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Abstract. Bags alias multisets have long been studied in computer sci-
ence, but recently more attention is paid on bags. In this paper we con-
sider generalized bags which include real-valued bags, fuzzy bags, and
a region-valued bags. Basic definitions as well as their properties are
established; advanced operations such as s-norms, t-norms, and their
duality are also studied. Moreover bag relations are discussed which has
max-plus and max-min algebras as special cases. The reason why gener-
alized bags are useful in applications is described. As two applications,
bag-based data analysis and decision making based on convex function
optimization related to bags are discussed.
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1 Introduction

Bags which are also called multisets have long been studied by computer scien-
tists as a basic data structure [6,10]. More recently, Calude and others [2] showed
various aspects of multiset processing including a new paradigm of computation.

Since Yager [32] have proposed fuzzy bag, its theory and applications have
been studied by several researchers [7,8,26,27,28,29,33] in the field of soft
computing.

The author has redefined and re-established basic operations for fuzzy bags
[14,15,16,17,20], and considered further generalizations [19]. Moreover we have
applied fuzzy bags to data clustering [18] and text data analysis [21].

In this paper we overview bags and their generalizations with basic operations
and their fundamental properties. Advanced operations such as s-norms and bag
relations with new compositions are considered. We also discuss applications of
generalized bags to data analysis, where classical methods as well as more recent
techniques using kernel functions [30] are considered. Moreover a decision making
aspect based on optimization of convex functions derived from set operations is
considered, which are inspired from toll sets [4,13].
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Although we show many propositions, we omit the proofs for the most part,
as they are straightforward.

2 Bags and Generalized Bags

We begin with a review of classical bags and their generalizations.

2.1 Crisp Bags

Assume that the universal set X = {x1, . . . , xn} is finite for simplicity. A (crisp)
bag M of X = {x1, . . . , xn} is characterized by a function CM (·) (called count
of M) whereby a natural number including zero corresponds to each x ∈ X
(CM : X → N), where N = {0, 1, 2, . . .}. CM (·) is called a count function.

We may express a crisp bag as

M = {k1/x1, . . . , kn/xn}

or

M = {
k1

︷ ︸︸ ︷

x1, . . . , x1, . . . ,

kn
︷ ︸︸ ︷

xn, . . . , xn}.

In this way, an element of X may appear more than once in a bag.

Example 1. Consider an example in which X = {a, b, c, d} and

CM (a) = 2, CM (b) = 3, CM (c) = 1, CM (d) = 0.

In other words, M = {a, a, b, b, b, c}. This means that a, b, c, and d are included 2,
1, 3, and 0 times, respectively, in M . We can write M = {2/a, 3/b, 1/c}, ignoring
an element of zero occurrence. Other expressions such as M = {3/b, 2/a, 1/c}
and M = {c, a, b, b, a, b} are also used.

Basic relations and operations for crisp bags:

1. (inclusion): M ⊆ N ⇔ CM (x) ≤ CN (x), ∀x ∈ X.
2. (equality): M = N ⇔ CM (x) = CN (x), ∀x ∈ X.

3. (union): CM∪N (x) = max{CM (x), CN (x)}.
4. (intersection): CM∩N (x) = min{CM (x), CN (x)}.
5. (addition or sum): CM+N (x) = CM (x) + CN (x).
6. (scalar multiplication): CαM = αCM (x), where α is a nonnegative integer.
7. (Cartesian product): Let P is a bag of Y . CM×P (x, y) = CM (x)CP (y).

We use ∨ and ∧ for max and min, respectively. Note that the relations and
operations are similar to those for fuzzy sets. However, bags have the addition
operation that fuzzy sets do not have, and the Cartesian product for bags is
different from that for fuzzy sets.
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2.2 R-Bags, F -Bags, and G-Bags

We discuss three generalizations. The first generalization to real-valued bags is
simple, but useful in applications, and second is fuzzy bags, while the third is
a minimum extension including the former two. We call them R-bags, F -bags,
and G-bags for simplicity.

