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Abstract. We study the notion of cross Gramians for nonlinear gradient sys-
tems, using the characterization in terms of prolongation and gradient extension
associated to the system. The cross Gramian is given for the variational system as-
sociated to the original nonlinear gradient system. We obtain linearization results
that correspond to the notion of a cross Gramian for symmetric linear systems.
Furthermore, first steps towards relations with the singular value functions of the
nonlinear Hankel operator are studied and yield promising results.

1 Introduction

In this paper, we give an extension of the cross Gramian notion for nonlinear gradient
systems. The gradient systems are an important class of nonlinear systems, endowed
with a pseudo-Riemannian metric on the state-space manifold, such that the drift is a
gradient vectorfield with respect to this metric and a potential function and the input
vectorfields are gradient with respect to the same metric and output, see e.g. [3,15] and
references therein. Examples of gradient systems include nonlinear electrical circuits
and certain dissipative systems. The linear counterpart is a symmetric system. With
respect to model reduction, for linear systems it is showed in [1,4,14] that exploiting
the symmetry, model reduction becomes more efficient. This is based on the notion
of cross Gramian, that is the solution of a Sylvester equation, which can be solved
in an efficient way. The cross Gramian for a symmetric system contains information
about both controllability and observability at the same time and moreover the squared
cross Gramian is the product of the controllability and observability Gramians. Then the
Hankel singular values are the eigenvalues of the cross Gramian. Moreover, the cross
Gramian can be obtained using only one of the Gramians of the system and the metric.

For nonlinear systems the problem is more complicated and not yet tackled in the
literature. The notion of symmetry for a nonlinear system is now best studied by con-
sidering nonlinear gradient systems. We use the associated prolongation and gradient
extension and the results in [3]. A nonlinear system is gradient if the two latter systems
have the same input-output behavior. Using this property and its consequences, we give
the definition of the cross Gramian for the variational system (which is a gradient sys-
tem, too) as the nonlinear, non-trivial extension of the concept of the cross Gramian for
linear systems. Furthermore, we give a nonlinear counterpart of the Sylvester equation.
Using the cross Gramian and the theory of Hankel singular values as in [6,11], first
steps towards proving that the squared eigenvalues of the nonlinear cross Gramian are
directly related to the Hankel singular values of the system, are set. In this case, instead
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of balancing, only solving a nonlinear Sylvester equation, a metric and an eigenvalue
decomposition suffice for obtaining the Hankel singular values of the gradient system.

The paper is outlined as follows. In Section 2 we give an overview of the cross
Gramian technique for linear systems. To show the line of thinking in the nonlinear
case, in Section 3, we give a review of the definitions of the prolongation and gradient
extension and the property of a nonlinear system being gradient itself, this being a natu-
ral extension of the linear symmetric system notion, to the nonlinear case. In Section 4,
we analyze some linearization results which motivate the reasoning in Section 5, where
the definition of the nonlinear Gramian is presented and the conjecture about the rela-
tion for singular value functions is stated. Finally an example is given in Section 6 and
in Section 7 some conclusions end this paper.

A nonlinear system is defined here as:
{

ẋ = f (x)+ g(x)u
y = h(x) , (1)

where x ∈M is the state vector, u ∈ R
m is the vector of inputs and y ∈ R

p is the output.
M is a smooth manifold, of dimension n. We make the following assumptions:

Assumption 1. f (x),g(x),h(x) are smooth;

Assumption 2. The system is square, i.e. m = p;

Assumption 3. x0 is an asymptotically stable equilibrium point of the system and
h(x0) = 0;

Assumption 4. System (1) is asymptotically reachable from x0 (i.e. for any x, there
exists an input u and t ≥ 0, such that x = φ(t,0,x0,u), with φ being the trajectory
obtained by integrating the first equation in (1)).

Assumption 5. System (1) is zero-state observable (i.e. if u(t) = 0, y(t) = 0 then
x(t) = 0).

Assumptions 4 and 5 are related to the minimality of the system, see [12].

