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Preface

This volume contains papers presented at the 6th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2009), held in Awaji Island,
Japan, November 30 – December 2, 2009. This conference followed MDAI 2004
(Barcelona, Catalonia), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona,
Catalonia), MDAI 2007 (Kitakyushu, Japan), and MDAI 2008 (Sabadell, Cat-
alonia) with proceedings also published in the LNAI series (Vols. 3131, 3558,
3885, 4617, and 5285).

The aim of this conference was to provide a forum for researchers to dis-
cuss the theory and tools for modeling decisions, as well as applications that
encompass decision-making processes and information-fusion techniques.

The organizers received 61 papers from 15 different countries, from Asia,
Europe, and America, 28 of which are published in this volume. Each submission
received at least two reviews from the Program Committee and a few external
reviewers. We would like to express our gratitude to them for their work. The
plenary talks presented at the conference are also included in this volume.

The conference was supported by the Commemorative Organization for The
Japan World Exposition ’70, the Tsutomu Nakauchi Foundation, Hyogo Interna-
tional Association, the Institute of Systems, Control and Information Engineers
(ISCIE), the Operations Research Society of Japan (ORSJ), the UNESCO Chair
in Data Privacy, the Japan Society for Fuzzy Theory and Intelligent Informatics
(SOFT), the Catalan Association for Artificial Intelligence (ACIA), the Euro-
pean Society for Fuzzy Logic and Technology (EUSFLAT), and the Spanish
MEC (ARES - CONSOLIDER INGENIO 2010 CSD2007-00004).

August 2009 Vicenç Torra
Yasuo Narukawa

Masahiro Inuiguchi
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Interactive Robust Multiobjective Optimization
Driven by Decision Rule Preference Model

Roman S�lowiński

Institute of Computing Science, Poznań University of Technology, Poznań, and
Systems Research Institute, Polish Academy of Sciences, 00-441 Warsaw, Poland

roman.slowinski@cs.put.poznan.pl

Interactive procedures for MultiObjective Optimization (MOO) consist of a se-
quence of steps alternating calculation of a sample of non-dominated solutions
and elicitation of preference information from the Decision Maker (DM). We
consider three types of procedures, where in preference elicitation stage, the
DM is just asked to indicate which solutions are relatively good in the proposed
sample. In all three cases, the preference model is a set of “if . . . , then . . . ” deci-
sion rules inferred from the preference information using the Dominance-based
Rough Set Approach (DRSA) (3; 4; 11).

As proved in (5; 10), the set of “if . . . , then . . . ” decision rules is the most
general and the most comprehensible preference (aggregation) model. The rules
obtained using DRSA have a syntax adequate to multiobjective decision prob-
lems: the condition part of a rule compares a solution in the objective space to
a dominance cone built on a subset of objectives; if the solution is within this
cone, then the rule assigns the solution to either a class of “good” solutions (the
case of a positive dominance cone) or to a class of “other” solutions (the case of a
negative dominance cone). The main advantage of decision rules is their simplic-
ity and human-interpretable form. Moreover, they are able to model interactions
between objectives.

The first case considered is a deterministic MOO problem. Selected decision
rules permit to focus progressively on the most interesting region of the Pareto-
optimal set (6).

The second case considered is an optimization problem under uncertainty,
exemplified by portfolio selection. Feasible portfolios are evaluated in terms of
meaningful quantiles of the distribution of return. Using stochastic dominance
on these quantiles, DRSA is producing decision rules guiding convergence to the
most interesting region of the Pareto-optimal set (7).

The third optimization problem involves both multiple objectives and un-
certainty. Some coefficients in the objective functions and/or constraints of this
problem are not precisely known and given as interval values. The proposed in-
teractive procedure is called DARWIN (8). In the calculation stage of DARWIN,
a sample of feasible solutions is generated together with a sample of vectors of
possible values of the imprecise coefficients, called scenarios. Each feasible solu-
tion from the current sample is characterized by a distribution over generated
scenarios. Some representative quantiles of these distributions are presented to
the DM in the preference elicitation stage. The DM is indicating relatively good

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 1–4, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 R. S�lowiński

solutions, and then DRSA is producing decision rules exploited by an evolu-
tionary search of a better sample of solutions. Experiments with a hypothetical
DM’s value function used to select relatively good solutions, prove that DAR-
WIN converges to the same region of the Pareto-optimal set as an evolutionary
procedure optimizing just this value function.

In all three cases, the DM gives preference information by answering easy
questions, and obtains transparent feedback in a learning oriented perspective
(see (1)).

As to the third procedure, remark that most of past research on Evolution-
ary Multiobjective Optimization (EMO) attempts to approximate the complete
Pareto-optimal front by a set of well-distributed representatives of Pareto-optimal
solutions. The underlying reasoning is that in the absence of any preference in-
formation, all Pareto-optimal solutions have to be considered equivalent. On the
other hand, in most practical applications, the DM is eventually interested in only
a small subset of good solutions, or even a single most preferred solution. In order
to come up with such a result, it is necessary to involve the DM. This is the un-
derlying idea of Interactive Multiobjective Optimization (IMO). IMO deals with
the identification of the most preferred solution by means of a systematic dialogue
with the DM. Only recently, the scientific community has discovered the great po-
tential of combining the two paradigms (see (2)). From the point of view of EMO,
involving the DM in an interactive procedure allows to focus the search on the area
of the Pareto front which is most relevant to the DM. This, in turn, may allow to
find preferred solutions faster. In particular, in the case of many objectives, EMO
has difficulties, because the number of Pareto-optimal solutions becomeshuge, and
Pareto-optimality is not sufficiently discriminative to guide the search into better
regions. Integrating user’s preferences promises to alleviate these problems, allow-
ing to converge faster to the preferred region of the Pareto-optimal front.

It is also worth stressing that, in practice, not all data needed to formulate
the MOO problem are known as precise numbers. Rather the opposite, they
are often not precisely known, and thus the coefficients of the multiobjective
optimization problem are given as intervals of possible values. In this situation,
instead of seeking for the best solution with respect to the considered objectives,
one is rather interested in the best robust solution with respect to the considered
objectives and uncertainties.

In DARWIN, due to imprecision of some coefficients of the MOO problem, the
evaluation of a population of solutions takes place in a transformed evaluation
space, where for each solution x, the DM gets information about x in terms of
some meaningful quantiles of the distribution of objectives over scenarios, e.g., for
maximized objectives: 1% probability of obtaining at most f1%

1 (x), . . . , f1%
k (x)

on particular objectives, 25% probability of obtaining at most f25%
1 (x), . . . ,

f25%
k (x), 50% probability of obtaining at most f50%

1 (x), . . . , f50%
k (x), 75% prob-

ability of obtaining at most f75%
1 (x), . . . , f75%

k (x), and 99% probability of ob-
taining at least f99%

1 (x), . . . , f99%
k (x); of course f1%

j (x) ≤ f25%
j (x) ≤ f50%

j (x) ≤
f75%

j (x) ≤ f99%
j (x), j = 1, . . . , k.
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In this way, DM’s preferences are expressed in terms of the transformed eval-
uation space which combines the preferences on performances of the solutions
with the preferences on the risk of attaining these performances. This is why the
most preferred solution finally found is considered as robust. In DARWIN, the
robustness of solutions is ensured twofold, since: (a) DRSA decision rules are
immune to inconsistencies in preference information, and (b) DARWIN takes
into account many possible scenarios, and involves preferences on distribution
of values of objective functions over possible scenarios.

An important comment on the representation of risk by consideration of quan-
tiles follows. Remark that when the best values of objectives in the meaningful
quantiles are considered, then the comparison of two vectors of these best values
using a dominance relation is equivalent to first-order stochastic dominance. On
the other hand, when the mean values of objectives in the meaningful quan-
tiles are considered, then the comparison of two vectors of these mean values
using a dominance relation is equivalent to second-order stochastic dominance,
also called Lorenz dominance (9). To underline the difference between the first-
and second-order stochastic dominance in this context, remark that consider-
ing the mean instead of the best values in quantiles, we take into account bad
evaluations in mean values of all quantiles, while good evaluations are taken into
account in mean values of high quantiles only. In other words, in the second-order
stochastic (Lorenz) dominance, worse scenarios gain importance. For this reason,
the second-order stochastic dominance is more risk averse than the first-order
stochastic dominance.

Depending on the consideration of the best or the mean values of objectives in
the meaningful quantiles, the dominance relation used in DRSA for inferring the
decision rules from the preference information is either the first- or the second-
order stochastic dominance. In consequence, the decision rules involving the
second-order stochastic dominance are more risk averse than the decision rules
involving the first-order stochastic dominance. A further consequence of using
these rules in the evolutionary procedure is that in the first case the procedure
converges to a less risky region of solutions than in the second case.

Remark, finally, that DRSA decision rules do not convert ordinal information
into numeric one, which implies that: (i) from the point of view of multiobjective
optimization, no scalarization is involved, and (ii) from the point of view of
decision under uncertainty, no specific model, such as expected utility, Choquet
integral, Max-min expected utility, cumulative prospect theory, etc., has been
imposed, and only a very general principle of the first- or second-order stochastic
dominance in the space of meaningful quantiles is considered.
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[4] Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets theory for multicriteria deci-
sion analysis. European Journal of Operational Research 129, 1–47 (2001)
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Abstract. In intentional agents, actions are derived from the mental
attitudes and their relationships. In particular, preferences (positive de-
sires) and restrictions (negative desires) are important proactive atti-
tudes which guide agents to intentions and eventually to actions. In
this paper we overview recent developments about a multi-context based
agent architecture g-BDI to represent and reasoning about gradual no-
tions of desires and intentions, including sound and complete logical for-
malizations. We also show that the framework is expressive enough to
describe how desires, together with other information, can lead agents to
intentions and finally to actions. As a case-study, we will also describe
the design and implementation of recommender system on tourism as
well as the results of some experiments concerning the flexibility and
performance of the g-BDI model.

1 Introduction

In the recent past, an increasing number of theories and architectures have been
proposed to provide multiagent systems a formal support for their reasoning and
decision making models, among them the so-called BDI architectures [16,9,15].
We consider that making the BDI architecture more flexible will allow for de-
signing and developing intensional agents potentially capable to have a better
performance in uncertain and dynamic environments. Along this research line
we have developed a general model for graded BDI agents (g-BDI agents for
short), specifying an architecture able to deal with the environment uncertainty
(via graded beliefs) and with graded mental proactive attitudes (via desires and
intentions). In the g-BDI model, belief degrees represent the extent to which
the agent believes formulas hold true. Degrees of positive or negative desires
allow the agent to set different levels of preference or rejection respectively. In-
tention degrees also give a preference measure but, in this case, modelling the

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 5–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



6 A. Casali, L. Godo, and C. Sierra

cost/benefit trade off of achieving an agent’s goal. Then, agents having differ-
ent kinds of behaviour can be modelled on the basis of the representation and
interaction of their graded beliefs, desires and intentions.

The formalization of the g-BDI agent model is based on multi-context systems
(MCS) [10], and in order to represent and reason about the beliefs, desires and
intentions, we followed a many-valued modal approach, following the approach in
[11,12,13], where uncertainty reasoning is dealt with by defining suitable modal-
like extensions of suitable many-valued logics. The logical framework of this
model has been presented in [4,6] and it will be summarized in Section 2, while in
Section 3 we present a small example of how the model works. Finally, in Section
4 we describe a prototype of a tourism recommender system which has been
developed as a proof concept, where the g-BDI model has been used to design
a Travel Assistant agent, which recommends tourist packages and destinations
according to the user’s preferences and constraints. The implementation details
system have been described in [5,8] and experimentation and validation of the
system is reported in [7]. We end up with some conclusions n Section 5.

2 Graded BDI Agent Model

The specification of the g-BDI agent model is based on multi-context systems
(MCS) and is an extension of the work of Parsons et al. [15] about multi-context
BDI agents. Multi-context systems were introduced by Giunchiglia and Serafini
[10] to allow different formal (logical) components to be defined and interrelated.
The MCS specification contains two basic components: units (or contexts) and
bridge rules, which channel the propagation of consequences among unit theories.
Thus, a MCS is defined as a group of interconnected units

〈
{Ci}i∈I , ∆br

〉
. Each

context Ci is specified by a 3-tuple Ci = 〈Li, Ai, ∆i〉 where Li, Ai and ∆i are
its language, axioms, and inference rules respectively. ∆br can be understood as
rules of inference with premises and conclusions in different contexts, for instance
a bridge rule like

C1 : ψ,C2 : ϕ
C3 : θ

specifies that if formula ψ is deduced in context C1 and formula ϕ is deduced
in context C2 then formula θ is added to context C3. When a theory Ti ⊆ Li is
associated with each unit, the specification of a particular MCS is complete.

The deduction mechanism of a multi-context system
〈
{Ci}i∈I , ∆br

〉
is there-

fore based on two kinds of inference rules, internal rules ∆i, and bridge rules
∆br, which allow to embed formulae into a context whenever the conditions of
the bridge rule are satisfied.

In the basic specification of the g-BDI agent model as a MCS we have two
kinds of contexts: three mental contexts, to represent beliefs (BC), desires (DC)
and intentions (IC), as well as two functional contexts, for planning (PC) and
communication (CC). The overall behavior of the system will depend of the
logical representation of each intentional notion in their corresponding contexts
and the particular set of bridge rules ∆br used. Thus, a g-BDI agent model will
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Fig. 1. Multi-context model of a graded BDI agent

be defined as a MCS of the form Ag = ({BC,DC, IC, PC,CC}, ∆br). Figure 1
illustrates such a g-BDI agent model with the different five contexts and six
bridge rules relating them.

Next, we synthesize the purpose and formalization of each component (i.e.
contexts and bridge rules) in the agent model. For full details the reader is
referred to [3].

2.1 Belief Context (BC)

The aim of this context is to model the agent’s uncertain beliefs about the en-
vironment. Since the agent needs to reason about her possible actions and the
environment transformations they cause and their associated cost, this knowl-
edge must be part of any situated agent’s belief set. To represent knowledge
related to action execution, we use Dynamic Propositional logic (PDL) as the
base propositional logic (PDL has been proposed to model agent’s actions e.g.
in [14].) To account for the uncertainty or belief on the result of actions, either a
probability-based approach or possibilistic-based approach (based on necessity
degrees) can be adopted in the Belief Context BC. To do so, a many-valued
modal-like logic (BCprob or BCnec respectively) is defined over a propositional
dynamic language LPDL to reason about the probability or necessity on dynamic
logic formulas.

For instance, let us consider a Belief context BCprob where belief degrees are
to be modeled as probabilities. Then, for each classical formula ϕ, we consider a
modal formula Bϕ which is interpreted as “ϕ is probable”. This modal formula
Bϕ is then a fuzzy formula which may be more or less true, depending on the
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probability of ϕ. In particular, we can take as truth-value of Bϕ the probability
degree of ϕ. This is the guiding idea exploited in the probabilistic logic BCprob,
which is formally defined as a modal-like extension of Rational Pavelka logic
(RPL) [12], an expansion of [0, 1]-valued �Lukasiewicz logic with a truth-constant
r for every rational r ∈ [0, 1], following the approach proposed in [13,12]. We use
this logic to reason about the Bϕ’s formulas since the probability axioms are
easily expressible using �Lukasiewicz logic connectives.

The modal language (B-formulas) of the logic BCprob is built from proposi-
tional variables of the form Bϕ for each ϕ ∈ LPDL. Compound formulae are de-
fined in the usual way in the Rational Pavelka logic (RPL) using the �Lukasiewicz
connectives →L and ¬L, and truth-constants r, for each rational r ∈ [0, 1] (note
that nesting of the operator B is not allowed). For instance, if an agent has
formula 0.6 →L B[α]ϕ in its BC context, it means that he believes that the
probability of having a goal ϕ true after perfoming action α is at least 0.6.

The semantics for this language is given by probabilistic Kripke structures of
the following form: MBC = 〈W, {Rα : α ∈ Π} , e, µ〉 where 〈W, {Rα : α ∈ Π} , e〉
is regular Kripke model of PDL and µ : F → [0, 1] is a probabilistic measure on
a Boolean algebra F ⊆ 2W such that for each crisp ϕ, the set {w | e(ϕ,w) = 1}
is µ-measurable. The e evaluation is extended as usual to PDL-formulae and it
is extended to B-modal formulas by means of the folowing probabilistic inter-
pretation of atomic belief formulas,

– e(Bϕ,w) = µ({w′ ∈W | e(ϕ,w′) = 1})
and by means of �Lukasiewicz logic truth-functions for compound modal formulas.

The axioms and rules for BCprob are built in layers according to the nature of
the language LBC and the particular uncertainty model chosen, here probability.
Namely, the set of axioms consists of: (i) axioms of propositional Dynamic logic
for PDL-formulas; (ii) axiom of RPL for B-formulas, and (iii) the following
probabilistic axioms for B-formulas:

(BC1) B(ϕ→ ψ) →L (Bϕ→L Bψ)
(BC2) B(ϕ ∨ ψ) ↔L Bϕ⊕ (Bψ 
B(ϕ ∧ ψ))
(BC3) ¬LB(⊥)
(BC4) Bϕ, for each theorem ϕ of PDL

where Φ ⊕ Ψ is a shorthand for ¬LΦ →L Ψ and Ψ 
 Φ is a shorthand for
¬L(Φ→L Ψ).1 Deduction rules for BC are Modus Ponens (both for → of PDL
and for →L of RPL) and Necessitation for the modality B.

In [6] it is proved that the logic BCprob is sound and Pavelka-style complete
with respect to the above probabilistic semantics.

2.2 Desire Context (DC)

Desires represent the ideal agent’s preferences regardless of the agent’s current
perception of the environment and regardless of the cost involved in actually
1 Note that in �Lukasiewicz logic (x ⇒L 0) ⇒L y = min(1, x + y) and (x ⇒L y) ⇒L

0 = max(0, x − y).
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achieving them. Positive desires represent what the agent would like to be the
case. Negative desires correspond to what the agent rejects or does not want to
occur. In this setting, one can also express indifference in a natural way just by
expressing that has neither a positive nor a negative preference over an object.
Furthermore, positive and negative desires can be graded to represent different
levels of preference or rejection, respectively.

In the g-BDI agent model, following the approach on bipolarity representation
of preferences in [1,2], we model in the DC context positive and negative infor-
mation in the framework of possibilistic logic. In a similarly way as we do in the
BC context, to represent and reason about the agent bipolar preferences in the
DC context a modal many-valued approach is used to deal with the (positive
and negative) desire degrees and a corresponding layered structure of axioms
is set. As for combining one kind of desires (positive or negative) usually the
conjunction of independent positive (resp. negative) preferences should produce
a higher positive (resp. negative) preference. The degree of a disjunction of pos-
itive (resp. negative) preferences is computed as the minimum of the preference
degrees, following the intuition that if the disjunction is satisfied at least the
minimum of the satisfaction (rejection) levels is guaranteed. This corresponds to
the use of the so-called guaranteed possibility measures to model the strength of
the preferences [1]. In this way, a basic logic framework for the Desire context
(DC schema) to capture these combination properties for positive and negative
desires is independently defined.

The language LDC in the DC context is defined over a classical propositional
language L (built from a countable set of propositional variables Var with con-
nectives ∧, → and ¬) expanded with two (fuzzy) modal-like operators D+ and
D−. D+ϕ reads as “ϕ is positively desired” and its truth degree represents the
agent’s level of satisfaction would ϕ become true. D−ϕ reads as “ϕ is negatively
desired” (or “ϕ is rejected”) and its truth degree represents the agent’s level of
disgust on ϕ becoming true. Notice that, as in BC, we do not allow nesting of
the D+ and D− operators. As in the BCprob logic, we use Rational Pavelka logic
as the fuzzy logic to reason about the D+ϕ and D−ϕ’s formulas.

The intended DC models are Kripke structures M = 〈W, e, π+, π−〉 where W
and e are defined as in the BC semantics and π+ and π− are preference distribu-
tions overworlds, which are used to give semantics to positive and negative desires:

– π+ : W → [0, 1] is a distribution of positive preferences over the possible
worlds. In this context π+(w) < π+(w′) means that w′ is more preferred
than w.

– π− : W → [0, 1] is a distribution of negative preferences over the possible
worlds: π−(w) < π−(w′) means that w′ is more rejected than w.

The truth evaluation for non-modal formulae e : L ×W → {0, 1} is defined in
the usual (classical) way, and it is extended to atomic modal formulae D−ϕ and
D+ϕ by:

– e(D+ϕ,w) = inf{π+(w′) | e(ϕ,w′) = 1}
– e(D−ϕ,w) = inf{π−(w′) | e(ϕ,w′) = 1}
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The basic set of axioms axioms and inference rules aim capturing these com-
bination properties, considering positive or negative desires independently, are:
axioms of classical logic for non-modal formulae, axioms of Rational Pavelka
logic for modal formulas, the following preference handling axioms

(DC0+) D+(ϕ ∨ ψ) ≡L D
+ϕ ∧L D

+ψ
(DC0−) D−(ϕ ∨ ψ) ≡L D

−ϕ ∧L D
−ψ

and modus ponens for → and for →L, together with rules of introduction of D+

and D− for implications:

(ID+) from ϕ→ ψ derive D+ψ →L D
+ϕ

(ID−) from ϕ→ ψ derive D−ψ →L D
−ϕ.

Soundness and completeness results have been also proved for this basic logic
for graded, independent positive and negative desires. It is also possible to ex-
tend this framework to deal with different forms of interaction between positive
and negative desires by adding some suitable axiom schemes. In [6], we have
considered three additional schemes:

(DC1+) D+ϕ ∧L D
+(¬ϕ) →L 0̄

(DC1−) D−ϕ ∧L D
−(¬ϕ) →L 0̄

(DC2) (D+ϕ ⊗D−ϕ) →L 0̄
(DC3) (D+ϕ ∧L D

−ϕ) →L 0̄

Intuitively, axioms (DC1+) and (DC1−) capture the constraint that an agent
cannot have simultaneously a positive (negative) degree for a goal ϕ and for its
contrary ¬ϕ. On the other hand, axiom (DC2) captures a constraint stipulating
that the positive and negative degree for a same goal cannot sum more than
1, while axiom (DC3) is stronger and forbids having a positive and a negative
desire for a same goal.

2.3 Intention Context (IC)

This unit is used to represent the agent’s intentions. Together with the desires,
they represent the agent’s preferences. However, we consider that intentions
cannot depend just on the benefit of reaching a goal ϕ, but also on the world’s
state and the cost of transforming it into one where the formula ϕ is true. By
allowing degrees in intentions we represent a measure of the cost/benefit relation
involved in the agent’s actions towards the goal.

We represent in this context two kinds of graded intentions, intention of a
formula ϕ considering the execution of a particularly plan α, noted Iαϕ, and the
final intention to ϕ, noted Iϕ, which takes into account the best path to reach ϕ.
As in the other contexts, if the degree of Iϕ is δ, it may be considered that the
truth degree of the expression “ϕ is intended” is δ. The intention to make ϕ true
must be the consequence of finding a feasible plan α, that permits to achieve
a state of the world where ϕ holds. Indeed, a suitable bridge rule (described in
Subsection 2.5 as bridge rule (3)) infers these degrees of intention towards a goal
ϕ for each plan α that allows to achieve the goal.
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The agent intentions will be represented in the IC context by a theory TI over
Rational Pavelka logic RPL. The language used is built in a similar way as done
in the BC and DC contexts. We start from a classical propositional language
L with a finite set of actions or plans Π0 at the agent disposal to achieve her
desires. Then, for each α ∈ Π0 we introduce a modal operator Iα such that the
truth-degree of a formula Iαϕ will represent the strength the agent intends ϕ by
means of the execution of the particular action α.2 We also introduce another
modal operator I with the idea that Iϕ will represent that the agent intends ϕ by
means of the best plan in Π0. These atomic modal formulas are then combined
using �Lukasiewicz connectives and rational truth-constants. Then, for instance,
if the agent IC theory TI contains the formula Iαϕ→L Iβϕ then the agent will
try ϕ by executing the plan β before than executing plan α.

Models for IC are Kripke structures M = 〈W, e, {πα}α∈Π0〉 where W is a set
of worlds and πα : W ×W → [0, 1] is the utility distribution corresponding to
action α: πα(w,w′) is the utility of applying α to transform world w into world
w′.3 Then e is extended to Boolean formulae as usual and to atomic modal
formulae by

– e(w, Iαϕ) = inf{πα(w,w′) | w′ ∈W, e(w′, ϕ) = 1}
– e(w, Iϕ) = max{e(w, Iαϕ) | α ∈ Π0}

and to compound modal formulae using the truth functions of Rational
�Lukasiewicz logic.

The set of axioms for the IC logic consists of: axioms of classical logic for the
non-modal formulas, axioms of Rational Pavelka logic for the modal formulas
and the following specific axioms for the Iα and I modalities:

(IC0) Iα(ϕ ∨ ψ) ≡L Iαϕ ∧L Iαψ
(IC1) Iϕ ≡L

∨
α∈Π0 Iαϕ

The rules are modus ponens for → and for →L and introduction of Iα for impli-
cations: from ϕ→ ψ derive Iαψ →L Iαϕ for each α ∈ Π .

Again, suitable soundness and completeness results can be proven for such a
logic.

2.4 Planner and Communication Contexts (CC and PC)

The Planner Context (PC) has to look for feasible plans, these plans are gener-
ated from actions that are believed to fulfill a given positive desire and avoiding
negative desires as post-conditions. These feasible plans are computed within
this unit using an appropriate planner that takes into account beliefs and
desires injected by bridge rules from the BC and DC units respectively.

2 The IC context is not concerned about the question of whether a given desire can be
reached by the execution of a particular action, this is left for the Planner Context,
see next subsection.

3 Indeed, it can be seen as a kind of refinement of the Rα relations of the action
dynamic logic semantics considered in the BC context.
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The Communication unit (CC) makes it possible to encapsulate the agent’s
internal structure by having a unique and well-defined interface with the environ-
ment. The theory inside this context will take care of the sending and receiving
of messages to and from other agents in the multiagent society where our graded
BDI agent lives.

Due to their functional aspect, we will not go into further details of these two
units.

2.5 Bridge Rules (BRs)

A collection of basic bridge rules is considered to establish the necessary inter-
relations between context theories. We describe them next:

1. There are bridge rules from DC to PC that, from the positive and negative
desires (pro-active attitudes), generate predicate instances in the PC unit
that are used by the planner program to build the feasible plans:

DC : (D+ϕ, d)
PC : �(D+ϕ, d)� and

DC : (D−ψ, n)
PC : �(D−ψ, n)� (1)

2. The agent knowledge about the world state and about actions that change
the world, is introduced from the belief context into the Planner as first
order formulas:

BC : Bϕ
PC : �Bϕ� (2)

3. Regarding intentions, there is a bridge rule that infers the degree of Iαϕ for
each feasible plan α that allows to achieve ϕ. The intention degree is thought
as a trade-off among the benefit of reaching a desire, the cost of the plan
and the belief degree in the full achievement of ϕ after performing α. The
following bridge rule computes this value from the degree of D+ϕ (d), the
degree of belief B[α]ϕ (r), the cost of the plan α (c):

DC : (D+ϕ, d), BC : (B[α]ϕ, r), PC : fplan(ϕ, α, P,A, c)
IC : (Iαϕ, f(d, r, c))

(3)

Different functions f allow to model different agent behaviors. For instance,
if we consider an equilibrated agent, where all the factors involved are equally
taken into account, the function might be defined as the average among these
factors. In other cases, a weighted average may be used where the different
weights wi are set according to the agent expected behavior:

f(d, r, c) = (wdd+ wrr + wc (1 − c)) / (wd + wr + wc)

For example, for a greedy agent, wc may be set greater than the other weights:
wd and wr.

4. The information supplied by the above bridge rule to the IC unit allows this
unit to derive, for each desire ϕ, a formula (Iϕ, i) where i is the maximum
degree of all the (Iαϕ, iα) formulae, where α is a feasible plan for ϕ. The
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plan αb that allows to get the maximum intention degree imax considering
all the agent desires, will be set by the PC unit as the best plan (see the
definitional axiom (IC1) for I in Subsection 2.3). Finally, we also need rules
to establish the agent interaction with the environment, meaning that if the
agent intends ϕ at degree imax, the maximum degree of all the intentions,
then the agent will choose to execute the plan αb —bestplan— that will allow
him to reach the most intended goal ϕ:

IC : (Iαb
ϕ, imax), PC : bestplan(ϕ, αb, P, A, c)

CC : C(does(αb))
(4)

5. Through the communication unit the agent perceives all the changes in the
environment that are introduced by the following bridge rule in the belief
context:

CC : β
BC : Bβ

(5)

6. Bridge rules to generate desires in a dynamic way. In the desire context
DC different schemas to represent and reason about desires were presented
but how desires are derived was not discussed. In a dynamic environment
the agent desires will change, depending on her beliefs and also on the set of
current desires. Notably, Rahwan and Amgoud in their argumentation-based
approach to practical reasoning [17] provide an argumentation-based frame-
work for generating consistent desires, among other tasks, see also [18]. The
basic elements of this argumentation framework are the desire-generation
rules. We introduce in our g-BDI model a multi-context and many-valued
version of these rules. As the desire and belief formulae in the premise are
coming from different contexts, we define the following bridge rules for desire
generation:

BC : (Bϕ1 ∧ ... ∧Bϕn, b), DC : (D+ψ1 ∧ ... ∧D+ψm, c)
DC : (D+ψ, d)

(6)

Namely, if the agent has the beliefs Bϕ1, ..., Bϕn in degree greater or equal
then a threshold b and positively desires D+ψ1, ..., D

+ψm in degree at least
c, she also desires ψ in degree at least d.

With the description of this set of bridge rules (BR) we have finished a short
description of all components of the g-BDI agent model.

3 A Small Example

Here we present a simple example as to show how the proposed agent model
works.

Peter, who lives in Rosario, wants to planify his activities for the next week.
He activates a personal assistant agent based on our g-BDI model to find an ad-
equate travel plan (transportation + accommodation). He would be very happy
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attending to a conference on his speciality scheduled to take place in Buenos
Aires (ϕ1) and he would be rather happy visiting a friend living near this city
(ϕ2). But he would indeed prefer much more to be able to do both things. Be-
sides, he doesn’t like to travel during the night (ψ). This assistant has Peter’s
positive and negative desires represented by the following formulae in the theory
TDC of the agent ’s Desire context:

TDC =
{
(D+ϕ1, 0.8), (D+ϕ2, 0.6), (D+(ϕ1 ∧ ϕ2), 0.9), (D−ψ, 0.7)

}
This means that the agent has rather high positive desires on achieving ϕ1 and
ϕ2 but he even has a higher desire to achieve both (0.9). At the same time, the
agent he rather rejects ψ, represents by a rather negative desire on ψ (0.7).

The agent also has knowledge about the conference schedule, his friend’s
agenda and transportation information, that is represented in the theory TBC of
the Belief context BC. Moreover, from this information and the set of positive
and negative desires in TDC , the planner context (PC) looks for feasible travel
plans that are believed to satisfy ϕ1 and/or ϕ2 by their execution, but avoiding
ψ as post-condition. Assume both α and β are found as feasible plans, whose
normalized costs are cα = 0.6 and cβ = 0.5 respectively.

On the other hand, assume the Belief context (BC) is able to estimate the
following beliefs (modelled as probabilities) about the achievement of the differ-
ent goals by the feasible plans α and β, represented by the following formulae in
the theory TBC :

TBC ⊇ {(B[α]ϕ1, 0.7), (B[α]ϕ2, 0.6), (B[α](ϕ1 ∧ ϕ2), 0.42),
B[β]ϕ1, 0.5), (B[β]ϕ2, 0.6), (B[β](ϕ1 ∧ ϕ2), 0.3)}

Then, using Bridge rule (3) and choosing the function f as

f(d, r, c) = r · (1 − c+ d)/2,

which computes an expected utility (taking the value (1− c+ d)/2 as the global
utility of reaching a goal with desire degree d and cost c, and 0 otherwise), the
agent computes the different intention degrees towards the goals by considering
the different feasible plans (i.e. α or β). In this example, the intention degrees
for the goal with the highest desire degree, i.e. ϕ1 ∧ ϕ2, are:

(Iα(ϕ1 ∧ ϕ2), 0.273) and (Iβ(ϕ1 ∧ ϕ2), 0.210)

From these results, the assistant agent choses to recommend Peter the plan α
that would allow him to attend the conference and to visit his friend (ϕ1 ∧ ϕ2).

4 A Case Study: An Application of a Tourism
Recommender System

In this section,as a matter of application of the previously introduced main com-
ponents of the g-BDI agent model, we succinctly describe the general architecture
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of a Tourism Recommender system that has been developed (see [8,5] for more
details). The goal of the system is to recommend the best tourist packages on Ar-
gentinian destinations according to the user’s preferences and restrictions. The
packages are provided by different tourist operators. This system has been de-
signed using a multiagent architecture and we particularly use the g-BDI model
to specify one of its agents, the Travel Assistant Agent (T-Agent). The purpose
of this prototype implementation was to show that the g-BDI agent model is
useful to develop concrete agents on a real domain.

Inspired in the different components of a tourism chain, in the analysis phase we
have identified the following roles: the Provider role (tourist package providers),
the Travel Assistant role and Service roles (hotel chains, airlines, etc.). However,
in this case study we don’t deal with the service roles, we only mention them as
necessary collaborators of the Provider role. Other functional roles have been iden-
tified as well, like for instance the Interface role, to manage the user interface, and
the repository Maintenance role (R-Maintenance), to update and code into the
system format the packages sent by the provider roles. In this simplified version
of Recommender System, we define two agent’s types: the Provider agent and the
Travel Assistant Agent. We assign the interface role, the repository maintenance
role and the travel assistant role to the Travel Assistant Agent (T-Agent).

The internal architecture of the Provider agents (P-Agent) is not considered
in our implementation and for our purposes they are considered only as tourist
packages suppliers. The multi-agent architecture of the prototype version of the
tourism recommender system, composed by a T-Agent and two P-Agents, to-
gether with the main source of information they interact with (the destination
ontology and the package repository) is illustrated in Figure 2. This multiagent
system is easily scalable to include other providers.

Fig. 2. Multiagent architecture of the Tourism Recommender System
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The implementation of the Recommender system was developed using SWI-
Prolog, a multi-threaded version of prolog which is a suitable language both
to deal with logical deduction and allowing an independent execution of the
different contexts (i.e. in different threads). Moreover, each P-Agent runs in a
different thread, so in this way being independent from each other and from
the T-Agent. When the T-Agent requests for information, the P-Agents send to
T-Agent all the current packages they can offer. The communication between
agents is by message exchange.

Next, we briefly describe how the contexts have been implemented in order to
obtain the desired behaviour of the T-agent (for a detailed description see [8]).

Communication Context (CC): The CC is the agent’s interface and is
in charge of interacting with the tourism operators (P-Agents) and with the
tourist that is looking for recommendation. The T-Agent, before beginning its
recommendation task, updates its information about current packages (carrying
out its reservory maintenance role). It behaves as a wrapper translating the
incoming packages into the T-Agent format and sends them to the Planner
context. The user’s interface has been developed as a Web service application
and it is responsible for:

- Acquiring user’s preferences: they are explicitly obtained from the user by filling
in a form. The tourist can set her preferences (positive desires) and restrictions
(negative desires) and assign them a natural number from 1 to 10 to represent
the level of preference (resp. restriction) for the selected item. Preferences are
given about the following issues: geographic zone, natural resources, infrastruc-
ture, accommodation, transport or activities. The constraints are related to the
maximum cost she is able to afford, the days available for traveling and the max-
imum total distance she is willing to travel. Once the user finishes his selection,
the CC sends all the acquired information to the Desire context DC.

- Showing the resulting recommendation: as a result of the T-Agent deliberation
process, the CC receives from the Intention context a ranking of feasible pack-
ages that satisfies some or all of the tourist preferences. Then, he can visualize
the information about them (i.e. the description of the transport, destination,
accommodation, activities) opening suitable files.

- Receiving Tourist’s feedback: After analyzing the ranking of the recommended
packages, the user can express through the CC interface her opinion about the
recommendation. Namely, the user can select one of the following three possible
evaluations:

1. Correct: When the user is satisfied with the ranking obtained.

2. Different order: When the recommended packages are fine for the user, but
they are ranked in a different order than the user’s own order. In such a case,
the user is able to introduce the three best packages in the right order.

3. Incorrect: The user is not satisfied with the given recommendation. Then,
the interface enables him to introduce a (textual) comment with his opinion.
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Fig. 3. Two screenshots of the user interface. Left: acquisition of user’s preferences.
Right: package recommendation and user feedback.

All the information resulting from the user data entry is stored to evaluate the
system behaviour.

An example of a tourist’s preferences specification and the system recommen-
dation using this interface is shown in Figure 3.

Desire Context (DC): As the T-Agent is a personal agent, its overall desire is
to maximize the satisfaction of the tourist’s preferences. Thus, in this context the
different tourist’s graded preferences and restrictions are respectively represented
as positive and negative desires. For instance, the preferences of a tourist that
would like to go to a mountain place and to travel by plane but not more than
2000 kms could be represented by the following theory:

TDC = {(D+resources mountain, 0.9), (D+transport air, 0.7),
(D+(resources mountain ∧ transport air), 0.92), (D−(distance ≥ 2000), 0.5)}

The T-Agent uses the desires as pro-active elements, and are passed by a bridge
rule to the Planner context that looks for feasible packages.

Belief Context (BC): In this context the T-Agent represents all the neces-
sary knowledge about tourism and the Argentinian domain: tourist packages (each
package is represented as a list containing an identifier, a tour provider, the pack-
age cost and a travel-stay sequence), information about destinations (represented
by a destination ontology) and rules to infer how much preferences can be satis-
fied (to some degree) by the feasible tourist packages. This context also contains
knowledge about similarity relations between concepts to extend the possibility
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of satisfying a tourist with similar preferences than the actually selected ones. Be-
sides, the BC is in charge of estimating the extent (the belief) B([αP ]ϕ) to which
a desire (preference) ϕ will be achieved when selecting a given package αP .

Planner Context (PC): The Planner Conext (PC) is fundamental for the
T-Agent implementation. The PC unit is assumed to contain a set of available
plans, coded as instances of the predicate planner with paq formulae (see below).
The Planner context is responsible for looking among them for feasible packages.
By feasible package we mean a package that fulfills, to some degree, one of the
positive desires (elementary or combined) and avoids, as post-condition, the sat-
isfaction of the agent’s negative desires above to a given threshold. The set of
feasible plans is determined within this context using an appropriate searching
method that takes into account information injected by bridge rules from the BC
and DC units, including positive and negative desires, information about pack-
ages (including their cost), the agent’s beliefs about package destinations and
the estimation of the agent’s desires fulfillment by the different plan executions.

After the PC has identified the set of feasible packages, they are passed to the
Intention context, which is in charge of ranking of these packages according to
the user’s preferences.

Intention Context (IC): In order to rank the feasible packages to be offered
to the user, the Intention context IC of the T-Agent is in charge of estimating
the intention degree for each feasible package as a trade off between the benefit
(expected satisfaction) and the cost of reaching the user’s desires through that
package. Thus, first, this context estimates the expected satisfaction E(D,α) of
a tourist’s desire D assuming she selects a package α. Second, using a suitable
bridge rule, it computes the intention degree (the truth degree of the formula
IαD) towards the desire D by executing a tourist package α using a function
that combines the expected satisfaction E(D,α) and the normalized package cost
CN . In the following Subsections we give some insights of how this estimations
are implemented in the T-Agent.

A first experimentation of this prototype has been carried out with promising
results (see [7] for a preliminary report). Considering 52 queries, 73% of the user’s
opinions were satisfactory (namely 40.4% with correct order and 32.7% with dif-
ferent order as user feedbacks). Furthermore, we have performed some experimen-
tations using this recommender agent with the aim of proving different properties
of the g-BDI model of agents. On the one hand, we have performed a sensitivity
analysis to show how the g-BDI agent model can be tuned to have different be-
haviors by modifying some of its component elements. On the other hand, we have
also done some experiments in order to compare the performance of recommender
agents using the g-BDI model with agents without graded attitudes.

5 Conclusions

In this paper we have overviewed the main characteristics of a general graded
BDI agent model. In this model, the agent graded attitudes have an explicit and
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suitable representation. Belief degrees represent the extent to which the agent
believes a formula to be true. Degrees of positive or negative desires allow the
agent to set different levels of preference or rejection respectively. Intention de-
grees also give a preference measure but, in this case, modelling the cost/benefit
trade off of achieving an agent’s goal. Then, agents having different kinds of
behaviour can be modelled on the basis of the representation and interaction of
their graded beliefs, desires and intentions. In this respect, the role of preference
representation is fundamental in this agent model as they are the agent proactive
attitudes which lead agent to intentions and then, to actions.

As proof of concept, a prototype of multiagent Tourism Recommender system
has been developed, where the g-BDI architecture has been used for modelling
the T-Agent, showing in this way that the model is useful to develop concrete
agents in real domains. We remark that the graded model of information rep-
resentation and reasoning in the g-BDI agent has several advantages for this
implementation. For instance, this model enables an expressive representation
of the domain knowledge (agent beliefs), the user’s preferences (desires) and the
resulting intentions. Also, it makes it possible to compute in a graded way the
expected satisfaction of the different tourist’s preferences by the execution of
several packages, so providing rankings of recommendations. Indeed, some val-
idation and experimentation results reported in [7] show that (i) g-BDI agents
are useful to build recommender systems in a real domains such as tourism, (ii)
they provide satisfactory results, and (iii) the distinctive feature of recommender
systems modelled using g-BDI agents, which is using graded mental attitudes,
allows them to provide better results than those obtained by non-graded BDI
models.

Acknowledgments
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Abstract. Firstly, a behavioral model based on the "Prospect Theory" devel-
oped by Kahneman and Tversky is described. In this model weighting function 
of non-additive probabilities are introduced where probability of each event oc-
curring is known. The effective application of this approach to the public sector 
is shown in modeling risks of extreme events with low probability and high 
outcome. Next, a behavioral model based on our "Prospect Theory under Un-
certainty" is described where basic probability of a set of events is known but 
occurrence probability of each event is not known. It is shown that this model 
could properly explain the Ellsberg paradox of ambiguity aversion. Potential 
applicability of this approach to assessing global environmental-economic  
policies is described. 

Keywords: Individual decision making; Behavioral (descriptive) model; Utility 
theory; Expected utility paradox; Prospect theory under uncertainty. 

1   Introduction 

Since when Prof. Daniel Kahneman received the Nobel Memorial Prize in Economics 
for his work in “Prospect Theory” in 2002, the area of behavioral (descriptive) deci-
sion theory, behavioral economics, or economic psychology [1] has been highly 
thought of in many respects. 

A normative (prescriptive) model of decision making prescribes optimal behavior 
of how decisions should be made. It is concerned with identifying the best decision to 
be made, assuming an ideal decision maker who is fully rational. On the other hand, 
since people do not typically behave in optimal ways, a descriptive model is con-
cerned with understanding how people actually behave when making decisions. 

The expected utility model has been widely used as a normative model of decision 
analysis under risk for modeling individual decision making. However, various para-
doxes [2,3] have been reported for the expected utility model, and it is argued that the 
expected utility model is not an adequate behavioral (descriptive) model. As a model to 
explain the violations of the expected utility hypothesis for individual decision making, 
outcome-dependent, non-additive probabilities are introduced in a measurable value 
function under risk where the probability of each event occurring is postulated to be 
known. The effective application of this approach to the public sector is mentioned in 
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modeling risks of extreme events with low probability and high outcome. Prospect 
theory (PT) [4] under risk is embedded in the measurable value function under risk, 
where “under risk” means that the probability of each event occurring is known. 

Prospect theory under risk is extended to the prospect theory under uncertainty 
(PTU) [5] where the basic probability of a set of event is known but the probability of 
each event occurring is not known. It is shown that the Ellsberg paradox [3] is consis-
tently resolved by using this model. This is a paradox in decision theory and 
experimental economics in which people's choices violate the expected utility 
hypothesis because of their tendency for ambiguity aversion. Potential applicability to 
evaluating global environmental-economic policies is mentioned.  

2   Expected Utility Model 

Utility functions could provide a means of modeling value judgment of a decision 
maker quantitatively. The scientific approach for value judgment has been discussed 
rigorously in the area of economics. People get a feeling of psychological satisfaction 
by consuming economic goods, by receiving service and so forth. This degree of 
satisfaction obtained is called “utility.” This concept plays a fundamental role in the 
theory of consumers’ behavior. 

Let 1x  and 2x  be the amount of goods A and B consumed, respectively, ( )21, xxu  

be the corresponding value of the consumer’s utility function, 1p  and 2p  be the price 

of a unit amount of goods A and B, respectively, and b  be the budget. Then, the 
consumer may want to 

maximize ( )21, xxu                                                        (1) 

subject to .2211 bxpxp ≤+                                            (2) 

That is, the consumer behavior has been explained in such a way that they would act 
to maximize their own utility, Eq. (1), subject to the budget constraint, Eq. (2). 

In order to derive the equilibrium condition of a consumer’s behavior, an ordinal 
utility function would be enough to evaluate it, but, for obtaining a preferred solution 
for a multiple criteria decision-making problem, we need a cardinal utility function. 
Furthermore, since, in a decision making problem under risk, the outcome would be 
obtained under some probability distribution, we need to evaluate the so-called ex-
pected utility [6]. For this we need to provide a cardinal utility function. Von Neu-
mann and Morgenstern [7] first developed axioms such that the expected utility  
hypotheses for the decision making problem under risk are meaningful. 

Let X  be a set of outcomes, Re: →Xu  be a cardinal utility function, then the 
expected utility with respect to the probability on X is 

( ) ( ) ( )xuxppuE
Xx
∑
∈

=,                                                 (3) 

which is called the expected utility. Let { }K,, 21 ppP =  be the set of probabilities on 

.X  Then the following theorem provides the existence and uniqueness of a cardinal 
utility function [7]. 
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Theorem: Existence and uniqueness of a cardinal utility function 
Let P  be the set of all probabilities on ,X  ( )f,P  be preference structure on ,P  

then for any ,, Pqp ∈  the necessary and sufficient condition of the existence of a 

cardinal utility function Re: →Xu  such that 

( ) ( )quEpuEqp ,,      ≥⇔f ,  Pqp ∈∀ ,                         (4) 

is given as follows: 
 
NM1: ( )f,P  is weak order. 

NM2: ⇒ qp f ( ) ( ) , 1 1 rqrp αααα −+−+ f   ,Pr ∈∀   ( )1,0∈α  

NM3: ⇒  rqp ff ( ) ( ) , 1 1 rpqrp ββαα −+−+ ff  for some ( )1,0, ∈βα   

 
Furthermore, such u  is unique within the positive linear transformation (there exist 
h  and 0>k  such that kuhu +=' ) and is called a von Neumann-Morgenstern utility 
function. 

The expected utility model based on the expected utility hypothesis is useful as a 
normative model, that is, to find a decision to be made. However, since various para-
doxes [2,3] have been reported for the expected utility model, it is argued that the 
expected utility model is not an adequate behavioral (descriptive) model. Actually, 
there exist many phenomena that violate the expected utility hypothesis such as the 
Allais paradox [2] and the Ellsberg paradox [3]. In the following sections we describe 
a generalized model of a measurable value function under risk [8], prospect theory 
under risk [4] and prospect theory under uncertainty [5] to overcome the difficulty of 
the expected utility paradoxes. 

3   Behavioral Models to Resolve Expected Utility Paradoxes: 
Measurable Value Function under Risk 

The expected utility model has been widely used as a normative model of decision 
analysis under risk. However, various paradoxes have been reported for the expected 
utility model, and it is argued that the expected utility model is not an adequate de-
scriptive model. 

In this section a descriptive extension of the expected utility model to account for 
various paradoxes is shown using the concept of strength of preference [8]. Let X be a 
set of all outcomes, ,Xx∈  and A be a set of all risky alternatives; a prospect (risky 

alternative) A∈l  is written as 

( )nn pppxxx ,,,;,,, 2121 KKl =                                (5) 

that yields outcome Xxi ∈ with probability ,,,2,1 , nipi K= where∑ = 1ip . 

Let A* be a nonempty subset of AA× , and f  and *f  be binary relations on A 

and A*, respectively. Relation f  could also be a binary relation on X. We interpret 
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( )A∈2121 , lllfl  to mean that 1l  is preferred than or indifferent to 2l , and 

( )A∈43214321 ,,, * llllllfll  to mean that the strength of preference for 1l  over 

2l  is greater than or equal to the strength of preference for 3l  over 4l . 

We postulate that ( )**,, fAA  takes a positive difference structure that is based on 

the axioms described by Kranz et al. [9]. The axioms imply that there exists a real-
valued function F on A such that for all A∈4321 ,,, llll , if  21 lfl and  ,43 lfl  

then 

( ) ( ) ( ) ( )43214321      * llllllfll FFFF −≥−⇔                      (6) 

Since F is unique up to a positive linear transformation, it is a cardinal function. It is 
natural to hold for A∈321 ,, lll  that 

213231      * lflllfll ⇔ .                                    (7) 

Then from Eq. (6) we obtain 

( ) ( ).      2121 lllfl FF ≥⇔                                        (8) 

Thus, F is a value function on A and, in view of Eq. (6), it is a measurable value  
function. 

We assume that the decision maker will try to maximize the value (or utility) of a 
prospect (risky alternative) A∈l , which is given by the general form as follows: 

( ) ( )ii
iAA

pxfF , max max ∑
∈∈

=
ll

l                                     (9) 

where ( )pxf ,  denotes the value (strength of preference) for an outcome x which 

comes out with probability p. This function is called the measurable value function 
under risk. The main objectives here are to give an appropriate decomposition and 
interpretation of ( )pxf ,  and to explore its descriptive implications to account for the 

various paradoxes. 
The model of Eq. (9) is reduced to the expected utility form [7] by setting 

( ) ( )xpupxf =,                                                    (10) 

when ( )xu  is regarded as a von Neumann-Morgenstern utility function. The prospect 

theory of Kahneman and Tversky [4] is obtained by setting 

( ) ( ) ( )xvppxf  , π=                                                 (11) 

where ( )pπ  denotes a weighting function for probability and ( )xv  a value function 

for outcome. In this model the value of each outcome is multiplied by a decision 
weight for probability (not by probability itself). 
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Extending this Kahneman-Tversky model we obtain a decomposition form 

( ) ( ) ( )xvxpwpxf  |, =                                                (12) 

where 

( ) ( )
( )1,

,
|

xf

pxf
xpw ≡                                                  (13a) 

( ) ( )1|xvxv ≡                                                    (13b) 

( ) ( )
( )pxf

pxf
pxv

*,

,
| ≡

                                               
(13c) 

and x* denotes the best outcome. The expected utility model, Eq. (10), and Kahneman-
Tversky model, Eq. (11), are included in our model, Eq. (12), as a special case. Eq. 
(13b) implies that v(x) denotes a measurable value function under certainty. Therefore, 
our model, Eq. (12), also includes Dyer and Sarin’s model [10] as a special case. 

The model of Eq. (12) could also be written as 

( ) ( ) ( )pxvpwpxf | , =                                              (14) 

where 

( ) ( )*| xpwpw ≡ .                                                 (15) 

We assume that 

( ) Xxxf ∈∀=      ,00,                                              (16a) 

( ) [ ]1,0     ,0, ∈∀= ppxf R                                         (16b) 

where XxR ∈  denotes the reference point (e.g. status quo). The better region on X 

compared with Rx  is called the gain domain and the worse region the loss domain. We 

also assume that ( ) 0, ≥pxf  in the gain domain and ( ) 0, <pxf  in the loss domain. 

It will be shown that the conditional weighting function ( ),| xpw that is an out-

come-dependent, non-additive probability, describes the strength of preference for 
probability under the given conditional level of outcome, and ( )pxv |  describes the 

strength of preference for outcome under the given conditional level of probability. 
In interpreting the descriptive model ( )pxf ,  we need to interpret F such  

that Eq. (6) holds. For all ,,,, 4321 Xxxxx ∈ ]1,0[∈α  and Xy ∈  such that 

4321 xxxx fff , we consider four alternatives: 

( ) , 1,;,11 αα −= yxl   ( ) , 1,;,22 αα −= yxl                              (17a) 

( ) , 1,;,33 αα −= yxl   ( ). 1,;,44 αα −= yxl                     (17b) 
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In this case we obtain 

    * 4321 llfll ( ) ( ) ( ) ( )αααα ,,,,    4321 xfxfxfxf −≥−⇔              (18a) 

( ) ( ) ( ) ( )αααα ||||     4321 xvxvxvxv −≥−⇔ .           (18b) 

Therefore, the value function ( )pxv |  defined by Eq. (13c) represents the strength of 

preference for the four risky alternatives in Eq. (17). 

On the other hand, for all [ ]1,0,,, 4321 ∈αααα , Xx∈  and ,XxR ∈  we consider 

four alternatives: 

( ) ( ), 1,;,'   , 1,;,' 222111 αααα −=−= RR xxxx ll                     (19a) 

( ) ( ), 1,;,'   , 1,;,' 444333 αααα −=−= RR xxxx ll                     (19b) 

then we obtain 

 ''*'' 4321 llfll   ⇔ ( ) ( ) ( ) ( )4321 ,,,, αααα xfxfxfxf −≥−            (20a) 

  ⇔ ( ) ( ) ( ) ( ). ,,|| 4321 xwxwxwxw αααα −≥−         (20b) 

Therefore, the weighting function defined by Eq. (13a) represents the strength of 
preference for the four risky alternatives in Eq. (19). 

The above discussion asserts that the descriptive model ( )pxf ,  represents the 

measurable value function under risk to evaluate the outcome Xx ∈  that comes out 
with probability p. The Kahneman-Tversky model of Eq. (11) could explain a so-
called certainty effect to resolve the Allais paradox. Our descriptive model 

( )pxf , could also resolve the Allais paradox. 

It is well known that the expected utility model is not an appropriate model for 
modeling extreme events with low probability and high outcome. In Tamura, et al. 
[11] it is shown that our descriptive model could resolve such paradox in application 
to the public sector. 

4   Prospect Theory under Risk 

Kahneman and Tversky proposed prospect theory [4] in order to explain people’s 
decision making such that 

(a) People’s value judgment is highly dependent on the reference point, that is, 
people are more focused on changes in their value (utility) states than the states 
themselves. 

(b) People’s marginal value (utility) is diminishing both in gain domain and in loss 
domain.  
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(c) Value function in loss domain is steeper than in gain domain, that is, losses 
looms larger than gains and people have a tendency of loss aversion. 

(d) People feel that weight for very small probability is disproportionate and  
they have a tendency to overestimate for low probability and underestimate  
for higher probability, that is, subjective probability is severely biased by  
anchoring. 

We denote the prospect that yields an outcome xj with probability njp j ,,2,1, K=  

by Eq. (5). In prospect theory (PT), the value V for the prospect (5) is evaluated using 
the evaluation function 

∑
=

=
n

j
jj xvpV

1

)()(π                                              (21) 

where the value function v  is convex with a gentle curve in the gain domain, while it 
is concave and its curve is steeper in the loss domain, as shown in Figure 1. This 
shows that people, in general, are loss averse.  

The weighting function π  is a convex function as shown in Figure 2, so a small 
probability is weighted higher and middle or large probabilities are weighted lower. 
However, this weighting function is not defined near the end points 0 and 1. The dot-
ted line in Figure 2 shows the case for the expected utility (EU) model.  

In Tamura, et al. [12] the value for the sense of security provided by nursing care 
robots is evaluated by using various utility theoretic approaches. As the result of 
comparison it is found that prospect theory under risk is more appropriate for this 
problem. 

 

              
Fig. 1. Value function 

Value

Losses Gains0
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Fig. 2. Weighting function used in PT 

5   Prospect Theory under Uncertainty 

5.1   Basic Principle 

In this section we deal with the case where the probability of occurrence for each 
event is unknown. When we describe the degree of ignorance and uncertainty by the 
basic probability of Dempster and Shafer theory [12], the problem is how to represent 
the value of a set element in constructing a measurable value function under uncer-
tainty based on this concept. 

In the Dempster-Shafer theory of probability let ( )iAµ  be basic probability which 

could be assigned by any subset iA  of Θ , where Θ  denotes a set containing every 

possible element. The basic probability ( )iAµ  can be regarded as a semimobile prob-

ability mass. Let Θ=Λ 2  be a set containing every subset of Θ . Then the basic prob-

ability ( )iAµ  is defined on Λ  and takes a value contained in [0,1]. When ( )iAµ >0, 

iA  is called the focal element or the set element and the following conditions hold: 

( ) 0=φµ ,     ( )∑
∈

=
AA

i
i

A 1µ
                                    

(22) 

where φ  denotes an empty set. 

Let the value function under uncertainty based on this basic probability be 

( ) ( ) ( )BvBf * ',* µπµ =                                        (23) 
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where B denotes a set element, µ  denotes the basic probability, 'π  denotes the weight-

ing function for the basic probability, and v* denotes the value function with respect to a 

set element. The set element B is a subset of .2Θ=Λ  Eq. (23) is an extended version of 
the value function, Eq. (14), where an element is extended to a set element and the 
Bayes’ probability is extended to the Dempster-Shafer basic probability. 

For identifying v*, we need to find the preference relations among set elements, 
which is not an easy task. If the number of elements contained in the set Θ  is getting 
larger, and the set element B contains a considerable number of elements, it is not 
practical to find v* as a function of B. To cope with this difficulty we could use some 
appropriate axiom of dominance as follows:. 

 
Axiom of Dominance 1: 

In the set element B let the worst outcome be Bm  and the best outcome be BM . For 

any Θ=Λ⊂ 22 ,1 BB   

2 1         , 2121 BBMMmm BBBB ppp ⇒                           (24) 

and 

.2~1      ~  ,~ 2121 BBMMmm BBBB ⇒                          (25) 

Our descriptive model ( )µ,* Bf  could resolve the Ellsberg paradox by restricting a 

set element B to 

( ){ }MmMm  :, pΘ×Θ∈=Ω                                     (26) 

where m and M denote the worst and the best outcome in the set element B, respec-

tively. In this case Eq. (22) is reduced to 

( ) ( ) ( )Ω=Ω * ',* vf µπµ .                                             (27) 

Suppose we look at an index of pessimism ( )Mm,α  such that the following two 

alternatives are indifferent [14]. (The index of optimism ( ) ( )MmMm ,1, αβ −=  

may be defined instead of the index of pessimism depending upon the situation.)  
 

Alternative 1: One can receive m for the worst case and M for the best case. There 
exists no other information. 

Alternative 2: One receives m with probability ( )Mm,α  and receives M with  

probability ( )Mm,1 α− , where ( ) 1,0 << Mmα . 

If one is quite pessimistic, ( )Mm,α  becomes nearly equal to 1, or if one is quite 

optimistic, ( )Mm,α  becomes nearly equal to zero. If we incorporate this pessimism 

index ( )Mm,α  in Eq. (26), the value function is described as 
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            ( ) ( )( )Mmvv ,** =Ω  

( ) ( ) ( )( ) ( )MvMmmvMm ' ,1' , αα −+=               (28)  

where 'v  denotes a value function for a single element. 

Incorporating Dempster-Shafer probability theory in the descriptive model 

( )µ,* Ωf  of a value function under uncertainty, we could model the lack of belief 

which cannot be modeled by Bayes’ probability theory. As the result our descriptive 

model ( )µ,* Ωf  could resolve the Ellsberg paradox as follows. 

5.2   Resolving Ellsberg Paradox 

Suppose an urn contains 30 balls coloured red, black or white. We know that 10 of 30 
balls are red, but for the other 20 balls we know only that each of these balls is either 
black or white. Suppose we pick a ball from this urn, and consider four events as 
follows: 

 
a. We will get 100 dollars if we pick a red ball. 
b. We will get 100 dollars if we pick a black ball. 
c. We will get 100 dollars if we pick a red or white ball. 
d. We will get 100 dollars if we pick a black or white ball. 

 
Many people show the preference (Ellsberg, 1961), 

cdba ff    , .                                                  (29) 

The probability of picking up a red ball is 1/3. Let bp  and wp  be the probability of 

picking up a black ball and a white ball, respectively. Then 

3
2=+ wb pp .                                                     (30) 

The expected utility theory says that 
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where u denotes a von Neumann-Morgenstern utility function and 1M = 100 dollars. 

Eqs. (31) and (32b) are obviously contradictory. This phenomenon is called the Ells-

berg paradox. Therefore, the expected utility theory cannot represent the preference 
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when the probability of each event is not known but only the basic probability for a 

set of events is known. This phenomenon shows that one prefers the events with 

known probability and is called the sure-thing principle [9]. 
How can we explain the preference of this Ellsberg paradox by using the descrip-

tive model ( )µ,* Ωf  of a prospect theory under uncertainty? Let {R} be the event of 

picking a red ball and {B,W} be the set element of picking a black or white ball. Then 
the basic probability is written as 

{ }( ) { }( )
3
2

,   ,
3
1 == WBR µµ                                                (33) 

In this case a set Θ  containing every possible event is written as 

{ }M1,0=Θ .                                                               (34) 

Table 1 shows the basic probability of getting each event for each alternative. The 

value for each alternative is given by 
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Table 1. Basic probability for each event 

      Event 

Alternative     {0}      {1M}   {0,1M} 

 a     2/3        1/3     0 

 b     1/3          0     2/3 

 c      0        1/3    2/3 

 d     1/3        2/3                    0 
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In the set Θ  let 0x  and *x  be the worst outcome and the best outcome,  
respectively, then 

Mxx 1*     ,00 == .                                              (36) 

Therefore, we obtain 

{ }( ) { }( ) {( ) ( )     1,0}1,0'     ,11'     ,00' MMvMvv α===              (37) 

where ( )M1,0αα =  denotes an index of pessimism. Then, 

( ) ( )bVaVba >⇒      f                                                    (38a) 
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To hold these preference relation we need to have ( )M1,0αα =  such that 
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If ( )M1,0αα = >0.5, Eq. (40) holds. This situation shows that, in general, one is 

pessimistic about events with unknown probability. The Ellsberg paradox is resolved 
by the descriptive model ( )µ,* Ωf  based on the prospect theory under uncertainty. 

5.3   Further Axiom of Dominance 

There exist some cases for which Axiom of Dominance 1 is unsuitable. Then we 
introduce Axiom of Dominance 2 [15] which is more strict than Axiom of Dominance 
1 as follows: 
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Axiom of Dominance 2: 

Let the worst outcome be 1m  and the best outcome be 1M  in the set element 1B , and 

let the worst outcome be 2m  and the best outcome be 2M  in the set element 2B . 

Moreover, let the hypothetical elements whose values are equal to the average values 

of 21,BB  be 21, gg , respectively. Then  
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1n  denotes the number of elements in the set element 1B  and 2n  denotes the  

number of elements in the set element 2B .  

Axiom of Dominance 2 is too strict to use practically, so we try to relax it. Some-
one attaches importance to the best outcome and chooses an alternative, someone 
attaches importance to the worst outcome, and someone pays attention to the whole. 
We introduce the model that properly describes this situation.  

Definition: 
Let the elements in the set element B  be naaa ,,, 21 K  such that ,1+ii aa p  

,1,,2,1 −= ni K  the value of element niai ,,2,1  , K=  be )( iav  and the average 

value of elements be  
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Further, let the pessimism index decided by the question for the worst element 

ma =1  and the best element Man =  be ),( Mmα . We assume the value h  of the 

set element B to be 
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where unknown parameters cba ,,  are decided by 

).()1|(   ),()5.0|(   ),()0|( mvBhgvBhMvBh ===  

We introduce Axiom of Dominance 3 in order to evaluate values based on the above 
definition as follows:  
 
Axiom of Dominance 3:  

2121 )|()|( BBBhBh p⇒< αα                                      (47) 

and  

2121 ~)|()|( BBBhBh ⇒= αα                                   (48) 

By using Axiom of Dominance 3, we are able to write the value function in the pros-
pect theory under uncertainty as  

).|()(')),|((* αµπµα BhBhf =                                      (49) 

We could properly describe the value judgment of pessimistic people and optimistic 
people, respectively, by using Eq. (49).  

We are able to evaluate the value V  of the prospect that includes the case where 
the probability of occurrence for each element is unknown but the basic probability of 
occurrence for each set element is known through the evaluation function 

∑
=

=
n

j
jj BvV

1

)(*)(µπ                                                 (50) 

where π  denotes the weighting function of prospect theory and *v  denotes the value 

function with respect to a set element jB . 

6   Assessing Global Environmental-Economic Policies 

We could show quantitatively how the hybrid policy of carbon tax and emissions 
trading would be effective to achieve the targeted reduction of the Kyoto Protocol 
[16] where the Kyoto Protocol is an agreement made under the United Nations 
Framework Convention on Climate Change [17]. Countries that ratify this protocol 
would commit to reducing their emissions of CO2 and five other greenhouse gases 
(GHG), or would engage in emissions trading if they maintain or increase emissions 
of these gases. 

We evaluate the cost of reducing CO2 emissions for three scenarios as follows  
using a model of prospect theory under uncertainty: 

Scenario 1: Each sector reduces its emissions by taking into account the carbon tax 
only without the emissions trading. 

Scenario 2: Each sector reduces its emissions by taking into account the emissions 
trading only without the carbon tax. 
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Scenario 3: Each sector reduces its emissions by taking into account both the carbon 
tax and the emission trading. 

The cost of reducing CO2 emissions in Scenario 1 is set to the reference cost. We 
evaluate the saving cost in Scenarios 2 and 3 compared to the reference cost in Sce-
nario 1 where we postulate uncertainty in the cost of reducing unit CO2 emissions. For 
each sector it is found that the undesirable influence on the profit would be reduced 
by joining the emissions trading, and it would become more profitable for all the 
sectors under Scenario 3. 

7   Concluding Remarks 

Behavioral models of individual decision making have been described. In the model, 
outcome-dependent, non-additive probabilities are introduced as a measurable value 
function under risk where probability of each event occurring is postulated to be 
known. The effective application of this approach to the public sector is shown in 
modeling risks of extreme events with low probability and high outcome. It is shown 
that the measurable value function under risk is an extended version of prospect  
theory under risk.  

We extended the prospect theory (PT) of Kahneman-Tversky to the prospect theory 
under uncertainty (PTU) where the basic probability for a set of events is known  
but the probability of each event occurring is not. It is shown that the Ellsberg para-
dox is resolved by using PTU, that is, PTU could model properly the property of am-
biguity averse behavior of individual decision making. In other words, people feel 
anxious if outcomes are not clear. It shows that publishing information is important  
to give people a peace of mind. The potential applicability to assessing the global 
environmental-economic policies is described. 

In this article we have described value judgment of an individual, but the value 
judgment of society is yet to be developed, under further research. 
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Abstract. Bags alias multisets have long been studied in computer sci-
ence, but recently more attention is paid on bags. In this paper we con-
sider generalized bags which include real-valued bags, fuzzy bags, and
a region-valued bags. Basic definitions as well as their properties are
established; advanced operations such as s-norms, t-norms, and their
duality are also studied. Moreover bag relations are discussed which has
max-plus and max-min algebras as special cases. The reason why gener-
alized bags are useful in applications is described. As two applications,
bag-based data analysis and decision making based on convex function
optimization related to bags are discussed.

Keywords: Generalized bag, s-norm, bag relation, data analysis,
decision making, convex function.

1 Introduction

Bags which are also called multisets have long been studied by computer scien-
tists as a basic data structure [6,10]. More recently, Calude and others [2] showed
various aspects of multiset processing including a new paradigm of computation.

Since Yager [32] have proposed fuzzy bag, its theory and applications have
been studied by several researchers [7,8,26,27,28,29,33] in the field of soft
computing.

The author has redefined and re-established basic operations for fuzzy bags
[14,15,16,17,20], and considered further generalizations [19]. Moreover we have
applied fuzzy bags to data clustering [18] and text data analysis [21].

In this paper we overview bags and their generalizations with basic operations
and their fundamental properties. Advanced operations such as s-norms and bag
relations with new compositions are considered. We also discuss applications of
generalized bags to data analysis, where classical methods as well as more recent
techniques using kernel functions [30] are considered. Moreover a decision making
aspect based on optimization of convex functions derived from set operations is
considered, which are inspired from toll sets [4,13].
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Although we show many propositions, we omit the proofs for the most part,
as they are straightforward.

2 Bags and Generalized Bags

We begin with a review of classical bags and their generalizations.

2.1 Crisp Bags

Assume that the universal set X = {x1, . . . , xn} is finite for simplicity. A (crisp)
bag M of X = {x1, . . . , xn} is characterized by a function CM (·) (called count
of M) whereby a natural number including zero corresponds to each x ∈ X
(CM : X → N), where N = {0, 1, 2, . . .}. CM (·) is called a count function.

We may express a crisp bag as

M = {k1/x1, . . . , kn/xn}

or

M = {
k1︷ ︸︸ ︷

x1, . . . , x1, . . . ,

kn︷ ︸︸ ︷
xn, . . . , xn}.

In this way, an element of X may appear more than once in a bag.

Example 1. Consider an example in which X = {a, b, c, d} and

CM (a) = 2, CM (b) = 3, CM (c) = 1, CM (d) = 0.

In other words,M = {a, a, b, b, b, c}. This means that a, b, c, and d are included 2,
1, 3, and 0 times, respectively, in M . We can writeM = {2/a, 3/b, 1/c}, ignoring
an element of zero occurrence. Other expressions such as M = {3/b, 2/a, 1/c}
and M = {c, a, b, b, a, b} are also used.

Basic relations and operations for crisp bags:

1. (inclusion): M ⊆ N ⇔ CM (x) ≤ CN (x), ∀x ∈ X.
2. (equality): M = N ⇔ CM (x) = CN (x), ∀x ∈ X.

3. (union): CM∪N (x) = max{CM (x), CN (x)}.
4. (intersection): CM∩N (x) = min{CM (x), CN (x)}.
5. (addition or sum): CM+N (x) = CM (x) + CN (x).
6. (scalar multiplication): CαM = αCM (x), where α is a nonnegative integer.
7. (Cartesian product): Let P is a bag of Y . CM×P (x, y) = CM (x)CP (y).

We use ∨ and ∧ for max and min, respectively. Note that the relations and
operations are similar to those for fuzzy sets. However, bags have the addition
operation that fuzzy sets do not have, and the Cartesian product for bags is
different from that for fuzzy sets.
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2.2 R-Bags, F -Bags, and G-Bags

We discuss three generalizations. The first generalization to real-valued bags is
simple, but useful in applications, and second is fuzzy bags, while the third is
a minimum extension including the former two. We call them R-bags, F -bags,
and G-bags for simplicity.

R-Bags. The first generalization is straightforward. We assume a count function
can take an arbitrary positive real value. Moreover the value of infinity should be
included into the range of a count function, as we show its usefulness later. Thus,
CM : X → [0,+∞] (note [0,+∞] = [0,∞) ∪ {+∞}). Since count function takes
real values, we say real-valued bags, or shortly R-bags. The above definitions of
basic relations and operations 1–7 are unchanged.

F -Bags. Fuzzy bags are abbreviated as F -bags here. They were first studied
by Yager [32], and basic relations and operations have been reconsidered by the
authors [14,15].

In a fuzzy bag an element of X may occur more than once with possibly the
same or different membership values.

Example 2. Consider a fuzzy bag

A = {(a, 0.2), (a, 0.3), (b, 1), (b, 0.5), (b, 0.5)}

of X = {a, b, c, d}, which means that a with the membership 0.2, a with 0.3, b
with the membership 0.5, and two b’s with 0.5 are contained in A.

We may write
A = {{0.2, 0.3}/a, {1, 0.5, 0.5}/b}

in which the bag of membership {0.2, 0.3} corresponds to a and {1, 0.5, 0.5}
corresponds to b. Thus, CA(x) is a bag of the unit interval [32].

For an x ∈ X , the membership sequence is defined to be the decreasingly
ordered sequence of elements in CA(x). It is denoted by

µ1
A(x), µ2

A(x), . . . , µp
A(x),

(µ1
A(x) ≥ µ2

A(x) ≥ · · · ≥ µp
A(x)).

When we handle a finite number of fuzzy bags in a finite universal set, the
length p of the membership sequences is set to be a constant for all members
and for all the concerned fuzzy bags, by appending appropriate numbers of 0 at
the end of the membership sequences.

Example 3. For the above example, we can set p = 3, µ1
A(a) = 0.3, µ2

A(a) = 0.2,
µ3

A(a) = 0, µ1
A(b) = 1, µ2

A(b) = µ3
A(b) = 0.5, µ1

A(c) = µ2
A(c) = µ3

A(c) = µ1
A(d) =

µ2
A(d) = µ3

A(d) = 0. By the representation of the membership sequence,

A = {(0.3, 0.2)/a, (1, 0.5, 0.5)/b},

or appending 0,

A = {(0.3, 0.2, 0)/a, (1, 0.5, 0.5)/b, (0, 0, 0)/c, (0, 0, 0)/d}.
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The followings are basic relations and operations for fuzzy bags [14].

1. inclusion:
A ⊆ B ⇔ µj

A(x) ≤ µj
B(x), j = 1, . . . , p, ∀x ∈ X.

2. equality:
A = B ⇔ µj

A(x) = µj
B(x), j = 1, . . . , p, ∀x ∈ X.

3. sum:
A+B is defined by the sum operation in X × [0, 1] for crisp bags [32].

4. union:
µj

A∪B(x) = µj
A(x) ∨ µj

B(x), j = 1, . . . , p, ∀x ∈ X.
5. intersection:
µj

A∩B(x) = µj
A(x) ∧ µj

B(x), j = 1, . . . , p, ∀x ∈ X.

G-Bags. A further generalization of fuzzy bags is useful from theoretical view-
point. It has been studied by the author [19] and is called G-bags here (this
name is an abbreviation of generalized bags).

We introduce a G-bag using a closed region on a first quadrant [0,+∞]2 of a
plane. The horizontal and vertical axes are called y-axis and z-axis, respectively.
We define

CA(x) = νA(x) (1)

where νA(x) is a closed region of [0,+∞]2 that satisfies the following conditions.

(I) For each y ∈ [0,+∞], the intersection between νA(x) and {y}× [0,+∞] (the
vertical line starting from y) is either empty or a segment starting from 0
and ending up to a point. We call this point ZνA(y;x). Thus,

νA(x) ∩ ({y} × [0,+∞]) = {y} × [0, ZνA(y;x)].

ZνA(y;x) as a function of y is monotonically non-increasing and

lim
y→∞

ZνA(y;x) = 0.

(II) For each z ∈ [0,+∞], the intersection between νA(x) and [0,+∞] × {z}
(the horizontal line starting from z) is either empty or a segment starting
from 0 and ending up to a point. We call this point Y νA(z;x). Thus,

νA(x) ∩ ([0,+∞] × {z}) = [0, Y νA(z;x)] × {z}.

Y νA(z;x) as a function of z is monotonically non-increasing and

lim
z→∞

Y νA(z;x) = 0.

We illustrate an example of νA(x) in Figure 1. Note that when we are given
either one of ZνA(y;x) or Y νA(z;x), νA(x) can uniquely be determined.

The basic relations and operations for two G-bags are defined as follows.

(I) (inclusion)
A ⊆ B ⇔ νA(x) ⊆ νB(x), ∀x ∈ X.
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Fig. 1. Region ν(x) as a count function for G-bag

(II) (equality)

A = B ⇔ νA(x) = νB(x), ∀x ∈ X.

(III) (sum) Define

Y νA+B(z;x) = Y νA(z;x) + Y νB(z;x)

and derive νA+B(x) from Y νA+B(z;x).
(IV) (union) Define

νA∪B(x) = νA(x) ∪ νB(x).

(V) (intersection) Define

νA∩B(x) = νA(x) ∩ νB(x).

(VI) (α-cut and -cut) Let a G-bag be A and α ∈ [0, 1] and  ∈ [0,+∞) are
given. An α-cut [A]α is an R-bag with count function

C[A]α(x) = Y νA(α;x).

On the other hand, a -cut 〈A〉� is a fuzzy set with membership

µ〈A〉�(x) = ZνA(;x)

A crisp bag, an R-bag, and a fuzzy bag can be regarded as a special case of G-
bags by taking regions under the bars defined from count functions. If we have
an R-bag with CM (x) = a, then we define

νA(x) = {(y, z) : 0 ≤ y ≤ a, 0 ≤ z ≤ 1} (2)

and this R-bag is transformed into an equivalent G-bag. If we have a fuzzy bag,
then we define

νA(x) =
∞⋃

i=1

{ (y, z) : i− 1 ≤ y ≤ i, 0 ≤ z ≤ µi
A(x) } (3)

We have the next proposition.
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Proposition 1. Let A and B be arbitrary G-bags of X.

[A+B]α = [A]α + [B]α, (4)
[A ∪B]α = [A]α ∪ [B]α, (5)
[A ∩B]α = [A]α ∩ [B]α, (6)

〈A ∪B〉� = 〈A〉� ∪ 〈B〉�, (7)

〈A ∩B〉� = 〈A〉� ∩ 〈B〉�. (8)

The proof is straightforward and omitted.

Note 1. G-bags have a close relation to fuzzy interval-valued bags of which future
studies are expected, but we omit the detail (see [19]).

2.3 Complement, s-Norm and t-Norm

This section is mainly concerned with R-bags. We state propositions without
proofs. They are found in [22].

Complementation of R-Bags. A function N : [0,+∞] → [0,+∞] with the
next properties is used to define a complementation operation:

(i) N (0) = +∞, N (+∞) = 0.
(ii) N (x) is strictly monotonically decreasing on (0,+∞).

A typical example is N (x) = const/x with const > 0.
An operation for the complement is then defined:

9.(complement):
CM̄ (x) = N (CM (x)).

This operation justifies the generalization into R-bags, i.e., even when we start
from crisp bags, the result of complementation is generally real-valued.

We immediately have the next two propositions; the proof is easy and omitted.

Proposition 2. For arbitrary R-bags M,N , the next properties are valid:

(M) =M (9)

M ∪N = M̄ ∩ N̄ , M ∩N = M̄ ∪ N̄ . (10)

Proposition 3. Let an empty bag ∅ and the maximum bag Infinity in R-bags be

C∅(x) = 0, ∀x ∈ X, (11)
CInfinity(x) = +∞, ∀x ∈ X. (12)

Then we have
∅̄ = Infinity, Infinity = ∅. (13)
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s-Norms and t-Norms. There have been studies on t-norms for crisp bags
[11,3], but generalization into R-bags admits a broader class of s-norms and t-
norms. For this purpose we introduce two functions t(a, b) and s(a, b) like those
in fuzzy sets, but the definitions are different.

Definition 1. Two functions t : [0,+∞]× [0,+∞] → [0,+∞] and s : [0,+∞]×
[0,+∞] → [0,+∞] having the next properties (I)–(IV) are called a t-norm and
an s-norm for R-bags, respectively. An s-norm is also called a t-conorm for bags.

(I)[monotonicity] For a ≤ c, b ≤ d,

t(a, b) ≤ t(c, d),
s(a, b) ≤ s(c, d).

(II)[symmetry]
t(a, b) = t(c, d), s(a, b) = s(b, a).

(III)[associativity]

t(t(a, b), c) = t(a, t(b, c)),
s(s(a, b), c) = s(a, s(b, c)).

(IV)[boundary condition]

t(0, 0) = 0, t(a,+∞) = t(+∞, a) = a,

s(+∞,+∞) = +∞, s(a, 0) = s(0, a) = a.

A purpose to introduce such norms for bags is to generalize the intersection and
union operations. First we note that s(a, b) = a + b, s(a, b) = max{a, b}, and
t(a, b) = min{a, b} satisfy the above conditions (I)–(IV). Thus the s-norms and
t-norm represent the operations of addition, union, and intersection.

We moreover introduce a generating function g(x) for s-norm.

Definition 2. A function g : [0,+∞] → [0,+∞] is called a generating function
for s-norm if it satisfies the next (i)–(iii):

(i) it is strictly monotonically increasing,
(ii) g(0) = 0, g(+∞) = +∞,
(iii) g(x+ y) ≥ g(x) + g(y), ∀x, y ∈ [0,+∞].

We have the next proposition.

Proposition 4. Let
s(a, b) = g−1(g(a) + g(b)). (14)

Then s(a, b) is an s-norm.

An example of the generation function is

g(x) = xp (p ≥ 1). (15)
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Moreover, note the following.

Proposition 5. Let s(a, b) is an s-norm and N is a complementation operator.
Then

t(a, b) = N (s(N (a),N (b))) (16)

is a t-norm. Suppose t(a, b) is a t-norm, then

s(a, b) = N (t(N (a),N (b))) (17)

is an s-norm.

If a pair of t-norm and s-norm has the above property stated in Proposition 5, we
say (s, t) has the duality of norm and conorm. The duality has the next property.

Proposition 6. Suppose s0(a, b) is an s-norm and t0(a, b) is derived from
s0(a, b) by the operation (16). Let

s(a, b) = N (t0(N (a),N (b)))

Then s(a, b) = s0(a, b). Suppose also that t0(a, b) is a t-norm and s0(a, b) is
derived from t0(a, b) by the operation (16). Let

t(a, b) = N (s0(N (a),N (b)))

Then t(a, b) = t0(a, b).

We apply s-norm and t-norm to define bag operations MSN and MT N ,
respectively.

CMSN (x) = s(CM (x), CN (x)). (18)
CMT N (x) = t(CM (x), CN (x)). (19)

Let us consider examples of s-norms and t-norms.

Example 4. The standard operators

s(a, b) = max{a, b} (20)
t(a, b) = min{a, b} (21)

are an s-norm and a t-norm, respectively. This pair has the duality stated in
Propositions 5 and 6. Note, however, that s-norm (20) does not have a generating
function that satisfies (14), while the next example uses the generating function.

Example 5. Let g(x) be given by (15). Then we have

s(a, b) = (ap + bp)
1
p , (22)

t(a, b) = (a−p + b−p)−
1
p . (23)

are an s-norm and a t-norm, respectively. This pair has the duality stated in
Proposition 5 when N = const/x is used.

The second example has interesting properties. First, s(a, b) = a + b is a
particular case of (22) for p = 1. Moreover s(a, b) = max{a, b} and t(a, b) =
min{a, b} are obtained from (22) and (23) when p→ +∞.
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Generalization to G-Bags. Apparently the complementation N cannot be
generalized to G-bags. However, it is possible to define s-norms and t-norms as
follows.

Definition 3. Given two G-bags A, B of X, and an s-norm and t-norm, we
define ZνASB(z;x) and ZνAT B(z;x) are defined by

Y νASB(z;x) = s(Y νA(z;x), Y νB(z;x)), (24)
Y νAT B(z;x) = t(Y νA(z;x), Y νB(z;x)), (25)

Using Y νASB(z;x) and Y νAT B(z;x), we generate νASB(x) and νAT B(x).

The next proposition justifies the above definition.

Proposition 7.

[AS B]α = [A]α S [B]α, (26)
[A T B]α = [A]α T [B]α (27)

3 Bag Relations for Generalized Bags

A bag relation is a concept that corresponds to fuzzy relation. We define algebras
for bag relations for R-bags, and then generalize them to G-bags. Proofs of the
propositions in this section are shown in [22].

3.1 Max-s and Max-t Algebras

Let us introduce a new notation of � and � for

a� b = max{a, b}, a� b = s(a, b) (28)

where s(a, b) is an s-norm for R-bags. We call this max-s algebra.
It is easy to see that the following properties hold.

a� b = b� a, (29)
a� (b � c) = (a� b) � c, (30)

a� 0 = a, (31)
a� b = b� a, (32)

a� (b � c) = (a� b) � c, (33)
a� 0 = a. (34)

We moreover define � and � for

a� b = max{a, b}, a� b = t(a, b) (35)

where t(a, b) is a t-norm for R-bags. The latrter is called max-t algebra. We see
that (29)–(33) hold, while (34) should be replaced by

a� +∞ = a. (36)
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We have the following.

Proposition 8. Let a, b, c be real numbers. Then

a� (b � c) = (a� b) � (a� c). (37)

where � is either an s-norm or a t-norm.

3.2 Bag Relations

Assume that all bags in this section are R-bags, unless otherwise stated.

Definition 4. A bag relation R on X × Y is a bag R of X × Y . The count
function is denoted by R(x, y) instead of CR(x, y) for simplicity.

We define composition operation using max-s or max-t algebra.

Definition 5. Let X,Y, Z be three universal sets. Assume R is a bag relation
of X × Y and S is a bag relation of Y × Z. Then a max-s composition R ◦ S is
defined as follows.

(R ◦ S)(x, z) = �y∈Y {R(x, y) � S(y, z)} (38)

where � is defined by an s-norm. Note that

�y∈{a1,...,aL} = a1 � a2 � · · · � aL.

A max-t composition is defined by the same equation (49) except that � uses a
t-norm.

Note also that the addition is straightforward

(R1 �R2)(x, y) = R1(x, y) �R2(x, y), (39)

for bag relations on X × Y .

We have the following.

Proposition 9. The composition satisfies the associative property

(R ◦ S) ◦ T = R ◦ (S ◦ T ). (40)

and the distributive property

(R1 �R2) ◦ S = (R1 ◦ S) � (R2 ◦ S), (41)
R ◦ (S1 � S2) = (R ◦ S1) � (R ◦ S2). (42)

In short, the composition is calculated like ordinary matrix calculations when
the universes are finite.

We introduce the unit relations for the max-s and max-t compositions. For
this purpose we define OXY and ΩXY on X × Y .

OXY (x, y) = 0, ∀(x, y) ∈ X × Y, (43)
ΩXY (x, y) = +∞, ∀(x, y) ∈ X × Y. (44)

Frequently we omit the subscripts like O and Ω when we have no ambiguity. We
then have
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Proposition 10. Assume that the max-s algebra is used. For arbitrary bag re-
lation R on X × Y ,

R�O = O �R = R, (45)
R ◦O = O ◦R = R. (46)

In contrast, assume that the max-t algebra is used. For arbitrary bag relation R
on X × Y ,

R�O = O �R = R, (47)
R ◦Ω = Ω ◦R = R. (48)

Note 2. Max-s algebra is a generalization of max-plus algebra [5] and max-t
algebra generalizes max-min algebra [12].

3.3 Relations of G-Bags

It is possible to generalize bag relations to G-bags. The idea is the same as that
for s-norms of G-bags.

Definition 6. Let X,Y, Z be three universal sets. Assume R is a G-bag relation
of X × Y and S is a G-bag relation of Y × Z. Then a max-s composition R ◦ S
is defined as follows.

Y ν(R◦S)(w;x, z) = �y∈Y {Y νR(w;x, y) � Y νS(w; y, z)} (49)

where � is defined by an s-norm.
A max-t composition is defined by the same equation (49) except that � uses

a t-norm. Using Y ν(R◦S)(w;x, z), we generate ν(R◦S)(x, z).

This definition is justified by the next proposition.

Proposition 11. Let R is a G-bag relation of X ×Y and S is a G-bag relation
of Y × Z. Assume R ◦ S is either max-s or max-t composition. We then have

[R ◦ S]α = [R]α ◦ [S]α. (50)

4 Data Analysis Based on Bag Models

We briefly overview bag-based models for data analysis. A typical bag model is
used in document analysis, where frequency of a term in a document is regarded
as a bag.

A less-known but useful model is fuzzy bags (F -bags), that is, weighted terms
with many occurrences. Since discussion of F -bags include that of classical bags,
we focus on F -bags.
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4.1 Distance between F -Bags

An important point in data analysis is the measurement of a distance between
two F -bags. We consider two distances. For this purpose we introduce additional
symbols.

(i) Cardinal number of F -bag:

|A| =
∑
x∈X

∑
j

µj
A(x). (51)

(ii) Product:
µj

A·B(x) = µj
A(x)µj

B(x), j = 1, 2, . . . (52)

We now define two distances:

d1(A,B) = |A ∪B| − |A ∩B|, (53)
d2(A,B) = |A ·A| + |B ·B| − 2|A · B|. (54)

The next proposition is useful.

Proposition 12.

d1(A,B) =
∑
x∈X

∑
j

|µj
A(x) − µj

B(x)|, (55)

d2(A,B) =
∑
x∈X

∑
j

|µj
A(x) − µj

B(x)|2. (56)

Proof. We have

d1(A,B) = |A ∪B| − |A ∩B|

=
∑
x∈X

∑
j

max{µj
A(x), µj

B(x)} −
∑
x∈X

∑
j

min{µj
A(x), µj

B(x)}

=
∑
x∈X

∑
j

|µj
A(x) − µj

B(x)|.

d2(A,B) = |A ·A| + |B · B| − 2|A ·B|

=
∑
x∈X

∑
j

{(µj
A(x))2 + (µj

B(x))2} − 2
∑
x∈X

∑
j

µj
A(x)µj

B(x)

=
∑
x∈X

∑
j

|µj
A(x) − µj

B(x)|2. ��

Miyamoto [18] applied these measures to fuzzy c-means clustering of documents
and terms when terms have weights. The weighted terms with many occurrences
were interpreted as fuzzy bags. It should be noted that cluster centers for both
d1(A,B) and d2(A,B) are well-defined fuzzy bags and their calculations are not
difficult [18].
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Kernel Functions. Recently, kernel functions have been remarked by many
researchers (e.g. [31,30]). It is possible to apply kernel functions to the set of
F -bags. An effect of kernel functions is that nonlinear classification boundaries
are easily obtained. The best-known kernel is the Gaussian kernel:

K(x, y) = exp(−λ‖x− y‖2)

where ‖x − y‖ is the Euclidean distance between two points of the Euclidean
space. When we use a kernel function, we assume an implicit mapping φ(·)
from a data space into an implicit high-dimensional space. Note that the high-
dimensional space and mapping φ need not be known, but their inner product
〈φ(x), φ(y)〉 is given by an explicit kernel function:

K(x, y) = 〈φ(x), φ(y)〉.

