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IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.
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Preface 

This book constitutes a collection of extended versions of papers presented at the 23rd 
IFIP TC7 Conference on System Modeling and Optimization, which was held in Cra-
cow, Poland, on July 23–27, 2007. It contains 7 plenary and 22 contributed articles, 
the latter selected via a peer reviewing process. Most of the papers are concerned with 
optimization and optimal control. Some of them deal with practical issues, e.g., per-
formance-based design for seismic risk reduction, or evolutionary optimization in 
structural engineering. Many contributions concern optimization of infinite-
dimensional systems, ranging from a general overview of the variational analysis, 
through optimization and sensitivity analysis of PDE systems, to optimal control of 
neutral systems. A significant group of papers is devoted to shape analysis and optimi-
zation. Sufficient optimality conditions for ODE problems, and stochastic control 
methods applied to mathematical finance, are also investigated. The remaining papers 
are on mathematical programming, modeling, and information technology. 

The conference was the 23rd event in the series of such meetings biennially organ-
ized under the auspices of the Seventh Technical Committee “Systems Modeling and 
Optimization” of the International Federation for Information Processing (IFIP TC7). 
It was attended by over 200 participants from 33 countries and 5 continents, who 
presented talks on a wide spectrum of topics covering all areas of interest of the IFIP 
TC7, including optimization theory, algorithms of nonlinear optimization, discrete 
optimization, stochastic optimization, distributed parameter systems: modeling and 
optimization, optimal control, stochastic control and financial mathematics, structural 
design, stability and sensitivity analysis in optimal control, and complex systems.  

The conference was organized by the AGH University of Science and Technology 
in Cracow, one of the greatest technical universities in Poland. The organization was 
mainly carried out at the Faculty of Electrical Engineering, Automatics, Computer 
Science and Electronics.   

We would like to thank the members of the Program Committee of the conference 
for their help and valuable advice. In  particular we are grateful to Irena Lasiecka, the 
chairperson of  the IFIP TC7, who also chaired the PC of the conference. Thanks are 
due to G. Augusti, L.T. Biegler, H. Furuta, M. Grötschel, A. Lewis, H. Maurer, B.S. 
Mordukhovich, S. Scholtes, V. Schulz, Ł. Stettner, and J.-P. Zolésio for delivering 
plenary talks, and to N.U. Ahmed, G. Avalos, L.T. Biegler, T. Burczyński, J. Cagnol, 
M. Delfour, D. Dentcheva, D. Dolk, J. Granat, J. Henry, I. Lasiecka, U. Ledzewicz, T. 
Lewiński, M. Makowski, S. Migórski, M. Pietrzyk, H. Schättler, V. Schulz, H.-J. 
Sebastian, J. Sokołowski, Ł. Stettner, A. Świerniak, R. Tichatschke, F. Tröltsch, S. 
Volkwein, J. Zabczyk, J.-P. Zolésio, and A. Żochowski, who organized the invited 
sessions, thus greatly contributing to the success of the conference. We would also 
like to thank all the reviewers, who refereed the abstracts of talks delivered at the 
conference as well as the articles published in this book. 
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VI 

The organization of the conference was largely dependent on the financial support 
of the AGH UST, which is gratefully acknowledged. The success of the conference 
and the publication of this book would not have been possible without the help and 
support of many individuals. We owe sincere thanks to  them all, and in particular to 
Antoni Tajduś, Rector of the AGH UST, Tomasz Szmuc, the then Dean of the Faculty 
of Electrical Engineering of AGH, and Karol Musioł, Rector of the Jagiellonian Uni-
versity. Our special thanks go to Anna Sury, whose help in all organizational matters 
was invaluable. We also thank Grzegorz J. Nalepa and his co-workers for their help in 
the preparation of the camera ready form of this volume. 
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Performance-Based Design as a Strategy for Risk
Reduction: Application to Seismic Risk Assessment of

Composite Steel-Concrete Frames

Giuliano Augusti and Marcello Ciampoli

Department of Structural and Geotechnical Engineering, Sapienza Università di Roma
giuliano.augusti@uniroma1.it, marcello.ciampoli@uniroma1.it

Abstract. Performance-based design is an efficient strategy for assessing and re-
ducing the risk that a construction violates some performance requirement. In this
paper, a procedure for performance-based assessment of seismic risk is illustrated
with reference to a composite steel-concrete frame structure. Such risk is conven-
tionally evaluated in a simplified formulation, i.e. as the mean annual frequency
of exceeding a threshold level of damage in any significant structural element.
The procedure is applied to evaluate the site seismic hazard, the structural dam-
age, the corresponding capacity, and finally the seismic risk of a plane frame,
extrapolated from a 3-D structure that was subjected to experimental tests at the
ELSA-JRC Laboratory in Ispra, Italy. Specific attention is given to the choice
of the intensity and damage measures for use in performance-based seismic risk
assessment of composite steel-concrete frames.

1 Introduction

By definition, “Performance-Based Design” (usually referred to by the acronym PBD)
requires the satisfaction of the relevant performance requirements with a sufficiently
high probability throughout the lifetime of an engineering system.

This definition might appear a truism, since design is always addressed to fulfill one
or more performance objectives. Indeed, PBD is a new concept not because it refers to
performance objectives, but in the way it aims at fulfilling these objectives.

As a matter of fact, up to a few years ago, the fulfillment of performance objectives
was based on engineering experience and practice; PBD is instead a design philoso-
phy specifically constructed in order to reach rationally and with a given reliability the
chosen objectives [14,15,2,27,28,26].

The basic document for all Structural Eurocodes, i.e. EN 1990: “Eurocode - Basis
for Structural Design” (CEN, 2002), begins with the statement: “A structure shall be
designed and executed in such a way that it will, during its intended life, with appropri-
ate degrees of reliability and in an economical way: (i) sustain all actions and influences
likely to occur during execution and use, and (ii) remain fit for the use for which it is
required”. Thus, in principle the Code recognizes correctly that the fulfillment of the
chosen objectives cannot be guaranteed in deterministic terms, but rather tackled in
a probabilistic context (“appropriate degrees of reliability”); recognizes also that such
fulfillment is conditioned by cost/benefit problems (“in an economical way”). However,

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 3–20, 2009.
c© IFIP International Federation for Information Processing 2009
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the Structural Eurocodes prescribe practical design rules that have little “performance-
based” character, and in actual fact make them prescriptive codes; the same happens
with the 2005 Italian Building Code [24].

A general definition of PBD, derived from the specific definition given by SEAOC
for Performance Based Seismic Design [29], is the following: “Performance Based En-
gineering consists of those actions, including site selection, development of conceptual,
preliminary and final design, construction and maintenance of a structure over its life,
to ensure that it is capable of predictable and reliable performances. The life of a struc-
ture includes also its decommissioning and/or demolition. Each of the above actions
can have significant impact on the ability of the structure to reliably reach desired per-
formances”.

At present, PBD is still far away from providing a consistent set of design rules, and
will probably remain for some time only a philosophy on the verge of utopia. However,
this should not be regarded as a negative aspect: as a matter of fact, the very scope of
engineering is to conceive, design and build facilities that are better, more effective and
economical than present ones. This most probably will never be fully achieved and only
partial steps will be possible, but such a high objective cannot be pursued at without an
ideal vision: and PBD appears to be at the moment the best [21].

The difficulties encountered in applying the PBD philosophy are put in evidence by
the everyday experience of the engineers and their limited capacity of governing the
choices in the several stages of the facility lifetime: choice of the location, concep-
tual design, preliminary and final design, construction, maintenance, decommissioning
and/or demolition. Already the choice of the site of a facility is often not the result of
a rational strategy but of many casual chances. Conceptual design includes aesthetic,
functional and structural aspects: these aspects are interrelated and should be tackled
in a systematic way, aimed at fulfilling the performance objectives; however, much too
often the engineer’s role is limited to the choice of the load-carrying system. Prelimi-
nary and final design are the stages in which the influence of the engineer is highest:
however, he often cannot control choices essential for the performance objectives, such
as construction details, heating and electrical systems, etc. Similar considerations apply
to other stages, from construction to demolition.

According to the International Code Council [17], the performance capacities of a
structure can be verified in three ways: by design computations; by experimental tests;
by the respect of appropriate code guidelines (the last being the actual way in which
most regulations, and specifically the Eurocodes, are implemented).

Thus, rather than being an alternative to prescriptive codes, PBD is in reality an
approach that does not exclude guidelines, but is aimed directly at the rational achieve-
ment of well specified performance objectives and/or their optimization: once the per-
formance objectives are defined, the designer can limit himself to demonstrate that he
has respected the code guidelines aimed at fulfilling those objectives [6].

PBD has been originally formulated in a systematic way for structures subject to
seismic hazard: but applications to other hazards have also been implemented.

An example is Performance-Based Blast Engineering that had a significant devel-
opment in the US after the terrorist attacks to World Trade Center in 1993 and 2001,
to Murrah Building in 1995 and to Pentagon in 2001 [33]. To take into account in the
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design the possible effects of explosions is now considered an added value by building
owners and insurance companies.

A field of great potential for developments of PBD procedure is Wind Engineering:
the first steps in this direction go back to an Italian research project (PERBACCO:
2003/2005), in which the expression “Performance-based Wind Engineering” (PBWE)
was coined [4]. A recent example can be found in [30].

Also this paper will be limited to seismic design. In what follows, after a brief pre-
sentation of the general framework, the application of PBD to the evaluation of the
seismic risk (although conventionally defined) of a composite steel-concrete frame will
be illustrated in detail.

2 Formulation of the Problem

Concerning the demonstration of the capacity of a structure to fulfill the stated perfor-
mance objectives under seismic hazard, one can refer to the equation proposed by the
Pacific Earthquake Research Center (PEER) for PB seismic design [11].

In quantitative terms, the performance requirement is identified with an acceptable
value of the mean annual frequency λ (LS) of exceeding a limit state LS of the structure,
assessed combining the site seismic hazard and the structural vulnerability by the Total
Probability Theorem, through the relation:

λ (LS) =
∫∫

G(LS |DM) ·dG(DM |IM) ·dλ (IM) (1)

where:

1. IM is an appropriate “intensity measure” of the earthquake;
2. λ (IM) is the mean annual occurrence rate in the considered site of a quake of inten-

sity equal or larger than IM (i.e. the measure of the seismic hazard in the relevant
site);

3. DM is a parameter obtained from the analysis of the structural response and mea-
suring the structural damage;

4. G(DM|IM) is the conditional probability of overcoming DM for a given IM;
5. LS is the considered “limit state”;
6. G(LS|DM) is the conditional probability of overcoming LS for a given DM.

Each of the quantities in Eq. 1 is highly uncertain: thus, their choice and probabilistic
characterization is essential for the reliability of the results and the efficiency of the
approach in practical application.

2.1 The Site-Seismic Hazard

In Eq. 1, the site seismic hazard is referred to a single parameter, usually an intensity
measure IM, and is measured by the average frequencyλ (IM) with which each IM value
is exceeded every year, while the seismic vulnerability of the construction is identified
with the probability of overcoming each value of a structural damage parameter DM for
any given IM.
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The ground motion intensity measure, IM, serves as an interface between the char-
acterization of the seismic hazard and the assessment of the structural behavior.

In turn, the limit condition is described by an appropriate limit state, LS, correspond-
ing to an appropriate performance requirement, whose achievement is probabilistically
related to DM: the choice of the limit state and its relation with DM depend on several
factors, such as the construction type, the structural model, the method of analysis.

As concerns the characterization of the seismic hazard, Eq. 1 is significant only in-
sofar as:

(i) the seismic hazard, hence the damage potential of the earthquake, is consistently
defined by the probabilistic characterization of the chosen IM;

(ii) in the relevant site, the frequency curve λ (IM) can be evaluated by a probabilistic
seismic hazard analysis;

(iii) the number of calculations that are needed to evaluate the structural response,
taking into account the uncertainties of both the seismic motion and the structural prop-
erties, is not excessive.

These conditions are met if the parameter IM satisfies, respectively, the requirements
of sufficiency, hazard valuableness and efficiency, as defined in [32] and discussed
in [19], [13].

According to these definitions, an intensity measure IM is sufficient if DM for a
given IM can be evaluated independently on any other property of the seismic motion,
like magnitude of the generating event, source-to-site distance, fault type, soil type, and
directivity effects. The adoption of a sufficient IM (i) permits an unbiased evaluation of
λ (LS) by Eq. 1, (ii) makes it not essential a careful selection of records to be used in
non-linear dynamic analyses to take into account the record-to-record variability, (iii)
legitimizes scaling the accelerograms [32], (iv) allows decoupling seismic hazard and
structural analysis, and (iv) gives an exhaustive description (at least in a statistical sense)
of the damaging power of the seismic event, thus overcoming the need of adopting a
vector of parameters.

The hazard valuableness depends on the possibility of describing the source activity
and the source-to-site attenuation law in terms of the chosen IM.

Finally, an IM is efficient if the uncertainties in the structural response, evaluated
by considering a set of ground motion records scaled to different values of IM, are not
excessive. This last condition can be quantified by limiting the value of the dispersion
βDM|IM of DM for each value of IM; since in Eq. 1 the structural response, thence the
function G(DM|IM) are evaluated by nonlinear dynamic analyses, the use of a more
efficient IM implies a reduction in the number of analyses necessary to estimate λ (LS)
with the same confidence level.

From the definitions given above, it appears that sufficiency is an essential property
of an IM. Once the sufficiency of a candidate IM is established, efficiency and hazard
valuableness are two relative criteria that can be used to select a candidate IM among the
alternative ones. However, the choice of IM depends strongly on the structural typology
and the damage measure DM.
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2.2 The Structural Vulnerability

Also the choice of the proper DM, that completely characterize the structural response,
should be carried out by checking both sufficiency and efficiency.

The DM sufficiency is related to the possibility of describing the damage state of the
structure by the candidate DM, and of relating the seismic risk of the construction to
the mean occurrence rate of overcoming each given value of DM. However, it may be
really difficult to justify this choice, even only in a statistical sense.

The choice of DM is then related (i) to the relative efficiency of the candidate pa-
rameters, that can be measured (as for IM) by the dispersion βDM|IM of the values of
DM resulting from nonlinear dynamic analyses for each value of IM, and (ii) to the
possibility of estimating, in a consistent way, the type and parameters of the conditional
distribution G(DM|IM).

In the present context, the structural response is evaluated by nonlinear incremental
dynamic analysis (IDA). IDA [32] is a parametric nonlinear analysis that involves sub-
jecting the structural model to a certain number of ground motion time histories, each
of them scaled to multiple levels of intensity, that is, to a seismic action characterized
by different occurrence rate, intensity and frequency content.

The use of IDA has many advantages: indeed, it describes the evolution of the struc-
tural response in the whole investigated range of seismic intensities and gives a visual
description of the effects of the record-to-record variability.

The results of IDAs are given as plots of the structural response, that is, of the as-
sumed damage measure, DM, as a function of the ground motion intensity measure,
IM. Each IDA plot depends on the adopted DM and on the specific record, but not on
the considered IM: IDA plots in terms of different IMs are easily obtained by scaling
the ordinate of each point on the curve according to the relation between the originally
adopted IM and the candidate IM.

2.3 Seismic Risk Assessment

Once the expressions of the relevant probability functions are defined, Eq. 1 can be
evaluated by a numerical procedure.

However, if some simplifying assumptions hold, it is possible to attribute an analytic
expression to λ (LS), as described in detail in [19]. These assumptions are crucial and
may introduce considerable epistemic uncertainties in the solution to Eq. 1, that cannot
be quantified; therefore their contribution is disregarded in what follows.

As suggested by [23], let us assume that the site-seismic hazard λ (IM) is described
by a curve that is approximated, in the region of interest, by the power-law relationship:

λ (IM) = P [IM≥ x] = k0 · (x)−k (2)

where k0 and k are the parameters that define the shape of this hazard curve.
Observations of demand values are obtained from the results of incremental dynamic

analyses, performed for various levels of IM. Considering any set of ground motion
records applied to the structure, there will be a certain variability in the values of DM
for each given level of IM. The record-to-record variability is a consequence of the
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variability of the generating events; however, also the uncertainties characterizing the
structural parameters can be taken into account.

In order to build a simplified probabilistic model of the demand (the damage to the
structure), DM can be written as:

DM = ηDM|IM · ε (3)

that is, as the product of the conditional median ηDM|IM of DM given IM and a log-
normal random variable ε; the median and the standard deviation of ln ε are set equal,
respectively, to 1 and βDM|IM, that in turn depends on the level of IM.

Let us introduce an approximate functional relationship between each IM value and
the median ηDM|IM of the demand parameter DM, based on a regression of the results
of time-history analyses. If the conditional median demand is approximated as a power-
law function of IM, the relationship is given by:

ηDM|IM = a · IMb (4)

The conditional demand is thus the random variable:

DM = a · IMb · ε (5)

The standard deviation of the natural logarithm of DM given IM is equal to:

σ lnDM|IM (IM) = βDM|IM (6)

According to this formulation, it is possible to obtain the demand hazard, that is, the
mean annual frequency (i.e. the annual probability if some simplifying assumptions
hold) of exceeding a certain level of DM, dm, for each given level of IM, im, by the
relationship:

λ (DM) =
∫ ∞

0
P [DM > dm |IM = im ] · |dλ (IM)|= k0

(
DM

a

)−k
b

· e 1
2 · k2

b2 ·β 2
DM|IM (7)

According to Eq. 7 the demand hazard is given by the seismic hazard curve 2 evaluated
at the IM value corresponding to the DM value times a factor related to the dispersion
in demand for a given level of IM.

In order to derive the limit state annual frequency λ (LS), that is a measure of the
probability that the damage to the structure exceeds a threshold corresponding to the
relevant limit state, which is an uncertain quantity representing the structural capacity
C, let us finally assume that the demand and the capacity are independent random vari-
ables and that the capacity is a lognormal random variable itself, with the following
parameters: median(C) = ηC, σln(C) = βC. As:

λ (IM(ηC)) = k0

(ηC

a

)−k
b

(8)

gives the value of the seismic hazard for the IM value corresponding to the median
capacity ηC, after some rearrangements [19], it is straightforward to obtain:

λ (LS) = k0

(ηC

a

)−k
b · e 1

2 · k2

b2 ·β 2
DM|IM · e 1

2 · k2

b2 ·β 2
C (9)
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In Eq. 9, the limit state probability is expressed as the seismic hazard curve evaluated at
the IM value corresponding to ηC (the median capacity) multiplied by two coefficients
that take into account respectively the randomness in DM for a given IM (the demand
factor) and the randomness in the capacity C itself (the capacity factor).

3 An Application

In this paper, the procedure summarized in Sect. 2 is applied to assess the seismic risk
of the composite steel-concrete planar frame of Fig. 1, that is part of a spatial frame that
has been subjected to pseudo-dynamic seismic tests [7].

Fig. 1. Plane frame from a structure subject to pseudo-dynamic seismic tests at ELSA Laboratory,
JRC, Ispra (Research project: ECOLEADER HPR-CT-1999-00059; ECSC 7210-PR-250) [7]

The structural model is shown in Fig. 2. The beam-column joints have been simulated
as assemblages of translational and rotational nonlinear springs; their parameters have
been calibrated by the results of experiments carried out on the whole spatial frame [5].
The moment-rotation relationships of the rotational springs for external and internal
joints are plotted in Fig. 3. The nonlinear dynamic incremental analyses have been
carried out by IDARC2D [18].

3.1 Choice of IM

As stated in Sect. 2.1, sufficiency and efficiency are the measures of the IM capability
to eliminate the bias in formulating Eq. 1 and to reduce the variability of the structural
response evaluated by IDA.

The most appropriate IM has been chosen by evaluating the sufficiency of vari-
ous IMs, with reference also to other example cases of composite steel-concrete plane
frames similar to the one represented in Fig. 1, and by choosing the most efficient IM
among the sufficient ones.
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Fig. 2. Structural model of the frame with deformable joints [5]

-400

-200

0

200

400

-40 -30 -20 -10 0 10 20 30 40

Rotazione (mrad)

M
om

en
to

 (
kN

m
) 

-400

-200

0

200

400

-40 -30 -20 -10 0 10 20 30 40

Rotazione (mrad)

M
om

en
to

 (
kN

m
) 

   (a)               (b) 

Rotation (mrad) Rotation (mrad) 

M
om

en
t (

kN
m

) 

M
om

en
t (

kN
m

) 

Fig. 3. Moment–rotation relationships for the external (a) and internal (b) joints derived from the
experimental tests

The results illustrated in the following are specifically referred to the frame in Fig. 1;
similar conclusions have been drawn by considering the other example cases [8].

After a series of preliminary analyses, presented in detail in [13], the selected candi-
date IMs were:

a) The peak ground acceleration, PGA.
b) The peak ground velocity, PGV.
c) The Housner Intensity, IH , given by [16]:

IH =
∫ 2.5

0.1
SV (T,ξ )dT (10)
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where: SV (·) is the pseudo-spectral velocity; T is the natural period; ξ is the damp-
ing ratio.

d) The spectral intensity, Sa(T1), that is, the ξ damped spectral pseudo-acceleration at
the fundamental period T1 of the structure.

e) The two-parameter scalar IM proposed by [10], SaC, and defined as:

SaC = Sa(T1)
(

Sa (c ·T1)
Sa(T1)

)α
(11)

where: Sa(·) is the ordinate of the pseudo-acceleration response spectrum; c and
α are parameters that are usually derived from an ad-hoc calibration. In numeri-
cal calculations, α has been taken equal to 0.5; c has been taken equal either to
2, as suggested in [10], to take into account the effect of period lengthening due
to nonlinear behavior, or to T2/T1 (where T2 is the period of the second mode of
vibration of the considered structure). Both alternatives for c have been considered
because the latter, as suggested in [13], led to a more efficient IM in case of slender
structures whose behavior is influenced by higher modes of vibration.

f) The spectral pseudo-acceleration averaged over a period interval [20], defined as:

Saav =
1

b′ −a′

∫ b′

a′
Sa(T )dT . (12)

As suggested in [20], in numerical calculations the following alternative pairs have
been introduced: a′ = T1, b′ = 1.5T1, and: a′ = T2, b′ = T1.

As one of the objectives of this study is the selection of appropriate IM and DM for com-
posite steel-concrete frames, the structural response has been evaluated by using as input
30 accelerograms obtained from the PEER data base [http://peer.berkeley.edu/smcat],
but not selected on the basis of the Probabilistic Seismic Hazard Analysis of any specific
site; the accelerograms have been scaled to different intensity levels, until the collapse
of the frame was reached, it being identified by the lack of convergence of the numerical
solution (that is, by global dynamic instability). Records with potential near-source ef-
fects, like directivity, have been discarded; no other specific criteria have been adopted
in selecting the records.

The selected records had moment magnitude M between 5.5 and 7.0 and source-to-
site distance R between 13 km and 60 km.

The sufficiency of each candidate IM has been evaluated by a slightly refined version
of the procedure based on the analysis of a set of linear regressions together with tests
of hypothesis, proposed in [28], [19].

The significant ground motion characteristics are those included in the assumed at-
tenuation law (in the example case, the law by [1]), namely, the moment magnitude M,
the source-to-site distance R, and the error term ε describing the model uncertainty.

As the sufficiency of IM depends on the structural typology and the damage measure,
four different DMs have been considered:

I. The maximum interstory drift ratio, MIDR.
II. The global interstory drift ratio or roof drift angle, RDA.

III. The peak floor (absolute) acceleration, PFA.
IV. The peak floor (relative) velocity, PFV.
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MIDR is commonly adopted to describe the level of seismic damage, as it is relatively
easy to establish a correlation between its values and the level of damage to both struc-
tural and non structural components. RDA is a global indicator, strictly related to the
first one. PFA and PFV can be considered as consistent indicators of the structural re-
sponse and of the damage to the building content [9].

To evaluate the sufficiency of the candidate IMs, residual-residual plots have been
obtained for each IM, considering the alternative DMs. These plots indicate the signifi-
cance of each additional regression variable (M, R and ε) by indicating whether a sec-
ond variable introduced in the model of the site-seismic hazard significantly improves
the prediction of the structural response.

The plots, illustrated in detail in [8] are constructed by performing a regression of
the dependent variable (the selected DM) versus the first independent variable (the can-
didate IM); then by performing the regressions of each secondary independent variable
(M, R or ε) on the first variable; finally, by plotting the residuals of the primary regres-
sion against the residuals of each secondary regression.

By observing in these residual-residual plots a statistically significant trend between
the two sets of residuals, the potential dependence of the dependent variable on the
secondary variable can be investigated.

The trend is quantified by the slope b* of the regression line in each residual-residual
plot; if b* is “different” from 0, the residuals of the primary regression are correlated
to the residuals of the secondary regression, and the candidate IM is not sufficient with
respect to the considered secondary variable. A test of hypothesis based on the Student-
t distribution has been applied to verify if the null hypothesis (b* = 0) can be rejected;
this happens if the p− value is smaller than 0.05.

As a case example, consider MIDR as the damage measure. The results of the tests
of hypothesis referred to M and lnR are reported in Tables 1 and 2; comparable results
have been obtained for the other DMs [8].

The a* values reported in Tables 1 and 2 are the intercepts of the regression lines in
the residual-residual plots. These values are very small (they should be equal to 0), as
the regression prediction always passes through the average values of the two sets of
horizontal and vertical components, and these average values must be equal to 0 as the
two sets of components are themselves residuals of linear regression.

Table 1. Check of sufficiency with respect to M

Magnitude σ0 σ a* b* σb p-value Check of
sufficiency

PGA 0.4367 0.3138 -1.33E-15 0.2124 0.1189 0.04250 No
PGV 0.4312 0.4146 -2.25E-15 -0.2228 0.1470 0.0704 Yes
IH 0.4372 0.4285 1.82E-15 -0.1581 0.1474 0.1464 Yes
Sa(T1) 0.2511 0.2309 -3.02E-15 0.1511 0.0667 0.0157 No
SaC(c =2, α = 0.5) 0.3162 0.3161 -2.31E-15 -0.0160 0.0980 0.4358 Yes
SaC(c = T2/T1, α = 0.5) 0.3793 0.3505 -3.60E-16 0.2191 0.2000 0.0685 Yes
Saav(T1÷1.5T1) 0.2702 0.2662 -5.98E-16 0.0725 0.0792 0.1838 Yes
Saav(T2÷1.5T1) 0.2519 0.2503 -8.39E-16 0.0462 0.0751 0.2715 Yes
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Table 2. Check of sufficiency with respect to ln R

Source-to-site distance R σ0 σ a* b* σb p-value Check of
sufficiency

PGA 0.4367 0.4190 -1.01E-15 0.2661 0.1713 0.06582 Yes
PGV 0.4312 0.4306 -1.86E-15 -0.0522 0.1781 0.3858 Yes
IH 0.4372 0.4367 1.77E-15 -0.0473 0.1805 0.3977 Yes
Sa(T1) 0.2511 0.2268 -2.83E-15 0.2328 0.0926 0.0090 No
SaC(c =2, α = 0.5) 0.3162 0.3090 -2.58E-15 0.1458 0.1261 0.1288 Yes
SaC(c = T2/T1, α = 0.5) 0.3793 0.3508 -1.70E-16 0.3131 0.2437 0.1900 Yes
Saav(T1÷1.5T1) 0.2702 0.2608 -6.38E-16 0.1522 0.1065 0.0820 Yes
Saav(T2÷1.5T1) 0.2519 0.2467 -7.89E-16 0.1107 0.1008 0.1407 Yes

To refine the statistical estimate, the test of hypothesis has been repeated by char-
acterizing the regression in the residual-residual plot by the Pearson’s or Spearman’s
coefficients, and by adopting the procedure of non parametric regression proposed by
[31]. The obtained results have confirmed those reported in Tables 1 and 2, as illustrated
in [8].

In Tables 1 and 2, also the square root of the mean of squares (rms) σ0 of the pri-
mary regression of the dependent variable (the considered DM) on the first variable
(the candidate IM) and the rms σ of the residual-residual regression are reported. These
two quantities can be used to measure the significance of each additional variable in
reducing the variability of data, as the smaller the ratio of these two quantities, the more
significant is the role of the secondary variable.

Moreover, if the standard deviation σb (also shown in Tables 1 and 2) is very large
relative to the slope b* itself, the slope may not be statistically different from zero.

It can be concluded that PGA is not sufficient with respect to M: indeed, σ0 is quite
different from σ , and the p-value is significantly lower than 0.05. The same result ap-
plies to Sa(T1) if both M and R are considered.

In order to evaluate the efficiency of the three left IMs, that satisfy sufficiency, their
values corresponding to each level of DM have been calculated, and the cross-sectional
counted percentiles (e.g., im16%, im50%, im84%) estimated. If the distribution of IM
given DM is assumed to be lognormal, the estimator of the dispersion of the values of
IM is given by [19]:

βIM|DM (dm) =
1
2

ln

[
im84%

im16%

]
(13)

The value of βIM|DM(dm) has thus been assumed as the measure of the efficiency of
each candidate IM for the considered value of DM: indeed, the number of nonlinear
dynamic analyses to be run in order to evaluate λ (LS) in Eq. 1 with a given confidence
level, increase if βIM|DM(dm) is higher.

It should also be noted that each limit state condition is usually associated to a thresh-
old value of DM: the values of βIM|DM(dm) could also be used as the estimators of the
dispersion of the structural capacity at the corresponding successive damage states [13].

In Table 3, the lowest values of βIM|DM are evidenced by italic, for some discrete
values of the considered DMs, representative of low, moderate or significant damage
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Table 3. Dispersion of the results for two different values of the various DMs and the sufficient
IMs

DM MIDR RDA PFA [m/s2] PFV [m/s]
IM 0.01 0.05 0.005 0.02 3.00 9.00 0.40 1.10
PGV 0.399 0.451 0.393 0.462 0.406 0.447 0.333 0.476
IH 0.269 0.382 0.256 0.389 0.366 0.407 0.277 0.409
SaC(c=2; α = 0.5) 0.100 0.347 0.142 0.349 0.371 0.458 0.233 0.366
SaC(c=T2/T1; α = 0.5) 0.251 0.446 0.267 0.436 0.240 0.386 0.257 0.455
SaC(c = T2/T1, α = 0.5) 0.364 0.465 0.379 0.468 0.252 0.445 0.275 0.473
Saav(T1÷1.5T1) 0.269 0.301 0.379 0.305 0.393 0.304 0.228 0.300
Saav(T2÷1.5T1) 0.224 0.282 0.304 0.312 0.417 0.305 0.136 0.313

states. As demonstrated in [13] with reference to reinforced concrete frames, SaC (with
parameters: c = 2; α = 0.5) gives acceptable results also when the damage is limited.

In the end, SaC has been chosen as the “best” intensity parameter, because: it is
sufficient; it is efficient; it is easy to derive the hazard in the relevant site in terms of
SaC, as it is a weighted average of two values of the spectral intensity Sa(T ) and the
attenuation laws in terms of Sa(T ) are well known and reliable.

3.2 Choice of DM

In order to define the damage to the structure, various DMs have been compared in
terms of their efficiency. [34] provide a detailed summary of the available DMs.

In addition to those considered in evaluating the efficiency of the candidate IMs (cf.
Sect. 3.1), specific attention has been given to four indices representing a measure of
the local damage to the structure. They are all able to take into account the nonlinear
response and the dissipation of energy due to plastic deformations. Their choice is thus
justified by the model adopted for evaluating the structural response, and specifically
for the beam-column joints, that, as demonstrated by the experiments, are the most
vulnerable components of the structural system. The additional candidate DMs were:

V. The ratio μ between the maximum required and the available curvature ductility
in a set of control points.

VI. The maximum normalized dissipated energy, E, in the joints.
VII. The Park-Ang index, P&A, evaluated as a linear combination of the maximum

ductility response and the total hysteretic energy dissipation [25] as:

P&A =
μmax

μmon
+β

EH

My ·θmon
(14)

where: μmax and μmon represent the maximum ductility response for a given earth-
quake history and the available ductility in the corresponding plastic zone; β is an
empirical factor, that came out equal to 0.30 according to the calibration described
below; EH is the total hysteretic energy dissipated in the plastic zone for the given
earthquake history; My is the yielding moment; θmon is the maximum admissible
rotation. This damage measure, while referring to a local behavior, gives some
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information about the seismic damage, as it takes into account both the maxi-
mum required ductility and the dissipated energy, that is, the maximum value of
the structural response and the degradation of strength and stiffness due to cyclic
behavior. The factor β in Eq. 14 has been calibrated by submitting several exam-
ples of composite steel-concrete frames to IDA, and putting P&A = 1 when the
collapse of each examined structure occurred in each nonlinear dynamic analysis.
The final value β = 0.30 has been the average value of all obtained results.

VIII. The Banon-Veneziano index, B&V [3], given by:

B&V =
√

(D∗1)2 +(D∗2)2 (15)

where, indicating by xmax and xy the maximum and the yield displacements re-
spectively, and by Fy the yielding strength in the corresponding plastic zone,

D∗1 = D1−1 = μs−1; D∗2 = a′ ·Db′
2 = a′[2(μe−1)]b

′
(16)

D1 =
xmax

xy
= μs; D2 =

EH

0.5Fyxy
(17)

The parameters a′ and b′ have been set: a′= 1.1; b′= 0.38, as suggested by Banon
and Veneziano themselves.

The efficiency of all DMs has been quantified by the dispersion βDM|IM of the IDA plots,
evaluated by Eq. 13. It has been found that, due to the assumed structural model, the
most significant DMs are the latter four [8].

Table 4. Mean value of βDM|IM obtained by assuming SaC as IM and averaging on three values
of the corresponding DM

βDM|IM MIDR P&A B&V μ E
SaC 0.64 0.51 0.57 0.60 0.55

The values of βDM|IM for these four DMs and three values of SaC are compared in
Fig. 4. In Table 4 the values of βDM|IM averaged over three different levels of damage
(light, moderate, severe) are shown. They have been evaluated by considering the IDA
plots reported in Fig. 5.

3.3 Site-Seismic Hazard

The seismic hazard curve of Fig. 6 has been elaborated from data available for Reggio
Calabria (South Italy) in the Seismic Catalogue elaborated by the Italian National Group
for Seismic Risk Reduction [22]; the parameters k0 and k in Eq. 2 have been obtained
by a regression in the logarithmic plane.
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Fig. 4. Values of βDM|IM evaluated for the four local DMs in correspondence to three values of
SaC
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Fig. 5. IDA plots: the four local damage indices are assumed as DM; SaC is assumed as IM

3.4 Seismic Risk Assessment

The median values of P&A derived by IDAs are plotted in Fig. 7 as a function of SaC;
the parameters a and b in Eq. 4 are obtained by the plotted regression, while the values
of βDM|IM in Eq. 7 have been obtained by the plots in Fig. 5.
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In Fig. 8 the 50%, 16% and 84% percentiles of βIM|DM are reported for three values
of P&A; by considering the median values, the median value ηC of the system capacity
(Eq. 9) has been obtained.
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Fig. 9. Seismic risk of the frame: mean yearly frequency of exceeding the corresponding value of
Park & Ang index in a significant structural element (beam, column or joint)

The dispersion βC of the system capacity (Eq. 9) has been evaluated by considering
all points of the IDA plots in which a significant change of the slope occurs. By a
regression of these values (linear in the logarithmic plane), it has been found that βC =
0.395.

In this paper, the median value and the dispersion of each element capacity have been
determined from the results of IDA. Actually however, the capacity depends on the di-
mensions of the element and the material properties: therefore the median value and the
dispersion of the capacity should be determined by experiments or field observations.

Finally, Fig. 9 shows the mean annual exceedance frequency λ (LS) of the largest
P&A index in a significant structural element (beam, column, or beam-column joint).

The curve in Fig. 9 quantifies the seismic risk of the frame: in fact, it allows to eval-
uate the seismic performance of the system considering appropriate threshold values
of P&A, e.g. those reported in Table 4, and checking if the correspondent exceeding
probability is admissible.

Table 5. Range of P&A values corresponding to different damage states of the structure

Damage level P&A State of the structure
Collapse ≥ 1 Collapsed
Severe 0.5 ÷ 0.9 Heavily damaged
Moderate 0.2 ÷ 0.5 Operational
Light 0.0 ÷ 0.2 Fully operational

4 Conclusions

As noted in the Introduction, PBD should cover all stages of the facility design, but at
present is still more a philosophy than a consistent framework, and has been mostly
developed for seismic design of structures. This is also the limitation of this paper,
that intends only to show critically the application of PBD to a concrete example. In
particular the need has been underlined of a careful selection of the parameters that
characterize the seismic hazard and the structural response.
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Abstract. Optimization is applied in numerous areas of chemical engineering
including the development of process models from experimental data, design of
process flowsheets and equipment, planning and scheduling of chemical process
operations, and the analysis of chemical processes under uncertainty and ad-
verse conditions. These off-line tasks require the solution of nonlinear programs
(NLPs) with detailed, large-scale process models. Recently, these tasks have been
complemented by time-critical, on-line optimization problems with differential-
algebraic equation (DAE) process models that describe process behavior over a
wide range of operating conditions, and must be solved sufficiently quickly. This
paper describes recent advances in this area especially with dynamic models. We
outline large-scale NLP formulations and algorithms as well as NLP sensitivity
for on-line applications, and illustrate these advances on a commercial-scale low
density polyethylene (LDPE) process.

1 Introduction

Manufacturing processes for petroleum products, basic chemicals, pharmaceuticals, spe-
cialty chemicals, consumer products, agricultural chemicals and fertilizers form essential
and irreplaceable components of our day-to-day existence. In the US alone, these prod-
ucts lead to revenues of over $1012/yr. Their manufacture is dominated by raw material
and energy costs and a strong competitive market, which drives down operating mar-
gins. These factors emphasize the need for systematic, model-based process optimiza-
tion strategies, both in the original design of the process and in day-to-day operations.

Mathematical models for process optimization reflect processing tasks such as mix-
ing, reaction and separation at appropriate conditions, through calculation of state
variables, e.g., stream flowrates, temperature, pressure and composition. Modeling equa-
tions include conservation laws for mass, energy, and momentum along with constitutive
relations and equilibrium conditions (such as physical properties, hydraulics, rate laws
and interface behavior). Moreover, with advances in computing hardware and numerical
algorithms there has been a steady evolution of model sophistication from steady state
to dynamic behavior and from lumped to spatially distributed systems.

Nonlinear programming strategies have been used for process optimization for al-
most 50 years. These have been essential for plant and equipment design, retrofitting
and operations planning. Over the past 25 years real-time optimization has also evolved
as a standard practice in the chemical and petroleum industry. In particular, the ability to
optimize predictive models provides a major step towards linking on-line performance
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to higher-level corporate planning decisions. As described in [11,15], these tasks form
a well-known pyramidal hierarchy with levels of decision-making including planning
at the top, followed by scheduling, site-wide and real-time optimization, model pre-
dictive control and regulatory control at the bottom. In this pyramid, the frequency
of decision-making increases from top to bottom, while the impact and importance of
decision-making increases from bottom to top. Moreover, while planning and schedul-
ing decision models are often characterized by linear models with many discrete deci-
sions, site-wide and real-time optimization require detailed nonlinear process models
which usually reflect steady-state performance of the plant. On the other hand, model
predictive control (MPC) is often formulated with linear dynamic models.

Interaction among decision-making levels requires that higher-level actions be fea-
sible at lower levels. Moreover, the performance described by lower level models must
be reflected accurately in decisions made at higher levels. A particularly close integra-
tion is needed for real-time optimization and control, especially for nonlinear processes
that may never really be in steady state. Examples of these include batch processes,
processes with load changes and grade transitions, such as power plants and polymer-
ization processes, and production units that operate in a periodic manner, such as Sim-
ulated Moving Beds (SMBs) [17] and Pressure Swing Adsorption (PSA) [14]. Treating
these nonlinear processes requires on-line optimization with nonlinear dynamic mod-
els, including strategies such as nonlinear model predictive control (NMPC) [2]. Re-
search in this direction includes development and application of detailed and accurate
first-principle differential-algebraic equation (DAE) models for off-line dynamic opti-
mization [5,15,23]. A comprehensive research effort on real-time dynamic optimiza-
tion is described in [12] and, more recently, large-scale industrial NMPC applications
have been reported at ExxonMobil [2], BASF [21] and ABB [10]. Moreover, in addi-
tion to enabling NLP solvers, there is a much better understanding of NMPC stabil-
ity properties and associated dynamic optimization problem formulations that provide
them (see [20]). Along with these theoretical developments, NMPC robustness prop-
erties have also been developed and analyzed [19]. From the comprehensive treatment
of dynamic real-time optimization in [12], it is clear that with improved optimization
formulations and algorithms, the role of on-line dynamic optimization can be greatly
expanded to consider economic objectives directly, allow longer time horizons with ad-
ditional constraints and degrees of freedom to improve the objective, and incorporate
multiple operating stages over the predictive horizon, including transitions in the predic-
tive horizon due to product change-overs, nonstandard cyclic operations, or anticipated
shutdowns [24,12].

The next section provides a background of dynamic optimization strategies and their
application to process optimization. An LDPE (low density polyethylene) process case
study is also introduced to illustrate the application of these strategies. Sect. 3 then
considers simultaneous collocation methods for off-line dynamic optimization. A pa-
rameter estimation for the LDPE reactor is presented to demonstrate the effectiveness
of this approach. Sect. 4 then discusses methods for dynamic optimization for on-line,
time-critical applications and introduces an NLP sensitivity-based nonlinear model pre-
dictive controller, which relies on a “background solution” of the NLP optimization.
This is illustrated on a grade transition optimization for the LDPE process. Finally,
Sect. 5 concludes the paper and outlines areas for future work.
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2 Background

To develop the NLP formulation and solution strategy we consider the dynamic opti-
mization problem in the following form:

min ϕ(z(t f )) (1)

s.t.
dz(t)

dt
= f (z(t),y(t),u(t), p), z(0) = z0 (2)

g(z(t),y(t),u(t), p) = 0, t ∈ [0, t f ] (3)

g f (z(t f )) = 0 (4)

uL ≤ u(t)≤ uU , yL ≤ y(t)≤ yU , zL ≤ z(t)≤ zU (5)

where t ∈ [t0,t f ] (e.g., time) is the independent variable, z(t) ∈ ℜnz is the vector of
differential state variables, u(t) ∈ ℜnu is the vector of control variables, y(t) ∈ ℜny is
a vector of algebraic state variables, and p is a set of optimization variables indepen-
dent of time. The process model is described by semi-explicit differential and algebraic
equations (DAEs) (2),(3) which we assume without loss of generality, are index one.

A number of approaches can be taken to solve (1)-(5). Until the 1970s, these prob-
lems were solved using an indirect or variational approach, based on the first order
necessary conditions for optimality obtained from Pontryagin’s Maximum Principle; a
review of these approaches can be found in [12]. However, if the problem requires the
handling of active inequality constraints, finding the correct switching structure as well
as suitable initial guesses for state and adjoint variables may be difficult. This limita-
tion has made the indirect approach less popular for NMPC applications and can be
overcome by direct methods that apply NLP solvers.

Sequential methods with NLP solvers, also known as control vector parameteriza-
tion, represent the control variables as piecewise polynomials [26] and perform the op-
timization with respect to the coefficients of these polynomials. Given initial conditions
and a set of control parameters, the DAE model is solved over time within an inner loop
of the NLP iteration; the control variables are then updated by the NLP solver itself.
Gradients of the objective function with respect to the control coefficients and param-
eters are calculated either from direct DAE sensitivity equations or by integration of
the adjoint equations. Sequential strategies are relatively easy to construct and to ap-
ply as they contain the components of reliable DAE solvers (e.g., DASSL, DASOLV,
DAEPACK) and NLP solvers (e.g., NPSOL, SNOPT). On the other hand, repeated nu-
merical integration of the DAE model is required, which may become time consuming
for large problems. Moreover, sequential approaches may fail with unstable dynamics
[1]. Instead, for unstable systems Multiple Shooting, which inherits many of the advan-
tages of sequential approaches should be applied. Here, the time domain is partitioned
into N time elements, i. e., t ∈ [tk−1, tk],k = 1, . . .N, and the DAE models are integrated
separately in each element [4,8]. Control variables are parameterized as in the sequen-
tial approach and gradient information is obtained for both control variables as well as
the initial conditions of the state variables in each element. Finally, equality constraints
are added in the NLP to link the elements and ensure that the states are continuous
across each element. As with the sequential approach, bound constraints for states and
controls are normally imposed only at the grid points tk.
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In the simultaneous collocation approach, also known as direct transcription, we
represent both the state and control profiles as piecewise polynomials in time using col-
location on finite elements t ∈ [tk−1,tk],k = 1, . . .N. This approach corresponds to a fully
implicit Runge-Kutta method with high order accuracy and excellent stability proper-
ties. It is also a desirable way to obtain accurate solutions for boundary value problems
and related optimal control problems. On the other hand, simultaneous approaches also
require efficient, large-scale optimization strategies [7,3] because they directly couple
the solution of the DAE system with the optimization problem. The DAE system is
solved only once, at the optimal point, and therefore can avoid intermediate solutions
that require excessive computational effort or may not even exist. Moreover, in the
simultaneous approach the control variables can be discretized at the same level as
the state variables and, under mild conditions, (see [13,16]) the Karush-Kuhn-Tucker
(KKT) conditions of the simultaneous NLP are consistent with the optimality condi-
tions of the discretized variational problem, and fast convergence rates to the solution
of the variational problem have been shown. Moreover, simultaneous approaches can
deal with unstable systems and allow the direct enforcement of state and control vari-
able constraints, at the same level of discretization as the state variables of the DAE
system.

2.1 LDPE Case Study

Low density polyethylene (LDPE) is currently the most widely produced polymer. Its
uses span many packaging applications including plastic bags, food wrap, squeeze bot-
tles, and plastic films in construction; different polymer grades are produced to ensure

Fig. 1. High-pressure LDPE Process Flowsheet
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the best material properties for each of these applications. The high-pressure process
for LDPE manufacture is described in [6,30] and serves as a case study for dynamic op-
timization. As seen in Fig. 1, ethylene is polymerized in a long tubular reactor at high
pressures (1500-3000 atm) and temperatures (130-300 oC) through a free-radical mech-
anism. Accordingly, many compression stages are required to obtain these extreme op-
erating conditions. The LDPE product is recovered after several stages of vapor-liquid
separation. These flexible processes obtain several different polymer grades by adjust-
ing the reactor operating conditions. The process model contains a number of challenges
for optimization. In the next section we will focus on parameter estimation of a detailed
LDPE reactor model, while in Sect. 4, we deal with the important on-line problem of
grade changes.

3 Simultaneous Collocation Approach

The DAE optimization problem can be converted into an NLP by approximating state
and control profiles by piecewise polynomials on finite elements (t0 < t1 < . . . < tN =
t f ). Using a monomial basis representation for the differential profiles, which is popular
for Runge-Kutta discretizations, leads to:

z(t) = zi−1 + hi

K

∑
q=1

Ωq

(
t− ti−1

hi

)
dz
dt i,q

(6)

where zi−1 is the value of the differential variable at the beginning of element i, hi is
the length of element i, dz/dti,q is the value of its first derivative in element i at the
collocation point q, and Ωq is a polynomial of order K, satisfying

Ωq(0) = 0, Ω ′
q(ρr) = δq,r, q,r = 1, . . . ,K, (7)

where ρr ∈ [0,1] is the normalized location of the r-th collocation point within each
element. Continuity of the differential profiles is enforced by

zi = zi−1 + hi

K

∑
q=1

Ωq (1)
dz
dt i,q

. (8)

From a number of studies (see [1,16]), we prefer Radau collocation points (with ρK = 1)
as it has a stronger stability property. In addition, the control and algebraic profiles are
approximated using a Lagrange basis representation of the form:

y(t) =
K

∑
q=1

ψq

(
t− ti−1

hi

)
yi,q, u(t) =

K

∑
q=1

ψq

(
t− ti−1

hi

)
ui,q, (9)

where yi,q and ui,q represent the values of the algebraic and control variables, respec-
tively, in element i at collocation point q. ψq is the Lagrange polynomial of degree
K− 1 satisfying ψq(ρr) = δq,r for q,r = 1, . . . ,K. From (6), the differential variables
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are required to be continuous throughout the time horizon, while the control and alge-
braic variables are allowed to have discontinuities at the boundaries of the elements.
Substitution of (6) and (9) into (1)-(5) leads to the following NLP:

min
dz
dt i,q,ui,q,yi,q,p

ϕ(zN) (10)

s.t.
dz
dt i,q

= f (zi,q,yi,q,ui,q, p), g(zi,q,yi,q,ui,q, p) = 0

ui,q ∈ [uL,uU ], yi,q ∈ [yL,yU ], zi,q ∈ [zL,zU ], i = 1, . . .N, q = 1, . . .K

and (8), g f (zN) = 0

This NLP can be rewritten as:

min
x∈ℜn

ϕ(x), s.t. c(x) = 0, xL ≤ x≤ xU (11)

where x =
(

dz
dt i,q,zi,yi,q,ui,q, p

)T
, f : ℜn −→ ℜ and c : ℜn −→ ℜm. To address the

resulting large-scale NLP, we apply a full space, interior point (or barrier) solver, em-
bodied in a code called IPOPT. IPOPT applies a Newton strategy to the optimality
conditions that result from the primal-dual barrier subproblem,

min ϕ(x)− μ
n

∑
i=1

[ln(x(i)−x(i)
L )+ ln(x(i)

U −x(i))], s.t. c(x) = 0. (12)

Problem (12) is solved for a sequence of decreasing values of the barrier parameter
μ ; under typical regularity conditions this sequence of solutions x(μ) converges to the
solution of (11) [9].

The IPOPT code [27] includes a novel filter based line-search strategy and also al-
lows the use of exact second derivatives. Under mild assumptions, the filter-based bar-
rier algorithm has global and superlinear convergence properties; correspondingly the
IPOPT code performs very well when compared to state-of-the-art NLP solvers. Orig-
inally developed in FORTRAN, the IPOPT code was recently redesigned to allow for
structure dependent specialization of all linear algebra operations. Implemented in C++
and freely available through the COIN-OR foundation, IPOPT can be obtained from the
following website:

http://projects.coin-or.org/Ipopt.

A key step in the IPOPT algorithm is the solution of linear systems derived from the
linearization of the first order optimality conditions (in primal-dual form) of the bar-
rier subproblem. The linear KKT system can be solved with any direct linear solver
configured with IPOPT. However, as the problem size grows, the time and memory
requirements can make this approach expensive. Instead, specialized decompositions
such as Schur complements lead to efficient (and often parallizable) solution strategies.
This allows the efficient solution of very large NLPs on the order of several million
variables, constraints and degrees of freedom [22]. A detailed description of IPOPT’s
internal decomposition features and their implementation in the IPOPT software envi-
ronment is given in [18,25].
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Because of these features, the simultaneous collocation approach has lower com-
plexity bounds than competing dynamic optimization strategies, especially since exact
second derivatives can be obtained very cheaply and expensive DAE integration and
direct sensitivity steps are avoided. This comparison and complexity analysis can be
found in [31].

3.1 Parameter Estimation for LDPE Reactor

An important off-line optimization problem is the estimation of reactor parameters
from experimental data. The LDPE tubular reactor seen in Fig. 1 can be described
as a jacketed, multi-zone device with a predefined sequence of reaction and cooling
zones. Different configurations of monomer and initiator mixtures enter in feed and
multiple sidestreams, and are selected to maximize the reactor productivity and obtain
desired polymer properties. The total reactor length ranges between 0.5 to 2 km, while
its internal diameter does not exceed 70-80 mm. Models of this reactor typically com-
prise detailed polymerization kinetic mechanisms and reacting mixture thermodynamic
and transport properties at extreme conditions. A first-principles model describing the
gas-phase free-radical homopolymerization of ethylene in the presence of several dif-
ferent initiators and chain-transfer agents at supercritical conditions is considered in
[30]. The reaction mechanism consists of 35 reactions with 100 kinetic parameters for
each polymer chain of a given length. Here, the method of moments is used to describe
macromolecular properties of the copolymer including number- and weight-average
molecular weights and polydispersity as described in [25,30]. The steady-state evolu-
tion of the reacting mixture along the multiple reactor zones can be formulated as a
multi-stage DAE system of the form,

Fk, j

[
dzk, j(t)

dt
,zk, j(t),yk, j(t), pk, j,Π

]
= 0

zk, j(0) = φ(zk, j−1(tLk, j−1),wk, j−1), k = 1, . . . ,NS, j = 1, . . . ,NZ
(13)

where the stage index j denotes a particular reactor zone and index k pertains to a prod-
uct grade or operating scenario; this formulation allows estimation over different reac-
tor configurations. At zone boundaries, these DAE models are coupled through material
and energy balances φ(·) while additional inputs, wk, j , are introduced for monomer, ini-
tiator, and cooling water. Also, tLk, j denotes the total length of zone j in scenario k, pk, j

denotes local parameters (such as heat transfer coefficients and initiator efficiencies) in
each zone j and scenario k and Π corresponds to the kinetic rate constants which apply
to all stages. The reactor model contains around 130 ordinary differential equations and
500 algebraic equations for each instance k. Because of significant coupling among the
state variables and parametric sensitivity, the reactor DAE model is also highly nonlin-
ear and stiff.

Using (13), we estimate kinetic parameters, Π , to match the plant reactor operat-
ing conditions and polymer properties. However, due to the uncertainty associated to
the fouling and initiator decomposition mechanisms, it is also necessary to include the
local parameters as well. To capture the interaction of pk, j and Π and to account for
the measurement errors in the multiple of flow rates, concentrations, temperatures and
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pressures around the reactor, we consider a multi-scenario estimation problem of the
form:

min
Π , pk, j,wk, j

NS

∑
k=1

NZk

∑
j=1

NMk, j

∑
i=1

(
yk, j(ti)− ȳk, j,i

)T V−1
y
(
yk, j(ti)− ȳk, j,i

)
+

NS

∑
k=1

NZk

∑
j=1

(
wk, j−wM

k, j

)T
V−1

w
(
wk, j−wM

k, j

)
s.t. (13), Hk, j

[
zk, j(t),yk, j(t), pk, j,Π

]≤ 0

(14)

where the output variables are matched to the corresponding available plant measure-
ments for each operating scenario or data set k. The vector of outputs contains the
reactor temperature profile, jacket inlet and outlet temperatures in each zone, as well as
macromolecular properties and product quality at the reactor outlet.

To formulate the estimation problem (14) as a multi-scenario NLP, we perform a full
discretization of the differential and algebraic variables and group the resulting set of
variables by data sets or scenarios k. For each data set, we use a total of 16 finite ele-
ments for the reaction zones, 2 finite elements for the cooling zones and 3 collocation
points for the discretization in (14), so that each scenario has around 12,000 constraints
and 92 degrees of freedom (corresponding to 32 local parameters pk, j, 25 global param-
eters Π and 35 input variables wk, j). In order to obtain exact first and second derivative
information, the NLP instances are implemented as NS separate AMPL models that
internally indicate the set of variables corresponding to the global parameters Π .
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Fig. 2. Comparison of reactor temperature profiles for using simultaneous and “zone-by-zone”
parameter estimation
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Fig. 3. Wall clock time per iteration and per KKT matrix factorization for multi-scenario param-
eter estimation with IPOPT. Serial and parallel implementations.

Using the internal decomposition strategy in optimization strategy we consider the
solution of multi-scenario NLPs with NS≤ 32 data sets. A result of the model fit to two
typical product grade data sets can be seen in Fig. 2, where the dashed line depicts a
suboptimal “zone-by-zone” estimation with global parameters fixed. The results were
obtained in a Beowulf type cluster using standard Intel Pentium IV Xeon 2.4GHz, 2GB
RAM processors running under Linux. These are compared against serial solutions of
the multi-scenario problems on a single processor with similar characteristics. Fig. 3
presents both computational results. The serial solution of the multi-scenario NLPs ex-
hausts the available memory when the number of data sets exceeds nine, while the
parallel implementation overcomes this memory bottleneck and solves problems with
up to 32 data sets. For the parallel approach, notice that the effect of parallelism is re-
flected less in the time required per iteration than in the time per factorization of the
KKT matrix. Nevertheless, we see that the time per iteration can be consistently kept
below 5 seconds, while the factorization in the serial approach can take as much as 35
seconds before running out of memory. More information on this application and details
of the optimization strategy can be found in [25,30].

4 Fast NMPC Based on IPOPT Sensitivity

As described in the previous section, efficient dynamic optimization solvers enable fast
solution times even for large-scale models. However, on-line optimization demands
time-limited, robust calculations that may exceed the capabilities of current solvers. To
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Fig. 4. NMPC moving horizon problem

address this issue, we now explore the concept of sensitivity-based real-time dynamic
optimization with rigorous, first principle process models. To address these concepts,
consider the moving time horizon shown in Fig. 4, with sampling times tk+l, l = 0, . . .N.
For chemical processes we note that sampling intervals are usually on the order of min-
utes. On the other hand, once the current plant state x(k) is known, the appropriate
control action u(k) must be available to the plant. Any computational delay in deter-
mining u(k) will lead to a deterioration of performance and even destabilization of the
on-line optimization.

To satisfy these restrictions, we partition the optimization calculations into back-
ground and on-line steps. We assume the NLP can be solved within only a few sampling
intervals in “background” for an initial condition “close” to the measured (or estimated)
state. Once this state is obtained, a perturbed problem is solved quickly to update the
NLP solution, using a particular NLP sensitivity formulation.

To describe this approach, we consider the dynamic optimization problem written
over the moving time horizon shown in Fig. 4. After temporal discretization, the dy-
namic optimization problem can be written as the following simplified NLP,

PN(x(k)) : min
zl|k,vl|k

Φ(zN|k)+
N−1

∑
l=0

ψ(zl|k,vl|k) (15)

s. t. zl+1|k = f (zl|k,vl|k), l = 0, . . .N−1

z0|k = x(k), zl|k ∈ X, zN|k ∈ X f , vl|k ∈ U,
(16)

where zl|k and vl|k are the states and controls, respectively, over the prediction horizon.
From the solution of this problem for current time tk, we obtain u(k) = v0|k and inject it
into the plant. In the nominal case, this drives the state of the plant towards x(k + 1) =
z1|k = f (x(k),u(k)). Once x(k + 1) is known, the prediction horizon is shifted forward
by one sampling interval and problem PN(x(k + 1)) is solved to find u(k + 1). This
recursive strategy gives rise to the ideal NMPC controller (neglecting computational
delay).

Now consider the state of the plant at the previous sampling time, x(k− 1), where
we already have the control u(k−1). In the nominal case the system evolves according
to the dynamic model (16), and we can predict the future state by solving PN( f (x(k−
1),u(k−1))) in advance. For instance, if this problem can be solved between tk−1 and



Efficient Nonlinear Programming Algorithms for Chemical Process Control 31

tk, then u(k) will already be available at tk. For this, we define the equivalent NLP of
the form,

PN+1(x(k−1),u(k−1)) : min
zl|k−1,vl|k−1

Φ(zN|k−1)+ψ(x(k−1),u(k−1))

+
N−1

∑
l=0

ψ(zl|k−1,vl|k−1)

s.t. zl+1|k−1 = f (zl|k−1,vl|k−1), l = 0, . . .N−1

z0|k−1 = f (x(k−1),u(k−1)),

zl|k−1 ∈ X, zN|k−1 ∈X f , vl|k−1 ∈ U

(17)

In the nominal case, it is clear that the solution of this problem is equivalent to PN(x(k))
and that PN+1(x(k−1),u(k−1)) can be solved in advance to obtain u(k) = v∗0|k−1 with-
out computational delay. Moreover, under the NMPC assumptions posed in [20], it is
easy to see that such a controller has the same nominal stability properties as the ideal
NMPC controller [28].

On the other hand, a realistic controller must also be robust to model mismatch, un-
measured disturbances and measurement noise. As noted in [19], ideal NMPC provides
a mechanism to react to these features along with some inherent robustness. In par-
ticular, tolerance to mismatch and disturbances can be characterized by input-to-state
stability [19,28]. In [28] we focus on sensitivity-based NMPC schemes and show their
inherent robustness properties through input-to-state stability concepts. The key to this
extension comes by noting that problem PN+1(x(k),u(k)) is parametric in its initial
conditions so we can define the dummy parameter vector p0 = x(k). Here we rewrite
PN+1(x(k),u(k)) as the following NLP,

minϕ(x, p0), s.t. c(x, p0) = 0, xL ≤ x≤ xU (18)

and we define x as the vector of all variables in PN+1(x(k),u(k)). From the optimality
conditions of (18), and under mild regularity conditions of the NLP [9], we obtain a
first order estimate of the perturbed solution of (18), i.e., Δx = x∗(p)− x∗(p0). This
can be calculated very cheaply in IPOPT from the factorization of the KKT matrix in
the final NLP iteration. Therefore in the presence of uncertainty, we apply the sensitivity
equations of PN+1(x(k),u(k)) to find the approximate solution of PN(x(k + 1)).

Moreover, to maintain a consistent active set for the solution of PN(x(k + 1)), we
modify the sensitivity calculation to determine the value of p that enforces the re-
lation z0|k = x(k + 1) in the perturbed PN+1(x(k),u(k)), instead of a direct change
(Δ p = x(k + 1)− x(k)) in the initial conditions. Coupled to the linearized optimality
conditions, the added constraint, Δz0|k = x(k + 1)− z∗0|k, gives rise to an extended set
of linear sensitivity equations, which can be solved efficiently through a Schur comple-
ment approach. This approach takes advantage of the already factorized KKT matrix at
the solution of PN+1(x(k),u(k)) with IPOPT. Therefore, once the next state is known,
the desired approximate solution can be obtained from the background Schur decom-
position and a single on-line backsolve [31]. As described in [31,28], the on-line step
requires less than 1% of the (already fast) dynamic optimization calculation. We de-
note this sensitivity-based approach the Advanced Step NMPC (as-NMPC) controller.
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This controller can be viewed as a fast linear model predictive controller linearized
about the optimal nonlinear model at the previous measurement. Moreover, it inherits
the stability and robustness properties of ideal NMPC while avoiding the difficulties of
computational delay.

4.1 NMPC for LDPE Process

To demonstrate the advantages of the sensitivity-based NMPC strategy, we return to the
LDPE case study. The process represents a difficult dynamic system; reactor dynamics
are much faster than responses in the recycle loops and long time delays are present
throughout the compression and separation systems. Due to the complex, exothermic
nature of the polymerization, the reactor temperature and pressure are enforced strictly
along the operating horizon following fixed recipes. The main operational problem in
these processes consists of providing fast adjustments to the butane feed and purge
stream to keep the melt index at a desired reference value. This is especially important
during transitions (switching between two different operating points). As shown in [6],
dynamic optimization can lead to significant reduction in the grade transition time; in
one case, it was reduced from about 5 h to no more than 2.8 h, leading to reduction of
at least 23 tons of off-spec product.

The resulting DAE model of the LDPE process (with a simplified reactor model)
contains 289 differential and 64 algebraic state variables. We now consider an appro-
priate optimal feedback policy that minimizes the switching time between steady states
corresponding to the production of different polymer grades. This poses a severe test
of the NMPC algorithm as it needs to optimize over a large dynamic transition. The
following moving horizon problem is solved on-line at every sampling time tk:

min
∫ tk+N

tk

(
wC4(t)−wr

C4

)2 +
(
FC4(t)−Fr

C4

)2 +(FPu(t)−Fr
Pu)

2 dt

s.t. DAEs for LDPE Model
(19)

where the inputs are the flowrates of butane and purge streams, FC4 and FPu, respec-
tively, the output is the butane weight fraction in the recycle stream, wC4 , and superscript
r denotes a reference value. Using the simultaneous collocation approach, problem (19)
is converted into a large-scale NLP with 15 finite elements with 3 collocation points in
each element. The resulting NLP contains 27,135 constraints, and 30 degrees of free-
dom. For the dynamic optimization, we set N = 15 and sampling interval to 6 min.

To compare ideal and as-NMPC strategies, we ignore the effect of computational
delay in the closed-loop response. To assess robust performance, the plant response is
also subjected to strong, random disturbances in the transportation delays in the recy-
cle loops. Performance of both NMPC approaches is presented in Fig. 5. Note that the
optimal feedback policy involves the saturation of both control valves for the first 2500
seconds of operation, with the final flowrates set to values corresponding to the new
operating point. It is interesting to observe that the output profile for as-NMPC is in-
distinguishable from the full optimal solution, with only small differences in the input
profiles.
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Fig. 5. Closed-loop performance of the ideal NMPC (solid) and as-NMPC (dashed) approaches
with output wC4 and inputs FC4 and FPu

The on-line and background computational times are especially worth comparing.
Ideal NMPC requires around 351 CPU seconds and about 10 IPOPT iterations of on-
line computation while as-NMPC requires a negligible on-line time (1.04 CPU seconds)
for the solution of the Schur complement system and a final backsolve to obtain the up-
dated solution vector. As a result, as-NMPC reduces the on-line computation time (and
associated computational delay) by over two orders of magnitude with virtually no loss
in performance. Moreover, as-NMPC also serves as an excellent basis for effective ini-
tialization of the next NLP problem solved in background. From the perturbed solution
provided by the sensitivity calculation, as-NMPC provides very accurate NLP initial-
izations at all sampling times. Leading to only 2-3 IPOPT iterations, as-NMPC also
reduces the background NLP computation by up to a factor of five.

5 Conclusions

This paper addresses the increasing value of dynamic optimization for chemical pro-
cess operations. Both off-line and on-line optimization tasks demand fast and robust
optimization strategies, often for challenging large-scale applications. Current dynamic
optimization formulations and algorithms are reviewed with an emphasis on the simul-
taneous collocation approach. This strategy has advantages for unstable systems, and
with the suitable application of large-scale NLP solvers (such as IPOPT), it is espe-
cially effective for time-critical applications. Moreover, for on-line applications, NLP
sensitivity can be calculated very cheaply from IPOPT; this leads to a nonlinear model
predictive control strategy with fast on-line performance and minimal computational
delay. All of these aspects are demonstrated on a case study for a large-scale polymer-
ization process.

Nevertheless, this summary represents only a beginning in addressing dynamic real-
time optimization. Future challenges include effective off-line solution strategies for
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large, multi-stage dynamic optimization problems along with a tighter integration of
planning and scheduling decisions. On-line strategies can also benefit from moving
horizon estimation (MHE) which incorporates nonlinear dynamic models. A sensitivity-
based MHE strategy was developed recently and exhibited very fast performance as
well as accurate state estimates [29]. In addition, more robust on-line dynamic opti-
mization problem formulations are needed to include model uncertainty and disturbance
models. Finally, further significant impacts can be made through dynamic optimization
on challenging large-scale process applications, such as the LDPE process.
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Abstract. Practical optimization methods including genetic algorithms are intro-
duced, based on evolutionary computing or soft computing. Several application
examples are presented to demonstrate and discuss the efficiency and applicabil-
ity of the described methods.

1 Introduction

Due to the recent advance and development of computer and information technologies,
it becomes possible to obtain useful information for decision making with ease. To
resolve some problems facing in real life, it is necessary to find out an appropriate solu-
tion among possible candidates under several constrained conditions. Therefore, most
of these problems are belonging to a kind of optimization problems. However, most of
optimization problems being studied are solved under ideal circumstances. Most of real
life problems are very large and complicated ones with vague or uncertain objective
functions and constrained conditions, different from the ideal circumstances.

Under such circumstances, evolutionary computing has been paid great attention and
recognized as a powerful tool for optimization of various practical problems. Evolution-
ary computing uses iterative procedures, such as growth or development in a population.
This population is then selected in a guided random search using parallel processing to
achieve the desired end. Such processes are often inspired by biological mechanisms
of evolution. Evolutionary computing includes evolutionary programming, genetic al-
gorithm, genetic programming, immune algorithm, learning classifier system, particle
swarm optimization, ant colony optimization, etc. Among them, genetic algorithm has
been widely used in various fields, because it is a representative method of the evo-
lutionary computing and has a good ability to find out quasi-optimum solutions with
ease.

In this paper, several practical optimization methods including GA are introduced,
which are based on “evolutionary computing” or “soft computing”. Soft computing cov-
ers fuzzy decision making, neural networks, and so forth. Several application examples
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© IFIP International Federation for Information Processing 2009
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are presented to demonstrate and discuss the efficiency and applicability of the methods
described here.

2 Structural Vibration Control Using Soft Computing Techniques

In Japan, many high-rise structures have been constructed due to the recent advance
of structural material and construction technology. Since the high-rise structures are
generally very flexible, vibration control is essential to maintain safety and reliability
of the structures. Especially, natural disasters which cause the strong vibration, like
typhoon and earthquake should be considered in their design and construction.

Under such situations, a lot of researches on the vibration control have been done in
the past [1], most of which do not consider the structural and environmental changes in
time. Those systems may lose the performance when the environment has a perceptible
change. In actual cases, the characteristics of structures may change due to the structural
degradation and the addition of other facilities to the structure. This implies that it is
necessary to deal with the structural and environmental changes when designing the
vibration control system. There are some robust and adaptive systems that can consider
the change of environment. However, in those systems, the structural performance in the
static environment may be reduced. In the case, it is essential to adapt to the changing
environment quickly while maintaining the performance in the static environment.

In this paper, a new structural vibration control system is described, which can adapt
to the change of structural systems and environments, by introducing the learning abil-
ity. In this system, it is necessary to prevent the reduction of the performance in the
static state, while improving the effectiveness of adaptation and the performance after
learning. This system has two different controllers: a robust controller used for the static
state and an adaptive controller following the change of environment. By using these
two controllers properly, it is possible to achieve a good control performance under any
situation. Fuzzy controller is employed for the adaptive controller that can adapt to the
change of structural systems, in which the steepest descent method is employed for the
learning method. In addition to the two controllers, the system has a judgment ability
to recognize the change of environment based on structural response, external force,
and control power. Through numerical and model experiments, it is concluded that the
system can provide a good control for the unforeseen and incidental changes of external
loads and conditions.

2.1 Vibration Control System

The present system has two controllers and one judgment machine. While both con-
trollers calculate control force from structural response and external force all the time,
the system uses one of the outputs provided by the two controllers. The structure of the
system is shown in Fig. 1.

2.1.1 Robust Controller
In the robust controller, the control force is calculated by fuzzy-neural network system
[2, 3]. Although fuzzy-neural network is one of neural networks [4], it can provide the
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Fig. 1. Structure of the system

Fig. 2. Structure of fuzzy-neural network

calculating results equal to the fuzzy reasoning method. Therefore, it has characteristics
of both neural network and fuzzy reasoning, namely, learning ability of neural network
and robustness of fuzzy reasoning. The structure of fuzzy-neural network system is
shown in Fig. 2.

This system uses the simplified fuzzy reasoning in which the consequent part is ex-
pressed in terms of crisp numbers. In Fig. 2, layers A to D correspond to antecedent
parts, and layers E to F correspond to consequent parts. Membership functions are ex-
pressed by sigmoid function, and their central values are depicted by the weights be-
tween A and B and gradients are depicted by the weights between B and C. Consequent
parts are weighted from E to F. Using the sigmoid function, it is possible to define the
shape of membership functions in anti-symmetrical forms. Thus, it is possible to realize
a better fitting and a better control than with symmetrical membership functions. Those
three kinds of weights are learned using the back propagation algorithm.

The robust controller has a learning ability, which is not performed under control,
and can avoid over-learning and over-reaction to the change of state. In the system, the
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neural network has already learned good control patterns by the optimal control the-
ory with the same structure. This means that the neural network may be able to have
a control performance equivalent to the optimal control theory. The fuzzy-neural net-
work used here can calculate faster and has robustness, because its structure includes
the fuzzy reasoning process. In other words, it can calculate the control force providing
good performance equivalent to the optimal control theory in shorter time, and the dete-
rioration of performance at the change of environment is smaller than with the optimal
control theory.

2.1.2 Adaptive Controller
For the adaptive controller, the control force is calculated by fuzzy control with a learn-
ing mechanism using the steepest decent method. Since the learning method is the same
as for the neural network, this fuzzy control system is called neuro-fuzzy system. The
neuro-fuzzy system has also the characteristics of both neural network and fuzzy rea-
soning that are the learning ability of the neural network and the robustness of the fuzzy
reasoning. However, neuro-fuzzy structure is simpler than fuzzy-neural network, and
therefore the learning is faster and convergence is generally quick. This implies that
neuro-fuzzy system is well suited to adaptive controller. In the present system, Gauss
function is employed for the membership function. The neuro-fuzzy system can tune
the membership functions whose consequent parts are tuned with the steepest decent
method by fitting the teaching data. Then, it is necessary to prepare teaching data to
learn, however it is impossible to collect the complete teaching data, because the state
is so quickly changing that the optimal solution cannot be identified. In other words, if
the state of structure is changing, it is not able to know the exact vibration characteris-
tics under the control. In this research, structure response after control is given to the
neuro-fuzzy system, in which the system learns the teaching data that are created when
the structural response velocity is smaller than that under the previous control. Namely,
the teaching data are supposed to be a vector with the inverse direction of structural
response. The learning is done at each step. In this way, good rules of reducing the vi-
bration of structure are obtained. Moreover, the calculation is implemented in a faster
manner, and the controller has robustness, because the calculation method is based on
fuzzy reasoning.

2.1.3 Judgment Machine
Judgment machine is always checking the performance of robust controller to find out
the reduction of the performance based on the structural response, external force, and
control power. When the vibration characteristics change, some difference appears on
those three data. If the structural response differs even for the same external force and
the same control power is outputted, judgment machine can recognize some change of
environment.

2.1.4 Model Experiment
To validate the performance of each controller, model experiment using rigid frame
model is conducted. In the experiment, the structure and environment are not changed.
As external force, actual earthquake data observed at Kobe in 1995 are used. The results
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Fig. 4. Experiment result of adaptive controller

of both controllers are shown in Figs. 3 and 4, together with the results of optimal con-
trol theory. The robust controller has seven membership functions, which are allocated
at even intervals at first. The robust controller has already learned a part of results given
by the optimal control theory. However, the input patterns to the system are unknown at
the experiment. From Fig. 3, it can be confirmed that the robust controller has as good
performance as that by the optimal control theory. In other words, the robust controller
can obtain good control rules that are equally efficient as those of the optimal con-
trol theory. On the other hand, the adaptive controller has no information regarding the
structure and environment at first. The controller has also seven membership functions,
in which all consequent parts are initialized to be zero. At the initial stage, the adaptive
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controller cannot control well and there are big differences from that of the optimal
control theory, because it has no information about the environment. However, the per-
formance of control is gradually improved step by step as the learning proceeds. Finally,
the performance of adaptive controller becomes equal to the optimal control theory, as
shown in Fig. 4. From this result, it is confirmed that this controller can adapt quickly
and rightly even though it has no knowledge about the structure and environment. This
means that the present system can adapt to the changing environment, therefore it is
useful for the control under the dynamic environment.

2.1.5 Numerical Example
To demonstrate the effectiveness of the present system, numerical experiment is done.
In this experiment, the frequency characteristic of the structure is changed. The weight
of the structure is increased from time to time. In the experiment, the external force is
calculated from the actual wind velocity of the 9th typhoon in Osaka on July 26, 1997.
This data are observed at the interval of 0.05 second and the total number of data is
30,000. The numerical results by the present system are shown in Fig. 5, comparing
with the results by the optimal control theory. In the experiment, the structural weight
becomes double after 500 steps. At first, both the systems show almost the same per-
formance at the static state. When the structural characteristics begin to change, some
difference appears. While the difference is small at first, the performance of the present
system provides better results than the optimal control theory, because of the robustness
of the present system. As time proceeds, the difference of performance becomes larger
gradually. This shows that the proposed system can adapt to the change of structural
characteristic. Since the present system could identify the change of structure and envi-
ronment, it switched the controller from the robust one to the adaptive one efficiently.
The adaptive controller could adapt to the new environment quickly.