Notation: Let M be a smooth manifold and V (x) a smooth vectorfield, x∈M . Then we
denote by gradGV the gradient of V (x) on the manifold M endowed with the pseudo-

Riemannian metric G. In local coordinates gradGV = −G−1(x) ∂V(x)
∂x (see [15] for de-

tails). ∂V (x)
∂x means the row vector

[
∂V (x)

∂x1
...

∂V (x)
∂xn

]
. R is the set of real numbers.

2 Linear Systems Case

If the system (1) is linear, then it can be written as:
{

ẋ = Ax + Bu
y = Cx

, (2)
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where A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n are constant matrices. In this case, Assumption

1 is automatically satisfied. We consider system (2) satisfying Assumptions 2-5. As-
sumptions 4 and 5 are equivalent to the minimality of the system (see e.g. [16] for more
details). A linear system has a corresponding unique dual system defined as:

{
ż = AT z+CT ud

yd = BT z
. (3)

Because (1) is controllable and observable, and these properties are dual to each other
(i.e. if the pair (A,B) is controllable, then (BT ,AT ) is observable), it follows immedi-
ately that the dual system (3) is controllable and observable, i.e. minimal, too.

The definition of the cross Gramian for a linear square system is:

Definition 1. [14] Let (2) be a square system. Then the cross Gramian X is defined as
the solution of the Sylvester equation:

AX + XA + BC = 0. (4)

If the system is asymptotically stable, then the cross Gramian can be equivalently de-

fined as: X =
∫ ∞

0
eAtBCeAtdt.

Another important definition is the one of the Hankel operator associated to the linear
system (2):

H (u) =
∫ 0

−∞
H(t − τ)u(−τ)dτ (5)

where t > 0 and H is the impulse response of the system (2). The singular values of
the Hankel operator are fundamental for the balanced truncation model order reduction.
Each singular value represents a measure for the importance of each state component in
the output response of system (2) to a certain input (see e.g. [2] for more details). The
cross Gramian possesses some interesting properties being related to the above defined
Hankel operator and the Hankel singular values of a linear square system.

Theorem 1. [14] For square linear systems the non-zero eigenvalues of the cross
Gramian X are the non-zero eigenvalues of the Hankel operator associated to the
system.

However, the singular value problem is different, that is the singular values of the cross
Gramian are not the Hankel singular values of the system. Still, there is a relation of
majorization between the two as shown below.

Theorem 2. [14] For a square linear system, the following relations hold:
k

∑
i=1

σi ≥
k

∑
i=1

πi and
n

∑
i=k+1

σi ≤
n

∑
i=k+1

πi, where σi are the Hankel singular values, πi are the singu-

lar values of X, and k is the index for which σk is much larger than σk+1.
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For symmetric systems, the cross Gramian X has more attractive properties, useful for
model reduction.

First we give the definition of a symmetric linear system:

Definition 2. [1,4,14] A square linear, system G(s) = C(sI − A)−1B, with the state-
space realization (2) is called symmetric if G(s) = GT (s).

Proposition 1. Assume that system (2) satisfies assumptions 2-5. Then system (2) is
symmetric if and only if there exists an invertible symmetric matrix T such that AT T =
TA, CT = TB, i.e. the system and its dual are input-output (externally) equivalent.

In, for instance [1,14], model reduction based on the balancing procedure, for this type
of systems is considered. The symmetry property is exploited, making the procedure
more efficient. Basically, the Sylvester equation from Definition 1 is solved and the
cross Gramian is obtained. It will directly provide the Hankel singular values of the
system. We refer to the results presented in [14,1,4], which are summarized in the se-
quel.

Defining the controllability Gramian as W and the observability Gramian as M, they
are the solutions of the following Lyapunov equations, respectively:

AW +WAT + BBT = 0 (6)

AT M + MA +CTC = 0. (7)

The following theorem summarizes the properties of X in relation with W and M.

Theorem 3. [14,4] Let (2) be a square asymptotically stable symmetric system in the
sense of Definition 2. If X is the solution of (4) then the following relations are equiva-
lent:

1. X2 = W M > 0;
2. If T is the symmetry transformation as in Proposition 1, then X = WT = T−1M;
3. The Hankel singular values of (2) are the absolute values of the eigenvalues of X.