For F -bags, it is not difficult to see that

K(A,B) = exp(−λd2(A,B)) (57)

is a positive-definite kernel, and hence we can use this kernel to data analysis of
F -bags. On the other hand, K(A,B) = exp(−λd1(A,B)) does not necessarily
define a positive-definite kernel. Mizutani et al. [24] applied the Gaussian kernel
to a set of documents and performed kernel fuzzy c-means clustering [23]. The
results showed the kernel function better separates clusters than the ordinary
fuzzy c-means clustering.

There is another point that kernel functions are useful. The original set of
fuzzy bags is not a vector space, but after the mapping, F -bags are represented
as points in a high-dimensional space. It is true that the high-dimensional space
itself is invisible, but the method of kernel principal components [30] projects the
points onto a low-dimensional subspace. Using such a method, we can visualize
F -bags as points on a plane when two principal axes are used.

5 Application to Decision Making Using R-Bags

A classical work by Bellman and Zadeh [1] showed how fuzzy set framework is
used in decision making, where an objective and a constraint are represented
by fuzzy sets and a point that maximizes the membership of their intersection
should be an optimal solution.

When we contrast bags and fuzzy sets, we should study decision making using
bags instead of fuzzy sets, and consider if we have an essential difference between
the two approaches.

Example 6. Let us review a simple example in the framework of fuzzy decision
making. For simplicity we handle an objective and a constraint, but generaliza-
tion to many objectives and constraints are straightforward.

An objective is represented by a fuzzy set G of X , while a soft constraint C
is also a fuzzy set of the same universe. A larger G(x) (we write G(x) instead
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of µG(x)) means that the objective is better satisfied. In the same way, a larger
C(x) means that the constraint is more satisfied. Hence we should consider
maximization:

max
x∈X

(G ∩ C)(x) (58)

because both the objective and the constraint should be satisfied. That is, deci-
sion should be fuzzy set D = G ∩ C.

If we use bags in the above formulation in just the same way, the result is the
same as that by fuzzy sets. Only difference is that we do not have the ceiling of
unity when handling bags.

We have, however, another formulation which is complementary to fuzzy de-
cision making. It is more classical and yet employs a feature of fuzzy decision
making. We describe an example using R-bags.

Example 7. Let G and C be R-bags of X , but they have different meanings:
– G(x) = n means that n people are unsatisfied concerning the objective.
– C(x) = m means that m people say the constraint is unsatisfied.
– We should minimize the number of unsatisfied people.

Since we have two bags G and C, minimization of

D(x) = G(x) + C(x) (59)

is reasonable. Note that we write D(x) instead of CD(x) for simplicity.
The above equation (59) means that total number of unsatisfied people is

estimated to be D(x) = G(x) + C(x) when decision variable is x. This means
that there is no overlap between people unsatisfied to G and those unsatisfied
to C.

In contrast, if we consider maximum overlap between those people unsatisfied
to G or C, the decision is represented by

D(x) = max{G(x), C(x)} = (G ∪ C)(x) (60)

These equations show a complementary formulation to that of fuzzy decision
(58). If we should handle multiple goals G1, . . . , Gm and constraints C1, . . . , Cn,
we consider either

D(x) =
m∑

i=1

Gi(x) +
n∑

j=1

Cj(x), (61)

or

D(x) = max
1≤i≤m,1≤j≤n

{Gi(x), Cj(x)}

= (G1 ∪ · · · ∪Gm ∪ C1 ∪ · · · ∪ Cn)(x). (62)

Moreover we can use an s-norm of Minkowski type as a generalization:

D(x) = (G1(x)p ∪ · · · ∪Gm(x)p ∪ C1(x)p ∪ · · · ∪ Cn(x)p)
1
p , (p ≥ 1). (63)

Note that (63) includes (61) when p = 1 and also approaches (62) as p→ ∞.
Note that in any case of (61), (62), and (63), we consider the minimization:

min
x∈X

D(x). (64)
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5.1 Convexity of Bags

In order to handle convex functions, we assume X = Rh, the h-dimensional
Euclidean space. Note that a convex function F defined on X = Rh means that

F (λx + (1 − λ)y) ≤ (λF (x) + (1 − λ)F (y)

for all x, y ∈ X and all λ ∈ [0, 1]. A necessary and sufficient condition for the
convexity of F (x) is that its epigraph

epi(F ) = {(x, β) ∈ Rh+1 : F (x) ≤ β}

is a convex set.
A drawback in fuzzy decision making is that we cannot use the theory of

convex functions, i.e., even when we handle convex fuzzy sets, they are quasi-
convex but never convex, since the membership of a fuzzy set is limited to [0, 1].

In contrast, we can assume convex R-bags G and C, since the membership
value is in [0,+∞]. It is easy to see the next properties are valid.

Proposition 13. Assume R-bags G and C of X = Rh are convex. Then,

D(x) = G(x) + C(x) (65)

and
D′(x) = (G ∪C)(x) (66)

are convex functions.

Proof. The convexity of D(x) from (65) follows from the well-known fact that
addition of two convex functions are also convex. The convexity of D′(x) from
(66) is based on the property that the intersection of two convex epigraphs is
convex. ��

We moreover have the next proposition.

Proposition 14. Assume R-bags G and C of X = Rh are convex. Then,

D′′(x) = (G(x)p + C(x)p)
1
p , (p ≥ 1) (67)

is convex.

Proof. We first note the Minkowski inequality [9]:

((a1 + b1)p + (a2 + b2)p)
1
p ≤ (ap

1 + ap
2)

1
p + (bp1 + bp2)

1
p

for a1, a2, b1, b2 ≥ 0. noting that G(x) and C(x) are convex, we have

D′′(λx + (1 − λ)y) = [G(λx + (1 − λ)y)p + C(λx + (1 − λ)y)p]
1
p

≤ [(λG(x) + (1 − λ)G(y))p + (λC(x) + (1 − λ)C(y))p]
1
p .
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Using the Minkowski inequality, we have

D′′(λx + (1 − λ)y) ≤ [(λG(x))p + (λC(x))p]
1
p + [((1 − λ)G(y))p + ((1 − λ)C(y))p]

1
p

= λ(G(x)p + C(x)p)
1
p + (1 − λ)(G(y)p + C(y)p)

1
p

= λD′′(x) + (1 − λ)D′′(y).

Thus the convexity of D′′(x) is proved. ��
It is straightforward to generalize the above propositions to decisions with mul-
tiple objectives and constraints using (61), (62), and (63). We omit the detail.

Thus if we use R-bags, we can handle convex decision functions.

6 Conclusion

We have overviewed generalizations of classical bags. Three types of generaliza-
tions have been studied. For R-bags, complementation, s-norm and t-norm, and
bag relations have directly been defined, while they are more complicated for
G-bags. Fuzzy bags (F -bags) can be handled as a special case of G-bags. Using
s-norms and t-norms, we have defined max-s and max-t compositions for bag
relations.

We have shown applications of F -bags to data analysis with discussion of
kernel functions. It has been known that kernel-based methods of data analysis
work well in many applications, and hence more studies are necessary concerning
this topic.

Moreover it was shown that decision functions can be convex using s-norms
in contrast to fuzzy decision making, where convexity property does not hold.

We have omitted many other applications, for example, application to rough
sets [25] is also possible and we can develop rough bags and their generalizations
(see, e.g., [19]).

Overall, bags have great potential to produce new useful tools in soft comput-
ing. There are many unsolved problems both in theory and applications. Many
future researches are needed.

Acknowledgment

This study has partly been supported by the Grant-in-Aid for Scientific Research,
Japan Society for the Promotion of Science, No.19650052 and No.19300074.

References

1. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Management
Sci. 17, B-141–B164 (1970)
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Abstract. The relationship between fuzzy set theory (in particular
fuzzy arithmetic) and interval analysis is well-know. This study explores
the interconnections between interval analysis, fuzzy interval analysis,
and interval and fuzzy/possibilistic optimization. Two key ideas are con-
sidered herein: (1) constraint set computation and (2) the clear distinc-
tions and relationships between interval, fuzzy, and possibilistic entities
as they are used in optimization within an historical and taxonomic
context. Constraint fuzzy interval arithmetic is used to compute
constraint sets.
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1 Introduction

This study explores interval analysis, fuzzy set theory, and possibility theory
as they related to optimization of mathematical programming which is both
a synthesis of the author’s previous work bringing together, transforming, and
updating many ideas found in [5],[6],[7],[8],[9], [10],[11], and [12] as well as some
new material dealing with the computation of constraint sets. The real-valued
mathematical programming problem for this presentation is

z = min f(x, c) (1)
subject to gi(x, a) ≤ b i = 1, . . . ,M1

hj(x, d) = e j = 1, . . . ,M2.

The constraint set is denoted Ω = {x | gi(x, a) ≤ b i = 1, . . . ,M1, hj(x, d) =
e, j = 1, . . . ,M2}. It is assumed that Ω �= ∅. The values of a, b, c, d and e are
inputs (data), parameters of the programming problem. Given our interest, we
restrict these parameters to be intervals, fuzzy intervals or possibilistic distri-
butions which we defined below. Moreover, the operator min and relationships
= and ≤ can take on flexible or fuzzy meaning becoming soft relationships or
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constraints. For example, the equality and inequality relationships may be aspi-
rations, that is, they may take on the meaning, “Come as close as possible to
satisfying the relationships with some degree of violation being permissible.” Of
course, if the value of a, b, d, or e are interval, fuzzy interval, or possibilistic dis-
tribution, the meaning of the inequality must be specified as will be discussed. It
is noted that when the objective function and/or constraints parameters are not
real numbers, the optimization problem may not be (undoubted is not) convex
in the classical sense even when the real-valued equivalent problem is so that
the usual solution methods are local. For example, in very simple cases where
the constraint is linear, of the form Ax ≤ b, and the coeffcients of the matrix
are intervals, the solution set can be a star-shaped region even for two variables
and two constraints(see [3]). When the parameters a, b, d, and/or e are interval,
fuzzy, or possibilistic, the underlying model is not known exactly or it may be
that the model is precise but knowledge of what the values of the data are, is
incomplete or deficient in some sense.

There is an older point of view in which the optimization problem statement
begins as a fuzzy optimization statement rather than a real-valued optimization
model some (all) of whose parameters are fuzzy and/or intervals and/or possi-
bilistic (see [13], [14]). Possibility theory was not well-defined at the time. For
the purposes of our research, we begin with (1). This study restricts itself to real-
valued interval, fuzzy interval, possibilistic coefficients, and to soft constraints.

1.1 Intervals, Fuzzy Intervals and Possibility

We outline the relationship between intervals, fuzzy intervals, and possibility dis-
tributions before looking at interval analysis as it relates to fuzzy interval analysis
and possibility theory applied to optimization since there is often confusion be-
tween interval optimization, fuzzy optimization, and possibilistic optimization
especially as found in the literature. An interval is a connected set of real num-
bers X = [x, x] = {x | x ≤ x ≤ x}. There is no “fuzziness” in an interval though
an interval may be considered as a type of fuzzy number (just as a real number
may be considered as a type of complex number). Either an element belongs to
an interval or it does not. An interval possesses a dual nature, that of a “new”
type of number X = {x, x} consisting of two elements (the lower bound and the
upper bound) or as a set X = {x | x ≤ x ≤ x}. This dual nature is exploited in
interval analysis as we shall see in the sequel. Intervals capture non-specificity
and are thus possibilistic as we discuss in the next paragraph. An interval be-
longs to uncertainty theory in so far as uncertainty models non-specificity or
lack of (complete) information.

It is well-know by this time that fuzzy captures the transitional nature both
in the abstract (a gradual membership function rather than a Boolean one) and
in reality (the coast “line” of Japan). Possibility captures lack of information,
lack of specificity, lack of precise information about an entity. Fuzzy sets are not
inherently (by nature) uncertain in meaning or semantics. They are transitional
or gradual. A fuzzy interval, as we shall see, can be automatically translated into
a possibility distribution and thus reflect lack of specificity as well as transition.



The Relationship between Interval, Fuzzy and Possibilistic Optimization 57

Thus, fuzzy sets may have or take on a dual nature – that of capturing gradual-
ness of belonging and capturing non-specificity. That is, a fuzzy set that is used
in modelling uncertainty must be translatable into a possibility given the inher-
ent nature of optimization which requires a complete order relationship. This
dual nature (gradualness and uncertainty/lack of specificity) only occurs when
the entity (variable) is decomposable into mutually exclusive elements. If coef-
ficients are fuzzy numbers (fuzzy membership functions indicate, semantically,
that the coefficients are transitional), the fuzzy numbers are by their very nature
decomposable into mutually exclusive elements and thus possess a dual nature
(gradual and uncertain). This means that they will be (except semantically)
possibility distributions.

(From [2]) Limited (minimal) specificity can be modelled in a natural
way by possibility theory. The mathematical structure of possibility the-
ory equips fuzzy sets with set functions, conditioning tools, notions of
independence/dependence, decision-making capabilities [lattices]. Lack
[deficiency] of information or lack of specificity means we do not have
“the negation of a proposition is improbable if and only if the proposi-
tion is probable.” In the setting of lack of specificity, “the negation of
a proposition is impossible if and only if the proposition is necessarily
true.” Hence, in possibility theory pairs of possibility and necessity are
used to capture the notions of plausibility [possibility] and certainty [ne-
cessity]. When pairs of functions are used we may be able to capture or
model lack of information. A membership function is a possibility only
when the domain of a fuzzy set is decomposable into mutually exclusive
elements. A second difference [between probability and possibility] lies in
the underlying assumption regarding a probability distribution. Namely
all values of positive probability are mutually exclusive. A fuzzy set is
a conjunction of elements. For instance, in image processing, imprecise
regions are often modelled by fuzzy sets. However, the pixels in the re-
gion are not mutually exclusive although they do not overlap. Namely
the region contains several pixels, not a single unknown one. When the
assumption of mutual exclusion of elements of a fuzzy set is explicitly
made, then, and only then, the membership function is interpreted as a
possibility distribution; this is the case of fuzzy numbers [intervals] de-
scribing the ill-located unique value of a parameter. (italics, my emphasis
with square brackets being my addition)

Thus, in the context of an image composed of distinct pixels, “conjunctive”
means that a pixel may be more than one thing at once and the sum of the
membership values need not be one. So, for example, a pixel could be classi-
fied as being a part of the stomach lining with membership value of 0.30 and
stomach muscle with membership value of 0.75 with these being the only two
classification for this pixel. Mutual exclusivity in this context would means that
we can decompose, for example, cancerous and non-cancerous cells into pixels
having possibility x > 0 (say 0.25) of being cancerous and a possibility 1−x (say
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0.75) of being non-cancerous with no more classification. Moreover, possibility
is always normalized since the semantics of possibility is tied to an existential
entity. Thus, not all fuzzy set membership functions are possibility distributions.

1.2 A Taxonomy of Fuzzy and Possibilistic Optimization for Our
Generic Problem

The structure of (1) when it is a linear programming problem may be considered
to be formed by (i) the rim f(x, c) = cTx, and b, e, (ii) the body f(x, a), h(x, d) =
Ax, and (iii) the relationship, ≤, = ([4]). Note that in the context of interval,
fuzzy, possibility, r ≤ s and s ≤ r does not imply r = s. For the generic form
of the mathematical programming problem (1), we consider a parameterized
decomposition of (i) rim objective function parameters, c, (ii) rim right-hand
side parameters, b and e, (iii) body parameters a and d, and (iv) relationship ≤,
=. A real number and an interval may be considered as a fuzzy interval. A right-
hand side value that is fuzzy may be interpreted in two ways depending on the
context of the problem. First, a fuzzy right-hand side may indicate flexibility.
Second, it may indicate (true) decomposable transition modelled by a fuzzy
interval. For the former, the constraint becomes a flexible constraint. For the
latter, it becomes a possibility.

The types of optimization in the presence of interval, fuzzy interval, possi-
bilistic coefficients and soft constraints are as follows:

1. Flexible Programming – soft constraints where the relationships≤ and/or
= take on a flexible meaning

2. Utility Programming – interval, fuzzy interval, possibilistic cost coeffi-
cients of the objective function rim parameter c and real-valued coefficient
constraint coefficient a, b, d, e ∈ R.

3. Real-valued (deterministic) objective function (cost) coefficients c ∈ R, and
(some/all) interval, fuzzy interval, possibilistic coefficients a, b, d, e.
(a) Flexible Programming – body parameters real, a, d ∈ R and rim

right-hand side values fuzzy interval, transformed into flexible right-hand
side values

(b) Possibilistic Programming – body parameters interval, fuzzy interval,
possibilistic a, d and/or rim right-hand values b, e are possibilistic

(c) Mixed Fuzzy/Possibilistic Programming – mixture of soft con-
straints and interval, fuzzy interval, possibilistic coefficients a, b, d, e.

4. Random Set Programming – all coefficients a, b, c, d, e may be inter-
val, fuzzy, possibilistic where there may be a mixture of types within one
constraint statement.

One might also classify fuzzy and possibilistic programming according to whether
nor not the solution is a real-valued fuzzy interval vector or a real-valued vector.
For this study, solutions will be real-valued. Possibilistic programming methods
of Buckley and his colleagues and Delgado and his colleagues have considered
fuzzy interval-valued solutions. The methods to obtain fuzzy interval solutions
are different than those that obtain a real-valued solution. Nevertheless, they
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fall under possibilistic programming or random set programming of the above
taxonomy. In this study we focus only on 1, 2, and 3 of the above taxonomy which
will suffice to illustrate the relationships between interval, fuzzy, and possibility
as it impacts optimization.
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Abstract. The paper introduces basics of a notion of voting game the-
ory and illustrates its application in practice. Examples outlined in the
paper show how the theory works in practice of parliamentary insti-
tutions. A few simple examples explain the difference between voting
weight and voting power and show how important analysis of voting
games is in practice. A study of selected decisive systems explains mean-
ing of such notions as winning and blocking coalitions, initiative and
preventive power of a player etc.
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1 Introduction

The theory of voting games is a case of decision making. The voting games are
mathematical models utilized in analysis of the decision power of members of or-
ganizations like decision committees of institutions, executive boards of corpora-
tions, national parliaments, agendas of United Nations, Council and Parliament
of European Union.

All modern democracies rely on the idea of representation. A certain body
of representatives, a parliament for example, makes decisions on behalf of the
voters. In most parliaments each of its members represents roughly the same
number of people, namely the voters in his or her constituency, [6]. The simplest
and most common system relies on assigning a weight to every member. The
decision is taken when the sum of weights of members supporting decision reaches
or exceeds an assumed threshold.

A voting game is a conflict in which the only objective is winning and the only
rule is an algorithm to decide which coalitions are winning. These games have
been used to study the distribution of power in voting situations. Two power
indices have received the most theoretical attention as well as application to
political structures, e.g. [1,2,6].

The analysis of power is central in political science. In general, it is difficult
to define the idea of power, but for the special case of voting situations sev-
eral quantitative measures for evaluating the power of a voter or coalition have
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been proposed. In this paper we will discuss methods of power’s measuring and
application of them to the Council of European Union.

2 Voting Games

Let us consider a system
G = (P,W )

where:

– P is a finite set of elements called players. Finiteness of P is always assumed
in this paper.

– W ⊂ 2P is a family of subsets of the set P of players. W is called the family
of winning coalitions.

A system G satisfying the following conditions is called voting game:

1. W is nonempty, i.e. at least one coalitions is winning,
2. if C ∈ W and C ⊂ C′ then C′ ∈ W , i.e. an extension of a winning coalition

is the winning coalition,

A voting game is simple if it satisfies the condition:

3) if C ∈ W then P \ C /∈ W , i.e. there is no pair of non-intersecting winning
coalitions

Note that first two conditions imply that P , the grand coalition, is winning.
Complement of a winning coalition in simple game is called losing coalition.

Coalitions that neither are winning, nor losing are called blocking coalitions.
A voting game is said to be strong if it does not have blocking coalitions.

The ratio e = |W |/|2P | is said to be game effectiveness parameter. Effective-
ness cannot exceed 0.5 and only effectiveness of strong games reaches 0.5. Of
course, effectiveness measures ability of decision making: the higher the value of
effectiveness parameter, the easier to find a winning coalition.

A player p is called a swing player in a given winning (blocking) coalition C
if and only if the coalition C \ {p} is not winning (not blocking).

A player is called dummy player if it is not swing in any winning (blocking)
coalition.

A coalition is said to be minimal coalition if every player of this coalition is
swing.

A game is called weighted voting game if every player pi ∈ P is assigned
a natural number wi and a number q, 0 < q ≤

∑
pi∈P wi, is given. Numbers

wi are called weights and q is called qualified majority. A subset C of the set
P of players is a winning coalition if and only if its weight is not less than the
qualified majority, i.e. if

∑
wi∈C wi ≥ q.

We will denote such games as a system:

(
∑
pi∈P

wi; q; w1, w2, . . . , wn)

A weighted voting game is simple if and only if qualified majority is greater than
50% of total sum of weights: q > 0.5 ·

∑
pi∈P wi.
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3 Voting Power

Strength of a players depends on weights. However, the analysis of strength of
a player cannot be based on weights only. Let us consider an example of a game
with three players:

(100; 51; 49, 49, 2)

A winning coalition is either grand coalition or it includes any two players. This
means that strength of every player is the same, despite of disproportion of
weights between first two player and the third player.

Let us consider another example:

(100; 51; 26, 26, 25, 23)

In this case weights of all players are similar. Despite of this the fourth player is
a dummy player.

Observing the above examples we see that it is important to clearly differen-
tiate between weight of a player and its strength, i.e. ability to affect decisions
taken in the game.

Many measures of players’ strength have been invented. We will focus our
attention on Shapley-Shubik, Banzhaf, Coleman initiative and Coleman preven-
tion power indexes. Power indexes are based on number of coalitions, in which
a given player is swing. So then strength of a player can be expressed by num-
bers of winning and blocking coalitions, in which the player is swing. In this case
we usually consider the smallest coalitions in term of number of players in the
coalition.

3.1 Power Indexes

The Shapley-Shubik power index was formulated by Lloyd Shapley and Martin
Shubik in 1954, [8]. The Shapley-Shubik power index for a given player pi is
defined as a proportion:

ShSh(pi) =
swsShSh(pi)∑

wj∈P swsShSh(pj)

where swsShSh(pi) is the number of winning coalitions in which the player pi

is swing. Of course, the term swsShSh(pj) stands for the number of winning
coalitions in which the player pj is swing.

The definition of swing player in terms of Shapley-Shubik power index is
specific. We consider all sequences of n players, i.e. n! sequences. A player pik

is swing if and only if the coalition including first k players of the sequence is
winning while the coalition including first k − 1 players of the sequence is not
winning, see Figure 1. In other words, a winning coalition in terms of Shapley-
Shubik power index is a sequence rather than a set. This definition of a swing
player is not compatible with the definition of voting game (let us recall that -
in terms of voting game definition - coalition is a set of players).
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Fig. 1. Swing player in terms of the definition of the Shapley-Shubik power index

Note, that every sequence of n players has a swing player in terms of Shapley-
Shubik power index, what implies that the denominator in the formula of Shapley-
Shubik power index is equal n!.

The definition of the Banzhaf power index is similar to that of Shapley-Shubik
index, c.f. [3]:

Bz(pk) =
swsBz(pk)∑

pj∈P swsBz(pj)

The difference is in definition of winning coalitions. In case of Banzhaf index
a winning coalition is a set rather than a sequence of players. This definition
of a swing player is compatible with the definition of voting games, in which
a coalition is a set rather than a sequence. We can observe that swsBz(k) =
swsShSh(k)/((k − 1)!).

The Coleman power indexes define ability of a player to initiate or to prevent
a decision, c.f. [4]. The Coleman initiative power index is a proportion:

Ci(pk) =
swsBz(pk)

number of notwinning coalitions

while the Coleman preventive power index is a proportion:

Cp(pk) =
swsBz(pk)

number of winning coalitions

where, of course, a coalition (winning or not winning) is a set of players rather
than a sequence of players.

The Coleman initiative power index tells how often a player can turn a not
winning coalition to a winning coalition. On the other hand, the Coleman pre-
ventive power index expresses how often a player can turn a winning coalition
to a not winning coalition.

The above power indexes are the most important and the most popular. Many
other indexes could be found in literature.

3.2 Numbers of Coalitions

Besides power indexes we can analyze number of winning or blocking coalitions
in which a given player is a swing player. Most important are small coalitions, i.e.
coalitions which include minimal number of players, minimal number plus one
player up to minimal number plus a few players. Since creating a small coalition
is easier than creating a bigger one, these numbers define an ability of a player
to create a winning or a blocking coalition.
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3.3 Banzhaf Indexes in Work, an Example

A typical parliament includes several hundred envoys. Usually decisions are taken
if majority of envoys vote for it. In other words, we have a game with given
number of n player with weight equal to 1 assign to each of them. So, analysis
of the system seems to be not very complex. However, the number of possible
coalitions, which is equal to 2n, makes analysis hard in practice. Such a number
is rather abstract when we consider a typical parliament having a few hundred of
envoys. Also, some of envoys may be absent, other may abstain, what increases
number of all possible coalitions and makes the situation even worse.

To be able to do any analysis of a parliamentary voting system we make
assumptions simplifying the system. First of all we can notice that most of
envoys belong to political parties and usually vote in the same way. Based on
this observation we assume that envoys of every party cast in the same way.
Second, we assume that votes of abstain and absent envoys are against (since
they are not pro). These assumptions allow considering every party as a player
with weight equal to number of envoys in this party.

It may seem that number of envoys in a party, i.e. weight of the party, ar-
ticulates a strength of the party. This is true that a strength depends on its
weight. However, dependence is not straightforward. Considering the example
(100; 51; 49, 49, 2) we can see that weights of players can be widely changed
without affecting strength of players.

Let us consider a real life example outlined in Table 1. It explains how closely
the theory of voting games explains the practice. It is worth to note that the
country, parties etc. are not important and can be dropped in our discussion. But
a following paragraph of explanations is aimed on readers who may be interested
in real situation.

In 2001 fall election to Sejm, the Polish Parliament, Democratic Left Alliance
/ Labor Union (SLD/UP) won, but did not reach the majority. Other par-
ties winning seats in the parliament are: Civic Platform (PO), Law and Justice
(PiS), the Polish Peasant(s) Party (PSL), Self-Defence of the Republic of Poland
(SRP), the League of Polish Families (LPR) and German Minority (MN). The
SLD/UP formed a government along with PSL. And then during next two and
half a year both aliens straggled between each other rather then making law.
In that time tens of envoys left their parliamentary clubs creating a new club
and several groups of envoys. Also, 15 single envoys declared independence on
any parliamentary group. Finally, on February 19th 2004 the Prime Minister L.
Miller decided to fire PSL and to form a minority SLD/UP government. Sur-
prisingly, minority government had no problem winning in votes. Why? We may
speculate that it was easier to convince single envoys or small groups of envoys
than to come to agreement with the alien. This situation is well modelled by
Banzhaf power index. Notice that SLD/UP lost 10 seats (216 seats won in elec-
tion and 206 seats two and half a year later) and significantly earned 10 percent
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Table 1. Polish Parliament Sejm - results of 2001 fall election and later after changes
in parties. Legend: SLD/UP - Democratic Left Alliance / Labor Union, PO - Civic
Platform, PiS - Law and Justice, PSL - the Polish Peasant(s) Party, SRP - Self-Defence
of the Republic of Poland, LPR - the League of Polish Families, MN - German Minority
and Niez. - independent envoys.

Player’s power in Polish Parliament

Parties

SLD/UP

PO

PiS

PSL

SRP

LPR

FKP

SKL

PBL

RKN

PP

ROP

MN

Niez.

Total

Fall election 2001

Number of envoys

Numbers

216

65

44

42

53

38

0

0

0

0

0

0

2

0

460; 231

Percentage

47.0

14.1

9.6

9.1

11.5

8.3

0

0

0

0

0

0

0.4

0

100.0

Banzhaf
Index

75.0

5.0

5.0

5.0

5.0

5.0

0

0

0

0

0

0

0

0

100.0

February 19th, 2004

Number of envoys

Numbers

206

56

43

37

31

30

15

8

6

5

3

3

2

15*1

460; 231

Percentage

44.8

12.2

9.3

8.0

6.7

6.5

3.3

1.7

1.3

1.1

0.7

0.7

0.4

15*0.22

100.0

Banzhaf
Index

85.0

1.9

1.9

1.9

1.9

1.9

1.7

0.7

0.5

0.4

0.3

0.3

0.2

15*0.1

100.0

points of Banzhaf index (75% after election and 85% in 2004). On the other hand
big opposition parties significantly lost Banzhaf index (5% to 1.9%). Notice also
that Banzhaf index of big opposition parties was equal despite that percentage
of seats of PO is twice as much as of LPR. Is not it a surprising consistency
between theory and practice?
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4 Making Decisions in the Council of the European
Union

As mentioned before, it is not important whether examples presented are based
on decision systems practiced in Europe, America, United Nations or anywhere
else. What is important is that examples presented illustrate real life applications
of voting games. Moreover, European Union institutions might be interesting for
some readers. This is why we allocate some parts of the paper explaining basic
notions of EU.

Table 2. Voting system in EEC and EU9

European Economic Community and early European Union

Countries

France

Germany

Italy

Belgium

Netherland

Luxembourg

Denmark

Ireland

United Kingdom

Number of votes

1958

4

4

4

2

2

1

-

-

-

17;12

1973

10

10

10

5

5

2

3

3

10

58;41

Power index

Shapley-Shubick

1958

0.233

0.233

0.233

0.150

0.150

0

-

-

-

1.000

1973

0.179

0.179

0.179

0.081

0.081

0.010

0.057

0.057

0.179

1.000

Banzhaf

1958

0.238

0.238

0.238

0.143

0.143

0

-

-

-

1.000

1973

0.167

0.167

0.167

0.091

0.091

0.016

0.066

0.066

0.167

1.000

Coleman init.

1958

0.204

0.204

0.204

0.122

0.122

0

-

-

-

1973

0.122

0.122

0.122

0.067

0.067

0.011

0.048

0.048

0.122

4.1 European Economic Community and Early European Union

European Economic Community formed in 1958 included six countries. The dis-
tribution of votes is outlined in Table 2. Note that Luxembourg was given 1
voice while Germany - 4 voices. Comparing number of citizens (several hun-
dred thousand against tens of millions) it may seem that Luxembourg was over-
represented. Nevertheless, there was no coalition in which Luxembourg is critical.
In other words, Luxembourg did not affect any decision. This fact is consistent
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with the value of Banzhaf index. Was it a mistake of designer of the voting sys-
tem? It is difficult to say. Anyway, after the first enlargement done in 1973 the
problem was removed, see Table 2.

The first enlargement was done in 1973. It is worth to notice that distribution
of votes between nine countries, as shown in Table 2 corrected the Luxembourg’s
dummy player problem. No member was dummy in the European Union enlarged
to nine members.

4.2 Blocking in Mid European Union

Enlargements done in 1981, 1986 and 1995 brought EU to have 15 members. The
decision system in the Council of the European Union was not changed. It was still
weighted voting game. Distribution of weights is outlined in Table3: four big coun-
tries got 10 votes, Spain got 8 votes, other countries got 5 to 2 votes. What is inter-
esting is a blocking ability of members. There was two levels’ blocking structure.
There were 10 smallest, three members’ blocking coalitions. Every of five biggest
countries belonged to six such coalitions. No other country could form three mem-
bers’ blocking coalitions. All countries could form four members’ blocking coali-
tions. Notice, that the smaller weight of a player, the smaller number of blocking
coalition is. Such (in our case - two levels’) blocking system is regular.

Let us have a look at the qualified majority of that game. It seems that design-
ers of the system carefully considered it. The obvious constrain put at qualified
majority is to ensure that game was simple. Another constrain required was to
guarantee that decision could be made by majority of members. We can notice
that the value 59 assured both constrains giving the best efficiency. However, it
excluded Spain, the moderately big country, from any three members’ blocking
coalition. On the other hand, qualified majority equal to 60 or 61 gave irregular
blocking in four members’ coalitions. The qualified majority equal to 62 satisfied
the above conditions.

4.3 Enlarged European Union

The last two enlargements increased the number of states to twenty seven. Since
2005 decision-making system is based on the Treaty of Nice. It was intended to
replace the Treaty of Nice by a new Treaty. However, so called Constitutional
Treaty was rejected by people in France and Netherland. A mutation of the
Constitutional Treaty, so called Lisbon Treaty, recently has also been rejected
by people in Ireland. So, future of EU decision-making system is still opened.
Now it is still based on the Nice Treaty.

The Treaty of Nice. The decision-making system by qualified majority will
be changed as from 1 January 2005. In future, a qualified majority will be
obtained if:

– the decision receives at least a specified number of votes (the qualified ma-
jority threshold),

– the decision is approved by a majority of Member States,
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Table 3. Blocking system in EU 15

Blocking structure in EU 15

Countries

Germany

France

United Kingdom

Italy

Spain

Netherland

Greece

Portugal

Belgium

Sweden

Austria

Denmark

Finland

Ireland

Luxembourg

Weights

10

10

10

10

8

5

5

5

5

4

4

3

3

3

2

87;62

b3

6

6

6

6

6

0

0

0

0

0

0

0

0

0

0

10

b4

153

153

153

153

108

86

86

86

86

74

74

64

64

64

36

369

The Treaty also provides for the possibility for a member of the Council to re-
quest verification that the qualified majority represents at least 62% of the total
population of the European Union. If this condition is not met, the decision will
not be adopted. However, this condition applies only if verification is requested.

As we can see, the Nice Treaty is a conjunction of tree simple games: weighted
voting games, majority of countries and population majority. In practice, the first
game overheads the last ones. The last two games may affect decision only in few
cases. Weights were distributed as follow: 29 (Germany, France, Great Britain,
Italy), 27 (Spain, Poland), 14 (Romania), 13 (Netherland), 12 (Greece, Portugal,
Belgium, Czechia, Hungary), 10 (Sweden, Austria, Bulgaria), 7 (Denmark, Slo-
vakia, Finland, Ireland, Lithuania), 4 (Latvia, Slovenia, Estonia, Cyprus, Lux-
embourg), 3 (Malta). The total sum of weighs is equal to 345 while qualified
majority is equal to 255.
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Banzhaf and Coleman power indexes of countries are shown in Figure 2 (left
bars). We can see that values of indexes of four biggest countries (Germany,
France, Great Britain and Italy) are equal. Values of power indexes of next two
countries (Spain and Poland) are only slightly smaller.

The Treaty of Constitution. Definition of qualified majority within the Eu-
ropean Council and the Council

1. A qualified majority shall be defined as at least 55% of the members of the
Council, comprising at least fifteen of them and representing Member States
comprising at least 65% of the population of the Union.

A blocking minority must include at least four Council members, failing
which the qualified majority shall be deemed attained.

2. By way of derogation from paragraph 1, when the Council does not act on
a proposal from the Commission or from the Union Minister for Foreign
Affairs, the qualified majority shall be defined as at least 72% of the members
of the Council, representing Member States comprising at least 65% of the
population of the Union.

Design of the Constitutional Treaty was based on so called double majority, i.e.
majority of countries and majority of population with qualified majorities set
as above and with excluded smallest blocking coalitions. Banzhaf and Coleman
power indexes of countries are shown in Figure 2 (middle bars). Note that this
decision-making system privileged Germany while Spain and especially Poland
significantly lost their voting power comparing to the Nice Treaty.

The Square Root Law and Jagiellonian Compromise. Disproportions
in gains and loses raised discussions and protests in several countries and soci-
eties. In 2004 Zyczkowski and Slomczynski proposed a decision-making system
based on the Penrose’s square-root law. The system, called Jagiellonian com-
promise, was supported by a wide gremium of European researchers, c.f. [7]. It
was a weighted voting game in which distribution of weights was proportional
to square root of population of countries. As it was shown in [10], the optimal
qualified majority equal to 62% of total sum of weights.

The square-root law states that the distribution of power in a heterogenous
voting systems is fair if the power (index) of each council member i is propor-
tional to

√
Ni, where Ni is the population of the state which i represents, c.f.

[6]. The optimal qualified majority q is given by the formula, cf. [9]:

q =
1
2
(1 +

√
N1 + . . . +NM√
N1 + . . . +

√
NM

)

It is easily seen in Figure 2 that distribution of the Banzhaf index of power in
the Jagiellonian Compromise is a compromise between Nice Treaty and Consti-
tution Treaty. Beside this, values of the Coleman initiative index in Jagiellonian
Compromise overhead values in Nice and Constitutional Treaties and values of
the Coleman preventive index in Jagiellonian Compromise are smaller then val-
ues in Nice and Constitutional Treaties, what makes Jagiellonian Compromise
more effective. As a result, Jagiellonian Compromise has not been accepted.
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Fig. 2. UE 27 Indexes
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5 Conclusions

The analysis of power is central in political science. In general, it is difficult to
define the idea of power, but for the special case of voting situations several
quantitative measures for evaluating the power of a voter or coalition have been
proposed. In the paper we shortly presented Banzhaf and Coleman power indexes
as well as blocking abilities of several decision-making institutions. The extended
discussion on selected topics could be found in the literature.
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1 Introduction

Let µ1, . . . , µn be finite measures of a measurable space (Ω,F ). The range of an
Rn-valued vector measure (µ1, . . . , µn) is given by

R(µ1, . . . , µn) = {(µ1(A), . . . , µn(A)) ∈ Rn | A ∈ F}.

The integral of a measurable function f on Ω with respect to the measure µi

is denoted by µ̂i(f). For the finite measure given by µ =
∑n

i=1 µi, we denote
by L∞(Ω,F , µ) the space of µ-essentially bounded functions on Ω with the µ-
essential sup norm.

The following result is attributed to Lyapunov [10].

Lyapunov’s Convexity Theorem. If µ1, . . . , µn are nonatomic finite mea-
sures of a measurable space (Ω,F ), then R(µ1, . . . , µn) is convex and compact
in Rn and it coincides with the set given by

{(µ̂1(f), . . . , µ̂n(f)) ∈ Rn | 0 ≤ f ≤ 1, f ∈ L∞(Ω,F , µ)}.
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There is a large number of elaborated proofs of Lyapunov’s convexity theo-
rem. For example, Halmos [8] presented a purely measure-theoretic proof and
Lindenstrauss [11] provided a proof based on fundamental results of functional
analysis. Useful extensions of this theorem for fair division problems were given
by Akin [1], Dubins and Spanier [4], Dvoretsky et al. [5] and Gouweleeuw [7],
incorporating the partition range of a nonatomic vector measure.

The purpose of this paper is to establish a Lyapunov-type convexity theorem
for an important class of set functions on σ-algebras, which has been investigated
independently for many years in game theory, discrete convex analysis, fuzzy
measure theory and statistical decision theory, namely, the class of supermodular
set functions (convex games). We prove the convexity and compactness of the
closure of the lower partition range of an Rn-valued, nonatomic, continuous,
supermodular set function, employing a useful relationship between cores and
Choquet integrals for convex games studied by Choquet [2], Delbaen [3], Kelley
[9], Marinacci and Montrucchio [12] and Schmeidler [17, 18]. The main result is
applied to partitioning a measurable space among a finite number of players, and
the existence of Pareto optimal α-fair partitions is demonstrated for the case of
nonadditive measures.

2 Main Result

Throughout this paper, a set function is a real-valued function on a σ-algebra
F of subsets of a nonempty set Ω that vanishes at the empty set.

A set function ν is monotone if ν(A) ≤ ν(B) for every A,B ∈ F with
A ⊂ B; ν is supermodular (or convex ) if ν(A) + ν(B) ≤ ν(A ∪ B) + ν(A ∩ B)
for every A,B ∈ F . A supermodular set function is monotone if and only if it
is nonnegative.

A set function ν is bounded if supA∈F |ν(A)| <∞. A monotone set function is
bounded. A set function ν is of bounded variation if sup

∑k
i=1 |ν(Ai)− ν(Ai−1)|

is finite, where the supremum is taken over all finite chains ∅ = A0 ⊂ A1 ⊂ · · · ⊂
Ak = Ω in F . A bounded supermodular set function is of bounded variation
(see Marinacci and Montrucchio [12]).

Given a set function ν, an element N ∈ F is ν-null if ν(A ∪ N) = ν(A) for
every A ∈ F . If N ∈ F is ν-null, then ν(N) = 0. A set function ν is null-
additive if A ∩ N = ∅, and ν(N) = 0 implies ν(A ∪ N) = ν(A). For a null-
additive monotone set function ν, an element N ∈ F is ν-null if and only if
ν(N) = 0 (see Pap [13], Theorem 2.1).

A set function ν is nonatomic if, for every ν-nonnull element, A ∈ F there
exists a measurable subset B of A such that both A \B and B are ν-nonnull. A
set function ν is absolutely continuous with respect to a set function µ if every
µ-null set is ν-null; ν is equivalent to µ if an element in F is ν-null if and only
if it is µ-null.

A set function ν is continuous from above at A if ν(Ak) → ν(A) for every
sequence {Ak} in F with Ak ↓ A; ν is continuous from below at A if ν(Ak) →
ν(A) for every sequence {Ak} in F with Ak ↑ A; ν is continuous if it is both
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continuous above and continuous below at every element in F . A monotone
continuous set function is called a capacity (or a fuzzy measure).

A set function ν is normalized if 0 ≤ ν ≤ 1 and ν(Ω) = 1.
Let B(Ω,F ) be the space of bounded measurable functions on Ω with the

supremum norm. The Choquet integral ν̂ : B(Ω,F ) → R of a set function ν is
defined by an improper Riemann integral of the form

ν̂(f) =
∫ +∞

0
ν(f ≥ t)dt+

∫ 0

−∞
[ν(f ≥ t) − ν(Ω)]dt.

Here, (f ≥ t) denotes the measurable set {ω ∈ Ω | f(ω) ≥ t}. Note that this
integral exists whenever ν is of bounded variation (see Pap [13], Theorem 7.21);
ν(A) = ν̂(χA) for every A ∈ F , where χA is the characteristic function of
A ∈ F ; ν̂ is positively homogeneous; that is, ν̂(αf) = αν̂(f) for every α ≥ 0 and
f ∈ B(Ω,F ).

For the Choquet integral ν̂ of a set function ν of bounded variation, there
are equivalent conditions: (i) ν is supermodular; (ii) ν̂ is supermodular ; that is,
ν̂(f) + ν̂(g) ≤ ν̂(f ∨ g) + ν̂(f ∧ g) for every f, g ∈ B(Ω,F ); (iii) ν̂ is concave;
(iv) ν̂ is superadditive; that is, ν̂(f) + ν̂(g) ≤ ν̂(f + g) for every f, g ∈ B(Ω,F ).
(For a proof, see Marinacci and Montrucchio [12].)

Let B(Ω,F ; Rm) be the space of Rm-valued bounded measurable functions
on Ω with the sup norm, where its generic element is denoted componentially
by (f1, . . . , fm). We introduce subsets Sm and Sm

0 of B(Ω,F ; Rm) as follows.

Sm =

⎧⎨⎩(f1, . . . , fm) ∈ B(Ω,F ; Rm) |
m∑

j=1

fj = 1, f1, . . . , fm ≥ 0

⎫⎬⎭ ;

Sm
0 =

⎧⎨⎩(χA1 , . . . , χAm) ∈ B(Ω,F ; Rm) |
m∑

j=1

χAj = 1, A1, . . . , Am ∈ F

⎫⎬⎭ .

Note that an m-tuple of measurable sets (A1, . . . , Am) is a partition of Ω if
and only if

∑m
j=1 χAj = 1. Thus, Sm

0 denotes the set of m-tuples of measurable
partitions of Ω.

Let ν1, . . . , νn be nonnegative set functions of bounded variation. Define the
lower range of an Rn-valued set function (ν1, . . . , νn) under Sm by

Rm(ν1, . . . , νn) =
{

(xij) ∈ Rnm
∣∣∣∃(f1, . . . , fm) ∈ Sm : 0 ≤ xij ≤ ν̂i(fj)
i = 1, . . . , n; j = 1, . . . ,m

}
and the lower partition range of (ν1, . . . , νn) under Sm

0 by

Rm
0 (ν1, . . . , νn) =

{
(xij) ∈ Rnm

∣∣∣∃(χA1 , . . . , χAm) ∈ Sm
0 : 0 ≤ xij ≤ ν̂i(χAj )

i = 1, . . . , n; j = 1, . . . ,m

}
.

The main result of this paper is as follows.

Theorem 1. If ν1, . . . , νn are nonatomic supermodular capacities, then the clo-
sure of Rm

0 (ν1, . . . , νn) is convex and compact in Rnm and it coincides with
Rm(ν1, . . . , νn).
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3 Preliminary Result

Let ba(Ω,F ) be the space of finitely additive set functions on F of bounded
variation with the total variation norm, which is the dual space of B(Ω,F )
(see Dunford and Schwartz [6], Theorem IV.5.1), with the corresponding duality
denoted by 〈f, λ〉 for f ∈ B(Ω,F ) and λ ∈ ba(Ω,F ).

Let ν be a set function. Define the subset C (ν) of ba(Ω,F ) by

C (ν) = {λ ∈ ba(Ω,F ) | ν ≤ λ and λ(Ω) = ν(Ω)}.

The set C (ν) is called the core of ν in game theory. Note that C (ν) is (possibly
empty) weak*-compact in ba(Ω,F ) because it is bounded in the total variation
norm and weak*-closed (see Dunford and Schwartz [6], Corollary V.4.3).

The following characterization of continuous supermodular set functions in-
dicates a profound relationship between their cores and Choquet integrals.

Theorem 2. For every bounded set function ν : F → R, the following condi-
tions are equivalent.

(i) ν is continuous and supermodular;
(ii) ν is of bounded variation and for every finite measure µ satisfying

lim
µ(A)→0

sup
λ∈C (ν)

λ(A) = 0, (1)

the Choquet integral ν̂ : B(Ω,F ) → R of ν has a unique extension to
L∞(Ω,F , µ) such that ν̂ is concave on L∞(Ω,F , µ) and weak*-continuous
on bounded subsets of L∞(Ω,F , µ).

(A measure µ satisfying condition (1) is called a control measure for C (ν).)

Proof. (i) ⇒ (ii): Under the hypotheses of the theorem, C (ν) is nonempty (see
Kelley [9] and Schmeidler [17]); every element in C (ν) is countably additive (see
Schmeidler [17]); there exists a finite control measure for C (ν) (see Schmeidler
[17] and Delbaen [3]); ν is exact ; i.e., ν(A) = minλ∈C (ν) λ(A) for every A ∈ F
(see Kelley [9] and Schmeidler [17]); more generally, −ν̂ is the support function
of C (ν) in the sense that ν̂(f) = minλ∈C (ν)〈f, λ〉 for every f ∈ B(Ω,F ) (see
Schmeidler [18]). (All of these statements have been proven in full generality by
Marinacci and Montrucchio [12].)

Choose any finite measure µ that is a control measure for C (ν). Since ev-
ery element in C (ν) is absolutely continuous with respect to µ, we have that
if µ(N) = 0, then λ(N) = 0 for every λ ∈ C (ν). We then have ν(A ∪ N) =
minλ∈C (ν) λ(A ∪N) = minλ∈C (ν) λ(A) = ν(A) for every A ∈ F , which demon-
strates that every µ-null set is ν-null. Take any f ∈ L∞(Ω,F , µ). Then f = g
a.e. for some g ∈ B(Ω,F ). Since

(f ≥ t) = [(f ≥ t) ∩ (f = g)] ∪ [(f ≥ t) ∩ (f �= g)]

for every t ∈ R and the sets (f ≥ t) ∩ (f �= g) and (g ≥ t) ∩ (f �= g) are µ-null,
we have ν(f ≥ t) = ν(g ≥ t). Hence, ν̂(f) = ν̂(g) and the value ν̂(f) is well
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defined because ν is of bounded variation. It follows from this argument that the
Choquet integral ν̂ defined on B(Ω,F ) has a unique extension to L∞(Ω,F , µ)
(which we do not relabel).

The concavity of ν̂ on L∞(Ω,F , µ) follows easily from the observation that
ν̂ is the pointwise minimum of the family of linear functionals f $→ 〈f, λ〉 on
B(Ω,F ) over λ ∈ C (ν).

Let {fα} be a net in a bounded subset of L∞(Ω,F , µ) such that fα → f
in σ(L∞, L1). Since for each α there exists an element λα ∈ C (ν) such that
ν̂(fα) = 〈fα, λα〉 and C (ν) is weak*-compact in ba(Ω,F ), we can extract a
weak*-convergent subnet {λα} (which we do not relabel) with λα → λ∗ ∈ C (ν).
We thus have

|〈fα, λα〉 − 〈f, λ∗〉| = |〈fα − f, λ∗〉 + 〈fα, λα − λ∗〉|

≤
∣∣∣∣∫ (fα − f)dλ∗

∣∣∣∣ + ‖fα‖∞
∣∣∣∣∫ χΩdλα −

∫
χΩdλ∗

∣∣∣∣
≤

∣∣∣∣∫ (fα − f)g∗dµ
∣∣∣∣ + C

∣∣∣∣∫ χΩdλα −
∫
χΩdλ∗

∣∣∣∣ → 0,

where g∗ = dλ∗
dµ ∈ L1(Ω,F , µ) and the constant C is such that ‖fα‖∞ ≤ C for

each α. Therefore, ν̂(fα) → 〈f, λ∗〉. Choose any λ ∈ C (ν). We then have

〈fα, λα〉 = ν̂(fα) ≤ 〈fα, λ〉 =
∫
fαgdµ for each α,

where g = dλ
dµ ∈ L1(Ω,F , µ). Taking the limit for this inequality yields 〈f, λ∗〉 ≤

〈f, λ〉 for every λ ∈ C (ν). Therefore, ν̂(f) = minλ∈C (ν)〈f, λ〉 = 〈f, λ∗〉, and
hence ν̂(fα) → ν̂(f).

(ii) ⇒ (i): Let µ be a finite measure stated in condition (ii). Since the concavity
of ν̂ is equivalent to the supermodularity of ν, it suffices to show that ν is
continuous.

To this end, letAk ↑ A in F . Then {χAk
} is a bounded sequence inL∞(Ω,F , µ)

with χAk
↑ χA a.e. For every f ∈ L1(Ω,F , µ), we have χAk

f → χAf a.e. with
|χAk

f | ≤ |f | for each k. Then from Lebesgue’s dominated convergence theorem,∫
χAk

fdµ →
∫
χAfdµ for every f ∈ L1(Ω,F , µ), which implies χAk

→ χA in
σ(L∞, L1). Therefore, ν(Ak) = ν̂(χAk

) → ν̂(χA) = ν(A), and hence ν is continu-
ous from below at every A ∈ F .

The verification of the continuity from above is similar.

4 Proof of Theorem 1

Under the hypothesis of the theorem, every element in C (νi) is a nonatomic finite
measure and there exists a nonatomic finite measure µi in C (νi) such that µi is a
control measure for C (νi) (see Marinacci and Montrucchio [12]). Let µ be the fi-
nite measure given by µ =

∑n
i=1 µi. From Theorem 2, each ν̂i defined onB(Ω,F )

has a unique extension to L∞(Ω,F , µ) such that ν̂i is concave on L∞(Ω,F , µ)
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and weak*-continuous on bounded subsets of L∞(Ω,F , µ). Thus, in the defini-
tion of Sm and Sm

0 , we may replace B(Ω,F ; Rm) with L∞(Ω,F , µ; Rm), which
does not change the lower range and lower partition range of (ν1, . . . , νn). Note
that Sm is weak*-compact in L∞(Ω,F , µ; Rm) because it is bounded in the
essential sup norm and weak*-closed (see Dunford and Schwartz [6], Corollary
V.4.3).

We denote by intRm(ν1, . . . , νn) the interior of the lower range of the vec-
tor capacity (ν1, . . . , νn). By virtue of the trivial inclusion Rm

0 (ν1, . . . , νn) ⊂
Rm(ν1, . . . , νn), to prove the theorem, it suffices to show that Rm(ν1, . . . , νn) is
convex and compact in Rnm and the inclusion

intRm(ν1, . . . , νn) ⊂ Rm
0 (ν1, . . . , νn). (2)

Since Sm is a convex and weak*-compact subset of L∞(Ω,F , µ; Rm), the con-
vexity and compactness of Rm(ν1, . . . , νn) are derived readily from Theorem 2.

To prove the remaining inclusion (2), the technique derived by Lindenstrauss
[11] for proving Lyapunov’s convexity theorem, and its variant derived by Akin
[1], are helpful.

Choose (xij) ∈ intRm(ν1, . . . , νn) arbitrarily. Then there is a (g1, . . . , gm) ∈
Sm and δij > 0 such that xij + δij = ν̂i(gj) for each i, j. Define the set Wij by

Wij = {(f1, . . . , fm) ∈ Sm | xij ≤ ν̂i(fj)}.

Since Wij is nonempty, convex and weak*-compact in L∞(Ω,F , µ; Rm) for each
i, j, so is the setW =

⋂n
i=1

⋂m
j=1Wij . Thus,W has an extreme point (f1, . . . , fm)

according to the Krein–Milman theorem (see Dunford and Schwartz [6], Lemma
V.8.2). It suffices to show that each fj is a characteristic function because if this
is shown, then (xij) ∈ Rm

0 (ν1, . . . , νn), and hence inclusion (2) is true.
Suppose to the contrary that some fj is not a characteristic function. By virtue

that (f1, . . . , fm) ∈ Sm, we may assume without loss of generality that there exist
some ε > 0 and A ∈ F with µ(A) > 0 such that ε < f1, f2 < 1 − ε on A. Since
µ1, . . . , µn are nonatomic finite measures, from Lyapunov’s convexity theorem,
there exists some B ⊂ A such that 1

2 (µ1(A), . . . , µn(A)) = (µ1(B), . . . , µn(B)).
Define the measurable function h = s(χA − 2χB) with 0 < s ≤ ε. Then h �= 0,
0 ≤ f1 ±h, f2±h ≤ 1 and 〈h, µi〉 =

∫
hdµi = 0 for each i. In view of µi ∈ C (νi),

we have ν̂i(±h) = minλ∈C (νi)〈±h, λ〉 ≤ 〈±h, µi〉 = 0. Define fα
j = αgj +(1−α)fj

for α ∈ (0, 1). Then ν̂i(fα
j ) → ν̂i(fj) as α → 0 because fα

j → fj in σ(L∞, L1)
as α → 0. Hence, there exists a subnet {fα

j } (which we do not relabel) such
that ν̂i(fα

j ) − αδij

2 < ν̂i(fj) for every α ∈ (0, 1) and i, j. Since ν̂i is positively
homogeneous, we have ν̂i(±h) = sν̂i(χA − 2χB). Therefore, for arbitrarily fixed
α ∈ (0, 1), by choosing s sufficiently small, −αδij

2 < ν̂i(±h) ≤ 0 for each i, j.
Since ν̂i is concave and superadditive, we have

ν̂i(fj ± h) ≥ ν̂i(fj) + ν̂i(±h) > ν̂i(fα
j ) − αδij

2
− αδij

2
≥ αν̂i(gj) + (1 − α)ν̂i(fj) − αδij ≥ xij
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for each i, j. This implies that (f1 ± h, f2 ∓ h, f3, . . . , fm) is in W , and hence

(f1, . . . , fm) =
1
2
[(f1 + h, f2 − h, f3, . . . , fm) + (f1 − h, f2 + h, f3, . . . , fm)] ∈W,

which contradicts that (f1, . . . , fm) is an extreme point in W . ��

5 Application to Fair Division Problems

The fair division problem is the partitioning of a measurable space (Ω,F ) among
n players so as to fulfill equity and efficiency in which each player i evaluates
measurable sets in terms of a set function νi.

We denote by α = (α1, . . . , αn) a generic element in the unit simplex ∆n−1

of Rn.

Definition 1. Let ν1, . . . , νn be normalized set functions. A measurable partition
(A1, . . . , An) of Ω is:

(i) α-fair if νi(Ai) ≥ αi for each i = 1, . . . , n;
(ii) Pareto optimal if there exists no partition (B1, . . . , Bn) of Ω such that

νi(Ai) ≤ νi(Bi) for each i = 1, . . . , n and νj(Aj) < νj(Bj) for some j.

The following result is a generalization of that of Dubins and Spanier [4] for
the case where ν1, . . . , νn are nonatomic probability measures to the case for
nonatomic, normalized, supermodular capacities.

Theorem 3. Let ν1, . . . , νn be normalized capacities that are mutually abso-
lutely continuous, nonatomic and supermodular. If some νi is null-additive and
Rn

0 (ν1, . . . , νn) is closed in Rn2
, then for every α ∈ ∆n−1, there exists a Pareto

optimal α-fair partition.

Proof. If Pk = (E1, . . . , En) is a partition of Ω in which Ek = Ω and Ej = ∅
for j �= k, then a partition matrix M(Pk) = (νi(Ej)) has values of 1 in the
kth column and values of zero elsewhere. Since M(P1), . . . ,M(Pn) belong to
Rn

0 (ν1, . . . , νn), Theorem 1 implies that
∑n

i=1 αiM(Pi) is in Rn
0 (ν1, . . . , νn) for

every α ∈ ∆n−1. Therefore, there exists a partition P = (A1, . . . , An) of Ω such
that M(P ) ≥

∑n
i=1 αiM(Pi); that is, νi(Aj) ≥ αj for each i, j. As a result,

solutions to the maximization problem

maxx11

s.t. xii ≥ αi, i = 1, . . . , n
(xij) ∈ Rn

0 (ν1, . . . , νn)
(Pα)

exist for every α ∈ ∆n−1 owing to the compactness of Rn
0 (ν1, . . . , νn). Here, we

assume without loss of generality that ν1 is null-additive.
Take any solution (xij) to the problem (Pα). Then there exists a partition

(A1, . . . , An) of Ω such that νi(Ai) ≥ αi for each i. It suffices to show that
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(A1, . . . , An) is Pareto optimal. Suppose to the contrary that there exists a par-
tition (B1, . . . , Bn) of Ω such that νi(Ai) ≤ νi(Bi) for each i and νj(Aj) < νj(Bj)
for some j. If j = 1, then x11 ≤ ν1(A1) < ν1(B1), which obviously contradicts
(xij) being a solution to (Pα). Thus, we investigate the case for j �= 1.

¿From the hypothesis of the theorem, there exists a control measure µi for
C (νi) that is a nonatomic probability measure equivalent to νi (see Marinacci
and Montrucchio [12]). Thus, from the continuity of νj and the nonatomicity of
µj , there exists a measurable subset B′

j of Bj such that νj(Aj) < νj(B′
j) and

νj(Bj \ B′
j) > 0. Hence, Bj \ B′

j is ν1-nonnull in view of the mutual absolute
continuity of ν1 with respect to νj and the null-additivity of ν1. We thus have
ν1(Bj \ B′

j) > 0. Define a partition (C1, . . . , Cn) of Ω by C1 = B1 ∪ (Bj \ B′
j),

Cj = B′
j and Ci = Bi for i �= 1, j. We then have νi(Ci) ≥ αi for each i and

the superadditivity of ν1 yields ν1(C1) ≥ ν1(B1) + ν1(Bj \B′
j) > ν1(B1) ≥ x11,

which contradicts (xij) being a solution to (Pα).

6 Concluding Remarks

We have established the convexity and compactness of the closure of the lower
partition range Rm

0 (ν1, . . . , νn) for nonatomic supermodular capacities ν1, . . . , νn.
There is another significant class of nonadditive set functions on σ-algebras that
guarantees the convexity of the lower partition range, that is, the class of concave
measures proposed by Sagara and Vlach [15, 16]. A simple application of Lya-
punov’s convexity theorem plays a crucial role to prove the convexity of the lower
partition range for concavemeasures. This is another variant of the Lyapunov-type
theorem for nonadditive vector measures. Under alternative hypotheses, Sagara
[14] demonstrates the existence of Pareto optimalα-fair partitions when ν1, . . . , νn

are concave measures and the lower partition range is closed.
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Abstract. Results of game theory are often the keys to decisions of
economical and political executives. They are also used to create inter-
nal tools of many decision making software. For example, coordination
games may be cooperative games, when the players choose the strate-
gies by a consensus decision making process, and game trees are used to
represent some key cooperative games. Our theory of cooperative games
with transferable utilities makes it possible to deliver a formal certificate
that contains statements and proofs with each result of any procedure in
theory of cooperative TU-games. Such formal certificates can be archived
and audited by independent experts to guarantee that the process that
lead to the decision is sound and pertaining. As we use an automated
proof checker, the review only has to guarantee that the statements of
the certificate are correct. The proofs contained in the certificate are
guaranteed automatically by the proof checker and our formal theory.

Keywords: formalization, cooperative games, automated proof checker.

1 Introduction and Motivations

Game theory was first introduced in a famous book by von Neumann and
Morgenstern(1944) and it has fostered a wide variety of theoretical as well as
applied research in many domains of social sciences. A game consists in a set of
interactive and fully educated decisions in which the utilities (cost or benefit)
of each participant (later referred as player) depends on decisions taken by the
other participants.

Two game theories are developed separately. On one hand, players solely focus
on their interest in non-cooperative games. On the other hand, players may
form binding commitments and build coalitions in cooperative games. In theory,
players participate to the welfare of their coalition (maximize profit or minimize
cost). In practice, the existence of cooperative games depend on referees that
are able to enforce all the commitments between players once signed.

A game where the utilities can be perfectly transferred between players and
their values are identical for all players, is called a game with transferable utilities
or a TU-game. For example, a game where players exchange goods is not a TU-
game since the value of each good for each player may be a part of the decisions.
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In a TU-game, a coalition may receive all the utilities of its members in one
transfer and later redistribute or collect its utilities among its members.

A legitimate distribution or collect is the key to a fair coalition. For this
reason, results of game theory (Fougères, Truffert, and Ventou, 1999, 2000a,b)
are often used in practice to propose such distributions or collects and support
them on theoretical unbiased grounds.

To mechanize our proofs, we have been using PVS proof assistant
(Owre, Rushby, and Shankar, 1992). Systems like PVS allow the user to define
new objects and to derive consequences of these definitions formally. The lan-
guage of PVS is based on a higher-order logic. With such an expressive logic,
it is possible to state properties in their most general form. For example, uni-
versal quantification has been used to state properties that are true for an ar-
bitrary game and/or an arbitrary set of players. Proofs are built interactively
using high-level strategies. Theorem provers have already been successfully used
in many domains of sciences including floating-point arithmetic and probabil-
ity (Daumas et al., 2009a,b,c).

2 Cooperative Games with Transferable Utilities

TU-games are modeled by a set of playersN and a function v that gives the utility of
each subsetS (earlier referred as a coalition) ofN such that v(∅) = 0. As the utility
can be perfectly transferred between players v(S) has values in R or Z depending
whether the utility can be indefinitely cut into parts. Restricting the values of v(S)
to Q would make some result of game theory unreachable though it would have led
to some easier developments in formal methods (first order logic).

In a profit game, v is the payoff for each coalition that may be formed and the
players want to maximize it by committing themselves to the best coalition, the
one that will redistribute the highest payoff to them. Inversely, in a cost game, v
is a tax or a fee that must be collected by each formed coalition and the players
want to minimize it.

2.1 Applications

One common example of profit games is the assignment game (Shapley and Shubik,
1971; Kern and Paulusna, 2003). The set of players N is build from two distinct
sets: the set of traders or producers and the set of consumers. In this case, coali-
tions are sets of producers and consumers such that no transaction involve players
from two different coalitions.

Another example is raised by the creation and/or the extension of a water
supply network. We should detail it a little more. The price of water paid by
customers is defined independently for each city. Yet a reliable and cost-efficient
supply network usually involve more than one city. As cities are not evenly
spread on a flat land, costs and benefits of connecting each individual city to an
existing or a projected network vary. The practical purpose of game theory in
this case is to propose the graph of a water supply network and a distribution
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Fig. 1. A water supply network showing segments (pipelines) and nodes (cities)

of its cost that can be accepted by all the participating cities. Assuming that
all the cities have to be connected to some water supply network, the game
can be represented by a weighted graph. The cost of each coalition v(S) is the
cost of its minimum spanning tree (Bird, 1976; Granot and Huberman, 1981;
Aarts and Driessen, 1993).

In Figure 1 we present a water supply network assuming that the spanning
tree has already been fixed. The node numbers appear between parentheses. A
cost is attached to each segment but for example the segment between the well
and node 1 is also used by nodes 4, 9, 10, 11, 15 and 16. These nodes should
pay some amount of the cost of this specific segment. The numbers appearing
in each node is the fair fee that each city should pay to enter the network. For
example, node 13 will have to pay 125/6 units to get connected to the well. That
is 6 times less than what it would have to pay should it connect directly to the
well 20 + 25 + 80 = 125 instead of sharing a network.

Many similar examples appear in the different tasks handled by cities and re-
gional administrations. For example Northern (French) Catalunya was drowned
by heavy rains in 1999. The drowning was partly due to a poorly maintained
drainage network. After the disaster, the cost of maintenance was significantly
raised. A similar change also occurred among the cities of the Ouvèze valley
in (French) Provence after the drowning in Vaison-la-Romaine. Though the re-
gional administration pays for most of the maintenance, some part of the cost
is billed to the cities.

In all these examples, all the parties involved easily agree that some work has
to be done and paid. Yet, the main issue is to make sure that taxpayers and
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citizens agree that the distribution of the cost among the different cities is fair
and beyond any reasonable doubt.

A payoff of a game v defined on P(N) (the powerset ofN , equivalently denoted
by 2N ), is modeled as a function x : N → R. It is first defined on elements
on N and later extended to subsets of N with x(S) =

∑
i∈S x(i). In a profit

game coalitions cannot distribute more than the total amount generated and
x(N) ≤ v(N) for feasible payoffs. This condition is necessary but not sufficient
and we define preimputations and imputations that may be accepted by all the
players.

Game theory uses a set of properties (usually referred as axioms) to character-
ize acceptable payoffs. A solution concept σ is a function (not necessarily known
or implementable) that suggests a (possibly empty) set of feasible payoffs for
each game v. Solution concepts were introduced because most properties cannot
be expressed on a given payoff but need to refer to a larger set. Some of the most
studied solution concepts are

– the Shapley value (Shapley, 1953; Driessen, 1985),
– the core (Gillies, 1953; Bondareva, 1963; Shapley, 1967; Maschler et al.,

1979),
– the kernel (Davis and Maschler, 1965; Maschler et al., 1971),
– and the prenucleolus (Schmeidler, 1969; Sobolev, 1975; Potters, 1991; Snijders,

1995).

2.2 Mathematical Properties

We recall now more formally and sometimes complete some definitions that have
been introduced earlier in this text.

Definition 1. A cooperative game with transferable utilities or a TU-
game is a pair (N, v) such that N is a nonempty finite set (the set of players)
and v : 2N → R is a mapping (the coalition function) satisfying v(∅) = 0.

Definition 2. The set of feasible payoffs for a TU-game (N, v) is X(N, v) ={
x ∈ RN | x(N) ≤ v(N)

}
where x(S) is a shorthand for

∑

i∈S
xi.

Definition 3. The preimputations I∗(N, v) of a TU-game (N, v) is the subset
of the feasible payoffs x ∈ X(N, v) such that x(N) = v(N).

Definition 4. The imputations I(N, v) of a TU-game (N, v) is the subset of
the preimputations x ∈ I∗(N, v) satisfying xi ≥ v({i}) for all i ∈ N .

Definition 5. A solution concept σ is a mapping that associates to every
game (N, v) a subset σ(N, v) ⊆ X(N, v).

The elements of a solution concept of a game are interpreted as proposals on
how to distribute the payoffs to each members of the coalitions. For example,
the core of a TU-game (N, v) introduced earlier is the set

C(N, v) = {x ∈ I∗(N, v) | x(S) ≥ v(S), ∀S ⊆ N}



A Formal Theory of Cooperative TU-Games 85

The notion of solution concept is voluntarily vast. We detail in Table 1
properties on solution concepts σ to characterize the fair and acceptable ones.
Sudhölter and Peleg (1998), as well as some other authors, have presented slight
variations on these definitions and axioms.

Table 1. Properties (axioms) usually needed from solutions concepts

Short name Definition
PO σ is pareto optimal if for all (N, v), σ(N, v) ⊆ I∗(N, v).
AN σ is anonymous if for all (N, v), and all bijective mapping τ of N onto

N ′ then

σ(N ′, τv) = τ (σ(N,v))

where τv(S′) = v(τ−1(S′)) and τ (x)i = xτ−1i (x ∈ RN , i ∈ N ′ and
S′ ⊆ N ′).

ETP σ satisfies equal treatment property if for all (N, v), all x in σ(N, v)
and all player i and j interchangeable, xi = xj .
i and j are interchangeable if : v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆
N\ {i, j} .

DES σ respect desirability if for all (N, v), all x in σ(N,v) and all player i
more desirable than j, xi ≥ xj .
i is more desirable than j if : v(S∪{i}) ≥ v(S∪{j}) for all S ⊆ N\ {i, j}.

NPP σ satisfies the nullplayer property if for all (N, v), all x in σ(N, v)
and all nullplayer i, xi = v({i}).
i is a nullplayer if : v(S ∪ {i}) = v(S) + v(i) for all S ⊆ N\ {i} .

COV σ is covariant under strategic equivalence if for all (N, v) and
(N,w) with w = αv + β, α > 0 and β ∈ RN :

σ(N,w) = ασ(N, v) + β.

SIVA σ is single valued if |σ(N, v)| = 1 for all (N, v).
NE σ satisfies nonemptiness if σ(N, v) �= ∅ for all (N, v).

REAS σ satisfies reasonableness (on both side) if for all (N, v), all x in
σ(N,v) and all i in N :

• xi ≥ min
S⊆N\{i}

(v(S ∪ {i})− v(S)),
• xi ≤ max

S⊆N\{i}
(v(S ∪ {i})− v(S)).

3 Building a Formal Theory of Cooperative TU-Games

3.1 A Brief Overview of PVS (Prototype Verification System)

We give a quick overview of PVS. For a more complete introduction, we refer
the reader to Owre et al. (1992).



86 M. Daumas et al.

PVS is a generic prover. In this system, users can define new objects and prove
properties that derive logically from these definitions. Objects in PVS are typed
and functions are first-class objects. The system is distributed with standard
libraries. Types like int and real that correspond to the integer and the real
numbers are built in PVS. We define the type tu_game below to give an example
from our theory. It represents the pair (2-tuple) composed of the player set N
and the coalition function v:

tu_game: TYPE = [N: players_set, v: coalition_fun[U,N]]

PVS allows that the type of the second member of the pair depends on the
first member of the pair. U and N are parameters of the theory in which the
coalition_fun type is defined. Furthermore, for an n-ary function PVS makes
no difference between providing n variables independently or providing an n-
tuple (Owre et al., 2001, p. 41 and 50). Elements of a tuple are numbered starting
with 1.

core(g): set_vect(g‘1) = core[U,g‘1,g‘2]

defines the core of a game as a subset of RN specified in the imputation theory,
parametrized by U (population), N (players set) and v (coalition function).
Arguments between square brackets [U,g‘1,g‘2] provide the parameters of the
theory, arguments between parentheses (g‘1) are arguments of functions or
predicates.

Objects are first named, then they are typed after a colon. Then they are
defined but syntax varies depending on the kind of object.
Functions, including predicates (when the codomain is bool), are stated just
after the = sign,

PO(s): bool = FORALL (g: tu_game): subset?(s(g), setPI(g))

whereas the statement of lemmas, theorems, and so on, start just after the LEMMA
or THEOREM keyword, e.g.:

DES_impl_ETP: LEMMA FORALL (s:solution_concept): DES(s)=>ETP(s)

In practice, formula statements are allowed to contain free variables, in which
case PVS uses “the universal closure” of these statements, as explained in
(Owre et al., 2001, p. 26). Thus, the previous formula can be shortened to

DES_implies_ETP: LEMMA DES(s) => ETP(s)

provided there is an appropriate variable declaration before, such as:

s: VAR solution_concept

3.2 Our Formal Theory and Properties of Cooperative TU-Games

Defining the types of the various objects involved in a mathematical theory is
usually benign. Often, two of more definitions can be applied to some objects
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relating to different points of view. People start with one of such definitions and
prove that the others ones are equivalent.

We have to work differently with formal methods. Each object is strongly
typed. This means that we have to apply the equivalence theorem in order to
use a property or a theorem on a type equivalent to the one used in its statement.
This has to be done independently for each variable appearing in the statement.

Another major difficulty in working with equivalent types is that most known
equivalences become false on some rares cases considered as degenerate. For
example, the definition that a parallelogram is a quadrilateral with two sets of
parallel sides1 is no longer sound if the four points defining the quadrilateral are
on the same line. Working with formal methods, we have to formally exclude
the degenerate cases before each use of an equivalence.

The first object defined in our theory is the set of players. One may use
a finite non-empty type to populate the set of players but this is not permit-
ted by PVS typechecker. We used the definition of Listing 1, where the set of
players is a non-empty finite subset of a possibly infinite “universe” of players
(Sudhölter and Potters, 2001).

Listing 1. First type used in our formal theory

1 players_set [U: TYPE +]: THEORY

2 BEGIN

3 elt: U

4 players_set : TYPE+ = non_empty_finite_set [U]

5 CONTAINING singleton (elt)

6 END players_set

It is possible to enforce the fact that the population of possible players is
finite with an ASSUMING statement in PVS. Yet any task that cannot be handled
automatically by the typechecker is left to be done by the user in the form of
a Type Correctness Condition (TCC). Focusing on a finite universe of players
would generate many additional TCCs.

As soon as we have defined the set of players, we define in two theories omitted
here the coalition function v, then the payoffs, the imputations, and the core.
Some of our decisions in the development of these theories are similar to the
ones of software engineering. For example, we have to coherently decide the
theory where each notion and formula belongs. We also have to decide on global
parameters (parameters theories) vs. local ones (parameters of predicates and
functions). Finally, some notions such as subset and subtype introduce slight
differences in formal proofs.

We define in Listing 2 what is a solution concept and which properties such an
object might satisfy. The identifiers chosen for these properties correspond to the
1 Citation from Wikipedia at http://en.wikipedia.org/wiki/Parallelogram

http://en.wikipedia.org/wiki/Parallelogram
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Listing 2. Extracts from our formal theory of cooperative TU-games

1 tu_game [U: TYPE +]: THEORY

2 BEGIN

3 IMPORTING players_set [U], coalition_fun , imputations

4

5 tu_game : TYPE = [N: players_set , v: coalition_fun [U,N]]

6

7 g: VAR tu_game

8 N,NN: VAR players_set

9 set_vect (N): TYPE = set_vect [U,N]

10 setFP(g): set_vect (g ‘1) = setFP [U,g‘1,g ‘2]

11 setPI(g): set_vect (g ‘1) = setPI [U,g‘1,g ‘2]

12 setI(g): set_vect (g ‘1) = setI[U,g‘1,g ‘2]

13 core(g): set_vect (g ‘1) = core[U,g‘1,g ‘2]

14

15 ss: VAR [g: tu_game -> set_vect (g ‘1)]

16 solution_concept ?(ss): bool =

17 FORALL (g: tu_game ): subset ?(ss(g), setFP (g))

18 solution_concept : TYPE+ =

19 ( solution_concept ?) CONTAINING core

20

21 s: VAR solution_concept

22 PO(s): bool = FORALL g: subset ?(s(g),setPI (g))

23 AN(s): bool = FORALL g,NN:

24 FORALL (tau: tau_type (g‘1,NN)):

25 s(NN ,tau_v(g,NN ,tau)) = image ( tau_X (g,NN ,tau),s(g))

26 ETP(s): bool = FORALL g: FORALL (x:(s(g))):

27 FORALL (i,j:(g ‘1)): interchangeable ?(g)(i,j) =>

28 x(i) = x(j)

29 DES(s): bool = FORALL g: FORALL (x:(s(g))):

30 FORALL (i,j:(g ‘1)): more_desirable ?(g)(i,j) =>

31 x(i) >= x(j)

32 NPP(s): bool = FORALL g: FORALL (x:(s(g))):

33 FORALL (i:(g ‘1)): nullplayer ?(g)(i) =>

34 x(i) = g ‘2( singleton (i))

35 COV(s): bool = FORALL (N: players_set ):

36 FORALL (a: posreal , b: [(N) -> real ]):

37 FORALL (v: coalition_fun [U,N]):

38 s(N, affinestar (N,a,b)(v)) =

39 image( affine (N,a,b), s(N,v))

40 SIVA(s): bool = FORALL g: is_finite (s(g)) AND

41 card(s(g)) = 1

42 NE(s): bool = FORALL g: nonempty ?(s(g))

43 REAS(s): bool =

44 FORALL (N: players_set , v: coalition_fun [U,N]):

45 FORALL (x:(s(N,v))): FORALL (i:(N)):

46 ( EXISTS (S1:setof [(N)]): (NOT member (i,S1))

47 AND x(i) >= v(add(i,S1))-v(S1))

48 AND ( EXISTS (S2:setof [(N)]): (NOT member (i,S2))

49 AND x(i) <= v(add(i,S2))-v(S2))

50 END tu_game
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names presented in Table 1, in the same order. Some intermediate definitions
are omitted in this text but they are visible in the corresponding PVS file.
bstar (i.e. β∗) is one such definition introduced by Sudhölter and Peleg (2002).
The whole specification is supported by about thirty theorems, including the
following ones.

DES_implies_ETP: LEMMA DES(s) => ETP(s)
SIVA_implies_NE: LEMMA SIVA(s) => NE(s)
PO_core: LEMMA PO(core)
COV_core: THEOREM COV(core)

4 Perspectives and Concluding Remarks

We have presented a formal theory of cooperative games with transferable utili-
ties implemented in PVS automated proof checker. Our theory will be submitted
as one of the NASA Langley PVS libraries2 as soon as it is stable. Our work
can be used to support the wide acceptation of some suggestions computed
on instances of games for a fair distribution of the cost of the development of
some infrastructures. It can be applied to the development or the extension of
some water supply networks and the maintenance of some flood-resilient water
drainage and dike systems, for example.

Providing a formal proof of correctness of the method used to obtain the
distribution of the costs is useful even when there is no legitimate reason to
suspect a flow in the method or its software implementation. The development
of infrastructures for example is a very expensive task with some political and
legal aspects. For a mild cost, a formal proof of correctness helps convince citizens
and taxpayers that the distribution is fair.

Moreover, a formal proof of correctness is a more efficient deterrent of lawsuits
than a normal process involving peer-review, audit and interviews. Some aspects
of game theory are still not well settled and any method that contains some
subtleties, can only be reviewed by an expert in the field. If a pencil-and-paper
proof of correctness is written for example in French, Catalan or Japanese to
accommodate legal and political requirements, chances are that the number of
experts able to review it will be very small and it would be impossible to prevent
any suspicions of conflicting interests.

By using a formal proof checker, we guarantee that all the proofs are correct
provided that the statements are appropriate. Formal methods lead to much
shorter reports containing a lot of abstract statements that do not need to be
translated in another language. It would be much easier for a foreign expert to
work only on these statements.

Our team has some experience with two different formal proof checkers,
PVS and Coq (Huet et al., 2004). Some emerging developments in Coq
(Gonthier and Mahboubi, 2008) seems to make the latter system very efficient
for game theory. We expect to port our library to this system with the help of
2 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
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their authors. We will then be able to draw some comparisons between these
systems. We also expect that some other aspects of modeling decision in artifi-
cial intelligence can benefit from formal methods to strengthen their perception
to non-specialist including political and economical executives.
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Abstract. Privacy preservation in the information society is in many
respects parallel to environment preservation in the physical world. In
this way, “green ICT services” are those achieving functionality and secu-
rity with minimum invasion of the privacy of individuals, where such an
invasion can be regarded as a kind of pollution as harmful in the long run
to their moral welfare as physical pollution is to their physical welfare.
Depending on the type of service, individuals can be users, data owners
or respondents having supplied data. We show that the conflict between
functionality, security and privacy can be viewed as a game between sev-
eral players whose interests differ. If the game is properly formulated,
its equilibria can lead to protocols conciliating the functionality, security
and privacy interests of all players.

Keywords: Privacy, Security, Functionality, Game theory, Mechanism
design.

1 Introduction

The starting point of this paper is that privacy preservation in the information
society is analogous to environment preservation in the physical world. With this
idea in mind, “green” or “clean” information and communications technologies
(ICT) are those offering functionality and security with minimum invasion of
the privacy of individuals. Such an invasion can be regarded as a virtual pollu-
tion as harmful in the long run to the moral welfare of individuals as physical
pollution is to their physical welfare. The moral value of privacy was of course
previous to the information society: privacy is a fundamental right of the individ-
ual, acclaimed by the United Nations in article 12 of the Universal Declaration
of Human Rights (1948). In fact, the lack of privacy undermines most of the
remaining fundamental rights (freedom of speech, democracy, etc.).
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1.1 The Pollutants of Privacy

One source of privacy pollution has to do with privacy-unfriendly security. Se-
curity in general and information security in particular are fields of increasing
relevance. The advent of R+D funding priorities related to security is an indi-
cation and a confirmation of the previous statement: the European Union’s 7th
Framework Programme (FP7) includes, among its ten thematic priorities, one
named “Security”. Additionally, security and privacy are nearly ubiquitous in
a second FP7 thematic priority among those ten, the one named “Information
and Communication Technologies (ICT)”. Especially focused to security is the
first of the seven challenges addressed by this priority, named “Pervasive and
Trusted Network and Service Infrastructures”.

This interest of governments and corporations in security is partly justified by
the social alarm in front of the global threat of international terrorism. With the
argument of such a threat, the European Union and several overseas states have
adopted shock measures on information security. Beyond the obvious techno-
logical challenge of securing and analyzing communications on a mass scale,
a new, subtler and unaddressed challenge arises: security must be increased
while minimizing the loss of privacy for the citizens. This second challenge be-
comes especially pressing after the measures adopted in Europe about keeping
track of phone calls and e-mail messages. The tendency of governments is to
sacrifice privacy for security (e.g. the former UK security and intelligence co-
ordinator recently asserted that anti-terror fight will need privacy sacrifice [15]).
Similar conflicts between privacy and security appear in connection with the
identity theft in bank transactions by the organized crime [24]. The attrac-
tion of focusing on security technologies while putting aside privacy and other
rights of the individuals is very strong as it can be inferred even from the FP7
stance about privacy, which is mentioned as an ethical-legal issue rather than
as technological objective per se. In general, increasing security without signifi-
cantly decreasing privacy is one of the main challenges faced by the information
society.

A second source of privacy pollution is privacy-unaware (let alone privacy-
unfriendly) functionality. Many ICT services, like search engines (e.g. Google,
Yahoo, etc.), social networks and most Web 2.0 services, the constellation of
Google additional services (Calendar, Streetview, Latitude), etc., concentrate
on offering enticing functionality for users while completely disregarding their
privacy. They are like powerful cars which pollute a lot. Whenever one of such
services boasts a privacy pledge, it refers to privacy in front of third parties
(e.g. the service provider commits to abstaining from unauthorized transfer of
user data to third parties) but not to privacy of the user in front of the service
provider itself (e.g. Google learns and records all queries submitted to its search
engine, all events entered in the Calendar, all e-mails sent/received with Gmail,
etc.). Hence, each service provider (Google, Yahoo, Facebook, etc.) becomes a
big brother in the purest Orwellian sense.
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1.2 Contribution and Plan of This Paper

We show that the conflict between functionality, security and privacy can be
expressed as a game between some players, whose number, nature and utility
functions depend on the specific application scenario. If the game is designed
to deter rational deviations by the players, its equilibria can lead to protocols
conciliating the functionality, security and privacy interests of the players.

Section 2 states the general game-theoretic approach. Section 3 illustrates
the approach in several application scenarios, namely, statistical disclosure con-
trol, car-to-car communication, private information retrieval and social networks.
Conclusions and lines for future research are summarized in Section 4.

2 A Game-Theoretic Framework

The trade-off between privacy, security and functionality can be viewed as a
game [23,19,21] between an individual and a system (which may be an organi-
zation, a computer system or an ICT service):

– The individual wishes to obtain functionality with minimum privacy loss.
Think of an e-commerce transaction by way of illustration: regarding func-
tionality, the buyer expects the electronic shop to have a good catalog and
be convenient to use; regarding privacy, the buyer wants to pay without her
credit card number being stolen, and she wants the system to keep her pur-
chase record confidential or, even better, not to keep any record about her at
all, unless she is offered some rewards, like improved customer relationship
or discounts.

– The system’s primary goals are functionality and security of its own strategic
information (accounting, inventory levels, digital content if the system trades
with information as a commodity, etc.); this kind of security could also be
termed system privacy as opposed to privacy of individuals, but we stick to
the term security to avoid confusion. Individual privacy (related to customers
or subjects the system holds information about) is, at best, a secondary goal.
In the e-commerce example, the system is the e-shop, which wants to offer
functionality to customers, while keeping its backoffice information secure
and confidential (stocks, sales, etc.); regarding customers, the usual aim of
the e-shop is to profile them as much as possible in view of improving the
customer relationship management.

Hence, functionality is a goal shared by the individual and the system, but
privacy and security are not. We have so far described the functionality-security-
privacy game as one between two players: the individual user and the system.
However, when the system holds data about third parties, e.g. if the system is a
database holding records about individual respondents, then those respondents
are a third player (or a community of “third players”), whose main goal is to
preserve their privacy; the information released by the system to individual users
should not be linkable to specific individual respondents. Key questions whose
answer could be obtained with such a game-theoretic framework include the
following:
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1. How much privacy is the individual user willing to surrender in exchange for
increased functionality? How much functionality can be offered for a certain
level of user privacy?

2. Can the system offer the required functionality and user privacy while guar-
anteeing its own security (and the privacy of respondents, if there are
respondents)?

In [8], this author presented a three-dimensional framework for privacy in
databases. The three dimensions correspond to the three types of privacy sought:
user privacy, system privacy (called above system security) and respondent pri-
vacy. That paper showed the independent nature of those types of privacy and
the need to trade them off; it also assessed how well various technologies for
database privacy managed to provide the three types of privacy; the comparison
included privacy information retrieval (PIR, [5]), noise-based privacy-preserving
data mining (noise-based PPDM, [1]), cryptographic privacy-preserving data
mining (crypto PPDM, [17]) and statistical disclosure control (SDC, [14]). The
main limitations of [8] were the following: i) only database privacy was discussed,
but not privacy in other ICT applications; ii) functionality was not considered;
and iii) the assessment of technologies was qualitative and lacked quantitative
criteria.

Progressing to a general game-theoretic framework requires going through the
steps below:
1. If there are n players, {1, 2, · · · , n} in the functionality-security-privacy game,

identify the set of possible strategies Si of each player i. If player i selects a
strategy si ∈ Si, denote by s = (s1, · · · , sn) the vector of strategies selected
by the players.

2. For each player i, find functionality metrics fi(s), security metrics seci(s)
and privacy metrics pi(s). Such metrics will be application-dependent, as
argued below.

3. For each player i, find utility functions ui(s) mixing the above functionality,
security and privacy metrics. The utility for the individual user is likely to
be a mixture of functionality and privacy; for the system, it is likely to be
a mixture of functionality and security; for the respondent, it is likely to be
basically privacy. Finding the optimal mixture function is in itself a decision-
theoretic problem faced by each player. If we denote by si the strategy played
by player i and by s−i the (n−1)-dimensional vector of the strategies played
by the other players, we can write s = (si, s−i). Whatever the utility mixture,
if s′i is an alternate strategy to si, it should hold that:

ui(si, s−i) = ui(s
′
i, s−i) if fi(si) = fi(s′

i) and seci(si) = seci(s′
i) and p(si) = p(s′

i)

ui(si, s−i) > ui(s
′
i, s−i) if

⎧⎨⎩ fi(si) > fi(s′
i) and seci(si) ≥ seci(s′

i) and p(si) ≥ p(s′
i)

fi(si) ≥ fi(s′
i) and seci(si) > seci(s′

i) and p(si) ≥ p(s′
i)

fi(si) ≥ fi(s′
i) and seci(si) ≥ seci(s′

i) and p(si) > p(s′
i)

4. Use mechanism design [19] to find game rules which, combined with the
players’ utility functions, ensure that:
(a) Players will not deviate from the prescribed rules;
(b) The game results in equilibria acceptable to all players.
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3 Specific Application Scenarios

For the sake of concreteness, we discuss the above game-theoretic framework in
several specific application scenarios, namely: statistical disclosure control, user-
private information retrieval, car-to-car communication and social networks.

3.1 Statistical Disclosure Control

Statistical disclosure control (shortened as SDC and known as Privacy-Preserving
Data Mining in the database community, see e.g. [10]) seeks to protect statistical
data in such a way that they can be publicly released and mined by users without
giving away private information which can be linked to specific individuals or
entities (the respondents who supplied the data). This is a case of functionality-
security-privacy game, which was partially stated for the specific case of tabular
data in [18].

One challenge is to model SDC as a functionality-security-privacy game for
any kind of data, which requires quantifying risks and pay-offs in order to
construct suitable utility functions. Players are the database owner, users and
respondents:

– The owner (typically a national statistical office) wants security, that is, to
make sure that no data misuse will occur; hence, the owner’s utility function
uo is proportional to the probability of users not misbehaving.

– The respondent wants privacy, that is, guarantees that no user or intruder
will be able to link her responses with her identity; hence, the respondent’s
utility function ur is proportional to the disclosure risk in the published data
set.

– The user wants functionality, that is, maximum analytic flexibility and ac-
curacy; hence, the user’s utility function uu is inversely proportional to the
information loss caused by the anonymization process (from the user’s point
of view, the best anonymization is just releasing the original data unaltered).

Thus, SDC turns out to be a case in which the utilities of the players are
“pure”, that is, each player type is interested in one and only one property.
However, at a closer look, the owner’s and the respondent’s utility do have some
correlation, because they are both maximized when the user is “under control”:
if disclosure risk is low, the user has less chances to misbehave.

The strategies of the SDC game can be summarized as: i) for the data owner,
the anonymization procedure and the computer security defenses chosen; ii) for
the respondent, whether to respond accurately, to respond inaccurately or not
to respond at all; iii) for the user, whether to make use of the anonymized data
(and maybe pay for them) or to reject the anonymized data.

