisfies the
above requirements.

Requirement 1. Information obtained by the server through protocol are only
ciphertexts of biometric information and hash values of difference between
biometric information concatenated with a random number.
The server does not have a secret key. Also, the server can not abuse the
authentication protocol as a decryption machine, as described in Sec.5.1.
Therefore the server can not decrypt any ciphertext. In addition, the server
can not estimate the preimage of hash values because of onewayness of the
hash function.
Therefore, even if an attacker can hijack the server, the attacker can not
obtain information about biometric information.

Requirement 2. Information stored in a smart card is only secret key s and
random number k. Therefore it is impossible for an attacker to obtain infor-
mation about biometric information by theft of a smart card.

Requirement 3. An attacker with a user’s smart card can retrieve the user’s
secret key s and random number k. However, we can show that even if an
attacker can obtain a smart card, the attacker can not succeed impersonation
without knowing the user’s biometric information:
To succeed in impersonating, the attacker has to transmit to the server a set
of hash values Γ which contains Hash (u||α) in Step 2-6. This means that
the attacker is required to guess α with high probability. This is, however,
proved to be impossible, as explained as explained below.
The attacker can present an arbitrary data x̂ to the server, instead of the at-
tacker’s biometric information, since the attacker knows the secret key. That
is, the attacker encrypts x̂ to obtain the ciphertext (t′1, t′2), and transmits it
to the server in Step 2-3. In this case, (w1, w2) calculated by the server using
(t1, t2) and (t′1, t

′
2) in Step 2-4 is a ciphertext of α · gk(x−x̂). Therefore, after

receiving (w1, w2), all information the attacker knows is
(
k, x̂, α · gk(x−x̂)

)
.

To guess the value R from
(
k, x̂, α · gk(x−x̂)

)
, it is necessary for the attacker

to know x or x− x̂ with high probability. This means that the attacker who
succeeds impersonation can estimate the user’s biometric information x with
high probability before the start of the protocol. - Q.E.D.-
More preciously, if the attacker could only get the amount of the difference
x − x̂, the attacker can calculate R without knowing the user’s biometric
information x itself. In practical sense, however, we can understand that
this is not a critical issue, since the attacker who knows x − x̂ is almost
equivalent to the attacker who knows x.

222 T. Sakashita et al.

Table 2. Security comparison

Requirement 4. An attacker can retransmit (t′1, t′2) that an authorized user
transmitted in Step 2-3. However, the server generates different random num-
bers z, α each time to compute (w1, w2) in Step 2-4, therefore the attacker
without knowledge of the secret key s can not decrypt (w1, w2), and thus
impersonation will fail.

Finally we compare security issues of our protocol with the traditional biometric
authentication protocol and the cancelable biometric authentication protocol.
Table 2 shows the result of comparison.

Cancelable biometrics do not fully satisfy Requirement 1, because difference
between the enrolled biometric information and the presented biometric infor-
mation is leaked out to the server hijacker. Also, Requirement 4 is not satisfied,
because it is possible to succeed replay attack by retransmitting the information
derived from wiretapping of the communication line.

On the other hand, our protocol as well as Nagai scheme and Ogata scheme
satisfies all requirements. However, as described in Requirement 3, our protocol
will allow an attacker who knows the amount of the difference x− x̂ to imperson-
ate an authorized user without knowing the user’s biometric information x. In
practical sense, the attacker who knows x− x̂ is almost equivalent to the attacker
who knows x. So, we can understand that this is not a critical problem. But, it
is small decline of security level compared to Nagai scheme and Ogata scheme.
We will give an improvement of our protocol against this issue in Sec.6.

5.3 Comparison of Efficiency

Here, we compare the efficiency of our protocol with other ZeroBio protocols
such as Nagai scheme and Ogata scheme presented in Section 3.

We compare computational complexity by the number of exponentiation op-
eration needed for one authentication phase, and network traffic by the number
of data transmitted during one authentication phase. Ogata et al. improved their
result in [9] by storing additional information in a smart card to reduce both
computational complexity and network traffic without declining any security.
However, as the same improvement as [9] can be applied also to our protocol, we
compare here Ogata scheme and our scheme without utilizing the improvement
proposed in [9].

A Proposal of Efficient Remote Biometric Authentication Protocol 223

Table 3. Comparison of proposed protocol and other ZeroBio protocol

Let L p be the size of the transmitted data packets (typically, L p = 1024 bits)
and L h be the length of a hash value (typically, L h = 160 bits). Let � be the
number of hidden layer unit in neural network. And θ be a security parameter
used in Ogata scheme and our scheme to define the authentic interval [−θ, θ
] for the difference between biometric information. Then, we can summarize
the estimates of computational complexity and network traffic needed for each
protocol in Table 3.