R-Bags. The first generalization is straightforward. We assume a count function
can take an arbitrary positive real value. Moreover the value of infinity should be
included into the range of a count function, as we show its usefulness later. Thus,
CM : X → [0, +∞] (note [0, +∞] = [0,∞) ∪ {+∞}). Since count function takes
real values, we say real-valued bags, or shortly R-bags. The above definitions of
basic relations and operations 1–7 are unchanged.

F -Bags. Fuzzy bags are abbreviated as F -bags here. They were first studied
by Yager [32], and basic relations and operations have been reconsidered by the
authors [14,15].

In a fuzzy bag an element of X may occur more than once with possibly the
same or different membership values.

Example 2. Consider a fuzzy bag

A = {(a, 0.2), (a, 0.3), (b, 1), (b, 0.5), (b, 0.5)}

of X = {a, b, c, d}, which means that a with the membership 0.2, a with 0.3, b
with the membership 0.5, and two b’s with 0.5 are contained in A.

We may write
A = {{0.2, 0.3}/a, {1, 0.5, 0.5}/b}

in which the bag of membership {0.2, 0.3} corresponds to a and {1, 0.5, 0.5}
corresponds to b. Thus, CA(x) is a bag of the unit interval [32].

For an x ∈ X , the membership sequence is defined to be the decreasingly
ordered sequence of elements in CA(x). It is denoted by

μ1
A(x), μ2

A(x), . . . , μp
A(x),

(μ1
A(x) ≥ μ2

A(x) ≥ · · · ≥ μp
A(x)).

When we handle a finite number of fuzzy bags in a finite universal set, the
length p of the membership sequences is set to be a constant for all members
and for all the concerned fuzzy bags, by appending appropriate numbers of 0 at
the end of the membership sequences.

Example 3. For the above example, we can set p = 3, μ1
A(a) = 0.3, μ2

A(a) = 0.2,
μ3

A(a) = 0, μ1
A(b) = 1, μ2

A(b) = μ3
A(b) = 0.5, μ1

A(c) = μ2
A(c) = μ3

A(c) = μ1
A(d) =

μ2
A(d) = μ3

A(d) = 0. By the representation of the membership sequence,

A = {(0.3, 0.2)/a, (1, 0.5, 0.5)/b},

or appending 0,

A = {(0.3, 0.2, 0)/a, (1, 0.5, 0.5)/b, (0, 0, 0)/c, (0, 0, 0)/d}.
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The followings are basic relations and operations for fuzzy bags [14].

1. inclusion:
A ⊆ B ⇔ μj

A(x) ≤ μj
B(x), j = 1, . . . , p, ∀x ∈ X.

2. equality:
A = B ⇔ μj

A(x) = μj
B(x), j = 1, . . . , p, ∀x ∈ X.

3. sum:
A + B is defined by the sum operation in X × [0, 1] for crisp bags [32].

4. union:
μj

A∪B(x) = μj
A(x) ∨ μj

B(x), j = 1, . . . , p, ∀x ∈ X.
5. intersection:

μj
A∩B(x) = μj

A(x) ∧ μj
B(x), j = 1, . . . , p, ∀x ∈ X.

G-Bags. A further generalization of fuzzy bags is useful from theoretical view-
point. It has been studied by the author [19] and is called G-bags here (this
name is an abbreviation of generalized bags).

We introduce a G-bag using a closed region on a first quadrant [0, +∞]2 of a
plane. The horizontal and vertical axes are called y-axis and z-axis, respectively.
We define

CA(x) = νA(x) (1)

where νA(x) is a closed region of [0, +∞]2 that satisfies the following conditions.

(I) For each y ∈ [0, +∞], the intersection between νA(x) and {y}× [0, +∞] (the
vertical line starting from y) is either empty or a segment starting from 0
and ending up to a point. We call this point ZνA(y; x). Thus,

νA(x) ∩ ({y} × [0, +∞]) = {y} × [0, ZνA(y; x)].