For symmetric systems, when compared to the classical balancing procedure, there are
two advantages: the first is that instead of solving two Lyapunov equations, whose com-
putational complexity is known to be a drawback, only one Sylvester equation is solved.
The second advantage consists of avoiding in this way the balancing procedure. Since
the Hankel singular values satisfy σi =

√
λi, λi ∈ λ (WM), i = 1, ...,n, the problem of

finding them turns into an eigenvalue problem of the cross Gramian X .

Remark 1. There exists a relation between the controllability and observability oper-
ators, and the cross Gramian. Define by x = C (u) =

∫ ∞
0 eAtBu(t)dt, the controllability

operator and by y = O(x) = CeAtx the observability operator of the system (A,B,C).
Then, by the definition of the cross Gramian, we have: Xx = CO(x). It can be proven
that, under minimality and symmetry assumptions as in the definitions presented here,
the eigenvalues of the COCO operator are the squared Hankel singular values of the
system, i.e. the eigenvalues of H ∗H .
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3 Review of Gradient Systems

The nonlinear extension of the notion of symmetric systems is the gradient systems.
The property of a system being gradient is described in terms of necessary and sufficient
conditions satisfied by the prolongation (variational) system and the gradient extension
associated with (1). We will give a brief overview of the results in [3,15].

Definition 3. [3,15] A nonlinear system (1) is called a gradient system if:

1. There exists a pseudo-Riemannian metric G, on the manifold M , given

as
m

∑
i, j=1

gi j(x)dxi ⊗ dx j, with gi j(x) = g ji(x) smooth functions of x, and

G(x) = [gi j(x)]i, j=1...n invertible, for all x.
2. There exists a smooth potential function V : M → R,

such that the system (1) can be written as:

⎧⎨
⎩

ẋ = gradGV(x)−
m

∑
i=1

uigradGhi(x), x ∈ R
n

yi = hi(x), i = 1, ...,m
. (8)

In local coordinates x = [x1 x2 ... xn]T ∈ M , the system can be written as:

⎧⎨
⎩ ẋ = −G−1(x)

∂ TV
∂x

(x)+ G−1(x)
∂ T h
∂x

(x)u

y = h(x)
. (9)

Next, we present the definition of the prolonged system associated with (1).

Definition 4. [3] The prolongation Σp of (1) is defined by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = f (x)+ g(x)u

v̇ =
∂ f (x)

∂x
v +

m

∑
j=1

u j
∂g j(x)

∂x
v + g(x)up

y = h(x), yp =
∂h(x)

∂x
v

, (10)

where v ∈ TM , the tangent bundle of the manifold M .

3.1 The Riemannian Metric on T ∗M

Since a canonical pseudo-Riemannian structure on the cotangent bundle T ∗M of the
manifold M does not exist, a pseudo-Riemannian metric cannot be defined directly. In
this case a torsion-free affine connection defined on the manifold M and its Riemannian
extension GC to T ∗M are used.
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Definition 5. An affine connection on a manifold M is defined as an assignment ∇ :
(X ,Y ) → ∇XY , where X , Y and ∇XY are vectorfields on M , satisfying the following
properties: it is R-bilinear, ∇ f XY = f ∇XY and ∇X ( fY ) = f ∇XY + X( f )Y , for every
f ∈C∞(M ).

Let X and Y be any two vectorfields on M . Their symmetric product is given as: < X :
Y >= ∇XY + ∇Y X . We introduce the construction that associates to each vectorfield X
a function V X on T ∗M , given by V X(x, p) =< p,X(x) >, x ∈ M , p ∈ T ∗M .