The utility functions should be such that it is in each player’s own interest to
behave rationally in order to maximize their utility. In this case, the equilibria
of the game would yield parameterizations of the anonymization procedures
which optimize the trade-off between functionality, security and privacy, that is,
between information loss, security and disclosure risk.
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3.2 User-Private Information Retrieval

Private information retrieval (PIR) is normally modeled as a game between two
players: a user and a database. The user retrieves some item from the database
without the latter learning which item was retrieved. Most current PIR protocols
are ill-suited to provide PIR from a search engine or large database: i) their
computational complexity is linear in the size of the database; ii) they assume
active cooperation by the database in the PIR protocol. If the database cannot
be assumed to cooperate, two pragmatic approaches can be adopted by the user
to keep her query interests private:

1. Standalone. A program in the user’s computer keeps submitting fake queries
to the search engine at random times, so that when the user submits a real
query, the search engine cannot distinguish it from the fake queries; this is
the TrackMeNot approach [13]. An alternative standalone approach which is
less resource-consuming is for the user to mask her real query keywords by
adding some fake keywords with similar frequency; in this way, the number
of queries submitted equals the number of real user queries; this is the way
our GooPIR prototype operates [11].

2. Peer-to-peer (P2P). A user gets her queries submitted on her behalf by other
users in the P2P community. In this way, the database still learns which item
is being retrieved, but it cannot obtain the real query histories of users, which
become diffused among the peer users. We named this relaxation user-private
information retrieval and published it in [12].

PIR and its standalone and P2P relaxations can be modeled as functionality-
privacy games. The user wants to query the search engine or database with as
much flexibility and speed as possible (functionality), while keeping her query
history private (privacy). In fact, the main problem of strict PIR is that, while
it achieves very good privacy, it offers only very restricted functionality. On the
other hand, the P2P relaxation is a game with several players: the peers and the
database, and user privacy means privacy in front of the database and in front
of the rest of peer users. Determining the optimal values of parameters such as
the number of peers and the connectivity among peers can be an outcome of
this modeling process.

A further challenge is to design a new relaxation of PIR offering also system
security. If the database information items are not free and have different prices,
system security means that users should not be able to retrieve items without
paying the established fees. Thus, the game should not be just functionality-
privacy, but functionality-security-privacy.

3.3 Car-to-Car Communication

Vehicular ad hoc networks (VANETs) allowing car-to-car communication are ex-
pected to be commercially available in cars manufactured from 2011 onwards [3].
There are several standards for VANET communication under way both in the
United States (DSRC, Dedicated Short Range Communications, IEEE 802.11p)
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and Europe (Car2Car Consortium). VANETs will allow vehicles to disseminate
announcement messages about road conditions to other vehicles (icy road, traffic
jam, etc.), in order to improve traffic safety and efficiency.

Security is a clear requirement of such announcement messages: these must
be trustworthy, because false messages could seriously disrupt traffic, cause ac-
cidents or cause certain areas to become deserted and hence easy targets for
criminals. There are two approaches in the literature: a posteriori and a priori.
Under the a posteriori approach, punitive action is taken against vehicles which
have been proven to have originated false messages (e.g. [16]); hence, means are
required to identify malicious vehicles. Under the a priori approach, the goal is
to prevent the generation of false messages (e.g. [20]): a message is given credit
only if it is endorsed by a number of nearby vehicles greater than a certain
threshold.

Privacy is also a requirement in VANET communication, although perhaps
less compelling for carmakers and policy makers. Indeed, it would not be very
fair if the collaboration of a driver to improve traffic safety and efficiency by
generating or endorsing announcements forced her to disclose her identity and
location. Note that knowing the mobility pattern of someone reveals a lot of
private information: the way of driving tells a lot about an individual’s character
(nervous, calm, etc.), her whereabouts give information on her work and social
habits, etc. Thus VANET communication is a case of the functionality-security-
privacy game mentioned above: functionality for individual cars and the overall
traffic system, security for the traffic system and privacy for the individual cars.

Privacy can be added to the a posteriori security approachby using pseudonyms
or more advanced cryptographic primitives like group signatures. A trusted third
party is needed who can open the identities of honest vehicles.

Adding vehicle privacy to the a priori security approach can imply vulner-
ability against the Sybil attack, in which a vehicle generates a false message
and takes advantage of anonymity to compute itself as many endorsements as
required. A private a priori scheme for VANET announcements based on thresh-
old signatures and resistant against the Sybil attack was recently proposed in [6].
In that paper, irrevocable anonymity for cars generating or endorsing messages
is provided.

A posteriori countermeasures alone are not sufficient. They can indeed deter
some rational attackers, but they cannot prevent damage by irrational attackers
(e.g. terrorists willing to risk anything to disseminate false messages aimed at
causing an accident or a massive jam). On the other hand, a priori countermea-
sures alone are not sufficient either: if a number of nearby attackers greater than
the preset threshold collude, they can generate a valid false message. If they
enjoy irrevocable anonymity, those colluders cannot even be traced.

The above shortcomings have been recently addressed in [25] by:

– Designingnew group signatures such that: i) they offer anonymity revocability;
ii) signatures on different messages by different signers are indistinguishable;
iii) signatures on the same message by different signers are distinguishable (so
that the Sybil attack can be detected); iv) they are computationally efficient.
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– Based on the above signatures, giving a solution to the VANET function-
ality-privacy-security game offering both a priori and a posteriori security
and privacy for honest vehicles. A traffic load-dependent threshold for a
priori security and a trusted third party to handle revocation in the case
of a posteriori security are used. The solution allows finding the optimal
threshold for given traffic conditions.

3.4 Social Networks

Social networks have become an important web service with a broad range of
applications: collaborative work, collaborative service rating, resource sharing,
friend search, etc. Facebook, MySpace, Xing, etc. are well-known examples. In
a social network, a user publishes and shares information and services. In some
social networks, the user can specify how much it trusts other users, by assigning
them a trust level. It is also possible to establish several types of relationships
among users (like “colleague of”, “friend of”, etc.). The trust level and the type
of a relationship are used to decide whether access is granted to resources and
services being offered (access rule).

The availability of information on relationships (trust level, relationship type)
has increased with the advent of the Semantic Web and raises privacy concerns:
knowing who is trusted by a user and to what extent discloses a lot about
the user’s thoughts and feelings. For a list of related abuses see [2]. Also, it
is known that some human resources departments use to look up job appli-
cants in a well-known and privacy-weak social network like Facebook to find
out more about their personality. Hence, social networks are another instance
of the functionality-security-privacy game; functionality means resource avail-
ability and flexibility of access, which should be possible even if there are only
indirect relationships between the resource owner and the resource requestor (as
considered in [4]); security refers to the resource owner, who wants to make sure
that her resource will be accessed only by users whom she trusts enough; privacy
refers to users, who should be able to access resources (or help other users in
accessing them) with minimum disclosure of the identities of their relationships.

In [9], a new protocol was described which offers private relationships in a so-
cial network while allowing resource access through indirect relationships without
requiring a mediating trusted third party. Thanks to homomorphic encryption,
this scheme prevents the resource owner from learning the relationships and
trust levels between the users who collaborate in the resource access (these users
are intermediate relationships between the resource owner and the resource re-
questor). In this way, the number of users who might refuse collaboration due
to privacy concerns is minimized. This results in increased functionality, i.e.
availability.

Research avenues in social networks are:

– State the problem of resource access via indirect private relationships as a
functionality-security-privacy game.

– Use that game-theoretic formulation to design access rules which optimize
the pay-offs of users in terms of functionality, security and privacy.
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4 Conclusions and Future Research

We have presented the conflict between functionality, security and privacy as a
game, and we have illustrated the possible ramifications of such a game-theoretic
framework in a number of specific application scenarios.

Future research will involve: i) turning those ramifications into concrete re-
sults for each scenario by addressing the challenges identified above; and ii)
tackling scenarios not considered here. This requires specifying utility functions
and strategies for players.

A final caution is in order, though. As pointed out in [7], there are some
fundamental differences between game theory, where players are not supposed
to deviate from the game rules, and cryptographic or security protocols, where
deviation must be accounted for. Such a shortcoming can be sometimes mitigated
with a careful design of the game mechanism (the game rules), i.e. so that it is
in the players’ own interest not to deviate (take for example the Vickrey auction
mechanism, [22]). However, for some practical application scenarios, no game
mechanism may exist which discourages all possible player deviations: such is
the case in the scenario of secure multiparty computation considered in [19],
where the class of non-cooperatively computable functions currently seems to be
the only one whose computation can be modeled as a game.
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6. Daza, V., Domingo-Ferrer, J., Sebé, F., Viejo, A.: Trustworthy privacy-preserving
car-generated announcements in vehicular ad hoc networks. IEEE Transactions on
Vehicular Technology 58(4), 1876–1886 (2009)

7. Dodis, Y., Rabin, T.: Cryptography and game theory. In: [19], pp. 181–205
8. Domingo-Ferrer, J.: A three-dimensional conceptual framework for database pri-
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Abstract. In the conventional cooperative games, it is assumed that
the payoff of each coalition is known. However, in the real world prob-
lems, there may exist situations in which some coalitional values are
unknown. In this paper, we take the first step toward the theory of co-
operative games under incomplete information of coalitional values. We
define concepts related to such incomplete games. We investigate the so-
lution concepts in a special case when only values of the grand coalition
and singleton coalitions are known. We show that there exists a focal
point solution which is commonly suggested in many points of view.

Keywords: Cooperative game, lower game, upper game, reference point
game, Shapley value, nucleolus.

1 Introduction

The cooperative game theory provides useful tools to analyze cost allocation,
voting power, distribution of profit, and so on. The problems to be analyzed by
the cooperative game theory include n entities called players and are usually
expressed by characteristic functions called games which map each subset of
players to a real number. The solutions to the problems are given by the set of
n-dimensional real numbers or value functions which assign a real number to
each player. Such a real number can show the cost borne by the player, power
of influence, an allocation of the shared profits, and so on. Several solution
concepts for cooperative games have been proposed. As representative examples
of solution concepts, the core, the Shapley value [6] and the nucleolus [7] are
well-known. The core can be represented by a set of solutions while the Shapley
value and the nucleolus are one point solutions.

A classical approach of von Neumann and Morgenstern [3] to cooperative
games assumes that the values of all coalitions are given. However, in the real
world problems, there may exist situations in which the values of some coalitions
are unknown. Such cooperative games under incomplete information have not
yet investigated considerably. Polkowski and Araszkiewicz [5] considered the
estimation problem of coalitional values as well as the Shapley value of such a
game from the partial data about coalition structures. They applied the rough
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set ideas of approximations [4] and defined the lower and upper values of a game
as well as the Shapley values.

In this paper, we treat cooperative games under incomplete information in a
simpler way. While Polkowski and Araszkiewicz estimate coalitional values from
partial data about the coalition structures, we assume that some coalitional val-
ues are known but the others are unknown. For the sake of simplicity, in this
paper, a cooperative game under incomplete information is called “an incom-
plete game” while a cooperative game with complete information is called “a
complete game”. We defined the lower and upper games associated with the
given incomplete game. We assume the superadditivity, and show that the lower
game is superadditive but the upper game is not. We show the existence of su-
peradditive games which attain values of the upper game. In order to initiate
the investigation of the solution concepts to incomplete games, we consider the
simplest case when only values of grand and singleton coalitions are known. We
apply the Shapley value and the nucleolus to complete games related with the
given incomplete games. We show that there exists a solution agreed with many
view points.

This paper is organized as follows. In Section 2, we introduce the classical
cooperative game and well-known solution concepts. In Section 3, we present
cooperative games under incomplete information and investigate the lower and
upper games as well as some games associated with them. To consider the solu-
tion concepts, we concentrate a special case when values of grand and individual
coalitions are only known. We investigate the Shapley values of complete games
related with the given incomplete game in Section 4, while we investigate the
nucleoluses in Section 5. In Section 6, concluding remarks and future directions
are given.

2 Classical Cooperative Game Theory

Let N = {1, 2, . . . , n} be the set of players and v : 2N → R such that v(∅) = 0.
A classical cooperative game, i.e., a coalitional game with transferable utility
(a TU game) is characterized by a pair (N, v). A set S ⊆ N is regarded as a
coalition of players and function value v(S) ∈ R shows a collective payoff that
players in S can gain by forming coalition S.

A cooperative game (N, v) is said to be monotone if and only if

v(T ) ≥ v(S), ∀S ⊆ T ⊆ N. (1)

A cooperative game (N, v) is said to be superadditive if and only if

v(S ∪ T ) ≥ v(S) + v(T ), ∀S, T ⊆ N such that S ∩ T = ∅. (2)

Moreover, a cooperative game (N, v) is said to be convex if and only if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ), ∀S, T ⊆ N. (3)

The superadditivity is a natural property for giving players incentives to form a
bigger coalition. The monotonicity is a weaker property than the superadditivity.



104 S. Masuya and M. Inuiguchi

On the other hand, the convexity is a stronger property than the superadditivity
so that a convex cooperative game is superadditive. The convexity can be also
characterized by

v(T ) − v(T \ i) ≥ v(S) − v(S \ i), ∀S ⊆ T ⊆ N \ i, ∀i ∈ N, (4)

where S \ i denotes S \ {i} for the sake of simplicity. This implies that the
marginal contribution of a player to a coalition is nondecreasing as the coalition
enlarges in the sense of set-theoretic inclusion if and only if the cooperative game
is convex.

Now let us introduce basic solution concepts in cooperative games. In coop-
erative games, it is assumed that the grand coalition N forms. The problem is
how to allocate the collective payoff v(N) to all players. The solution is a payoff
vector x = (x1, x2, . . . , xn) ∈ Rn such that its component xi ∈ R represents the
allocation to player i. Many solution concepts have been proposed. We describe
the core, the Shapley value and the nucleolus.

The solution is often selected from the following set of imputations of (N, v):

I(N, v) =

{
x = (x1, x2, . . . , xn) ∈ Rn

∣∣∣∣∣ ∑
i∈N

xi = v(N), xi ≥ v({i}), ∀i ∈ N
}

.

(5)
The first requirement

∑
i∈N xi = v(N) is called efficiency which implies that the

payoff vector splits the total value v(N). On the other hand, a set of requirements
xi ≥ v({i}), ∀i ∈ N is called individual rationality which implies that the payoff
vector guarantees a payoff xi not worse than solo worth v({i}).

The core C(N, v) of (N, v) is the set of all payoff vectors that cannot be
improved by any coalition S ⊆ N , i.e.,

C(N, v) =

{
x ∈ Rn

∣∣∣∣∣ ∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S), ∀S ⊆ N
}

(6)

Obviously, we have C(N, v) ⊆ I(N, v). The requirements
∑

i∈S xi ≥ v(S), ∀S ⊆
N implies that no coalition can obtain a better payoff than the sum of members’
payoffs. Therefore no player is given an incentive to leave the grand coalition
under a solution in the core.

An element of the core is often considered as a highly stable payoff vector.
However the core can be empty and a large set of payoff vectors. While set of
solutions could be useful to estimate the ranges of payoffs, one point solution
rather than set of solutions would be useful as reference of the expected payoffs
allocated to players.

The Shapley value and the nucleolus are known as one point solution con-
cepts in cooperative games and these solutions are always included in the set of
imputations. If the core exists, the nucleolus is always included in it while the
Shapley value is not always. The Shapley value is included in the core when the
cooperative game is convex.

Let G(N) be the set of cooperative games with the player set N . For con-
venience, because the set of players is fixed as N , cooperative game (N, v) is
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denoted simply by v. Let π be a vector function from G(N) to Rn specifying a
payoff vector to a cooperative game. The i-th component of π is denoted by πi.

The Shapley value is characterized by four axioms; axioms of null player,
symmetry, efficiency and additivity. Player i is said to be a null player if and
only if v(S)− v(S \ i) = 0 for all S ⊆ N such that i ∈ S. Then the axiom of null
player means πi(v) = 0 if i is a null player. The axiom of symmetry means if
players i and j are equivalent in the sense that v(S \ i) = v(S \ j) for all S ⊆ N
such that {i, j} ⊆ S then πi(v) = πj(v). The axiom of efficiency means the
satisfaction of the efficiency, i.e.,

∑
i∈N πi(v) = v(N). The axiom of additivity

means π(v + w) = π(v) + π(w) for all v, w ∈ G(N), where the sum of games
v + w ∈ G(N) is defined by (v + w)(S) = v(S) + w(S), ∀S ⊆ N .

The Shapley value is known as a unique function φ : G(N) → Rn satisfying
these four axioms (see Shapley [6]) and its explicit form is

φi(v) =
∑
S�i

S⊆N

(|S| − 1)!(n− |S|)!
n!

(v(S) − v(S \ i)), ∀i ∈ N, (7)

where φi is the i-th component of φ and |S| is the cardinality of the set S.
While the Shapley value can be seen as an average of the marginal contri-

butions v(S) − v(S \ i), S ⊆ N such that i ∈ S, the nucleolus [7] is defined
as a lexicographical minimal imputation of the excesses. The excess of a payoff
vector x = (x1, x2, . . . , xn) for a coalition S ⊆ N is defined by the difference
e(S, x) = v(S) −

∑
i∈S xi. For a payoff vector x, consider a (2n − 2) vector

θ(x) = (θ1(x), θ2(x), . . . , θ2n−2(x)) of excesses e(S, x), S ⊂ N such that S �= ∅,
arranged in non-increasing order. Then x is said to be lexicographically smaller
than y if and only if there exists h ≤ 2n − 2 such that θi(x) = θi(y), for all i < h
and θh(x) < θh(y). The nucleolus of v is a lexicographically minimal imputation.

It is known that the nucleolus of v denoted by η(v) = (η1(v), η2(v), . . . , ηn(v)),
can be obtained by solving a series of linear programming problems (see
Kopelowitz [1]).

The following type of linear programming problem is solved:

minimize ε,
subject to v(S) −

∑
i∈S

xi ≤ ε, ∀S ∈ V ,

v(S) −
∑
i∈S

xi ≤ eS , ∀S ∈ F ,

x1 + x2 + · · · + xn = v(N),
xi ≥ v({i}), i = 1, . . . , n,

(8)

where V and F are families of coalitions such that V ∩ F = ∅ and neither V
nor F include {N, {i}, i = 1, 2, . . . , n}. V is a set of coalitions whose excesses
are further minimized while F is a set of coalitions whose excesses have been
already minimized in the previous stages. If the problem has a unique opti-
mal solution (x, ε), we obtain the nucleolus as η(v) = x and then the procedure is



106 S. Masuya and M. Inuiguchi

terminated. Otherwise, we proceed to the next stage by updating V and F . In
order to proceed the next stage, F is composed of coalitions corresponding to
active constraints at the current optimal solution and V is composed of the other
coalitions.

Finally we remark the relations between solutions of a cooperative game (N, v)
and its zero-normalized game (N, v̄). The zero-normalized game of (N, v) is de-
fined by v̄(S) = v(S) −

∑
i∈S v({i}) for all S ⊆ N . For a zero-normalized game

(N, v̄), we obviously have v̄({i}) = 0, i = 1, 2, . . . , n. For the solution concepts
described above we have

S(N, v) = S(N, v̄) + (v({1}), v({2}), . . . , v({n})), (9)

where S(N, v) represents a set of solutions or a one point solution described
above.

3 Cooperative Games under Incomplete Information

In classical cooperative games, we assume that all coalitional values are known.
However, in the real world problems, there may exist situations in which some
coalitional values are unknown. Therefore, we would treat such cooperative
games under incomplete information. To avoid the confusion, we call cooperative
games under incomplete information “incomplete games” and the conventional
cooperative games “complete games”.

The incomplete games can be characterized by a set of players N =
{1, 2, . . . , n}, a set of coalitions whose values are known, say K ⊆ 2N , and a
function ν : K → R, where we basically assume that ∅ ∈ K and ν(∅) = 0. We
assume that values of singleton and the grand coalitions are at least known, i.e.,
{i} ∈ K, i = 1, 2, . . . , n and N ∈ K. Moreover, as is often assumed in classical
cooperative game theory, we assume the superadditivity of ν, i.e.,

ν(S) ≥
s∑

i=1

ν(Ti), ∀S, Ti (i = 1, 2, . . . , s) ∈ K such that
⋃

i=1,2,...,s

Ti ⊆ S

and Ti, i = 1, 2, . . . , s are disjoint. (10)

As defined above, a triple (N,K, ν) can identify an incomplete game. When we
consider only games under fixed N and K, incomplete game (N,K, ν) is simply
written as ν.

Associated with a given incomplete game (N,K, ν), we may define two com-
plete games (N, ν) and (N, ν):

ν(S) = max
Ti∈K, i=1,2,...,s

∪iTi⊆S, Ti are disjoint

s∑
i=1

ν(Ti), (11)

ν(S) = min
Ŝ∈K, Ŝ⊇S

(
ν(Ŝ) − ν(Ŝ \ S)

)
(12)
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From the superadditivity of ν, we have ν(S) = ν(S), ∀S ∈ K. Moreover, when
ν({i}) ≥ 0, i = 1, 2, . . . , n, from {i} ∈ K, i = 1, 2, . . . , n, we have

ν(S) = max
Ti∈K, i=1,2,...,s

∪iTi=S, Ti are disjoint

s∑
i=1

ν(Ti). (13)

As is seen easily, ν(S) shows the lower bound of the payoff of coalition S in the
superadditive coalitional game under the incomplete information expressed by
ν. On the other hand, ν(S) shows the upper bound of the payoff of coalition S
in the coalitional game. Indeed, if ν(S) > ν(Ŝ) − ν(Ŝ \ S) for some Ŝ ∈ K such
that Ŝ ⊇ S, there is no superadditive complete game v satisfying v(S) = ν(S),
v(Ŝ) = ν(Ŝ) and v(Ŝ \ S) ≥ ν(Ŝ \ S).

We obtain the following theorem.

Theorem 1. Given incomplete game (N,K, ν), the lower game (N, ν) is super-
additive while the upper game (N, ν) is not always superadditive but monotone.

From the incomplete information expressed by ν, we may consider a set V (ν) of
possible complete games. Because we assume the superadditivity, the set eligible
for the incomplete information is given by

V (ν) = {v : 2N → R | v is superadditive, v(S) = ν(S), ∀S ∈ K}. (14)

From the discussion above, we do not always have ν �∈ V (ν) but ν ∈ V (ν).
However, for any T ⊆ N , there exists v ∈ V (ν) such that v(T ) = ν(T ). Indeed,
such a complete game vT (S) for T �= ∅ can be defined by

vT (S) =
{
ν(S) if S ⊇ T,
ν(S) otherwise. (15)

Note that for T = N , we have vT = ν. The following theorem guarantees the
superadditivity of vT .

Theorem 2. Game (N, vT ) defined by (15) for T �= ∅ is a superadditive com-
plete game.

Because the condition for the superadditivity is represented by linear inequalities
with respect to variables v(S), S �∈ K, V (ν) is polyhedral. Moreover, from ν(S) ≤
v(S) ≤ ν(S), ∀S ⊆ N , V (ν) is bounded. Therefore, V (ν) is a polytope. It is not
easy to enumerate all vertices of V (ν) but vT ’s are a part of them.

As described earlier, upper game ν is not included in V (ν). However, it can
be interpreted as a complete game that all players insist their strong powers so
that all coalitions take the maximal possible values.

For the incomplete games, we would like to investigate their solution concepts.
Because we assume K ⊇ {∅, N, {i}, i = 1, 2, . . . , n}, the set of imputations of
the incomplete game (N,K, ν), denoted by I(N,K, ν), can be defined by the
set of imputations of any complete game in V (ν), e.g., by that of the lower
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game, I(N, ν). For other solution concepts, because of the complexity, it will not
be appropriate to study the general incomplete games at the beginning of the
research. Therefore, in this paper, we mainly focus on the simplest case when
coalitional values of only singleton and the grand coalitions are known, i.e.,
K = {∅, N, {i}, i = 1, 2, . . . , n}. Such a case may occur in real world problems.
For example, we know the value in cooperation among all players (e.g., total
cost of joint implementation among n entities) and values of individual activities
(e.g., cost of individual implementation) but values in cooperation among some
of players are unknown without further costly investigation. Paying the further
investigation expenses will not be advantageous because the allocated payoffs to
many of players will be decreased by the cost.

When K = {∅, N, {i}, i = 1, 2, . . . , n}, the lower and upper games become
simpler as

ν(S) =

⎧⎨⎩
∑
i∈S

ν({i}) if S �= N,

ν(N) if S = N,
(16)

ν(S) =

⎧⎨⎩
ν(S) if S is a singleton,
ν(N) −

∑
i∈N\S

ν({i}) otherwise. (17)

We can observe the following relationships: ν(S) ≤ ν(S), ∀S ⊆ N , ν(S) =
ν(N) − ν(N \ S), ∀S ⊂ N such that |S| > 1, or equivalently, ν(S) = ν(N) −
ν(N \ S), ∀S ⊂ N such that |S| < n − 1, and ν(S) = ν(S) = ν(S), ∀S ∈ K.
These relationships are known as the duarity between ν and ν. (See, for example,
Honda and Okazaki [2]).

Because of the simplicity of K, vertices of set V (ν) of possible complete games,
vT can be also represented explicitly but we omit them. Moreover, we obtain
the convexity of complete games associated to ν as is shown in the following
theorem.

Theorem 3. The lower game (N, ν) as well as complete games (N, vT ), T ⊆ N
such that |T | > 1 are convex.

From Theorem 3, the cores of ν and vT , T ⊆ N such that |T | > 1 are non-empty
and their Shapley values are their centers of gravity.

Moreover, as shown in the following theorem, we obtain all vertices of the set
V̂ (ν) of all convex complete games in V (ν) in the special case.

Theorem 4. Let V̂ (ν) be the set of all convex complete games in V (ν) with
K = {∅, N, {i}, i = 1, 2, . . . , n}. Then we have

V̂ (ν) =

{
v : 2N → R

∣∣∣∣∣ v =
∑

T⊆N, |T |>1

kT v
T ,

∑
T⊆N, |T |>1

kT = 1,

kT ≥ 0, ∀T ⊆ N such that |T | > 1

}
. (18)
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Theorem 4 shows that the vertices of V̂ (ν) are vT , ∀T ⊆ N such that |T | > 1.
Because of the significance of the convexity as well as the understandability of
vT , we might restrict ourselves in considerations of v ∈ V̂ (ν) rather than V (ν).

Example 1. Let N = {1, 2, 3, 4} and K = {∅, {1}, {2}, {3}, {4}, N}. Let us con-
sider incomplete game (N,K, ν) with ν : K → R defined by

v({1}) = 8, v({2}) = 7, v({3}) = 3, v({4}) = 1, v({1, 2, 3, 4}) = 30.

The lower game v and the upper game v are obtained as follows:

ν({1}) = 8, ν({2}) = 7, ν({3}) = 3, ν({4}) = 1, ν({1, 2, 3, 4}) = 30,
ν({1, 2}) = 15, ν({1, 3}) = 11, ν({1, 4}) = 9, ν({2, 3}) = 10, ν({2, 4}) = 8,
ν({3, 4}) = 4, ν({1, 2, 3}) = 18, ν({1, 2, 4}) = 16, ν({1, 3, 4}) = 12,
ν({2, 3, 4}) = 11,
ν({1}) = 8, ν({2}) = 7, ν({3}) = 3, ν({4}) = 1, ν({1, 2, 3, 4}) = 30,
ν({1, 2}) = 26, ν({1, 3}) = 22, ν({1, 4}) = 20, ν({2, 3}) = 21, ν({2, 4}) = 19,
ν({3, 4}) = 15, ν({1, 2, 3}) = 29, ν({1, 2, 4}) = 27, ν({1, 3, 4}) = 23,
ν({2, 3, 4}) = 22,

We can observe that the lower game ν satisfies the convexity while the upper
game ν does not satisfy even the superadditivity but the monotonicity.

Moreover, as an example of vT , let us consider T = {1, 2}. vT is obtained as

vT ({1}) = 8, vT ({2}) = 7, vT ({3}) = 3, vT ({4}) = 1, vT ({1, 2, 3, 4}) = 30,

vT ({1, 2}) = 26, vT ({1, 3}) = 11, vT ({1, 4}) = 9, vT ({2, 3}) = 10,

vT ({2, 4}) = 8, vT ({3, 4}) = 4, vT ({1, 2, 3}) = 29, vT ({1, 2, 4}) = 27,

vT ({1, 3, 4}) = 12, vT ({2, 3, 4}) = 11.

Then we can observe the convexity of vT .

4 The Shapley Value

In this section, we consider solutions of incomplete games (N,K, ν) with K =
{∅, N, {i}, i = 1, 2, . . . , n} through investigation of solutions of complete games
related to it.

Before the investigation, let us define the total excess by forming the grand
coalition by

∆ = v(N) −
∑
i∈N

v({i}). (19)

First let us investigate the Shapley values of lower and upper games (N, ν) and
(N, ν). We have the following results.
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Theorem 5. Let (N,ν) and (N,ν) be lower and upper games associated with
incomplete game (N,K, ν) with K = {∅, N, {i}, i = 1, 2, . . . , n}. Then, the fol-
lowing holds:

φi(ν) = φi(ν) = ν({i}) +
∆

n
, ∀i ∈ N. (20)

This theorem shows that the Shapley value of upper game is the same as that
of lower game.

The Shapley value of (N, vT ) for T ⊆ N such that T �= ∅ is obtained as

φi(vT ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν({i}) +
1
|T |∆ if i ∈ T and T �= {i},

ν({i}) if i �∈ T and |T | > 1,

ν({i}) +
(n− 1)
n

∆ if T = {i},

ν({i}) +
1

n(n− 1)
∆ if T = {j} ⊂ N and i �= j.

(21)

From this result, Theorem 4 and the linearity of Shapley value, the set of Shapley
values of player i under complete games in V̂ (ν) is obtained as a polytope,

Φ̂i(ν) =

{
θi =

∑
T⊆N, |T |>1

kTφi(vT )

∣∣∣∣∣ ∑
T⊆N, |T |>1

kT = 1,

kT ≥ 0, ∀T ⊆ N such that |T | > 1

}
.

(22)
Restricting ourselves in considerations of complete games in V̂ (ν), we have the
following result. In order to interpret kT specifying a complete game in V̂ (ν),
let us consider T in vT . From the definition of vT , T is a carrier of the zero-
normalization of (N, vT ), i.e., v̄T (T ∪ S) = v̄T (T ), ∀S ⊆ N \ T , where v̄T is
the zero-normalized function of vT . To put this differently, each i ∈ N \ T is a
null player in complete game (N, v̄T ). Then kT can be interpreted as the ratio
of power showing how much excess is governed by coalition T .

If there is no further information on the incomplete game (N,K, ν), there is
no sufficient reason why some coalition T can govern more excess than the other
coalitions with the same size as T . Therefore, at reference points in V̂ (ν), we
may assume kT = kS if |T | = |S|. The Shapley values of reference point games
under this assumption are shown in the following theorem.

Theorem 6. Let kT ≥ 0, T ⊆ N such that |T | > 1 satisfy
∑

T⊆N, |T |>1 kT = 1
and kT = kS if |T | = |S|. The Shapley value of player i under a complete game
(N, v̂) with

v̂(S) =
∑

T⊆N, |T |>1

kT v
T (S) (23)

is obtained as
φi(v̂) = ν({i}) +

1
n
∆, i ∈ N. (24)
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Note that there are infinitely many kT ≥ 0, T ⊆ N such that |T | > 1 satisfying∑
T⊆N, |T |>1 kT = 1 and kT = kS if |T | = |S|. Theorem 6 shows that, for all

such combinations of kT ’s, the Shapley value φi(v̂) is ν({i}) + 1
n∆ which equals

to the Shapley value φi(ν) (resp. φi(ν)) under lower game ν (resp. upper game
ν).

The solution xi = ν({i}) + 1
n∆, i ∈ N can be also interpreted as a so-

lution where all players equally divided total excess ∆ and added it to their
values of individual coalitions. This can be understood more easily by consid-
ering zero-normalized version of ν. By the zero-normalization, the incomplete
game is reduced to an incomplete game taking the value of total exceed at grand
coalition and zero at all individual coalitions. The solution corresponding to the
zero-normalization becomes xi = 1

n∆, i ∈ N which shows the equal sharing of
total excess ∆.

5 The Nucleolus

Now let us apply the nucleolus to incomplete game (N,K, ν). The nucleoluses of
lower and upper games (N, ν) and (N, ν) are obtained in the following theorem.

Theorem 7. Let (N,ν) and (N,ν) be lower and upper games associated with
incomplete game (N,K, ν) with K = {∅, N, {i}, i = 1, 2, . . . , n}. Then, the nu-
cleoluses η(ν) and η(ν) are obtained as

ηi(ν) = ηi(ν) = ν({i}) +
∆

n
, ∀i ∈ N. (25)

Similar to the Shapley values of lower and upper games, the nucleoluses of upper
game is the same as that of lower game. From Theorem 5, we know that the
Shapley values and nucleoluses of lower and upper games are the same.

Corresponding to (21), the nucleolus of (N, vT ) for T ⊆ N such that T �= ∅ is
obtained in the following theorem.

Theorem 8. The nucleolus η(vT ) = (η1(vT ), η2(vT ), . . . , ηn(vT )) of (N, vT ) for
T ⊆ N such that T �= ∅ is obtained as

ηi(vT ) =

⎧⎨⎩ν({i}) +
1
|T |∆ if i ∈ T,

ν({i}) if i �∈ T .
(26)

Instead of nucleoluses of all complete games in V̂ (ν), we investigate the nucleo-
luses of the reference point games. As discussed in the previous section, the set
of reference point games is defined by

V̂ ref(ν) =

{
v : 2N → R

∣∣∣∣∣ v =
∑

T⊆N, |T |>1

kT v
T ,

∑
T⊆N, |T |>1

kT = 1,

kT ≥ 0, ∀T ⊆ N such that |T | > 1,

kT = kS , ∀T, S ⊆ N such that |T | = |S|
}

. (27)
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The nucleoluses of reference point games are obtained in the following theorem.

Theorem 9. For any v ∈ V̂ ref(ν), the nucleolus of pleayer i, ηi(v) is obtained
as

ηi(v) = ν({i}) +
1
n
∆. (28)

As shown in Theorem 9, the nucleolus of player i under any reference point game
is ν({i}) + 1

n∆ which is often appeared in the discussion above.
As demonstrated in the previous and this sections, the solution x =

(x1, x2, . . . , xn) defined by xi = ν({i}) + 1
n∆ is reasonable in many viewpoints

for the incomplete game (N,K, ν) with K = {∅, N, {i}, i = 1, 2, . . . , n}.

Example 2. Consider the incomplete game ν discussed in Example 1. The Shap-
ley value and the nucleolus of each player under lower game coincide and are
obtained as

φ(ν) = η(ν) =
(

43
4
,
39
4
,
23
4
,
15
4

)
.

This solution is equal to the Shapley values and nucleoluses of upper game,
reference point games in V̂ (ν), i.e., φ(ν) = η(ν) = φ(ν) = η(ν) = φ(v) = η(v),
∀v ∈ V̂ ref(ν). On the other hand, in the incomplete game, we obtain the total
excess ∆ = ν(N) −

∑4
i=1 ν({i}) = 11. We can confirm

φ(ν) = (v({1}), v({2}), v({3}), v({4})) +
1
4
(∆,∆,∆,∆)

= (8, 7, 3, 1) +
1
4
(11, 11, 11, 11) =

(
43
4
,
39
4
,
23
4
,
15
4

)
.

6 Concluding Remarks and Future Research

We investigated cooperative games under incomplete information about coali-
tional values. Assuming the superadditivity, we introduced lower and upper
games. While the lower game is superadditive, the upper game is only monotone.
Each value of the upper game is attained by a superadditive complete game.

Because we were at the first stage of the study of solution concepts to incom-
plete games, we focused on a special case when the values of grand and individ-
ual coalitions are known. We investigated the Shapley values and the nucleoluses
under incomplete games in the special case. We showed that four solutions, the
Shapley values of lower and upper games and the nucleolus of them, are equal
one another. The Shapley values and nucleoluses of (2n − 1) extreme games are
shown explicitly. Because the set of all convex complete games is expressed as
a polytope of at most (2n − n − 1) extreme games, the Shapley values of all
convex games becomes a polytope spanned by those of the extreme games. We
considered reference point games which players may use to evaluate the values of
the given incomplete game assuming the convexity. We proved that the Shapley
values and the nucleoluses of reference point games are all equal to the solution
agreed by the Shapley values of lower and upper games and the nucleolus of
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them. The solution would be considered one of the most reasonable solutions to
the incomplete games, which could be a common focal point solution.

We believe that this study open up a new direction of cooperative games
toward the theory under incomplete information about coalitional values. We
have just taken the first step into the frontier. There still remain many topics
for future investigation. We should research solution concepts in general cases.
In general cases, it would be difficult to find a focal point solution which is
commonly suggested in many viewpoints. One approach is constraining solutions
to those to reference point games. In the approach, the definition of reference
point games is a key issue. The second approach is an axiomatic approach to
qualify solutions to incomplete games. There would exist other approaches.
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Abstract. Presented is preliminary study of the role of data structures
in algorithms for formal concept analysis. Studied is performance of se-
lected algorithms in dependence on chosen data structures and size and
density of input object-attribute data. The observations made in the
paper can be seen as guidelines on how to select data structures for im-
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1 Introduction

Formal concept analysis (FCA) [17] is a method of qualitative data analysis
with a broad outreach to other analytical disciplines. Formal concepts, i.e. max-
imal rectangular submatrices of Boolean object-attribute matrices, which are
the basic patterns studied by formal concept analysis, are important for various
data-mining and decision-making tasks. For instance, formal concepts can be
used to obtain nonredundant association rules [18] and minimal factorizations
of Boolean matrices [2]. Recently, it has been shown in [1] that formal concepts
can be used to construct decision trees. From the computational point of view,
these applications of FCA depend on algorithms for computing all formal con-
cepts (possibly satisfying additional constraints) given an input data set. It is
therefore important to pay attention to algorithms for FCA especially in case of
large input data where the performance of algorithms becomes a crucial issue.

In this paper we focus on the data structures used in algorithms for computing
formal concepts. Selection of the appropriate data structure has an important
impact virtually on any algorithm and the decision of which structure is the
optimal one for given algorithm is often uneasy. Usually, the decision depends
on many factors, especially on the data being processed. Such decision has to
be done wisely since selection of an inappropriate structure may lead to a poor
performance or to an excessive use of resources in real programs. Algorithms
for computing formal concepts are not an exception. Moreover, the situation
is complicated since algorithms are usually described in pseudocode that is a
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language combining (vague) human and (formal) programming languages. This
gives certain freedom to a programmer but with this freedom is tightly coupled
a big piece of responsibility. For example, if a description of an algorithm con-
tains the term “store B ∩ C into A”, from the point of view of the algorithm
description, the statement is clear and sufficiently descriptive. The term says:
“store intersection of sets B and C into set A”. On the other hand, from the
implementation point of view, such description is ambiguous because it does not
provide any information on how such intersection should be computed and how
the sets should be represented.

Interestingly, the data representation issues are almost neglected in literature
on FCA. The well-known comparison study [11] of FCA algorithms mentions the
need to study the influence of data structures on practical performance of FCA
algorithms but it does not pay attention to that particular issue. This paper
should be considered a first step towards this direction. Recall that the limiting
factor of computing all formal concepts is that the problem is #P -complete [8].
The theoretical complexity of algorithms for FCA is usually expressed in terms
of time delay [7] and all commonly used FCA algorithms have polynomial time
delay [8]. Still, the asymptotic complexity does not say which algorithm is faster
as many different algorithms belong to the same class. With various data struc-
tures, the problem becomes even more complicated. Therefore, there is a need
for experimental evaluation which may help users decide which FCA algorithm
should be used for particular type of data, cf. [11]. In this paper, we try to answer
a related question: “Which data representation should be chosen for particular
type of data?”

The paper is organized as follows. Section 2 presents a survey of notions of
FCA and used algorithms. Section 3 describes used data structures and set-
theoretical operations on these data structures. Finally, Section 4 presents ex-
perimental evaluation showing the impact of data structures on the performance
and concluding remarks.

2 Formal Concept Analysis

In this section we recall basic notions of the formal concept analysis (FCA).
More details can be found in monographs [6] and [3].

2.1 Survey of Basic Notions

FCA deals with binary data tables describing relationship between objects and
attributes, respectively. The input for FCA is a data table with rows correspond-
ing to objects, columns corresponding to attributes (or features), and table en-
tries being 1’s and 0’s, indicating whether an object given by row has or does
not have an attribute given by column. The input is formalized by a binary re-
lation I ⊆ X × Y , 〈x, y〉 ∈ I meaning that object x has attribute y, and I being
called a formal context [6]. Each formal context I ⊆ X × Y induces a couple of
concept-forming operators ↑ and ↓ defined, for each A ⊆ X and B ⊆ Y , by
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A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Operators ↑ : 2X → 2Y and ↓ : 2Y → 2X defined by (1) and (2) form a so-called
Galois connection [6]. By definition (1), A↑ is a set of all attributes shared by all
objects from A and, by (2), B↓ is a set of all objects sharing all attributes from
B. A pair 〈A,B〉 where A ⊆ X , B ⊆ Y , A↑ = B, and B↓ = A, is called a formal
concept (in I ⊆ X × Y ). Formal concepts can be seen as particular clusters
hidden in the data. Namely, if 〈A,B〉 is a formal concept, A (called an extent
of 〈A,B〉) is the set all objects sharing all attributes from B and, conversely,
B (called an intent of 〈A,B〉) is the set of all attributes shared by all objects
from A. From the technical point of view, formal concepts are fixed points of the
Galois connection 〈↑, ↓〉 induced by I. Formal concepts in I ⊆ X×Y correspond
to so-called maximal rectangles in I. In a more detail, any 〈A,B〉 ∈ 2X × 2Y

such that A×B ⊆ I shall be called a rectangle in I. Rectangle 〈A,B〉 in I is a
maximal one if, for each rectangle 〈A′, B′〉 in I such that A ×B ⊆ A′ × B′, we
have A = A′ and B = B′. We have that 〈A,B〉 ∈ 2X ×2Y is a maximal rectangle
in I iff A↑ = B and B↓ = A, i.e. maximal rectangles = formal concepts.

The set of all formal concepts in I is denoted by B(X,Y, I). In this paper, we
will be interested in performance of algorithms computing (listing all concepts in)
B(X,Y, I). Note that B(X,Y, I) can optionally be equipped with a partial order
≤ modeling the subconcept-superconcept hierarchy: We put 〈A1, B1〉 ≤ 〈A2, B2〉
iff A1 ⊆ A2 (or, equivalently, iff B2 ⊆ B1). If 〈A1, B1〉 ≤ 〈A2, B2〉 then 〈A1, B1〉
is called a subconcept of 〈A2, B2〉. The set B(X,Y, I) together with ≤ form a
complete lattice whose structure is described by the Main Theorem of Formal
Concept Analysis [6].

2.2 Algorithms for Computing Formal Concepts

Several algorithms for computing formal concepts have been proposed. In our ex-
periments, we have considered three well-known algorithms—Ganter’s NextClo-
sure [5], Lindig’s UpperNeighbor [13], and Kuznetsov’s CloseByOne [9,10] which
is conceptually close to the algorithm of Norris [14]. These algorithms are com-
monly used for computing formal concepts and, therefore, their efficient imple-
mentation is crucial.

A detailed description of the algorithms is outside the scope of this paper.
Interested readers can find details in the papers cited above and in a survey
paper [11] presenting a comparison of various algorithms for FCA. Just to re-
call, NextClosure and CbO are algorithms which are conceptually close because
they perform the same canonicity test to prevent listing the same formal concept
multiple times. The fundamental difference of the algorithm is in the strategy
in which they traverse through the search space containing all formal concepts.
Although mutually reducible, the algorithms are different from the practical
efficiency point of view as we will see later and as it is also shown in [11].
Lindig’s algorithm belongs to a different family of algorithms that compute
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formal concepts and the subconcept-superconcept ordering ≤ at the same time.
The algorithm keeps track of all formal concepts that have been computed, i.e.
it stores them in a data structure. Usually, a balanced tree or a hash table
is used to store concepts. The concepts are stored in a data structure for the
sake of checking whether a formal concept has been found in previous steps of
computation.

2.3 Representation of Formal Contexts and Computing Closures

Representation of the input data (a formal context) is crucial and has an im-
portant impact on performance of real applications. To increase the speed of
our implementations, we store each context in two set-theoretical forms. This
allows us to (i) increase speed of computing closures for certain algorithms and
(ii) we are able to use a uniform data representation for contexts, extents, and
intents. The first form is an array of sets containing, for each object x ∈ X , a
set {x}↑ of all attributes of object x. Dually, the second form is an array of sets
containing, for each attribute y ∈ Y , a set {y}↓ of all objects having attribute y.
This redundant representation of contexts can significantly improve the speed of
UpperNeighbor and CbO. Namely, given a formal concept 〈A,B〉 and y �∈ B, we
can compute a new formal concept 〈A ∩ {j}↓, (A ∩ {j}↓)↑〉 by intersecting sets
of objects and attributes from both context representations [15].

3 Used Data Structures and Algorithms: An Overview

The most critical operations used in the algorithms for computing formal concepts
are set operations and predicates that are needed to manipulate extents and in-
tents of computed formal concepts. This means, operations of intersection, union,
difference and predicate of membership (∩, ∪, \, and ∈, respectively). Therefore,
we focus on data structures that allow to efficiently implement these operations.
In the sequel, we provide a brief overview of five data structures we deem suitable
to represent sets and which will be used in our performance measurements.

3.1 Bit Array

The first data structure we use to represent a set is an array of bits. A bit array is
a sequence of 0’s and 1’s and is very suitable for representing characteristic func-
tion of a set. If the element is present in a set, the bit at the appropriate position
has value 1, otherwise it has value 0. Let us consider universe U = {a, b, c, d, e}
and bit array 01001 such bit array may represent set {b, e}. Obviously, one has
to fix a total order on U in order to make such representation unambiguous.
In the sequel, we are going to use a set X = {0, 1, . . . ,m} of objects and a set
Y = {0, 1, . . . , n} of attributes, respectively, with the natural ordering of num-
bers. In other words, each element in X or Y can be used as an index (in a bit
array). Note that there is no danger of confusing objects with attributes because
we do not mix elements from the sets X and Y in any way.
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An important feature of this data structure is that all operations may be
reduced to few bitwise operations performed directly by CPU. For instance, if we
consider two sets from universe of size 64, their intersection may be computed
on contemporary computers in one operation (bitwise logical AND). On the
other hand, the size of the data structure representing a set is determined by
the size of the universe and not by the size of the set itself. This may be a
serious disadvantage while dealing with small sets defined in large universes—a
situation that may frequently occur when dealing with sparse data sets with
low densities of 1’s (i.e., low percentages of 1’s in the context, meaning that |I|
is small compared to |X | · |Y |). In such a case, sets occupy large segments of
memory and operations may not have to be so efficient as expected.

3.2 Sorted Linked List

Linked lists represent another type of a data structure suitable and frequently
used for representing sets. The usage is obvious, an element belongs into a set,
if and only if it is present in the list representing the set (we allow no element
duplicities in lists). In the sequel, we consider a variant of linked list, where all
elements are sorted w.r.t. the fixed total order (see Section 3.1). This allows us
to implement set operations more efficiently. For instance, while computing an
intersection of two sets, we may use so called merging. This means, we take both
lists and repeatedly apply the following procedure:

If the first elements of both the lists are the same, we put this element
into the resulting set and we remove both the elements from the consid-
ered lists, otherwise we remove the least element.

We repeat this procedure until one of the lists is empty and then the resulting set
contains only the elements that are present in both sets. Other set operations can
be implemented analogously taking into account the total ordering of elements
in the lists.

From the point of view of memory requirements, linked lists have certain
overhead since with each element of a list we have to allocate an additional
space for pointer to the next element of the list.

3.3 Array

In much the same way as in case of lists, we may store elements of a set into
an array. This makes the representation of a set more space efficient since we do
not have to store pointers between elements. Furthermore, if the set elements
are ordered, we may optimize particular operations with the divide et impera
approach by employing binary search [12]. For instance, to compute intersection
of two sets we can go through all elements in the smaller set and using binary
search we can check whether given element is also in the second set.

On the other hand, the advantages of arrays are counterweighted by the fact
that arrays need some additional effort to shrink or expand their size while
adding or removing elements from the set.
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3.4 Binary Search Tree

Binary search tree is a data structure that has similar time complexity of the
essential operations as an array. For example, when computing intersection of
two sets, we proceed in a similar way as in case of arrays. We go through all
elements in the smaller set and check if the elements is also in the second one.
If the tree is balanced, we can do such check in a logarithmic time. This means,
computation of the intersection has time complexity O(n · logm).

Besides the performance, other advantages of binary trees include more effi-
cient insertion and deletion of elements than in case of arrays. On the other hand,
trees are less space efficient and need additional effort to keep them balanced
to provide adequate performance. Several variants of binary search trees were
proposed. For our experiments we have selected self-balancing lean-left red-black
tree [4,16] for its efficiency and briefness of its implementation.

3.5 Hash Table

The last data structure we consider is a hash table. The hash tables are usually
not so space efficient as the previously mentioned data structures but the time
complexity of operations with hash tables is comparable. For example, computa-
tion of intersection is similar as in the previous cases: We go through all elements
in the first set and check whether the elements are also in the second one. We
have included hash tables since they are frequently used to implement sets in
standard libraries of programming languages. There is therefore a temptation of
using such library structures for representing sets. In our experiments, we have
considered a variant of hash table with separate chaining [4].

3.6 Time Complexity of Operations

Fig. 1 depicts asymptotic time complexities of the elementary set operations
with respect to data structures representing sets. The the time complexities are
expressed in terms of the O-notation.

∩ ∪ ∈
bit array O(|U |) O(|U |) O(1)
sorted linked list O(m + n) O(m + n) O(n)
sorted array O(n · log m) O(n · log m) O(log n)
binary search tree O(n · log m) O(n · log m) O(log n)
hash table O(m · n) O(m · n) O(n)

Fig. 1. Worst-case time complexity of set operations

Remarks. TheO-notation captures only a particular aspect of the time complex-
ity and real performance of data structures may significantly differ. Sometimes, it
may be useful to join several elementary operations into a single compound opera-
tion. For instance, Ganter’s algorithm and CbO perform a canonicity test that pre-
vents computing concepts multiple times. This test consists of several operations
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and it seems to be practical to implement this test as one operation that takes ad-
vantage of the underlying data structure. For example, in the CloseByOne (CbO)
algorithm, the test is defined as B ∩ Yj = D ∩ Yj , where D = (B ∪ {y})↓↑ is an
intent of a newly generated concept, B is the intent of previously generated con-
cept, and Yj represents first j attributes. In some cases, it may be inefficient to
compute the intersections of sets B and D with the set Yj and then compare the
results. In fact, it suffices to compare just one set inclusionB ∩ Yj ⊇ D∩Yj as the
converse inclusion follows from the monotony of the closure operator ↓↑. In other
cases, however, it may be more efficient to perform the test without computing the
intersections first: we check whether each y ∈ D such that y ≤ j is present in B.
From the point of view of the asymptotic complexity, such optimization is not es-
sential because its complexity is the same. On the other hand, the impact on the
practical performance of such optimization may be significant as we will see in the
next section.

4 Experimental Performance Measurements

In this section we discuss the behavior of algorithms under various conditions.
This means, we have tested algorithms for various input datasets (with various
sizes and densities) and data structures.

4.1 Implementation

In order to compare properties of algorithms and data structures, we have im-
plemented all tests in the C language. All programs share the same code base,
i.e., the implementation of each algorithm is shared and only the implementation
of (operations with) data structures differs. We have almost directly translated
the usual pseudocode of algorithms to an equivalent code in C. In the codes of
the algorithms, we have not employed any specific optimizations but to emulate
environment of real applications and to reflect strengths of each data structure,
we have optimized particular operations. For instance, while computing the out-
comes of the concept-forming operators ↓ and ↑, it is necessary to compute an
intersection of multiple sets, see Section 2.3. One option to compute such in-
tersection is to repeatedly apply an operation of intersection of two sets. This
approach is for example suitable for bit arrays. On the other hand, in some cases
it is possible to compute intersection of multiple sets more efficiently if we con-
sider all sets in the intersection. For instance, this applies for ordered lists, i.e.,
we perform a merge of all the lists simultaneously.

Remarks. The C language has been selected for testing purposes since it allows
equally efficient implementations of all considered data structures. If anyone is
going to use other programming language, he or she should be aware of its specific
properties. For instance, in case of Java or C#, particular data structures may
be less efficient due to issues connected to auto-boxing, etc.

All experiments were done on an otherwise idle computer equipped with two
quad-core Intel Xeons E5345, 12GB RAM, GNU/Linux and we have compiled
all programs with GCC 4.1.2 with only -O3 option turned on.
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4.2 Performance

In our experiments, we compare running times needed to compute all formal
concepts using considered algorithms with particular data structures. Since the
time of computation is dependent on many factors, especially the size of the data
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Fig. 2. Efficiency of data structures for particular algorithms—CloseByOne (top);
NextClosure (middle); UpperNeighbor (bottom)
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and density of 1’s present in the data matrix, we have used randomly generated
data tables of various properties for our experiments.

In the first set of experiments, we tried to answer the question if some struc-
ture is better for particular algorithm then other structures. To find the answer,
for each algorithm we compared time it takes to compute all formal concepts in
data tables with various numbers of objects, 50 attributes, where the density of
1’s in the data table is 15%. We have selected 15% because data used in formal
concept analysis are usually sparse (but there can be exceptions). The results are
presented in Fig. 2. One can see that for CloseByOne and Lindig’s UpperNeighbor,
the tree representation of sets is the optimal one and for Ganter’s NextClosure it
is the bit array representation. Notice that the linked list representation provides
reasonable results for all algorithms. On the contrary, hash table representation
seems to provide a poor performance under all circumstances.

The previous experiment involved a fixed number of attributes and a fixed
density of 1’s in the data matrix. Since the dimension and density of contexts
have considerable impact on performance, we performed additional experiments
where the dimensions and/or density are variable.

In the next experiment, we selected tables of size 100 × 100 and 500 × 100
with various densities of 1’s and compared time it takes to compute all formal
concepts. Fig. 3 and Fig. 4 show times for the CloseByOne algorithm (the results
for other algorithms turned out to be analogous and are therefore omitted).
Notice, that we have used logarithmic scale for the time axes. This allows us
to identify a point where some data structures become less efficient. Fig. 3 and
Fig. 4 also indicate that linked list, binary tree and array are suitable for sparse
data. Contrary to that, bit arrays are more suitable for dense data.

The point, i.e., the density, for which bit array outperforms other representa-
tions is dependent on other factors. As we can see in Fig. 3 and Fig. 4, for larger
data tables this point shifts to higher densities.

The last property of data tables we are going to consider is the number of at-
tributes. The results are shown Fig. 5, presenting computation time of NextClo-
sure algorithm with data tables consisting of 100 objects, various numbers of
attributes and 15% density of 1’s. With the exception of hash tables and binary
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objects

trees, the number of attributes does not have a significant impact on the time
of the computation. Notice that in case of bit arrays, linked lists, and arrays,
the impact is so insignificant that we had to use logarithmic scale to make the
corresponding lines distinct.

4.3 Memory Efficiency

In previous sections, we have focused on time efficiency of algorithms and data
structures. Another important aspect of data structures is their space efficiency.
Common feature of the Ganter’s NextClosure and Kuznetsov’s CloseByOne al-
gorithms is that they are not extensively memory demanding. NextClosure has
a constant memory complexity and CloseByOne has a (worst-case) linear mem-
ory complexity depending on the number of attributes (in practice, the memory
consumption is typically strongly sublinear).

This means, the size of particular data structure chosen for representing sets
affects practically just the size of the (the representation of) the context. The size
of (the representation of) the context does not have significant influence on the
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overall memory consumption. On the other hand, Lindig’s UpperNeighbor needs
to store generated concepts (or at least their intents or extents) to check whether
a newly computed concept have already been generated or not. This feature may
seriously affect the size of data that may be processed by this algorithm, i.e., all
concepts present in the data have to fit into available memory.

In the following experiment, we have focused on the memory consumption.
We have selected random data matrix with 100 attributes, various counts of ob-
jects and density of 1’s 10%. Fig. 6 shows the growth of the allocated memory
dependent on the number of concepts present in the data. One can see that
the bit array and array representations require approximately the same amount
of memory. Furthermore, this applies also for linked list and binary tree repre-
sentations. The disproportion between the assumed memory consumption and
the real one may be caused by the memory management. Memory allocators in
modern operating systems usually do not allocate the exact amount of memory
that is requested for an object but allocate rather a larger amount.

Conclusions

This paper addresses an important but overlooked issue: which data structures
should be chosen to compute formal concepts. As expected, there is no “the
best” structure suitable for all types of data tables and data structures have to
be wisely selected. The paper provides a survey with guidelines on how to select
such data structure in dependence on the data size, used algorithm, and density.
It contains our initial observations on the role of data structures in FCA in terms
of the efficiency. If your data is sparse or if you have to deal with large dataset,
binary search trees or linked lists are good choices. If you have dense data or
smaller data table, the bit array seems to be an appropriate structure. Definitely,
usage of hash tables should be avoided as it has shown to be inappropriate for
computing formal concepts.

Future research will focus on considering more data structures, mixed data
representations, and statistical description of factors and conditions that may
have a (hidden) influence on the choice of data structure.
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Abstract. We propose a means of extending Conditional Random Field model-
ing to decision-theoretic planning where valuation is dependent upon
fully-observable factors. Representation is discussed, and a comparison with ex-
isting decision problem methodologies is presented. Included are exact and in-
exact message passing schemes for policy making, examples of decision making
in practice, extensions to solving general decision problems, and suggestions for
future use.

Keywords: Utility and Decision Theory, Graphical Modeling.

1 Introduction

Although there exist various approaches to utility calculation of a decision sequence,
we desire a means of describing a series of potentially-inhomogenous decisions that
are fully-, partially-, or un-ordered, along with an efficient means of computing and
comparing decision valuations. Traditional formulations are inadequate, as the intro-
duction of decision reordering results in a blowup in graph complexity and size. We
have devised a means of applying traditional discriminative graphical model inference
methods to the task of compact exact and approximate planning under full observation,
and extend it to the generation of optimal strategies for general decision problems.

For the purposes of comparing our model to existing generative decision formula-
tions, we will make use of Shenoy’s Valuation Network (VN) [11] approach as it is the
most intuitively similar means of modeling potentially-asymmetric decision problems
(“scenarios” in equivalent terminology), using complimentary graphical and numerical
representations most similar to our Conditional Random Field (CRF) [6] approach. Ad-
ditionally, we will compare our approach with the more general Markov Logic Network
(MLN) formalism [10] in its use of absolute valuations for hard constraints, although
we prefer the CRF description for compactness (see Figure 1 and later discussion in
Section 3). Other decision problem formulations such as decision trees, asymmetric In-
fluence Diagrams (IDs) [2], and Sequential Valuation Networks (SVNs) [1] will briefly
appear as they relate to relative strengths or weaknesses of our approach. Additional
general motivation may be found in planning for large Markov Decision Processes
(MDPs) [7,3], although this formulation does not suit our purposes without modifying
a number of limiting factors (e.g., temporally-universal decision space, additive-only
valuation) that compromise expressibility or compactness.
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c© Springer-Verlag Berlin Heidelberg 2009



Using Conditional Random Fields for Decision-Theoretic Planning 127

Fig. 1. General Graph Construction for a Decision Problem: (a) Judging potential solutions is
initially viewed as a single complex operation. (b) However, it is possible to describe a solution
as a series of solutions to subproblems plus a temporal ordering. To judge an overall solution,
then, is to judge these results together. (c) More specifically, a solution can be judged by a nu-
merical score, where this score depends upon the benefit from each disparate decision. The final
score (1) is computed from the decision scores (2) and the ordering (3), while the decision scores
depend upon the decision selected (4) and other relevant factors (5), including decision order and
outside influences. The decision may be constrained by the same factors, preventing a setting
of impossible decisions. (d) Concretely, we can name the variables (6), decisions, and orderings
that influence each score, expanding out the factors and removing duplicates. All data needed to
compute an overall scoring are known, so it is possible to compute and compare these scores. A
model should therefore be complete (represent all data points using graph nodes), correct (repre-
sent all data point connections using edges), clear (represent unique data points and connections
using one or more disparate nodes or edges), and compact (contain a minimal number of nodes
and edges). We suggest that the DARN model is all four, while earlier models and other graphical
formulations are not clear or compact for problems where ordering is not fixed.

In short, our approach is to generate a CRF from the full problem description, pro-
ducing a discriminative graphical model for policy making that we have dubbed a
Decision-Action-Reward Network (DARN). Decision problems are easily expressed
using this framework, and instance-specific inference is based upon an efficient utiliza-
tion of Loopy Belief Propagation (BP) [9] using message passing [14]. Finally, optimal
strategies for the general problem can be found by including additional instance likeli-
hood factors and selecting the set of variable assignments with highest expected utility
over all instances.

The remainder of this document is structured as follows: we define key terms in
Section 2, explain the details of the DARN model and its inference in Sections 3
through 5, present modifications for general decision problem solving in Section 6,
and conclude in Section 7.

2 Definitions

To begin, we define a generic terminology for discussion. A decision problem is defined
as an ordered tuple (D,C,A,O, u(·)), where:

– D is an ordered list of finite domains form discrete variables
– C is a probability distribution for the simultaneous assignment of values of n dis-

crete finite-domain variables
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– A is an alphabet ofm unique symbols
– O is a set ofm! or fewer unique ordered tuples ofm unique elements of A
– u(·) is a function whose domain is the Cartesian product of O and the m and n

variable domains, and whose range is a set where at least one computable binary
relation defines a strict total order

Specifically, D corresponds to all possible options (“alternatives” in equivalent termi-
nology) for m finite decisions, C corresponds to the influence of outside factors in
the form of n chance variables (independent of the m decisions), A corresponds to
a unique labeling of the m decisions, O corresponds to allowed orderings of the m
decisions (listing their labels in their temporal order), and u(·) corresponds to the scor-
ing of the m decisions given the n chance variables and the order of decisions made
(minimally evaluating for unallowed decisions). That is, when faced with a series of
decisions to make (in one or more allowed orders), it is possible to compute the relative
value of the outcome and therefore determine what decisions guarantee a highly-valued
result.

Using the terminology of VNs, D is the set of all assignments to decision nodes
(with nodes named by A), C is the joint probability distribution of all of the chance
nodes, O is a summary of the directed paths between decision nodes, and u(·) is
the joint utility function; the values of all relevant indicator nodes are encoded in
u(·) by evaluating to a minimal term when given a “disallowed” assignment of
variables.

A strategy S for a decision problem is a set of variable assignments from D along an
ordering appearing in O. Incorporating the influence of C, it is possible to determine
an expected utility corresponding to each strategy, where this value is a member of
the range of u(·) and is equal to an occurrence-weighted average of the values of u(·)
produced using the strategy over an infinite timespan. When using real-valued numbers
for the range of u(·), this expected utility is defined as

∫
p(u(·) = x|S) x dx, although

other formulations are used when the range of u(·) is otherwise defined. An optimal
strategy is a strategy whose expected utility is maximally ordered in relation to the
expected utility of all other strategies. In other words, an optimal strategy is the set of
decisions expected to perform the best over time.

When solving a decision problem, the goal is to produce one or more optimal strate-
gies. However, this may not be possible unless D, C, O and u(·) are all known during
policy making (i.e., reasoning performed to produce a strategy). In many applications,
in fact, C is not known and may not even be well-approximated by a small number of
samples. Rather than attempting to determine a setting and ordering of decisions that
is expected to do well over all C, it is often a useful task to instead perform policy
making on specific decision instances, where C is replaced by a set of unary spike
distributions whose impulses are defined by a single joint sample from the original C.
In practical terms, this corresponds to the selection of decisions that will perform well
under a given setting of outside factors; we refer to this as decision-theoretic planning.
We describe a method for performing fast exact and approximate reasoning in that case,
then demonstrate how it can be extended to solve full decision problems.



Using Conditional Random Fields for Decision-Theoretic Planning 129

3 The DARN Model

The DARN model of a decision problem is specified at two levels - graphical and nu-
merical. The numerical and graphical specifications of the DARN model together form a
CRF (expressed as a factor graph [5]) where p(Y | X) = u(·); we will not provide a full
introduction to CRF modeling, but instead instruct the reader to review the definitions
and examples presented by [12] if unfamiliar. The strength of this approach depends
upon a factorization of u(·) such that u(·) = h(g1(·), g2(·), . . . , gm(·), O), where gi(·)
is the value gained (or lost) by the ith decision,O is an ordering withO ∈ O, and h(·) is
a function that unifies these terms to reflect their impact upon the final utility valuation.
This approach allows for a larger domain of representable problems than traditional ap-
proaches (as final valuation is not restricted to being purely additive or multiplicative,
and as decisions may be fully-, partially-, or un-ordered by modifying h(·))

The details of the CRF structure are as follows:

– Y consists of
• ydec

1 , ydec
2 , . . . , ydec

m whose domains form D
• yval

i to record each of the gi(·) factors of u(·)
• yord

i to record the value of O
– X consists of

• n observed variables x1, x2, . . . , xn with joint probability distribution C
– The set of features (F , as factor nodes) consists of

• fdec
i (Y dec

i , Y,X), whose parameters are Y dec
i and the subset ofX ∪Y that de-

termines if a decision is “allowed” (i.e., feasible given previous actions, envi-
ronmental constraints, and decision ordering) according to the problem. Output
is 0 if the decision is allowed, otherwise −∞.

• fval
i (Y dec

i , Y val
i , Y,X), whose parameters are Y dec

i , Y val
i , and the subset of

X ∪Y that form the parameters of gi(·) (i.e., variables influencing the value of
the ith decision). Output is 0 if Y val

i = gi(·), otherwise −∞.
• f tot(Y val

1 , Y val
2 , . . . , Y val

m , Y ord
1 , Y ord

2 , . . . , Y ord
m ), whose parameters are the

Y variable assignments (i.e., factors of the joint utility) and the decision order-
ing. Output is ln(h(·)) if the ordering is allowed, otherwise −∞.

Since p(Y | X) = exp
(
f tot(·) +

∑
i f

dec
i (·) + fval

i (·)
)
, we use variable assignments

of −∞ to assign a probability of 0 in cases where decision problem constraints (e.g.,
correct valuation, decision restrictions) are violated; otherwise, p(Y | X) = u(·). As
a result, an optimal strategy may be found by maximum-likelihood inference for Y
(explained in Section 5). Factor weights are not used, although replacing f tot(·) =
ln(h(·)) with f tot(·) = h(·) or normalizing the computed utility is allowed if valuations
are only used in order-based comparison; other DARN uses (e.g., remorse quantification
with approximate inference) will void their use.

4 Example: Sandwich-Making

We present an example for illustration, where the graphical level is shown in Figure 2.
In this example, we are tasked with creating the ultimate sandwich. The available in-
gredients are: chicken, ham, cheese (Swiss and American), lettuce, tomato, butter, olive
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Fig. 2. Example sandwich-making DARN model (graphical level)

oil, and vinegar. Other than the last three, ingredients come in 100g increments up to
500g; the final three are used in negligible quantity and are required. Scoring depends
upon the ingredients as well as the order of their placement. Total weight is limited to
1kg, including a 200g bun.

The rules that determine sandwich quality are as follows:

1. Butter is the key to a good sandwich: its appearance as the first ingredient solidifies
its impact on the flavor of the sandwich (1 point).

2. Chicken is tasty (2 points per 100g), but ham is delicious (3 points per 100g).
3. Swiss cheese works well if there is an equal or greater amount of ham to pair it (2

points per 100g), but overpowers otherwise (−1 points per 100g unmatched).
4. American cheese is simple and unrefined, and provides a reasonable flavor no mat-

ter what else is present (1 point per 100g).
5. Oil and vinegar need to mix for proper impact, and will lessen the sandwich’s im-

pact if not placed immediately adjacent (−4 points).
6. Tomato is yummy (2 point per 100g), as is lettuce (2 point per 100g), but both

should be used sparingly (resulting in no additional points beyond 100g).
7. Be careful about accidentally using bad tomatoes (there is a 50% chance of −1

point if tomato is included).

The details of the numerical level (using ingredient names in place of i) are below:

– Y dec
butter , Y

dec
oil , Y

dec
vinegar ∈ {0}

– Y dec
i ∈ {0, 1, 2, 3, 4, 5} for all other i
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– gchicken(Y dec
chicken) = 2 ∗ Y dec

chicken

– gham(Y dec
ham) = 3 ∗ Y dec

ham

– gswiss(Y dec
swiss, Y

dec
ham) = 2 ∗ Y dec

swiss if Y dec
swiss ≤ Y dec

ham, otherwise 2 ∗ Y dec
ham −

(Y dec
swiss − Y dec

ham)
– gamerican(Y dec

american) = Y dec
american

– glettuce(Y dec
lettuce) = 2 if Y dec

lettuce > 0, otherwise 0
– gtomato(Y dec

tomato) = 2 if Y dec
tomato > 0 and Xtomato = 0, 1 if Y dec

tomato > 0 and
Xtomato = 1, otherwise 0

– gbutter(Y dec
butter) = goil(Y dec

oil ) = gvinegar(Y dec
vinegar) = 0

– fval
i (Y val

i , Y dec
i , ·) = 0 if Y val

i = gi(·), otherwise −∞
– fdec

i (Y ) = 0 if
∑

i Y
dec
i ≤ 8, otherwise −∞

– h(·) =
∑

i Y
val
i if Y ord

i is pairwise unique, −∞ otherwise
(add 1 if Y ord

butter = 1)
(subtract 4 if | Y ord

oil − Y ord
vinegar |> 1)

– f tot = ln(h(·))

One optimal choice of sandwich ingredients and order, then, is: butter, 500g ham,
300g Swiss cheese, 0g of the rest, olive oil, vinegar. Assuming that the tomatoes are not
bad, another optimal sandwich replaces 100g of Swiss cheese with 100g of tomatoes;
in Section 5, we will show how to calculate these arrangements.

As a sidenote, we will consider how this problem would be expressed using existing
decision-theoretic constructs. A decision tree would need branches for all 362880 fea-
sible orderings. Likewise, an ID, VN, or SVN would require linear node growth in the
number of orderings, as non-loopy paths are required by their various fusion algorithms
[11,1]. Similarly, an MDP would require a state space that encoded all previous actions
(to restrict the next decision to remaining ingredients). In all of these cases, the result
is a graph that is incomprehensibly large for human purposes. The undirected orderable
approach taken by our model is therefore a serious advantage, as it allows for compact
representation where decision structure has not changed beyond reordering, and where
each decision has a separate decision space. The next step is to show how to use this
representation for planning.

5 Inference

Using existing approaches for CRFs, inference in the DARN model is performed by
Loopy BP via message passing. Although a number of optimizations are effective in
reducing message density for general CRFs (e.g., Sparse Belief Propagation, a gener-
alization of linear-chain Sparse Forward-Backward [8]), sparsification is not feasible
for the DARN model without compromising the encoding of hard decision constraints1

Instead, we propose two customized message ordering schemes designed to reduce the
number of required factor function computations.

1 Since the exponentiation of F \ f tot results in a constant value for allowed and zero for
disallowed assignments, the removal of message entries is arbitrary and may disregard high-
valuation assignments. This argument also rules out Sparse Mean Field approximation [13].
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However, it is first necessary to describe the general message passing process used
for DARN inference. Since p(Y | X) = u(·), an optimal strategy is where the CRF
variable encoding, Yoptimal, is such that Yoptimal = argmaxY p(Y |X). This probabil-
ity may be approximated by message accumulation, as follows:

m
(1)
V →F (x) = 1

m
(k)
V →F (x) =

∏
F ′∈N(V )\F

m
(k−1)
F ′→V (x)

m
(k)
F→V (x) =

∑
X′:x/∈X′

exp(F (x,X ′))
∏

V ′∈N(F )\V

m
(k−1)
V ′→F (x)

p(k)(x) =
∑

X′:x/∈X′
exp(f tot(x,X ′))

∏
V ′∈N(ftot)

m
(k−1)
V ′→ftot(x)

where:

– k is the number of an arbitrary iteration
– x is one or more variable assignments; messages with no trailing x cover all assign-

ments
– m(k)

A→B(·) is the message from graph node A to graph node B during iteration k
(regarding the parameters)

– F and F ′ are arbitrary factor nodes
– V and V ′ are arbitrary variable nodes
– N(·) is a function that returns the set of all adjacent graph nodes
–

∑
X′:x/∈X′ refers to the summation over all parameter assignments excluding x

– F (·) is the computation of the function whose factor node is F (ignoring x if it is
not in the parameter list of F (·))

The desire is to compute p(k)(Y,X) (for some k) where p(k)(Y,X) = p(Y | X)
(or | p(k)(Y,X) − p(Y | X) |< ε for some small ε, when approximating). Messages
propagating from the fdec

i (·) and fval
i (·) nodes indicate variable assignment constraints

that must be taken into account during final valuation. Exact inference will include
the propagation of all of these messages, while inexact (approximate) inference will
propagate a growing proportion.

The impact of message ordering on general loopy CRFs is still poorly understood, al-
though recent publications have suggested approaches aimed at reducing the number of
messages without compromising precision. For instance, [12] support the adaptation of
Tree Reparameterization (TRP) for general CRFs, where messages are generated along
cross-cutting spanning trees and tree selection is performed randomly. Although TRP
is expected to perform well at propagating decision ordering information and generally
passing information between local trees in a DARN model, the introduction of cross-
decision restrictions or valuations (from the parametrization of Y dec

i and Y val
i ) suggests

a theoretically large expected number of iterations required to converge if using random
tree selection. Using TRP as our motivation, we propose message ordering schemes de-
signed to use small spanning trees for message propagation while using custom tree
orderings that outperform random selection.
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We begin with an observation: although it is not possible to reduce the number of
computations of fdec

i (·), it is possible to reduce the number of computations of fval
i (·)

and f tot(·) by ensuring that messages sent outwards from those nodes follow certain in-

coming messages. Specifically, ifm(k)
fval

i →V
(x) is not computed beforem(j)

fdec
i →Y dec

i

(x)

and m(j′)
Y dec

i →fval
i

(x) (for j < j′ < k), then it is possible to register 0-valued entries

for assignments in m(k)
fval

i →V
(x) where fdec

i (·) = −∞ without computing fval
i (·). So,

it is ideal to pass messages among decision-local nodes before local valuation nodes,
and local valuation nodes before the global valuation node, to reduce the number of
functions computed for disallowed decisions.

However, it is still possible that valuations will be calculated for sets of decisions that
are not allowed, as there may be situations where setting one decision adds constraints
upon another decision; these can be eliminated if m(k)

fdec
i →V

propagate prior to further

calculation. These two notions give us the exact message passing scheme shown as
Algorithm 1 that terminates after the transmission of allm(7)

V →ftot messages.

Algorithm 1. Exact message passing
for each i do

Compute and send m
(1)

X→fdec
i

, m
(2)

fdec
i →Y dec

i

for each V ∈ N(Y dec
i ) \ {X, fval

i , fdec
i ,∀i′fval

i′ } do
Compute and send m

(3)

Y dec
i →V

end

Compute and send m
(3)

X→fdec
i

, m
(4)

fdec
i →Y dec

i

, m
(5)

Y dec
i →fval

i

, m
(5)

X→fval
i

for each V ∈ N(Y dec
i ) \ {X, fval

i , fdec
i ,∀i′fdec

i′ } do
Compute and send m

(5)

Y dec
i →V

end

Compute and send m
(6)

fval
i

→Y val
i

Compute and send m
(7)

Y val
i →ftot , m

(7)

Y ord
i →ftot

end

The result of Algorithm 1 is to produce a set of messages such that p(8)(Y,X) =
p(Y | X) using a near-optimal number of function computations; improvement is only
possible when the algorithm is tailored to the specific constraints present, and can re-
quire overwhelming computational cost to determine an optimal ordering as the number
of decisions and connections increases. It is important to note that messages sent more
than once (e.g,, fromX to fdec

i ) may be stored without recomputing, and that modifica-
tions to these messages (due to other incoming messages) is performed by zeroing ex-
isting entries without recomputing any factor functions. This “storing” may be applied
to future inference performed on the same DARN model but with partially-varyingX ,
thereby allowing for a reduction in the number of computations when only a portion of
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the decision space has been changed, even to the point where no additional functions
need be calculated. This property may be viewed as “training” by storing valuations on
given data, then using these valuations to perform fast inference on test data (by substi-
tuting training valuations for approximately-equivalent test situations while attempting
to minimize computational error). We will explore this property in greater depth in
aditional publications, especially as it pertains to inference in large DARN models for
Computer Vision tasks.

An approximate version of Algorithm 1 is provided in Algorithm 2, with the addi-
tional requirements that:

– m(0)
A→B(x) = 0 for all nodes A and B where A /∈ X

– m(j+1)
A→B(x) = m

(j)
A→B(x) (∀j ≥ 0) unless specified

– î is the set of all values not chosen from i so far
– If î = ∅ at the end of any iteration, î = i at the start of the next iteration

These properties ensure that the set of valuated assignments is initialized to be empty
and grows as k increases pastm. This may incorrectly assume high-valued assignments
to be disallowed, but will converge exactly as k approaches 2m (where worst-case se-
lection will require 2m iterations for all inter-decision messages). The rate of theoretical
convergence is dependent upon the structure of the modeled problem and the sampling
schema used for each iteration; we suggest an initial scheme where the selection from î
maximizes the number ofm(k)

V →F messages sent during each iteration.
Once p(Y | X) is computed or approximated for all feasible decisions, and given

X , inference terminates by selecting a setting of Y with highest conditional proba-
bility. If there are multiple such settings, selection is arbitrary. Algorithm 2 must be

Algorithm 2. Inexact message passing (k iterations)
for each i do

Compute and send m
(1)

Y ord
i →ftot

end
for r = 0 to (k − 1) do

for a constant-size sample of î do
Compute and send m

(5r+1)

X→fdec
i

, m
(5r+2)

fdec
i →Y dec

i

for each V ∈ N(Y dec
i ) \ {X, fval

i , fdec
i ,∀i′fval

i′ } do
Compute and send m

(5r+3)

Y dec
i →V

end

Compute and send m
(5r+3)

Y dec
i →fval

i

, m
(5r+3)

X→fval
i

for each V ∈ N(Y dec
i ) \ {X, fval

i , fdec
i ,∀i′fdec

i′ } do
Compute and send m

(5r+3)

Y dec
i

→V

end

Compute and send m
(5r+4)

fval
i →Y val

i

, m
(5r+5)

Y val
i →ftot

end
end
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performed for a larger value of k if no values for Y are approximated as having non-
zero conditional probability. Cases where there are no non-zero valuations (i.e., where
approximation will never terminate) are treated as degenerate.

Using this inference mechanism, it is now possible to compute an optimal sandwich
construction, albeit only if tomato quality is already known. We will next show how to
take this “tomato uncertainty” into account.

6 Solving General Problems

To convert the instance-specific framework into one that will solve the general decision
problem, we need only introduce information about C into the existing graphical struc-
ture. Specifically, we convert the CRF to a Markov Random Field (MRF) [4], adding
a new factor function fprob(X) = p(X). Graphically, this factor node is connected to
all (now unobserved) Xi nodes; if X contains independent subsets, each subset may
have a disparate new factor node that is connected only to its correspondingXi nodes,
returning the joint probability of the elements of the subset. The message-passing com-
putation with these additional factors (introducingm0

fprob→Xi
messages and replacing

constant m1
Xi→V with computedmk

Xi→V for k = 1) results in the joint probability of
Y and X , so an optimal strategy can be determined by selecting assignments to Y that
maximize this probability; this is equivalent to finding argmaxY E [u(·)]X .

Returning to the sandwich-making example, we set fprob(X1) = 0.5, so the ex-
pected utility of the ham-and-Swiss sandwich (22) is strictly greater than the ham-
Swiss-tomato sandwich (21) as anticipated. Thus, it is best to avoid tomatoes if quality
is unknown. We have also applied this approach to Towers of Hanoi and chess “opening
book” planning, with similar findings: decisions are correctly selected to maximize util-
ity while including the influence of priors on stone arrangements and opponent move-
ments respectively.

Although it is possible to produce alternate graphical models that compute similar
results without relying on existing (incompact) tools, we prefer the use of CRFs (and
MRFs). Of particular interest, given recent trends, is the possibility of using an MLN
to encode the hard constraints of gi(·) computations as well as the comparable utility
score. While it is provably feasible to produce an MLN that embodies the same proba-
bility distribution as our CRF-based approach (as MLNs subsume all discrete graphical
models), it is not possible to produce one with comparable compactness. The reason
for this lies in the encoding of the distribution such that the ordering of probabilities of
variable assignments (groundings) preserves the ordering of the full utility valuation.
For this, the probability of a particular ground MLN (where all variables have received
assignments) must appear in the same order relative to all other ground MLNs as its
utility valuation does to all other feasible valuations. As the probability of a particu-
lar ground MLN is equal to the exponentiation of summed weighted formula truths,
this means that an MLN that preserves valuation ordering must have formula weights
that produce an equivalent ordering. However, according to the definition of an MLN,
“all groundings of the same formula will have the same weight”. To produce correctly-
ordered ground probabilities, therefore, the MLN must include disparate formulas for
each possible utility valuation (with according weight and limited satisfiability), result-
ing in an exponential growth in the number of graph nodes.
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7 Conclusions

Overall, the proposed DARN model is an effective tool for modeling decisions where
ordering may or may not be constrained and where valuation is not necessarily addi-
tive or multiplicative. In comparison, existing approaches do not guarantee clarity and
compactness on the same domain of application.

We suggest efficient algorithms for exact and inexact inference that are demonstrably
correct; future work will study more sophisticated guidance during inexact inference
and applications of the “training” mechanism suggested in Section 5.
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Interactive Decision Making for Hierarchical
Multiobjective Linear Programming Problems

Hitoshi Yano
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Abstract. In this paper, we focus on hierarchical multiobjective lin-
ear programming problems where multiple decision makers in a hier-
archical organization have their own multiple objective linear functions
together with common linear constraints, and propose an interactive de-
cision making method to obtain the satisfactory solution which reflects
not only the hierarchical relationships between multiple decision mak-
ers but also their own preferences for their objective functions. In the
proposed method, instead of Pareto optimal concept, the generalized Λ-
extreme point concept is introduced. In order to obtain the satisfactory
solution from among the generalized Λ-extreme point set, an interactive
decision making method based on the linear programming is proposed,
and an interactive processes are demonstrated by means of an illustrative
numerical example.

1 Introduction

In the real-world decision making situations, it is often required that the goal of
the overall system is achieved in the hierarchical structure, where many decision
makers who belong to its sections or divisions are in action to seek their own
goals independently and are affected each other. The Stackelberg games [1,9] can
be regarded as multilevel programming problems with multiple decision makers.
In such a Stackelberg problem, each decision maker agrees on the order in which
decisions are made and seeks his/her own benefits independently. But each of
their benefits is affected by the decision of the other decision makers and they
do not negotiate each other. As a result, in general, the solution is not Pareto
optimal. Although many kinds of techniques to obtain the Stackelberg solution
have been proposed, almost all of such techniques are unfortunately not efficient
in computational aspects.

In order to circumvent the computation inefficiency to obtain such a Stackel-
berg solution and the paradox that the lower level decision power often dominates
the upper level decision power, Lai [3] and Shih et al.[8] introduced concepts of
memberships of optimalities and degrees of decision powers and proposed the
fuzzy approach to multilevel linear programming problems. In their approaches,
each decision maker elicits his/her own membership functions for not only the
objective functions but also the decision variables. Following the fuzzy decision
[4] together with the membership functions, the mathematical programming
problem of finding the maximum decision is formulated and solved to obtain

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 137–148, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the candidate of the satisfactory solution. As a generalized version of the above
fuzzy approaches, Shih [6] proposed an interactive approach for integrated mul-
tilevel programming problems in a fuzzy environment, where not only imprecise
information for the preference of the decision makers but also the imprecision of
coefficients in the mathematical model are considered. The proposed approach
was extended to apply to multilevel knapsack problems [7].

However, in such proposed fuzzy approaches for multilevel linear programming
problems, the decision makers are required to elicit each of the membership
functions for not only the objective functions but also the decision variables,
and to update them in each of the iterations. It seems to be very difficult to
elicit the membership functions for the decision variables, because, in general,
the decision maker does not have preference for each of the decision variables
and the number of the decision variable is rather larger than the number of the
objective functions.

In this paper, we especially focus on hierarchical multiobjective linear pro-
gramming problems where multiple decision makers in a hierarchical organiza-
tion have their own multiple objective linear functions together with common
linear constraints. In section 2, hierarchical multiobjective linear programming
problems are formulated and the corresponding solution concept called the gen-
eralized Λ-extreme point is introduced. In section 3, an interactive algorithm
is proposed to obtain the satisfactory solution from among the generalized Λ-
extreme point set, where the corresponding hyperplane problem [5,10] is solved.
In section 4, an interactive process of the proposed method is demonstrated by
means of an illustrative numerical example.

2 Hierarchical Multiobjective Linear Programming
Problems

We consider the following hierarchical multiobjective linear programming prob-
lems (HMOLP), where each decision maker (DMr) has his/her own multiple
objective linear functions together with common linear constraints.

[HMOLP]
first level decision maker : DM1

min
x∈X

C1x = (c11x, c12x, · · · , c1k1x)T (1)

second level decision maker : DM2

min
x∈X

C2x = (c21x, c22x, · · · , c2k2x)T (2)

· · · · · · · · · · · · · · · · · · · · ·

p-th level decision maker : DMp

min
x∈X

Cpx = (cp1x, cp2x, · · · , cpkpx)T (3)

where x = (x1, x2, · · · , xn)T is n-dimensional decision vector, X ∈ En is a linear
constraint set of x, and cri = (cri1, cri2, · · · , crin), i = 1, · · · , kr, r = 1, · · · , p are
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n-dimensional row vectors, Cr = (cr1, cr2, · · · , crkr)
T , r = 1, · · · , p are (kr × n)-

dimensional matrices.
In this paper, we assume that each decision maker (DMr) in HMOLPs finds

his/her satisfactory solution from among Λr-extreme point set which is a gen-
eralized version of Pareto optimal solution set. Λr-extreme point [11] is defined
by a cone Λr in objective space of DMr as follows.

Definition 1. y∗
r ∈ CrX is said to be a Λr-extreme point of CrX to MOLPr,

if there is no yr ∈ CrX such that y∗
r ∈ yr +Λr,y

∗
r �= yr, where CrX = {Crx ∈

Ekr | x ∈ X}, Λr ⊂ Ekr is a cone, and MOLPr is DMr’s multiobjective linear
programming problem formulated as follows:

[MOLPr]
min
x∈X

Crx = (Cr1x,Cr2x, · · · ,Crkrx)T (4)

According to the notation of Yu [11], let us denote a set of Λr-extreme points in
DMr’s objective space as Ext[CrX | Λr]. Unfortunately, although Ext[CrX | Λr]
can be applied to MOLPr, Ext[CrX | Λr] can not to be directly applied to
HMOLP, because multiple decision makers DMr, r = 1, · · · , p in the hierarchical
structure have to seek their common satisfactory solution in HMOLP. Therefore,
in order to deal with HMOLP, we introduce the following extended concept
called a generalized Λ-extreme point where cones Λr, r = 1, · · · , p are integrated
in objective space of DMr, r = 1, · · · , p.

Definition 2. y∗ ∈ CX is said to be a generalized Λ-extreme point of CX
to HMOLP, if there is no y ∈ CX such that y∗ ∈ y + Λ,y∗ �= y, where
CX = {Cx ∈ E

∑p
r=1 kr | x ∈ X}, and a cone Λ is defined as follows.

Λ = Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λp (5)

where ⊗ means Cartesian product.

Similar to Ext[CrX | Λr], let us denote a set of generalized Λ-extreme points
in objective space of all decision makers as Ext[CX | Λ], and the corresponding
set of Λ-extreme points in decision space as Ext[X | Λ], respectively.

Since it is very difficult to deal with a cone Λ directly, in the following, let us
assume that Λr, r = 1, · · · , p are polyhedral cones defined as follows:

Λr = {
kr∑
i=1

αrivri, αri ≥ 0, αri ∈ R1} (6)

where vri, i = 1, · · · , kr are generators of a cone Λr, i.e.,

vri = (vri1, vri2, · · · , vrikr )T
, (7)

and vri is assumed to satisfy the following condition.

‖ vri ‖=

√√√√ kr∑
j=1

v2rij = 1. (8)
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Using generators vri, i = 1, · · · , kr, (kr × kr)-dimensional generator matrix V r

of a cone Λr can be formulated.

V r = (vr1,vr2, · · · ,vrkr ) =

⎛⎜⎜⎜⎝
vr11 vr21 . . . vrkr1
vr12 vr22 . . . vrkr2

...
...

. . .
...

vr1kr vr2kr . . . vrkrkr

⎞⎟⎟⎟⎠ (9)

Moreover, on the basis of matrices V r, r = 1, · · · , p, (
∑p

r=1 kr ×
∑p

r=1 kr)-
dimensional generator matrix V of a cone Λ can be formulated as follows.

V =

⎛⎜⎜⎜⎝
V 1 0 . . . 0
0 V 2 . . . 0
...

...
. . .

...
0 0 . . . V p

⎞⎟⎟⎟⎠ (10)

Then, a integrated cone Λ defined by (5) can be expressed as follows.

Λ = V · αT (11)

where αr = (αr1, αr2, · · · , αrkr) ≥ 0, r = 1, · · · , p, α = (α1,α2, · · · ,αp) ∈
E

∑p
r=1 kr .

If inverse matrices V −1
r for V r, r = 1, · · · , p exist, an inverse matrix V −1 for

V becomes as follows.

V −1 =

⎛⎜⎜⎜⎝
V −1

1 0 . . . 0
0 V −1

2 . . . 0
...

...
. . .