-0.15

-0.1

-0.05

0

 0.05

 0.1

 0.15

0  200  400  600  800  1000  1200  1400  1600  1800  2000

di
sp

la
ce

m
en

t (
 m

)

time step

Fig. 5. The numerical results by the present system
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3 Aesthetic Design of Bridge Structures

In recent years it is becoming important to consider the aesthetic design factors in the
design of bridges. Various researches (e.g. [6]) on the decision-support systems for
aesthetic design of a bridge have been made in the past. Here, a practical decision
support system for aesthetic design of bridge handrails is introduced. In the design of
a bridge handrail, outsourcing the design works to a specialized designer to ensure an
aesthetically satisfactory design can cause not only budgetary problems, but also a gap
between what the designer imagines and what the engineers think on the structural
design.

This paper takes the view that it is possible to obtain new designs by combining
components for handrails which were designed in the past, because it would not be easy
to create an original new design. Moreover, such use of handrail components designed
in the past will be considered to allow candidate aesthetic designs smoothly because
there will be no structural problems with components designed in the past.

In this paper, several attempts are presented to develop a decision support system for
aesthetic design of bridge handrails. The decision support system consists of the eval-
uation system using neural network and the optimization system based upon immune
algorithm. Thus, it is confirmed that the present system is effective for the aesthetic
design of bridge handrails by means of several numerical examples. Furthermore, some
of the results obtained are visualized through the use of computer graphics (CGs) and
compared.

3.1 Immune Algorithm and Neural Network

Immune algorithms [7] are a kind of optimal solution search algorithms allowing the di-
versity of solutions to be retained and multiple quasi-optimal solutions to be obtained.
It is considered that immune algorithms are suitable for practical aesthetic designing
because of these characteristics, which allow two or more different quasi-optimal solu-
tions rather than a single optimal solution to be obtained to a problem which is difficult
to evaluate in a standardized manner, such as an aesthetic design. Consequently, an en-
gineer can select an appropriate candidate from them based on his subjective judgment
and preferences.

A neural network is a computer simulation of a neuron network. It is considered
that characteristics of a neuron network can be utilized to make evaluations of bridge
handrails designed by experts to acquire the touch of an expert. Therefore, a near-expert
level evaluation can be provided through the use of a neural network without an expert,
if once the necessary knowledge is acquired through the learning process.

3.2 Overview of Decision Support System for Aesthetic Design of Bridge
Handrails System

The user (decision maker) who wishes to create aesthetic designs of a bridge handrail
inputs the following data for the bridge handrail to be designed:
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1. The design concepts.
2. The surrounding environment.
3. The configuration of the bridge.
4. The color of the bridge components other than the handrail.

An interactive input system is employed by selecting from items stored in it. Based on
the input data two or more quasi-optimal solutions are searched and found using an
immune algorithm and a neural network, and candidate aesthetic designs are presented.
The flow of the processing by the system is shown in Fig. 6.

One hundred and five photographs of existing bridge handrails are evaluated individ-
ually and the results are learned using the neural network. The touch of an expert can
be acquired by making evaluation in this manner of bridge handrails that were designed
by experts. Therefore, a near-expert level evaluation can be provided through the use of
the neural network without an expert once the necessary knowledge is acquired through
the learning process.

Then a search for two or more quasi-optimal solutions is made using the neural net-
work that learned the necessary knowledge as an evaluation function for the immune
algorithm. As mentioned above, immune algorithms are suitable for aesthetic designing
because they allow two or more different quasi-optimal solutions rather than a single
optimal solution to be obtained so that the human decision makers can select an appro-
priate candidate from them based on their subjective judgment and preferences.

3.2.1 Aesthetic Design Items
The surrounding environment, bridge configuration, colors (handrails and except
handrails) and handrail components are employed as the aesthetic design items. The
photographs of existing bridges are used as the data for the learning with the neural

Bridge Samples

Evaluation of 

 the samples

Learning with 

 neural network

Immune algorithm

Presentation of 

 combinations of

 handrail components

Fig. 6. Flow of the processing by the system
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network. Each of these photographs is treated as a sample (i.e. one learning data piece).
Explanation of each of aesthetic parameters follows.

3.2.2 Surrounding Environment
The 14 kinds of surrounding environments assumed from the photographs were set
up. These are shown in Table 1. In the genetic representation used in this system, 1
or 0 is used to indicate that each of the environmental components is present or not,
respectively.

Table 1. Environmental factors

Blue sky Rice paddies
Cloudy River

White clouds Sea
Mountains (green leaves) Urban area (buildings)
Mountains (brown leaves) Residences (houses)

Mountains (red leaves) Snow
Rock or soil Pavement

3.2.3 Bridge Configuration
The classification of bridge configurations shown in Table 2 is used. The 105 samples
are also broken down in Table 2.

Table 2. Bridge configuration classification and sample number

Bridge Sample Number
Girder bridge 88
Truss bridge 2
Arch bridge 6

Suspension bridge 2
Cable-stayed bridge 5
Rigid frame bridge 2

3.2.4 Color of Bridge Components
As the options for the “color of bridge components”, the 16 colors are considered, which
are close to the colors used for the handrails and other bridge components (girders, arch
sections, etc.).

Table 3 shows these colors in 3 different color systems (the Mansell value system,
the JIS and Japan Paint Manufacturers Association (JPMA) color systems) for ease of
use.
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Table 3. Color options

JIS JPMA Mansell
Red T07-40X 7.5R4/14

Brown T15-30F 5YR3/3
Cream T25-85F 5Y8.5/3

Celadon T35-70H 5GY7/4
Jasper green T37-50D 7.5GY5/2

Light greenish blue T55-50P 5BG5/8
Light blue T65-80D 5B8/2
Baby blue T72-70D 2.5PB7/2
Saxon gray TN-50 N-5
Dayflower T69-50T 10B5/10
Rose pink T12-70L 2.5YR7/6

Snow white TN-95 N-9.5
Yellowish brown T19-60F 10YR6/3

Sky gray TN-80 N-8
India ink TN-10 N-1

Silver

3.2.5 Handrail Components
In this system, bridge handrails are made up of upper, intermediate and lower bridge
handrail components and bridge handrail columns. Each part was classified as shown
in Fig. 7.

Fig. 7. Handrail components

3.2.6 Design Concepts
To realize the aesthetic design of bridges in this system, several concepts are prepared,
which are summarized in Table 4. The user can select the desired design concepts. Two
or more concepts can be selected.
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Table 4. Design concepts

Symbolic value
Uniqueness
Reliability (Peaceful)
Friendly
Nobleness
Internationality
Harmony with the surrounding environment

3.2.7 Evaluation
105 photographs of the bridges that really exist are used for evaluation. The aesthetic
parameters of each sample (photograph) were coupled with the corresponding data that
were input into the neural network and were represented as a gene for the immune
algorithm. Genes that represent aesthetic parameters in binary figures, i.e., 0 and 1 were
used so that genetic codes are represented as one-dimensional bit rows.

1. Surrounding environment: 14 types, 14 bits.
2. Bridge configuration: 6 types, 3 bits.
3. Colors (handrails and bridge components other than handrails): 16 types, 4 bits.
4. Upper handrail components: 4 types, 2 bits.
5. Intermediate handrail components: 64 types, 6 bits.
6. Lower handrail components: 4 types, 2 bits.
7. Handrail columns: 16 types, 4 bits.

As shown in Fig 8, these are represented as 39-bit genes.
The genes shown in Fig 8 represent the following conditions:

1. Surrounding environment: blue sky, white clouds, mountains (green leaves), urban
area (buildings), pavement.

2. Bridge configuration: girder bridge.
3. Color of bridge components other than bridge handrails: baby blue.
4. Color of bridge handrails: baby blue.
5. Handrail components: upper components: Type 1; intermediate components: Type

54; lower components: Type 1; handrail columns: Type 2.

Upper 
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Fig. 8. Gene row of aesthetic parameters
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In the application of immune algorithm to a gene, the “surrounding environment”,
“bridge configuration” and “color of bridge components other than handrails” parame-
ters are fixed to the values (options) selected by the system user.

Each bridge sample (photograph) is evaluated with respect to the degree to which it
matches the design concepts selected out of the seven design concepts shown in Table 4,
using an integer scale of zero to ten. The results are used as the training data for the
neural network, which are used as the evaluation function for the immune algorithm
after it has learned the necessary knowledge. The result of an evaluation of a sample
may differ from another evaluation of the same sample made at a different time or on
a different day or may become a different one when the order of the examination of
the samples (photographs) is changed. Some fluctuations are inevitable because it is
humans that make evaluations, but it is possible to make the range of fluctuation narrow
by utilizing the knowledge of experts, who are more consistent than non-experts in
making technical evaluations. It is also considered that looking through all samples
before starting evaluations will help reduce fluctuations.

By having the neural network learn the results of samples evaluations (learning data),
it becomes possible to evaluate the data about which learning has not been done. Thus
by using the neural network that learned the necessary knowledge as the evaluation
function for the immune algorithm, new data can be evaluated to obtain two or more
quasi-optimal solutions.

The neural network outputs the evaluation result for the selected design concepts,
and the total of the evaluation values for the target design concepts is used as the evalu-
ation value for the candidate of aesthetic design. In the neural computing the following
parameters are used:

1. Number of layers of the network: 3
2. Number of patterns learned: 105
3. Number of first layer units: 39
4. Number of second layer units: 46
5. Number of third layer units: 7
6. Number of learning runs (integer value): 1000000
7. Allowable error range (real number value): 0.0000001
8. Learning coefficient (real number value): 0.9
9. Inertia coefficient (real number value): 0.6

10. Gradient of sigmoid function: 1.0

3.2.8 Application Example
The immune algorithm parameters were set as follows:

1. Initial number of antibodies: 20 (gene of the initial antibodies-generation of random
number as binary figures 0, 1).

2. Upper limit for the number of memory cells: 5.
3. Number of generations: 300.
4. Manipulation of crossover: uniform crossover, crossover rate: 70.
5. Manipulation of mutation: reversing of a selected bit, mutation rate: 0.3.
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6. Thresholds: Tc = 0.8, Tac1 = 0.8, Tac2 = 0.7, Tac3 = 0.8, Tac4 = 0.88.
7. Suppress power: 1.

Examples of actual application of the present system are described as follows.

3.2.9 Design Case 1

1. Surrounding environment: blue sky, white clouds, mountains (green leaves), moun-
tains (brown leaves), rock or soil, river, residence (houses), pavement.

2. Bridge configuration: girder bridge.
3. Color of bridge components other than handrails: cream ((T25-85F)/(5Y8.5/3)).
4. Design concepts: friendly, harmony with the surrounding environment.

Under the above conditions, five design candidates are obtained as shown in Table 5.
Table 5 shows that the present system provided five design plans with different charac-
teristics. It is seen that the color selected for the handrail is calm and unremarkable and
the configuration of the handrail is simple so that all the plans are satisfactory for such
design concepts as “friendly” and “harmony with the surrounding environment”.

Table 5. Design candidates for Case 1

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Color of handrail Yellowish brown Sky gray Brown Brown gray Brown gray
Upper component Type 2 Type 1 Type 1 Type 1 Type 3
Middle component Type 7 Type 3 Type 3 Type 1 Type 35
Lower component Type 2 Type 2 Type 2 Type 2 Type 0

Column Type 2 Type 0 Type 10 Type 10 Type 10
Friendly 0.8 0.9 0.8 0.9 0.8
Harmony 0.9 0.9 0.9 0.8 0.8

3.2.10 Design Case 2

1. Surrounding environment: blue sky, white clouds, mountains (green leaves), moun-
tains (brown leaves), rock or soil, river, residence, pavement.

2. Bridge configuration: girder bridge.
3. Color of bridge components other than handrails: cream ((T25-85F)/(5Y8.5/3)).
4. Design concepts: unique, harmony with the surrounding environment.

Design Case 2 is the same as Design Case 1 except that the design concept “unique” is
used in place of the “friendly”. Table 6 presents the design plans obtained by the present
system. As shown in Table 6, the configuration of the handrail becomes complicated
compared with that of Case 1. The larger the type number of handrail elements is, the
more complicated the configuration of handrail becomes. In addition, the color obtained
for Plan 3 is red that is not chosen for Case 1. Regarding the design concepts, the second
concept of “harmony” is difficult to get high score, when the plan shows the good
match to the first concept of “unique”, because these two concepts have contradictory
characteristics. Thus, this result is considered to be reasonably satisfactory.
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Table 6. Design candidates for Case 2

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Color of handrail Saxon gray Sky gray Red Brown Brown
Upper component Type 1 Type 1 Type 2 Type 0 Type 2
Middle component Type 45 Type 47 Type 61 Type 63 Type 37
Lower component Type 0 Type 2 Type 0 Type 0 Type 0

Column Type 2 Type 2 Type 2 Type 6 Type 3
Unique 1.0 0.9 1.0 1.0 1.0

Harmony 0.6 0.8 0.7 0.6 0.6

3.2.11 Design Case 3

1. Surrounding environment: blue sky, white clouds, mountains (green leaves), moun-
tains (brown leaves), rock or soil, river, residence (houses), pavement.

2. Bridge configuration: girder bridge.
3. Color of bridge components other than handrails: cream ((T25-85F)/(5Y8.5/3)).
4. Design concepts: internationality, harmony with the surrounding environment.

Design Case 3 has the same design requirements except the design concept: “interna-
tionality”, whereas “friendly” in Case 1 and “unique” in Case 2. Table 7 presents the
design plans obtained for Case 3. By changing the design concept from “friendly” to
“internationality”, five design plans different from those of Case 1 and Case 2 are ob-
tained. As shown in Table 7, there are more color variations than in Case 1 and the
components are different from those used in Case 1, but it is rather debatable whether
these candidates of aesthetic designs have internationality. It had been anticipated that
intermediate handrail components with European looks would be selected, but in reality
relatively simple ones were selected. Also, the colors return to calm ones.

Table 7. Design candidates for Case 3

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Color of handrail Sky gray Light-greenish blue Silver Baby blue Silver
Upper component Type 3 Type 3 Type 1 Type 2 Type 0
Middle component Type 3 Type 19 Type 39 Type 7 Type 1
Lower component Type 2 Type 0 Type 3 Type 2 Type 2

Column Type 2 Type 10 Type 10 Type 8 Type 2
Internationality 0.7 0.6 0.8 0.8 0.9

Harmony 0.9 0.8 0.7 0.8 0.6

3.2.12 Design Case 4

1. Surrounding environment: blue sky, white clouds, river, urban area (buildings).
2. Bridge configuration: girder bridge.
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3. Color of bridge components other than handrails: cream ((T25-85F)/(5Y8.5/3)).
4. Design concepts: internationality, harmony with the surrounding environment.

Design Case 4 is almost the same as Design Case 3 except for the “surrounding envi-
ronment”, which is changed from the “residence” to “business area”. Table 8 presents
the candidates of aesthetic design obtained for Case 4. The evaluation values are higher
than those given in Case 3 for both “internationality” and “harmony with the surround-
ing environment”. This shows that different results can be obtained only by changing
the surrounding environment parameter setting. The handrail components used are little
different from those used in Case 3, but the colors are almost the same as those used in
Case 3.

Table 8. Design candidates for Case 4

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Color of handrail Baby blue Silver Baby blue Light-greenish blue Silver
Upper component Type 0 Type 0 Type 2 Type 0 Type 2
Middle component Type 21 Type 3 Type 8 Type 1 Type 33
Lower component Type 1 Type 3 Type 0 Type 2 Type 1

Column Type 2 Type 8 Type 10 Type 2 Type 10
Internationality 1 1 0.9 1 1

Harmony 0.8 0.9 1 0.9 0.9

3.2.13 Design Case 5

1. Surrounding environment: blue sky, white clouds, mountains (green leaves), moun-
tains (brown leaves), rock or soil, river, residence (houses), pavement.

2. Bridge configuration: girder bridge.
3. Color of bridge components other than handrails: jasper green

((T37-50D)/(7.5GY5/2)).
4. Design concepts: friendly, harmony with the surrounding environment.

This application example is the same as Design Case 1 except that “jasper green” is
used in place of the “cream” as the color of bridge components other than the handrails.

Table 9. Design candidates for Case 5

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5
Color of handrail Sky gray Brown gray Jasper green Brown gray Sky gray
Upper component Type 1 Type 1 Type 3 Type 3 Type 1
Middle component Type 3 Type 3 Type 38 Type 7 Type 23
Lower component Type 3 Type 2 Type 2 Type 2 Type 2

Column Type 2 Type 0 Type 10 Type 0 Type 10
Friendly 0.8 0.9 0.8 0.8 0.8
Harmony 0.9 0.9 0.9 0.8 0.9
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The colors obtained are calm and unremarkable, and the configuration of the handrail
is rather simple. It can be said that the candidates of aesthetic design provide similar
atmospheres to those provided by the candidates of aesthetic design in Case 1 and thus
match the design concepts selected.

Fig. 9. Plan 1 of Design Case 1

Fig. 10. Plan 3 of Design Case 1

Fig. 11. Plan 1 of Design Case 2
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Fig. 12. Plan 1 of Design Case 3

Fig. 13. Plan 1 of Design Case 4

Fig. 14. Plan 1 of Design Case 5
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3.2.14 Visualization of Application Example Using Computer Graphics
Some of the candidates of aesthetic design presented by the system in the application
example were compared mutually using figures visualized by computer graphics. Plans
1 of Design Cases 1 to 5 and Plan 3 of Design Case 1 were selected to be visualized (a
total of 6 plans). To facilitate comparison, the same background was used for all of the
plans selected. The visualized candidates of aesthetic design are shown in Figs. 9 to 14.

The plans shown in Figs. 9 and 10 are ones from the same application example (De-
sign Case 1). Although these plans have different features, it is considered that they are
ones with similar atmospheres because both of them seem to match the design concepts
selected.

The candidate of aesthetic design shown in Fig. 11 is a plan from Case 2, which is the
same as Case 1 except that the concept “unique” is used in place of the “friendly”. It is
considered that the plan matches the design concept “unique” because the intermediate
handrail components have a more complex shape than those of the intermediate handrail
components shown in Figs. 9 and 10 and the evaluation value is high.

The plan shown in Fig. 12 is a plan from Case 3, which is the same as Case 1 ex-
cept that the concept “internationality” is used in place of the “friendly”. This plan
may appear to have an international appearance at a first glance in the sense that the
handrail color and the shape of the upper handrail components are more uncommon
than those used in Figs. 9 and 10, but it is debatable whether this plan has an interna-
tional appearance because the shape of the intermediate handrail components is rather
simple.

The plan (candidate of aesthetic design) shown in Fig. 13 is a plan from Case 4,
which is the same as Case 3 except that the surrounding environment is different. It is
not possible to compare Fig. 12 with Fig. 13 in terms of the surrounding environment
because the same background is used. However, it is considered that this plan matches
the design concept “internationality” because the evaluation point is high.

The plan shown in Fig. 14 is a plan from Case 5, which is the same as Case 1 except
that “jasper green” is used in place of the “cream” as the color of the bridge components
other than the bridge handrails. Although the plans shown in Figs. 9, 10 and 14 have
different features, it is considered that they are ones with similar atmospheres because
they match the design concepts selected.

4 Optimal Restoration Scheduling for Earthquake Disaster

Japan has been suffering from many natural disasters such as typhoons, tsunami and
earthquakes. However, road networks have not been designed to protect against all such
natural hazards. Moreover, even the newest design theory cannot guarantee the absolute
safety due to the economic constraints. Therefore, it is necessary to develop a synthetic
disaster prevention program based on the recognition that road networks may be un-
avoidably damaged when big earthquakes occur.

In this paper, the early restoration of road networks after the earthquake disasters
is focused on. Three issues are dealt with, the first of which is an allocation problem:
which groups restore which disaster places, the second is a scheduling problem: what
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order is the best for the restoration, and the third is an allocation problem: which restor-
ing method is suitable for which disaster places. In order to solve the three problems
simultaneously, Genetic Algorithm (GA) is applied, because it has been proven to be
very powerful in solving combinatorial problems. In this paper, the relationships among
early restoration, minimization of Life-Cycle Cost (LCC), and target safety level of road
network are discussed by using Multi-Objective Genetic Algorithm (MOGA). Namely,
the following three objective functions are considered:

1. Restoring days are minimized.
2. LCC is minimized.
3. Performance level of road network is maximized.

Then, it is possible to solve the multi-objective optimization problem by making two
of the three objective functions as the constrained conditions. For example, the min-
imization of restoring days is required according to the prescribed performance level
and LCC constraints. The predetermination of these requirements may be detrimen-
tal. Namely, taking the same restoring days, it may be possible to find solutions that
can largely reduce the LCC if the performance level can be slightly decreased. Alter-
natively, taking the same restoring days, it may be possible to find solutions that can
substantially increase the performance level if the LCC is slightly increased.

By introducing the concept of multi-objective optimization into the restoration
scheduling for earthquake disasters, it is intended to find several near-optimal restora-
tion scheduling plans. Although single-objective optimization can provide various
solutions by changing the constraints, it requires enormous computation time. When
selecting a practical restoration schedule, it is desirable to compare feasible optional
solutions obtained under various conditions. Thus, a decision support system that can
provide several alternative restoration schedules was developed by applying MOGA.
Several numerical examples are presented to demonstrate the applicability and effi-
ciency of the present method.

4.1 Road Network Models

Here, it is assumed that a road network is damaged, in which multiple portions are
suffered from damage so that it cannot function well. The objective is the realization of
quick restoration of the lifeline system. It is intended to determine the optimal allocation
of restoring teams and optimal scheduling of restoring process, and optimal allocation
of restoring methods. Then, the following conditions should be taken into account:

1. The optimal allocation of restoring teams, optimal scheduling of restoring process,
and optimal allocation of restoring methods must be determined simultaneously.

2. A portion of the road network is suffered from several kinds of damage that have a
hierarchical relation in time.

As an example of restoration, a road network is considered, which has 164 nodes
as shown in Fig. 15. This model corresponds to an area damaged by the 1995 Kobe
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Fig. 15. Road network model

Table 10. Data of work (A)

Team of work (A) Ability Previous works before scheduling
1 15 0
2 30 0
3 12 0
4 17 37
5 18 0
6 23 36
7 25 0
8 35 38

Table 11. Data of work (B)

Team of work (B) Ability Previous works before scheduling
1 15 43
2 20 46
3 25 48
4 10 0
5 17 0
6 30 49
7 23 0
8 27 0

earthquake. For this road network, the following restoration works are necessary to
recover the function:

1. Work (A): work to clear the interrupted things, 38 sites (1 - 38)
2. Work (B) : work to restore the roads, 50 sites (1 - 50)
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Table 12. Work (A)’s damage level and rank of importance

Link Damage level Rank of importance Link Damage level Rank of importance
1 242 1 20 582 1
2 223 2 21 542 1
3 625 3 22 451 3
4 312 3 23 434 3
5 554 1 24 311 3
6 514 1 25 441 2
7 311 1 26 412 2
8 473 3 27 531 2
9 300 3 28 156 2
10 321 3 29 556 1
11 656 1 30 520 2
12 380 1 31 551 3
13 501 3 32 166 1
14 302 1 33 513 1
15 312 3 34 531 3
16 321 3 35 495 1
17 231 1 36 424 1
18 534 2 37 337 3
19 171 1 38 564 2

Then, the limitations and restrictions of each work should be considered, for instance,
work (B) should be done after work (A). Work (B) consists of the following three works:
work to repair the roads, work to reinforce the roads and work to rebuild the roads. The
waiting places of restoring teams for work (A) and work (B) are shown by the numbers
A (1-8) and B (1-8), respectively. Tables 10 and 11 show the ability to restore and the
previous works before scheduling of each team. Tables 12 and 13 show the damage
level and the rank of importance.

4.2 Restoration Scheduling

Weighting factors are prescribed for the links with damage, which are denoted by
Wi (i = 1, . . . ,nL). nL is the total number of damaged links. Then, the restoring rate
after q days, R(q), is expressed as follows:

R(q) =
∑

i∈J(q)
Wi× li

∑
i∈J(0)

Wi× li
(1)

where li is the distance of the i-th link, J(0) is the set of damaged links, J(q) is the
set of restored links until q days after the disaster, and Wi is the weighting factor of the



Application of Evolutionary Optimization in Structural Engineering 57

Table 13. Work (B)’s damage level and rank of importance

Link Damage level Rank of importance Link Damage level Rank of importance
1 153 1 26 146 2
2 453 2 27 366 2
3 496 3 28 311 2
4 464 3 29 145 1
5 133 1 30 425 2
6 415 1 31 413 3
7 355 1 32 231 1
8 531 3 33 245 1
9 246 3 34 353 3
10 623 3 35 461 1
11 445 1 36 131 1
12 154 1 37 455 3
13 613 3 38 564 2
14 444 1 39 631 1
15 366 3 40 322 2
16 615 3 41 464 3
17 641 1 42 114 1
18 151 2 43 415 1
19 254 1 44 700 1
20 654 1 45 311 3
21 561 1 46 211 3
22 125 3 47 344 3
23 345 3 48 407 3
24 462 3 49 512 2
25 456 2 50 423 2

i-th link. Then, the objective function can be calculated by using the restoring days and
the restoring rate. The relation between restoring days and restoring rate is shown in
Fig. 16. The area of the uncolored portion should be minimized to obtain the optimal
solution, because this enables not only to shorten the restoring days but also to restore
the important links faster.

Restoring days are calculated for each restoring work, and the minimum days neces-
sary for each work is given as

d =
h
t1

(2)

where h is the restoration time required to complete the restoration work.
In this paper, the restoration time is calculated by using the restoration rate for each

work and the capability value. The relation between the restoration rate for each work
and the capability of the teams are shown in Fig. 17. The restoration rate is given as
follows:
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a) Small damage: In the small damage, there is no difference in capability of each team.
The restoration will be completed during a fixed time. Here, 4 hours are assumed.

h = ht (3)

b) Moderate damage: In the moderate damage, there are some differences in capability
between teams. However, every team can restore the damage.

h =
D
A

(4)

where D is the amount of damage and A is the capability of the team, that is, the
restoring amount per hour.

Restoring rate

Restoring Days

Objective Function

1.0

0.5

0.0

1051

Fig. 16. Objective function

a) Small damage b) Moderate damage c) Large damage

Fig. 17. Relations between restoration rate for each work and capability of teams
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c) Large damage: In the large damage, only some teams can restore, because other
teams have no restoring equipment and facility necessary for the large damage.

h =
{
∞, if A < Ac,
D/A, if A≥ Ac.

(5)

where Ac is the minimum capability which the team can work.

The working hours per day of a restoration team are calculated by Equation (6), where
tm is the moving time to a site given by Equation (7). The shortest distance from the
waiting place of the restoration team to the site is considered as L (km), and the moving
speed of the team is set to be v (km/h). hc is the preparation time that is necessary for
every work.

t1 = t0−2tm−hc (6)

tm =
L
v

(7)

4.3 Optimal Restoration Scheduling for Earthquake Disaster Using Life-Cycle
Cost

Road networks have not been designed to sustain all natural hazards. Moreover, even
the newest design theory cannot guarantee the absolute safety due to the economic con-
straints. Therefore, it is necessary to develop a synthetic disaster prevention program
based on the recognition that road networks may be unavoidably damaged when big
earthquakes occur. The purpose of this research is the early restoration of road networks
after the earthquake disasters. Three issues are focused on, the first of which is an allo-
cation problem: which groups restore which disaster places, the second is a scheduling
problem: what order is the best for the restoration, and the third is an allocation prob-
lem: which restoring method is suitable for which disaster places. In order to solve the
three problems simultaneously, Genetic Algorithm (GA) is applied. In this paper, an
attempt is made to discuss the relationships among early restoration, minimization of
LCC, and target safety level of road network by using Multi-Objective Genetic Algo-
rithm (MOGA). Namely, the following three objective functions are considered:

1. Restoring days are minimized.
2. LCC is minimized.
3. Target safety level of road network is maximized.

Then, it is possible to solve the multi-objective optimization problem by making two
of the three objective functions as the constrained conditions. For example, the min-
imization of restoring days is required according to the prescribed target safety level
and LCC constraints. The predetermination of these requirements may be detrimen-
tal. Namely, taking the same restoring days, it may be possible to find solutions that can



60 H. Furuta et al.

largely reduce the LCC if the safety level can be slightly decreased. Alternatively, tak-
ing the same restoring days, it may be possible to find solutions that can substantially
increase the safety level if the LCC is slightly increased.

By introducing the concept of multi-objective optimization into the restoration
scheduling for earthquake disasters, it is intended to find several near-optimal restora-
tion schedules. Although single-objective optimization can provide various solutions
by changing the constraints, it requires enormous computation time. When selecting
a practical restoration schedule, it is desirable to compare feasible optional solutions
obtained under various conditions. Thus, an attempt is made in this study to develop
a decision support system that can provide several alternative restoration schedules by
applying MOGA.

4.4 Objective Functions

In this study, restoring days, LCC and safety level are used as objective functions.
Restoring days are minimized, LCC is minimized, and safety level is maximized. There
are trade-off relations among the three objective functions. For example, safety level
decreases when LCC decreases, and safety level is extended due to the extension of
restoring days. Then, multi-objective optimization can provide a set of Pareto solutions
that cannot improve an objective function without making other objective functions
worse. In this study, DNA structure is constituted as shown in Fig. 18, in which DNA of
each individual consists of three parts such as restoring method, allocation of restoring
teams, and schedule of restoring process. Using the coding, it is possible to determine
the optimal allocation of restoring teams, optimal scheduling of restoring process, and
optimal allocation of restoring methods simultaneously.

Part of restoring method Part of restoring team Part of restorin process

Restoring Method 1 - Work to repair the roads

Restoring Method 2 - Work to reinforce the roads

Restoring Method 3 - Work to rebuilding the roads

Work to clear the interrupted things

Work to repair the roads

Work to reinforce the roads

Work to rebuilding the roads

231 21 431 52122 21

423 51112 12

321 45121 21

432 51221 21

PTYPE

Work to clear the interrupted things

Work to repair the roads

Work to reinforce the roads

Work to rebuilding the roads

431 52122 21

3122

22

4 52 2

PTYPEGTYPE

1st 2nd

1 2 4

2 3 5

Work to repair the roads 2 1 3

Work to reinforce the roads 2 4 5

Work to rebuilding the roads 2 2

Work to Clear the interrupted things

restoring process
Team

Fig. 18. DNA structure



Application of Evolutionary Optimization in Structural Engineering 61

Then, the three objective functions are expressed as follows.

4.4.1 Restoring Days
The relation between restoring days and restoring rate is shown in Fig. 16. The area
of the uncolored portion should be minimized to obtain the optimal solution, because
this enables not only to shorten the restoring days but also to restore the important links
faster.

4.4.2 Life-Cycle Cost
Life-Cycle Cost (LCC) is defined as the total maintenance cost in terms of road network
and all the entire bridges during their lives. In this paper, restoring method is defined by
three kinds of methods: work to repair the roads, work to reinforce the roads, and work
to rebuild the roads. Then, restoring cost of each work is defined by

RC = Cb×Ddegree (8)

where Cb is the basic restoring cost and Ddegree is the level of damage defined in
Table 14. Table 15 presents the basic costs and safety levels by the restoring meth-
ods. Fig. 19 shows the performance levels of restoring methods. Maintenance cost of
each work after restoring is defined by

MC = Mb×Dr (9)

where Mb is the basic maintenance cost presented in Table 15 and Dr is the level of
deterioration defined in Table 14. Here, the accumulated maintenance cost is considered
for 50 years.

Then, the objective function is defined by

LCC = ∑
i∈J(0)

(RCi + MCi) (10)

where RCi is the restoring cost of the i-th link, MCi is the maintenance cost of the i-th
link, and J(0) is the set of damaged links.

4.4.3 Safety Level
Safety level depends on the traffic volume and the condition of links. In this research,
safety level (SL) of the road network is maximized, which is defined by

SL = ∑
i∈J(0)

(Ii + SLi) (11)

where Ii is the importance of the i-th link, Si is the safety level of the i-th link, and J(0)

is the set of damaged links.
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Table 14. Levels of damage and levels of deterioration

Link Work (A) Work (B) Level of deterioration Link Work (A) Work (B) Level of deterioration

1 1.70 0.47 0.8 26 1.36 0.45 1.2
2 0.73 0.96 1.0 27 1.33 1.12 1.2
3 1.91 1.61 1.5 28 0.95 1.87 1.2
4 0.94 1.42 1.5 29 1.33 0.44 0.8
5 1.96 0.41 1.0 30 1.26 1.30 1.0
6 1.53 1.27 0.8 31 1.65 1.26 1.5
7 0.63 1.09 0.8 32 0.50 0.71 1.0
8 1.38 1.62 1.5 33 1.54 0.75 0.8
9 1.97 0.75 1.5 34 1.59 1.08 1.5
10 1.02 1.91 1.5 35 0.74 1.10 1.0
11 2.00 1.36 1.0 36 1.27 0.40 1.0
12 1.27 0.47 1.0 37 1.01 0.78 1.5
13 1.56 1.87 1.5 38 1.69 1.72 1.8
14 0.94 1.36 1.0 39 1.93 0.8
15 0.97 1.12 1.2 40 0.98 1.9
16 0.71 1.88 1.2 41 1.42 1.5
17 0.74 1.96 1.0 42 0.35 0.8
18 2.00 0.46 1.0 43 1.27 0.8
19 1.87 0.78 0.8 44 2.14 0.8
20 0.94 2.00 0.8 45 1.56 1.8
21 0.67 1.72 0.8 46 0.65 1.5
22 1.56 0.38 1.2 47 1.05 1.5
23 0.49 1.06 1.2 48 1.24 1.5
24 1.67 0.65 1.5 49 1.57 1.0
25 1.63 1.64 1.0 50 1.29 1.0

Work (A): The level of damage for work to clear the interrupted things
Work (B): The level of damage for work to restoring the roads

Table 15. The basic costs and safety levels by the restoring methods

Restoring method Basic restoring cost Basic maintenance cost Safety level

Repair 700 3500 0.6

Reinforcement 1200 2000 0.8

Rebuilding 5000 1500 0.9

Basic restoring cost (Ten thousand yen)
Basic maintenance cost (Ten thousand yen)

4.5 Multi-objective Optimization

A multi-objective optimization problem has two or more objective functions that can-
not be integrated into a single objective function. In general, the objective functions
cannot be simultaneously minimized (or maximized). It is the essence of the problem
that trade-off relations exist among the objective functions. The concept of “Pareto
optimum” becomes important in order to balance the trade-off relations. The Pareto
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Fig. 19. The performance levels of restoring methods

Fig. 20. Cost-effective domain including Pareto solutions
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Fig. 21. Pareto solutions in objective space

optimum solution is a solution that cannot improve an objective function without sac-
rificing other functions (Figs. 20 and 21). A dominated, also called non-dominant, so-
lution is indicated in Fig. 20. GA is an evolutionary computing technique, in which
candidates of solutions are mapped into GA space by encoding. The following steps
are used to obtain the optimal solutions: a) initialization, b) crossover, c) mutation, d)
natural selection, and e) reproduction. Individuals, which are solution candidates, are
initially generated at random. Then, steps b, c, d, and e are repeatedly implemented
until the termination condition is fulfilled. Each individual has a fitness value to the
environment. The environment corresponds to the problem space and the fitness value
corresponds to the evaluation value of objective function. Each individual has two as-
pects: Gene Type (GTYPE) expressing the chromosome or DNA and Phenomenon Type
(PTYPE) expressing the solution. GA operations are applied to GTYPE and generate
new children from parents (individuals) by effective searches in the problem space, and
extend the search space by mutation to enhance the possibility of individuals other than
the neighbor of the solution.

GA operations that generate useful children from their parents are performed by
crossover operations of chromosomes or genes (GTYPE) without using special knowl-
edge and intelligence. This characteristic is considered as one of the reasons of the
successful applications of GA.

4.6 Application of MOGA to Restoration Scheduling

Table 16 presents the parameters of MOGA used here. Fig. 22 present the results ob-
tained by MOGA. Table 17 shows the evaluation values of each solution. Then, the
efficiency of MOGA is expressed as follows; for example, comparing solution C with
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Table 16. Parameters of MOGA

Population Probability of crossover Probability of mutation Generation

1000 0.6 0.005 1000

Table 17. Evaluation values of each solution

Solution Restoring days LCC Safety level

A 14.234 241343 61.224

B 15.069 242300 62.123

C 16.309 254316 63.496

D 17.421 260416 63.756

E 17.565 265017 74.116

F 17.576 264866 80.011

G 17.546 284954 80.023

H 17.779 289676 80.229

I 17.898 292191 82.054

J 18.325 291942 82.234

K 18.649 301471 82.268

L 18.623 303837 82.302

solution D in safety level, there is no significant difference between the two solutions.
However, in restoring days and LCC, solution D is worse than solution C. On the other
hand, comparing solution E with solution F, there is no significant difference in restor-
ing days between the two solutions. However, solution F is better than solution E in
LCC. Moreover, in safety level, solution F is substantially better than solution E. In
Table 17, comparing solution E with solution G, there is no significant difference in
restoring days between the two solutions. However, in safety level and LCC, there are
significant differences between the two solutions.

In Fig. 23, the vertical axis represents LCC, whereas the horizontal axis represents
restoring days. Fig. 24 presents the relation between restoring days and safety level. In
Figs. 23 and 24, since restoring days and the other two objective functions have a rather
perfect positive linear correlation, it can be said that the other two can have a positive
effect if restoring days can be increased. Fig. 25 presents the relation between LCC and
safety level. In Figs. 24 and 25, it should be noted that it can be said that the other two
objective function can have a positive effect when there is no significant difference in
safety level.

Figs. 26 to 29 show the detailed restoration schedule associated with the solution K
shown in Fig. 22. In Figs. 26 to 29, compared to the number of work to repair the roads,
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Fig. 23. Relation between restoring days and LCC

there are many works to reinforce the roads and to rebuild the roads, which can increase
safety level, in some important links. As will be appreciated from Table 17, comparing
solution K with the other solutions, solution K is worse than the other solutions in
restoring days. However, solution K is better than the other solutions in safety level.
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Fig. 24. Relation between restoring days and safety level
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Fig. 25. Relation between LCC and safety level
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Fig. 26. Schedule of work to clear the interrupted things
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Fig. 27. Schedule of work to repair the roads
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Fig. 28. Schedule of work to reinforce the roads
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From the above results, it is confirmed that various kinds of solutions can be obtained
by the proposed method. Namely, when selecting a practical restoration schedule, the
proposed method enables to compare feasible optional solutions obtained under various
conditions.

5 Optimal Maintenance Planning of Bridge Structures Using
MOGA

It has been widely recognized that maintenance work is important, because the num-
ber of existing bridges requiring repair or replacement increases in the future. In order
to establish a rational maintenance program, it is necessary to develop a cost-effective
decision-support system that can provide us with a practical and economical plan. Al-
though low-cost maintenance plans are desirable for bridge owner, it is necessary to
consider various constraints when choosing an appropriate actual maintenance pro-
gram. For example, the minimization of maintenance cost requires to prescribe the
target safety level and the expected service life time. The predetermination of require-
ments may loose the variety of possible maintenance plans. Namely, it may be possible
to find out a better solution that can largely extend the service life if the safety level can
be sensitively decreased even with the same maintenance cost.

It is desirable to discover many alternative maintenance plans with different char-
acteristics. Although a single-objective optimization can provide various solutions by
changing the constraints, it requires enormous computation time. When selecting a
practical maintenance plan, it is useful to compare feasible solutions obtained under
the various conditions. This process is inevitable and effective for the accountability by
the disclosure of information. Then, an attempt was made to develop a decision support
system for the bridge maintenance that can provide us with several alternative plans
by applying Multi-Objective Genetic Algorithm (MOGA). However, it is not easy for
the decision maker to choose an appropriate solution from many Pareto solutions. In
order to help the decision maker, a 3D graphical system was developed using JAVA
techniques. It is important to find out the appropriate repair methods and the branching
points of cost effectiveness. Several numerical examples are presented to demonstrate
the applicability and efficiency of the present system.

5.1 Concrete Bridge Model

A group of ten concrete highway bridges are considered. The locations of all these
bridges along the coast of Japan are indicated in Fig. 30. Maintenance management
planning for ten consecutive piers and floor slabs (composite structure of steel girders
and reinforced concrete (RC) slabs) is considered. Each bridge has the same structure
and is composed of six main structural components: upper part of pier, lower part of
pier, shoe, girder, bearing section of floor slab, and central section of floor slab (Fig. 31).
In this study, an attempt was made to develop a new searching method for optimization
problem. Environmental conditions can significantly affect the degree of deterioration
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of the structures and may vary from location to location according to geographical
characteristics such as wind direction, amount of splash, etc. To take the environmental
conditions into account, the deterioration type and year from completion of each bridge
are summarized in Table 18.

Table 18. Years from completion and type of deterioration caused by environmental conditions

Bridge number Years from completion Deterioration type
B01 2 neutralization of concrete
B02 2 neutralization of concrete
B03 0 chloride attack (slight)
B04 0 chloride attack (medium)
B05 0 chloride attack (severe)
B06 0 chloride attack (medium)
B07 0 chloride attack (severe)
B08 1 chloride attack (medium)
B09 1 chloride attack (slight)
B10 1 chloride attack (slight)

Environmental corrosion due to neutralization of concrete, chloride attack, frost dam-
age, chemical corrosion, or alkali-aggregate reaction are considered as major deteriora-
tions. The structural performance of each bridge component i is evaluated by the associ-
ated safety level (also called durability level) Pi which is defined as the ratio of current
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Fig. 30. Location of ten bridges in Japan
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safety level to initial safety level. Deterioration of a bridge due to corrosion depends
on the concrete cover of its components and environmental conditions, among other
factors. For each component, the major degradation mechanism and its rate of deterio-
ration are assumed corresponding to associated environmental conditions. Figs. 32, 33,
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and 34 show the decreasing patterns of safety levels for RC slabs, shoes and girders,
and piers, respectively. Average values are employed here as representative values for
each level of chloride attack because the deteriorating rates can vary even in the same
environment. The decrease of RC slab performance is assumed to depend on corrosion.
Hence, the safety level depends on the remaining cross-section of reinforcement bars.
For shoe and girder, the major deterioration mechanism is considered to be fatigue due
to repeated loadings. The decrease in performances occurs as the rubber bearing of shoe
or paint coating of girder deteriorates. For pier, the major mechanism for deterioration is
assumed to be only corrosion. Thus the reduced performance of pier is expressed by the
remaining section of reinforcement bars. The development of reinforcement corrosion
is determined in accordance with Standard Specification for Design and Construction
of Concrete in Japan.

5.2 Maintenance Methods

In order to prevent deterioration in structural performance, several options such as re-
pair, restoring, and reconstruction are considered. Their applicability and effects on each
component are shown in Table 19. Since the effects may differ even under the same con-
ditions, average results are adopted here. Maintenance methods applicable to RC slab
may vary according to the environmental conditions and are determined considering
several assumptions.

Table 19. Effects of repair, restoring, and reconstruction

Structural
component Maintenance type Average effect

Pier or Slab

Surface painting Delays Pi decrease for 7 years
Surface covering Delays Pi decrease for 10 years

Section restoring
Restores Pi to 1.0, and then allows it to deteriorate

with the same slope as the initial deterioration curve
Desalting

(Re-alkalization)
Pi deteriorates with the same slope

as the initial deterioration curve
Cathodic protection Delays Pi decrease for 40 years

Section restoring with
surface covering

Restores Pi to 1.0, delays Pi decrease for 10 years,
and then Pi deteriorates with the same slope

as the initial deterioration curve

Girder Painting
Maintains initial performance

until the end of the specified lifetime

Shoe Replacement of bearing
Maintains initial performance

until the end of the specified lifetime

Slab Recasting
Maintains initial performance

until the end of the specified lifetime

All Reconstruction

Restore Pi to 1.0, delays Pi decrease for 10 years,
and then Pi deteriorates with the same slope

as the initial deterioration curve
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5.3 LCC

LCC is defined as the total maintenance cost for the entire bridge group during its
life. This is obtained by the summation of the annual maintenance costs through the
service life of the bridges. The future costs are discounted to their present values. Other
costs, such as indirect construction costs, general costs, administrative costs, etc., are
calculated in accordance with Cost Estimation Standards for Civil Construction. The
direct construction costs consist of material and labor costs and the cost of scaffold.
The breakdown of the material and labor costs and the cost of the scaffold are shown in
Tables 20 and 21. The construction costs are based upon the market prices.

Table 20. Material and labor costs

Maintenance
action

Upper pier

(yen/m2)

Lower pier

(yen/m2)
Shoe

(yen/part)
Girder

(yen/m2)

Slab
-central
section-
(yen/m2)

Slab
-bearing
section-
(yen/m2)

Surface painting 780,000 1,920,000 – – 1,640,000 3,280,000
Surface covering 2,730,000 6,720,000 – – 4,100,000 8,200,000
Section restoring 20,670,000 50,880,000 – – 22,140,000 44,280,000

Desalting
(Re-alkalization) 3,510,000 8,640,000 – – 7,380,000 14,760,000

Cathodic
protection 3,900,000 9,600,000 – – 8,200,000 16,400,000

Section restoring
with

surface covering 22,620,000 55,680,000 – – 26,240,000 52,480,000
Reconstruction – – 4,200,000 5,400,000 12,300,000 24,600,000

Table 21. Scaffold costs

Upper pier
(yen/m2)

Lower pier
(yen/m2)

Shoe
(yen/part)

Girder
(yen/m2)

Slab
-central section-

(yen/m2)

Slab
-bearing section-

(yen/m2)
360,000 190,000 360,000 4,830,000 690,000 510,000

5.4 Application of MOGA to Maintenance Planning

It is desirable to determine an appropriate life-cycle maintenance plan by comparing
several solutions for various conditions. A new decision support system is described
here from the viewpoint of multi-objective optimization, in order to provide various
solutions needed for the decision-making.

LCC, safety level and service life are used as objective functions. LCC is minimized,
safety level is maximized, and service life is maximized. There are trade-off relations
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among the three objective functions. For example, LCC increases when service life is
extended, and safety level and service life decrease due to the reduction of LCC. Then,
multi-objective optimization can provide a set of Pareto solutions that cannot improve
an objective function without making other objective functions worse.

In the present system, DNA structure is constituted as shown in Fig. 35, in which
DNA of each individual consists of three parts such as repair method, interval of repair,
and shared service life (Fig. 36). In this figure, service life is calculated as the sum of
repairing years and their interval years. In Fig. 36, service life is obtained as 67 years
which is expressed as the sum of 30 years and 37 years. The repair part and the interval
part have the same length. Gene of repair part has ID number of repair method.

The interval part has enough length to consider service life. In this system, ID 1
means surface painting, ID 2 surface coating, ID 3 section restoring, ID 4 desalting (re-
alkalization) or cathodic protection, and ID 5 section restoring with surface covering.
DNA of service life part has a binary expression with six bits and its value is changed

Fig. 35. Structure of DNA

Fig. 36. Coding rule
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to decimal number. For mutation, the system shown in Fig. 36 is used. Then, objective
functions are defined as follows:

Objective function 1: Ctotal =∑LCCi → min (12)

where LCCi is LCC for bridge i.

Objective function 2: Ytotal =∑Yi → max (13)

subject to Yi > Yrequired , where Yi is service life of bridge i, Yrequired is required service
life.

Objective function 3: Ptotal =∑Pi → max (14)

subject to Pi > Ptarget , where Ptarget is target safety level.
The above objective functions have trade-off relations to each other. Namely, the

maximization of safety level or maximization of service life cannot be realized without
increasing LCC. On the other hand, the minimization of LCC can be possible only if
the service life and/or the safety level decreases.

5.5 Three-Dimensional Graphical Systems

In order to find out several useful solutions from the set of Pareto solutions, a 3D graph-
ical system was developed. The system aims to help the decision maker to select several
solutions that satisfy some requirements through checking their constraint conditions by
using JAVA3D. The system consists of three subsystems: 1) 3D representation, 2) gen-
eral representation, and 3) graphical representation. Each representation is implemented
using JAVA language.

The 3D representation system is the most important among the three subsystems.
This system can select several candidates from the set of Pareto solutions by checking
various requirements and express them in 3D graphics. In this study, both MOGA sys-
tem and the 3D graphical system are written in JAVA so that the rendering of 3D graphs
can be implemented in real time. Namely, the user can move the 3D graphs freely. It is
very easy to move them by using a mouse. Any graph can be viewed from any direction
by using the operations of extension, shrinkage, translation, and rotation. The 3D repre-
sentation system can mainly implement the three actions: 1) emphasize the evaluation
function, 2) emphasize a point, and 3) extract a range.

The general representation system can list the solutions obtained by the 3D repre-
sentation system. The solutions can be arranged in the order of evaluation values. The
solutions are listed up, corresponding to the range defined by MOGA system. While the
3D representation system is useful to grasp the relations and tendencies of solutions, the
general representation system is useful to show the characteristics of each solution.

The graphical representation system can provide us with the detail of repair methods
calculated by MOGA. The system can play a role in checking the appropriateness of
the obtained repair methods and in finding out the tendency or pattern of repair program.
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Observing and comparing the patterns obtained, it is possible to discover the branching
points of short, medium and long term repair plans.

5.6 Application Example

Fig. 37 shows the Pareto solutions calculated by MOGA system. This graph is given in
the conventional way of representation.

Fig. 38 shows the representation of the same graph by the proposed 3D represen-
tation system. Fig. 39 presents the same graph that is rotated and shrunken. As seen
form Fig. 39, it is possible for the user to check the Pareto solutions from any desired
direction by using the proposed representation system based on JAVA3D.

For example, it is possible to find out a gap among the solutions, which may be
caused by the cost reduction by the common usage of scaffold. Apparently, it is possible
to obtain more useful information by using the 3D representation instead of the usual
2D representation. Comparing the long term repair plans and short term repair plans, it
is made clear that the long term plan is superior in monetary term to the plan with the
repetition of short term repair (Table 22). The branching point between the short term
plan and long term plan can be found out. Moreover, it is also possible to obtain the
solutions for the cases in which the safety of the structure is emphasized and the LCC
is emphasized, respectively. This means that the proposed system can provide the user
with an appropriate solution for any case.

By considering LCC, safety level, and service life as objective functions, it is pos-
sible to obtain the relationships among these three performance indicators and provide

Fig. 37. Pareto solutions obtained by MOGA
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Fig. 38. JAVA 3D Application 1

Fig. 39. JAVA 3D Application 2
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Table 22. Maintenance terms

Maintenance term LCC Safety level Service life
long term 359501 5.18887 84

middle term 308605 5.18132 66
short term 255104 5.18154 40

bridge maintenance management engineers with various maintenance plans with appro-
priate allocations of resources. Since the optimal maintenance problem is a very com-
plex combinatorial problem, it is difficult to obtain reasonable solutions by the current
optimization techniques. Although GA is applicable to solve multi-objective problems,
it is difficult to apply it to large and very complex bridge maintenance problems. By
introducing the technique of Non-Dominated Sorting GA-2 (NSGA2), it is possible to
obtain efficient near-optimal solutions for the maintenance planning of a group of bridge
structures. However, it is not easy for the decision maker to choose an appropriate so-
lution from many Pareto solutions. In order to help the decision maker, a 3D graphical
system is developed using JAVA techniques. It is important to find the appropriate repair
methods and the branching points of cost effectiveness.

6 Conclusions

In this paper, several practical optimization methods including GA were introduced,
which are based on “evolutionary computing” or “soft computing”. Several application
examples in structural engineering are presented to discuss the efficiency and applicabil-
ity of the methods described here. Through the numerical computations, the following
conclusions were derived:

1. The optimization problems in real life are very difficult to solve, because they have
objective functions and constraint conditions which have uncertainty and vague-
ness.

2. The evolutionary computing including GA is useful in solving real life problems,
because of their superior ability such as understandable thinking way, high search-
ing performance, easiness of programming, and robustness to peculiar characteris-
tics of problems.

3. The structural vibration control system presented in this paper has an advantage
that it can adapt to the change of structural systems and environments. Through the
model and numerical experiments, it was validated that the systems can follow the
change of vibration characteristics of structure. Using the descent method for
the learning in fuzzy reasoning, quick and right adaptation can be achieved.

4. A decision support system for the aesthetic design of bridge handrails can be ap-
plied for practical use. In order to obtain several satisfactory design alternatives,
the immune algorithm was applied to the optimization procedure and the neural
network was used for the learning of the necessary knowledge. The effectiveness
of the system was confirmed through numerical calculations.
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5. The optimal restoration scheduling was formulated as a multi-objective optimiza-
tion problem. By considering restoring days, LCC and performance level as
objective functions, it is possible to obtain the relationships among these three
performance indicators and to compare feasible optional solutions obtained under
various conditions.

6. An optimal maintenance planning problem was also formulated as a multi-objective
optimization. Furthermore, a 3D graphical representation system was introduced to
find out several useful solutions from the set of Pareto solutions obtained by the
optimal maintenance planning system using Multi-Objective Genetic Algorithm
(MOGA).

7. By comparing the method with the current methods, it was proven that the present
method can reduce the computation time, improve the convergence of searching
procedure, regardless of vague or uncertain objective functions and constraint func-
tions.
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Abstract. Bang-bang control problems subject to a state inequality constraint
are considered. It is shown that the control problem induces an optimization prob-
lem, where the optimization vector assembles the switching and junction times
for bang-bang and boundary arcs. Second order sufficient conditions (SSC) for
the state-constrained control problem are given which require that SSC for the
induced optimization problem are satisfied and a generalized strict bang-bang
property holds at switching and junction times. This type of SSC ensures solution
differentiability of optimal solutions under parameter perturbations and allows to
compute parametric sensitivity derivatives. A numerical algorithm is presented
that simultaneously determines a solution candidate, performs the second-order
test and computes parametric sensitivity derivatives. We illustrate the algorithm
with two state-constrained optimal control problems in biomedicine.

1 Introduction

Second-order sufficient optimality conditions (SSC) for bang-bang controls without
state constraints have been derived in Agrachev, Stefani and Zezza [1] on the basis
of an induced optimization problem where the control process is optimized with re-
spect to the unknown switching times of the bang-bang control. The equivalence of
this type of SSC with a different form of SSC obtained earlier in the literature has
recently been shown in [20,21,23]. Numerical methods for the verification of optimiza-
tion based SSC have been developed in Maurer, Büskens, Kim and Kaya [18] using the
so-called arc-parameterization method where the arc-lengths of the bang-bang arcs are
optimized. Basic ideas for a sensitivity analysis of bang-bang controls may be found in
Kim, Maurer [11].

The purpose of this paper is to extend the results and techniques in [18,11] to bang-
bang control problems with a state constraint. In Sect. 2, we review the necessary condi-
tions for an optimal control problem with a state constraint of order one. The regularity
conditions in assumptions (A1), (A2) allow to determine the multiplier associated with
the state constraint. In Sect. 3, we formulate an induced optimization problem where the

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 82–99, 2009.
© IFIP International Federation for Information Processing 2009
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optimization vector assembles the switching times of bang-bang arcs, resp., the entry-
and exit-times (junction times) of boundary arcs, and the free final time. The crucial
point in this optimization approach is the fact that the optimal control is given in feed-
back form along boundary arcs.

Based on second-order sufficient conditions (SSC) for the induced optimization prob-
lem, we give SSC for the control problem which require the strict bang-bang prop-
erty in assumption (A4) and the strict complementarity in (A5). In Sect. 4, the
arc-parameterization method from [18] is extended to incorporate boundary arcs. The
main result on sensitivity analysis is given in Sect. 5. We include a formula for the sen-
sitivity derivatives of the switching and junction times which can be implemented into
the routine NUDOCCCS developed in [4]; cf. also [5,6]. In Sect. 6, we discuss the drug
displacement problem in [22] in the light of the SSC presented in Theorem 2. In Sect. 7,
we determine the optimal control in a two-compartment model for cancer therapy [12],
when a state constraint on the number of tumor cells is imposed.

2 Optimal Bang-Bang Control Problems with a State Constraint

Let x(t)∈R
n denote the state variable and u(t)∈R the control variable at time t ∈ [0, t f ],

where the final time t f > 0 is either fixed or free. For simplicity, the control is assumed
to be scalar. The following autonomous optimal control problem with control variable
appearing linearly will be denoted by (OC): determine a measurable control function
u : [0,t f ] → R and a terminal time t f > 0 such that the pair of functions (x(·),u(·))
minimizes the cost functional of Mayer type

J(x,u,t f ) := g(x(t f ),t f ) (1)

subject to the constraints in the interval [0, t f ],

ẋ(t) = f (x(t),u(t)) = f0(x(t))+ f1(x(t))u(t), (2)

x(0) = x0, ϕ(x(t f ),t f ) = 0, (3)

umin ≤ u(t)≤ umax , (4)

and the scalar state inequality constraint

S(x(t))≤ 0 for 0≤ t ≤ t f . (5)

The functions g : R
n ×R → R, f0, f1 : R

n → R
n,ϕ : R

n×R → R
r, 0 ≤ r ≤ n, and

S : R
n → R are assumed to be twice continuously differentiable. The state constraint is

assumed to be of order one [9,16], i.e., the total time derivative of the function S(x(t))
contains the control explicitly,

S1(x,u) := Sx(x)( f0(x)+ f1(x)u) = a(x)+ b(x)u, (6)

where b(x) = Sx(x) f1(x) �≡ 0. Here and in the sequel, partial derivatives are denoted by
subscripts. A subinterval [τ1,τ2] ⊂ [0,t f ] is called an interior arc if S(x(t)) < 0 holds
on (τ1,τ2). The interval [τ1,τ2] is called a boundary arc if S(x(t)) ≡ 0 holds for all
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t ∈ [τ1,τ2]. If [τ1,τ2] is maximal with this property, then τ1 is called entry-time and τ2 is
called exit-time of the boundary arc; τ1, τ2 are also called junction times. The following
assumption is a standard regularity condition for a boundary arc [9,15,17].

(A1) b(x(t)) �= 0 ∀ t ∈ [τ1,τ2] .

Under this assumption, the boundary control on a boundary arc is determined by the
equation S1(x,u) = a(x)+ b(x)u = 0 as the feedback expression

ub(x) =−a(x)/b(x), u(t) = ub(x(t)) . (7)

The following assumption will be needed to determine the multiplier associated with
the state constraint explicitly.

(A2) The boundary control lies in the interior of the control region:

umin < u(t) = ub(x(t)) < umax ∀ t ∈ [τ1,τ2]. (8)

Assumptions (A1) and (A2) allow us to formulate first order necessary conditions of
Pontryagin’s minimum principle in a computationally convenient form. We recall from
[9,17] that the Lagrange multiplier associated with the state constraint (5) is a measure
that is represented by a function μ of bounded variation. Using (A1) and (A2), it has
been shown in [16,17,15,14] that the measure has a Radon-Nikodym derivative η which
allows to write the following adjoint equation (11) in differential form. In the direct ad-
joining approach [9,17], the augmented Pontryagin or Hamiltonian function is defined
by

H(x,u,λ ,μ) = λ f (x,u)+ηS(x) = λ f0(x)+λ f1(x)u +ηS(x), (9)

where the adjoint variable λ ∈R
n is a row vector and η is the multiplier associated with

the state constraint.
Suppose now that ū : [0, t̄ f ]→ [umin,umax] is an optimal control with optimal final

time t̄ f and corresponding trajectory x̄ : [0, t̄ f ]→ R
n. Assume that (A1), (A2) hold and

the state constraint (5) is not active at t = 0 and t = t̄ f ,

S(x̄(0)) < 0 and S(x̄(t̄ f )) < 0. (10)

In the sequel, we will use the junction theorem in [16], Corollary 5.2 (ii), where it
was shown that the adjoint variables are continuous at junction times provided that the
state constraint is of first order and the control is discontinuous at junctions. Note that
the latter property follows from (A2). Then there exist an absolutely continuous (a.c.)
adjoint function λ : [0, t̄ f ]→R

n, a piecewise a.c. multiplier function η : [0, t̄ f ]→R and
a multiplier ρ ∈R

r (row vector) such that the following conditions hold a.e. on [0, t̄ f ]:

λ̇ (t) =−Hx(x̄(t), ū(t),λ (t),η(t)), (11)

λ (t̄ f ) = lx(x̄(t̄ f ), t̄ f ,ρ), (12)

H(x̄(t), ū(t),λ (t),η(t))|t=t̄ f + lt f (x̄(t̄ f ), t̄ f ,ρ) = 0, if t f is free, (13)

H(x̄(t), ū(t),λ (t),η(t)) = min{H(x̄(t),u,λ (t),η(t)) |u ∈ [umin,umax]}, (14)

η(t)≥ 0, η(t) = 0, if S(x(t)) < 0, (15)
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where l(x, t f ,ρ) := (g +ρϕ)(x,t f ) is the endpoint Lagrangian function. The switching
function is defined by

σ(x,λ ) := Hu = λ f1(x), σ(t) = σ(x(t),λ (t)). (16)

On interior arcs with S(x(t)) < 0 the minimum condition (14) yields the control law

u(t) =

{
umin, if σ(t) > 0,

umax, if σ(t) < 0.
(17)

The switching times of the control are zeroes of the switching function. A singular arc
occurs if the switching function σ(t) vanishes identically on an interval Ising ⊂ [0, t̄ f ].
In this paper, we assume that the optimal control does not contain singular arcs.

Along a boundary arc [τ1,τ2], assumption (A2) requires that the control takes values
in the interior of the control set. Hence, the minimum condition (14) implies

σ(t) = λ (t) f1(x(t)) = 0 ∀ t ∈ [τ1,τ2]. (18)

This relation can be interpreted as the property that a boundary control behaves formally
like a singular control, a fact that was exploited in [16] to obtain junction theorems. By
differentiating (18) and using the adjoint equation (11) we find the following explicit
representation of the multiplier η = η(x,λ ) in (11) (cf. [17,14]),

η(x,λ ) = λ [( f1)x(x) f (x,ub(x))− fx(x,ub(x)) f1(x)]/b(x), (19)

where ub(x(t)) is the boundary control (7). In short, the multiplier is given by the Lie
bracket η(x,λ ) = λ [ f1, f ]; we then set η(t) = η(x(t),λ (t)).

3 Induced Optimization Problem and Second Order Sufficient
Conditions

In order to transcribe the control problem into a finite-dimensional optimization prob-
lem, we make the following assumption:

(A3) The optimal control has finitely many bang-bang and boundary arcs.

Under assumptions (A1)-(A3), the optimal control problem can be transcribed into an
optimization problem in the following way. We assume that the structure of the optimal
control, i.e., the sequence of finitely many bang-bang and boundary arcs, is known. Let
t j, j = 1, . . . ,s, be the switching and junction times which are ordered as

0 =: t0 < t1 < . . . < t j < . . . < ts < ts+1 := t f . (20)

For simplicity, assume that there exists only a single boundary arc [τ1,τ2] = [tk, tk+1]
with an index 1 ≤ k ≤ s. Then [0,tk] and [tk+1, t f ] are the interior arcs. By assumption,
in every interval I j := [t j−1,t j] there exists a function u j(x) with the property that the
optimal control is given by

u(t) = u j(x(t)), t j−1 ≤ t ≤ t j, ( j = 1, . . . ,s,s+ 1). (21)
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The interval Ik+1 then represents the boundary arc. The function u j(x) is either the con-
stant value of the bang-bang control on interior arcs or the boundary control uk+1(x) =
ub(x) =−a(x)/b(x).

Consider now the optimization variable z := (t1, . . . ,ts+1)∗ ∈R
s+1 with ts+1 := t f in

case of a free final time, resp., z := (t1, . . . , ts)∗ ∈ R
s for fixed final time t f , where the

asterisk denotes the transpose. Denote by x(t;z) the absolutely continuous solution of
the ODE system

ẋ(t) = f (x(t),u j(x(t))), t j−1 ≤ t ≤ t j, (22)

with initial condition x(0) = x0. Then the control problem (OC) can be reformulated as
the following finite-dimensional optimization problem (OP) with equality constraints:

Min G(z) := g(x(ts+1;z),ts+1)

s.t. Φ(z) := ϕ(x(ts+1;z),ts+1) = 0,

S (z) := S(x(tk;z)) = 0 .

(23)

The last equation arises from the entry-condition for the boundary arc. We consider the
Lagrangian for the induced optimization problem (OP) in normal form,

L (z,ρ ,β ) = G(z)+ρΦ(z)+βS (z), (24)

with multipliers ρ ∈R
r (row vector) and β ∈R. First order necessary and second order

sufficient conditions (SSC) for (23) are well known in the literature. In the following
theorem, we consider control problems with free final time which involve the optimiza-
tion vector z ∈R

s+1.

Theorem 1. SSC FOR THE INDUCED OPTIMIZATION PROBLEM.
Let z̄ be feasible for the optimization problem (23). Suppose there exist multipliers ρ ∈
R

r and β ∈R such that the following three conditions hold:

(a) rank [Φz(z̄) |Sz(z̄) ] = r + 1,
(b) Lz(z̄,ρ ,β ) = 0,
(c) v∗Lzz(z̄,ρ ,β )v > 0 for all v ∈ R

s+1 \ {0} with Φz(z̄)v = 0, Sz(z̄)v = 0.

Then z̄ is a strict local minimizer of the optimization problem (OP).

Arguments similar to those in [18,23] reveal that the first order conditions in part (a)
and (b) of Theorem 1 are closely related to those in (11)-(13) involving the adjoint
function λ (t). Namely, using the multiplier ρ in the Lagrangian (24), we define the
adjoint function λ (t) through the transversality condition λ (t̄ f ) = (g +ρϕ)x(x̄(t̄ f ), t̄ f )
in (12) and the adjoint equation (11) where the multiplier η is given in (19). However,
on the boundary arc [tk,tk+1] there exists another multiplier η1 and an adjoint function
λ 1(t) which correspond to the so-called indirect adjoining approach [9,17]. Here, the
Hamiltonian is defined by H1 = λ 1 f (x,u)+η1S1(x,u) with the function S1(x,u) given
in (6). Then the adjoint equation is λ̇ 1 = −H1

x and the multiplier η1 is determined
via the equation H1

u = 0 as η1(x,λ 1) = −λ 1 fu(x,ub(x))/b(x). The multiplier β in the
Lagrangian (24) yields the jump condition λ 1(tk+) = λ 1(tk−)−βSx(x(tk)) at the entry-
time tk. Moreover, one can show the relation β =

∫ tk+1
tk η(t)dt ≥ 0.
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For bang-bang control problems without state constraints, it was shown in [1,20,21,23]
that one further needs the so-called strict bang-bang property to obtain SSC for the bang-
bang control problem. The following assumption gives an extension of the strict bang-
bang property to control problems with state constraints.

(A4) (a) on interior arcs for j = 1, ...,k−1,k + 2, ...,s :

σ(t j) = 0, σ̇(t j)(u(t−j )−u(t+j )) > 0, σ(t) �= 0 for t �= t j .

(b) at the entry-time tk and exit-time tk+1 of the boundary arc:

σ̇(tk−)(u(t−k )−u(t+k )) > 0 , σ̇(t+k+1)(u(t−k+1)−u(t+k+1)) > 0 .

Finally, we need the following strict complementarity condition:

(A5) The multiplier η(t) satisfies η(t) > 0 ∀ t ∈ [tk, tk+1].

Note that assumptions (A4) and (A5) have also been used in [13,14] to construct a local
field of extremals near boundary arcs. This has enabled the authors to prove sufficient
conditions (SSC) which correspond to the following form of SSC. Detailed proofs will
be given elsewhere.

Theorem 2. SSC FOR THE STATE-CONSTRAINED CONTROL PROBLEM.
Let ū be a feasible control for the control problem (1)-(5) which has finitely many
switching and junction times t̄ j, j = 1, . . . ,s, and let x̄ be the corresponding trajec-
tory. Suppose there exists an adjoint function λ : [0, t f ]→ R

n and a multiplier ρ ∈ R
r

such that assumptions (A1)-(A5) hold with multiplier function η : [0, t f ]→R defined by
(19). Suppose further that the vector z̄ = (t̄1, . . . , t̄s, t̄s+1)∗ ∈R

s+1, t̄s+1 = t̄ f , satisfies the
SSC in Theorem 1. Then the control ū provides a strict strong minimum for the control
problem (OC).

4 Numerical Methods for Solving the Induced Optimization
Problem

In this section, we shall extend the arc-parameterization method in [10,18] to solve
state-constrained control problems. Instead of directly optimizing the switching and
junction times t j, j = 1, . . . ,s, one determines the arc-lengths (arc durations)

ξ j := t j− t j−1, j = 1, . . . ,s,s+ 1, (25)

of bang-bang and boundary arcs. Therefore, the optimization variable z = (t1, . . . ,ts,
ts+1)∗ is replaced by the optimization variable

ξ := (ξ1, . . . ,ξs,ξs+1)∗ ∈ R
s+1, ξ j := t j− t j−1. (26)

The variables z and ξ are related by a linear transformation involving the regular (s +
1)× (s+ 1)-matrix R,

ξ = Rz, z = R−1ξ , R =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0

−1 1
. . .

...

. . .
. . . 0

0 −1 1

⎞⎟⎟⎟⎟⎟⎠ . (27)
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In the arc-parameterization method, the time interval [t j−1, t j] is mapped to the fixed

interval I j :=
[

j−1
s+1 , j

s+1

]
by the linear transformation

t = a j + b jτ, τ ∈ I j =
[

j−1
s+ 1

,
j

s+ 1

]
, (28)

where a j = t j−1− ( j− 1)ξ j, b j = (s + 1)ξ j . Identifying x(τ) ∼= x(a j + b jτ) = x(t) in
the relevant intervals, we obtain the ODE system

ẋ(τ) = (s+ 1)ξ j f (x(τ),u j(x(τ))) for τ ∈ I j. (29)

By concatenating the solutions in the intervals I j we get the continuous solution x(t) =
x(t;ξ ) in the normalized interval [0,1]. When expressed via the new optimization vari-
able ξ , the optimization problem (OP) in (23) is equivalent to the following optimiza-

tion problem (ÕP) with t f =
s+1
∑
j=1

ξ j :

Min G̃(ξ ) := g(x(1;ξ ),t f ),

s.t. Φ̃(ξ ) := ϕ(x(1;ξ ), t f ) = 0 ,

S̃ (ξ ) := S(x( k
s+1 ;ξ )) = 0 .

(30)

The Lagrangian function is given by

L̃ (ξ ,ρ ,β ) = G̃(ξ )+ρΦ̃(ξ )+βS̃ (ξ ). (31)

Using the linear transformation (27), it can easily be seen that the SSC for the optimiza-
tion problems (OP) and (ÕP) are equivalent; cf. similar arguments in [18]. To solve this
optimization problem, we use a suitable adaptation of the control package NUDOCCCS
in Büskens [4,6]. Then we can take advantage of the fact that this routine also provides
the Jacobian of the equality constraints and the Hessian of the Lagrangian which are
needed to check the second order condition in Theorem 1.

5 Sensitivity Analysis for Bang-Bang Control Problems with a
State Constraint

The SSC given in Theorem 2 pave the way to stability and sensitivity analysis for para-
metric bang-bang control problems with a state constraint. Suppose that the control
problem (OC) in (1)-(5) depends as well on a parameter p ∈ P ⊂ R

q in the following
way: Minimize

J(x,u, t f , p) := g(x(t f ),t f , p) (32)

subject to the constraints on the interval [0,t f ],

ẋ(t) = f (x(t),u(t), p) = f0(x(t), p)+ f1(x(t), p)u(t), (33)

x(0) = x0, ϕ(x(t f ),t f , p) = 0, (34)

umin ≤ u(t)≤ umax, (35)

S(x(t), p)≤ 0. (36)
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All functions are supposed to be sufficiently smooth. This parametric control problem
will be denoted by (OC(p)). For a fixed parameter p0 ∈ P, the problem (OC(p0)) is
considered as the nominal control problem.

We shall assume that the state constraint is of order one uniformly in the parameter
p, i.e., for

S1(x,u, p) = Sx(x, p)( f0(x, p)+ f1(x, p)u) = a(x, p)+ b(x, p)u (37)

we have b(x, p) �≡ 0 for all p ∈ P. Then the boundary control is given by

ub(x, p) =−a(x, p)/b(x, p). (38)

Assuming (A1)-(A5) for the nominal control problem (OC(p0)), we arrive at an in-
duced optimization problem (23) in parametric form upon inserting the parametric
boundary control (38). The Lagrangian function (24) becomes

L (z,ρ ,β , p) = G(z, p)+ρΦ(z, p)+βS (z, p). (39)

Using a well-known sensitivity result for finite-dimensional parametric optimization
problems (cf. [7,5,6]) we arrive at the following sensitivity result for the parametric
control problem.

Theorem 3. SENSITIVITY ANALYSIS OF THE CONTROL PROBLEM (OC(p)).
Suppose that ū(t) =: u(t, p0) is a feasible control for the nominal control problem
(OC(p0)). Assume that u(t, p0) has switching and junction times t̄ j, j = 1, ...,s, and
a final time t̄ f = t̄s+1 such that the SSC in Theorem 2 are satisfied. Then there exists
a neighborhood P0 ⊂ P of the nominal parameter p0 and functions t j : P0 → R ( j =
1, ...,s,s+ 1), ρ : P0 →R

r and β : P0 → R with the following properties:

(1) t j(p0) = t̄ j, j = 1, ...,s,s+ 1,
(2) for every p ∈ P0, the control u(t, p) with switching and junction times t j(p), j =

1, ...,s, and final time t f (p) = ts+1(p) is a strict strong local minimum for (OC(p)).
The values of u(t, p) agree with those of the nominal control ū(t) on every interior
bang-bang interval and are determined on boundary arcs by u(t, p) = ub(x(t), p)
in view of (38).

The parametric sensitivity derivatives of z(p) := (t1(p), ...,ts(p), ts+1(p))∗ ∈ R
s+1 and

of ρ(p), β (p) are given by the formula⎛⎜⎝dz/d p

dρ∗/d p

dβ/d p

⎞⎟⎠=−
(

Lzz (Ψz)∗

Ψz 0

)−1(
Lzp

Ψzp

)
, (40)

where we have put

Ψ (z, p) =

(
Φ(z, p)
S (z, p)

)
. (41)

The right hand side in (40) is evaluated for the argument (z(p),ρ(p),β (p)).
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Proof. We sketch the main ideas of the proof. Since SSC hold for the nominal induced
optimization problem (OC(p0)), the sensitivity theorem in [7,5,6] tells us that there
exist a neighborhood P0 ⊂ P of p0 and, for every p ∈ P0, an optimal solution and mul-
tipliers

z(p) = (t1(p), ..., ts(p),t f (p)), ρ(p), β (p), (42)

for the parametric problem (OC(p)). The triple (z(p),ρ(p),β (p)) satisfies the assump-
tions of Theorem 1 and is a C1-function with respect to p ∈ P0. We define the para-
metric control u(t, p) in the following way. On bang-bang arcs [t j(p), t j+1(p)], j �= k,
the control u(t, p) takes the values of the nominal control on the corresponding nomi-
nal arcs [t̄ j, t̄ j+1]. On the boundary arc [tk(p), tk+1(p)], the parametric control is defined
by u(t, p) = ub(x(t), p) using the boundary control (38). Then corresponding trajectory
x(t, p) is determined by

ẋ = f (x,u(t, p)), x(0, p) = x0. (43)

Then the adjoint function λ (t, p) is defined by the transversality condition

λ (t f (p), p) := (g +ρ(p)ϕ)x(x(t f (p), p), t f (p)) (44)

and the solution to the adjoint equation

λ̇ (t, p) =−Hx(x(t, p),λ (t, p),u(t, p),η(t, p)), (45)

where the multiplier η(t, p) is given by the Lie-bracket

η(t, p) = λ (t, p) [ f1, f ](x(t, p),u(t, p), p). (46)

By shrinking the set P0 if necessary, it is easy to verify that assumptions (A1)-(A5)
hold for all p ∈ P0. This proves the optimality of the triple (x(t, p),u(t, p),λ (t, p)). The
sensitivity formula (40) follows from standard results in [7,5,6]. Note that Theorem 3
represents an extension of a sensitivity result for bang-bang control problems without
state constraints; cf. Kim, Maurer [11]. �

We point out that the code NUDOCCCS [4] provides also the numerical evaluation of
sensitivity formula (40).