We first compare our protocol with Nagai scheme. Although the biometric
information fed to neural network is n-dimensional vector in Nagai scheme, we
assume n = 1 here for simplicity of estimation. We can see from Table 3 that
computational complexity and network traffic are proportional to the number
of hidden layer unit �. As � and θ are different parameter, we can not directly
compare with Nagai scheme. However Nagai scheme at least needs additional
computational cost to train the weight of the connection in the neural network.

Next, we compare our protocol with Ogata scheme. Our protocol achieves
improvement in both computational complexity and network traffic needed for
the server and the user. For the user, our protocol needs only 1/20 of computa-
tional complexity and network traffic needed for Ogata scheme. For the server,
our protocol needs 1/(18θ + 9) of computational complexity, and 1/(2θ + 1) of
network traffic needed for Ogata scheme. Therefore, we can confirm that our
protocol achieves the performance improvement compared to Nagai scheme and
Ogata scheme.

6 Improvement of Our Protocol

In the security evaluation with respect to Requirement 3 in Section 5.2, we
described that if an attacker knows x− x̂, the attacker can impersonate without
knowing the enrolled biometric information x. This means that even if x̂ is not
close to x, an attacker who presents an arbitrary data x̂ will be authenticated in
the case that the attacker knows the difference x− x̂. In practical sense, we can
understand that this is not a critical issue, since the attacker who knows x− x̂
is almost equivalent to the attacker who knows x. However, it is more preferable
if our protocol can prove that the user indeed possesses x′ such that sufficiently
close to the enrolled biometric information x. Therefore, in this section, we try
to improve our protocol.

224 T. Sakashita et al.

More concretely, the user transmits every ciphertext of integers d ∈ Δ at
the enrolled phase. The server generates random bit b at the authentication
phase. If b = 0, then the server transmits the ciphertext of αd to the user and
checks the reply from the user satisfies Hash (u||α) ∈ Γ to confirm that the user
compute with the proper d. If b = 1, the regular authentication phase (namely,
the Authentication Phase described in Section 4.3) is conducted. Note that the
procedures for the user are the same regardless of whether b is 1 or 0.

Detailed explanation of our improved protocol is described as follow.

6.1 Authentication Method

Enrollment phase
Step 3-1: Authorized user chooses random integers k, r ∈ Zp (k �= 0). In addi-

tion, the user chooses random integers r[d] ∈ Zp for each d ∈ Δ, where r[d]
is used for encrypting each d in Step 3-4.

Step 3-2: The user generates secret key s of ElGamal encryption and corre-
sponding public key y = gs.

Step 3-3: The user puts his/her authentic biometric sample to the biomet-
ric reader to obtain biometric information x, and computes the ciphertext
(t1, t2) = (gr, gkx · yr).

Step 3-4: The user computes E(Δ) = {(gr[d], gkd · yr[d])|d ∈ Δ}, the set of
ciphertexts of kd for all d ∈ Δ.

Step 3-5: The user transmits y, (t1, t2) and E(Δ). Note that the elements of
E(Δ) should be permuted before sending to server. Otherwise, attackers may
guess the relationship between ciphertexts and plaintexts from the order of
elements of E(Δ).

Step 3-6: The server stores y, (t1, t2) and E(Δ) together with the user ID,
while the user stores s,y,k in his/her smart card.

Authentication phase
Step 4-1: A user chooses random integer r′ ∈ Zp.
Step 4-2: The user puts his/her biometric sample to the biometric reader to

obtain biometric information x′. Then, the user retrieves s,y,k from his/her
smart card, and computes the ciphertext (t′1, t

′
2) = (gr′

, gkx′ · yr′
).

Step 4-3: The user transmits (t′1, t′2) to the server. Step 4-4 to Step 4-8 are
independently conducted L times at the same time.

Step 4-4: The server generates random bit b. If b = 0, then, the server ran-
domly chooses z, α ∈ Zp and (e1, e2) ∈ E (Δ) as blind factors, and transmits
(w1, w2) = (e1g

z, e2αyz) to the user. If b = 1 , then, the server randomly
chooses z, α ∈ Zp as blind factors, and transmits (w1, w2)=(gzt1/t′1, αyzt2/t′2)
to the user.

Step 4-5: The user decrypts (w1, w2) with secret key s to obtain m = α ·
gk(x−x′).