...
0 0 . . . V −1

p

⎞⎟⎟⎟⎠ (12)

In the following, (i, j)-element of V −1
r is denoted as qrij , i.e.,

V −1
r =

⎛⎜⎜⎜⎝
qr11 qr21 . . . qrkr1
qr12 qr22 . . . qrkr2

...
...

. . .
...

qr1kr qr2kr . . . qrkrkr

⎞⎟⎟⎟⎠ (13)

For generating a candidate of the satisfactory solution from among a general-
ized Λ-extreme point set Ext[CX | Λ], each decision maker (DMr) is asked
to specify his/her reference values z̄r = (z̄r1, z̄r2, · · · , z̄rkr) [4] which are refer-
ence levels of achievement of the objective functions. Once the reference val-
ues z̄ = (z̄1, z̄2, · · · , z̄p) are specified, the corresponding generalized Λ-extreme
point, which is, in a sense, close to their requirement, is obtained by solving the
following hyperplane problem [5].
[ HP1(z̄) ]

min
x∈X,xn+1∈E1

xn+1 (14)
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subject to
V −1 · {−z̄T + Cx − xn+1} ≤ 0, (15)

where xn+1 = (xn+1, xn+1, · · · , xn+1)
T ∈ E

∑p
r=1 kr . It should be noted in HP1(z̄)

that (15) is the inequality set whose elements are
∑kr

j=1 qrij{−z̄rj+
∑n

�=1 crj�x�−
xn+1} ≤ 0, i = 1, · · · , kr, r = 1, · · · , p.

The relationships between the optimal solution to HP1(z̄) and the the cor-
responding generalized Λ-extreme point set Ext[X | Λ] can be characterized by
the following theorems.

Theorem 1. If (x∗, x∗n+1) is a unique optimal solution to HP1(z̄), then x∗ ∈
Ext[X | Λ].

Proof. Assume x∗ �∈ Ext[X | Λ], then there exist x ∈ X and λ ∈ Λ ( or
equivalently α ≥ 0 ) such that

Cx∗ = Cx + λ

= Cx + V · αT .

If (x∗, x∗n+1) is an optimal solution to HP1(z̄),

V −1{−z̄T + Cx∗ − x∗
n+1} ≤ 0,

⇔ V −1{−z̄T + Cx + V · αT − x∗
n+1} ≤ 0,

⇔ V −1{−z̄T + Cx − x∗
n+1} ≤ −αT ≤ 0.

This implies that x∗ is not a unique optimal solution to HP1(z̄). ��
Theorem 2. If x∗ ∈ Ext[X | Λ], then (x∗, x∗n+1) is an optimal solution to
HP1(z̄) for some reference values z̄, where (−z̄T + Cx∗ − x∗

n+1) = 0.

Proof. Assume that (x∗, x∗n+1) is not an optimal solution to HP1(z̄). Then, there
exist x ∈ X,xn+1 ∈ E1 such that

V −1{−z̄T + Cx − xn+1} ≤ 0, xn+1 < x
∗
n+1,

where xn+1 = (xn+1, · · · , xn+1)
T ∈ E

∑p
r=1 kr . Moreover, because of (−z̄T +

Cx∗ − x∗
n+1) = 0, the following inequality relations must be satisfied.

V −1{−z̄T + Cx − xn+1} ≤ 0,
⇔ V −1{−z̄T − x∗

n+1 + Cx + x∗
n+1 − xn+1} ≤ 0,

⇔ V −1{−Cx∗ + Cx + x∗
n+1 − xn+1} ≤ 0.

Since 0 < x∗
n+1−xn+1 ∈ Λ, there exists α ≥ 0 such that x∗

n+1−xn+1 = V ·αT .
Therefore, it holds that

V −1{−Cx∗ + Cx + x∗
n+1 − xn+1} ≤ 0

⇔ V −1{−Cx∗ + Cx} ≤ −V −1 · (x∗
n+1 − xn+1)

⇔ V −1 · {−Cx∗ + Cx} ≤ −αT ≤ 0.

There exists β ∈ Λ such that V −1 · {−Cx∗ + Cx} = −βT ≤ 0. This implies
that Cx + V βT = Cx∗, i.e., x∗ �∈ Ext[X | Λ]. ��
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It should be noted here that, in general, the generalized extreme point obtained
by solving HP1(z̄) does not reflect the hierarchical structure between p decision
makers where the upper level decision maker can take priority for his/her ob-
jective functions over the the lower level decision makers. In order to cope with
such a hierarchical preference structure between p decision makers, we introduce
the decision powers w = (w1, w2, · · · , wp)

T ∈ Ep [3] in HP1(z̄), where the r-
th level decision maker (DMr) can specify the decision power wr+1 in his/her
subjective manner and the last decision maker (DMp) has no decision power. In
order to reflect the hierarchical preference structure between multiple decision
makers, the decision powers w = (w1, w2, · · · , wp)

T have to satisfy the following
inequality condition.

w1 = 1 ≥ w2 ≥ · · · · · · ≥ wp−1 ≥ wp > 0 (16)

Then, the corresponding modified HP1(z̄) is reformulated as follows:

[ HP2(w, z̄) ]
min

x∈X,xn+1∈E1
xn+1 (17)

subject to

V −1 ·

⎛⎜⎜⎜⎝
−z̄1 + C1x − xn+1/w1
−z̄2 + C2x − xn+1/w2

...
−z̄p + Cpx − xn+1/wp

⎞⎟⎟⎟⎠ ≤ 0 (18)

The constraints (18) in HP2(w, z̄) are equivalently expressed as follows.

kr∑
j=1

qrij(−z̄rj +
n∑

�=1

crj�x� − xn+1/wr) ≤ 0, i = 1, · · · , kr, r = 1, · · · , p. (19)

The relationships between the optimal solution of HP2(w, z̄) and generalized
Λ-extreme points to HMOLP can be characterized by the following theorem.

Theorem 3. If (x∗, x∗n+1) is a unique optimal solution to HP2(w, z̄), then x∗ ∈
Ext[X | Λ].

Proof. Assume x∗ �∈ Ext[X | Λ], then there exist x ∈ X and λ ∈ Λ ( or
equivalently α = (α1, · · · ,αp) ≥ 0) such that

Cx∗ = Cx + λ

= Cx + V · αT .

If (x∗, x∗n+1) is an optimal solution to HP2(w, z̄),

V −1
r {−z̄T

r + Crx
∗ − x∗

n+1/wr} ≤ 0,

⇔ V −1
r {−z̄T

r + Crx + V r · αT
r − x∗

n+1/wr} ≤ 0,

⇔ V −1
r {−z̄T

r + Crx − x∗
n+1/wr} ≤ −αT

r ≤ 0, r = 1, · · · , p.

This implies that x∗ is not a unique optimal solution to HP2(w, z̄). ��
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It must be observed here that for generating a generalized Λ-extreme point to
HMOLP using the above theorem, uniqueness of solution must be verified. In
order to test whether a current optimal solution x∗ of HP2(w, z̄) is a generalized
Λ-extreme point or not, we formulate and solve the following linear programming
problem.

[ Test problem for x∗ ]

max
x∈X

p∑
r=1

kr∑
i=1

εri (20)

subject to
V −1 · (Cx∗ − Cx) = εT (21)

ε = (ε11, · · · , ε1,k1 , · · · , εp1, · · · , εp,kp) ≥ 0 (22)

The following theorem guarantees that the optimal solution x̄ of the above test
problem is a generalized Λ-extreme point to HMOLP.

Theorem 4. Let x∗ ∈ X be an optimal solution to HP2(w, z̄), and x̄ ∈ X
and ε̄ ≥ 0 be an optimal solution to test problem (21) for x∗ ∈ X. Then, if all
ε̄ri = 0, r = 1, · · · , p, i = 1, · · · , kr, then x∗ ∈ Ext[X | Λ]. If at least one ε̄ri > 0,
then x̄ ∈ Ext[X | Λ].

Proof. Let all ε̄ri = 0, r = 1, · · · , p, i = 1, · · · , kr. Then, there is no x ∈ X and
ε̄ ≥ 0(ε̄ �= 0) such that Cx∗ = Cx + V · ε̄T . This means that x∗ ∈ Ext[X | Λ].
Let some ε̄ri > 0. Then, it holds that Cx∗ = Cx̄+V ·ε̄T . Assume x̄ �∈ Ext[X | Λ].
Then, there are some x ∈ X and α ≥ 0 such that Cx̄ = Cx + V · αT . This
means that

Cx̄ = Cx + V · αT = Cx∗ − V · ε̄T ,

⇔ Cx∗ − Cx = V · (ε̄T + αT ),
⇔ V −1(Cx∗ − Cx) = (ε̄T + αT ).

This contradicts that ε̄ is an optimal solution of test problem (20)-(22). ��

3 An Interactive Algorithm

After obtaining a generalized Λ-extreme point x∗ by solving HP2(w, z̄), each
decision maker must either be satisfied with the current values of the objective
functions, or update his/her decision power wr and/or his/her reference values
z̄r = (z̄r1, · · · , z̄rkr).

In order to help each decision maker update his/her reference values z̄r =
(z̄r1, · · · , z̄rkr), trade-off information [2] between a standing objective function
and each of the other objective functions is very useful. Such trade-off infor-
mation between the objective functions is obtainable since it is related to the
simplex multipliers of HP2(w, z̄).
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Theorem 5. Let (x∗, x∗n+1) be a unique and nondegenerate optimal solution of
HP2(w, z̄), and let two constraints with the reference values z̄rj1 and z̄rj2 be
active. Then, the following relations hold.

−∂(crj1x)
∂(crj2x)

∣∣∣∣
x=x∗

=
∑kr

i=1 π
∗
riqrij2∑kr

i=1 π
∗
riqrij1

, (23)

where π∗ri > 0 is the corresponding simplex multipliers for the constraint (19) of
HP2(w, z̄).

Proof. In the generalized hyperplane problem GHP(Λ, t) of the reference ( see
p.372, [5]), let us set

Dr(xn+1, z̄r) = xn+1/wr + z̄T
r ,

D(xn+1, z̄) = (D1(xn+1, z̄1),D2(xn+1, z̄2), · · · ,Dp(xn+1, z̄p))
T ,

for some fixed degree w ≥ 0. Define (
∑p

r=1 kr × (
∑p

r=1 kr + 1))-dimensional
Jacobian matrixA(xn+1, z̄) ( see p.370, [5]) of D(xn+1, z̄) on (xn+1, z̄) as follows:

A(xn+1, z̄) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/w1
. . . I1

1/w1
1/w2
. . . I2

1/w2

. . .
. . .

1/wp

. . . Ip

1/wp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (24)

where Ir, r = 1, · · · , p are (kr×kr)-dimensional identity matrices. By leaving out
the last column of A(xn+1, z̄), the following (

∑p
r=1 kr × (

∑p
r=1 kr))-dimensional

matrix Ā(xn+1, z̄) is defined.

Ā(xn+1, z̄) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/w1
. . . I1

1/w1
1/w2
. . . I2

1/w2

. . .
. . .

1/wp

. . . Ip∗
1/wp

1/wp 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

where Ip∗ is ((kr − 1) × (kr − 1))-dimensional identity matrix. Then, it holds
that det Ā(xn+1, z̄) �= 0 for any values wr > 0, r = 1, · · · , p. This means that det
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Ā(xn+1, z̄) satisfies Property 1 (see p.370, [5]), and D(xn+1, z̄) satisfies Prop-
erties 2 and 3 of (see p.370, [5]). As a result, Theorem 8 (see p378, [5]) can be
directly applied to HP2(w, z̄). ��

Theorem 6. Let (x∗, x∗n+1) be a unique and nondegenerate optimal solution of
HP2(w∗, z̄), and let the constraint with the reference values z̄rj be active. Then,
the following relation holds.

∂(crjx)
∂wr

∣∣∣∣
x=x∗

= −
x∗n+1

w∗2
r

+
x∗n+1

w∗3
r

{
kr∑
i=1

π∗ri

kr∑
j=1

qrij

}
(26)

where λ∗ri > 0 is a simplex multiplier for the constraints (18) in HP2(w∗, z̄).

Proof. Let (x∗, x∗n+1) be a unique and nondegenerate optimal solution of
HP2(w∗, z̄). Then, the corresponding Lagrangian function can be defined as
follows.

L(x, xn+1,w) = xn+1+
p∑

r=1

kr∑
i=1

πri

{
kr∑

j=1

qrij(−z̄rj+
n∑

�=1

crj�x�−xn+1/wr)

}
(27)

From the basic sensitivity theorem [2], on some neighborhood N(w∗) of w∗, it
holds that

∂xn+1(w)
∂wr

=
∂L(x, xn+1,w)

∂wr
=

kr∑
i=1

πri(w)

{
kr∑

j=1

qrij
xn+1(w)
w2

r

}
, w ∈ N(w∗)

where (x(w), xn+1(w)) and πri(w), i = 1, · · · , kr, r = 1, · · · , p are a correspond-
ing optimal solution and the simplex multipliers of HP2(w∗, z̄), and (x(w),
xn+1(w)) and πri(w), i = 1, · · · , kr, r = 1, · · · , p are continuously differentiable
vector valued functions defined on the neighborhood N(w∗). On the other hand,
on the neighborhood N(w∗), it holds that −z̄rj + crjx(w) − xn+1(w)/wr =
0, w ∈ N(w∗). By differentiating crjx(w) by wr, it follows that

∂crjx(w)
∂wr

= −xn+1(w)
w2

r

+
1
wr

· ∂xn+1(w)
∂wr

= −xn+1(w)
w2

r

+
xn+1(w)
w3

r

{
kr∑
i=1

πri(w)
kr∑

j=1

qrij

}
, w ∈ N(w∗).

��

Now, we can construct the interactive algorithm to derive the satisfactory solu-
tion of multiple decision makers in a hierarchical organization from among the
generalized Λ-extreme point set.

Step 1: Set the initial decision powers wr = 1, r = 1, · · · , p and each deci-
sion maker sets his/her initial reference values z̄ri, i = 1, · · · , kr, r = 1, · · · , p in
his/her subjective manner.
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Step 2: For the specified decision powers wr, r = 1, · · · , p and the specified
reference values z̄ri, i = 1, · · · , kr, r = 1, · · · , p, solve HP2(w, z̄), and obtain the
corresponding generalized Λ-extreme point (x∗, x∗n+1) and trade-off information.
If x∗n+1 ≥ 0, then go to Step 3. If x∗n+1 < 0, then update reference values as
follows, ẑri ← z̄ri + x∗n+1/wr, i = 1, · · · , kr, r = 1, · · · , p, and solve HP2(w, ẑ)
again, where ẑ = (ẑ11, · · · , ẑ1k1 , · · · , ẑp1, · · · , ẑpkp).

Step 3: If each decision maker (DMr) is satisfied with the current values of
his/her objective functions, then stop. Otherwise, let the s-th level decision
maker (DMs) be the uppermost of the decision makers who are not satisfied
with the current values. Considering the current values of his/her objective func-
tions and two kinds of trade-off rates, DMs updates his/her decision power ws+1
and/or his/her reference values z̄si, i = 1, · · · , ks according to the following rules,
and return to Step 2.

(1) the rule of updating ws+1: In order to satisfy the condition (16), ws+1
must be set as the value which is equal to or less than ws (ws+1 ≤ ws). If
ws+1 < wt, s+ 1 < t ≤ p, wt is replaced by ws+1 (wt ← ws+1). Here, it should
be noted for DMs that the less value of the decision power ws+1 gives better
values of the objective functions of DMr(1 ≤ r ≤ s) at the expense of the ones
of DMr(s+ 1 ≤ r ≤ p) for some fixed reference values.
(2) the rule of updating z̄si, i = 1, · · · , ks: After setting z̄ri ← crix∗, i =
1, · · · , kr, r = 1, · · · , p, r �= s, DMs updates his/her reference values z̄si, i =
1, · · · , ks. Here, it should be stressed for DMs that any improvement of one
objective function can be achieved only at the expense of at least one of the
other objective functions for some fixed decision powers.

4 A Numerical Example

In order to demonstrate the proposed method and the interactive process, we
consider the following hierarchical two-objective linear programming problem.

[HMOLP]
first level decision maker : DM1

min C1x =
(

c11x
c12x

)
=

(
−10x1 − 2x2 − x3 − x4
−x1 − 13x2 − 2x3 − x4

)
second level decision maker : DM2

min C2x =
(

c21x
c22x

)
=

(
−x1 − 2x2 − 11x3 − x4
−2x1 − x2 − x3 − 14x4

)
subject to

X = {x = (x1, x2, x2, x4)
T ≥ 0 | x1 + x2 + x3 + x4 ≤ 30}

In the above HMOLP, let us assume that the hypothetical decision makers (DM1
and DM2) find their satisfactory solution from Λr-extreme point sets Ext[C1X |
Λ1] and Ext[C2X | Λ2], where the generators of the polyhedral cones Λ1 and Λ2
are defined as follows:

V 1 = (v11,v12) =
(

5/
√

26 −1/
√

65
−1/

√
26 8/

√
65

)
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V 2 = (v21,v22) =
(

7/
√

50 −1/
√

17
−1/

√
50 4/

√
17

)
According to Step 1, the initial decision powers are set as w = (w1, w2)

T = (1, 1)T ,
and let us assume that the hypothetical decision makers DM1 and DM2 specify
their initial reference values as z̄ = (z̄1, z̄2)

T = (−150,−150,−150,−150)T .
Then, at Step 2, HP2(w, z̄) is formulated to obtain the corresponding gener-
alized Λ-extreme point.

min
x∈X,x5∈E1

x5

subject to⎛⎜⎜⎝
1.045953 0.1307441 0 0
0.2067246 1.033623 0 0

0 0 1.047566 0.2618914
0 0 0.1527076 1.068953

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
−z11 + c11x − x5/w1

−z12 + c12x − x5/w1

−z21 + c21x − x5/w2

−z22 + c22x − x5/w2

⎞⎟⎟⎠ ≤

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠
The optimal solution of HP2(w, z̄), which is the generalized Λ-extreme point, is
obtained as follows:

(x1, x2, x3, x4, x5) = (9.067850, 6.677235, 8.161065, 6.093849, 31.71211)
(c11x, c12x, c21x, c22x) = (−118.2879,−118.2879,−118.2879,−118.2879)

(π11, π12, π21, π22) = (0.2573014, 0.1582485, 0.2397975, 0.1530266)

According to Theorems 5 and 6, the trade-off rates between the objective func-
tions and the decision power w2 become as follows:

−∂(c11x)
∂(c12x)

=
π11q112 + π12q122
π11q111 + π12q121

= 0.6533613

−∂(c21x)
∂(c22x)

=
π21q212 + π22q222
π21q211 + π22q221

= 0.8244804

∂(c2jx)
∂w2

= − x5

w2
2

+
x5

w3
2

{
π21(q211 + q212) + π22(q221 + q222)

}
= −15.82589

At Step 3, let us assume that, DM1 updates his/her decision power in order
to improve his/her objective functions as w2 = 0.7, and go to Step 2. Then,
the corresponding problem HP2(w, z̄) is solved and the corresponding gener-
alized Λ-extreme point is obtained as (x1, x2, x3, x4, x5) = (9.633082, 7.195167,
7.550899, 5.620852, 26.10709), (c11x, c12x, c21x, c22x) = (−123.8929,−123.8929,
−112.7042,−112.7042), (π11, π12, π21, π22) = (0.211824, 0.130279, 0.197414,0.125
980), where DM1’s objective functions c11x and c12x are improved at the ex-
pense of DM2’s objective functions c21x and c22x. At Step 3, let us assume that
DM1 is satisfied with the current values, and DM2 updates his/her reference
values as z̄ = (z̄1, z̄2)

T = (−123.8929,−123.8929,−120,−108)T according to
the rule (2) of Step 3 in order to improve c21x at the expense of c22x. At Step
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2, the corresponding problem HP2(w, z̄) is solved and the corresponding gen-
eralized Λ-extreme point is obtained as (x1, x2, x3, x4, x5) = (9.560246, 7.078217,
8.181826, 5.179710, 0.772465), (c11x, c12x, c21x, c22x) = (−123.1204,−123.1204,
−118.8965,−106.8965). At this point, both DM1 and DM2 are satisfied, and the
interactive processes are terminated.

5 Conclusions

In this paper, hierarchical multiobjective linear programming problems (HMOLP)
have been formulated, where multiple decision makers in a hierarchical organi-
zation have their own multiple objective linear functions together with common
linear constraints. In order to deal with HMOLP, concepts of a generalized Λ-
extreme point and decision powers have been introduced and a linear program-
ming based interactive algorithm has been proposed to obtain the satisfactory
solution. In the proposed method, not only the hierarchical relationships between
multiple decision makers but also their own preferences for their objective func-
tions can be reflected for the satisfactory solution. Applications of the proposed
method will require further investigation.
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Abstract. A perception-based portfolio model under uncertainty is dis-
cussed. In the proposed model, randomness and fuzziness are evaluated
respectively by the probabilistic expectation and the mean values with
evaluation weights and λ-mean functions. The means, the variances and
the covariances fuzzy numbers/fuzzy random variables are evaluated in
the possibility case and the necessity case, and the rate of return with
portfolios is estimated by the both random factors and imprecise factors.
In the portfolio model, the average rate of falling is minimized using av-
erage value-at-risks as a coherent risk measure. By analytical approach,
we derive a solution of the portfolio problem to minimize the average
rate of falling. A numerical example is given to illustrate our idea.

1 Introduction

This paper deals with a risk management model with perception-based repre-
sentation under uncertainty. Soft computing like fuzzy logic works effectively
for financial models in uncertain environment. To represent uncertainty in this
paper, we use fuzzy random variables which have two kinds of uncertainties, i.e.
randomness and fuzziness. In this model, randomness is used to represent the
uncertainty regarding the belief degree of frequency, and fuzziness is applied to
linguistic imprecision of data because of a lack of knowledge regarding the cur-
rent stock market. At the financial crisis in October 2008, we have observed the
serious distrust of the market that the risky information regarding banks and
security companies, for example the amounts of trouble loans, risky accounts,
debts and so on, may not disclose to the investors and the public, and it is
surely a kind of risks occurring from the imprecision of information. The fuzzi-
ness comes from the imprecision of data because of a lack of knowledge, and
such serious distrust in the stock market will be represented by the fuzziness of
information in finance models.

In financial market, the portfolio is one of the most useful risk allocation
technique for stable asset management. The minimization of the financial risk
as well as the maximization of the return are important themes in the asset
management. In a classical portfolio theory, Markowitz’s mean-variance model
is studied by many researchers and fruitful results have been achieved, and then
the variance is investigated as the risk for portfolios ([9,10,13]). In this paper we
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focus on the drastic decline of asset prices. Recently, value-at-risk (VaR) is used
widely to estimate the risk that asset prices decline based on worst scenarios.
VaR is a risk-sensitive criterion based on percentiles, and it is one of the stan-
dard criteria in asset management ([19]). VaR is a kind of risk-level values of
the asset at a specified probability of decline and it is used to select portfolios
after due consideration of worst scenarios in investment. Many researchers and
financial traders usually use VaR by mathematical programming since it is not
easy to analyze the VaR portfolio model mathematically. Because Markowitz’s
mean-variance criterion and the variance-minimizing criterion are represented
by quadratic programming, but VaR criterion in portfolio is neither linear nor
quadratic ([19]). Average value-at-risk (AVaR) is also studied as one of coherent
risk measures derived from VaR. In this paper, by use of AVaR regarding the
average rates of return, we discuss a portfolio selection problem not only to min-
imize the rates of falling and but also to maximize the expected rates of return.
This paper derives an analytical solution for the portfolio problem to minimize
the average rate of falling, extending the results for VaR in Yoshida [18].

We extend the AVaR for real random variables to one regarding fuzzy random
variables from the viewpoint of perception-based approach in Yoshida [16]. We
formulate a portfolio problem with fuzzy random variables, and we discuss the
fundamental properties of the extended AVaR. Estimation of uncertain quan-
tities is important in decision making. Recently, Yoshida [15] introduced the
mean, the variance and the covariances of fuzzy random variables, using eval-
uation weights and λ-mean functions. This paper estimates fuzzy numbers and
fuzzy random variables by the probabilistic expectation and these criteria, which
are characterized by possibility and necessity criteria for subjective estimation
and a pessimistic-optimistic index for subjective decision. These parameters are
decided by the investor and are based on the degree of his certainty regarding the
current information in the market. In this portfolio model, we use fuzzy random
variables with triangle-type fuzzy numbers for computation in actual models.

2 A Portfolio Model and the Rate of Falling

In this section, we explain a portfolio model with n stocks, where n is a positive
integer. Let T := {0, 1, 2, · · · , T } be the time space with an expiration date T , and
R denotes the set of all real numbers. Let (Ω,P ) be a probability space, where P
is a non-atomic probability on a sample space Ω. For an asset i = 1, 2, · · · , n, a
stock price process {Si

t}T
t=0 is given by rates of return Ri

t as follows. Let

Si
t := Si

t−1(1 +Ri
t) (1)

for t = 1, 2, · · · , T , where {Ri
t}T

t=1 is assumed to be an integrable sequence
of independent real random variables. Hence wt = (w1

t , w
2
t , · · · , wn

t ) is called a
portfolio weight vector if it satisfies w1

t +w2
t +· · ·+wn

t = 1, and further a portfolio
(w1

t , w
2
t , · · · , wn

t ) is said to allow for short selling if wi
t ≥ 0 for all i = 1, 2, · · · , n.

Then the rate of return with a portfolio (w1
t , w

2
t , · · · , wn

t ) is given by

Rt := w1
tR

1
t + w2

tR
2
t + · · · + wn

t R
n
t . (2)
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Therefore, the reward at time t = 1, 2, · · · , T follows

St := St−1

n∑
i=1

wi
t(1 +Ri

t) = St−1(1 +Rt). (3)

In this paper, we present a portfolio model where stock price processes Si
t take

fuzzy values using fuzzy random variables. The falling of asset prices is one of
the most important risks in stock markets. In this section, we discuss a portfolio
model where the risk is estimated by the rate of falling. Regarding the asset (3)
with the portfolio wt, the theoretical bankruptcy at time t occurs on scenarios
ω satisfying St(ω) ≤ 0, i.e. it follows 1 + Rt(ω) ≤ 0 from (3). Similarly, for a
constant δ̄ satisfying 0 ≤ δ̄ ≤ 1, a set of sample paths

{ω ∈ Ω | 1 +Rt(ω) ≤ 1 − δ̄} = {ω ∈ Ω | Rt(ω) ≤ −δ̄} (4)

is the event of scenarios where the asset price St will fall from the current price
St−1 to a lower level than 100(1 − δ̄)% of the current price St−1, i.e. the rate
of falling is 100 δ̄%. The parameter δ̄ is called the rate of falling. Then the
probability of falling is also given by

pδ̄ := P (Rt ≤ −δ̄). (5)

For example, pδ̄ denotes the probability of the falling below par value if ‘δ̄ = 0’
and it indicates the probability of the bankruptcy if ‘δ̄ = 1’. In this paper, we
discuss portfolios regarding the rate of falling δ̄.

For a positive probability p, a value-at-risk (VaR) regarding the rate of return
Rt at the probability p is given by a real number v̄ satisfying

P (Rt ≤ v̄) = p (6)

since P is non-atomic. The value-at-risk v̄ is the upper bound of the rate of return
Rt at the worst scenarios under a given risk probability p, and then the value-
at-risk v̄ in (6) is denoted by VaRp(Rt). From (5) and (6), for a risk probability
p = pδ̄, the rate of falling is

δ̄ = −VaRp(Rt). (7)

To minimize the average rate of falling derived from (7) under a fuzzy and
random environment, in next section we discuss the fundamental properties of
value-at-risks.

3 A Portfolio Model with Fuzzy Random Variables

In this section, we introduce fuzzy numbers and fuzzy random variables to give a
portfolio model under uncertainty. In this paper, a fuzzy number is represented
by its membership function ã : R $→ [0, 1] which is normal, upper-semicontinuous
and quasi-concave and has a compact support ([20]). R denotes the set of all



152 Y. Yoshida

fuzzy numbers. The α-cut of a fuzzy number ã(∈ R) is given by ãα := {x ∈
R | ã(x) ≥ α} (α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0}, where cl denotes
the closure of an interval. An α-cut ãα is a closed interval since the membership
function is is normal, upper-semicontinuous and quasi-concave, and it is written
as ãα := [ã−α , ã

+
α ] for α ∈ [0, 1]. Hence we also introduce a partial order (,

so called the fuzzy max order, on fuzzy numbers R: Let ã, b̃ ∈ R be fuzzy
numbers. Then, ã ( b̃ means that ã−α ≥ b̃−α and ã+

α ≥ b̃+α for all α ∈ [0, 1].
An addition, a subtraction and a scalar multiplication for fuzzy numbers are
defined by Zadeh’s extension principle as follows: For ã, b̃ ∈ R and ξ ∈ R, the
addition and subtraction ã± b̃ of ã and b̃ and the scalar multiplication ξã of ξ
and ã are fuzzy numbers given by their α-cuts (ã + b̃)α := [ã−α + b̃−α , ã+

α + b̃+α ],
(ã− b̃)α := [ã−α − b̃+α , ã+

α − b̃−α ] and (ξã)α := [ξã−α , ξã
+
α ] if ξ ≥ 0.

A fuzzy-number-valued map X̃ : Ω $→ R is called a fuzzy random variable
if the maps ω $→ X̃±

α (ω) are measurable for all α ∈ (0, 1], where X̃α(ω) =
[X̃−

α (ω), X̃+
α (ω)] = {x ∈ R | X̃(ω)(x) ≥ α} ([8,11]). We need to introduce ex-

pectations of fuzzy random variables in order to describe a portfolio model. A
fuzzy random variable X̃ is said to be integrably bounded if both ω $→ X̃±

α (ω)
are integrable for all α ∈ (0, 1]. Let X̃ be an integrably bounded fuzzy ran-
dom variable. The expectation E(X̃) of the fuzzy random variable X̃ is defined
by a fuzzy number E(X̃)(x) := supα∈[0,1] min{α, 1E(X̃)α

(x)} for x ∈ R, where
E(X̃)α := [

∫
Ω X̃

−
α (ω)dP (ω),

∫
Ω X̃

+
α (ω)dP (ω)] for α ∈ (0, 1] ([7,11]).

Now we deal with a case where the rate of return {Ri
t}T

t=1 has some impreci-
sion. In this paper we use triangle-type fuzzy random variables for computation
though we can apply similar approaches with general fuzzy random variables.
We define a rate of return process with imprecision {R̃i

t}T
t=0 by a sequence of

triangle-type fuzzy random variables

R̃i
t(·)(x) =

{
1 − |x−Ri

t|/cit if |x−Ri
t| ≤ cit

0 otherwise, (8)

where cit is a positive number. We call cit a imprecise factor for asset i at time
t. Hence we can represent R̃i

t by the sum of the real random variable Ri
t and a

fuzzy number ãi
t:

R̃i
t(ω)(·) := 1{Ri

t(ω)}(·) + ãi
t(·) (9)

for ω ∈ Ω, where 1{·} denotes the characteristic function of a singleton and ãi
t

is a triangle-type fuzzy number defined by

ãi
t(x) =

{
1 − |x|/cit if |x| ≤ cit
0 otherwise, (10)

For assets i = 1, 2, · · · , n, we define stock price processes {S̃i
t}T

t=0 by the rates of
return with imprecision R̃i

t as follows: S̃i
0 := Si

0 is a positive number and

S̃i
t = S̃i

0

t∏
s=1

(1 + R̃i
s) (11)
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for t = 1, 2, · · · , T . For a portfolio w = (w1, w2, · · · , wn), the rate of return with
imprecision is given by a linear combination of fuzzy random variables

R̃t := w1R̃1
t + w2R̃2

t + · · · + wnR̃n
t . (12)

In Section 4 we investigate the average value-at-risk to apply the fuzzy random
variable (12), and in Section 5 we discuss the portfolio problem to minimize the
average rate of falling regarding (12).

4 A Perception-Based Extension of Average
Value-at-Risks

First we introduce mathematical notations of the value-at-risk for real random
variables to apply it to the rates of return (12). Let X be the set of all integrable
real random variables X on Ω with a continuous distribution function x $→
FX(x) := P (X < x) for which there exists a non-empty open interval I such
that FX(·) : I $→ (0, 1) is a strictly increasing and onto. Then there exists a
strictly increasing and continuous inverse function F−1

X : (0, 1) $→ I. We note
that FX(·) : I $→ (0, 1) and F−1

X : (0, 1) $→ I are one-to-one and onto, and we
put FX(inf I) := limx↓inf I FX(x) = 0 and FX(sup I) := limx↑sup I FX(x) = 1.
Then, the value-at-risk, shortly for VaR, at a risk probability p is given by the
100 p-percentile of the distribution function FX : For a probability p (0 < p < 1),

VaRp(X) := sup{x ∈ I | FX(x) ≤ p}, (13)

and then we have FX(VaRp(X)) = p and VaRp(X) = F−1
X (p) for 0 < p < 1. In

this paper, we assume that VaR v̄ in (6) has the following representation (14).

(VaR v̄) = (the mean) − (a positive constant κ(p)) × (the standard deviation),
(14)

where the positive constant κ(p) is given corresponding to the probability p. The
details are as follows: For any probability p satisfying 0 < p < 1, there exists a
positive constant κ(p) such that a real number v̄ := µt −κ(p)σt satisfies (14) for
all portfolios, where µt and σt are the expectation and the standard deviation
of Rt respectively. One of the most popular sufficient condition for (14) is what
the distribution of the rate of return Rt is Gaussian ([3,19]).

The average value-at-risk (AVaR) at a probability level p (Expected Shortfall
with at a confidence probability level 1 − p) is given by

AVaRp(X) :=
1
p

∫ p

0
VaRq(X) dq (15)

if 0 < p ≤ 1 and AVaRp(X) := inf I if p = 0 ([12]) It is known that AVaR has the
following properties ([18]), which imply AVaR is a coherent risk measure ([1]).

Lemma 1. Let X,Y ∈ X and let p be a positive probability. Then the average
value-at-risk AVaRp defined by (15) has the following properties:
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(i) If X ≤ Y , then AVaRp(X) ≤ AVaRp(Y ). (monotonicity)
(ii) AVaRp(ζX) = ζ AVaRp(X) for ζ > 0. (positive homogeneity)
(iii) AVaRp(X + θ) = AVaRp(X) + θ for θ ∈ R. (translation invariance)
(iv) AVaRp(X + Y ) ≥ AVaRp(X) + AVaRp(Y ). (super-additivity)

On the other hand, the super-additivity for the value-at-risk VaRp(·) does not
hold in general ([1]). Next we denote X̃ the set of all fuzzy random variables X̃
on Ω such that their α-cuts X̃±

α are integrable and λX̃−
α +(1−λ)X̃+

α ∈ X for all
λ ∈ [0, 1] and α ∈ [0, 1]. Hence, from (15) we introduce an average value-at-risk
for a fuzzy random variable X̃(∈ X̃ ) at a positive risk probability p as follows.

AVaRp(X̃)(x) := sup
X∈X : AVaRp(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)) (16)

for x ∈ R. Yoshida [16] has studied perception-based estimations extending the
concept of the expectations in Kruce and Meyer [7]. This definition (16) is an
extension from the average value-at-risk on real random variables to one on
fuzzy random variables based on the perception. The average value-at-risk (16)
on fuzzy random variables is characterized by the following representation and
properties, which are from the continuity and the monotonicity of AVaRp(·).

Lemma 2. ([16]). Let X̃ ∈ X̃ be a fuzzy random variable and let p be a positive
probability. Then the average value-at-risk AVaRp(X̃) defined by (16) is a fuzzy
number whose α-cuts are

AVaRp(X̃)α = [AVaRp(X̃−
α ),AVaRp(X̃+

α )] for α ∈ (0, 1]. (17)

Lemma 3. ([16]). Let X̃, Ỹ ∈ X̃ be fuzzy random variables and let p be a
positive probability. Then the average value-at-risk AVaRp defined by (16) has
the following properties:

(i) If X̃ ) Ỹ , then AVaRp(X̃) ) VaRp(Ỹ ). (monotonicity)
(ii) AVaRp(ζX̃) = ζ AVaRp(X̃) for ζ > 0. (positive homogeneity)
(iii) AVaRp(X̃ + ã) = AVaRp(X̃) + ã for ã ∈ R. (translation invariance)
(iv) AVaRp(X̃ + Ỹ ) ( AVaRp(X̃) + AVaRp(Ỹ ). (super-additivity)

Next since the average value-at-risk AVaRp(R̃t) for the rate of return (12) with
a portfolio is a fuzzy number, we need to evaluate the fuzziness of fuzzy numbers
and fuzzy random variables. There are many studies regarding the evaluation
of fuzzy numbers. Two major approaches of them are as follows. One is to use
weighting functions([2,4,15]) and the other is to use possibility and necessity
criteria([5]). Here we adopt the former evaluation method of fuzzy numbers and
fuzzy random variables. In the rest of this section we introduce the definitions
from [15,17], and in the next section we estimate the AVaR regarding the rate
of return (12) by the evaluation method. Yoshida [15] has studied an evaluation
of fuzzy numbers by evaluation weights which are induced from fuzzy measures
to evaluate a confidence degree that a fuzzy number takes values in an interval.



A Perception-Based Portfolio Under Uncertainty 155

With respect to fuzzy random variables, the randomness is evaluated by the
probabilistic expectation and the fuzziness is estimated by the evaluation weights
and the following function. Let gλ : I $→ R be a map such that

gλ([x, y]) := λx+ (1 − λ)y, [x, y] ∈ I, (18)

where λ is a constant satisfying 0 ≤ λ ≤ 1 and I denotes the set of all bounded
closed intervals. This scalarization is used for the estimation of fuzzy numbers
to give a mean value of the interval [x, y] with a weight λ, and gλ is called a
λ-mean function and λ is called a pessimistic-optimistic index which indicates
the pessimistic degree of attitude in decision making ([4]). Let a fuzzy number
ã ∈ R. A mean value of the fuzzy number ã with respect to λ-mean functions
gλ and an evaluation weight w(α), which depends only on ã and α, is given as
follows ([17]):

Ẽ(ã) :=

∫ 1
0 g

λ(ãα)w(α)dα∫ 1
0 w(α)dα

, (19)

where ãα = [ã−α , ã
+
α ] is the α-cut of the fuzzy number ã. In (19), w(α) indicates a

confidence degree that the fuzzy number ã takes values in the interval ãα at each
level α. Hence, an evaluation weight w(α) is called the possibility evaluation
weight wP (α) if wP (α) := 1 for α ∈ [0, 1], and w(α) is called the necessity
evaluation weight wN (α) if wN (α) := 1− α for α ∈ [0, 1]. Especially, for a fuzzy
number ã ∈ R, the means in the possibility and necessity cases are represented
respectively by ẼP (ã) and ẼN (ã), and we consider their combination νẼP (ã)+
(1 − ν)ẼP (ã) with a parameter ν ∈ [0, 1] ([15,16,18]). The mean Ẽ has the
following natural properties of the linearity and the monotonicity regarding the
fuzzy max order.

Lemma 4. ([15,17]). Let λ ∈ [0, 1]. For fuzzy numbers ã, b̃ ∈ R and real numbers
θ, ζ, the following (i) – (iv) hold.

(i) Ẽ(ã+ 1{θ}) = Ẽ(ã) + θ.
(ii) Ẽ(ζã) = ζẼ(ã) if ζ ≥ 0.
(iii) Ẽ(ã+ b̃) = Ẽ(ã) + Ẽ(b̃).
(iv) If ã ( b̃, then Ẽ(ã) ≥ Ẽ(b̃) holds.

For a fuzzy random variable X̃ , the mean of the expectation E(X̃) is a real
number

E(Ẽ(X̃)) = E

(∫ 1
0 g

λ(X̃α)w(α)dα∫ 1
0 w(α)dα

)
. (20)

Then, from Lemma 4, we obtain the following results.

Lemma 5. ([15,17]). Let λ ∈ [0, 1]. For a fuzzy number ã ∈ R, integrable fuzzy
random variables X̃, Ỹ , an integrable real random variable Z and a nonnegative
real number ζ, the following (i) – (v) hold.
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(i) E(Ẽ(X̃)) = Ẽ(E(X̃)).
(ii) E(Ẽ(ã)) = Ẽ(ã) and E(Ẽ(Z)) = E(Z).
(iii) E(Ẽ(ζX̃)) = ζE(Ẽ(X̃))).
(iv) E(Ẽ(X̃ + Ỹ )) = E(Ẽ(X̃)) + E(Ẽ(Ỹ )).
(v) If X̃ ( Ỹ , then E(Ẽ(X̃)) ≥ E(Ẽ(Ỹ )) holds.

Finally we introduce variances and covariances of fuzzy random variables from
the viewpoint of λ-mean functions and evaluation weights. From the results in
[15], for fuzzy random variables X̃ and Ỹ , we define variances and covariances
as follows. For λ ∈ [0, 1],

V (X̃) := E

(∫ 1
0 (gλ(X̃α) − E(gλ(X̃α)))2 w(α)dα∫ 1

0 w(α)dα

)
, (21)

Cov(X̃, Ỹ ) := E

(∫ 1
0 (gλ(X̃α) − E(gλ(X̃α)))(gλ(Ỹα) − E(gλ(Ỹα)))w(α)dα∫ 1

0 w(α)dα

)
.

(22)
Lemma 6. ([15]). Let λ ∈ [0, 1]. For fuzzy numbers ã, b̃ ∈ R, integrable fuzzy
random variables X̃, Ỹ and a nonnegative real number ζ, the following (i) – (v)
hold.

(i) V (ã) = 0.
(ii) V (X̃ + ã) = V (X̃).
(iii) V (ζX̃) = ζ2V (X̃).
(iv) Cov(X̃, ã) = Cov(ã, X̃) = 0.
(v) Cov(X̃ + ã, Ỹ + b̃) = Cov(X̃, Ỹ ).

5 The Minimization of the Average Risk of Falling

In this section, we discuss portfolio problems under uncertainty. First we estimate
the rate of return with imprecision for a portfolio. Let the mean, the variance
and the covariance of the rate of return Ri

t, which are the real random variables
in (1), by µi

t := E(Ri
t), (σi

t)2 := E((Ri
t −µi

t)2), and σij
t := E((Ri

t −µi
t)(R

j
t −µ

j
t ))

for i, j = 1, 2, · · · , n. Hence we assume that the determinant of the variance-
covariance matrix Σ := [σij

t ] is not zero and there exists its inverse matrix
Σ−1. This assumption is natural and it can be realized easily by taking care
of the combinations of assets. For a portfolio w = (w1, w2, · · · , wn) satisfying
w1 +w2 + · · ·+wn = 1 and wi ≥ 0 (i = 1, 2, · · · , n), we calculate the expectation
and the variance regarding R̃t = w1R̃1

t + w2R̃2
t + · · · + wnR̃n

t . From Lemma 5,
the expectation µ̃t := E(Ẽ(R̃t)) follows

µ̃t = E(Ẽ(R̃t)) =
n∑

i=1

wiE(Ẽ(R̃i
t)) =

n∑
i=1

wiµ̃i
t, (23)
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where µ̃i
t := E(Ẽ(R̃i

t)) for i = 1, 2, · · · , n. On the other hand, regarding this
model, from [15] we can find that the variance (σ̃t)2 := E((Ẽ(R̃t) − µ̃t)2) of R̃t

equals to the variance (σt)2 := E((Rt − µt)2) of Rt:

(σ̃t)2 = (σt)2 =
n∑

i=1

n∑
j=1

wiwjσij
t . (24)

By (14), (23) and (24), the mean of AVaRp(R̃t) is

Ẽ(AVaRp(R̃t)) =
n∑

i=1

wiµ̃i
t − κ

√√√√ n∑
i=1

n∑
j=1

wiwjσij
t , (25)

where κ := 1
p

∫ p

0 κ(q) dq with κ(q) defined by (14). Now step by step we discuss
a portfolio problem to minimize the average rate of falling δ = −Ẽ(AVaRp(R̃t)).
First, we deal with a variance-minimizing model. For a given constant γ, which
is the minimum expected rate of return to be guaranteed for the portfolio, we
consider the following quadratic programming with respect to portfolios with
allowance for short selling.

Variance-minimizing problem (P1): Minimize the variance
n∑

i=1

n∑
j=1

wiwjσij
t (26)

with respect to portfolios w = (w1, w2, · · · , wn) satisfying w1 + w2 + · · · +
wn = 1 under the following condition regarding the expected rate of return:∑n

i=1 w
iµ̃i

t = γ.

We start from the following classical results regarding the variance-minimizing
problem (P1), and we analyze the portfolio problem to minimize the average
rate of falling.

Lemma 7. ([18]). The solution of the variance-minimizing problem (P1) is
given by

w = ξΣ−11 + ηΣ−1µ̃ (27)

and then the corresponding variance is

ρ̃ :=
Aγ2 − 2Bγ + C

∆
, (28)

where µ̃i := µi
t + Ẽλ(ãi

t), σ̃
ij := σij

t (i, j = 1, 2, · · · , n), Σ̃ := [σ̃ij ], µ̃ :=
[µ̃1 µ̃2 · · · µ̃n]T,1 := [1 1 · · · 1]T, ξ := C−Bγ

∆ , η := Aγ−B
∆ , A := 1TΣ̃−11, B :=

1TΣ̃−1µ̃, C := µ̃TΣ̃−1µ̃, ∆ := AC−B2 and T denotes the transpose of a vector.

Hence, we consider a risk-sensitive model, which is not of mean-variance types
but of mean-standard deviation types, in order to deal with a portfolio prob-
lem to minimize the average rate of falling in the third step. For a constant γ and
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a positive constant κ, we discuss the following risk-sensitive portfolio problem
with allowance for short selling.

Risk-sensitive problem (P2): Maximize a risk-sensitive expected rate of
return

n∑
i=1

wiµ̃i
t − κ

√√√√ n∑
i=1

n∑
j=1

wiwjσij
t (29)

with respect to portfolios w = (w1, w2, · · · , wn) (w1 + w2 + · · · + wn = 1)
under the condition

∑n
i=1 w

iµ̃i
t = γ.

Now we discuss the following AVaR portfolio problem without allowance
for short selling. The following form (30) comes from the average value-at-risk
Ẽ(AVaRp(R̃t)) given in (25).

Portfolio problem to minimize the average rate of falling (P3): Minimize
the risk of falling

δ := −
n∑

i=1

wiµ̃i
t + κ

√√√√ n∑
i=1

n∑
j=1

wiwjσij
t (30)

with respect to portfolios w = (w1, w2, · · · , wn) satisfying w1 + w2 + · · · +
wn = 1 and wi ≥ 0 for i = 1, 2, · · · , n.

Since we have infw (30) = infγ

(
infw:

∑n
i=1 wiµ̃i

t=γ(30)
)

= − supγ (29), in the
same way as [18] we arrive at the following analytical solutions of the portfolio
problem to minimize the average rate of falling (P3).

Lemma 8. Let A and ∆ be positive. Let κ satisfy κ2 > C. The solution of
the portfolio problem to minimize the average rate of falling (P3) is given by
w∗ = ξΣ−11 + ηΣ−1µ̃, and then the corresponding average rate of falling is
δ(γ∗) = −B−

√
Aκ2−∆
A at the expected rate of return γ∗ := B

A + ∆
A
√

Aκ2−∆
, where

ξ := C−Bγ∗

∆ and η := Aγ∗−B
∆ . Further, if Σ−11 ≥ 0 and Σ−1µ̃ ≥ 0, then the

portfolio w∗ satisfies w∗ ≥ 0, i.e. the portfolio w∗ is a trading strategy without
allowance for short selling. Here, 0 denotes the zero vector.

In Lemma 8, we note that the optimal portfolio w∗ not only to minimize the
average rate of falling δ(γ∗) but also to maximize the expected rate of return γ∗.

Theorem 1. Let A and ∆ be positive. Let δ satisfy δ > −2B/A. Then, the
assumptions in Lemma 8 are satisfied, and the following (i) and (ii) hold for the
optimal portfolio in Lemma 8.

(i) For an average rate of falling δ, the corresponding constant κδ and the ex-
pected rate of return γδ are given by

κδ :=
√
Aδ2 + 2Bδ + C and γδ :=

Bδ + C
Aδ +B

. (31)

Then the risk probability is pδ = P (Ẽ(R̃t) ≤ −δ).
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(ii) If Ri
t (i = 1, 2, · · · , n) have Gaussian distributions, the risk probability pδ in

(i) is given by
pδ := Φ(−κδ), (32)

where κδ is defined by (31) and Φ is the cumulative Gaussian distribution
function Φ(z) := 1√

2π

∫ z

−∞ e
− t2

2 dt for z ∈ R.

6 A Numerical Example

In this session, we give a simple example to illustrate our idea. For the numerical
computation, we need to evaluate fuzzy numbers representing the rates of return
(8). From [15,16], we have evaluations of the fuzzy numbers ãi

t by a combination
νẼP (ã)+ (1− ν)ẼP (ã) with a parameter ν ∈ [0, 1] with a parameter ν(∈ [0, 1]),
which is called a possibility-necessity weight ([15]). Then from (23) we obtain the
expected rate of return

µ̃t =
n∑

i=1

wi

(
µi

t +
(1 − 2λ)(4 − ν)

6
cit

)
(33)

for the possibility-necessity weight ν(∈ [0, 1]) and the pessimistic-optimistic in-
dex λ(∈ [0, 1]). In (33), the decision maker may choose the parameters λ(∈ [0, 1])
and ν(∈ [0, 1]). The pessimistic-optimistic index is taken as λ = 1 if he has pes-
simistic personal forecast in the market and he takes careful decision, and λ = 0
if he has optimistic personal forecast and he is not nervous. The possibility-
necessity weight is taken as ν = 1 when he has enough confidential information
about the market, and ν = 0 when he does not have confidential information. In
this model, ν = 0 is reasonable since our objective function is VaR, which is a
kind of risk, and we need to take into account of the fuzziness of information in
the market. While λ depends on the decision maker’s attitude in his investment.
In this example, we compute the pessimistic case λ = 1.

Let n = 4 be the number of assets. Take the expected rate of return, a
variance-covariance matrix and imprecise factors as Table 1. We assume that the
rate of return Ri

t has the Gaussian distributions. We discuss a risk probability
1% in the Gaussian distribution, and then the corresponding constant is κ =
2.66521, which is given in (14) for VaR. Then, the conditions in Theorem 1 are

Table 1. Variances-covariances σij
t of Ri

t, expected rates of return µi
t and imprecise

factors ci
t

σij
t j = 1 j = 2 j = 3 j = 4

i = 1 0.35 0.03 0.02 −0.08
i = 2 0.03 0.25 −0.06 0.08
i = 3 0.02 −0.06 0.33 −0.02
i = 4 −0.08 0.08 −0.02 0.24

µi
t

i = 1 0.05
i = 2 0.07
i = 3 0.06
i = 4 0.04

ci
t

i = 1 0.006
i = 2 0.008
i = 3 0.007
i = 4 0.005
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satisfied and by formulae of Lemma 8 we easily obtain the optimal portfolio
w∗ = (w1, w2, w3, w4) = (0.23026, 0.21391, 0.251467, 0.304363) for the portfolio
problem to minimize the rate of falling (P3), and then the corresponding rate of
falling is δ(γ∗) = 0.645537 and the expected rate of return is γ∗ = 0.0497492.
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Abstract. This paper discusses the use of time-frequency atom decomposition 
based on a differential evolution to analyze radar emitter signals. Decomposing 
a signal into an appropriate time-frequency atoms is a well-known NP- 
hard problem. This paper applies a differential evolution to replace the tradi-
tional approach, a greedy strategy, to approximately solve this problem within a 
tolerable time. A large number of experiments conducted on various radar emit-
ter signals verify the feasibilities that the time-frequency characteristics are 
shown by using a small number of decomposed time-frequency atoms, instead 
of traditional time-frequency distributions. 

1   Introduction 

The time-frequency atom decomposition, introduced by Mallat and Zhang in 1993 
[1], is a kind of analysis technique for non-stationary signals. The main idea of this 
technique is to select a subset of elementary components with good time and fre-
quency resolution, called time-frequency atom, from a redundant collection of wave-
forms of a signal, called time-frequency atom dictionary, to match the local structures 
of the signal [1] [2]. A large number of studies [3]-[5] show that the time-frequency 
atom decomposition is a good and flexible representation for various signals. 

The common algorithm applies a greedy strategy to decompose a signal into atom 
components. This strategy selects atoms one by one from a very large dictionary in an 
iterative way. In [6], Davis et al. showed that selecting a subset of atoms from a re-
dundant time-frequency atom dictionary to optimally approximate a signal is NP-hard 
problem. The extremely high computational load becomes a bottleneck for the appli-
cation of the time-frequency atom decomposition, and moreover, if a time-frequency 
dictionary is relatively large, it turns out to be almost impossible to conduct the full 
search and represent the signals within a finite time [7]. 

In [2] [8]-[10], conventional genetic algorithms were used to solve the time-
frequency atom decomposition of a signal and preliminary experiments show that 
genetic algorithms are attractive approaches to decrease the computational load of this 
                                                           
* This work was supported by the National Natural Science Foundation of China (60702026) 

and the Scientific and Technological Funds for Young Scientists of Sichuan (09ZQ026-040). 
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decomposition. This paper uses a differential evolution, which has good global search 
capability, high precision of solutions and good convergence, to implement the time-
frequency atom decomposition for analyzing radar emitter signals. Extensive experi-
ments show that this approach has huge potentials of sketching the time-frequency 
characteristics of radar emitter signals with a small number of atoms and hence with a 
small quantity of computing time. 

2   Problem Statement 

In the time-frequency atom decomposition, an appropriate countable subset of time-

frequency atoms ( )g tγ γ ∈Γ  is selected from an over-complete time-frequency atom 

dictionary ( ( ))g tγ=D  to expand a signal ( )f t  into a linear sum of ( )g tγ  [1], i.e., 

1

( ) ( )
h

h

h

f t a g tγ

+∞

=

=∑ , (1)

where 
h

a  is the expansion coefficient of the atom ( )
h

g tγ . It is reported in the study 

[6] that finding the optimal atoms and their corresponding optimal expansion coeffi-
cients in (1) to optimally approximate a signal in a redundant time-frequency diction-
ary is an NP-hard problem. In [1], an iterative approach was presented to perform 
time-frequency atom decomposition. This approach starts by projecting ( )f t  on an 

atom 
0

gγ ∈ D  and computing the residual Rf : 

0 0

,f f g g Rfγ γ= 〈 〉 + , (2)

where Rf  is the residual vector after approximating f  in the direction of 
0

gγ . By 

projecting the residual Rf  on an atom of D , this iterative approach can subdecom-

pose the residual Rf sequentially. At the h th iteration, a best time-frequency atom 

h

gγ  is searched from a time-frequency atom dictionary D  to maximize the module 

,
h

hR f gγ〈 〉 , where hR f  is the h th order residual of the signal ( )f t  and 0R f f= . 

Finally, the signal f  can be represented as 

1

0

,
h h

H
h H

h

f R f g g R fγ γ

−

=

= 〈 〉 +∑ , (3)

where H  is the maximal number of iterations. To reduce the intolerable computa-
tional complexity, this paper uses the differential evolution (DE) to replace the greedy 
strategy [1] to search the suboptimal time-frequency atom from redundant time-
frequency atom dictionaries. The pseudocode algorithm for solving this problem is 
shown in Fig.1 [11].  



 A Differential Evolution Based Time-Frequency Atom Decomposition 163 

 

 Begin 

R0f=f ;  h=0 ;  

While (not termination condition) do 

  Set parameters of time-frequency atom;  

(*)     Search the suboptimal time-frequency atom
h

g
γ

in D using DE; 

Compute ,
h h

h

R f g g
γ γ

〈 〉  ;  

h

R f ← ( ,
h h

h h

R f R f g g
γ γ

− 〈 〉 ); 

h ← h + 1 ; 

End  

End   

Fig. 1. Pseudocode algorithm for time-frequency atom decomposition using differential  
evolution (DE) 

3   Differential Evolution 

A differential evolution (DE), proposed by Storn and Price in 1995 [12], is a version 
of evolutionary computation for numeric optimization problems. In a DE, the evolu-
tionary operators consist of mutation, crossover and selection ones. In these three 
operators, the mutation operation, which generates a vector by adding the base vector 
with a scaled difference of a randomly sampled pair of vectors, plays a very important 
role to guide the individuals toward the optimal solution [13]. A DE has several char-
acteristics, such as good global search capability, high precision of solutions resulted 
from real-valued coding, good convergence, small number of parameters to adjust in 
the process of evolution, etc. [14]-[16]. As shown in Fig.2, this paper uses a modified 
DE to implement the time-frequency atom decomposition [12]-[17]. In what follows a 
brief description about the DE is listed. 

(1) Initialization: this step produces a set of initial candidate solutions, which forms 

an initial population with N  individuals described as 0 0 0 0

1 2
[ , , ..., ]

N
P X X X= , where 

0 0 0 0

,1 ,2 ,
[ , , ..., ]

i i i i D
X x x x=  and 1, 2, ...,i N= , where 0

,i j
x  denotes the j th variable of i th 

individual and D  represents the number of variables. If there is not prior knowledge 
available about the problem, the initial population is randomly generated in the search 
space by using uniform distribution, i.e., 

0

,
(0,1)( )

i j j j j
x a rand b a= + −  (4)

where 1, 2, ..., , 1, 2, ...,i N j D= = , 
j

a  and 
j

b  are the lower and upper bounds of the 

j th variable and (0,1)rand  is a real-valued random number in the range [0,1] . 
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Begin 
(1)     Initialization;     % generation G=0 

While (not termination condition) do 
G=G+1; 

(2)          Determine Differential factor F; 
(3)          Mutation; 
(4)          Crossover; 
(5)          Selection; 
          End while 

End Begin 

Fig. 2. The pseudocode algorithm for DE 

(2) This step uses a dynamic adjustment method for differential factor F , which is 
defined as 

max max min
( )

G

G
F F F F

IterNum
= − −  (5)

where IterNum  is the number of the iterations; G  denotes the G th iteration and 

G InterNum≤ ; 
G

F  is the differential factor for G th iteration; 
max

F  and 
min

F  stands 

for the upper limit and lower limit of differential factor F , respectively. 
(3) Except for the best vector, the information of other individuals in the popula-

tion is considered to modify the mutation operator. We use the following mutation 
strategy 

1

1 2
( ) ( )G G G G G G

i i best r aver r
V X F X X F X X+ = + ⋅ − + ⋅ −  (6)

1

1 n
G G

aver i

i

X X
n =

= ∑  (7)

where 1 2r r i≠ ≠ , 1, 2 {1, 2, ..., }r r N∈ , G

i
X  is the i th individual of the sorted popu-

lation in an descending order according to the fitness values, and G

aver
X  is the center of 

the first n  best vectors. 

(4) In this step, the recombination between target vector G

i
X  and mutant vector 

1G

i
V +  is performed to produce an offspring, 1G

i
U + , 1 1 1 1

,1 ,2 ,
[ , , ..., ]G G G G

i i i i D
U u u u+ + + +=  where 

1

,

G

i j
u +  is 

1 1

,1

,

,

, [0,1]
, 1, 2, ...,

,

G G

i j iG

i j G

i j

rv if rand C or j k
j D

x otherwise
u

+ +

+
≤ =

= =
⎧⎪
⎨
⎪⎩

    

 
 (8)
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where rC  is a predefined crossover rate in the range of (0,1) , and 1[0,1]G

i
rand +  is a 

real-valued random number in [0,1], and k  is a random parameter index 
{1, 2, ..., }k D∈ . Each value of k  corresponds to each i . The condition j k=  guar-

antees that at least one component of the vector 1G

i
U +  comes from the mutant vector 

1G

i
V +  so that 1G

i
U +  will not be identical with the vector G

i
X . 

(5) If an offspring is produced, we will determine which one of the two vectors 
G

i
X  and 1G

i
U +  goes to the next generation. If a minimal optimization problem is con-

sidered, we will perform the following selection operation 
1 1

1
( ) ( )G G G

i i iG

i G

i

U if f U f X
X

X otherwise

+ +

+
<

=
⎧
⎨
⎩

  

  
 (9)

4   Experiments and Results 

This section uses the above approach, the time-frequency atom decomposition based 
on a differential evolution, to analyze various radar emitter signals (RESs) including 
conventional  (CON) RESs, binary phase shift-key (BPSK) RESs, linear frequency 
modulation (LFM) RESs and nonlinear frequency modulation (NLFM) RESs. The 
sampling frequency is set to 100 MHz. In the experiments, the population size, the 
crossover rate, the maximum and minimum values of differential factors in the DE are 
set to 20, 0.5, 0.9 and 0.3, respectively. The maximal number of generations is set to 
300 as the termination condition of the DE. The termination condition of the time-
frequency atom decomposition is the number of atoms required, 10 for CON and 15 
for the others. The time-frequency atom dictionary is constructed by using the real 
Gabor atom with Gaussian modulation 

( ) ( ) cos( )
k t u

g t g vt w
ss

γ
−= +  (10)

2

( ) tg t e π−=  (11)

where k  is the normalized constant and ( , , , )s u v wγ =  is parameter set, in which 

, , ,s u v w  represent scale, translation, modulation and initial phase of an atom [1]. 
First, we apply 10 CON RESs to conduct the experiments. The pulse widths (PW) 

of these RESs are 10 us and the frequencies are chosen as 12 MHz, 14 MHz, 16 MHz, 
18 MHz, 20 MHz, 22 MHz, 24 MHz, 26 MHz, 28 MHz and 30 MHz, respectively. To 
each signal, we choose 10 time-frequency atoms decomposed to outline its time-
frequency characteristics, shown in Fig.3, by using their translation and modulation 
parameters obtained. 

Second, 10 LFM, 4 NLFM with parabola frequency modulations (NLFM/p) and 4 
NLFM with sinusoidal frequency modulations (NLFM/s) are used to carry out the 
experiments. The parameters for the three types of RESs are listed in Table 1, Table 2 
and Table 3, respectively, and their corresponding time-frequency characteristics are 
shown in Fig.4, Fig.5 and Fig.6, respectively. 
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Fig. 3. Time-frequency characteristics of CON 

Table 1. Parameters for LFM 

No. 
Starting frequency 

 f1 (MHz) 
Ending frequency 

f2 (MHz) 
Frequency slope  

(f2-f1) (MHz) 
Sampling frequency 

(MHz) 
PW (us) 

1 10 20 10 100 10 
2 10 25 15 100 10 
3 10 30 20 100 10 
4 10 35 25 100 10 
5 10 40 30 100 10 
6 20 30 10 100 10 
7 20 35 15 100 10 
8 20 40 20 100 10 
9 20 45 25 100 10 

10 30 45 15 100 10 

Table 2. Parameters for NLFM/p 

No. 
Frequency of the 
1st point (MHz) 

Frequency of the 
400th point (MHz) 

Frequency of the 
1000th point (MHz) 

Sampling fre-
quency (MHz) 

PW (us) 

1 2 8 35 100 10 
2 4 10 35 100 10 
3 6 10 40 100 10 
4 10 15 40 100 10 

 
Finally, we go further to use the introduced approach to detect the code sequences 

employed in the BPSK RESs. Unlike the ways that the information of a small number 
of atoms is applied to show the time-frequency characteristics of CON, LFM and 
NLFM, the residual information obtained by subtracting a certain number of atoms 
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Table 3. Parameters for NLFM/s 

No. 
Minimal frequency  

(MHz) 
Maximal frequency 

(MHz) 
Sampling frequency 

(MHz) 
PW (us) 

Number of 
periods 

1 15 35 100 10 1 
2 10 40 100 10 1 
3 5 45 100 10 1 
4 12 42 100 10 1 
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Fig. 4. Time-frequency characteristic of LFM 
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Fig. 5. Time-frequency characteristics of NLFM/p 
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from the original signal is utilized to illustrate the sharp changes of phases due to code 
sequences. The parameters used in BPSK RESs are provided in Table 4 and their 
residual energies are shown in Fig.7. 

As shown in Fig.3, 10 time-frequency atoms can outline a brief time-frequency 
feature of each CON RES. The 10 CON RESs with different carrier frequencies have 
distinct positions in the time-frequency plane (translation-modulation plane). Fur-
thermore, we can easily read the specific frequency value of each signal, which ap-
proximately corresponds to the given frequency parameter. To be specific, 10 types of 
carrier frequencies ranged from 12 to 30 MHz can be identified. 

The three figures, Fig.4, Fig.5 and Fig.6, show that the time-frequency characteris-
tics of RESs with more complex modulations such as linear, parabola and sinusoidal 
frequency modulations can obtained by using 15 atoms decomposed. Figure 4 clearly 
shows the changing trends of the 10 different LFM RESs. Figure 5 and Fig.6 demon-
strate that frequency-modulated laws of 4 NLFM/p and NLFM/s RESs, respectively. 
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Fig. 6. Time-frequency characteristics of NLFM/s 

Table 4. Parameters for BPSK 

Signal Code width (us) Frequency (MHz) Sampling frequency (MHz) Barker codes 
BPSK1 2.5 10 100 + + - + 
BPSK 2 2 10 100 + + + - + 
BPSK 3 1.43 10 100 + + + - - + - 
BPSK 4 0.92 10 100 + + + - - - + - - + - 
BPSK 5 0.8 10 100 +++++- - ++-+-+ 
BPSK 6 2.5 20 100 + + - + 
BPSK 7 2 20 100 + + + - + 
BPSK 8 1.43 20 100 + + + - - + - 
BPSK 9 0.92 20 100 + + + - - - + - - + - 
BPSK 10 0.8 20 100 +++++- - ++-+-+ 
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It is ongoing issue to identify the specific code sequences used in a BPSK RES. It 
can be seen from Fig.7 that the phase changes of Barker code sequences hide in the 
residual signal obtained by subtracting the energy of time-frequency atoms from the 
original signal, instead of in the time-frequency atoms decomposed. In Fig. 7 (a) and 
(f), there are two sharp changes at sampling points 500 and 750 corresponding to the 
phase from positive to negative and then to positive. Figure 7 (b) and (g) show that  
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(a) BPSK1                                                         (b) BPSK2 
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(c) BPSK3                                                         (d) BPSK4 
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(e) BPSK5                                                         (f) BPSK6 

Fig. 7. Residual energies of different BPSK RESs 
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(g) BPSK7                                                         (h) BPSK8 
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(i) BPSK9                                                         (j) BPSK10 

Fig. 7. (continued) 

there are phase changes at sampling points 600 and 800. The changing cases in Barker 
code with length 7 can be identified in Fig. 7 (c) and (h). The Barker codes with 
length 11 and 13 have five and six turns in phase, respectively, Fig. 7 (d) and (i), (e) 
and (j), however, still clearly show the positions of these turns. These results indicate 
that the time-frequency atom decomposition based on a differential evolution can be 
applied to analyze the phase changes of signals and also to locate the positions of 
phase changes. 

5   Conclusions 

It is a time-consuming process to use time-frequency transforms to illustrate the time-
frequency characteristic of a signal, which is a common technique to analyze a time-
variant signal in the literature. Beyond this idea, this paper uses a novel opinion  
to arrive at the same aim. The time-frequency atom decomposition based on a differ-
ential evolution is introduced to analyze radar emitter signals and a small number  
of time-frequency atoms decomposed from the original signal or the residual  
signals after the decomposition process are employed to sketch the time-frequency 



 A Differential Evolution Based Time-Frequency Atom Decomposition 171 

 

characteristics or phase changes of radar emitter signals. Experiments carried out on 
various radar emitter signals with different modulations verify the feasibility and 
effectiveness of this presented idea. 
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Abstract. In this paper we present a proposal of a system that combines
various methods of user modelling. This system may find its application
in e-commerce, recommender systems, etc. The main focus of this pa-
per is on automatic methods that require only a small amount of data
from user. The different ways of integration of user models are studied.
A proof-of-concept implementation is compared to standard methods in
an initial experiment with artificial user data. . .

Keywords: user preferences learning, recommender systems.

1 Introduction

The search for the best product is a very usual task for most people. Be it a
digital camera, a notebook, a kitchen desk, a song, a photo or a flat, user has to
decide what is best for her. Then, she has to search for the product that most
satisfies her preferences. The task is how to transform the preferences sensed in
human way into the language the computer would also understand.

The use case for us is a user looking for a notebook. She has some preferences
about its attributes and wants that the system will recommend her the most
appropriate notebook. There are various ways for recommending things on the
web. They perform differently in different conditions.

Our contribution is to study their strengths and weaknesses and propose a
way to combine them efficiently according to the current state of the system.

In Section 2 some user models and methods for their acquisition are described.
Our system for combining preferences is studied in Section 3 and tested in
Section 4. Section 5 contains conclusions and some future work.

2 User Model Acquisition and Related Work

In this section, some of the methods for acquisition of user model will be described.
Our model of user preferences is partial ordering of objects. The ordered list (or
only the first 10 objects) is then presented to the user, who can easily see the most
interesting objects at the top of the list as it is usual in search engines. The user

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 172–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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can proceed to the following objects, but they are supposed to be of less interest
for her. We assume that every method is able to give its recommendation in the
form of a rating of a given object. Ratings of objects are then used to order them.
The following four types of methods are taken into account:

Content-based (in further text as CB) methods are based on the attributes
of objects. In our case of notebooks, these are size of RAM, harddisk, display,
manufacturer and price of the notebook. User model based on fuzzy logic is used
in our system proposal. It is two-step model; the first step is normalisation of the
attribute values of the object, and the second is combination of these normalised
values into the overall rating of the whole object.

User ratings are used for construction of this model. User associates a rating
to some objects. Ratings may be represented in various ways: as stars, smileys,
school marks etc, but they have to be totally ordered. Our method Statistical,
described in [1,2], is used for acquisition of this user model.

CB techniques need meaningful attributes of objects. They are unsuitable for ex-
ample for finding a good joke or a book. These methods also require some objects to
be rated by the user. There is no requirement on other users ; this method depends
only on objects’ attributes and the number of ratings user has made.

Collaborative filtering (CF) is based on similarity of users. The idea behind
CF is expressed in the sentence “Users who are similar to you have rated this
object with ”. CF needs a lot of users and a lot of ratings so that a recommenda-
tion can be made. CF shows good precision under these conditions. Collaborative
filtering was described for example in [3,4,5].

Clickstream analyse (CA) is the method that requires the least effort from
the user. Her behaviour when working with the system is gathered; actions like
clicking on a link, scrolling down a document, adding an item to the cart, closing
the page etc., are collected. They are interpreted as if they were motivated by
user’s preferences. However, CA needs a lot of information about the user and
the predictions are not always very reliable. This method was studied among
others in [6,7,8].

Direct query (DQ) can be viewed as a user preferences definition. These queries
may have a traditional form of keyword search, but in e-shop environment, they
will have typically a form of conjunctive restrictions of objects’ attributes. For
example, in notebook area, user may specify that she wants notebooks with
display from 10“ to 12”, harddisk at least 160GB and the only producer allowed
is HP. Example of an interface for such queries is in Figure 1. When the user
issues a query, objects that satisfy the query obtain the highest rating and the
objects that do not fit into receive the worst rating. Querying requires most effort
from the user - she has to specify as many restrictions as possible for obtaining
the result set of acceptable size. Many queries return no object or far too many
objects to be suitable for human processing.
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Fig. 1. Direct query interface

Every method will be addressed by its abbreviation in following text and we
expect that they give recommendations as ratings of objects:

Content based CB(o) : Object→ [0, 1] ,
Collaborative filtering based CF (o) : Object→ [0, 1] ,
Click stream analysis based CA(o) : Object→ [0, 1] and
Direct query result DQ(o) : Object→ [0, 1]

3 Combining Recommendation from Various Sources

The proposal of a system that combines preferences from various sources will be
studied in this section. We are considering four different methods for preference
acquisition and three different inputs from the user - ratings, behaviour and
querying the system as they were described in Section 2. There is one module
that combines the outputs of these methods. We will now classify methods that
are used according to [9].

As we can see in Figure 2, we are trying to combine recommendations from
rather automatic (no effort from the user) and persistent (user dependent, they
require some information about user or her history) methods with a method that
is manual (some effort from user is expected) and ephemeral (does not depend
on the user, only on the query issued). As we will see, the added information
from DQ will improve the recommendation from traditional recommendation
methods. The system uses only the highest rating of the objects that satisfy
the direct query, because the lowest rating is influencing badly the stability of
combined rating. It is simply too low and it penalises objects that are mediocre.

We are concentrating more on automatic methods, because they require little
effort from user. This is an alternative to [10], where every category is studied
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Fig. 2. Classification of recommendation methods

in depth. According to [11] very few users tend to fill complicated forms even if
it enhances search results and recommendation accuracy.

The way to combine recommendations given by each method is influenced by
the amount of information the system has about the user. Combined method
starts as purely Manual and Ephemeral method (see Figure 2), as in the begin-
ning it has no information about the user. The more time the user spends with
the system the more information the system acquires and the more automatic
and persistent Combined method can be. There is a weight associated with each
method: wCA, wCB, wCF and wDQ. Overall rating is computed as weighted
average:

Combined(o) = wCA∗CA(o)+wCB∗CB(o)+wCF ∗CF (o)+wDQ∗DQ(o)
wCA+wCB+wCF +wDQ

.
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Table 1. The weights of different recommendation methods

Weight 1) New user 2) Some ratings 3) Users spends some
time with the system

4) Different query

wCB 0 1 1 1/0
wCF1) 0 1/0 1/0 1/0
wCA 0 0 1 1/0
wDQ 1 0.8 0.2 1

1) Only if there are enough users, otherwise 0.

3.1 Weights of Methods

In the following paragraph, we will describe some typical scenarios and how this
system will behave at them. The weights are summarised in Table 1.

1) When a new user comes to the system, it has no information about her. She
issues a query to the system. In this case, only DQ is taken into account,
because we cannot use any other method without any information about the
user.

2) After she got some results to her query, the user rates some small number
of objects. Now we have some information about her. CB will make some
recommendation. If our system already has a large number of other users,
CF can be used also. Results from DQ are taken with less importance. If
there are few users that are similar enough to the current user, CF stays out
of the way.

3) After some time the user spends with the system, enough user behaviour
has been accumulated for CA so that it can be incorporated into the result.

4) If the user makes a new query, then the weight of direct query is refreshed.
According to [6] it can be estimated whether the user is using the system
systematically or just browsing with no interest. In the first case, the weights
of other methods remain the same, in the latter case we take into account
only DQ.

4 Experiments

4.1 Experiment Settings

A set of 198 notebooks extracted from the web was used for experiments. Note-
books have five attributes: harddisk, display, price, producer and ram. We have
created 4 artificial users with different preferences. Result is 4 ratings on the
scale {0,1,2,3,4,5} for every object. Artificial users were represented by a set of
methods that compute preference over attributes and an aggregation function.
We manually set the preference of producers for nominal attribute producer. An
example of assigning the preference is :
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Table 2. Preference of producers

Producer Preference

ACER 0.8
FUJITSU 0.3

HP 0.4
IBM 0.1

TOSHIBA 0.7
ASUS 0.6
MSI 0.2

SONY 0.4
LENOVO 0.3

A function that normalises the domain was used for numerical attribute; this
function has an ideal value, for which the preference is 1 and the preference
linearly decreases with the increasing distance from this ideal value. An example
of normalisation function is |DisplaySize− 15| for the size of display.

Testing was performed with a traditional cross-validation method. Because
we are dealing with user ratings, it can not be expected that the user will rate
many objects. That is why we limited the size of the training set (TSS in fol-
lowing text) to 40 ratings at maximum. Methods were tested on the rest of
the set.

There are six methods tested: Mean, Statistical, Collaborative filtering,
Multilayer perceptron, Direct query and CombinedMethod. Mean is
a baseline. This method always returns the average rating from the training
set. Multilayer perceptron is a traditional data mining method. We also tested
Support Vector Machine, but it gave almost identical results as Multilayer per-
ceptron. Implementation from Weka [12] was used. Direct query returns either 5
or 0 according to whether the object fits into the query issued by the user or not.
It does not depend on the TSS, because it simply has no training phase. Com-
binedMethod is the proposed method that combines Statistical, CF and DQ. In
our case, collaborative filtering plays small role (because of a small number of
users), so the major influence is from Statistical and Direct query. Every method
gets the same weight, but CF fails to predict often, as we will see.

4.2 Results

RMSE. In Figure 3 there are results for RMSE (root of mean squared error), a
traditional data-mining error measure. To explain the strange behaviour of CF,
we studied the number of objects for which the method failed to give prediction.
For all TSSes, CF failed to predict more than 50% of objects, and until TSS =
20 it was 90%. So we do not take CF into account from now on. For TSS = 2,
Statistical is the best. For other TSSes, the combined method is the best and
it is about the same as Multilayer perceptron for TSS = 40. DQ is not in the
graph, because it has RMSE about 2.5 for every TSS.
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Fig. 5. Tau coefficient of recommendation methods

Weighted RMSE. We also studied weighted RMSE in Figure 4. Weighted
RMSE is the same as RMSE except that the errors are weighted with the original
ratings - the higher the rating is, the higher weight it gets∑

o∈Trainingset

r(o) ∗ |r(o) − r̂(o)|∑
o∈Trainingset

r(o)
,

where r(o) is user rating of object o and r̂(o) is the rating determined by the
tested method.

The motivation behind this is that we are more in interested in recommending
good notebooks and the preferences of not-preferred ones are not so important.
For Weighted RMSE, our Combined method was even better than for RMSE,
but not significantly.

Tau coefficient. Tau correlation coefficient measures similarity of two ordered
lists. The higher the coefficient is, the better the method corresponds to real
user preferences. The first list contains all notebooks from test set ordered by
real user preferences, the second one is ordered by the method. Results are in
Figure 5. Our combined method is the second best for every TSS except 40. The
best one is DQ. It is because it uses the real user preferences for generation of
the query. This result can be viewed as a real success of combination of a manual
recommendation method and an automatic one.
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5 Conclusion

The proposal of a system that combines various sources of user preferences was
described and tested. It is motivated by the fact that a system gets various inputs
from the user and each method uses different one. However the combination of
these methods performs better than the methods individually.

In experiments, combined method have proven itself worth trying, it outper-
formed almost every other method in every criteria.

As of future work, we have to design an experimental setting, where collab-
orative filtering will perform better. This will also affect Combined method. To
let clickstream analyse influence the result, we would have to collect information
about some user behaviour and interpret it, which seems like a long term task.

We would like also study the influence of our method Phases [13] on the
behaviour of the system, especially on changing weights of methods.

Acknowledgments. The work on this paper was supported by Czech projects
MSM 0021620838 and 1ET 100300517.
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Abstract. Decision maker’s behavioral aspects play an important role
in human decision making, and this was recognized by the award of the
2002 Nobel Prize in Economics to Daniel Kahneman. Target-oriented
decision analysis lies in the philosophical root of bounded rationality as
well as represents the S-shaped value function. In most studies on target-
oriented decision making, monotonic assumptions are given in advance
to simplify the problems, e.g., the attribute wealth. However, there are
three types of target preferences: “the more the better” (correspond-
ing to benefit target preference), “the less the better” (corresponding to
cost target preference), and equal/range targets (too much or too little
is not acceptable). Toward this end, two methods have been proposed
to model the different types of target preferences: cumulative distribu-
tion function (cdf) based method and level set based method. These two
methods can both induce four shaped value functions: S-shaped, inverse
S-shaped, convex, and concave, which represents decision maker’s psy-
chological preference. The main difference between these two methods is
that the level set based method induces a steeper value function than
that by the cdf based method.

Keywords: Satisfactory-oriented decision, S-shaped function, Target-
oriented decision analysis, Cumulative distribution function, Level set,
Target preference type.

1 Introduction

Traditionally, when modeling a decision maker’s (DM for short) rational choice
between acts with uncertainty, it is assumed that the uncertainty is described by
a probability distribution on the space of states, and the ranking of acts is based
on the expected utilities of the consequences of these acts. This utility maximiza-
tion principle was justified axiomatically in Savage [18] and von Neumann and
Morgenstern [17]. However, substantial empirical evidence and recent research
have shown that it is difficult to build mathematically rigorous utility functions
based on attributes [3] and the conventional attribute utility function often does
not provide a good description of individual preferences [12]. As a substitute
for utility theory, Kahneman and Tversky [12] propose an S-shaped value func-
tion, and Heath et al. [9] suggest that the inflection point in this S-shaped value
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function can be interpreted as a target. To develop this concept further, target-
oriented decision analysis involves interpreting an increasing, bounded function,
properly scaled, as a cumulative distribution function (cdf) and relating it to
the probability of meeting or exceeding a target value.

Berhold [2] notes that “there are advantages to having the utility function
represented by a distribution” (p. 825), arguing that it permits the use of the
known properties of distribution functions to find analytic results. Manski [16]
calls this the “utility mass model”. Castagnoli and LiCalzi [5] prove that expected
utility can be expressed in terms of “expected probability”, with the utility
function for performance interpreted as a cdf in the case of a single attribute (see
also Bordley and LiCalzi [4]). Interestingly, the Savage’s utility function [17] can
always be interpreted as the probability of achieving a target [4,5]. In maximizing
expected utility, a DM behaves as if maximizing the probability that performance
is greater than or equal to a target, whether the target is real or just a convenient
interpretation. More details on target-oriented decision analysis could be referred
to [11,14,21].

In general, target-oriented decision analysis lies in the philosophical root of
bounded rationality [19] as well as represents the S-shaped value function [12].
However, in most studies on target-oriented decision analysis, monotonic as-
sumption of attribute is given in advance to simplify the decision problems. In
the context of decision analysis involving targets/goals, usually there are three
types of goals: “the more the better” (corresponding to benefit target), “the less
the better” (corresponding to cost target), and goal values are fairly fixed and
not subject to much change, i.e., too much or too little is not acceptable (we
shall call this type of targets as equal/range targets). Thus it is important to
consider these three types of targets. Based on the above observations, we sum-
marize our primary contributions as follows. Two methods have been proposed
to model the different target preference types: cdf based method and level set
based method. No matter which method is selected, both of these two methods
can induce four shaped value functions: S-shaped, inverse S-shaped, convex, and
concave, which represents DM’s psychological (behavioral) preference. The main
difference between these two methods is that the level set based model induces
a stricter value function than the cdf based model.

The rest of this paper is as follows. Section 2 proposes a target-oriented de-
cision model with different target preferences based the cumulative distribution
function. In Section 3 we propose a target-oriented decision model based on the
level sets of probability distributions. In Section 4, two examples are used to
illustrate the proposed models. Finally, some concluding remarks are also given
in Section 5.

2 Target-Oriented Decision Analysis Based on
Cumulative Distribution Function

For notational convenience, let us designate an evaluation attribute by X , and
an arbitrary specific level of that evaluation attribute by x. We also restrict
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the variable x to a bounded domain D = [Xmin, Xmax]. Suppose that a DM
has to rank several possible decisions. Assume for simplicity that the set A of
consequences is finite and completely ordered by a preference relation (. Denote
by pd his probability distribution for the random consequenceXd associated with
a decision d. The expected utility model suggests that the ranking be obtained
by using the following value function

V (d) = EU(Xd) =
∑

x

U(x) · pd(x) (1)

where U(x) is a Von Neumann and Morgenstern (NM-)utility function over
consequences.

An expected utility DM is defined to be target oriented for a single attribute
decision if the DM’s utility for an outcome depends only on whether a target is
achieved with respect to x [3], thus a target-oriented DM has only two different
utility levels, and because a utility function is only specified to within a positive
affine transformation, these two utility levels can be set to one (if the target is
achieved) and zero (if the target is not achieved). Then a target-oriented DM’s
expected utility for decision d is

V (d) = Pr(Xd ( T )

=
∑

x

[Pr(x ( T ) ∗ 1 + (1 − Pr(x ( T )) ∗ 0] pd(x)

=
∑

x

Pr(x ( T )pd(x)

(2)

where Pr(x ( T ) is the probability of meeting the uncertain target T and T
is stochastically independent of Xd. The idea that the NM-utility function U
should be interpreted as a probability distribution may appear unusual but, in
fact, NM-utilities are probabilities [1,4]. With the assumption that the attribute
is monotonically increasing, x and t are mutually independent, Bordley and
Kirkwood [3] suggest the following function

Pr(x ( T ) =
∫ x

Xmin

p(t)dt, (3)

where p(t) is the probability density function of uncertain target T .
In most studies on target-oriented decision making, monotonic assumptions

of attributes (e.g., wealth) are given to simplify the problems. In many decision
problems involving goals/targets, usually there are three types of goal prefer-
ences [13].

– Goal values are adjustable: “more is better” (we shall call benefit target);
– Goal values are adjustable: or “less is better” (with respect to cost target);
– Goal values are fairly fixed and not subject to much change, i.e. too much or

too little is not acceptable (we shall call this type of target as equal/range
target).
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The target-oriented decision model assumes that the probability distribution
with respect to the uncertain target is unimodal as well as views the mode value
of probability distribution of the uncertain target as the reference point, denoted
as Tm [4]. To model the three types of goal preference, similar with Bordely and
Kirkwood [3], we define

Pr(x ( T ) =
∫ Xmax

Xmin

u(x, t)p(t)dt. (4)

As target-oriented decision model has only two different utility levels, we can
define u(x, t) as follows.

In case of benefit target preference, the DM has a monotonically increasing
preference. As target-oriented model assumes that there are only two levels of

utility (1 or 0), thus we define u(x, t) =
{

1, x ≥ t;
0, otherwise. Then we can obtain the

probability of meeting uncertain target T as the following function

Pr(x ( T ) = Pr(x ≥ T ) =
∫ x

Xmin

p(t)dt. (5)

This is consistent with the target-oriented model in the literature [4,5], i.e. the
target-oriented model views the cdf as the probability of meeting uncertain
target T .

Similar with the benefit target, for cost target we define u(x, t)=
{

1, x ≤ t;
0, otherwise.

Then the probability of meeting cost target is as follows

Pr(x ( T ) = Pr(x ≤ T ) =
∫ Xmax

x

p(t)dt = 1 −
∫ x

Xmin

p(t)dt (6)

In case of equal/range target preference, the mode value Tm is the reference
point. There will be added loss of value for missing the reference point on the
low side, or added loss for exceeding the reference point. When x = Tm the prob-
ability of meeting target should be equivalent to one. Based on this observation,
we define the target achievement function as follows:

Pr(x ( T ) = Pr(x ∼= T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

x
Xmin

p(t)dt∫ Tm
Xmin

p(t)dt
, if x < Tm;

1, else if x = Tm;∫
Xmax
x

p(t)dt∫ Xmax
Tm

p(t)dt
, otherwise.

(7)

Generally speaking, when the DM has an equal/range target preference, the
value domain below the reference point Tm can be viewed as a pseudo benefit
attribute; the value domain upper than the reference point Tm can be viewed
as pseudo cost attribute. As a generation of this type of target preference, the
reference point value Tm may have a interval range, such that Tm ≡ [Tml, Tmu].
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In this case, Eq. (7) becomes

Pr(x ( T ) = Pr(x ∼= T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ x

Xmin
p(t)dt∫ Tml

Xmin
p(t)dt

, if x < Tml;

1, else if x ∈ [Tml, Tmu];∫
Xmax
x

p(t)dt∫ Xmax
Tmu

p(t)dt
, otherwise.

(8)

3 Target-Oriented Decision Analysis Based on the Level
Sets of Probability Density Function

The random target has an interval or range domain and the level set of prob-
ability density distribution (pdf) provides a convenient way to represent the
probability distribution. Dubois et al. [6] call this level set “confidence interval”,
which is different from the confidence interval in measurement theory. Due to
this observation, we shall use the level sets of probability density functions to
model the three types of target preferences.

3.1 Random Variable and Its Level Set Representation

Probability theory is the branch of mathematics that studies the behavior of
random events. Let Ω be a nonempty set, χ be a σ-algebra of subsets of Ω, and
Pr be a probability measure. Then the triplet (Ω,χ,Pr) is called a probability
space [15].

Let ξ be a random variable defined on a probability space (Ω,χ,Pr). The
probability distribution Φ : + → [0, 1] of a random variable is defined by

Φ(x) = Pr{ω ∈ Ω|ξ(ω) ≤ x} (9)

Φ(x) is the probability that the random variable ξ takes a value less than or
equal to x [15].

Let Φ : + ∈ [0, 1] be the cdf of the random variable ξ. The pdf p : + → [0,+∞]
of a random variable ξ is a function satisfying Φ(x) =

∫ x

−∞ p(t)dt, and this holds
for all x ∈ + [15].

Let ξ be a random variable defined on a probability space (Ω,χ,Pr), σ be
any given probability level, where 0 ≤ σ ≤ sup ξ. Let p(x) be the probability
distribution of the random variable ξ, and ξσ consists of all the elements whose
probabilities are greater than or equal to σ such that [15]

ξσ = {x ∈ Ω|p(x) ≥ σ}. (10)

Then ξσ is called the σ-level sets of random variable ξ. If the random variable ξ
has a unimodal distribution, then ξσ = [ξl

σ, ξ
r
σ], where ξl

σ is the left bound and
ξr
σ is the right bound. The distribution function of level sets of the pdf can be

defined as follows [7]

Φ(ξσ) =
∫ σ

0
ξtdt. (11)

This mapping characterizes the relationship between the corresponding level sets
of a pdf and their probabilities.
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3.2 A Level Set Based Approach to Target-Oriented Decision
Analysis

Let T be a random uncertain target having a bounded domain D = [XminXmax],
p(t) be the pdf of the random target T , Tσ consists of all the elements whose
probabilities are greater than or equal to σ such that Tσ = {t ∈ D|p(t) ≥ σ},
Tσ is called the σ-level sets of random target T . It should be noted that target-
oriented decision analysis assumes that the uncertain target has a unimodal
probability distribution, thus we can express as Tσ = [T l

σ, T
r
σ ], where T l

σ and T r
σ

are the left and right bound of level cut, respectively. Based on the distribution
function of level sets of pdf provided before, we define the following function:

Pr(x ( T ) =
∫ supT

0
u(x, Tσ)Tσdσ, (12)

where u(x, Tσ) indicates the degree that the target achievement in the level set
Tσ, supT denotes the support of the pdf of uncertain target, and u(x, Tσ) ∈ [0, 1],
supu(x, Tσ) = 1. Considering different target preferences, defined as

Pr(x ( T ) =

⎧⎪⎨⎪⎩
Pr(x ≥ T ) =

∫ sup T

0 u(x ≥ Tσ)Tσdσ, for benefit target;
Pr(x ≤ T ) =

∫ sup T

0 u(x ≤ Tσ)Tσdσ, for cost target;
Pr(x ∼= T ) =

∫ sup T

0 u(x ∼= Tσ)Tσdσ, for equal/range target.
(13)

Now let us consider these three cases in great detail.