6 Numerical Example: Time-Optimal Drug Displacement
Problem

We consider the time-optimal control problem discussed in Bell, Katusiime [3] and
Maurer, Wiegand [22]. The model simulates the interaction of the two drugs, warfarin
and phenylbutazone in the human blood stream. The state variables x1 and x2 repre-
sent the concentration of warfarin and phenylbutazone, respectively. The problem is to
control the rate of infusion (control u) of the pain-killing drug phenylbutazone such
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that both drugs reach a stable steady-state in minimal time while the concentration of
warfarin is bounded by a given toxic level:

Minimize t f (47)

subject to ẋ1 = D2(C2(0.02− x1)+ 46.4x1(u−2x2))/C3, (48)

ẋ2 = D2(C1(u−2x2)+ 46.4x2(0.02− x1))/C3, (49)

x1(0) = 0.02, x2(0) = 0, (50)

x1(t f ) = 0.02, x2(t f ) = 2, (51)

0 = umin ≤ u(t)≤ umax = 8 ∀ t ∈ [0, t f ], (52)

and the state constraint

S(x(t)) = x1(t)−α ≤ 0 ∀ t ∈ [0,t f ], (53)

where

D = D(x) = 1 + 0.2x1 + 0.2x2, (54)

C1 = C1(x) = D2 + 232 + 46.4x2, (55)

C2 = C2(x) = D2 + 232 + 46.4x1, (56)

C3 = C3(x) = C1C2− (46.4)2x1x2. (57)

The augmented Hamiltonian associated with the state constraint (53) is given by

H(x,u,λ ,η) = λ f (x,u)+ηS(x) =
D2

C3
·K +η(x1−α), (58)

where

K : = λ1(C2(0.02− x1)+ 46.4x1(u−2x2))
+λ2(C1(u−2x2)+ 46.4x2(0.02− x1)).

(59)

Then the adjoint equations (11) are

λ̇1 =−Hx1 =− (D2)x1C3− (C3)x1 D2

C2
3

·K− D2

C3
·Kx1−η , (60)

λ̇2 =−Hx2 =− (D2)x2C3− (C3)x2 D2

C2
3

·K− D2

C3
·Kx2 , (61)

with the following partial derivatives of K:

Kx1 = 0.02λ1(C2)x1 −λ1(C2 +(C2)x1 x1)+ 46.4λ1u−92.8x2λ1 (62)

+λ2u(C1)x1 −2x2λ2(C1)x1 −46.4x2λ2, (63)

Kx2 = 0.02λ1(C2)x2 − x1λ1(C2)x2 −92.8x1λ1 +λ2u(C1)x2 (64)

−2λ2(C1 +(C1)x2x2)+ 0.928λ2−46.4x1λ2. (65)
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The switching function (16) is given by

σ(x,λ ) = Hu =
D2

C3
(46.4x1λ1 +C1λ2). (66)

The state constraint (53) is of order one, as the function S1(x,u) in (6) contains the
control explicitly:

S1(x,u) = Sx(x) f (x,u) =
D2

C3
(C2(0.02− x1)+ 46.4x1(u−2x2)). (67)

The boundary control ub(x) in (7) is determined by the feedback expression

ub(x) =
α−0.02

46.4α
C2(x)+ 2x2 . (68)

Using boundary value methods it was shown in [22] that for toxic levels 0 <α ≤ 0.0246
the control has the following structure with two bang-bang arcs encompassing a bound-
ary arc:

u(t) =

⎧⎪⎨⎪⎩
8, for t ∈ [0, t1),

ub(x(t)) = α−0.02
46.4α C2(x(t))+ 2x2(t), for t ∈ [t1, t2],

0, for t ∈ (t2,t f ].
(69)

We choose the toxic level α = 0.024 and compute the numerical solution using the
routine IPOPT by Wächter and Biegler [27]. Using 1000 discretization points and the
method of Heun for the approximation of the differential equations, IPOPT provides
the solution depicted in Figs. 1-3. The final time is computed as t f = 358.731 and the
entry- and exit-time are t1 = 29.7747 and t2 = 333.261.

Now we solve the induced optimization problem (23) with optimization variables z =
(t1,t2,t3), resp., problem (30) with variables ξ = (ξ1,ξ2,ξ3), where ξ1 = t1, ξ2 = t2−
t1, ξ3 = t f − t2. The routine NUDOCCCS [4] yields the entry-time t1 = 29.90806, the
exit-time t2 = 333.1561 and the final time t f = 358.7085. NUDOCCCS also provides
the Hessian L̃ξξ and Jacobian Φ̃ξ ,
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Fig. 1. Concentration of warfarin (left) and phenylbutazone (right)
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Fig. 3. Optimal control and switching function

L̃ξξ =

⎛⎜⎝−0.046251 −0.014521 0.026232

−0.014521 −0.0011993 0.0052637

0.026232 0.0052637 0.054240

⎞⎟⎠ , (70)

Φ̃ξ =

⎛⎜⎝0.0000000 0.0000000 −0.0000954

0.0298122 0.0043075 −0.0336047

0.0001245 0.0000000 0.0000000

⎞⎟⎠ . (71)

Since rank(Φ̃ξ ) = 3 holds, condition (a) of Theorem 1 is fulfilled with s = r = 2.
Furthermore, it is clear that the first order necessary conditions hold in the induced
problem, i.e., condition (b) in Theorem 1, is fulfilled. Finally, the second order condition
(c) is trivially satisfied, since the matrix Φ̃ξ is regular. Next, we check the regularity
assumption (A1). The data provided by IPOPT give the following estimate:

b(x(t)) = 46.4
D(x(t))2

C3(x(t))
x1(t) ≥ 0.23 ·10−3. (72)

Hence, (A1) is satisfied. It can be seen in Fig. 3 that also the assumptions (A2) and (A4)
hold.
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Fig. 4. Multiplier η(t) from (73)

For the verification of assumption (A5), we compute the multiplier η(t) = η(x(t),
λ (t)) via formula (19),

η(x,λ ) =
2ḊC3−DĊ3

46.4DC3x1
(46.4x1λ1 +C1λ2)+

1
46.4x1

(Ċ1λ2 +C1λ̇2)+
1
x1

ẋ1λ1

− x3 ·
(

(D2)x1C3− (C3)x1 D2

C2
3

·K +
D2

C3
·Kx1

)
,

(73)

and insert the values of x(t), λ (t) provided by IPOPT. Note that η(t)≡ 0 for t /∈ [t1, t2].
Then Fig. 4 shows that the strict complementarity condition (A5) holds. It is notewor-
thy that the Lagrange multiplier for the discretized state constraint, which is provided
directly by IPOPT, has the same values as the multiplier η(t). Finally, we may conclude
from Theorem 2 that the control (69) provides a strict strong minimum for the problem
(47)-(53).

7 Optimal Control for a Two-Compartment Model in Cancer
Chemotherapy

Ledzewicz, Schättler [12] considered a two-compartment model in cancer chemothe-
rapy and established optimality using extremal field theory [13]. The state constraint
(77) below has been studied in de Pinho, Ferreira, Ledzewicz, Schättler [24] using the
methods developed in [13,14]. Here, we prove optimality on the basis of the SSC in
Theorem 2 which allows us to apply the sensitivity result in Theorem 3. The description
of the control model is taken from [12]: “The cell cycle is broken into two compartments
of which the first combines the first growth phase G1 and the synthesis phase S while the
second contains the second growth phase G2 and mitosis M. Let xi(t), i = 1,2, denote
the number of cancer cells in the i-th compartment at time t.” The control u is the
drug treatment which is measured by its cell-killing effect. The control problem is to
minimize the cost functional with fixed final time t f ,

J(x,u) = r1x1(t f )+ r2x2(t f )+
∫ t f

0
u(t)dt, (74)
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subject to
ẋ1 =−a1x1 + 2(1−u)a2x2, x1(0) = x10,

ẋ2 = a1x1−a2x2, x2(0) = x20,

0≤ u(t)≤ 1 ∀ t ∈ [0, t f ].

(75)

The cost functional (74) can be transformed to a functional (1) of Mayer type by intro-
ducing the equation ẋ3 = u, x3(0) = 0, which yields

J(x,u) = g(x(t f )) = r1x1(t f )+ r2x2(t f )+ x3(t f ). (76)

In addition, we consider the state constraint of order one:

S(x(t)) := x1(t)+ x2(t)−α ≤ 0 ∀ t ∈ [0,t f ], (77)

which imposes an upper bound on the total number of tumor cells in both compartments.
The first total time derivative (6) of S(x) is given by

S1(x,u) = a2x2−2a2x2u. (78)

Obviously, assumption (A1) is satisfied since b(x(t)) =−2a2x2(t) �= 0 holds on [0, t f ].
Data for (74) and (75) are taken from [12]:

r1 = 6.94, r2 = 3.94, a1 = 0.197, a2 = 0.356, t f = 10. (79)

We choose the initial conditions x1(0) = x10 = 0.86, x2(0) = x20 = 0.55, which match
approximately the solution in [12], where the terminal state x(t f ), i = 1,2, was fixed
and the intial state was free. The parameter α in the state constraint (77) will be as-
signed the value α = 1.7 for which the state constraint becomes active. The augmented
Hamiltonian (9) is given by

H = λ1(−a1x1 + 2a2x2)+λ2(a1x1−a2x2)+σu +η(x1 + x2−α), (80)

with switching function
σ = σ(x,λ ) = 1−2a2x2λ1. (81)

The adjoint equation (11) and the transversality condition (12) yield

λ̇1 = a1(λ1−λ2)−η , λ1(t f ) = r1 ,

λ̇2 = a2(2(u−1)λ1 +λ2)−η , λ2(t f ) = r2 .
(82)

The boundary control ub(x) satisfies the equation S1(x,ub(x))≡ 0 which gives

ub(x)≡ 1
2
. (83)

Hence, the boundary control lies in the interior of the control set and satisfies assump-
tion (A2). The multiplier η for the state constraint (77) is determined by equation (19):
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η(t) = a1λ1(t)
(

x1(t)
x2(t)

+ 1

)
−a2λ1(t)−a1λ2(t). (84)

To determine the structure of the optimal control we first discretize the control problem
with 500 gridpoints and apply the program NUDOCCCS of Büskens [4]. We find that
the control has two bang-bang arcs and one boundary arc:

u(t) =

⎧⎪⎨⎪⎩
0, t ∈ [0,t1),

ub(x(t)) = 1
2 , t ∈ [t1, t2],

1, t ∈ (t2,t f ].
(85)

Fig. 5 (left) displays the optimal control and the switching function. It clearly shows
that the optimal control satisfies assumptions (A3) and (A4) since, in particular, for
k = 1 in (A4) we have σ̇(t1−) < 0 and σ̇(t2+) < 0. Fig. 5 (right) depicts the state
constrained function x1(t)+ x2(t) and the multiplier η(t), which is seen to satisfy the
strict complementarity condition (A5). State and adjoint variables are shown in Fig. 6,
resp., Fig. 7.
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Fig. 5. Left: control with switching function (dashed); right: state constrained function x1(t) +
x2(t) with multiplier η(t) (dashed)
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Fig. 7. Adjoint variables λ1 and λ2

It remains to verify the SSC in Theorem 1 for the optimization problem (30). The
optimization variable is defined by (25) as

ξ = (ξ1,ξ2) = (t1, t2− t1). (86)

Then the arc-length of the terminal time interval is given by t f − ξ1− ξ2 with t f = 10 .
Since no terminal state boundary conditions are prescribed, the only equality constraint
is the entry-condition of the boundary arc,

x1(1/3;ξ )+ x2(1/3;ξ ) = α = 1.7. (87)

The code NUDOCCCS gives the following results:

t1 = 1.490713, t2 = 2.653005,

λ1(0) = 2.44417, λ2(0) = 2.82883,

x1(t f ) = 0.2635156, x2(t f ) = 0.2673589,

J(x,u) = 10.81033 .

(88)

The Hessian of the Lagrangian for (30) is computed as

L̃ξξ =

(
0.225319 0.128060

0.128060 0.099212

)
(89)

while the Jacobian of the equality constraint is given by S̃ξ = (0.1979670, 0). Ob-
viously, the Hessian L̃ξξ is positive definite and we have rank (S̃ξ ) = 1. Hence, we
may conclude that the control (85) with data (88) satisfies the SSC in Theorem 1 and
provides a strict local minimum of the optimal control problem.

Using the sensitivity result in Theorem 3 and the sensitivity formula (38), we obtain
the following sensitivity derivatives for the arc-length of the first bang-bang arc and the
boundary arc:

dξ1/da1 = −1.513 , dξ2/da1 = 11.99 ,

dξ1/da2 = −3.350 , dξ2/da2 = 0.5165 ,

dξ1/dx10 = −5.359 , dξ1/dx10 = 4.421 ,

dξ1/dx20 = −7.233 , dξ1/dx20 = 4.077 .

(90)
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In particular, note the high sensitivity of the boundary arc-length with respect to a vari-
ation in the parameter a1.

Remark. Similar numerical methods can be applied to the three-compartment model for
cancer chemotherapy presented in Swierniak, Ledzewicz and Schättler [25]. The model
involves two control variables, a blocking agent and a recruiting agent. In this problem,
it is also reasonable to consider a state constraint similar to (77). Though the analogon
to Theorem 2 for vector-valued control has not been fully established in the literature,
one can formulate an induced optimization problem of the type (30) and check that SSC
hold; cf. Goris [8]. A paper with detailed results is in preparation.

Acknowledgements. We are indebted to Inga Altrogge [2] and Nadine Goris [8] for
their numerical assistance.
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Abstract. We discuss new applications of advanced tools of variational analysis
and generalized differentiation to a number of important problems in optimization
theory, equilibria, optimal control, and feedback control design. The presented
results are largely based on the recent work by the author and his collaborators.
Among the main topics considered and briefly surveyed in this paper are new cal-
culus rules for generalized differentiation of nonsmooth and set-valued mappings;
necessary and sufficient conditions for new notions of linear subextremality and
suboptimality in constrained problems; optimality conditions for mathematical
problems with equilibrium constraints; necessary optimality conditions for op-
timistic bilevel programming with smooth and nonsmooth data; existence theo-
rems and optimality conditions for various notions of Pareto-type optimality in
problems of multiobjective optimization with vector-valued and set-valued cost
mappings; Lipschitzian stability and metric regularity aspects for constrained and
variational systems.

1 Introduction

Variational analysis has been recognized as a rapidly growing and fruitful area in math-
ematics and its applications concerning mainly the study of optimization and equilib-
rium problems, while also applying perturbation ideas and variational principles to a
broad class of problems and situations that may be not of a variational nature. It can be
viewed as a modern outgrowth of the classical calculus of variations, optimal control
theory, and mathematical programming with the focus on perturbation/approximation
techniques, sensitivity issues, and applications. We refer the reader to the now classical
monograph by Rockafellar and Wets [58] for the key issues of variational analysis in
finite-dimensional spaces and to the recent books by Attouch, Buttazzo and Michaelle
[1], Borwein and Zhu [7], and Mordukhovich [31,32] devoted to new aspects of vari-
ational analysis in finite-dimensional and infinite-dimensional spaces with numerous
applications to different areas of mathematics, engineering, economics, mechanics,
computer science, ecology, biology, etc.

One of the most characteristic features of modern variational analysis is the intrinsic
presence of nonsmoothness, i.e., the necessity to deal with nondifferentiable functions,
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sets with nonsmooth boundaries, and set-valued mappings. Nonsmoothness naturally
enters not only through initial data of optimization-related problems (particularly those
with inequality and geometric constraints) but largely via variational principles and
other optimization, approximation, and perturbation techniques applied to problems
with even smooth data. In fact, many fundamental objects frequently appearing in the
framework of variational analysis (e.g., the distance function, value functions in opti-
mization and control problems, maximum and minimum functions, solution maps to
perturbed constraint and variational systems, etc.) are inevitably of nonsmooth and/or
set-valued structures requiring the development of new forms of analysis that involve
generalized differentiation. Besides the aforementioned books, we refer the reader to
the very recent texts by Jeyakumar and Luc [22] and Schirotzek [59], which present
new developments on generalized differentiation and their applications to a variety of
optimization-related as well as nonvariational problems.

It is important to emphasize that even the simplest and historically earliest problems
of optimal control are intrinsically nonsmooth, in contrast to the classical calculus of
variations. This is mainly due to pointwise constraints on control functions that often
take only discrete values as in typical problems of automatic control, a primary moti-
vation for developing optimal control theory. Optimal control has always been a major
source of inspiration as well as a fruitful territory for applications of advanced methods
of variational analysis and generalized differentiation; see, e.g., the books by Clarke
[9], Mordukhovich [31,32], and Vinter [60] with the references therein.

In this paper we discuss some new trends and developments in variational analy-
sis and its applications that are based on the 2-volume book by the author [31,32] and
mostly survey more recent and/or brand new results obtained by the author and his col-
laborators. As mentioned, generalized differentiation lies at the heart of variational anal-
ysis and its applications. We systematically develop a geometric dual-space approach to
generalized differentiation theory revolving around the extremal principle, which can be
viewed as a local variational counterpart of the classical convex separation in nonconvex
settings. This principle allows us to deal with nonconvex derivative-like constructions
for sets (normal cones), set-valued mappings (coderivatives), and extended-real-valued
functions (subdifferentials). These constructions are defined directly in dual spaces and,
being nonconvex-valued, cannot be generated by any derivative-like constructions in
primal spaces (like tangent cones and directional derivatives). Nevertheless, our basic
nonconvex constructions enjoy comprehensive/full calculus, which happens to be sig-
nificantly better than those available for their primal and/or convex-valued counterparts.
The developed generalized differential calculus based on variational principles provides
the key tools for various applications.

Observe to this end that dual objects (multipliers, adjoint arcs, shadow prices, etc.)
have always been at the center of variational theory and applications used, in particular,
for formulating the main optimality conditions in the calculus of variations, mathemat-
ical programming, optimal control, and economic modeling. The usage of variations
of optimal solutions in primal spaces can be considered just as a convenient tool for
deriving necessary optimality conditions. There are no essential restrictions in such a
“primal” approach in smooth and convex frameworks, since primal and dual derivative-
like constructions are equivalent for these classical settings. It is not the case any more
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in the framework of modern variational analysis, where even nonconvex primal space
local approximations (e.g., tangent cones) inevitably yield, under duality, convex sets
of normals and subgradients. This convexity of dual objects leads to significant restric-
tions for the theory and applications. Moreover, there are many situations particularly
identified in [31,32], where primal space approximations simply cannot be used for
variational analysis, while the employment of dual space constructions provides com-
prehensive treatments and results.

The main attention of this paper is paid to the description of certain basic con-
structions of generalized differentiation in variational analysis and their applications to
important and also new classes of problems in constrained optimization and optimal
control that happen to be intrinsically nonsmooth, even in the case of smooth initial
data. In Sect. 2 we define these dual-space generalized differential constructions and
discuss new calculus results for them. Sect. 3 is devoted to recent applications of the
generalized differential calculus to studying the notion of linear suboptimality in con-
strained optimization, where the usage of these generalized differential constructions
allows us to fully characterize linearly suboptimal solutions, in the sense of deriving
verifiable necessary and sufficient conditions for them.

In Sect. 4 we discuss new results for a broad class of optimization problem known as
mathematical programs with equilibrium constraints (MPECs) significant in optimiza-
tion theory and its applications. Besides characterizations of the aforementioned notion
of linear suboptimality for MPECs, we present new necessary optimality conditions for
the conventional notion of optimal solutions to MPECs whose equilibrium constraints
are governed by parameterized quasivariational inequalities that are challenging in the
MPEC theory and highly important for applications.

Sect. 5 is devoted to new results on the so-called bilevel programming, which is a
remarkable class of hierarchical optimization problems somehow related to MPECs
while generally independent. Concentrating on the optimistic version of bilevel pro-
grams and using our basic tools of generalized differentiation, we present advanced
necessary optimality conditions in finite-dimensional bilevel programming that are new
even for problems with smooth data on both lower level and upper levels.

Sect. 6 concerns various problems of multiobjective optimization and equilibria,
which are among the most challenging theoretically and the most important for nu-
merous applications (to economics, mechanics, and other areas). We pay the main at-
tention to new existence theorems and necessary optimality conditions for Pareto-type
solutions to constrained multiobjective problems with vector-valued and set-valued ob-
jectives. Our approach is based on developing and implementing advanced variational
principles for multifunctions with values in partially ordered spaces.

In Sect. 7 we consider several important issues revolving around Lipschitzian sta-
bility and metric regularity properties for set-valued mappings and their applications to
structural systems arising in numerous aspects of variational analysis, optimization, and
control. Our approach is based on the dual coderivative criteria for such properties es-
tablished earlier by the author; they can be applied to a variety of structural systems due
to well-developed coderivative calculus in finite-dimensional and infinite-dimensional
spaces. In this way, along with deriving positive results in this direction, we come up
to a rather surprising conclusion that major classes of variational/optimality systems,
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which are the most interesting from the both viewpoints of the theory and applications,
do not exhibit metric regularity.

Sect. 8 presents new results on optimal control dealing mainly with evolution sys-
tems governed by constrained difference, differential, and delay-differential inclusions
in infinite-dimensional spaces. We develop the method of discrete approximations for
continuous-time evolution systems and investigate both qualitative and quantitative as-
pects of this approach. Our results include stability/convergence of discrete approxi-
mations, deriving necessary optimality conditions for discrete-time systems and then
for the original continuous-time control problems by passing to the limit from discrete
approximations and employing advanced tools of variational analysis and generalized
differentiation.

The concluding Sect. 9 is devoted to problems of feedback control design of con-
strained parabolic systems in uncertainty conditions. Control problems of these type
are undoubtedly among the most important for various (in particular, engineering and
ecological) applications; at the same time they are among the most challenging in con-
trol theory. Especially serious difficulties arise in studying and solving such problems
in the presence of hard/pointwise constraints on control and state variables, which is
the case considered in the concluding section motivated by some practical applications
to environmental systems. The approach discussed in Sect. 9 and the results presented
therein are based on certain specific features of the parabolic dynamics related to mono-
tonicity and turnpike behavior on the infinite horizon, as well as on approximation tech-
niques typical in variational analysis. In this way we justify implementable suboptimal
structures of feedback control regulators acting through boundary conditions and com-
pute their optimal parametric ensuring the best behavior of the systems under worst
perturbations and robust stability of the closed-loop systems for arbitrary perturbations
from the feasible area.

Throughout the paper we use the standard notation of variational analysis; see, e.g.,
[31,58]. Recall that B stands for the closed unit ball of the space in question and that
N := {1,2, . . .}. Given a set-valued mapping F : X →→ X∗ between a Banach space X
and its topological dual X∗, the symbol

Limsup
x→x̄

F(x) :=
{

x∗ ∈ X∗
∣∣∃ sequences xk → x̄ and x∗k

w∗→ x∗

with x∗k ∈ F(xk) for all k ∈N

} (1)

signifies the sequential Painlevé-Kuratowski upper/outer limit of F at x̄ in the norm
topology of X and weak∗ topology of X∗.

2 Generalized Differentiation

In this section we define, for the reader’s convenience, some basic constructions and
properties from variational analysis and generalized differentiation needed in what fol-
lows. All these are taken from the book by Mordukhovich [31], where the reader can
find more details, discussions, and references. The reader may also consult with the
books by Borwein and Zhu [7], Rockafellar and Wets [58], and Schirotzek [59] for
related and additional material.
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Most results presented in this paper are obtained in the framework of Asplund spaces;
so our standing assumption is that all the spaces under consideration are Asplund unless
otherwise stated. One of the equivalent descriptions of an Asplund space is that it is a
Banach space for which every separable subspace has a separable dual. It is well known
that any reflexive Banach space is Asplund as well as any space with a separable dual;
see [31, Sect. 2.2] for more discussions and references. The generalized differential
constructions and properties presented below generally rely on the Asplund structure;
see [7,20,31] for the corresponding modifications in other (including arbitrary) Banach
space settings.

Given a nonempty set Ω ⊂ X , define the Fréchet normal cone to Ω at x̄ ∈Ω by

N̂(x̄;Ω) :=

{
x∗ ∈ X∗

∣∣ limsup
x
Ω→x̄

〈x∗,x− x̄〉
‖x− x̄‖ ≤ 0

}
, (2)

where the symbol x
Ω→ x̄ signifies that x→ x̄ with x ∈ Ω . Construction (2) looks as an

adaptation of the idea of Fréchet derivative to the case of sets; that’s where the name
comes from. However, this construction does not have a number of natural properties
expected for an appropriate notion of normals. In particular, we may have N̂(x̄;Ω) =
{0} for boundary points of Ω even in simple finite-dimensional nonconvex settings;
furthermore, inevitable required calculus rules often fail for (2). The situation is dra-
matically improved while applying the regularization procedure

N(x̄;Ω) := Limsup
x
Ω→x̄

N̂(x;Ω) (3)

via the sequential outer limit (1) in the norm topology of X and the weak∗ topology
of X∗. The construction (3) is known as the (basic, limiting, Mordukhovich) normal
cone to Ω at x̄∈Ω ; it was introduced in [27] in an equivalent form in finite dimensions.
Both constructions (2) and (3) reduce to the classical normal cone of convex analysis for
convex sets Ω . In contrast to (2), the basic normal cone (3) is often nonconvex while sat-
isfying the required properties and calculus rules in the Asplund space setting, together
with the corresponding coderivative constructions for set-valued mappings and subd-
ifferential constructions for extended-real-valued functions generated by it; see below.
All this calculus and the required properties are mainly due to the extremal/variational
principles of variational analysis; see [31] for more discussions.

Given a set-valued mapping/multifunction F : X →→ Y with the graph

gphF :=
{
(x,y) ∈ X×Y

∣∣ y ∈ F(x)
}
, (4)

and following the pattern introduced in [28], define the coderivative constructions for
F used in this paper. The Fréchet coderivative of F at (x̄, ȳ) ∈ gphF is given by

D̂∗F(x̄, ȳ)(y∗) :=
{

x∗ ∈ X∗
∣∣ (x∗,−y∗) ∈ N̂

(
(x̄, ȳ);gphF

)}
, y∗ ∈ Y ∗, (5)

and the normal coderivative of F at the reference point is given by

D∗NF(x̄, ȳ)(y∗) :=
{

x∗ ∈ X∗
∣∣ (x∗,−y∗) ∈ N

(
(x̄, ȳ);gphF

)}
, y∗ ∈ Y ∗. (6)
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We also need the following modification of the normal coderivative (5) called the mixed
coderivative of F at (x̄, ȳ) and defined by

D∗MF(x̄, ȳ)(y∗) :=
{

x∗ ∈ X∗
∣∣∣∃ (xk,yk)

gphF→ (x̄, ȳ), x∗k
w∗−→ x∗, y∗k

‖·‖−→ y∗

with (x∗k ,−y∗k) ∈ N̂
(
(xk,yk);gphF

)
, k ∈N

}
,

(7)

where
‖·‖→ stands for the norm convergence in the dual space; we usually omit the

symbol ‖ · ‖ indicating the norm convergence simply by “→” and also skip ȳ = f (x̄)
in the coderivative notation if F = f : X → Y is a single-valued mapping. Clearly
D∗MF(x̄, ȳ) = D∗NF(x̄, ȳ) if dimY < ∞, and then we use the same notation D∗ for both
coderivatives. The above equality also holds in various infinite-dimensional settings,
while not in general; see [31, Subsect. 1.2.1 and 4.2.1]. If F = f is single-valued and
smooth around x̄ (or merely strictly differentiable at this point), then we have the repre-
sentations

D̂∗ f (x̄)(y∗) = D∗M f (x̄)(y∗) = D∗N f (x̄)(y∗) =
{
∇ f (x̄)∗y∗

}
, y∗ ∈ Y ∗, (8)

which show that the coderivative notion is a natural extension of the adjoint derivative
operator to nonsmooth and set-valued mappings.

Given an extended-real-valued function ϕ : X → R̄ := (−∞,∞], consider the associ-
ated epigraphical multifunction Eϕ : X →→R and define the Fréchet/regular subdifferen-
tial of ϕ at x̄ ∈ domϕ in the two equivalent (geometric and analytic) ways

∂̂ ϕ(x̄) := D̂∗Eϕ
(
x̄,ϕ(x̄)

)
(1) =

{
x∗ ∈ X∗

∣∣∣ liminf
x→x̄

ϕ(x)−ϕ(x̄)−〈x∗,x− x̄〉
‖x− x̄‖ ≥ 0

}
. (9)

The basic/limiting/Mordukhovich subdifferential of ϕ at x̄ is defined by

∂ϕ(x̄) = D∗Eϕ
(
x̄,ϕ(x̄)

)
(1) = Limsup

x
ϕ→x̄

∂̂ϕ(x), (10)

where the symbol x
ϕ→ x̄ stands for x → x̄ with ϕ(x) → ϕ(x̄). Note that the Fréchet

subdifferential agrees with the Crandall-Lions subdifferential in the sense of viscosity
solutions to partial differential equations independently introduced in [10], while the
limiting construction (10) reduces to that introduced in [27] motivated by applications
to optimal control. The convexification of (10) for locally Lipschitzian functions agrees
with the generalized gradient introduced by Clarke via different relationships; see [9].
For non-Lipschitzian functions ϕ it makes sense to consider the singular counterpart of
ϕ given by

∂∞ϕ(x̄) = D∗Eϕ
(
x̄,ϕ(x̄)

)
(0) = Limsup

x
ϕ→x̄
λ↓0

λ ∂̂ϕ(x), (11)

which reduces to {0} if ϕ is locally Lipschitzian around x̄.
Among the main advantages of the robust limiting constructions (3), (6), (7), (10),

and (11), we particularly mention full pointwise calculi available for them, the possibil-
ity to characterize in their terms Lipschitzian, metric regularity, and openness proper-
ties of set-valued and single-valued mappings that play a fundamental role in nonlinear
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analysis and its applications, and to derive in their terms refined conditions for optimal-
ity and sensitivity in various problems of optimization, equilibria, control, etc. Besides
variational principles, extended calculus is the key for major theoretical advances and
applications.

Referring the reader to [31] for a variety of calculus rules for the basic normals, sub-
gradients, and coderivatives under consideration, let us mention several recent ones (in
addition to [31]) motivated by the required applications presented in the corresponding
papers.

In [18], we develop certain calculus rules for the so-called reversed mixed coderiva-
tive of F : X →→ Y at (x̄, ȳ) ∈ gphF defined by

D̃∗MF(x̄, ȳ)(y∗) :=
{

x∗ ∈ X∗
∣∣ − y∗ ∈D∗MF−1(ȳ, x̄)(−x∗)

}
, (12)

which is different from both coderivative constructions (6) and (7) in infinite dimensions
while playing a crucial role in characterizing metric regularity. In contrast to (6) and
(7), the reversed construction (12) does not generally enjoy satisfactory calculus rules,
since taking the inverse in (12) dramatically complicates some major operations (e.g.,
sums) for single-valued and set-valued mappings. The calculus rules derived in [18] for
the reversed coderivative (12) mainly address a special class of set-valued mappings
known as solution maps to generalized equations (in the sense of Robinson [57]):

S(x) =
{

y ∈ Y
∣∣ 0 ∈ f (x,y)+ Q(y)

}
with f : X×Y → Z and Q : Y →→ Z, (13)

which are highly important in many aspects of variational analysis and optimization;
see, e.g., [17,31,56,58] and the references therein. The calculus results obtained in [18]
and related developments allow us to make a principal conclusion on the failure of
metric regularity for major classes of parametric variational systems; see Sect. 7 below.

Another important setting that requires new coderivative calculus rules is described
by set-valued mappings in the form

Q(x,y) = N
(
y;Λ(x,y)

)
with Λ : X×Y →→ Y, (14)

which corresponds to the so-called quasivariational inequalities in the generalized
equation framework (13) with Q = Q(x,y) of type (14). Advanced results in this di-
rection are obtained in [50] in finite-dimensional spaces and are applied there to sen-
sitivity analysis of quasivariational inequalities and necessary optimality conditions for
the corresponding MPECs; see Sect. 4 and 7 for more details.

Let us also mention new intersection rules for coderivatives obtained in [46] in gen-
eral infinite-dimensional settings and applied therein to sensitivity analysis of extended
parametric models of type (13) arising in various applications, particularly to bilevel
programs; see Sect. 5 for more discussions.

Several new calculus rules for the (basic and singular) limiting subdifferentials (10)
and (11) of the important classes of marginal/value functions are derived in [49] with
applications to sensitivity analysis and optimality conditions in problems of mathemat-
ical programming in finite-dimensional and infinite-dimensional spaces. In [48], rather
surprising exact (versus “fuzzy”) calculus rules are obtained for the Fréchet subdiffer-
ential (9) of various compositions and marginal functions with applications to some
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classes of optimization problems; see Sect. 3. Among them the following striking dif-
ference rule:

∂̂ (ϕ1−ϕ2)(x̄)⊂
⋂

x∗∈∂̂ϕ2(x̄)

[
∂̂ϕ1(x̄)− x∗

]
⊂ ∂̂ϕ1(x̄)− ∂̂ϕ2(x̄) (15)

is derived in general Banach spaces provided that ∂̂ ϕ2(x̄) �= /0. Counterparts of such
exact calculus results for the so-called proximal subgradients can be found in [45].

3 Constrained Optimization

It has been well recognized that, except convex programming and related problems with
a convex structure, necessary conditions are usually not sufficient for conventional no-
tions of optimality. Observe also that major necessary optimality conditions in all the
branches of the classical and modern optimization theory (e.g., Lagrange multipliers
and Karush-Kuhn-Tucker conditions in nonlinear programming, the Euler-Lagrange
equation in the calculus of variations, the Pontryagin maximum principle in optimal
control, etc.) are expressed in dual forms involving adjoint variables. At the same time,
the very notions of optimality, in both scalar and vector frameworks, are formulated of
course in primal terms.

A challenging question is to find certain modified notions of local optimality so
that first-order necessary conditions known for the previously recognized notions be-
come necessary and sufficient in the new framework. Such a study has been initiated
by Kruger (see [25] and the references therein), where the corresponding notions are
called “weak stationarity”. It seems that the main difference between the conventional
notions and those of the type [25] is that the latter relate to a certain suboptimality not
at the point in question but in a neighborhood of it, and that they involve a linear rate
similar to that in Lipschitz continuity (in contrast merely to continuity) as well as in
modern concepts of metric regularity and linear openness, which distinguishes them
from the classical regularity and openness notions of nonlinear analysis. On this basis
we suggested in [32] to use the names of linear subextremality for set systems and of
linear suboptimality for the corresponding notions in optimization problems.

As has been fully recognized just in the framework of modern variational analy-
sis (even regarding the classical settings), the linear rate nature of the fundamental
properties involving Lipschitz continuity, metric regularity, and openness for single-
valued and set-valued mappings is the key issue allowing us to derive complete charac-
terizations of these properties via appropriate tools of generalized differentiation; see
the books [31,58] and their references. Precisely the same linear rate essence of the
(sub)extremality and (sub)optimality concepts considered below is the driving force
ensuring the possibility to justify the validity of known necessary extremality and op-
timality conditions for the conventional notions as necessary and sufficient conditions
for the new notions under consideration.

In contrast to [25], where dual criteria for “weak stationarity” are obtained in “fuzzy”
forms involving Fréchet-like constructions at points nearby the reference ones, in [32,
Chapter 5] and in the more recent developments [36,38] we pay the main attention to
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pointwise conditions expressed via the basic robust generalized differential construc-
tions discussed in Sect. 2, which are defined exactly at the points in question. Besides
the latter being more convenient for applications, we can significantly gain from such
pointwise characterizations due to the well-developed full calculus enjoyed by the ro-
bust constructions, which particularly allows us to cover problems with various con-
strained structures important for both the optimization theory and its applications.

A major role in our approach to variational analysis and optimization systematized
and developed in [31,32] is played by the so-called extremal principle; see [31, Chap-
ter 2] with the references and comprehensive discussions therein. Recall that a point
x̄ ∈Ω1∩Ω2 ⊂ X is locally extremal for the set system {Ω1,Ω2} if there exists a neigh-
borhood U of x̄ such that for any ε > 0 there is a ∈ εB with

(Ω1 + a)∩Ω2∩U = /0. (16)

Loosely speaking, the local extremality of sets at a common point means that they can
be locally “pushed apart” by a small perturbation/translation of one of them. It has been
well recognized that set extremality encompasses various notions of optimal solutions
to problems of scalar and vector/multiobjective optimization, equilibria, etc.

It is easy to observe that x̄ ∈Ω1∩Ω2 is locally extremal for {Ω1,Ω2} if and only if

ϑ
(
Ω1∩Br(x̄),Ω2∩Br(x̄)

)
= 0 with some r > 0, (17)

where Br(x̄) := x̄ + rB, and where the measure of overlapping ϑ(Ω1,Ω2) for the sets
Ω1, Ω2 is defined by

ϑ(Ω1,Ω2) := sup
{
ν ≥ 0

∣∣ νB⊂Ω1−Ω2
}
. (18)

Following [25] and the terminology in [32, Sect. 5.4], we say that the set system
{Ω1,Ω2} is linearly subextremal around x̄ ∈Ω1∩Ω2 if

ϑlin(Ω1,Ω2, x̄) := liminf
xi
Ωi→x̄

r↓0

ϑ
(
[Ω1− x1]∩ rB, [Ω2− x2]∩ rB

)
r

= 0 (19)

with i = 1,2 under the “liminf” sign in (19); see [25,32,36] for more discussions.
To formulate the following results about the extremal principle also for the subse-

quent use in the paper, recall that a set Ω ⊂ X is sequentially normally compact (SNC)

at x̄ ∈Ω if for any sequences xk
Ω→ x̄ and x∗k

w∗→ 0 we have

‖x∗k‖→ 0 provided that x∗k ∈ N̂(xk;Ω) as k→ ∞. (20)

In finite dimensions, every subset is obviously SNC. For arbitrary Banach space, Ω is
SNC at x̄ if it is “compactly epi-Lipschitzian” in the sense of Borwein and Strójwas;
see [31, Subsect. 1.1.4] for this and other sufficient conditions. If Ω is convex in infinite
dimensions, then its SNC property is closely related to Ω being of finite codimension.

The extremal principle from [31, Theorem 2.20] says that for any local extremal
point x̄ ∈ Ω1 ∩Ω2 of the system {Ω1,Ω2} of closed subsets of an Asplund space X
there is x∗ ∈ X∗ satisfying the relationship

0 �= x∗ ∈ N(x̄;Ω1)∩
(−N(x̄;Ω2)

)
(21)
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provided that either Ω1 or Ω2 is SNC at x̄. This result can be treated as a variational
counterpart of the classical convex separation theorem in nonconvex settings. In fact,
its role in variational analysis is similar to that of convex separation in convex analysis
and its “convexified” versions; see [31,32] for more details and discussions.

An appropriate “necessary and sufficient” modification of the extremal principle for
linear subextremality reads as follows; cf. [32, Theorem 5.89] and [36, Theorem 1].

Theorem 1. (Necessary and sufficient conditions for linear subextremality via the
extremal principle). Let Ω1 and Ω2 be subsets of an Asplund space X that are locally
closed around x̄∈Ω1∩Ω2. If the system {Ω1,Ω2} is linearly suboptimal around x̄, then
there is x∗ ∈ X∗ satisfying the extremal principle (21). Furthermore, the extremal prin-
ciple (21) is necessary and sufficient for the linear suboptimality of {Ω1,Ω2} around x̄
if dimX < ∞.

Based on this theorem and on well-developed robust calculus rules for our limiting
generalized differential constructions, we derive in [32, Sect. 5.4], [36,38] a number of
necessary as well as necessary and sufficient conditions for the notions of linear subop-
timality generated by the set subextremality (19) for various optimization and equilib-
rium problems involving constraints of geometric, operator, functional, and equilibrium
types. It should be emphasized that to derive in this way necessary and sufficient con-
ditions for constraint problems, we need to use generalized differential results ensuring
equalities in the corresponding calculus rules. Such results are largely available in [31]
and are employed in [32,36,38].

Among other recent applications to optimization, let us mention new necessary opti-
mality conditions for sharp minimizers and also to DC (difference of convex) programs
derived in [45,48,49] on the basis of the subdifferential calculus rules developed therein
in both finite-dimensional and infinite-dimensional settings.

A series of new results on necessary conditions for nonsmooth infinite-dimensional
optimization problems are established in [35] based on advanced methods of variational
analysis, on extended calculus rules of generalized differentiation as well as on efficient
calculus/preservation rules for the sequential normal compactness property (20) and its
partial counterparts. These results include several new versions of the Lagrange princi-
ple for nonsmooth optimization problems with functional and geometric constraints and
also refined necessary conditions for problems with operator constrains given by non-
smooth Fredholm-type mappings with values in infinite dimensions. The latter result is
applied to constrained optimal control problems governed by discrete-time inclusions;
see Sect. 8 for more details.

4 Mathematical Programs with Equilibrium Constraints

The modern terminology of mathematical programs with equilibrium constraints
(MPECs) generally concerns optimization problems given in the following form:

minimize ϕ0(x,y) subject to y ∈ S(x), (x,y) ∈Ω , (22)

which contain, among other constraints, the so-called equilibrium constraints defined
by solution maps to the parameterized generalized equations/variational conditions

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ f (x,y)+ Q(x,y)

}
(23)
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that are described by single-valued base mappings f : X ×Y → Z and set-valued field
mappings Q : X ×Y →→ Z; see, e.g., [17,31,56] for more discussions. Variational sys-
tems of type (23) are introduced in the seminal work by Robinson [57] in the setting
when Q(y) = N(y;Λ) is the normal cone mapping to a convex set Λ , in which case the
generalized equation (23) reduces to the parametric variational inequality:

find y ∈Λ such that
〈

f (x,y),v− y
〉≥ 0 for all v ∈Λ . (24)

The classical parametric complementarity system corresponds to (24) whenΛ is the non-
negative orthant in R

n. It is well known that the latter model covers sets of optimal solu-
tions with the associated Lagrange multipliers and sets of Karush-Kuhn-Tucker (KKT)
vectors satisfying first-order necessary optimality conditions in parametric problems of
nonlinear programming with smooth data. General models with parameter-dependent
field mappings Q = Q(x,y) in (23) have been also, but to much lesser extent, considered
in the literature. They are related, in particular, to the quasivariational inequalities

find y ∈Λ such that
〈

f (x,y),v− y
〉≥ 0 for all v ∈Λ(x,y) (25)

in the extended framework of (24); see [50] for more discussions and references. Note
that in infinite-dimensional spaces models of these types are closely associated with
variational problems arising in partial differential equations.

Variational systems most important for optimization/equilibrium theory and appli-
cations mainly relate to generalized equations (23) with subdifferential fields when Q
is given by a subdifferential/normal cone operator ∂ϕ generated by an extended-real-
valued lower semicontinuous (l.s.c.) function ϕ , which is often labeled as potential. As
mentioned above, this is the case of the classical variational inequalities (24) and com-
plementarity problems generated by convex indicator functions ϕ(·) = δ (·;Λ) as well
as of their quasivariational counterparts in (25). Formalism (23) with Q = ∂ϕ encom-
passes also other types of variational and extended variational inequalities generated by
nonconvex potentials, e.g., the so-called hemivariational inequalities with Lipschitzian
potentials.

In this vein, two remarkable classes of equilibrium constraints are of particular in-
terest for optimization/equilibrium theory and applications. The first one is given in the
form

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ f (x,y)+ ∂ (ψ ◦ g)(x,y)

}
, (26)

where g : X×Y →W and f : X×Y →X∗×Y ∗ are single-valued mappings between Ba-
nach spaces, and where ∂ϕ : X×Y →→ X∗×Y ∗ is the basic subdifferential mapping (10)
generated by the composite potential ϕ = ψ ◦ g with ψ : W → R̄. The aforementioned
variational systems are special cases of the composite formalism (26).

The second class of remarkable equilibrium constraints is described by the general-
ized equations with composite subdifferential fields

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ f (x,y)+ (∂ψ ◦ g)(x,y)

}
, (27)

where g : X×Y →W ,ψ : W → R̄, and f : X×Y →W ∗. Formalism (27) encompasses, in
particular, perturbed implicit complementarity problems of the type: find y∈Y satisfying

f (x,y)≥ 0, y−g(x,y)≥ 0, 〈 f (x,y),y−g(x,y)〉= 0, (28)

where the inequalities are understood in the sense of some order on Y .
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It occurs nevertheless that generalized equation and variational inequality models of
the types discussed above with single-valued base mappings f (x,y) do not cover a num-
ber of variational systems important in optimization theory and applications. Consider,
e.g., the parametric optimization problem

minimize φ(x,y)+ϑ(x,y) over y ∈ Y (29)

described by a cost function φ and a constraint function ϑ that generally take their
values in the extended real line R. The stationary point multifunction associated with
(29) is

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ ∂yφ(x,y)+ ∂yϑ(x,y)

}
(30)

via collections of partial subgradients of the cost and constraint functions with respect
to the decision variable. If the cost function φ in (29) is smooth, then ∂yφ(x,y) =
{∇yφ(x,y)} and thus (30) can be written as the solution map to a generalized equation
of type (23) with the base f (x,y) =∇yφ(x,y) and the field mapping Q(x,y) = ∂yϑ(x,y).
However, in the case of nonsmooth optimization in (29) corresponding, e.g., to nons-
mooth bilevel programs (see Sect. 5), the stationary point multifunction (30) cannot be
written as the standard generalized equation (23) while requiring the extended formal-
ism

0 ∈ F(x,y)+ Q(x,y), (31)

where both the base mapping F and the field mapping Q are set-valued.
Another interesting and important class of variational systems that can be written

in the extended generalized equation form (31) but not in the conventional one (23) is
described by the so-called set-valued/generalized variational inequalities:

find y ∈Ω such that y∗ ∈ F(x,y) with
〈
y∗,v− y

〉≥ 0 for v ∈Λ , (32)

which provide a set-valued extension of (24); see, e.g., the handbook [61] for the theory
and applications of (32) and related models.

In the recent papers [2,4,37,38,46,50,51] we derive necessary optimality conditions
for various MPECs (22) as well as for related multiobjective optimization and equilib-
rium problems with equilibrium constraints governed by generalized equations/
variational conditions (23)–(27), (30)–(32) and their specifications. A major role in
these conditions is played by the Fredholm constraint qualification, which reads, in
the particular case of the generalized equation in (22) with a smooth base, as that the
adjoint generalized equation

0 ∈ ∇ f (x̄, ȳ)∗z∗+ D∗Q(x̄, ȳ, z̄)(z∗) with z̄ :=− f (x̄, ȳ) (33)

has only the trivial solution z∗ = 0. Furthermore, in [38] we derive necessary and suffi-
cient conditions for linear suboptimality in some of such problems.

Following the pattern developed in [32, Sect. 5.2], the results obtained in the afore-
mentioned papers are generally expressed via coderivatives of the base and/or field
mappings, while for subdifferential systems of types (26) and (27) we employ the
second-order subdifferentials of extended-real-valued functions defined by the scheme

∂ 2ϕ(x̄, ȳ) := (D∗∂ϕ)(x̄, ȳ) for ȳ ∈ ∂ϕ(x̄) (34)
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via the corresponding coderivatives of the first-order subdifferential mappings; see [31]
and the references therein for more details, calculus rules, explicit computations, and a
number of applications of the second-order subdifferential constructions.

5 Bilevel Programming

Bilevel programming deals with a broad class of problems in hierarchical optimiza-
tion that consist of minimizing upper-level objective functions subject to upper-level
constraints given by set-valued mappings whose values are sets of optimal solutions to
some lower-level problems of parametric optimization. There are several frameworks
of bilevel programs and a number of approaches to their study and applications; see the
book [11] and the extended introduction to [12] for more discussions and references.
The so-called optimistic version in bilevel programming reads as follows:

minimize ϕ0(x) subject to x ∈Ω with ϕ0(x) := inf
{
ϕ(x,y)

∣∣ y ∈Ψ(x)
}
, (35)

where the sets Ψ(x) of feasible solutions to the upper-level problem in (35) consist of
optimal solutions to the parametric lower-level optimization problem

Ψ(x) := argmin
{
ψ(x,y)

∣∣ fi(x,y) ≤ 0, i = 1, . . . ,m
}
, (36)

which may also contain constraints of other types (e.g., given by equalities).
Note that problems of this type are intrinsically nonsmooth, even for smooth initial

data, and can be treated by using appropriate tools of modern variational analysis and
generalized differentiation. In [12], we develop the so-called value function approach
to bilevel programs in (35) and (36) that reduces them to the single-level framework of
nondifferentiable programming formulated via (nonsmooth) optimal value functions of
parametric lower-level problems in the original model.

It is important to observe that standard constraint qualifications in mathematical pro-
gramming (e.g., the classical Mangasarian-Fromovitz one and the like) are violated for
single-level programs obtained in this way. An appropriate qualification condition for
bilevel programs related to a certain exact penalization was introduced in [62] under the
name of “partial calmness”. Using the latter constraint qualification and advanced for-
mulas for computing and estimating limiting subgradients of value/marginal functions
in parametric optimization obtained in [31,49], we derive new necessary optimality
conditions for bilevel programs reflecting significant phenomena that have never been
observed earlier. In particular, the necessary optimality conditions for bilevel programs
established in [12] do not depend on the partial derivatives with respect to parameters
of smooth objective functions in parametric lower-level problems. Efficient implemen-
tations of this approach are developed in [12] for bilevel programs with differentiable,
convex, linear, and locally Lipschitzian functions describing the initial data of lower-
level and upper-level problems.

The results obtained in [12] have been recently improved in [47] by deriving and
applying new formulas for value functions in parametric optimization, which allow us
to fully avoid convexification in the necessary optimality conditions established in [12].
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In particular, under the same assumptions as in [12, Theorem 3.1] with the upper-level
constraint set Ω in (35) described by the inequalities

Ω :=
{

x ∈ R
n
∣∣ g j(x)≤ 0, j = 1, . . . , p

}
(37)

involving the smooth initial data ϕ , ψ , fi, and g j in (35)–(37), we get the following
necessary conditions for a local optimal solution (x̄, ȳ) to the bilevel program under
consideration: there are γ > 0 and nonnegative multipliers λ1, . . . ,λm, α1, . . . ,αm, and
β1, . . . ,βp such that

∇xϕ(x̄, ȳ)+
m

∑
i=1

(αi− γλi)∇x fi(x̄, ȳ)+
p

∑
j=1

β j∇gx(x̄) = 0,

∇yϕ(x̄, ȳ)+ γ∇yψ(x̄, ȳ)+
m

∑
i=1

αi∇ fy(x̄, ȳ) = 0,

∇yψ(x̄, ȳ)+
m

∑
i=1

λi∇y fi(x̄, ȳ) = 0,

λi fi(x̄, ȳ) = 0, αi fi(x̄, ȳ) = 0 for i = 1, . . . ,m, β jg j(x̄) = 0 for j = 1, . . . , p.

(38)

In [12,47], the reader can find more results and discussions on bilevel programs with
nonsmooth data, and also with fully convex and linear structures.

6 Multiobjective Optimization and Equilibria

It is difficult to overstate the importance of multiobjective optimization and related equi-
librium problems for both optimization/equilibrium theory and practical applications;
see, e.g., [6,7,8,17,19,21,22,32,56,61,63] with the discussions and references therein. It
has been well recognized that the advanced methods of variational analysis and gen-
eralized differentiation provide useful tools for the study of such problems and lead to
significant progress in the theory and applications. In this section we discuss some lat-
est advances in this direction based mostly on the recent research by the author and his
collaborators.

A large class of constrained multiobjective optimization problems is described as:

minimize F(x) subject to x ∈Ω ⊂ X , (39)

where the cost mapping F : X →→ Z is generally set-valued, and where “minimization”
is understood with respect to some partial ordering on Z. Thus (39) is a problem of
set-valued optimization, while the term of vector optimization is usually used when
F = f : X → Z is a single-valued mapping. We prefer to unify both set-valued and
vector optimization problems under the name of multiobjective optimization. It is well
known that various notions of equilibrium can be written in (or reduce to) form (39).

In [32, Sect. 5.3] and in the subsequent papers [2,37,40] we paid the main attention to
the study of generalized order optimality defined as follows: given an ordering setΘ ⊂
Z with 0∈Θ , we say tat x̄∈Ω is a locally ( f ,Θ ,Ω)-optimal if there are a neighborhood
U of x̄ and a sequence {zk} ⊂ Z with ‖zk‖→ 0 as k→ ∞ such that

f (x)− f (x̄) /∈Θ − zk for all x ∈Ω ∩U, k ∈N. (40)
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The (generally nonconvex and nonconical) set Θ in (40) can be viewed as a generator
of an extended order/preference relation on Z and encompasses standard notions of
multiobjective optimization and equilibria. In fact the above notion of generalized order
optimality is induced by the notion of local extremal points of sets discussed in Sect. 3;
see [32, Subsect. 5.3.1] for more details and examples.

The main results of [2,37,40] provide necessary optimality conditions for multiob-
jective problems with respect to the above generalized order optimality under various
constraints (geometric, functional, operator, equilibrium, and their specifications) in fi-
nite and infinite dimensions. The results obtained are expressed via the robust/limiting
generalized differential constructions discussed in Sect. 2. In [32, Subsect. 5.4.2] and
[36], pointbased necessary and sufficient conditions are derived for linearly suboptimal
solutions to multiobjective problems generated by linear subextremality of sets consid-
ered in Sect. 3.

Paper [51] is devoted to the study and applications of a remarkable and rather new
class of equilibrium problems with equilibrium constraints (EPECs), which can be
treated as hierarchical games defined by some equilibrium notions on both lower and
upper levels of hierarchy. In [51], we pay a particular attention to the case of weak
Pareto optimality/equilibrium on the upper level and mixed complementarity constraints
on the lower level. Such problems can be modeled in the above framework of multi-
objective optimization with equilibrium constraints. The necessary optimality condi-
tions derived in [51] are based on the robust generalized differentiation constructions
of Sect. 2, while they are finally presented fully in terms of the initial data and used
in developing and implementing numerical techniques. The applications given in [51]
concern oligopolistic market models that primarily motivate the research.

Paper [39] concerns a thorough study of multiobjective optimization problems with
equilibrium constraints, where the notion of optimality is generated by closed prefer-
ence relations. Given a subset Ξ ⊂ Z×Z, we define the preference ≺ on Z by

z1 ≺ z2 if and only if (z1,z2) ∈ Ξ (41)

and say that ≺ is locally closed around z̄ if there is a neighborhood U of z̄ such that:

(a) preference≺ is nonreflexive, i.e., (z,z) /∈ Ξ ;
(b) preference ≺ is locally satiated around z̄, i.e., z ∈ clL (z) for all z ∈U , where the

level set L (z) corresponding to ≺ is defined by

L (z) :=
{

u ∈ Z
∣∣ u≺ z

}
; (42)

(c) preference≺ is almost transitive on Z, i.e.

v≺ z whenever v ∈ clL (u), u≺ z, and v,z,u ∈U. (43)

Observe that ordering relations on Z given by the generalized order optimality as in (40)
and by closed preferences in (43) are generally independent. In particular, the almost
transitivity of a Pareto-type preference given by

z1 ≺ z2 if and only if z2− z1 ∈Θ (44)
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via a closed cone Θ ⊂ Z is equivalent to the convexity and pointedness of the cone Θ ,
which means thatΘ ∩ (−Θ) = {0}. The latter is not required in (40) and does not hold
in fact for a number of useful preferences important in the theory and applications, e.g.,
for the lexicographical ordering on R

n; see [32, Subsect. 5.3.1] for more details and
discussions.

Note that the necessary optimality conditions obtained in [39] for multiobjective
problems described via closed preferences employ the notion of the extended normal
cone to parameterized/moving sets Ω(·) defined by

N+
(
x̄;Ω(z̄)

)
:= Limsup

(z,x)
gphΩ→ (z̄,x̄)

N̂
(
x,Ω(z)

)
at x̄ ∈Ω(z̄). (45)

We refer the reader to the recent paper [54] for a comprehensive study of the extended
normal cone (45) and associated coderivative and subdifferential constructions for mov-
ing objects (calculus rules, various relationships, normal compactness properties, etc.).
In [39], the extended normal cone construction (45) is applied to express a part of nec-
essary optimality conditions related to the moving level sets (42).

The main focus of [3] is on the study of the constrained multiobjective optimization
problems (39) with general set-valued costs. We consider there two classical notions of
minimizers/equilibria: Pareto and weak Pareto. The first notion corresponds to the pref-
erence on Z given by a closed and convex coneΘ ⊂ Z (which is assumed to be pointed
in [3]), while the weak one assumes in addition that intΘ �= /0. Although the latter is
a serious restriction, the vast majority of publications on multiobjective optimization,
even in the simplest frameworks, concern weak Pareto minimizers, which are much
more convenient to deal with in the vein of the conventional scalarization techniques.

In [3], we derive necessary conditions for both Pareto and weak Pareto minimizers
in terms of our coderivatives discussed in Sect. 2 and also using new subdifferential
constructions for set-valued mappings with values in partially ordered spaces that are
extensions of those in (9)–(11) to the case of vector-valued and set-valued mappings.
The basic techniques of [3] involves new versions of variational principles that are
set/vector-valued counterparts of the classical Ekeland variational principle [16] and
the subdifferential variational principle given in [31, Subsect. 2.3.2]. Furthermore, pa-
per [3] contains new existence theorems for optimal solutions to (39) that employ, in
particular, the following subdifferential Palais-Smale condition expressed in terms of
the aforementioned analog of the basic subdifferential (10) for set/vector-valued map-
pings with values in partially ordered spaces: every sequence {xk} ⊂ X such that

there are zk ∈ F(xk) and x∗k ∈ ∂F(xk,zk) with ‖x∗k‖→ 0 as k→ ∞ (46)

contains a convergent subsequence, provided that {zk} is (quasi)bounded from below.
In [4], we obtain a number of extensions of the existence theorems and necessary

optimality conditions from [3] to multiobjective problems with various constraints, in-
cluding those of the equilibrium type. This becomes possible due to the availability of
coderivative/subdifferential calculus for the generalized differential constructions used
in [3,4] (including the aforementioned new subdifferentials for set/vector-valued map-
pings), which particularly allows us to deal with various constraint structures.
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Paper [6] addresses the study of the new notions of relative Pareto minimizers to
constrained multiobjective problems that are defined via several kinds of relative
interiors of ordering cones and occupy intermediate positions between the classical
notions of Pareto and weak Pareto efficiency/optimality in finite-dimensional and
infinite-dimensional spaces. Using advanced tools of variational analysis and gener-
alized differentiation, we establish the existence of relative Pareto minimizers to gen-
eral multiobjective problems under a refined version of the subdifferential Palais-Smale
condition for set-valued mappings with values in partially ordered spaces and then de-
rive necessary optimality conditions for these minimizers (as well as for conventional
efficient and weak efficient counterparts) that are new in both finite-dimensional and
infinite-dimensional settings. The proofs in [6] are mainly based on variational and ex-
tremal principles of variational analysis including certain new versions of them derived
in the paper.

Finally in this section, we mention the recent developments in [5] devoted to so-
called super minimizers to multiobjective optimization problems (39) with generally
set-valued cost mappings. This notion is induced by the concept of super efficiency in-
troduced in [8], which refines and/or unifies various modifications of proper efficiency
and reflects crucial features of solutions to vector optimization problems important from
the viewpoints of both the theory and applications. We derive necessary conditions for
super minimizers using advanced tools of variational analysis and generalized differ-
entiation that are new in both finite-dimensional and infinite-dimensional settings for
problems with single-valued and set-valued objectives. The results obtained are ex-
pressed in generally independent coderivative and subdifferential forms. Then a part
of [5] concerns establishing relationships between these notions for set/vector-valued
mappings with values in partially ordered spaces, which are also important for further
developments and applications.

7 Metric Regularity and Lipschitzian Stability of Parametric
Variational Systems

It has been well recognized that the property of set-valued mappings known as metric
regularity, as well as the linear openness/covering property equivalent to it, play an
important role in many aspects of nonlinear and variational analysis and their applica-
tions; see, e.g., [7,14,18,20,23,24,31,32,58] with the extensive bibliographies therein. In
the aforementioned references, the reader can find verifiable conditions ensuring these
properties and their implementations in specific situations mainly related to the implicit
functions and multifunctions frameworks and to the so-called parametric constraint sys-
tems in nonlinear analysis and optimization. The latter class of systems incorporates, in
particular, sets of feasible solutions to various constrained optimization and equilibrium
problems.

Recall that F : X →→ Y is metrically regular around (x̄, ȳ) ∈ gphF if there are neigh-
borhoods U of x̄ and V of ȳ and a number μ > 0 such that

dist
(
x;F−1(y)

)≤ μ dist
(
y;F(x)

)
whenever x ∈U and y ∈V. (47)
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Further, we say that F : X →→Y is Lipschitz-like around (x̄, ȳ) ∈ gphF is there are neigh-
borhoods U of x̄ and V of ȳ and a number �≥ 0 such that

F(x)∩V ⊂ F(u)+ �‖x−u‖B for all x,u ∈U. (48)

The latter property is also known as the Aubin “pseudo-Lipschitz” property of set-
valued mappings; see [31,58]. When V = Y in (48), it reduces to the classical (Haus-
dorff) local Lipschitzian property of F around x̄ ∈ domF . Note that the Lipschitzian
properties under consideration are robust, i.e., stable with respect to small perturbations
of the initial data.

It is well known and utilized in nonlinear and variational analysis that the metric
regularity property of F around (x̄, ȳ) is equivalent to the Lipschitz-like property of its
inverse around (ȳ, x̄) with the same modulus in (47) and (48). Similar relationships hold
true for certain semilocal and global modifications of the above local metric regularity
and Lipschitzian properties and their linear openness/covering counterparts; see, [31,
Sect. 1.2] for more details and discussions.

Observe that both metric regularity and Lipschitzian properties are defined in pri-
mal spaces and are derivative-free, i.e., they do not depend on any derivative-like con-
struction. It turns out nevertheless that, due to variational/extremal principles, they
admit complete dual-space characterizations in both finite-dimensional and infinite-
dimensional spaces via appropriate coderivatives of set-valued mappings; see [29], [31,
Chapter 4], and [58, Chapter 9] with comprehensive references and commentaries.

We have discussed in Sect. 4 a significant role of parametric variational systems of
the types considered therein in variational analysis, optimization/equilibrium theory, and
their numerous applications. It is shown in many publications that robust Lipschitzian
properties are intrinsic for such systems being fulfilled under natural assumptions; see,
e.g., the recent developments in [31, Sect. 4.4] and [33] based on coderivative analysis
that largely revolves around the Fredholm qualification condition (33). It surprisingly
happens, however, that it is not the case for metric regularity and the equivalent proper-
ties of linear openness/covering, which fail to be fulfilled for major classes of parametric
variational systems.

In what follows, we present some results in this direction recently obtained in
[43]. They are largely based on the equivalence [18] between metric regularity of the
solution maps in systems (23), (26), and (27) and the Lipschitz-like property of the
field/subdifferential mappings in these systems under the assumptions made. The latter
property does not hold in the major cases under considerations; see [15,26,43] for more
details.

Theorem 2. (Failure of metric regularity for generalized equations with monotone
fields). Let f : X ×Y → Y ∗ be a mapping between Asplund spaces that is strictly dif-
ferentiable at (x̄, ȳ) with the surjective partial derivative ∇x f (x̄, ȳ), and let Q : Y →→ Y ∗
be locally closed-graph around (ȳ, ȳ∗) with ȳ∗ := − f (x̄, ȳ) ∈ Q(ȳ). Assume in addition
that Q is monotone and that there is no neighborhood of ȳ on which Q is single-valued.
Then the solution map S : X →→Y in (23) with Q = Q(y) is not metrically regular around
(x̄, ȳ).

Since the set-valuedness of field mappings is a characteristic feature of generalized
equations as a satisfactory model to describe variational systems (otherwise they re-
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duce just to standard equations, which are not of particular interest in the variational
framework under consideration), the conclusion of Theorem 2 reads that parametric
variational systems with monotone fields are not metrically regular under the strict
differentiability and surjectivity assumptions on base mappings, which do not seem
to be restrictive. A major consequence of Theorem 2 is the following corollary con-
cerning subdifferential systems with convex potentials, which encompass the classical
cases of variational inequalities and complementarity problems in (24) that correspond
to the highly nonsmooth (extended-real-valued) case of the convex indicator functions
ϕ(y) = δ (y;Ω) in (23) with Q(y) = ∂ϕ(y).

Corollary 1. (Failure of metric regularity for subdifferential variational systems
with convex potentials). Let Q(y) = ∂ϕ(y) in (23), where f : X×Y →Y ∗ is a mapping
between Asplund spaces that is strictly differentiable at (x̄, ȳ) with the surjective partial
derivative ∇x f (x̄, ȳ), and where ϕ : Y → R̄ is a l.s.c. convex function finite at ȳ and
such that there is no neighborhood of ȳ on which ϕ is Gâteaux differentiable. Then the
solution map S in (23) is not metrically regular around (x̄, ȳ).

In fact, essentially more general composite subdifferential structures of parametric vari-
ational systems prevent the fulfillment of metric regularity for solutions maps with no
reduction to the field monotonicity. In particular, it is proved in [43, Theorem 5.3 and
5.4] that metric regularity fails for the composite subdifferential systems (26) and (27)
in Asplund spaces with g = g(y) provided that f satisfies the assumptions of Theorem 2,
that g is continuously differentiable around ȳ in (27) while twice continuously differen-
tiable around ȳ in (26) with the surjective derivative ∇g(ȳ) in both cases, and that ψ is
l.s.c., convex, and not Gâteaux differentiable around the point g(ȳ).

In the case of Hilbert spaces, the results of Corollary 1 and the aforementioned ones
for the composite structures (26) and (27) can be extended to subdifferential varia-
tional systems generated by essentially larger (than convex) classes of extended-real-
valued functions. Recall [58] that ϕ : X → R̄ is subdifferentially continuous at x̄ for

some subgradient x̄∗ ∈ ∂ϕ(x̄) if ϕ(xk)→ ϕ(x̄) whenever xk → x̄, x∗k
w∗→ x̄∗ as k→∞ with

x∗k ∈ ∂ϕ(xk) for all k ∈N. Further, ϕ is prox-regular at x̄ ∈ domϕ for some x̄∗ ∈ ∂ϕ(x̄)
if it is l.s.c. around x̄ and there are γ > 0 and η ≥ 0 such that

ϕ(u)≥ ϕ(x)+ 〈x̄∗,u− x〉− η
2
‖u− x‖2 for all x∗ ∈ ∂ϕ(x)

with ‖x∗ − x̄∗‖ ≤ γ, ‖u− x̄‖ ≤ γ, ‖x− x̄‖ ≤ γ, and ϕ(x)≤ ϕ(x̄)+ γ.
(49)

Both properties above hold for broad classes of functions important in variational anal-
ysis and optimization. This is the case, in particular, for the so-called strongly amenable
functions; see [58] and also [31,32] for more details, references, and applications.

Theorem 3. (Failure of metric regularity for composite subdifferential variational
systems with prox-regular potentials). Let (x̄, ȳ) ∈ gphS for S given in (26), where
g : Y →W is twice continuously differentiable around ȳ with the surjective derivative
∇g(ȳ), where f : X×Y →Y ∗ is strictly differentiable at (x̄, ȳ) with the surjective partial
derivative ∇x f (x̄, ȳ), where the spaces X, Y , and Y ∗ are Asplund while W is Hilbert. Set
w̄ := g(ȳ) and assume in addition that:
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(i) either ψ is locally Lipschitzian around w̄;
(ii) or ψ is prox-regular and subdifferential continuous at w̄ for the basic subgradient

v̄ ∈ ∂ψ(w̄), which is uniquely determined by ∇g(ȳ)∗v̄ =− f (x̄, ȳ).

Then S is not metrically regular around (x̄, ȳ) provided that there is no neighborhood of
w̄ on which ψ is Gâteaux differentiable.

Theorem 4. (Failure of metric regularity for subdifferential variational systems
with composite fields and prox-regular potentials). Let (x̄, ȳ) ∈ gphS for S defined
by (27), where g : Y →W is strictly differentiable at ȳ with the surjective derivative
∇g(ȳ), where f : X×Y →W is strictly differentiable at (x̄, ȳ) with the surjective partial
derivative ∇x f (x̄, ȳ), where the spaces X and Y are Asplund while W is Hilbert. Set
w̄ := g(ȳ) and assume in addition that either (i) or (ii) of Theorem 3 is satisfied, and
that there is no neighborhood of w̄ on which ψ is Gâteaux differentiable. Then the
solution map S is not metrically regular around (x̄, ȳ).

In [43], the reader can find the proofs of these theorems and more discussions on them
and related results for metric regularity and Lipschitzian stability of variational systems.

8 Optimal Control of Constrained Evolution Inclusions with
Discrete and Continuous Time

As discussed in Sect. 1, problems of optimal control and related problems of dynamic
optimization have always been among the strongest motivations and most important
areas for applications of advanced methods and constructions of modern variational
analysis and generalized differentiation. In this section we briefly review recent results
on optimal control and related problems obtained by the author and his collaborators in
[13,34,35,52,55].

In [35], we study the following problem of dynamic optimization governed by discrete-
time inclusions with endpoint constraints of inequality, equality, and geometric types:⎧⎨⎩

minimize ϕ0(x0,xK) subject to (x0,xK) ∈Ω ,
x j+1 ∈ Fj(x j), j = 0, . . . ,K−1,
ϕi(x0,xK)≤ 0, i = 1, . . . ,m, ϕi(x0,xK) = 0, i = m+ 1, . . . ,m+ r,

(50)

where Fj : X →→ X , ϕi : X2 → R, Ω ⊂ X∗ and K ∈ N. Observe that the inclusion model
in (50) encompasses more conventional discrete control systems of the parameterized
type

x j+1 = f j(x j,u j), u j ∈Uj as j = 0, . . . ,K−1 (51)

with explicit control variables u j taking values in some admissible control regions Uj.
The following major result is established in [35] based on the reduction to the La-

grange principle for non-dynamic constrained optimization problems discussed at the
end of Sect. 3 and then on employing appropriate rules of generalized differential and
SNC calculi.



120 B.S. Mordukhovich

Theorem 5. (Extended Euler-Lagrange conditions for discrete optimal control).
Let {x̄ j| j = 0, . . . ,K} be a local optimal solution to the discrete optimal control problem
(50). Assume that X is Asplund, that ϕi are locally Lipschitzian around (x̄0, x̄K) for all
i = 0, . . . ,m+r while Ω is locally closed around this point, and that the graphs of Fj are
locally closed around (x̄ j, x̄ j+1) for every j = 0, . . . ,K−1. Suppose also that all but one
of the sets Ω and gphFj, j = 0, . . . ,K−1, are SNC at the points (x̄0, x̄K) and (x̄ j, x̄ j+1),
respectively. Then there are multipliers (λ0, . . . ,λm+r) and an adjoint discrete trajectory
{p j ∈ X∗| j = 0, . . . ,K}, not all zero, satisfying the relationships:

• the Euler-Lagrange inclusion

−p j ∈ D∗NFj(x̄ j, x̄ j+1)(−p j+1) for j = 0, . . . ,K−1, (52)

• the transversality inclusion

(p0,−pK) ∈ ∂
(m+r

∑
i=0

λiϕi

)
(x̄0, x̄K)+ N

(
(x̄0, x̄K);Ω

)
, (53)

• the sign and complementary slackness conditions

λi ≥ 0 for i = 0, . . . ,m, λiϕi(x̄0, x̄K) = 0 for i = 1, . . . ,m. (54)

Note that if Fj is inner/lower semicontinuous at (x̄ j, x̄ j+1) and convex-valued around
these points for all j = 0, . . . ,K−1, then the Euler-Lagrange inclusion (52) implies the
relationships of the discrete maximum principle:

〈p j+1, x̄ j+1〉= max
v∈F(x̄ j)

〈p j+1,v〉 for all j = 0, . . . ,K−1, (55)

which provide necessary optimality conditions for problem (50) along with (52)–(54).
Observe that the results of Theorem 5 allow us to establish necessary optimality

conditions (52)–(54) and the maximum principle (55) with no SNC (or finite codimen-
sionality, or interiority) assumptions imposed on the endpoint constraint/target set Ω
and to cover, e.g., the classical two-point constraint case in (50) that has always been an
obstacle in infinite-dimensional optimal control, including that for smooth systems (51).

By using generalized differential and SNC calculus rules, Theorem 5 induces the cor-
responding necessary optimality conditions for optimal control problems of constrained
parametric discrete-time evolution inclusions of the type

x j+1 ∈ x j + hFj(x j), j = 0, . . . ,K−1. (56)

It is worth mentioning that explicit control counterparts as in (51) of the parametric
discrete-time systems (56), considered as a process with h ↓ 0, possess a number of im-
portant specific features that are not inherent in general parametric discrete systems with
fixed parameters h. An especially remarkable fact for optimal control of such systems
with smooth velocity mappings f j is the validity of necessary optimality conditions in
the form of the approximate maximum principle with no convexity requirements. The
approximate maximum condition means that the exact one as in (55) is replaced by its
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ε(h)-perturbation with ε(h)→ 0 as h ↓ 0; see [32, Sect. 6.4] for more details, refer-
ences, and commentaries.

Systems of type (56) arise, in particular, from discrete/finite-difference approxima-
tions of continuous-time evolution systems governed by differential inclusions

ẋ(t) ∈ F
(
x(t), t

)
, x ∈ X , a.e. t ∈ [a,b]. (57)

In fact, the approach to the study of continuous-time systems of type (57) and opti-
mization problems for them via well-posed discrete approximations has been among
the author’s main interests and developments for a long time; see, e.g., [30], [32, Chap-
ter 5] with the references and commentaries therein. The major steps of this approach to
derive necessary optimality conditions for various constrained optimal control problems
governed by continuous-time systems are as follows:

(a) To construct a well-posed sequence of discrete-time problems that approximate in
an appropriate sense the original continuous-time problem of dynamic optimiza-
tion.

(b) To derive necessary optimality conditions for the approximating discrete-time prob-
lems by reducing them to non-dynamic problems of mathematical programming
and employing then generalized differential calculus.

(c) By passing to the limit in the obtained results for discrete approximations to estab-
lish necessary conditions for the given optimal solution to the original problem.

Note that each of the above steps in the study of relationships between continuous-time
systems and their discrete approximations is certainly of its own interests regardless of
deriving necessary optimality conditions for the continuous-time dynamics. In particu-
lar, step (a) and its modifications are important for numerical analysis of continuous-
time systems.

In this vein, paper [52] deals with establishing the epi-convergence of discrete approx-
imations to the so-called generalized Bolza problem of dynamic optimization, which
encompasses a number of the most interesting optimal control problems governed by
differential inclusions of type (57) with finite-dimensional state spaces X = R

n. The
methods developed in this study and the results obtained seem to be suitable for exten-
sions to higher dimensions (versus t ∈ R) in the framework of finite element methods.