Step 4-7: The user chooses a random number u ∈ Zp as a blind factor. Then the
user computes Γ =

{
Hash

(
u||m · gkd

)
|d ∈ Δ

}
, and transmits Γ and u to

the server. Here, the order of elements of Γ is permuted before transmitting.

A Proposal of Efficient Remote Biometric Authentication Protocol 225

Fig. 3. Protocol with higher security

Step 4-8: The server computes Hash (u||α), then checks whether it satisfies
Hash (u||α) ∈ Γ .

Step 4-9: If Step 4-8 is always true, then the user is authenticated.

We illustrate the above protocol in Figure 3.

6.2 Discussion

In our regular protocol shown in Sec.4, (t′1, t′2) does not have to be a ciphertext
of kx′ where x′ is sufficiently close to x. We first show that in our improved
protocol, the user (or attacker) is not authenticated with high probability if x′

is not close to x.
Assume that (t′1, t

′
2) is a ciphertext of kx̂ generated by an attacker in Step 4-2,

where x− x̂ is not small enough and the attacker knows the amount of x− x̂. In
the case of b = 1, Step 4-4 to Step 4-8 are the same as the regular authentication
phase. Therefore, the attacker can impersonate using the knowledge of the dif-
ference x− x̂. More concretely, the attacker generates Hash (u||α) by calculating
Hash

(
u||m · gkd

)
with d = − (x− x̂), mixes it into Γ , and transmits Γ to the

server in Step 4-7.
On the other hand, if b = 0, the attacker has to calculating Hash

(
u||m · gkd

)
with every d ∈ Δ to compute Γ in Step 4-7 so that the attacker can obtain Γ
which includes Hash (u||α) in it.

That is, to succeed impersonation, the attacker needs to use d = − (x− x̂)
for b = 1 and d ∈ Δ for b = 0 when calculating Hash

(
u||m · gkd

)
, However

(w1, w2) transmitted from the server in Step 4-4 is concealed by the random
number R, and the attacker has no way to know the value b. This means that

226 T. Sakashita et al.

Table 4. Computational complexity and network traffic

the probability that attacker passes the test of Step 2-8 is 1/2. Therefore, the
probability that attacker succeeds impersonation is (1/2)i, which is negligible
for sufficiently large i.

Next, we discuss computational complexity and network traffic. In the im-
proved protocol, the user conducts Step 4-4 to Step 4-8 i times. This means that
computational complexity and network traffic depend not only on θ but also on
security parameter i. There is the tradeoff between security and computational
complexity and network traffic. Therefore it is important to set proper i which
satisfies the required security level.

Table 4 shows the estimate of network traffic and computational complexity
needed for our protocol, where L p, L h, � and are the same definition as used in
Table 3. We can find that the improvement in the security level of our protocol is
accompanied by an increase in its computational complexity and network traffic.

7 Conclusion

In this paper, we proposed a secure remote biometric authentication system
which has a certain level of resistance against impersonation and biometric
information disclosure. We also compared our method with other asymmetric
biometric authentication, and found that our method achieves the asymmetric
biometric authentication with comparatively smaller computational complexity
and network traffic.

References

1. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing Security and Privacy in
Biometrics-based Authentication Systems. IBM Systems Journal 40(3) (2001)

2. Cambier, J.L., Cahn von Seelen, U., Glass, R., Moore, R., Scott, I., Braithwaite,
M., Daugman, J.: Application-Specific Biometric Templates. In: IEEE Workshop on
Automatic Identification Advanced Technologies, Tarrytown, NY, March 14-15, pp.
167–171 (2002)

3. Hirata, S., Takahashi, K.: Cancelable Biometrics with Perfect Secrecy for
Correlation-based Matching. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS,
vol. 5558, pp. 875–885. Springer, Heidelberg (2009)

A Proposal of Efficient Remote Biometric Authentication Protocol 227

4. Hill, C.J.: Risk of masquerade arising from the storage of biometrics, Bachelor thesis,
Dept. of CS, Australian National University (2002)

5. Nagai, K., Kikuchi, H., Ogata, W., Nishigaki, M.: ZeroBio - Evaluation and Devel-
opment of Asymmetric Fingerprint Authentication System Using Oblivious Neural
Network Evaluation Protocol. In: Proceedings of 2007 International Conference on
Availability, Reliability and Security, pp. 1155–1159 (2007)

6. Ogata, W., Kikuchi, H., Nishigaki, M.: Zero-knowledge interactive proofs for proving
nearness of biometrics and its application. In: Symposium on Information Theory
and its Applications, SITA2006, pp. 319–322 (2006)(in Japanese)