ZνA(y; x) as a function of y is monotonically non-increasing and

lim
y→∞

ZνA(y; x) = 0.

(II) For each z ∈ [0, +∞], the intersection between νA(x) and [0, +∞] × {z}
(the horizontal line starting from z) is either empty or a segment starting
from 0 and ending up to a point. We call this point Y νA(z; x). Thus,

νA(x) ∩ ([0, +∞] × {z}) = [0, Y νA(z; x)] × {z}.

Y νA(z; x) as a function of z is monotonically non-increasing and

lim
z→∞

Y νA(z; x) = 0.

We illustrate an example of νA(x) in Figure 1. Note that when we are given
either one of ZνA(y; x) or Y νA(z; x), νA(x) can uniquely be determined.

The basic relations and operations for two G-bags are defined as follows.

(I) (inclusion)
A ⊆ B ⇔ νA(x) ⊆ νB(x), ∀x ∈ X.
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)(x

y

z

Fig. 1. Region ν(x) as a count function for G-bag

(II) (equality)

A = B ⇔ νA(x) = νB(x), ∀x ∈ X.

(III) (sum) Define

Y νA+B(z; x) = Y νA(z; x) + Y νB(z; x)

and derive νA+B(x) from Y νA+B(z; x).
(IV) (union) Define

νA∪B(x) = νA(x) ∪ νB(x).

(V) (intersection) Define

νA∩B(x) = νA(x) ∩ νB(x).

(VI) (α-cut and �-cut) Let a G-bag be A and α ∈ [0, 1] and � ∈ [0, +∞) are
given. An α-cut [A]α is an R-bag with count function

C[A]α(x) = Y νA(α; x).

On the other hand, a �-cut 〈A〉� is a fuzzy set with membership

μ〈A〉�(x) = ZνA(�; x)

A crisp bag, an R-bag, and a fuzzy bag can be regarded as a special case of G-
bags by taking regions under the bars defined from count functions. If we have
an R-bag with CM (x) = a, then we define

νA(x) = {(y, z) : 0 ≤ y ≤ a, 0 ≤ z ≤ 1} (2)

and this R-bag is transformed into an equivalent G-bag. If we have a fuzzy bag,
then we define

νA(x) =
∞
⋃

i=1

{ (y, z) : i − 1 ≤ y ≤ i, 0 ≤ z ≤ μi
A(x) } (3)

We have the next proposition.



42 S. Miyamoto

Proposition 1. Let A and B be arbitrary G-bags of X.

[A + B]α = [A]α + [B]α, (4)
[A ∪ B]α = [A]α ∪ [B]α, (5)
[A ∩ B]α = [A]α ∩ [B]α, (6)

〈A ∪ B〉� = 〈A〉� ∪ 〈B〉�, (7)

〈A ∩ B〉� = 〈A〉� ∩ 〈B〉�. (8)

The proof is straightforward and omitted.

Note 1. G-bags have a close relation to fuzzy interval-valued bags of which future
studies are expected, but we omit the detail (see [19]).

2.3 Complement, s-Norm and t-Norm

This section is mainly concerned with R-bags. We state propositions without
proofs. They are found in [22].

Complementation of R-Bags. A function N : [0, +∞] → [0, +∞] with the
next properties is used to define a complementation operation:

(i) N (0) = +∞, N (+∞) = 0.
(ii) N (x) is strictly monotonically decreasing on (0, +∞).

A typical example is N (x) = const/x with const > 0.
An operation for the complement is then defined:

9.(complement):
CM̄ (x) = N (CM (x)).

This operation justifies the generalization into R-bags, i.e., even when we start
from crisp bags, the result of complementation is generally real-valued.

We immediately have the next two propositions; the proof is easy and omitted.