Benefit Target Preference. If the DM assumes a monotonically increasing
target preference, for an interval Tσ = [T l

σ, T
r
σ ], to ensure that u(x, Tσ) ∈ [0, 1]

and supu(x, Tσ) = 1, we define

u(x ≥ Tσ) =

∫ T r
σ

T l
σ
u(x, t)p(t)dt∫ T r

σ

T l
σ
p(t)dt

(14)

As target-oriented model assumes that there are only two levels of utility (1 or

0), thus we define u(x, t) =
{

1, if x ≥ t;
0, otherwise. where u(x, t) denotes whether the

attribute level achieves target level or not. Then we can obtain u(x ≥ Tσ) as
follows:

u(x ≥ Tσ) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < T l

σ;∫
x

Tl
σ

p(t)dt∫ T r
σ

Tl
σ

p(t)dt
, if T l

σ ≤ x ≤ T r
σ ;

1, if x > T r
σ .

(15)

Cost Target Preference. If the DM assumes a monotonically decreasing tar-

get preference, similarly we define u(x, t) =
{

1, if x ≤ t;
0, otherwise. and then we can

obtain u(x ≤ Tσ) as follows:
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u(x ≤ Tσ) =

⎧⎪⎪⎨⎪⎪⎩
1, if x < T l

σ;∫
T r

σ
x

p(t)dt∫ T r
σ

Tl
σ

p(t)dt
, if T l

σ ≤ x ≤ T r
σ ;

0, if x > T r
σ .

(16)

It is clear that u(x ≤ Tσ) = 1 − u(x ≥ Tσ), thus we obtain

Pr(x ≥ T ) =
∫ sup T

0
u(x ≥ Tσ)Tσdσ = 1 − Pr(x ≤ T ) (17)

Equal/Range Target Preference. In case of non-monotonic target prefer-
ence, there exists an “ideal” level. Recall that target-oriented decision analysis
views the mode value Tm of the pdf as reference point (reflection point), then
there will be added loss of value for missing the reference point on the low side,
or added loss for exceeding the reference point. In other words, when x < Tm

it can be viewed as pseudo benefit attribute; when x = Tm the probability of
meeting target should be equivalent to one; and when x > Tm it can be viewed
as pseudo cost attribute. Due to this observation, we can define the following
function:

1. When x < Tm,

u(∼=∈ Tσ) = u(x ≥ Tσ) =

⎧⎨⎩
0, if x < T l

σ;∫
x

T l
σ

p(t)dt∫ T r
σ

T l
σ

p(t)dt
, otherwise. (18)

2. When x = Tm,
u(x ∼= Tσ) = 1 (19)

It should be noted that if the modal value Tm is an interval range, such
that Tm = [Tm1, Tm2], then we can define u(x ∼= Tσ) = 1 if Tm1 ≤ x ≤ Tm2.
Typical examples of this case are the trapezoidal distributions.

3. When x > Tm,

u(x ∼= Tσ) = u(x ≤ Tσ) =

⎧⎨⎩
0, if x > T r

σ ;∫ T r
σ

x
p(t)dt∫ T r

σ

T l
σ

p(t)dt
, otherwise. (20)

4 Illustrative Examples

In this section, we shall consider two special cases to illustrate the proposed
models.

4.1 Normally Distributed Target

In real applications, choosing a suitable probability distribution for uncertain
targets is due to specific problems. As the normal distribution is widely used as
a model of quantitative phenomena in the natural and behavioral sciences, we
shall assume that the uncertain target is normally distributed in the bounded
domain D and with mode value Tm.
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Benefit Target Preference. Firstly, let us consider the benefit case. According
to the two target achievement method in previous sections, we can obtain the
target achievements with respect to these three target preference types, as shown
in Fig. 1. To distinguish these two methods, PrI(x ≥ T ) is used to denote the
target-oriented model based on the cdf, whereas PrII(x ≥ T ) is used to denote
the target-oriented model based on the level sets of probability distributions.
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Fig. 1. Benefit target achievements under normal distribution by means of cdf and
level set based approaches

Looking at the target achievement of benefit attribute, PrI(x ≥ T ) and
PrII(x ≥ T ), as shown in Fig. 1. No matter which method is chosen, the induced
probability of meeting target (utility function) corresponds to the S-shaped func-
tion, which is equivalent to the S-shaped utility function of prospect theory [12]
as well as is consistent with “Goals as reference point” by Heath et al. [9]. The
induced value functions have the following two properties:

1. Gain and loss: The target divides the space of outcomes into regions of
gain and loss (or success and failure). Thus, the value function assumes that
people evaluate outcomes as gains or losses relative to the reference point
Tm.

2. Diminishing sensitivity: The value function draws an analogy to psy-
chophysical process and predicts that outcomes have a smaller marginal
impact when they are more distant from the reference point Tm.

Remark 1. It should be noted that Kahneman and Tversky [12] assume another
principle: outcomes that are encoded as losses are more painful than the similar
sized gains are pleasurable. In their words, “losses loom larger than gains”. The
induced value function by target-oriented model does not entirely satisfy the
prospect theory.

In Fig. 1, it is clearly that both the level set based approach and the cdf based
approach have the S-shaped value function, whereas the behavior of value func-
tion of the level set based approach PrII(x ≥ T ) is stepper towards the mode
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value of the corresponding target than that of the cdf function PrI(x ≥ T ).
This practically implies that the value function based on the level set reflects
a stronger decision attitude towards the target than that defined with the cdf
function [10].

Cost Target Preference. In case of monotonically decreasing preference, the
induced utility function should have an inverse S-shaped function. According
to Eq. (6), we can obtain the utility function based on the cdf of probability
distribution, denoted as PrI(x ≤ T ). By means of Eqs. (13) and (16) we can
obtain the probability of meeting target based on the level sets of probability
distributions, denoted as PrII(x ≤ T ). The induced utility functions by those
two approaches are graphically depicted in Fig. 2.
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Fig. 2. Cost target achievements under normal distribution by means of cdf and level
set based approaches

From Fig. 2, it is clear that whatever which approach is chose, both of these
two approach induce an inverse S-shaped value function. The reference point
Tm divides the value function into two parts: gains and losses (the value below
Tm can be viewed as a kind of gains; the value upper than Tm can be viewed
a losses). In addition, the value function draws an analogy to psychophysical
process and predicts that outcomes have a smaller marginal impact when they
are more distant from the reference point Tm. Furthermore, this type of induced
value function has an inverse S-shaped value function. Finally, the behavior of
value function PrII(x ≤ T ) based on the level set is stepper towards the modal
value of the corresponding target than that of the cdf function PrI(x ≤ T ).

Equal/Range Target Preference. When the DM has an interval target pref-
erence, DM will evaluate outcomes as losses relative to the reference point Tm.
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Fig. 3. Equal/range target achievements under normal distribution by means of cdf
and level set based approaches

The attribute value below or exceeding the reference point is viewed as a loss,
in which the value function is convex, as shown in Pr(x ∼= T ) of Fig. 3.

According to Eq. (7) we can obtain the induced value function based on the
cdf of probability distributions. By means of Eqs. (13) and (18)-(20) we can
induce the value function based on the level set of probability distributions. The
induced value functions are graphically depicted in Fig. 3. Looking at Fig. 3,
the reference point value Tm will be the reflection point. As the DM assumes
interval/range target preference, there will be added loss of value for missing
the reference point on the low side, or added loss for exceeding the reference
point Tm. As illustrated in Fig. 3, the induced value function below or upper
than the modal value Tm has a convex shape. It is clear that the behavior of
value function PrII(x ∼= T ) based on the level sets of probability distributions
is stepper towards the modal value of the corresponding target than that of the
cdf function PrI(x ∼= T ).

4.2 Uniformly Distributed Target

Furthermore, let us consider a special case. Without additional information
about the target distribution, we can assume that the random target T has
a uniform distribution on D with the probability density function p(t) defined
by

p(t) =
{ 1

Xmax−Xmin
, Xmin ≤ t ≤ Xmax;

0, otherwise.
(21)

Under the assumption that the random target T is stochastically independent of
any alternative, by means of the cumulative distributive function based approach
and the level set based approach we can obtain the same probability of meeting
uncertain target for benefit and cost attributes as follows

Pr(x ( T ) =

{
Pr(x ≥ T ) = x−Xmin

Xmax−Xmin
, for benifit target;

Pr(x ≤ T ) = Xmax−x
Xmax−Xmin

, for cost target.
(22)
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It is easily seen that, for benefit and cost attribute there is no way to tell whether
the DM selects an alternative by traditional normalization method or by target-
oriented model. In other words, in this case the target-based decision model with
the decision function is equivalent to the traditional normalization function.

5 Conclusions

Decision analysis with targets/goals has a long history in the literature. Distance-
based approach is one widely used method in decision analysis problems. How-
ever, different distances to the target value should have different impacts on
DMs’ preferences, which is missed in the distance-based approach.

In this paper, two methods have been proposed for target-oriented decision
analysis with different types of target preferences: cdf based method and level
set based method. These two methods can induce four shaped value functions:
S-shaped, inverse S-shaped, convex, and concave, which represents DM’s psy-
chological preferences. The main difference between these two methods is that
the level set based model induces a stricter value function than the cdf based
model. Our research research verifies the proposition that probability can be
viewed as a psychological distance [20].

Differed from the original target-oriented decision model [3,4,5,14], our two
proposed models add a target achievement level function u(x, t) into the value
function such that

Pr(x ( T ) =
∫ ∞

−∞
u(x, t)p(t)dt.

It is interesting that while assuming that x and t are stochastically independent,
we can rewrite the function as

Pr(x ( T ) =
∫ ∞

−∞
u(x, t)dΦ(t), (23)

where Φ(t) is the cdf of the random target. This representation has a similar
structure with the Choquet fuzzy integral [8]. Viewing Φ(t) as the fuzzy density,
the general target-oriented decision model can be a special case of Choquet
fuzzy integral, where u(x, t) is the Heaviside utility function, i.e. only two target
achievement levels exist (1 and 0). Due to the limitation of paper space, a further
study on the relationship between target-oriented decision model and Choquet
fuzzy integral will be left for the future work.
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Abstract. Based on the fusion of multiple biometric sources, Multibiometric 
systems can be expected to be more accurate due to the presence of multiple 
pieces of evidence. Multibiometric system design is a challenging problem 
because it is very difficult to choose the optimal fusion strategy. Score level 
fusion is the most commonly used approach in Multibiometric systems. The 
distribution of genuine and imposter scores are very important for score fusion 
of Multibiometric systems. FRR (False Reject Rate) and FAR (False Accept 
Rate) are two key parameters to cultivate the distribution of genuine and 
imposter scores. In this paper, we first present a model for Multibiometric 
fusion and then proposed a novel approach for score level fusion which is based 
on FAR and FRR. By this method, the match scores first are transformed into 
LL1s and then the sum rule is used to combine the LL1s of the scores. The 
experimental results show that the new fusion scheme is efficient for different 
Multibiometric systems. 

Keywords: biometrics, Multibiometric, score level fusion, multi-modal, FRR, 
FAR. 

1   Introduction 

Biometric recognition refers to the use of distinctive physiological or behavioral 
characteristics for automatically confirming the identity of a person. Typically, 
sources of physiological characteristics include face, fingerprint, iris, palmprint, hand 
geometry and ear shape; and sources of behavioral characteristics include gait, 
signature and keystroke dynamics and speak. Multibiometrics which combines more 
information is expected to improve the performance of biometric system efficiently 
[1]. Based on the nature of the sources, Multibiometric systems can be subdivided 
into five classes: multi-sensor systems (multiple acquisitions of the same biometry 
with the same sensor), multi-sample systems (multiple representations of the same 
biometric trait), multi-unit systems (e.g. the fingerprints of left and right index 
fingers), multi-algorithm systems, multi-modal systems and hybrid systems which 
refers to systems that integrate a subset of the five classes above [2]. Depending on 
the level of information that is fused, the fusion scheme can be classified as sensor 



 A Novel Method for Multibiometric Fusion Based on FAR and FRR 195 

 

level, feature level, score level and decision level fusion. Apart from the raw data and 
feature sets, the match scores contain the richest information about the input pattern. 
Also, it is relatively easy to get and combine the scores generated by biometric 
matchers. Consequently, score level fusion is the most commonly used approach in 
Multibiometric systems. Information fusion has a long history and the theory of 
multiple classifier systems (MCS) has been rigorously studied over the past several 
years. Scores contain less but more useful information than the raw data and feature 
vectors. Scores generated by different matchers are not homogeneous often. For 
example, scores of different matchers may not be on the same numerical range and 
may follow different probability distributions. For the above factors, score level 
fusion in Multibiometric systems is still a challenging problem. 

In this paper, we first propose a model for multibiometric systems and give a clear 
definition for different kind of multibiometric systems based on this model. Then we 
propose a novel approach for score level fusion which is based on FAR and FRR. By 
this method, the match scores first are transformed into LL1s. Different from 
traditional normalization techniques, the scores transformed by LL1 transformation 
function are comparable. Based on the LL1s of match scores, different combination 
rules can be used to give the final decision. Since sum rule show good performance in 
multi-modal system [9], we use sum rule to give the final decision. 

The remainder of this paper is organized as follows. In Section 2, the related work 
and motivation is introduced. In Section 3, a novel fusion model for Multibiometric 
systems are described. The new fusion strategy is proposed in Section 4. To study the 
effectiveness of the proposed technique, section 5 gives the experimental results. The 
last section summarizes the results of this work and provides future directions for 
research. 

2   Related Work and Motivation 

The match score is a measure of similarity between the template and the input 
biometric feature vectors. Combining different match scores with fusion strategy to 
give the final decision is called score level fusion. There are usually three kinds 
techniques of score fusion: transformation-based score fusion, classifier-based score 
fusion and density-based score fusion [2]. Transformation-based score fusion first 
transforms the match score into a common domain and then combines the normalized 
scores to gain the final score and the final decision. Several normalization techniques 
are proposed: min-max, z-score, tanh, sigmoid. However, the scores presented by the 
different matchers usually have different distributions; the performance of 
transformation-based fusion can not be conformed in multi-modal systems. In 
classifier-based score fusion, the scores of the different matchers can be non-
homogeneous. A limitation of the classifier-based score fusion approach is that it is 
difficult to get different FRRs and FARs which are useful to draw the ROC curves 
and to choose different thresholds for different applications by operators. In density-
based score fusion, the match scores are first transformed into probabilities and then 
the Bayesian decision rule can be used to make a decision.  

Among the three approaches, density-based fusion is a more principled approach 
because it achieves optional recognition performance if the densities of genuine and 
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imposter scores are estimated accurately. Since the match scores are limited, the 
difficulty of density-based sore fusion approach is the estimation of the conditional 
densities of the match scores. Density estimation techniques can be classified as non-
parametric and parametric [3]. For non-parametric approaches, Histogram [4], Parzen 
window [5] and ROC curve [6] were used to estimate the match score densities. In 
reference [7], a likelihood ratio (LR)-based framework is proposed for optimal 
combination of match scores that is based on the likelihood ratio test. The 
distributions of genuine and impostor match scores are modeled as finite Gaussian 
mixture model which belongs to parametric approaches. Although we have mentioned 
several density estimation techniques, score density estimation is still the most 
complex work in multibiometric fusion because match scores are limited especially 
for genuine match scores. In this paper, we try to cultivate the distribution or densities 
of genuine and imposter scores based on FAR and FRR indirectly but not to estimate 
the densities of match scores directly. 

3   A Fusion Model for Multimodal Fusion 

3.1   The Property of Biometric Match Scores 

The match score is a measure of similarity between the template and the input 
biometric feature vectors. Verlinde et al., 1999[8] proposed that the match score s is 

related to ( | )k jP xω where jx is the feature vector and kω refers to the class label as 

follows: 

( ( | )) ( )k j js g P x xω β= + , (1)

Where g is a monotonic function and β is the error made by the biometric systems 

which depends on the input features. But the function g and the error function β are 

unknown. We give a simple relationship between the match score s and posteriori 
probabilities ( | )P g s . A biometric system f gives one score s for each verification 

between biometric template T and the input patterns I. For example, 

( , )i i is f T I=  (2)

is the similarity between iT   and iI  based on the recognition system f. Suppose two 

scores,  

( | ) ( | )i j i js s then P g s P g s< ≤　 　 . (3)

( | )iP g s refers to the posteriori probabilities which the input patterns and the 

templates are from the sample user that means the input user is a genuine. And we call 
the formula (3) as the property of match scores. 
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3.2   A Formal Definition of Multibiometric Systems 

Suppose there are N times verification, for each verification, we get M match scores 
and then score level fusion is conducted to get the final decision.  

( ) ( , ) 1, 2, , , 1, 2,m m m m
i i is f T I i N m M= = =K K

1 2 3( , , , )M
i i i i iu fusion s s s s= K  

(1)

In formula (4), i refers to the ith verification. ( )mf  refers to different biometric 

recognition system. ,m m
i iT I refer to template and input biometric features for the mth 

biometric recognition system during the ith verification. From formula (4), we can 

also give the definition of different Multibiometric systems which are classified by 

the source of biometric systems. To give a definition of Multibiometric system, we 

define functions type and sensor. ( )m
itype T and ( )m

itype I  refer to the biometric 

type which means fingerprint, face, iris, voice and so on. ( )m
isensor T  and 

( )m
isensor I refer to the sensor types which capture the traits. For biometric systems, 

( ) ( )m m
i itype T type I=  and ( ) ( )m m

i isensor T sensor I= usually. So in equations 

(5)-(9), only ( )m
itype T and ( )m

isensor T are used. 
Multi-algorithm biometric systems: 

1 2 1 2 1 2( ) ( )
1 2( )(1 )m m m m m m

i i i if f T T and I I m m M≠ = = ≤ < ≤ . (5)

Multi-unit biometric system: (e.g. multi-finger fingerprint recognition system) 

1 2 1 2
1 2( ) ( ) (1 )m m m m

i i i iT T type T type T m m M≠ = ≤ < ≤ . (6)

Multi-sample biometric systems: 

1 2 1 2 1 2( ) ( )
1 2( ) (1 )m m m m m m

i i i if f T T or I I m m M≠ = = ≤ < ≤ . (7)

Multi-sensor biometric systems: 

1 2 1 2
1 2( ) ( ) (1 )m m m m

i i i iT T sensor T sensor T m m M= ≠ ≤ < ≤ . (8)

Multi-modal biometric systems: 

1 2 1 2( ) ( )
1 2( ) ( ) (1 )m m m m

i if f type T type T m m M≠ ≠ ≤ < ≤  (9)

If we consider function fusion as a classifier and 1 2 3( , , , )M
i i i is s s sK as a feature 

vector, the fusion modal belongs to a classifier-based fusion. If we first translate the 
match scores into post probabilities by the density of imposter and genuine scores, 
and then get the final decision by Bayes rule, the fusion modal is density-based 
fusion. The transformation-based rule first translate the match score by normalized 
functions and then use a fixed fusion rule such as mean, max, min, median and 
product. 
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3.3   Constraints for the Fusion Function in Multibiometric Systems 

The fusion function is defined as follows: 

( )( ( , )) ( )m m m m m
i i i ifusion f T I fusion s t= =  (10)

And the fusion function should satisfies formulas (11) and (12) 

1 2 1 2
[0,1],m m m m m

i i i i it s s t t∈ < ⇒ <  (11)

1 2 1 2

1 2 1 2
( ) ( )m m m m

i i i it t Decision s Decision s< ⇒ <  (12)

The function ( )Decision s refers to the very decision function which must satisfy 

formula (11). Usually, the function fusion is not the same as the function Decision. 
For example,  

( | )
( )

( | ) ( | )

m
m i
i m m

i i

P genuine s
fusion s

P impostor s P genuine s
=

+
 (13)

( | )
( )

( | )

m
m i
i m

i

P genuine s
Decision s

P impostor s
=  (14)

After transformation by the fusion function, the match scores can be combined with 
the fixed fusion rules such as sum, product, max, min and median.  

4   Score Fusion Based on FRR and FAR 

4.1   The Definition of LL1_Fusion Function 

A likelihood ratio (LR)-based framework for score level fusion was proposed in [3] 
for the verification scenario. This LR framework is based on the Neyman-Pearson 
theorem and it maximizes the genuine accept rate (GAR) at any desired false accept 
rate (FAR), provided genuine and impostor match densities are known or can be 
estimated accurately. LR-based fusion framework needs to compute the density of 
genuine and imposter scores accurately. Since the match scores are limited especially 
for genuine scores, the accurate density is very difficult to compute. And the densities 
are affected by data noise seriously. Also, the fusion function based on likelihood 
could not satisfy the constraint (12). However, based on this theory, we give a new 
transformation function based on FRR and FAR. The equations (15) and (16) are the 
definitions of FAR, FRR. More details can be found in Ref. [2] 

( ) (s | ) ( )impt
FAR t p t impostor f s ds

∞
= ≥ = ∫  (15)
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( ) (s | ) ( )
t

genFRR t p t genuine f s ds
−∞

= < = ∫  (16)

For real systems, the match score is limited and the definition of FRR and FAR is as 
follows. 

{ t   }
( )

( )

Number s AND s impostor
FAR t

Number impostor

≥ ∈=  (17)

{ t   }
( )

( )

Number s AND s genuine
FRR t

Number genuine

< ∈=  (18)

First, we define a function L_fusion  for a single biometric(means for the very m) 
systems as follows:  

0 / ( )  ( ) 0

_ ( ) ( ) / 0  ( ) 0

( ) / ( ) 

m m
i i

m m m
i i i

m m
i i

FRR FAR s if FRR s

L fusion s FRR s FAR if FAR s

FRR s FAR s otherwise

⎧ =
⎪= =⎨
⎪
⎩

 (19)

Where FRR0=1/(10*Number(genuine)) and FAR0=1/(10*Number(impostors)). 
FRR0 and FAR0 are used to keep the discriminative ability of LL1_fusion when 
FRR or FAR equal to zero. 

The final fusion function LL1_fusion is defined: 

( )
1_ ( )  

( ) ( )

_ ( )
                             

_ ( ) 1

m
m i
i m m

i i

m
i

m
i

FRR s
LL fusion s

FAR s FRR s

L fusion s

L fusion s

=
+

=
+

 (20)

And the Decision function is defined as follows: 

( ) _ ( ) ( ) / ( )m m m m
i i i iDecision s L fusion s FRR s FAR s= =  (21)

In the rest of this paper, we simply use LL1 instead of LL1_fusion. We can verify 
that the function LL1 satisfies the constraint (11) and (12) on the training set.  

Proof. We proof the function LL1 satisfies formulas (11) and (12) 

1. It is easy to proof that 1_ ( ) [0,1]m
iLL fusion s ∈  

If  

1 2

m m m
i is s S< ∈ , (22)
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we have 

2 1 1 2
( ) ( )  ( ) ( )m m m m

i i i iFAR s FAR s and FRR s FRR s< < , (23)

then 

1 2

1 2

1 1 2 2

( ) ( )
- 0

( ) ( ) ( ) ( )

m m
i im m

i i m m m m
i i i i

FRR s FRR s
t t

FAR s FRR s FAR s FRR s
− = <

+ +
. (24)

So 

1 2

m m
i it t< . (25)

2. We proof LL1 satisfies formula (12) 
If 

1 2

1 2

m m
i it t< , (26)

Then 

1 2

1 2

1 2

1 2

_ ( ) _ ( )

_ ( ) 1 _ ( ) 1

m m
i i

m m
i i

L fusion s L fusion s

L fusion s L fusion s
<

+ +
, (27)

and we get 

1 2

1 2
_ ( ) _ ( )m m

i iL fusion s L fusion s< . (28)

4.2   The Computation of LL1 

For the training set, we can get the LL1(s) for each ( )
1 2 3[ , , , ]m m m m m

NS s s s s= K . We 

assume that 1
m m
i is s +<  or else we sort the data by ascend order and if one score appear 

more than once, only kept one in the score set. For any score m
is  in ( )mS , we can get 

1( )m
iLL s . For any new score m

N
s + , we compute the LL1 of m

N
s + by the following step. 

1. If there has * (1 * )m

i
s i N≤ ≤  that *

m m

N i
s s+ =  

*1( )= 1( )m m

N i
LL s LL s+ . (29)

2. Else if 1
m m

N
s s+ < , 

1( )=0m

N
LL s + . (30)
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3. Else if m m
NN

s s+ > , 

1( )=1m

N
LL s + . (31)

4. Else there must have * *
*

1
, (1 1)m m

i i
s s i N

+
≤ ≤ − and  ** 1

m m m
i N i

s s s+ +
< < , 

* *

* *

* * * *

1
1

1 1

1( ) 1( ) 1( )
m m m m

m m mi N N i
m m m mN i i
i i i i

s s s s
LL s LL s LL s

s s s s

+ +

+
+

+
+ +

− −
= +

− −
. (32)

We search the * *
*

1
, (1 1)m m

i i
s s i N

+
≤ ≤ −  by binary search. The complexity of this 

search is 2(log )O N . Hence, we get the value of LL1 for any score.  After that, we 

use the fixed rules for fusion to get the final score. Since sum rule works better in 
most applications [9-11], we used the sum rule in our experiments. 

Based on the proof in 4.1, it is not difficult to verify that the LL1 function satisfies 

formula (11) and (12). Then we get the final score iu by formula (33). 

1 2( 1( ), 1( ), 1( ))M
i i i iu mean LL s LL s LL s= K  (33)

5   Experimental Results 

5.1   Database 

The XM2VTS database [12] contains synchronized video and speech data from 295 
subjects, recorded during four sessions taken at one month intervals. On each session, 
two recordings were made, each consisting of a speech shot and a head shot. The 
speech shot consisted of frontal face and speech recordings of each subject during the 
recital of a sentence. 

The XM2VTS-Benchmark database [13] consists of five face matchers and three 
speech matchers and was partitioned into training and evaluation sets according to the 
Lausanne Protocol-1(LPI). The benchmark of LPI includes two files, one is dev.label 
and the other is eva.label. We use dev.label as training data and eva.label as test data. 
Our experiments are conducted based on this match score benchmark. We sign the 
face matchers as face-1, face-2, face-3, face-4 and face-5 and the speech matchers as 
speech-1, speech-2 and speech-3 respectively. 

5.2   Experimental Results 

From Fig 1 and Fig 2, we can find the performance of each face matcher and speech 
matcher. The Equal Error Rates (EERs) of all the matchers are shown in Table 1.  
Fig 1, Fig 2 and Table 1 show the order of the performance of face and speech 
matcher respectively. Among face matchers, matcher face-3 and face-5 gain the best 
and worst performance respectively. And among speech matchers, the performance 
order is speech-1, speech-3 and speech-2.  
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Fig. 1. ROC curves show comparison among 
5 face matchers  

Fig. 2. ROC curves show comparison 
among 3 speech matchers 
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LL1-fusion

face-5

speach-3

Fig. 3. ROC curves show the LL1 based 
fusion between face matcher 3 and speech 
matcher 1  

Fig. 4. ROC curves show LL1-based fusion 
between face matcher 5 and speech 
matcher 3 

Fig 3 shows the ROC curves combining the best two matchers, face-3 and speech-1 
and Fig 4 shows the ROC curves combining the worst two matchers, face-5 and 
speech-3. As shown in Fig 3 and Fig 4, the LL1 fusion based on FRR and FAR can 
improve the performance of Multibiometric system efficiently. 

Table 1. EER of the multi-modal fusion 

matcher Face  Face-1 Face-2 Face-3 Face-4 Face-5 
Speech  EER(%) 1.81 4.11 1.76 3.50 6.49 
Speech-1 1.11 0.27 0.74 0.47 0.72 0.498 
Speech-2 6.49 0.81 1.67 1.26 1.01 2.95 
Speech-3 4.49 0.75 1.10 0.97 0.79 1.66 
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Also, other multi-modal fusion experiments are conducted with the LL1 fusion 
scheme. The EERs of the experimental results are shown in Table 1. All the EERs of 
multi-modal are smaller than the EERs of the best single matcher. Hence, our 
algorithms can improve the performance steadily. 

6   Conclusions and Future Work 

In this paper, we propose a novel modal for Multibiometric systems. The most 
important part of the modal is the relationship between match scores and the 
posteriori probabilities which is shown in formula (3) in Section 3.1. The fusion 
modal of multibiometric systems is given in Section 3.2. Based on this modal, we 
give an exact definition of different types of Multibiometric systems. And then the 
constraints for the fusion function are given in Section 3.3. Then we propose the 
fusion function LL1_fusion which is based on FRR and FAR. This function satisfies 
the constraints for fusion functions. We first compute the LL1 of each match score in 
the training sets. And then we get the LL1 score of one match in the test data by 
searching the LL1 of training data with binary search. The experimental results show 
that our algorithms can improve the performance efficiently and steadily. The LL1 
fusion scheme, which is based on FRR and FAR, can be used in real systems easily. 

Currently, the experiments are only conducted on the benchmark of database 
XM2VTS and our algorithms are not compared with other algorithms. In future, we 
will carry out the experiments on more databases and will try to compare our 
algorithms with other algorithms. 
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1 University of Skövde
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Abstract. In air defense situations, decision makers have to protect
defended assets through assigning available firing units to threatening
targets in real-time. To their help they have decision support systems
known as threat evaluation and weapon allocation (TEWA) systems.
The problem of performance evaluation of such systems is of great im-
portance, due to their critical role. Despite this, research on this prob-
lem is close to non-existing. We are discussing the use of survivability
and resource usage cost as comparative performance metrics, which can
be used for comparing the effectiveness of different system configura-
tions, by using simulations. These metrics have been implemented into
a testbed, in which we have performed some comparative experiments.
Our results show that changes of individual parts of the threat evaluation
and weapon allocation system configuration can have a large effect on
the effectiveness of the system as a whole, and illustrate how the metrics
and the testbed can be used.

Keywords: Performance evaluation, testbed, TEWA, threat evaluation,
weapon allocation.

1 Introduction

Threat evaluation and weapon allocation (TEWA) operators are in air defense
situations assigning threat values to detected targets, values which are used
for in real-time deciding on allocations of defensive resources to threatening
targets [1] [2]. Human TEWA operators perform worse as the number of targets
increase, calling for automatic control from TEWA systems in high-intensity
battles [3]. Since TEWA systems are operating in a critical environment where
wrong decisions can have fatal consequences, systematic performance evaluation
of automated (and semi-automated) TEWA systems becomes very important.
This can be illustrated by Operation Iraqi Freedom, during which a lot of Iraqi
tactical ballistic missiles were successfully engaged by U.S. Patriot missiles, but
where the automatic air defense systems also were involved in two fratricide
incidents, in which coalition aircrafts were accidentally shot down since they were
classified as attacking missiles [4]. Despite their critical role, very little research
is to be found on the topic of performance evaluation of TEWA systems. Earlier
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research on evaluation of weapon allocation algorithms exist (see e.g. [5] [6]),
but the algorithms are evaluated independently of the rest of the system, since
the threat values of incoming targets are typically either ignored or assigned
randomly. Unclassified research on performance evaluation of threat evaluation
algorithms is much more uncommon [2]. We argue that there is a high degree
of interdependence between the threat evaluation and weapon allocation parts
of a TEWA system, and that the ingoing parts of such a system should not
be evaluated in a reductionistic manner, but rather as a whole. Therefore we
propose a holistic methodology for performance evaluation of TEWA systems.

In this paper, we describe a testbed in which we use simulations to make a
comparative performance evaluation of TEWA systems, based on metrics mea-
suring survivability of defended assets and the use of defensive resources. The
use of simulations for performance evaluation of TEWA systems has earlier been
described as a cost-effective approach by Chapman and Benke [7]. The usage of
survivability as a measure of the effectiveness of weapon allocation solutions has
earlier been suggested in [8] by Carling. However, their definition of survivability
is based upon the ratio between the number of weapon-target assignments and
the number of targets submitted to TEWA. Hence, their use of survivability as
a performance metric is quite different from ours.

The rest of this paper is structured as follows. Firstly, Section 2 gives a precise
description of what a TEWA system is, and the purpose of such a system. Sec-
ondly, Section 3 gives a summary of earlier work within performance evaluation
of TEWA systems and their ingoing parts, and a description of our suggested
holistic methodology for comparative performance evaluation of TEWA systems
is given in Section 3.1. A presentation of the testbed into which the suggested
metrics have been implemented is provided in Section 3.2. This is followed by
Section 4, in which we describe two experiments for which the developed testbed
has been used. Section 5 is devoted for a discussion of the suggested metrics, the
testbed, and the outcome of the performed experiments. We conclude the paper
in Section 6, where we also discuss future work.

2 TEWA Systems

The role of a TEWA system is to evaluate and assess the level of threat posed
by detected targets with respect to defended assets (DAs), and based on this
threat evaluation propose allocations of available weapon systems to threaten-
ing targets [2] [9]. In this paper, we will focus the attention to fully automated
TEWA systems in which the proposed allocations are implemented without hu-
man intervention. Furthermore, we will in our examples focus on ground based
air defense (GBAD) TEWA systems, but the general description will make sense
even for other kinds of TEWA systems.

A TEWA system, obviously, is situated in a real world environment. This en-
vironment is continuously observed using sensors. For a GBAD TEWA system,
a typical example of a sensor is a surveillance radar system such as the Swedish
Giraffe AMB. The sensors are used to detect and track targets. There are two
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main classes of targets we are interested in here, aircrafts (i.e., both fixed-wing
and rotary-wing) and missiles (e.g., cruise missiles and anti-tank guided mis-
siles). Once an aerial target has been detected by our sensors, we would like to
determine the level of threat posed by the target to a set of defended assets, e.g.,
air bases, bridges, radars, etc. This threat evaluation is often based upon pa-
rameters measuring the proximity between the target and the defended asset, or
other physical parameters such as altitude or speed [10]. The threat evaluation
process typically results in a threat value in the unit interval [0, 1] for each (tar-
get, DA) pair, which can be combined into an individual threat value for each
target, in which also the protection values of the defended assets are taken into
account [2]. Once the threat evaluation is completed, the resulting threat values
can be used as a basis for the weapon allocation process, where blue force weapon
systems are allocated to threatening targets. These weapon systems are typically
firing units equipped with surface to air missiles (SAMs), but can also be more
short range weapon systems such as close-in weapon systems (CIWSs). In ad-
dition to the calculated threat values, another important input to the weapon
allocation process is estimates of kill probabilities, i.e., the probability that a
specific weapon destroys a target, if assigned to it. Such kill probabilities are ab-
stractions of a lot of different factors, such as the distance between the weapon
system and the target, and the target’s radar cross-section. Using information
regarding estimated kill probabilities and threat values, the weapon allocation
problem can be seen as an optimization problem where we search a feasible so-
lution that minimizes the total expected threat value of surviving targets [11].
For scenarios consisting of a small number of weapon systems and targets, the
optimal solution can be computed in real-time, while we for larger problems have
to rely on heuristic algorithms. The chosen allocation is realized into a number
of engagements. The effect of the engagements on the environment is observed
using the sensors, and so on. Hence, threat evaluation and weapon allocation are
continuous processes.

3 Performance Evaluation of TEWA Systems

It is easily understood that the topic of performance evaluation of TEWA sys-
tems is important, due to the critical role of such systems. Wrong decisions can
have very fatal consequences. Despite this, very little research has been pub-
lished on the topic of performance evaluation of TEWA systems. To the extent
that such research exist, all focus tend to be on either the weapon allocation or
the threat evaluation part, and not on the performance of the TEWA system
as a whole. This reductionistic perspective on TEWA systems is in our view
problematic, since there is a strong interdependence between the different parts
of a TEWA system.

An initial study of a comparison between two threat evaluation algorithms is
described in [12]. In that paper, certain characteristics of the threat evaluation
algorithms are compared to each other theoretically, e.g., the algorithms’ abil-
ities to handle missing information and uncertain evidence, their transparency,
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and their mathematical foundation. In addition to this, the algorithms are im-
plemented into a testbed in which air defense scenarios can be run, and where
the algorithms’ calculated threat values are logged. Both threat evaluation al-
gorithms are run on the same scenario, and their calculated threat values are
compared to each other as well as to human knowledge. As far as we know,
the procedure of running threat evaluation algorithms on a set of scenarios and
comparing the output to human expert knowledge is also what is commonly
used within industry. A problem with this qualitative approach is the daunting
task of elicitation of expert knowledge. Due to this bottleneck, the amount of
scenarios on which the threat evaluation algorithms can be tested will always be
quite small, raising the issue of robustness of the threat evaluation algorithms.
Another problem with this approach is that the threat evaluation algorithms
are evaluated independently of the rest of the TEWA system, in a reductionistic
manner.

3.1 A Holistic Performance Evaluation Measure

We have recently suggested a quantitative survivability metric, where we define
survivability as [2]:

S =

∑|A|
j=1 ωjuj∑|A|

j=1 ωj

, (1)

where |A| is the number of defended assets, ωj is the protection value (weight)
of the defended asset Aj , and u ∈ {0, 1}|A| is a binary vector defined as

uj =
{

1 if defended asset Aj survived;
0 otherwise.

The original idea with this approach was to compare threat evaluation algo-
rithms to each other, by fixing the remaining parts of the TEWA system and
only change the threat evaluation algorithm. However, other parts of the TEWA
system can be changed and compared as well, e.g., weapon allocation algorithms.
Hence, we argue that the same approach can be used to compare the effective-
ness of different TEWA implementations. By letting a complete TEWA system
observe, orient, decide, and act within a simulated environment, we can use the
survivability of defended assets in an air defense scenario as a relative metric
for measuring the performance of the TEWA system, to which the performance
of other TEWA system implementations can be compared. The strength of this
way of performance evaluation is that we remove the need for elicitation of threat
values from experts, and that the interdependences between different parts of
the TEWA system are acknowledged and taken into consideration. Also, we open
up the possibility for more systematic comparisons on a larger set of scenarios,
making the performance evaluation more robust.

A potential problem with using the survivability metric is that it does not
explicitly take misguided allocations against targets with non-hostile intent into
consideration. We can often assume that identification, friend or foe (IFF)
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transponders can be used to avoid blue force targets from becoming candidates
for weapon allocation, but this does not always hold true, as illustrated in the
fratricide example in Section 1. There is also a risk that we can not always differ-
entiate between red force and civilian targets. This must therefore be taken into
consideration somehow. If the scenario is complex enough, e.g., the ratio of the
number of threatening targets to the number of SAMs is high, the allocation of
weapons to harmless targets will be reflected in the resulting survivability, since
valuable weapons will be “wasted” on non-hostile targets. However, if there is
only a few targets and a lot of SAMs, the engagement of harmless targets will
not decrease the survivability.

As a solution to this problem, we introduce a cost for each engagement. This
does not only punish the engagement of non-hostile targets, but all kind of
unnecessary allocations of weapon systems to targets. The saving of SAMs is
important, both for protection against possible future attacks and for the high
price of a single missile [5]. Hence, we introduce a cost Ck for each weapon system
Wk. This cost can either be assumed to be the same for all weapon systems, or
vary between weapon systems. A TEWA system’s effectiveness E on a specific
scenario can therefore be expressed as

E = αS − βCtot, (2)

where Ctot is the sum of all weapon usage costs during the scenario, and α
and β are adjustable weights. This effectiveness measure is our proposed holistic
performance measure for comparison of different TEWA systems.

We have here used a simple linear model for calculating the effectiveness
from the survivability and weapon usage cost, although there exist many other
models that can be used for such multi-criteria decision making problems. We
have presented our suggested measure for air defense experts who have confirmed
its appropriateness and appreciated its simplicity and directness, but it is fully
possible that more advanced aggregation operators (cf. [13]) will be used in the
future.

3.2 Testbed

Our proposed effectiveness measure has been implemented into a testbed, con-
sisting of two modules. One of the two modules is STAGE Scenario, in which
we can create and run air defense scenarios. The observations regarding the
entities in the scenarios are communicated in real-time to our TEWA module,
in which we simulate a TEWA system where different threat evaluation and
weapon allocation algorithms can be chosen. The proposed weapon allocations
are communicated back to STAGE Scenario and are realized into engagements,
where the fired weapons become part of the simulation.

At the moment two threat evaluation algorithms are implemented into the
TEWA module. The first is a Bayesian network approach, while the other is
based on fuzzy logic. These algorithms are thoroughly described in [10] and [12],
but examples of the used fuzzy inference rules are shown below, and the structure
of the Bayesian network is illustrated in Fig. 1.
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TargetType == Mig21 --> Threat = medium (1)
TargetType == B747 --> Threat = low (1)
TBH == short --> Threat = high (1)
TBH == medium --> Threat = medium (1)
TBH == long --> Threat = low (1)
Speed == low AND Distance == far --> Threat = low (1)
Speed == medium AND Distance == medium --> Threat = medium (1)
Speed == high AND Distance == close --> Threat = high (1)

Both algorithms use information regarding a target’s speed, type, and calculated
distances between the target and the defended assets to calculate the threat value
Vi for a target Ti. The set of targets Twa which are taken into consideration for
weapon allocation is consisting of all the individual targets with a threat value
higher or equal to an adjustable threshold τ . The use of weapon resources has
been constrained so that a weapon system cannot make a new allocation until
its last engagement is finished (i.e., until the SAM destroys or miss its intended
target). This make perfect sense for missiles guided by the firing unit’s radar,
while it is less realistic for fire-and-forget missiles, i.e., missiles that do not require
further guidance after launch. This constraint has been implemented into our
testbed by the creation of a set Weng of current engagements. If a weapon system
is allocated to a target, the weapon system is added to this set, and information
regarding the unique object ID of the weapon implementing the allocation is
stored. The weapon system is not removed from this set until the testbed gets
information from the simulation environment that the weapon with a matching

Fig. 1. The structure of the Bayesian network used for threat evaluation
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object ID has been destroyed. Hence, we exclude all members of Weng from
the set Wwa of potential weapon system candidates for weapon allocation, i.e.,
Wwa = W− Weng.

For each pair (Ti,Wk), a corresponding kill probability Pi,k ∈ [0, 1] is associ-
ated, i.e., the probability that a weapon Wk destroys its target Ti if assigned to
it. Given the calculated threat values and the kill probabilities, the NP-complete
optimization problem the weapon allocation algorithm has to solve becomes [11]:

F ∗ ≡ min
xi,k∈{0,1}

F =
|Twa|∑

i=1

Vi

|Wwa|∏
k=1

(1 − Pi,k)xi,k , (3)

subject to
|Twa|∑
i=1

xi,k = 1, k = 1, . . . , |Wwa|, (4)

where a decision variable xi,k ∈ {0, 1} takes on the value 1 if weapon Wk is
assigned to target Ti, and 0 otherwise. This far we have implemented only one
weapon allocation algorithm into the testbed, and the pseudo code for this algo-
rithm is given in Algorithm 1. The largest problem instances that can be handled
in real-time by the algorithm consist of 8 targets and 6 weapon systems. Each
solution checked by the algorithm is represented as a vector of length |Wwa|,
where each element Wk in the vector points out the target Ti, to which the
weapon should be assigned. The best solution is communicated back to STAGE
Scenario, in which weapons are fired against targets, in accordance to the sug-
gested allocation. Once a scenario is over, the testbed calculates the survivability
of the defended assets and the resource usage cost. The outcome of the en-
gagements are not deterministic (as long as the kill probability does not equal
one, which is quite unrealistic). Therefore we have implemented the possibility to
design experiments in which a scenario automatically is repeated a large number
of times, in order to get statistically significant results.

4 Experiments

In order to demonstrate how the testbed and the suggested metrics work, we
have created an air defense scenario consisting of two firing units (which also
are the defended assets within the scenario), three hostile fighters, and a neutral
civilian aircraft. Both firing units are assigned a protection value of 1.0. The
scenario is of quite high intensity and is approximately 8 minutes long. The blue
force firing units are equipped with three SAMs each. The hostile fighters have
one missile each, which they fire according to preassigned missions. For each
simulation run, we log the survivability and the number of weapons used. If a
weapon is fired against a target, there is an associated kill probability to such an
engagement. Hence, the SAM will hit and destroy its target for some scenario
runs, while it will not in some others. Therefore, we run each simulation hundred
times for each TEWA system configuration, in order to get more reliable results.
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Algorithm 1. Pseudo code for the weapon allocation algorithm
Fmin ← ∞
count ← 0
while count < |Twa||Wwa| do

sol ← createSolution(count)
Fsol ← 0
for all i such that 1 ≤ i ≤ |Twa| do

Psurvival ← 1.0
for all k such that 1 ≤ k ≤ |Wwa| do

Psurvival ← Psurvival × (1 − Pi,k)xi,k

end for
Fsol ← Fsol + Vi × Psurvival

end for
if Fsol < Fmin then

Fmin ← Fsol

opt solution ← sol
end if
count ← count + 1

end while
return opt solution

Hence, a TEWA system’s effectiveness is calculated as:

E =
∑100

t=1 αSt − βCt

100

In the experiments, we have used a constant kill probability of 0.7 within the
range 0-500 kilometers. If the range is larger, the kill probability becomes 0. This
holds true for both red force and blue force weapons in the simulations.

In the first experimental setup, we have used two identical TEWA system con-
figurations, except for the threat evaluation algorithms. The threat evaluation
algorithm used in TEWA configuration 1 is our implemented Bayesian network,
while configuration 2 uses the threat evaluation algorithm based on fuzzy logic.
Both configurations use our static weapon allocation algorithm which make an
exhaustive search for the optimal solution, minimizing the total expected threat
value of the surviving targets. The weapon allocation algorithm is run with
regular intervals, and takes targets with threat values higher than 0.5 into con-
sideration. The results obtained for the two configurations are shown in the two
first rows of Table 1 (we have used a uniform cost of 1 for each weapon usage).

Looking at the survivability, we can see that the average is 0.255 for config-
uration 1, and 0.17 for configuration 2 (while the standard deviations are 0.26
and 0.25 respectively). Hence, if we only consider survivability, the first config-
uration is the best of the two. If we instead look at the weapon usage cost, the
average for configuration 1 is 4.83, while it for configuration 2 becomes 6 (i.e.,
it uses all defensive resources in each run of the scenario). From this we can
see that the first configuration also is more selective with its resources than the
second configuration. Assuming use of the user-defined parameters α = 0.99 and
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Table 1. Results for the different configurations

Configuration µS σS µC σC E(α = 0.99, β = 0.01)
BN (τ = 0.5) 0.255 0.26 4.83 0.51 0.204
FL (τ = 0.5) 0.17 0.25 6 0 0.108
BN (τ = 0.7) 0.48 0.33 3.76 0.82 0.438
FL (τ = 0.7) 0.465 0.34 3.58 0.75 0.425

β = 0.01, we can calculate the effectiveness of each TEWA configuration for the
specific scenario. Doing this, we end up with an effectiveness of 0.204 for con-
figuration 1. The corresponding number for configuration 2 becomes 0.108. The
actual effectiveness number does not say anything on its own, but if we compare
the numbers to each other, we can conclude that the first TEWA configuration
performs better than the second, on the described scenario.

In the second experiment, we have used an identical setup to the one in
experiment 1, except for the threshold τ for weapon allocation. This threshold
has been changed from 0.5 to 0.7, in order to investigate what effect small changes
of the TEWA configuration can have on the overall performance.

As can be seen in the two last rows of Table 1, the average survivability of
the third configuration (i.e., the same configuration as configuration 1, except
for the used threshold) has increased to 0.48, while it for the fourth configura-
tion (the same as configuration 2 except for the used threshold) has increased
to 0.465. The number of used weapons is noticeable lower in this second experi-
ment, compared to the first one. This is expected, since we demand higher threat
values before targets are considered as potential candidates for weapon alloca-
tion. Using the same user-defined parameters as in experiment 1, i.e., α = 0.99,
β = 0.01, the resulting effectiveness becomes 0.438 for configuration 3 and 0.425
for configuration 4.

From the above results, it is obvious that quite small changes of a TEWA sys-
tem configuration can have major impact upon the resulting weapon allocation,
which in its turn affects survivability and resource usage, and thereby also the
effectiveness.

5 Discussion

In our experiments we have created a specific scenario in which we are interested,
and compared a number of different configurations of TEWA systems. In this
way, we can find out which TEWA system configuration (among a set of con-
figurations) that is the best for a specific scenario, with respect to survivability
and resource usage. Using this kind of experiments the expected performance
and the decision support quality of the TEWA system can be improved. For the
chosen scenario, it is clearly better to use a higher threshold (τ = 0.7) for when
to consider targets for weapon allocation, compared to the lower one (τ = 0.5).

To run this kind of experiments on a single scenario can be very useful if
we know what kind of scenario to expect, but this is often not the case. We
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therefore would like to be able to test different TEWA system configurations on
a larger number of different scenarios, and in that way test the robustness of
the configurations. It is at the moment possible to create a number of different
scenarios manually in the scenario generator, and to test the configurations on
all these scenarios, but in order to get really robust results a larger number
of different scenarios are needed. This gives raise to the question of how we
quickly can construct a large number of scenarios. One of the major reasons
for using survivability as a performance metric is to avoid the bottleneck of
knowledge elicitation. This bottleneck has been removed from the judgment
part of whether a TEWA system has performed well or not, but we still have the
bottleneck of the manual construction of realistic scenarios on which to measure
the survivability and resource usage. An important issue therefore becomes how
to automatically generate a large number of realistic scenarios. We are currently
discussing this issue with air defense experts, and have some initial ideas for how
to automatically generate a large number of scenarios in which the incoming
threats are cruise missiles.

Given a trustworthy estimate of kill probabilities, taking all important factors
into consideration, another potential use of the testbed is to use the simulations
for finding the best emplacement of available weapon systems, once a TEWA
system configuration has been established. In this way, the defending forces can
optimize their setup, based on likely attack scenarios.

6 Conclusions and Future Work

Automated TEWA systems operate in very complex and critical environments, in
which wrong decisions can have fatal consequences. A prerequisite for improving
TEWA systems’ decision support is the ability to evaluate their performance.
Earlier research on the topic of performance evaluation of TEWA systems is
sparse, and the existing research tends to focus on either threat evaluation or
weapon allocation, but not on the TEWA system as a whole.

Our suggested holistic approach to performance evaluation of TEWA systems
is to use simulations of air defense scenarios in order to measure the survivabil-
ity of the TEWA system, i.e., the ratio of the protection value of the surviving
defended assets to the protection value of all the defended assets within the sce-
nario. This survivability metric has also been complemented with the cost of re-
source usage. The reason for this is to penalize unnecessary or unwanted resource
allocations that are not needed. An extreme example of this is the engagement
of friendly or civilian aircrafts. Combining the survivability and resource usage
metrics, we end up with a measure of a TEWA system’s effectiveness, which
we use for the comparative performance evaluation. The appropriateness of the
suggested measure has been confirmed by military air defense experts. The met-
rics have been implemented into our testbed, in which we can create scenarios
on which different TEWA system configurations can be run. At the moment,
there are two different threat evaluation algorithms implemented, and one static
weapon allocation algorithm.
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The testbed has been used for comparing the effectiveness of different TEWA
system configurations on a manually created air defense scenario. As evident
from the experimental results, changes of individual parameters (in this case the
threshold for how high a target’s threat value must be before it becomes a poten-
tial candidate for weapon allocation) can have a large impact upon the outcome
of the scenario, and the corresponding effectiveness of the TEWA system. This
strengthens our view that we can not evaluate individual parts of a TEWA sys-
tem in a reductionistic manner, but rather, have to evaluate the TEWA system
as a whole.

We have in our experiments used ground truth data (referring to the reality of
the tactical situation) as input to our TEWA systems. Hence, we have assumed
the existence of a sensor making perfect observations of all aerial entities within
the scenario. Obviously, such a perfect sensor does not exist, and we will there-
fore always have to deal with imperfect and uncertain data in a TEWA system
situated within the real world. Hence, there is a need for exchangeable sensor
models, in which we can model the behavior of different sensors under different
circumstances. Our plan for future work is therefore to incorporate sensor models
into our simulation environment, in which we can simulate the characteristics
of real surveillance radar systems. We would also like to attack the problem
of automatic scenario generation described in Section 5. To compare different
TEWA system configurations on a specific scenario can be very valuable, but to
say something about how good they are in general on a larger set of scenarios
would be even more beneficial, since we do not know in advance which kind of
scenarios a TEWA system will be used for.

It would also be interesting to perform a large number of simulations for a
specific scenario, in which the threshold settings are tested more rigorously than
in this paper. We have shown that small changes can have a large impact upon
the resulting effectiveness, but we have not tested this systematically. For future
work, it can be of interest to test and plot the changes in effectiveness for each
possible threshold setting, for a more detailed study of the sensitivity to a chosen
threshold.

The threat evaluation algorithms which are implemented into our testbed are
quite advanced in comparison to the weapon allocation algorithm. Our imple-
mented weapon allocation algorithm makes an exhaustive search for the optimal
allocation, but such a search becomes infeasible when the number of weapon
systems and/or targets with a threat value higher than the specified thresholds
are to great. We would therefore want to implement better weapon allocation
algorithms, which make guided heuristic searches for a good solution, as well as
take the time for an engagement into consideration.
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Abstract. Recently combination rules as well as the issue of conflict man-
agement in Dempster-Shafer theory have received considerable attention
in information fusion research. Mostly these studies considered the com-
bined mass assigned to the empty set as the conflict and have tried to pro-
vide alternatives to Dempster’s rule of combination, which mainly differ
in the way of how to manage the conflict. In this paper, we introduce a
hybrid measure to judge the difference between two bodies of evidence as
a basis for conflict analysis, and argue that using the combined mass as-
signed to the empty set as a whole to quantify conflict seems inappropri-
ate. We then propose to use the discounting operator in association with
the combination operator to resolve conflict when combining evidence, in
which the discount rate of a basic probability assignment is defined us-
ing the entropy of its corresponding pignistic probability function. Finally,
an application of this discounting and combination scheme to fusion of
decisions in classifier combination is demonstrated.

1 Introduction

The Dempster-Shafer theory of evidence (D-S theory, for short), originated from
the work by Dempster [6] and then developed by Shafer [32], has appeared as one
of the most popular theories for modeling and reasoning with uncertainty and
imprecision in intelligent systems. In the D-S theory, Dempster’s rule of com-
bination plays a pivotal role serving as a powerful tool for combining evidence
from distinct sources of information. According to Dempster’s rule [32], the com-
bined mass assigned to the empty set considered as the conflict is distributed
proportionally to the other masses. Critically, Zadeh [41] presented an example
showing that applying Dempster’s rule to conflicting evidence yields counterin-
tuitive results. After Zadeh’s example, many alternatives have been proposed in
the literature, most notably Smets’ unnormalized combination rule [33], Yager’s
combination rule [39], Dubois and Prade’s disjunctive combination rule [10].
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Lefevre et al. [21] have proposed a generic framework for evidence combination
which provides a flexible way of distributing the conflict, i.e. the combined mass
assigned to the empty set, among subsets of the frame of discernment and allows
Dempster’s rule as well as the three just mentioned rules of combination to be
retrieved within the framework. Recently, motivated by the practical difficulty of
verifying the distinctness assumption imposed on combined sources of evidence,
Denoeux [9] has proposed two new rules of combination, namely the cautious
conjunctive rule and its dual bold disjunctive rule, which are suggested to be suit-
able for combining belief functions from possibly overlapping bodies of evidence.
Although there have been a numerous number of combination rules developed
so far, Dempster’s rule of combination [32] together with its unnormalized ver-
sion [33] have been well justified theoretically and have greatly dominated the
other rules in information fusion applications, e.g., [2,3,5,8,7,19,31,38].

In most previous studies on conflict management, it is mainly assumed that
the conflict is identified by using the combined mass assigned to the empty set
before normalization, denoted by m⊕(∅), and the thinking of how to manage
this mass has basically raised interesting ideas for developing alternatives such
as in [13,21,39]. Recently, Liu [26] has argued that the use of m⊕(∅) alone to
quantify the conflict might lead to a wrong claim when considering what combi-
nation rule would be appropriate for combining conflicting evidence. Instead, Liu
proposed to use a pair of quantitative measures, the combined mass allocated
to the empty set before normalization, i.e. m⊕(∅), and the so-called distance
between betting commitments, to justify when two pieces of evidence are in
conflict. This formal definition of conflict can be served as a prerequisite for se-
lecting appropriate combination rules [26]. Smets [36] has eventually provided a
throughout examination of perhaps all existing combination rules and proposed
an expert system approach for resolving conflict in evidence combination.

Note that the difference between two distinct bodies of evidence may be not
only due to the conflict between two sources of evidence but also due to the
complement of each other. For example, different sensors observe an object from
different angles may provide different but complementary evidence about it. Al-
though disjunctive consensus rules proposed in the literature such as Dubois
and Prade’s disjunctive combination rule [10] may be properly applied for com-
bining complementary sources of evidence, the issue of detection of complement
between combined bodies of evidence has been completely ignored so far. In the
following of this paper, we first introduce a hybrid measure consisting of two
components, the quantitative distance between two mass assignments and the
qualitative distance between two families of focal sets, to judge the difference
between two bodies of evidence. This hybrid measure can be used as a basis
for conflict and complement analysis later on. We then argue that only a part
of m⊕(∅) reflecting the conflict whilst the remainder representing the mass of
uncommitted belief as a result of combination.

On the other hand, observing from the previous studies on the conflict analysis
which mostly cited Zadeh’s famous counterexample [41] to criticize Dempster’s
rule, we can see that ones assumed combined sources of evidence are still fully
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reliable to be combined even a large conflict has been identified between them.
Naturally, once realized that there is a conflict between sources of evidence,
one should behave as if at least one of the sources would be not fully reliable.
This issue has been critically discussed by Haenni in [23,24]. One of reasonable
solutions to tackle such situations is to use discounting operator in association
with combination [24,30]. A problem naturally arises here is how to determine
which source of evidence is not fully reliable and to what discount rate it should
be applied. Haenni [24] and Smets [36] suggested to use a meta-belief structure
on combined sources of evidence for modeling this problem. However, it seems
practically difficult to obtain such a meta-belief especially in information fusion
for pattern recognition applications. In this paper, motivated from Smets’ two-
level model of belief [34], we propose to define the discount rate of a basic
probability assignment based on how sure its commitment is if we use it alone
for decision making. More particularly, the discount rate applied to a body of
evidence is defined using the entropy of its corresponding pignistic probability
function and intuitively, the more committed a basic probability assignment is,
the lower discount rate it is applied.

The rest of this paper is organized as follows. In Section 2, we recall necessary
concepts in the D-S theory. Section 3 devotes to the analysis of conflict and
difference between two bodies of evidence. We particularly ague that the con-
ventional view of m⊕(∅) as a whole to reflect conflict may be inappropriate. In
Section 4, we propose to use the discounting and combination scheme for resolv-
ing conflict when combining evidence. Section 5 then illustrates an application of
this scheme to ensemble learning for the problem of word sense disambiguation.
Finally, some conclusions are presented in Section 6.

2 Basic of Dempster-Shafer Theory of Evidence

In the D-S theory [32], a problem domain is represented by a finite set Θ of mutu-
ally exclusive and exhaustive hypotheses, called frame of discernment. An impor-
tant concept of the theory is the so-called basic probability assignment (BPA,
for short), also called mass function or basic belief assignment (Smets [34]),
m : 2Θ → [0, 1] satisfying

m(∅) = 0, and
∑

A∈2Θ

m(A) = 1

The quantity m(A) can be interpreted as a measure of the belief that is com-
mitted exactly to A, given the available evidence. Note that the condition of
m(∅) = 0 corresponding to the “closed-world assumption” is not required in the
Transferable Belief Model (TBM) introduced by Smets [33]. A subset A ∈ 2Θ

with m(A) > 0 is called a focal element of m. A BPA m is called to be vacuous
if m(Θ) = 1 and m(A) = 0 for all A �= Θ.

Let us denote Fm the set of focal elements of m, i.e.

Fm = {A ∈ 2Θ|m(A) > 0}
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Union of all elements in Fm defines the core of m and the pair B = (Fm,m) is
called a body of evidence (BOE).

Two useful operations that especially play an important role in the evidential
reasoning are discounting and Dempster’s rule of combination [32]. The dis-
counting operation is used when a source of information provides a BPA m, but
knowing that this source has probability α of reliability. Then one may adopt
(1 − α) as one’s discount rate, resulting in a new BPA mα defined by

mα(A) = α×m(A), for any A ⊂ Θ (1)
mα(Θ) = (1 − α) + α×m(Θ) (2)

Consider now two pieces of evidence on the same frame Θ represented by two
BPAs m1 and m2. Dempster’s rule of combination is then used to generate a
new BPA, denoted by m⊕ = (m1 ⊕m2) (also called the orthogonal sum of m1
and m2), which is defined, for any A ∈ 2Θ \ ∅, as follows

m⊕(A) =

∑
B∩C=A

m1(B)m2(C)

1 −
∑

B∩C=∅
m1(B)m2(C)

(3)

where ∑
B∩C=∅

m1(B)m2(C)
�
= m⊕(∅) (4)

is the combined mass assigned to the empty set before normalization. Note that
the orthogonal sum combination is only applicable to such two BPAs that verify
the condition m⊕(∅) < 1.

According to Smets’ two-level view in TBM [34], when a decision needs to
be made, a BPA m encoded the available evidence must be transformed into a
so-called pignistic probability function BetPm : Θ → [0, 1] defined by

BetPm(θ) =
∑

A⊆Θ,θ∈A

m(A)
|A| (5)

where |A| is the cardinality of A. A justification for the necessity of the pignistic
transformation in TBM framework is provided in [35]. Here we assume, however,
to work under the closed-world assumption, i.e. m(∅) = 0.

3 Conflict and Difference between Two BOEs

3.1 Conflict Revisited

In the research community of Dempster-Shafer theory, the mass associated with
m⊕(∅) when combining two bodies of evidence with Dempster’s rule has long
been commonly taken as the only quantity indicating the conflict between two
sources of information. The extreme case of fully conflict appears when m⊕(∅) =
1. Recently, Liu [26] argued that value m⊕(∅) cannot be used as a quantitative
measure of conflict between two bodies of evidence but only represents the mass
of uncommitted belief as a result of combination.
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Example 1. Let us consider Liu’s example of two identical BPAs m1 = m2 on
frame Θ = {θ1, θ2, θ3, θ4, θ5} and m1(θi) = 0.2 for i = 1, ..., 5. Then we get
m⊕(∅) = 0.8, which is quite high whilst it appears the total absence of conflict
as two BPAs are identical.

More generally, we always get m⊕(∅) > 0 with two identical BPAs whenever
their focal elements define a partition of the frame. Simultaneously, Liu also
proposes to use an addition criterion based on the difference between the pig-
nistic probabilities together with value m⊕(∅) for judging whether two bodies of
evidence are in conflict. Formally, two BPAs m1 andm2 are said to be in conflict
if and only if

m⊕(∅) > ε and difBetP(m1,m2) > ε (6)

where ε ∈ [0, 1] is a threshold of conflict tolerance and difBetP(m1,m2) is defined
by

difBetP(m1,m2) = max
A⊆Θ

(|BetPm1(A) −BetPm2(A)|)

and called the distance between betting commitments of the two BPAs [26].
Basically, by the conclusion that “value m⊕(∅) cannot be used as a quanti-

tative measure of conflict between two beliefs, contrary to what has long been
taken as a fact in the Dempster-Shafer theory community.” ([26], page 913) Liu
tries to look into an addition criterion, namely difBetP(m1,m2), in order to
use in association with value m⊕(∅) for revealing the relationship between two
BPAs.

Let us consider the following example.

Example 2. Suppose that we have the following pair of BPAs on the same frame
Θ = {θi|i = 1, . . . , 7}

m1({θ1, θ2, θ3, θ4}) = 1; and m2({θ4, θ5, θ6, θ7}) = 1

Then, combining these two BPAs producesm⊕(∅) = 0. That is, in the qualitative
view of conflict defined by Liu [26], they do not contradict with each other, or in
other words these two BPAs are not in conflict at all. However, using the second
criterion we easily get difBetP(m1,m2) = 0.75.

In this example, note that m1 and m2 have assigned, by definition, the total
mass exactly to {θ1, θ2, θ3, θ4} and {θ4, θ5, θ6, θ7}, respectively, and to none of
the proper subsets of them. So intuitively these two BPAs are partly in con-
flict. Clearly, such a partial conflict does not be judged by means of m⊕(∅) but
difBetP(m1,m2) as shown above. However, they are not in conflict in the sense
of (6).

On the other hand, in some information fusion situations, evidence come from
different sources may offer complementary information each other but not only
being in conflict.

Example 3. Consider the following two BPAs on the frame Θ = {θ1, θ2, θ3, θ4}

m1({θ1, θ2}) = 0.4, m1(Θ) = 0.6
m2({θ3, θ4}) = 0.6, m2(Θ) = 0.4
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That is, while the event {θ1, θ2} is observable from the first source and becomes
unseen from the second one, its complementary event {θ3, θ4} is vice versa. The
masses assigned to these events are based on available evidence of correspond-
ing sources, and the unassigned masses are attributed to the whole frame due
to ignorance. Intuitively, these two sources of evidence provide complementary
information each other rather than they are in conflict. However, we obtain

m⊕(∅) = 0.24, and difBetP(m1,m2) = 0.4

which allows us, in light of Liu’s definition above, to conclude that two BPAs
are in conflict to some extent.

The above observations suggest that taking m⊕(∅) as a whole for identifying the
conflict seems inappropriate, except the extreme case of fully conflict, i.e. when
m⊕(∅) = 1. In the following subsection, we propose a more direct approach to
judging the difference between two bodies of evidence, which then together with
value m⊕(∅) can serve for conflict analysis. In the other words, we need to look
at the difference between two bodies of evidence before using value m⊕(∅) for
analyzing conflict.

3.2 Difference between Two BOEs

Let B1 = (Fm1 ,m1) and B2 = (Fm2 ,m2) be two bodies of evidence on the same
frame Θ derived from two distinct sources of information. We first directly define
the distance between two BPAs m1 and m2, denoted by d(m1,m2), as follows

d(m1,m2) = max
A⊆Θ

(|m1(A) −m2(A)|) (7)

Obviously, d(m1,m2) = 0 if and only if m1 = m2. This distance is considered as
a quantitative measure for judging the difference between two bodies of evidence
B1 and B2. Now let us denote difF(m1,m2) the symmetric difference between
two families of focal elements Fm1 and Fm2 , i.e.

difF(m1,m2) = (Fm1 \ Fm2) ∪ (Fm2 \ Fm1) (8)

It is easily seen that if difF (m1,m2) = Fm1 ∪ Fm2 , and A ∩ B = ∅ for any
A ∈ Fm1 and B ∈ Fm2 , then m⊕(∅) = 1, which corresponds to the extreme
case of fully conflict mentioned above. If difF (m1,m2) = ∅ and d(m1,m2) > 0,
then qualitatively two sources are not in conflict but having different prefer-
ences in distributing their masses to focal elements. This qualitative measure
difF(m1,m2) allows us to see how different between two sources in realization
of the question of where the true hypothesis lies.

Let us denote

dif(B1,B2) = 〈d(m1,m2), difF (m1,m2)〉 (9)

and call it the difference measure of two bodies of evidence. It is clearly that
the conflict between two bodies of evidence originates from either or both of
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d(m1,m2) (quantitative) and difF (m1,m2) (qualitative). Actually, Liu’s crite-
rion of using difBetP(m1,m2) is somewhat weaker than using the direct distance
of d(m1,m2). For example, consider the pair of BPAs given in Example 2 we have
d(m1,m2) = 1 whilst difBetP(m1,m2) = 0.75. Note further that if m1 = m2 we
have difBetP(m1,m2) = 0 but the reverse does not hold in general.

We now argue that only a part of value m⊕(∅) should be used to quantify a
conflict qualitatively stemming from difF (m1,m2). Let

mcomb
⊕ (∅) =

∑
A,B∈F1∩F2,A∩B=∅

m1(A)m2(B) (10)

Clearly, mcomb
⊕ (∅) is a part of m⊕(∅) and intuitively representing the mass of

uncommitted belief as a result of combination rather than a conflict, which,
however, may be properly represented by the remainder of m⊕(∅), i.e.

m⊕(∅) −mcomb
⊕ (∅) �

= mconf
⊕ (∅) (11)

Interestingly enough, with this formulation of conflict, the fact used to question
the validity of Dempster’s rule that two identical probability measures are always
conflicting becomes inappropriate.

Example 4. Consider again two BPAs considered in Example 1, which are identi-
cal. Then we getmcomb

⊕ (∅) = 0.8 andmconf
⊕ (∅) = 0, and hence no conflict appears

between the two sources at all. Generally, we always get mconf
⊕ (∅) = 0 whenever

two BPAs being combined are identical. Now, looking at Zadeh’s famous coun-
terexample with two BPAsm1 andm2 defined on Θ = {a, b, c} as: m1(a) = 0.99,
m1(b) = 0.01 and m2(c) = 0.99, m2(b) = 0.01, we have mconf

⊕ (∅) = 0.98, which
accurately reflects a very high conflict between two BPAs. With such a high
conflict but still assuming both sources are fully reliable to proceed with di-
rectly applying Demspter’s rule on them (to get unsatisfactory results) seems
irrational.

Intuitively, the information from dif(B1,B2) and mconf
⊕ (∅) may properly provide

helpful suggestions for conflict management on selecting appropriate combina-
tion rules in some typical situations.

– If difF(m1,m2) = F1∪F2 and A∩B = ∅ for any A ∈ Fm1 and B ∈ Fm2 , we
havemconf

⊕ (∅) = 1 and two sources are fully conflict. In this case a discounting
and then combination strategy should be applied, where different attitudes
may suggest different combination rules for use.

– If difF(m1,m2) = ∅ and d(m1,m2) > 0, we have mconf
⊕ (∅) = 0 and two

sources qualitatively are not in conflict but having different beliefs attributed
to focal elements. In this situation, a compromise attitude may suggest to
use the trade-off rule [10], or its special case of averaging operator.

– If difF (m1,m2) �= ∅, then we have d(m1,m2) > 0. In this situation, if
m⊕(Θ) = m1(Θ)m2(Θ) > 0 two sources may provide complementary infor-
mation each other as in the case of Example 3 above, and then Dempster’s
rule can be applied. If m⊕(Θ) = 0, two sources may be in a partial conflict
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and then depending on value mconf
⊕ (∅) whether it is tolerated and informa-

tion on meta-belief is available or not, one may apply discounting and then
combination strategy or a disjunctive combination rule.

The issue of justifying whether two bodies of evidence are in conflict plays an
especially important role in selecting alternative combination rules [36]. Thus,
identification of conflict should be analyzed as carefully as possible. An accurate
determination of the origin of conflicts can also help to manage them properly.
In addition, it is our opinion that justifying whether two bodies of evidence are
in complementary each other, which has been ignored so far, also have some
impact in the mentioned selection problem and should be incorporated into the
conflict analysis. Intuitively, the role of value m⊕(Θ) may play for this purpose
in a somehow similar fashion to that of mconf

⊕ (∅) for conflict analysis as roughly
mentioned above; however, this is not a main topic of this paper.

4 Discounting and Combination Scheme

Previously, a common explanation for counterintuitive results yielded by apply-
ing Dempster’s rule of combination is that possible conflicts between different
sources of evidence are mismanaged by Dempster’s rule, and this explanation
has motivated for developing alternatives combination rules, which are mainly
different in the way of managing possible conflicts [24]. Unfortunately, these al-
ternatives are generally not associative, e.g. [10,21,39], and thus making them
difficult to be applied in practice. In [23], Haenni also presented a critical note
on the increasing number of possible combination rules.

Once possible conflicts have been identified, we may naturally wonder about
the reliability of different sources of evidence being combined. If a meta-belief of
the sources is available, we can first use the discounting operator for BPAs en-
volved and then apply Dempster’s rule to discounted BPAs for combining them.
The idea of using the discounting operator to resolve conflict has already been
suggested in, i.e., [23,30,36]. However, in practice such a beta-belief is not always
available, particularly in situations of applying the Dempster-Shafer theory to,
for instance, information fusion in pattern recognition (see, e.g., [2,3,19,29,38]).

According to Smets’ two-level view of evidence [34], to make decisions based
on evidence, beliefs encoding evidence must be transformed into probabilities
using the so-called pignistic transformation. Guided by this view, we propose to
discount a BPA involving in combination based upon how sure in its decision
when it is used alone for decision making. More particularly, we provide a method
for defining discount rates of BPAs being combined using the entropy of their
corresponding pignistic probability functions.

Let m1 and m2 be two BPAs on the frame Θ and BetPm1 and BetPm2 be
pignistic probability functions ofm1 andm2, respectively. For i = 1, 2, we denote

H(mi) = −
∑
θ∈Θ

BetPmi(θ) log2(BetPmi(θ))
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the Shannon entropy expression of pignistic probability distribution BetPmi .
This measure has been used in Jousselme et al. [14] as an ambiguity measure of
belief functions.

Clearly, H(mi) ∈ [0, log2(|Θ|)]. We now define the discount rate of BPA mi

(i = 1, 2), denoted by δ(mi), as follows

δ(mi) =
H(mi)

log2(|Θ|)
(12)

That is, the higher uncertainty (in its decision) a source of evidence is, the
higher discount rate it is applied. Once discount rates have been defined, the
discounting and combination strategy applied to two BPAs m1 and m2 can be
generally formulated in the following form

m⊕ = m
(1−δ(m1))
1 ⊕m(1−δ(m2))

2 (13)

where ⊕ is a combination operator in general and m(1−δ(mi))
i is the discounted

BPA obtaining from mi after discounting at a rate of δ(mi) [refer to (1)-(2)].
It is of interest to note that if, for example, δ(m1) = 1, i.e. BetPm1 is the uni-

form distribution on Θ or m1 is at the most uncertain in its decision, m(1−δ(m1))
1

becomes a vacuous BPA and then plays no role in combination if Dempster’s
rule is applied. In other words, a decision made using the combined evidence
represented by m then depends on the second source of evidence represented by
m2 only.

As for illustration, this discounting and combination strategy will be applied
for combining multiple classifiers in the following section. Here Dempster’s rule
and averaging operator are used for combination. Thanks to its associativity,
we can develop an efficient algorithm for combining multiple classifiers with
Dempster’s rule, where soft decisions by individual classifiers typically are rep-
resented in forms of probability distributions over the set of possible classes.
Also, although simple in computation, averaging is suggested as providing a
good solution to balance multiple evidence [27].

5 An Illustrative Application

Applying the D-S theory to classifier combination has received attention since
early 1990s, e.g., [2,3,29,38]. In these methods, it is usually assumed that the in-
volved individual classifiers provide fully reliable sources of information for iden-
tifying the label of a particular input pattern, i.e. discounting operator plays no
role there. In this section, we present an illustration for applying the discounting
and combination scheme discussed above to ensemble learning for the problem
of word sense disambiguation (WSD) [12], which has received much interest and
concern since the 1950s and is still one of the most challenging tasks in NLP.

Actually, Le et al. [19] recently have attempted to apply the D-S theory for
weighted combination of classifiers for WSD, in which the weighting is also mod-
eled by the discounting operator. However, their method of defining discounting
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factors for individual classifiers is based on the strength of individual classifiers,
which is determined by testing them on a designed sample data set and there-
fore does not be influenced by an input pattern under classification. Here, in the
context of classification problem, the discounting method discussed above in this
paper provides a new way of adaptively weighting individual classifiers based on
ambiguity measures associated with their outputs corresponding to a particular
pattern under consideration.

5.1 WSD

Roughly speaking, WSD is the task of associating a given word in a text or
discourse with an appropriate sense among numerous possible senses of that
word. This is an “intermediate task” which necessarily accomplishes most natu-
ral language processing tasks such as grammatical analysis and lexicography in
linguistic studies, or machine translation, man-machine communication, message
understanding in language understanding applications [12].

During the last two decades, many machine learning techniques and algo-
rithms have been applied for WSD, including Naive Bayesian (NB) model, de-
cision trees, exemplar-based model, support vector machines (SVM), maximum
entropy models (MEM), etc. [1,20]. On the other hand, as observed in studies
of classification systems, the set of patterns misclassified by different learning
algorithms would not necessarily overlap [25]. This means that different clas-
sifiers may potentially offer complementary information about patterns to be
classified. This observation highly motivated the interest in combining classifiers
to build an ensemble classifier which would improve the performance of the indi-
vidual classifiers. Particularly, classifier combination for WSD has been received
considerable attention recently from the community as well.

5.2 Individual Classifiers in Combination

To build individual classifiers for combination, we use three well-known statisti-
cal learning methods including the Naive Bayes (NB), Maximum Entropy Model
(MEM), and Support Vector Machines (SVM). The selection of these learning
methods is basically guided by the direct use of output results for defining BPAs
in the present work. Clearly, the first two classifiers produce classified outputs
which are probabilistic in nature. Although a standard SVM classifier does not
provide such probabilistic outputs, the issue of mapping SVM outputs into prob-
abilities has been studied [28] and recently become popular for applications re-
quiring posterior class probabilities [3,22]. We have used the library implemented
for maximum entropy classification available at [37] for building the MEM clas-
sifier, whilst the SVM classifier is built based upon LIBSVM implemented by
Chang and Lin [4], which has the ability to deal with the multiclass classification
problem and output classified results as posterior class probabilities.

Due to the limitation of page number, the technical detail of these meth-
ods as well as the discounting and combination strategy applied to them is
omitted here (see [18] for the detail). Informally, the output of individual classi-
fiers is used to define corresponding BPAs. Then we apply the discounting and
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combination strategy discussed in Section 4 to these BPAs and the final deci-
sion is made based on the resulted BPA. Two combination rules are applied
in this application, namely Dempster’s rule of combination and averaging. Ac-
cordingly, we develop two algorithms corresponding to these combination rules,
namely discounting-and-orthogonal sum combination algorithm and discounting-
and-averaging combination algorithm, respectively.

5.3 Experimental Results

Test Data. As for evaluation of exercises in automatic WSD, three corpora so-
called Senseval-1, Senseval-2 and Senseval-3 were built during three correspond-
ing workshops held in 1998, 2001, and 2004 respectively. Here, the developed
combination algorithms will be tested on English lexical samples of Senseval-2
and Senseval-3. Currently, these two datasets are widely used in current WSD
studies. The detail of these data sets can be referred to Kilgarriff [15] for Senseval-
2 and to Mihalcea et al. [17] for Senseval-3.

Like Le et al. [19], we use the evaluation method proposed by Melamed and
Resnik in [16], which provides a scoring method for exact matches to fine-grained
senses as well as one for partial matches at a more coarse-grained level. Also,
like most related studies, the fine-grained score is computed in the following
experiments.

Results. Table 1 below provides the experimental results obtained by three
individual classifiers and two combination algorithms developed, where DCA1
and DCA2 stand for the discounting-and-orthogonal sum combination algorithm
and the discounting-and-averaging combination algorithm, respectively. The ob-
tained results show that combined classifiers always outperform individual clas-
sifiers participating in the corresponding combination. It is of interest to see
that the results yielded by the discounting-and-averaging combination algorithm
(i.e., DCA2) are comparable or even better than that given by the discounting-
and-orthogonal sum combination algorithm (i.e., DCA1), while the former is
computational more simple than the latter. Although the averaging operation
was actually mentioned briefly by Shafer [32] for combining belief functions, it
has been almost completely ignored in the studies of information fusion and
particularly classifier combination with D-S theory. Interestingly, Shafer [32] did
show that discounting in fact turns combination into averaging when all the
information sources being combined are highly conflicting and have been suffi-
ciently discounted. This might, intuitively, provide an interpretation for a good
performance of DCA2.

To have a comparative view of obtained results, Table 2 provides compara-
tive results of the developed algorithms with previous studies, namely the best
systems in the contests for the English lexical sample tasks of Senseval-2 [15],
Senseval-3 [17], and the method developed by Le et al. [19]. The best system of
Senseval-2 contest also used a combination technique: the output of subsystems
(classifiers) which were built based on different machine learning algorithms
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Table 1. Experimental results

%
Individual Combination

NB MEM SVM DCA1 DCA2

Senseval-2 65.6 65.5 63.5 66.3 66.5

Senseval-3 72.9 72.0 72.5 73.3 73.3

Table 2. A comparative result

% Best systems Le [19] DCA1 DCA2

Senseval-2 64.2 64.7 66.3 66.5

Senseval-3 72.9 72.4 73.3 73.3

were merged by using weighted and threshold-based voting and score combi-
nation [40]. The best system of Senseval-3 contest used the Regularized Least
Square Classification (RLSC) algorithm with a correction of the a priori fre-
quencies (for more details, see [11]). This comparative result shows that both
developed combination algorithms deriving from the discounting and combina-
tion scheme yield an improvement in overall accuracy compared to previous work
for WSD in the tests with Senseval-2 and Senseval-3.

6 Conclusions

In this paper, we have introduced a difference measure of two bodies of evidence
serving as a basis for conflict analysis in Dempster-Shafer theory. We argued
that the combined mass allocated to the empty set should be divided into two
parts, one part represents the mass of uncommitted belief as a result of com-
bination whilst the other reflects the conflict. Interestingly, this analysis might
help to solve the question of the validity of Dempster’s rule by the fact that two
identical probability measures are always conflicting. We have also proposed the
use of the discounting operator together with the combination operator for re-
solving conflict when combining evidence, in which an entropy-based method for
defining discounting factors was introduced. As for illustrating the applicability
of the proposed discounting and combination scheme, we have also provided an
experimental study in combining multiple classifiers for WSD which produces
better results in comparison to previous related studies.
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Evaluation Based on Pessimistic Efficiency in
Interval DEA
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Abstract. In Interval DEA (Data Envelopment Analysis), efficiency in-
terval has been proposed and its bounds are obtained from the optimistic
and pessimistic viewpoints, respectively. Intervals are suitable to repre-
sent uncertainty of the given input-output data and decision makers’ in-
tuitive evaluations. Although the intervals give elements a partial order
relation, it is sometimes complex, especially in case of many elements.
The efficiency measurement combining optimistic and pessimistic effi-
ciencies in Interval DEA is proposed. They are compared from the view
that both of them represent the difference of the analyzed DMU (Deci-
sion Making Unit) from the most efficient one. The proposed efficiency
measurement is mainly determined by the pessimistic efficiency. The op-
timistic one is considered if it is inadequate comparing to the pessimistic
one. Such a pessimistic efficiency based evaluation is more similar to our
natural evaluation and DMUs are arranged as a linear order.

Keywords: Interval DEA, efficiency interval, pessimistic, arrangement.

1 Introduction

In DEA (Data Envelopment Analysis), the maximum relative ratio of the
weighted sum of outputs to that of inputs is regarded as the efficiency of DMU
(Decision Making Unit) [1]. Because of the maximum ratio, it is an evaluation
from the optimistic viewpoint for the analyzed DMU. In Interval DEA, efficiency
is denoted as an interval in order to reflect various evaluation viewpoints [2]. All
the possible relative evaluations for a DMU are included in the efficiency interval.
The upper bound of efficiency interval is obtained from the optimistic viewpoint
for the analyzed DMU relatively to others. It is the same as the conventional
DEA [1]. On the other hand, the lower bound is obtained from the pessimistic
viewpoint.

With the obtained efficiency intervals, the partial order relation of DMUs is
obtained based on interval order relation [3]. The partial order relation, compar-
ing to the linear one, is suitable to represent uncertainty in real situations. It
enables a pair of elements to be unknown relation, that is, these elements are not
related to each other. It can be illustrated as a kind of diagram and it helps us
to recognize the relative relations of elements intuitively. However, the relative
relations of many DMUs, for instance 20 DMUs, are not easy to understand, if it
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is illustrated. In case of evaluating elements, the partial order relation sometimes
is not clear enough and does not give expected information to decision makers.

As for ranking of DMUs based on DEA, several methods have been proposed
and compared in [4]. The conventional DEA rates more than one DMU as effi-
cient, that is, their efficiencies are equal. Some methods focus on distinguishing
among those DMUs. In [5], cross-efficiency which is based on peer-appraisal con-
cept is used as a complement or alternative to simple efficiency which is based
on self-appraisal. The average cross-efficiencies helps to distinguish DMUs whose
simple efficiencies are 1 and to establish meaningful ranking. In [6][7], efficient
DMUs are ranked by the importance as a benchmark for inefficient DMUs. In
[8], by removing constraint on the analyzed DMU, the supper efficiency which
enables to be greater than 1 is proposed. The supper efficiency is also defined
by using slacks-base measure in [9]. The sensitivity analysis has been done in
[10] where the necessary and sufficient conditions for preserving efficiency when
data changes are made for all DMUs are developed. It provides what-if tool and
measures efficiency of DMU from the view. The method applying for rank vot-
ing data has been proposed in [11][12]. The assurance region side constraints are
used and the gap between the weights which should be greater for higher places
than for lower ones is maximized in order to discriminate efficient DMUs. In this
paper, DMUs are arranged with efficiency intervals in Interval DEA, differently
to the above methods based on the conventional DEA.

In the conventional DEA [1] [13], the optimistic efficiencies are obtained and
DMUs can be arranged as a linear order based on them. In this paper, DMUs
are arranged based on the pessimistic efficiency, which has been proposed to
compose efficiency interval in Interval DEA [2]. The pessimistic efficiency be-
comes small if the DMU has any unique input and/or output. In this sense,
the DMU whose pessimistic efficiency is small has some weak points, though its
optimistic efficiency is possible to be great. In the pessimistic efficiency sense,
DMU which has the balanced input and output data can be rated as efficient.
Since the pessimistic efficiency represents the efficiency at least guaranteed in
any undesirable scenario, the evaluation based on them fits our natural sense,
especially in case of risk-aversion situations. Therefore, the pessimistic efficiency
alone can play an important and useful role in arranging DMUs. However, it is
not a good idea to ignore the optimistic efficiency. From this view, DMUs are ar-
ranged mainly from their pessimistic efficiencies considering the optimistic ones
if they are apparently inadequate. In order to compare the optimistic and pes-
simistic efficiencies, they are normalized, respectively. Originally the efficiency
interval represents the possible efficiency by assuming production possibility set
consisting of the existing DMUs so that its bounds, the optimistic and pessimistic
efficiencies, are normalized by the common set. In this paper, the meanings of
the optimistic and pessimistic efficiencies are reconsidered. They are dealt with
individually and the optimistic or pessimistic efficiencies of all DMUs are com-
pared one another. Then, it shows one of the ways to give DMUs a linear order
based on the efficiency interval.



Evaluation Based on Pessimistic Efficiency in Interval DEA 233

2 Interval DEA

DEA is a non-parametric technique for measuring the efficiency of DMUs with
common input and output terms [1]. In DEA, the ratio of weighted sum of
outputs to that of inputs is assumed to be the efficiency of each DMU. In the
conventional DEA, the input and output weights are variables that are deter-
mined so as to maximize the analyzed DMU’s ratio from its optimistic viewpoint
subject to the condition concerning every DMU [1][13]. However, the relative
efficiency can be obtained from various viewpoints. The efficiency from the pes-
simistic viewpoint has been already formulated in [2]. Then, an interval consists
of the optimistic and pessimistic efficiencies and it is called efficiency interval.
The problems to obtain the optimistic and pessimistic evaluations are formu-
lated as the following way. The relative efficiency of the analyzed unit DMUo is
denoted as

θo =
utyo

vtxo

maxj

(utyj

vtxj

) (1)

where xj and yj are the given input and output vector ofDMUj whose elements
are all positive, and v and u are the weight variables. The numbers of input and
output items and DMUs are m, k and n, respectively. The ratio of weighted sum
of output data to that of input data for DMUo is compared to the maximum
ratio of all DMUs. Corresponding to the denominator, the production possibility
set is defined as follows.

P = {(x,y)|x ≥ Xλ,y ≤ Y λ,λ ≥ 0}

It assures that the smaller outputs and/or greater inputs are possible.
By maximizing or minimizing the relative efficiency (1) with respect to the

weight variables, it is approximated by two kinds of values, θ∗o and θo∗. They are
the extreme values of the relative efficiency from the optimistic and pessimistic
viewpoints for DMUo.

The problem to obtain θ∗o is formulated as follows.

θ∗o = max
u,v

utyo

vtxo

maxj

(utyj

vtxj

)
s.t. u ≥ 0, v ≥ 0

(2)

The weight variables are determined to maximize the relative efficiency θo. θ∗o
focuses on the superior items for DMUo and it is called optimistic evaluation.
The fractional programming problem (2) is reduced to the following LP problem
which is the same as CCR model usually used in the conventional DEA [1][2][13].

θ∗o = max
u,v

utyo

s.t. vtxo = 1
vtxj − utyj ≥ 0 ∀j
u ≥ 0
v ≥ 0

(3)
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On the other hand θo∗ is obtained by the following problem.

θo∗ = min
u,v

uty
o

vtxo

maxj

(utyj

vtxj

)
s.t. u ≥ 0, v ≥ 0

(4)

θo∗ focuses on the inferior items forDMUo and it is called pessimistic evaluation.
The optimal value of (4) is the same as the following equation.

θo∗ = min
p,r

y
op

xor

max
j

yjp

xjr

(5)

The possible efficiency of DMUo is denoted as efficiency interval, Θo = [θo∗, θ∗o ].
Comparing efficiency intervals of two DMUs, the DMU whose efficiency interval
is greater than the other is evaluated as more efficient. The uncertainty in human
intuitive evaluations is reflected by various viewpoints from which DMUs are
evaluated and denoted as width of an interval. The obtained efficiencies depend
on the evaluation viewpoints and such various possible efficiencies are all included
in the efficiency interval. Since generally intervals give more information than
crisp values, the efficiency interval is suitable to represent uncertain situations
in real problems.