7. Paul, K., Joshua, J., Benjamin, J.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

8. Fujisaki, E., Okamoto, T.: Statistical Zero-Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 413–430. Springer, Heidelberg (1997)

9. Ogata, W., Kikuchi, H., Nishigaki, M.: Improvement of the biometric authentication
system using ZKIP. In: Symposium on Information Theory and its Applications,
SITA2007, pp. 689–693 (2007)(in Japanese)

Author Index

Cheong, K.Y. 110
Choy, Jiali 22

Fujioka, Atsushi 174

Hua, Jingyu 158

Jakubowski, Mariusz H. 125

Kikuchi, Hiroaki 212
Kim, Minkyu 174
Kitada, Wataru 53
Koshiba, Takeshi 110

Li, Mingchu 158

Matsuda, Takahiro 53
Matsuura, Kanta 53
Mu, Yi 89

Nakai, Yasumasa 53
Nishigaki, Masakatsu 212
Nuida, Koji 140

Ogata, Wakaha 212
Ohta, Kazuo 3
Okamoto, Eiji 192

Pandu Rangan, Chandrasekaran 71
Preneel, Bart 1, 38

Ren, Yizhi 158

Sakashita, Taiki 212
Sakiyama, Kazuo 3
Sakurai, Kouichi 158
Sasaki, Yu 3
Saw, Chit Wei (Nick) 125
Sekar, Gautham 38
Sharmila Deva Selvi, S. 71
Shibata, Yoichi 212
Sree Vivek, S. 71
Srinivasan, Rahul 71
Susilo, Willy 89

Takahashi, Kenta 212
Thorncharoensri, Pairat 89
Tso, Raylin 192

Ustaoğlu, Berkant 174

Venkatesan, Ramarathnam 125

Wang, Lei 3

Yamamoto, Takumi 212
Yap, Huihui 22
Yi, Xun 192

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talk
	The Future of Cryptographic Algorithms

	Block Cipher
	Bit-Free Collision: Application to APOP Attack
	Introduction
	Our Results
	Organization of the Paper

	Background and Related Works
	Merkle-Damg{\aa}rd Hash Function
	APOP
	Previous Password Recovery Attacks on APOP

	Bit-Free Collision
	Bit-Free Collisions on a General Merkle-Damg{\aa}rd Hash Function
	Bit-Free Collisions on a General Compression Function

	Bit-Free-Collision Attacks Based on Differential Collision Attacks on Hash Functions
	Crucial Ideas
	Bit-Free-Collision Attacks on MD5
	Bit-Free-Collision Attacks on MD4

	Application to APOP Attacks
	Overview of Our Contribution
	Improved APOP Attack

	Conclusion and Discussion
	References
	A Definition of Neutral Bits [1]
	B Specification of MD5 and MD4
	C Previous Related Collision Attacks on MD5 and MD4
	C.1 {\it Wang et al.’s} Differential Collision Attack
	C.2 Pseudo-Collision Attacks on MD5
	C.3 Tunnel Technique
	C.4 Collision Attacks on MD4

	Impossible Boomerang Attack for Block Cipher Structures
	Introduction
	The Impossible Boomerang Attack
	Impossible Boomerang Distinguisher
	A Key Recovery Attack

	Basic Notions for IBA
	Basic Definitions and Operations
	Finding Impossible Boomerang Distinguishers

	Finding the Maximum Length of Impossible Boomerang Distinguishers
	An Algorithm to Compute the Length of Impossible Boomerang Distinguishers
	Results for Some Block Cipher Structures
	Additional Comments

	Conclusion
	References

	Improved Distinguishing Attacks on HC-256
	Introduction
	Contribution of This Paper

	Notation and Convention
	Specifications of HC-256
	K/IV Setup Algorithm
	The PRBG

	Motivational Observation
	Our Improvement

	The Distinguisher
	AnotherObservation
	Conclusions and Future Work
	References
	A Experimental Results
	B A Note on the Randomness of Keystream Bits When S2 Does Not Occur

	Cryptographic Protocols
	A Generic Construction of Timed-Release Encryption with Pre-open Capability
	Introduction
	Preliminaries
	Public Key Encryption
	Identity-Based Encryption
	Signature

	TRE-PC
	Security

	A Proposed Generic Construction
	Security

	Discussions
	References

	An Efficient Identity-Based Signcryption Scheme for Multiple Receivers
	Introduction
	Motivation
	Related Work
	Our Contribution

	Preliminaries
	Bilinear Pairing
	Computational Assumptions
	Multi-receiver Identity-Based Signcryption$(mIBSC)$
	Security Model