Proposition 2. For arbitrary R-bags M, N , the next properties are valid:

(M) = M (9)

M ∪ N = M̄ ∩ N̄ , M ∩ N = M̄ ∪ N̄. (10)

Proposition 3. Let an empty bag ∅ and the maximum bag Infinity in R-bags be

C∅(x) = 0, ∀x ∈ X, (11)
CInfinity(x) = +∞, ∀x ∈ X. (12)

Then we have
∅̄ = Infinity, Infinity = ∅. (13)
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s-Norms and t-Norms. There have been studies on t-norms for crisp bags
[11,3], but generalization into R-bags admits a broader class of s-norms and t-
norms. For this purpose we introduce two functions t(a, b) and s(a, b) like those
in fuzzy sets, but the definitions are different.

Definition 1. Two functions t : [0, +∞]× [0, +∞] → [0, +∞] and s : [0, +∞]×
[0, +∞] → [0, +∞] having the next properties (I)–(IV) are called a t-norm and
an s-norm for R-bags, respectively. An s-norm is also called a t-conorm for bags.

(I)[monotonicity] For a ≤ c, b ≤ d,

t(a, b) ≤ t(c, d),
s(a, b) ≤ s(c, d).

(II)[symmetry]
t(a, b) = t(c, d), s(a, b) = s(b, a).

(III)[associativity]

t(t(a, b), c) = t(a, t(b, c)),
s(s(a, b), c) = s(a, s(b, c)).

(IV)[boundary condition]

t(0, 0) = 0, t(a, +∞) = t(+∞, a) = a,

s(+∞, +∞) = +∞, s(a, 0) = s(0, a) = a.

A purpose to introduce such norms for bags is to generalize the intersection and
union operations. First we note that s(a, b) = a + b, s(a, b) = max{a, b}, and
t(a, b) = min{a, b} satisfy the above conditions (I)–(IV). Thus the s-norms and
t-norm represent the operations of addition, union, and intersection.

We moreover introduce a generating function g(x) for s-norm.

Definition 2. A function g : [0, +∞] → [0, +∞] is called a generating function
for s-norm if it satisfies the next (i)–(iii):

(i) it is strictly monotonically increasing,
(ii) g(0) = 0, g(+∞) = +∞,
(iii) g(x + y) ≥ g(x) + g(y), ∀x, y ∈ [0, +∞].

We have the next proposition.

Proposition 4. Let
s(a, b) = g−1(g(a) + g(b)). (14)

Then s(a, b) is an s-norm.

An example of the generation function is

g(x) = xp (p ≥ 1). (15)
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Moreover, note the following.

Proposition 5. Let s(a, b) is an s-norm and N is a complementation operator.
Then

t(a, b) = N (s(N (a),N (b))) (16)

is a t-norm. Suppose t(a, b) is a t-norm, then

s(a, b) = N (t(N (a),N (b))) (17)

is an s-norm.

If a pair of t-norm and s-norm has the above property stated in Proposition 5, we
say (s, t) has the duality of norm and conorm. The duality has the next property.

Proposition 6. Suppose s0(a, b) is an s-norm and t0(a, b) is derived from
s0(a, b) by the operation (16). Let

s(a, b) = N (t0(N (a),N (b)))

Then s(a, b) = s0(a, b). Suppose also that t0(a, b) is a t-norm and s0(a, b) is
derived from t0(a, b) by the operation (16). Let

t(a, b) = N (s0(N (a),N (b)))

Then t(a, b) = t0(a, b).

We apply s-norm and t-norm to define bag operations MSN and MT N ,
respectively.

CMSN (x) = s(CM (x), CN (x)). (18)
CMT N (x) = t(CM (x), CN (x)). (19)

Let us consider examples of s-norms and t-norms.

Example 4. The standard operators

s(a, b) = max{a, b} (20)
t(a, b) = min{a, b} (21)

are an s-norm and a t-norm, respectively. This pair has the duality stated in
Propositions 5 and 6. Note, however, that s-norm (20) does not have a generating
function that satisfies (14), while the next example uses the generating function.

Example 5. Let g(x) be given by (15). Then we have

s(a, b) = (ap + bp)
1
p , (22)

t(a, b) = (a−p + b−p)−
1
p . (23)

are an s-norm and a t-norm, respectively. This pair has the duality stated in
Proposition 5 when N = const/x is used.