3 Arrangement of DMUs

With efficiencies in the conventional DEA, which are the optimistic efficiencies
in Interval DEA, DMUs are arranged as a linear order. There are often several
DMUs whose efficiencies are equal so that the differences among them can not be
recognized. With efficiency intervals, DMUs are arranged based on the interval
order relation is defined as follows in [3].

Definition 1. For two intervals A = [a, a] and B = [b, b], A , B holds if and
only if b ≤ a and b ≤ a.

In case of efficiency intervals, the DMU whose both optimistic and pessimistic
efficiencies are greater than those of the other is rated as more efficient. Other-
wise, their order is unknown. The partial order relation is suitable to represent
the situation as it is, since the width of an interval can reflect uncertainty of
the efficiency. On the other hand, it is sometimes difficult for decision makers
to recognize the relative relations of DMUs intuitively and visually if there are
many unknown relations and many DMUs.

This paper proposes the method to arrange DMUs mainly based on their
pessimistic efficiencies as well as considering the optimistic efficiency to some
extent. Figure 1 shows efficiency intervals consisting of the simple 4 combinations
of the optimistic and pessimistic efficiencies.
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Fig. 1. Four examples of efficiency intervals

It is apparent that efficiency intervals of A and D are the least and most,
respectively. It is not clear which is more efficient, B or C. The basic concept
used in this paper is to rate C better than B, since the pessimistic efficiency of C
is greater than that of B. It should be noted that it depends on the degree how
great or small the optimistic or pessimistic efficiency is. The pessimistic efficiency
gives a kind of strict evaluation and often fits our natural evaluation sense,
especially in case of risk aversion problems. It is helpful to know the efficiency
under the least desirable scenario and to evaluate DMU with it. In daily life,
when we expect to feel secured, we make a decision by thinking pessimistically.
The evaluation of DMUs based on only the pessimistic efficiencies is acceptable
and reasonable. Then, focusing on the pessimistic efficiency, which is the lower
bound of efficiency interval, a linear order of DMUs is found. However, it is not a
good idea to ignore the optimistic efficiencies. In the following, the optimistic and
pessimistic efficiencies are dealt with individually and compared, respectively.

The pessimistic efficiency represents the insufficiency of efficiency comparing
to the ideal input-output which is peculiar to DMUo and it seldom equals to
1. All DMUs have some insufficiency comparing to the ideal respective pseudo-
DMU. It measures how far DMUo is possible to be from the least insufficient
DMU, which is the most efficient one in the pessimistic efficiency sense. In the
similar way, the optimistic efficiency measures how close DMUo is possible to
be from the most efficient DMU. In order to compare pessimistic and optimistic
efficiencies, they are normalized so as to make their maximum one, respectively,
as follows.

θ∗o
′ =

θ∗o
maxj θ∗j

= θ∗o θ′o∗ =
θo∗

maxj θj∗
(6)

As for the optimistic efficiency, the possibility to be efficient comparing to others
is considered as highly as possible. Then, their maximum is apparently 1 so that
the optimistic one can be used as it is.

In the sense of measuring the difference from the efficient DMU, the optimistic
efficiency and the normalized pessimistic efficiency are compared. Then, the new
efficiency measurement of DMUo is defined as follows.

θ′′o∗ = min{θ∗o , θ′o∗} (7)



236 T. Entani

The minimum represents how different DMUo is from the most efficient DMU
in any sense. It often equals to the normalized pessimistic one so that DMUs
are arranged mainly based on the pessimistic efficiencies. While, such a DMU
as its optimistic one is not enough comparing to its pessimistic one is evaluated
by the smaller efficiency, that is, its optimistic one. This efficiency measure-
ment excludes that the DMU, which is not efficient enough from the optimistic
viewpoint, is highly evaluated even if its pessimistic efficiency is adequate.

The concept of defining (7) is similar to how the lower bound of interval
efficiency is obtained by (5). The defined efficiency measurement is obtained by
solving (5) assuming the upper and lower bounds of efficient interval as two
outputs and 1 as one input for all DMUs.

4 Numerical Example

The numerical example consists of 15 DMUs with common one input and three
outputs. In order to illustrate their relative relations, the efficiency measurements
based on the ratio of the weighted sum of outputs to that of inputs are obtained.
Table 1 shows the given input-output data and the efficiency intervals determined
by (3) and (5). With the obtained efficiency intervals, the partial order relation
of DMUs is illustrated on the left of Figure 2. It shows several unknown relations
such as (D,O), (M,C) and (M,E). The more the number of DMUs increases, the
more complex the diagram becomes. The efficiency interval includes evaluations
from all the possible viewpoints and the partial order relation is suitable to
represent uncertain situation as it is. By the proposed efficiency measurement,
the partial order relation is reduced to a linear order relation.

Table 1. 1-input and 3-output data and efficiency intervals

DMU Input1 Output 1 Output 2 Output 3 Efficiency interval Efficiency measurement
A 59.08 18.23 3.22 49.25 [0.700,0.951] 0.805
B 67.09 25.50 2.12 44.47 [0.551,0.862] 0.634
C 59.61 25.21 2.76 47.97 [0.794,0.979] 0.913
D 60.71 20.94 3.03 47.92 [0.779,0.898] 0.896
E 60.00 25.10 2.99 49.00 [0.805,0.998] 0.927
F 72.00 27.60 4.00 73.00 [0.869,1.000] 1.000
G 64.02 28.23 2.92 55.88 [0.795,1.000] 0.915
H 70.77 26.10 4.06 68.21 [0.836,1.000] 0.962
I 61.71 26.41 2.90 51.98 [0.819,0.991] 0.942
J 67.61 25.50 3.78 65.78 [0.855,0.996] 0.984
K 64.26 25.51 3.05 58.21 [0.826,0.962] 0.950
L 67.99 27.92 2.94 60.93 [0.754,0.974] 0.867
M 65.31 23.59 3.14 54.12 [0.817,0.903] 0.903
N 51.89 21.00 2.74 45.31 [0.861,1.000] 0.991
O 65.00 23.70 3.03 52.00 [0.789,0.895] 0.895



Evaluation Based on Pessimistic Efficiency in Interval DEA 237

Fig. 2. Partial and linear order relations

The pessimistic efficiencies are normalized by (6) and compared with the op-
timistic ones. Then, the efficiency measurements are obtained by (7) and shown
at the right column in Table 1. The center and the right of Figure 2 show the
linear order relations with the proposed (7) and with the pessimistic efficiency
(5), respectively. By (7), D is rated as more efficient than O and M is rated
as less efficient than C and E. While, by (5), their order relations are reverse.
The linear order relation at the center of Figure 2 by (7) is more similar to the
partial order relation at its left than the linear one by (5). In order to modify
the partial order relation into linear one, the proposed efficiency measurement is
useful. Two DMUs, M and O, are rated as less efficient by the proposed efficiency
measurements than by the conventional pessimistic efficiencies. Their efficiency
measurements equal to their upper bounds of efficiency intervals. That is, al-
though their pessimistic efficiencies are good enough, their optimistic efficiencies
are poor comparing to DMUs with the similar pessimistic efficiencies. Their op-
timistic efficiencies are expected to be more relatively to the other DMUs. In this
way, the proposed efficiency measurement is almost the same as the pessimistic
efficiency. It could have an advantage since it considers the optimistic efficiency
when it is needed.

5 Conclusion

In this paper, a new efficiency measurement based on the efficiency interval in In-
terval DEA has been proposed. The pessimistic and optimistic efficiencies, which
are the upper and lower bounds of efficiency interval, are dealt with individually
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and the pessimistic one is focused on. Since the pessimistic efficiency is obtained
under the possible least desirable scenario, it is acceptable for decision makers
to rate DMUs based on it. In order to take not only pessimistic efficiency but
also optimistic one into account to some extent, the pessimistic efficiencies are
normalized. Then, the new efficiency measurement is defined as the minimum
of the optimistic and pessimistic efficiencies. It usually equals to the normalized
pessimistic efficiency, except that the optimistic efficiency is apparently inade-
quate. In that case, it equals to the optimistic efficiency. Generally the greater
pessimistic efficiency is, the better the DMU is evaluated. The proposed effi-
ciency measurement gives a linear order relation considering efficiency intervals
which reflect uncertainty of evaluations. The simple relative relation of DMUs
helps decision makers to evaluate them.
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Abstract. This paper considers a facility construction problem in a rectangular 
urban area with some barriers and rectilinear distance. There exist some de-
mand points and possible construction sites with preference. A random con-
struction cost according to a normal distribution. The probability that the cost 
becomes below the budget should not be below the fixed level. One objective is 
that the budget should be minimized under the condition demand points are 
covered by at least one of facilities constructed within a certain critical distance. 
Another is that the minimal preference among constructed sites should be 
maximized. The other is to maximize minimal satisfaction degree with respect 
to critical distances among all demand points. We formulate our problem as  
a three criteria problem with a chance constraint. Since usually there exists no 
solution optimizing three objectives at a time, we seek some non-dominated so-
lutions after the definition of non-domination.  

Keywords: Facility construction, Random construction cost, Urban area, Pref-
erence of possible site, Barriers, Budget constraint, satisfaction of critical  
distance,  Non-dominated solution. 

1   Introduction 

There are huge amount of papers about facility location problem (so called Weber 
problem) after Weber has published his paper [11]. However recently there are many 
developments from the usual facility location problem. One of them is combination of 
a supply chain management and it is surveyed in [9]. As another one, we consider the 
new facility planning problem under the stochastic construction cost which is the 
extension of the usual facility construction problem covering demands by at least one 
facility in the sense that each demand is within the critical distance from at least one 
facility where each critical distance is also a decision variable maximizing minimal 
satisfaction degree among all demand points. Related studies are surveyed in the pa-
per [4].  In order to plan the facility construction, we should consider many factors 
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such as the total cost, suitable construction sites, service to citizens.  That is, budget 
for construction is sufficient though it should be minimized and it may change. Dis-
tance to the nearest facility is close as enough so that citizens can receive satisfied 
service.  Anyway, since once facilities were constructed, we cannot destroy them nor 
stop the service easily.  Therefore we should make a model, analyze the result and 
estimate the future situation. 

First we formulate the problem and after the definition of non-domination, we pro-
pose a procedure finding some non-dominated solutions. Finally we summarize the 
results and discuss the further research problem. 

2   Problem Formulation 

We consider the following problem: 

(1) There are m demand points  
( , ), 1,2,...,i i iD a b i m= = and n possible facility construction sites 

( , ), 1, 2,...,j j jFP p q j n= =  in an urban area 

0 0{( , ) | 0 , 0 }X x y x p y q= ≤ ≤ ≤ ≤ with some rectangular barriers 

(2) 1 2 3 4{( , ) | , }, 1, 2,...,k k k k kx y B x B B y B k s= < < < < =B . Barrier means we cannot 

pass it inside and so in some case we must make a detour.  We adopt rectilinear 
distance which is used often in an urban area.  For each possible site jFP , suitabil-

ity of the construction of the facility is attached and this is denoted by the prefer-
ence jµ (0 1)jµ< ≤ (This idea is for the construction side and appeared in our  

related paper [7]). Facility construction cost at each possible site is an independ-
ent normal distributed random variables with mean jm  and variance 2

jσ  and the 

total cost of the construction should be below the budget F with a probability not 
less than the prescribed level 0.5α > .  F is a decision variable.  

(3) One objective is that the budget F should be minimized under the condition  
demand points are covered by at least one of facilities constructed within the  
distance determined a priori. Another is that the minimal preference among  
constructed sites should be maximized. The other is minimal satisfaction degree 
among all demand points with respect to covering critical distance should be 
maximized. That is, following setting: If demand point i is covered by some facil-
ity constructed at possible site j (this means critical distance 

ijd d≥ , distance  

between demand point i and possible site j) then its satisfaction degree is 

ijµ ( 0 1ijµ≤ ≤ ). 
,

So min{ | , 1}ij ij j
i j

d d xµ ≤ =  should be maximized where 

we assume that holds whenij i j ij i jd dµ µ ′ ′ ′ ′≥ ≤ . 

Under above setting, we have a following bi-criteria problem P . 

P : Minimize F 
 Maximize { | 1}min j j

j
xµ =  
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Maximize min{ | ( ), 1, 1,2,..., }ij i jj I d x i mµ ∈ = =  

subject to 
 

1

Pr{ }
n

j j
j

c x F α
=

≤ ≥∑  

( )

1, 1,2,.., ,
i

j
j I d

x i m
∈

≥ =∑ , 0,1, 1, 2,..., ,jx j n= =  

where 
( ) { | }, 1, 2,..., , 0.5 andi ij ijI d j d d i m dα= ≤ = > is the distance from the pos-

sible candidate site j to the demand point i considering barriers (how to calculate the 
distance is explained below).  d is the critical distance in order to cover the demand 
points and this is also an adjustable decision variable and positive since covering with 
shorter distance is better. 

Since 

1 1

1 2 2 2 2

1 1

1

2 2

1

( )

Pr{ } Pr ,

( )

n n

j j j j jn
j j

j j n n
j

j j j j
j j

n

j j j
j

n

j j
j

c m x F m x

c x F

x x

c m x

x

α α
σ σ

σ

= =

=

= =

=

=

⎧ ⎫
− −⎪ ⎪

⎪ ⎪≤ ≥ ⇔ ≤ ≥⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

−

∑ ∑
∑

∑ ∑

∑

∑

 

is the standard normal distributed random variable and 2
j jx x=  due to 0 1jx or= , 

2

1 1
thischanceconstraint is transformedasfollows:

n n

j j j j
j j

F m x K xα σ
= =

≥ +∑ ∑
  

where is theKα α percentile point of the cumulative distribution function of the stan-

dard normal distribution and positive since 0.5α > . Since F should be minimized, 

isP transformed into the following deterministic equivalent problem P. 

2

1 1
: Minimize

n n

j j j j
j j

P m x K xα σ
= =

+∑ ∑
  

     Maximize { | 1}min j j
j

xµ =  

      Maximize min{ | ( ), 1, 1,2,..., }ij i jj I d x i mµ ∈ = =  

     subject to 
( )

1, 1,2,.., ,
i

j
j I d

x i m
∈

≥ =∑ ,  

 0 1, 1,2,..., .jx or j n= =  
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(How to calculate the distance ijd  and construct ( )iI d ) 

First note that rectilinear distance between visible two points 

1 1 1 2 2 2( , ), ( , )P x y P x y= =  is 
1 2 1 2| | | |x x y y− + −  where visible means that no tour is 

needed and in an invisible case, deour is needed in order to calculate distance  
between them. 

 
 

Fig. 1. Invisible pair and distance calculation (Rectangular area is indicated by dotted line is  
a barrier) 

Any way, as shown in Figure 1, distance is calculated via vertices of the barrier. So 
we first construct the network N(V,A) given as follows:   

1 3 1 4 2 3 2 4
1 2 1 1 1 1 1 1 1 1

1 3 1 4 2 3 2 4 1 4 2 3 2 4

1 2 1 2 1 4 4 1 4

{ , , , , ( , ), ( , ), ( , ), ( , ), ,

( , ), ( , ), ( , ), ( , ), , ( , ), ( , ), ( , ),

, , , } ( { , , , , , , , , , })

m

i i i i i i i i s s s s s s

n n n n s n s n s n

V D D D B B B B B B B B

B B B B B B B B B B B B B B

FP FP FP v v v v v v v

L L

L

L L L L+ + + + + +

=

=

 

and E consists of edges corresponding to visible pairs between two vertices in V. For 
each edge, rectilinear distance between corresponding vertices is attached. So using 
some algorithm (for example [8]) for finding a shortest path for each pair of 
vertices, we can calculate a distance from demand point  and candidate siteijd i j .

 
Based on these distances, we construct each set 

iI  checking whether each distance 

is farther than d or not. P is a three-criteria problem and so usually there exists no 
solution optimizing all objectives at a time and so we seek some non-dominated solu-
tions after definition of non-domination.  

(Non-dominated solution) 

( ) ( )For twosolutions , , if1 2x x  

(1) 2 (1) (2) 2 (2)

1 1 1 1

n n n n

j j j j j j j j
j j j j

m x K x m x K xα ασ σ
= − = −

+ ≤ +∑ ∑ ∑ ∑
, 

(1) (2)min{ | 1} min{ | 1}j j j jx xµ µ= ≥ =   

and 
(1)

(2)

min{ | ( ), 1, 1,2,..., }

min{ | ( ), 1, 1, 2,..., }

ij i j

ij i j

j I d x i m

j I d x i m

µ

µ

∈ = = ≥

∈ = =

 

1P 2P
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( )and at least one inequality holds without equality , then wecall dominates1x  (2) . For ax  

solution ,x  if there nosolution that dominates , then we callx non-dominatedx  

solution. 

3   Solution Procedure 

In order to find non-dominated solutions, as for d, we consider 
, 1,2,..., , 1, 2,...,ijd d i m j n= = =  only .  So sorting , 1,2,..., , 1, 2,...,ijd i m j n= =  and 

let the result be as follows: 1 20 d d d< < < < lL  where l  is the number of different 

ijd  and corresponding  ijµ  also denoted by ( ) (2) ( ) 0µ µ µ> > > >1 lL .   Then we 

introduce the following subproblem ( ), 1,2,...,P t t = l with fixed critical distance td . 

2

1 1
( ) : Minimize

n n

j j j j
j j

P t m x K xα σ
= =

+∑ ∑
  

          Maximize { | 1}min j j
j

xµ =  

    subject  to 
( )

1, 1, 2,.., ,
i t

j
j I d

x i m
∈

≥ =∑ ,  

       
1,2,...,

0 1, ( )j i t
i m

x or j I d
=

= ∈ U . 

 
Each ( ), 1,2,...,P t t = l  is a bicriteria problem and so we define non-dominated solu-

tion also.  
(Non-dominated solution of ( )P t ) 

( ) ( )For two feasible solutions , of ( ), ifP t1 2x x   

(1) 2 (1) (2) 2 (2)

1 1 1 1

n n n n

j j j j j j j j
j j j j

m x K x m x K xα ασ σ
= − = −

+ ≤ +∑ ∑ ∑ ∑
 

(1) (2)min{ | 1} min{ | 1}j j j jx xµ µ= ≥ =  

( ) (2)and  at least one inequality holds without equality, then we call dominates1x x . 

For a feasiblesolution of ( ), if therenofeasiblesolution that dominates , then wecallP tx x x
non-dominated solution. 

Note that as for non-dominated solutions of 

Note that s for non-dominated solutions of ( ), the minimum with respect toija P t µ  

( )thesettled facilityis not less than . For finding non-dominatedsolution of ( ), wet P tµ first
 

1 2sort , , , nµ µ µL  and let the result be (1) (2) ( )qµ µ µ≤ ≤ ≤L  where q is  
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the number of different . Next we definejµ  ( ) ( )( ) { | , }k k
i ij t jI t j d d µ µ= ≤ ≥  and 

( ) ( ) ( ) ( )
1 2( ) ( ) ( ) ( )k k k k

mI t I t I t I t= ∪ ∪ ∪L . Then we introduce the following subsidiary 

( )problem ( ), 1,2,..., of ( )kP t k q P t=   

( ) ( )

( ) 2

( ) ( )

( ) : Minimize 
k k

k
j j j j

j I t j I t

P t m x K xα σ
∈ ∈

+∑ ∑
  

subject to 
( )

( )

( )

1, 1, 2,.., , 0 1, ( )
k

i

k
j j

j I t

x i m x or j I t
∈

≥ = = ∈∑  

( )In order to solve ( ), 1, 2,..., ,kP t k q=  we further introduce the following auxiliary,  
( ) ( )problem ( ) ( ) with positive parameter .k k

RP t of P t R  

( ) ( ) ( )

( ) 2 2

( ) ( ) ( )

1 1
( ): Minimize ( ( ) )

2 2k k k

k
R j j j j j j j

j I t j I t j I t

P t R m x K x Rm xα σ σ
∈ ∈ ∈

+ = +∑ ∑ ∑
     

subject to 
( )

( )

( )

1, 1,2,.., , 0 1, ( )
k

i

k
j j

j I t

x i m x or j I t
∈

≥ = = ∈∑  

This problem is an usual set covering problem and so we can solve it by using some 
set covering algorithm such as [1], [2], [4] ([10] has given a heuristic method and nice 
survey about set covering problem). As is shown in [6], a following useful relation 

( )holds between ( ) andkP t  
( ) ( )(Proof isverysame as a stochastic spanning tree version in [6].)k

RP t   

Theorem 1. ( )Let ( ) andR kkx x ( ) ( )be an optimalsolution of ( ) and that of ( )k k
RP t P t  

respectively. If 

( )

* 2 *

( )

( )
k

R
k j j

j I t

R x kσ
∈

= ∑
*, then ( ) is an optimalsolution ofR kx ( ) ( ). LetkP t  

2 ( ) 2 ( )( ) min{ | ( )}, ( ) max{ | ( )}k k
m j i M j ii k j I t i k j I tσ σ= ∈ = ∈    

and ( ) 2 ( ) 2
( ) ( )

1 1

, .
m M

m m
k k

m i k M i k
i i

R Rσ σ
= =

= =∑ ∑  

( ) * ( )Then it is easy to see .k k
m k MR R R≤ ≤  ( ) ( )Wedivide the interval [ , ]k k

m MR R  by the 

suitable sizes into sub-intervals ( ) ( )
1[ , ], 0,1,2,..., ( ) wherek kR R k+ =l l l l  

( ) ( ) ( ) ( )
0 ( ) 1, .k k k k

m k MR R R R+= =l
 Then R is set to the center value ( ) of each sub-intervalkRl

 

( )
( ) ( ) ( )

1[ , ] and solve  to find an optimal k

k k k

R
R R P+

l
l l

( )
( )solution of thisauxiliaryproblemkx l and

( )calculatecorresponding value of objective function for ( )kP t   
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( ) ( )

( ) ( ) 2 ( )
( ) ( )

( ) ( )k k

k k k
j j j j

j I t j I t

F m x K xα σ
∈ ∈

= +∑ ∑l l l

 . 

( ) ( )Then compare and choose the best one as an optimal solution of ( ).k kF P tl

 

Now we have the following main algorithm for obtaining some non-dominated  
solutions. 

[Algorithm for ( )P t ] 

1Step0:Calculate ( ), , ( )t m tI d I dL , (1) ( ), , and set ( ) , 1.q DM t kµ µ φ= =L  

Go to Step 1. 

( ) ( )Step1: Solve ( ) and obtain an optimalsolution .k kP t x If thereexists nosolution .
( )that dominates , thenkx ( )( ) ( ) { }andgo toStep 2.kDM t DM t= ∪ x  Otherwise 

go to Step 2 directly. 

Step 2: Set 1k k′= + where is theindex such thatk′ ( ) ( )min{ | 1}. If 1k k
j jx k qµ µ′ = = = + , 

then terminate with the set of non-dominated solutions DM. Otherwise return 
to Step 1. 

Solving (1), (2), , ( )P P PL l  explicitly or implicitly and set non-dominated set of our 

problem as (1) (2) ( )DM DM DM DM= ∪ ∪ ∪L l .  The above algorithm solves the 

set covering problem many times and the set covering problem is NP-complete([5]).  
Therefore it is not easy to solve our problem and its complexity is not polynomial. 
But we should endeavor to reduce the number of the set covering problem needed to 
solve. 

4   Conclusion 

We considered a facility construction problem with stochastic construction cost  
and have proposed a solution procedure to find some non-dominated solutions.  
But our procedure is straightforward and not enough efficient and so refinement is 
needed. Especially in some case, we need not solve all sub-problems 

(1), (2), , ( ) rom scratch. Role of changing critical distance is that facilityP P P f dL l  or 
facilities must be located as near as possible and so we considered consider satisfac-
tion degree of service with respect to demand i and facility j.  The other is we must 
change the distance measure depending on the importance of demand points or their 
request of service quantity such population. 
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Abstract. Web 2.0 Communities allow large amounts of users to interact with
each others. In fact, new Web 2.0 technologies allow to share resources and infor-
mation in an easy and timely manner, allowing real time communication among
persons all over the world. However, as Web 2.0 Communities are a quite recent
phenomenon with its own characteristics and particularities, there is still a ne-
cessity of developing new tools that allow to reach decisions with a high enough
consensus level among their users. In this contribution we present a new consen-
sus reaching model designed to incorporate the benefits that a Web 2.0 Commu-
nity offers (rich and diverse knowledge due to a large number of users, real-time
communication. . . ) and that tries to minimize the main problems that this kind
of organization presents (low and intermittent participation rates, difficulty of
establishing trust relations and so on).

1 Introduction

In the last years, the World Wide Web has allowed the creation of many different ser-
vices in which users from all over the world can join, interact and produce new contents
and resources. One of the most recent trends, the so called Web 2.0, which comprises a
set of different web developement and design techniques, allows the easy communica-
tion, information sharing, interoperatbility and collaboration in this new virtual environ-
ment. Web 2.0 Communities, that can take different forms as Internet forums, groups
of blogs, social network services and so on, provide a plataform in which, users can
collectively contribute to a Web presence and generate massive content behind their
virtual collaboration [1]. In fact, Web 2.0 represents a paradigm shift in how people use
the web as nowadays, everyone can actively contribute content online.

Among the different activities that the users of Web Communities usually perform
we can cite:

– Generate online contents and documents, which is greatly beneficiated with the
great diversity and knowledge of the involved people. One of the clearest examples
of this kind of collaboration success is Wikipedia [2], where millions of articles
have been produced by its web community in dozens of different languages.

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 247–258, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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– Provide recommendations about different products and services. Usual recom-
mender systems are increasing their power and accuracy by exploiting their user
bases and the explict and implicit knowledge that they produce [3]. A clear exam-
ple of recommeder systems success, which exploits its users community knowledge
to provide personalized recommendations, is the Amazon online store [4].

– Make decisions about particular problems. Group Decision Making (GDM) is a
typical human activity which consists on selecting the best alternative from a fea-
sible set according to a group of individuals. Thus, the main goal of any GDM
process is to identify the best alternative according to some established criteria,
and it is normally assumed that the experts have a common interest in obtaining a
final solution for the problem. Examples of typical GDM processes are to vote in
an election, to choose a place for a meeting or to select the model of laptop that a
firm will buy to its employees. Usual simple group decision making schemes, as
referendum or voting systems are now widely stablished in the Web. For example,
services like PollDaddy [5] and BallotBin [6] allow to create online surveys and
polls where users can vote about the best alternative to choose for a given decision
problem.

There have been several efforts in the specialized literature to create different models to
correctly address and solve GDM situations. Some of them make use of fuzzy theory
as it is a good tool to model and deal with vague or imprecise opinions (which is a
quite common situation in any GDM process) [7,8]. Many of those models are usually
focused on solving GDM situations in which a particular issue or difficulty is present.
For example, there have been models that allow to use linguistic assessments instead of
numerical ones, thus making it easier for the experts to express their preferences about
the alternatives [9]. Other models allow experts to use multiple preference structures
(and even multi-granular linguistic information) [10,11] and other different approaches
deal with incomplete information situations if experts are not able to provide all their
preferences when solving a GDM problem [12] or when a consensus process is carried
out [13].

Moreover, usual GDM models have been complemented with consensus schemes
that allow users to interact until there is a certain degree of agreement on the selected
solution [14,15]. This consensus models allow not only to provide better solutions to
decision problems, but also to increase the users satisfaction with the decision process
as all the opinions are reconsidered to achieve a high enough level of consensus.

However, those approaches are not usually well suited to be used by Web Communi-
ties due to some of their inherent properties. For example, dynamic situations in which
some of the parameters of the problem, as the set of experts, the set of alternatives and
even the set of criteria to select the solutions change, have not been modeled. This kind
of situations are quite common in other environments: in [16] the problem of manag-
ing time-dependent preferences (that is preferences expressed at different periods) is
presented; the problem of dealing with dynamic real-time information to choose the
best routes is shown in [17], and a practical example about resource managment where
the criteria to make decisions (climate) changes over time can be found in [18]. Thus,
it is important to develop new models that take into account this kinds of dynamical
situations to solve realistic GDM problems [19].
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For the particular case of Web Communities, dynamic situations in which the group
of experts vary over time are quite common: a new expert could incorporate to the
process, some experts could leave it or a large group of experts could be simplified
in order to minimize communications and to ease the computation of solutions. This
behaviour is usually found in democratic systems where the individuals delegate into a
smaller group of experts to make decisions (it is usually not possible to involve everyone
in each decision). There have been some efforts to model this kind of situations. For
example, in [20] a recursive procedure to select a qualified subgroups of individuals
taking into account their own opinions about the group is presented. However, there
is still a big necessity of creating new consensus models that suit Web Communities
characterstics appropriately.

In this paper we present a consensus model which has been designed taking into ac-
count the characteristics of Web 2.0 Communities. In particular, it has been designed
considering that the number of users of this kind of communities is usually large [21].
For example, online music communities usually gather hundreds or even thousands of
individuals that share an interest about particular bands or music genres. To reach a
consensual decision with such a large user base is not an easy task because, for ex-
ample, not every member of the community is willing to participate and contribute to
solve the problem [22]. In addition, this model allows dynamic sets of users, that is, the
users set to solve the decision problem may change in time. Moreover, by means of a
delegation scheme (based on a particular kind of trust network [23]) we may achieve
an important simplification in the obtaining of a proper consensus level. Finally, a trust
checking procedure allows to avoid some of the problems that the delegation scheme
could introduce in the consensus reaching model.

To do so, the paper is set as follows: in section 2 we present our preliminaries, that
is, some of the most important characteristics of Web 2.0 Communities and the basic
concepts that we use in our paper. In section 3 we introduce the new consensus model
that helps to obtain consensual decisions in Web 2.0 Communities. Finally, in section 4
we point out our conclusions.

2 Preliminaries

2.1 Web 2.0 Communities

New Web 2.0 technologies have provided a new framework in which virtual commu-
nities can be created in order to collaborate, communicate, share information and re-
sources and so on. This very recent kind of communities allows people from all over
the globe to meet other individuals which share some of their interests. Apart from
the obvious advantage of meeting new people with similar interests, Web Communities
present some characteristics that make them different from other more usual kinds of
organizations. In the following we discuss some of those characteristics and how they
can affect in the particular case of GDM situations:

– Large user base: Web Communities usually have a large user base [21] (it is easy
to find web communities with thousands of users). This characteristic can be seen
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from a double perspective. On the one hand, the total knowledge (explicit or im-
plicit) that a large user base implies is usually greater and more diverse than in a
small community. This can be seen as a clear advantage: taking decisions is usually
better performed when there is a rich knowledge on the evaluated subject. On the
other hand, managing a large and diverse amount of opinions in order to extract and
use that knowledge might be a difficult task.

– Low participation and contribution rates: Although many Web Communities
have a quite large user base, many of those users do not directly participate in the
community activities. Moreover, encouraging them to do so can be difficult [22].
Many of the users of a web community are mere spectators which make use of the
produced resources but that does not (and is not willing to) contribute themselves
with additional resources. This can be a serious issue when making decisions if
only a small subset of the users contribute to a decision and it does not reflect the
overall opinion of the community.

– Real time communication: The technologies that support Web Communities allow
near real time communication among its members. This fact let us create models
that in traditional scenarios would be quite impractical. For example, in a referen-
dum, it is not easy at all to make a second round if there has been a problem in the
first one due to the high amount of resources that it requires.

– Intermittent contributions: Partially due to the fast communication possibilities
and due to a very diverse involvement of the different members, it is a common
issue that some of them might not be able to collaborate during a whole decision
process, but only in part of it. This phenomenon is well known in web communities:
new members are continuously incorporated to the community and existing users
leave it or temporarily cease in their contributions.

– Difficulty of establishing trust relations: As the main communication schemes
in Web Communities use electronic devices and, in the majority of the cases, the
members of the community do not know each other personally, it might be difficult
to trust in the other members to, for example, delegate votes. This fact implies that
it might be necessary to implement control mechanisms to avoid a malicious user
taking advantage of others.

2.2 Consensus Models with Fuzzy Preferences

Usual GDM models follow a scheme in which two phases are differentiated (see fig-
ure 1): the first one consists in a consensus process in which the users (that we will call
experts in the following), discuss about the alternatives and express their preferences
about them using a particular preference representation format. A special individual
(the moderator) checks the different opinions and confirms if there is enough consen-
sus among all the experts. If there is not enough consensus, the moderator urges the
experts to re-discuss about the alternatives and to provide a new set of opinions to im-
prove the consensus level in a new consensus round. Once the desired consensus have
been reached (or a maximum number of consensus rounds has been reached) the sec-
ond phase (the selection process) starts and the best solution is obtained by agreggating
the last opinions from the experts and applying an exploitation step which identifies the
best alternative from the agreggated information.
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Fig. 1. Typical scheme of GDM models

In this paper we center our attention only in the consensus process, where the experts
are suppossed to narrow their different opinions about the alternatives to obtain a final
solution with a high level of consensus. In the consensus model that we propose, the
experts E = {e1, . . . , em} will provide their preferences about the set of alternatives
X = {x1, . . . , xn} in form of fuzzy preference relations [10]:

Definition: A fuzzy preference relation P h given by expert eh on a set of alternatives
X is a fuzzy set on the product set X × X , which is characterized by a membership
function µh

P : X ×X → [0, 1].
When cardinality of X is small, the preference relation may be conveniently repre-

sented by the n × n matrix P h = (ph
ij), being ph

ij = µh
P (xi, xj) ∀i, j ∈ {1, . . . , n}

interpreted as the preference degree or intensity of the alternative xi over xj : ph
ij = 1/2

indicates indifference between xi and xj (xi ∼ xj), ph
ij = 1 indicates that xi is ab-

solutely preferred to xj , and ph
ij > 1/2 indicates that xi is preferred to xj (xi , xj).

Based on this interpretation, we have that ph
ii = 1/2 ∀i ∈ {1, . . . , n} (xi ∼ xi).

3 A Consensus Model for Web 2.0 Communities

In this section we present a new Consensus model that can be applied in Web 2.0 Com-
munities. It takes into account the different characteristics of this kind of communities
(see section 2.1) in order to increase the consensus level of the users when making a
decision on a set of alternatives. One interesting property of our model is that it does
not require the existance of a moderator. Its operation includes several different steps
that are repeated in each consensus round:

1. First step: First preferences expression, computation of similar opinions and first
global opinion and feedback.
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2. Second step: Delegation (or change of preferences) and computation of consensus
measures

3. Third step: Consensus and trust checks

In figure 2 we have depicted the main steps of the model and in the following we
describe them more detail.

Fig. 2. Scheme of the presented consensus model

3.1 First Step: First Preferences Expression, Computation of Similar Opinions
and First Global Opinion and Feedback

In this first step the different alternatives in the problem are presented to the experts
(note than in figure 2 we have represented only a small amount of experts, but when
applied to a Web 2.0 Community the number of users will usually by larger). Once
they know the feasible alternatives, each expert eh ∈ E is asked to provide a fuzzy
preference relation P h that represent his opinions about the alternatives. Although ev-
ery single member of the community has the oportunity of expressing his preferences
about the alternatives, as we have previously mentioned, only a subset of those experts
Ẽ will really provide preference relations. We will note ẽh to the experts that have pro-
vided a preference relation. It is important to note that if an expert at this stage does
not provide a preference relation the model will still allow him to contribute in the con-
sensus process in a later stage. Once a certain amount of time has passed (to allow a
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sufficient number of preferences to be provided) we compute the distance among each
pair of experts ẽh and ẽg in the following way:

dhg = dgh =
√√√√∑

i=1

∑
j=1
j �=i

(ph
ij − p

g
ij)2

This distances will be used to provide information to each expert about the experts that
share a similar opinion about of the alternatives. In fact, for each ẽh ∈ Ẽ we define his
set of neighbours as

Nh = {ẽβ1 , . . . , ẽβnn}

where nn is the number of neighbours that each expert will be presented (this parameter
is defined prior to the start of the consensus process) and eβi is the i-th nearest expert
to ẽh (with lowest dhβi).

In this step we also compute the current global preference as an aggregation of all
the provided preference relations. To do so, we will apply a simple arithmetic average
to compute it, as at this point the preferences expressed by all the experts are considered
to have the same weight:

pc
ij =

∑
ẽh∈Ẽ

ph
ij

#Ẽ

Once the distances among experts, the neighbours of each expert and the global pref-
erence relation have been computed, this information will be presented to the experts.
After receiving this feedback, an expert will know if his opinions are very different to
the current global preferences and he will also know which are the experts that share
similar opinions. Apart from just his neighbour list, an expert is also able to check the
particular preference relations that his neighbours have introduced in order to really
check the preferences expressed by his neighbourhood.

3.2 Second Step: Delegation (or Change of Preferences) and Computation of
Consensus Measures

In this second step the model incorporates a delegation scheme in which experts may
choose to delegate into other experts (typically experts from their neighbourhood, with
similar opinions). To allow that, we define th ∈ {1, . . . ,m}∪∅ as the expert in which ẽh

delegates. Note that as experts may choose not to delegate, it is possible to have th = ∅.
Thus, in this phase each expert that thinks that he will not be able to continue in the
consensus process, instead of just leaving the process, can choose another expert and
delegate on him. When an expert delegates on another expert, he will not be required to
update his preferences to improve the consensus level.

In figure 3 we have depicted a group of experts in which some of them have delegated
into other experts. Note that the two experts on the right have not delegated in any other
expert and have neither been chosen by other experts to delegate in them. In the figure we
can also see how some experts have delegated over experts that have already delegated
in another one, thus creating a tree structure. This tree structure conforms a kind of trust
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Fig. 3. Example delegation scheme

network in which some transitivity conditions are applied: if an expert ẽh delegates in an
expert ẽk and ẽk delegates in ẽj the situation would be similar as if both ẽh and ẽk would
have delegated in ẽj . Note that the model should avoid cicles in the trust network. If an
expert ask to delegate in another one and this delegation would produce a cicle in the
trust network the system should alert him about this situation and ask him to reconsider
his decision by delegating over a different expert or simply by not delegating.

Once a certain amount of time have passed (enough time for the experts to decide
if they wanted to delegate or not), the system will compute a trust weight τh for every
expert according to the trust network. Initially all the experts in Ẽ have a τh = 1. The
system should then check every th and if th �= ∅ it will follow the chain of delegations
until it founds an expert ẽk which has not delegated. Then, the trust weights will be
updated: τk = τk + 1 and τh = 0.

This delegation mechanism provides several advantages to the model: first of all, it
allows experts not to provide their preferences in every consensus round. If an expert
delegates in another one, he will not have to update his preferences but, in a certain
way (through the delegate), his opinion will still influence the consensus state. Thus,
the consensus rounds may be carried out faster as only a subset of experts will have
to change their preferences. Moreover, the computations will also be reduced as the
system will not have to deal with a large amount of preference relations.

Once the trust weights have been computed the system will ask the remaining ex-
perts to update their fuzzy preference relations P h in order to achieve a greater level of
consensus. This experts will conform the new Ẽ subset. Once the updated preferences
have been given we can compute some consensus degrees. To do so, we firstly define for
each pair of experts (ẽh, ẽl) (h < l) of the new Ẽ a similary matrix SMhl =

(
smhl

ik

)
where

smhl
ik = τh · τ l · (1 − |ph

ik − pl
ik|)
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Then, a collective similarity matrix, SM = (smik) is obtained by aggregating all the
(#Ẽ − 1) × (#Ẽ − 2) similarity matrices using following expression:

smik =

∑
h,l∈Ẽ|h<l

smhl
ik

T · (T − 1)/2

where T =
∑m

i=1 τ
i.

Once the similarity matrices are computed we proceed to obtain the consensus de-
grees at the three different levels:

L. 1. Consensus degree on pairs of alternatives. The consensus degree on a pair of
alternatives (xi, xk), denoted copik, is defined to measure the consensus degree
amongst all the experts on that pair of alternatives:

copik = smik

L. 2. Consensus degree on alternatives. The consensus degree on alternative xi, de-
noted cai, is defined to measure the consensus degree amongst all the experts on
that alternative:

cai =

∑n
k=1;k �=i(copik + copki)

2(n− 1)

L. 3. Consensus degree on the relation. The consensus degree on the relation, denoted
CR, is defined to measure the global consensus degree amongst all the experts’
opinions:

CR =
∑n

i=1 cai

n

3.3 Third Step: Consensus and Trust Checks

In the end of each consensus round we must check the current consensus state. If it is
considered a high enough consensus value the consensus process would finish and a
selection process would be applied to obtain the final solution for the decision problem.
To do so, we check if CR > γ, being γ a threshold value fixed prior to the beginning
of the GDM process. In the case that the level of consensus is not high enough we
would continue with the trust check that is described in the following. Note that in real
applications it might be desirable to include amaximumRounds parameter to control
the maximum consensus rounds that can be executed in order to avoid stagnation.

The trust check is introduced to avoid some of the problems that can be derived to
one of the characteristics of Web Communities: the difficulty of stablishing real trust
relations. It is not difficult to imagine an scenario where some experts delegate into an-
other that shares a common point of view on the decision that has to be made and in a
certain consensus round, this expert decides to drastically change his preferences, prob-
ably not reflecting the other experts opinions anymore. To avoid this kind of situations
the trust check will compare the last preference relation expressed by expert ẽh with
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the last preference relations of the experts that delegated in him (direct or indirectly).
This comparison can be made by applying a distance operator (as the euclidean or
cosine distances) over the preference relations. If this distance is greater than a certain
stablished threshold, the expert that delegated in ẽh would be informed with a special
message to warn him about this problematic situation and thus allowing him to take a
different course of action in the next consensus round if apropriate.

At this point a new consensus round begins. In this new round the current global
preference will not be computed as a simple arithmetic mean but as a weighted mean of
the preferences expresed by the experts in Ẽ. The weights to be used in this aggregation
operation are the trust weights τh:

pc
ij =

∑
ẽh∈Ẽ

τh · ph
ij

T

We would like to note that in each new consensus round all the members of the Web
Community can participate, independently of what they did in the previous rounds. For
example, an expert that delegated in a previous consensus round may decide not to
continue delegating (maybe because the trust check mechanism has warned him that
the expert in which he delegated has drastically changed his preferences) and thus to
provide again a new fuzzy preference relation or to delegate in a different individual; an
expert which had not delegated in any of the previous rounds might decide to delegate
in the current consensus round or even an expert which has not participated until this
moment in the consensus process (he did not provide any preference relation in the first
step of the model) could join the process by providing his initial preferences.

4 Conclusions

In this contribution we have presented a novel consensus model which has been spe-
cially designed to be applied in Web 2.0 Communities. Particularly, it was designed
to be able to manage a large users base by means of a delegation scheme based in a
particular kind of trust network that simplifies the computations and the time needed
to obtain the users preferences. Moreover, this delegation scheme also solves the inter-
mittent contrbutions problem which is present in almost any online community (that is,
many of the users will not continuosly collaborate but will do it from time to time).

In addition, the model allows to incoporate new experts to the consensus process,
that is, the model is able to handle some of the dynamic properties that real Web
Communities have.

It is worth to note that the model can be applied to this new virtual environments due
to the fast communication that web technologies offer to their users.

Finally, the model incorporates a trust check mechanism that allow to detect some
abnormal situations in which an expert may try to take advantage of others by drastically
changing his opinion and benefiting from the trust that the other experts might have
deposited in him in previous consensus rounds.
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Abstract. Refinement properties that means each cluster of a method
is included in another cluster of another method in agglomerative cluster-
ing which was proposed by Miyamoto are further studied. Although we
have simple conditions so that a method generates refinements of clus-
ters of the single linkage method, whether or not generalizations hold
when the single linkage is not used is unknown. Here three conditions for
refinement properties for the single linkage are shown, while three coun-
terexamples are shown for the average linkage and the complete linkage,
which show the theory of refinements is far from trivial and future works
are needed.

Keywords: Agglomerative clustering; refinement; single linkage; com-
plete linkage, average linkage.

1 Introduction

Agglomerative hierarchical clustering is well-known old method and effectively
used in a variety of problems in sciences and engineering [1,2]. Recently re-
searchers noticed there are rooms for theoretical studies in this old method. In
this paper refinement properties proposed by the author [3,4] which is still un-
noticed by many researchers is discussed and new results are shown. Refinement
which will be strictly defined below implies that each cluster obtained by a link-
age method is included in another cluster by another linkage method. Note that
the two linkage methods are those used in agglomerative clustering and the two
clusters are obtained at the same threshold level in the two dendrograms.

Although it has been shown that if a simple relation between a method and
the single linkage holds, then the former method generates refinements of clusters
of the single linkage method [4]. However, whether or not an analogous property
of refinement holds without using the single linkage is unknown.

Here three theoretical properties for refinement using the single linkage are
proved, and moreover three counterexamples are also shown that mean analogous
properties do not hold for the average linkage and the complete linkage, which
shows this theory is far from trivial.

We thus show that there are many theoretical problems and possibility of
developments for further study in the method of agglomerative clustering.
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2 Agglomerative Hierarchical Clustering

Let the set of objects for clustering be

X = {o1, . . . , on}

Generally a cluster denoted by Gi is a subset of X . The family of clusters is
denoted by

G = {G1, G2, . . . , GK}
where the clusters form a crisp partition of X :

K⋃
i=1

Gi = X, Gi ∩Gj = ∅ (i �= j). (1)

Agglomerative clustering uses a dissimilarity measure, frequently called a
distance, between two clusters d(G,G′) (G,G′ ∈ G) which also is called an
inter-cluster dissimilarity. Sometimes a similarity measure s(G,G′) is used. The
difference between a dissimilarity measure and a similarity measure is that a
smaller d(G,G′) means G and G′ are more similar, whereas a smaller s(G,G′)
implies G and G′ are less similar. We discuss d(G,G′) in this paper. In the follow-
ing we sometimes write dmethod(G,G′) when a method of agglomerative clustering
is assumed. More specifically, we use SL (single linkage), CL (complete linkage),
or AL (average linkage) as a method. Moreover we write d(i)(G,G′) (i = 1, 2)
when two different dissimilarities are assumed to the same pair of clusters.

Let us first describe a general procedure of agglomerative clustering [3,4].

AHC Algorithm (Agglomerative Hierarchical Clustering):
AHC1: Assume that initial clusters are given by

G = {Ĝ1, Ĝ2, . . . , ĜN} (Ĝj = {oj} ⊂ X).
Set K = N (K is the number of clusters) and
Gi = Ĝi (i = 1, . . . ,K).
Calculate d(G,G′) for all pairs G,G′ ∈ G.

AHC2: Search the pair of minimum dissimilarity:

(Gp, Gq) = arg min
G,G′∈G

d(G,G′). (2)

and let
mK = d(Gp, Gq) = min

G,G′∈G
d(G,G′). (3)

Merge: Gr = Gp ∪Gq.
Add Gr to G and delete Gp, Gq from G.
K = K − 1.
if K = 1 then stop and output the dendrogram.

AHC3: Update dissimilarity d(Gr, G
′′) for all G′′ ∈ G.

Go to AHC2.
End AHC.
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In AHC, how to construct a dendrogram is omitted (see e.g., [3,4]).
We focus on the single linkage, the complete linkage, and the average linkage

as mentioned above. In these methods we do not care about how the initial
dissimilarity measure is defined; we simply assume d(oi, oj) is given in some
way. Note that a class of inter-cluster dissimilarities is given as follows.

– the single linkage (SL): dSL(G,G′) = min
o∈G,o′∈G′

d(o, o′)

– the complete linkage (CL): dCL(G,G′) = max
o∈G,o′∈G′

d(o, o′)

– the average linkage (AL):

dAL(G,G′) =
1

|G||G′|
∑

o∈G,o′∈G′
d(o, o′)

The basic definition of d(Gr , G
′′) in AHC3 use one of the above definitions of

the inter-cluster dissimilarity for SL, CL, or AL.
An important issue in agglomerative clustering is efficient updating of a dis-

similarity measure. The single linkage, the complete linkage and the average
linkage respectively use

dSL(Gr , G
′′) = min{dSL(Gp, G

′′), dSL(Gq , G
′′)} (4)

dCL(Gr , G
′′) = max{dCL(Gp, G

′′), dCL(Gq, G
′′)} (5)

dAL(Gr , G
′′) =

|Gp|dAL(Gp, G
′′) + |Gq|dAL(Gq, G

′′)
|Gp| + |Gq|

. (6)

3 Refinement Properties

A theory of refinement between a method of agglomerative clustering and the
single linkage has been proposed by Miyamoto [3,4]. We first introduce a cut of
hierarchical clusters for this purpose. Notice that the merging levels of clusters
are mN , . . . ,m2. For SL, CL, and AL, we have the monotonicity

mN ≤ mN−1 ≤ · · · ≤ m2 (7)

for any set of objects and any dissimilarity measure, as those methods have no
reversals in the dendrograms [3,4].

For a method having the monotonicity condition (7), we can define an arbi-
trary cut

Gλ = {Gλ
1 , . . . , G

λ
K}, −∞ < λ < +∞

from the family of hierarchical clusters:

(i) Gλ = {{o1}, . . . , {oN}}, λ < mN .

(ii) Gλ = {G1, . . . , Gi}, mi+1 ≤ λ < mi, for i = 2, . . . , N − 1.
(iii) Gλ = {X}, λ ≥ m2.
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In short, Gλ is the set of clusters when we cut the dendrogram at the level λ.
The single linkage can be taken as the standard among various methods of

agglomerative clustering, as several researchers suggested [1,2,3,4]. A cluster at
the level λ by the single linkage is denoted by

Gλ
SL = {Gλ

SL, . . . , G
′′λ

SL}.

We next define a refinement between two methods of clustering.

Definition 1. Let A and B be two methods of agglomerative clustering for which
(7) hold. Clusters at the level λ by A and B are respectively denoted by

Gλ
A = {Gλ

A, . . . , G
′′λ

A}.

and
Gλ

B = {Gλ
B, . . . , G

′′λ
B}.

We say clusters of B are refinements of those of A if and only if

∀Gλ
A ∈ Gλ

A, ∃G′λ
B ∈ Gλ

B such that G′λ
B ⊆ Gλ

A (8)

for all −∞ < λ < +∞. If this condition (8) holds, we write GB ! GA, or more
simply B ! A.

We now have the following.

Proposition 1. ([3,4]). Let G be an arbitrarily given partition and A be a
method of agglomerative clustering, or in other words, a formula to calculate
d(Gr, G

′′) in AHC3.
A sufficient condition for A ! SL is

dA(G ∪G′, G′′) ≥ min{dA(G,G′′), dA(G′, G′′)} (9)

for all G,G′, G′′ ∈ G.

The proof is shown in [3,4] and is omitted here. It should however be noticed
that the important point in Proposition 1 is that G need not be a set of clusters
actually generated from a given data.

We moreover have the second proposition of which the proof is immediate
from Proposition 1 and omitted.

Proposition 2. Let G be an arbitrarily given partition and A be a method of
agglomerative clustering, or in other words, a formula to calculate d(Gr, G

′′) in
AHC3. A sufficient condition for A ! SL is

dA(G,G′) ≥ dSL(G,G′′) (10)

for all G,G′ ∈ G.

We have the next proposition from Propositions 1 and 2.
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Proposition 3.

AL ! SL, (11)
CL ! SL. (12)

The proof is easy by noting the updating formulas for CL and AL satisfy (9).

We proceed to see two more refinement properties that hold for SL.

Proposition 4. Assume that two dissimilarity measures d(1) and d(2) are given
for set X that satisfies

d(1)(o, o′) ≤ d(2)(o, o′). (13)

This property implies

d
(1)
method(G,G

′) ≤ d(2)method(G,G
′). (14)

Let G(i)
method be a cluster using d(i)method (i = 1, 2). We then have

G(2)
SL ! G

(1)
SL.

Proof. It is immediate to see that (13) implies (14) and the proof for this part
is omitted.

Let us next suppose that λ is the first level at which the refinement property is
broken, i.e., we find G(1), G′(1), G̃(2), G̃′(2) such that G̃(2) ⊆ G(1), G̃′(2) ⊆ G′(1);
G̃(2) and G̃′(2) are connected while G(1) and G′(1) not connected. Then, there
are ō ∈ G̃(2), ō′ ∈ G̃′(2) such that

d(2)(G̃(2), G̃′(2)) = λ = min
o∈G̃(2),o′∈G̃′(2)

d(2)(o, o′) = d(2)(ō, ō′).

Since d(1)(ō, ō′) ≤ d(2)(ō, ō′) and ō ∈ G̃(1), ō′ ∈ G̃′(1), this means that G(1) and
G′(1) are already merged at λ, which contradicts the assumption. ��
We now consider third problem to handle clustering of a subset of X . Let X ′

be a proper subset of X (X ′ ⊂ X) and clusters formed for X ′ and X using a
method are respectively denoted by Gmethod[X ′] and Gmethod[X ]. We have

Proposition 5.
GSL[X ′] ! GSL[X ].

Proof. Let us suppose that λ is the first level at which the refinement property
is broken, i.e., we find Ḡ[X ′], Ḡ′[X ′], G[X ], G′[X ] such that Ḡ[X ′] ⊆ G[X ],
Ḡ′[X ′] ⊆ G′[X ]; Ḡ[X ′] and Ḡ′[X ′] are connected while G[X ] and G′[X ] not
connected. Then, there are ō ∈ Ḡ[X ′], ō′ ∈ Ḡ′[X ′] such that d(o, o′) = λ.

Since o ∈ G[X ], o′ ∈ G′[X ], this means that G[X ] and G′[X ] are already
merged at λ, which contradicts the assumption. ��
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4 Counterexamples for Refinements

Propositions 3 – 5 show refinement properties for the single linkage, but Propo-
sition 3 refers also to the complete linkage and average linkage.

We hence have a problem: are similar results valid for the average linkage and
the complete linkage? More specifically, we consider the following questions.

1. Does AL ! CL hold?
2. Does G(2)

method ! G
(1)
method hold when method refers to AL or CL?

3. Does Gmethod[X ′] ! Gmethod[X ] hold when method refers to AL or CL?

In the following we answer these questions negatively, i.e., we have counterex-
amples.

Example 1. Seven objects {1, 2, . . . , 7} in the left side of Figure 1 are considered
in which the objects are represented by the numbers in parentheses. The numbers
without parentheses are measures of dissimilarity. The lines show the relation
with the values of dissimilarity but there is no difference of contents between a
solid line and a dotted line, in other words, the two types of lines are merely for
the ease of illustration. The dotted ovals show that the values of dissimilarity
(indicated by the arrows) are the same for the lines inside the ovals. The value
of 0.99 is for the three relations inside each circles of solid curves. The values of
dissimilarity are as follows. We assume d(i, i) = 0 and d(i, j) = d(j, i) as usual.

d(i, j) = 0.99, i, j = 1, 2, 3;
d(k, ) = 0.99, k,  = 4, 5, 6;
d(i, k) = 1.1, i = 2, 3, k = 4, 5, 6;
d(j, ) = 1.1, j = 1, 2, 3,  = 5, 6;
d(1, 4) = 2.0;
d(i, 7) = 1.9, i = 1, 2, 3;
d(k, 7) = 2.3, k = 4, 5, 6.

The two circles of the solid curves show two clusters named G1 and G2. Notice
that they are first formed by both AL and CL applied to this example.

We show that CL!AL does not hold for this example. By applying AHC, we
have dendrograms by AL and CL in the right side of Figure 1, where dendrogram
by AL is shown by the solid lines and that by CL is by broken lines. For G1 and
G2, the both methods generate the same clusters shown by the solid lines, and
hence we have no confusion even when the solid and broken lines meet.

Now, let us take 1.9 ≤ λ < 2.1. We then have clusters {1, 2, 3, 4, 5, 6}, {7} by
AL, while CL has {1, 2, 3, 7}, {4, 5, 6}. Thus clusters by CL is not the refinement
of those by AL.

Example 2. Assume that four objects a, b, c, d have two attributes A1, A2
and the objects are represented by pairs a = (a1, a2), b = (b1.b2), c = (c1, c2),
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(1)

(7)

(3)

(2)

(4)

(6)

(5)

0.99 0.99

1.1

2.0

1.9 2.3

G1 G2

(1) (2) (3) (7)(6)(5)(4)

0.99
1.2

1.9
2.1
2.3

AL(solid line)

CL(broken line)

Fig. 1. A counterexample which shows CL 	 AL does not hold

and d = (d1, d2). Dissimilarity measures dA1 and dA2 are given for each
attribute:

dA1(a1, b1) = 1, dA1(a1, c1) = 2 + ε, dA1(a1, d1) = 3 + ε,
dA1(b1, c1) = 1 + ε, dA1(b1, d1) = 2 + ε, dA1(c1, d1) = 1,
dA2(a2, b2) = δ, dA2(a2, c2) = 2δ, dA2(a2, d2) = 2δ + L,
dA2(b2, c2) = δ, dA2(b2, d2) = δ + L, dA2(c2, d2) = L .

where ε and δ are small positive numbers, while L is a large positive number.
We then assume d(1)(x, y) = dA1(x, y) and d(2)(x, y) = dA1(x, y) + dA2(x, y).

Let us observe the result from CL. Using d(1), CL first produces clusters
G = {a, b} and G′ = {c, d} at λ = 1. G and G′ are merged at λ = 3 + ε. When
d(2) is used, CL first produces G = {a, b} at λ = 1 + δ. Noting L is large, we see
that G and {c} are merged at λ = 2+ 2δ+ ε. If δ is sufficiently small, G(2)

CL !G
(1)
CL

does not hold.
Let us consider AL. Using d(1), CL first produces clusters G = {a, b} and

G′ = {c, d} at λ = 1. G and G′ are then merged at λ = 1
3 (5 + 2ε). When d(2) is

used, CL first produces G = {a, b} at λ = 1 + δ. Then G and {c} are merged at
λ = 1

3 (4 + 4δ + 2ε). If δ is sufficiently small, G(2)
AL ! G

(1)
AL does not hold.

Example 3. We have a very simple counterexample. Consider three points X =
{a, b, c} on the line in the upper part of Figure 2, where we assume the dissim-
ilarity is given by the segment length between two points on the line. Suppose
a is removed from X : we have X ′ = {b, c}. In the lower part we show four den-
drograms: In the left side two dendrograms by CL are superimposed. Solid lines
show a dendrogram for X , while broken lines are for X ′. In the right side we
show two dendrograms by AL, one for X using solid lines and another for X ′

using broken lines.
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a b c

a b c a b c

Fig. 2. Three points on a line are shown in the upper part and dendrograms by CL on
the left side and those by AL on the right side are shown in the lower part. Solid lines
show dendrograms for X = {a, b, c}, while broken lines show those for X ′ = {b, c}.

These two dendrograms imply neither GCL[X ′]!GCL[X ] nor GAL[X ′]!GAL[X ]
holds.

5 Conclusion

We have discussed the concept of refinement originally proposed by the author [3]
and have proved that three refinement properties hold for the single linkage, while
the counterexamples have shown that they do not hold between the complete
linkage and average linkage.

Note that Propositions 4 and 5 are related to the selection of columns and
rows in clustering of information systems [6]. The present methods can also be
extended to the selection of columns and rows in a generalized agglomerative
clustering [5]. These problems thus should be considered as a future study.

It is well-known that the single linkage, complete linkage, and average linkage
can be applied to an arbitrary dissimilarity measures, while another well-known
methods of the centroid method and the Ward method can only be applied to
the squared Euclidean distance. Another theoretical problem is whether or not
analogous properties of refinement holds for the centroid method and the Ward
method, or a counterexample as above exists.

Although many researchers still consider that studies of algorithms in agglom-
erative clustering have finished many years ago, there are rooms for further theo-
retical studies, as this paper shows a glimpse of a future theory of agglomerative
hierarchical clustering, and such a theoretical consideration will give a deeper
insight to agglomerative algorithms. New theoretical results by researchers are
thus expected.
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Abstract. In this paper, some semi-supervised clustering methods are
proposed with two types of pair constraints: two data have to be to-
gether in the same cluster, and two data have to be in different clusters,
which are classified into two types: one is based on the standard fuzzy
c-means algorithm and the other is on the entropy regularized one. First,
the standard fuzzy c-means and the entropy regularized one are intro-
duced. Second, a pairwise constrained semi-supervised fuzzy c means are
introduced, which is derived from pairwise constrained competitive ag-
glomeration. Third, some new optimization problem are proposed, which
are derived from adding new loss function of memberships to the orig-
inal optimization problem, respectively. Last, an iterative algorithm is
proposed by solving the optimization problem.

Keywords: Pairwise Constraints, Semi-Supervised Clustering, Fuzzy
c-Means.

1 Introduction

Fuzzy c-means (FCM) [1] is one of the well-known fuzzy clusterings and many
FCM variants have been proposed after FCM. In these variants, FCM algorithm
based on the concept of regularization by entropy has been proposed by one of
the authors [2]. This algorithm is called entropy regularized FCM (eFCM) and
is discussed not only for its usefulness but also for its mathematical relations
with other techniques.

In real case of clustering, there is not a supply of only unlabeled data but also
labeled data. In semi-supervised clustering, some labeled data are used along
with the unlabeled data to obtain a better clustering, such as quickly conver-
gence speed and higher accuracy. Semi-supervised fuzzy c-means algorithm by
Pedrycz [3] is the representative of semi-supervised fuzzy clustering methods and
many similar methods have also proposed [4], [5], [6].

On the other hand, COP-K-Means [7] is a semi-supervised variant of K-Means,
where there are two types of constraints, must-link (two data have to be together
in the same cluster) and cannot-link (two data have to be in different clusters),
which are used in the clustering process to generate a partition that satisfies all

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 268–281, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the given constraints. By making the use of must-link and cannot-link, Competi-
tive Agglomeration (CA) [8], which is one of fuzzy clustering algorithms based on
FCM, has been extended into Pairwise Constrained Competitive Agglomeration
(PCCA) [9]. But PCCA consider the case of the fuzzifier parameter m = 2. Here
we consider the fuzzy clustering method where the feature progressively reduc-
ing the number of clusters is eliminated from PCCA, and we call this method
Pairwise Constrained standard Fuzzy c-Means (PCsFCM).

In this paper, we propose new some semi-supervised fuzzy c-means algorithms
with must-link and cannot-link. Some of them are based on the standard FCM
(sFCM) and are no longer limited to fuzzifier parameter m = 2, by introducing
new optimization problems. One of them is based on eFCM using the similar
optimization problem to PCsFCM.

The contents of this paper are the followings. In the second section, we define
some notations and introduce sFCM, eFCM and PCsFCM, which is derived from
PCCA proposed by Grira, Crucianu and Boujemaa [9]. In the third section, we
discuss the loss function describing must-link and cannot-link and propose new
some types of PCsFCM. In the last section, we conclude this paper.

2 Preliminaries

In this section, we define some notations and introduce two types of fuzzy c-
means(FCM), which are the standard type (sFCM) and the entropy regularized
type (eFCM), and also introduce a semi-supervised standard fuzzy c-means,
which is derived from the pairwise constrained competitive agglomeration pro-
posed by Grira, Crucianu and Boujemaa [9].

In the first subsection, we define some notations which are the data for clus-
tering, the membership by which the each data belongs to the each cluster, and
the cluster centers. In the second subsection, we introduce sFCM and eFCM. In
the third subsection, we introduce a semi-supervised sFCM.

2.1 Notations

In this subsection, we define some notations which are the data for clustering,
the membership by which the each data belongs to the each cluster, and the
cluster centers.

The data set x = {xi | xi ∈ Rp, i ∈ {1, . . . , N}} is given. The membership
by which xi belongs to the j-th cluster is denoted by ui,j (i ∈ {1, · · · , N}, j ∈
{1, · · · , C}) and the set of ui,j is denoted by u ∈ RN×C called the partition
matrix. The constraint for u is

C∑
j=1

ui,j = 1 (0 ≤ ui,j ≤ 1). (1)

The cluster center set is denoted by v = {vj | vj ∈ Rp, j ∈ {1, . . . , C}}.
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2.2 FCM

In this subsection, we introduce two types of FCM, which are the standard FCM
(sFCM) [1] and the entropy regularized FCM (eFCM) [2].

sFCM is the algorithm obtained by solving the following optimization
problem:

minimize
u,v

JsFCM(u, v) subject to
C∑

j=1

ui,j = 1, (2)

where

JsFCM(u, v) =
N∑

i=1

C∑
j=1

um
i,j‖xi − vj‖2. (3)

The parameter m is the fuzzifier satisfying m > 1. In this paper, ‖ · ‖2 stands
for square of Euclidean norm:

‖xi − vj‖2 =
p∑

k=1

(xi − vj)2. (4)

The optimal solutions u and v are obtained by the following algorithm.

Algorithm 1 (sFCM)

Step 1. Give the number of cluster C and the value m. Set the initial cluster
centers v.

Step 2. Calculate u such that

ui,j =

(
C∑

k=1

(
di,j

di,k

) 1
m−1

)−1

, where di,j = ‖xi − vj‖2. (5)

Step 3. Calculate v such that

vj =

(
N∑

i=1

um
i,jxi

)
/

(
N∑

i=1

um
i,j .

)
(6)

Step 4. Check the stopping criterion for (u, v). If the criterion is not satisfied,
go back to Step 2.

eFCM is the algorithm obtained by solving the following optimization
problem:

minimize
u,v

JeFCM(u, v) subject to
C∑

j=1

ui,j = 1, (7)

where

JeFCM(u, v) =
N∑

i=1

C∑
j=1

ui,j‖xi − vj‖2 + λ−1
N∑

i=1

C∑
j=1

ui,j log(ui,j). (8)
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The second term of the right-hand side in Eq. (8) is for regularization by entropy.
The parameter λ is the fuzzifier satisfying λ > 0. The optimal solutions u and v
are obtained by the following algorithm.

Algorithm 2 (eFCM)

Step 1. Give the number of cluster C and the value λ. Set the initial cluster
centers v.

Step 2. Calculate u such that

ui,j = exp(−λdi,j)/
C∑

k=1

exp(−λdi,k), where di,j = ‖xi − vj‖2. (9)

Step 3. Calculate v such that

vj =

(
N∑

i=1

ui,jxi

)
/

(
N∑

i=1

ui,j

)
. (10)

Step 4. Check the stopping criterion for (u, v). If the criterion is not satisfied,
go back to Step 2.

2.3 Pairwise Constrained sFCM with m = 2

In this subsection, we introduce a pairwise constrained standard fuzzy c-means
(PCsFCM0), which is derived from the pairwise constrained competitive agglom-
eration proposed by Grira, Crucianu and Boujemaa [9] by omitting the term for
progressively reducing the number of clusters from the original objective func-
tion. 0 of PCsFCM0 is just the number which means that this method is the
basis of our proposed methods. We will call our proposed methods PCsFCM1–
PCsFCM3 and PCeFCM.

Let M be the set of must-link pairs such that (xi, xĩ) ∈ M implies xi and
xĩ should be assigned to the same cluster, and C be the set of cannot-link pairs
such that (xi, xĩ) ∈ C implies xi and xĩ should be assigned to different clusters.

PCsFCM0 is the algorithm obtained by solving the following optimization
problem:

minimize
u,v

JPCsFCM0(u, v) subject to
C∑

j=1

ui,j = 1, (11)

where

JPCsFCM2(u, v) =
N∑

i=1

C∑
j=1

u2
i,jdi,j +

N∑
i=1

N∑
ĩ=1

ĩ�=i

αi,̃i

C∑
j=1

C∑
j̃=1

j̃ �=j

ui,juĩ,j̃

+
N∑

i=1

N∑
ĩ=1

ĩ �=i

βi,̃i

C∑
j=1

ui,juĩ,j (12)
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The second term of Eq. (12) is composed of the cost of not respecting the pairwise
must-link constraints. The third term of Eq. (12) is composed of the cost of not
respecting the pairwise cannot-link constraints. The penalty corresponding to
the presence of two such points in different clusters or in the same clusters is
weighted by their membership values. These second and the third terms are
weighted by αi,̃i and βi,̃i, respectively, which are a way to specify the relative
importance of the supervision. If (xi, xĩ) �∈ M, then αi,̃i = 0, and if (xi, xĩ) �∈ C,
then βi,̃i = 0. The optimal solutions u and v are obtained by the following
algorithm.

Algorithm 3

Step 1. Give the number of cluster C and the parameters αi,̃i and βi,̃i. Set the
initial cluster centers v.

Step 2. Calculate u such that

ui,j =

1 +
C∑

k=1

N∑
ĩ=1

ĩ�=i

αi,̃i

C∑
j̃=1

j̃ �=k

uĩ,j̃ +
N∑

ĩ=1

ĩ �=i

βi,̃iuĩ,k

2di,k

C∑
k=1

di,j

di,k

−

N∑
ĩ=1

ĩ�=i

αi,̃i

C∑
j̃=1

j̃ �=j

uĩ,j̃ +
N∑

ĩ=1

ĩ �=i

βi,̃iuĩ,j

2di,j

(13)
where

di,j = ‖xi − vj‖2. (14)
Step 3. Calculate v as Eq.(6).
Step 4. Check the stopping criterion for (u, v). If the criterion is not satisfied,

go back to Step 2.

3 Some Pairwise Constrained Semi-Supervised Fuzzy
c-Means Clustering Algorithms

In this section, we propose some pairwise constrained semi-supervised fuzzy c-
means clustering algorithms, which are classified into two types: one is based
on the standard fuzzy c means (sFCM) and the other is based on the entropy
regularized one (eFCM). First, we propose some loss functions of not respecting
the pairwise must-link constraints and the cost of not respecting the pairwise
cannot-link constraints, where one is generalized from PCsFCM0. Second, we
propose some pairwise constrained semi-supervised fuzzy c-means algorithms by
solving the optimization problem by adding each loss function to the original
optimization problem of sFCM. Third, we do based on eFCM.
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3.1 Loss Functions for Pairwise Constraints

In this subsection, we propose two loss functions of not respecting the pairwise
must-link constraints and the cost of not respecting the pairwise cannot-link
constraints.

Grira, Crucianu and Boujemaa [9] proposed the following loss function

N∑
i=1

N∑
ĩ=1

ĩ�=i

αi,̃i

C∑
j=1

C∑
j̃=j+1

ui,juĩ,j̃ +
N∑

i=1

N∑
ĩ=1

ĩ �=i

βi,̃i

C∑
j=1

ui,juĩ,j . (15)

Loss functions for must-link must be less if ui,j is close to uĩ,j and should be
convex, while loss functions for cannot-link must be less if ui,j is far from uĩ,j

and should be convex. Here, we propose the following two loss functions

P1,ν(u) =
N∑

i=1

N∑
ĩ=1

ĩ �=i

αi,̃i

C∑
j=1

C∑
j̃=j+1

uν
i,ju

ν
ĩ,j̃

+
N∑

i=1

N∑
ĩ=1

ĩ�=i

βi,̃i

C∑
j=1

uν
i,ju

ν
ĩ,j

(16)

P2,ν(u) =
N∑

i=1

N∑
ĩ=1

ĩ �=i

αi,̃i

C∑
j=1

|ui,j − uĩ,j |ν +
N∑

i=1

N∑
ĩ=1

ĩ �=i

βi,̃i

C∑
j=1

C∑
j̃=1

j̃ �=j

|ui,j − uĩ,j̃ |ν (17)

P1,1(u) coincideswith one proposedbyGrira,CrucianuandBoujemaa [9].Allparts
for must-link in P1,ν and P2,ν are less if ui,j is close to uĩ,j and are convex, while all
parts for cannot-link in P1,ν and P2,ν are less if ui,j is far from uĩ,j and are convex.
While P1,ν is derived from the idea of correlation between memberships of other
data, P2,ν is from distance between memberships of other data. Correlation is one
of similarity and distance is one of dissimilarity, so the forms of summations for j,
j̃ in P1,ν and P2,ν are used in the opposite way from each other.

3.2 Some Pair Constrained Semi-Supervised sFCM

In this subsection, we propose three pairwise constrained semi-supervised stan-
dard fuzzy c-means clustering algorithms, we call PCsFCM1–PCsFCM3, based
on the standard fuzzy c means (sFCM). The first one is obtained by solving the
optimization problem by the loss function P1,1 to the original optimization prob-
lem of sFCM, JsFCM, i.e. Eq.(3). The second one is by solving the optimization
problem whose objective function derived from adding the loss function P1,m to
JsFCM. The last one is for the objective function by adding P2,2 to JsFCM with
the fuzzifier parameter m = 2.

Case of Objective Function JsFCM + P1,1. We consider the following opti-
mization problem

minimize
u,v

(u, v)JPCsFCM1 subject to
C∑

j=1

ui,j = 1, (18)
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where JPCsFCM1 = JsFCM + P1,1. The Lagrange function LPCsFCM1 is described
as LPCsFCM1 = LsFCM +P1,1. Karush-Kuhn-Tucker conditions are described as

∂LPCsFCM1

∂ui,j
=0, (19)

∂LPCsFCM1

∂γi
=0, (20)

∂LPCsFCM1

∂vj
=0. (21)

KKT condition (21) implies that the optimal solution of vj is the same as Eq.(6).
KKT condition (19) implies that

mum−1
i,j di,j + γi +

N∑
ĩ=1

ĩ�=i

αi,̃i

C∑
j̃=1

j̃ �=j

uĩ,j̃ +
N∑

ĩ=1

ĩ �=i

βi,̃iuĩ,j = 0, (22)

from which we have

ui,j =

⎛⎜⎝−
γi +

∑N
ĩ=1

ĩ �=i

αi,̃i

∑C
j̃=1

j̃ �=j

uĩ,j̃ +
∑N

ĩ=1

ĩ�=i

βi,̃iuĩ,j

mdi,j

⎞⎟⎠
1/(m−1)

. (23)

Considering this equation with KKT condition (20), γi must satisfy that

C∑
k=1

⎛⎜⎝−
γi +

∑N
ĩ=1

ĩ�=i

αi,̃i

∑C
j̃=1

j̃ �=k

uĩ,j̃ +
∑N

ĩ=1

ĩ �=i

βi,̃iuĩ,k

mdi,k

⎞⎟⎠
1/(m−1)

= 1 (24)

Because it is difficult to solve this equation analytically, we must obtain ui,j using
some numerical method. But we can use relatively simple numerical method, e.g.
bisection method, since the equation is monotone for γi.

Case of Objective Function JsFCM + P1,m. We consider the following op-
timization problem

minimize
u,v

(u, v)JPCsFCM2 subject to
C∑

j=1

ui,j = 1, (25)

where JPCsFCM2 = JsFCM +P1,m. The Lagrange function LPCsFCM2 is described
as LPCsFCM2 = LsFCM +P1,m. Karush-Kuhn-Tucker conditions are described as

∂LPCsFCM2

∂ui,j
=0, (26)

∂LPCsFCM2

∂γi
=0, (27)

∂LPCsFCM2

∂vj
=0. (28)
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KKT condition (28) implies that the optimal solution of vj is the same as Eq.(6).
KKT condition (26) implies that

mum−1
i,j di,j + γi +m

N∑
ĩ=1

ĩ�=i

αi,̃i

C∑
j̃=1

j̃ �=j

um−1
i,j um

ĩ,j̃
+m

N∑
ĩ=1

ĩ �=i

βi,̃iu
m−1
i,j um

ĩ,j
= 0, (29)

from which we have

ui,j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
− γi

m(di,j +
N∑

ĩ=1

ĩ �=i

αi,̃i

C∑
j̃=1

j̃ �=j

um
ĩ,j̃

+
N∑

ĩ=1

ĩ�=i

βi,̃iu
m
ĩ,j

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/(m−1)

. (30)

Considering this equation with KKT condition (27), γi must satisfy that

(
−γi

m

)1/(m−1) C∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

di,k +
N∑

ĩ=1

ĩ �=i

αi,̃i

C∑
j̃=1

j̃ �=k

um
ĩ,j̃

+
N∑

ĩ=1

ĩ�=i

βi,̃iu
m
ĩ,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/(m−1)

= 1. (31)

This equation is re-described as

(
−γi

m

)1/(m−1)
= 1/

C∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

di,k +
N∑

ĩ=1

ĩ �=i

αi,̃i

C∑
j̃=1

j̃ �=k

um
ĩ,j̃

+
N∑

ĩ=1

ĩ�=i

βi,̃iu
m
ĩ,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/(m−1)

, (32)

hence we have the optimal solution of ui,j as

ui,j = 1/
C∑

k=1

di,j +
∑N

ĩ=1

ĩ �=i

αi,̃i

∑C
j̃=1

j̃ �=j

um
ĩ,j̃

+
∑N

ĩ=1

ĩ �=i

βi,̃iu
m
ĩ,j

di,k +
∑N

ĩ=1

ĩ �=i

αi,̃i

∑C
j̃=1

j̃ �=k

um
ĩ,j̃

+
∑N

ĩ=1

ĩ �=i

βi,̃iu
m
ĩ,k

. (33)

Remark that this equation is completely solved by ui,j because the subscripts of
both sides are different with each other.
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Case of Objective Function JsFCM:m=2 + P2,2. We consider the following
optimization problem

minimize
u,v

(u, v)JPCsFCM3 subject to
C∑

j=1

ui,j = 1, (34)

where JPCsFCM3 = JsFCM:m=2 + P2,2. The Lagrange function LPCsFCM3 is de-
scribed as LPCsFCM3 = LsFCM:m=2 + P2,2. Karush-Kuhn-Tucker conditions are
described as

∂LPCsFCM3

∂ui,j
=0, (35)

∂LPCsFCM3

∂γi
=0, (36)

∂LPCsFCM3

∂vj
=0. (37)

KKT condition (37) implies that the optimal solution of vj is the same as Eq.(6).
KKT condition (35) implies that

2ui,jdi,j + γi + 2
N∑

ĩ=1

ĩ�=i

αi,̃i(ui,j − uĩ,j) + 2
N∑

ĩ=1

ĩ�=i

βi,̃i

C∑
j̃=1

j̃ �=j

(ui,j − uĩ,j̃) = 0, (38)

from which we have

ui,j =
−γi

2di,j + 2
N∑

ĩ=1

ĩ �=i

αi,̃i + 2C
N∑

ĩ=1

ĩ �=i

βi,̃i

+

N∑
ĩ=1

ĩ �=i

αi,̃iuĩ,j +
N∑

ĩ=1

ĩ�=i

βi,̃i

C∑
j̃=1

j̃ �=j

uĩ,j̃

di,j +
N∑

ĩ=1

ĩ �=i

αi,̃i + C
N∑

ĩ=1

ĩ�=i

βi,̃i

. (39)

Considering this equation with KKT condition (36), γi must satisfy that

−γi

C∑
k=1

1

2di,k + 2
N∑

ĩ=1

ĩ �=i

αi,̃i + 2C
N∑

ĩ=1

ĩ �=i

βi,̃i

+
C∑

k=1

N∑
ĩ=1

ĩ�=i

αi,̃iuĩ,k +
N∑

ĩ=1

ĩ �=i

βi,̃i

C∑
j̃=1

j̃ �=k

uĩ,j̃

di,k +
N∑

ĩ=1

ĩ�=i

αi,̃i + C
N∑

ĩ=1

ĩ �=i

βi,̃i

= 1.

(40)
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This equation is re-described as

−γi =

1 −
C∑

k=1

N∑
ĩ=1

ĩ �=i

αi,̃iuĩ,k +
N∑

ĩ=1

ĩ�=i

βi,̃i

C∑
j̃=1

j̃ �=k

uĩ,j̃

di,k +
N∑

ĩ=1

ĩ �=i

αi,̃i + C
N∑

ĩ=1

ĩ�=i

βi,̃i

C∑
k=1

1

2di,k + 2
N∑

ĩ=1

ĩ�=i

αi,̃i + 2C
N∑

ĩ=1

ĩ �=i

βi,̃i

, (41)

hence we have the optimal solution of ui,j as

ui,j =

1 −
C∑

k=1

N∑
ĩ=1

ĩ�=i

αi,̃iuĩ,k +
N∑

ĩ=1

ĩ�=i

βi,̃i

C∑
j̃=1

j̃ �=k

uĩ,k

di,k +
N∑

ĩ=1

ĩ �=i

αi,̃i + C
N∑

ĩ=1

ĩ �=i

βi,̃i

C∑
k=1

di,j +
N∑

ĩ=1

ĩ�=i

αi,̃i + C
N∑

ĩ=1

ĩ�=i

βi,̃i

di,k +
N∑

ĩ=1

ĩ�=i

αi,̃i + C
N∑

ĩ=1

ĩ�=i

βi,̃i

+

N∑
ĩ=1

ĩ�=i

αi,̃iuĩ,j +
N∑

ĩ=1

ĩ�=i

βi,̃i

C∑
j̃=1

j̃ �=j

uĩ,j

di,j +
N∑

ĩ=1

ĩ �=i

αi,̃i + C
N∑

ĩ=1

ĩ �=i

βi,̃i

.

(42)
Remark that this equation is completely solved by ui,j because the subscripts of
both sides are different with each other.

Algorithms. From the above discussion, we propose the following iterative
algorithm:

Algorithm 4 (PCsFCM1, PCsFCM2, PCsFCM3)

Step 1. Give the fuzzifier parameter m for PCsFCM1 and PCsFCM2. Give
the number of cluster C, and the weight parameter αi,̃i, βi,̃i. Set the initial
cluster centers v and the initial membership u.

Step 2. Calculate u as Eq. (23) for PCsFCM1, Eq. (33) for PCsFCM2 and
Eq. (42) for PCsFCM3.

Step 3 Calculate v as Eq. (6).
Step 4 Check the stopping criterion for (u, v). If the criterion is not satisfied,

go back to Step 2.
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3.3 Pair Constrained Semi-Supervised eFCM

In this subsection, we propose a pairwise constrained semi-supervised entropy
regularized fuzzy c-means clustering algorithms, we call PCeFCM, based on the
entropy regularized fuzzy c means (eFCM). This is obtained by solving the opti-
mization problem by the loss function P1,1 to the original optimization problem
of eFCM, JeFCM, i.e. Eq. (8). We consider the following optimization problem

minimize
u,v

(u, v)JPCeFCM subject to
C∑

j=1

ui,j = 1, (43)

where JPCeFCM = JeFCM + P1,1. The Lagrange function LPCeFCM is described
as LPCeFCM = LeFCM + P1,1. Karush-Kuhn-Tucker conditions are described as

∂LPCeFCM

∂ui,j
=0, (44)

∂LPCeFCM

∂γi
=0, (45)

∂LPCeFCM

∂vj
=0. (46)

KKT condition (46) implies that the optimal solution of vj is the same as Eq.(10).
KKT condition (44) implies that

di,j + λ−1(log(ui,j) + 1) + γi +
N∑

ĩ=1

ĩ �=i

αi,̃i

C∑
j̃=1

j̃ �=j

uĩ,j̃ +
N∑

ĩ=1

ĩ�=i

βi,̃iuĩ,j = 0, (47)

from which we have

ui,j = exp

⎛⎜⎜⎝−λγi − 1 − λdi,j − λ
N∑

ĩ=1

ĩ�=i

αi,̃i

C∑
j̃=1

j̃ �=j

uĩ,j̃ − λ
N∑

ĩ=1

ĩ�=i

βi,̃iuĩ,j

⎞⎟⎟⎠ . (48)

Considering this equation with KKT condition (36), γi must satisfy that

exp(−λγi − 1) = 1/
C∑

k=1

exp

⎛⎜⎜⎝−λdi,k − λ
N∑

ĩ=1

ĩ�=i

αi,̃i

C∑
j̃=1

j̃ �=k

uĩ,j̃ − λ
N∑

ĩ=1

ĩ�=i

βi,̃iuĩ,k

⎞⎟⎟⎠ ,
(49)

from which we have the optimal solution of ui,j as

ui,j =

exp

⎛⎜⎜⎝−λdi,j − λ
N∑

ĩ=1

ĩ �=i

αi,̃i

C∑
j̃=1

j̃ �=j

uĩ,j̃ − λ
N∑

ĩ=1

ĩ �=i

βi,̃iuĩ,j

⎞⎟⎟⎠
C∑

k=1

exp

⎛⎜⎜⎝−λdi,k − λ
N∑

ĩ=1

ĩ�=i

αi,̃i

C∑
j̃=1

j̃ �=k

uĩ,j̃ − λ
N∑

ĩ=1

ĩ �=i

βi,̃iuĩ,k

⎞⎟⎟⎠
(50)
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Remark that this equation is solved by ui,j completely because the subscripts of
both sides are different with each other.

From the above discussion, we propose the following iterative algorithm:

Algorithm 5 (PCeFCM)

Step 1. Give the number of cluster C, the fuzzifier parameter λ and the weight
parameter αi,̃i, βi,̃i. Set the initial cluster centers v and the initial member-
ship u.

Step 2. Calculate u as Eq. (50).
Step 3. Calculate v as Eq. (10).
Step 4. Check the stopping criterion for (u, v). If the criterion is not satisfied,

go back to Step 2.

4 Constructing Dissimilarity Matrix, Kernel Gram
Matrix and Kernel Function for Must-Link

In this section, we construct dissimilarity matrix d∗ ∈ Rn×n and kernel function
K∗ : Rp ×Rp → R affected by must-link — two data have to be together in the
same cluster — in order to apply to fuzzy relational clustering method and to
kernel fuzzy clustering method, respectively.

The easiest idea of constructing dissimilarity matrix d∗ affected by must-link
that xi and xĩ have to be together in the same cluster, is replacing the corre-
sponding element di,̃i by a certain small positive value. With such the dissimi-
larity matrix d∗, fuzzy relational clustering algorithm will produce a result.

If xi and xĩ have to be together in the same cluster, other data close to xi and
xĩ ( xi and other data close to xĩ ) also should be together in the same cluster.
Based on this idea, we construct dissimilarity matrix as below. First, make the
graph whose i-th node is correspond to xi and whose edge connecting i-th and
ĩ-th nodes has the value di,̃i. Second, replace the value of (i, ĩ)-edge by a certain
small nonnegative value if (i, ĩ) is an element of must-link. Third, replace the
value of (i, ĩ)-edge by the minimum adding each edge in (i, ĩ)-path, which can
be achieved by dynamic programming. Last, adopt the value of (i, ĩ)-edge as
d∗

i,̃i
. With such the dissimilarity matrix d∗, fuzzy relational clustering algorithm

produce a result affected not only by must-link but also by other data close
to the data in must-link. From the dissimilarity matrix d∗, we can construct
kernel gram matrix and apply to kernel fuzzy clustering methods. Kernel gram
matrix must be positive semi-definite. Another matrix d∗∗ by diagonal shift or
eigen-value shift of d∗ can be kernel gram matrix.

In order to construct fuzzy classification function, we need not only kernel
gram matrix but also kernel function affected by must-link. Such kernel function
based on Gaussian kernel can be obtained as below. First, insert a simple Gaus-
sian kernel K(x, y) = exp(−σ‖x − y‖2) to a list of functions L and adopt the
kernel function as the maximal of L,

K(x̄, ȳ) = max
κ(x,y)∈L

κ(x̄, ȳ), (51)
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which is corresponding to original dissimilarity matrix d. Second, insert two
functions exp(−σi,̃i(‖x−xi‖2 +‖xĩ−y‖2 +d∗

i,̃i
)) and exp(−σi,̃i(‖x−xĩ‖2 +‖xi−

y‖2+d∗
i,̃i

)) to L if (xi, xĩ) is an element of must-link, and adopt the kernel function
as the maximal of L. This updated kernel function is corresponding to the second
step in the previous paragraph and remark that K(xi, xĩ) = d∗

i,̃i
. Third, with

d∗ obtained through the third step in the previous step, insert two functions
exp(−σi,̃i(‖x−xi‖2+‖xĩ−y‖2+d∗

i,̃i
)) and exp(−σi,̃i(‖x−xĩ‖2+‖xi−y‖2+d∗

i,̃i
))

to L and adopt the kernel function as the maximal of L. In order for such
function to be kernel, the original function exp(−σ‖x − y‖2) may be replaced
by a exp(−σ‖x − y‖2) with a > 1, where this replacement is corresponding to
diagonal shift of d∗

i,̃i
.

5 Conclusion

In this paper, we proposed some pair constrained semi-supervised fuzzy c-means
algorithms. These algorithms are classified into two types: the first three algo-
rithms (PCsFCM1–PCsFCM3) are based on the standard fuzzy c-means and the
other (PCeFCM) is on the entropy regularized one. Any of these algorithms is
obtained by solving the optimization problem where different loss function for
must-link and cannot-link is added to the original one. The loss function for
PCsFCM1 is the same as the one proposed by [9] but the fuzzifier parameter is
not longer limited to m = 2 but m > 1. The loss function for PCsFCM2 is gen-
eralized from [9]. PCsFCM1 and PCsFCM2 can be executed with various values
of fuzzifier parameter than [9]. The loss function for PCsFCM3 is different from
[9], by which another view of semi-supervised fuzzy clustering can be expected.
The loss function for PCeFCM is the same as [9] but the original problem on
which PCeFCM is based is not sFCM in [9] but eFCM.

As future works, we will compare the proposed methods with each other and
with the already proposed method [9] theoretically and numerically.
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Abstract. PCA-guided k-Means is a deterministic approach to k-Means
clustering, in which cluster indicators are derived in a PCA-guided man-
ner. This paper proposes a new approach to k-Means with variable se-
lection by introducing variable weighting mechanism into PCA-guided
k-Means. The relative responsibility of variables is estimated in a similar
way with FCM clustering while the membership indicator is derived from
a PCA-guided manner, in which the principal component scores are cal-
culated by considering the responsibility weights of variables. So, the vari-
ables that have meaningful information for capturing cluster structures
are emphasized in calculation of membership indicators. Numerical ex-
periments including an application to document clustering demonstrate
the characteristics of the proposed method.

1 Introduction

PCA-guided k-Means proposed by Ding and He [1] is a deterministic approach
to k-Means clustering that is based on the close relation between Principal Com-
ponent Analysis (PCA) and k-Means clustering. A relaxed cluster indicator vec-
tors representing cluster memberships are calculated by a PCA-like manner, in
which the indicator vectors are identified with the eigenvectors of a within-cluster
(inner-product) similarity matrix, i.e., a continuous (relaxed) solution of the clus-
ter membership indicators in k-Means is identified with principal components in
PCA.