Paper [13] also goes in the direction of the aforementioned step (a) and is devoted to
the study of well-posedness of discrete approximations to nonconvex differential inclu-
sions of type (57) with Hilbert state spaces X . The underlying feature of the problems
under consideration in [13] is a one-sided Lipschitz condition imposed on F(·,t), which
is a significant improvement of the conventional Lipschitz continuity studied in prior
publications. Among the main results of [13] we mention establishing efficient con-
ditions that ensure the strong approximation (in the W 1,p-norm as p ≥ 1) of feasible
trajectories for one-sided Lipschitzian differential inclusions by those for their discrete
approximations and also the strong convergence of optimal solutions to the correspond-
ing dynamic optimization problems under discrete approximations. To proceed with the
latter issue, we derive a new extension of the Bogolyubov-type relaxation/density theo-
rem to the case of differential inclusions satisfying the modified one-sided Lipschitzian
condition. All the results obtained are new not only in the infinite-dimensional Hilbert
space framework but also in finite-dimensional spaces.
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Paper [34] develops all the three of the aforementioned steps (a)–(c) in the imple-
mentation of the method of discrete approximations to derive new necessary optimality
conditions for nonconvex evolution/differential inclusions of type (57 ) in the case of As-
plund state spaces X . Dynamic optimization problems (of the Bolza and Mayer types)
are considered in [34] subject to finitely many of the Lipschitzian endpoint constraints

ϕi
(
x(b)
)≤ 0, i = 1, . . . ,m, ϕi

(
x(b)
)

= 0, i = m+ 1, . . . ,m+ r, (58)

on the trajectories for the evolution inclusion (57) with x(a) = x0. The optimality con-
ditions derived in [34] do not impose any SNC/finite codimension requirements on the
target sets in (58) in contrast to geometric endpoint constraints of the type x(b) ∈ Ω
studied previously in the author’s book [32, Sect. 6.1 and 6.2]. The continuous-time
counterpart of the extended Euler-Lagrange inclusion obtained in [34] is given by

ṗ(t) ∈ clcoD∗NF
(
x̄(t), ˙̄x(t)

)(− p(t)
)

a.e. t ∈ [a,b] (59)

together with the corresponding transversality, sign, complementary slackness, and max-
imum conditions as in (53)–(55). Note that, in contrast to the discrete case of (52), the
Euler-Lagrange inclusion (59) involves the convexification of the coderivative values,
while the maximum condition〈

p(t), ˙̄x(t)
〉

= max
v∈F(x̄(t))

〈
p(t),v

〉
a.e. t ∈ [a,b] (60)

does not require any convexification. The latter is due the “hidden convexity” property
(of the Lyapunov-Aumann type), which is automatically generated by the continuous-
time dynamics; see [32,34] for more results and discussions in this direction.

Finally in this section, we mention new results on the well-posedness of discrete
approximations and necessary optimality conditions obtained in [55] for dynamic op-
timization problems governed by constrained delay-differential inclusions of the type⎧⎨⎩

ẋ(t) ∈ F(x(t),x(t−Δ),t) a.e. t ∈ [a,b],
x(t) ∈C(t) a.e. t ∈ [a−Δ ,a), Δ > 0,
(x(a),x(b)) ∈Ω ⊂ X2

(61)

with an Asplund state space X . A specific feature of the delay system (61), which does
not have any analogs for nondelayed systems, is the presence of set-valued initial con-
ditions of the time x(t) ∈C(t) on [a−Δ ,a), which particularly provides an additional
source for optimization. The results obtained in [55] develop and extend those from
[32,34] for the delay-differential problems under consideration, with deriving appropri-
ate delay counterparts of conditions (59) and (60) as well as the new one corresponding
to the multivalued “initial tail” part on [a−Δ ,a).

9 Feedback Control of Constrained Parabolic Systems in
Uncertainty Conditions

In the concluding section of the paper we discuss recent results by the author on opti-
mal control and feedback design of state-constrained parabolic systems in uncertainty
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conditions. Problems of this type are among the most challenging and difficult in dy-
namic optimization for any kind of dynamical systems. The feedback design problem
is formulated in the minimax sense to ensure stabilization of transients within the pre-
scribed diapason and robust stability of the closed-loop control system under all feasible
perturbations with minimizing an integral cost functional in the worst perturbation case.

The original motivation for our developments comes from practical design problems
of automatic control of the soil groundwater regime in irrigation engineering networks
functioning under uncertain weather and environmental conditions. In [41,42,44], we
study such problems for parabolic systems with controls acting in boundary conditions
of various types (Dirichlet, Neumann, Robin/mixed). In what follows we present the
problem formulation and discuss the major results for the case of Dirichlet boundary
conditions, which offer the least regularity properties for the parabolic dynamics and
appear to be the most challenging in control theory for parabolic systems.

The system dynamics in the problem under consideration is given by the multidi-
mensional linear parabolic equation⎧⎪⎨⎪⎩

∂y
∂ t

+ Ay = w(t) a.e. in Q := [0,T ]×Ω ,

y(0,x) = 0, x ∈Ω ,
y(t,x) = u(t), (t,x) ∈ Σ := [0,T ]×Γ

(62)

with controls u(·) acting in the Dirichlet boundary conditions and distributed perturba-
tions w(·) in the right-hand side of the parabolic equation. In (62), A is a self-adjoint
and uniformly strongly elliptic operator on L2(Ω) defined by

Ay :=−
n

∑
i, j=1

∂
∂xi

(
ai j(x)

∂y
∂x j

)
− cy, (63)

where Ω ⊂R
n is an open bounded domain with the the boundaryΓ that is supposed to

be a sufficiently smooth (n−1)-dimensional manifold, and where T > 0 is a fixed time
bound.

The sets of admissible controls U and admissible perturbations W are given by

U :=
{

u ∈ L∞[0,T ]
∣∣∣ −α ≤ u(t)≤ α a.e. t ∈ [0,T ]

}
, (64)

W :=
{

w ∈ L∞[0,T ]
∣∣∣ −β ≤ w(t)≤ β a.e. t ∈ [0,T ]

}
(65)

with some fixed bounds α,β > 0 in the pointwise/magnitude constraints (64) and (65).
The underlying requirement on the system performance is to stabilize transients

y(t,x0) near the initial equilibrium state y(x,0)≡ 0 with a given accuracy η > 0 during
the whole dynamic process. This is formalized via the pointwise state constraints

−η ≤ y(t,x0)≤ η a.e. t ∈ [0,T ]. (66)

A characteristic feature of the dynamical process described by (62) is the uncertainty
of perturbations w ∈W : we can operate only with the bound β of the admissible region
(65). Thus we can keep the system transients y(t,x0) within the prescribed stabilization
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region (66) only by using feedback boundary controls u(·) depending on the current
state position ξ = y(t,x0) for each t ∈ [0,T ].

To formalize this description, consider a function f : R→R and construct boundary
controls in (62) via the feedback law

u(t) := f
(
y(t,x0)

)
, t ∈ [0,T ], (67)

which defines a feasible feedback regulator if it generates controls u(t) by (67) belong-
ing to the admissible set U from (64) and keeps the corresponding transients y(t,x0)
of (62) within the constraint area (66) for every admissible perturbation w ∈W from
(65). We estimate the quality of feasible regulators f = f (ξ ) by the (energy-type) cost
functional

J( f ) := max
w∈W

{∫ T

0

∣∣ f (y(t,x0)
)∣∣dt

}
. (68)

The maximum operation in (68) reflects the required control energy needed to neutralize
the adverse effect of the worst perturbations from (65) and to keep the state performance
within the prescribed area (66). Finally, denote by F the set of all feasible feedback
regulators and formulate the minimax feedback control problem as follows:

minimize J( f ) over f ∈F . (69)

It has been well recognized in control theory and applications that feedback control
problems are the most challenging and important for any type of dynamical systems,
while PDE systems provide additional difficulties and much less investigated in com-
parison with the ODE dynamics. Furthermore, significant complications come from
pointwise/hard state constraints, which are of high nontriviality even for open-loop
control problems. We are not familiar with any constructive device applicable to the
feedback control problem (P) under consideration among a variety of approaches and
results available in the theories of differential games, H∞-control, Riccati’s feedback
synthesis, and other developments in general settings; see more discussions and refer-
ences in the aforementioned papers.

In these papers, we develop an approach to solving the feedback control problem
(69), which is essentially based on certain underlying features of the parabolic dynam-
ics, particularly on the monotonicity property of transients that is eventually related to
the fundamental Maximum Principle for parabolic equations. Due to this property and
the specific structures of the cost functional (68) and boundary controls in (62) and by
employing the convolution representation of the transients obtained [53], we are able
to select the worst perturbations in the area (65) for the class of nonincreasing and odd
feedbacks (67). This allows us to study the corresponding open-loop optimal control
problem with pointwise state constraints as a reaction of the parabolic system to the
worst perturbations. Using the spectral Fourier-type representation of solutions to the
parabolic system (62) and assuming the positivity of the first eigenvalue of the elliptic
operator A in (63)—which is often the case— we observe the dominance of the first
term in the exponential series representation of solutions to (62) as t → ∞. In this way,
we justify an efficient approximation of the open-loop optimal control problem for the
parabolic system under consideration by that for the corresponding ODE system with
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state constraints on a sufficiently large time interval. Moreover, the approximating ODE
optimal control problem is solved exactly by constructing yet another approximation of
state constraints, employing the Pontryagin maximum principle that provides necessary
and sufficient optimality conditions for the unconstrained approximating problems with
both bang-bang and singular modes of optimal controls, and then by passing to the
limit while meeting the state constraints. Furthermore, the state constraints occur to
be a regularization factor, which simplifies the structure of optimal controls, especially
when the time interval becomes bigger and bigger; this reveals the fundamental turnpike
property of such dynamic systems expanding to the infinite horizon.

Thus using the ODE approximation described above, we justify an easily imple-
mented suboptimal (or near-optimal) structures of optimal controls in both open-loop
and closed-loop modes and then optimize their parameters along the parabolic dynam-
ics. This allows us to arrive at a three-positional feedback regulator f = f (ξ ) in (67)
acting via the Dirichlet boundary conditions of (62) that ensures the required state per-
formance (66) under the fulfillments of all the constraints in (69) for every feasible
perturbation from (65) providing a near-optimal response of the closed-loop control
system in the case of worst perturbations.

The feedback control design constructed in this way leads us to the highly nonlin-
ear closed-loop system (62) and (67), where f (ξ ) is a discontinuous three-positional
regulator. The system may loose robust stability (in the large) and maintain the state
performance (66) in an unacceptable self-vibrating regime. Developing a variational
approach to robust stability that reduces the stability issue to a certain open-loop opti-
mal control problem on the infinite horizon, we establish efficient conditions for robust
stability of the closed-loop system whenever t ≥ 0 in terms of the initial data of prob-
lem (69) and parameters of the three-positional feedback regulator. All the details can
be found in [41,42,44].
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Abstract. The purpose of this paper is to present main ideas of mathematics
of finance using the stochastic control methods. There is an interplay between
stochastic control and mathematics of finance. On the one hand stochastic con-
trol is a powerful tool to study financial problems. On the other hand financial
applications have stimulated development in several research subareas of stochas-
tic control in the last two decades. We start with pricing of financial derivatives
and modeling of asset prices, studying the conditions for the absence of arbi-
trage. Then we consider pricing of defaultable contingent claims. Investments
in bonds lead us to the term structure modeling problems. Special attention is
devoted to historical static portfolio analysis called Markowitz theory. We also
briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-
Jacobi-Bellman equation, martingale-convex analysis method or stochastic max-
imum principle together with backward stochastic differential equation. Finally,
long time portfolio analysis for both risk neutral and risk sensitive functionals is
introduced.

1 Pricing of Financial Derivatives

One of the fundamental problems of mathematics of finance is pricing of the derivative
securities (shortly derivatives) i.e. securities the value of which depends on the basic se-
curities such as stocks or bonds. In this section we restrict ourselves to stocks, although
similar problems (unfortunately much harder) concern also derivatives of bonds.

1.1 Modeling of Asset Prices

We start with modeling of asset prices (stocks). We assume that we are given d assets
on the market and denote the price of the i-th asset at time t by Si(t). We shall consider
in parallel way two approaches: in discrete and in continuous time. We assume a given
probability space (Ω ,F ,(Ft ),P). In the case of discrete time the asset prices satisfy
the relation

Si(t + 1)
Si(t)

= ζi(t,z(t + 1),ξ (t + 1)), (1)
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for i = 1,2, . . . ,d, where (z(t)) stands for the process of economic factors which have
an impact on the prices, and (ξ (t)) is a noise process being a sequence of i.i.d. random
variables such that ξ (t) is independent of z(s) for s≤ t.

In the case of continuous time model we assume that Si(t) is given by the following
formula

Si(t) = Si(0)e
∫ t

0 ai(s,z(s))ds+
∫ t

0 σi(s,z(s))·dL(s), (2)

where the last term is the stochastic integral with respect to the process with stationary
independent increments which is a Levy process or more specifically a Wiener process
L. For the definition of stochastic integral we refer to [37].

1.2 Contingent Claims

A typical situation we encounter on financial markets is that at a given time T , called
maturity we get a contingent claim the value of which is an FT measurable random
variable H. The problem is to determine its price at time 0. European options can serve
as an example of contingent claims. Assume that we want to have a guarantee that
at time T we shall buy one i-asset for the value of at most K (the so called striking
price). For this purpose we buy a European call option. If the price Si(T ) is greater
than K we exercise this option buying one i-th asset for the price K. Otherwise, i.e.
when Si(T ) < K there is no reason to exercise this option - we simply buy the asset for
the price Si(T ). Consequently the value of this European call option is (Si(T )−K)+.
Similarly, when we have an asset i we can guarantee to sell it at time T for the price
K buying a European put option. In this case the value of the option is (K− Si(T ))+.
In both cases an important factor is the price for the option we have to pay at time 0.
The terminal maturity time T is fixed and deterministic. One can consider contracts
with random T . In the so called American options the buyer of an option is allowed to
choose random maturity time τ , i.e. he chooses the time to exercise the option. Clearly
such call or put options are more expensive since they offer a better bargain to the buyer.

1.3 Portfolio and Absence of Arbitrage

From stochastic control point of view the main decision we make on financial markets
is the choice of a proper investment portfolio. We denote by V (0) = v the initial value
of the wealth process. We assume that we can invest v in the d-assets available on our
market as well as in the savings account in a bank with a short term interest rate r(t)
at time t, which means that for one dollar invested at time 0 in the account we obtain
Bt = exp

(∫ t
0 rudu

)
= S0(t) at time t. An investment strategy at each time t is a sequence

(N0(t),N1(t), . . . ,Nd(t)) where N0(t) is the capital invested in our savings account, and
Ni(t) is the capital invested in the i-th asset at time t. The strategy can be also described
as the sequence π = (π0(t),π1(t), . . . ,πd(t)) where πi(t) is the portion of the wealth
process V (t) invested at time t in the i-th asset (for i = 0 in the savings account). Clearly
Ni(t) = πi(t)V (t) for i = 0,1, . . . ,d and for discrete time model we have
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V (t) =
d

∑
j=0

Nj(t)S j(t) = V (t−1)+
d

∑
j=0

Nj(t−1)(S j(t)−S j(t−1))

= V (t−1)
d

∑
j=0

π j(t−1)ζ j(t,z(t),ξ (t)),

(3)

with ζ0(t,z,ξ ) = exp
(∫ t+1

t rudu
)

. The wealth process depends on the investment strat-

egy π and initial wealth v. To point out this we shall denote the wealth process at time t
by V π ,v(t). We shall assume furthermore that the portfolio is selffinancing which means
that no money is added or withdrawn i.e. we invest at each time t the value equal to our
wealth V π ,v(t). The fundamental assumption of mathematical finance is the so called
absence of arbitrage (AA) in time T , which is the absence of the existence of portfolio
π such that V π ,0(T ) ≥ 0 and P

{
V π ,0(T ) > 0

}
> 0. Roughly speaking, it means that

we are not able to create gain at time T without risk. The economical notion of the ab-
sence of arbitrage has an important analytical interpretation, which is very transparent
in discrete time case.

We call a probability measure Q, which is equivalent to the original probability mea-
sure P, a martingale measure, whenever ( Si(t)

Bt
) are martingales with respect to Q for

i = 1,2, . . . ,d and t = 0,1, . . . ,T . The martingale property means integrability of the
ratios Si(t)

Bt
plus the property

E

{
Si(t + 1)

Bt+1
|Ft

}
=

Si(t)
Bt

, (4)

for t = 0,1, . . . ,T − 1. The following theorem (see [10] or [20,22] for more recent ap-
proaches) is fundamental in discrete time mathematics of finance.

Theorem 1. (Dalang, Morton, Willinger, 1990) The absence of arbitrage is equivalent
to the existence of a martingale measure Q.

In what follows we shall denote by Q the family of all martingale measures. By Theo-
rem 1 under (AA) we have Q �= /0.

1.4 Pricing

We shall now consider the problem of pricing of contingent claim of value H at a given
maturity time T . The buyer of it collects a gain which is a random variable H. We would
like to evaluate the price of H at the initial time. One can look at this price from the
perspective of the seller or the buyer. An acceptable price for the seller is such a price
that for the amount he obtains at time 0 he is able (providing he invests it in an optimal
way) to get at least the compensation for H (i.e. to hedge H), which he is supposed to
deliver to the buyer. This investment forms an optimal stochastic control problem. We
would like to find the smallest initial capital v, which invested in an optimal way gives us
at least the value H at time T . Denote by ps(H) the minimal seller price. Consequently
we can write the formula

ps(H) = inf{v : ∃π ,V π ,v(T )≥ H} . (5)
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The buyer price on the other hand is the value v such that if he starts with initial capital
−v and invests it in an optimal way, then at time T the value of his portfolio plus his
gain H is nonnegative. Such maximal v forms the so called buyer price pb(H) and is
the maximal price acceptable for the buyer. We have

pb(H) = sup
{

v : ∃π , V π ,−v(T )+ H ≥ 0
}

. (6)

Alternatively we can write that pb(H) = −ps(−H). Under the absence of arbitrage
assumption we clearly have that pb(H) ≤ ps(H). The interval [pb(H), ps(H)] is called
an absence of arbitrage interval and any price from this interval is acceptable in the
sense that neither seller nor buyer is able to obtain a positive gain without risk at time
T (which is an arbitrage). In particular situations, when pb(H) = ps(H) for all bounded
H, we say that the market is complete which in turn corresponds to the fair price or
fair game between the seller and the buyer. By Theorem 1 it is clear that in the case of
complete market the family Q is a singleton.

Assuming integrability of the contingent claim with respect to the set of all martin-
gale measures Q, i.e. supQ∈QEQ|H|<∞we have the following analytic representations
for the seller and buyer prices called the fundamental asset pricing theorem.

Theorem 2. Under (AA) we have

ps(H) = sup
Q∈Q

EQ
{

H
BT

}
, (7)

and

pb(H) = inf
Q∈Q

EQ
{

H
BT

}
. (8)

The proof of this theorem (see [38]) is based on an important result from the theory of
stochastic processes called optional decomposition.

Lemma 1. (Föllmer, Kabanov [16]) If (Y (t)) is a Q supermartingale for each Q ∈
Q, there is π and an adapted increasing process (dt), d0 = 0 such that Y (T ) = V π ,Y(0)

(T )−dT .

The absence of arbitrage interval [pb(H), ps(H)] may be very large. Therefore one
would like to find in this interval a proper price of the contingent claim. For this pur-
pose we have to use other criteria: we choose martingale measures with minimal vari-
ance (see [38]) or minimal entropy (see [18]). Another approach is, instead of hedging
with probability 1, to consider the so called quantile hedging under which we require
inequalities in (5) and (6) to be satisfied with certain probability, e.g. 1− ε (see [17]).
Alternatively we can also use utility theory (see [18]) to price contingent claims. The
theory described above was based on an assumption that there is no friction on our mar-
ket, i.e. we do not pay transaction costs. The theory with proportional transaction costs
(we pay costs proportional to the volume of transaction) is more complicated and still a
subject of intensive studies (see e.g. [21,6,5] and references therein). In the case of large
transactions one can expect to pay even smaller proportional transaction costs. These
considerations lead to concave transaction costs. The problems are very complicated
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and at this moment some results are only available for simple Cox-Ross-Rubinstein
model introduced below in Sect. 1.6 (see [39] and [26]).

In what follows we tacitly assume that there are no restrictions on trade and we
have a competitive market: trader can sell unlimited quantities of securities without
changing the security’s price. Clearly this is a serious simplification. There are two
approaches to handle the liquidity risk caused by large transactions: either we assume
that the transaction can change the asset price (see [7]) or the price remains unchanged
but we consider convex transaction costs (see [8]).

The theory we introduced so far concerned financial derivatives which are exercised
exactly at time T . The American type options can be exercised at any time τ from
the interval [0,T ], which is chosen by the buyer of the option. Consequently a contin-
gent claim is an (Ft ) adapted process H = (Ht). In particular Ht = ((S1(t)−K)+) or
Ht = ((K−S1(t))+) in the case of American call or put options. To avoid integrability
problems assume that the process Ht is bounded. One case easily adjust the formulae
(5) and (6) for the seller ps(H) and for the buyer pb(H) prices (the inequalities should
be satisfied for each t from [0,T ], instead of T only). By an analogy to Theorem 2 we
have (see [18])

Theorem 3. Under (AA) we have

ps(H) = sup
Q∈Q

sup
τ

EQ
{

Hτ

Bτ

}
, (9)

and

pb(H) = inf
Q∈Q

sup
τ

EQ
{

Hτ
Bτ

}
, (10)

where supτ denotes an optimal stopping problem: we maximize EQ
{

Hτ
Bτ

}
over all stop-

ping times τ .

1.5 Continuous Time Markets

In this section we consider the case, when asset prices (S(t)) have dynamics of the form
(2) and consequently we are allowed to change our portfolio at any moment. In such a
case we have our portfolio at time t under the investment strategy π by anology to (3)
in the form

V π ,v(t) = v +
∫ t

0
π(u)dS(u). (11)

The notion of the absence of arbitrage (AA) remains the same. There is however a
difference in the analytic form of the absence of arbitrage. First of all the notion of
a martingale is replaced by a local martingale property. We say that Si(t)

Bt
is a Q local

martingale if there is a sequence of stopping times τn → ∞ such that ∀n

(
S(t∧τn)
Bt∧τn

)
is a

Q martingale for t ∈ [0,T ]. We shall denote by Q̃ the set of all measures Q equivalent

to P under which ( S(t)
Bt

) is a local martingale.
Furthermore we introduce the so called no free lunch with vanishing risk property

(NFLVR). It is satisfied when there is no sequence of strategies (πk(t)) such that
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• ∃αk , P
{

V πk,0(t)≥ αk,t ∈ [0,T ]
}

= 1,

• ∀k, ∃δ1,δ2>0, P
{

V πk,0(T ) > δ1

}
> δ2,

• V πk,0(T )≥− 1
k .

We have (for the proof see [11])

Theorem 4. (Delbaen, Schachermayer, 1994)

(AA)⇐= (NFLVR)⇐⇒ Q̃ �= /0. (12)

Consequently we do not have full absence of arbitrage characterization as in discrete
time.

1.6 Complete Markets

A particular situation arises, when Q or Q̃ is a singleton. For discrete time model this
is in the case when we have the so called Cox-Ross-Rubinstein model (CRR) (see [9])
consisting of the bank account S0(t) and an asset S(t) with the dynamics

S0(n + 1) = (1 + r)S0(n), (13)

S(n + 1) = (1 +ρn)S(n), (14)

where r is deterministic and (ρn) is a sequence of i.i.d. random variables taking values
u and d only, where d < r < u.

Notice that in this case given H which is FT = σ {ρi, i = 0, . . . ,T −1} measurable,
there is an investment strategy π = (π(t)) and v ∈ R such that V π ,v(T ) = H, and conse-
quently we have a replication of the contingent claim H. For other markets, say multi-
nomial markets we have only hedging property i.e. there are (π(t)) and v ∈ R such that
V π ,v(T )≥ H.

In the case of a continuous time market, Q̃ is a singleton when we have the so called
Black and Scholes model (see [4]). We assume that the short term interest rate rt = r is
deterministic and besides of the bank account there is one asset with the dynamics of
its price S(t) of the form

S(t) = S(0)e
∫ t

0 ads+
∫ t

0 σdW (s). (15)

where a and σ are deterministic. In this case we can obtain a famous analytic formula
(called Black-Scholes formula) for the price of the European call option with the gain
H = (S(T )−K)+ at time T . We have (see [4])

Proposition 1

ps(H) = pb(H) = S(0)N(d1(S(0),T ))−KerT N(d2(S(0),T )), (16)

with d1(s, t) = ln s
K +(r+0.5σ2)t

σ
√

t
, d2(s, t) = d1(s,t)−σ

√
t.

Notice that the formula does not depend on a, since the drift part at is hidden in the
local martingale measure.



Problems of Mathematical Finance by Stochastic Control Methods 135

1.7 Stochastic Control Methods (Summary)

We complete Sect. 1 with a summary of the stochastic control methods, used so far
explicitly and implicitly. Generally speaking our main control problem was to find
(minimal) v such that V π ,v(T ) ≥ H i.e. find a minimal initial capital under which we
can hedge the contingent claim H. Absence of arbitrage problem can be also formu-
lated in these terms. In discrete time case such control problem can be solved using
backward dynamic programming (see e.g. [36]). In continuous time case situation is
more complicated. This is a stochastic version of optimal tracking problem which can
be solved using controlled Backward Stochastic Differential Equations (BSDEs) (see
[13]). The problem with BSDEs stimulated purely analytical approach based on mar-
tingale method. Although we have a nice formula for the pricing problem, the evaluation
of the seller or buyer price is a rather difficult computational problem. Another problem
appears in pricing of American options. We have to solve an optimal stopping problem
which in the case of large markets (when the number of assets d is large) is not feasible.

2 Credit Risk

This section is devoted to special contingent claims which may default. In the previous
section the contingent claim H was delivered at time T , in the case of European options
and its value was not a subject to any change. For a given time horizon T a general
defaultable contingent claim may be considered as a quintuple (X ,A, X̃ ,Z,τ) consisting
of the promised contingent claim X , promised dividends (At) payed up to default time,
recovery claim X̃ i.e. the value of contingent claim we obtain if we have default before
T and the recovery process Z, which is a certain recovery payoff at the time of default,
payed when default occurs before or at the maturity T . We denote by τ default time,
and by Ht = 1τ≤t the so called default process. The dividend process of the defaultable
contingent claim is of the form

Dt = Xd(T )1t≥T +
∫
]0,t]

(1−Hu)dAu +
∫

]0,t]
ZudHu, (17)

with Xd(T ) = X1τ>T + X̃1τ≤T . The problem is to price such dividend process. There
are two approaches which vary depending on the form of the default time. If τ is a
stopping time with respect to the available observation of the market i.e. first entry
time of the company wealth process to the so called bankruptcy region, we have a
structural approach. In this approach default time is predictable with respect to the
available observation. Consequently pricing of defaultable contingent claims leads to
stochastic control problems which can be solved for particular form of τ . An alternative
approach called intensity based approach assumes that we are not able to predict τ . Our
observation at time t is Gt = Ht ∨Ft . We are not able to solve such problem using
stochastic control methods. We consider therefore a martingale approach. It is not true
in general that a (Gt) martingale measure is also an (Ft) martingale measure. To obtain
an analytic formula we assume the so called invariance property which says that for
a (Gt) martingale measure Q∗: an (Ft ) martingale is also a (Gt) martingale. Let Q∗
be a given (Gt) martingale measure. Under suitable integrability properties (see [2] for
details) we have
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Theorem 5. The value of DCC (X ,A,0,Z,τ) at time t is equal to

1τ>tG
−1
t BtE

Q∗
{∫ T

t
B−1

u (GudAu−ZudGu)+ GT B−1
T X |Ft

}
, (18)

with Gt = P{τ > t|Ft}.

3 Term Structure Modeling

In the theory developed in Sect. 1 we had an opportunity to invest in assets and savings
account. We consider now investments in bonds also. By a zero coupon bond with
maturity T we mean a financial instrument paying to its holder one unit of cash at time
T . Let B(t,T ) be the price of such bond at time t ≤ T . We shall use the following
representation of B(t,T )

B(t,T ) := exp

(
−
∫ T

t
f (t,u)du

)
, (19)

where f (t,T ) is called an instantaneous forward rate. By the very definition clearly

B(T,T ) = 1. Assume that P∗ is an equivalent measure to P such that B(t,T )
Bt

is a P∗
martingale. From the martingale property we obtain

B(t,T ) = EP∗
{

e−
∫ T

t rudu|Ft

}
. (20)

There are various ways to model short term interest rate rt . In the so called single factor
models it is modeled as a solution of a certain one-dimensional stochastic differential
equation with one-dimensional Brownian motion as a single source of uncertainty. As
an example of such models, Vasicek’s model can serve in which

drt = (a−brt)dt +σdWt, (21)

or Cox-Ingersoll-Ross model (CIR) with

drt = (a−brt)dt +σ
√

rt dWt . (22)

We refer to [30] for more details. An alternative approach to term structure modeling is
based on the so called Heath-Jarrow-Morton (HJM) methodology. We assume that the
instantaneous forward rate is of the form

f (t,T ) = f (0,T )+
∫ t

0
α(u,T )du +

∫ t

0
σ(u,T )dWu. (23)

Consequently we can consider two kinds of martingale measures:

• martingale measure forward P̂, which is equivalent to P and under P̂, B(t,T )
B(t,T ∗) is a

martingale for T ≤ T ∗;
• martingale measure spot P∗, which is an equivalent to P measure such that B(t,T )

Bt
is

a P∗ martingale.

The absence or arbitrage corresponds to the existence of martingale forward or spot
measures (for details see [30]). In the case of bonds, similarly to the case of defaultable
contingent claims, there is a problem to study pricing of financial derivatives, i.e. op-
tions based on bonds with the use of stochastic control. Therefore methods preferable
in these cases are based on the martingale techniques.
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4 Portfolio Analysis

Portfolio analysis is an important area of mathematics of finance. On the other hand
this is a part of stochastic control theory. We shall consider two approaches: a static
one in which we optimize our portfolio with respect to a certain functional on a one
step horizon and a dynamic in which we have to find optimal portfolio for a longer time
horizon.

4.1 Static Portfolios

Static portfolio is closely related to the so called Markowitz theory. Harry Markowitz
(a Nobel prize winner in 1990) was the first economist who admitted the importance
to study risk in portfolio analysis (see [28]) considered as a variance of the portfolio
growth. Consider a discrete time asset model with prices such that its random rate of
return

ζi :=
Si(1)−Si(0)

Si(0)
. (24)

Given portfolio π = (π1,π2, . . . ,πd) representing portions of the wealth process invested
in assets and wealth process V (0) at time 0, under prices S(1), the wealth process V (1)
is such that the portfolio rate of return Rπ is of the form

Rπ :=
V π(1)−V(0)

V (0)
= π ·ζ , (25)

with · standing for scalar product. We are interested in maximization of the expected
portfolio rate of return. On the other hand following Markowitz we would like to min-
imize the risk considered as the variance of the portfolio rate of return. One can notice
that

Var(R(π)) = π∗Σπ , (26)

where ∗ stands for the transpose of the vector π and Σ is the covariance matrix of the
random vector ζ .

Consider now the so called Markowitz order�: we say that portfolio rate of return Rπ

is better than Rπ ′ or in other words, the strategy π is better than π ′, we write Rπ � Rπ ′ ,
whenever E(Rπ)≥ E(Rπ ′) and Var(Rπ)≤Var(Rπ ′).

The maximal elements in this order form a so called efficient frontier on the plane
(ERπ ,Var(Rπ)). To determine efficient frontier we maximize Var(Rπ) for fixed value
of E(Rπ). This is a quadratic optimization problem with linear constraints. If we admit
the so called short selling i.e. allow elements of π to be negative, such problem can be
solved using standard Lagrange multiplier method (see [29] or [42]). There is a number
of problems in implementation of the Markowitz theory. We need an estimate of the

• expected returns E {ζi}
• covariance matrix Cov(ζ ) = E

{
(ζ −Eζ )(ζ −Eζ )T

}
.

Although the covariance matrix can be well estimated based on historical data there
is a problem with the estimation of the expected returns. To overcome this we use a
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Black-Litterman (1990) approach based on Bayesian estimation and forecasted returns
(see [3]). Variance of the portfolio as a measure of risk does not seem to be satisfactory.
It penalizes in the same way positive events, when portfolio rate of return is above the
expected value and negative events, when it is below the expected value. The following
measure called value at risk VaRα(R(π)) was introduced to banking practice

VaRα(R(π)) = inf{x : P{R(π)+ x≤ 0} ≤ α} . (27)

This is the smallest value which added to the portfolio rate of return allows nonpositive
rate of return with probability below fixed level α . Although value at risk is very popu-
lar, still it has a number of deficiencies. First of all it measures only probability not the
size of inconvenient for us situation. Therefore as a better measure of risk CVaRα , i.e.
conditional VaR is considered called also expected shortfall

CVaRα(R(π)) = E {−R(π)|R(π)+VaRα(R(π))≤ 0} , (28)

which is the expected value of −R(π), given that R(π)+VaRα(R(π)) is nonpositive.
To evaluate VaR or CVaR we need to know a bit more about the distribution of

the random rate of return ζ . Typical assumption that it is multinomial normal is not
sufficient, since in practice the densities of such random variables have fat tails. To be
more precise one can quote the result of Fergusson and Platen [14] saying that daily log-
returns of the world stock market portfolio in 34 different currency denominations form
t-Student distribution with 3.94 degrees of freedom. The proper class to study seems
to be elliptical distributions introduced in [24]. We say that a d-dimensional random
vector X is elliptic, whenever its density is of the form

fX (x) = cd |D|−
1
2 gd

(
1
2
(x− μ)T D−1(x− μ)

)
, (29)

with suitable constant cd , positive definite matrix D, its determinant |D|, vector μ , and
a function gd . This class includes: normal, t-Student, Laplace, and logistic distributions
and is stable under linear transformations. Using a certain standardization procedure we
can calculate VaR and CVaR for elliptically distributed vector ζ (see [27]). Although
computation of the efficient frontier with VaR or CVaR as risk functions is more com-
plicated, for elliptically distributed ζ this is a numerically feasible problem.

4.2 Dynamic Portfolios

The aspect of risk is also important in the dynamic case. We shall now consider an-
other important optimization problem in mathematics of finance. We are interested to
maximize a satisfaction measure as an expected value of a certain utility function of the
wealth process. By utility function we mean a concave, increasing function U . A class
of HARA (hyperbolic absolute risk aversion) utility functions consisting of U(x) = xα

with α ∈ [0,1) and U(x) = lnx can serve as an example. We maximize terminal utility

E
{

B−1
T U(V (T ))

}
, (30)

or a functional with consumption (c(t))
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E

{
T−1

∑
t=0

B−1
t U1(c(t))+ B−1

T U2(V (T ))

}
, (31)

where U1, U2 are utility functions, or we look for growth optimal portfolios (GOP)
(see [35]):

E {ln(V (T ))} . (32)

Maximization of the cost functionals (25)-(27) is a stochastic control problem, which in
discrete time case can be solved using dynamic programming methods. The continuous
time case strongly depends on the form of model for asset prices. The following three
approaches can be considered

• solving Hamilton-Jacobi-Bellman equation,
• using convex analysis (duality approach),
• using stochastic maximum principle and BSDEs.

In the next subsections we sketch the main features of these approaches.

4.2.1 Hamilton-Jacobi-Bellman Equation
Let

w(t,v,z) = sup
π

{
e−
∫ T
t ruduU(Vπ ,v(T ))

}
(33)

be the value function of the terminal utility maximization. The wealth process dynamics
under (2) is of the form

dV π ,v(t) = V π ,vπ(t) · dS(t)
S(t−)

+Vπ ,vπ0(t)rtdt. (34)

The corresponding Hamilton-Jacobi-Bellman equation is of the form

0 = sup
π

[
∂w
∂ t

(t,v,z)− rtw(t,v,z)+L π ,vw(t,v,z)
]
, (35)

with boundary condition w(T,v,z) = U(v), and L π ,v being the generator of the pair
(V π ,v,z(t)). Main problem we have is that the value function (28) is not in the domain
of the generator L . Typical verification theorem says that, if we are given a solution
to Hamilton-Jacobi-Bellman equation (30), then it coincides with the value function
(28). One can extend the notion of solution to (30) introducing the so called viscosity
solutions and show that the value function w is a solution to (30) in this sense (for details
see [15]).

4.2.2 Martingale – Convex Analysis Approach
Consider now a terminal utility maximization problem (25), assuming for simplicity
rt = 0 for t ≥ 0 (i.e. Bt = 1) and that there are no economic factors (z(t)) in the asset
dynamics. We assume furthermore that the market is complete and the wealth process
{V π ,v(t)} is a martingale under dQ = ΛT dP, which is a given martingale measure.
Clearly

EQ {V π ,v}= v. (36)
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Let H (v) be the family of nonnegative random variables H such that E {ΛT H} = v.
Consider the following static optimization problem:

w(t,v) = sup
H∈H (v)

E {U(H)} . (37)

We want to find the solution H∗ to the static problem and the strategy π∗ such that
V π∗,v(T ) = H∗. Assume additionally that the utility function U satisfies the so called
Inada conditions: U ′(0) = ∞ and U ′(∞) = 0. Let I = (U ′)−1. Then

sup
v

[U(v)− vy] = U(I(y))− yI(y). (38)

Using (33) we therefore have

E {U(H)} ≤ E {U(I(yΛT )}− y(E [ΛT I(yΛT )]− v) . (39)

If we choose y∗ such that E [ΛT I(y∗ΛT )] = v, we obtain that

E {U(H)} ≤ E {U(I(y∗ΛT )} .

Let H∗ = I(y∗ΛT ). One can show that H∗ ∈H (v). Consequently we have that w(t,v) =
E {U(H∗)} and H∗ is a solution to the static problem (32). The optimal strategy π∗ is de-
termined from the martingale representation theorem as a strategy such that V π∗,v(T ) =
H∗. For details see [23].

4.2.3 Stochastic Maximum Principle
We now consider another approach to terminal utility maximization (25). Let Si(t) be a
solution to the following stochastic differential equation

dS(t) = S(t−)
(

ã(t)dt +σ(t)dB(t)+
∫

R
η(t,x)N̄(dt,dx)

)
, (40)

where N̄ is the Poisson random measure N for large jumps (taking values outside of the
unit ball) and coincides with the compensated Poisson measure dÑj = dNj−dλ jdt for
small jumps (with values from the unit ball). Under the strategy π the wealth process
V π ,v is a solution to the equation

V π ,v(t) = V π ,v(t−)(π0(t)rt +(1−π0(t))π(t) · ã(t)dt

+(1−π0(t))(π ·σ(t)dB(t)+η(t,x)N̄(dt,dx)).
(41)

We define the Hamiltonian of the form

M(t,v,π , p,q,y) = v(π0 · rt +(1−π0)π · ã(t)) · p +(1−π0)vtr((πIσ(t))T q)

+ (1−π0)v
∫

Rd

{
d

∑
j=1

(η j(t,x)y j(t,x))+ (η(t,x)p + vy)(I−Diag(χ))

}
dλ (x),

(42)

where I is the identity matrix and Diagχ is the diagonal matrix with χ j entries such that
χ j = 0 for large jumps and χ j = 1 for small jumps. Consider now the so called adjoint
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equation for (v,π), which is backward stochastic differential equation (BSDE) of the
form

d p(t) =−DvM(t,V (t),π(t), pt ,qt ,y(t))dt + qtdBt

+
∫

Rd
y(t−,x)N̄(dt,dx),

(43)

with terminal condition p(T ) = DvU(V (T )) and Dv standing for the derivative with
respect to v. By such solution we mean the triple (p,q,y) for which (38) holds. We have
(see [19] and [32]).

Theorem 6. (Stochastic maximum principle): If (π̂ ,V̂ ) is an admissible pair consisting
of the strategy π̂ and corresponding solution to (36) (we assume that there is a solution
V̂ for such π̂) and for the triple (p̂, q̂, ŷ) being the solution to BSDE (38) we have

M(t,V̂ (t), π̂(t), p̂(t), q̂(t), ŷ(t)) = sup
π

M(t,V̂ (t),π , p̂(t), q̂(t), ŷ(t)), (44)

for all t ∈ [0,T ] and M̂(v) := supπ M(t,v,π , p̂(t), q̂(t), ŷ(t)) is concave in v, then under
some regularity properties (π̂ ,V̂ ) is an optimal pair, i.e. π̂ is an optimal control while
V̂ is the optimal wealth process.

4.3 Long Time Portfolio Functionals

In an independent section we consider a family of long time growth optimal portfolios
(GOP). An infinite horizon analog of (27) is risk neutral GOP with the cost functional
(introduced by Kelly in [25])

liminf
T→∞

1
T

E {ln(V (T ))} . (45)

An alternative is to study risk sensitive GOP (see [1,31,40]) with the cost functional

limsup
T→∞

1
γT

lnE {(V (T ))γ} , (46)

where γ < 0 is the so called risk factor. Such cost function is motivated by the Taylor
expansion of the function F(γ) = lnE[eγY ]. Namely, we have F ′(0) = EY , F ′′(0) =
Var(Y ) and

1
γ

F(γ)≈ EY +
1
2
γVar(Y ). (47)

Consequently, maximizing risk sensitive cost functional (41) we maximize the long run
expected growth rate diminished by its variance (which is a measure of risk) with weight
−γ . Risk sensitive GOP is a difficult problem, since we have to study a multiplicative
cost functional. The risk factor γ is negative, however the theory with positive γ can be
considered as a dual problem to certain long time maximization of the portfolio growth
over a given benchmark (see [34] and [41]). Another important feature of the cost func-
tional (41) is that it asymptotically, as γ → 0 approximates risk neutral functional (40).
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The same property can be proved for the optimal values of these functionals (see [12]).
More generally, it can be shown (under certain assumptions) that risk neutral nearly op-
timal strategy is also nearly optimal for risk sensitive cost functional with risk factor γ
close to 0. The study of the cost functionals (40) and (41) becomes even harder when we
consider proportional, or fixed plus proportional transaction costs. From stochastic con-
trol point of view to study risk neutral GOP we have to solve additive Bellman equation,
while in the case of risk sensitive GOP we have to solve multiplicative Bellman equa-
tions. If we additionally assume fixed costs our strategies are of impulse form (see [33]).
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Abstract. We develop the framework for moving domain and geometry under
minimal regularity (of moving boundaries). This question arose in shape con-
trol analysis and non cylindrical PDE analysis. We apply here this setting to the
morphic measure between shape or images. We consider both regular and non
smooth situations and we derive complete shape metric space with characteriza-
tion of geodesic as being solution to Euler fluid-like equation. By the way, this
paper also addresses the variational formulation for solution to the coupled Euler-
transport system involving only condition on the convected terms. The analysis
relies on compactness results which are the parabolic version to the Helly com-
pactness results for the BV embedding in the linear space of integrable functions.
This new compactness result is delicate but supplies to the lack of convexity in
the convection terms so that the vector speed associated with the optimal tube (or
moving domain), here the shape geodesic, should not be curl-free so that the Eu-
ler equation does not reduce to a classical Hamilton-Jacobi one. For topological
optimization this geodesic construction is developed by level set description of
the tube, and numerical algorithms are in the next paper of this book.

1 Introduction to Shape Metrics

The shape analysis arose in the early 70’s from structural mechanics. The problem was
to find a best shape which would minimize the compliance (the work of external forces
in some elasticity modeling). Later this problem extended to optimal control-like situ-
ation in which the criteria to be extremized with respect to a geometrical shape had a
more general form which implied the study of the so called material and shape deriva-
tives for the solution of a partial differential equation with boundary conditions on the
unknown part of boundary [8,12,16]. Very soon the concepts of topology on general
shape families were introduced. The easiest one was the metric induced by the charac-
teristic function of the shape (in this case the shape is just defined up to a zero measure
subset). Besides this the thinner one was the Courant metric, see the book [6], which
consists, very roughly speaking, in minimizing ||T − Id||+ ||T−1− Id|| for each applica-
tion mapping a domain Ω0 onto another Ω1, the minimum being taken over the family
of such invertible mappings T . Indeed this metric is not known to be differentiable and
is very difficult to be computed in this very abstract and non geometrical form. Also
by the class of the regularity imposed to the mappings T in the theory, it derives that
the domains Ωi, i = 0,1 should be homeomorphic to one another and then should have
the same topology. The aim of this work is to relax this metric definition in order to
solve these two difficulties (i.e. give a geometrical interpretation with computational

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 144–166, 2009.
c© IFIP International Federation for Information Processing 2009
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algorithms using level set techniques and extend the metric to a larger class of domains
having different topologies) but also and mainly to construct the geodesics. This last
issue turns to have several applications in any kind of large deformation process but
also in image analysis. Through a Fully Eulerian equivalent definition we shall charac-
terize the geodesic tube as being built by solutions to a coupled incompressible Euler
flow-transport equation (in case of given volume constraint); meanwhile we furnish a
full mathematical result for such variational solution to the incompressible Euler flow
which turns to be a new result concerning Euler equation. The new metric we present
here, which in some sense is an extension of the Courant metric, is based on two main
considerations: Shapes (or geometry) are elements of some set, say F , and we con-
sider all connecting tubes in F . Then the metric is built on the shortest such tube which
furnishes the geodesic, solution to some differentiable variational problem. Also we
shall derive complete metric spaces. The concept of geodesic for usual metrics such as
Hausdorff distance, or L1 metric on characteristic functions makes no sense as there is
obviously no hope to derive any local uniqueness for a shortest path. Here also we still
have none such result (nor local stability for the geodesic) but this challenging question
is hopeful as been formulated in term of local uniqueness for flow Euler-like equation to
which we can add any viscosity perturbation. This paper follows [24,23] and the book
[13]. The connecting tube concept arose in moving domain analysis and non cylindrical
PDE study in the 90’s, for example in [3,7,9,12,19,4,2,11,10,14,21,17].

2 Connecting Tubes

We consider the time interval as being I = [0, 1] and D, a bounded domain in RN with
smooth boundary. We consider the set of characteristic functions

C = {ζ = ζ 2 ∈ L1(I×D)}. (1)

We consider the continuous elements

C 0 = C ∩C0(I,L1(D)). (2)

Being given two measurable subsets Ωi ⊂ D, i = 0,1, we consider the family of con-
necting tubes

T 0(Ω0,Ω1) = {ζ ∈ C 0 s.t. ζ (i) = χΩi , i = 0,1}. (3)

2.1 Moving Domain

For any ζ ∈ T 0(Ω0,Ω1) we consider the set Q = ∪0<t<1{t}×Ωt ⊂ RN+1 such that
ζ = χQ. This set Q is defined up to an N + 1 dimensional zero measure set.

2.2 Generic Framework for Metric

The idea for constructing metrics is to consider in this set the infimum of some norm
for the time derivative term ∂

∂ t ζ . Indeed if such term is zero then ζ is not time de-

pending. The general setting is to consider families of admissible tubes such that ∂
∂ t ζ ∈
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Lp(I,H (D)) for some Banach space H (D) of distributions over D, H (D) ⊂ D ′(D),
and consider the following connecting tubes:

T 0,p
H (Ω0,Ω1) = {ζ ∈ T 0(Ω0,Ω1), s.t.

∂
∂ t
ζ ∈ Lp(I,H (D))}, (4)

and for some p≥ 1, the metric in the following form:

dp,H (Ω0,Ω1) = Inf ζ∈T
0,p

H (Ω0,Ω1)

∫ 1

0
|| ∂
∂ t
ζ (t)||pH (D) dt. (5)

2.3 The Time Lp Regularity of ∂
∂ t ζ Implies ζ ∈ C 0

Let us define

C 0,p
H = {ζ ∈ C s.t.

∂
∂ t
ζ ∈ Lp(I,H (D))}. (6)

Proposition 1. Let p≥ 1, then C 0,p
H ⊂ C 0.

Proof. Obviously we have

C 0,p
H ⊂W 1,p(I,H (D))⊂C0(I,H (D))⊂C0(I,D ′(D)). (7)

So that from the following Lemma we get C 0,p
H ⊂ C0(I,L1(D)); then we see that the

continuity property of the tube derives directly from ζ ∈ C (that is ζ = ζ 2) and the
weak regularity of the time derivative measure ∂

∂ t ζ . �
Lemma 1. Let ζ = ζ 2 ∈ L1(I×D)∩C0(I,D ′(D)). Then ζ ∈C0(I,L1(D)).

Proof. Notice that

||ζ (t + s)− ζ (t)||L1(D) = ||ζ (t + s)− ζ (t)||2L2(D). (8)

Then it is enough to show that ζ ∈ C0(I,L2(D)). We begin by establishing the weak
L2(D) continuity: for any element f ∈ L2(D) consider∫

D
(ζ (t + s)(x)− ζ (t)(x)) f (x)dx =

∫
D
(ζ (t + s,x)− ζ (t,x))φ(x)dx

+
∫

D
(ζ (t + s,x)− ζ (t,x))( f (x)−φ(x))dx.

(9)

Let be given ε > 0, by the choice of φ ∈ D ′(D) (using here the density of D ′(D) in
L2(D)), we have

|
∫

D
(ζ (t + s,x)− ζ (t,x))( f (x)−φ(x))dx| ≤

∫
D
| f (x)−φ(x)|dx≤ ε. (10)

So we derive the continuity for the weak L2(D) topology. To reach the strong topology
it is sufficient now to consider the continuity of the mapping

t →
∫

D
|ζ (t,x)|2dx =

∫
D
ζ (t,x)dx = ((ζ (t),1))L2(D). (11)

�
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2.4 Metric and Pseudo Metric

We consider a set Ω̄ ⊂D and the family of all subsets in D which are reachable in finite
time from this Ω̄ by elements ζ , ζ describing the whole set C 0,p

H ; more precisely:

OΩ̄ = {Ω ⊂ D s.t. ∃ζ ∈ C 0,p
H with χΩ = ζ (1), χΩ̄ = ζ (0)}. (12)

Notice that by construction any pair of elements in this family is connected:

∀(Ω0,Ω1) ∈ (OΩ̄ )2, the family T 0,p
H (Ω0,Ω1) is not empty. (13)

Proposition 2. For any p ≥ 1, dp,H is a quasi-metric in the following sense; for any
elements Ωi, i = 0,1,2 in OΩ̄ we have:

i) dp,H (Ω0,Ω1) = 0 iff χΩ0 = χΩ1 ,
ii) dp,H (Ω0,Ω1) = dp,H (Ω1,Ω0),

iii) dp,H (Ω0,Ω2)≤ 2p−1(dp,H (Ω0,Ω1)+ dp,H (Ω1,Ω2)).

For p = 1, d1,H is a metric on OΩ̄ .

Proof. 1a) When χΩ1 = χΩ2 as elements in L1(D), we may choose ζ (t,x) = χΩ0(x)
so that the evolution domain Q is the cylinder Q = I×Ω0 and ∂

∂ t ζ = 0 realizes the
minimum and leads to the null distance.

1b) Conversely for any ε > 0 there exists some admissible tube ζε with ζε (i) = χΩi

and realizing the infimum up to ε . Then

||ζε (0)− ζε(1)||H (D) ≤
∫ 1

0
|| ∂
∂ t
ζε ||H dt ≤ (

∫ 1

0
|| ∂
∂ t
ζε ||pH dt)1/p ≤ ε1/p. (14)

We conclude χΩ1 = χΩ0 as elements in H (D).
2) The symmetry is obviously realized by reversing the time variable. Indeed if ζε re-

alizes the infimum up to ε then we consider ζ̃ ε(t,x) := ζε (1−t,x) and
∫ 1

0 || ∂∂ t ζ̃
ε ||pH dt =∫ 1

0 || ∂∂ t ζ
ε ||pH dt so that the element ζ̃ ε also approaches the infimum up to ε .

3) The triangle property derives from the following obvious generic construction: let
us consider two connecting tubes ζ k,ε ∈ T 0,p

H (D)(Ωk−1,Ωk),k = 1,2 and realizing the

infimum up to ε in the corresponding distances dH (D)(Ωk−1,Ωk).
We introduce the new element ζ̄ ε ∈T 0,p

H (D)(Ω0,Ω1) piecewisely defined as follows:

∀t ∈ [0, 1/2], ζ̄ ε (t) = ζ 1,ε (2t); ∀t ∈ [1/2, 1], ζ̄ ε (t) = ζ 2,ε(2t−1)∫ 1

0
|| ∂
∂̄ t
ζ̄ ε ||pH dt =

∫ 1/2

0
|| ∂
∂ t
ζ̄ ε ||pH +

∫ 1

1/2
|| ∂
∂ t
ζ̄ ε ||pH dt.

(15)

Now

∀t ∈ [0, 1/2],
∂
∂ t
ζ̄ ε (t) = 2

∂
∂ t
ζ 1,ε (2t); ∀t ∈ [1/2, 1],

∂
∂ t
ζ̄ ε(t) = 2

∂
∂ t
ζ 2,ε(2t−1). (16)

Then∫ 1

0
|| ∂
∂̄ t
ζ̄ ε ||pH dt = 2p

∫ 1/2

0
|| ∂
∂ t
ζ 1,ε (2t)||pH dt + 2p

∫ 1

1/2
|| ∂
∂ t
ζ 2,ε(2t−1)||pH dt. (17)
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By respective changes of variables s = 2t and s = 2t−1 we get∫ 1

0
|| ∂
∂̄ t
ζ̄ ε ||pH dt = 2p−1

∫ 1

0
|| ∂
∂ t
ζ 1,ε(s)||pH ds+ 2p−1

∫ 1

0
|| ∂
∂ t
ζ 2,ε(s)||pH ds. (18)

So that ∀ε > 0 we have:

dp,H (Ω0,Ω2)≤
∫ 1

0
|| ∂
∂̄ t
ζ̄ ε ||pH dt ≤ 2p−1(dp,H (Ω0,Ω1)+dp,H (Ω1,Ω2)+2ε). (19)

�

2.5 Banach Space of Bounded Measures

We make the choice, as Banach space of measures H (D), of the space of bounded
measure M1(D) and set

p ≥ 1, C p = {ζ ∈ C s.t.
∂
∂ t
ζ ∈ Lp(I,M1(D))} (20)

that is
C p = C ∩Lp(I,BV (D)). (21)

From the previous considerations we get C p ⊂C0(I,L1(D)), so that

p≥ 1, C p = {ζ ∈ C 0 s.t.
∂
∂ t
ζ ∈ Lp(I,M1(D))}. (22)

The set of connecting tubes is then:

T p(Ω0,Ω1) = {ζ ∈ C p s.t. ζ (i) = χΩi , i = 0,1}. (23)

Corollary 1. Let p≥ 1, then

dp(Ω0,Ω1) = Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂
∂ t
ζ (t)||p

M1(D)dt (24)

is a quasi metric. When p = 1, d1 is a metric.

2.6 Smooth Domains

When a tube ζ = χQ is smooth, Q = ∪0<t<1{t}×Ωt , with lateral boundary Σ =
∪0<t<1{t}× ∂Ωt being a Ck manifold in I×D ⊂ RN+1, with the integer k ≥ 1, there
exists a vector field V ∈C0(Ī,Ck(D,RN)) with < V (t,x),n∂D >= 0 such that Ωt is built
by the flow mapping of V , that is Ωt = Tt(V )(Ω0).

For example, when k = 2 the oriented distance function bΩt = dΩt − dΩ c
t
∈ C2(U )

where U is some tubular neighborhood of the boundary ∂Ωt , and we may choose
any extension of ∇bΩt (x)v(t)opt(x) as speed vector V (t,x), where the normal field is
nt(x) =∇bΩt (x), x ∈Γt = ∂Ωt , the projection pt onto Γt being defined in U by pt(y) =
y−bΩt(y)∇bΩt (y) (we recall that ∇bΩt opt(y) = ∇bΩt (y) for any y ∈U ).
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In the smooth situation the tube characteristic function ζ verifies the classical con-
vection problem (in weak sense):

ζ 2 = ζ ∈ L1(I×D),
∂
∂ t
ζ +∇ζ .V = 0, ζ (0) = χΩ0 . (25)

Then, without any restriction, we consider smooth domains generated from Ω0 by the
flow mapping Tt(V ) of smooth vector fields V (t,x), V ∈ Ek with:

Ek := {V ∈C0(Ī,Ck(D̄,RN)) s.t. ∀t ∈ Ī, 〈V (t),n∂D〉= 0}. (26)

The connecting condition is then: Ω1 = T1(V )(Ω0), where Tt(V ) is the flow mapping
of V at time t ∈ [0, 1]. We set Ωt := Tt(V )(Ω0) and ζ (t, .) = χΩt is an admissible con-
necting tube, moreover we have:

|| ∂
∂ t
ζ (t)||M1(D) =

∫
∂Ωt

| 〈V (t,x)),nt(x)〉 |dΓt(x) (27)

and the metric would turn to be

dk,p(Ω0,Ω1) = InfV∈Vk(Ω0,Ω1)

∫ 1

0
(
∫
∂Ωt(V )

| 〈V (t,x),nt(x)〉 |dΓt(x))pdt (28)

where Vk(Ω0,Ω1), defined below, stands for the family of connecting vector fields in
Ek, k ≥ 1. As the time regularity required for the classical flow analysis is just time
continuity (in the very definition of Ek) this connecting family turns to be stable through
the generic construction of connecting vector field V̄ similar to the point 3 in the proof
of Proposition 2.

Proposition 3. Let k≥ 1 and Ω̄ be open domain in D⊂ RN whose boundary Γ̄ is a Ck

manifold. We consider the family of smooth domains

Ok = {Ω ⊂ D s.t. ∃V ∈ Ek,Ω = T1(V )(Ω̄ )}. (29)

For any pair of elements Ωi, i = 0,1 in this family, the set of connecting fields

Vk := {V ∈ Ek s.t. T1(V )(Ω0) =Ω1} (30)

is never empty. Equipped with dp,k , the family Ok is a p-quasi-metric space (and a
metric space when p = 1).

An important point here is that in this family Ok, k≥ 1, all domains are homeomorphic
to the domains Ω̄ so that we cannot evaluate distance between domains with different
topologies, even when they are smooth. In order to escape from that classical difficulty
we shall develop two classes of issues. The first one is based on time piecewise reg-
ularity of domains leading to a good modeling for classical topological changes such
as holes collapse or holes creation (at a given time t0), and topological separations.
The second one is based on completing different approach relying on the fully eulerian
description of tubes with non smooth vector fields V .
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2.6.1 The Piecewise Smooth Situation
In some applications we shall consider the situation in which the time interval can be
decomposed in a finite number of time intervals of smoothness for the lateral bound-
aries: we consider tubes such that there exists an integer K (tube dependent) and time
partitions tk such that

I = ∪1≤k≤K Īk, Ik =]tk−1, tk[. (31)

We assume that for t ∈ Ik the lateral boundary Σk of the set Qk = ∪t∈Ik{t}×Ωt, Σk =
∪t∈Ik {t}× ∂Ωt , is a C1 manifold in RN+1. We consider the unit normal field νk to Σk,
out going to Qk on Σk. It can be uniquely written in the form

∀t ∈ Ik,∀x ∈ Γk, νk(t,x) =
1√

1 + vk(t,x)2
(−vk(t,x),nt(x)) ∈ Rt ×RN

x . (32)

The term vk(t, .) is called the normal speed of the moving boundary Γt . Obviously we
have

∀t ∈ Ik,∀φ ∈D(D),
〈
∂
∂ t
ζ , φ
〉

=
∫
Γt

vk(t,x)φ(x)dΓk(x). (33)

2.6.2 Behavior of the Normal Speed at t = ti
To discuss the global regularity of ∂

∂ t ζ we must choose the regularity of v at the junction
times tk. Consider〈

ζ ,− ∂
∂ t
Φ
〉

Lp(I,L2(D))×Lq(I)
=
∫ 1

0

∫
Ωt

− ∂
∂ t
Φ(t,x)dtdx

= Σk=1,...,K

∫ tk

tk−1

∫
Ωt

− ∂
∂ t
Φ(t,x)dtdx

(34)

But

∀t ∈ Ik,
∂
∂ t

∫
Ωt

Φ(t,x)dtdx =
∫
Γ k

t

Φ(t,x)vk(t,x)dΓ k
t (x)+

∫
Ωt

∂
∂ t
Φ(t,x)dx. (35)

So that assume that vk ∈ L1(Σk) and as ζ ∈C0(I,L1(D)) we have

∫ tk−ε

tk−1+ε

∫
Ωt

∂
∂ t
Φ(t,x)dtdx =

∫ tk−ε

tk−1+ε

∫
Γt

|vk(t,x)|dΓk(x)dt

+
∫

D
(ζ (tk−1 + ε,x)Φ(tk−1 + ε,x)− ζ (tk− ε,x)Φ(tk− ε,x))dx

→ε→0

∫ tk

tk−1

∫
Γt

|vk(t,x)|dΓk(x)dt +
∫

D
(ζ (tk−1,x)Φ(tk−1,x)− ζ (tk,x))Φ(tk,x))dx

(36)

Finally we get ∀Φ ∈D(I×D),〈
ζ ,

∂
∂ t
Φ
〉

= limε→0Σ1≤k≤K

∫ tk−ε

tk−1+ε

∫
D
ζ (t,x)Φ(t,x)dx

=
∫ 1

0

∫
∂Ωt

v(t,x)Φ(t,x)dΓt (x)dx

(37)
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This expression continuously extends for any Φ ∈ C0
c (I×D) (with compact support)

and we get

|| ∂
∂ t
ζ (t)||L1(I,M1(D)) =

∫ 1

0

∫
Γt

|v(t,x)|dΓt(x), (38)

and we have ∫ 1

0
|| ∂
∂ t
ζ (t)||p

M1(D) dt =
∫ 1

0
(
∫
Γt

|v(t,x)|dΓt(x))p dt. (39)

2.6.3 “Piecewise Metric”
Proposition 4. Let Ω̄ be a smooth subset in D , k ≥ 1, p ≥ 1. We consider the family
Opwk(Ω̄) of all subsets connected to Ω̄ by piecewise Ck tubes in the previous sense and
verifying the following qualification condition:∫ 1

0

∫
Γt

|v(t,x)|dΓt(x)dt < ∞. (40)

Then equipped with

δ p
pwk(Ω0,Ω1) = Inf ζ∈T p

pwk(Ω0,Ω1)

∫ 1

0
(
∫
Γt

|v(t,x)|dΓt(x))p dt, (41)

the family O p
pwk(Ω̄) is a p-quasi-metric space. For p = 1, the family O1

pwk(Ω̄ ) equipped

with δ 1
pwk, is a metric space.

Notice that a sufficient condition for deriving the condition (40) is that the lateral surface
Σ would have a finite H n−1 Hausdorff measure (that is to say that the tube Q has a finite
perimeter in I×D). Indeed we have:

PI×D(Q) =
∫ 1

0

∫
Γt

√
1 + v2dΓt(x)dt ≥

∫ 1

0

∫
Γt

|v|dΓt(x)dt. (42)

2.6.4 Level Set Formulation
LetΨ (t,x) ∈C1(Ī× D̄) and consider

∀t ∈ I,Ωt = {x ∈ D s.t.Ψ(t,x) > 0}, Γt = {x ∈D s.t.Ψ(t,x) = 0}. (43)

An important case is when the function has the following form

Ψ (t,x) =Φ(x)− t then Ωt = {x ∈ D s.t. Φ(x) > t}. (44)

In this very situation, from Sard’s theorem we know that for almost every t in I the
manifold Γt is of class C1 which does not insure the tube associated to Ψ to be pwk
(even for k = 1).

In the general setting the qualification condition (40) would write

∫ 1

0

∫
Γt

(
| ∂∂ tΨ |
||∇xΨ || )(t,x)dΓt(x) < ∞. (45)
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We shall restrict our study to the pwk level set tubes, i.e. functions Π(t,x) such that the
generated tubes verify the previous pw1 condition: ∃tk,t0 = 0 < t1 < ... < tK = 1 such
that on each open interval Ik =]tk−1, tK [,

∃αk(.) ∈C0(Ik) s.t. ∀x ∈ Γt , ||∇xΨ(t,x)|| ≥ αk(t) > 0. (46)

In this class the previous piecewise tubes analysis applies and we get an associated
metric in terms of level sets. In the proof of the following result the only main point is
to verify that in the generic construction for the triangle axiom (point 3 in the proof of
Proposition 2) the connecting element ζ̄ ε piecewisely defined is still in the class. Indeed
ζ̄ ε is associated to the function

Ψ̄ ε(t,x) =

{
Ψ1,ε(2t,x), if 0 < t < 1/2,

Ψ2,ε(2t−1,x), if 1/2 < t < 1.
(47)

Obviously this element Ψ̄ ε verifies the two conditions (45) and (46) if the element
ζ i,ε , i = 0,1 does.

Proposition 5. Let Ω̄ ⊂ D be a C1 domain. We consider the family

Ppw1 = {Ψ ∈C1(Ī× D̄), s.t. ∃tk, 1≤ k≤ KΨ , s.t.

Σk = {(t,x)|t ∈ Ik,Ψ (t,x) = 0}
is a C1 manifold in RN+1 andΨ verifying (45), (46)}.

(48)

We also consider the family generated by this class of piecewise C1 (pw1) functions:

OLS = {Ω = {x ∈ D|Ψ(1,x) > 0},Ψ ∈Ppw1}. (49)

Obviously two elements Ωi, i = 0,1 in this family are connected by tube in the form of
(47) and we denote

TLS(Ω0,Ω1) = {Ψ ∈Ppw1 s.t. Ωi = {x ∈ D |Ψ (i,x) > 0}}. (50)

We set

δLS(Ω0,Ω1) = InfΨ∈TLS(Ω0,Ω1)

∫ 1

0

∫
Ψ(t)−1(0)

| ∂
∂ t
Ψ(t,x)| ||∇xΨ(t,x)||−1 dΓt(x)dt.

(51)
Then equipped with δLS the family OLS is a metric space.

2.6.5 Submetrics
In the level set setting it is easy to describe some connecting elements. Assume that
Ωi = {x ∈ D |Φi(x) > 0}, i = 0,1. Then let

Ψ(t,x) = ρ(t)Φ1(x)+ (1−ρ(t))Φ0(x), with ρ ∈C1(Ī), ρ(i) = i, i = 0,1, (52)

and we could consider the “submetric” associated to these connections, for different
admissible such functions ρ .



Complete Shape Metric and Geodesic 153

2.6.6 Level Set Metric Associated to Subspace
In the definition (48) of the set of “potential” functions Ψ we can limit to a given
subspace of functions in the following way: let E be a closed subspace in C1(Ī× D̄), we
consider

PpwE = Ppw1∩E (53)

As PpwE ⊂ Ppw1 we get the similar inclusions OLSE ⊂ OSL, TLSE(Ω0,Ω1) ⊂ TLS

(Ω0,Ω1) and the family OLSE is equipped with the metric δLSE ≤ δLS.
In the specific situation where the Banach space is of finite dimension we consider

the Galerkin-like construction. Let E1, .....EM be M given elements in C1(D̄) and con-
sider

E = {e(t,x) = Σ1≤m≤Mλm(t)Em(x) |λ ∈C1(I)M}. (54)

When the elements Em(x) are chosen as polynomial functions the surfaces Γt are alge-
braic surfaces (or curves) in D and it is an open question to characterize conditions on
the coefficients λ in order that the tube satisfies (45) and (46). Nevertheless in applica-
tions it seems difficult to violate them.

3 Complete Metric: Existence of Geodesic

We address now the question concerning the infima in the previous metrics (or pseudo
metrics) we described in the previous sections. Let ζ n be a minimizing sequence in
(24). The element ∂

∂ t ζ
n remains bounded in Lp(I,M1(D)). Then when p > 1, there

exists a subsequence, still denoted ∂
∂ t ζ

n and weakly converging to an element ω ∈
Lp(I,M1(D)). The difficulty is now to get ω in the form ω = ∂

∂ t ζ
∗ for some admissible

ζ ∗. As ζ n ∈ C 0, it remains bounded as an element of C in Lr(I×D), and this for any
1≤ r≤∞. Let us consider a subsequence ζ n weakly convergent to some element ρ . By
continuity of the derivative in weak topologies we derive that ω = ∂

∂ t ρ but a priori the
element ρ is not a characteristic function. Indeed we shall have ρ ∈ C , that is ρ2 = ρ , if
and only if ρn strongly converges to ρ in L1(I×D). Nevertheless, this strong L1(I×D)
convergence would not imply the limiting element ρ to be in C 0. Now, if this element
is not time continuous the connection makes no sense and it could not be a candidate
for geodesic.

3.1 Compacity Arguments and Complete Metric

3.1.1 Surface Tension-Like Term
We shall propose now several changes in the metric (or p-quasi-metric) to derive this
strong convergence. First of all let us denote that if we complete in (24) the metric by
the following, with σ > 0 (a surface tension term)

d(Ω0,Ω1) = Inf ζ∈T (Ω0,Ω1)Lσ (ζ ) (55)

with

Lσ =
∫ 1

0
|| ∂
∂ t
ζ ||M1(D) dt +σ

∫ 1

0
||∇xζ (t)||M1(D,RN) dt, (56)

then we could derive, for any smooth minimizing sequence, ζ n(t,x) = χQn , the tubes
with bounded perimeter in I×D as we have.
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3.1.2 Boundedness of the Perimeter in I×D⊂ RN+1

Proposition 6. Assume the evolution domain Q to be smooth, then

PI×D(Q)≤
∫ 1

0
|| ∂
∂ t
ζ ||M1(D) dt +

∫ 1

0
||∇xζ (t)||M1(D,RN) dt . (57)

Proof

PI×D(Q) =
∫
Σ

dΣ =
∫ 1

0

∫
Γt

√
1 + v2 dΓt(x)dt

PI×D(Q)≤
∫ 1

0

∫
Γt

(1 + |v|)dΓt(x)dt =
∫ 1

0
(PD(Ωt)+

∫
Γt

|v|dΓt)dt,

(58)

but

PD(Ωt) = ||∇ζ (t)||M1(D,RN),

∫
Γt

|v|dΓt(x) = || ∂
∂ t
ζ ||M1(D). (59)

So that (57) is true when the domain is smooth. �

3.1.3 Metric on the Closure of Smooth Tubes Would Fail
We could hope that (57), by some density arguments, extends for all tubes ζ ∈ L1

(I,BV (D))∩W 1,1(I,M1(D)) (which is an open question) or define the metric as fol-
lows. Introducing the family of smooth tubes, say C ∞ (elements ζ = χQ with lateral
boundary being a C∞ manifold in I×D⊂ RN+1), set

d∞σ (Ω0,Ω1) = Inf ζ∈C∞Lσ (ζ ). (60)

Any minimizing sequence, from (57) would remain bounded in BV (I×D) and then
there shall exist a subsequence strongly converging in L1(I×D) so that the limiting
element will be ζ ∈ C with

||ζ ||BV (I×D) ≤ limin fn→∞ ||ζn||BV(I×D), (61)

and by similar weak l.s.c. arguments on each term of Lσ we would see that the limit-
ing element ζ ∈ C would be a minimizer of Lσ on some closure of C ∞. Nevertheless
this element would not belong to C 0, and being not continuous in time the connection
property ζ ∈ T (Ω0,Ω1) could be lost and this candidate for metric would fail, while
having a minimizer. Finally we understand that even if the inequality (57) extends to a
more general family of tubes it would not help for deriving metric with geodesic.

An important point here is that any expression in the form of

d̃σ (Ω0,Ω1) = Inf ζ∈T Lσ (ζ ) (62)

would fail to be a metric because it violates the first metric axiom. Indeed the new
perimeter term σ

∫ 1
0 PD(Ωt)dt cannot be zero.
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3.2 Compactness Results

We have seen that the compactness result deriving from the boundedness of Lσ , i.e.
boundedness in the Banach space

B1 = L1(I,BV (D))∩W 1,1(I,M1(D))⊂C(I,M1(D)) (63)

is not enough.

Proposition 7. Consider ζn bounded in L1(I,BV (D)), together with ∂
∂ t ζn bounded in

Lp(I,M1(D)) for some p > 1. Then there exists a subsequence, still denoted ζn, and
an element ζ ∈ L1(I,BV (D))∩W 1,1(I,M1(D)) ⊂ C0(I,M1(D)) such that ζn strongly
converges to ζ in L1(I,L1(D)) with ∂

∂ t ζ ∈ Lp(I,M1(D)) verifying ||ζ ||L1(I,BV (D)) ≤
limin f ||ζn||L1(I,BV (D)) and || ∂∂ t ζ ||Lp(I,M1(D)) ≤ limin f || ∂∂ t ζn||Lp(I,M1(D)).

Continuity ζ ∈W 1,1(I,M1(D)) implies ζ ∈C0(I,L1(D)). Moreover ζ (t,x)= ζ 2(t,x),
a.e.(t,x) ∈ I×D and ζ ∈C0(I, L1(D)) implies that the mapping:

t ∈ Ī → p(t) := ||∇xζ (t)||M1(D,RN ) is s.c.i. (64)

Proof. See [24,13]. �
Also a similar compacity result can be derived with p = 1, leading to a metric, but
assuming some uniform integrability for the || ∂∂ t ζ ||M1(D) term.

Proposition 8. Consider ζn bounded in L1(I,BV (D)) together with ∂
∂ t ζn bounded in

L1(I,M1(D)), and assume there exists an element θ ∈ L1(I) such that

a.e. t ∈ I, || ∂
∂ t
ζn ||M1(D) ≤ θ (t). (65)

Then there exists a subsequence, still denoted ζn, and an element ζ ∈ L1(I,BV (D))∩
W 1,1(I, M1(D)) ⊂ C0(I,M1(D)) such that ζn strongly converges to ζ in L1(I,L1(D))
with ∂

∂ t ζ ∈ Lp(I,M1(D)) verifying ||ζ ||L1(I,BV (D)) ≤ limin f ||ζn||L1(I,BV (D)) and

|| ∂∂ t ζ ||Lp(I,M1(D)) ≤ limin f || ∂∂ t ζn||Lp(I,M1(D)).

Continuity ζ ∈W 1,1(I,M1(D)) implies ζ ∈C0(I,L1(D)). Moreover ζ (t,x)= ζ 2(t,x),
a.e. (t,x) ∈ I×D and ζ ∈C0(I, L1(D)) implies that the mapping:

t ∈ Ī → p(t) := ||∇xζ (t)||M1(D,RN) is s.c.i. (66)

Proof. See [21,13]. �

3.3 Use of Compactness

The idea is to consider the following expression for the shape metric defined by (24):

d̄ p(Ω0,Ω1) = Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂
∂ t
ζ (t)||M1(D)dt + ”

∫ 1

0
|p′ζ (t)|p dt”. (67)



156 J.-P. Zolésio

Indeed the last term is not finite in general as it would imply p(t) to be time continuous
which is known to be false (the perimeter is l.s.c. only and may “jump down” as in
the celebrate “Camembert entamé” example: take a circular cheese Camembert with
radius R and subtract a radial triangular part with angle α , the perimeter is p(α) and
limin fα→0 p(α) = (2π + 2)R > p(0) = 2πR).