If ∇ is a torsion-free affine connection (see [3] and references therein for more de-
tails) then it defines a pseudo-Riemannian metric GC as a unique (0,2)-tensor on T ∗M
which satisfies:

GC(X ,Y ) = −V<X :Y> (11)

Now the gradient vectorfield associated with the function V X ∈ C∞(T ∗M ),X vector-
field on M , can be expressed locally as:

gradGCV X = Xi
∂

∂xi
+ pi

(
∂Xi

∂x j
+ 2Γ a

jkXk

)
∂

∂ p j
, (12)

where X is a vectorfield on M , i, j,k = 1, ,n and Γ i
jk represent the Christoffel symbols

of the affine connection ∇ (relation (2.8) in [3]).
For our purpose, we assume that GC is properly defined ([3]) and we will use the

local expression from (12) to express the gradient extension of (1), comprising all the
terms 2piΓ a

jkXk
∂

∂ p j
in a function F .

3.2 The Gradient Extension of a Nonlinear System

Definition 6. The gradient extension of (1) is defined by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = f (x)+ g(x)u

ṗ =
∂ T ( f (x)+ g(x)u)

∂x
p +F (gi j(x),

∂gi j(x)
∂xk

, fk(x),u,g(x), p)+
∂h(x)

∂x
ug,

y = h(x), yg = gT (x)p, i, j,k = 1, ...,n.

(13)

Remark 2. Notice that for the linear system (2) the prolongation is the system itself
written twice and the gradient extension contains the system itself and the dual of the
prolonged variable part, yielding, respectively:

⎧⎨
⎩

ẋ = Ax + Bu
v̇ = Av + Bup

y = Cx, yp = Cv
,

⎧⎨
⎩

ẋ = Ax + Bu
ṗ = AT p +CT ug

y = Cx, yg = BT p
. (14)

Remark 3. According to [3, Corollaries 3.3, 3.6] (1) is zero-state observable if and
only the prolonged system is zero-state observable and the zero-state observability of
(1) implies the zero-state observability of the gradient extension.
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The main result, useful for our purpose, is:

Theorem 4. [3, Theorem 5.4, Corollary 4.4] Let (1) be as in Assumption 4. Assume
that there exists a torsion-free affine connection on M with which the system is compati-
ble, and that the system is observable with its observability distribution having constant
dimension. Then, system (1) is a gradient control system, as in Definition 3, if and only
if the prolonged system Σp and the gradient extension Σg have the same input-output
behavior.

Remark 4. In the linear systems case, this result becomes a property between the sys-
tem itself and its dual counterpart, which immediately leads to the definition of sym-
metric systems. The metric is given by the matrix T , showing that a linear symmetric
system is a particular case (linear version) of the gradient system.

Lemma 1. [3, Lemmas 5.5, 5.6] If (1) is a gradient control system, then there exists
a diffeomorphism φ(x,v) = (x,G(x)v), such that (x, p) = φ(x,G(x)v), where v and p
satisfy (14), and G(x) is the matrix associated to the metric.

Remark 5. For linear systems this means, indeed that p = T v.

4 Linearization Results

For (1) satisfying Assumptions 1 and 3 we define the observability function ([9])

Lo(x) =
1
2

∫ ∞

0
||y(t)||2L2

dt, x(0) = x, x(∞) = x0 (15)

and the controllability function ([9])

Lc(x) = min
u∈L−2 ,x(0)=x, x(−∞)=x0

1
2

∫ 0

−∞
||u(t)||2L2

dt (16)

If the system satisfies Assumption 4 as well, then Lc(x) exists, is finite, Lc(x) > 0,
Lc(x0) = 0 and satisfies the Hamilton-Jacobi equation ([9]):

∂Lc

∂x
f (x)+

1
2

∂Lc

∂x
g(x)gT (x)

∂ T Lc

∂x
= 0 (17)

such that −
(

f (x)+ g(x)gT (x)
∂Lc(x)

∂x

)
is asymptotically stable. If the system also sat-

isfies Assumption 5, then Lo(x) exists, is finite, Lo(x) > 0, Lo(x0) = 0, and satisfies the
nonlinear Lyapunov equation ([9]):

∂Lo

∂x
f (x)+

1
2

hT (x)h(x) = 0. (18)

Suppose x0,u = 0 is an equilibrium point and assume that h(x0) = 0. Then

−G−1(x0) ∂ T V
∂x (x0) = 0. Taking Taylor series expansion in system (8), we can write:

ẋ = G−1(x0)
∂ 2V
∂x2 (x0)(x− x0)+

[
n

∑
i, j=1

∂gi j

∂xi
(x0)

∂V
∂x j

(x0)

]

i, j=1...n

(x− x0)+ ... (19)
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Since ∂V
∂x j

(x0) = 0, j = 1, ...,n, then the linearization of the gradient system (8) yields:

⎧⎪⎪⎨
⎪⎪⎩

ẋ = −G−1(x0)
∂ 2V
∂x2 (x0)x + G−1(x0)

∂ T h
∂x

(x0)u

y =
∂h
∂x

(x0)x
. (20)

Lemma 2. The system (20) is a gradient (symmetric) system with the metric T = G(x0).

Proof. Denote G = G(x0), Q = ∂ 2V
∂x2 (x0). Since V is smooth, Q is symmetric. G, by

definition is symmetric and invertible. Then:

H(s) = C(sI + G−1Q)−1G−1CT = C(sG−1G+ G−1Q)−1G−1CT

= C
[
G−1(sI + QG−1)G

]−1
G−1C = CG−1(sI + QG−1)CT = HT (s).

(21)

	

Let W and M be the controllability and the observability Gramians of (20), respectively,
and assume W > 0, M > 0, i.e. (20) is controllable and observable. Then:

M =
∂ 2Lo

∂x2 (x0), W−1 =
∂ 2Lc

∂x2 (x0). (22)

The asymptotic reachability of the nonlinear system implies its accessibility and this
implies the controllability of the linear system, see [12]. Since the linearized system
is assumed symmetric, controllability implies observability, and this implies the local
zero-state observability of the nonlinear system. So, locally there exists a duality of
the controllability and observability property, which motivates the search for a cross
Gramian for the nonlinear gradient system.

The linearized system is gradient and then, according to Theorem 3, statement 2, we
have that near x0: (

∂ 2Lo

∂x2 (x)
)−1

G(x) = G−1(x)
∂ 2Lc

∂x2 (x). (23)

Remark 6. Given a system (1), the linearization of the prolonged system Σp around
x0,v = 0,u = up = 0 and of the gradient extension Σg around x0, p = 0,u = ug = 0,
respectively, we obtain the linear systems (14). If the system is symmetric then p =
T v, G(x0) = T .

Since the duality in properties takes place between the v part and the p part of the two
systems, we are going to extract these parts from the nonlinear system and study them.

4.1 The Isomorphic Case

Another case related to linearization is that when the system is equivalent to a linear
system, as treated in [15]. This means that there exists a coordinate transformation
x′ = η(x), such that in the new coordinates, the system is described by a linear state-
space realization. If the equivalent linear system is a gradient system, as well, and the
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transformation η is an isometry (see e.g. [8]), then the gradient system is said to be
isomorphic to the linear symmetric system. Then, the linear idea of cross Gramian can
be extended to the nonlinear gradient system via the diffeomorphism η and the isometry
relation, as follows.

Denote by Lo(x′) = 1
2 x′T Mx′ the observability function and by Lc(x′) = 1

2 x′TW
−1

x′
the controllability function of the linear system, where

M =
∂ 2Lo

∂x′2
(x′), W

−1 =
∂ 2Lc

∂x′2
(x′) (24)

are the constant Gramians of the linear system. Moreover

Lo(x′) = Lo(η−1(x)), Lc(x′) = Lc(η−1(x)).

This leads to the following relation:

∂Lo

∂x′
(x′) =

∂Lo

∂x
(η−1(x′))

(
∂η
∂x

(η−1(x′))
)−1

(25)

Let T be the matrix associated with the metric for the symmetric linear system. Then,
according to Theorem 3, statement 2, WT = T−1M that can be rewritten as M

−1
T =

T−1W
−1. Postmultiplying with x′ we get:

(
∂ 2Lo(x′)/∂x′2

)−1
T x′=T−1(∂ T Lc(x′)/∂x′).