This paper proposes a new approach to k-Means with variable selection by
introducing the variable weighting mechanism into PCA-guided k-Means. Huang
et al. [2] proposed an automated variable weighting approach for k-Means clus-
tering, in which the relative responsibility of variables is estimated in each it-
eration of k-Means process in a similar way with FCM clustering [3]. In this
paper, a similar variable weighting mechanism is introduced into PCA-guided
k-Means, in which variable weights are estimated in a similar way with FCM
while the membership indicator is derived in a PCA-guided manner. So, the
variables that have meaningful information for capturing cluster structures are
emphasized and principal component scores are calculated by considering the
responsibility weights of variables.

This paper includes two major contributions. First, a deterministic procedure
for variable weighting in k-Means clustering is proposed based on a PCA-guided

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 282–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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manner. Second, what the responsibility of variables in k-Means means is revealed
from the comparative study with PCA for information summarization, i.e., it is
shown that the weights for cluster structure clarification correspond to the degree
of mutual dependencies among variables in information summarization.

The remaining parts of this paper are organized as follows: Section 2 briefly
reviews the automated variable weighting technique in k-Means and the PCA-
guided k-Means procedure. Section 3 proposes a new approach for variable
weighting in PCA-guided k-Means process. In order to demonstrate the charac-
teristics of the proposed method, numerical experiments including an application
to document clustering are shown in Section 4. Section 5 presents the summary
conclusion.

2 k-Means Type Clustering: Variable Weighting and
PCA-Guided Process

Assume that we have n samples withm-dimensional observation xi, i = 1, . . . , n,
and the goal is to partition the samples into several clusters where samples
belonging to same cluster are similar while samples belonging to different clusters
are dissimilar.
k-Means [4] is a non-hierarchical prototype-based clustering method where

prototypes (centroids) are used for representing clusters and the objective func-
tion is defined as the sum of within-cluster errors:

Lkm =
K∑

k=1

∑
i∈Gk

||xi − bk||2, (1)

where K is the pre-defined number of clusters and bk is the representative pro-
totype (centroid) of cluster Gk. The k-Means process is composed of two phases:
prototype estimation and sample assignment, and the two phases are iterated
until the solution is trapped in a local minimum.

2.1 Automated Variable Weighting in k-Means Clustering

For variable selection in the k-Means clustering, Huang et al. [2] introduced the
memberships of variables that play a role for fuzzy partitioning of variables.
The variable weights measure the importance of variables in clustering process.
The modified objective function for k-Means with variable weighting
(W-k-Means) is defined as:

Lwkm =
K∑

k=1

∑
i∈Gk

m∑
j=1

wβ
j (xij − bkj)2, (2)

where wj is the additional weight (membership) for variable j and β is the
fuzzification parameter as is used in Fuzzy c-Means (FCM) clustering model [3].
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Instead of the row-sum condition in FCM, in order to estimate the relative
importance among variables, wj is estimated under the following constraint:

m∑
j=1

wj = 1. (3)

The clustering process including optimization of variable weights is composed of
three phases: prototype estimation, sample assignment and weight estimation.

The updating formula for prototypes is still given as the within-cluster mean
vector:

bkj =
1
nk

∑
i∈Gk

xij , (4)

where nk is the number of samples belonging to cluster Gk. On the other hand,
variable weights are given as:

wj =

{
m∑

�=1

(
dj

dl

) 1
β−1

}−1

, (5)

where

dj =
K∑

k=1

∑
i∈Gk

(xij − bkj)2. (6)

2.2 PCA-Guided Process for k-Means Clustering

Ding and He [1] pointed out a close relation between PCA and k-Means cluster-
ing, and proposed an analytical (deterministic) way for k-Means clustering in a
PCA-guided manner. The k-Means objective function of Eq.(1) can be re-defined
by a centroid-less formulation as follows [5]:

Lkm =
n∑

i=1

||xi||2 −
K∑

k=1

1
nk

∑
i,j∈Gk

x�
i xj , (7)

where nk is the number of samples belonging to cluster Gk. - represents the
transpose of a vector (or matrix). Here, the first term is a constant while the
second term is the sum of within-cluster (inner product) similarities.

Ding and He showed that a relaxed solution for the membership indicator in
the k-Means model is derived from the principal component scores in PCA. In
their PCA-guided k-Means procedure, a rotated membership indicator matrix
QK is estimated from the eigenvectors corresponding to the principal eigen-
values of the covariance matrix of the observed data matrix, i.e., a continuous
solution for k-Means clustering is derived from a PCA-guided manner although
the rotation matrix cannot be explicitly given.

In order to capture the cluster structure from the (continuous) solution, Ding
and He applied a cluster connectivity analysis using a visual assessment approach
based on distance sensitive ordering of samples (objects) [6] in the connectivity
matrix that is derived from the (rotated) membership indicator matrix.
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3 Variable Weighting in PCA-Guided k-Means Process

In this section, a new clustering model of PCA-guided k-Means with variable
weighting is proposed by introducing variable weights into the PCA-guided
objective function.

3.1 Introduction of Variable Weights into PCA-Guided Objective
Function

In order to introduce variable weights into the PCA-guided objective function,
the objective function of W-k-Means is re-defined in a centroid-less formulation.
Considering Eq.(4), Eq.(2) is modified as:

Lwkm =
K∑

k=1

∑
i∈Gk

m∑
j=1

wβ
j

(
xij −

1
nk

∑
�∈Gk

x�j

)2

=
n∑

i=1

m∑
j=1

wβ
j x

2
ij −

K∑
k=1

1
nk

∑
i,�∈Gk

m∑
j=1

wβ
j xijx�j

=
n∑

i=1

x�
i W

βxi −
K∑

k=1

1
nk

∑
i,�∈Gk

x�
i W

βx�, (8)

where W = diag(w1, . . . , wm).
With fixed weights wj , the solution of (hard) k-Means clustering is represented

by K non-negative indicator vectors HK = (h1, . . . ,hK),

hki =

{
1

n
1/2
k

; if sample i belongs to cluster Gk.

0 ; otherwise.

whereH�
KHK = IK and IK is theK×K unit matrix. Because of

∑K
k=1 n

1/2
k hki =

1, the indicator vectors have redundancies. In order to remove the redundancies
and derive a unique solution, Ding and He [1] introduced a K ×K orthogonal
transformation T = {tij},

QK = (q1, . . . , qK) = HKT (9)

and set the last column of T as:

tK =
(√

n1/n, . . . ,
√
nK/n

)�
. (10)

Fromthemutual orthogonalityofhk,k = 1, . . . ,K andqK = (
√

1/n, . . . ,
√

1/n)�,
we have the following relations:

Q�
K−1QK−1 = IK−1, (11)∑n

i=1 qki = 0, k = 1, . . . ,K − 1, (12)
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where QK−1 = (q1, . . . , qK−1) and qk = (qk1, . . . , qkn)�. Then, Eq.(8) can be
written as

Lwkm =
n∑

i=1

x�
i W

βxi −
1
n

e�X�W βXe − Tr(Q�
K−1X

�W βXQK−1), (13)

where X = (x1, . . . ,xn) and e is the n-dimensional vector whose elements are
all 1.

Because the k-Means problem does not distinguish the original data xi and
the centered data yi, the above objective function can be replaced with

Lwkm =
n∑

i=1

yiW
βyi − Tr(Q�

K−1Y
�W βY QK−1), (14)

where Y = (y1, . . . ,yn) and Y e = 0. The optimal solutions for QK−1 are derived
by maximizing Tr(Q�

K−1Y
�W βY QK−1), and continuous (relaxed) solutions are

the eigenvectors corresponding to the K − 1 largest eigenvalues of Y �W βY .
Next, the weights of variables are updated with the fixed membership indi-

cator QK . In order to calculate the clustering criterion for variable weights wj ,
Eq.(8) with normalized data is transformed as follows:

Lwkm =
n∑

i=1

m∑
j=1

wβ
j y

2
ij −

K∑
k=1

1
nk

∑
i,�∈Gk

m∑
j=1

wβ
j yijy�j

=
n∑

i=1

m∑
j=1

wβ
j y

2
ij −

K∑
k=1

n∑
i=1

n∑
�=1

hkihk�

m∑
j=1

wβ
j yijy�j. (15)

From HKH
�
K = QKT

�TQ�
K = QKQ

�
K , we have

∑K
k=1 hkihkj =

∑K
k=1 qkiqkj .

Then, Eq.(15) is reformulated as:

Lwkm =
n∑

i=1

m∑
j=1

wβ
j y

2
ij −

K∑
k=1

n∑
i=1

n∑
�=1

qkiqk�

m∑
j=1

wβ
j yijy�j

=
m∑

j=1

wβ
j

(
n∑

i=1

y2
ij −

K∑
k=1

n∑
i=1

n∑
�=1

qkiqk�yijy�j

)
. (16)

Then, variable weights are given as:

wj =

{
m∑

�=1

(
dj

dl

) 1
β−1

}−1

, (17)

where

dj =
n∑

i=1

y2
ij −

K∑
k=1

n∑
i=1

n∑
�=1

qkiqk�yijy�j . (18)

By the way, if we set all wj to be 1, the proposed method is reduced to the
conventional PCA-guided k-Means model.
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3.2 Connection with Variable Selection in PCA

Although the goal of the proposed variable weighting process is to emphasize
the variables that are most responsible for capturing cluster structures, the up-
dating formula has a close connection with the variable selection model in PCA
for information summarization. Honda et al. [7] proposed a variable selection
model with the goal being to identify the variables that are most responsible for
reduced-rank prediction, and extended the model to fuzzy clustering-based local
PCA [8,9]. When we use the single cluster model, i.e., the conventional PCA,
data summarization is performed as:

X ≈ A�F + be�, (19)

where F = (f1, . . . ,fn) is the (p × n) score matrix whose i-th column f i is
the p-dimensional score vector for object i. A = (a1, . . . ,ap)� is the (p × m)
principal component matrix whose -th row a� is the m-dimensional principal
component vector. b is the mean vector.

In [7], the goal of variable selection is to find variables that are useful for
constructing association rules, i.e., revealing the mutual dependencies among
variables, instead of reducing redundant information [10,11,12]. Then, when we
use the standard fuzzification method used in FCM [3], the objective function
for summarizing structural information in p-dimensional subspace is defined as:

Lpcavs =
n∑

i=1

m∑
j=1

wβ
j

(
xij −

p∑
k=1

akjfik − bj

)2

= tr
(
(X −A�F − be�)�W β(X −A�F − be�)

)
= tr

(
(X − be�)�W β(X − be�)

)
− 2tr

(
(X − be�)�W β(A�F )

)
+tr

(
F�AW βA�F

)
. (20)

Although the solution was derived in an iterative optimization scheme in [7],
the principal scores can be calculated in an analytical way with fixed variable
weights wj when we use the single cluster model. From the necessary condition
for the optimality ∂L/∂F = O, we have

A�FF� = (X − be�)F�. (21)

Under the constraint of FF� = I, Eq.(20) is reduced to

Lpcavs = tr
(
(X − be�)�W β(X − be�)

)
−tr

(
F (X − be�)�W β(X − be�)F�)

. (22)

So, F is calculated from the eigenvector corresponding to the principal eigenval-
ues of (X − be�)�W β(X − be�) = Y �W βY . Note that the updating formula
is same with that for the membership indicator in the proposed k-Means model
although the special constraint of qK = (

√
1/n, . . . ,

√
1/n)� is used only in the

k-Means model.
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On the other hand, Eq.(22) implies that the objective function is also written
as

Lpcavs =
n∑

i=1

m∑
j=1

wβ
j (xij − bj)2 −

p∑
k=1

n∑
�=1

wβ
j fikf�k(xij − bj)(x�j − bj)

=
m∑

j=1

wβ
j

(
n∑

i=1

y2
ij −

p∑
k=1

n∑
i=1

n∑
�=1

fikf�kyijy�j

)
. (23)

This equation indicates that the variable weights wj in the proposed k-Means
model are also given in a same formula with variable selection in PCA although
the two methods are based on different purposes. The difference in the algorith-
mic aspect is the constraint on the last component (qK in the k-Means model
and f̃p = (f1p, . . . , fnp) in the PCA model).

By the way, when we use the centered data yi instead of the original data xi,∑n
i=1 yij = 0 and qK = (

√
1/n, . . . ,

√
1/n)� imply that the clustering criterion

of Eq.(18) can be written as:

dj =
n∑

i=1

y2
ij −

K∑
k=1

n∑
i=1

n∑
�=1

qkiqk�yijy�j

=
n∑

i=1

y2
ij −

K−1∑
k=1

n∑
i=1

n∑
�=1

qkiqk�yijy�j . (24)

So, the variable weights wj with K clusters in k-Means are equivalent to those in
PCA with p = K−1 where the reduced membership indicatorQK−1 is equivalent
to the principal component score matrix F , i.e., the additional elements of qK is
responsible only for reconstructing the membership indicator HK after the PCA
process.

4 Numerical Experiments

In this section, two experimental results are shown in order to demonstrate the
characteristic features of the proposed method.

4.1 Artificial Data Set

In the first example, an artificially generated data set with 5-dimensional obser-
vation is used. The data set composed of 150 samples forms three compact masses
(clusters) with 50 samples each in the 2-dimensional space spanned by the first
two variables, i.e., x1 −x2 space, while the remaining three variables (x3, x4, x5)
are given by uniform random values drawn from the interval of [0, 10]. Figure 1
shows the 2-D plots in the x1 − x2 space and indicates that the centroids of the
three masses are located in (0,0), (0,7) and (7,0), respectively. In this example,
we can capture the cluster structure only when we consider the first 2 variables
and the goal is to find the structure by emphasizing the 2 variables.
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Fig. 1. x1 − x2 plots of artificial data set

q1

q2

-0.1 0 0.1
-0.2

-0.1

0

0.1

0.2

q1

q2

-0.1 0 0.1
-0.2

-0.1

0

0.1

0.2

(a) without variable weighting (b) with variable weighting

Fig. 2. Comparison of cluster indicator in artificial data set

Figure 2 compares the cluster indicators given by PCA-guided k-Means
with/without variable weighting. In this experiment, cluster number k was set
as k = 3 and the 150 × 3 cluster indicator matrix Q3 was calculated by the
two approaches: the conventional one without variable weighting and the pro-
posed one with variable weighting. In the proposed method, fuzzifier β was set
as β = 2. The 2-D plots show the first two scores (qi1, qi2) for sample i. Note
that the third score qi3 is a constant value for all samples because of the con-
straint of Eq.(10). The figure implies that the conventional method without vari-
able weighting (Fig. 2-(a)) failed to capture the cluster structure because it was
shaded by three “noisy” variables (x3, x4, x5), i.e., we cannot reconstruct the op-
timal cluster indicator by using any orthogonal transformation T . On the other
hand, the proposed method could successfully capture the cluster structures and
it is possible to reconstruct the optimal cluster indicator by estimating a certain
orthogonal transformation T in the 3-D space. Table 1 shows the derived weights
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Table 1. Variable weights for artificial data set

variable x1 x2 x3 x4 x5

weight 0.500 0.500 0.000 0.000 0.000

for the five variables and indicates that the proposed method could assign larger
values for meaningful variables. In this way, the proposed method is useful for
emphasizing the variables that have meaningful information for capturing cluster
structures.

4.2 Application to Document Clustering

In the second example, a Japanese novel “Kokoro” written by Soseki Natsume,
which can be downloaded from Aozora Bunko (http://www.aozora.gr.jp), is
used. The novel is composed of 3 chapters (Sensei and I, My Parents and I,
Sensei and His Testament) and the chapters include 36, 18, 56 sections, respec-
tively. In this experiment, the sections were given as individual text documents
(number of samples is n = 110) and the documents are partitioned into 3 clusters
(k = 3) without the chapter information. So, the goal of the experiment is to re-
construct the chapter information from the word analysis avoiding the influences
of “noisy” keywords. The text documents were preprocessed using a morpholog-
ical analysis system software “Chasen” (http://chasen.naist.jp/hiki/ChaSen/),
which segments Japanese text string into morphemes and tags those morphemes
with their parts of speech and pronunciations, and the 83 most frequently used
substantives and verbs (they were used more than 50 times in the novel) were
given as attributes to be analyzed with their tf-idf weights.

The PCA-guided k-Means procedure was performed with/without variable
weighting, in which k = 3. Figure 3 compares the cluster indicators. From the

q1
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-0.2 -0.1 0 0.1 0.2
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0

0.1

0.2

q1

q2

-0.1 0 0.1 0.2 0.3
-0.2

-0.1

0

0.1

0.2

(a) without variable weighting (b) with variable weighting

Fig. 3. Comparison of cluster indicator in “kokoro” (circle: chapter 1, times: chapter
2, triangle: chapter 3)
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Table 2. Top 10 high responsibility keywords

keyword haha K chichi sensei kare mukau ojohsan shitsu byouki letter
weight 0.015 0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.012

figure, we can see that the variable weighting mechanism played the role for
clarifying the cluster boundaries although the conventional k-Means had severe
overlap area in the chapter boundaries. So, the proposed variable weighting
mechanism made it possible to reconstruct the clear cluster membership indi-
cators by estimating a certain orthogonal transformation T . Table 2 shows the
keywords having high membership degrees in the proposed method. The key-
words are often used only in a certain chapter and are useful for characterize the
chapters. The result implies that document clustering is a promising application
area of the proposed method, in which keyword selection is performed for em-
phasizing the cluster characteristics. Especially, it is expected that the variable
selection mechanism based on cluster structure clarification is useful for reduc-
ing the problem space (size) in document analysis with huge sets of documents
although eigen decomposition of covariance matrix may be time consuming if
too many keywords are used.

Here, it is worth to note that a large fuzzifier of “β = 10” was used in this
experiment because β = 2, which is an often used value in FCM, gave larger
membership degrees only for a few keywords. So, a relatively large fuzzifier may
be valid in real applications with many variables. A study on the effect of “fuzzi-
fier” remains in future work.

5 Conclusion

In this paper, the variable weighting mechanism was introduced into the PCA-
guided k-Means procedure. The relative responsibility of variables is estimated
in a similar way with FCM clustering while the membership indicator is derived
from a PCA-guided manner, in which the principal component scores are cal-
culated by considering the responsibility weights of variables. So, the variables
that have meaningful information for capturing cluster structures are empha-
sized in calculation of membership indicators. Numerical experiments including
an application to document clustering demonstrated the characteristics of the
proposed method although a study on the effect of “fuzzifier” remains in fu-
ture work. Another potential future work is to hybridization with kernel method
that have been shown to be useful for capturing non-linear cluster boundaries
in PCA-guided k-Means.
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Abstract. Nowadays sequences of symbols are becoming more important, as
they are the standard format for representing information in a large variety of
domains such as ontologies, sequential patterns or non numerical attributes in
databases. Therefore, the development of new distances for this kind of data is a
crucial need. Recently, many similarity functions have been proposed for manag-
ing sequences of symbols; however, such functions do not always hold the trian-
gular inequality. This property is a mandatory requirement in many data mining
algorithms like clustering or k-nearest neighbors algorithms, where the presence
of a metric space is a must. In this paper, we propose a new distance for sequences
of (non-repeated) symbols based on the partial distances between the positions of
the common symbols. We prove that this Partial Symbol Ordering distance satis-
fies the triangular inequality property, and we finally describe a set of experiments
supporting that the new distance outperforms the Edit distance in those scenarios
where sequence similarity is related to the positions occupied by the symbols.

Keywords: Sequences of Symbols, Distances, Triangular Inequality.

1 Introduction

Sequences of symbols are a well-known kind of data representation as they are widely
used in databases for representing many types of non numerical attributes, such as
names or addresses. However, nowadays, sequences of symbols are gaining more an
more attention in many other communities because they are a natural way to represent
data in a large variety of domains, such as gene information [9], vehicular tracking [15]
or sequential patterns [1].

For this reason, there are a lot of work for computing similarities among sequences
of symbols [5,7,8,11,14]. However, only the Hamming [8] and the Levenstein (Edit)
distance [11] satisfy the triangular inequality (d(A,B) ≤ d(A,C) + d(B,C), where
A,B,C are sequences of symbols). Therefore, these distances are the most used and
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studied in applications where a metric space is required. Examples of such applica-
tions are clustering [10], k-nearest neighbors algorithms [3] or gene sequential pattern
mining [13] or record linkage [16].

As one can imagine, those scenarios have different requirements for computing the
similarity between two sequences. On the one hand, in the record linkage scenario, an
insertion, deletion or update of a symbol in a sequence can be considered as a typo,
whereas a swap between two non-contiguous symbols has a lower probability of being
a typo. On the other hand, in the sequential patterns mining scenario in general, and
in the gene sequential patterns mining scenario in particular, a far swap between two
symbols could be considered as a measurement error whilst an insertion, deletion or
update of a symbol could not. Since the Edit distance measures the minimum number
of operations (i.e. insertion, deletion, or update of a single symbol) needed to transform
one sequence into the other, and the Hamming distance computes the number of posi-
tions for which the corresponding symbols are different, their application in this latter
scenario is unnatural.

In this paper, we define a new distance for sequences of non-repeated symbols that we
call Partial Symbol Ordering distance, especially suitable for scenarios where swaps are
considered as the key-point for sequences comparison. This distance is based on com-
puting the distances between the positions of the common symbols of two sequences.
We prove that this is actually a distance, because the triangular inequality holds. We then
describe some record linkage experiments showing that the new distance achieves a sim-
ilar performance as the Edit distance in the classical string matching problem. Note that,
in this scenario, insertions, deletions and updates have a larger probability to be a typo.
Therefore, Edit distance should have some advantage compared to our new distance. Fi-
nally, we describe an alternative set of experiments simulating the scenario where swaps
are considered as the key-element in the sequence of symbols comparison. In this sec-
ond scenario, the performance of Partial Symbol Ordering distance is better than the one
obtained with the Edit distance. In both experiments we have disregarded the Hamming
distance because such distance only works when the sequences to be compared have
exactly the same length, which is not the normal case in record linkage.

The rest of this paper is organized as follows. Firstly, in Section 2 we introduce some
basic concepts about similarity functions and distances. Then, in Section 3 we define the
Partial Symbol Ordering distance and we provide a proof for the triangular inequality
condition. Experiments are described in Section 4, highlighting the relevance of the
new distance. Finally, Section 5 draws some conclusions and describes some lines for
future work.

2 Basic Notions

From a formal point of view, a distance function d over two sequences of symbols A
and B has to fulfill the following conditions:

1. Symmetry: d(A,B) = d(B,A)
2. Positivity: d(A,B) ≥ 0 for all sequences A,B
3. Reflexivity: d(A,A) = 0
4. Triangular Inequality: d(A,B) ≤ d(A,C) + d(B,C) for all sequences A,B,C
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When a function does not fulfill the triangular inequality, it is not considered a dis-
tance, but a similarity measure. In the literature we can find a large number of similarity
measures. For instance, in [7] the Ordered-based Sequence Similarity (OSS) measure
was defined based on the comparison of the common symbols in the two sequences and
the positions where they appear; this measure is not a distance because it does not sat-
isfy the triangular inequality. In [14] a flexible similarity measure was presented, which
is computed by comparing several aspects of the sequences and aggregating them by
means of a weighted mean. The weighting vector is a user parameter. As in the former
work, no proof is given for the triangular inequality.

Only few distance functions for sequences of symbols have been defined. Hamming
distance [8] and Edit (Levenstein) distance [11] are the two mainly reported ones [5].
The descriptions of both distances are the following ones:

– Hamming Distance [8] between two sequences of symbols of equal length is the
number of positions for which the corresponding symbols are different. In other
words, it measures the minimum number of substitutions required to change one
into the other, or the number of errors that transformed one sequence into the other.
For example, the Hamming distance between ‘toned’ and ‘roses’ is equal to 3.

– Edit Distance [11] between two sequences of symbols is given by the minimum
number of operations needed to transform one string into the other, where an oper-
ation is an insertion, deletion, or update of a single symbol. A generalization of the
Edit distance is the Damerau-Edit distance [4] , which allows the transposition of
two symbols as an operation. For instance, the Edit distance between ‘kitten’ and
‘sitting’ is equal to 3 (the update of ‘s’ for ‘k’ and ‘i’ for ‘e’ and the insertion of ‘g’
at the end).

Hamming distance satisfies all the conditions presented below but its application
is limited to sequences with the same length. On the contrary, Edit (Levenstein) dis-
tance can deal with sequences of different lengths; however, it gives less importance
to the suppression or insertion of a non common symbol than to a swap of two sym-
bols (because, in this latter case, two update operations are counted). The more general
Damerau-Edit distance solves this drawback including the transposition (swap) in the
set of basic operations. Unfortunately, the resulting distance does not hold the triangular
inequality and therefore is not a distance.

3 Partial Symbol Ordering Distance

In this section we define the new Partial Symbol Ordering distance, and we prove that
it is actually a distance.

Given two sequences of non-repeated symbolsA = (a1, . . . , anA) andB = (b1, . . . ,
bnB ), that is, ai �= aj and bi �= bj for all i �= j, we will sum a 1 for each symbol which
is only in one of the two sequences. The symbols which are in both A and B will
be considered only once. For simplicity, we will use set notation for the sequences of
symbolsA and B. The definition of the new distance is therefore:

d(A,B) = |A−B| + |B −A| +
∑

x∈A∩B

d(x,A,B),
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where d(x,A,B) = |xA−xB |
nAB

, denoting by nAB the total amount of different symbols
in A ∪B, and by xA the position that symbol x occupies in A, i.e. xA = i⇔ ai = x.

It is immediate to check that this function satisfies the properties symmetry, posi-
tivity and reflexivity. Let us show that it also satisfies the triangular inequality prop-
erty. Let A,B,C be three arbitrary sequences of symbols: A = (a1, . . . , anA), B =
(b1, . . . , bnB) and C = (c1, . . . , cnC ). We want to prove that d(A,B) ≤ d(A,C) +
d(B,C).

For each symbol x ∈ A ∪B, we have one of the three following cases:

1. x ∈ A, x /∈ B, then the contribution of x to d(A,B) is exactly 1. We have either
x ∈ C, which implies the contribution of x to d(B,C) is exactly 1, or x /∈ C, which
implies the contribution of x to d(A,C) is exactly 1. In both cases, the contribution
of x to d(A,C)+d(B,C) is greater or equal than the contribution of x to d(A,B).

2. x ∈ B, x /∈ A, symmetric case.
3. x ∈ A∩B. In this case, we have that the contribution of x to d(A,B) is d(x,A,B) =

|xA−xB |
nAB

≤ 1. If x /∈ C, then the contribution of x to d(A,C) + d(B,C) is 2. If
x ∈ C, we have x ∈ A ∩B ∩ C, and we can write

d(x,A,B) =
|xA − xB|
nAB

=
|xA − xC + xC − xB|

nAB
≤ |xA − xC |

nAB
+

|xC − xB |
nAB

.

Now we can consider two different cases. The first one is when C ⊂ A∪B. In this
case, we have nAC ≤ nAB and nBC ≤ nAB , and so the above value d(x,A,B) is
less or equal than

≤ |xA − xC |
nAC

+
|xC − xB|
nBC

= d(x,A,C) + d(x,B,C).

Now for the second case, where there are symbols in C which are not in A ∪ B,
let k = |C − (A ∪ B)|. Now we have the bounds nAC ≤ nAB + k and nBC ≤
nAB + k. Note that these k symbols will not contribute to the value d(A,B), but
will contribute with 2k to the value d(A,C) + d(B,C).

Let us go back to our situation where x ∈ A ∩B ∩ C, we have

d(x,A,B) ≤ |xA − xC |
nAB

+
|xC − xB |
nAB

≤ |xA − xC |
nAC − k +

|xC − xB |
nBC − k .

Now we can use the fact that a
b−k = a

b + ak
b(b−k) and so the last inequality becomes

d(x,A,B) ≤ |xA − xC |
nAC

+
|xA − xC | · k
nAC(nAC − k) +

|xC − xB |
nBC

+
|xC − xB| · k
nBC(nBC − k) ≤

≤ |xA − xC |
nAC

+
|xC − xB |
nBC

+
k

nAC − k +
k

nBC − k

= d(x,A,C) + d(x,B,C) +
k

nAC − k +
k

nBC − k .

Here we have used that |xA − xC | ≤ nAC and |xC − xB | ≤ nBC .
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If we consider all the symbols x ∈ A ∩B ∩ C, together, we have∑
x∈A∩B∩C

d(x,A,B) ≤
( ∑

x∈A∩B∩C

d(x,A,C) +
∑

x∈A∩B∩C

d(x,B,C)

)
+

+ |A ∩B ∩ C| ·
(

k

nAC − k +
k

nBC − k

)
But we can now use the fact that k + |A ∩ B ∩ C| ≤ nC ≤ nAC (and the same
happens with nBC , of course) which implies that the last part of the expression
above is less or equal than 2k. Recall that the k symbols which are in C − (A∪B)
contribute with 2k to the value d(A,C) + d(B,C).
Summing up, if we consider the symbols x ∈ A ∩ B ∩ C, their contribution to
d(A,B) is less or equal than the contribution of these symbols to d(A,C)+d(B,C)
plus the contribution of the symbols in C − (A ∪B) to d(A,C) + d(B,C).

Putting all the pieces together, we finally have that d(A,B) ≤ d(A,C) + d(B,C)
always holds, as desired.

4 Experiments

In this section, we describe the experiments that we have carried out to test the per-
formance of Partial Symbol Ordering distance. We have focused on the record linkage
scenario

4.1 Dataset Generation

In order to create a realistic record linkage scenario, we have used names and surnames
extracted from a frequency dictionary containing 1,564 names and 13,068 surnames ob-
tained from the Catalan Official Statistics Institute (IDESCAT) [2]. We have generated
100 different databases, each containing 20 different full names. After that, we have
added some noise to the synthetic names creating 5 duplicated full names inside the
database for each one of the synthetic full names. Duplicates have been created in two
different ways to simulate the following two different scenarios:

– String matching. Duplicates are created adding insertions, deletions and updates
to the original synthetic names. Different cases have been studied, by considering
different amounts of typos in the duplicates: 5, 10, 15, . . . , 50.

– Sequential patterns matching. Duplicates are created swapping values of the orig-
inal synthetic names. As before, different scenarios have been considered changing
the amount of swaps (5, 10, 15, . . . , 50 swaps). Here, we are interested in simu-
lating the measurement differences of a set of sensors. This is quite common, for
instance, in gene sequential patterns research where values are extracted for differ-
ent patients using different DNA chips.

4.2 Measures

For each experiment performed in this paper, we have analyzed the quality of the results
using two typical classifier performance measures: ROC graphs and AUC measure.
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ROC Graphs. A ROC (Receiver Operating Characteristics) graph [6] is a technique
for visualizing, organizing and selecting classifiers based on their performance. ROC
graphs have long been used in signal detection theory to depict the trade-off between
hit rate (also called true positive rate or recall) and false positive rate of classifiers.
Usually, ROC graphs plot the hit rate value on the Y axis and false positive rate on
the X axis. In this way, ROC graphs depict the relative trade-o? between benefits (true
positives) and costs (false positives).

In the experiments presented in Section 4.3, we will see the record linkage process
as a discrete classifier, i.e. a classifier that outputs only a class label. Such classifiers
produce an (FP rate,TP rate) pair, which corresponds to a single point in the ROC space.
The closer the point to the (0,1) vantage point, the better the classifier.

The True Positive rate of a classifier is estimated as:

TP rate ≈ positives correctly classified

total positives

The False Positive rate of a classifier is:

FP rate ≈ negatives incorrectly classified

total negatives

Algorithm 1. AUC Measure
Data: L: the set of test instances; f(i): the probabilistic classifier estimation that

instance i is positive; N : Number of instances; P : number of positive instances.
Result: R: an increasing list of ROC points, starting at (0,0) and finishing at (1,1).
begin1

Lsorted = L sorted decreasing by f scores2

FP = 0, TP = 0, R = 〈〉, fprev = −∞3

for i ∈ Lsorted do4

if f(i) �= fprev then5

AddPoint((F P
N

, TP
P

), R)6

fprev=f(i)7

if i is a positive example then TP =TP+18

else FP = FP +19

AddPoint((F P
N

, TP
P

), R)10

end11

AUC Measure. ROC curve or AUC (Area Under the Curve) [12] is a two-dimensional
depiction of classifier performance. It shows the ability of a classifier to rank the positive
instances relative to the negative ones. Since the AUC is a portion of the area of the unit
square, its value is always between 0 and 1.0. However, as a random classifier produces
the diagonal line between (0, 0) and (1, 1), which has an area equal to 0.5, no realistic
classifier should have an AUC less than 0.5.

AUC measure has an important statistical property: the AUC measure of a classifier
is equivalent to the probability that the classifier will rank a randomly chosen positive
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instance higher than a randomly chosen negative instance. Many theoretical and prac-
tical algorithms have been defined to compute the AUC curve and its area value. Since
in this work we are interested in evaluating the performance of record linkage methods
in a practical way, we have compute the AUC curve using the Algorithm 1.

4.3 Results Analysis

Figures 1 and 2 show the ROC Graphs obtained by the Edit and Partial Symbol Or-
dering distances for the string matching and the sequential patterns matching scenarios,
respectively. Recall that ROC points have been computed as the average of 100 different
executions. As we can observe in Figure 1, both distances obtain very similar results in
this scenario, but, in general, Edit distance performs slightly better than Partial Symbol
Ordering distance. Note that this is the perfect scenario for the Edit distance because
insertions, deletions and updates are considered as typos.

However, in Figure 2, where the sequential patterns matching scenario is considered,
the Partial Symbol Ordering distance achieves a perfect classification, independently of
the number of swaps, whereas the performance of the Edit distance decreases when the
number of swaps increases. The good performance of the new distance is understand-
able because the only typos considered here are swaps.

Figures 3 and 4 present the AUC measure computed in both scenarios with two
different parameterizations, (a) 25 typos / swaps and (b) 50 typos / swaps. In Figure 3.(a)
we can observe that the area covered by the Edit distance is larger than the covered by
Partial Symbol Ordering distance. But, in the second configuration of the record linkage
scenario (Figure 3.(b)), the new Partial Symbol Ordering distance outperforms in some
parts of the graph the results achieved by the Edit distance.

Figure 4 depicts the AUC values obtained in the sequential patterns scenario. Here,
we can observe that in both cases the Partial Symbol Ordering distance outperforms
the results achieved by the Edit distance. Moreover, the results obtained by the Partial
Symbol Ordering distance are the expected ones for a perfect classifier.

Fig. 1. ROC graph for the string matching scenario
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Fig. 2. ROC graph for the sequential patterns matching scenario

(a) 25 typos (b) 50 typos

Fig. 3. AUC measure for the string matching scenario

(a) 25 swaps (b) 50 swaps

Fig. 4. AUC measure for the sequential patterns matching scenario
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5 Conclusions and Future Work

In this paper, we have defined a new distance for sequences of non-repeated symbols
based on the difference between the positions occupied by common symbols. We have
proved that the new Partial Symbol Ordering distance is really a distance, in particular
by showing that the triangular inequality holds. We have then presented some experi-
ments to argue that the new distance achieves better performance than the Edit distance
when sequence similarity is related to the order of the symbols in a sequence. Finally
we have discussed other experiments on the string matching scenario (where similar-
ity is more related to insertions and deletions of symbols), which show that the Partial
Symbol Ordering distance achieves similar results than the Edit distance in that case.

The drawback of the new distance is that it is valid only for the scenario where
sequences do not have repeated symbols (for example, genes sequential patterns). As
future work, we would like to extend this distance so that it works also for sequences of
symbols admitting repetitions. This would open the door to the application of these new
Partial Symbol Ordering distances in other scenarios like ontology or location routing
matching.
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Abstract. Situation recognition – the task of tracking states and identifying sit-
uations – is a problem that is important to look into for aiding decision makers 
in achieving enhanced situation awareness. The purpose of situation recognition 
is, in contrast to producing more data and information, to aid decision makers in 
focusing on information that is important for them, i.e. to detect potentially in-
teresting situations. In this paper we explore the applicability of a Petri net 
based approach for modeling and recognizing situations, as well as for manag-
ing the hypothesis space coupled to matching situation templates with the 
present stream of data.  

Keywords: Situation recognition, information fusion, petri nets, hypothesis 
management, multi-agent activity recognition, situation assessment. 

1   Introduction 

The amount of data is growing rapidly in many domains and the purpose of tech-
niques for information fusion is to aid decision makers in synthesizing this data into 
meaningful information of higher value. Information fusion is typically discussed in 
light of the Joint Directors of Laboratories (JDL) model of information fusion [1,2], in 
which object assessment typically is concerned with estimating discrete objects and 
their properties, situation assessment is about estimating relational information be-
tween objects, and impact assessment is concerned with estimating threats or impacts 
on the goals of the friendly organization. 

Techniques for object assessment can according to Lambert [3] be considered quite 
mature today. Higher-level information fusion, situation and impact assessment, have 
however received much less effort [4] and is in need of more attention. Even if we 
eventually do have capabilities for also inferring impacts and relational information, 
the workload on operators is not likely to decrease. It might rather be the opposite, 
since they also need to consider relations in addition to objects, i.e. more data. This 
can become a problem since more data typically does not equal more information [5]. 
This is where situation recognition becomes important, as its purpose is to aid deci-
sion makers in finding and focusing on situations that are interesting for them. 

The situation recognition problem involves finding a subset of facts or properties, 
which matches a priori knowledge of typically interesting situations, in a flow of data 
and information. In contrast to classical pattern recognition problems however, the 
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situation recognition problem involves finding complex patterns of relations that are 
causally related to each other, and which cannot easily be modeled sequentially.  

The situation recognition problem can be cast in terms of searching through a state 
space. In this view, the state space that we model consists of all relations over all 
objects, and it can be said to capture an abstract process of our observable universe. In 
[6] we define a state sequence, describing the evolution of an abstract process of our 
observable universe, as a vector of states , … , , where each state  is a set 
of facts , … , . Each fact  is valid for a specific interval of time and consist 
of a relation between a number of objects. Formally, a fact is defined as : , … , , | , , where  is a set of relations and  
is a set of objects. Situation recognition can now be formulated as a search for specif-
ic patterns in such a state sequence.  

It can be problematic to define patterns exactly of what we are looking for, and we 
do generally not know in advance which objects we will observe. Instead, we must 
resort to more general patterns of activity, templates. The purpose of a template is to 
capture the most essential characteristics of a situation, and it imposes constraints on 
the domain. A template can be defined as a set of constraints that are partially ordered 
with respect to time. In [6] we define two types of constraints: (1) constraints that 
model relations between objects, and (2) constraints that impose a temporal ordering 
between constraints. The first type uses relations in , and the second uses temporal 
relations from a set , . . , , in which each  implies an ordering between 
two constraints, such as before and after, c.f. [7,8] for more information on temporal 
relations. A template can now be defined as , , where , … ,  is a 
set of variables for objects, and where , … ,  is a set of constraints [6].  

1.1   Problem 

Given a state sequence of an abstract process describing our observable universe, the 
situation recognition problem consists of searching through the state sequence in 
order to find all possible instantiations of a template. An alternative to performing an 
extensive search for finding a pattern in a set of data, is to do it the other way around, 
and feed the data through representations that model situations, i.e. to use some form 
of state transition technique for modelling and recognition. 

In this paper we explore the applicability of an approach based on Petri nets, which 
builds upon previous work by [9,10,11,12], in which Petri nets are used for recogniz-
ing complex patterns of activity. Although used differently in the different approach-
es, there are at least two common problems which need to be addressed. First, there is 
a role assignment issue. Which object in the input stream corresponds to which vari-
able in a template? Do we defer this problem to some external process, or is it possi-
ble to also solve the role assignment problem in the Petri net itself? Secondly, the size 
of the state space that we search grows exponentially in the number of objects and 
relations [6], and there can in the input stream be very many different instantiations of 
a pattern that we are interested in recognizing. There is a need for managing this hy-
pothesis space of possible matches. Do we defer the management of the hypothesis 
space coupled to matching to some external process, or can we manage this hypothe-
sis space in the Petri net?  
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We thus have two research questions in this paper: (1) can we manage the hypothe-
sis space coupled to recognizing a situation within a Petri net, and (2) can we implicit-
ly solve the role assignment problem within a Petri net? 

1.2   Related Work 

In their work on situation recognition for environment surveillance, Dousson et al. 
[13] address the situation recognition problem as an online search for specific patterns 
of activity in an event stream. The basis of their approach is propositional reified 
logic, and a situation model is a set of event patterns and a set of temporal constraints, 
which describe what they are interested in recognizing. The problem is that of identi-
fying subsets of an event stream that matches a situation model. The technique they 
use for managing the number of potential instantiations of situation models is based 
on temporal constraint propagation [13].  

Meyer-Delius et al. [14] use HMMs for probabilistically recognizing situations in 
connection to their work on intelligent driving assistants. Dynamic Bayesian networks 
are used to estimate a system state, and on top of this, relational logic is used to create 
an abstract system description. HMMs are used to describe situations consisting of 
sequences of relations. Candidate HMMs are instantiated and tracked as hypotheses 
over time, and Bayes factors are used for determining which hypotheses to keep.  

In their work on automated scene recognition, Castel et al. [9] use Petri nets for 
modelling plan and activity prototypes. Given a set of observed objects, plan proto-
types are instantiated and possible explanations of what is going on can be derived. 
New plan prototypes are instantiated when the set of currently instantiated prototypes 
cannot explain the currently detected objects and events. A Petri net is thus instanti-
ated for each possible explanation that is considered for a given set of objects. 

In their work on complex event recognition in video surveillance, Ghanem et al. 
[10] extends the work of [9] by representing each instance of simple events as tokens 
in a Petri net, instead of instantiating a new Petri net for each instance. Furthermore, 
Ghanem et al. [10] also propose extensions to the Petri net formalism for using it in a 
recognition context: (1) conditional transitions – additional conditions can be added to 
transitions, which must be true in order for a transition to fire and (2) hierarchical 
transitions – simpler Petri nets can be used as building blocks in more complex nets, 
thus simplifying the graphical representation. 

In their work on multi agent activity recognition for recognizing different plays in 
basketball games, Perše et al [11] use Petri nets for modelling and recognizing play 
tactics. Perše et al. [11] extend the work of [10,12] by proposing an automatic proce-
dure for building Petri nets from activity templates. Furthermore, the basic Petri net 
concept is also extended by attaching a property to tokens, which represents the de-
gree of similarity between observed data and evaluated tactics [11]. 

1.3   Outline 

The rest of this paper is organized as follows. In section two we provide a background 
covering the basics of Petri Nets and how they can be used for recognition. In section 
three we present an approach for representing and recognizing situations with Petri 
nets, which also models the hypothesis space and which implicitly takes care of the 
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role assignment problem. In section four we provide initial experimental results when 
applying the approach on a simulated pick-pocket scenario. Section five concludes the 
paper and outlines our future work. 

2   Petri Nets 

Petri nets are according to Murata [15], a graphical and mathematical tool suitable for 
modeling and studying systems that are characterized as being concurrent, distributed, 
asynchronous, nondeterministic, or stochastic. Sowa [16] argues that Petri nets are 
good when representing causes and effects and when simulating processes and casual 
dependencies, and that their major strength is their ability of representing parallel and 
concurrent processes.  

Murata [15] describes a Petri net as a directed, weighted, bipartite graph in which 
nodes are either places or transitions, and where arcs either lead from places to transi-
tions or from transitions to places. Arcs from places to transitions are referred to as 
input arcs and arcs from transitions as output arcs. A Petri net can according to Mura-
ta [15] be defined as a 5-tuple , , , , , where , … ,  is a 
finite set of places, , … ,  is a finite set of transitions, 

 is a set of arcs, : 1,2, …  is a weight function, and :0,1,2, …  is an initial marking of the net such that  and . 
In a graphical representation, places are represented by circles and correspond to 

states in finite state automata, and transitions are represented by vertical bars and 
correspond to events in flow charts [16]. Tokens are represented as dots inside places 
and correspond to processes. The state of a Petri net is called a marking and consists 
of the number of tokens located at each place in the net [15]. When a transition is 
enabled, the number of tokens represented on each input arc is removed from each 
corresponding input place, and the number of tokens represented on each output arc is 
inserted to each output place [15]. Places can be seen as conditions for transitions, 
which can only fire when each input place contains the number of tokens that are 
required [15]. Figure 1 illustrates a Petri net for a chemical reaction resulting in water. 

 

Fig. 1. Example of a Petri net that describes the chemical reaction  
(adapted from [15]) 

An extension to Petri nets is called coloured Petri nets, in which tokens are allowed 
to contain additional information, such as for example color or similar properties of 
interest in a domain. Even though Petri nets are not commonly associated with recog-
nition, Castel et al. [9] argue that Petri nets are suitable for this task, since they allow 
sequencing, parallelism, and synchronization to be easily represented and visualized. 
This can be important in order for decision makers to more easily understand recog-
nized situations. 
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2.1   Petri Nets for Recognition 

According to Lavee et al. [12] there are mainly two approaches for using Petri nets to 
recognize complex patterns. The first approach is called object Petri nets, and in 
these, tokens correspond to detected objects and places represent particular states for 
objects. The second approach is called a plan Petri net, in which each place corres-
ponds to a sub event, and a token in a place denotes the occurrence of that particular 
event. Lavee et al. [12] argue that object Petri nets provide a more robust model for 
recognition. An example of an object Petri net is illustrated in Figure 2.  

 

Fig. 2. Illustration of a Petri net that describes a template for the behaviour of two people (A 
and B) that walk, after which the second of them (B) starts to run (adapted from [11]) 

In Figure 2, a Petri net is used to model the causal relations between two objects 
and events in a template describing a behaviour in which the two objects first walk, 
after which one of them starts to run. As discussed in the related works section, Perše 
et al. [11] also provides an approach for accounting for missed events and events that 
do not occur in an expected interval. This is done by attaching a penalty to each to-
ken, which represents how well the template has been matched. 

3   Hypothesis Management and Recognition Using Petri Nets 

In this section we propose extensions to the approaches used by Ghanem et al. [10], 
Lavee et al. [12], and Perše et al. [11], which also allows us to manage the hypothesis 
space when using Petri nets for recognizing situations, as well as for automatically 
managing role the role assignment problem. First, however, let us discuss the hypo-
thesis space of matching a flow of events with a template.  

An event represents a change of a state for some process, and at its lowest level, 
this would mean that the truth value of a relation has changed. Thus, each change in 
truth value of a relation would raise an event. These events flow through the situation 
recognition system, and it is these events that we propose to use as the basic building 
blocks in our suggested approach. Consider a hypothesis space , where each 
hypothesis describes a specific mapping between a template and a set of events. Each 
new event can be combined with every existing hypothesis, as well as resulting in a 
new hypothesis. Adding an event would thus result in | | 1 new hypotheses. It is 
the management of this hypothesis space that needs to be taken care of.  

3.1   Representation 

Similar to [10,11,12], transitions can represents types of events that we are interested 
in. For example, ,  could be a specific transition in a Petri net. Moreover, 
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we also exploit the conditional transition construct introduced by Ghanem et al. [10], 
in which a transition only is allowed to fire when both its input place restrictions are 
fulfilled, as well as an optional condition. We suggest that tokens can be used for 
representing individual hypotheses that we are tracking. Each token would thus con-
tain a template, in which some constraints possibly have been assigned and in which 
some of the object variables possibly have been bound to real objects. We thus adopt 
the ideas of coloured Petri nets by attaching a hypothesis as additional information to 
each token. Places represent partial stages of the matching between a specific Petri 
net and the history of events. Tokens in places describe hypotheses that have reached 
a certain stage in the matching procedure. Finally, we also suggest that output arcs 
can be assigned a formula, which model how tokens should be created from a transi-
tion that fire. In this way, hypotheses can be kept for later matching even though spe-
cific conditions are met. Figure 3 gives an illustration. 

 

Fig. 3. Illustration of how arcs are assigned formulas to enable hypotheses to be stored 

3.2   Event Processing 

Each new event that we infer from data would be assigned to each transition for eval-
uation. In case all input place restrictions together with the optional conditions are 
fulfilled (same event type and value), each unique pair of input tokens would be com-
bined with each other according to the formula on each respective output arc. When 
combining a hypothesis with an event, we would need to assert that the specific ob-
jects that the event concerns do not stand in conflict with the variable bindings and 
already assigned constraints in the hypothesis. A similar procedure is necessary when 
combining two hypotheses, each bound constraint and variable in each of the two 
hypotheses must not stand in conflict with each other. If the two hypotheses to be 
combined do not stand in conflict, the resulting hypothesis is the union of the two 
hypotheses with respect to object variable bindings and constraint assignments.  

An algorithm for updating the configuration (marking) of the Petri net, for each 
event that is received, consists of four distinct steps. The first step is to derive a list of 
output tokens at each transition, based on the new event. The second step concerns 
inserting derived tokens to the output places of each activated transition. However, in 
order to also allow for missed detections, we suggest propagating tokens through the 
net, thus allowing for partial matching. Each token would thus pass through each 
consecutive transition, but instead of registering an event constraint as being fulfilled, 
a missed detection would be recorded. The hypothesis space is thus modelled in the 
Petri net. The third step concerns updating transitions that do not have a condition 
attached to them. By propagating hypotheses, the hypothesis space grows very 
quickly and as a fourth step, we need to prune the Petri net and remove low ranked 
hypotheses. In the pruning step, each place is inspected to remove hypotheses. As an 
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initial similarity measure, we suggest using a simplistic measure that consists of two 
numbers: (1) percentage of fulfilled constraints, and (2) percent of matching com-
pleted. These numbers can be used to discard hypotheses and in this manner keep the 
hypothesis space of manageable size. In addition to this, we also suggest pruning 
hypotheses that are too old, i.e. hypotheses that have not been updated within a spe-
cific period of time. This time, naturally, depend on the situation being modelled.  

To initialize the Petri net, an empty hypothesis is inserted to all places which do 
not have any arcs towards them, i.e. the initial marking of the net contains an empty 
hypothesis at each such place. This result in that the role assignment problem is han-
dled implicitly in the Petri net, since each object potentially can be bound to any ob-
ject variable. This depends on the details of the Petri net and on the detected events. 

4   Simulation and Results 

In order to carry out some initial investigations on the suggested approach of using 
Petri nets for situation recognition whilst also managing the hypothesis space, we 
have constructed a simulated pick-pocket scenario. This scenario has been imple-
mented in a simulator previously presented in [17].  

4.1   Experimental Setup 

The scenario takes place in a shopping zone, where a number of pedestrians move 
around, pass through, or move between shops. The pedestrians are intended to model 
some form of normal behaviour in which we would like to be able to recognize a 
pick-pocket situation. A pick-pocket situation consists of a thief moving towards a 
victim until close enough to pick the pocket, after which the thief moves towards an 
accomplice to hand over the stolen goods. The situation has previously been presented 
in [6]. The setup of the environment is illustrated in Figure 4. 

 

Fig. 4. Illustration of the setup of the scenario 

As can be seen in Figure 4 there are two spawn zones in which pedestrians are 
created according to some probability (from a uniform distribution) every five seconds. 
Some pedestrians will move straight on through the environment towards a random 
location in the opposite spawn zone (effectively becomes a de-spawn zone for this 
pedestrian), and some go directly to a shop and then return to whence they came from. 
A third type of pedestrian, whom we call a happy shopper, starts by moving towards 
the opposite zone. However, this pedestrian can be affected by ads sent from each shop 
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every five seconds. Each shopper keeps track of an attraction value for going towards 
each shop, and when the attraction reaches a certain value, the pedestrian sets of to the 
most attractive store. This continues until a will to shop variable reaches zero. 

Pick pockets will also be spawned randomly in the two spawn zones. If there are 
currently no pick-pockets in the scenario, then there is a 30% chance of creating two 
pick-pockets every five seconds. When created, the pick-pockets will move towards 
the centre of the scenario. After 5-15 seconds one of the thieves will start looking for 
a victim (each pedestrian has a 40% chance of being a likely victim, and this is deter-
mined when the pedestrian is created). When a victim has been found, the primary 
thief moves to intercept the pedestrian, and when close enough (their bounding vol-
umes in the simulated world overlap), the thieves moves to intercept each other. 
When the thieves are close enough, the hand over is considered complete and they 
leave the scenario. It should be mentioned that all pedestrians effectively tries to 
avoid colliding with other objects according to a certain probability. 

Object statistics. The scenario has been modelled with three different probabilities 
for creating pedestrians. In scenario 1, there is a 10% chance of creating one pede-
strian and a 10% chance of creating two pedestrians, in each of the two spawn zones 
every five seconds. In scenario 2, there is a 35% chance of creating one pedestrian 
and a 10% chance of creating two pedestrians, in each of the spawn zones every five 
seconds. In scenario 3, there is an 80% chance of creating one pedestrian and a 10% 
chance of creating two pedestrians, every five seconds in each of the spawn zones. 
The three scenarios have been simulated 30 times, thus creating a total of 90 different 
data files. Each simulation has a length of 10 minutes. Table 1 shows some statistics 
for the number of objects in each of the scenarios. 

Table 1. Statistics for the total number of objects created in the three scenarios and statistics for 
the number of active objects at each instant 

 Scenario Mean Min Max  
Total objects 1 194 165 237 14 

Active objects 1 15.09 1.57 17.20 3.00 
Total objects 2 347 310 386 20 

Active objects 2 27.43 2.00 31.44 5.69 
Total objects 3 612 597 635 9 

Active objects 3 49.35 2.76 55.40 10.59 

4.2   Extraction of Events 

The simulator provides “ground-truth” data, i.e. exact locations for all objects in the 
universe of interest, at a frequency of 4 Hz. For each data set, the object-level data is 
fed into a recognition platform, which as a first step tries to extract relevant relations 
from the track data. In our previous work [6] we have argued for modelling the pick-
pocket situation through the use of two different relations, close and approach. In this 
paper we also introduce a third relation, intercept. 

Close is defined with an activation distance and a deactivation distance. If the dis-
tance between two objects  and  becomes less than the activation distance, a ,  event is fired and the relation is considered to hold between the 
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two objects. If the relation holds, a ,  event is fired when the dis-
tance becomes larger than the deactivation distance. The close relation is symmetrical, 
e.g. , , . In the experiments, the activation distance has been 
set to 2 m and the deactivation distance has been set to 3 m.  

Approach is defined as an object approaching another object and it is an asymmet-
rical relation, e.g. , , . In order for ,  
to be considered to hold, the distance from  to  must decrease between two con-
secutive updates of . Furthermore, the angle between the direction of  and its rela-
tive heading to  must be smaller than an activation angle. If these conditions are true, 
an ,  event is fired. In case the relations holds, an ,  event is fired if either the distance between  and  does 
not decrease between two consecutive updates, or if the angle becomes larger than a 
deactivation limit. The activation angle has in the experiments been set to 3 degrees 
and the deactivation angle to 5 degrees. Furthermore, ,  is for object  
only considered for each object  within a circle with a radius of 30 meters.  

Intercept is defined as two objects being on a collision course towards each other, 
and it is derived using the closest point of approach metric (CPA). An activation limit 
and a deactivation limit have been used to provide stability. An ,

 event is fired if the CPA becomes smaller than the activation distance and if the 
distance between  and  decreases between two consecutive updates of . Thus, ,  is also an asymmetrical relation. An ,  event 
is fired if the CPA becomes larger than the deactivation distance, or if the distance 
between  and  does not decrease between two consecutive updates of . The activa-
tion and deactivation limits have been set to 1 and 3 meters, respectively. Similarly to 
approach, ,  is for object  only considered for each object  within a 
bounding circle with a radius of 30 meters.  

Event statistics. The definitions of the relations close, approach and intercept have 
been applied to the 30 data sets in each of the 3 scenarios that have been created, in 
order to extract all occasions on which the three relations are activated, i.e. when the 
relation they describe becomes true after previously being false. Table 2 presents 
some statistics for the events that have been extracted. 

Table 2. Statistics for events, describing the activation of relations, extracted from the 30 data 
sets for each of the 3 scenarios. In the table,  is calculated as the sample standard deviation. 

Scenario Event Mean Min Max  
1 Approach 1624.7 992 2549 332.6 
1 Close 104.2 75 145 15.1 
1 Intercept 904.7 569 1405 183.1 
1 All events 2633.6 1640 4099 525.1 
2 Approach 6545.5 4640 8727 997.4 
2 Close 344.2 256 437 46.0 
2 Intercept 3690.7 2551 4956 590.8 
2 All events 10580.3 7476 14103 1626.0 
3 Approach 26843.5 22360 30972 2007.3 
3 Close 1180.9 1000 1349 84.1 
3 Intercept 15749.5 13271 17947 1204.9 
3 All events 43773.9 36662 50268 3277.9 
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4.3   Modelling the Pick-Pocket Situation with Petri Nets 

In our previous work [6] we have modelled a template for the pick-pocket situation in 
accordance with the definition of a template that was presented in the introduction, , . The template for the pick-pocket situation is thus defined by specifying  
and . An inspection of the pick-pocket situation reveals that it contains a primary 
thief, a victim, and a secondary thief (accomplice), and therefore, , , . The 
constraints of the template for a pick-pocket situation can be defined as , … , , where 

 

, , ,, , ,, , , , , . (1) 

The present paper however concerns the usage of Petri nets for representing situation 
templates, and thus, we define a Petri net in accordance with equation 1. This is illu-
strated in Figure 5.  

 

Fig. 5. Illustration of how the pick-pocket situation has been modelled with a Petri Net. Tokens 
in the net will contain a candidate hypothesis in accordance with equation 1. 

4.4   Recognition Results 

In the experiments, all events that are generated have been used as input to the 
Petri net presented in Figure 5. At this point, we have only considered perfect 
matching, and the hypothesis propagation step of the algorithm has thus been 
turned off. A summary of the results from each of the scenarios is presented in 
Table 3. 

As can be seen in Table 3, the recall is quite good. We find 89%, 86% and 89% 
of the modelled pick-pocket situations. However, the precision is quite low, 
which indicates that we recognize very many situations as pick-pocket situations 
although they are not considered to be pick-pocket situations in the simulation. 
This indicates that the specific Petri net and template that has been used, is not 
restrictive enough for finding the modelled behaviour. It should be mentioned 
however, that the number of events generated is very high, and as the number of 
events increase, the chance of the modelled behaviour to randomly occur increase 
as well. 
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Table 3. Results when using the previously described Petri net on the events that have been 
extracted from each of the three scenarios 

 Scenario Mean Min Max  
Situations recognized 1 19.1 12 30 4.7 
Pick-pocket situations occurred  1 7.2 6 9 0.8 
Pick-pocket situations recognized 1 6.4 4 9 1.2 
Recall 1 0.89 0.66 1.00 0.11 
Precision 1 0.35 0.19 0.58 0.10 
Situations recognized 2 80.9 32 134 21.8 
Pick-pocket situations occurred 2 7.7 5 9 1.1 
Pick-pocket situations recognized 2 6.6 4 9 1.3 
Recall 2 0.86 0.50 1.00 0.12 
Precision 2 0.09 0.04 0.19 0.04 
Situations recognized 3 645.7 386 895 112.5 
Pick-pocket situations occurred 3 8 7 10 0.7 
Pick-pocket situations recognized 3 7.13 5 9 1.11 
Recall 3 0.89 0.63 1.00 0.12 
Precision 3 0.01 0.01 0.02 0.003 

5   Conclusions 

Situation recognition is an important problem to look into for aiding decision makers 
in achieving enhanced situation awareness. In this paper we have proposed a novel 
approach for using Petri nets for representing templates as well as for managing the 
hypothesis space. This approach extends previous work of Ghanem et al. [10], Lavee 
et al. [12], and Perše et al. [11]. Our research questions in this paper concerned the 
possibility of managing the hypothesis space related to matching from within a Petri 
net, and the possibility of implicitly handling the role assignment problem within the 
Petri net. We have in the paper presented an approach that does this.  

Our initial results show that we have can find the modelled behaviour; however, 
we also have a quite high false alarm rate. This indicates that the specific nets  
that have been used are not restrictive enough. It should also be mentioned that the 
number of events that was generated in the densest scenario was more than 4300 in 
average per minute. This was not a problem for the Petri net to handle in real-time 
(including event extraction).  

Our future work will take three different paths: (1) we will evaluate the suggested 
approach more thoroughly, (2) we will compare the Petri net approach with an ap-
proach based on logic, and (3) we will investigate how to incorporate learning in 
order to adapt templates with respect to data. 
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Abstract. This paper considers an efficient approximate algorithm for
solving k-minimum spanning tree problems which is one of the combina-
torial optimization in networks. A new hybrid algorithm based on tabu
search and ant colony optimization is provided. Results of numerical
experiments show that the proposed method updates some of the best
known values and that the proposed method provides a relatively better
performance with solution accuracy over existing algorithms.

Keywords: k-minimum spanning tree, tabu search, ant colony opti-
mization, hybrid algorithm, approximate solution.

1 Introduction

A k-Minimum Spanning Tree (k-MST) problem is one of combinatorial optimiza-
tion problems formulated in networks, and the objective of the problem is to find
a subtree with exactly k edges, called k-subtree, such that the sum of the weights
attached to edges is minimal. The k-MST problem is a generalized version of min-
imum spanning tree (MST) problems; when k = |V | − 1 where V is a cardinality
of vertices in a graph, the k-MST problem corresponds to the MST problem. The
wide varieties of decision making problems in the real world can be formulated as
k-MST problems, e.g. telecommunications [10], facility layout [8], open pit mining
[16], oil-field leasing [12], matrix decomposition [2,3] and quorum-cast routing [4].

The k-MST problem was firstly introduced by Hamacher et al. [12] in 1991.
Since the k-MST problem is NP-hard [7,15], it is difficult to solve large-scale
problems within a practically acceptable time. Therefore, it is very important to
construct approximate solution methods which quickly find a near optimal solu-
tion. Blum and Blesa [1] proposed several approximate solution methods includ-
ing metaheuristics such as evolutionary computation, ant colony optimization
and tabu search.

In this paper, we propose a new hybrid approximate solution algorithm based
on tabu search and ant colony optimization. In order to demonstrate efficiency
of the proposed solution method, we compare the performances of the proposed
method with those of existing algorithms.
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2 Problem Formulation and Existing Solution Methods

Given that a graph G = (V,E) where V is a set of vertices and E is a set of
edges, k-subtree Tk is defined as

Tk ∈ G, k ≤ |V | − 1.

Then a k-MST problem is formulated as

minimize
∑

e∈E(Tk)
w (e)

subject to Tk ∈ Tk,

where Tk is the set of all possible k-subtrees Tk in G, E(Tk) denotes the edges of
Tk and w(e) is a weight attached to an edge e. The above problem is to seek a
k-subtree with the minimum sum of weights, called k-MST. If the problem size
is small, the problem can be easily solved by finding an optimal solution after
enumerating all possible k-subtrees in a given graph. If the size of problem is
not so large, it can be solved by some exact solution algorithm such as a branch
and bound method [4] and a branch and cut algorithm [9].

However, it has been shown that the k-MST problem is NP-hard even if the
edge weight is in {1,2,3} for all edges, or if a graph is fully connected. The
problem is also NP-hard for planar graphs and for points in the plane [15].
Therefore, it is important to construct not only exact solution methods but also
efficient approximate solution methods.

Blum and Blesa [1] proposed three approximate solution algorithms for k-
minimum spanning tree problems which are based on evolutionary computation,
tabu search and ant colony optimization. They compared their performances
through benchmark instances [14] and showed that an ant colony optimization
approach is the best for relatively small ks, whereas a tabu search approach has
an advantage for large ks with respect to solution accuracy.

In this paper, we propose an efficient hybrid algorithm based on tabu
search and ant colony optimization by combining the desirable features of both
algorithms.

3 Proposed Algorithm

The outline of the proposed algorithm is as follows:

Step 1 (Generation of an initial solution). For a node selected at random,
the application of Prim method is continued until a k-subtree is constructed.
Let the obtained k-subtree be an initial solution and the current solution
T cur

k .
Step 2 (Initialization of parameters). Initialize the tabu lists and the val-

ues of parameters such as tabu tenure tlten and aspiration criterion levels.
Step 3 (Tabu search-based local search). Search the neighborhood based

tabu search, and store a set of local minimum solutions. If the current tabu
tenure tlten is greater than ttmax, go to Step 4. Otherwise, return to Step 2.



A Hybrid Algorithm Based on Tabu Search 317

Step 4 (Ant colony optimization-based intensification procedure).
Explore the promising region intensively based on ant colony optimization.

Step 5 (Terminal condition). If the current computational time is greater
than T imeLimit, terminate the algorithm. Otherwise, return to Step 2.

Let T cur
k , T gb

k and T lb
k be the current solution, the best found solution and local

optimum solution, respectively. Then, we describe the details on the procedures
in Steps 3 and 4.

3.1 Tabu Search-Based Local Search

For a set V (Tk) of nodes included in k-subtree Tk, we define

VNH(Tk) := {v|{v, v′} ∈ E(G), v /∈ V (Tk), v′ ∈ V (Tk)}.

Let TNH
k be a local minimum solution of k-subtree obtained by adding vin ∈

VNH(Tk) to Tk and deleting vout ∈ V (Tk). Then, the neighborhood of Tk denoted
by NH(Tk) is defined as a whole set of possible TNH

k in G.
In the proposed local search algorithm, the next solution through transition

is selected as the k-subtree that has the best objective function value of all
solutions TNH

k ∈ N(T cur
k ) as follows:

TNHbest

k := arg min
T NH

k
∈NH(T cur

k
)
{f(TNH

k )}.

In order to avoid cycling among a set of some solutions, we use two tabu lists
InList and OutList, which keep the induces of removed edges and added edges,
respectively. A tabu tenure, denoted by θ, is a period for which it forbids edges
in the tabu lists from deleting or adding. In details, at the beginning, we set an
initial value of the tabu tenure tlten to ttmin which is the minimum tabu tenure
defined as

ttmin := min
{⌊

|V |
20

⌋
,
|V | − k

4
,
k

4

}
.

Let nicint be the period of the best found solution T gb
k not being updated. If

nicint > nicmax, then tabu tenure is updated as tlten ← tlten + ttinc, where

nicmax := max {ttinc, 100}, ttinc :=
⌊
ttmax − ttmin

10

⌋
+ 1.

If the current tabu tenure tlten is greater than ttmax defined as

ttmax :=
⌊
|V |
5

⌋
,

the local search algorithm is terminated, and intensification strategy based on
ant colony optimization is performed.
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When checking whether the transition from the current solution to some so-
lution in TNH

k is acceptable, if an edge e in InList or OutList, which is re-
lated to the transition as the added edge or deleted edge, satisfies the condition
γe > f(TNH

k ), then the transition is permitted. The parameter γe called aspira-
tion criterion level is given to all of edges and is initially set to

γe =
{
f(T cur

k ), e ∈ E(T cur
k )

∞, e �∈ E(T cur
k ). (1)

In each explored solution Tk, γe is updated as γe ← f(Tk) for every e ∈ E(Tk).
The following is the details on the proposed local search algorithm.

[Tabu search-based local search algorithm]

Step 1(Initialization of the list of a deleted node). Let Vin ← VNH(T cur
k ).

Step 2(Decision of a deleted node). If Vin = ∅, terminate the algorithm.
Otherwise, go to Step 2-1.
Step 2-1. Find

vin := arg min
v∈Vin

{ ∑
v′∈V (T cur

k ) w(e)

d(v)

∣∣∣∣∣ e = (v, v′)

}

and set Vin ← Vin\vin, where d(v) is the number of edges existing be-
tween v ∈ V and T cur

k . Go to Step 2-2.
Step 2-2. Find Ein1 := {(v, vin) | v ∈ V (T cur

k )} (see Fig. 1) and emin1 :=
arg mine∈Ein1

{w(e)}. Set TNH
k+1 ← (V (T cur

k ) ∪ vin, E(T cur
k ) ∪ emin1) and

Ein1 ← Ein1\emin1 (see Fig. 2), and go to Step 2-3.
Step 2-3. Find emin1 := argmine∈Ein1

{w(e)}, and set TNH
k+1 ← TNH

k+1 ∪emin1

and Ein1 ← Ein1\emin1 (see Fig. 3). Go to Step 2-4.
Step 2-4. For a set Eloop of edges which compose a loop in Step 2-3, find

emax := arg maxe∈Eloop
{w(e)} and set TNH

k+1 ← TNH
k+1 \emax (see Fig. 3)D

Step 2-5. If Ein1 = {∅}, then set Vout ← V (T cur
k ) and go to Step 3. Other-

wise, return to Step 2-4.

Fig. 1. Current solution (when vin = v8 and Ein1 = {e7, e8, e9, e12, e17, e18})
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Fig. 2. k + 1-subtree T NH
k+1 (e8 is added to the current solution)

Fig. 3. Improvement of k+1-subtree T NH
k+1 (e18 is added, and then e2 is deleted so that

a new k + 1-subtree T NH
k+1 is constructed)

Step 3(Decision of an added node for constructing TNH
k ). If Vout = {∅},

then return to Step 2. Otherwise, go to Step 3-1.
Step 3-1. Find

vout := arg max
v∈Vout

{ ∑
v′∈V (T cur

k ) w(e)

d(v)

∣∣∣∣∣ e = (v, v′)

}

and set Vout ← Vout\vout. Go to Step 3-2.
Step 3-2. Find eout

min := argmine∈{(vout,v′)}{w(e) | v′ ∈ T cur
k }. Iff(TNHbest

k )

<
(∑

e∈E(T NH
k+1) w(e)

)
− w(eout

min) for eout
min, then return to Step 3.

Otherwise, go to Step 3-3.
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Fig. 4. Set of super-nodes

Fig. 5. Solution T NH
k in neighborhood NH(Tk)

Step 3-3. For a set of super-node Sr, r = 0, 1, 2 · · ·, each of which is a
connected component obtained by deleting vin from TNH

k , find Ein2 :=
{(vi, vj) | vi ∈ Sk, vj ∈ Sl, k �= l} (see Fig. 4). Go to Step 3-4.

Step 3-4. Find emin2 := arg mine∈Ein2
{w(e)}. If f(TNHbest

k ) < w(emin2) +∑
e∈E(T NH

k )w(e) for emin2 , then return to Step 3. Otherwise, go to Step
3-5.

Step 3-5. If there is no loop in emin2∪TNH
k , then set E(TNH

k ) ← E(TNH
k )∪

emin2 and Ein2 ← Ein2\emin2 . Otherwise, set Ein2 ← Ein2\emin2 . Go to
Step 3-6.

Step 3-6. If TNH
k is a tree (see Fig. 5)Cthen set f(TNHbest

k ) ← f(T cur
k ) and

return to Step 3. Otherwise, return to Step 3-4.

3.2 Ant Colony Optimization-Based Intensification Procedure

In this section, we describe the details on the ant colony optimization-based
intensification procedure performed in Step 4.

Ant Colony Optimization (ACO) [5,6] is a metaheuristic approach for solving
hard combinatorial optimization problems. This basic behavior is the basis for
a cooperative interaction which leads to the emergence of shortest paths by
depositing a substance called pheromone on the ground so as to minimize the
length of the path between nest and food source.
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In this paper, we propose an intensification algorithm based on ant colony
optimization by extending the Blum-Blesa algorithm [1]. One of the character-
istics in the proposed algorithm is that our algorithm deposits pheromone on
the edges selected in the local optimal solutions which were obtained by the
tabu search-based local algorithm. This procedure allows the proposed hybrid
algorithm to intensively explore the promising region.

[Intensification algorithm based on ant colony optimization]

Step 1 (Setting of learning rate). Set the learning rate of each solution in
Elb to the value defined by

ρ =

⎧⎨⎩
0.15, cf < 0.7
0.1, 0.7 ≤ cf ≤ 0.95
0.05, cf > 0.95,

where cf is a convergence factor defined by

cf ←
∑

e∈Elb
τe

|Elb| · τmax
.

Step 2 (Update of pheromone). Update the amount of pheromone assigned
to each edge e as follows:

τe = fmmas(τe + ρ(δe − τe))

where

fmmas(x) =

⎧⎨⎩ τmin, x < τmin

x, τmin ≤ x ≤ τmax

τmax, x > τmax

, δe =
{

1, e ∈ Elb

0, e �∈ Elb.

Step 3 (Generation of a k-subtree). Replace the weight attached to each
edge e in G by wd(e) defined as

wd(e) ←
w(e)
τe

.

Stating from a randomly selected node, a k-subtree Tk is constructed by
applying the Prim method. After that, replace wd(e) by the original weight
w(e) and construct a k-subtree T cur

k by applying the Prim method again to
the subgraph whose nodes and edges are V (Tk) and E(Tk), respectively.

In this paper, we set the initial values of τe, the values of τmin and τmax to 0.5,
0.001 and 0.999, respectively.
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4 Numerical Experiments

In order to compare the performances of our method with two of existing solution
algorithms proposed by Blum and Blesa [1]. We use C as the programming
language and compiled all software with C-Compiler: Microsoft Visual C++
7.1. All the metaheuristic approaches were tested on a PC with Celeron 3.06GHz
CPU and RAM 1GB under Microsoft Windows XP.

Tables 1-4 and 5 show the results for several existing instances [14] and our
new instances, respectively. Bold face means that it is the best obtained value
among the three algorithms to be compared. In Tables 1-4, BNV denotes the
best known values which have been obtained by Blum and Blesa through their

Table 1. Grid graph [14]

Objective function values
Graph k BNV HybridK TSB ACOB

|N | = 225 40 695 best 695 696 695
|E| = 400 mean 695 696 695.4

d̄(v) = 3.55 worst 695 696 696
(bb45x5 1.gg) 80 *1552 best 1552 1579 1572

(1568) mean 1565.1 1592.7 1581.2
worst 1572 1615 1593

120 *2444 best 2444 2546 2457
(2450) mean 2457.9 2558.5 2520.3

worst 2465 2575 2601
160 *3688 best 3688 3724 3700

(3702) mean 3688 3724.9 3704.7
worst 3688 3729 3720

200 5461 best 5461 5462 5461
mean 5461 5462.4 5469
worst 5461 5463 5485

|N | = 225 40 654 best 654 654 654
|E| = 400 mean 654 654 654

d̄(v) = 3.55 worst 654 654 654
(bb45x 5 2.gg) 80 1617 best 1617 1617 1617

mean 1619.1 1617.1 1626.9
worst 1620 1619 1659

120 *2632 best 2632 2651 2637
(2633) mean 2641.3 2677.9 2664.6

worst 2648 2719 2706
160 3757 best 3757 3815 3757

mean 3764.3 3815.0 3797.6
worst 3779 3815 3846

200 5262 best 5262 5262 5262
mean 5262 5268.6 5272
worst 5262 5296 5288
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Table 2. Regular graph [14]

Objective function values
graph k BNV HybridK TSB ACOB

|N | = 1000 200 3308 best 3393 3438 3312
|E| = 2000 mean 3453.1 3461.4 3344.1
d(v) = 4 worst 3517 3517 3379

(1000-4-01.g) 400 7581 best 7659 7712 7661
mean 7764 7780.2 7703
worst 7819 7825 7751

600 12708 best 12785 12801 12989
mean 12836.6 12821.8 13115.6
worst 13048 12869 13199

800 19023 best 19099 19093 19581
mean 19101.1 19112.6 19718.7
worst 19128 19135 19846

900 22827 best 22827 22843 23487
mean 22827 22859.2 23643
worst 22827 22886 23739

|N | = 1000 200 3620 best 3667 3692 3632
|E| = 2000 mean 3697.5 3722.0 3670.1
d(v) = 4 worst 3738 3751 3710

(g400-4-05.g) 400 8206 best 8323 8358 8376
mean 8357.1 8385.6 8408.3
worst 8424 8415 8442

600 13584 best 13807 13735 14085
mean 13824.3 13759.4 14164.5
worst 13900 13820 14235

800 20076 best 20110 20130 20661
mean 20129.9 20142.9 20811.3
worst 20143 20155 20940

900 24029 best 24035 24044 24782
mean 24035 24052.6 24916
worst 24035 24064 25037

tremendous experiment for several months. The values with ∗ denotes new best
known values that are updated by the proposed algorithm. HybridK, TSB and
ACOB represent the proposed algorithm, tabu search algorithm [1] and ant
colony optimization algorithm [1] by Blum and Blesa. We executed each method
for 30 runs under the condition that T imeLimit = 300(s) and computed the
best, mean and worst objective function values for each method. We describe ’−’
in the tables when the algorithms do not derive solutions within the given time
limit.

Tables 1-4 show that the performance of the proposed method is better than
those of the existing algorithms by Blum and Blesa, especially in the case of
high cardinality k and high degree graphs, whereas the performance of the ant
colony optimization algorithm by Blum and Blesa is the best for low cardinality
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Table 3. Instances constructed from Steiner tree problems [14]

Objective function values
graph k BNV HybridK TSB ACOB

|N | = 1000 200 1018 best 1034 1036 1036
|E| = 5000 mean 1048.6 1047.3 1045.9
d̄(v) = 10.0 worst 1063 1056 1056
(steind15.g) 400 2446 best 2469 2493 2665

mean 2480.7 2502.5 2806.6
worst 2492 2524 2928

600 4420 best 4426 4442 5028
mean 4433 4454.6 5398.4
worst 4451 4490 5602

800 7236 best 7236 7252 8457
mean 7236.9 7272.8 8839.6
worst 7237 7308 9006

900 9248 best 9256 9283 10873
mean 9256 9294.2 11166.3
worst 9256 9304 11423

Table 4. Instances constructed from graph coloring problems [14]

Objective function values
graph k BNV HybridK TSB ACOB

|N | = 450 90 135 best 135 135 135
|E| = 8168 mean 135.1 135.3 135.7

d̄(v) = 36.30 worst 137 136 137
(le450 15a.g) 180 336 best 336 337 352

mean 337 337.1 374.4
worst 337 338 419

270 630 best 630 630 696
mean 630.1 630.3 839
worst 631 633 913

360 1060 best 1060 1060 1267
mean 1060 1064.1 1461.2
worst 1060 1118 1566

405 1388 best 1388 1388 1767
mean 1388 1391.1 1888.7
worst 1388 1392 2015

k. Table 5 shows that the proposed method is the best for instances of graphs
with higher degrees than existing ones. It should be stressed here that as shown
in Table 1, the proposed method updates some of best known values despite very
short computational time limit (300s), while the time limits in the experiments
by Blum and Blesa are fairly large, at most several hours. From these results, we
can occlude that the proposed algorithm is considerably promising for solving
k-minimum spanning tree problems.
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Table 5. New instances

Objective function values
graph k HybridK TSB ACOB

|N | = 500 100 best 1943 1954 1943
|E| = 15000 mean 1950.5 1990.9 2022.3
d̄(v) = 60 worst 1966 2023 2241

200 best 5037 5063 5517
mean 5047.3 5080.4 7444.4
worst 5066 5221 9859

300 best 9758 9821 -
mean 9769.6 9922.6 -
worst 9795 11696 -

400 best 16351 16373 -
mean 16363.8 16488 -
worst 16368 17953 -

450 best 20929 20934 -
mean 20929 20945.2 -
worst 20929 20992 -

|N | = 500 100 best 1294 1319 1398
|E| = 30000 mean 1303.7 1352.8 1743.5
d̄(v) = 120 worst 1321 1385 2479

200 best 3064 3150 4013
mean 3097.1 3934.4 6861.4
worst 3127 6032 9623

300 best 5312 5380 -
mean 5312.5 6471.9 -
worst 5318 8308 -

400 best 8582 8586 -
mean 8582 9540 -
worst 8582 11485 -

450 best 10881 10882 -
mean 10881 11300.4 -
worst 10881 13570 -

5 Conclusion

In this paper, we have proposed a new hybrid approximate solution algorithm for
k-MST problems and compared the performance of the proposed method with
those of existing methods through numerical experiments for several benchmark
instances. It has been shown that the proposed method updates some of the
best known values and that has provided better performances than the existing
methods. We will execute more experiments to clarify the efficiency of the pro-
posed algorithm as well as its advantages and disadvantages over the existing
algorithms.
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Abstract. Neighborhood construction is a necessary and important
step in nonlinear dimensionality reduction algorithm. In this paper, we
first summarize the two principles for neighborhood construction via an-
alyzing existing nonlinear dimensionality reduction algorithms: 1) data
points in the same neighborhood should approximately lie on a low di-
mensional linear subspace; and 2) each neighborhood should be as large
as possible. Then a dynamic neighborhood selection algorithm based
on this two principles is proposed in this paper. The proposed method
exploits PCA technique to measure the linearity of a finite points set.
Moreover, for isometric embedding, we present an improved method of
constructing neighborhood graph, which can improve the accuracy of
geodesic distance estimation. Experiments on both synthetic data sets
and real data sets show that our method can construct neighborhood
according to local curvature of data manifold and then improve the per-
formance of most manifold algorithms, such as ISOMAP and LLE.

Keywords: neighborhood construction, manifold learning, local linear-
ity, geodesic distance.

1 Introduction

Manifold learning is an effective technology for nonlinear dimensionality reduc-
tion which is introduced to overcome the curse of dimensionality when dealing
with high dimensional data. All of the existing manifold learning algorithms can
be unified into the following framework which consists of three steps[3,4,5,6,7]:

1. Computing neighborhood of each point in original space;
2. Constructing a special matrix based on the neighborhoods;
3. Calculating spectral embedding using eigenvalue decomposition of that

matrix.

From this framework, one can see that neighborhood construction is a neces-
sary and key step in manifold learning algorithm. All existing manifold learning
algorithm construct neighborhoods by k-NN algorithm or ε-neighborhood which
serves points in ball with ε radius as neighbors. Therefore, the parameters k and
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ε which should be specified beforehand in these two algorithms play an impor-
tant role in produce a faithful low-dimensional embedding. If the neighborhood
parameter is too large, the local neighborhoods will include points in different
patches of data manifold, and result in fatal errors in the final embedding. Too
small neighborhood parameter, however, may divide the manifold into several
disconnected sub-manifolds, which also are not the expected embedding[8]. How-
ever, most of existing manifold learning algorithms subjectively specify these two
parameters manually. What’s more, these two neighborhood construction meth-
ods can’t guarantee a connected Neighborhood Graph(hereafter NG for short),
which is essential requisition in most of manifold learning algorithms.

Therefore, there are some researches concentrated on improving neighbor-
hood selection approach. Since the NG constructed by k-NN and ε-neighborhood
can’t be guaranteed to be a connected one, Li Yang used k-edge-connected and
k-connected spanning subgraph of complete Euclidean graph of all input data
points to construct connected[9,10,11,12]. Another improved method is to deter-
mine a optimal neighborhood parameters k or ε by some heuristics. However, up
to now, only some weak heuristics have been developed. For example, the resid-
ual variance, which is originally proposed to evaluate the quality of mapping
between the input data and output data in ISOMAP algorithm, is exploited to
automatically determine the optimal neighborhood parameter[13]. In fact, the
residual variance is not reasonable to measure the quality of neighborhood pa-
rameter. In addition, this type of method takes the fixed neighborhood size for
all data points, obviously it is not suitable for manifold whose curvature varies
sharply and the unevenly sampled manifolds, which are both the real cases in
many real applications. In context of NG with “short circuit” edge, C. Shao and
Xia improve the NG via deleting the “short circuit” edge from the NG[14,15,16].
They serve edges that pass through low-density area as “short circuit” edges.
However, sometimes this is not the real case and the true “short circuit” edges
are always hard to distinguish.

Due to the drawbacks of existing neighborhood selection approaches, this pa-
per concentrates on constructing neighborhood for manifold learning. In
ISOMAP algorithm, NG is only used to estimate the geodesic distance of all
pairwise points, and the algorithm uses the Euclidean distances as the estima-
tion of geodesic distance between a point and its neighbors. So it is obvious that
if all data points in the same neighborhood are in d-dimensional(assume d is
the dimensionality of the data manifold) linear subspace, the ISOMAP will get
more accurate geodesic distance estimation than estimation in other case, this
will then further result in more faithful embedding. In another representative
work LLE algorithm based on geometric intuition that data manifold is locally
linear, it reconstructs every points by the linear combinations of neighbors. So
in these two algorithms linearity can be the requisition for neighborhood. More-
over, many other manifold learning algorithms require that data points in each
neighborhood are in or close to d-dimensional linear subspace. For example, in
the LTSA algorithm[7], each neighborhood is approximated by the local tangent
space, therefore, linearity is also a natural requisition. Meanwhile, in order to
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construct a connected NG, each neighborhood should contain points as more as
possible. Then we can summarize the principles of constructing neighborhoods
as follows:

1. All data points in each neighborhood should be or approximate in a d-
dimensional linear subspace.

2. The number of data points in each neighborhood should be as large as
possible.

Based on the above two principles, this paper exploits PCA[1] to evaluate the
linearity of a finite data set and proposes an Dynamic Neighborhood Selection
approach(DNS) and a modified method to construct NG. In RML algorithm[17]
the neighborhood selection algorithm obtains the neighborhood through deleting
“invisible” edges and “unsafe” edges. Even though it can obtain good perfor-
mance in RML algorithm, it is inclined to obtain small size neighborhood and
not suitable for other manifold learning algorithms.

2 Measure Linearity of Finite Data Points Set

PCA is a classical subspace method for image modeling and has widespread
applications in dimensionality reduction and image recognition. Given a data
matrix X = [x1, x2, · · · , xn], where column vector xi ∈ RD represents sample
data. The goal of the PCA is to project X into a d-dimensional (d < D) linear
subspace such that the projected data points are as close as possible to the
original data points. This can be formalized as follows:

min ε = min
n∑

j=1

‖x̂j − V · (V T · x̂j)‖2 (1)

where V is aD×dmatrix and V TV = I. Denote the eigenvalues of the covariance
matrix XXT by λi(0 < i ≤ D) where λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0, and the
corresponding eigenvectors are vi. So the optimal solution of equation (4) is given
by V = [v1, v2, · · · , vd]. Substituting the optimal solution into the equation(4),
then it can be further rewritten as:

min
n∑

i=1

‖xi − V · (V Txi)‖2 =
n∑

i=1

‖xi‖2 −
n∑

i=1

‖V Txi‖2 (2)

=
n∑

i=1

‖xi‖2 −
d∑

j=1

n∑
i=1

(vT
j xi)2 = tr(XTX) −

d∑
j=1

λj (3)

=
D∑

j=1

λj −
d∑

j=1

λj =
D∑

j=d+1

λj (4)

Now our task is to evaluate how close data points in X to a d-dimensional
linear subspace for a given dimensionality d(in manifold learning, the data man-
ifold dimensionality d is always known as a priori). The formula (4) gives us
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a good heuristic. If the data set X is really in a d-dimensional linear subspace,
then λi(d < i ≤ D) = 0 and the minimum of (4) is 0, and intuitionally the closer
the data points set X to a d-dimensional linear subspace, the less the minimum.

Although the projection error
∑D

j=d+1 λj be capable of evaluating how close
X to a d-dimensional linear subspace, it ignores their own scatter of X and
varies as different concrete problems. Therefore, it is necessary for us to adopt
a normalized term of this absolute projection error by taking into account the

scatter of X . Then the term 1 −
∑D

j=d+1 λj∑
D
j=1 λj

=
∑d

j=1 λj∑
D
j=1 λj

is naturally serve as the

measurement to evaluate the linearity of X . Given a tolerable threshold η , if∑d
i=1 λi∑
D
i=1 λi

≥ η then data points inX can be seen in a d-dimensional linear subspace.

3 Dynamic Neighborhood Selection

As analysis in section 1, assume the dimensionality of the data manifold d is
known as a priori knowledge, a good neighborhood selection algorithm should
follow two principles:

1. Data points in the same neighborhood should lie on or close to a d-dimension
linear subspace.

2. The number of data points in the neighborhood should be as large as possible.

DNS method with contraction strategy

input: high-dimensional data set X, the manifold dimension d,
the initial neighborhood size K, the tolerable threshold η.

output: the neighborhood of each point N (xi).

Initialize: for each xi, add its K nearest neighbors to N (xi)
Contraction: for each N (xi),
assume ‖xi − xi1‖ ≤ ‖xi − xi2‖ ≤ · · · ≤ ‖xi − xiK‖, set k = K

1. let matrix X
(k)
i consist of the vector xij (1 ≤ j ≤ k),

and X̄
(k)
i = X

(k)
i (I − (1/k)eeT )1

2. compute eigenvalues λl(0 < l ≤ D) of covariance matrix of X̄
(k)
i X̄

(k)T
i

3. if
∑d

i=1 λi∑D
i=1 λi

≤ η, let k = k − 1, go to step 1;

else let N (xi) = {xij : 1 ≤ j ≤ k}, return.

Fig.1. DNS method with contraction strategy

Based on PCA linearity measurement of finite data points set and the above
two principles, there are two strategies for us to dynamically construct neighbor-
hoods: contraction and expansion. For contraction strategy, we first construct
neighborhood for each point with a large neighborhood size, then iteratively
delete some data points until the rest of data points are in a d-dimensional linear
subspace according to a given tolerable threshold η. For expansion strategy, we

1 e is a column vector of all 1’s with suitable dimensionality.
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first construct neighborhood of each point with a small neighborhood size, then
expand each neighborhood via adding some new points into it while preserving
linearity. Fig.1 and fig.2 describes the pseudo-code of our dynamic neighborhood
selection method with contraction strategy and expansion strategy respectively.

There is an issue that we should emphasize for expansion strategy. In the it-
erative process, as a matter of factor, there is no need to recompute eigenvalues
of covariance matrix of sample points N (xi)∪x(k)

ij
, which is time-consuming and

costly, there are many Incremental updating techniques can be used, such as
Incremental Principal Component Analysis(IPCA) and Incremental SVD tech-
niques, which can quickly compute the eigenvalues and eigenvectors based on
previous eigenvalues and eigenvectors when a new sample is arriving. In our
implementation, LET-IPCA[18] is adopted.

DNS method with expansion strategy

input: high-dimensional data set X, the manifold dimension d,
the scope for candidate neighbors m, the tolerable threshold η.

output: the neighborhood of each point N (xi).