We relax this term by introducing (see [23]) the “time capacity” term

θ p(ζ ) = Inf μ∈K p(ζ )

∫ 1

0
|μ ′(t)|p dt, (68)

with the closed convex set

K p(ζ ) = {μ ∈W 1,p(I) s.t. ||∇xζ (t)||M1(D,RN) ≤ μ(t) a.e. t ∈ I}. (69)

Then the metric is

d̄ p(Ω0,Ω1) := Inf ζ∈T p(Ω0,Ω1)

∫ 1

0
|| ∂
∂ t
ζ (t)||M1(D)dt +θ p(ζ ). (70)

3.4 Complete Quasi-Metric by Level Set Formulation

Let p > 1 and Ωi, i = 1,2 be two arbitrary measurable subsets in D. Let

K(Ω1,Ω2) = {φ ∈ L2(I,H1(D))∩W 1,1(I,L2(D)),
∂
∂ t
φ ∈ Lp(I,L2(D)),

Ω1 = {Φ(0, .) > 0},Ω2 = {Φ(1, .) > 0}}.
(71)

Notice that K(Ω1,Ω2)⊂ C0(Ī,L2(D)). We set

dLS,p(Ω1,Ω2) := Inf φ∈K(Ω1,Ω2)

∫ 1

0
(α ||φ(t)||2H1(D) + ||

∂
∂ t
φ(t)||p

L2(D))dt. (72)

Proposition 9. Let 1 < p ≤ 2 . Equipped with dLS,p , the family of measurable subsets
in D is a complete quasi-metric space.

4 Fully Eulerian Metric de

For non smooth vector fields, being given the element Ω0 in D the problem (25) may
have no solution or several solutions (depending on the weak regularity of the speed
vector field V ). As soon as V satisfies the minimal regularity V ∈ V p where

p≥ 1, V p = {V ∈ Lp(I×D,RN), divV ∈ Lp(I×D),

〈V,n∂D〉= 0 in W−1,p(∂D)}, (73)

the following classical convection problem

ζ ∈ L1(I×D),
∂
∂ t
ζ +∇ζ .V = 0, ζ (0) = χΩ0 (74)
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possesses solution (the proof is classically done by the Galerkin method when V ∈
L2(I×D) and (divV )+ ∈ L∞(I,L2(D)), see [20], and there is no uniqueness result for
the solution, which a priori is not an element in C , nor in C 0). The element ζ is not
a characteristic function but is time continuous, ζ ∈ C0([0,1],H−1/2(D)). Indeed we
consider weak solutions to problems (25) and (74), in the following sense:

∀φ ∈C∞(Ī× D̄) s.t. φ(1, .) = 0,∫ 1

0

∫
D
ζ (− ∂

∂ t
φ −div(φV ))dxdt =

∫
D
χΩ0φ(0,x)dx.

(75)

The time derivative, for any solution to (74) (then to (25)) verifies:

∂
∂ t
ζ = div(ζV )− ζ divV ∈ Lp(I,W−1,p(D)), (76)

so that
ζ ∈W 1,p(I,W−1,p(D))⊂C0(Ī,W−1,p(D)). (77)

Notice that weak solutions to (74) can also be obtained by the following technique,
without any L∞ requirement on the divergence:

Proposition 10. Let p > 1 and V ∈ V p defined in (73), let Vn ∈ V p∩C∞(Ī× D̄,RN))
such that Vn → V strongly in V p. Consider the element ζn(t) = χΩ0oTt(Vn)−1 ∈ C 0 ,
a unique solution to the characteristic convection problem (25). There exists a sub-
sequence, still denoted ζn which weakly converges in Lp(I ×D) to an element ρ ∈
Lp(I×D)∩W 1,1(I,W−1,p(D)) ⊂C0(Ī,W−1,p(D)) , a solution to the convection prob-
lem (74) or (75).

Proof. We pass to the limit in the weak form (75). �
The concept of distance between the two sets Ωi, i = 0,1 is associated to the “shortest
path”, that is now introduced through the Euler description using the product space
approach which is described in [23] and [24]. Let us consider the eulerian connecting
tubes defined as set of couples (ζ ,V ) solving the convection equation:

T p
e (Ω0,Ω1) = {(ζ ,V ) ∈ C ×V p solving (25) with ζ (i) = χΩi , i = 0,1}. (78)

4.1 Eulerian Metrics

Let

de
p(Ω0,Ω1) := Inf (ζ ,V )∈T p(Ω0,Ω1)

∫ 1

0
(||V (t)||p

Lp(D,RN) + |divV(t)|pLp(D))dt, (79)

and

d̄ p
e (Ω0,Ω1) := Inf (ζ ,V )∈T p

e (Ω0,Ω1)

∫ 1

0

∫
D
(|V |p +(divV)p)dxdt +θ p(ζ ). (80)
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Proposition 11. For p≥ 1, de
p is a quasi-metric in the following sense:

i) de
p(Ω0,Ω1) = 0 iff χΩ0 = χΩ1 ,

ii) de
p(Ω0,Ω1) = de

p(Ω1,Ω0),
iii) de

p(Ω0,Ω2)≤ 2p−1(de
p(Ω0,Ω1)+ de

p(Ω1,Ω2)).

Moreover, equipped with d̄e
p the family Oe

Ω̄ is a complete quasi-metric space and for
p = 1, equipped with de

1, it is a complete metric space.

4.2 BV Regularity of the Field V

When the speed vector field V verifies some BV properties, V ∈ L2(I,BV (D)N)
([1,23,24]), there is a unique tube associated to V , then we do have an application
V → ζV and with such regularity on V we can revisit the complete metric d being
completely delivered of the non differential perimeter and curvature terms that we were
obliged to introduce in order to apply the compacity theorems. From the tube analysis
we consider several interesting choices for the space regularity of the speed vector field
(together with its divergence field). Let

E 1,1 = {V ∈ L1(I×D,RN) s.t. divV ∈ L1(D),V.nD ∈W−1,1(∂D)}, (81)

and let E be a closed subspace in BV (D)∩E 1,1 such that any element V ∈ E verifies
the required assumptions. A first example is, when working with prescribed volume for
the moving domain

E0 = {V ∈ BV (D,RN)∩E 1,1, s.t. divV = 0 a.e. (t,x) ∈ I×D} (82)

V be a divergence-free vector field with divV = 0, V ∈ L1(I,E0), where E = BV (D,RN)
or any closed subspace (for example E = {V ∈ H1

0 (D,RN), s.t. divV = 0}). An obvious
metric is to consider the set

V (Ω1,Ω2) = {V ∈ E 1,1 s.t. V, divV ∈ Lp(I,E0), s.t. ζ0 = χΩ1 ,ζ (1) = χΩ2}

δE0(Ω1,Ω2) = InfV∈V (Ω1,Ω2)

∫ 1

0
||V (t)||E0 dt.

(83)

As V is divergence-free the previous boundedness assumption on the divergence is ver-
ified and to each V a tube ζV is associated through the convection. Then we get:

Proposition 12. Let E be any subspace of BV (D,RN)∩E 1,1 such that any element V
satisfies assumptions of Theorem 2.12 of [24], for example E = E0. Then equipped with
δE, the family OE

Ω0
is a metric space.

p > 1,dE0(Ω1,Ω2) = InfV∈V (Ω1,Ω2)||V ||Lp(I,E0) + ||
∂
∂ t

V ||L1(I,M1(D,RN)). (84)

Proposition 13. Let E be any subspace of BV(D,RN)∩E 1,1, such that any element V
whose divergence satisfies assumptions of Theorem 2.12 of [24]. Then equipped with
dE the family OE

Ω0
is a complete quasi-metric space.
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4.2.1 Geodesic Characterization via Transverse Field Z
In that setting we are concerned with smooth vector fields Z(s,t,x) ∈ RN such that
Z(s,0,x) = Z(s,1,x) = 0 so that the extremities (for t = 0, t = 1) of the perturbed
tube Qs := Ts(Z(s))(Q) are preserved. The parameter s appears here as a perturba-
tion parameter. Indeed the family of connecting tubes T p

e (Ω0,Ω1) is not a linear
space nor equipped with any manifold structure. Nevertheless we can describe some
tangential space T(ζ ,V )T

p
e (Ω0,Ω1) at any element (tube) (ζ ,V ): if (ζ ,V ) ∈ T then

ζoTs(Z(t))−1,V s) ∈T where [ d
dsV s]s−0 = Zt +[Z,V ]. The previous study for the trans-

verse field [18,13,11] implies that for given such a vector field Z, with divxZ(s,t,x) = 0
we get the admissible perturbation of the field V in the form V + sW (s,t,x), with

W (s,t,x) =
∂
∂ t

Z(s, t,x)+ [Z, V ] . (85)

More precisely, define the Lipschitz-continuous connecting set:

V 1,∞(Ω1,Ω2) = {V ∈ L1(I,W 1,∞)∩E 1,1, s.t. ζV ∈ T̄ (Ω1,Ω2)} (86)

and the set of smooth transverse vector fields:

Z = {Z(t,x) ∈C∞
comp(I×D,RN)}. (87)

Notice that such Z verifies Z(0, .) = Z(1, .) = 0 on D.

Proposition 14. Let V ∈ V (Ω1,Ω2) and Z(t,x) ∈ Z . The transformation T =
Ts(Z)oTt(V ) maps Ωt(V ) onto Ω s

t := Ts(Z)(Ωt (V )) so that

∀s, ∀Z, V s(t,x) =
∂
∂ t

T oT −1

= (
∂
∂ t

Ts(Z(t))+ DTs(Z(t)).V (t))oTs(Z(t))−1 ∈ V 1,∞(Ω1,Ω2).
(88)

Lemma 2
∂
∂ s

V s(t,x)|s=0 =
∂
∂ t

Z(t)+ [Z(t), V (t)]. (89)

Corollary 2. Consider a functional J (V ) = j(ζV ) and let V̄ be a minimizing element
of J on V (Ω1,Ω2). Then we have

∀Z ∈Z ,
∂
∂ s

J (V̄ s)s=0 = J′(V̄ ; (
∂
∂ s

V s)s=0) = J ′(V̄ ;
∂
∂ t

Z(t)+ [Z(t), V (t)])≥ 0.

(90)

That variational principle extends to vector field V ∈ E for which the flow mapping
Tt(V ) is poorly defined. The element ζV ∈H c is uniquely defined. For any Z ∈Z the
perturbed ζ s

V := ζV oTs(Z)−1 ∈ T̄ (Ω1,Ω2); on the other hand the following result is
easily verified.

Proposition 15. ζ s
V = ζV s with

V s(t, .) :=−DT−1
s (−Z(t)).(V (t)oTs(Z(t))−1)− ∂

∂ t
Ts(−Z(t)) (91)
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In other words:

∂
∂ t
ζ +∇ζ .V = 0 implies

∂
∂ t

(ζoTs(Z(t))−1)+∇(ζoTs(Z(t))−1).V s = 0. (92)

It can also be verified that the expression (89) for the derivative of the field still holds
true so that the variational principle (90) is valid for any functional J minimized over
the lipschitzian connecting family V 1,∞(Ω1,Ω2). And more generally, without assum-
ing V in E we have:

Proposition 16. Let (ζ ,V ) ∈ T p,q(Ω1,Ω2), then for all s > 0 and Z ∈Z we have:

(ζoTs(Z)−1, V s) ∈T p,q(Ω1,Ω2). (93)

In order to get a differentiable metric, we could consider

d̃(Ω1,Ω2) = InfV∈V (Ω1,Ω2)

∫ 1

0
(||V (t)||H1

0∩E0
+ || ∂

∂ t
V ||L2(D))dt. (94)

Equipped with d̃, OΩ0 would be a complete metric space but d̃ fails to be a metric
because of the triangle axiom. The advantage is that now the associated functional is
differentiable with repect to V , then we can apply the previous variational principle
with transverse vector field Z. Let V̄ be a minimizer in V (Ω1,Ω2) for d̃(Ω1,Ω2). Then
∀Z ∈Z we have:∫ 1

0
{||V(t)||−1 〈V (t),Zt +[Z,V ]〉+ |V ′(t)|−1((V ′(t)(Zt + Z,V )′))}dt = 0, (95)

where 〈,〉 is the H1
0 (D,RN) inner product while ((,)) is the L2(D,RN) one. In order

to recover a differentiable complete metric, we introduce again the constraint on the
perimeter as in the beginning and set

δH1(Ω1,Ω2) = InfV∈V (Ω1,Ω2)

∫ 1

0
||V (t)||H1

0∩E0
dt. (96)

The optimality condition is: ∀Z ∈Z

s.t.
∫ 1

0

∫
Γt

H(t)〈Z(t),nt〉dΓt dt = 0,∫ 1

0
||V (t)||−1 〈V (t),Zt +[Z,V ]〉dt = 0. (97)

4.2.2 Euler Equation for Geodesics

∃c(t), P s.t.
∂
∂ t

(||V (t)||p−2V (t))+ ||V(t)||p−2(DV (t).V + D∗V.V (t))

= ∇P + cχΓt divΓt (nt)nt .

(98)
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That is,

(p−2)||V ||p−4((V,
∂
∂ t

V ))+ ||V(t)||p−2 (
∂
∂ t

V + DV(t).V + D∗V.V(t))

= cχΓt divΓt (nt)nt ,
(99)

which can be written as (with V̄ = ||V ||−1 V , Π = P−1/2|V |2):

divV = 0,

∂
∂ t

V +(p−2)((
∂
∂ t

V, V̄ ))V̄ = DV.V = ∇Π + c(t)||V ||2−p χΓt divΓt (nt)nt .
(100)

5 Variational Formulation for Euler Flow

As an application of the previous results we give a variational formulation for Euler
incompressible flow with tube boundary condition. We consider two non miscible fluids
and the tube describes the densities distribution. For shortness in this section we assume
p = 2 and we consider the quadratic situation with divergence-free vector fields. Then
we consider the Hilbert space

H = {V ∈ L2(I×D,RN) s.t. divV = 0, V.nD = 0}. (101)

We consider any Banach space E1 ⊂ L1(D,RN) with continuous and compact inclusion
mapping.

Examples are E1 = BV (D,RN) or E1 = W ε,p(D,RN), for ε < 1/p, 1≤ p <∞, which
is, for p = 2, the Hilbert space E1 = Hε(D,RN), for ε < 1/2.

The set of tubes under consideration is then

T = {(ζ ,V ) ∈ L2(I×D)×H, s.t. ζ = ζ 2,

∇ζ ∈ L1(I,E1), ζt +∇ζ .V = 0, ζ (τ) = χΩ1}.
(102)

Notice that the convection equation implies that as ζt = div(−ζ V ), then we get:

ζ ∈C0(I,W−1,1(D,RN)). (103)

Proposition 17. The set T of tubes is non empty.

5.1 Tube-Variational Principle

We introduce the optimal control view point: the state equation will be the convection
equation (102) while we shall minimize a “Tube-Energy” cost functional governed by
this equation. The regularizing term is a surface tension-like term. As in the previous
sections this term will be needed in order to make use of the previous parabolic com-
pactness of tubes. Indeed we shall introduce a kind of “density” perimeter θh associated
with L1(I,Hε (D)) norm of the tube ζ , which turns to be differentiable under smooth
transverse fields perturbations ζs.
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5.1.1 Given Initial Domain Ω0 ⊂ D
Being given α > 0, β > 0, we consider the following Tube-Energy functional:

E (ζ ,V ) = 1/2
∫ τ

0

∫
D
(α ζ (t,x)+β ) |V (t,x)|2dxdt +σ

∫ τ

0
||ζ (t)||E1 dt

−
∫ τ

0

∫
D

V0(x).V (t,x)dxdt.
(104)

Theorem 1. The functional E reaches its minimum on the set T of tubes.

Proof. We consider a minimizing sequence (ζn,Vn) ∈ T . There exist subsequences
such that Vn ⇀ V , weakly in L2(I×D) and ζn → ζ strongly in L1(I×D). Effectively as
(ζn)t = div(−ζn Vn ), we have:

||ζn||L1(I,E1) ≤M1, ||(ζn)t ||L2(I ,W−1,1(D,RN)) ≤M2. (105)

The conclusion derives from the compacity result. From this strong L1 convergence we
derive that ζ 2 = ζ . We consider the weak formulation for the convection problem (102):

∀ψ ∈C1(I× D̄, RN), ψ(0, .) = 0,∫ τ

0

∫
D
ζn(−ψt −∇ψ .Vn)dxdt =−

∫
Ω1

ψ(0,x)dx,
(106)

in which we can pass to the limit and conclude that (ζ ,V ) ∈T . Moreover, the element
(ζ ,V ) is classically a minimizer as the three terms are weakly lower semi- continuous,
respectively for each weak topology. �

5.2 Euler Equation Solved by the Minimizer

In order to analyze the necessary conditions associated with any minimizer of E over
the set T we introduce transverse transformations of the tube.

5.2.1 Transverse Field
Let us consider a perturbation parameter s ≥ 0 and any smooth horizontal non au-
tonomous vector field over RN+1 (s being the evolution parameter for a dynamic in
RN+1)

Z (s, t,x) = (0, z(s, t,x)) ∈ Rr× RN , (107)

such that Z (s, 0,x) = 0 .
For any element (ζ ,V ) ∈ T we consider the perturbed tube (ζ s, V s), where:

ζ s(t,x) := ζoTs(Z t)(x))−1

V s(t,x) = (D(Ts(Z t)−1)−1.(V (t)oTs(Z t)−1− ∂
∂ t

(Ts(Z t)−1)).
(108)

Indeed we can show

Proposition 18. ∀(ζ ,V ) ∈T , ∀Z , the previously defined elements (ζ s,V s) ∈T .
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5.2.2 Transverse Derivative
Assume that divxZ t = 0, then:∫

D
(αζ s(t,x)+β )|V s(t,x)|2 dx =

∫
D
(αζ (t,x)+β )|V s(t)oTs(Z t)(x)|2 dx (109)

So that the optimality of the element (ζ ,V ) writes:

1/s(E (ζ s, V soTs)−E (ζ ,V ))≥ 0. (110)

Now the following quotient has a strong limit in L2(I×D):

V soTs−V
s

=
d
ds

[V soTs(Z t)]s=0

=
d
ds

[(D(Ts(Z t)−1)−1.(V (t)− ∂
∂ t

(Ts(Z t)−1)oTs(Z t))]s=0

=
d
ds

[(D(Ts(Z t)oTs(Z t)−1.(V (t)− ∂
∂ t

(Ts(Z t)−1)oTs(Z t))]s=0

=
∂
∂ t

Z(t)+ DZ(t).V(t) ∈ L2(I×D,RN),

(111)

where we always denote Z(t)(x) = Z(t,x) := Z t(0,x) (that is at s = 0). Indeed we know
that if V was smoother, say V ∈ L2(H1(Ω)), we would have:

∂
∂ s

[V s]s=0 = Zt +[Z(t),V (t)] := HV .Z, (112)

where the Lie bracket is [Z,V ] = DZ.V−DV.Z, so we would get the previous expression
for the derivative of V soTs(Z t), as (V soTs)s = (V s)s + DV s.DZ(t).

5.3 Necessary Condition

5.3.1 Quadratic Term of E
The quadratic term may be decomposed as follows:∫ τ

0

∫
D
((αζ s +β )|V s|2− (αζ +β )|V |2)/sdxdt

=
∫ τ

0

∫
D
((αζ +β )(|V soTs|2−|V |2)/sdxdt

=
∫ τ

0

∫
D
((αζ +β )(V soTs +V)(V soTs−V)/sdxdt

→ 2
∫ τ

0

∫
D
((αζ +β )V.(

∂
∂ t

Z(t)+ DZ(t).V(t))dxdt

=−2

〈
∂
∂ t

((αζ +β )V )+ ”D((αζ +β )V).V”,Z

〉
D ′×D

+
∫

D
(αχΩτ +β )V(τ).Z(τ)dx−

∫
D
(αχΩ0 +β )V(0).Z(0)dx,

(113)

where
”D((αζ +β )V).Vi” = ∂ j((αζ +β )ViVj) ∈W−1,1(D). (114)

In fact we shall consider Z such that Z(τ, .) = 0 over D.
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5.3.2 The Linear Term
Let V0 be any given element in RN . We have:∫ τ

0

∫
D

V0.(V s(t,x)−V (t,x))/sdxdt

=
∫ τ

0

∫
D

V0.(V s(t)oTs(Z t)(x)−V (t,x))/sdxdt

+
∫ τ

0

∫
D

V0.(V s(t)oTs(Z t)(x)−V(t,x))/sdxdt

→
∫ τ

0

∫
D

V0.(Zt(t,x)+ DZ(t,x).V (t,x))dxdt

=
∫ τ

0

∂
∂ t

(
∫

D
V0.Z(t,x)dx)dt =

∫
D

V0.Z(τ,x)dx−
∫

D
V0.Z(0,x)dx.

(115)

5.3.3 “Perimeter” Term in E
Assume formally that the minimizer element ζ is smooth enough, so that with the choice
E1 = BV (D,RN) we have the surface tension term in the classical form:

σ
∫ τ

0
||∇ζ ||M1(D,RN)dt = σ

∫ τ

0
PD(Ωt)dt. (116)

We would obtain as derivative with respect to s:

σ
∫ τ

0

∫
Γt

ΔbΩt 〈Z(t),nt〉dΓt dt. (117)

In the interesting case where E1 =W ε,p(D) we introduce the term, for any given “small”
h > 0:

θh(ζ ) :=
∫ τ

0
(
∫

D×D
ρh(||x− y||) |ζ (x)− ζ (y)|p

||x− y||N+ε p dxdy)dt, (118)

where ρh is any smooth positive function such that ρ(z) = 0 for |z| ≥ 2h, and ρ(z) = 1
for |z| ≤ h.

As a result we have

Lemma 3 ∫ τ

0
||ζ (t)||W ε,p(D) dt ≤ τ(meas(D)+

1
hN+ε p meas(D)2)+θh(ζ ). (119)

So that it is enough to choose the surface tension term in the form σ θh(ζ ). This term
turns to be always differentiable with respect to the transverse perturbations as follows:

θh(ζoTs(Z )−1)

=
∫ τ

0

∫
D×D

ρh(||Ts(Z )(x)−Ts(Z )(y)||) |ζ (x)− ζ (y)|p
||Ts(Z )(x)−Ts(Z )(y)||N+ε p dxdydt

(120)
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So that, for a.e. t in I we have (with θh(ζ ) =
∫ τ

0 θ (ζ (t))dt )

∂
∂ s
θh(ζ s(t))p

s=0

=
∫

D×D
ρh(||x− y||) |ζ (x)− ζ (y)|p

||x− y||N+ε p+2 〈x− y,Z(t,x)−Z(t,y)〉dxdy

+
∫

D×D
ρ ′h(||x− y||) |ζ (x)− ζ (y)|p

||x− y||N+ε p 〈x− y,Z(t,x)−Z(t,y)〉dxdy

(121)

As ||x− y|| ≤ h in the previous integrals, we have:

Z(t,x)−Z(t,y) = DZ(t,x + δ (t)(y− x)).(y− x). (122)

There exists a measure μh(Γ (t) supported by

Δh(Σ) = ∪0<t<τ{t}× (∪x∈∂Ωt B(x,h)), (123)

such that

< μh, Z >=
∂
∂ s
θh(ζ s(t))p

s=0. (124)

In some sense when h→ 0 the measure converges to the mean curvature of the moving
boundary Γt .

6 Euler-Convection Problem

We have

Theorem 2. Let V0 be any given element in RN. Then any minimizer (ζ ,V ) to the func-
tional E over the family of tubes T solves the following problem:

∂
∂ t
ζ +∇ζ .V = 0, ζ (0) = χΩ0 , ζ (τ) = χΩ1 , (125)

∃Π s.t.
∂
∂ t

((αζ +β )V ) + D((αζ +β )V).V +∇Π = μh. (126)

Moreover we have
V (0) = (V0 +∇θ )/(αζ (0)+β ). (127)

References

1. Ambrosio, L.: Lecture notes on optimal transport problems. In: Colli, P., Rodrigues, J.F.
(eds.) Mathematical Aspects of Evolving Interfaces. Lecture Notes in Math., vol. 1812, pp.
1–52. Springer, Berlin (2003)

2. Cannarsa, C., Da Prato, G., Zolésio, J.-P.: The damped wave equation in a moving domain.
Journal of Differential Equations 85, 1–16 (1990)

3. Cuer, M., Zolésio, J.-P.: Control of singular problem via differentiation of a min-max. Sys-
tems Control Lett. 11(2), 151–158 (1988)

4. Delfour, M.C., Zolésio, J.-P.: Structure of shape derivatives for non smooth domains. Journal
of Functional Analysis 104(1), 1–33 (1992)



166 J.-P. Zolésio

5. Delfour, M.C., Zolésio, J.-P.: Shape analysis via oriented distance functions. Journal of Func-
tional Analysis 123(1), 129–201 (1994)

6. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. Analysis, Differential Calculus, and
Optimization. SIAM, Philadelphia (2001)

7. Delfour, M.C., Zolésio, J.-P.: Oriented distance function and its evolution equation for initial
sets with thin boundary. SIAM J. Control Optim. 42(6), 2286–2304 (2004)

8. Desaint, F.R., Zolésio, J.-P.: Manifold derivative in the Laplace-Beltrami equation. Journal
of Functional Analysis 151(1), 234–269 (1997)

9. Dziri, R., Zolésio, J.-P.: Dynamical shape control in non-cylindrical Navier-Stokes equations.
J. convex analysis 6(2), 293–318 (1999)

10. Dziri, R., Zolésio, J.-P.: Dynamical shape control in non-cylindrical hydrodynamics. Inverse
Problem 15(1), 113–122 (1999)

11. Dziri, R., Zolésio, J.-P.: Tube derivative of non-cylindrical shape functionals and variational
formulations. In: Glowinski, R., Zolésio, J.-P. (eds.) Free and Moving Boundaries: Analysis,
Simulation and Control. Lecture Notes in Pure and Applied Mathematics, vol. 252. Chapman
& Hall/CRC (2007)

12. Kawohl, B., Pironneau, O., Tartar, L., Zolésio, J.-P.: Optimal shape design. Lecture Notes in
Mathematics, vol. 1740. Springer, Heidelberg (2000)

13. Moubachir, M., Zolésio, J.-P.: Moving shape analysis and control: application to fluid struc-
ture interaction. Pure and Applied Mathematics series. CRC, Boca Raton (2006)

14. Da Prato, G., Zolésio, J.-P.: Dynamical programming for non cylindrical parabolic equation.
Sys. Control Lett. 11 (1988)

15. Da Prato, G., Zolésio, J.-P.: Existence and control for wave equation in moving domain.
In: Stabilization of Flexible Structures. LNCIS, vol. 147, pp. 167–190. Springer, Heidelberg
(1990)

16. Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analy-
sis. Springer Series in Computational Mathematics, vol. 10. Springer, Berlin (1992)

17. Zolésio, J.-P.: Introduction to shape optimization and free boundary problems. In: Delfour,
M.C. (ed.) Shape Optimization and Free Boundaries. NATO ASI, Series C: Mathematical
and Physical Sciences, vol. 380, pp. 397–457 (1992)

18. Zolésio, J.-P.: Shape differential with non smooth field. In: Borggard, J., Burns, J., Cliff,
E., Schreck, S. (eds.) Computational Methods for Optimal Design and Control. Progress in
Systems and Control Theory, vol. 24, pp. 426–460. Birkhauser, Basel (1998)

19. Zolésio, J.-P.: Variational principle in the Euler flow. In: Leugering, G. (ed.) Proceedings of
the IFIP-WG7.2 Conference, Chemnitz. Int. Series of Num. Math., vol. 133 (1999)

20. Zolésio, J.-P.: Weak set evolution and variational applications. In: Shape Optimization and
Optimal Design. Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 415–442.
Marcel Dekker, N.Y. (2001)

21. J.-P. Zolésio: Set Weak Evolution and Transverse Field, Variational Applications and Shape
Differential Equation INRIA report RR-464 (2002),
http://www-sop.inria.fr/rapports/sophia/RR-464

22. Zolésio, J.-P.: Shape topology by tube geodesic. In: Information Processing: Recent Mathe-
matical Advances in Optimization and Control, pp. 185–204. Presses de l’Ecole des Mines
de Paris (2004)

23. Zolésio, J.-P.: Control of moving domains, shape stabilization and variational tube formu-
lations. International Series of Numerical Mathematics, vol. 155, pp. 329–382. Birkhauser
Verlag, Basel (2007)

24. Zolésio, J.-P.: Tubes analysis. In: Glowinski, R., Zolésio, J.-P. (eds.) Free and Moving Bound-
aries: Analysis, Simulation and Control. Lecture Notes in Pure and Applied Mathematics,
vol. 252. Chapman & Hall/CRC (2007)

http://www-sop.inria.fr/rapports/sophia/RR-464


 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Part II 
 

 
Regular Papers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Galerkin Strategy for Level Set Shape Analysis:
Application to Geodesic Tube

Louis Blanchard1 and Jean-Paul Zolésio2

1 INRIA, Sophia Antipolis, France
louis.blanchard@sophia.inria.fr

2 CNRS and INRIA, 2004 route des Lucioles, BP 93,
06902 Sophia Antipolis Cedex, France

jean-paul.zolesio@sophia.inria.fr

Abstract. In this paper, we consider the geodesic tube characterization using
a Galerkin-Level Set strategy. The first section is devoted to the analysis of a
geodesic tube construction between two sets through the definition of the shape
metric. In the second section, we define the Galerkin-Level Set strategy in shape
analysis. This new variational formulation associated to a Hilbert space metric
for shape identification problem consists in parameterizing the level set func-
tion in a finite dimensional subspace spanned by linear independent functions.
Consequently, this method is more focused on topological changes than on high
accuracy for the boundary evaluation as in a traditional level set formulation. In
the third section, we use the Galerkin-Level Set formulation applied to a geodesic
tube construction between two sets, through the calculus of the shape derivative
of the normal speed. Finally, this geodesic tube construction is validated by a
numerical experiment.

1 Tube Formulation Using Moving Domain

In this section, we briefly recall the concept of connecting tube, introduced in [6]. Let
us consider D as a bounded universe in R

n and two open sets domains Ω0, Ω1 ⊂ D.
We denote the initial domain by Ω0 and the final domain by Ω1, and consider the tube
connecting Ω0 with Ω1 defined by the n + 1 dimensional graph of an n-dimensional
moving domain: see Fig. 1. Consequently, considering the time interval I = [0,1], we
define the tube evolution Q by product space, using the cylinder I×Ω as follows:

Q =
⋃

0≤t≤1

{t}×Ωt (1)

Moreover, we denote by Σ the lateral boundary of the tube, defined by the following
expression: Σ =

⋃
0≤t≤1{t}×Γt, where Γt denotes the boundary of Ωt . The characteris-

tic function of the tube is defined by ζ (t,x)
de f
= χΩt (x) and verifies ζ 2 = ζ . Following

[4,5], the set of connecting tubes between Ω0 and Ω1 is defined by:

T (Ω0,Ω1) =
{
ζ ∈ L∞(I×D) and piecewise C1 ,

[
ζ (0) = χΩ0

ζ (1) = χΩ1

}
(2)

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 169–184, 2009.
© IFIP International Federation for Information Processing 2009
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Fig. 1. Continuous tube between Ω0 and Ω1

The outgoing unitary normal vector field on the lateral boundary of the tube Σ is
defined by

ν(t,x) =
1√

1 + v(t,x)2

(−v(t,x)
n(t,x)

)
(3)

where n(t,x) is the normal field to Γt and v(t,x) is an intrinsic geometric entity called
the normal speed of the boundary Γt .

Definition 1. In order to characterize the minimal tube path between Ω0 and Ω1, we
introduce the function:

d(Ω0,Ω1) = inf
ζ∈T (Ω0,Ω1)

∫ 1

0

∫
Γt

|v(t,x)| dΓ (x) dt (4)

Lemma 1. The function d(Ω0,Ω1) is a metric.

Proof. We have to prove that the function d(Ω0,Ω1) satisfies:

I. (Identity of indiscernibles) d(Ω0,Ω1) = 0 ⇔ Ω0 =Ω1.

• If Ω0 =Ω1 then v = 0 and d(Ω0,Ω1) = 0.
• If d(Ω0,Ω1) = 0 that implies ∀t ∈ [0,1] , v(t, .) = 0 and the time space normal

(3) is ν(t, .) = (0,n(t, .)). Then the tube is a cylinder and the domain Ωt does
not depend on time, consequently Ω0 =Ω1.

II. (Symmetry) d(Ω0,Ω1) = d(Ω1,Ω0).
• If we consider the backward tube ζ̂ (t) = ζ (1− t) ∈ T (Ω1,Ω0), that implies

v̂(t, .) =−v(1− t, .), and consequently d(Ω0,Ω1) = d(Ω1,Ω0).
III. (Triangle inequality) d(Ω0,Ω2)≤ d(Ω0,Ω1)+ d(Ω1,Ω2).

• We consider three open sets domains in D: Ωi ∀i ∈ [0,2]. We denote by ζ1 ∈
T (Ω0,Ω1) the tube connecting Ω0 to Ω1, and by ζ2 ∈ T (Ω1,Ω2) the tube
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connecting Ω1 to Ω2. Let us consider the piecewise C1 tube defined, through
its characteristic function ζ̂ as follows:

ζ̂ (t,x) =
{

ζ1(2t,x) if 0≤ t ≤ 1
2

ζ2(2t−1,x) if 1
2 ≤ t ≤ 1

(5)

Consequently, the normal speed on the boundary Γt is given by:

v̂(t,x) =
{

2v1(2t,x) if 0≤ t ≤ 1
2

2v2(2t−1,x) if 1
2 ≤ t ≤ 1

(6)

Now by construction ζ̂ ∈ T (Ω0,Ω2) is a tube connecting Ω0 to Ω2 and we
get:

d(Ω0,Ω2) ≤
∫ 1

2

0

∫
Γt

|v̂(t,x)|dΓ (x) dt +
∫ 1

1
2

∫
Γt

|v̂(t,x)|dΓ (x) dt

≤
∫ 1

2

0

∫
Γt

|2v1(2t,x)|dΓ (x) dt +
∫ 1

1
2

∫
Γt

|2v2(2t−1,x)|dΓ (x) dt

≤
∫ 1

0

∫
Γt

|v1(r,x)|dΓ (x) dr +
∫ 1

0

∫
Γt

|v2(u,x)|dΓ (x) du

(7)

and as v1 (resp. v2) is the infimum in the definition of d(Ω0,Ω1) (resp.
d(Ω1,Ω2)) up to ε > 0, then ∀ε ∈ R

∗
+ we get:

d(Ω0,Ω2) ≤ d(Ω0,Ω1) + d(Ω1,Ω2) + 2ε (8)
�

1.1 Tube Formulation Using a Level Set Method

In this paper, we use a level set parameterization for the domain evolution. In this
method the moving domain Ωt is defined by the set of points in D for which the level
set function Φ is positive:

Ωt =
{

x ∈ D |Φ(t,x) > 0
}

(9)

We denote by Φ0 the level set function of the domain Ω0, and by Φ1 the level set
function of the domain Ω1:

Ω0 =
{

x ∈ D |Φ0(x) > 0
}

, Ω1 =
{

x ∈ D |Φ1(x) > 0
}

(10)

Using the level set formulation, the set of connecting tubes between the initial domain
Ω0 and the final domain Ω1 becomes:

TLS(Ω0,Ω1) =

⎧⎨⎩
Φ(t,x) ∈ L1(I,C0(D̄))
χΩt ∈ C0(Ī,L1(D))
Φ piecewise C0

,

[
Φ(0,x) =Φ0(x)
Φ(1,x) =Φ1(x)

⎫⎬⎭ (11)
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We consider a decomposition of the time interval I into a finite number of time intervals
in which the level set function Φ is continuous. Therefore Φ is piecewise C0, which
means that there exists an integer N and an increasing sequence: (t0 = 0 < t1 < · · · <
tN = 1) with a decomposition of the time interval as follows: I =

⋃
1≤k≤N

Īk where Ik =

]tk,tk+1[, such that:

∀k ∈ [1,N] ,Φ(t, .)
∣∣∣
Ik
∈ C0(Ik) (12)

Definition 2. The metric d defined by the equation (4) can be expressed, in term of the
level set function Φ as follows:

d(Ω0,Ω1) = inf
Φ∈TLS(Ω0,Ω1)

∫ 1

0

∫
Γt=Φ−1(0)

|∂t Φ(t,x)|
‖∇Φ(t,x)‖ dΓ (x) dt (13)

Indeed, using the level set formulation we have the relations:

n(t,x) =
−∇Φ(t,x)
‖∇Φ(t,x)‖ , V(t,x) = −∂tΦ(t,x)

∇Φ(t,x)
‖∇Φ(t,x)‖ (14)

Then the normal speed of the boundary Γt turns into:

v(t,x) = 〈V(t,x) , n(t,x)〉Rn =
∂tΦ(t,x)
‖∇Φ(t,x)‖ (15)

where 〈., .〉Rn denotes the inner product in R
n.

Assumption 1. The function d(Ω0,Ω1) expressed in term of the level set function Φ ,
is also a metric.

1.2 Tube Formulation Using the Federer Theorem

In this section, we consider the tube formulation through the level set method described
previously, and we consider an approximation of the metric d using the Federer measure
decomposition theorem.

Theorem 1 (Federer measure decomposition). Let us consider a functional F∈L1(D),
and ∀h > 0 the domain

Uh(Γt) =
{

x ∈ D | ‖Φ(t,x)‖ < h
}

(16)

Then we have: ∫
Uh(Γ )

F(x)dx =
∫ +h

−h

(∫
Φ−1(z)

F(x)
||∇xΦ(x)|| dΓ (x)

)
dz (17)

Corollary 1. Assuming the mapping:

z ∈ [−h, +h]→
∫
Φ−1(z)

F(x)
||∇xΦ(x)|| dΓ (18)

to be continuous, we obtain:∫
Γ

F(x)
||∇xΦ(x)|| dΓ (x) =

1
2h

∫
Uh(Γ )

F(x)dx + o(1), h→ 0 (19)
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Definition 3. Using the Federer measure decomposition theorem and according to the
previous corollary, we consider an approximation of the metric d denoted by dh and
defined as follows:

dh(Ω0,Ω1) = inf
Φ∈TLS(Ω0,Ω1)

∫ 1

0

1
2h

∫
Uh(Γt )

|∂t Φ(t,x)| dx dt (20)

Lemma 2. The approximation of the metric d(Ω0,Ω1), denoted dh(Ω0,Ω1) is also a
metric.

Proof. We have to prove that the function dh(Ω0,Ω1) satisfies:

I. (Identity of indiscernibles) dh(Ω0,Ω1) = 0 ⇔ Ω0 =Ω1.
• If Ω0 =Ω1 then ∂tΦ = 0 and dh(Ω0,Ω1) = 0.
• If dh(Ω0,Ω1) = 0 that implies ∀t ∈ [0,1] , ∂tΦ(t, .) = 0 in

Dh =
⋃

0≤t≤1{t}×Uh(Γt) and that implies Φ =Φ(x) ∈Dh. Consequently, the

boundaryΓt
de f
=
{

x ∈D |Φ(x) = 0
}

does not depend on time, andΩ0 =Ω1.

II. (Symmetry) dh(Ω0,Ω1) = dh(Ω1,Ω0).
• If we consider the backward tube Φ̂(t, .) =Φ(1− t, .) ∈T (Ω1,Ω0), that im-

plies ∂tΦ̂(t, .) =−∂tΦ(1− t, .), and dh(Ω0,Ω1) = dh(Ω1,Ω0).
III. (Triangle inequality) dh(Ω0,Ω2)≤ dh(Ω0,Ω1)+ dh(Ω1,Ω2).

• We assume three open sets domains in D : Ωi ∀i ∈ [0,2]. We denote by Φ1 ∈
TLS(Ω0,Ω1) the tube connectingΩ0 toΩ1, and byΦ2 ∈TLS(Ω1,Ω2) the tube
connecting Ω1 to Ω2. Let us consider the piecewise C1 tube defined, through
its level set function Φ as follows:

Φ̄(t,x) =
{

Φ1(2t,x) if 0≤ t ≤ 1
2

Φ2(2t−1,x) if 1
2 ≤ t ≤ 1

(21)

Consequently, the time derivative of level set functionΦ on the domain Uh(Γt)
is given by:

∂tΦ̄(t,x)(t,x) =
{

2∂tΦ1(2t,x) if 0≤ t ≤ 1
2

2∂tΦ2(2t−1,x) if 1
2 ≤ t ≤ 1

(22)

Now by construction Φ̄ ∈TLS(Ω0,Ω2) is a tube connectingΩ0 to Ω2 and we
get:

dh(Ω0,Ω2)≤
∫ 1

2

0

1
2h

∫
Uh(Γt )

|∂tΦ̄(t,x)|dx dt +
∫ 1

1
2

1
2h

∫
Uh(Γt )

|∂tΦ̄(t,x)|dx dt

≤ 1
2h

[∫ 1
2

0

∫
Uh(Γt )

|2∂tΦ1(2t,x)|dx dt +
∫ 1

1
2

∫
Uh(Γt )

|2∂tΦ2(2t−1,x)|dx dt

]

≤
∫ 1

0

1
2h

∫
Uh(Γt)

|∂tΦ1(r,x)|dx dr +
∫ 1

0

1
2h

∫
Uh(Γt )

|∂tΦ2(u,x)|dx du

(23)
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and as Φ1 (resp. Φ2) is the infimum in the definition of dh(Ω0,Ω1) (resp.
dh(Ω1,Ω2)) up to ε > 0. Then ∀ε ∈ R

∗
+, we get

dh(Ω0,Ω2) ≤ dh(Ω0,Ω1) + dh(Ω1,Ω2) + 2ε (24)

�

2 Shape Identification Problem

We address the question concerning the shape identification of a given smooth domain.
A commonly used approach in shape analysis consists in choosing a level set formula-
tion for the evolution of moving domain. The main advantage of a level set formulation
concerns the easy generation of topological changes during the evolution process.

2.1 Shape Identification Using a Level Set Method

Let us denote by Ω∗ ∈ D a smooth domain to identify and by χΩ∗ , its characteristic
function satisfying:χΩ∗ ∈ Hs(D) , 0 < s < 1

2 . Following [1], the evaluation of the dis-
tance between the given domain Ω∗ and the moving domain Ωt is made by the use of a
metric associated to the Hilbert space Hs denoted δs(Ω ,Ω∗) and defined by:

∀s ∈]0,
1
2
[ , δs(Ω ,Ω∗) = ‖χΩ − χΩ∗ ‖Hs(D)

= ‖χΩ − χΩ∗ ‖L2(D) + ‖χΩ − χΩ∗ ‖s

(25)

where
‖χΩ‖2

s =
∫

D

∫
D

|χΩ (x)− χΩ (y)|2 G(x,y) dxdy (26)

and where the kernel function defined by: G(x,y) = |x− y|−(n+2s) is singular on the
diagonal Δ = {(x,x)⊂ D×D, x ∈D}.

2.1.1 Shape Analysis via the Speed Method
Finally, we use the concept of speed method from shape analysis [3] to compute the
shape derivative of the metric δs(Ω ,Ω∗) which corresponds to a gradient direction for
the underling shape optimization problem:

min
Ω∈D

δs(Ω ,Ω∗) (27)

Definition 4. Let us consider an open set domain Ω where Γ = ∂Ω is of class C1.
We define the eulerian derivative of the functional J in the direction of a perturbation
vector field W ∈C1

0(D;D) by

dJ(Γt ,W) =
∂J
(
Γ (t + ε)

)
∂ε

∣∣∣
ε=0

(28)

Lemma 3. The funtional δs(Ω ,Ω∗) is shape derivative for perturbation vector fields
V ∈C1

0(D,D), and expressed as follows:
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d δs
(
(Ω ,Ω∗);V

)
=
∫
Γ

F(x)〈V(0,x),n(x)〉Rn dΓ (x) (29)

where dΓ is the arclength measure on Γ and where:

F(x) =
1−2χΩ∗(x)

2‖χΩ − χΩ∗ ‖L2(D)
+

∫
D

[
1−2χΩt(y) + 2

[
χΩ∗(y)− χΩ∗(x)

]]
G(x,y)dy

‖χΩ − χΩ∗ ‖s

(30)

Proof. See [1]. �

2.2 Shape Identification Using a Galerkin-Level Set Strategy

Generally, the parameterization of the level set function Φ is done by the oriented dis-
tance function denoted bΩt , see [2,3] for references:

Φ(t,x) = −bΩt (x) (31)

where bΩ (x) is also called signed distance function and is defined as follows:

bΩ (x) = dΩ (x) − d�Ω (x) with dA(x) = inf
y∈A
|y− x| (32)

The choice of the oriented distance function for the parameterization of the level set
function can be necessary for having a high accuracy of the boundary approximation.
However, the choice of the oriented distance function implies an expansive compu-
tational cost owing to the complexity of its evaluation and imposes a reinitialization
during the evolution process. Consequently, according to the fact that in this paper we
focus on topological changes without considering the approximation of the boundary
as an essential point, we use a new approach called Galerkin-Level Set method.

2.2.1 Galerkin-Level Set Strategy
The Galerkin-Level Set strategy consists in parameterizing the level set function in a
finite dimensional subspace E , spanned by linear independent functions defined over D

: E = {E1, . . . ,Em}. We denote by Λ(t) =
(
λ1(t), . . . ,λm(t)

)
the parameter vector of

the Galerkin decomposition of Φ in the basis E :

Φ(t,x) =
m

∑
k=1

λk(t)Ek(x) (33)

Consequently, using the Galerkin decomposition of the level set function, the parame-
terization of the moving domain Ω(t) is defined as follows:

Ω(t) =
{

x ∈ D | Φ(t,x) =
m

∑
k=1

λk(t) Ek(x) > 0
}

(34)



176 L. Blanchard and J.-P. Zolésio

2.2.2 Level Set Equation
In a level set formulation, the moving domain evolves by advecting the level set function
Φ following the flow of the shape gradient. Then, in a traditional level set formulation,
the transport equation is a Partial Differential Equation (PDE) of Hamilton-Jacobi type:{

∂t Φ(t,x)+ρ F(x)‖∇Φ(t,x)‖ = 0 , ρ > 0
Φ(0,x) = Φ0(x) , (t,x) ∈ [0,τ]×Ωt

(35)

Remark 1. The main advantage of the Galerkin-Level Set method compared to the tra-
ditional level set formulation concerns the level set equation that turns, in the Galerkin-
Level Set method, into a system of ordinary differential equations.

Lemma 4. Using the Galerkin-Level Set strategy (34), the level set equation turns into
a system of m ordinary differential equations:{

∂tΛ(t) + ρF (t,x) = 0 , ρ > 0
Λ(0) = Λ0 , (t,x) ∈ [0,τ]×Ωt

(36)

where

F (t,x) =

( ∫
Γt

F(x)
‖∇Φ(t,x)‖E1(x)dΓ (x), . . . ,

∫
Γt

F(x)
‖∇Φ(t,x)‖Em(x)dΓ (x)

)
(37)

Proof. According to the Galerkin-Level Set strategy, consisting in the decomposition
of function Φ (33), the shape derivative of the functional δs(Ω ,Ω∗) with respect to the
vector of parametersΛ(t) turns into:

d δs
(
(Ω ,Ω∗) ; V

)
=

m

∑
k=1

∂tλk(t)
∫
Γt

F(x)
Ek(x)

‖ ∇Φ(t,x) ‖ dΓ (x) (38)

where only the vector of parameters Λ(t) depends on time. A sufficient condition to
decrease the shape gradient is to choose:

∀k ∈ [1,m], ∀ρ ∈ R
∗
+ , ∂tλk(t) = −ρ

∫
Γt

F(x)
Ek(x)

‖ ∇Φ(t,x) ‖ dΓ (x) (39)

Finally, considering the level set equation we obtain a system of m ordinary differential
equations (36). �
Corollary 2. Substituting the approximation of the boundary integral calculus from the
equation (19), into the system of m ordinary differential equations (37), we obtain an
approximation of the vector F defined as follows:

F̃ (t,x) =

(
1
2h

∫
Uh(Γt )

F(x)E1(x)dx, . . . ,
1

2h

∫
Uh(Γt)

F(x)Em(x)dx

)
(40)

Note that in this new formulation the main advantage is that the denominator term
‖∇Φ(x)‖ has been eliminated.
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From now, we use the previous corollary for the level set equation and we consider the
following algorithm.

Algorithm 1

I. Initialization: Choose an initial vector of parametersΛ0 = (λ 0
1 , . . . ,λ 0

m). Initialize
the level set function Φ0(x) = ∑m

l=1 λ 0
l El(x). Set k = 0.

II. Shape gradient direction: Find the tubular neighborhoodUh(Γtk) of the zero level
set Γtk of the actual level set functionΦ(tk,x). Compute F̃ (tk,x) from the equation
(40).

III. Update: Perform a time step in the level set equation (36) to update Λ(tk). Let
Λ(tk+1) denote this update:Λ(tk+1)=Λ(tk)−ρ F̃ (tk,x) , ρ > 0. Update the func-
tion Φ(tk+1,x) = ∑m

l=1 λl(tk+1)El(x). Set k = k + 1 and go to 2.

2.3 Numerical Experiment

We present a numerical experiment based on the algorithm 1 for a 3D shape identifi-
cation problem using the Galerkin-Level Set method described in the previous section.
In this numerical experiment, the given domain Ω∗ to identify is the gray matter of a
human brain. We consider a Galerkin-Level Set expansion of the level set functionΦ in
Fourier series of dimension m = 253; note that in this 3D case the level set functionΦ is
in R

4. We start with a smooth initial domainΩt=0 corresponding to the lower frequency
of the Fourier series: see left-hand picture in Fig. 2. The algorithm detects the contour
of the human brain after only 8 iterations.

3 Geodesic Tube Formulation Using Moving Domain

3.1 Tube Formulation Using a Galerkin Strategy

The tube path between Ω0 and Ω1 is made by a Galerkin-Level Set approach. The
moving domain Ωt of the tube evolution defined by the equation (1) is parameterized
by the Galerkin-Level Set formulation and defined as follows:

Ω(t) =
{

x ∈ D | Φ(t,x) =
m

∑
k=1

λk(t) Ek(x) > 0
}

(41)

whereΛ(t)= (λ1(t), . . . ,λm(t))∈R
m is the vector of parameters in the Galerkin expan-

sion of the level set function. The first step consists in identifying the initial domain Ω0

and the final domainΩ1 through the research of the parametersΛ0 = (λ 0
1 , . . . ,λ 0

m )∈R
m

and Λ1 = (λ 1
1 , . . . ,λ 1

m ) ∈ R
m which satisfy the equations:

Φ0(x) =
m

∑
k=1

λ 0
k Ek(x) , Φ1(x) =

m

∑
k=1

λ 1
k Ek(x) (42)

Thus, the feasible set of connecting tubes between Ω0 and Ω1 through the Galerkin-
Level Set formulation turns into:

TΛ (Ω0,Ω1) =
{
Λ(t) ∈ (L2(I)

)m
,

[
Λ(0) =Λ0

Λ(1) =Λ1

}
(43)
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Fig. 2. Shape identification of gray matter of human brain using a Galerkin-Level Set method

Remark 2. The feasible set of connecting tubes between Ω0 and Ω1 is not empty. In-
deed, if we consider the vector of parameters Λ(t) as a convex combination of Λ0 and
Λ1: Λ(t) = Λ1 t + Λ0 (1− t), we have Λ(t) ∈ TΛ (Ω0,Ω1). Moreover, the parameters
Λ(t) defined as a convex combination of Λ0 and Λ1 generate an admissible tube that
we use for the initialization during the tube optimization process.

3.2 Geodesic Tube Construction between Two Domains

We focus on the construction of an optimal tube connecting the initial domain Ω0 to
the final domain Ω1, this optimal tube is also called a geodesic tube. The question is to
determine, through the use of shape metrics d(Ω0,Ω1) and dh(Ω0,Ω1), which tube is
an optimal tube among all those tubes in the admissible set (see Fig. 3).

Let us consider the metrics d and dh defined by (4) and (20) that we can rewrite as
follows:

d(Ω0,Ω1) = inf
Φ∈TLS(Ω0,Ω1)

∫ 1

0
J
(
Γt
)

dt

dh(Ω0,Ω1) = inf
Φ∈TLS(Ω0,Ω1)

∫ 1

0
Jh
(
Γt
)

dt

(44)
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Fig. 3. Different continuous tubes between Ω0 and Ω1

where the functionals J
(
Γt
)

and Jh
(
Γt
)

are defined by:

J
(
Γt
)

=
∫
Γt

|v(t,x)| dΓ (x) =
∫
Γt

|∂t Φ(t,x)|
‖∇Φ(t,x)‖ dΓ (x)

Jh
(
Γt
)

=
1
2h

∫
Uh(Γt )

|∂t Φ(t,x)| dx
(45)

Then, in order to solve the problem concerning the geodesic tube, that is to say to
compute the metrics d or dh defined by (44), we use a gradient method based on the
computation of the shape derivative.

Lemma 5. According to (28), the eulerian derivative of the functional J in the direction
of a perturbation vector field W ∈C1

0(D;D) is:

dJ(Γt ,W) =
∫
Γt

∂ε |v(t + ε,x)|
∣∣∣
ε=0

dΓ (x)

+
∫
Γt

[ ∂ |v(t,x)|
∂n

+ H(t,x) |v(t,x)|
]
〈W(t,x) , n(t,x)〉Rn dΓ (x)

(46)

where H is the mean curvature. Using the level set formulation the eulerian derivative
of the functional J turns into:

dJ(Γt ,W) =
∫
Γt

[
sign(∂t Φ)
‖∇Φ‖ ∂ε

(
∂t Φ
)∣∣∣
ε=0

− |∂t Φ| 1
‖∇Φ‖3 ∇Φ .∇

(
∂εΦ
)∣∣∣
ε=0

+

(
− sign(∂tΦ)

∇Φ
‖∇Φ‖ .

∇
(
∂tΦ
)

‖∇Φ‖ + 2|∂tΦ| ∇Φ‖∇Φ‖ .
[ D2Φ
‖∇Φ‖2 .

∇Φ
‖∇Φ‖

]
−

− |∂tΦ|
‖∇Φ‖2 ΔΦ

)
∂εΦ
‖∇Φ‖

]
dΓ (x)

(47)

Proof. According to the equation (46), the eulerian derivative of the functional Jls in
the direction of a perturbation vector field W turns into:
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∂ε |v(t + ε,x)|
∣∣∣
ε=0

= ∂ε
( |∂t Φ|
‖∇Φ‖

)∣∣∣
ε=0

=
sign(∂t Φ)
‖∇Φ‖ ∂ε

(
∂t Φ
)∣∣∣
ε=0

+ ∂ε
( 1
‖∇Φ‖

)∣∣∣
ε=0
|∂t Φ|

=
sign(∂t Φ)
‖∇Φ‖ ∂ε

(
∂t Φ
)∣∣∣
ε=0

− |∂t Φ| 1
‖∇Φ‖3 ∇Φ .∇

(
∂εΦ
)∣∣∣
ε=0

(48)

and
∂ |v(t,x)|

∂n
+ H |v(t,x)| =

−∇Φ
‖∇Φ‖ .∇

( |∂t Φ|
‖∇Φ‖

)
+ ∇.

( −∇Φ
‖∇Φ‖

) |∂t Φ|
‖∇Φ‖ (49)

−∇Φ
‖∇Φ‖ .∇

( |∂t Φ|
‖∇Φ‖

)
+
[
−∇
( 1
‖∇Φ‖

)
.∇Φ − ΔΦ

‖∇Φ‖
] |∂t Φ|
‖∇Φ‖

=
−∇Φ
‖∇Φ‖ .

∇
(|∂t Φ|

)
‖∇Φ‖ − 2 |∂tΦ| ∇Φ

‖∇Φ‖ .∇
( 1
‖∇Φ‖

)
− |∂tΦ|
‖∇Φ‖2 ΔΦ

= −sign(∂tΦ)
∇Φ
‖∇Φ‖ .

∇
(
∂tΦ
)

‖∇Φ‖ +

+ 2 |∂tΦ| ∇Φ
‖∇Φ‖ .

[ D2Φ
‖∇Φ‖2 .

∇Φ
‖∇Φ‖

]
− |∂tΦ|
‖∇Φ‖2 ΔΦ

(50)

�
Lemma 6. According to (28), the eulerian derivative of the functional Jh in the direc-
tion of a perturbation vector field W ∈C1

0(D;D) is:

dJh(Γt ,W) =
1

2h

∫
D

[
∂ε
( |∂t Φ(t + ε,x)|)∣∣∣

ε=0
ρh ◦ bΩt(x)

]
dx

+
1

2h

∫
D

[
|∂t Φ(t,x)|∂ε

(
ρh ◦ bΩt+ε (x)

)∣∣∣
ε=0

]
dx

(51)

where the function ρh is defined by: ρh(x) =

⎧⎨⎩
x
h + 1 if x ∈ [−h,0]
−x
h + 1 if x ∈ [0,h]

0 if x ∈ R\ [−h,h]
.

Proof. Due to the fact that ρh ◦ bΩt (x)
∣∣∣
Γt

= 1, and using the fact that supp(ρh ◦ bΩt)⊆
Uh(Γt) we can rewrite the functional Jh as follows

Jh(Γt) =
1
2h

∫
D

|∂t Φ(t,x)| ρh ◦ bΩt(x) dx (52)

Consequently, the eulerian derivative of the functional Jh turns into the equation (51)
where:

∂ε
( |∂t Φ(t + ε,x)|)∣∣∣

ε=0
= sign(∂t Φ) ∂ε

(
∂t Φ(t,x)

)∣∣∣
ε=0

. (53)
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Using ∂ε
(
bΩt (x)

)
+ ∇bΩt (x) .W ◦ p = 0 and ∇bΩt (x) = n(t,x) , we get

∂ε
(
ρh ◦ bΩt(x)

)∣∣∣
ε=0

= ρ ′h ◦ bΩt (x) ∂ε
(
bΩt (x)

)
= −ρ ′h ◦ bΩt(x) 〈W , n 〉Rn

= −ρ ′h ◦ bΩt(x)
∂εΦ
‖∇Φ‖

(54)

The derivative of the function ρh(x) is defined by:

ρ ′h(x) =

⎧⎨⎩
1
h if x ∈ [−h,0]
−1
h if x ∈ [0,h]

0 if x ∈R\ [−h,h]
=
{

1
h

(
1−2χΩt(x)

)
if x ∈Uh(Γt)

0 if x ∈ R\ [−h,h]

Finally, we get for the eulerian derivative of the functional Jh in the direction of a
perturbation vector field W ∈C1

0(D;D):

dJh(Γt ,W) =
1

2h

∫
D

[
sign(∂t Φ) ∂ε

(
∂t Φ(t,x)

)∣∣∣
ε=0

ρh ◦ bΩt (x)
]

dx

− 1
2h

∫
D

[
|∂t Φ(t,x)|ρ ′h ◦ bΩt(x)

∂εΦ
‖∇Φ‖

]
dx

(55)

�

3.2.1 Polynomial Decomposition of the ParameterΛ(t)
We continue the study of a geodesic tube through a tube formulation using a Galerkin-
Level set strategy. Consequently, Λ(t) ∈ TΛ (Ω0,Ω1) represents the parameters of the
optimization process. For complexity reason, we consider a polynomial decomposition
of the parameter Λ(t) as follows:

Λ(t) = Pα(t)Λ1 +
(
1−Pα(t)

)
Λ0 , Pα(t) =

M

∑
i=1

αi ei(t) (56)

where α = (α1, . . . ,αM) are the coefficients of the decomposition of the polynomial
Pα(t) in the basis {e1(t), . . . ,eM(t)}. Consequently, the feasible set of connecting tubes
defined by (43) with initial and final conditions on Λ(t) turns into a feasible set with
initial and final conditions on the polynomial Pα defined as follows:

Tα(Ω0,Ω1) =
{
α ∈ R

M ,

[
Pα(0) = 0
Pα(1) = 1

}
(57)

Let us consider the metrics d and dh defined by (4) and (20) that we can rewrite as
follows:

d(Ω0,Ω1) = inf
α∈Tα (Ω0,Ω1)

∫ 1

0
J̃
(
Γt
)

dt

dh(Ω0,Ω1) = inf
α∈Tα (Ω0,Ω1)

∫ 1

0
J̃h
(
Γt
)

dt

(58)
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where the functionals J̃
(
Γt
)

and J̃h
(
Γt
)

are defined by:

J̃
(
Γt
)

= |Ṗα(t)|
∫
Γt

|Φ1(x) −Φ0(x)|
‖∇Φ ‖ dΓ (x)

J̃h
(
Γt
)

=
|Ṗα(t)|

2h

∫
Uh(Γt )

|Φ1(x) −Φ0(x)|dx

(59)

Then, in order to solve the problem concerning the geodesic tube, that is to say to
compute the metrics d or dh defined by (58), we use a gradient method based on the
computation of the shape derivative.

Assumption 2. The shape derivative of the functional J defined by (46) can be rewrit-
ten as follows:

dJ(Γt ,W) =
∂J
(
α+ εh

)
∂ε

∣∣∣
ε=0

= 〈h , ∇J(Γt)〉RM (60)

where ∀i ∈ [1,M] :

(
∇J(Γt)

)
i = ėi(t)sign

(
Ṗα(t)

) ∫
Γt

|Φ1(x)−Φ0(x)|
‖∇Φ‖ dΓ (x)

+ ei(t) |Ṗα(t)| ,
∫
Γt

|Φ1(x)−Φ0(x)|
‖∇Φ‖ K(t,x) dΓ (x)

(61)

and

K(t,x) =

[
−2

∇Φ .
(
∇Φ1(x)−∇Φ0(x)

)
‖∇Φ‖2 +

+ 2
(
Φ1(x)−Φ0(x)

) ∇Φ
‖∇Φ‖ .

[ D2Φ
‖∇Φ‖2 .

∇Φ
‖∇Φ‖

]
− (Φ1(x)−Φ0(x)

) Δ Φ
‖∇Φ‖2

] (62)

Assumption 3. The shape derivative of the functional Jh defined by (51) can be rewrit-
ten as follows:

dJh(Γt ,W) =
∂Jh
(
α+ εh

)
∂ε

∣∣∣
ε=0

= 〈h , ∇Jh(Γt)〉RM (63)

where ∀i ∈ [1,M] :(
∇Jh(Γt)

)
i =

ėi(t)
2h

sign
(
Ṗα(t)

) ∫
Uh(Γt )

|Φ1(x)−Φ0(x)| dx

− ei(t)
2h2 |Ṗα(t)|

∫
Uh(Γt )

(
1−2χΩt(x)

) |Φ1(x)−

Φ0(x)|
(
Φ1(x)−Φ0(x)

)
‖∇Φ‖ dx

(64)
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Algorithm 2

I. Initialization: Choose an initial vector of parametersΛ(t) defined by (56) which
generate an admissible connecting tube between Ω0 and Ω1 through the choice of
the parameter α . Initialize the level set function
Φ(t,x) = Pα(t)Φ1(x) + (1−Pα(t))Φ0(x). Set k = 0.

II. Shape gradient direction: For every t ∈ I, find the tubular neighborhood Uh(Γt)
of the zero level set Γt of the actual level set function Φ(t,x). Compute ∇Jh(Γt)
from the equation (64).

III. Update:
• Perform a time step to update α .
• Let α+ denote this update: α+ = α−ρ ∫ 1

0 ∇Jh(Γt)dt , ρ > 0.
• Update the function Φ+(t,x) = Pα+(t)Φ1(x) + (1−Pα+(t))Φ0(x).
• Set k = k + 1 and go to (2).

Fig. 4. Tube optimization using the metric dh(Ω0,Ω1)

Fig. 5. Distribution of the functional values Jh(Γt) for tube obtained during the optimization pro-
cess of Fig. 4
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3.3 Numerical Experiment of a Geodesic Tube Construction

We present a numerical experiment based on the algorithm 2 for a 3D tube optimiza-
tion. Fig. 4 shows tubes obtained during the optimization process for different iterations.
From Fig. 5 we can see that the tube obtained after seven iterations has a more homo-
geneous distribution of the functional values Jh(Γt) compared to the initial tube. The
result of this optimization process is the construction of a smoother tube than the initial
tube.
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Remarks on 0-1 Optimization Problems with
Superincreasing and Superdecreasing Objective

Functions

Marian Chudy

Military University of Technology, Faculty of Cybernetics, Warsaw, Poland
mchudy@wat.edu.pl

Abstract. The set of particular 0-1 optimization problems solvable in polyno-
mial time has been extended. This becomes when the coefficients of the ob-
jective function belong to the set of superincreasing or superdecreasing types
of sequence. We have defined special superincreasing sequences which we call
the nearest up and nearest down to the sequence (c j) of objective function co-
efficients. They are applied to calculate the upper and lower bound of optimal
objective function value. When the problem needs to compute the minimum of
objective function with the superdecreasing sequence (c j), two cases are con-
sidered. Firstly, we have described a type of problem when optimal solution can
be obtained directly using a polynomial procedure. The second case needs two
phases to calculate an optimal solution. The second phase relies on improving a
feasible solution. The complexities of all the presented procedures are given.

1 Introduction

The most frequently met formulation of 0-1 optimization problem (PLB) is:

max
n

∑
j=1

c jx j (1)

subject to

∑
j∈Ni

ai jx j ≤ di, i = 1,m (2)

x j ∈ {0,1} , j ∈ N = {1,2, . . . ,n} , Ni ⊂ N (3)

To refer to the title of paper we are reminded that the sequence (c j) is called superin-
creasing when

j−1

∑
i=1

ci < c j for j = 2,3, . . . (4)

We will consider sequences containing n elements only and assume that for n = 1 a
sequence is a superincreasing one.

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 185–195, 2009.
© IFIP International Federation for Information Processing 2009
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For m = 1 and positive ai j,di,c j the problem (1)-(3) becomes knapsack one and its
special case with superincreasing parameters was effectively applied in the knapsack-
type public key cryptosystem [5]. The decision type of knapsack problem with super-
increasing parameters was shown in [4] to be P-complete. Short reference to the 0-1
optimization problems with superincreasing objective functions was presented in [3]
and [1].

For two-constraint 0-1 knapsack problem, an exact algorithm was described in [6].
A general knapsack problem can be solved using Sbihi’s new algorithm [7].

To the best of our knowledge, very few algorithms solving also PLB, are available.
We will focus on these kinds of PLB which are solvable in polynomial time or their
solutions can be estimated in polynomial time. Some of these cases were also presented
in [2]. Now we attempt to extend this class.

2 Superincreasing Sequence and 0-1 Optimization Problem.
General Remarks

For further considerations we will enumerate a few useful properties of superincreasing
sequences:

I. Each subsequence of a superincreasing sequence is a superincreasing one,
II. Each increasing sequence containing only negative elements is a superincreasing

one,
III. Each nondecreasing sequence (c j) such that c1 �= c2 containing only negative ele-

ments is a superincreasing one,
IV. Nondecreasing finite sequence of nonnegative elements contains some superin-

creasing subsequence.

Proposition 1. If the problem (1)-(3) satisfies the following assumptions:

• the sequence (c j) is superincreasing and nonnegative,
• elements ai j are nonnegative (ai j ≥ 0),

then the optimal solution of the problem (1)-(3) is given by the following procedure

x∗j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 when

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1 j ≤ d1−∑k∈N+
j

a1k

a2 j ≤ d2−∑k∈N+
j

a2k

.

.

.
am j ≤ dm−∑k∈N+

j
amk

0 otherwise

j = n,n−1, ...,1 (5)

where a j is the j-th column of the constraint matrix (2)

d = (d1,d2, ...,dm)T ,N+
n = φ

N+
j = {k : x∗k = 1, k ∈ {n,n−1, ..., j + 1}} .

The proof results from (4) and assumptions.
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The complexity of procedure (5) is equal to f5(n) ∈ O(n3). To calculate this func-
tion one should observe that calculating each element of x∗j for j = n,n−1, ...,1 needs
n,2n, ...,n×n basic operations, respectively. The total sum of these operations gives us
that function.

Proposition 1 allows us to solve 0-1 optimization problem in polynomial time, when
the assumptions it needs are satisfied.

Remark. The following example shows that the assumption ai j ≥ 0 is significant.

Example 1
max x1 + 2x2 + 5x3 + 10x4

subject to

x1−2x2 + x3 + 8x4 ≤ 6
2x1− x2− x3 + 3x4 ≤ 2
x j ∈ {0,1} , j = 1,4

The coefficients c j form the superincreasing sequence (c j) = (1,2,5,10). The optimal
solution is x∗ = (0,1,0,1) and optimal objective function value is equal to 12. On the
other hand, using procedure (5) we obtain vector x = (1,1,1,0) and the objective func-
tion value is equal to 8.

Remark. A simple example shows that assumption c j ≥ 0, j = 1,n is also important.

Example 2
max −2x1 + 3x2 + 3x3 + 5x4

subject to

x1 + 2x2 + 4x3 + 6x4 ≤ 6
4x1 + x2 + x3 + 5x4 ≤ 5
x j ∈ {0,1} , j = 1,4

One can observe that the sequence (c j) = (−2,3,3,5) is superincreasing. Procedure
(5) computes the vector x = (0,0,0,1) and we obtain an objective function value of
(c|x) = 5. However, the optimal solution is x∗ = (0,1,1,0) and the optimal objective
function value is equal to (c|x∗) = 6.

To continue our considerations we renumber, if necessary, all variables of the 0-1
problem and assume that the sequence (c j) is integer, nonnegative and non decreasing.

Let us start with the following example.

Example 3
max x1 + 2x2 + 3x3 + 5x4 + 5x5

subject to
x1 + x3 + x4 + x5 ≤ 2
x2 + x4 + x5 ≤ 2
x1 + x3 + x4 ≤ 3
x j ∈ {0,1} , j = 1,5
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The optimal solution is x∗ = (0,1,1,1,0). The sequence (c j) = (1,2,3,5,5) is not su-
perincreasing but we can indicate some superincreasing subsequence of (c j) which cor-
responds to some feasible solution. This feasible solution can be obtained by correctly
selecting elements of vector x∗ = (0,1,1,1,0) which are equal to one.

The vectors we mentioned above are: x1 = (0,1,1,0,0), x2 = (0,1,0,1,0), x3 =
(0,0,1,1,0). They correspond to superincreasing subsequence (c2,c3) = (2,3), (c2,c4)
= (2,5), (c3,c4) = (3,5) respectively. It leads to the following proposition.

Proposition 2. If the coefficients of problem (1)-(3) are nonnegative, i.e., c j ≥ 0, ai j ≥ 0
for all i, j and there exists a feasible solution x �= 0 = (0,0, ...,0), then there exists a
feasible solution x1 having elements x1

jr = 1, jr ∈ N1 ⊂ N+ =
{

j : x j = 1
}

, x1
jr = 0

jr ∈ N\N1 that correspond to the superincreasing subsequence (c jr ) of the sequence
(c j) which satisfies property IV.

The proof results from (4), assumptions of this proposition and property IV.
Let us consider two superincreasing subsequences of sequence (c j):

I. Subsequence (ci1 ,ci2 , ...,cir) which corresponds to a feasible solution x

x j =
{

1 for j = ik
0 for j �= ik

k = 1,r, (6)

II. Subsequence (c j1 ,c j2 , ...,c jr) which corresponds to a feasible solution y

y j =
{

1 for j = jk
0 for j �= jk

k = 1,r. (7)

Proposition 3. If cir > c jr , then such inequality holds ∑n
j=1 c jx j > ∑n

j=1 c jy j i.e., so-
lution x is better than solution y. The proof results directly from the definition of the
superincreasing sequence.

One can describe this dependence using subsequences (c3,c4),(c2,c3) from example 3.
We observe that Propositions 2 and 3 can be applied to improve some given feasible

solution.
It results in the fact that for many 0-1 optimization problems we can construct suit-

able 0-1 optimization problems with superincreasing objective functions and use them
to compute, in polynomial time, high quality upper and lower bounds of optimal objec-
tive function values.

3 Superincreasing Sequence and Upper Bound

To obtain the upper bound of optimal objective function value, we have to introduce
several new objects. Denote by:

• Hn – the set of all finite superincreasing integer sequences (h j), j = 1,n,
• An =

{
h ∈Hn : h j ≥ c j, j = 1,n

}
– the set of finite superincreasing sequences with

integer elements no smaller than suitable elements of the sequence (c j).

Remembering that (c j) is nondecreasing we form the following definition.
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Definition 1. A superincreasing sequence h∗ = (h∗j) is called the nearest up to the se-
quence (c j) when

h∗ ∈ An and ‖c−h∗‖= min
h∈An

‖c−h‖= min
h∈An

n

∑
j=1

∣∣c j−h j
∣∣ (8)

For a given (c j) we can compute the sequence h∗ = (h∗j) in the following way:

h∗1 = c1 (9)

and for j = 2,n

h∗j =
j−1

∑
k=1

h∗k + 1 when c j ≤
j−1

∑
k=1

h∗k (10)

h∗j = c j when c j >
j−1

∑
k=1

h∗k. (11)

We notice that (h∗j) = (c j) when (c j) is a superincreasing sequence.
To compute all elements of h∗, the following numbers of basic operations are needed:

0 for j = 1, 2 for j = 2, 3 for j = 3, ..., n for j = n, respectively. Hence, the complexity
of the procedure (9)-(11) is equal to fh∗(n) ∈ O(n2).

The upper bound of optimal objective function value for the PLB is given by

n

∑
j=1

h∗jx j ≥
n

∑
j=1

c jx
∗
j (12)

where:

• x = (x j), j = 1,n denotes a feasible solution computed by procedure (5) when we
set the sequence (h∗j) instead of the sequence (c j) in PLB,

• x∗ = (x∗j), j = 1,n denotes an optimal solution of the problem (1)-(3), under the
assumption ai j ≥ 0,c j ≥ 0.

Example 4
max x1 + 4x2 + 5x3 + 6x4

subject to
x1 + x2 + x3 + 6x4 ≤ 6
2x1 + x2 + x3 + x4 ≤ 7
x j ∈ {0,1} , j = 1,4

The vector x∗ = (1,1,1,0) is the optimal solution of this problem and the optimal ob-
jective function value (c|x∗) is equal to 10.

According to procedure (9)-(11) the vector h∗ = (h∗1,h
∗
2,h

∗
3,h

∗
4) = (1,4,6,12) is su-

perincreasing and the nearest up to the vector c = (c1,c2,c3,c4) = (1,4,5,6) which is
not superincreasing.

Setting the sequence (h∗j) instead of (c j) and applying procedure (5) we obtain a
feasible solution of x = (0,0,0,1) and objective function value of (c|x) = 6.



190 M. Chudy

The upper bound of the optimal value (c|x∗) = 10, based on (12), is equal to
(h∗|x) = 12.

At this point we should underline a very important fact: procedure (5), in every case,
produces an upper bound of optimal function value when we use vector h∗ instead of
vector c. But procedure (5) cannot compute the upper bound without setting h∗ instead
of c. From example 4 results we obtain the same vector x = (0,0,0,1) as when we use
procedure (5) and keep the vector c = (c1,c2,c3,c4) = (1,4,5,6).

4 Superincreasing Sequence and Lower Bound

To improve an assessment of optimal objective function value we propose to compute
a lower bound of it.

Definition 2. Let (c j) be a non decreasing integer sequence.
A superincreasing sequence ho = (ho

j) is called the nearest down to the sequence
c = (c j) when

‖c−ho‖= min
h∈Bn

‖c−h‖= min
h∈Bn

n

∑
j=1

∣∣c j−h j
∣∣ (13)

where
Bn =

{
h ∈ Hn : h j ≤ c j, j = 1,n

}
For the given c = (c j) a sequence ho = (ho

j) can be computed according to the following
procedure:

I. For n = 1, ho
1 = c1,

II. For n = 2, ; ho
2 = c2,

ho
1 =
{

c1 if c1 < ho
2 = c2

c1−1 if c1 = c2 = ho
2

(14)

III. For n ≥ 3, ; ho
j = c j, ; j = n,2 and first element ho

1 needs a special recurrence
formula to compute:

hk−2
1 =

⎧⎨⎩
c1 for k = n
hk−1

1 if hk−1
1 +∑k

i=2 ci < ho
k+1 = ck+1, k = n−1,2

hk−1
1 −A if hk−1

1 +∑k
i=2 ci ≥ ho

k+1 = ck+1

(15)

where A = (ck+1− (hk−1
1 +∑k

i=2 ci))+ 1

Example 5

1.