Using relation (25) and x′ = η(x) we can write:

∂ T Lc

∂x
(x) =

∂ T η
∂x

(x) ·T ·
(

∂ 2Lo

∂x′2
(η(x))

)−1

·T ·η(x) (26)

which shows that the observability function, the metric, and the isomorphism between
the systems give the controllability function of the gradient system. This can be called
a nonlinear version of the cross Gramian idea for this particular case, and it motivates
the search for the nonlinear cross Gramian in the general case.

5 Nonlinear Cross Gramian

In this section, we will make an analysis of the variational part of the prolonged system.
Denote by:

Σ ′
p :

⎧⎪⎪⎨
⎪⎪⎩

v̇ =
∂ ( f (x)+ g(x)u)

∂x
v + g(x)up

yp =
∂h(x)

∂x
v

, (27)

where x is considered a parameter varying according to (1).
Since the system is asymptotically stable, by the definition of its variational asso-

ciated system, the latter is also asymptotically stable. By Theorem 4, Σ ′
p has the same

input-output behavior as the system Σ ′
g, given by:

⎧⎪⎨
⎪⎩

ṗ =
∂ T ( f (x)+ g(x)u)

∂x
p +F (gi j(x),

∂gi j(x)
∂xk

, fk(x),u,g(x), p)+
∂ T h(x)

∂x
ug

yg = gT (x)p
, (28)
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where x again is a parameter varying as in (1). According to Lemma 1, there exists a
coordinate transformation such that p = ψ(x,v), given by ψ(x,v) = G(x)v, where G(x)
is symmetric and invertible (as in the definition of (8)) and is given by the pseudo-
Riemannian metric. Applying the coordinate transformation on Σ ′

p, we get:

G(x)g(x) =
∂ T h(x)

∂x
and

∂h(x)
∂x

G−1(x)p = gT (x)p. (29)

Remark 7. In the linear systems case, everything fits with the definition and charac-
terization of the property of symmetry. Moreover, the linearization of Σ ′

p and Σ ′
g around

an equilibrium point (x0,0,0,0) yields the v part and p part of (14), with p = Tv, with
T invertible and symmetric.

Based on the local existence of the cross Gramian, we make an analysis of the observ-
ability function of Σ ′

p. In this case, u = 0, up = 0 and Σ ′
p becomes:

⎧⎪⎪⎨
⎪⎪⎩

v̇ =
∂ f (x)

∂x
v

yp =
∂h(x)

∂x
v

. (30)

Assuming the zero-state observability combined with the asymptotic stability of Σ ′
p

implies the existence of the observability function Lp
o(x,v) > 0, Lp

o(x0,0) = 0, defined
as:

Lp
o(x,v) =

1
2

∫ ∞

t
yT

p (τ)yp(τ)dτ (31)

and satisfying the nonlinear Lyapunov equation:

∂Lp
o(x,v)
∂v

∂ f (x)
∂x

v +
1
2

vT ∂ T h(x)
∂x

∂h(x)
∂x

v = −∂Lp
o(x,v)
∂x

f (x). (32)

Since the system is linear in v, without loss of generality, we can write Lp
o(x,v) as:

Lp
o(x,v) =

1
2

vT L (x)v (33)

with L (x) symmetric, positive definite and with smooth elements.
In the sequel, we determine the nonlinear counterpart of the Sylvester equation which

in the linear case gives the cross Gramian. Taking the derivative with respect to v and
using (29), we get:

∂ 2Lp
o(x,v)

∂v2

∂ f (x)
∂x

v +
∂ T f (x)

∂x
∂ T Lp

o(x,v)
∂v

+ G(x)g(x)
∂h(x)

∂x
v = −∂ 2Lp

o(x,v)
∂v∂x

f (x).
(34)

Applying the coordinate transformation, p = G(x)v, on (30) we get:

∂ f
∂x

v = G−1(x)
∂ T f
∂x

G(x)v +F (gi j(x),
∂gi j(x)

∂xk
, fk(x),u,g(x), p), (35)

where F = F −G−1(x)Ġ(x)v.
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Premultiplying the equation with vT and using (35) we obtain:

pT G−1(x)L (x)
∂ f (x)

∂x
v + pT ∂ f (x)

∂x
G−1(x)L (x)v + pT g(x)

∂h
∂x

v =

− vT ∂ 2Lp
o(x,v)

∂v∂x
f (x)−F

T
L (x)v.