Initialize: for each xi, add its d + 1 nearest neighbors to N (xi)
Expansion: for each N (xi)
1. ∀xij ∈ N (xi) that has not been processed
2. · · · for k-th neighbor x

(k)
ij

(k = 1, 2, · · · , m) of xij

3. · · · · · · if x
(k)
ij

/∈ N (xi)
4. · · · · · · · · · compute eigenvalues λl(0 < l ≤ D) of covariance matrix of

samples N (xi) ∪ x
(k)
ij

5. · · · · · · · · · if
∑d

i=1 λi∑D
i=1 λi

≥ η, add x
(k)
ij

into N (xi),

6. · · ·xij has been processed.

Fig.2. DNS method with expansion strategy

4 Constructing Neighborhood Graph for Isometric
Embedding

In ISOMAP algorithm the geodesic distance is estimated by the shortest path
distance in the NG. And in this NG there is an edge between point xi and xj

if and only if xj ∈ N (xi) or xi ∈ N (xj), the length wij of the edge (xi, xj) is
the Euclidean distance dE(xi, xj) between xi and xj in the input space. Note
that each neighborhood constructed by our DNS method lies on or close to a
d-dimensional linear subspace, for any two points in the same neighborhood,
even though there is no edge between them(no point is in the neighborhood of
the other), the direct Euclidean distance between them in input space is a more
accurate geodesic distance estimate than others because of the linearity of the
neighborhood. See an illustration example in fig. 3.

Therefore we improve the NG construction method used in ISOMAP as fol-
lows: connect any two points in the same neighborhood. Then the constructed
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Fig. 3. An example to illustrate the superiority of the improved NG construction
method. (a). 500 data points sampled from 2-dimensinal Swiss Roll manifold. (b).
a representative neighborhood constructed by DNS when dealing with the 500 sam-
pled data points in panel (a). All the points in panel b are in the neighborhood of
point A. Suppose point B and C are not in the neighborhood of each other, and the
shortest path between them is B-A-C. In original ISOMAP algorithm the estimation of
the geometric distance between B and C is dE(B, A) + dE(A, C), however, in the case
that all points are in a plane, obviously dE(B, C) is a direct and still a more accurate
estimation than dE(B, A)+ dE(A,C). Then we add a new edge connecting B and C in
the NG.

NG is used to estimate the geodesic distance as the way in ISOMAP. As a matter
of fact, if the entire input data set is in a d-dimensional linear subspace, then
all the data points are in one neighborhood, then the nonlinear dimensionality
reduction degenerates into linear method, such as ISOMAP, which degenerates
into MDS[2].

5 Experiment Results

We conducted many experiments on both synthetic data set and real world data
sets, all the experimental results show that our DNS method can dynamically
construct neighborhood according to the manifold curvature and significantly
improve the performance of most manifold learning algorithms such as ISOMAP
and LLE. Moreover our method is not sensitive to the parameters K and m
as long as they are comparatively large numbers, and the tolerable threshold
η can be easily specified manually. In the following, we report results of our
method with expansion strategy, and our experiments show that for contraction
strategy it can also produce the same results. All the experiments showed below
we set m = 12, η = 0.95 if they are not specified. And we call Isomap and LLE
algorithm used our DNS method DNS-Isomap and DNS-LLE respectively.

5.1 Z-Shape Curve Manifold

First, we conduct experiments on data set uniformly sampled from a Z-shape
curve manifold. The fig. 4 shows the neighborhoods of two representative points
constructed by two algorithms on the manifold. One point A is in the region
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Fig. 4. The neighborhoods of A and B constructed by k-NN algorithm(k = 7) and
DNS. All the points in a red ellipse make up of a neighborhood respectively.

where the manifold curvature is very large; the other point B is in the region
where the curvature is very small.

Our DNS method can dynamically construct the neighborhood according to
the curvature of the manifold, this can be seen from the A’s and B’s neighborhood
constructed by our method. The curvature of the manifold at point A is very
large, therefore the number of points in A’s neighborhood constructed by DNS
is small whereas B’s neighborhood contains much more points because of the
small curvature of the manifold at B. Comparing the neighborhoods constructed
by k-NN algorithm, we can see that k-NN has no such an ability.

Moreover, comparing the neighborhoods constructed under different sample
size, A’s neighborhoods constructed by our method always cover the same re-
gion on the manifold in different sample size, the same is point B. However,
region covered by neighborhood constructed by k-NN varies as the sample size.
This phenomenon implies that DNS constructs neighborhoods only according to
the intrinsic structure of the manifold(curvatures in different region) and this
construct process is little influenced by the sample size. We think this property
is just what a superior neighborhood selection algorithm should have. However,
the k-NN has no such a property either.

Then we apply LLE and DNS-LLE on 100 uniformly sampled data points,
the unfolding results of these two algorithms and the real unfolding are shown
on fig. 5. One can see that data points in the unfolding of LLE are no longer
uniformly distributed, and the unfolding result of DNS-LLE algorithm is nearly
the same as the real unfolding of the sampled data points, this demonstrates
that our DNS algorithm can improve the performance of LLE significantly.
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real unfolding

DNS-LLE unfolding

LLE unfolding

Fig. 5. The unfolding results of LLE and DNS-LLE and the real unfolding of 100 data
points uniformly sampled from z-shape curve

5.2 Swiss Roll Data Set

We run Isomap and DNS-isomap algorithms on 1000 data points randomly re-
spectively sampled from Swiss Roll manifold and Swiss Roll with hole manifold.
The 2-D embeddings are shown in fig. 6. From the result we can see that DNS-
isomap algorithm can produce more faithful embedding than Isomap algorithm.
In particular, for swiss roll with hole manifold, Isomap amplifies the hole, while
DNS-isomap can preserve the shape of the hole more faithfully.
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Fig. 6. Results of algorithm run on 1000 samples

We exploit the residual variance proposed in paper[3] and geodesic estimate
error to quantitatively evaluate the performance of our method. Denote the
true geodesic distance matrix by Dg and its estimate by D̂g, then the geodesic
estimate error can be computed by the following formula:

error =
‖Dg − D̂g‖F

n2
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Fig. 7. Residual variance and geodesic estimate error of two algorithms under different
parameters on 1000 data points randomly sampled from Swiss Roll manifold

where ‖ · ‖F is the Frobenius-norm of matrix and n is the number of examples.
In our experiment, the Swiss Roll data set is generated by the following matlab
code:

t=3*pi/2*(1+2*rand(n,1));h=21*rand(n,1);
X=[t.*cos(t) h t.*sin(t)];

So for any two points xi and xj , the true geodesic distance between them on
data manifold can be calculated as follows:

dg(xi, xj) =√
(hi − hj)2 +

1
4

(
ti

√
t2i + 1 + ln

∣∣∣∣ti +
√

t2i + 1
∣∣∣∣− tj

√
t2j + 1 − ln

∣∣∣tj +
√

t2j + 1
∣∣∣)2

then we can easily obtain the true geodesic distance matrix Dg. Fig. 7 plots
the residual variance and geodesic estimate error of Isomap and DNS-isomap
under different parameters k and η when they obtain the 2-D embedding of
1000 data points randomly sampled from Swiss roll manifold. One can see that
the residual variance and geodesic estimate error DNS-isomap are smaller than
those of Isomap algorithm. So we can conclude that our DNS method and the
improved NG construction method can significantly improve the performance of
Isomap algorithm.

5.3 Rendered Face Data Set

To further evaluate the performance of our DNS method on real world data
set, we use Isomap algorithm and DNS-isomap to obtain 3-D embedding of
Rendered face data set2. This data set consists of 698 face images with 64∗64
pixels collected under different poses and light conditions. Each face image is
represented as a 4096-dimensional vector. Denote the matrix that consists of

2 http://isomap.stanford.edu

http://isomap.stanford.edu
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Fig. 8. Reconstruction error of two algorithms on Rendered face data set under
different parameters

light parameters and poses parameters by P , let P̄ = P − (1/n)PeeT , then we
use the following relative reconstruction error to evaluate the performance:

error =
min

L∈R3×3
‖P̄ − LY ‖F

‖P̄‖F
(5)

where Y is the embedding coordinates obtained by algorithm. The less this rel-
ative reconstruction error is, the better the algorithm recovers the intrinsic pa-
rameters of this face data set. Fig. 8 plots the relative reconstruction error of the
3-D coordinates computed by isomap and DNS-isomap under different parame-
ters k and η. One can clearly see that the relative reconstruct error of Isomap
algorithm is sensitive to the parameter k, and DNS-isomap can get smaller rel-
ative reconstruction error, and the relative reconstruction error of DNS-isomap
is not sensitive to the parameter η. This all demonstrates the superiority of our
DNS method and improved NG construction method.

6 Conclusion

This paper concentrates on the neighborhood selection problem in manifold
learning. Existing neighborhood selection algorithms are not so satisfactory. We
propose an dynamic neighborhood selection algorithm based on local linearity
and improves the NG construction method originally used in ISOMAP algo-
rithm. Our method adopts local linearity as the criterion of neighborhood. So
it can dynamically construct the neighborhood of each point only according to
data manifold curvature at that point. Meanwhile, the parameters can be speci-
fied easily because of their independence of the concrete input data set, such as
the size of the input data. Experiments on both synthetic data set and real world
data set demonstrate effectiveness of our method. There are, however, still some
problems we have to solve in our DNS method. DNS adopts the PCA to measure
the linearity of finite data set, so sometimes over fitting can be happened. In the
future, we will try to solve the over fitting problem.
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A Consistency-Constrained Feature Selection
Algorithm with the Steepest Descent Method
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Abstract. This paper proposes a new consistency-based feature selec-
tion algorithm, which presents a new balance to the fundamental tradeoff
between the quality of outputs of feature selection algorithms and their
efficiency. Consistency represents the extent of corrective relevance of
features to classification, and hence, consistency-based feature selection
algorithms such as INTERACT, LCC and CCC can select relevant fea-
tures more correctly by taking interaction among features into account.
INTERACT and LCC are fast by employing the linear search strategy.
By contrast, CCC is slow, since it is based on the complete search strat-
egy, but can output feature subsets of higher quality. The algorithm
that we propose in this paper, on the other hand, takes the steepest
descent method as the search strategy. Consequently, it can find better
solutions than INTERACT and LCC, and simultaneously restrains the
increase in computational complexity within a reasonable level: it eval-
uates (| F | + | F̃ |)(| F | − | F̃ | +1)/2 feature subsets to output F̃ . We
prove effectiveness of the new algorithm through experiments.

1 Introduction

Feature selection plays an indispensable role in preprocessing high dimensional
datasets of various data mining problems. In machine learning problems, data
are represented as vectors (f1, . . . , fL, c): fi’s are values for features Fi’s, and
c is a class label. The objective of classifier algorithms is to guess a class label
c given a feature vector (f1, . . . , fL), and large L definitely does harm to the
performance of the classifier algorithms in terms of accuracy and efficiency. Fea-
ture selection, therefore, aims to reduce L by eliminating those features that are
irrelevant to classification. In a broad sense, feature selection algorithms take
either the filter approach or the wrapper approach. The filter approach takes
advantage of statistical properties intrinsic to datasets, and aims to extract rele-
vant features that are effective to arbitrary classifier algorithms. By contrast, the
wrapper approach aims to select relevant features so as to improve performance
of particular focused classifier algorithms, by involving the classifier algorithms
in the selection process. In this paper, we focus on the filter approach.

Many filter-type feature selection algorithms in the literature evaluate rel-
evance to classification per individual feature, and select features with higher
evaluation. For the evaluation, they take advantage of information-theoretic

V. Torra, Y. Narukawa, and M. Inuiguchi (Eds.): MDAI 2009, LNAI 5861, pp. 338–350, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Consistency-Constrained Feature Selection Algorithm 339

measures such as mutual information I(F; C) ([1]) and symmetric uncertainty
SU(F; C) ([2,3,4]).

I(F; C) =
∑
f,c

Pr[F = f,C = c] ln
Pr[F = f,C = c]

Pr[F = f ] · Pr[C = c]

SU(F; C) = 2 · I(F; C)
H(F) + H(C)

This method, however, ignores interaction among relevant features.
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For example, let F1,F2,G1
and G2 be binary features such
that Pr[F1 = f1,F2 = f2,G1 =
g1,G2 = g2] for f1, f2, g1, g2 ∈
{0, 1} are defined as depicted in
the right. When we let C = F1⊕
F2, I(Fi; C) = SU(Fi; C) = 0
hold. Thus, F1 and F2 interact
each other to determine C, but
each has no relevance to C. On
the other hand, the relevance of
Gi to C is calculated as

I(Gi; C) =
3 + 4ε

6
· ln 3 + 4ε

3
+

3 − 4ε
6

· ln 3 − 4ε
3

> 0,

SU(Gi; C) = 2 · I(Gi; C)
H(Gi) + H(C)

=
I(Gi; C)

ln 2
> 0.

Hence, those feature selection algorithms that evaluate relevance per individual
feature definitely select (G1,G2) rather than (F1,F2), and the predictive accu-
racy of a classifier receiving (G1,G2) cannot exceed 3 ·

( 1
8 + ε

6

)
+
( 1

8 + ε
2

)
= 1

2 +ε.
The consistency-based approach is a solution to this problem (e.g. [5]). Let E

be a finite set of samples (training data, examples) with respect to a feature set
F = {F1, . . . ,FL} and a class variable C.

Definition 1. A subset F̃ � F is said to be E-consistent, when c = c′ holds for
all (f1, . . . , fL, c), (f ′1, . . . , f

′
L, c

′) ∈ E such that fi = f ′i for ∀Fi ∈ F̃ . We may
simply say that F̃ is consistent to C or F̃ determines C.

To the best of our knowledge, FOCUS ([6]) is the first instance of the consistency-
based filter algorithm. On input of F and E , FOCUS selects the smallest
E-consistent subset F̃ � F . When applied to the aforesaid example, FOCUS cor-
rectly selects {F1,F2}. A problem of FOCUS is that, if the entire feature set F
is not E-consistent due to noises in E , FOCUS cannot help failing. Zhao and Liu
([7]) approached this problem by proposing inconsistency rate, a measure to eval-
uate the extent to which F̃ is consistent to C, and INTERACT, a feature selection
algorithm that evaluates the inconsistency rate.
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Shin and Xu ([8]) have revealed that INTERACT has a theoretical deficiency
in its design, and have proved it through experiments with multiple synthetic and
real datasets. Moreover, in order to fix the deficiency of INTERACT, they have
proposed two new algorithms, referred to as the linear consistency-constrained
(LCC) algorithm and the complete consistency-constrained (CCC) algorithm.
Table 1 briefly explains LCC and CCC, where µ denotes an arbitrary consistency
measure such that it meets the conditions of determinacy and monotonicity
(µ(F ; C) represents the measurement of consistency of a feature set F to a class
variable C according to µ):

Determinacy: µ(F ; C) = 0, if, and only if, F determines C; and
Monotonicity: µ(F ; C) ≤ µ(G; C) for F � G.

Intuitively speaking, µ is defined so that, the more consistent to C is F , the
smaller is µ(F ; C). On input of F and δ > 0, LCC and CCC evaluate µ(F̃ ; C)
for F̃ in their search range, and finally output F̃ � F with µ(F̃ ; C) ≤ δ.

Table 1. LCC and CCC

Algorithm Search Evaluation of µ Properties of the output F̃
LCC Linear | F | times F̃ meets µ(F̃ ; C) ≤ δ, and is minimal in

the sense µ(G; C) > δ for any G � F̃ .
CCC Complete ≤ 2|F| times F̃ is the smallest in size of all of the feature

subsets G � F such that µ(G; C) ≤ δ.

In general, the outputs F̃ of a feature selection algorithm are evaluated by
their size | F̃ |. Hence, CCC has more chances to output better results than
LCC. This is due to the difference in their search strategies: CCC employs the
complete search method, and hence, the search range is the entire space of the
subsets of F , while LCC evaluates only | F | subsets. On the other side of
the coin, this obviously implies that LCC is superior to CCC in terms of effi-
ciency. In fact, Shin and Xu ([8]) reported that CCC had failed to return answers
for larger datasets in their experiments. Thus, there is a fundamental tradeoff
between the quality of outputs of feature selection algorithms and their efficiency.

In this regard, this paper aims to propose a new feature selection algorithm,
which presents a new balance to the aforementioned tradeoff. This paper is
organized as follows.

1. Section 2 is devoted to introduction of the works in the literature relating
to our work. We first see the notion of inconsistency rate, and show that,
when generalized, it is equivalent to the well-known notion of the Bayes
risk. In addition, we derive two more measures of consistency from well-
known information theoretic indices. Finally, we review three consistency-
based feature selection algorithms INTERACT, LCC and CCC.

2. In Section 3, we propose a new feature selection algorithm, which employs
the method of steepest descent.

3. In Section 4, we prove effectiveness of our algorithm through experiments.
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2 Consistency Measures and Consistency-Based
Algorithms

2.1 Inconsistency Rate and Bayes Risk

Zhao and Liu ([7]) introduced inconsistency rate for finite datasets as follows.
Let E be a finite dataset with a feature set F = {F1, . . . ,FL} and a class

variable C. First, an inconsistent-instances set Ẽ � E is defined so that, if
(f1, . . . , fL, c) and (f ′1, . . . f ′L, c

′) are in Ẽ , fi = f ′i holds for i = 1, . . . , L (c = c′ is
not required). Secondly, an inconsistent-instances set Ẽ is partitioned into sub-
sets S1, . . . , Sn by the class labels c1, . . . , cn. When the size | S | of a set S is
Then, the inconsistency count of Ẽ is defined by

inconsistencyCount(Ẽ) =| Ẽ | − max
1≤i≤n

| Si | .

Finally, letting Ẽ1, . . . , Ẽp be the decomposition of E into maximal inconsistency-
instances sets, ICR(E) is defined by

ICR(E) =

∑
1≤i≤p inconsistencyCount(Ẽi)

| E | .

The definition can be naturally generalized so that it applies to arbitrary prob-
ability distributions. When F∗ is the random variable that represents the joint
distribution of F1, . . . ,FL, we define

ICR(F ; C) = 1 −
∑

f∈R(F∗)

max
c∈R(C)

Pr[F∗ = f,C = c],

where R(F∗) and R(C) denote the ranges of F∗ and the class variable C. It is
obvious that, when calculated over a finite E , ICR(F ; C) is identical to ICR(E),
and ICR(F ; C) is equivalent to the notion of Bayes risk. In this paper, however,
we use the term “inconsistency rate” in order to emphasize its application to the
feature selection problem. Inconsistency rate has the following properties.

Proposition 1.

(1) ICR(F ; C) = 0, if, and only if, F determines C.
(2) ICR(F ; C) ≤ ICR(G; C), if F ⊃ G.
(3) ICR(F ; C) ≤ n−1

n , if C takes n class labels.

2.2 Other Consistency Measures

Shin and Xu ([8]) have introduced two measures of consistency of feature sets,
which meet the determinacy and monotonicity conditions (Section 1). The mea-
sures are derived from two well-known information theoretic indices, that is,
mutual information and symmetric uncertainty, as follows.

H(C | F∗) = H(C) − I(F∗; C),

SU(F ; C) =
2 · H(C)

H(F∗) + H(C)
− SU(F∗; C)

2 · H(C | F∗)
H(F∗) + H(C)
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Fig. 1. ICR(F ; C) and H(C | F∗)

LCC and CCC are
designed so that they
can evaluate any given
consistency measure
µ(F ; C), as far as
it meets the determi-
nacy and monotonic-
ity conditions. Also,
INTERACT can be
generalized so that
it evaluates consis-
tency of feature sets
by means of µ(F ; C),
since it relies on only
the determinacy and
monotonicity proper-
ties of inconsistency
rate.

Theorem 1 exhibits quantitative correlation between H(C | F∗) and ICR(F ; C)
(Fig. 1).

Theorem 1 ([8]). Let F and C be a feature set and a class variable such that
the ranges of F∗ and C are R(F∗) = {f1, . . . , fm} and R(C) = {c1, . . . , cn} for
m ≥ 2 and n ≥ 2. For r such that ICR(F ; C) = 1 − r, the following formulas
give the maximum and the minimum of H(C | F∗).

max
ICR(F ;C)=1−r

H(C | F∗) = − r ln r − (1 − r) ln
1 − r
n− 1

min
ICR(F ;C)=1−r

H(C | F∗) =
(⌊

1
r

⌋
+ 1

)(
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⌊
1
r

⌋)
ln

(⌊
1
r

⌋
+ 1

)
+

⌊
1
r

⌋(
r

(⌊
1
r

⌋
+ 1

)
− 1

)
ln

⌊
1
r

⌋

2.3 INTERACT

In designing INTERACT, Zhao and Liu ([7]) defined consistency contribution
by CC(F, F̃) = ICR(F̃ \ {F}; C) − ICR(F̃ ; C) to evaluate the contribution of
an individual feature F ∈ F̃ to ICR(F̃ ; C). INTERACT sets F̃ = F as the
initial value, examines a feature F ∈ F one by one in the incremental order of
SU(F; C), and eliminates F from F̃ , if CC(F, F̃) ≤ δ for a given threshold δ
(Fig. 2).

Shin and Xu ([8]) presented a problem of the design of INTERACT: Even
if the threshold δ is set small, ICR(F̃ ; C) for its output F̃ can be large. Let
F̃0 � F̃1 � · · · � F̃L be a history of the values of the variable F̃ managed by
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Algorithm: INTERACT ([7])
INPUT: A feature set F , an example set E ,

a threshold δ

OUTPUT: A feature subset F̃
STEPS:

Let F̃ = F .
Order the features F in F̃ in incremental

order of SU(F;C).
For each F ∈ F̃ from the first to the end.

If CC(F, F̃) ≤ δ, let F̃ = F̃ \ {F}.
End For.

Fig. 2. The algorithm of INTERACT

INTERACT. Although
ICR(F̃k+1; C) - ICR(F̃k

C) ≤ δ, ICR(F̃L; C) can
be large even for small
δ. In fact, Shin and
Xu showed an example
of a type of probability
distribution, for which
INTERACT can only out-
put the empty set.

2.4 LCC and CCC

In order to fix the afore-
said deficiency of IN-

TERACT, Shin and Xu ([8]) have introduced two feature selection algorithms,
namely, Linear Consistency-Constrained (LCC) and Complete Consistency-
Constrained (CCC) algorithms.

Both take a measurement function µ as an input, and outputs a feature subset
F̃ such that µ(F̃ ; C) ≤ δ for a threshold δ.

Algorithm: Linear CC (LCC) ([8])
INPUT: A measurement function µ,

an ordered feature set F ,
an example set E , a threshold δ

OUTPUT: A minimal subset F̃ � F such that
µ(F̃ ; C) ≤ δ.

STEPS:

Let F̃ = F .
If µ(F̃ ; C) > δ, abort.
For each F ∈ F from the first to the end.

If µ(F̃ ; C) ≤ δ, let F̃ = F̃ \ {F}.
End For.

Fig. 3. The algorithm of LCC

LCC receives an or-
dered feature set F (e.g.
ordered in the incremen-
tal order of SU(F; C)). It
first sets F̃ = F , exam-
ines F in the given order,
and eliminates F from
F̃ , if µ(F̃ \ {F}; C) ≤ δ.
The resultant F̃ is mini-
mal in the sense that no
G � F̃ meets µ(G; C) ≤
δ (Fig. 3).

By contrast, CCC first
sets the search range to
the space of the single-
ton feature subsets (i.e.,

{F̃ � F || F̃ |= 1}), and expands the range by increasing the size of subsets
until it finds F̃ such that µ(F̃ ; C) ≤ δ. Thus, the output F̃ of CCC has the
smallest size among G � F such that µ(G; C) ≤ δ.

LCC evaluates | F | different subsets, while CCC does 2|F| subsets at most.

3 Steepest-Descent Consistency-Constrained Algorithm

In this section, we introduce a new algorithm for the consistency-constrained
feature selection. We first introduce the notion of the consistency-constrained
feature selection in Section 3.1, and present the algorithm in Section 3.2. The
computational complexity of the algorithm is examined in Section 3.3.
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3.1 Consistency-Constrained Feature Selection

The notion of the consistency-constrained feature selection is defined as follows.
A consistency-constrained feature selection algorithm takes a function µ to

measure consistency of subsets of the entire feature sets F and a threshold δ as

Algorithm: Consistency-Constrained (CC)
Feature Selection

INPUT: A consistency measure function µ,
a feature set F ,
an example set E , a threshold δ

OUTPUT: A minimal subset F̃ � F such that
µ(F̃ ; C) ≤ δ.

Fig. 4. Consistency-Constrained Feature Selection

inputs, and outputs a
feature subset F̃ such
that µ(F̃ ; C) ≤ δ.
An additional require-
ment for the output
F̃ is that it is mini-
mal in the sense that
µ(G; C) > δ holds for
any G � F̃ . µ(F̃ ; C) is
evaluated over the fi-
nite dataset E given as
input as well (Fig. 4).

3.2 The Algorithm

The algorithm to be introduced here, namely, the Steepest-Descent Consistency-
Constrained (SDCC) algorithm, aims at exhibiting a new balance of the funda-
mental tradeoff between the quality of outputs and the efficiency of execution.

Although CCC can return outputs of high quality, it may execute evaluation
of µ(F̃ ; C) in 2|F| times at worst. It is slow even on average, and, in fact, Shin
and Xu ([8]) have reported that it couldn’t find answers for large datasets in
their experiments. Thus, we should view that LCC exhibits a current state-of-
the-art balance to the tradeoff. LCC is indeed as fast as INTERACT, and shows
better performance than INTERACT in terms of quality of outputs.

Algorithm: Steepest-Descent CC (SDCC)
INPUT: A consistency measure function µ,

a feature set F ,
an example set E , a threshold δ

OUTPUT: A minimal subset F̃ � F such that
µ(F̃ ; C) ≤ δ.

STEPS:

Let F̃ = F .
If µ(F̃ ; C) > δ, abort.
Repeat

Take F ∈ F̃ with the smallest
δ′ = µ(F̃ \ {F}; C).

If δ′ ≤ δ, let F̃ = F̃ \ {F}, else break.
End Repeat.

Fig. 5. The algorithm of SDCC

The quality of outputs of
LCC is, however, still sub-
ject to improvement. The
SDCC feature selection algo-
rithm employs the steepest
descent method to pursue a
new balance to the tradeoff.

SDCC first sets the vari-
able F̃ to the entire fea-
ture set F , and then iterates
the step of eliminating a sin-
gle feature F from F̃ while
µ(F̃ \ {F}; C) ≤ δ. The last
F̃ is the output of SDCC.
For each step of elimination,
it selects F to be eliminated
by
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F = argmin
F∈F̃

µ(F̃ \ {F}; C).

Fig. 5 specifies the algorithm. When we plot F̃ ’s on a plain of coordinates so
that the point (µ(F̃ ; C), | F̃ |) represents F̃ , the descending gradient from F̃ to
F̃ \ {F} is 1

µ(F̃\{F};C)−µ(F̃ ;C)
∈ (0,∞] (by the monotonicity condition, we have

µ(F̃ \ {F}; C) ≥ µ(F̃ ; C)), and hence, SDCC selects the steepest descent from
the current solution F̃ to the next one F̃ \ {F}.

We explain the design of SDCC using an example. We assume that the entire
feature set F consists of four features, that is, F1,F2,F3,F4. In the top chart
of Fig. 6, a node represents a feature subset of F (we have 24 = 16 nodes in
total), while a link between two feature subsets means that SDCC can move

Fig. 6. Illustration of SDCC

from the feature subset placed above
to the other placed below by eliminat-
ing a single feature. Thus, starting from
F̃ = F , SDLL keeps traveling down-
ward along links, while the visited fea-
ture subset F̃ meet the condition of
µ(F̃ ; C) ≤ δ.

Further, in the middle and bottom
charts of Fig. 6, the graph of the top
chart is mapped into the coordinate
space whose x-, y- and z-axes represent
the measurement µ(F̃ ; C), the horizon-
tal span of the graph in the above and
the size | F̃ |, respectively. Also, the
diagram just below represents its pro-
jection to the size-consistency plain.

We assume that F̃ is consistent to C,
(that is, µ(F ; C) = 0), and hence, F is
plotted on the plain of x = 0. When in-
voked, SDCC stays at F . Among the
candidates of the next position, i.e.
F \ {Fi} for i = 1, 2, 3, 4, {F2,F3,F4}
exhibits the smallest consistency mea-
surement µ1 ≤ δ, and equivalently, the
corresponding descending gradient 1

µ1
is the largest. Hence, SDCC moves to
F̃1 = {F2,F3,F4}. Then, SDCC pro-
ceeds to evaluation of µ(F̃1 \ {Fi}; C)
for i = 2, 3, 4, and determines to move
to F̃2 = {F2,F4} with the minimum
measurement µ2 ≤ δ. The correspond-
ing descending gradient of the move
is 1

µ2−µ1
, which is the largest of the
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calculated gradients. SDCC further evaluates µ(F̃2 \ {Fi}; C) for i = 2, 4, but
the minimum measurement µ3 for {F4} exceeds δ. SDCC gives up to travel any
more, and finally, outputs {F2,F4}.

In the diagrams, the black nodes and the thick lines represent the paths that
SDCC has taken. On the other hand, the white nodes and the thin lines indicate
the feature subsets whose consistency SDCC has evaluated. The other feature
subsets are represented by the gray nodes and the dashed lines.

As depicted in the diagrams, and by the generic nature of the steepest step
method, SDCC can be trapped by local optima, and does not necessarily reach
the global optima.

3.3 Computational Complexity

Obviously, SDCC evaluates consistency of |F|(|F|+1)
2 feature subsets at most

out of the possible 2|F| feature subsets of F . More precisely, when SDCC has
finally output F̃ , (|F|+|F̃|)(|F|−|F̃|+1)

2 feature subsets have been evaluated. This
figure is greater than | F | for LCC, but is usually significantly smaller than
| F | +|F|C2 + · · · + |F|C|F̃ | + |F|C|F̃|+1 for CCC.

4 Experimental Results

We prove effectiveness of the SDCC feature selection algorithm through experi-
ments using the same datasets as used in [8].

Table 2. Types of synthetic datasets

Relevant features: Fi (i = 1, . . . , k)
Irrelevant features: Gi,j (i, j = 1, . . . , �)

Parameters #1 #2 #3 #4

k = 5 5 5 10
� = 3 3 3 4

Size of dataset = 100 100 100 1000
Pr[F∗ = 0, C = 0] = 0.85 0.55 0.55 0.725

Pr[F∗ = 2i−1, C = 1] = 0.03 0.09 0.03i 0.005i
Pr[Gi,j = 0 | C = 0] ≈ 0.25i 0.25i 0.25i 0.2i
Pr[Gi,j = 0 | C = 1] ≈ 0.25j 0.25j 0.25j 0.2j

In [8], the authors
proved advantages of
LCC over INTERACT
using 40 synthetic data-
sets, each of which is
of one of the four
types described in Ta-
ble 2, and four real data-
sets from the well-known
UCI repository of ma-
chine learning databases
([9]) and the perfor-
mance prediction chal-
lenge at IEEE WCCI
([10]).

Each type of syn-
thetic datasets determines that an instance dataset shall include k relevant fea-
tures Fi (i = 1, . . . , k), 2 irrelevant features Gi,j (i, j = 1, . . . , ) and a class
variable C, which are all binary. The types are designed so as to meet the fol-
lowing conditions.

1. A feature subset G determines C, iff G � {F1, . . . ,Fk}.
2. For any F̃ � {F1, . . . ,Fk}, µ(F̃ \ {Fi}; C) − µ(F̃ ; C) is small.
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Taking advantage of the first condition, we can evaluate quality of an output F̃
of a feature selection algorithm with the following two measures.

Coverage rate RC : The ratio of the number of Fi ∈ F̃ to k. Larger value
indicates higher quality.

Positively false rate RP : The ratio of the number of Gi,j ∈ F̃ to | F̃ |.
Smaller value indicate higher quality.

On the other hand, the second condition makes the problem to find correct
answers for the resultant datasets difficult. Hence, the datasets we used in the
experiments are hard challenges to future selection algorithms.

Table 3. Real datasets

Dataset Source # of # of # of
Name Examples Features Labels

Wine [9] 178 13 3
Zoo [9] 101 16 7

Kr-vs-Kp [9] 3196 36 2
ADA [10] 4147 48 2

Table 3 illustrates
the real datasets that
we used in the experi-
ments. Two are small,
and the others are
relatively large. Dif-
ferent from the syn-
thetic datasets, there
exists no clear distinc-
tion between relevant
and irrelevant features.
Hence, neither RC nor
RP can be used for evaluation of the experiments with the real datasets. In the
experiments, we used the following measures instead of RC and RP .

Size | F̃ |: The number of the features in an output F̃ . Smaller size indicates
higher quality.

Consistency measurement µ(F̃ ; C): As the measure µ, we used ICR(F̃ ; C),
H(C | F̃∗) and SU(F̃ ; C). Smaller value indicates better quality.

As the monotonicity condition implies, the measures of | F̃ | and µ(F̃ ; C) are in
relation of a loose tradeoff. Nevertheless, if an algorithm exhibits better values
for both of the measures than another, or if they are comparable in one of the
measures, we can compare the algorithms according to the measures.

We examined three feature selection algorithms, namely LCC, CCC and SDCC
(comparison between INTERACT and LCC is given in [8]) in combination with
the consistency measures of ICR(F̃ ; C), H(C | F̃∗) and SU(F̃ ; C). We first re-
mark the following, which we have found through the experiments.

1. CCC could be applied only to the smaller datasets of the synthetic datasets
of Type 1 to 3 and the real datasets of Wine and Zoo. For these datasets,
the quality of the outputs of CCC was comparable with that of SDCC.

2. There was observed no meaningful difference among the results of the ex-
periments with ICR(F̃ ; C), H(C | F̃∗) and SU(F̃ ; C).

3. SDCC showed clear advantages over LCC (and therefore over INTERACT)
for the synthetic datasets of Type 4 and the real datasets of Wine and ADA.
For the other datasets, SDCC and LCC were comparable with each other.



348 K. Shin and X.M. Xu

In the remainder of this section, based on the aforementioned finding, we verify
the advantages of SDCC over LCC by seeing the results of the experiments with
the measure of ICR(F̃ ; C) and with the synthetic datasets of Type 4 and the
real datasets of Wine and ADA. In the graphs below, the solid lines with the
triangular dots represent SDCC, while the dashed lines with the square dots do
LCC. Just for the reader’s reference, the results of INTERACT are plotted in
the same graphs by the dashed dotted lines and the diamond-shaped dots.

Fig. 7. The results for Type 4

Fig. 7 shows the results of
the experiments with the 10 syn-
thetic datasets of Type 4. We
evaluated the RC and RP value
changing the threshold δ from 0
to 0.1 with 0.01 increments in
between for each dataset, and
plotted the average over the 10
datasets.

The RC curve for SDCC de-
scends slightly slower than that
for LCC, as the threshold δ
increases. On the other hand,
the RP value for SDCC consis-
tently remains 0 over the inter-
val [0, 0.1] of δ, while the value
for LCC holistically increases.
This means that SDCC and LCC
dropped more relevant features
as δ increases, but the number

of the relevant features that SDCC dropped was consistently smaller than LCC.
Furthermore, SDCC selected no irrelevant features at all, while the outputs of

Fig. 8. Results for Wine and ADA



A Consistency-Constrained Feature Selection Algorithm 349

Fig. 9. Results for Zoo and Kr-vs-Kp

LCC included irrelevant features up to 38%. By contrast, INTERACT could
output only irrelevant features for δ ≥ 0.5.

On the other hand, Figure 8 depicts the results of the experiments with Wine
and ADA, which also exhibit advantages of SDCC over LCC.

For each examined δ with Wine, one of the following is observed: the size
| F̃ | is smaller for SDCC than for LCC, and the measurement ICR(F̃ ; C) is
comparable between SDCC and LCC; or | F̃ | is the same for SDCC as for LCC,
but ICR(F̃ ; C) is smaller for SDCC than LCC.

Fig. 10. Efficiency

For ADA, SDCC and LCC
could not help outputting the
empty set for δ ≥ 0.26, since
ICR(∅; C) = 0.25 < 0.26. For
δ ≤ 0.20 both of the size | F̃ |
and the measurement ICR(F̃ ; C)
are smaller for SDCC than for
LCC. In the case of δ = 0.22
and 0.24, LCC and SDCC out-
put a singleton feature set and
a set with two features. Hence,
we should understand that the
outputs of LCC are better than
those of SDCC, but the differ-
ence is not significant. By con-
trast, ICR(F̃ ; C) is significantly
smaller for SDCC than for LCC.
Thus, we should conclude that

the outputs of SDCC are better than those of LCC.
For the reader’s reference, Figure 9 shows the results of the experiments with

Zoo and Kr-vs-Kp. It can be observed that the results for SDCC and CCC were
comparable with each other.
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Finally, we see the experimental results on efficiency. Fig. 10 depicts com-
parison in the execution time between SDCC and LCC. The x-axis represents
the total number of features | F | of the experimented datasets, and the y-axis
represents the ratio of the execution time of SDCC to that of LCC for the same
datasets.

In theory, LCC executes evaluation of the consistency measure µ in | F |
times, while SDCC evaluates µ in (|F|+|F̃|)(|F|−|F̃|+1)

2 times for the output F̃ .
The curves in Fig. 10 represent the theoretical estimation of the ratio, and are
determined by

y =
(x+ n)(x − n+ 1)

2x
for n = 1, 10, 20 and 30. The + dots in the graph show the results of the ex-
periments with the real datasets of Wine, Zoo, Kr-vs-Kp and ADA. Since each
dataset was experimented with in 26 times changing δ, more than one dots are
plotted for each dataset. From the diagram, we see that the experimental results
follow the theoretical estimation. This also indicates that the time for evaluating
µ is dominant to the total execution time of SDCC and LCC.
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Abstract. In this paper, we consider a heuristic method to partially cal-
culate relative reducts with better evaluation by the evaluation criterion
proposed by the authors. By considering discernibility and equivalence
of elements with respect to values of condition attributes that appear
in relative reducts, we introduce an evaluation criterion of condition at-
tributes, and consider a heuristic method for calculating a relative reduct
with better evaluation.

1 Introduction

Pawlak’s rough set theory [7,9] provides a theoretical framework of data mining
from categorical data. In this viewpoint, generating relative reducts and decision
rules from a given decision table have been central topics, and there are various
studies about this topics. Skowron and Rauszer [12] have proposed an algorithm
to calculate all relative reducts by using the concept of the discernibility matrix.
However, they have also proved that computational complexity of calculation of
all relative reducts in the given decision table is NP-hard [12]. Thus, there have
been many proposals of approximate algorithms to partially calculate relative
reducts instead of calculating all relative reducts [1,2,3,10,13,15,16].

In this paper, we introduce an evaluation criterion of relative reducts based on
discernibility and equivalence by condition attributes. Moreover, we also consider
a heuristic method to calculate a relative reduct with better evaluation by the
proposed evaluation criterion. Note that this paper is a revised and extended
version of the authors’ manuscripts [4,6].

2 Rough Sets

In this section, we review the rough set theory, in particular, decision tables,
relative reducts, and discernibility matrices. Note that contents of this section
are based on [5,11].
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2.1 Decision Tables and Lower and Upper Approximations

Generally, subjects of data analysis by rough sets are illustrated by decision
tables. Formally, a decision table is the following quadruple:

DT = (U,C ∪D,V, ρ), (1)

where U is a finite and non-empty set of elements, C and D are finite and non-
empty sets of condition attributes and decision attributes such that C ∩D = ∅,
respectively, V is a set of all values of attributes a ∈ C∪D, and ρ : U×(C∪D) →
V is a function which assigns a value ρ(x, a) ∈ V at the attribute a ∈ C ∪D to
the element x ∈ U .

Classification of elements in decision tables are done based on indiscernibility
relations. For any set of attributes A ⊆ C ∪D, the indiscernibility relations RA

is the following binary relation on U :

RA = {(x, y) | ρ(x, a) = ρ(y, a), ∀a ∈ A}. (2)

If a pair (x, y) is in RA, then two elements x and y are indiscernible with respect
to all attributes in A. It is well-known that any indiscernibility relation is an
equivalence relation, and equivalence classes by an equivalence relation consists
of a partition on the domain of the equivalence relation. In particular, the in-
discernibility relation RD based on the set of decision attributes D provides a
partition D = {D1, · · · , Dk}, and each element Di ∈ D is called a decision class.

Classifying elements with respect to condition attributes provides approxima-
tion of decision classes. Formally, for any set A ⊆ C of condition attributes and
any decision class Di ∈ D, we let

A(Di) = {x ∈ U | [x]A ⊆ Di}, (3)
A(Di) = {x ∈ U | [x]A ∩Di �= ∅}, (4)

where the set [x]A is the equivalence class of x by the indiscernibility relation
RA. The set A(Di) and the set A(Di) are called the lower approximation and
the upper approximation of the decision class Di with respect to A, respectively.
Note that the lower approximation A(Di) illustrates the set of elements which
are correctly classified to the decision class Di by checking all attributes in A.

Example 1. Table 1 illustrates an decision table we use in this paper, and consists
of the following elements: U = {x1, · · · , x6}, C = {c1, · · · , c6}, D = {d}, V =
{0, 1, 2}, and the function ρ : U × (C ∪D) → V illustrates values of elements at
attributes such that ρ(x1, c1) = 1. The set of decision attributes D provides the
following three decision classes;D1 = {x1, x2, x5},D2 = {x3, x4} andD3 = {x6}.

2.2 Relative Reducts

By checking values of all condition attributes, we can classify all discernible
elements in a given decision table to those correct decision classes. However, not
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Table 1. Decision table

U c1 c2 c3 c4 c5 c6 d

x1 1 1 1 1 1 2 1
x2 2 2 1 1 1 2 1
x3 2 3 2 1 2 1 2
x4 2 2 2 2 2 1 2
x5 2 2 3 1 1 2 1
x6 1 2 1 1 2 2 3

all condition attributes may need to be checked in the sense that some condition
attributes are essential to classify, and the other attributes are redundant. A
minimal set of condition attributes to classify all discernible elements to correct
decision classes is called a relative reduct of the decision table.

To introduce the concept of relative reducts, for any subsetX ⊆ C of condition
attributes in a decision table DT , we let

POSX(D) =
⋃

Di∈D
X(Di). (5)

The set POSX(D) is called the positive region of D by X . All elements x ∈
POSX(D) are classified to correct decision classes by checking all attributes in
X . In particular, the set POSC(D) is the set of all discernible elements in DT .

Here, we define relative reducts formally. A set A ⊆ C is called a relative
reduct of the decision table DT if the set A satisfies the following conditions:

1. POSA(D) = POSC(D).
2. POSB(D) �= POSC(D) for any proper subset B ⊂ A.

Note that, in general, there are plural relative reducts in a decision table. Com-
mon part of all relative reducts are called the core of the decision table.

For example, there are the following three relative reducts in Table 1: {c3, c5},
{c5, c6}, and {c2, c4, c5}. The condition attribute c5 appears in all of the relative
reducts in Table 1, and therefore the core of Table 1 is {c5}.

2.3 Discernibility Matrix

The discernibility matrix is one of the most popular methods to calculate all
relative reducts in the decision table. Let DT be a decision table with |U | ele-
ments, where |U | is the cardinality of U . The discernibility matrix DM of DT is
a symmetric |U | × |U | matrix whose element at i-th row and j-th column is the
following set of condition attributes to discern between two elements xi and xj :

δij =

⎧⎨⎩{a ∈ C | ρ(xi, a) �= ρ(xj , a)},
∃d ∈ D s. t. ρ(xi, d) �= ρ(xj , d),
and {xi, xj} ∩ PosC(D) �= ∅.

∅, otherwise.
(6)

Each element a ∈ δij represents that xi and xj are discernible by checking the
value of a.
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Table 2. The discernibility matrix of Table 1

x1 x2 x3 x4 x5 x6

x1 ∅
x2 ∅ ∅
x3 {c1, c2, c3, c5, c6} {c2, c3, c5, c6} ∅
x4 {c1, c2, c3, c4, c6} {c3, c4, c6} ∅ ∅
x5 ∅ ∅ {c2, c3, c5, c6} {c3, c4, c6} ∅
x6 {c1, c2, c5} {c5} {c2, c3, c6} {c3, c4, c5, c6} {c3, c5} ∅

Using the discernibility matrix, we get all relative reducts of the decision table
as follows:

1. Construct the following logical formula L(δij) from each non-empty set δij =
{ak1, · · · , akl} (i > j and l ≥ 1) in the discernibility matrix:

L(δij) : ak1 ∨ · · · ∨ akl. (7)

2. Construct a conjunctive normal form
∧

i>j L(δij).
3. Transform the conjunctive normal form to the minimal disjunctive normal

form: ∧
i>j

L(δij) ≡
s∨

p=1

tp∧
q=1

apq (8)

4. For each conjunction ap1 ∧ · · · ∧ aptp (1 ≤ p ≤ s) in the minimal disjunctive
normal form, construct a relative reduct {ap1, · · · , aptp}.

Example 2. Table 2 illustrates the discernibility matrix of the decision table by
Table 1. Each non-empty set that appears in the matrix represents the set of
condition attributes that we should check to discern the corresponding objects.
For example, the set δ65 = {c3, c5} represents that we can discern the objects
x6 and x5 by either of values of these objects at the condition attribute c3 and
c5. Note that we omit upper triangular components of the discernibility matrix
in Table 2 because the discernibility matrix is symmetric by the definition. We
construct a conjunctive normal form by connecting logical formulas based on
non-empty elements in Table 2, and transform the conjunctive normal form to
the minimal disjunctive normal form as follows;

(c1 ∨ c2 ∨ c3 ∨ c5 ∨ c6) ∧ (c2 ∨ c3 ∨ c5 ∨ c6) ∧ · · · ∧ (c3 ∨ c5)
≡ (c3 ∧ c5) ∨ (c5 ∧ c6) ∨ (c2 ∧ c4 ∧ c5).

Consequently, from this minimal disjunctive normal form, we have the three
relative reducts {c3, c5}, {c5, c6}, and {c2, c4, c5}.
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3 Evaluation of Relative Reducts Based on Classification
Ability

In this section, we introduce an evaluation method of relative reducts based on
classification ability of condition attributes.

We intend to evaluate relative reducts by classification ability of condition
attributes that appear in relative reducts with respect to decision classes. Here,
we consider that condition attributes that satisfy the following two conditions
have high classification ability:

– Condition attributes that discern elements that belong to different decision
classes as long as possible.

– Condition attributes that do not discern elements that belong to the same
decision class as long as possible.

Following to this evaluation policy, we consider the following two sets, for each
condition attribute a ∈ C:

Dis(a) =

⎧⎪⎪⎨⎪⎪⎩ (xi, xj) ∈ U × U

{xi, xj} ∩ PosC(D) �= ∅,
ρ(xi, a) �= ρ(xj , a),
ρ(xi, d) �= ρ(xj , d),
∃d ∈ D, i > j

⎫⎪⎪⎬⎪⎪⎭ , (9)

Indis(a) =

⎧⎪⎪⎨⎪⎪⎩ (xi, xj) ∈ U × U

{xi, xj} ∩ PosC(D) �= ∅,
ρ(xi, a) = ρ(xj , a),
ρ(xi, d) = ρ(xj , d),
∀d ∈ D, i > j

⎫⎪⎪⎬⎪⎪⎭ . (10)

The set Dis(a) describes the set of ordered pair (xi, xj) such that xi and xj

belong to different decision classes and discerned by the values of the attribute
a. The set Indis(a) describes the set of (xi, xj) such that xi and xj belong to
the same decision classe and are not discerned by the values of a.

For each condition attribute a ∈ C, we introduce the following criterion for
classification ability with respect to decision classes:

Eval(a) def= |Dis(a)| + |Indis(a)|. (11)

We consider that the higher the evaluation value Eval(a), the higher classifica-
tion ability the condition attribute a has. It is easily confirmed that the degree
|Dis(a)| is the number of the attribute a appeared in the discernibility matrix
DM , thus we can calculate the degree |Dis(a)| when we construct the discernibil-
ity matrix DM . We can also calculate the degree |Indis(a)| simultaneously, thus
we can evaluate all condition attributes during construction of the discernibility
matrix.

Let B ⊆ C be a relative reduct of a given decision table. The evaluation value
Eval(B) of the relative reduct is defined by

Eval(B) def=
1
|B|

∑
c∈B

Eval(c). (12)
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Similar to the case of condition attributes, we consider that the higher the eval-
uation value Eval(B), the higher classification ability the relative reduct B has.

Note that Yamaguchi [17] has proposed an improvement of Pawlak’s attribute
dependency [8] by using a similar policy used in this evaluation method. How-
ever, his formulation is different from this evaluation method, and not used for
evaluation of relative reducts.

4 A Heuristic Algorithm for Calculating a Candidate of
Relative Reduct with Better Evaluation

In this section, we propose a heuristic algorithm for calculating a relative reduct
with higher evaluation value by the proposed evaluation criterion of relative
reducts by (12).

For providing a candidate S ⊆ C of relative reducts, we revise the current can-
didate S by adding a condition attribute with the highest evaluation value, and
update evaluation values of condition attributes till the candidate has nonempty
intersections with all nonempty elements in the discernibility matrix. As we have
described in the previous section, the degree |Dis(a)| used in (11) is the number
of the attribute a ∈ C appeared in the discernibility matrix and therefore we
can update the degree |Dis(a)| of each condition attributes a by revising the
discernibility matrix. For updating the degree |Indis(a)| of each a, we introduce
a concept of equivalent matrix of a given decision table. Formally, an equivalent
matrix EM of a given decision table DT = (U,C ∪D,V, ρ) is a |U |× |U | matrix
whose element at i-th row and j-th column is the following set εij of condition
attributes:

εij
def=

⎧⎨⎩{a ∈ C | ρ(xi, a) = ρ(xj , a)},
{xi, xj} ∩ PosC(D) �= ∅, and
∀d ∈ D, ρ(xi, d) = ρ(xj , d).

∅, otherwise.
(13)

The nonempty element εij is the set of condition attributes that xi and xj in the
same decision class have the same value. From the definition of equivalent matrix,
it is easily confirmed that εij = εji and εii = C for any i, j ∈ {1, · · · , |U |}. Thus,
similar to the case of discernibility matrix, the equivalent matrix is symmetric,
and therefore it is enough to construct the upper (lower) triangular part of
the equivalent matrix for actual computation. Table 3 represents the equivalent
matrix of the decision table described by Table 2 as an example of equivalent
matrix.

Using the discernibility matrix and the equivalent matrix, the definition of
Dis(a) and Indis(a) are revised as follows:

Dis(a) =
{

(xi, xj) ∈ U × U a ∈ δij , i > j
}
, (14)

Indis(a) =
{

(xi, xj) ∈ U × U a ∈ εij , i > j
}

. (15)

Thus, we can calculate the evaluation value Eval(a) for each condition attribute
a ∈ C based on the discernibility matrix and the equivalent matrix.
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Table 3. The equivalent matrix of Table 1

x1 x2 x3 x4 x5 x6

x1 C
x2 {c3, c4, c5, c6} C
x3 ∅ ∅ C
x4 ∅ ∅ ∅ C
x5 {c4, c5, c6} {c1, c2, c4, c5, c6} ∅ ∅ C
x6 ∅ ∅ ∅ ∅ ∅ C

We propose the following heuristic algorithm to calculate a candidate of rel-
ative reducts with better evaluation:

Algorithm for Calculating a Candidate of Relative Reduct with Better
Evaluation
Input: The set of condition attributes CCthe discernibility matrix DMC and
the equivalent matrix EM .
Output: A candidate of relative reducts S ⊆ C.

1. S :=
⋃
{δ ∈ DM | |δ| = 1}D

2. For each δij ∈ DM , if S ∩ δij �= ∅ holds, then we set δij := ∅. Similarly, for
each εij ∈ EM , if S ∩ εij �= ∅ hold, then we set εij := ∅.

3. For each c ∈ C, calculate the evaluation value Eval(c) = |Dis(c)|+ |Indis(c)|
by using DM and EM .

4. Add a condition attribute ch ∈ C with the highest evaluation value to the
set S; S := S ∪ {ch}.

5. Remove ch from C; C := C − {ch}.
6. For all δij ∈ DM , if S ∩ δij �= ∅ holds, output S and quit; otherwise, go back

to Step. 2.

In this algorithm, we construct the core of relative reducts at Step 1. by using
the following property; a condition attribute a ∈ C is in the core if and only
if there is an element δij in the discernibility matrix such that δij = {a} [12].
In Step 2. and 3., we revise the discernibility matrix and the equivalent matrix
for updating the current evaluation values of condition attributes. In Step 4, we
revise the current candidate by adding a condition attribute with the currently
highest evaluation value.

5 Experiments

We applied the proposed method to the following ten data sets in UCI ma-
chine learning repository [14]; audiology, lung-cancer, Monk1, Monk3, soybean-s,
soybean-l, SPECT-test, SPECT-train, vote, and Zoo.
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Table 4. Experiment results

Data set Attributes Instances Reducts Selected Ranking
audiology 70 200 - 13 -

lung-cancer 57 32 - 5 -
Monk1 7 124 1 3 1
Monk3 7 122 1 4 1

soybean-s 36 47 - 2 -
soybean-l 36 307 - 9 -

SPECT-test 22 187 40 12 20
SPECT-train 22 80 26 11 5

vote 16 435 3 8 1
Zoo 17 101 33 5 1

Table 4 describes experiment results. In Table 4, the first column represents
names of data sets. The second and third columns represent numbers of at-
tributes and instances in each data set. The fourth column represents numbers
of all relative reducts of each data set, and the fifth column represents numbers
of attributes that appear in the output of the proposed method for each data set.
Finally, the sixth column represents the ranking of the output among all relative
reducts for each data set. The notation ‘-’ in the fourth and sixth columns means
that we could not calculate all relative reducts of these data sets, then we could
not also evaluate the ranking of the output among all relative reducts.

As the experiment results show, in the cases of SPECT-train, vote, and zoo,
the proposed method could generate better relative reducts with respect to the
proposed evaluation criterion (12). In the other cases, the proposed method
could provide a relative reduct, i. e. any output of the proposed method had no
redundant condition attributes.

6 Conclusion

In this paper, we proposed an evaluation criterion of relative reducts based
on classification ability of condition attributes that appear in relative reducts.
Moreover, we considered a heuristic method for partial calculation of relative
reducts with better evaluation by the proposed evaluation criterion. The pro-
posed method was applied to ten data sets in UCI machine learning repository,
and provided better outputs for almost data sets. More refinement and consid-
eration of computational complexity of the proposed method, and experiments
using more large data are future issues.
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Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 13–21.
Springer, Heidelberg (2007)

17. Yamaguchi, D.: On the Improvement of Pawlak’s Attribute Dependency Model.
In: Proc. of the 2nd International Conference on Kansei Engineering and Affective
Systems, JSKE, pp. 83–88 (2008)

http://archive.ics.uci.edu/ml/index.html


Multiobjective Multiclass Soft-Margin Support
Vector Machine and Its Solving Technique Based

on Benson’s Method

Keiji Tatsumi, Ryo Kawachi, Kenji Hayashida, and Tetsuzo Tanino

Osaka University, Yamada-Oka 2-1, Suita, Osaka 565-0871, Japan
tatsumi@eei.eng.osaka-u.ac.jp,
tanino@eei.eng.osaka-u.ac.jp

Abstract. In this paper, we focus on the all together model, which is one
of the support vector machine (SVM) using a piece-wise linear function
for multiclass classification. We already proposed a multiobjective hard-
margin SVM model as a new all together model for piecewise linearly sep-
arable data, which maximizes all of the geometric margins simultaneously
for the generalization ability. In addition, we derived a single-objective
convex problem and showed that a Pareto optimal solution for the pro-
posed multiobjective SVM is obtained by solving single-objective prob-
lems. However, in the real-world classification problem the data are often
piecewise linearly inseparable. Therefore, in this paper we extend the
hard-margin SVM for the data by using penalty functions for the mar-
gin slack variables between outliers and the corresponding discriminant
hyperplane. Those functions are incorporated into the objective func-
tions. Moreover, we derive a single-objective second-order cone program-
ming (SOCP) problem based on Benson’s method and some techniques,
and show that a Pareto optimal solution for the proposed soft-margin
SVM is obtained by solving the SOCP iteratively. Furthermore through
numerical experiments we verify that the proposed iterative method
maximizes the geometric margins and constructs a classifier with a high
generalization ability.

1 Introduction

The support vector machine (SVM) is one of the major machine learning meth-
ods for classification problems. Since it was originally proposed for binary-class
problem, several kinds of extensions for multiclass classification have been in-
vestigated [3,7,8]. In this paper, we focus on the all together method which finds
a discriminant function directly by solving an optimization problem by using
all patterns, which is proposed in [4,6,12,13], where all patterns are classified
into the corresponding classes by using a piece-wise linear function. This model
is formulated as a single-objective quadratic optimization problem which maxi-
mizes the sum of margins between all of the pairs of classes, where the margin
is defined as the distance between two normalized support hyperplanes paral-
lel to the corresponding discriminant hyperplane. However, as we point out in
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[10,11], the margin is not always equal to the geometric margin which is defined
as the minimal distance of patterns to the corresponding discriminant hyper-
plane, and the geometric margin can exactly indicate the relation between each
pattern and the discriminant function. Therefore, in [11], we emphasized that
maximizing the geometric margins is important for the generalization of mul-
ticlass classification, and proposed a hard-margin multiobjective SVM model
which maximizes all of the geometric margins simultaneously. Moreover, we de-
rived single-objective second-order cone programming (SOCP) problems, which
are solvable convex programming problems, by using scalarization approaches
for multiobjective optimization, ε-constraint and Benson’s methods, and the-
oretically showed that the optimal solution of the derived models are Pareto
optimal for the proposed multiobjective model. Moreover, we applied them to
some examples to demonstrate that the proposed models can achieve maximiza-
tion of the geometric margins and can obtain classifiers with high generalization
ability.

In this paper, we consider the classification problem for piecewise linearly
inseparable data, which are often appeared in the real-world problems. Thus,
we extend the proposed hard-margin model into a soft-margin one by using a
penalty function of the margin slack variables between outliers and the discrim-
inant hyperplane. Those functions are incorporated into the objective functions.
Then, we derive a single-objective SOCP problem based on Benson’s method
and some techniques, and show that a Pareto optimal solution of the proposed
soft-margin SVM is obtained by solving the SOCP models iteratively. Finally
we verify that the proposed method maximizes the geometric margins and min-
imizes the penalty functions in the sense of multiobjective optimization and
compare the classification abilities of the proposed and the existing models.

2 Multiclass Classification

In this paper, we shall use the following notations for the orders of vectors x, y
∈ +n:

x � y, if xi � yi, i = 1, . . . , n.
x ≤ y, if xi � yi, i = 1, . . . , n, and x �= y,

x < y, if xi < yi, i = 1, . . . , n.

Now, let us consider the following multiclass classification problem: For given
data: D = {xi, yi}, i = 1, . . . ,m, where xi ∈ +n is an input pattern and yi ∈
K := {1, . . . , k} denotes the corresponding class, we construct a classifier which
divides all patterns into the corresponding classes:

f(x) = argmax
p

{wp�x+ bp}.

where wp ∈ +n and bp, p ∈ K are decision variables and the linear function
wp�x + bp indicates the degree of confidence when a point x is classified into
class p. Then,
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(wp − wq)�x+ (bp − bq) = 0, q �= p, p, q ∈ K, (1)

is the discriminant hyperplane which distinguishes between classes p and q. Note
that the representation of discriminant hyperplanes (1) is not unique. For any
constants t(> 0), s ∈ + and any vector v ∈ +n, (w1�, . . . , wk�), (b1, . . . , bk) and
(tw1� + v�, . . . , twk� + v�), (tb1 + s, . . . , tbk + s) are different representations
of the same discriminant hyperplanes.

Now, in this section, we suppose that data D are piecewise linearly separable.
Then, there exist an infinite number of discriminant functions to distinguish all
classes correctly. In the multiclass classification, on the analogy of the binary
SVM, the model maximizing 1/‖wp − wq‖ for all pairs {p, q}, q �= p, p, q ∈ K
was proposed in [4,6,12,13],

(O)
min
w,b

1
2

k∑
p=1

k∑
q=1,q �=p

‖wp − wq‖2

s.t (wp − wq)�xi + (bp − bq) � 1, i ∈ Ip, q �= p, p, q ∈ K,

where Ip denotes an index set defined by Ip := {i ∈ {1, . . . ,m} | yi = p}. This
model is called the all together model. Here, note that 1/‖wp − wq‖ denotes a
half of the distance between two normalized support hyperplanes (wp−wq)�x+
(bp − bq) = 1 or − 1 parallel to the corresponding discriminant hyperplane (1),
which is called the functional margin in this paper.

However, since the normalized support hyperplane often does not include
support vectors, the functional margin obtained in model (O) is not necessarily
equal to the geometric margin defined as the distance of the nearest pattern in
a pair of classes {p, q} to the corresponding discriminant hyperplane (1),

dgpq(w, b) := min
{

min
i∈Ip

|(wp − wq)�xi + (bp − bq)|
‖wp − wq‖ ,

min
i∈Iq

|(wp − wq)�xi + (bp − bq)|
‖wp − wq‖

}
, q > p, p, q ∈ K,

which classifies all patterns in both classes correctly, as we pointed out in [10,11].
Thus, it cannot guarantee that margins obtained by maximizing ‖wp − wq‖,
q �= p ∈ K in the model (O) are equal to the corresponding geometric margins
dgpq(w, b). Therefore, we proposed a hard-margin multiobjective SVM (M1) which
maximizes all geometric margins simultaneously in [11]

(M1)
max
w,b

d(w, b)

s.t. (wp − wq)�xi + (bp − bq) � 1, i ∈ Ip, q �= p, p, q ∈ K,

where d(w, b) is defined by

d(w, b) =
(
dg12(w, b), d

g
13(w, b), . . . , d

g
(k−1)k(w, b)

)�
.
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Moreover, since model (M1) is difficult to solve directly, we proposed the follow-
ing model (M2) using a vector σ ∈ +k(k−1)/2 and a function θ(w, σ):

(M2)

max
w,b,σ

θ(w, σ)

s.t. (wp − wq)�xi + (bp − bq) � σpq, i ∈ Ip, q > p, p, q ∈ K,
(wq − wp)�xi + (bq − bp) � σpq, i ∈ Iq, q > p, p, q ∈ K,
σpq � 1, q > p, p, q ∈ K,

where θ(w, b) is defined by

θ(w, σ) =
(
θ12(w, σ), θ13(w, σ), . . . , θ(k−1)k(w, b, σ)

)�
,

and
θpq(w, σ) =

σpq

‖wp − wq‖ , q > p, p, q ∈ K.

Suppose that there exist Pareto optimal solutions of (M2). Then, we showed
that the optimal solutions of (M2) can be considered to be equivalent to those
of (M1) as follows:

Theorem 1. If (w∗, b∗, σ∗) is Pareto optimal for (M2), (w∗, b∗) is Pareto op-
timal for (M1). Conversely, if (w∗, b∗) is Pareto optimal for (M1), (w∗, b∗,
σ(w∗, b∗)) is Pareto optimal for (M2), where an element of σ is defined by

σpq(w, b) := min
{

min
i∈Ip

|(wp − wq)�xi + (bp − bq)|,

min
i∈Iq

|(wq − wp)�xi + (bq − bp)|
}
, q > p, p, q ∈ K.

In addition, we derived two kinds of single-objective optimization problems by
scalarization approaches to multiobjective optimization, ε-constraint approach
and Benson’s method, and transform them into single-objective second-order
cone programming (SOCP) problems which are solvable convex programming
ones. Furthermore, we showed theoretically that Pareto optimal solutions of the
multiobjective problem (SM2) can be obtained by solving SOCP models, and ap-
plied them to some examples to demonstrate that they can achieve maximization
of the geometric margins [11].

However, in the real-world classification problem the data are often piecewise
linearly inseparable. Thus, we extend the hard-margin SVM to a soft-margin
one for the data and propose a SOCP model based on Benson’s method to solve
the soft-margin model in the next section.

3 Multiobjective Soft-Margin Model Maximizing
Geometric Margins

In this section, we focus on the classification problem for piecewise linearly in-
separable data. In the case, instead of the existing hard-margin model (O), the
following model (SO) is often used:
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(SO)

min
w,b

1
2

k∑
p=1

k∑
q=1,q>p

‖wp − wq‖2 + cξ
k∑

p=1

k∑
q=1,q>p

ηpq(ξ)

s.t. (wp − wq)�xi + (bp − bq) � 1 − ξpqi, i ∈ Ip, q �= p, p, q ∈ K,
ξpqi � 0, i ∈ Ip, q �= p, p, q ∈ K,

where ξpqi is a margin slack variable to relax the constraints, and ηpq(ξ) is a
penalty function defined by ηpq(ξ) :=

∑
i∈Ip

ξpqi +
∑

i∈Iq
ξqpi.

Now, we extend the hard-margin model (M2) by using the above penalty
function. These functions are incorporated into the objective functions θpq(w, σ)
in the following model:

(SM2)
max

w,b,σ,ξ

(
θ12(w, σ), . . . , θ(k−1)k(w, σ), −η12(σ, ξ), . . . ,−η(k−1)k(σ, ξ)

)
s.t. (wp − wq)�xi + (bp − bq) � σpq − ξpqi, i ∈ Ip, q > p, p, q ∈ K,

(wq − wp)�xi + (bq − bp) � σpq − ξqpi, i ∈ Iq, q > p, p, q ∈ K,
σpq � 1, q > p, p, q ∈ K,
wp �= wq , ξpqi � 0, i ∈ Ip, q �= p, p, q ∈ K.

We can see that (SM2) maximizes all geometric margins and minimizes all
penalty functions, simultaneously. However, since (SM2) is complicate, we derive
a single-objective convex optimization problem whose optimal solution is Pareto
optimal for (SM2) in the next section.

4 SOCP Model Based on Benson’s Method

In this section, we first consider the following single-objective problem which
is derived from a scalarization approach to multiobjective optimization called
Benson’s method.

(SPmax-sum)

max
w,b,σ,ξ,l,m

∑
q∈K

∑
q>p∈K

(lpq +mpq)

s.t. lpq � 0, mpq � 0, q > p, p, q ∈ K,
σpq

‖wp − wq‖ − σ̄pq

‖w̄p − w̄q‖ = lpq, q > p, p, q ∈ K,
−ηpq(ξ) + ηpq(ξ̄) = mpq, q > p, p, q ∈ K,
(wp − wq)�xi + (bp − bq) � σpq − ξpqi, i ∈ Ip, q > p, p, q ∈ K,
(wq − wp)�xi + (bq − bp) � σpq − ξqpi, i ∈ Iq, q > p, p, q ∈ K,
σpq � 1, q > p, p, q ∈ K,
wp �= wq , ξpqi � 0, i ∈ Ip, q �= p, p, q ∈ K,
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where (w̄, b̄, σ̄, ξ̄) is a feasible solution. This method improves (w̄, b̄, σ̄) by maxi-
mizing the sum of nonnegative deviation variables lpq andmpq, which are defined
by lpq = θpq(w, b, σ) − θpq(w̄, b̄, σ̄) and mpq = −ηpq(ξ) + ηpq(ξ̄), q > p, p, q ∈ K.
Then, it is known that an optimal solution of (SPmax-sum) is Pareto optimal
for (SM2) (cf. [5]).

However, (SPmax-sum) is still difficult to solve because of its fractional con-
straints. Thus, secondly, we consider the following solvable problem in which
some constraints of (SPmax-sum), σpq

‖wp−wq‖ − σ̄pq

‖w̄p−w̄q‖ = lpq and σpq � 1, are

replaced with σpq − σ̄pq

‖w̄p−w̄q‖‖wp − wq‖ � lpq and 1 � σpq � cpq by using con-
stants cpq, respectively.

(SP2max-sum)

max
w,b,σ,ξ,l,m

∑
q∈K

∑
q>p∈K

(lpq +mpq)

s.t. lpq � 0, mpq � 0, q > p, p, q ∈ K,
σpq − ‖wp − wq‖ σ̄pq

‖w̄p − w̄q‖ � lpq, q > p, p, q ∈ K,
−ηpq(ξ) + ηpq(ξ̄) � mpq, q > p, p, q ∈ K,
(wp − wq)�xi + (bp − bq) � σpq − ξpqi, i ∈ Ip, q > p, p, q ∈ K,
(wq − wp)�xi + (bq − bp) � σpq − ξqpi, i ∈ Iq, q > p, p, q ∈ K,
1 � σpq � cpq, q > p, p, q ∈ K,
wp �= wq, ξpqi � 0, i ∈ Ip, q �= p, p, q ∈ K.

Here, note that even if the problem (SP2max-sum) does not include the
constraint

wp �= wq , q �= p, q, p ∈ K, (2)

for many feasible solutions (w̄, b̄, σ̄) the constraint (2) holds. Then, the model
(SP2max-sum) without the constraint (2) can be easily transformed into a
second-order cone programming problem (SOCP). The SOCP is a convex pro-
gramming problem having a linear objective function and linear and second-
order cone constraints, which can be efficiently solved by a number of methods
such as the primal-dual interior point method within the almost same time as
a quadratic programming problem of the same size (cf. [1]). Moreover, several
commercial and noncommercial solvers have been developed (e.g. [9]).

Next, let us consider what kind of solution we can obtain by solving (SP2max-
sum). Here, by focusing on the constraints of (SP2max-sum) and (SM2), we can
easily confirm that for any feasible solution (w, b, σ, ξ, l,m) of (SP2max-sum),
(w, b, σ, ξ) is always feasible for (SM2), while for a feasible solution (w, b, σ, ξ)
of (SM2), σ does not necessarily satisfy the constraints of (SP2max-sum), 1 �
σpq � cpq, q > p, p, q ∈ K. Thus, let us consider the relation between feasible
solutions of (SM2) and (SP2max-sum).

Now, we define t(σ) by

t(σ) := max{1/σpq | q > p, p, q ∈ K}.
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and define Fw̄,b̄,σ̄,ξ̄(M2) for a feasible solution (w̄, b̄, σ̄, ξ̄) of (SM2) by

Fw̄,b̄,σ̄,ξ̄(SM2) := {(w, b, σ, ξ) ∈ F (SM2)

| θpq(w̄, σ̄) � θpq(w, σ), −ηpq(ξ̄) � −ηpq(ξ), q < p, p, q ∈ K},

where F (SM2) denotes the set of all feasible solutions of (SM2).
Then, for any feasible solution (w, b, σ, ξ) for (SM2), t(σ) is the minimal t > 0

such that (tw, tb, tσ, tξ) ∈ F (SM2), and θ(t(σ)w, t(σ)σ) = θ(w, σ). Next, we
define cM

w̄,b̄,σ̄,ξ̄
by using Fw̄,b̄,σ̄,ξ̄(SM2)

cMw̄,b̄,σ̄,ξ̄ := sup{t(σ)σpq | q > p, p, q ∈ K, (w, b, σ, ξ) ∈ Fw̄,b̄,σ̄,ξ̄(SM2)}.

Then, the relation between two feasible solutions is shown in the following
lemma.

Lemma 1. Suppose that (w̄, b̄, σ̄, ξ̄) is an initial solution of (P2max-sum). If
parameters cpq in (P2max-sum) satisfy cpq � cM

w̄,b̄,σ̄,ξ̄
for any q > p, p, q ∈ K,

then for any solution (w, b, σ, ξ) ∈ Fw̄,b̄,σ̄,ξ̄(SM2), (t(σ)w, t(σ)b, t(σ)σ, t(σ)ξ,
l(w, σ), m(ξ)) is feasible for (SP2max-sum), where l(w, σ) and m(ξ) are defined
by

lpq(w, σ) := t(σ)σpq − ‖t(σ)(wp − wq)‖ σ̄pq

‖w̄p − w̄p‖ , q > p, p, q ∈ K,

andm(ξ) := t(σ)(η(ξ̄)−η(ξ)), respectively. Moreover, we have θ(w, σ) = θ(t(σ)w,
t(σ)σ).

Proof. Since for any (w, b, σ, ξ) ∈ Fw̄,b̄,σ̄,ξ̄(SM2), (θ(w, σ),−η(ξ)) ≥ (θ(w̄, σ̄),
−η(ξ̄)), we have

lpq(w, σ) = ‖t(σ)(wp − wq)‖
(

σpq

‖(wp − wq)‖ − σ̄pq

‖w̄p − w̄p‖

)
= ‖t(σ)(wp − wq)‖ (θpq(w, σ) − θpq(w̄, σ̄)) � 0, q > p, p, q ∈ K,

and mpq(ξ) � 0 q > p, p, q ∈ K. From the definitions of t(σ) and cM
w̄,b̄,σ̄,ξ̄

, and
the assumption of the lemma, we have 1 � t(σ)σpq � cM

w̄,b̄,σ̄,ξ̄
� cpq, for any

q > p, p, q ∈ K. In addition, since (t(σ)w, t(σ)b, t(σ)σ, l(w, σ),m(ξ)) satisfies
other constraints of (SP2max-sum), it is feasible for (SP2max-sum). Moreover,
from the definition of θ(w, b) we have θ(w, b) = θ(t(σ)w, t(σ)b). ��

In this paper, we assume that parameters cpq in (SP2max-sum) satisfy cM
w̄,b̄,σ̄,ξ̄

� cpq, q > p, p, q ∈ K for an initial solution (w̄, b̄, σ̄, ξ̄). This assumption can be
considered to hold by selecting a sufficiently large cpq. Then, we can show the
following theorems.

Theorem 2. If the optimal value of (SP2max-sum) is 0 and its optimal solution
is (w∗, b∗, σ∗, ξ∗, l∗,m∗), then (w∗, b∗, σ∗, ξ∗) is Pareto optimal for (SM2) and
θ(w∗, σ∗) = θ(w̄, σ̄). Conversely, if (w̄, b̄, σ̄, ξ̄) is Pareto optimal for (SM2), then
the optimal value of (SP2max-sum) is 0, and (t(σ̄)w̄, t(σ̄)b̄, t(σ̄)σ̄, 0, 0) is optimal
for (P2max-sum).
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Proof. First, we show that if the optimal value of (SP2max-sum) is 0 and its
optimal solution is (w∗, b∗, σ∗, ξ∗, l∗,m∗), then (w∗, b∗, σ∗, ξ∗) is Pareto optimal
for (SM2). Thus, assume that (w∗, b∗, σ∗, ξ∗) is not Pareto optimal for (SM2).
Then, since (w∗, b∗, σ∗, ξ∗) is feasible for (SM2), there exists a feasible solution
(ŵ, b̂, σ̂, ξ̂) of (SM2) such that (θ(w∗, σ∗),−η(ξ∗)) ≤ (θ(ŵ, σ̂),−η(ξ̂)). Now, let
us define

l̂pq := t(σ̂)σ̂pq − ‖t(σ̂)(ŵp − ŵq)‖ σ̄pq

‖w̄p − w̄p‖ , q > p, p, q ∈ K,

and m̂ := t(σ̂)(η(ξ̄) − η(ξ̂)). Then, we have
∑

q∈K

∑
q>p∈K(l̂pq + m̂pq) > 0. In

addition, (t(σ̂)ŵ, t(σ̂)b̂, t(σ̂)σ̂, l̂, m̂) is feasible for (SP2max-sum) from Lemma
1. These facts contradict that the optimal value of (SP2max-sum) is 0. There-
fore, (w∗, b∗, σ∗, ξ∗) is Pareto optimal for (SM2). Moreover, since σ∗pq −

σ̄pq

‖w̄p−w̄q‖
‖wp∗ − wq∗‖ = 0, p < q, p, q ∈ K, we have θ(w̄, σ̄) = θ(w∗, σ∗).

Next, we show that if (w̄, b̄, σ̄, ξ̄) is Pareto optimal for (SM2), then the op-
timal value of (SP2max-sum) is 0. Now, we assume that the optimal value is
not 0. Then, there exist an optimal solution (w∗, b∗, σ∗, ξ∗, l∗,m∗) for (SP2max-
sum) such that

∑
q∈K

∑
q>p∈K (l∗pq +m∗

pq) > 0. It yields that
(
θ(w̄, σ̄),−η(ξ̄)

)
≤ (θ(w∗, σ∗),−η(ξ∗)) and (w∗, b∗, σ∗, ξ∗) is feasible for (SM2). Thus, the facts
contradict the Pareto optimality of (w̄, b̄, σ̄, ξ̄) for (SM2). Therefore, the optimal
value of (SP2max-sum) is 0. Then, we can easily show that (t(σ̄)w̄, t(σ̄)b̄, t(σ̄)σ̄,
0, 0) is optimal for (P2max-sum). ��

Theorem 3. Suppose that (w∗, b∗, σ∗, ξ∗, l∗,m∗) is an optimal solution of (SP2
max-sum). If its optimal value

∑
q∈K

∑
q>p∈K(l∗pq +m∗

pq) is greater than 0, then(
θ(w̄, σ̄),−η(ξ̄)

)
≤ (θ(w∗, σ∗),−η(ξ∗)).

Proof. From the assumption of theorem, we have (l∗,m∗) ≥ 0. Since we have
σ∗pq− σ̄

‖w̄p−w̄q‖ ‖wp∗ − wq∗‖= l∗pq and −η(ξ∗)+ η(ξ̄) = m∗
pq, q > p, p, q ∈ K from

optimality of (w∗, b∗, σ∗, ξ∗), we can derive the result of the theorem. ��

Theorems 2 and 3 show that if an obtained optimal value for (SP2max-sum) is 0,
the obtained solution is Pareto optimal for (SM2), and otherwise, the obtained
solution (w∗, b∗, σ∗, ξ∗) dominates the initial solution (w̄, b̄, σ̄, ξ̄). Furthermore,
we propose the following iterative method of solving (SM2) by exploiting these
properties of (SP2max-sum).

Iterative method based on Benson’s method: IMB

Step 0. Set τ := 0 and (w(0), b(0), σ(0), ξ(0)) = (w̄, b̄, σ̄, ξ̄).
Step 1. Solve (SP2max-sum) using (w(τ), b(τ), σ(τ), ξ(τ)) as an inial solution and

c
(τ)
pq > 0, q > p ∈ K, and obtain the optimal solution (w∗, b∗, σ∗, ξ∗, l∗, m∗).

Step 2. Set (w(τ+1), b(τ+1), σ(τ+1), ξ(τ+1), l(τ+1),m(τ+1)) := (w∗, b∗, σ∗, ξ∗, l∗,
m∗). If

∑
q∈K

∑
q>p∈K

(
l
(τ+1)
pq +m(τ+1)

pq

)
� δ, then terminate. Otherwise,

τ := τ + 1 and go to Step 1.

Here, δ is non-negative constant.
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If
∑

q∈K

∑
q>p∈K

(
l
(τ+1)
pq +m(τ+1)

pq

)
= 0 holds at some τ , then IMB obtains

a Pareto optimal solution for (SM2). Otherwise, the method may generate an
infinite sequence {w(τ), b(τ), σ(τ), ξ(τ)}, τ = 0, . . .. Thus, let us consider the case
where the condition

∑
q∈K

∑
q>p∈K

(
l
(τ)
pq +m(τ)

pq

)
= 0 does not hold at any τ .

Theorem 4. Assume that c(τ)
pq in IMB satisfies that c(τ)

pq � cM
w(τ),b(τ),σ(τ),ξ(τ) , q >

p ∈ K for any τ � 0, and that {(θ(w, σ),−η(ξ)) | (w, b, σ, ξ) ∈ Fw̄,b̄,σ̄,ξ̄(SM2)}
is bounded and closed. If δ = 0 and l(τ) ≥ 0 for any τ in IMB, then a sequence
{θ(w(τ), σ(τ)),−η(ξ(τ))} generated by IMB converges to a point

(
θ(ŵ, σ̂),−η(ξ̂)

)
such that (ŵ, b̂, σ̂, ξ̂) ∈ Fw̄,b̄,σ̄,ξ̄(SM2) is Pareto optimal for (SM2). In addition,{∑

q∈K

∑
q>p∈K

(
l
(τ)
pq +m(τ)

pq

)}
converges to 0.

Proof. First, we show the convergence of the sequences {θ(w(τ), σ(τ)),−η(ξ(τ))}
and

{∑
q∈K

∑
q>p∈K

(
l
(τ)
pq +m(τ)

pq

)}
. Since (SP2max-sum) solved at iteration

τ in IMB uses (w(τ), b(τ), σ(τ), ξ(τ)) as an initial solution and the obtained opti-
mal solutions is given by (w(τ+1), b(τ+1), σ(τ+1), ξ(τ+1)), we have (θ(w(τ), σ(τ)),
−η(ξ(τ))) ≤ (θ(w(τ+1), σ(τ+1)), −η(ξ(τ+1))) from Theorem 3. In addition, the
sequence {θ(w(τ), σ(τ)),−η(ξ(τ))} is monotone nondecreasing and included in
{(θ(w, σ), −η(ξ)) | (w, b, σ, ξ) ∈ Fw̄,b̄,σ̄,ξ̄(SM2)}, which is bounded and closed
from the assumption of this theorem. Therefore, {θ(w(τ), σ(τ)),−η(ξ(τ))}
converges to a point (θ(ŵ, σ̂), −η(ξ̂)) such that (ŵ, b̂, σ̂, ξ̂) ∈ Fw̄,b̄,σ̄,ξ̄(SM2).

Furthermore, since θ(w̄, σ̄) = θ(w(0), σ(0)) ≤ θ(w(τ), σ(τ)) and σ(τ)
pq � c(τ)

pq from
the feasibility of (w(τ), b(τ), σ(τ), l(τ)) for (P2max-sum), we have

‖wp(τ) − wq(τ)‖ � σ
(τ)
pq

θpq(w̄, σ̄)
�

max
τ
c(τ)
pq

θpq(w̄, σ̄)
, q > p, p, q ∈ K.

Thus, ‖wp(τ) − wq(τ)‖ is bounded from above. At the same time, we have

l(τ)
pq = σ(τ) − ‖wp(τ) − wq(τ)‖ σ

(τ−1)
pq

‖wp(τ−1) − wq(τ−1)‖

= ‖wp(τ) − wq(τ)‖
(
θpq(w(τ), θ(τ)) − θpq(w(τ−1), θ(τ−1))

)
,

q < p, p, q ∈ K, τ = 1, . . . ,

which, together with the upper boundedness of ‖wp(τ) −wq(τ)‖ and the conver-
gence of {θ(w(τ), σ(τ)),−η(ξ(τ))}, yields that

∑
q∈K

∑
p<q∈K l

(τ)
pq → 0 as τ → ∞.

Moreover, from the definition of m(τ) we have that
∑

q∈K

∑
p<q∈K m

(τ)
pq → 0 as

τ → ∞. Next, we show (ŵ, b̂, σ̂, ξ̂) is Pareto optimal for (M2). Assume that
(ŵ, b̂, σ̂, ξ̂) is not Pareto optimal. Then, let us consider the problem (P2max-
sum) using (ŵ, b̂, σ̂, ξ̂) as an initial solution and suppose that (w, b, σ, ξ, l,m) is
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its optimal solution. Then, we have
∑

q∈K

∑
p<q∈K(lpq +mpq) > 0, (l,m) ≥ 0

and
σpq − ‖wp − wq‖ σ̂pq

‖ŵp − ŵq‖ = lpq,

−ηpq(ξ) + ηpq(ξ̂) = mpq,
q > p, p, q ∈ K.

Moreover, from Theorem 3 we have (θ(ŵ, σ̂),−η(ξ̂)) ≥ (θ(w(τ), σ(τ)),−η(ξ(τ)))
Thus, we have

σpq − ‖wp − wq‖ σ
(τ)
pq

‖wp(τ) − wq(τ)‖
� lpq,

−ηpq(ξ) + ηpq(ξ(τ)) � mpq,

τ � 0, q > p, p, q ∈ K,

which means (w, b, σ, ξ, l,m) satisfies the second constraints of (P2sum-max) us-
ing an initial solution (w(τ), b(τ), σ(τ), ξ(τ)). In addition, since (w, b, σ, ξ, l,m) sat-
isfies other constraints, it is feasible. Furthermore, since

∑
q∈K

∑
p<q∈K

(
l
(τ+1)
pq

+ m
(τ+1)
pq

)
→ 0 as τ → ∞, we have

∑
q∈K

∑
p<q∈K

(
l
(τ+1)
pq +m(τ+1)

pq

)
<

∑
q∈K∑

p<q∈K (lpq +mpq) for a sufficiently large τ . However, the result contradicts
the fact that

(
w(τ+1) , b(τ+1), σ(τ+1)

)
is optimal for (P2sum-max) using

(w(τ), b(τ), σ(τ), ξ(τ)) as an initial solution. Therefore, (ŵ, b̂, σ̂, ξ̂) is Pareto
optimal for (M2). ��

Theorem 4 means that if the constant δ is small positive, then IMB terminates
within a finite number of iterations. Additionally if

∑
q∈K

∑
q>p∈K

(
l
(τ+1)
pq +

m
(τ+1)
pq

)
= 0, the obtained solution is Pareto optimal for (SM2). Otherwise,

the obtained solution is approximately Pareto optimal. Here, we can use the
same constant vector c̄ such that c̄ � cM

w̄,b̄,σ̄,ξ̄
as c(τ) at each iteration τ because

c̄ � cM
w(τ),b(τ),σ(τ),ξ(τ) for any τ � 0.

In this section, we have shown that the proposed method IMB can obtain
a Pareto optimal solution. In order to obtain various Pareto optimal solutions,
we can extend (P2max-sum) by replacing the objective function with

∑
q∈K∑

q>p∈K (ωpqlpq +υpqmpq), where ωpq and υpq are positive weights for each lpq

and mpq, q > p ∈ K, respectively. In the next section, we apply the proposed
model to a classification problem.

5 Numerical Examples

In this section, we report the results of numerical experiments where existing
model (SO) and proposed model IMB were applied to a real-world problem Iris
(4-dimensional three-class classification problem ). 70 % of all data was used as
training data and the remaining data was used as test data. We used optimization
tools in MathWorks Matlab 7.0.1 and Mosek version 5.0 [2] to solve two models.
We solved (SO) with varying cξ ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10}, and used each
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Table 1. Comparison of results obtained two models (Iris)

(SO)
cξ 0.01 0.05 0.1 0.5 1 5 10

TR-rate 74.29 96.19 96.19 100.00 100.00 100.00 100.00

T-rate 71.11 95.56 91.11 93.33 93.33 93.33 93.33

θ12 1.81 1.33 1.21 0.81 0.77 0.59 0.52
θ13 1.41 0.70 0.57 0.79 0.83 0.72 0.69
θ23 3.64 1.14 0.82 0.43 0.36 0.21 0.18

(SP2max-sum)
TR-rate 69.52 97.14 97.14 100.00 100.00 100.00 100.00

T-rate 71.11 95.56 95.56 95.56 93.33 95.56 93.33

θ12 1.81 1.33 1.21 0.87 0.80 0.80 0.77
θ13 1.56 1.10 0.98 1.56 1.56 1.56 1.56
θ23 4.08 1.14 0.82 0.43 0.36 0.21 0.18

No. of ite. 2 3 4 3 8 10 5

obtained solution as the initial solution for IMB, where crs is set to be 10 and
the algorithm was terminated if the obtained optimal value is less than 10−4.

We observed that all solutions obtained by the proposed model dominate ones
by existing models. Table 1 shows a part of obtained results, where TR-rate and
T-rate denote the training and the test correct classification rates, respectively,
and “No. of ite.” denotes the number of iterations required in IMB, namely,
how many times problems (SP2max-sum) were solved. These results indicate
that Pareto optimal solutions of (SM2) are obtained by obtained IMB, and that
IMB requires a small number of iterations. Moreover, we can see that IMB can
improve the generalization ability of classifiers obtained by (SO). At the same
time, we can see that obtained solutions by IMB considerably depends on the
initial solutions.

6 Conclusion

In this paper, we have focused on the all together model of the support vec-
tor machine (SVM) for multiclass classification, which uses a piece-wise linear
function to construct a discriminant function. We have pointed out that max-
imizing geometric margins defined as the minimal distance of patterns to the
corresponding discriminant hyperplane is important for the generalization, and
that multiclass classification should be essentially formulated as a multiobjec-
tive optimization problem which maximizes all geometric margins. Then, we
have proposed a multiobjective soft-margin SVM model which maximizes all
geometric margins and minimizes penalty functions based on the distances be-
tween outliers and the discriminant hyperplane simultaneously. In order to solve
the proposed soft-margin model, we have derived single-objective second-order
cone programming (SOCP) problem by Benson’s method and some techniques,
which can be efficiently solved by several interior point methods. Moreover, we



Multiobjective Multiclass Soft-Margin SVM 371

have theoretically shown that a Pareto optimal solution of the multiobjective
soft-margin SVM is obtained by solving SOCPs iteratively, and we have ob-
served the high generalization ability of the obtained classifiers through some
numerical experiments.

For further tasks, we should apply the proposed IMB to many kinds of classi-
fication problems to investigate its performance. Moreover, we need to estimate
the classification ability of discriminant functions corresponding to a great num-
ber of Pareto optimal solutions of the proposed multiobjective SVM model,
which can be obtained by solving the proposed SOCP model with weights ω and
υ in objective functions or an initial solution varying.
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Hayashida, Kenji 360
Hayashida, Tomohiro 315
Herranz, Javier 293
Herrera-Viedma, Enrique 247
Homenda, Wladyslaw 60
Honda, Katsuhiro 282
Huynh, Van-Nam 182, 217

Ichihashi, Hidetomo 282
Inuiguchi, Masahiro 102
Ishii, Hiroaki 239
Ishimatsu, Jun 315

Johansson, Fredrik 205

Kanzawa, Yuchi 268
Katagiri, Hideki 315
Kawachi, Ryo 360
Krajca, Petr 114
Kudo, Yasuo 351

Lee, Yung Lung 239
Li, Yong 194
Lodwick, Weldon A. 55
Long, Jun 194, 327

Martin-Dorel, Érik 81
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