{
c = (1,1,1,1,4)
ho = (−2,1,1,1,4) 2.

{
c = (−1,−1,−1,−1,4)
ho = (−2,−1,−1,−1,4)

3.

{
c = (−3,−1,3,4,4)
ho = (−3,−1,3,4,4) 4.

{
c = (−1,2,5,7,8,8)
ho = (−15,2,5,7,8,8)
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To evaluate the complexity of computing (ho
j) for the given (c j), it will be enough to

take into account expression (15). The recurrence structure of this formula leads us to
the following evaluation of the complexity: fho(n) ∈ O(n2).

5 Some Useful Properties of (h∗j) and (ho
j)

I. From Definitions 1 and 2 it follows that if a sequence (c j) is superincreasing then

c j = h∗j = ho
j , j = 1,n. (16)

II. For each non decreasing (c j) the following inequalities hold

h∗j ≥ c j ≥ ho
j , j = 1,n. (17)

III. If some non decreasing sequence (c j) satisfies

h∗j = ho
j , j = 1,n (18)

then (c j) is superincreasing.
IV. For each vector x such that x ∈ S = {x ∈ En : ; (2),(3)hold} we can obtain from

(17) the following evaluation

(h∗|x)≥ (c|x)≥ (ho|x). (19)

V. The previous properties allow us to formulate

(c|x∗)≥ (c|x)≥ (ho|x) x∗,x ∈ S. (20)

It means that value (c|x),x ∈ S is not worse a lower bound of (c|x∗) than (ho|x).

6 Superdecreasing Sequence and 0-1 Optimization Problem

Some 0-1 optimization problems have the following form:

min
n

∑
j=1

c jx j = min(c|x) (21)

subject to

∑
j∈Ni

ai jx j ≥ di, i = 1,m (22)

x j ∈ {0,1} , j ∈ N = {1,2, ...,n} , Ni ⊂ N (23)

This problem needs a different approach than the approach to (1)-(3).
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Definition 3. A sequence (c j) is called a superdecreasing one when

c j >
n

∑
i= j+1

ci, j = 1, ...,n−1 (24)

and for n = 1, (c j) is superdecreasing.

The following properties of a superdecreasing sequence take place:

I. Each subsequence of the superdecreasing sequence (c j) is superdecreasing,
II. Each of the decreasing sequence (c j)containing only negative elements is superde-

creasing,
III. Each of the non increasing sequence (c j)containing only negative elements and

satisfying c1 �= c2 is superdecreasing,
IV. Each of the non increasing sequence (c j) with only negative elements contains a

superdecreasing subsequence.

We are able to select several cases when problems (21)-(23) are easily solvable.

Proposition 4. Consider the problem (21)-(23) with superdecreasing (c j) and let the
following conditions hold: c j ≥ 0, ai j ≥ 0 and there exists j such that ai j ≥ di, i = 1,m,
then an optimal solution has the form:

x∗j∗ = 1 and x∗j = 0 for j �= j∗
when there exists i such that

n

∑
j= j∗+1

ai j < di, i ∈ {1,2, ...,m} and j∗ < n

j∗ = max
{

j : ai j ≥ di, i = 1,m
}

(25)

or

j∗ = n

The proof results from Definition 3 and the conditions presented above.

Example 6
min 10x1 + 5x2 + 2x3 + x4

subject to

x1 + 2x2 + 7x3 + 8x4 ≥ 6
2x1 + x2 + 5x3 + 2x4 ≥ 4
x j ∈ {0,1} , j = 1,4

In this problem we have j∗ = 3, x∗ = (0,0,1,0) which satisfy all the conditions that
Proposition 4 requires.

To obtain an optimal solution using the procedure described in Proposition 4, we
need to execute the following numbers of basic operations:
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I. At most n2 to compute j∗,
II. To check if there exists I such that ];∑ j= j∗+1 ai j < di, i ∈ {1,2...,m}, the worst

case takes place for j∗ = 1 and the number of basic operations equals at most
(n−1)n.

Hence, the complexity of the procedure is equal to fmin(n) = O(n2).

Proposition 5. Let us consider the problem (21)-(23) with a superdecreasing (c j) and
c j ≥ 0, ai j ≥ 0.

Assume that there is no j such that ai j ≥ di, i = 1,m. Then the following expressions

xo
j =
{

1 f or j = n,n−1, ..., jo
0 otherwise

(26)

jo = max

{
j :

n

∑
k= j

aik ≥ di, i = 1,m

}
(27)

give us the upper bound (c|xo) of optimal objective function value (c|x∗) of the problem
(21)-(23). The proof we obtain from (26) and Definition 3.

The complexity of this procedure is determined in (27). In the worst case it needs at
most n3 basic operations. Hence, the complexity equals fup(n) ∈ O(n3).

Example 7
min 10x1 + 5x2 + 2x3 + x4

subject to

x1 + 2x2 + x3 + 8x4 ≥ 6
2x1 + 2x2 + x3 + 2x4 ≥ 4
x j ∈ {0,1} , j = 1,4

The sequence (c j) = (10,5,2,1) is superdecreasing.
Using procedure (26), (27) we obtain jo = 2 and the feasible solution x = (0,1,1,1)

that gives (c|x) = 8. This is not an optimal solution. The optimal solution is x∗ =
(0,1,0,1) and gives (c|x∗) = 6. We can improve the feasible solution x = (0,1,1,1)
applying the procedure given below.

Proposition 6. Let xo = (xo
j), j = 1,n be the feasible solution of problem (21)-(23)

which was obtained using procedure (26), (27) under the assumptions: (c j) is superde-
creasing, c j ≥ 0 , ai j ≥ 0.

Defining auxiliary parameters:

N+
o =

{
j : xo

j = 1, xo
j that satisfies (26),(27)

}
= {n,n−1, ..., jo} ,

N−jo+1 =

{
φ when ∑k∈N+

o \{ jo+1} aik < di, i = 1,m
{ jo + 1} when ∑k∈N+

o \{ jo+1} aik ≥ di, i = 1,m
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N−j =

{
N−j−1 when ∑k∈N+

o \(N−j−1
⋃{ j}) aik < di, i = 1,m

N−j−1
⋃{ j} when ∑k∈N+

o \(N−j−1
⋃{ j}) aik ≥ di, i = 1,m

j = jo + 2,n

the optimal solution can be expressed in the following way

x∗j =
{

0 when ∑k∈N+
o \{ j} aik ≥ di, i = 1,m

1 otherwise
j = jo + 1 (28)

x∗j =

{
0 when ∑k∈N+

o \N−j aik ≥ di, i = 1,m

1 otherwise
j = jo + 2,n (29)

x∗j = 0 f or j = 1, jo−1. (30)

The essence of the procedure (28)-(30) relies on reducing to zero, if possible, these
elements xo

j of vector xo which are equal to one and c j is large. It is also essence of the
proof.

The similarity between (26) and (28), (29) allows us to write fcor(n) ∈ O(n3) as the
complexity of the vector xo improving .

In example 7, we can correct x = (0,1,1,1) to the form x∗ = (0,1,0,1) using pro-
cedure (28)-(30), because the sum of the second and fourth column satisfies (28), i.e.[

2
2

]
+
[

8
2

]
≥
[

6
4

]
.

7 Conclusions

The results we have obtained are applicable to:

• solving 0-1 optimization problems with a superincreasing and superdecreasing ob-
jective function, if the indicated assumptions hold,

• computing upper bounds and lower bounds of optimal objective function value for
0-1 optimization problems under suitable assumptions,

• improving given feasible solution of 0-1 optimization problem using some proper-
ties of superincreasing and superdecreasing sequences.

It is worth underlining that all of these procedures are polynomial. The practical appli-
cation area of 0-1 optimization problems is very broad. There are no reasons to exclude
these results from this area.
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Abstract. This work presents a model for multiobjective routing in MPLS net-
works formulated within a hierarchical network-wide optimization framework,
with two classes of services, namely QoS and Best Effort (BE) services. The
routing model uses alternative routing and hierarchical optimization with two op-
timization levels, including fairness objectives. Another feature of the model is
the use of an approximate stochastic representation of the traffic flows in the net-
work, based on the concept of effective bandwidth. The theoretical foundations of
a heuristic strategy for finding “good” compromise solutions to the very complex
bi-level routing optimization problem, based on a conjecture concerning the def-
inition of marginal implied costs for QoS flows and BE flows, will be described.
The main features of a first version of this heuristic based on a bi-objective short-
est path model and some preliminary results for a benchmark network will also
be revealed.

1 Introduction and Motivation

Modern multiservice network routing functionalities have to deal with multiple, hetero-
geneous and multifaceted QoS (Quality of Service) requirements. This led to routing
models, the aim of which is the calculation and selection of one (or more) sequences
of network resources (designated as routes, which correspond to loopless paths in the
network representation) satisfying certain QoS constraints and the optimization of route
related metrics. Therefore there are potential advantages in formulating important rout-
ing problems in these types of networks as multiple objective optimization problems.
These formulations enable the trade-offs among distinct performance metrics and other
network cost function(s) to be pursued in a consistent manner. Note that the definition
of the objective functions and constraints depends strongly on the nature of the consid-
ered routing principles, the type of network technological platform and the features of
the offered traffic flows associated with different service types.
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In these networks, connection-oriented services, namely with guaranteed QoS levels,
may be implemented. The traffic flows are composed (at the physical level) of packet
streams that are forwarded from node to node, according to some specific technical
rules. When the packets enter the network, they are grouped in different FECs (Forward
Equivalence Classes) according to specific criteria, namely the originating node, the
destination node and the grade of service that has to be provided. The ‘traffic trunks’
are an aggregation of flows of a certain class and can be characterized by the ingress and
egress nodes, the FEC they are associated with, and a set of parameters/attributes with
impact on the traffic engineering schemes, which define some essential requirements of
the routing models. The routing mechanism for packets used in the MPLS networks is
based on the establishment of the so-called LSPs (Label Switched Paths). At the ingress
node, a label containing information on the FEC is associated with the packets. At each
intermediate node, the LSRs (Label Switching Routers) forward the packets using a
specific label switching technique: the label is an index into a routing table with infor-
mation on the next network arc (or hop) and the next label to be assigned to the packet.
Therefore, end-to-end “explicit routes” may be established in association with the im-
plementation of advanced QoS-based routing mechanisms. In particular explicit routes
enable source routing mechanisms, characterized by the fact that the route followed by
each packet stream (of a given connection) is entirely determined by the ingress router.
This is an inherent advantage by comparison with the hop-by-hop (i.e. node by node)
routing method typical of IP routing. Details on traffic engineering-related concepts in
MPLS networks relevant in the present context are described in [2,3,33]. The described
features in association with other functional capabilities of MPLS enable the imple-
mentation of advanced QoS-based routing mechanisms, namely through the definition
of explicit routes satisfying certain QoS requirements for each traffic flow of a given
FEC.

Having in mind these features and capabilities of MPLS routing a significant number
of routing models has been proposed in the literature in recent years. A routing model
can be described in terms of various features. A key feature is the routing optimization
framework which has to do with the scope and nature of the formulation of the rout-
ing calculation problem; in this respect we may distinguish network-wide optimization
models and flow-oriented optimization models. In the former the objective functions
are formulated at network level and depend explicitly on all traffic flows in the network.
Examples of these functions are average total traffic carried, total expected revenue, av-
erage packet delay or a function which seeks the optimization of the utilization of the
arcs of the network in terms of their level of occupancy, as in [13] and [26]. In contrast,
flow-oriented optimization models consider the objective functions formulated at the
level of each particular node-to-node connection or flow, for example number of arcs of
the path, path cost (for a specific link usage path metric) or mean packet delay on the
particular traffic stream. Examples of this type of models are the numerous QoS routing
models which are based on single-objective constrained shortest path formulations (a
review can be seen in [22] and an overview in [4]). Another feature refers to the na-
ture of the chosen objective functions and constraints, namely whether the optimization
model is single or multiobjective, and the type of functions and constraints (techni-
cal, economic, social or other). The representation of node-to-node demand requests or
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traffic offered is also relevant in a telecommunication routing model. We can consider
different types of traffic models in terms of the granularity of the representation (for
example representation at connection request level or traffic flow level i.e. in terms of a
sequence of connections throughout time), or the nature of this representation, namely
whether it is deterministic or stochastic.

A recent systematic, in-depth review on main issues, optimization models and al-
gorithms concerning routing methods in communication networks can be seen in [31].
An overview of some applications of MCDA (Multicriteria Decision Analysis) tools
in telecommunication strategic planning and negotiation is shown in [16]. A review on
applications of MCDA in telecommunications network planning and design, including
a section on routing models, is presented in [4]. An overview of a significant num-
ber of contributions on multicriteria routing models in telecommunication networks
followed by a description of a bi-level hierarchical multicriteria routing model of the
flow-oriented optimization type, is put forward in [5].

As discussed in [7], a significant number of routing models for MPLS has been pro-
posed in the literature in recent years which often differ in key instances of the modeling
framework. Based on the analysis of the remarkable differences observed in the mod-
els proposed in this area, a discussion on key conceptual issues involved in the various
modeling approaches and a proposal of a generic hierarchical multiobjective network-
wide routing optimization framework or “meta-model” has been presented in [7].

The possibility of applying this modeling framework to a MPLS type network, al-
ready outlined in [7], namely by considering two classes of service, QoS traffic (first
priority traffic) and Best Effort (BE) traffic (second priority traffic), was a major moti-
vation for this work.

This work presents, in detail, a model for multiobjective routing in MPLS networks
formulated within the framework developed by the authors in [7], assuming that there
are two classes of services (and different types of traffic flows in each class), namely
QoS and BE services. The flows of QoS type (first priority flows), when accepted by
the network, have a guaranteed QoS level, related to the required bandwidth, while BE
traffic flows, which are treated in the model as second priority flows, are carried by the
network in order to obtain the best possible QoS level for the current network routing
solution. Another feature of the routing model is the use of alternative routing: when a
first choice route assigned to a given micro-flow, belonging to a certain traffic flow (cor-
responding to a “traffic trunk”) is blocked, a second choice route may be attempted. An
important feature of this model is the use of hierarchical optimization typically with two
optimization levels, including fairness objectives: the first priority objective functions
refer to the network level objectives of QoS type flows, namely the total expected rev-
enue and the maximal value of the mean blocking of all types of QoS flows; the second
priority objective functions refer to performance metrics for the different types of QoS
services and the total expected revenue associated with the BE traffic flows. Another
important feature of the model is the use of an approximate stochastic representation
of the traffic flows in the network, based on the use of the concept of effective band-
width for macro-flows and on a generalized Erlang model for estimating the blocking
probabilities in the arcs, similar to the one used in [29,26]. After describing in detail
the routing model in Sect. 2, including the underlying traffic model, we will present in
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Sect. 3 the theoretical foundations of a specialized heuristic strategy for finding “good”
compromise solutions to the very complex bi-level routing optimization problem. This
theoretical foundation is based on a conjecture concerning the definition of marginal
implied costs for QoS flows and BE flows, presented for the first time in this paper,
which is an extension and adaptation of earlier definitions of implied cost for single ser-
vice networks with alternative routing in [18]. The structure of the heuristic procedure
for resolving the problem is analogous to the one described in detail in [7,26]. The new
version of the heuristic, presented here, is based on a constrained bi-objective short-
est path model, the objective functions of which are QoS or BE marginal path implied
costs, depending on the class of the routed traffic, and path blocking probabilities. Also,
in Sect. 4, a description of a first version of this heuristic will be presented, and some
preliminary results for a test network will be revealed in Sect. 5.

2 Description of the Routing Model

The present model can be considered as an application of the multiobjective model-
ing framework for MPLS networks described by the authors in [7]. This framework
(or “meta-model”) uses hierarchical optimization with up to three optimization levels:
the first priority objective functions refer to the global network level; the second prior-
ity objective functions refer to performance metrics for the different types of services
supported by the network; the third priority functions are concerned with performance
metrics for the micro-flows of packet streams of the same FEC.

It is a network-wide routing optimization approach of a new type, in the form of
a hierarchical multiobjective optimization model, which takes into account the nature
and relations between the adopted objective functions related to the different types of
traffic flows associated with different services. We would like to note that various mul-
tiobjective models previously proposed use objective functions chosen to reflect only
indirectly network technical-economic objectives. A typical example is the minimiza-
tion of a utilization cost for all arcs expressed, through empirical functions, in terms of
the occupied bandwidth as in [14,13,12,20]. In fact, the pursued objective is to optimize
the total traffic carried in the network or the associated expected revenue. One can say
that this type of approach is just a rough approximation to the ‘hidden’ (or implicit)
objective function the model seeks to reflect, especially taking into account the ran-
dom nature of traffic patterns, even in stationary or quasi-stationary network working
conditions. Instead, our model considers an explicit representation of the most rele-
vant technical-economic objectives in a network-wide routing optimization, such as the
total expected revenue (expressed in terms of the traffic carried of all service types).
This aspect of the modeling approach is in line with the school of thought adopted by
[18,19,29], in the context of single-objective routing models.

We propose a hierarchy of objective functions by considering in a first approach two
levels of optimization with several objective functions in each level. The first level (first
priority) includes objective functions formulated at network level for the QoS type traf-
fic and considering the combined effect of all types of traffic flows in the network. The
second level refers to average performance metrics of the QoS traffic flows associated
with the different types of services supported by the network and the expected revenue
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of the BE traffic. An important feature of the model is the explicit consideration, as
objective functions, of ‘fairness’ objectives, at the two levels of optimization. These are
objectives of min-max type and seek to make the most of the proposed multiobjective
formulation. In previous formulations of routing models for these networks, such aims
related to fairness are usually not considered explicitly in any form or just represented
through constraints on certain performance metrics. Another important feature of the
model is the stochastic representation of the traffic flowing in the network as described
in [7,29].

We will consider two classes of services, namely QoS corresponding to services with
certain guaranteed QoS levels, and BE, where the corresponding traffic flows are routed
seeking to obtain the best possible quality of service but not at the cost of the QoS of
the QoS traffic flows (first priority traffic flows). The service types in each class are
grouped in the sets SQ (for QoS service types) and SB (for BE service types), and the
traffic flows of each service type s ∈SQ or s ∈SB may differ in important attributes,
namely the required bandwidth.

The consideration of two (or more) classes of traffic flows in a routing model is a
complex issue and different heuristic approaches have been proposed in the literature.
Examples of these approaches, typically flow-oriented models, are in [20,23,21]. As for
network-wide optimization approaches, [30] describes a bi-objective routing model us-
ing lexicographic optimization where a primary objective function is the weighted sum
of the carried bandwidth associated with QoS traffic flows and a secondary objective
function of the same type is defined for the BE traffic. A heuristic procedure based on
a decomposition technique and multicommodity flow programming is developed for
obtaining solutions to the problem.

Some definitions relevant to the model are now formally introduced.

Definition 1. A traffic flow is a mathematical entity specified by fs = (vi,v j,γs,η s) for
s ∈S = SQ ∪SB that corresponds to a stochastic process, in general a marked point
process, that describes the arrivals and basic requirements of μ-flows, originated at the
MPLS ingress node vi and destined to the MPLS egress node v j, using the same LSP
and characterized by the vectors of ‘attributes’ γs and ηs for service type s.

The vector γs describes the traffic engineering attributes of flows of service type s and
the vector ηs enables the representation of the mechanism(s) of admission control to all
links lk in the network by calls of flow fs. The set of all traffic flows of type s will be
denoted by Fs.

In the teletraffic modeling approach considered here, these attributes include the re-
quired effective bandwidth ds and the mean duration h( fs) of a μ-flow in fs. In our
model a ‘μ-flow’ corresponds to a ‘call’, the term call being used in its broadest sense,
that is, as a connection request with certain features. The use of the concept of effective
bandwidth [17] in the present context (MPLS networks with explicit routes) was earlier
proposed in [29] and used in [25,26]. This enables an upper level network representation
in the traffic plane level, through an equivalent multirate loss traffic network.

Consider that we have an approximate teletraffic model that is capable of estimating
the node-to-node blocking probabilities B( fs) for all flows fs of all service types.
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Definition 2. A routing plan R is a set of loopless paths, for all network services and
all flows, which corresponds to a possible routing pattern in the network, assuming
that up to M− 1 alternative routes may be attempted by any connection request of fs:

R = ∪|S |
s=1R(s) for all the network services, where |S | is the total number of services,

R(s) = ∪ fs∈Fs R( fs),s ∈SQ∪SB and R( fs) = (rp( fs)), p = 1, · · · ,M.

In the present model (one-stage alternative routing), M = 2.
This means that for each flow fs the first choice route r1( fs) will be used unless it is

blocked as a result of one of its links lk not having the required available bandwidth ds

(or as prescribed by a general probabilistic availability functionψks). If r1( fs) is blocked
then the second choice route r2( fs) will be attempted by the connection request and the
request will be blocked only if r2( fs) is also blocked.

Let A( fs) represent the mean of the traffic offered by traffic flow fs in Erl and Ao
s

represent the total traffic offered by the flows of the service type s, Ao
s = ∑ fs∈Fs A( fs)

[Erl].

Definition 3. The average blocking probability for all traffic flows of type s,
for a given routing plan R, is Bms = 1

Ao
s
∑ fs∈Fs A( fs)B( fs).

In particular, Bms|Q = Bms for given s ∈SQ.

Definition 4. The maximal blocking probability among all traffic flows fs of QoS class
and type s, is BMs|Q = max fs∈Fs{B( fs)},s ∈SQ.

Definition 5. The maximal average blocking probability among all QoS service types,
is BMm|Q = maxs∈SQ{Bms}.
Let w( fs) denote the expected revenue associated with calls of a generic flow fs

and Ac
s be the total carried traffic by traffic flows of type s, Ac

s =∑ fs∈Fs A( fs)(1−
B( fs)) = Ao

s (1−Bms) [Erl]. Further assume the usual simplification w( fs) = ws,∀ fs ∈
Fs.

Definition 6. The total expected revenues associated with QoS(BE) traffic flows, are
given by WQ(B) = ∑s∈SQ(B)

Ac
sws.

In the framework of the meta-model [7] we may formulate a two-level multiobjective
routing optimization problem by separating the total expected revenue in two parts: WQ

for the traffic flows of QoS type and WB for the traffic flows of BE type, as defined above,
and by considering explicitly performance optimization of QoS service types. While WQ

will be a first priority objective function, together with the maximal blocking probability
for all QoS service types, BMm|Q, WB will be a second level objective function. This
seeks to guarantee that the routing of BE traffic, in a quasi-stationary situation, will not
be made at the cost of a decrease in revenue or of an increase in the blocking probability
of QoS traffic flows.

The second level of optimization also concerns QoS service types and includes 2|SQ|
objective functions to be minimized, the mean blocking probability Bms|Q for flows of
type s ∈ SQ, and the maximal blocking probability BMs|Q, defined above. Note that
BMs|Q represents the fairness objective defined for each service type s ∈SQ.

These considerations led to the following formulation of a two-level hierarchical
optimization problem for two service classes:
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Problem P-M2-S2

1st level

{
QoS - Network objectives: minR{−WQ}

minR{BMm|Q}

2nd level

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
QoS - Service objectives: minR{Bms|Q}

minR{BMs|Q}
∀s ∈SQ

BE - Network objective: minR{−WB}
subject to the equations of the underlying traffic model.

Here the acronym P-M2-S2 stands for ‘Problem - Multiobjective with 2 optimization
hierarchical levels - with 2 Service classes’.

It is important to note that while QoS and BE traffic flows are treated separately
in terms of objective functions in order to take into account their different priority in
the optimization model, the interactions among all traffic flows are fully represented
in the model. This is guaranteed by the adopted traffic modeling approach underlying
the optimization model. This is another major difference in comparison to other routing
models proposed for networks with two service classes.

The definition and calculation of the parameters in the expressions are given in [8,
Appendix A].

It should be noted that this model is a simplification of the general model for QoS
and BE service classes outlined by the authors in [7, Sect.3.3]. In the addressed routing
optimization model P-M2-S2 only the macro level representation was considered, hav-
ing in mind the avoidance of increased complexity in a model, which is by itself very
complex, resulting from the inclusion of a third optimization level in the routing model,
as well as the corresponding additional computational burden.

The traffic modeling approach is the one used in [7] and earlier in [29,26] for tack-
ling the calculation of blocking probabilities experienced by the traffic flows in network
links. It is based on the concept of effective bandwidth (see underlying theory in [17]),
in association with the definition of MPLS explicit routes. The effective bandwidth can
be considered as a stochastic measure of the utilization of network resources enabling
the representation (in an approximate manner) of the effects of the variability of the
rates of different traffic sources, as well as the effects of statistical multiplexing of dif-
ferent traffic flows in a network. This conceptual tool was used in routing optimization
models of multiservice networks of various types as in [29,26]. Hence, the network may
be represented in the traffic plane by a multiclass loss traffic network, equivalent to a
multirate traffic circuit-switched network.

The basic calculation sub-model enables the blocking probabilities Bks, for connec-
tion requests of service type s in link lk, to be obtained in the form Bks = Ls

(
dk,ρk,Ck

)
.

Ls represents the basic function (implicit in the analytical model) that gives the marginal
blocking probabilities, Bks, in terms of dk = (dk1, · · · ,dk|S |) (vector of equivalent effec-
tive bandwidths), ρk = (ρk1, · · · ,ρk|S |

)
(vector of reduced traffic loads ρks offered by

flows of type s to lk) and the link capacity Ck.
This approximation was suggested in [29] in the context of off-line single-objective

multiservice routing optimization models and was also used in the multiobjective
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dynamic alternative routing model [26]. The use of very efficient and robust stochastic
approximations is absolutely critical in a routing optimization model of this type, for
tractability reasons. The detailed description of the traffic model can be seen in [7,8].

3 Foundations of the Resolution Approach

In the hierarchical multiobjective network-wide optimization routing problem P-M2-
S2 we will consider that the routing principle uses alternative routing i.e. the decision
variables are the network routing plans R.

The hierarchical multiobjective alternative routing problem in question is highly
‘complex’ as a result of two major factors: the strong interdependencies among all
objective functions (via the {B( fs)}) and the interdependencies between the objective
function parameters and the (discrete) decision variables R (network route plans). All
these interdependencies are defined by the underlying traffic model.

Concerning overall complexity it can be said that the simplest, ‘degenerated’ single
objective version of the problem, corresponding to the single objective function WQ, one
single service and no alternative routing (M = 1) is NP-complete in the strong sense, as
shown in [11]. Note that our model is a bi-level, multiobjective formulation of this type
of problem. This and the interdependencies among the objective functions are a strong
indication of extreme intractability of the problem.

Concerning the possible conflict between the objective functions in P-M2-S2, it can
be said that in many situations, the maximization of WQ entails a deterioration on B( fs),
s ∈ SQ, for “small” intensity traffic flows A( fs) which tends to increase BMs|Q and,
as a result, BMm|Q. In single-objective routing models this effect is usually tackled by
imposing upper bounds on the values B( fs). These relations between objective functions
of this type have been analyzed in [27]. Note that this is a major factor to justify the
interest and potential benefit in using multiobjective approaches when dealing with this
type of routing problem.

The resolution (in a multicriteria analysis sense) of the routing model P-M2-S2 will
be performed by a heuristic approach, a first version of which is presented in the next
section. This heuristic is the extension and adaptation to this problem of the heuristic
procedure described in [9] and [26].

The heuristic developed for problem P-M2-S2 is based on the calculation of solutions
of a bi-objective shortest path problem. In this problem the path metrics to be minimized
will be the marginal implied costs (as defined according to the following analysis) and
blocking probabilities.

The implied cost cku resulting from the acceptance of a call of flow fu in link lk is
a powerful mathematical concept in routing optimization in circuit-switched networks,
and was originally proposed by Kelly [18] for single-rate traffic networks. It was ex-
tended to single route (i.e. without alternative routing) multirate traffic networks in [15]
and [29]. It can be defined as the expected value of the loss of revenue in all network
traffic flows which may use link lk resulting from the acceptance of a call from fu asso-
ciated with the decrease in the capacity of this link. Therefore the implied cost measures
the knock-on effects on all network routes (of all traffic flows) resulting from the accep-
tance of a call from fu in a link lk. The authors have adapted in [9] and [26] the definition
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of cku to multirate loss networks with alternative routing by extending the correspond-
ing expression given for single-service networks in [18]. This extension implies that the
cku can be calculated from the equations:

cku = ∑
s∈S

1
1−Bks

ζkus

⎡⎣ ∑
fs:lk∈r1( fs)

λr1( fs)

(
sr1( fs) + cks

)

+ ∑
fs:lk∈r2( fs)

λr2( fs)

(
sr2( fs) + cks

)⎤⎦ (1)

with

sr2( fs) = w( fs)− ∑
l j∈r2( fs)

c js

sr1( fs) = w( fs)− ∑
l j∈r1( fs)

c js− (1−Lr2( fs))sr2( fs)
(2)

where srp( fs) is the surplus value of a call on route rp( fs), λrp( fs) is the marginal
traffic carried on rp( fs), Lrp( fs) is the blocking probability for calls of fs on route
rp( fs) (p = 1;2), considering that r1( fs) and r2( fs) are disjoint paths, and ζkus =
Ls
(
dk,ρk,Ck−dku

)−Ls
(
dk,ρk,Ck

)
is the increase in the congestion for type s calls

on link lk originated by a decrease in the arc capacity because of the acceptance of a
type u call.

The calculation of the implied costs in this form is based on the following conjecture,
which is an extension to multirate loss networks with alternative routing of the results
in [18, Sect.7] and [28, Sect.3].

Conjecture A: In multirate networks with (one-stage) alternative routing the sensitivity
of the revenue WT with respect to the traffic A( fs) being offered to a pair of routes
(r1,r2), when an approximation to the expected revenue is calculated from the solution
of the fixed point equations in Bks, can be written

∂WT

∂A( fs)
= (1−Lr1( fs))

⎛⎝wr1( fs)− ∑
lk∈r1( fs)

cks

⎞⎠
+ Lr1( fs)(1−Lr2( fs))

⎛⎝wr2( fs)− ∑
lk∈r2( fs)

cks

⎞⎠ (3)

where the cks are the implied costs and these satisfy the system of equations (1)-(2).

The validity of this conjecture implies that the implied cost cku can be interpreted
as the exact mathematical measure of the ‘knock-on’ effects on all network routes of
all network flows resulting from the acceptance of a call from fu in link lk, in the terms
stated above. This in turn is consistent with the calculation of the cks through the system
(1), by applying the theory developed in [18].
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It will be further assumed that wr1( fs) = wr2( fs) = w( fs). The fixed point equations
in this statement result from the traffic model and constitute a system of implicit non-
linear equations enabling the calculation of the Bks in terms of link capacities (expressed
through matrix C = [Ck]), the offered traffic matrix A = [A( fs)], and the current network
routing plan R. The calculation of cks through (1)-(2) also implies the solution of a
system of equations.

Bks = βks(B,C,A,R) and cks = αks(c,B,C,A,R) (4)

with k = 1, · · · , |L |;s = 1, · · · , |S |, B = [Bks] and c = [cks]. The numerical resolution
of the systems (4) is performed by fixed point iterators, for given C,A and R.

In [9] and [26], the authors formulated a bi-level multiple objective dynamic alterna-
tive routing problem for multiservice networks for a single service class with multiple
service types:

Problem PG−S

Network level: minR{−WT}
minR{BMm = maxs∈S {Bms}}

Service level: minR(s){Bms},s = 1, · · · , |S |
minR(s){BMs = max fs∈Fs{B( fs)}},s = 1, · · · , |S |

subject to the equations of the teletraffic model enabling the calculation of {B( fs)} in
terms of {A( fs)} and R, where WT is the total expected network revenue associated
with the traffic carried by all service types, Bms is the average blocking probability for
all traffic flows of service type s, BMs is the maximal value of those blocking proba-
bilities, and BMm is the maximal value among the Bms and is, together with WT , the
first priority objective function. This routing model can be considered as an application
of the meta-model associated with P-M3-S2 (Problem - Multiobjective with 3 opti-
mization hierarchical levels - with 2 Service classes) [7] and as a particular case of the
addressed model, P-M2-S2, by considering only one service class.

The resolution approach to PG − S was based on the calculation of solutions to
the bi-objective shortest path problem P(2), formulated for every end-to-end flow fs,
minr( fs)∈D( fs){mn(r( fs)) = ∑lk∈r( fs) mn

ks}n=1;2, where m1
ks = cks and m2

ks = − log(1−
Bks), and D( fs) is the set of feasible loopless paths for flow fs, resulting from traf-
fic engineering constraints. The logarithmic function is used to transform the blocking
probability into an additive metric.

The use of this constrained bi-objective shortest path problem as a basis for the res-
olution approach to the network problem PG − S relies on the fact that the metric
blocking probability tends (at a network level) to minimize the maximal node-to-node
blocking probabilities B( fs) while the metric implied cost tends to maximize the total
average revenue WT (see [10] and [27]). When one states that using the minimization of
path implied cost ‘tends’ to maximize WT this would be in rigor only valid if the choice
of such an ‘optimal’ path for a given fs would not change in any form the network
working condition, an assumption that is not true, having in mind the interdependen-
cies among {cks},{Bks} and R (see (4)). This is the ultimate source of difficulty in
devising a heuristic based on this principle, as outlined in the next section.



206 J. Craveirinha et al.

Nevertheless it was possible to develop a heuristic approach based on this principle
that gave very good results when compared with reference routing methods like RTNR
(Real Time Network Routing) of AT&T, and DAR (Dynamic Alternate Routing), aimed
at maximizing the total expected revenue, as shown in [26].

In order to extend this resolution principle to the problem P-M2-S2 we need to extend
the definition of implied costs to a network with two service classes. For this purpose
we propose the following definition of marginal implied costs associated with QoS
(BE) traffic, by extending the original interpretation of implied costs by Kelly [18] to
a multirate loss network with two service classes. Hence we will define the marginal
implied cost for QoS traffic, cQ

ku, associated with the acceptance of a connection (or
“call”) of traffic fu of any service type u ∈ S on a link lk, as the expected value of
the traffic loss induced on all QoS traffic flows resulting from the capacity decrease in
link lk. In an analogous form one can define the marginal implied cost cB

ku for BE traffic
associated with the acceptance of a connection of traffic flow fu on link lk.

We will assume, as a conjecture, that the marginal implied costs for QoS (BE) traffic
can be estimated by solving a system of equations analogous to (1)-(2), by restraining
the summation on the right hand side of (1) to the service types of QoS (BE) class, re-

spectively, by introducing the marginal surplus values sQ(B)
ri( fs)

and the marginal revenues,

wQ(B)( fs) = αQ(B)w( fs) with αQ +αB = 1.0 (5)

where the coefficients αQ(B) ∈]0.0;1.0[ satisfy the above normalization condition. This
condition and the calculation of the marginal costs through those equations are con-
sistent with the definition of the sensitivity of the marginal revenues associated with
QoS and BE traffic, through expressions analogous to (3), as described in the following
conjecture.

Conjecture B: In multirate networks with (one-stage) alternative routing and two ser-
vice classes, the sensitivity of the revenues WQ(B) with respect to the traffic A( fs) being
offered to a pair of routes (r1,r2), when an approximation to the expected revenue is
calculated from the solution of the fixed point equations in Bks, can be written

∂WQ(B)

∂A( fs)
= (1−Lr1( fs))

⎛⎝wQ(B)( fs)− ∑
lk∈r1( fs)

cQ(B)
ks

⎞⎠
+ Lr1( fs)(1−Lr2( fs))

⎛⎝wQ(B)( fs)− ∑
lk∈r2( fs)

cQ(B)
ks

⎞⎠ (6)

In fact, taking into account that WT = WQ +WB, (6) and (5), together with the condi-
tion cks = cQ

ks + cB
ks, imply (from the additivity property of the derivatives) equation (3)

(in conjecture A). The marginal expected revenues per call of fs, wQ(B)( fs) (such that
wQ( fs)+wB( fs) = w( fs)) in equation (6) may be interpreted as the part of the expected
revenue w( fs) generated by a connection of fs that is accepted by the network (for a
given choice of the pair of routes (r1( fs),r2( fs))), that is assigned to the calculation of
the sensitivity of the revenue from the point of view of traffic losses induced either in
the QoS traffic flows or in the BE flows.
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In the present model we will consider, as a first approach, αQ = αB = 0.5 so that
no bias is induced in the calculation of the marginal costs through the choice of these
factors.

This conjecture plays a central role in the theoretical foundation of the resolution
approach, since its validity implies that the marginal implied costs associated with
QoS(BE) traffic can be interpreted exactly as stated in the paragraph above. This also

implies the consistency of the calculation of the {cQ(B)
ks } through a system analogous to

(1), with the changes associated with the introduction of marginal coefficients wQ(B)( fs).
The auxiliary bi-objective shortest path problem to be solved will have two possible

configurations. The first one will use as link cost coefficients m1
ks = cQ

ks when one intends
to obtain candidate solutions to improve the revenue of the QoS traffic, and the second
one will use m1

ks = cB
ks when one seeks to improve the revenue associated with the BE

traffic.
To solve this constrained shortest path problem we will use an adaptation of the pre-

viously developed algorithmic approach MMRA-S or Modified Multiobjective Routing
Algorithm for multiservice networks, described in [9] and [26].

4 A First Heuristic Approach

Next we describe the main features of a heuristic procedure for solving the model in
the context of application to the MPLS network used in [30]. The basic architecture of
the heuristic is analogous to the MODR-S (Multiobjective Dynamic Routing for Mul-
tiservice networks) heuristic described in [9] and applied in [26], with some relevant
adaptations. These adaptations and changes in the heuristic have to do, on the one hand,
with the different type of the considered network topology, as shown in Figure 1, that
unlike the one for which MODR-S was specified (a fully meshed network) has low con-
nectivity. On the other hand, there are important differences in the objective functions
as a result of the existence of two traffic classes, as previously analyzed.

The ‘core’ of the heuristic is the generation of candidate solutions (r1( fs),r2( fs)) for
each fs, where r1( fs) is defined according to the rules described hereafter and r2( fs) is
typically obtained through a constrained bi-objective shortest path algorithm, devised
for problem P(2), MMRA-S2.

Having in mind the network topology and the need to make a further distinction
between real-time QoS services (video and voice services) and non-real time QoS ser-
vices (such as ‘premium data’ service), special rules were defined for the selection of
candidate first choice routes r1( fs). An important parameter defined from these rules is
the maximal number of arcs Ds per route for each service type s.

In general, for QoS services, r1( fs) is chosen as the direct arc whenever it exists.
If no direct path exists, then for real-time QoS services one of the feasible paths with
the least number of arcs is chosen. If there is more than one of these paths, the choice
is made according to MMRA-S2, by using priority regions defined in the objective
function space of P(2) (see [9,26]). These criteria result from the more stringent con-
straints on delay and jitter of this type of services, and also having in mind an increase
in reliability of the connections. For the remaining QoS services the initial choice of
r1( fs) is made by using the algorithm MMRA-S2 and the mentioned priority regions.
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Fig. 1. Test network M1, proposed in [30], with the indication of the bandwidth of each arc C′k,
in Mbps

A similar procedure is applied for obtaining r1( fs) for BE traffic flows. Note that for
BE traffic flows, the direct path, whenever it exists, is treated exactly as any other path,
i.e. no preference is given to the direct path over the other paths. Concerning the cal-
culation of the second choice routes r2( fs) for QoS or BE traffic, this is made accord-
ing to the MMRA-S2 algorithm. These alternative routes may be eliminated through a
mechanism designated as Alternative Path Removal (APR) proposed in [26], in order
to prevent performance degradation in overload conditions. Therefore, rs = r2( fs) is
eliminated whenever m1(rs) > αQ(B) · ds · zAPR and m2(rs) > − log(0.7) · zAPR, where
zAPR ∈ [0.0;1.0] is an empirical parameter which has to be adequately chosen through
extensive experimentation with the model. The complete set of rules used in the given
network to define candidate routes (r1( fs),r2( fs)) is described in [8, Appendix C].

As for the ‘core’ algorithm MMRA-S2 it is basically an adaptation to the present
model of the bi-objective constrained shortest path algorithm in [26], which is an ex-
tension of the algorithm in [10] to a multiservice environment. The main features of
MMRA-S are now briefly reviewed. Note that in general there is no feasible solution
which minimizes both objective functions of P(2) simultaneously. Since there is no
guarantee of the feasibility of this ideal optimal solution, the resolution of this routing
problem aims at finding a best compromise path from the set of non-dominated solu-
tions, according to some relevant criteria previously defined. In this context, since path
computation and selection have to be fully automated, such criteria are embedded in
the working of the algorithm MMRA [10,27] via preference regions in the objective
function space.
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The purpose of the MMRA version used in the present context is to calculate solu-
tions to problem P(2), and is a variant of the algorithm proposed in [1] for a bi-objective
shortest path problem of the same type, adapted to the requirements and specifics of
the multiobjective dynamic routing model MODR-S [26]. The approach given in [1]
(inspired by the one presented in [32] and [6] concerning a procedure to search inter-
actively non-dominated paths) enables the calculation and selection of non-dominated
paths in the framework of a routing control mechanism. The procedure satisfies this
requirement by integrating the K-shortest paths algorithm [24] and a special concept
designated as “soft constraints” (that is constraints not directly incorporated into the
mathematical model). The main features of this approach are: i) the representation of
QoS requirements through soft constraints corresponding to requested and acceptable
thresholds for each QoS metric; ii) the consideration of this type of thresholds defines
priority regions in the objective function space in which non-dominated solutions are
searched for; iii) the non-dominated paths are computed by means of an extremely effi-
cient K-shortest path algorithm proposed in [24], designated as MPS algorithm; iv) the
adaptation of the preference thresholds to time-varying network working conditions,
as required in dynamic routing applications. Further details on the MODR-S teletraffic
model and MMRA, in a multiservice network, can be seen in the report [25].

This algorithm was adapted straightforwardly to the present routing model, by in-
corporating in the definition of the feasible route set D( fs) and in the route selection
procedure the rules described in detail in [8, Appendix C]. Also the coefficients of the
second objective function are the marginal implied costs, either cQ

ks or cB
ks depending on

the expected revenue (associated with QoS or BE traffic) we are seeking to improve.
Note that successive application of MMRA-S2 to every traffic flow does not lead

to an effective (even less robust) resolution approach to the network routing problem
P-M2-S2. The essential reason for this is an instability phenomenon that arises in such
a path selection procedure, expressed by the fact that the route sets R tend to oscillate
between certain solutions, some of which may lead to poor global network performance
under the prescribed criteria. This is associated with the complexity and interdependen-

cies in the network problem P-M2-S2, namely the interdependencies between {cQ(B)
ks }

and {Bks} and between these two sets of parameters and the current total route set R.
A general idea of the heuristic is to seek, for each service, a routing solution R(s)

which may lead to a better performance in terms of WB, Bms|Q and BMs|Q, s ∈ SQ,
hence leaving network resources available for traffic flows of other services so that the
solutions selected at each step may enable an improvement on the higher level objec-
tive functions WQ and BMm|Q. Therefore the heuristic is constructed in order to seek,
firstly for each QoS service and beginning with the higher bandwidth services (consid-
ering s = 1, · · · , |SQ|) and, secondly, for each BE service and beginning with the higher
bandwidth services (s = |SQ|+ 1, · · · , |S |), solutions which dominate the initial one,
in terms of Bms|Q and BMs|Q for QoS services and in terms of WB for BE services, while
not worsening any of the network main metrics, WQ and BMm|Q (taking into account the
optimization priorities in P-M2-S2).

The basis of the heuristic approach (similarly to MODR-S [26]) is to search for the

subset of the path set R
a =∪|S |

s=1R
a(s) : R

a(s) = {(r1( fs),r2( fs)), fs ∈Fs}, the elements
of which should be possibly changed in the next route improvement cycle. Detailed
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analysis and extensive experimentation with MODR-S led us to propose [27,26] a spe-
cific criterion for choosing candidate paths for possible routing improvement by in-
creasing order of a function ξ ( fs) of the current (r1( fs),r2( fs)). The criterion depends
explicitly on the first choice path r1( fs) and on the alternative path r2( fs). The adapta-
tion of this criterion to the present model P-M2-S2 considers:

ξ ( fs) = FQ(B)
C ( fs)FL( fs) (7)

if the effect over QoS(BE) traffic is being considered, and where FQ(B)
C ( fs) = (n2−

n1)c
′Q(B)
1 +cQ(B)

r1( fs)
−cQ(B)

r2( fs)
, FL( fs) = 1−Lr1( fs)Lr2( fs), cQ(B)

r( fs)
=∑lk∈r( fs) cQ(B)

ks and c
′Q(B)
1 =

1
n1
∑lk∈r1( fs) cQ(B)

ks = 1
n1

cQ(B)
r1( fs)

.

The aim of the factor FQ(B)
C ( fs) is to favor (concerning the interest in changing the

second choice route when seeking to improve WQ or WB) the flows for which the second
choice route has a high implied cost and the first choice route a low implied cost. The
factor (n2−n1) was introduced for normalizing reasons having in mind that r1( fs) has
n1 arcs and r2( fs) n2 arcs, in the considered network. The aim of the second factor
FL( fs) is to favor the choice of the flows with worse current blocking probability. In
the cases where overload conditions led to the elimination of the alternative path (see

explanation above), FQ(B)
C ( fs) = cQ(B)

r1( fs)
and FL( fs) = 1−Lr1( fs).

A second point to be tackled by the heuristic procedure is to specify how many
(and which) of the routes with smaller values of ξ ( fs) should possibly be changed by
applying MMRA-S2 once again. For this purpose the effect of each candidate route, in
terms of the relevant objective functions, is anticipated by solving the corresponding
analytical model.

The heuristic is initialized with a set of paths (r1( fs),r2( fs)) that was defined without
any previous optimization. The quality of the final solution obtained with the heuristic
is dependent on the quality of the initial one. The initial routing plan Ro to be used in
the heuristic considers that the r1( fs) are chosen as follows: the initial path chosen for
every flow fs is the shortest one (that is, the one with minimum number of arcs); if
there is more than one shortest path, we choose the one with maximal bottleneck band-
width (i.e. the minimal capacity of its arcs); if there is more than one shortest path with
equal bottleneck bandwidth, the choice is arbitrary. The alternative routes r2( fs) are
chosen from the candidate paths obtained from MMRA-S2 according to the procedures
of solution analysis and selection explained above and in the next paragraphs.

In order to have a “good” initial solution some alternative paths must be eliminated
from the initial set of paths. According to the criterion of elimination of the alternative
paths proposed in [9] and [26], all paths r2( fs) satisfying

B( fs) >
∑ fs∈Fs B( fs)

|Fs| or B( fs) > 10% (8)

should be eliminated (|Fs| is the number of flows of type s). This procedure keeps
only ‘good’ alternative paths in the initial solution, and it seeks to improve both the
service performances (especially for the services with higher bandwidth demands) and
the network main performance metrics. Note that if the final solution of the heuristic



A Hierarchical Routing Model for MPLS Networks with Two Service Classes 211

does not dominate the initial one (before the elimination of some alternative paths) in
terms of the first level objective functions, then it is this initial solution that should be
adopted. However, this situation never occurred in all the tests performed.

The heuristic starts off with a cycle that covers all the services, beginning with the
QoS services s = 1, · · · , |SQ| and ending with the BE services s = |SQ|+ 1, · · · , |S |.
Note that QoS services are treated in the model as first priority traffic, and BE services
as second priority traffic. Within each class of service, the algorithm begins with the
types of services with higher bandwidth demands. Experience has shown that this or-
dering of the services generally leads to a better performance of the heuristic. Therefore,
the heuristic is set up to find, for each service, and starting with the most demanding
services, solutions that dominate the previous one with respect to the first level objec-
tive functions WQ and BMm|Q, if possible without worsening the partial criteria for each
service, Bms|Q and BMs|Q for QoS services and WB for BE services.

The two main cycles of the heuristic are improvement cycles of the objective func-
tions. Two variables, nPaths and mPaths, define the current number of paths, ordered
according to ξ ( fs), which are candidates for possible improvements in these two cycles.
A specific service protection scheme to prevent excessive network blocking degradation
in overload situations, the APR, is used, as described earlier. The parameter zAPR varies
between 0.0 and 1.0, and its value is defined in the inner cycle of the heuristic.

Concerning the numerical complexity of this heuristic, it can be said that the instruc-
tions in the inner cycle of the procedure are executed at least CN = |S |(6|FN | − 1),
where |FN | = 1

|S | ∑s∈S |Fs| is the average number of traffic flows per service. This
figure CN is an indication of the heuristic numerical complexity just at the level of the
‘optimization’ procedures. One should note that each calculation of the objective func-
tions and marginal costs (which are used as coefficients in the auxiliary bi-objective
shortest path model) involves the numerical resolution of a large system of non-linear

equations in {Bks} and {cQ(B)
ks } and such calculations have to be repeated whenever

a candidate pair of paths (r1( fs),r2( fs)) is recalculated and analyzed, in terms of its
impact on the objective function values.

This heuristic is formalized in the Appendix. A more detailed explanation is in the
report [8].

5 Application of the Model

In this section, computational results obtained with the MOR-S2 heuristic in a network
case study analogous to the one in [30], are presented. The “quality” of these results
concerning WQ was compared to results obtained with another model proposed in [30]
for MPLS networks with two service classes that uses a lexicographic optimization
formulation based on a deterministic MCF (Multicommodity Flow) model, which gives
an upper bound to our objective function WQ in P-M2-S2. For this purpose the network
case study for two service classes in MPLS addressed in [30] was considered.

5.1 Application of the Model to a Network Case Study

In [30], a model is proposed for traffic routing and admission control in multiservice,
multipriority networks supporting traffic with different QoS requirements. Having in
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mind a better understanding of the application case study we will begin with an overview
of the relevant features of the model proposed in [30]. Instead of using stochastic traffic
models in the calculation of paths, deterministic models are used, in particular mathe-
matical programming models based on MCFs. These models are only a rough approxi-
mation in this context, and in fact they tend to under-evaluate the blocking probabilities.
As a result, an adaptation of the original model was introduced in [30] in order to obtain
more ‘correct’ models, that is models which give a better approximation in a stochastic
traffic environment. The authors of [30] propose a simple technique to adapt the MCF
model to a stochastic environment: the requested values of the flows bandwidths in the
MCF model are compensated with a factor α ≥ 0.0, so as to model the effect of the ran-
dom fluctuations of the traffic that are typical of stochastic traffic models. The higher the
variability of the point processes of the stochastic model, the higher is the need for com-
pensation and therefore the higher should α be. A deterministic traffic routing model
based on MCFs is specified, where traffic splitting is used. This means that the required
bandwidth of each flow may be divided by multiple paths from source to destination,
allowing for a better load balancing in the network.

The objective functions of this problem to be maximized are the revenuesWQ and WB,
associated with QoS and BE flows. A bi-criteria lexicographic optimization formulation
is considered, concerning the revenues WQ and WB, so that the improvements in WB are
to be found under the constraint that the optimal value of WQ is maintained.

In the deterministic flow-based model [30], a base matrix T = [Ti j] with offered
bandwidth values from node i to node j [Mbps] is given. A multiplier ms ∈ [0.0;1.0]
with ∑s∈S ms = 1.0 is applied to these matrix values to obtain the offered bandwidth of
each flow fs = (vi,v j,γs,η(s,L )) to the network, T ( fs) = msTi j. The transformation
of this type of matrix into a matrix of traffic intensities, used in our stochastic traffic
model, can be carried out as described in Appendix E.1 of the report [8]. The model for
calculating the blocking probabilities is described in Appendix B of the same report.

In the application example in [30], results for the QoS flows revenue WQ are pre-
sented for three values of α: α = 0.0 corresponds to the deterministic approach; α =
0.5 is the compensation factor when calls arrive according to a Poisson process, ser-
vice times follow an exponential distribution and the network is critically loaded; and
α = 1.0 for traffic flows with higher ‘variability’. The results for the BE revenue WB

are not presented, but for α = 0.0 the maximum value is 79.33% of the maximum
possible value W max

B , because 20.67% of the traffic is not even admitted to the net-
work due to an admission control scheme. The results for the revenues obtained from
the information provided in [30] are W [30]

Q|α=0.0 = 65156.00 and W [30]
B|α=0.0 ≤ 17462.50;

W [30]
Q|α=0.5 = 60829.72; W [30]

Q|α=1.0 = 56338.65.
Note that the revenue values WQ in the model [30] should be viewed as upper bounds

on the QoS revenue values of the problem P-M2-S2, because of the differences between
the two optimization problems and the important differences in the underlying routing
control and traffic models, previously referred to. In fact an important feature of the
resolution approach of the routing problem in [30] is the admission control of BE traffic
flows at the first stage of resolution, so the BE traffic that is actually offered to the
network is the fraction of traffic that was not rejected by the admission control. Also
note the absence of alternative routing as well as the use of traffic splitting. Therefore,
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for a specific traffic matrix, the model in [30] tends to obtain smaller values of blocking
probability by comparison with a situation without admission control, and this tends to
favor higher global revenues. Also the traffic representation, even in the approximated
stochastic model [30, Sect.5.4], is a bit rough and tends to under-evaluate the blocking
probabilities and to over-estimate the revenues.

5.2 Some Experimental Results

The test network M1 proposed in [30] is displayed in Figure 1. It has N = 8 nodes, with
10 pairs of nodes linked by a direct arc. The network has a total of |L | = 20 unidi-
rectional arcs, one in each direction for every pair of adjacent nodes. The bandwidth
of each arc C′k is shown in Figure 1. The number of channels Ck (with basic capacity

u0 = 16 kbps) is Ck =
⌈

C′k
u0

⌉
.

There are |S |= 4 service types with the features described in Table 1. The value of

ds = d′s
u0

[channels] ∀s ∈S presented in the table (where d′s is the required bandwidth
in kbps) is calculated with u0 = 16 kbps. Note that ws = ds,∀s ∈S .

Table 1. Service features on the test network M1

Service Class d′s [kbps] ds [channels] ws hs [s] Ds [arcs] ms

1 - video QoS 640 40 40 600 3 0.1
2 - Premium data QoS 384 24 24 300 4 0.25

3 - voice QoS 16 1 1 60 3 0.4
4 - data BE 384 24 24 300 7 0.25

The traffic flow data information provided by [30] is a base matrix T = [Ti j] with
offered bandwidth values [Mbps] and a multiplier applied to these matrix values to
obtain the offered bandwidth of each flow. Given this information and the variability
compensation equations, the values of A( fs), the average number of offered μ-flows
of fs, during the average service time of a μ-flow can be calculated as shown in [8,
Appendix E.1].

In MOR-S2, an initial solution has to be chosen and applied as input data to the
heuristic. We chose to consider an initial solution with only one path for each flow, i.e.
without a second choice path as we concluded that this is more adequate, and leave it
up to the heuristic to find an adequate solution with second choice paths. The initial
solution is the same for all the services and the paths are symmetrical.

The objective function values for the initial and final solutions obtained with the
MOR-S2 heuristic are in Table 2. The revenue values have 2 decimal places and the
blocking probability values have 3 significant figures. The value of the QoS revenue in
the final solution is also presented as a percentage of the optimal value obtained in [30].

The MOR-S2 heuristic manages to start off with an initial solution with poor values
for the objective functions and still finishes with a solution with significantly better val-
ues. The values for all the objective functions, for all values of α , are improved through
the heuristic. The QoS revenue of the final solutions are slightly worse than those of the
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Table 2. Objective function values for the initial and final solution for MOR-S2 on the test
network M1

Objective α = 0.0 α = 0.5 α = 1.0
Functions Initial Final Initial Final Initial Final

WQ 54803.69 64330.56* 51785.21 60097.78† 49010.41 55978.80‡
BMm|Q 0.413 0.135 0.413 0.0962 0.405 0.0582
Bm1|Q 0.413 0.135 0.413 0.0962 0.405 0.0582
Bm2|Q 0.314 0.0159 0.296 0.00811 0.275 0.00279
Bm3|Q 0.0198 0.00489 0.0174 0.00263 0.0150 0.000436
BM1|Q 0.912 0.848 0.882 0.628 0.841 0.440
BM2|Q 0.766 0.0427 0.722 0.0305 0.667 0.0111
BM3|Q 0.0585 0.0456 0.0517 0.0241 0.0446 0.0143
WB 15106.57 17391.44 13787.49 17031.62 12445.64 16509.86

*)98.73% of W [30]
Q|α=0.0; †)98.80% of W [30]

Q|α=0.5; ‡)99.36% of W [30]
Q|α=1.0

optimal solution in [30], as expected. However, these QoS revenues can be considered
very good as they stand for approximately 99% of the optimal values in [30]. Therefore,
we can consider that MOR-S2 has managed to find an adequate “good” compromise
routing solution to the routing problem P-M2-S2. In fact these experimental results for
three traffic matrices showed that the expected QoS revenue obtained with our heuris-
tic is never less than 98.7% of that upper bound while a substantial improvement on the
other objective functions could be obtained with respect to the initial solution, using only
shortest path first choice routing, typical of Internet routing conventional algorithms.

6 Conclusions and Further Work

In the emergent MPLS technology for the Internet the implementation of connection-
oriented services from origin to destination is possible. This feature in association with
other functional capabilities of MPLS enables the implementation of advanced QoS-
based routing mechanisms, namely by establishing “explicit routes” (determined at the
originating node) for each traffic flow.

Having in mind these features and capabilities of MPLS routing it is possible to
explore the multicriteria nature of the routing environment and associated metrics (of
technical and economic nature), and devise multicriteria routing models capable of ex-
plicitly incorporating various network revenues and performance metrics, including
fairness QoS objectives at the level of the services. This enables the formulation of
multiobjective network-wide optimization routing models, namely hierarchical multi-
criteria models, for possible application at the top level of this type of networks.

In this work we described a bi-level multiobjective routing model in MPLS networks,
formulated within the general modeling framework developed by the authors in [7],
assuming that there are two classes of services (and different types of traffic flows in
each class), namely QoS and BE services. The routing model also considers the possi-
bility of using alternative routing when that is advantageous to the first priority objective
functions. An important feature of this model is the use of hierarchical optimization with
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two optimization levels, including fairness objectives. Another feature of the model is
the use of an approximate stochastic representation of the traffic flows in the network,
based on the use of the concept of effective bandwidth for macro-flows and on a gener-
alized Erlang model for estimating the blocking probabilities in the arcs. Also note that
while QoS and BE traffic flows are treated separately in terms of objective functions in
order to take into account their different priority in the optimization model, the inter-
actions among all traffic flows are fully represented through the traffic model. This is
another advantage in comparison to other routing models proposed for networks with
two service classes.

We have also presented the theoretical foundations of a specialized heuristic strategy
for finding “good” compromise solutions to the very complex bi-level routing opti-
mization problem. This theoretical foundation was based on a conjecture concerning
the definition of marginal implied costs for QoS flows and BE flows, which is an exten-
sion and adaptation of earlier definitions of implied costs for single-service networks
with alternative routing in [18]. The structure of a first version of a heuristic procedure
for resolving the problem was described. The model was applied to a test network previ-
ously used in a benchmarking study [30] that uses a lexicographic optimization routing
approach, including admission control for BE traffic, based on a deterministic traffic
representation, the results of which can be considered as upper bounds with respect to
the QoS traffic revenue. These preliminary results seem quite encouraging concerning
the potential performance of a multicriteria routing model of this nature.

The major limitation of this type of model is its inherent great complexity and the as-
sociated computational burden, which constitute the reverse of its ‘ambitious’ features,
namely, network-wide optimization, multiobjective nature with a significant number of
objective functions, use of alternative routing and a stochastic representation of traffic
flows of multiple service types. This makes, at present, its potential practical application
restrained to networks with a limited number of nodes, such as the core and intermedi-
ate (metro-core) level networks of low dimension. The model could also be used as the
basis of a periodic type dynamic routing method, similarly to MODR-S [26].

Further work on this model will involve the search for improvements in the heuristic
procedure, through sensitivity analysis of the present version, or the possible devel-
opment of metaheuristics for this very complex network routing problem. Finally a
discrete event simulation platform will be developed, which will enable a more exact
evaluation of the results of the heuristic in a stochastic dynamic environment closer to
real network working conditions.

References

1. Antunes, C.H., Craveirinha, J., Clı́maco, J., Barrico, C.: A multiple objective routing ap-
proach for integrated communication networks. In: Smith, D., Key, P. (eds.) Proceedings of
the 16th International Teletraffic Congress (ITC16) – Teletraffic Engineering in a Competi-
tive World, pp. 1291–1300. Elsevier, Amsterdam (1999)

2. Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X.: Overview and principles of Internet
traffic engineering. RFC 3272, Network Working Group (2002)

3. Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., McManus, J.: Requirements for traffic
engineering over MPLS. RFC 2702, Network Working Group (1999)



216 J. Craveirinha et al.

4. Clı́maco, J., Craveirinha, J.: Multicriteria analysis in telecommunication network planning
and design – Problems and issues. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple
Criteria Decision Analysis – State of the Art Surveys. International Series in Operations
Research & Management Science, vol. 78, pp. 899–951. Springer, Heidelberg (2005)

5. Clı́maco, J.C.N., Craveirinha, J.M.F., Pascoal, M.M.B.: Multicriteria routing models in
telecommunication networks – Overview and a case study. In: Shi, Y., Olson, D.L., Stam,
A. (eds.) Advances in Multiple Criteria Decision Making and Human Systems Management:
Knowledge and Wisdom, pp. 17–46. IOS Press, Amsterdam (2007)

6. Clı́maco, J.C.N., Martins, E.Q.V.: A bicriterion shortest path algorithm. European Journal of
Operational Research 11(4), 399–404 (1982)

7. Craveirinha, J., Girão-Silva, R., Clı́maco, J.: A meta-model for multiobjective routing in
MPLS networks. Central European Journal of Operations Research 16(1), 79–105 (2008)

8. Craveirinha, J., Girão-Silva, R., Clı́maco, J., Martins, L.: A hierarchical multiobjective rout-
ing model for MPLS networks with two service classes – Analysis and resolution approach.
Research Report 5/2007, INESC-Coimbra (October 2007), http://www.inescc.pt,
ISSN 1645-2631

9. Craveirinha, J., Martins, L., Clı́maco, J.N.: Dealing with complexity in a multiobjective dy-
namic routing model for multiservice networks – A heuristic approach. In: Proceedings of
the 15th Mini-EURO Conference on Managing Uncertainty in Decision Support Models
(MUDSM 2004), Coimbra, Portugal, September 22-24 (2004)

10. Craveirinha, J., Martins, L., Gomes, T., Antunes, C.H., Clı́maco, J.N.: A new multiple ob-
jective dynamic routing method using implied costs. Journal of Telecommunications and
Information Technology 3, 50–59 (2003)

11. Elsayed, H.M., Mahmoud, M.S., Bilal, A.Y., Bernussou, J.: Adaptive alternate-routing in
telephone networks: Optimal and equilibrium solutions. Information and Decision Technolo-
gies 14, 65–74 (1988)

12. Erbas, S.C.: Utilizing evolutionary algorithms for multiobjective problems in traffic engi-
neering. In: Ben-Ameur, W., Petrowski, A. (eds.) Proceedings of the International Networks
Optimization Conference (INOC 2003), Evry/Paris, France, October 27-29, pp. 207–212.
Institut National des Télécommunications (2003)
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Appendix – Formalization of the MOR-S2 Heuristic

I. Ra ← Ro

II. Compute B and WQ,BMm|Q for Ra

III. W o
Q ←WQ,Bo

Mm|Q ← BMm|Q
IV. Eliminate the paths r2( fs) in Ra that verify (8)
V. Re ← Ra

VI. Compute B and WQ,BMm|Q for Ra

VII. max{WQ}←WQ,min{BMm|Q}← BMm|Q
VIII. For s = 1 to s = |S |
1. Ra(s)← Re(s);R∗(s)← Re(s)
2. Compute B and Bms,BMs,s ∈SQ or WB,s ∈SB for Ra

3. min{Bms}ini ← Bms,min{BMs}ini ← BMs,s ∈SQ or max{WB}ini ←WB,s ∈SB

4. mPaths← |Fs| (= total number of flows ≤ N(N−1)), zAPR ← 1,ape← 0
5. While (mPaths≥ |Fs|−1) do

(a) nCycles← 2
(b) nPaths← mPaths
(c) Ra(s)← Re(s)
(d) Compute B and cQ,Bms,s ∈SQ or cB,WB,s ∈SB for Ra

(e) min{Bms}← Bms,s ∈SQ or max{WB}←WB,s ∈SB

(f) While (nPaths > 0) do
i. Compute and order the values of the function ξ ( fs) – see (7)

ii. Find the nPaths with lower value of ξ ( fs)
iii. Compute with MMRA-S2 new candidate paths for the corresponding O-D

pairs and define a new set of first and second choice paths for the service
s, Ra(s), according to the rules established in [8, Appendix C].

iv. Compute B and Bms,BMs,s ∈SQ or WB,s ∈SB for Ra

v. If s ∈SQ then
A. If (Bms < min{Bms}ini and BMs < min{BMs}ini) then

– Compute WQ,BMm|Q
– If WQ > max{WQ} and BMm|Q < min{BMm|Q} then
• min{Bms}ini ← Bms,min{BMs}ini ← BMs

• max{WQ}←WQ,min{BMm|Q}← BMm|Q
• R∗(s)← Ra(s)

B. If (Bms < min{Bms}) then
– min{Bms}← Bms

C. Otherwise go to 5.f.vii
vi. Otherwise (s ∈SB)

A. If (WB > max{WB}ini) then
– Compute WQ,BMm|Q
– If WQ > max{WQ} and BMm|Q < min{BMm|Q} then
• max{WB}ini ←WB

• max{WQ}←WQ,min{BMm|Q}← BMm|Q
• R∗(s)← Ra(s)
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B. If (WB > max{WB}) then
– max{WB}←WB

C. Otherwise go to 5.f.vii
vii. (Update nPaths)

A. nPaths← nPaths−1
B. If (nPaths = 0 and nCycles = 2) then

– nCycles← nCycles−1
– nPaths← |Fs|

C. Compute B and cQ,s ∈SQ or cB,s ∈SB for Ra

D. If (nPaths≤ 10 and ape≥ 1) then
– zAPR ← nPaths ·0.1

E. Otherwise zAPR ← 1
End of the cycle While (nPaths)

(g) ape← ape + 1
(h) If (ape > 1) then

i. mPaths←mPaths−1
End of the cycle While (mPaths)

6. Ra(s)← R∗(s)

End of the cycle For (s)
IX. If W o

Q > max{WQ} or Bo
Mm|Q < min{BMm|Q} then

1. The best solution is Ro

X. Otherwise, the best solution is R∗
XI. Compute the objective function values for the best solution
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Abstract. The Random Shortest Path Problem with the second moment criterion
is discussed in this paper. After the formulation of the problem, exact algorithms,
based on general concepts for solving the Multi-objective Shortest Path Problem,
are described. Next, several approximate algorithms are proposed. It is shown
that the complexity of the exact algorithms is exponential, while the complexity
of the approximate algorithms is only polynomial. Computational results for the
exact and approximate algorithms, which were performed on large graphs, are
shown.

1 Introduction

One of the basic problems in the operational research is the Classic Shortest Path Prob-
lem (shortly CSPP) that can be also interpreted as the problem of determination of the
path from a given source point to the destination point with minimal transfer time.

In this paper we consider a routing problem to determine the path from a given point
to the destination point with minimum transfer time. The simplest solution is to bring
the problem to the CSPP.

The CSPP has been studied by many researchers. The first algorithms solving the
CSSP were published by Dijkstra [5] for the single source problem and Bellmann [3],
Floyd [6] for all pairs problem. There have been many variations and improvements in
either analysis or special classes of the given graphs. For example Moffat, Takaoka [11]
for the all pairs shortest path problem; Fredman, Tarjan [10] for the single source prob-
lem; Frederickson [7] for the single source problem in planar graphs; Johnson [9] for
sparse graphs. The detailed study and discussion of the CSPP one can find in mono-
graphs, for instance [4] or [1].

Unfortunately, in practice, the travel times are not known exactly. Therefore the travel
time from one place to another should be treated as a random variable rather than a sin-
gle real number. Similar approach can be found in [12] and [13]. This is the main
problem discussed in this paper.

In Sect. 2 we present an example showing that in the Random Shortest Path Problem
(shortly RSPP) with the second moment criterion the subpath of the shortest path is
not necessarily the shortest subpath. We also formally state the Random Shortest Path
Problem with the second moment criterion. In Sect. 3 we present two exact algorithms

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 220–238, 2009.
c© IFIP International Federation for Information Processing 2009
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solving RSPP with the second moment criterion. We show that these exact algorithms
have exponential complexity. Therefore in the next section we present approximate
algorithms which have only polynomial complexity. In Sect. 5 we show computational
results of the presented exact and approximate algorithms, performed on large graphs.
In the end of the paper some conclusions are given.

2 Problem Statement

Let G = (V,E) be a directed graph with a finite set of vertices V and a set of edges
E ⊆V ×V . We denote by s a source vertex and by t a destination vertex.

In general, in the Shortest Path Problem (shortly SSP) each edge e ∈ E is associated
with some cost (sometimes called weight) ce. The goal is to find the path, from the
source vertex s to the destination vertex t, which minimizes a function of costs related
with edges of the path.

In the CSSP this function is a sum, and the costs are real numbers (they usually ex-
press the distance between given vertices). There are many algorithms for solving the
CSSP, for example, classical Bellman-Ford algorithm or classical Dijkstra algorithm.
Since in the next sections we will adopt these algorithms to the Random Shortest Path
Problem, therefore we present their pseudocodes below.

Classical-Bellman-Ford-algorithm:
set cv = ∞ for all v ∈V \ {s} and cs = 0
for i = 1 to #V −1 do

relaxation state = not changed
for all (u,v) ∈ E do

Relax(u,v)
if relaxation state = not changed then

break
return path related with ct

Classical-Dijkstra-algorithm:
set cv = ∞ for all v ∈V \ {s} and cs = 0
Q = V
while Q �= /0 do

choose u ∈ Q such that cu = min{cq| q ∈ Q}
Q = Q\ {u}
for all (u,v) ∈ E do

Relax(u,v)
return path related with ct

Relax(u,v) denotes the following procedure:

Relax(u,v):
if cv > cu + c(u,v) then

cv = cu + c(u,v)
πv = u
relaxation state = changed

The detailed description of the CSPP can be found for instance in [4].
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In further considerations we will adopt the concept of multi-objective optimization
methods. The Multi-objective Shortest Path Problem (shortly MOSPP) has been intro-
duced by Hansen in [8]. In this version of the SSP, each edge of the graph is associated
with a vector of real numbers (usually nonnegative). We recall the definition of the
standard product order relation in the set R

n:

[a1, . . . ,an] < [b1, . . . ,bn] ⇐⇒
⇐⇒ [a1, . . . ,an]≤ [b1, . . . ,bn] ∧ [a1, . . . ,an] �= [b1, . . . ,bn],

(1)

where

[a1, . . . ,an]≤ [b1, . . . ,bn] ⇐⇒ a1 ≤ b1 ∧ ·· · ∧ an ≤ bn. (2)

Operators≤ appearing in the right-hand side of the above equivalence denote the stan-
dard order relation in the set R. If (1) holds then we say that the vector [a1, . . . ,an] dom-
inates the vector [b1, . . . ,bn]. In the MOSPP the goal is to find all paths from the source
vertex s to the destination vertex t for which the sum of the vectors related with edges of
the path is nondominated by the sum of the vectors related with edges of any other path.

Finally, in the RSPP each edge e ∈ E is associated with a random variable Te. The
goal is to find the path, from the source vertex s to the destination vertex t, which
minimizes a function of random variables related with edges of the path, just like in
the CSPP. In practice, the random variable Te, with e = (u,v) ∈ E , expresses the travel
time from the vertex u to the vertex v, or the distance between these vertices. Therefore
we assume that every moment of the random variable Te is nonnegative and finite. We
also assume that all the random variables Te, for e ∈ E , are independent. The notion
of the shortest path can be defined in many different ways. It depends only on random
variables related with edges of the graph.

For example, if we take as the shortest path, the path with minimal expected value
of the sum of random variables related with edges of the path, then the RSPP reduces
to the CSPP and can be solved with help of classical Dijkstra or classical Bellman-Ford
algorithm. It follows from the equality E [X1+ · · ·+Xn] = E [X1]+ · · ·+E [Xn], for any
random variables X1, . . . ,Xn.

We note also that for any independent random variables X1, . . . ,Xn holds the equality
V [X1+ · · ·+Xn] = V [X1] + · · ·+ V [Xn], thus if we take as the shortest path, the path
with minimal variance of the sum of random variables related with edges of the path,
then the RSPP reduces to the CSPP, too.

However, the problem becomes more complicated when as the shortest path we take
the path with a minimal sum of the variance and a square of the expected value of the
sum of random variables related with edges of the path, i.e. the second moment of the
sum of random variables related with edges of the path, because (E [X ])2 + V [X ] =
E [X2]. Similar criterion has been considered by Murthy and Sarkar in [12]. We show
on a simple example that in this case the subpath of the shortest path is not necessarily
the shortest subpath.

Example 1. Consider the graph depicted in Fig. 1 and let random variables T(0,1), T(0,2),
T(1,3), T(2,3) and T(3,4) have distributions presented in the picture. For any random vari-
able Te, the notation {(x1, p1), . . . ,(xk, pk)} means that P(Te=x1) = p1, . . . ,P(Te=xk) =
pk. Calculating second order moments we obtain
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Fig. 1. Example of graph, showing that a subpath of the shortest path is not necessarily the shortest
subpath

E
[
(T(0,1)+T(1,3))2

]
= 5

4 and E
[
(T(0,2)+T(2,3))2

]
= 1, (3)

therefore the shortest path between vertices 0 and 3 is the path 〈0,2,3〉, while the short-
est path between vertices 0 and 4 is the path 〈0,1,3,4〉. This follows from the equalities

E
[
(T(0,1)+T(1,3)+T(3,4))2

]
= 3 3

4 and E
[
(T(0,2)+T(2,3)+T(3,4))2

]
= 4. (4)

Hence, it follows that the subpath 〈0,1,3〉 of the shortest path 〈0,1,3,4〉 is not the
shortest subpath. It means Bellman’s “principle of optimality” does not hold! ��

The above example shows that for solving the RSPP with the second moment criterion
we cannot directly apply the methods effective for the CSPP.

Now we formulate the RSPP with the second moment criterion. Let

P = {〈v0,v1, . . . ,vn−1,vn〉 | v0 = s∧ vn = t ∧ (v0,v1), . . . ,(vn−1,vn) ∈ E} (5)

be a set of all paths from the source vertex s to the destination vertex t. The goal is to
find a path 〈v0,v1, . . . ,vn−1,vn〉 ∈P such that

E
[( n

∑
i=1

T(vi−1,vi)

)2]
= min
〈u0,u1,...,um−1,um〉∈P

E
[( m

∑
i=1

T(ui−1,ui)

)2]
. (6)

In the next section we present exact algorithms for solving the RSPP.

3 Exact Algorithms

The second moment of the sum of independent random variables X1, . . . ,Xn can be
expressed as follows

E
[( n

∑
i=1

Xi

)2]
=

n

∑
i=1

E [X2
i ]+ 2

n

∑
i=2

E [Xi]
i−1

∑
j=1

E [Xj] (7)

or

E
[( n

∑
i=1

Xi

)2]
= V

[ n

∑
i=1

Xi

]
+
(
E
[ n

∑
i=1

Xi

])2
. (8)
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Therefore, to calculate the cost of a path we must remember the expected values and the
second moments of all random variables Te, for e ∈ E , or expected values and variances
of all these random variables. We will refer to the representation [expected value, second
moment] and [expected value, variance] shortly by EV-SM and EV-V, respectively.