(36)

Using the coordinate transformation (29) and equation (32) we get:

pT G−1(x)L (x)
∂ f
∂x

v +
1
2

pT g(x)
∂h
∂x

v =

− vT ∂ 2Lp
o(x,v)

∂v∂x
f (x)+

∂Lp
o(x,v)
∂x

f (x)−F
T
L (x)v.

(37)

Remark 8. In the linear systems case, (34) becomes: vT MAv + vT AT Mv + pT BCv
= 0. Since v = T−1 p, we get:

pT T−1MAv + pT AT−1Mv + pT BCv = 0. (38)

Using the symmetry property, this immediately leads to the Sylvester equation (4).
Moreover, the relation X = T−1M is satisfied as in Theorem 3. Equation (38) becomes

XA +
1
2

BC = 0.

We are now ready to define the cross Gramian for a nonlinear gradient system.

Definition 7. We call
X (x) = G−1(x)L (x) (39)

the cross-Gramian matrix associated to Σ ′
p and it satisfies (37).

This is an extension of statement 2 in Theorem 3, i.e. the cross Gramian is given
by the gradient metric and the observability Gramian. In order to explain the cross
Gramian and its importance we present in a nutshell the study of Hankel singular val-
ues for a nonlinear system (1) as in [6,11]. Suppose that (1) is asymptotically reachable
from x(0), then the controllability function Lc(x) exists and is positive definite, with
Lc(x0) = 0.

If H (u) is the Hankel operator of the system then for finding out the Hankel singular
values of the system the differential problem is solved: (dH (u))∗H (u) = λ u, where
(dH (u))∗ represents the adjoint of the (dH (u)) operator (see [6] for further details).
A solution for this problem is given by the following result:

Lemma 3. [6] If there exists λ �= 0 such that

∂Lo

∂x
(x(0)) = λ

∂Lc

∂x
(x(0)), (40)

then λ is an eigenvalue of the operator (dH (u))∗H (u), with the corresponding eigen-
vector u = C †(x(0)), where C (u) is the controllability operator associated to (1).
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Remark 9. In the linear case, this problem becomes: Mx(0) = λW−1x(0). Since W >
0, we can write WMx(0) = λ x(0) and if, moreover, the system is gradient, then, accord-
ing to Theorem 6 we have: X2x(0) = λ x(0), X being the cross Gramian. This means
that λ is the squared Hankel singular value σ , which for a symmetric system is an
eigenvalue of X.

Still, in order to make the connection between λ ’s and the Hankel singular values of (1)
the Hankel norm is involved. The following results give the relation:

Theorem 5. [6] Suppose that the linearization of (1) has non-zero distinct Hankel
singular values. Then, there exists a neighborhood U ⊂ R of 0 and ρi(s) > 0, i =
1, ...n such that: min{ρi(s),ρi(−s)} ≥ max{ρi+1(s),ρi+1(−s)} holds for all s ∈U, i =
1, ...,n−1. Moreover, there exist ξi(s), satisfying the following:

Lc(ξi(s)) = s2/2,Lo(ξi(s)) = ρi(s)s2/2,
∂Lo

∂x
(ξi(s)) = λi(s)

∂Lc

∂x
(ξi(s)),

λi(s) = ρ2
i (s)+

s
2

dρ2
i (s)
ds

.

(41)

Even more, if U = R, the Hankel norm of the system is sups ρ1(s).

The ρi(s) are a clear extension of the Hankel singular values for a nonlinear system and
they can be obtained from the Hankel singular value functions of the nonlinear system,
as defined in [9]. The following result establishes this link:

Theorem 6. [11] If (1) is in input-normal, output-diagonal form, i.e. Lc(x) =
xT x/2, Lo(x) = xT diag(τ1(x), ...,τn(x))x/2, then

ρ2
i (x j) = τi(0, ...,x j, ...,0), i �= j,

ρ2
j (x j) = τ j(0, ...,x j, ...,0)+

1
2

∂τ j

∂x j
(0, ...,x j, ...,0)x j.