The second example has interesting properties. First, s(a, b) = a + b is a
particular case of (22) for p = 1. Moreover s(a, b) = max{a, b} and t(a, b) =
min{a, b} are obtained from (22) and (23) when p → +∞.
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Generalization to G-Bags. Apparently the complementation N cannot be
generalized to G-bags. However, it is possible to define s-norms and t-norms as
follows.

Definition 3. Given two G-bags A, B of X, and an s-norm and t-norm, we
define ZνASB(z; x) and ZνAT B(z; x) are defined by

Y νASB(z; x) = s(Y νA(z; x), Y νB(z; x)), (24)
Y νAT B(z; x) = t(Y νA(z; x), Y νB(z; x)), (25)

Using Y νASB(z; x) and Y νAT B(z; x), we generate νASB(x) and νAT B(x).

The next proposition justifies the above definition.

Proposition 7.

[AS B]α = [A]α S [B]α, (26)
[A T B]α = [A]α T [B]α (27)

3 Bag Relations for Generalized Bags

A bag relation is a concept that corresponds to fuzzy relation. We define algebras
for bag relations for R-bags, and then generalize them to G-bags. Proofs of the
propositions in this section are shown in [22].

3.1 Max-s and Max-t Algebras

Let us introduce a new notation of � and � for

a � b = max{a, b}, a � b = s(a, b) (28)

where s(a, b) is an s-norm for R-bags. We call this max-s algebra.
It is easy to see that the following properties hold.

a � b = b � a, (29)
a � (b � c) = (a � b) � c, (30)

a � 0 = a, (31)
a � b = b � a, (32)

a � (b � c) = (a � b) � c, (33)
a � 0 = a. (34)

We moreover define � and � for

a � b = max{a, b}, a � b = t(a, b) (35)

where t(a, b) is a t-norm for R-bags. The latrter is called max-t algebra. We see
that (29)–(33) hold, while (34) should be replaced by

a � +∞ = a. (36)
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We have the following.

Proposition 8. Let a, b, c be real numbers. Then

a � (b � c) = (a � b) � (a � c). (37)

where � is either an s-norm or a t-norm.

3.2 Bag Relations

Assume that all bags in this section are R-bags, unless otherwise stated.

Definition 4. A bag relation R on X × Y is a bag R of X × Y . The count
function is denoted by R(x, y) instead of CR(x, y) for simplicity.

We define composition operation using max-s or max-t algebra.

Definition 5. Let X, Y, Z be three universal sets. Assume R is a bag relation
of X × Y and S is a bag relation of Y × Z. Then a max-s composition R ◦ S is
defined as follows.

(R ◦ S)(x, z) = �y∈Y {R(x, y) � S(y, z)} (38)

where � is defined by an s-norm. Note that

�y∈{a1,...,aL} = a1 � a2 � · · · � aL.

A max-t composition is defined by the same equation (49) except that � uses a
t-norm.

Note also that the addition is straightforward

(R1 � R2)(x, y) = R1(x, y) � R2(x, y), (39)

for bag relations on X × Y .

We have the following.

Proposition 9. The composition satisfies the associative property

(R ◦ S) ◦ T = R ◦ (S ◦ T ). (40)

and the distributive property

(R1 � R2) ◦ S = (R1 ◦ S) � (R2 ◦ S), (41)
R ◦ (S1 � S2) = (R ◦ S1) � (R ◦ S2). (42)

In short, the composition is calculated like ordinary matrix calculations when
the universes are finite.

We introduce the unit relations for the max-s and max-t compositions. For
this purpose we define OXY and ΩXY on X × Y .