	Multi-receiver Identity-Based Signcryption$(mIBSC) (m{\mathcal IBSC)$
	The Scheme
	Security Properties

	Conclusion
	References
	A Intractability of $(U_{i}, V_{i}, F_{i}) − GDDHE$

	Universal Designated Verifier Signatures with Threshold-Signers
	Introduction
	Preliminaries
	Notation
	Bilinear Pairing
	Complexity Assumptions

	Notion of Universal Designated Verifier Signature with Threshold-Signers Schemes (TS-UDVS)
	Notion of Security
	Unforgeability
	Non-transferable Privacy
	Anonymity

	Cryptographic Tools
	Short Signature Scheme
	Trapdoor Commitment Scheme
	A Concrete Scheme of a Trapdoor Commitment Scheme

	Universal Designated Verifier Signature with Threshold-Signers Scheme
	Concrete Scheme

	Security Analysis
	Completeness
	Unforgeability
	Non-transferable Privacy
	Anonymity

	Conclusion
	References

	Reducing Complexity Assumptions for Oblivious Transfer
	Introduction
	Oblivious Transfer
	Complexity Assumptions of OT
	Relation to Previous Results

	Preliminaries
	Blackbox Reduction
	Semi-honest Model
	1-out-of-2 Bit OT
	Weak OT
	Pairwise Independent Universal Hash Functions

	Trapdoor Functions for OT
	Extra Assumptions
	Necessity of the Extra Assumptions

	The Protocol
	Analysis of Protocol
	Running Time
	Correctness
	Privacy of Receiver
	Privacy of Sender

	Strengthening the Weak OT
	Concluding Remarks
	References

	Contents Protection and Intrusion Detection
	Tamper-Tolerant Software: Modeling and Implementation
	Introduction
	Tamper-Tolerant Software
	Building Blocks
	Tamper-Tolerance Schemes
	Tamper-Tolerance Algorithms

	Security Modeling
	Graph-Game Model
	TTS Modeling
	Impossibility Results

	Implementation and Experiments
	Tool Implementation
	Experimental Results

	Conclusion
	References

	An Error-Tolerant Variant of a Short 2-Secure Fingerprint Code and Its Security Evaluation
	Introduction
	Backgrounds
	Motivation
	Our Contributions and Organization of the Article
	Related Works

	Fingerprint Codes
	Basic Formulation
	Assumptions on Attack Algorithms

	The Original Codes
	The Codeword Generation Algorithm
	The Tracing Algorithm

	Our Proposal
	T-Tolerant Partner Search
	Construction of Our Codes

	Error Probabilities of Our Codes
	The Formulae
	Proof of Theorem 1
	Proof of Theorem 2

	Numerical Examples
	On Choices of Parameter T
	Code Lengths of Our Codes

	Conclusion
	References

	Efficient Intrusion Detection Based on Static Analysis and Stack Walks
	Introduction
	Previous Work
	Our Contribution

	STT Model
	Basic Idea
	Structure of the State Transition Table
	Online Intrusion Detection
	Delta Optimization
	Model Generation via Static Analysis

	Formal Proof That the STT Model Is a DPDA
	Comparison between STT and VPStatic
	Precision
	Space Complexity
	Time Complexity

	Experiments
	Conclusion
	References

	Authentication
	Strongly Secure Authenticated Key Exchange without NAXOS’ Approach
	Introduction
	Preliminaries
	Security Model
	Protocol 1
	Protocol 1 Description
	Protocol 1 Security Argument

	Protocol 2
	Protocol 2 Description
	Security Proof

	Comparison
	Conclusion
	References

	ID-Based Group Password-Authenticated Key Exchange
	Introduction
	Definitions
	An Efficient Compiler for Group PAKE
	Description of the Compiler
	Correctness, Explicit Authentication, Trust Model and Efficiency

	Proof of Security
	Conclusion
	References
	Appendix A: Cryptographic Building Blocks
	Group Key Exchange
	Identity-Based Encryption
	Identity-Based Signature
	Squaring Decisional Diffie-Hellman Problem

	A Proposal of Efficient Remote Biometric Authentication Protocol
	Introduction
	Remote Biometric Authentication Models
	Related Works
	Cancelable Biometrics
	ZeroBio Proposed by Nagai et al.
	ZeroBio Proposed by Ogata et al.

	Proposed Method
	Elemental Technique
	Outline
	Authentication Method

	Property of Proposed Protocol
	Remarks
	Security
	Comparison of Efficiency

	Improvement of Our Protocol
	Authentication Method
	Discussion

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