(42)

Returning to our case, we state the following

Conjecture 1. Let (1) be a nonlinear gradient system with the associated variational
system Σ ′

p. If λi, i = 1, ...,n, satisfy Theorem 5, then they are the squared eigenvalues of
X (x).

We aim at proving this conjecture by finding the meaning of the gradient extension in
the context of the balancing procedure (following the reasoning in e.g. [6]), in order to
be able to obtain an equivalent of equation (40) written in terms of the cross Gramian.
In this way, the λ ’s in (40) associated to Σp, are related to the eigenvalues of the cross
Gramian and thus, the Hankel singular value functions can be obtained from solving an
eigenvalue problem for the cross Gramian.

Remark 10. For linear systems this falls into place with the theory for symmetric sys-
tems, see Remark 9 .

Then using Theorem 5, the Hankel singular values of the original system are obtained,
avoiding the balancing procedure.
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6 Example

Given a double mass double spring system (see Figure 1), we compute the cross
Gramian of the gradient system associated to it.

Fig. 1. Double mass double spring system

The system is given by:{
m1ẍ1 + k1(x1)+ k2(x1,x2) = 0
m2ẍ2 − k2(x1,x2)+ u = 0

, (43)

where x1,x2 are the displacements, m1,m2 > 0 are the masses and k1(x1),k2(x1,x2)
are the corresponding elastic forces, with the initial conditions x1(0) = 1,x2(0) = 0.

The potential energy of the system is given by V (x), smooth, such that ∂V (x)
∂x1

=

k1(x1),
∂V (x)
∂x2

= k2(x1,x2). We choose k1(x1) = −x3
1 and k2(x1,x2) = x1−x2 (elastic co-

efficients constant and equal to 1). We take m1 = m2 = 1. The Hamiltonian of the system
is H(x) = 1

2 ẋT M−1(x)ẋ +V (x), with M(x) = I2. Since M > 0, G(x) = M−1(x) = I2 can
define a Riemannian metric on R

n (e.g. see [10, Chapter 6, Section 6.1]). The associated
gradient system, of the form (8), is:

ẋ =
[ −x3

1
x1 − x2

]
+

[
2
1

]
u, y = x1. (44)

Denote L (x(t)) = [li j(x(t))]i, j=1,2 = [li j(t)]i, j=1,2. Solving equation (37) associated to
(44), for all v ∈ TM , yields the following parameter-varying system to be solved:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dl11(t)
dt

= 3x2
1(t)l11(t)− l12(t)−1

dl12(t)
dt

=
(

3
2 x2

1(t)+ 1
)

l12(t)+ l22(t)
dl22(t)

dt
= l22(t)

. (45)

Solving system (44) for u(t) = 0, t > 0,x1(0) = 1 we get x1(t) =
1√

2t + 1
. Substituting

in (45) we obtain a time varying system. We solve it using approximation of 3rd order
and obtain:

L (t) = X (t) =
[

3 + 10t + 9t2 + 2t3 −t − 3
2 t2 − 1

6 t3

−t − 3
2 t2 − 1

6 t3 1 + t + 1
2 t3 + 1

6 t3

]
(46)

The eigenvalue functions of the cross Gramian are given as:

λ1(t) = 3 + 10t + 10t2−3t3 + O(t4)

λ2(t) = 1 + t + 0.9t3 + O(t4)
(47)
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7 Conclusions and Future Work

We present here the nonlinear counterpart of the cross Gramian for gradient systems.
We do this in terms of the variational system. The reason is that in the next step we
want to prove that the eigenvalues obtained from the cross Gramian are related in a
direct manner to the Hankel singular values of the system. For later concern we will
also take into account the computational aspect of solving equation (37).

Acknowledgements. The authors gratefully acknowledge the contribution of National
Research Organization and reviewers’ comments.
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