In the next example we show a method for calculating costs of all possible paths
from the source vertex s to the destination vertex t.

Example 2. Consider the graph depicted in Fig. 2 and let random variables related with
the edges have vectors of expected value and variance presented in the picture. There is
only one edge incoming to the vertex 1, thus [1,2] is the only one cost vector of coming
to the vertex 1 (this cost vector is denoted over vertex 1 on the graph). Similarly in the
case of the vertices 2 and 3. There are three subpaths to the vertex 4: 〈0,1,4〉, 〈0,2,4〉,
〈0,3,4〉 and the cost vectors of these subpaths are [2,5], [1,6] and [3,5], respectively.
Note that the vector [3,5] can by discarded, because if [μ ,ξ ] is the cost vector related
with some path from the vertex 4 to the destination vertex 8, then (μ+3)2 +(ξ+5) is
a total cost of the path related with the vector [3,5], while a total cost of the path related
with the vector [2,5] is (μ+2)2 + (ν+5). In general, if [μ1,ν1] and [μ2,ν2] are cost
vectors of two subpaths to the same vertex and [μ1,ν1] < [μ2,ν2] (conf. (1)), then the
vector [μ2,ν2] can be discarded, because for any cost vector [μ ,ν] related with a path
from the given vertex to the destination vertex, the following inequality holds

(μ1+μ)2 +(ν1+ν) < (μ2+μ)2 +(ν2+ν). (9)

Similar situation appears for the representation EV-SM, because if [μ1,ξ1] and [μ2,ξ2]
are cost vectors of two subpaths to the same vertex and [μ1,ξ1] < [μ2,ξ2], then the
vector [μ2,ξ2] can be discarded, because for any cost vector [μ ,ξ ] expanding the given
subpaths to the paths to the destination vertex the following inequality

ξ1 + ξ + 2μ1μ < ξ2 + ξ + 2μ2μ (10)

is satisfied.
Therefore, the RSPP with the second moment criterion reduce to the MOSPP, re-

gardless of the data representation.
According to (7) and (8) the representation EV-V requires less multiplications than

the representation EV-SM, which is very important for the time of computations. How-
ever, the representation EV-SM has some disadvantages, too. For example, let [1,2] and
[2,1] be two vectors in the representation EV-V. These vectors are incomparable (since

Fig. 2. Illustration of cost vectors propagation
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neither [1,2]< [2,1] nor [1,2]> [2,1] holds), thus the both vectors must be remembered.
But in the representation EV-SM the corresponding vectors are [1,2+12] = [1,3] and
[2,1+22] = [2,5], thus the vector [2,5] (and so the vector [2,1], too) does not have to
be stored! Thus in the representation EV-SM elimination of dominated vectors appears
more frequently.

In the next part of this section we discuss the solution of the RSPP with the second
moment criterion with help of general methods for solving the MOSPP.

3.1 Extended Bellman-Ford Algorithm

Classical algorithms for the CSPP can be extended for the MOSPP. First, we show an
extension of the classical Bellman-Ford algorithm. We associate with each vertex v ∈V
a list Lv of vectors [a,b] ∈R

2. Lists Lv for all v ∈V \{s} are initially empty and the list
Ls related with the source vertex s contains the vector [0,0] at the beginning.

Modifying the procedure of the relaxation of edge we can solve the RSPP with
the second moment criterion using the following Extended Bellman-Ford algorithm
(shortly EBF):

Extended-Bellman-Ford-algorithm:
set Lv = /0 for all v ∈V \ {s} and Ls = 〈[0,0]〉
for i = 1 to #V −1 do

relaxation state = not changed
for all (u,v) ∈ E do

EBF-Relax(u,v)
if relaxation state = not changed then

break
return path related with minimal value on the list Lt

The procedure EBF-Relax(u,v) has the following pseudocode1:

EBF-Relax(u,v):
for all [μu,νu] ∈ Lu do

set μnew
v = μu +E [T(u,v)], νnew

v = νu +V [T(u,v)] and ξ new
v = (μnew

v )2 +νnew
v

vector state = incomparable
for all [μv,νv] ∈ Lv do

set ξv = μv
2+νv

if [μv,ξv] > [μnew
v ,ξ new

v ] then
Lv = Lv \ 〈[μv,νv]〉
vector state = less

if [μv,ξv]≤ [μnew
v ,ξ new

v ] then
vector state = greater or equal
break

if vector state = less or vector state = incomparable or Lv = /0 then
Lv = Lv∪〈[μnew

v ,νnew
v ]〉

relaxation state = changed

1 For vectors in representation EV-V. The procedure EBF-Relax(u,v) for the representation EV-
SM is similar.
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Since we have assumed that the expected values and the second moments of all
random variables Te for e ∈ E , are nonnegative, thus there is no cycle with negative cost
in the graph.

We will justify that for every vertex v ∈ V , after n iterations of the main loop, the
list Lv contains all incomparable vectors related with all possible paths from the source
vertex s to the vertex v, where n denotes the number of edges of the most numerous path
from the source vertex s to the vertex v. In particular, after (#V − 1) iterations of the
main loop, the list Lt contains all incomparable vectors related with all possible paths
from the source vertex s to the destination vertex t (because the number of edges of
the most numerous path from the source vertex s to the destination vertex t can have
(#V −1) edges at most).

Assume first that v = s. The list Ls is initialized with 〈[0,0]〉. There is only one
simple path from the source vertex s to the vertex s, i.e., the path 〈s〉, and the cost vector
of that path is [0,0]. Every other path from the source vertex s to the vertex s must
contain a cycle, thus the cost vector of that path must be greater than or equal to [0,0].
Thus, after zero iterations of the main loop, the list Ls contains all incomparable vectors
related with all possible paths from the source vertex s to the vertex s.

Suppose now that a vertex v �= s is achievable from the source s and let 〈v0, . . . ,vn〉 be
the most numerous path from the source vertex s to the vertex v (i.e. v0 = s and vn = v).
At first iteration of the main loop, the procedure EBF-Relax(v0,v1) is executed, hence
the list Lv1 contains the vector related with the edge (v0,v1). At second iteration of the
main loop, the procedure EBF-Relax(v1,v2) is executed, hence the vector related with
the path 〈v0,v1,v2〉will be taken into consideration on the list Lv2 , i.e. it will be added to
the list Lv2 , if it is not bigger than any different vector from this list, etc. Finally, after n
iterations of the main loop, the procedure EBF-Relax(vn−1,vn) is executed, and the cost
vector related with the path 〈v0, . . . ,vn〉 will be taken into consideration on the list Lvn .
All different simple paths from the source vertex s to the vertex v have not more than n
edges, thus all cost vectors related with these paths will be also taken into consideration
on the list Lv after n iterations of the main loop. All paths from the source vertex s to
the vertex v having more than n edges must contain a cycle. But the cost vector of every
cycle in the graph is nonnegative, thus the cost vector of a path containing a cycle is
greater than or equal to the cost vector of the path without cycles. Such a path is simple
and as we have justified, the cost vectors related with that path, will be also taken into
consideration on the list Lv after n iterations of the main loop.

Let us notice that if the vertex v �= s is not achievable from the source s, then after
zero iterations of the main loop, the list Lv is empty. Since there is no edge (u,v) in the
graph, the list Lv will not change in the further iterations of the main loop.

3.2 Generic Label Correcting Algorithm

Another way to solve the RSPP with the second moment criterion is to use a Generic
Label Correcting algorithm (shortly GLC) that is a kind of the generalization of the
classical Dijkstra algorithm. In this algorithm relaxations of edges are coming in a little
bit more natural order than in the EBF algorithm. We present a pseudocode of the GLC
algorithm below:
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Generic-Label-Correcting-Algorithm:
set Lv = /0 for all v ∈V \ {s} and Ls = 〈[0,0]〉
Q = 〈s〉
while Q �= /0 do

select u ∈Q //typically, with respect to the FIFO principle.
Q = Q\ 〈u〉
for all v ∈ Successors(u) do

relaxation state = not changed
EBF-Relax(u,v)
if relaxation state = changed and v /∈Q then
Q = Q∪〈v〉

return path related with minimal value on the list Lt

Note that it is possible to move searching of minimal value on the list Lt to the procedure
of relaxation of edge what will save quite a lot of memory.

The GLC algorithm starts with Q = 〈s〉 and Ls = 〈[0,0]〉. As it has been discussed
above, the list Ls contains all incomparable vectors related with all possible paths from
the source vertex s to itself and any further relaxation cannot change the contents of this
list.

Execution of EBF-Relax(s,v) for each v ∈ Successors(s) can change the contents
of the list Lv, and in that case these changes can propagate to the lists related with
successors of the vertex v. Therefore, if execution of EBF-Relax(s,v) changes the list
Lv, then the vertex v must be added to the list Q. Hence cost vectors related with paths
going through the vertex v are also updated. The GLC algorithm works as long as the
list Q is not empty.

Since there is no cycle with negative cost vector, thus the GLC algorithm must stop,
and after its execution, every list Lv contains all incomparable vectors related with all
possible paths from the source vertex s to the vertex v.

We show how the GLC algorithm works on a simple example.

Example 3. Consider the graph depicted in Fig. 1. Vectors of expected values and vari-
ances related with edges (0,1), (0,2), (1,3), (2,3) and (3,4) are equal to [0,0], [0,0],
[ 3

4 , 11
16 ], [1,0] and [1,0], respectively.

• The GLC algorithm starts with Q = 〈0〉 and L0 = 〈[0,0]〉, thus at first iteration we
obtain v = 0, Q = 〈0〉\ 〈0〉= /0 and Successors(0) = 〈1,2〉.
After execution of EBF-Relax(0,1) we obtain L1 = /0∪〈[0,0]〉= 〈[0,0]〉 and Q =
/0∪〈1〉= 〈1〉.
After execution of EBF-Relax(0,2) we obtain L2 = /0∪〈[0,0]〉= 〈[0,0]〉 and Q =
〈1〉∪ 〈2〉= 〈1,2〉.

• Since Q = 〈1,2〉 �= /0, thus at second iteration we obtain v = 1, Q = 〈1,2〉\〈1〉= 〈2〉
and Successors(1) = 〈3〉.
After execution of EBF-Relax(1,3) we obtain:
L3 = /0∪

〈
[ 3

4 , 11
16 ]
〉

=
〈
[ 3

4 , 11
16 ]
〉

and Q = 〈2〉∪ 〈3〉= 〈2,3〉.
• Since Q = 〈2,3〉 �= /0, thus at third iteration we obtain v = 2, Q = 〈2,3〉 \ 〈2〉= 〈3〉

and Successors(2) = 〈3〉.
After execution of EBF-Relax(2,3) we obtain:
L3 =

〈
[ 3

4 , 11
16 ]
〉
∪〈[1,0]〉=

〈
[ 3

4 , 11
16 ], [1,0]

〉
and Q = 〈3〉∪ 〈3〉= 〈3〉.
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• Since Q = 〈3〉 �= /0, thus at fourth iteration we obtain v = 3, Q = 〈3〉 \ 〈3〉= /0 and
Successors(3) = 〈4〉.
After execution of EBF-Relax(3,4) we obtain:
L4 = /0∪

〈
[1 3

4 , 11
16 ], [2,0]

〉
=
〈
[1 3

4 , 11
16 ], [2,0]

〉
and Q = /0∪〈4〉= 〈4〉

• Since Q = 〈4〉 �= /0, thus at fifth iteration we obtain v = 4, Q = 〈4〉 \ 〈4〉 = /0 and
Successors(4) = /0.

• Since Q = /0, thus we check the list L4 that is L4 =
〈
[1 3

4 , 11
16 ], [2,0]

〉
. As we can see,

[1 3
4 , 11

16 ] is the cost vector related with the shortest path.

3.3 Complexity

Unfortunately, the time complexity and also the space complexity of the EBF algorithm
and the GLC algorithm are exponential. We will show it on a simple example.

Example 4. Consider the graph depicted in Fig. 3(a) and let random variables related
with all edges of the graph have vectors in the representation EV-V presented in the
picture. Let

[0,0], [2α1 ,22n+1−α1], [0,0], [2α2 ,22n+1−α2 ], . . . , [0,0], [2αn ,22n+1−αn] (11)

be vectors which coordinates are the expected values and the variances, related with the

edges of a path from the source vertex 0 to the destination vertex n. The sum
n
∑

i=1
2αi can

be expressed as binary number (a2n,a2n−1, . . . ,a2,a1,0)2. This binary number contains
ones at positions α1, . . . ,αn and zeros at the other positions, thus all of 2n possible
cost vectors related with all possible paths from the source vertex 0 to the destination
vertex n must be different. Furthermore, if we order these cost vectors increasingly by
the expected values, then variances of these cost vectors will be ordered decreasing.

Fig. 3. (a) Graph with 3n+1 vertices and 4n edges and cost vectors in representation EV-V. (Sums
of exponents of powers of coordinates in all non-zero vectors in the graph are equal to 2n+1.) All
of 2n paths in this graph are incomparable. (b) Graph with 3n+1 vertices and 4n edges and cost
vectors in representation EV-SM. (Sums of exponents of powers of coordinates in all non-zero
vectors in the graph are equal to 6n+1.) All of 2n paths in this graph are incomparable.
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Therefore all 2n possible cost vectors related with all possible paths from the source 0
to the destination n are incomparable.

Now, consider the graph depicted in Fig. 3(b) and let random variables related with
all edges of the graph have vectors in the representation EV-SM presented in the picture.
Let

[0,0], [2α1 ,26n+1−α1], [0,0], [2α2 ,26n+1−α2 ], . . . , [0,0], [2αn ,26n+1−αn] (12)

be vectors whose coordinates are the expected values and the second moments, related
with edges of some path from the source vertex 0 to the destination vertex n. From
equation (7) it follows that the vector related with that path is equal to[ n

∑
i=1

2αi ,
n

∑
i=1

26n+1−αi + 2
n

∑
i=2

2αi
i−1

∑
j=1

2α j

]
. (13)

Similarly to the case of graph from Fig. 3(a), we order cost vectors of all 2n paths

increasingly by the expected values, and the factors
n
∑

i=1
26n+1−αi of cost vectors of these

paths will be ordered decreasing.
Note that the minimal difference of the sum of the second coordinates of cost vectors

of two different paths from the source vertex 0 to the destination vertex n is equal to 25n.

Moreover, the maximal value of the factor 2
n
∑

i=2
2αi

i−1
∑
j=1

2α j can be estimated as follows:

2
n

∑
i=2

2αi
i−1

∑
j=1

2α j ≤ 2
n

∑
i=2

2n+i
i−1

∑
j=1

2n+ j = 2
n

∑
i=2

2n+i ·2n+i = 22n+1
n

∑
i=2

4i =

= 22n+1 · 4n+1−42

4−1
< 22n+1 · 4n+1

2
= 24n+2 < 25n

(14)

for any n > 2. It is easy to see that the estimation (14) holds also for n = 1 (then 0 <
25) and for n = 2 (then 2 · 23 · 24 < 210). Inequality (14) guarantees that order of the
second coordinates of cost vectors of all paths will be preserved. Hence it follows that
all vectors related with all possible paths from the source vertex 0 to the destination
vertex n are incomparable.

Graphs depicted in Fig. 3(a) and Fig. 3(b) show that the pessimistic complexity of the
EBF and the GLC algorithm are exponential, regardless of the data representation EV-V
or EV-SM.

4 Approximate Algorithms

As we have shown in the previous section, the time complexity and the space com-
plexity of the presented exact algorithms are exponential. Therefore, in this section
we consider approximate algorithms, which have polynomial complexity. The first pre-
sented algorithm is a kind of modification of the classical Bellman-Ford algorithm. The
second one is a simple single criterion approximation, and the last one is a variant of an
approximate algorithm for the MOSPP from [15].
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4.1 Extended Bellman-Ford Algorithm with Fixed Capacity

The classical Bellman-Ford algorithm fails in the case of the RSPP, because in this al-
gorithm, each vertex is connected with only one currently the best cost related with the
shortest path to this vertex. The EBF algorithm solving the MOSPP presented in the pre-
vious section can be used in the case of the RSPP, because it assigns to each vertex the
list of all nondominated cost vectors related with all paths to this vertex. Unfortunately,
as we have shown in the previous section this algorithm has exponential complexity.
It is natural to consider a modification of the classical Bellman-Ford algorithm which
assigns with each vertex the list of fixed number k of cost vectors. Obviously, such an
algorithm is only an approximate algorithm. It is easy to extend the graph shown in
Fig. 1, in such a way that the worst subpath will be a subpath of the shortest path.

We present a pseudocode of this modification of the Extended Bellman-Ford algo-
rithm below:

Extended-Bellman-Ford-Algorithm-with-Fixed-Capacity:
set Lv = /0 for all v ∈V \ {s} and Ls = 〈[0,0]〉
for i = 1 to #V −1 do

relaxation state = not changed
for all (u,v) ∈ E do

EBF-FC-Relax(u,v)
if relaxation state = not changed then
break

return path related with Lt

The procedure EBF-FC-Relax(u,v) has the following pseudocode2:

EBF-FC-Relax(u,v):
for all [μu,ξu] ∈ Lu do

set μnew
v = μu +E [T(u,v)] and ξ new

v = ξu +E
[
T 2
(u,v)

]
+2μuE [T(u,v)]

if #Lv < k then
Lv = Lv∪〈[μnew

v ,ξ new
v ]〉

relaxation state = changed
else

find [μv,ξv] ∈ Lv such that ξv = max{ξ | [μ ,ξ ] ∈ Lv}.
if ξv > ξ new

v or (ξv = ξ new
v and μv > μnew

v ) then
Lv = Lv \ 〈[μv,ξv]〉∪ 〈[μnew

v ,ξ new
v ]〉

relaxation state = changed

We show how the Extended Bellman-Ford Algorithm with Fixed Capacity
(shortly EBF-FC) works on a simple example.

Example 5. Consider the graph depicted in Fig. 1. Suppose that the edges are ordered
as follows: (0,1), (0,2), (1,3), (2,3) and (3,4). Vectors of expected values and the
second moments related with these edges are equal to [0,0], [0,0], [ 3

4 , 5
4 ], [1,0] and [1,0]

respectively. Assume first that k = 1 (conf. the pseudocode).

2 For vectors in representation EV-SM. The procedure EBF-FC-Relax(u,v) for the representa-
tion EV-V is similar.
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• The EBF-FC algorithm starts with L0 = 〈[0,0]〉 and L1 = L2 = L3 = L4 = /0.
• After execution of EBF-FC-Relax(0,1) we obtain L1 = 〈[0+0,0+0+2·0·0]〉 =
〈[0,0]〉.

• After execution of EBF-FC-Relax(0,2) we obtain L2 = 〈[0+0,0+0+2·0·0]〉 =
〈[0,0]〉.

• After execution of EBF-FC-Relax(1,3) we obtain L3 =
〈
[0+ 3

4 ,0+ 5
4+2·0· 34 ]

〉
=〈

[ 3
4 , 5

4 ]
〉
.

• Since k = 1, [0+1,0+1+2·0·1] = [1,1] and 5
4 > 1, thus we have L3 =

〈
[ 3

4 , 5
4 ]
〉
\〈

[ 3
4 , 5

4 ]
〉
∪〈[1,1]〉= 〈[1,1]〉 after execution of EBF-FC-Relax(2,3).

• After execution of EBF-FC-Relax(3,4) we obtain L4 = 〈[1+1,1+1+2·1·1]〉 =
〈[2,4]〉.

• Nothing is changing after the next iteration of the main loop, thus [2,4] is the cost
vector related with the returned path. Let us note that we have shown in Example 1
that the cost of the shortest path is not equal to 4, but it is equal to 3 3

4 .

Suppose now that k = 2, i.e. we take into account the Lists Lv for v∈V with the capacity
of 2 cost vectors.

• The EBF algorithm starts with L0 = 〈[0,0]〉 and L1 = L2 = L3 = L4 = /0.
• After execution of EBF-FC-Relax(0,1) we obtain L1 = 〈[0+0,0+0+2·0·0]〉 =
〈[0,0]〉.

• After execution of EBF-FC-Relax(0,2) we obtain L2 = 〈[0+0,0+0+2·0·0]〉 =
〈[0,0]〉.

• After execution of EBF-FC-Relax(1,3) we obtain L3 =
〈
[0+ 3

4 ,0+ 5
4+2·0· 34 ]

〉
=〈

[ 3
4 , 5

4 ]
〉
.

• Since k = 2, thus we obtain L3 =
〈
[ 3

4 , 5
4 ]
〉
∪ 〈[0+1,0+1+2·0·1]〉 =

〈
[ 3

4 , 5
4 ], [1,1]

〉
after execution of EBF-FC-Relax(2,3).

• Since [ 3
4+1, 5

4+1+2· 34 ·1]=[1 3
4 ,3

3
4 ], [1+1,1+1+2·1·1]=[2,4] and [1 3

4 ,3 3
4 ] < [2,4],

thus after execution of EBF-FC-Relax(3,4) we obtain L4 =
〈
[1 3

4 ,3 3
4 ]
〉
.

• Nothing is changing after the next iteration of the main loop, thus [1 3
4 ,3 3

4 ] is the
cost vector related with the returned path. As we have shown in Example 1, this is
the cost vector of the shortest path.

The above example shows that the EBF-FC algorithm is not an exact algorithm.
Note that the complexity of the EBF-FC algorithm is polynomial. Moreover, it is

equal to O(k · #V · #E), because the main loop can take at most #V · #E iterations and
each iteration is a simple execution of the EBF-FC-Relax procedure which takes at
most k operations (list Lu can have at most k vectors).

4.2 Extended Bellman-Ford Algorithm with Smart Indexing

The second proposed approximate algorithm is a variant of the algorithm presented
in [15]. It is another modification of Bellman-Ford algorithm.

Let μmin
v = μ1

v < · · · < μ r
v = μmax

v be all possible expected values related with paths
from the source vertex s to some vertex v ∈ V . (Note that μ i

v can be related with many
different paths.) Suppose that the currently the best path from the source vertex s to the
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vertex v has the expected value equal to μ i
v. If we store the second moment (or variance)

of that path at i-th position in array of k elements, then we obtain an exact algorithm. Of
course this algorithm is very “expensive” because we have to calculate position i and
all possible values μ1

v , . . . ,μ r
v . Since the number r of such values grows exponentially

with respect to the distance between the source vertex s and the vertex v, we have to
remember exponentially growing lists of values μ1

v , . . . ,μ r
v .

Notice that for each vertex v we can simply estimate (or even calculate) minimal and
maximal expected values μmin

v and μmax
v . If we fix the size of lists related with each

vertex to k, then we can store second moment (or variance) of that path at the position⌈
k · μ

new
v − μmin

v

μmax
v − μmin

v

⌉
(15)

if its expected value is equal to μnew
v . (For small k the variance or the second moment

related with different paths will be written in the same position of the array more fre-
quently.)

Extended-Bellman-Ford-Algorith-with-Smart-Indexing:
use classical Bellman-Ford algorithm or classical Dijkstra algorithm to calculate mini-
mal and maximal expected values μmin

v and μmax
v for all v ∈V

set Π i
v = 〈∞,∞,null〉 for all v ∈V , i = 0, . . . ,k and Π 0

s = 〈0,0,s〉
for i = 1 to #V −1 do

relaxation state = not changed
for all (u,v) ∈ E do

EBF-SI-Relax(u,v)
if relaxation state = not changed then

break
return path related with Πt

Fig. 4. Illustration of the formula (15)
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The procedure EBF-SI-Relax(u,v) has the following pseudocode3:

EBF-SI-Relax(u,v):
for i = 0 to k do

let
〈
μ i

u,ξ i
u,π i

u

〉
=Π i

u
if π i

u �= t then
μnew

v = μ i
u +E [T(u,v)]

ξ new
v = ξ i

u +E [T 2
(u,v)]+ 2μ i

uE [T(u,v)]
if μmin

v �= μmax
v then

j =
⌈

k · μ
new
v −μmin

v
μmax

v −μmin
v

⌉
else

j = 0
let
〈
μ j

v ,ξ j
v ,π j

v
〉

=Π j
v

if π j
v = null or ξ j

v > ξ new
v then

Π j
v = 〈μnew

v ,ξ new
v ,u〉

relaxation state = changed

To illustrate the performance of the above algorithm we present a simple example.

Example 6. Consider the graph depicted in Fig. 1. Let k = 1, i.e. k + 1 = 2 is the array
dimension.

• Calculating minimal and maximal expected values we obtain μmin
0 = μmax

0 = 0,
μmin

1 = μmax
1 = 0, μmin

2 = μmax
2 = 0, μmin

3 = 3
4 , μmax

3 = 1, μmin
4 = 1 3

4 and μmax
4 = 2.

• Since μmin
0 = μmax

0 = 0, thus after execution of EBF-SI-Relax(0,1) we obtainΠ 0
1 =

〈0,0,0〉.
• Similarly, after execution of EBF-SI-Relax(0,2) we obtain Π0

2 = 〈0,0,0〉.
• After execution of EBF-SI-Relax(1,3) we obtain μnew

v = 3
4 , ξ new

v = 5
4 and j = 0,

thus Π 0
3 =
〈

3
4 , 5

4 ,1
〉
.

• After execution of EBF-SI-Relax(2,3) we obtain μnew
v = 1, ξ new

v = 1 and j = 1,
thus Π 0

3 = 〈1,1,2〉.
• After execution of EBF-SI-Relax(3,4), for i = 0, we obtain μnew

v = 1 3
4 , ξ new

v = 3 3
4

and j = 0, thus Π 0
3 =
〈
1 3

4 ,3 3
4 ,3
〉
. For i = 1 we have μnew

v = 2, ξ new
v = 4 and j = 1,

thus Π 1
3 = 〈2,4,3〉.

• Nothing is changing after the next iteration of the main loop, thus [1 3
4 ,3 3

4 ] is the
cost vector related with the returned path. As we have shown in Example 1, this is
the cost vector of the shortest path.

Note that the complexity of the above algorithm is polynomial. Moreover, it is equal
to O(k · #V · #E), because the main loop can take at most #V · #E iterations and each
iteration is a simple execution of the EBF-SI-Relax procedure which took at most k
operations.

3 For vectors in representation EV-SM. The procedure EBF-SI-Relax(u,v) for the representa-
tion EV-V is similar.
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4.3 Extended Bellman-Ford Algorithm with Rounded Values

The next presented approximate algorithm is a simple modification of the EBF algo-
rithm in which we round values of the vectors before the comparison. We call this
algorithm Extended Bellman-Ford Algorithm with Rounded Values (shortly EBF-RV).
We present a pseudocode of the EBF-RV algorithm below:

Extended-Bellman-Ford-Algorithm-with-Rounded-Values:
use classical Bellman-Ford algorithm or classical Dijkstra algorithm to calculate/
estimate minimal and maximal expected values and variances μmin

v , μmax
v , νmin

v and νmax
v

for all v ∈V
set ξmin

v = (μmin
v )2 +νmin

v and ξmax
v = (μmax

v )2 +νmax
v for all v ∈V

set Ls = 〈[0,0]〉 and Lv = /0 for all v ∈V \ {s}
for i = 1 to #V −1 do

relaxation state = not changed
for all (u,v) ∈ E do

EBF-RV-Relax(u,v)
if relaxation state = not changed then

break
return path related with minimal value on the list Lt

The procedure EBF-RV-Relax(u,v) has the following pseudocode4:

EBF-RV-Relax(u,v):
for all [μu,ξu] ∈ Lu do

set μnew
v = μu +E [T(u,v)] and ξ new

v = ξu +E
[
T 2
(u,v)

]
+ 2μuE [T(u,v)]

set [μ̂new
v , ξ̂ new

v ] = [
⌈

k · μ
new
v −μmin

v
μmax

v −μmin
v

⌉
,
⌈

k · ξ
new
v −ξmin

v
ξmax

v −ξmin
v

⌉
]

vector state = incomparable
for all [μv,ξv] ∈ Lv do

set [μ̂v, ξ̂v] = [
⌈

k · μv−μmin
v

μmax
v −μmin

v

⌉
,
⌈

k · ξv−ξmin
v

ξmax
v −ξmin

v

⌉
]

if [μ̂v, ξ̂v] > [μ̂new
v , ξ̂ new

v ] then
Lv = Lv \ 〈[μv,ξv]〉
vector state = less

if [μ̂v, ξ̂v]≤ [μ̂new
v , ξ̂ new

v ] then
vector state = greater or equal
break

if vector state = less or vector state = incomparable or Lu = /0 then
Lv = Lv∪〈[μnew

v ,ξ new
v ]〉

relaxation state = changed

Note that the complexity of the above algorithm is exponential.

4 For vectors in representation EV-SM. The procedure EBF-RV-Relax(u,v) for the representa-
tion EV-V is similar.
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4.4 Single Criterion Approximation Algorithm

As it was mentioned in the Introduction, if we take as the shortest path, the path with
the minimal expected value or the variance of the sum of the random variables related
with edges of the path, then the RSPP reduces to the CSPP and can be solved with help
of the classical Dijkstra algorithm or classical Bellman-Ford algorithm.

This natural observation can be used in the whole series of approximate algorithms.
We can forget for a moment about one of the criteria (expected value or variance)

and calculate the shortest path with respect to the other criterion. Next, we can remove
from the graph the edge which is the most damaging for the first criterion or indeed cost
of the path, and repeat the procedure on the depreciated graph.

If there is no path from the source vertex s to the destination vertex t in the depre-
ciated graph, then the algorithm stops and returns this from the examined paths which
has minimal actual cost (second moment).

Single-Criterion-Approximation-algorithm:
while exists a path from the source vertex s to the destination vertex t do

use classical Bellman-Ford algorithm or classical Dijkstra algorithm to find the
shortest path p = 〈v0, . . . ,vn〉 ∈P with respect to expected value

//or variance, or the second moment
find (v j−1,v j) ∈ p such that V [T(v j−1,v j)] = max

i=1,...,n
V [T(vi−1,vi)]

//or E [T(v j−1,v j)] = max
i=1,...,n

E [T(vi−1,vi)]

//or E [T 2
(v j−1,v j)

]+
n
∑

k=1
k �= j

E [T(v j−1,v j)]E [T(vk−1,vk)] =

max
i=1,...,n

E [T 2
(vi−1,vi)

]+
n
∑

k=1
k �=i

E [T(vi−1,vi)]E [T(vk−1,vk)]

E = E \ {(v j−1,v j)}
if the path p has cost lower than the path b or b is undefined then

b = p
return path b

To illustrate the performance of the Single Criterion Approximation algorithm (shortly
SCA) we present the case of searching of the shortest path with respect to the variance
and removing edge with the greatest expected value.

Example 7. Consider the graph depicted in Fig. 1.

• The shortest path with respect to the variance is the path p = 〈0,2,3,4〉. Since
E [T(0,2)] = 0, E [T(2,3)] = 1 and E [T(3,4)] = 1, thus (for example) we have E = E \
{(2,3)}. The path b is undefined, thus b = p = 〈0,2,3,4〉.

• The shortest path with respect of expected value is now the path p = 〈0,1,2,4〉.
Since E [T(0,1)] = 0, E [T(1,3)] = 3

4 and E [T(3,4)] = 1, thus we have E = E \ {(3,4)}.
The cost of the path p is lower than the cost of the path b, thus b = p = 〈0,1,3,4〉.

• There is no path from the source verice 0 to the destination vertex 4, therefore the
algorithm returns the path b = 〈0,1,3,4〉. Note that we have shown in Example 1
that b is the shortest path.
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Note that the complexity of the SCA algorithm is polynomial. Moreover, it is equal
to O(#E2 · #V ), because the main loop can take at most #E iterations (if E = /0 then
the main loop must finish) and the classical Bellman-Ford algorithm or the classical
Dijkstra algorithm have the complexity equal to O(#V ·#E) and the finding of the edge
(v j−1,v j) can take at most (#V − 1) operations (path p must be simple, thus it can
contain at most (#V −1) edges).

Fig. 5. Illustration of the idea of the EBF-RV algorithm. All the vectors in the highlighted rectan-
gle will be treated as the same vector by the EBF-RV algorithm.

Table 1. Comparison of the time of execution and precision of the presented algorithms. t1,t2,t3
— average factors of times of execution of given algorithms for three different groups of graphs;
r1,r2,r3 — average factors of precision of given algorithms for three different groups of graphs;
Specification of the i-th group of graphs (for i = 1,2,3): #V = 10000i, #Successors(v) = 10i for
all vertex v ∈V \{t}. 0≤ E [Te]≤ 10 and 0≤ E [T 2

e ]≤ 5100 for all edge e ∈ E.
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In the next section we present computational results of tests of the proposed
algorithms.

5 Computational Results

We performed our tests on quite large randomly generated graphs. All these tests were
made on Intel Celeron Mobile 1400MHz with 768MB RAM, working under control of
Linux operating system with kernel version 2.6.11-6. Table 1 presents factors of times
of execution and factors of precision of given algorithms for three different groups of
graphs. For example, for the first group of graphs, the EBF-FC-2 algorithm took average
0.073 of time of execution of the exact algorithm (EBF). Every group contained 10
graphs. The i-th group of graphs (for i = 1,2,3) had #V = 10000i, #Successors(v) =
10i for all vertex v ∈ V \ {t}. 0 ≤ E [Te] ≤ 10 and 0 ≤ E [T 2

e ] ≤ 5100 for all edge e ∈
E . Results better than the results of algorithm EBF are in bold, and worse results are
highlighted in italics.

6 Conclusions

The Random Shortest Path Problem with the second moment criterion was discussed in
this paper. It was shown that the complexity of the presented exact algorithms is exponen-
tial, while the complexity of the presented approximate algorithms is only polynomial.

Computational results for the exact and approximate algorithms were performed on
large graphs. The results show that the approximate algorithms work very well, espe-
cially the EBF-FC algorithm which works really fast and produces exact results usually.
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Abstract. In this article, we present the Free Material Optimization (FMO) prob-
lem for plates and shells based on Naghdi’s shell model. In FMO – a branch of
structural optimization – we search for the ultimately best material properties in a
given design domain loaded by a set of given forces. The optimization variable is
the full material tensor at each point of the design domain. We give a basic formu-
lation of the problem and prove existence of an optimal solution. Lagrange duality
theory allows to identify the basic problem as the dual of an infinite-dimensional
convex nonlinear semidefinite program. After discretization by the finite element
method the latter problem can be solved using a nonlinear SDP code. The article
is concluded by a few numerical studies.

1 Introduction

Structural optimization deals with the problem of finding the stiffest structure subjected
to a set of given loads and boundary conditions, when only a limited amount of material
resources is available. Nowadays, this approach plays an important role in the construc-
tion of light-weight structures like airplanes and cars. Large parts of these objects as,
for instance, the fuselage, consist of thin-walled structures like shells and plates. This
is the reason why structural optimization of shells has received a lot of attention in the
design optimization community over the last couple of years. For example, shape opti-
mization techniques have been used to vary the geometry and boundary of a shell with
the goal to stiffen the structure [6]. Various approaches try to identify the optimal topol-
ogy of a shell in the sense of 0–1–designs. For an overview in the case of plates see [4].
On spherical shells it is possible to calculate the topological derivative and to exploit
this information with the purpose of finding the optimal position of holes [17]. Only
recently, free sizing optimization taking strength and stability constraints into account
has been used to improve the design of shell structures [7].

Another important class of shell design problems is based on material optimization.
Here the design variables reflect not only the distribution of material in the design do-
main, but also the local properties of the material. The methods used in the area of
material optimization differ in the choice of the admissible set of materials. In [18] a
pseudo density of the material is varied using a SIMP-approach. Rather than cutting the

� This work has been supported by the European Commission within the Sixth Framework Pro-
gramme 2002 – 2006 (FP-6 STREP 30717 PLATO-N).

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 239–250, 2009.
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solution space down to 0–1–designs the author proposes to realize the optimal solution
using foams that can be produced in manifold densities. In aerospace industry the use
of composite materials is very common. In [23] the authors suggest to design compos-
ite shells by optimization of the material selection and fibre angles in a laminated shell
structure. It is even possible to consider fully anisotropic elasticity tensors as admissi-
ble set for the design optimization as shown for Reissner-Mindlin plates in [2]. Finally,
there are approaches taking advantage of adaptive methods – either by changing the
parametrization of the design space during optimization or by adapting the model via
switching between shape and material optimization; see [20].

In this article, we focus on Free Material Optimization, originally introduced for the
optimal design of solid bodies by [3]. The design variable used in Free Material Op-
timization is the full material tensor at each point of the design domain. Therefore it
yields not only the optimal material distribution, but also the material properties at each
point. Various solution techniques for this problem have been proposed; see, for exam-
ple, [25]. Due to the high freedom in the design space the resulting material/structure
is typically hard to manufacture. Nevertheless it gives valuable information about the
optimal material density, symmetry and principal directions, which can be exploited to
realize approximations of the optimal design. One possible realization by tapelayering
is described in [13]. In the recent years, the formulation of the Free Material Optimiza-
tion problem has been extended to cover multiple load cases [1], stability control by
consideration of global buckling [15] and stress constraints [16]. In this article we pro-
pose a formulation of Free Material Optimization based on the linear elastic shell model
of Naghdi [21] suited for thin-walled structures like airplanes, cars and pipes.

2 Naghdi’s Shell Model

We start with a mathematical description of Naghdi’s shell model using the standard
notation e.g. described in [21,8,9]. The geometry of a Naghdi shell is described by the
midsurface ω – an open bounded two-dimensional set in Euclidean space, which can
be parametrized by a sufficiently smooth function Φ : R

2 → R
3, Φ ∈W 2,∞(ω). This

is in contrast to other popular shell models as for example the Kirchhoff-Love model,
where one starts from a three-dimensional solid material and makes approximations
accounting to the thinness of the shell.

Hence it is advantageous to use curvilinear coordinates denoted by ξ i (in accordance
with common notation in shell theory Latin indices run over 1, 2 and 3, while Greek
indices run only over 1 and 2). The covariant basis vectors are then defined by

aα =
∂Φ
∂ξα

, a3 =
a1×a2

‖a1×a2‖
. (1)

Moreover, the surface covariant derivative of a vector field v is given by

vα |μ = vα ,μ −Γλ
αμvλ , (2)

where vα ,μ is the partial derivative of vα with respect to ξ μ and Γ λ
αμ is the Christoffel

symbol of the midsurface
Γ λ
αμ = aα ,μ ·aλ . (3)
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Fig. 1. Curvilinear coordinates on the midsurface

Furthermore the fundamental forms of the midsurface are defined by

• first fundamental form: aαβ = aα ·aβ ,
• second fundamental form: bαβ =−a3,β ·aα ,

• third fundamental form: cαβ = bλαbλβ .

It turns out that the midsurface alone contains not enough information to describe bend-
ing and shear effects. A remedy is provided by the theory of Cosserat continua: at each
point x ∈ ω a director vector d is attached to the shell, adding the lacking degrees of
freedom [10,22]. These director vectors can be interpreted as material lines along the
thickness of the shell. The deformation of the loaded shell can be described by a trans-
lation of all points of the midsurface u ∈

[
H1(ω)

]3
and a rotation of the associated

director vectors stemming from the group SO(2). As the rotation of an infinitely-thin
straight material line is uniquely defined by a rotation vector normal to that line we
introduce θ ∈

[
H1(ω)

]2
to represent the rotation by θλaλ [8]. A component on a3 is

not required due to the fact that rotations of the director vectors around their own axis
are neglected. Thus we obtain the following displacement formula:

U(ξ 1,ξ 2,ξ 3) = u(ξ 1,ξ 2)+ ξ 3θλ (ξ 1,ξ 2)aλ (ξ 1,ξ 2). (4)

In the remainder of this article, we consider a shell with a Lipschitz boundary ∂ω .
The shell is clamped at parts of the boundary. To this end we partition ∂ω into two
sets ∂ω0 and ∂ω1 which are open in ∂ω , ∂ω = ∂ω0∪∂ω1 and ∂ω0∩∂ω1 = /0. Then
Dirichlet boundary conditions are applied on ∂ω0 and the shell is subjected to forces
and moments on ∂ω1. Using this, we define the set of admissible displacements to be

U := { (u,θ ) ∈ [H1(ω)]5
∣∣∣u = 0 and θ = 0 on ∂ω0}. (5)

As a consequence we obtain
[
H1

0 (ω)
]5 ⊂ U ⊂

[
H1(ω)

]5
. It is now possible to de-

duce formulas for membrane strains γαβ , bending strains χαβ and shear strains ζα ,
respectively:
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γαβ (u) =
1
2

(
uα |β + uβ |α

)
−bαβu3,

χαβ (u,θ ) =
1
2

(
θα |β +θβ |α−bλβuλ |α−bλαuλ |β

)
+ cαβu3, (6)

ζα(u,θ ) =
1
2

(
θα + u3,α + bλαuλ

)
.

The assumption of linear elasticity in Naghdi’s shell model leads to the following
Hooke’s law:

Nλμ = tCλμαβ γαβ ,

Mλμ =
t3

12
Cλμαβ χαβ , (7)

mλ = t Dλαζα .

Here Cλμαβ and Dλα are the elasticity tensors of the shell. Cλμαβ is a fourth-order
tensor with the following symmetries:

Cλμαβ = Cμλαβ , Cλμαβ = Cλμβα , Cλμαβ = Cαβλμ . (8)

Dλα is a symmetric second order tensor satisfying Dλα = Dαλ . Moreover, the symmet-
ric second order tensors Nλμ and Mλμ are called force resultant and moment resultant,
respectively, and mλ is the transverse shear force resultant. Finally t is the thickness
of the shell. In the following we assume the thickness of the shell to be constant. Note
however that the main results presented in this article remain valid for a thickness profile
t = t(x), which remains unchanged during optimization. The symmetry of the tensors
allows us to rewrite Hooke’s law using the following vectors and matrices:

γ =

⎛⎜⎝ γ11

γ22√
2γ12

⎞⎟⎠ , χ =

⎛⎜⎝ χ11

χ22√
2χ12

⎞⎟⎠ , ζ =

(
ζ1

ζ2

)
, (9)

N =

⎛⎜⎝ N11

N22√
2N12

⎞⎟⎠ , M =

⎛⎜⎝ M11

M22√
2M12

⎞⎟⎠ , m =

(
m1

m2

)
, (10)

C =

⎛⎜⎝ C1111 C1122
√

2C1112

C1122 C2222
√

2C2212√
2C1112

√
2C2212 2C1212

⎞⎟⎠ , D =

(
D11 D12

D12 D22

)
. (11)

Then Hooke’s law takes the form

N(x) = t C(x)γ(u(x)),

M(x) =
t3

12
C(x)χ(u(x),θ (x)), (12)

m(x) = t D(x)ζ (u(x),θ (x))
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and the potential energy Π(u,θ ) of the Naghdi shell can be written as

Π(u,θ ) =
1
2

∫
ω

(
tγ�Cγ+

t3

12
χ�Cχ+ tζ�Dζ

)
dS

−
∫
ω

t f�udS−
∫
∂ω1

(
g�u u + g�θ θ

)
dl,

(13)

where f ∈
[
L2(ω)

]3
is a given force resultant density and gu ∈

[
L2(∂ω1)

]3
and gθ ∈[

L2(ω)
]2

are given traction and moment resultant densities, respectively. The shell is in
equilibrium for any (u,θ ) ∈U that minimizes the potential energy

min
(u,θ)∈U

Π(u,θ ). (14)

It is also possible to treat plates in this context. Assuming a planar midsurface allows
to deduce the Reissner-Mindlin plate model from Naghdi’s shell model. A planar mid-
surface has no curvature and thus a constant normal vector a3. This results in vanishing
second and third fundamental forms of the midsurface ω :

bαβ = 0, cαβ = 0. (15)

In this case the formulas for the strains boil down to:

γαβ (u1,u2) =
1
2

(
uα |β + uβ |α

)
,

χαβ (θ ) =
1
2

(
θα |β +θβ |α

)
, (16)

ζα(u3,θ ) =
1
2

(θα + u3,α) .

The equilibrium state of the plate is again found by minimizing the potential energy

min
(u,θ)∈U

Π(u,θ ) =
1
2

∫
ω

(
tγ�(u1,u2)Cγ(u1,u2)+

t3

12
χ�(θ )Cχ(θ )

+ tζ�(u3,θ )Dζ (u3,θ )
)

dS−
∫
ω

t f�udS−
∫
∂ω1

(
g�u u + g�θ θ

)
dl.

(17)

When solving the elasticity problem for a plate this can be separated into the membrane
problem

min
(u1,u2)∈U

1
2

∫
ω

tγ�(u1,u2)Cγ(u1,u2)dS−
∫
ω

t ( f1u1 + f2u2) dS

−
∫
∂ω1

(gu1u1 + gu2u2) dl
(18)

and the so-called Reissner-Mindlin problem

min
(u3,θ)∈U

1
2

∫
ω

(
t3

12
χ�(θ )Cχ(θ )+ tζ�(u3,θ )Dζ (u3,θ )

)
dS

−
∫
ω

t f3u3 dS−
∫
∂ω1

(
gu3u3 + g�θ θ

)
dl.

(19)



244 S. Gaile, G. Leugering, and M. Stingl

3 The Single Load Problem

Up to now we have merely described the physical behavior of the shell. However our
overall goal is to find the stiffest structure which is subjected to a given set of loads f ,
gu and gθ . A measure on how much a structure will deform under these loads is given
by the compliance

comp(C,D) =− min
(u,θ)∈U

2ΠC,D(u,θ ) = max
(u,θ)∈U

−2ΠC,D(u,θ )

= max
(u,θ)∈U

−
∫
ω

(
tγ�Cγ+

t3

12
χ�Cχ + tζ�Dζ

)
dS

+ 2
∫
ω

t f�udS + 2
∫
∂ω1

(
g�u u + g�θ θ

)
dl.

(20)

Apparently the compliance is given by twice the negative potential energy in equilib-
rium. In order to find the stiffest structure possible we now minimize the compliance
with respect to the design variables. As we intend to work with Free Material Opti-
mization these variables are the full elasticity tensors C and D. We want to allow for
holes and material-no-material situations in the optimal structures, therefore we choose
C ∈ [L∞(ω)]3×3 and D ∈ [L∞(ω)]2×2. As pointed out in Section 2 the matrices have to
be symmetric, furthermore they also have to be positive semidefinite as they describe a
physical material:

C = C� � 0, D = D� � 0. (21)

As a measure for the amount of material used at a certain point x∈ω we simply use the
summed traces of the matrices t

(
tr(C)+ 1

2 tr(D)
)
. The factor 1

2 is necessary to be able
to compare the results with the three–dimensional solid case. As we want to limit the
material resources, we add the volume constraint∫

ω
t
(
tr(C)+ 1

2 tr(D)
)

dS ≤V. (22)

Finally we add box constraints to avoid arbitrarily high material concentrations at single
points:

0≤ ρ− ≤ t
(
tr(C)+ 1

2 tr(D)
)
≤ ρ+. (23)

Summarizing (21), (22) and (23) we obtain the set of admissible elasticity tensors

C :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩(C,D) ∈ [L∞(ω)]3×3× [L∞(ω)]2×2

∣∣∣∣∣∣∣∣∣
C = C� � 0

D = D� � 0∫
ω t(tr(C(x))+ 1

2 tr(D(x))) dS≤V

0≤ ρ− ≤ t(tr(C)+ 1
2 tr(D))≤ ρ+

⎫⎪⎪⎪⎬⎪⎪⎪⎭(24)

For simplicity of notation we will assume ρ− = 0. But note that all statements presented
in this paper are also true for positive ρ−. We finally are able to formulate the single
load problem for shells, in which we seek the design variables C and D which yield the
minimal compliance:
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min
(C,D)∈C

max
(u,θ)∈U

− 1
2

∫
ω

(
tγ�Cγ+

t3

12
χ�Cχ+ tζ�Dζ

)
dS

+
∫
ω

t f�udS +
∫
∂ω1

(
g�u u + g�θ θ

)
dl.

(25)

Introducing the function

J((C,D),(u,θ )) :=− 1
2

∫
ω

(
tγ�Cγ+

t3

12
χ�Cχ+ tζ�Dζ

)
dS

+
∫
ω

t f�udS +
∫
∂ω1

(
g�u u + g�θ θ

)
dl

(26)

we rewrite the latter optimization problem as

min
(C,D)∈C

max
(u,θ)∈U

J((C,D),(u,θ )) . (27)

In the case of plates we start from the equilibrium problem (17). The uncoupling into the
membrane and the Reissner–Mindlin problem is not possible anymore when working
with Free Material Optimization, as the material tensor C is one of the optimization
variables connecting the membrane and bending terms. Thus the single load problem
for Reissner–Mindlin plates takes the form

min
(C,D)∈C

max
(u,θ)∈U

J((C,D),(u,θ )) :=− 1
2

∫
ω

(
tγ�Cγ+

t3

12
χ�Cχ+ tζ�Dζ

)
dS

+
∫
ω

t f�udS +
∫
∂ω1

(
g�u u + g�θ θ

)
dl.

(28)

This problem has already been formulated by Bendsøe and Díaz, who propose a solu-
tion via analytic derivation of the optimal material properties [2].

We now want to show existence of optimal solutions for problem (27). It can be
easily seen that an optimal solution of the single load problem for shells is a saddle-
point of the functional J((C,D),(u,θ )). Thus existence of an optimal point follows
from a Minimax-Theorem.

Theorem 1. Problem (27) has an optimal solution ((C∗,D∗),(u∗,θ ∗)) ∈ C ×U .

The proof uses the modified Minimax-Theorem presented in [19] that allows for C to be
subset of the dual of a non–reflexive Banach–space – in this case L1(ω). The required
ellipticity of Naghdi’s shell model has been shown in [11,5]. The complete proof can
be found in [12].

4 The Primal Problem

In [24] it has been shown that the Free Material Optimization problem for solid material
can be transformed into a linear quadratically constrained optimization problem using
duality theory. During this section we show that a similar technique can be applied
on the Free Material Optimization problem for shells resulting in a convex nonlinear
semidefinite program instead of the saddle-point problem given in (27).
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Theorem 2. Problem (27) is equivalent to the Lagrange dual problem of

max
(u,θ)∈U
α∈R

+
0

βu,l∈L1(ω)
βu,l≥0

∫
ω

t f�udS +
∫
∂ω1

(g�u u + g�θ θ )dl−αV −ρ+
∫
ω
βudS

subject to
t
2
γ(u)γ(u)�+

t3

24
χ(u,θ )χ(u,θ )�− t(α+βu−βl)E3 � 0 (29)

t
2
ζ (u,θ )ζ (u,θ )�− t

2
(α+βu−βl)E2 � 0

where En denotes the unit matrix in R
n.

In order to prove this theorem we construct the Lagrangian to problem (29). It can then
be shown that this problem is equivalent to the original problem (27). The proof follows
the ideas presented in [24, Theorem 3.3.4] and is given in detail in [12].

Problem (29) is a convex nonlinear semidefinite program (SDP). Compared to the
original problem formulation (27) problem (29) has several advantages. The matrices C
and D are hidden in the problem as Lagrange multipliers. This significantly reduces the
number of variables in the discrete problem (compare Section 5). Furthermore problem
(29) is convex. As t is the thickness of the shell, it is strictly positive and the matrix
constraints of (29) can be simplified to

γ(u)γ(u)�+
t2

12
χ(u,θ )χ(u,θ )�−2(α+βu−βl)E3 � 0 , (30)

ζ (u,θ )ζ (u,θ )�− (α+βu−βl)E2 � 0 .

5 Numerical Treatment

5.1 Discretization

We now intend to solve the infinite-dimensional SDP (29) numerically. For this pur-
pose we discretize the problem by the finite element method [8]. The midsurface ω is
partitioned into M elements ωm. The number of corresponding element nodes is de-
noted by n. The elasticity matrices C(x) and D(x) are approximated by elementwise
constant matrices (C1, . . . ,CM) and (D1, . . . ,DM) where Cm ∈ R

3×3 and Dm ∈ R
2×2 for

all m = 1, . . . ,M. The displacements take the following form

U3D =
n

∑
i=1

λi(r,s)
(

u(i) + z
t
2
θ (i)
)

, (31)

where the λi(r,s) are bilinear 2D Lagrange shape functions. This assures that the
Reissner-Mindlin assumption – material lines remain straight and unstretched during
deformation – is fulfilled at all nodes of the mesh. Using (31) the discretized membrane
strain matrix Bγ

i becomes

Bγ
i =

⎛⎜⎝ λi|1 0 −b11λi 0 0

0 λi|2 −b22λi 0 0
1√
2
λi|2

1√
2
λi|1 −

√
2b12λi 0 0

⎞⎟⎠ (32)
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The factor
√

2 stems from the vector-matrix-notation introduced in (9). Using this, the
discrete counterpart of the dyadic product γγ� reads

Aγ
m(u) = ∑

i, j∈K

∫
ωm

Bγ
jUU�(Bγ

i )
�dx , (33)

where K is the index set of nodes associated with the element m. Analogously we derive

Aχ
m(u) = ∑

i, j∈K

∫
ωm

Bχ
j UU�(Bχ

i )�dx , (34)

Aζ
m(u) = ∑

i, j∈K

∫
ωm

Bζ
j UU�(Bζ

i )�dx . (35)

Replacing the forces and moments in problem (29) by their discrete counterparts we get
the following discrete single load FMO problem for shells:

max
(u,θ)∈U
α∈R

+
0

βu,βl∈R
+
0

M

n

∑
i=1

(
t fiui−ρ+βui

)
+ ∑

i∈∂ω1

(guiui + gθ iθi)dl−Vα

subject to
t
2

Aγ
m(u)+

t3

24
Aχ

m(u,θ )− t(α+βu−βl)E3 � 0 (36)

t
2

Aζ
m(u,θ )− t

2
(α+βu−βl)E2 � 0 .

Obviously (36) is a finite-dimensional convex nonlinear semidefinite program.

5.2 Examples

Two numerical examples are presented in this section. In order to solve problem (36)
we have used the nonlinear SDP code PENNON [14]. Although only the resulting “den-
sity” function t tr(C)+ 1

2 t tr(D) is depicted, we want to emphasize that the code provides
the optimal elasticity matrices Cm and Dm for each element ωm, m = 1, . . . ,M. Thus we
gather information about the optimal material symmetry and material directions usable
in the manufacturing process.

Example 1. The first example (Fig. 2) serves as a test for the consistency with the two-
dimensional solid case. We consider a rectangular plate with in-plane forces. The plate
is clamped on one side while forces are applied in the center of the opposite edge and
directed in parallel to the boundary. This example known as Michell truss is widely
used in topology optimization literature.

The typical material distribution of a Michell truss can be easily recognized in the
displayed “density” distribution (Fig. 3). It is also notable that only membrane strains
appear as there is no deformation outside the midsurface. Thus there is no material used
for the matrix D which accounts to shear effects.
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Fig. 2. Michell truss load case
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Fig. 3. Michell truss “density distribution”

Example 2. The second example employs all degrees of freedom of the shell. We start
with a saddle-shaped midsurface, that is clamped on one side (Fig. 4). A vertical force
acts in the center of the opposite edge. This example can be interpreted as optimization
of a coat hook fixed to the wall.

The resulting “density distribution” (Fig. 5) shows a firm tip at the location of the
load. The shell tries to avoid vertical bending and distributes material over the complete
design domain (apart from the corners in the front which are not suited to stiffen this
particular structure). No holes can thus be found in contrast to the previous example.
This result is not unexpected as stiff triangle-shaped structures appearing in the plane
of loading are well known in topology optimization.
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Fig. 4. Saddle-shaped hook load case
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Fig. 5. Saddle-shaped hook “density distribution”
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Abstract. The paper deals with the numerical treatment of optimal control prob-
lems with bounded distributed controls and elliptic state equations by a wider
class of barrier-penalty methods. If the constraints are treated by barrier-penalty
techniques then the necessary and sufficient optimality condition forms a coupled
system of nonlinear equations which contain not only the usual adjoint and the
state equation, but also an approximate projection by means of barrier-penalty
terms. Under the made assumptions from the last one the control can be elimi-
nated. This reduced optimality system which does not contain explicitly the con-
trols, but the more regular states and adjoints only, is studied in detail.

1 Problem and Optimality Characterization

In this paper we study the numerical treatment of optimal control problems with bounded
distributed controls and elliptic state equations by barrier-penalty methods. Let Ω ⊂R

2

be some bounded convex domain and let be given q, b, d ∈ L∞(Ω). Further, we abbre-
viate U := L2(Ω). Considered is the following optimal control problem

J(y,u) :=
1
2

∫
Ω

(y−q)2 +
α
2

∫
Ω

u2 →min!

s.t. −Δy = u in Ω , (1)

y +
∂y
∂n

= 0 on Γ := ∂Ω ,

u ∈ Uad,

where α > 0 denotes a regularization parameter and the set of admissible controls Uad

is defined by
Uad := {u ∈U : u≤ b a.e. in Ω} (2)

or in case of additional state constraints by

Uad := {u ∈U : u≤ b, y≤ d a.e. in Ω} . (3)

The consideration of only one-sided bounds for the controls as well as for the states
serves to simplify the presentation, but does not principally restrict the considered class
of problems.
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Throughout this paper let us make the general assumption that Uad �= /0 . The numer-
ical treatment of optimal control problems with elliptic state equations and constraints
upon controls and partially also upon states have been extensively studied in the litera-
ture within the last years. The most popular techniques are semismooth Newton meth-
ods (see e.g. [11,12,24]), active set strategies (see [17]) and interior penalty methods
(see e.g. [20,25]). A comprehensive discussion about the properties of control problems
of the considered type can be found in [23].

In the present paper we widely concentrate upon the convergence properties of the
certain barrier-penalty methods for the continuous problem. In particular, rate of conver-
gence estimates for the considered methods are derived. Finite element discretizations
are only briefly mentioned. The interaction between parameter selection rules for the
embedding and the discretization step size in case of certain barrier methods has been
recently analyzed in [16].

The state equations of the given problem (1) are understood in the weak sense of the
Sobolev space V := H1(Ω). Let the bilinear form a(·, ·) : V ×V →R be defined by

a(y,v) :=
∫
Ω

∇y ·∇v +
∫
Γ

yv ∀y,v ∈V. (4)

Then for any u ∈ Uad the state equation possesses a unique weak solution, i.e. there
exists a unique y ∈V such that

a(y,v) = (u,v) ∀v ∈V. (5)

Here (·, ·) denotes the L2-inner product. With the continuous embedding V ↪→ L2(Ω) by
Su := y this also defines a continuous linear mapping S : L2(Ω)→ L2(Ω) and problem
(1) can be reduced to its equivalent form

Ĵ(u) := J(Su,u)→ min! s.t. u ∈Uad. (6)

Theorem 1. The abstract optimization problem (6) possesses a unique optimal solution
ū and (Sū, ū) ∈ V ×Uad is the related unique optimal solution of (1). The variational
inequality

〈Ĵ′(ū),u− ū〉 ≥ 0 ∀u ∈Uad (7)

forms a necessary and sufficient condition for ū ∈Uad to solve (1). Further, in case of
control constraints only, i.e. if (2) holds, this is equivalent to the coupled system

(ȳ−q,y)+ a(y, v̄)= 0 ∀y ∈V,

a(ȳ,v)− (ū,v)= 0 ∀v ∈V,

α(ū,u− ū)− (u− ū, v̄)≥ 0 ∀u ∈Uad.

(8)

Proof. Since Uad is nonempty, closed and convex and Ĵ is continuous and strongly
convex immediately the existence and uniqueness of the optimal solution follows (c.f.
[3], [23]). With the differentiability of Ĵ and the convexity of Uad we obtain (7). Under
the made assumptions the state equation as well as the adjoint equation possess unique
solutions which together provide a saddle point of the Lagrangian related to (1), (2)
which is characterized by (8). ��
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We notice that the occurring inequality in (8) is equivalent to

ū = P(ū−σ(v̄+α ū)) (9)

for any σ > 0, where P denotes the L2(Ω)-orthogonal-projection onto Uad . With the
particular choice σ = 1/α this enables to eliminate ū from the remaining system (see
e.g. [11], [15], [24], [23]). This approach has the advantage that only ȳ, v̄ occur that are
much smoother than ū. This fact is important for the discretization and leads to optimal
convergence rates as shown in [15].

2 Two Penalties of a General Class Applied to Control Problems

The well know idea of barrier-penalty methods is to augment the objective by some
term that penalizes either the closeness to the boundary of Uad in case of interior point
methods (for the logarithmic barrier see e.g. Weiser/Gänzler/Schiela [26]) or the viola-
tion of constraints that defined Uad in case of pure penalties. Let Φ(·,s) : U →R denote
such a parametric barrier-penalty functional, where s > 0 is the embedding parameter
that has to tend to zero. In our case we apply convex and continuous functionals with
the property

lim
s→0+

Φ(u,s) = 0 ∀u ∈Uad and lim
s→0+

Φ(u,s) > 0 ∀u �∈Uad (10)

and obtain for fixed s > 0 the augmented control problems

J̃(u,s) := Ĵ(u)+Φ(u,s)→min! s.t. u ∈U (11)

which are unconstrained. In accordance with the structure of Uad we define Φ via Ne-
mitskij operators either by

Φ(u,s) =
∫
Ω
φ(u(x)−b(x),s)dx

orΦ(u,s) =
∫
Ω
φ(u(x)−b(x),s)dx +

∫
Ω
φ([Su](x)−d(x),s)dx.

(12)

Here φ : R→R denotes some barrier-penalty function that satisfies

∂
∂ t
φ(t,s) = ψ

( t
s

)
∀t ∈ R (13)

with an appropriate function ψ : R→ R. For finite dimensional optimization problems
a rather general barrier-penalty class has been discussed in Grossmann/Zadlo [8]. In the
present paper we apply the concept to the considered infinite dimensional problem, but
we restrict us to the specific functions

ψ(t) := max{0, t} and ψ(t) := δ (1 +
t√

t2 + 1
), (14)

which correspond to

φ(t,s) :=
1
2

s−1max2{0, t} and φ(t,s) := δ
(

t +
√

s2 + t2
)

, (15)
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respectively. In the second type the parameter δ > 0 denotes some appropriately chosen
constant (compare Theorem 3). While the first type of barrier-penalty functions repre-
sents just the standard quadratic loss penalty the second type forms a certain smoothed
version of the exact penalty. It has been originally proposed and studied by Kaplan
(compare [6]). Another type of a smoothed exact penalty for control problems has been
recently studied in [9].

The two types of barrier-penalty techniques considered in our paper show some prin-
ciple differences in its convergence analysis as will be seen later. Additional properties
of the embeddings (14) and (15) are derived in [18] and [19], respectively.

A common property of both barrier-penalty types that follows from the Carathéodory
conditions (cf. [27]) is

Lemma 1. For both of the considered types of barrier-penalty embeddings for any s >
0 the related functional Φ(·,s) is well defined on U.

For a detailed discussion of the general assumption upon ψ as well as for further types
of barrier-penalty functions we refer to Grossmann/Zadlo [8].

Lemma 2. For any s > 0 the penalty problem

J̃(u,s)→ min! s.t. u ∈U (16)

possesses a unique solution u(s). The point u(s) ∈ U forms a solution of the uncon-
strained problem (16) if and only if

〈J̃′(u(s),s),u−u(s)〉= 0 ∀u ∈U (17)

holds. In case of control restrictions only, i.e. if Uad is given by (2), the variational
equality (17) is equivalent to

(y(s)−q,y)−a(y,v(s)) = 0 ∀y ∈V,

−a(y(s),v)+ (u(s),v) = 0 ∀v ∈V,

αu(s)+ v(s)+ψ((u(s)−b)/s) = 0 a.e. in Ω ,

(18)

while in case of control and state constraints, i.e. if Uad is given by (3), the variational
equality (17) is equivalent to

(y(s)−q,y)+ (y,ψ((y(s)−d)/s))−a(y,v(s)) = 0 ∀y ∈V,

−a(y(s),v)+ (u(s),v) = 0 ∀v ∈V,

αu(s)+ v(s)+ψ((u(s)−b)/s) = 0 a.e. in Ω .

(19)

Here and in (18) denote y(s) ∈ V and v(s) ∈ V the related optimal state and adjoint
state, respectively. Further for both cases of constraints holds

lim
s→0+

sup Φ(u(s),s) ≤ min
u∈Uad

Ĵ(u). (20)
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Proof. First we notice that for arbitrary s > 0 the augmented objective J̃(·,s) is well
defined for any u ∈ U since the considered functions φ(·,s) satisfy the appropriate
Carathéodory conditions (c.f. [27]). With the continuity and strong convexity stan-
dard arguments imply (c.f. [7], [23]) that a unique minimizer ū(s) ∈U exists. Further,
convexity and differentiability of J̃(·,s) yields the condition (17). Finally, the usual
representation of J̃(·,s) via adjoints leads to the equivalent conditions (18) and (19),
respectively.

It remains to prove (20). By assumption Uad �= /0. Let ũ ∈Uad be some arbitrary, but
fixed element then with the non-negativity of the functional J̃ we obtain

Φ(u(s),s) ≤ Ĵ(u(s))+Φ(u(s),s) = J̃(u(s),s) ≤ J̃(ũ,s) = Ĵ(ũ)+Φ(ũ,s) ∀s > 0.
(21)

Now, property (10) implies that (20) holds. ��

Theorem 2. In case of the quadratic loss penalty functional defined via ψ(t) =
max{0,t} we have

lim
s→0+

u(s) = ū. (22)

Further, in case of control constraints only, i.e. Uad defined by (2), holds

‖u(s)− ū‖= O(s1/2) for s→ 0 + . (23)

Proof. With
Φ(u,s) = 0 ∀u ∈Uad, s > 0 (24)

and with the structure of the auxiliary objective J̃(·,s) and of the reduced objective Ĵ
we obtain

α
2
‖u(s)‖2 ≤ Ĵ(u(s))≤ J̃(u(s),s) ≤ J̃(ū,s) = Ĵ(ū) ∀s > 0. (25)

Hence, {u(s)}s>0 ⊂ U is a bounded family in the Hilbert space U . Let {sk} denote
an arbitrary sequence with sk > 0, sk → 0+. Then {uk} defined by uk := u(sk), k =
1,2, . . . is weakly compact. As a consequence it contains some convergent subsequence.
Without loss of generality we may assume that {uk} itself is weakly convergent to some
ũ ∈U .

Due to Lemma 2 the exists a c > 0 with

Φ(uk,sk)≤ c ∀k ∈ N, (26)

s−1
k ‖[uk−b]+‖2 ≤ c and s−1

k ‖[Suk−d]+‖2 ≤ c ∀k ∈ N. (27)

Here and in the sequel as usual [·]+ denotes the positive part completed by zero. Since
the functional u→ ‖[u− b]+‖2 and u→ ‖[Su− d]+‖2 are convex and continuous they
are also weakly lower semi-continuous. Thus, together with its non-negativity (27) im-
plies

‖[ũ−b]+‖2 = 0 and ‖[Sũ−d]+‖2 = 0 (28)

which proves
ũ≤ b and Sũ≤ d a.e. in Ω , (29)
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i.e. we have ũ ∈ Uad . Further, the lower semi-continuity of Ĵ as a consequence of its
convexity and continuity together with (25) implies that ũ is optimal for the original
control problem (1). Its solution is unique, namely ū. Because {u(s)}s>0 is bounded
and the selection of any weakly convergent subsequence tends to ū we have

u(s) ⇀ ū for s→ 0 + . (30)

Now, we turn to the strong convergence in L2(Ω). From (25) and from the weakly lower
semi-continuity of Ĵ we obtain

Ĵ(ū)≤ liminfs→0+Ĵ(u(s)) ≤ limsups→0+Ĵ(u(s)) ≤ Ĵ(ū). (31)

Hence,
lim

s→0+
Ĵ(u(s)) = Ĵ(ū). (32)

Further, since Su(s) ∈V = H1(Ω) the compact embedding H1(Ω) ↪→ L2(Ω) the weak
convergence of {u(s)} in L2(Ω) implies the strong convergence of the images {Su(s)}
in L2(Ω). Thus, we obtain

lim
s→0+

∫
Ω

(S(u(s)−q)2 =
∫
Ω

(S(ū−q)2. (33)

With (32) and with the structure of Ĵ this results in

lim
s→0+

‖u(s)‖= ‖ū‖ (34)

Finally, Radon-Riesz Theorem (see e.g. [5, Satz 5.10], [10]) provides the strong con-
vergence, i.e.

lim
s→0+

‖u(s)− ū‖= 0. (35)

Next, we prove the stated order of convergence in case of control constraints only, i.e.
if Uad is defined by (2). Under the made assumptions a regular Lagrange multiplier
λ̄ ∈ L∞(Ω), λ̄ ≥ 0 exists such that

L(ū,λ )≤ L(ū, λ̄ )≤ L(u, λ̄ ) ∀u ∈U, λ ∈U∗
+. (36)

Here, due to the occurring regularity the Lagrangian L(·, ·) that handles the control
bound u≤ b can be represented by

L(u,λ ) = Ĵ(u) + 〈λ ,u−b〉= Ĵ(u)+
∫
Ω

λ (x)(u(x)−b(x))dx. (37)

As already used, for the minimizer u(s) of the auxiliary problem holds

J̃(u(s),s) ≤ J̃(ū,s) = Ĵ(ū) ∀s > 0. (38)

Thus, together with the right part of the saddle point inequality (36) and with the com-
plementarity 〈λ̄ , ū−b〉= 0 we have

Ĵ(u(s))+ s−1‖[u(s)−b]+‖2 ≤ Ĵ(ū) = L(ū, λ̄ )≤ L(u(s), λ̄ ) = Ĵ(u(s))+ 〈λ̄ ,u(s)−b〉.
(39)
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With the right part of the saddle point inequality (36), with λ̄ ≥ 0 and with Cauchy’s
inequality follows

‖[u(s)−b]+‖2 ≤ s〈λ̄ ,u(s)−b〉 ≤ s〈λ̄ , [u(s)−b]+〉 ≤ s‖λ̄‖‖[u(s)−b]+‖. (40)

This leads to
‖[u(s)−b]+‖ ≤ s‖λ̄‖ ∀s > 0. (41)

Further, we know that with the L2-projector Π : U →Uad holds

[u(s)−b]+ = u(s)−Πu(s). (42)

Together with (41) this yields

‖u(s)−Πu(s)‖ ≤ s‖λ̄‖ ∀s > 0. (43)

The structure of the objective Ĵ and the optimality criterion (7) leads to

Ĵ(Πu(s)) ≥ Ĵ(ū)+ 〈Ĵ′(ū),Πu(s)− ū〉+ α
2 ‖Πu(s)− ū‖2

≥ Ĵ(ū)+ α
2 ‖Πu(s)− ū‖2.

(44)

Thus, with Ĵ(u(s))≤ Ĵ(ū) we have

Ĵ(Πu(s))− Ĵ(u(s))≥ Ĵ(u(s))− Ĵ(ū) + Ĵ(Πu(s))− Ĵ(u(s)) ≥ α
2
‖Πu(s)− ū‖2. (45)

Since ‖u(s)‖ is bounded for s → 0+ with the local Lipschitz continuity of Ĵ there is
some c > 0 such that

‖Ĵ(Πu(s))− Ĵ(u(s))‖ ≤ c‖Πu(s)−u(s)‖. (46)

Now, the estimates (43), (45) result in ‖Πu(s)− ū‖ ≤ cs1/2 with some c > 0. With the
triangle inequality and again with (43) finally we obtain ‖u(s)− ū‖= O(s1/2). ��
Remark 1. The second part of Theorem 2 cannot be extended to the case of state con-
straints due to the lack of regularity of the multipliers. The multipliers related to state
constraints as a rule are measures only (compare [1], [2]).

Investigations of penalty type methods for problems with reduced multiplier reg-
ularity can be found in [13], [14]. In these papers, in particular, the treatment of state
constraints with quadratic loss function methods combined with augmented Lagrangian
have been studied. However, the convergence result given in Theorem 2 differs from the
mentioned investigations. Especially the proof for the rate of convergence is original.

Barrier methods for state constraints are discussed in [22] and an appropriate dis-
cretization of state constraints can be found in [4]. �
Remark 2. Theorem 2 provides a convergence estimate of order O(s1/2) which in prac-
tical experiments is exceeded. Here we obtained ‖uh(s)− ūh‖ = O(s) for the solutions
uh(s) and ūh of the auxiliary discrete problem and the discrete problem, respectively.
This is quite natural since this has been shown for finite dimensional problems (com-
pare [8]). But this way the discrete estimates would depend upon the dimension. In
the computational experiments, however we observed mesh independence of the rate of
convergence and related constants. Further studies are on the way to prove this property
analytically. �
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Now we turn to the convergence analysis of the smoothed exact penalty type of barrier-
penalty embedding.

Theorem 3. Let δ > 1
2‖λ̄‖∞. Then for the solutions u(s) of the auxiliary problems of

the smoothed exact penalty method, i.e. with the barrier-penalty function defined via

ψ(t) = δ (1 + t√
t2+1

), holds

lim
s→0+

‖u(s)− ū‖= 0. (47)

If δ > ‖λ̄‖∞ then some s0 > 0 exists such that

u(s) ∈Uad ∀s ∈ (0,s0] and ‖u(s)− ū‖= O(s1/2) for s→ 0 + . (48)

Proof. First we notice that the made assumptions q, b ∈ L∞(Ω) and the convexity of Ω
imply λ̄ ∈ L∞(Ω). The optimality of u(s) for the auxiliary problem and the properties

φ(t,s) = δ (t +
√

t2 + s2)≥ δ (t +
√

t2 ) = 2δ [t]+ ∀t ∈Ry, s > 0 (49)

and
φ(t,s)≤ φ(0,s) = s ∀t ≤ 0 (50)

yield

Ĵ(u(s))+2δ
∫
Ω

[u(s)(x)−b(x)]+ dx≤ J̃(u(s),s) ≤ J̃(ū,s)

= Ĵ(ū)+ δ
∫
Ω

(
ū(x)−b(x)+

√
(ū(x)−b(x))2 + s2

)
dx

≤ Ĵ(ū)+ δ s
∫
Ω

dx = Ĵ(ū)+ δ μ(Ω)s ∀s > 0.