OXY (x, y) = 0, ∀(x, y) ∈ X × Y, (43)
ΩXY (x, y) = +∞, ∀(x, y) ∈ X × Y. (44)

Frequently we omit the subscripts like O and Ω when we have no ambiguity. We
then have
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Proposition 10. Assume that the max-s algebra is used. For arbitrary bag re-
lation R on X × Y ,

R � O = O � R = R, (45)
R ◦ O = O ◦ R = R. (46)

In contrast, assume that the max-t algebra is used. For arbitrary bag relation R
on X × Y ,

R � O = O � R = R, (47)
R ◦ Ω = Ω ◦ R = R. (48)

Note 2. Max-s algebra is a generalization of max-plus algebra [5] and max-t
algebra generalizes max-min algebra [12].

3.3 Relations of G-Bags

It is possible to generalize bag relations to G-bags. The idea is the same as that
for s-norms of G-bags.

Definition 6. Let X, Y, Z be three universal sets. Assume R is a G-bag relation
of X × Y and S is a G-bag relation of Y × Z. Then a max-s composition R ◦ S
is defined as follows.

Y ν(R◦S)(w; x, z) = �y∈Y {Y νR(w; x, y) � Y νS(w; y, z)} (49)

where � is defined by an s-norm.
A max-t composition is defined by the same equation (49) except that � uses

a t-norm. Using Y ν(R◦S)(w; x, z), we generate ν(R◦S)(x, z).

This definition is justified by the next proposition.

Proposition 11. Let R is a G-bag relation of X ×Y and S is a G-bag relation
of Y × Z. Assume R ◦ S is either max-s or max-t composition. We then have

[R ◦ S]α = [R]α ◦ [S]α. (50)

4 Data Analysis Based on Bag Models

We briefly overview bag-based models for data analysis. A typical bag model is
used in document analysis, where frequency of a term in a document is regarded
as a bag.

A less-known but useful model is fuzzy bags (F -bags), that is, weighted terms
with many occurrences. Since discussion of F -bags include that of classical bags,
we focus on F -bags.
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4.1 Distance between F -Bags

An important point in data analysis is the measurement of a distance between
two F -bags. We consider two distances. For this purpose we introduce additional
symbols.

(i) Cardinal number of F -bag:

|A| =
∑

x∈X

∑

j

μj
A(x). (51)

(ii) Product:
μj

A·B(x) = μj
A(x)μj

B(x), j = 1, 2, . . . (52)

We now define two distances:

d1(A, B) = |A ∪ B| − |A ∩ B|, (53)
d2(A, B) = |A · A| + |B · B| − 2|A · B|. (54)

The next proposition is useful.

Proposition 12.

d1(A, B) =
∑

x∈X

∑

j

|μj
A(x) − μj

B(x)|, (55)

d2(A, B) =
∑

x∈X

∑

j

|μj
A(x) − μj

B(x)|2. (56)

Proof. We have

d1(A, B) = |A ∪ B| − |A ∩ B|

=
∑

x∈X

∑

j

max{μj
A(x), μj

B(x)} −
∑

x∈X

∑

j

min{μj
A(x), μj

B(x)}

=
∑

x∈X

∑

j

|μj
A(x) − μj

B(x)|.

d2(A, B) = |A · A| + |B · B| − 2|A · B|

=
∑

x∈X

∑

j

{(μj
A(x))2 + (μj

B(x))2} − 2
∑

x∈X

∑

j

μj
A(x)μj

B(x)

=
∑

x∈X

∑

j

|μj
A(x) − μj

B(x)|2. ��

Miyamoto [18] applied these measures to fuzzy c-means clustering of documents
and terms when terms have weights. The weighted terms with many occurrences
were interpreted as fuzzy bags. It should be noted that cluster centers for both
d1(A, B) and d2(A, B) are well-defined fuzzy bags and their calculations are not
difficult [18].
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Kernel Functions. Recently, kernel functions have been remarked by many
researchers (e.g. [31,30]). It is possible to apply kernel functions to the set of
F -bags. An effect of kernel functions is that nonlinear classification boundaries
are easily obtained. The best-known kernel is the Gaussian kernel:

K(x, y) = exp(−λ‖x − y‖2)

where ‖x − y‖ is the Euclidean distance between two points of the Euclidean
space. When we use a kernel function, we assume an implicit mapping φ(·)
from a data space into an implicit high-dimensional space. Note that the high-
dimensional space and mapping φ need not be known, but their inner product
〈φ(x), φ(y)〉 is given by an explicit kernel function:

K(x, y) = 〈φ(x), φ(y)〉.

For F -bags, it is not difficult to see that

K(A, B) = exp(−λd2(A, B)) (57)

is a positive-definite kernel, and hence we can use this kernel to data analysis of
F -bags. On the other hand, K(A, B) = exp(−λd1(A, B)) does not necessarily
define a positive-definite kernel. Mizutani et al. [24] applied the Gaussian kernel
to a set of documents and performed kernel fuzzy c-means clustering [23]. The
results showed the kernel function better separates clusters than the ordinary
fuzzy c-means clustering.

There is another point that kernel functions are useful. The original set of
fuzzy bags is not a vector space, but after the mapping, F -bags are represented
as points in a high-dimensional space. It is true that the high-dimensional space
itself is invisible, but the method of kernel principal components [30] projects the
points onto a low-dimensional subspace. Using such a method, we can visualize
F -bags as points on a plane when two principal axes are used.

5 Application to Decision Making Using R-Bags

A classical work by Bellman and Zadeh [1] showed how fuzzy set framework is
used in decision making, where an objective and a constraint are represented
by fuzzy sets and a point that maximizes the membership of their intersection
should be an optimal solution.

When we contrast bags and fuzzy sets, we should study decision making using
bags instead of fuzzy sets, and consider if we have an essential difference between
the two approaches.

Example 6. Let us review a simple example in the framework of fuzzy decision
making. For simplicity we handle an objective and a constraint, but generaliza-
tion to many objectives and constraints are straightforward.

An objective is represented by a fuzzy set G of X , while a soft constraint C
is also a fuzzy set of the same universe. A larger G(x) (we write G(x) instead
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of μG(x)) means that the objective is better satisfied. In the same way, a larger
C(x) means that the constraint is more satisfied. Hence we should consider
maximization:

max
x∈X

(G ∩ C)(x) (58)

because both the objective and the constraint should be satisfied. That is, deci-
sion should be fuzzy set D = G ∩ C.

If we use bags in the above formulation in just the same way, the result is the
same as that by fuzzy sets. Only difference is that we do not have the ceiling of
unity when handling bags.

We have, however, another formulation which is complementary to fuzzy de-
cision making. It is more classical and yet employs a feature of fuzzy decision
making. We describe an example using R-bags.

Example 7. Let G and C be R-bags of X , but they have different meanings:
– G(x) = n means that n people are unsatisfied concerning the objective.
– C(x) = m means that m people say the constraint is unsatisfied.
– We should minimize the number of unsatisfied people.

Since we have two bags G and C, minimization of

D(x) = G(x) + C(x) (59)

is reasonable. Note that we write D(x) instead of CD(x) for simplicity.
The above equation (59) means that total number of unsatisfied people is

estimated to be D(x) = G(x) + C(x) when decision variable is x. This means
that there is no overlap between people unsatisfied to G and those unsatisfied
to C.

In contrast, if we consider maximum overlap between those people unsatisfied
to G or C, the decision is represented by

D(x) = max{G(x), C(x)} = (G ∪ C)(x) (60)

These equations show a complementary formulation to that of fuzzy decision
(58). If we should handle multiple goals G1, . . . , Gm and constraints C1, . . . , Cn,
we consider either

D(x) =
m

∑

i=1

Gi(x) +
n

∑

j=1

Cj(x), (61)

or

D(x) = max
1≤i≤m,1≤j≤n

{Gi(x), Cj(x)}

= (G1 ∪ · · · ∪ Gm ∪ C1 ∪ · · · ∪ Cn)(x). (62)

Moreover we can use an s-norm of Minkowski type as a generalization:

D(x) = (G1(x)p ∪ · · · ∪ Gm(x)p ∪ C1(x)p ∪ · · · ∪ Cn(x)p)
1
p , (p ≥ 1). (63)

Note that (63) includes (61) when p = 1 and also approaches (62) as p → ∞.
Note that in any case of (61), (62), and (63), we consider the minimization:

min
x∈X

D(x). (64)
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5.1 Convexity of Bags

In order to handle convex functions, we assume X = Rh, the h-dimensional
Euclidean space. Note that a convex function F defined on X = Rh means that

F (λx + (1 − λ)y) ≤ (λF (x) + (1 − λ)F (y)

for all x, y ∈ X and all λ ∈ [0, 1]. A necessary and sufficient condition for the
convexity of F (x) is that its epigraph

epi(F ) = {(x, β) ∈ Rh+1 : F (x) ≤ β}

is a convex set.
A drawback in fuzzy decision making is that we cannot use the theory of

convex functions, i.e., even when we handle convex fuzzy sets, they are quasi-
convex but never convex, since the membership of a fuzzy set is limited to [0, 1].

In contrast, we can assume convex R-bags G and C, since the membership
value is in [0, +∞]. It is easy to see the next properties are valid.

Proposition 13. Assume R-bags G and C of X = Rh are convex. Then,

D(x) = G(x) + C(x) (65)

and
D′(x) = (G ∪ C)(x) (66)

are convex functions.

Proof. The convexity of D(x) from (65) follows from the well-known fact that
addition of two convex functions are also convex. The convexity of D′(x) from
(66) is based on the property that the intersection of two convex epigraphs is
convex. ��

We moreover have the next proposition.

Proposition 14. Assume R-bags G and C of X = Rh are convex. Then,

D′′(x) = (G(x)p + C(x)p)
1
p , (p ≥ 1) (67)

is convex.

Proof. We first note the Minkowski inequality [9]:

((a1 + b1)p + (a2 + b2)p)
1
p ≤ (ap

1 + ap
2)

1
p + (bp

1 + bp
2)

1
p

for a1, a2, b1, b2 ≥ 0. noting that G(x) and C(x) are convex, we have

D′′(λx + (1 − λ)y) = [G(λx + (1 − λ)y)p + C(λx + (1 − λ)y)p]
1
p

≤ [(λG(x) + (1 − λ)G(y))p + (λC(x) + (1 − λ)C(y))p]
1
p .
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Using the Minkowski inequality, we have

D′′(λx + (1 − λ)y) ≤ [(λG(x))p + (λC(x))p]
1
p + [((1 − λ)G(y))p + ((1 − λ)C(y))p]

1
p

= λ(G(x)p + C(x)p)
1
p + (1 − λ)(G(y)p + C(y)p)

1
p

= λD′′(x) + (1 − λ)D′′(y).

Thus the convexity of D′′(x) is proved. ��
It is straightforward to generalize the above propositions to decisions with mul-
tiple objectives and constraints using (61), (62), and (63). We omit the detail.

Thus if we use R-bags, we can handle convex decision functions.

6 Conclusion

We have overviewed generalizations of classical bags. Three types of generaliza-
tions have been studied. For R-bags, complementation, s-norm and t-norm, and
bag relations have directly been defined, while they are more complicated for
G-bags. Fuzzy bags (F -bags) can be handled as a special case of G-bags. Using
s-norms and t-norms, we have defined max-s and max-t compositions for bag
relations.

We have shown applications of F -bags to data analysis with discussion of
kernel functions. It has been known that kernel-based methods of data analysis
work well in many applications, and hence more studies are necessary concerning
this topic.

Moreover it was shown that decision functions can be convex using s-norms
in contrast to fuzzy decision making, where convexity property does not hold.

We have omitted many other applications, for example, application to rough
sets [25] is also possible and we can develop rough bags and their generalizations
(see, e.g., [19]).

Overall, bags have great potential to produce new useful tools in soft comput-
ing. There are many unsolved problems both in theory and applications. Many
future researches are needed.
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