(51)

Further, from the saddle point inequality we obtain

Ĵ(ū) ≤ Ĵ(u)+ 〈λ̄ ,u−b〉 ∀u ∈U. (52)

In particular with u = u(s) and with λ̄ ≥ 0, λ̄ ∈ L∞(Ω) follows

Ĵ(ū) ≤ Ĵ(u(s))+
∫
Ω

λ (x)(u(s)(x)−b(x))dx≤

Ĵ(u(s))+‖λ̄‖∞
∫
Ω

[u(s)(x)−b(x)]+ dx.
(53)

Thus, we have

(2δ −‖λ̄‖∞)
∫
Ω

[u(s)(x)−b(x)]+dx ≤ δ μ(Ω)s ∀s > 0. (54)
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The convexity and lower semi-continuity of the integral functional at the left hand side,
now provides

(2δ −‖λ̄‖∞)
∫
Ω

[ũ(x)−b(x)]+dx≤ 0 (55)

for any weak accumulation point ũ of the family {u(s)} for s→ 0+. Hence, as a conse-
quence of the made assumption δ > 1

2‖λ̄‖ we obtain ũ ∈Uad .
Further,

Ĵ(u(s))≤ J̃(u(s),s)≤ J̃(ū,s)≤ Ĵ(ū)+ δ μ(Ω)s ∀s > 0 (56)

with the weakly lower semi-continuity of Ĵ yields

Ĵ(ũ)≤ Ĵ(ū) (57)

for any weak accumulation point ũ of {u(s)} for s → 0+. Since, {u(s)}s>0 is weakly
compact and the optimal solution ū is unique the whole family converges weakly to ū.
Further, (56) leads to (compare the proof of Theorem 2)

lim
s→0+

Ĵ(u(s)) = Ĵ(ū). (58)

Now, by the same arguments as in the proof of Theorem 2 with the aid of the Radon-
Riesz theorem we finally obtain

lim
s→0+

‖u(s)− ū‖ = 0. (59)

Next, we prove the stated order of convergence. To prepare this, first we show that

lim
s→0+

‖λ (s)− λ̄‖0 = 0 (60)

for λ (s) for s > 0 defined by

λ (s) := ψ((u(s)−b)/s). (61)

Here u→ψ((u−b)/s) is understood in the sense of Nemitskij operators. The regularity
of u(s) and the Carathéodory properties of ψ guarantee λ (s) ∈ L2(Ω). Further, the
optimality condition (18) yields

λ (s) =−v(s)−α u(s). (62)

We notice that the state equation and the adjoint equation are stable w.r.t. the input u
and y, respectively. With the lifting property that results from the supposed convexity
of the domain Ω and with the continuous embedding we obtain

‖ȳ− y(s)‖2 ≤ c‖ū−u(s)‖0 and ‖v̄− v(s)‖2 ≤ c‖ȳ− y(s)‖0, (63)

where ‖ · ‖0 and ‖ · ‖2 denote the L2-norm and H2-norm, respectively. Hence, the con-
tinuous embedding H2(Ω) ↪→ L∞(Ω) and the convergence lim

s→0+
‖ū− u(s)‖0 = 0, that

has been shown already, imply

lim
s→0+

‖ȳ− y(s)‖∞ = 0 and lim
s→0+

‖v̄− v(s)‖∞ = 0. (64)
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Now, from (62) follows that λ (s) converges for s→ 0+ in L∞(Ω) to

λ̃ :=−v̄−α ū. (65)

Next, we show that λ̃ = λ̄ , i.e. λ (s) converges to the optimal Lagrange multiplier. First,
we notice that

λ (s)≥ 0 a.e. in Ω , ∀s > 0. (66)

This implies
λ̃ ≥ 0 a.e. in Ω . (67)

Further, we have

〈λ (s),u(s)−b〉 = δ
∫
Ω

(
1 + u(s)(x)−b(x)√

(u(s)(x)−b(x))2+s2

)
(u(s)(x)−b(x))dx

= δ
∫
Ω

(
(u(s)(x)−b(x))+ u(s)(x)−b(x)2√

(u(s)(x)−b(x))2+s2

)
dx.

(68)

This leads to

|〈λ (s),u(s)−b〉| ≤ δ
∫
Ω

∣∣∣∣u(s)(x)−b(x)+ |u(s)(x)−b(x)|
∣∣∣∣ dx

= 2δ
∫
Ω

[u(s)(x)−b(x)]+ dx ≤ 2δ
√
μ(Ω)‖[u(s)(x)−b(x)]+‖0.

(69)
With lim

s→0+
‖u(s)− ū‖0 = 0 and ‖[ū−b]+‖0 = 0 , now we obtain

lim
s→0+

|〈λ (s),u(s)−b〉|= 0. (70)

Hence, taking the already shown convergence of {λ (s)} and {u(s)} into account this
yields

〈λ̃ , ū−b〉= 0. (71)

Thus, λ̃ forms an optimal multiplier for the original problem related to the control
constraint u≤ b. The structure of the constraints imply the uniqueness of the Lagrangian
multiplier. This leads to λ̃ = λ̄ .

Now, we turn to the proof of finite feasibility of the method. By definition we have

λ (s)(x) = δ

(
1 +

u(s)(x)−b(x)√
(u(s)(x)−b(x))2 + s2

)
(72)

and consequently

‖λ (s)‖∞
δ

= esssup
x∈Ω

∣∣∣∣∣1 +
u(s)(x)−b(x)√

(u(s)(x)−b(x))2 + s2

∣∣∣∣∣ ∀s > 0. (73)
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With the shown convergence lim
s→0+

‖λ (s)− λ̄‖∞ = 0 and with the assumption δ > ‖λ̄‖∞
this guarantees that some s0 > 0 exists with

esssup
x∈Ω

∣∣∣∣∣1 +
u(s)(x)−b(x)√

(u(s)(x)−b(x))2 + s2

∣∣∣∣∣< 1 ∀s ∈ (0,s0]. (74)

Thus, we have
u(s) < b a.e. in Ω , ∀s ∈ (0,s0] (75)

Since only upper bounds for the constraints are considered this proves the stated prop-
erty u(s) ∈Uad for any s ∈ (0,s0].

Finally, we show the rate of convergence. With the optimality of u(s) for the auxiliary
problems we obtain

Ĵ(ū)+〈Ĵ′(ū),u(s)− ū〉+ α
2
‖u(s)− ū‖2 ≤

J̃(u(s),s)≤ J̃(ū,s)≤ Ĵ(ū)+ δ μ(Ω)s ∀s > 0.
(76)

Since u(s) ∈Uad for s ∈ (0,s0] the optimality of ū for the original problem guarantees

〈Ĵ′(ū),u(s)− ū〉 ≥ 0 ∀s ∈ (0,s0]. (77)

Thus, (76) leads to

α
2
‖u(s)− ū‖2 ≤ δ μ(Ω)s ∀s ∈ (0,s0]. (78)

This completes the proof of the theorem. ��

Remark 3. The method of smoothed exact penalties has been proposed originally by
A.A.Kaplan (compare [6]). Theorem 3 provides for this technique a convergence esti-
mate of order O(s1/2) which in practical experiments is exceeded. Here as earlier for
the quadratic loss penalty we obtained again ‖uh(s)− ūh‖= O(s) for the solutions uh(s)
and ūh of the auxiliary problem and the discrete problem, respectively. In case of dis-
cretized problems this is a consequence of convergence results for finite dimensional
problems (compare [8]). But, as already mentioned, the discrete estimates would de-
pend upon the dimension. In the computational experiments, however we also observed
mesh independence of the rate of convergence and related constants. Further studies are
on the way to prove this property analytically.

The smoothed exact penalty method requires quite regular Lagrangian multipliers.
This restricts its application to the treatment of control constraints. For continuous prob-
lems with state constraints it can be combined with other penalty types like the quadratic
loss. In the discrete case the smoothed exact penalty can be applied, but then instead
of a fixed parameter δ as described above some function should be used to adapt the
method better to the local behavior of the multipliers.
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An essential advantage of the smoothed exact penalty is that the auxiliary objective is
defined on the whole L2(Ω), but still guarantees feasibility already for certain positive
s. So it really combines properties of interior point methods like logarithmic barriers
with penalty methods. �

3 Control Reduction and Discretization

The treatment of the restrictions by the augmented problem (11) leads to the necessary
and sufficient optimality conditions (18) and (19) in case of bound on controls only and
in case of additional restrictions upon states, respectively. For any s > 0 these system
possesses unique solutions (ȳ(s), v̄(s), ū(s)) ∈ V ×V ×U . The structure of the consid-
ered functions ψ guarantee that from the last equation, i.e. from

α u(s)+ v(s)+ψ((u(s)−b)/s) = 0 a.e. in Ω ,

in both cases the optimal control ū can be determined in dependence of v(s). Due to
the regularity v(s) ∈ H2(Ω) ↪→ C(Ω̄ ) of the adjoint this can be done by pointwise
elimination. Let us denote this by u(s) = g(v(s),s). Thus, (18) and (19) leads to the
parametric control reduced optimality system

(y(s)−q,y)−a(y,v(s))= 0 ∀y ∈V,

−a(y(s),v)+ (g(v(s),s),v) = 0 ∀v ∈V
(79)

and
(y(s)−q,y)+ψ((y(s)−d)/s)−a(y,v(s))= 0 ∀y ∈V,

−a(y(s),v)+ (g(v(s),s),v)= 0 ∀v ∈V,
(80)

respectively. Both conditions form a coupled system of weakly nonlinear partial differ-
ential equations. There holds

Theorem 4. For any s > 0 each of the systems (79) and (80) possesses a unique solu-
tion (y(s),v(s)) ∈V ×V and u(s) := g(v(s),s) forms the optimal solution of the related
parametric barrier-penalty problem (16).

Since the optimal state y(s) as well as the optimal adjoint state v(s) possess a higher
regularity than the optimal control u(s) problem (79) as well as (80) allows a more
efficient treatment by discretization techniques, e.g. by finite elements, than the full
system. However, it has to be noticed that in case of state constraints the limit properties
of barrier-penalty functions asymptotically lead to ill-conditioned problems for s→ 0+.

The control reduction via the mapping g requires its efficient evaluation. As already
mentioned, due to the regularity of the adjoint states v(s) this can be done pointwise.
In the case of the quadratic loss penalty the piecewise linear structure of the function
Ψ allows an explicit evaluation of g while in the case of the smoothed exact penalty an
additional iteration process to evaluate g is needed. For this purpose Newton’s method
has been applied with an appropriate choice of the initial iterates.
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Conforming finite element discretizations Vh ⊂V (cf. [7]) can be applied to the con-
trol reduced systems (79) and (80). This leads to the finite dimensional system of non-
linear equations

(yh(s)−q,yh)−a(yh,vh(s)) = 0 ∀yh ∈Vh,

−a(yh(s),vh)+ (g(vh(s),s),vh) = 0 ∀vh ∈Vh.
(81)

and
(yh(s)−q,yh)+ (ψ((yh(s)−d)/s,yh)−a(yh,vh(s)) = 0 ∀yh ∈Vh,

−a(yh(s),vh)+ (g(vh(s),s),vh) = 0 ∀vh ∈Vh.
(82)

in case of (2) and (3), respectively. Like in the continuous case system (79) defines
uniquely the solution (yh(s),vh(s)) ∈ Vh×Vh. Further, we obtain uh(s) = g(vh(s),s)
which unlike in full discretization does not use an a-priori discretization of the space U .
The convergence theory for control reduced finite element discretizations as developed
in [15], [20], [21], [26] can be carried over to the system (81) and partially also to (82).

4 Numerical Examples

Finally we report on some numerical experiments that show the applicability of the
proposed barrier-penalty embeddings. As already noticed, the experimental rate of con-
vergence exceeds the estimate O(s1/2) and further research is on the way to prove this
also by a sharper analysis.

We consider piecewise linear conforming finite elements Vh ⊂ V with a criss-cross
triangulation applied to the control reduced systems (79) and (80), respectively.

Example 1

J(y,u) :=
1
2
‖y−q‖2

0 +
α
2
‖u‖2

0 →min!

s.t. −Δy =u in Ω = [0,1]2,

y +
∂y
∂n

=0 on Γ := ∂Ω ,

u ∈Uad :={u ∈U : −4 ≤ u ≤ 12 a.e. in Ω}
(83)

with q(x1,x2) = x1 + x2 . The graphs in Fig. 1 and Fig. 2 show the discrete solution
obtained with the quadratic loss penalty for s = 10−10 over a grid with N = 900 grid
points.

Similar results are obtained by means of the smoothed exact penalty generated by

ψ(t) = δ (1 +
t√

1 + t2
). (84)

Unlike in the quadratic loss penalty case here feasibility is obtained for sufficiently
small s > 0 (see Fig. 3).

Further, we have applied the long step path following concept to the proposed barrier-
penalty techniques. In this technique only one Newton iteration is performed at each
parameter level s. We reduced the embedding parameter by the linear reduction rule
sk+1 = ρ · sk with some ρ ∈ (0,1). The obtained experimental order of convergence of
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Fig. 1. Optimal (left) and adjoint (middle) states, and optimal control (upper right)
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this long-step path following method for ρ = 0.5 applied to the considered Example 1
is given below.

s EOC0(y) EOC1(y) EOC0(u)

1 1.0097 0.9419 1.3334

2−4 1.00 0.9955 1.0279

2−8 1.00 1.00 1.0026

2−12 1.00 1.00 1.00

2−16 1.00 1.00 1.00

2−20 1.00 1.00 1.00
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Fig. 3. Optimal control ū (left), optimal state ȳ (right), and adjoint state v̄ (down)

Here ECO0 and ECO1 denote the experimental order of convergence in the L2-norm
and in the H1-norm, respectively. These orders in case of the states are defined via the
obtained solutions y(s) and y(s̃) for different parameters s > 0 and s̃ > 0, respectively,
by

EOCj(y) := (ln(‖y(s)− yre f‖ j)− ln(‖y(s̃)− yre f ‖ j))/(ln(s)− ln(s̃))), (85)

where yre f denotes the reference solution obtained as limit for s→ 0 and ‖ · ‖ j are the
considered norms. The EOC0(u) is analogously defined.

Example 2. In the next numerical experiment we modified the above considered Ex-
ample 1 by the additional state constraint

y(x) ≤ 1.2 in Ω , (86)

but with no bounds on controls, i.e. we consider the control problem

J(y,u) :=
1
2
‖y−q‖2

0 +
α
2
‖u‖2

0 →min!

s.t. −Δy =u in Ω = [0,1]2,

y +
∂y
∂n

=0 on Γ := ∂Ω ,

u ∈Uad :={u ∈U : Su ≤ 1.2 a.e. in Ω}

(87)

where q(x1,x2) = x1 + x2 and S denotes the solution operator of the elliptic boundary
value problem that defines the states y ∈ V for given controls u ∈U . Numerical results



266 C. Grossmann, H. Kunz, and R. Meischner

0

0.5 00.20.40.60.81

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

0
0.5 00.20.40.60.8

−0.01

−0.005

0

0.005

0.01

0.015

p

Fig. 4. Optimal state y and adjoint state v

0

0.5 00.20.40.60.8

−10

−5

0

5

10

15

u

0

0.5 0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

5

6

7
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for N = 256 grid points and the embedding parameter s = 10−3 are given in Fig. 4 and
Fig. 5.
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Abstract. Numerical method of identification for small circular openings in the
domain of integration of an elliptic equation is presented. The method combines
the asymptotic analysis of PDE’s with an application of neural networks. The
asymptotic analysis is performed in singularly perturbed geometrical domains
with the imperfections in form of small voids and results in the form of the so-
called topological derivatives of observation functionals for the inverse problem
under study. Neural networks are used in order to find the mapping which asso-
ciates to the observation shape functionals the conditional expectation of the size
and location of the imperfections. The observation is given by a finite number of
shape functionals. The approximation of the shape functionals by using the topo-
logical derivatives is used to prepare the training data for the learning process of
an artificial neural network. Numerical results of the computations are presented
and the probabilistic error analysis of such an identification method of the holes
by neural network is performed.

1 Introduction

The paper describes a new numerical method which can be used for numerical identi-
fication of the conditional expectation of small imperfections in geometrical domains.
The numerical method is implemented in neural networks, therefore, it requires the
learning data set. Such a set can be constructed in general with a high cost of the com-
putational effort. We propose the specific method of construction which reduces the cost
by careful asymptotic analysis of the mathematical model which describes the observa-
tion of the real object. Such an observation is given by a finite number of functionals
with their values depending on the imperfections to be identified. The simplest applied
problem could be:

Identify a microcrack in the elastic body Ω from the finite number of elastic modes
Λ = (λ1, . . . ,λM).

The microcrack should be characterized by a finite number of parameters, say Φ =
(�1, . . . , �N), and we should have in hand the relation between the elastic modes Λ and
the form of microcrack Φ . This relation can be formally denoted by

F : Φ �→Λ

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 268–281, 2009.
c© IFIP International Federation for Information Processing 2009
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and the learning set for neural network includes the set of the pointwise values
(Φk,Λk),k = 1, . . . obtained from mathematical model of such a relation in order to
model the inverse relation (Λk,Φk),k = 1, . . . . The inverse relation is approximated by
a neural network after the appropriate training procedure. Then, this approximation in
hand, we can try to answer the question:

Given real observation of elastic modes of an elastic body, determine the size, the shape
and the location of a finite number of microcracks in the body if the set Λ̃ of elastic
modes is measured for the specific body.

If we want to find one microcrack, the formal description of our problem is just

Φ̃ = F−1(Λ̃) . (1)

This problem is an inverse problem which is, it seems, quite important for applications.
There are difficult questions associated with such a problem:

– what is the meaning of the inverse mapping
– how for given value of observation Λ̃ the required value Φ̃ of parameters which

characterize the unknown defect or imperfection in the form of a microcrack can
be computed in the way that the proposed method is robust

– if the method is convergent and in what sense

The inverse problem is a subject of the research, in the paper we restrict ourselves to a
simplified variant which shows that the proposed methodology is promising and can be
possibly developed for some real life inverse problems. The framework of our method
includes the PDE model of our object and its asymptotic analysis in singularly perturbed
geometrical domains, finite number of parameters which model the imperfections to be
identified, finite number of observation functionals which can be evaluated from the
PDE model and measured from the real life object, and finally the neural network which
model the inverse mapping according to the standard rules in such approach. We refer to
[3] for an introduction to the methodology of numerical solutions to inverse problems
with the asymptotic analysis and neural networks. For voids of arbitrary shape, the
topological derivatives are determined in function of the so-called polarization tensors
and virtual mass tensors, we refer the reader to [6] for the detailed description of the
results for spectral problems and the energy functional for Laplacian.

In [3], a particular problem is considered that guarantees existence of the inverse
mapping. In this paper we don’t know whether the inverse mapping exists. Based on
probability theory [12] we obtain only the conditional expectation of the inverse map-
ping. So in our meaning the “inverse mapping” is the conditional expectation of
multifunction that for the vector of observation calculates the location and the size
of imperfections.

2 Preliminaries

We propose numerical method for identification of a finite number of imperfections in
geometrical domainΩ0⊂R

2. The imperfections B j(y j), j = 1, . . . ,k are small voids or
holes of radii ρ j, j = 1, . . . ,k, included in Ω0, so the geometrical domain with the given
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number k of imperfections is denoted by Ωk (see Section 3.1 for details). We point out
that k holes B j(y j), j = 1, . . . ,k are included in the domain Ωk.

The identification procedure is based on the knowledge of N shape functionals
Ji(Ωk), i = 1, . . . ,N, which are evaluated for the solutions u(Ωk) of a PDE defined

in Ωk. Since Ωk = Ω0 \
k⋃

j=1
B j(y j), and B j(y j) = {x :| x− y j |< ρ j}, it follows that

Ji(Ωk) depends on 3k parameters, i.e., y j ∈ R
2 and ρ j > 0, j = 1, . . . ,k.

The numerical procedure means, e.g., the minimization with respect to 3k parameters
of the gap between the values of observation functionals which are given for the real
object, and the values which are obtained from the mathematical model. The values
from the mathematical model are determined in the form of the function

Gk : R
3k � (y1,ρ1, . . . ,yk,ρk) �→ (J1(Ωk), . . . ,JN(Ωk)) ∈ R

N (2)

Therefore, the inverse problem can be defined by e.g., the minimization of the following
goal functional

min
(Y,ρ)

dist(Gk(Y,ρ),J (Ωk)) (3)

where (Y,ρ) = (y1,ρ1, . . . ,yk,ρk) and J (Ωk) = (J1, . . . ,JN) ∈ R
N are the values

determined for the real object.
In order to simplify the numerical procedure, the mapping Gk(Y,ρ) is replaced in (3)

by its approximation given in terms of the so-called topological derivatives. In Section
3 the inverse problem is introduced. The observation shape functionals (4) are defined
in terms of solutions by (5). The proposed approximation of the observation operator
(6) is given by formula (7).

In Section 3 some observation shape functionals are introduced in (4) and the form of
the topological derivatives for such functionals is presented in Theorem 1. In Subsection
3.2 the observation shape functionals, used in Section 4, depend on the solution to the
Laplace equation defined in Ω0 and in each domain Ωk, k = 3, with the homogeneous
Neumann boundary conditions on the boundaries γ j of the holes B j, respectively.

In Subsection 4.3 the numerical realization of the identification procedure based on
the application of artificial neural networks is described in detail. The computations
are performed for one hole, the results of computations are given in the last part of the
paper.

The proposed numerical procedure can be characterized by the following features.
The learning data sets for the neural networks are constructed using the asymptotic anal-
ysis of the observation shape functionals. Such a method of construction is very useful
from the numerical point of view but unfortunately restricts the validity of the proposed
approach only for small radii of imperfections. We assume also that the given data for
the inverse problem are exact in the sense that there are some unknown imperfections in
the form of circular holes which furnish the prescribed values of the observation shape
functionals. Therefore, the inverse mapping G−1

k (J (Ωk)) = (Y,ρ) can be defined and
it is given by the neural network. In fact, the situation is more complicated, since we
can only model the conditional expectation, we refer to Section 4 for details. So instead
of values of inverse mapping we calculate only conditional expectation of these val-
ues. The positive conclusion for our approach is the “probabilistic” convergence of the
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numerical procedure which, to the best of our knowledge, is an original contribution to
the field of inverse problems.

3 Shape Optimization

In this paper we present the identification method for finite number of holes in a given
geometrical domain Ω0 ⊂ R

2. Actually, we want to identify the locations y j ∈ Ω0 and
the radii ρ j, j = 1, . . . ,k of k small holes B j(y j) = {x : |x− y j|< ρ j} included in Ω0.

The procedure of identification is based on the values of specific shape functionals
Ji(Ωk), i = 1, . . . ,N, which depend on the solutions u(x), x ∈ Ωk, for the Laplace
equation in the domainΩk. Here we denote byΩ0, the domain without hole,Ω1 =Ω0 �

B1(y1), for k = 1, is the domain with one hole and for k ≥ 2, Ωk is the domain with k
holes. For our numerical examples we use k = 1 or k = 3. By the proposed identification
procedure we can compute the coordinates y j ∈Ω0 of centers of the holes and the radii
ρ j such that given values of observation from physical model denoted by J1, . . . ,JN ,
j = 1, . . . ,k coincide approximatively with the values Ji(Ωk), i = 1, . . . ,N, evaluated
from the mathematical model (see Fig. 1).

Γ1

Γ2

Γ3

Γ4

Ω3

�

B1

ρ1
y1

�

B2 ρ2

y2

�

B3 ρ3

y3

Fig. 1. Domain Ω3 with imperfections B1, B2, B3

Let us consider the following inverse problem. We assume that the shape functionals
take the form

Ji(Ωk) =
∫
Ωk

Fi(x,u(x),∇u(x))dx i = 1, . . . ,N, (4)

whereΩk =Ω0 �

k⋃
j=1

B j(y j),Ωk ⊂R
2, are given domains. We assume that Fi(·, ·, ·) are

given smooth functions. The partial differential equations for u ∈ H1(Ωk) are defined
as follows:
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Δu = f in Ωk,

u = g on Γ1∪Γ3,
∂u
∂n = h on Γ2∪Γ4,

∂u
∂n = 0 on

k⋃
j=1

γ j,

(5)

where f , g, h are given continuous functions in Ω0 and H1(Ω) stands for the standard
Sobolev space of functions in L2(Ω) along with the first order derivatives. The identi-
fication procedure for the location and size of several holes by using neural networks
is presented in the present paper. Therefore, we are interested from numerical point of
view, in the generalized inverse of the mapping

Gk : R
3k � (y j,ρ j, . . . ,yk,ρk) �→ (J1(Ωk), . . . ,JN(Ωk)) ∈ R

N (6)

where (y j,ρ j) represents the center and radius of the hole B j. To this end we construct
its approximation in the form

Gki
∼= Ji(Ωk)+

k

∑
j=1

ρ2
j

2
TΩ0Ji(y j) (7)

and determine an inverse of this approximation, instead of the inverses of mapping
Gk. From the mathematical point of view, the inverse of the mapping Gk is difficult to
evaluate. In this case we can use artificial neural networks to construct an approximation
of the inverse of mapping (6) taking into account its approximation (7).

3.1 Analysis of Inverse Problems with Multiple Holes

In the present section we investigate some theoretical aspects of the inverse problem.
To begin with, let us consider the domain Ωk with k small holes B j(y j), j = 1, . . . ,k. It
is well known ([3]) that we can identify the hole B1(y1) by means of the measurements
performed inside of Ω0, as well as, on the exterior boundary of Ω0. We propose to
extend this method of identification to the case of several holes.

In such a case we consider the following boundary value problem defined in Ωk.
Find u ∈ H1(Ωk) such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δu = 0 in Ωk,
u = 1 on Γ1,

∂u
∂n = 0 on Γ2∪Γ4∪

k⋃
j=1

γ j,

u = 0 on Γ3,

(8)

where γ j denotes the boundary of the hole B j(y j). We denote by u = u(Ωk) the solution
to (8) in Ωk.

The asymptotic expansion of the shape functional (3) is given by

Ji(Ωk) = Ji(Ω0)+
k

∑
j=1

ρ2
j

2
(TΩ0Ji)(y j)+ o(ρ2), with ρ = (ρ1, . . . ,ρk). (9)
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where TΩ0Ji is the function defined in Ω0, it is the topological derivative of the shape
functional Ji(Ω) evaluated at y j in the domain Ω0. For simplicity, we assume that

Fi(x,u,q) = Fi(u)+ Gi(q) . (10)

Hence, the shape functional Ji(Ωk) takes the form

Ji(Ωk) =
∫
Ωk

[Fi(u(Ωk))+ Gi(∇u(Ωk))]dx (11)

The formula for topological derivative of the shape functional [10,11] defined by (11)
is given in the following theorem [3].

Theorem 1. The topological derivative of functional (11) at a point y ∈Ω0 is given by
the following formula

TΩ0Ji(y) =− 1
2π

[2πFi(u(y))+ gi(∇u(y))+ 2π f (y)v(y)+ 4π∇u(y) ·∇v(y)] (12)

where ∇u(y) = (a,b)� and the function gi depending on the gradient of solution at the
point y ∈Ω0 takes the form

gi(∇u(y)) =
1

2π

∫ 2π

0
Gi(asin2ϑ −bsinϑ cosϑ ,−asinϑ cosϑ + bcos2ϑ)dϑ . (13)

The adjoint state v∈H1
Γ1

(Ω0) = {φ ∈H1(Ω0) | φ = 0 on Γ1} solves the boundary value
problem

−
∫
Ω0

∇v ·∇φdx =−
∫
Ω0

[F ′i (u)φ + Giq(∇u) ·∇φ ]dx, ∀φ ∈ H1
Γ1

(Ω0). (14)

3.2 Numerical Example of Observation Shape Functionals

Let Ω0 be the square (0,1)× (0,1). We consider three cases, the domain Ω1 with one
hole, and the domains Ω2, Ω3 with two and three holes, respectively. In each case the
asymptotic approximations of solutions in Ω1, Ω2, Ω3 can be computed in the fixed
domain Ω0. Therefore, we consider four boundary value problems defined in Ω0 for
harmonic functions Δu = 0 in Ω0 with the different boundary conditions.

For the first boundary value problem the following boundary conditions are pre-
scribed for the solution u = u1 with i = 1,

u1 = 1− x1 on (0,1)×{0},
u1 = 0 on {1}× (0,1),
u1 = 0 on (0,1)×{1},
u1 = 1− x2 on {0}× (0,1).

(15)

The other three cases i = 2,3,4 of boundary conditions are obtained from the above con-
ditions by applying the successive rotation by the angle π

2 . The observation shape func-
tionals Ji = Ji(Ω0) =

∫
Ω0

[Fi(u)+ Gi(∇u)]dx are defined as follows: for i = 1,2,3,4

J[1+3(i−1)] =
∫
Ω

u2
i dx, J[2+3(i−1)] =

∫
Ω

(
∂ui

∂x1

)2

dx,

J[3+3(i−1)] =
∫
Ω

(
∂ui

∂x2

)2

dx (16)
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In the perforated domains Ωk = Ω0 �

k⋃
j=1

B j(y j), y j = (y1
j ,y

2
j), we prescribe for the

solution u = u(Ωk) the homogenous Neumann boundary conditions on the boundaries
γ j of the balls B j(y j).

Topological derivatives of the shape functionals are obtained from Theorem 1 by
direct computation of the function gi. For the functionals in the form J[1+3(i−1)] the
topological derivative is given by

TΩ0J1(y j) =−[u(y j)]2 + 2∇u(y j)∇v1(y j), (17)

where v = vi is the adjoint state, defined for i = 1,2,3 by a solution to the boundary
value problem ⎧⎨⎩

Δv = −F ′i (u)+ div(Giq(∇u)) in Ω0,
v = 0 on Γ1∪Γ3,

∂v
∂n = 0 on Γ2∪Γ4,

(18)

For the functionals in the form J[2+3(i−1)] and J[3+3(i−1)], we observe that

∂u
∂τ

= cosϑ · ∂u
∂x1

+ sinϑ · ∂u
∂x2

(19)

hence we can use Theorem 1 with

G(∇u) = (sinϑ
∂u
∂τ

)2 = (−sin2ϑ
∂u
∂x1

+ sinϑ cosϑ
∂u
∂x2

)2 (20)

As a result we obtain

TΩ0J2(y j) =−π
[

3
2

(
∂u
∂x1

)2

+
1
2

(
∂u
∂x2

)2

+ 4(∇u ·∇v2)

]
(y j) (21)

TΩ0J3(y j) =−π
[

1
2

(
∂u
∂x1

)2

+
3
2

(
∂u
∂x2

)2

+ 4(∇u ·∇v3)

]
(y j) (22)

where u is the harmonic function in Ω0 with the boundary conditions determined for
i = 1 by (15), v1 is the adjoint state for J1(Ω0) =

∫
Ω u2

1dx, v2 is the adjoint state

for J2(Ω0) =
∫
Ω0

( ∂u1
∂x1

)2dx and v3 is the adjoint state for J3(Ω0) =
∫
Ω0

( ∂u1
∂x2

)2dx. The
remaining formulae for topological derivatives are obtained in the same way from (17)
and (14), (18).

4 Neural Networks

We are going to present the method which is successfully tested for numerical solution
of the inverse problem under considerations. We assume that the distance between the
observations from real object and from the mathematical model equals zero, it means
that there is (Y,ρ) such that

Gk(Y,ρ) = J (Ωk) ∈ R
N . (23)

Thus, it makes sense to consider the inverse mapping G−1
k . Basing on probability the-

ory [12] we obtain only the conditional expectation of the inverse mapping. So in our
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meaning the “inverse mapping” is the conditional expectation of multifunction that for
the vector of observation calculates the location and the size of imperfections. It is gen-
eral case for the problem that is considered in [3]. Moreover, Theorem 4.1 in [3] shows,
under appropriate conditions, the existence of the inverse mapping. Therefore, the neu-
ral network is constructed to approximate the inverse mapping G −1

k . In practice, using
probability theory once more, we can only approximate the conditional expectation of
the location and radii of k holes instead of the inverse mapping G−1

k . Our procedure uses
formula (7) to construct data set for learning of the network. We use this asymptotic for-
mula to calculate the shape functionals J j(Ωk), i = 1, . . . ,N. k is a fixed integer, and
k = 3 for this part of the paper. In other words we are going to determine the size ρ j > 0
and the location y j ∈R

2 of centers of three holes. The numerical result, however, is the
conditional expectation of unknown values.

For the vector of actual observations J (Ω3) = (J1(Ω3), . . . ,J12(Ω3)) ∈ R
12

which describes the unknown properties of imperfections, we want to find (Y,ρ) =
(y1,ρ1,y2,ρ2,y3,ρ3)∈R

9 such that the vector Gk(Y,ρ)∈R
12 evaluated from the math-

ematical model coincides with the given vector of actual observations.
In the learning process [2], for random distribution [1] of (Y,ρ) the observation vec-

tors Gk(Y,ρ) are computed from the mathematical model of the body Ω3 ⊂ R
2 by an

application of the asymptotics obtained for ρ j → 0 with j = 1,2,3. Therefore, a sys-
tematic error is introduced to the learning procedure by taking values of topological
derivatives in order to compute the approximate values of Gk(Y,ρ).

We describe briefly the neural networks. Fundamental element of artificial neural
networks is an artificial neuron. An artificial neuron has many inputs and a single output.
Each of inputs has weight. Output signal is calculated inside neuron based on input
information. Each artificial neuron has activation function. Additionally, every neuron
has one extra input named bias. This input is always equal to one and has its own weight.
Let n be the number of neuron’s inputs, and denote input vector by x = [x0,x1, . . . ,xn],
where x0 = 1, weight vector by w = [w0,w1, . . . ,wn], as well as activation function by
f . The model of this neuron is described in Fig. 2.

Fig. 2. Model of artificial neuron
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A multilayer feedforward neural network is a set of neurons that are divided in sepa-
rate groups named layers. Input vector represents input vector for all neurons in the first
layer. Each connection between input and neuron has its own weight. Each neuron of
the first layer generates output signal. Vector of output signals from the first layer rep-
resents input vector to the second layer. An example of typical multilayer feedforward
network is shown in Fig. 3.

Fig. 3. Model of multilayer feedforward neural network

4.1 Inverse Problem

We consider a particular case of the mapping G for k = 3 and N = 12 (see Fig. 4). It
means that we consider the domain Ω3 as a square (0,1)× (0,1) with three holes B1,
B2, B3.

Fig. 4. Mapping G

Mapping G : R
9 → R

12 is defined by

G : (y1,ρ1,y2,ρ2,y3,ρ3) → (J1(Ω3), . . . ,J12(Ω3)), (24)
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where
(y1,ρ1)− center and radius of first hole,
(y2,ρ2)− center and radius of second hole,
(y3,ρ3)− center and radius of third hole,
J1(Ω3), . . . ,J12(Ω3)− shape functionals.

For domain with three holes mapping (24) calculates vector of shape functionals
(Fig. 4).

Let G −1 : R
12 → R

9 be the inverse mapping defined by

G −1 : (J1(Ω3), . . . ,J12(Ω3)) → (y1,ρ1,y2,ρ2,y3,ρ3). (25)

Fig. 5. Mapping G−1

The inverse mapping G −1 for vector of shape functionals calculates location and size of
three holes in our domain (Fig. 5). Any analytical formula for mapping G −1 is unknown.
Our aim is construction of an approximation of this mapping using artificial neural
networks.

Multilayer feedforward neural network is capable of arbitrarily accurate approxima-
tions to arbitrary mapping [12]. To approximate mapping G −1 by neural network we
have to construct network and learning set. Appropriate neural network consists of 4
hidden layers. Let q1, q2, q3 and q4 denote the numbers of neurons in hidden layers. φ1,
φ2, φ3 and φ4 denote sigmoidal activation functions for each of hidden layers. Further-
more, our network has one output layer with 9 neurons and linear activation function.
Input vector has 12 components and represents the vector of shape functionals. Num-
bers of neurons in hidden layers are not fixed, and increase to infinity when the size of
learning set increases to infinity. Output vector represents vector of data for three holes.
The first and the second components represent the center of the first hole, the third entry
represents the radius of the first hole. In the same way we denote all entries.

To construct learning set we use probability theory. We consider a sequence {Zm},
m = 1,2, . . . of vectors, where Zm = (Y m,Xm). Xm = (Xm

1 , . . . ,Xm
9 ) describes the three

holes. Its coordinates denote:
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– (Xm
1 ,Xm

2 )− the center of first hole,
– Xm

3 − the radius of first hole,
– (Xm

4 ,Xm
5 )− the center of second hole,

– Xm
6 − the radius of second hole,

– (Xm
7 ,Xm

8 )− the center of third hole,
– Xm

9 − the radius of third hole.

We generate vector Xm randomly by choosing three holes in a domain Ω0. Y m =
(Y k

1 , . . . ,Y m
9 )− describes unknown value of function G −1. Using notation of previous

section we have that (Y m
1 ,Y m

2 ) = y1, Y m
3 = ρ1, (Y m

4 ,Y m
5 ) = y2, Y m

6 = ρ2, (Y m
7 ,Y m

8 ) = y3,
Y m

9 = ρ3.
We generate vectors Xm, m = 1,2, . . . , in a random way. For m →∞ the whole square

(0,1)× (0,1) can be “covered”.
We generate vectors Xm, m = 1,2, . . . , then we calculate, using the direct mapping G ,

shape functionals (J m
1 , . . . ,J m

12) = G (Xm), m = 1,2, . . . . It is our information about
the graph of the inverse mapping G −1 which is used for the construction of the learning
set. Values of mapping G −1 are not exact because we have used asymptotic formula (7)
so our network approximates only the conditional expectation defined by following
formula

θo(Xm) = E(Y m | Xm). (26)

It is the conditional expectation of Y m provided that Xm is known. We use an artificial
neural network as an approximator of θo.

Let M be the size of the learning set. The learning set is composed of the following
vectors

(J m
1 , . . . ,J m

12,X
m
1 , . . . ,Xm

9 ) , m = 1, . . . ,M

where (J m
1 , . . . ,J m

12) is the input vector for neural network, and
(
Xm

1 , . . . ,Xm
9

)
is the

output vector (required).
Furthermore, we have dependence

(J m
1 , . . . ,J m

12) = G (Xm
1 , . . . ,Xm

9 ), m = 1, . . . ,M.

To solve our problem we use artificial neural networks. Each of networks can be
represented by some mapping f q : R

12 → R
6. Parameter q describes number of all

neurons in hidden layers. This value depends on the numbers of neurons in all hidden
layers. We construct a sequence of networks as a sequence of approximators to θo. We
let networks where q1,q2,q3,q4 and M grows [12]. For a given M the learning network
provides an approximation to the unknown regression function θo.

SetΘ as a function space containing θ . θ (·) := f q(·,δ q) where δ q is a set parameters
of networks. The function space Θ contains θo. We construct a sequence of “sieves”
{ΘM} for M = 1,2, . . . where ΘM is a function space containing networks learned by
M− elements of the learning sets.

The “connectionist sieve estimator” θ̃M is defined as a solution to the least squares
problem (appropriate for learning E(Y M | XM))

min
θ∈ΘM

M−1
M

∑
m=1

[Y m−θ (Xm)]2, (27)

for M = 1,2, . . . .
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We can apply the following result of White [12] to obtain a convergence result for
our method.

Theorem 2. Under some technical assumptions there exists sieve estimator θ̃M such
that

1
M

M

∑
m=1

[Y m− θ̃M(Xm)]2 = min
θ∈ΘM

1
M

M

∑
m=1

[Y m−θ (Xm)]2, (28)

for M = 1,2, . . . . Furthermore, d(θ̃M ,θ0)
P−→ 0 (i.e., for all ε > 0 P[ω ∈ domain :

d(θ̃M(ω),θ0) > ε] → 0 as M → ∞), where d measures the distance between functions
and the convergence is in measure.

4.2 Conclusions

In this paper we use artificial neural networks as an approximator of unknown mapping
which, for a given vector of shape functionals, calculates locations and radii of three
holes. In [3] the authors consider the same problem for one hole. Here, we consider
more complicated problem with some additional features. Our learning data set is not
exact because asymptotic formula (7) is used to calculate the set. Therefore the obtained
network is an approximator of the conditional expectation θ0.

Our aim is to determine a solution of problem (27). This problem is defined for exact
unknown values Y m however network is learned based on inexact data. In Theorem 2
we present a result on the existence of a solution θ̃M to problem (27) as well as on

the convergence of the method. It follows that d(θ̃M,θ0)
P−→ 0. It means that distance

between: θ̃M , the solution of problem (27) and θ0, the conditional expectation tends to
zero in probability measure.

The numerical results presented below show that the method is very efficient and
robust, however there are still many open problems in the mathematical analysis of the
proposed method.

4.3 Numerical Example for One Hole

We consider an example with one hole instead of three holes. The example with one hole
needs less complicated network and less time to perform the learning process as well as
it has the same rules during the creation and learning process. We used Matlab 6.1
to generate learning data, testing data and to create and train neural network. Our net-
work has two hidden layers: first with 24 neurons and second with 12 neurons. In both
layers we use sigmoidal activation function. Output layer is composed of three neurons.
First and second output are the conditional expectation of location of hole and third
output is the radius of hole. Input vector has 12 components and describes 12-element
vector of shape functionals. The number of shape functionals is fixed for numerical
example (more details [3]). Based on vector of shape functionals network calculates
output of network.

We prepared two (different) sets, a learning set and a testing set. The learning set
contains 1000 elements, and the testing set contains 10 elements. The number of ele-
ments in both sets is fixed for numerical example. The method of constructing learning
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set and testing set is the same. In the domainΩ0 we generate randomly distributed hole.
We calculate using mapping G the vector of shape functionals in domain with holes. So
we have pair of vectors: the first vector describes holes and the second vector includes
the of shape functionals. We repeat this procedure for a finite fixed number of iterations.
To train the network we use vectors from the testing set. The vectors of shape function-
als are the inputs for network, the vectors which describe holes are the required output
from the network.

We assume tolerated learning error: 10−5 and number of learning epochs: 700. Con-
sequently, we get following results:

– error on learning data is 0.0083 (< 1%),
– error on testing data is 0.0081 (< 1%).

In the following figure (Fig. 6) we present the result that we obtained for the testing set.
We prepared, in the same way as the learning set, the testing set. The testing set contains
10 pairs of vectors: describes holes and vectors of topological derivatives. We put 10
holes in the figure, drawn in bold. These are the real holes from the testing set. Each
of the vectors of topological derivatives was put to the neural network. On the output
we obtain 10 vectors. Each of them describes one hole. It is the answer of network for
the vector of observations. In the figure, 10 holes drawn in solid lines are the outputs of
the network. Finally, in the figure we present differences between results for 10 pairs of
holes: from testing set (bold) and outputs of network (solid).

Fig. 6. Numerical result
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Abstract. This work concerns the factorization of a second order elliptic bound-
ary value problem defined in a star-shaped bounded regular domain, in a system
of uncoupled first order initial value problems, using the technique of invariant
embedding. The family of domains is defined by a homothety. The method yields
an equivalent formulation to the initial boundary value problem by a system of
two uncoupled Cauchy problems. The singularity at the origin of the homothety
is studied.

1 Introduction

The invariant embedding technique consists in embedding the initial problem in a fam-
ily of similar problems depending on a parameter, which are solved recursively. It has
been used by Bellman [1] and Lions [6] (in the infinite dimensional case) to derive the
optimal feedback law in linear-quadratic optimal control problems. It yields a factoriza-
tion of the optimality system. In our approach, the invariant embedding is used spatially.
Each problem is defined over a subdomain limited by a mobile boundary (see Fig. 1),
depending on the parameter. Defining an operator relating the value of the solution,
or its derivative, with the mobile boundary condition (Dirichlet-Neumann or Neumann-
Dirichlet, for example), we find a family of operators on functions defined on the mobile
boundary satisfying a Riccati equation. The method applied to cylindrical domains has
been presented in [4,5]. Here we particularize the study to the two dimensional Poisson
equation with a Dirichlet boundary condition:−Δu = f , in Ω , u|Γa

= 0. The assumption
on the shape of the domain is less restrictive than in [4,5] and the invariant embedding
is realized by a homothety. The family of curves which limits the subdomains defined
by the invariant embedding are homothetic to one another, and we consider the mov-
ing boundary starting on the outside boundary of the domain and shrinking to a point.
We show some results dealing with the singularity that will appear at that point. The
factorization of the boundary value problem can be viewed as an infinite dimensional
generalization of the block Gauss LU factorization.
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Fig. 1. The star-shaped domain

2 Definition of the Problem and Regularization

Let Ω ⊂ R
2 be an open bounded regular domain containing the origin O, star-shaped

with respect to O, with boundary Γa = ∂Ω . We consider the Poisson problem with
Dirichlet data

(P)

{
−Δu = f , in Ω
u|Γa = 0,

(1)

where f ∈ L2(Ω). In spite of the particularization to the Laplacian operator in this
definition, we believe that the same procedure could be applied to any strongly elliptic
self-adjoint problem.

Applying the (spatial) invariant embedding method to this problem, we must start
defining a family of subdomains limited by a boundary sweeping over the initial domain
Ω .

We start dealing with the case where the family of curves which limits the subdo-
mains, starts on the boundary of the domain and shrinks homothetically to a point.
Since the mobile boundary reduces to a point, a singularity will necessary appear at
that point. We must make, as a consequence, a regularization around this point and a
possible way to do it, is to define an auxiliary domain, where we introduce a fictitious
boundary around the singular point. In this case, however, we introduce a perturbation
of the solution so, naturally, we must choose the new boundary condition, in a way that
we can obtain the convergence of this auxiliary problem to the initial one. With this
purpose, we will consider the following auxiliary problem:

(Pε )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δuε = f , in Ω \Ωε

uε |Γa = 0∫
Γε

∂uε
∂n

dΓ = 0, uε |Γε is constant.

(2)

Here, Ωε is an open regular domain verifyingΩε ⊂Ω and Γε , which is homothetical to
Γa with ratio ε < 1, is the boundary of Ωε . This problem is well posed. We can justify
the choice of the boundary conditions on Γε with the fact that the condition∫

Γε

∂uε
∂n

dΓε = 0 (3)

corresponds to a null total flux.
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It’s easy to see that Uε={uε∈H1(Ω \Ωε) : uε|Γa
= 0 ∧ uε|Γε

is constant} is a Hilbert

space and that the variational formulation of problem (Pε ) is⎧⎨⎩
uε ∈Uε∫
Ω\Ωε

∇uε∇vε dΩ =
∫
Ω\Ωε

f vε dΩ , ∀vε ∈Uε .
(4)

We prove that when ε → 0, problem (Pε) reduces to problem (P), that is, uε , the
solution of problem (Pε ), converges to u, the solution of problem (P), by means of
the next theorem, which proof can be found in [3]:

Theorem 1. Let uε (respectively, u) be the solution of (Pε )
(
respectively, (P)

)
and

ũε =

{
uε , in Ω \Ωε

uε = uε |Γε , in Ωε .
(5)

Then,
ũε →

ε→0
u, H1(Ω)− strong. (6)

3 Invariant Embedding in a Star-Shaped Domain

We start defining polar coordinates by means of x = ρ cos(θ ),y = ρ sin(θ ), 0 < ρ ≤
ϕ(θ ), where ρ = ϕ(θ ) defines the boundary Γa. Here, ϕ(θ ) ∈ C 1([0,2π ]) is such that
ϕ(2π) = ϕ(0), ϕ ′(2π) = ϕ ′(0) and 0 < k0 < ϕ(θ ) < k1. In the coordinates (τ,θ ),
where τ = ρ/ϕ(θ ), the Laplace equation becomes(

1
ϕ2(θ )

+
(ϕ ′(θ ))2

ϕ4(θ )

)
∂ 2u
∂τ2 +

(
−2

ϕ ′(θ )
ϕ3(θ )

)
1
τ
∂ 2u
∂τ∂θ

+
(
−ϕ

′′(θ )
ϕ3(θ )

+ 2
(ϕ ′(θ ))2

ϕ4(θ )
+

1
ϕ2(θ )

)
1
τ
∂u
∂τ

+
1

ϕ2(θ )
1
τ2

∂ 2u
∂θ 2 =− f

(7)

Now, let α be the angle (OM,n) where M is a point on Γa and n is the outward normal
to Γa at M. We assume that −π/2 < α0 ≤ α ≤ α1 < π/2. We consider the homothety
of center O and ratio 0 < τ < 1, which transforms Ω to Ωτ with boundary Γτ , and
the following system of curvilinear coordinates: for M ∈ Ω , (τ, t) are such that M′,
the image of M by a 1/τ homothety, belongs to Γa and t,0 ≤ t < t0, is the curvilinear
abscissa of M′ on Γa (where t0 is the length of Γa). This new system of coordinates
and the one defined previously are related through the equalities cos(α)dt = ϕ dθ and

tan(α) = ϕ ′
ϕ . In these coordinates, the exterior normal to Γτ can be written as

∂
∂n

=

− 1
ϕ cos(α)

∂
∂τ

+
tan(α)
τ

∂
∂ t

, and the Laplace equation takes the form

− ∂
∂τ

(
τ

ϕ cos(α)
∂uτ
∂τ

− tan(α)
∂uτ
∂ t

)
− ∂
∂ t

(
− tan(α)

∂uτ
∂τ

+
ϕ

τ cos(α)
∂uτ
∂ t

)
= τ fϕ cos(α).

(8)
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Using the technique of invariant embedding, we embed problem (Pε ) in a family of
similar problems defined on Ω \Ωτ = {(s, t) ∈ ]τ,1[×]0,t0[}, for every τ ∈ [ε,1). For

each problem we impose the Neumann boundary condition
∂uτ
∂n
|Γτ = h, where Γτ is the

moving boundary:

(Pτ,h)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂
∂τ

(
τ

ϕ cos(α)
∂uτ
∂τ

− tan(α)
∂uτ
∂ t

)
− ∂
∂ t

(
− tan(α)

∂uτ
∂τ

+
ϕ

τ cos(α)
∂uτ
∂ t

)
= τ fϕ cos(α), in Ω \Ωτ

uτ |Γa = 0

uτ|t=0
= uτ|t=t0

,
∂uτ
∂ t
|t=0 =

∂uτ
∂ t
|t=t0

∂uτ
∂n
|Γτ =− 1

ϕ cos(α)
∂uτ
∂τ

+
tan(α)
τ

∂uτ
∂ t

= h.

(9)

In order to apply a method similar to the one used by Lions [6] for decoupling the
optimality conditions associated to an optimal control problem of a parabolic equation,
we define P(τ)h = γτ|Γτ , where γτ is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂τ

(
τ

ϕ cos(α)
∂γτ
∂τ

− tan(α)
∂γτ
∂ t

)
+
∂
∂ t

(
− tan(α)

∂γτ
∂τ

+
ϕ

τ cos(α)
∂γτ
∂ t

)
= 0, in Ω \Ωτ

γτ|Γa
= 0

∂γτ
∂n
|Γτ = h

γτ|t=0
= γτ|t=t0

,
∂γτ
∂ t
|t=0 =

∂γτ
∂ t
|t=t0

(10)

and r(τ) = βτ|Γτ , where βτ is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂
∂τ

(
τ

ϕ cos(α)
∂βτ
∂τ

− tan(α)
∂βτ
∂ t

)
− ∂
∂ t

(
− tan(α)

∂βτ
∂τ

+
ϕ

τ cos(α)
∂βτ
∂ t

)
= τ fϕ cos(α), in Ω \Ωτ

βτ|Γa
= 0

∂βτ
∂n
|Γτ = 0

βτ|t=0
= βτ|t=t0

,
∂βτ
∂ t
|t=0 =

∂βτ
∂ t
|t=t0 .

(11)
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By linearity of (Pτ,h), the following relation holds true

uτ(τ) = P(τ)h + r(τ). (12)

Then taking h =
∂u
∂n

(τ) on Γτ , it is clear that uτ(τ ′) = u(τ ′) for τ ≤ τ ′ ≤ 1. Then

u(τ) = P(τ)
∂u
∂n

(τ)+ r(τ). (13)

Taking the derivative of the previous equality, in a formal way, with respect to τ , we
can derive (cf Sect. 4) the following system of uncoupled, first order in τ , equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P
∂τ
− ϕ sin(α)

τ
∂
∂ t

P +
P
τ
∂
∂ t

(
ϕ sin(α)

)
+

P
τ2

∂
∂ t

(
ϕ cos(α)

∂
∂ t

P

)
−P
τ

=−ϕ cos(α) I

∂ r
∂τ
− ϕ sin(α)

τ
∂ r
∂ t

+
P
τ2

∂
∂ t

(
ϕ cos(α)

∂ r
∂ t

)
=−P fϕ cos(α)

P

(
− 1
ϕ cos(α)

∂u
∂τ

+
tan(α)
τ

∂u
∂ t

)
+ r = u.

(14)

Again from (13), and considering the initial conditions on Γa, we also obtain P(1) = 0
and r(1) = 0, which corresponds to the initial conditions of the first two equations
above. We will define the initial condition for the last equation in Sect. 5. The Riccati
equation for P which depends only on the operator and the shape of the domain in
problem P , can be solved for decreasing τ once for all. For each data ( f ), the problem
is now solved by integrating two Cauchy problems: the one on r for τ decreasing from
1 to 0 and the one on u backwards in τ .

4 Arriving to the Uncoupled System

Considering uε , solution of (4) and vε , solution of the homogeneous equation Δvε = 0
with arbitrary boundary condition on Γε and using the Green formula, we obtain in the
(τ,t) coordinates∫ 1

ε

∫ t0

0

τ
ϕ cos(α)

∂vε
∂τ

∂uε
∂τ

− tan(α)
(
∂vε
∂ t

∂uε
∂τ

+
∂vε
∂τ

∂uε
∂ t

)
+

ϕ
τ cos(α)

∂vε
∂ t

∂uε
∂ t

dt dτ =−ε
∫ t0

0

(
1

ϕ cos(α)
∂vε
∂τ

− tan(α)
ε

∂vε
∂ t

)∣∣∣∣
τ=ε

uε |τ=ε dt.

(15)

A similar formula holds for Ω \Ωτ = {(s, t) ∈ ]τ,1[×]0, t0[}.
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Deriving the resulting equality with respect to the variable τ , we obtain

∂
∂τ

(∫ 1

τ

∫ t0

0

(
s

ϕ cos(α)
∂vτ
∂τ

∂uτ
∂τ

− tan(α)
(
∂vτ
∂ t

∂uτ
∂τ

+
∂vτ
∂τ

∂uτ
∂ t

)
+

ϕ
scos(α)

∂vτ
∂ t

∂uτ
∂ t

)
dt ds

)
=− ∂

∂τ

(∫ t0

0

(
τ

ϕ cos(α)
∂vτ
∂τ

− tan(α)
∂vτ
∂ t

)
uτ dt

)
⇒∫ t0

0

(
τ

ϕ cos(α)
∂vτ
∂τ

∂uτ
∂τ

− tan(α)
(
∂vτ
∂ t

∂uτ
∂τ

+
∂vτ
∂τ

∂uτ
∂ t

)
+

ϕ
τ cos(α)

∂vτ
∂ t

∂uτ
∂ t

)
dt

=
∫ t0

0

∂
∂τ

((
τ

ϕ cos(α)
∂vτ
∂τ

− tan(α)
∂vτ
∂ t

)
uτ

)
dt =−

∫ t0

0

∂
∂τ

(
τ
∂vτ
∂n

uτ

)
dt.

(16)

Then, using (13) and the Laplace equation (8) we have successively,

∫ t0

0

(
τ

ϕ cos(α)
∂vτ
∂τ

∂uτ
∂τ

− tan(α)
(
∂vτ
∂ t

∂uτ
∂τ

+
∂vτ
∂τ

∂uτ
∂ t

)
+

ϕ
τ cos(α)

∂vτ
∂ t

∂uτ
∂ t

)
dt

=−
∫ t0

0

(
∂
∂τ

(
τ
∂vτ
∂n

)
P
∂uτ
∂n

+ τ
∂vτ
∂n

∂P
∂τ

∂uτ
∂n

+ τ
∂vτ
∂n

P
∂
∂τ

(
∂uτ
∂n

)
+

∂
∂τ

(
τ
∂vτ
∂n

)
r + τ

∂vτ
∂n

∂ r
∂τ

)
dt

=
∫ t0

0

(
∂
∂ t

(
tan(α)

∂vτ
∂τ

− ϕ
τ cos(α)

∂vτ
∂ t

)
P
∂uτ
∂n

− τ ∂vτ
∂n

∂P
∂τ

∂uτ
∂n

+
∂vτ
∂n

P
∂uτ
∂n

+
∂vτ
∂n

P

[
∂
∂ t

(
tan(α)

∂uτ
∂τ

− ϕ
τ cos(α)

∂uτ
∂ t

)
− f τϕ cos(α)

]
+

∂
∂ t

(
tan(α)

∂vτ
∂τ

− ϕ
τ cos(α)

∂vτ
∂ t

)
r− τ ∂vτ

∂n
∂ r
∂τ

)
dt.

(17)

Therefore, using once again (13) and integrating by parts in t the right hand side, the
equality becomes

∫ t0

0

(
τ

ϕ cos(α)
∂vτ
∂τ

∂uτ
∂τ

− tan(α)
∂vτ
∂ t

∂uτ
∂τ

− tan(α)
∂vτ
∂τ

∂uτ
∂ t

+
ϕ

τ cos(α)
∂vτ
∂ t

∂uτ
∂ t

)
dt

=
∫ t0

0

(
− tan(α)

∂vτ
∂τ

∂uτ
∂ t

+
ϕ

τ cos(α)
∂vτ
∂ t

∂uτ
∂ t

− τ ∂vτ
∂n

∂P
∂τ

∂uτ
∂n

+
∂vτ
∂n

P
∂uτ
∂n

− ∂vτ
∂ t

tan(α)
∂uτ
∂τ

+
∂vτ
∂ t

ϕ
τ cos(α)

∂uτ
∂ t

− ∂vτ
∂n

P f τϕ cos(α)− τ ∂vτ
∂n

∂ r
∂τ

)
dt.

(18)
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After simplification, we obtain∫ t0

0

τ
ϕ cos(α)

∂vτ
∂τ

∂uτ
∂τ

dt

=
∫ t0

0

(
− τ ∂vτ

∂n
∂P
∂τ

∂uτ
∂n

+
∂vτ
∂n

P
∂uτ
∂n

+
∂vτ
∂ t

ϕ
τ cos(α)

∂uτ
∂ t

− ∂vτ
∂n

P f τϕ cos(α)− τ ∂vτ
∂n

∂ r
∂τ

)
dt.

(19)

Expressing the t and τ derivatives in terms of normal derivatives, we get∫ t0

0

(
τϕ cos(α)

∂vτ
∂n

∂uτ
∂n

−ϕ sin(α)
∂vτ
∂n

∂
∂ t

(
P
∂uτ
∂n

)
−ϕ sin(α)

∂vτ
∂n

∂ r
∂ t
−ϕ sin(α)

∂
∂ t

(
P
∂vτ
∂n

)∂uτ
∂n

)
dt

=
∫ t0

0

(
− τ ∂vτ

∂n
∂P
∂τ

∂uτ
∂n

+
∂vτ
∂n

P
∂uτ
∂n

− τ ∂vτ
∂n

∂ r
∂τ

+
ϕ cos(α)

τ
∂
∂ t

(
P
∂vτ
∂n

) ∂
∂ t

(
P
∂uτ
∂n

)
+
ϕ cos(α)

τ
∂
∂ t

(
P
∂vτ
∂n

)∂ r
∂ t
− ∂vτ

∂n
P f τϕ cos(α)

)
dt.

(20)

From the principle of invariant embedding,
∂uτ
∂n

on Γτ is arbitrary so that we can sepa-

rate the parts depending and independent of this quantity, obtaining(
τϕ cos(α)

∂vτ
∂n

,
∂uτ
∂n

)
−
(
ϕ sin(α)

∂
∂ t
◦P

∂vτ
∂n

,
∂uτ
∂n

)
−
(
ϕ sin(α)

∂vτ
∂n

,
∂
∂ t
◦P

∂uτ
∂n

)
=
(
− τ ∂vτ

∂n
,
∂P
∂τ

∂uτ
∂n

)
+
(
∂vτ
∂n

,P
∂uτ
∂n

)
+
(
ϕ cos(α)

τ
∂
∂ t
◦P

∂vτ
∂n

,
∂
∂ t
◦P

∂uτ
∂n

) (21)

and (
ϕ sin(α)

∂vτ
∂n

,
∂ r
∂ t

)
=
(

P
∂vτ
∂n

, f τϕ cos(α)
)

+
(
τ
∂vτ
∂n

,
∂ r
∂τ

)
−
(
ϕ cos(α)

τ
∂
∂ t
◦P

∂vτ
∂n

,
∂ r
∂ t

)
,

(22)

where
∂vτ
∂n

is an arbitrary test function. This corresponds to (14).

5 Defining u(0)

In this section we study the limit of problem (Pε) when ε goes to zero, that is when the
hole shrinks to the origin. This is useful to define an initial condition for the equation
for u in the factorized form.
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Theorem 2. Considering uε the solution of problem (Pε ), uε |Γε is bounded by a con-
stant not depending on ε .

Proof. The first part of the proof consists on showing that we have

infΓε wε ≤ uε |Γε ≤ supΓε wε , (23)

where wε ∈ H1
0 (Ω) is the solution of the problem

−Δwε = f̃ε =

{
f , Ω \Ωε

0, Ωε .
(24)

From −Δwε = f̃ε , in H1
0 (Ω), we find∫
Ω
−Δwε =

∫
Ω

f̃ε =
∫
Ω\Ωε

f =−
∫
Γa

∂wε
∂n

. (25)

On the other hand, from the formulation of problem (Pε ) and choosing a test function
equal to one, we find∫

Ω\Ωε
−Δuε =

∫
Ω\Ωε

f =−
∫
Γε

∂uε
∂n

−
∫
Γa

∂uε
∂n

=−
∫
Γa

∂uε
∂n

. (26)

Therefore, we have the equality
∫
Γa

∂uε
∂n

=
∫
Γa

∂wε

∂n
.

Let us now suppose that uε |Γε = cε < infΓε wε . Then, uε −wε satisfies:⎧⎪⎨⎪⎩
−Δ(uε −wε) = 0, in Ω \Ωε

(uε −wε)|Γa
= 0

(uε −wε)|Γε < 0.

(27)

From (27), and using the maximum principle, we can also conclude that uε −wε ≤ 0,
in Ω \Ωε and, in fact, uε −wε < 0, in Ω \Ωε . As a consequence, using the definition

of directional derivative, we find that
∂uε
∂n
|Γa ≥

∂wε
∂n
|Γa .

From
∂ (uε −wε)

∂n
|Γa ≥ 0 and

∫
Γa

∂ (uε −wε)
∂n

= 0 we conclude that

∂ (uε −wε)
∂n

|Γa = 0. Therefore, we have uε −wε < 0, in Ω \Ωε , and (uε −wε ) = 0,

in Γa. Using Lemma 3.4 of [2], for each point of Γa, we find
∂ (uε −wε)

∂n
> 0 a.e. on Γa

and we reach a contradiction. So, we must have infΓε wε ≤ cε .
Analogously, one can show that cε ≤ supΓε wε .
For the second part of the proof, using [2] (Theorem 8.15, page 189, with q = 4), we

can show that ‖wε‖L∞(Ω) is bounded by a constant not depending on ε (it only depends
on constants concerning ‖ f‖L2(Ω) and the size of Ω ) and the result follows. ��

Now we are able to establish the value of u on the origin.
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Theorem 3. Let f ∈ C 0,α(Ω) Then, when ε converges to 0, uε|Γε
converges to u(0).

Proof. Considering u the solution of problem (P), since f ∈ C 0,α(Ω), we have u ∈
C 2,α(Ω). Let, as previously, −Δwε = f̃ε , wε ∈ H1

0 (Ω). Therefore, vε = wε − u sat-

isfies −Δ(vε) = g̃ε , where g̃ε =

{
− f , Ωε

0, Ω \Ωε .
Using again [2] we can show that

‖vε‖L∞(Ω) ≤ k(‖vε‖L2(Ω) +‖g̃ε‖L2(Ω)), where k is a constant not depending on ε . When
ε → 0 we have ‖vε‖L2(Ω) → 0 and ‖g̃ε‖L2(Ω) → 0, then ‖vε‖L∞(Ω) → 0. So, for δ > 0

there exists ε > 0 such that |vε(x)| ≤ δ
2 and |u(x)−u(0)| ≤ δ

2 ,∀x ∈ Ωε ∪Γε . Then, for
x∈Γε , |wε (x)−u(0)|= |vε(x)+u(x)−u(0)| ≤ δ and consequently,−δ ≤ infΓε (wε (x))
−u(0) = infΓε (wε (x)−u(0))≤ supΓε (wε (x)−u(0)) = supΓε (wε (x))−u(0)≤ δ . Using
(23), we find−δ ≤ infΓε wε−u(0)≤ uε |Γε −u(0)≤ supΓε wε −u(0)≤ δ , which implies
that uε |Γε → u(0), when ε → 0. ��

6 Conclusion

Considering H1
τ,p(I ), where I denotes the interval (0, t0), to be the space of functions

v verifying v ∈ L2(I ),
1

cos(α)
∂v
∂ t
∈ L2(I ) and such that v has periodic boundary

conditions v(0)= v(t0), we can define H1/2
τ,p (I ) as the 1/2 interpolate between H1

τ,p(I )

and L2(I ), and
(

H1/2
τ,p (I )

)′
as the 1/2 interpolate between

(
H1
τ,p(I )

)′
and L2(I ).

The final result is synthesized as follows - denoting by (., .) the scalar product in L2(I ),
then P, r and uτ satisfy:

1. The operator

P ∈L
(
L2(I ),H1

τ,p(I )
)
∩L

((
H1/2
τ,p (I )

)′
,H1/2

τ,p (I )
)

∩L
((

H1
τ,p(I )

)′
,L2(I )

)
,

(28)

bounded as a function of τ , satisfies, for every h, h̄ in L2(I ), the Riccati equation(
dP
dτ

h, h̄

)
−
(
ϕ sinα
τ

h,
∂
∂ t
◦Ph̄

)
−
(
∂
∂ t
◦Ph,

ϕ sinα
τ

h̄

)
−
(
ϕ cosα
τ2

∂
∂ t
◦Ph,

∂
∂ t
◦Ph̄

)
−
(

1
τ

h,Ph̄

)
=−

(
ϕ cosα h, h̄

) (29)

in D ′(0,1), with the initial condition P(1) = 0.

2. For every h in H1/2
τ,p (I ), r satisfies the equation(

∂ r
∂τ

,h

)
−
(
ϕ sinα
τ

∂ r
∂ t

,h

)
−
(
ϕ cosα
τ2

∂ r
∂ t

,
∂
∂ t
◦Ph

)
=−(ϕ cosα f ,Ph) (30)

in D ′(0,1), with the initial condition r(1) = 0.
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3. For every h in
(

H1/2
τ,p (I )

)′
, u satisfies the equation(

1
ϕ cosα

∂u
∂τ

,Ph

)
−
(

tanα
τ

∂u
∂ t

,Ph

)
+ 〈u,h〉

H
1/2
τ,p (I ),

(
H

1/2
τ,p (I )

)′
= 〈r,h〉

H
1/2
τ,p (I ),

(
H

1/2
τ,p (I )

)′ (31)

in D ′(0,1), with the initial condition given by Theorem 3.

Moreover, taking Q =
P
τ

as unknown and μ = log(τ) as variable, the above Riccati

equation can also take the simpler form(
dQ
dμ

h, h̄

)
−
(
ϕ sinα h,

∂
∂ t
◦Qh̄

)
−
(
∂
∂ t
◦Qh,ϕ sinα h̄

)
−
(
ϕ cosα

∂
∂ t
◦Qh,

∂
∂ t
◦Qh̄

)
=−

(
ϕ cosα h, h̄

)
,

(32)

and, identically, the equation for the residue r becomes(
∂ r
∂μ

,h

)
−
(
ϕ sinα

∂ r
∂ t

,h

)
−
(
ϕ cosα

∂ r
∂ t

,
∂
∂ t
◦Qh

)
=−

(
e2μϕ cosα f ,Qh

)
, (33)

with initial conditions, respectively, Q(0) = 0 and r(0) = 0. Then u satisfies(
1

ϕ cosα
∂u
∂μ

,Qh

)
−
(

tanα
∂u
∂ t

,Qh

)
+ 〈u,h〉

H
1/2
τ,p (I ),

(
H

1/2
τ,p (I )

)′
= 〈r,h〉

H
1/2
τ,p (I ),

(
H

1/2
τ,p (I )

)′ (34)

The initial condition on u given by Theorem 3 is now valid at μ =−∞. These equations
allow us to seek an explicit formula for the solution of (P), through homographic
transformation, as the Riccati equation has constant coefficient in μ .

From the numerical point of view, one can consider a spatial discretization of the
problem adapted to the system of coordinates (t,τ) (or (t,μ)), which leads to a linear
system of equations. Then there exists a particular discretization of the system (32),
(33), (34) through which we can recover the Gauss block LU factorization of this linear
system. That is why we claim that the proposed factorization is an infinite dimensional
generalization of the Gauss factorization. But other discretizations exist that give new
directly computable discretizations of the original Poisson boundary value problem.
They will be presented elsewhere.
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Abstract. We study the notion of cross Gramians for nonlinear gradient sys-
tems, using the characterization in terms of prolongation and gradient extension
associated to the system. The cross Gramian is given for the variational system as-
sociated to the original nonlinear gradient system. We obtain linearization results
that correspond to the notion of a cross Gramian for symmetric linear systems.
Furthermore, first steps towards relations with the singular value functions of the
nonlinear Hankel operator are studied and yield promising results.

1 Introduction

In this paper, we give an extension of the cross Gramian notion for nonlinear gradient
systems. The gradient systems are an important class of nonlinear systems, endowed
with a pseudo-Riemannian metric on the state-space manifold, such that the drift is a
gradient vectorfield with respect to this metric and a potential function and the input
vectorfields are gradient with respect to the same metric and output, see e.g. [3,15] and
references therein. Examples of gradient systems include nonlinear electrical circuits
and certain dissipative systems. The linear counterpart is a symmetric system. With
respect to model reduction, for linear systems it is showed in [1,4,14] that exploiting
the symmetry, model reduction becomes more efficient. This is based on the notion
of cross Gramian, that is the solution of a Sylvester equation, which can be solved
in an efficient way. The cross Gramian for a symmetric system contains information
about both controllability and observability at the same time and moreover the squared
cross Gramian is the product of the controllability and observability Gramians. Then the
Hankel singular values are the eigenvalues of the cross Gramian. Moreover, the cross
Gramian can be obtained using only one of the Gramians of the system and the metric.

For nonlinear systems the problem is more complicated and not yet tackled in the
literature. The notion of symmetry for a nonlinear system is now best studied by con-
sidering nonlinear gradient systems. We use the associated prolongation and gradient
extension and the results in [3]. A nonlinear system is gradient if the two latter systems
have the same input-output behavior. Using this property and its consequences, we give
the definition of the cross Gramian for the variational system (which is a gradient sys-
tem, too) as the nonlinear, non-trivial extension of the concept of the cross Gramian for
linear systems. Furthermore, we give a nonlinear counterpart of the Sylvester equation.
Using the cross Gramian and the theory of Hankel singular values as in [6,11], first
steps towards proving that the squared eigenvalues of the nonlinear cross Gramian are
directly related to the Hankel singular values of the system, are set. In this case, instead

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 293–306, 2009.
c© IFIP International Federation for Information Processing 2009
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of balancing, only solving a nonlinear Sylvester equation, a metric and an eigenvalue
decomposition suffice for obtaining the Hankel singular values of the gradient system.

The paper is outlined as follows. In Section 2 we give an overview of the cross
Gramian technique for linear systems. To show the line of thinking in the nonlinear
case, in Section 3, we give a review of the definitions of the prolongation and gradient
extension and the property of a nonlinear system being gradient itself, this being a natu-
ral extension of the linear symmetric system notion, to the nonlinear case. In Section 4,
we analyze some linearization results which motivate the reasoning in Section 5, where
the definition of the nonlinear Gramian is presented and the conjecture about the rela-
tion for singular value functions is stated. Finally an example is given in Section 6 and
in Section 7 some conclusions end this paper.

A nonlinear system is defined here as:{
ẋ = f (x)+ g(x)u
y = h(x) , (1)

where x ∈M is the state vector, u∈R
m is the vector of inputs and y ∈R

p is the output.
M is a smooth manifold, of dimension n. We make the following assumptions:

Assumption 1. f (x),g(x),h(x) are smooth;

Assumption 2. The system is square, i.e. m = p;

Assumption 3. x0 is an asymptotically stable equilibrium point of the system and
h(x0) = 0;

Assumption 4. System (1) is asymptotically reachable from x0 (i.e. for any x, there
exists an input u and t ≥ 0, such that x = φ(t,0,x0,u), with φ being the trajectory
obtained by integrating the first equation in (1)).

Assumption 5. System (1) is zero-state observable (i.e. if u(t) = 0, y(t) = 0 then
x(t) = 0).

Assumptions 4 and 5 are related to the minimality of the system, see [12].

Notation: Let M be a smooth manifold and V (x) a smooth vectorfield, x∈M . Then we
denote by gradGV the gradient of V (x) on the manifold M endowed with the pseudo-

Riemannian metric G. In local coordinates gradGV = −G−1(x) ∂V(x)
∂x (see [15] for de-

tails). ∂V (x)
∂x means the row vector

[
∂V (x)
∂x1

...
∂V (x)
∂xn

]
. R is the set of real numbers.

2 Linear Systems Case

If the system (1) is linear, then it can be written as:{
ẋ = Ax + Bu
y = Cx

, (2)
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where A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n are constant matrices. In this case, Assumption

1 is automatically satisfied. We consider system (2) satisfying Assumptions 2-5. As-
sumptions 4 and 5 are equivalent to the minimality of the system (see e.g. [16] for more
details). A linear system has a corresponding unique dual system defined as:{

ż = AT z+CT ud

yd = BT z
. (3)

Because (1) is controllable and observable, and these properties are dual to each other
(i.e. if the pair (A,B) is controllable, then (BT ,AT ) is observable), it follows immedi-
ately that the dual system (3) is controllable and observable, i.e. minimal, too.

The definition of the cross Gramian for a linear square system is:

Definition 1. [14] Let (2) be a square system. Then the cross Gramian X is defined as
the solution of the Sylvester equation:

AX + XA + BC = 0. (4)

If the system is asymptotically stable, then the cross Gramian can be equivalently de-

fined as: X =
∫ ∞

0
eAtBCeAtdt.

Another important definition is the one of the Hankel operator associated to the linear
system (2):

H (u) =
∫ 0

−∞
H(t− τ)u(−τ)dτ (5)

where t > 0 and H is the impulse response of the system (2). The singular values of
the Hankel operator are fundamental for the balanced truncation model order reduction.
Each singular value represents a measure for the importance of each state component in
the output response of system (2) to a certain input (see e.g. [2] for more details). The
cross Gramian possesses some interesting properties being related to the above defined
Hankel operator and the Hankel singular values of a linear square system.

Theorem 1. [14] For square linear systems the non-zero eigenvalues of the cross
Gramian X are the non-zero eigenvalues of the Hankel operator associated to the
system.

However, the singular value problem is different, that is the singular values of the cross
Gramian are not the Hankel singular values of the system. Still, there is a relation of
majorization between the two as shown below.

Theorem 2. [14] For a square linear system, the following relations hold:
k

∑
i=1

σi ≥

k

∑
i=1

πi and
n

∑
i=k+1

σi ≤
n

∑
i=k+1

πi, where σi are the Hankel singular values, πi are the singu-

lar values of X, and k is the index for which σk is much larger than σk+1.
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For symmetric systems, the cross Gramian X has more attractive properties, useful for
model reduction.

First we give the definition of a symmetric linear system:

Definition 2. [1,4,14] A square linear, system G(s) = C(sI − A)−1B, with the state-
space realization (2) is called symmetric if G(s) = GT (s).

Proposition 1. Assume that system (2) satisfies assumptions 2-5. Then system (2) is
symmetric if and only if there exists an invertible symmetric matrix T such that AT T =
TA, CT = TB, i.e. the system and its dual are input-output (externally) equivalent.

In, for instance [1,14], model reduction based on the balancing procedure, for this type
of systems is considered. The symmetry property is exploited, making the procedure
more efficient. Basically, the Sylvester equation from Definition 1 is solved and the
cross Gramian is obtained. It will directly provide the Hankel singular values of the
system. We refer to the results presented in [14,1,4], which are summarized in the se-
quel.

Defining the controllability Gramian as W and the observability Gramian as M, they
are the solutions of the following Lyapunov equations, respectively:

AW +WAT + BBT = 0 (6)

AT M + MA +CTC = 0. (7)

The following theorem summarizes the properties of X in relation with W and M.

Theorem 3. [14,4] Let (2) be a square asymptotically stable symmetric system in the
sense of Definition 2. If X is the solution of (4) then the following relations are equiva-
lent:

1. X2 = W M > 0;
2. If T is the symmetry transformation as in Proposition 1, then X = WT = T−1M;
3. The Hankel singular values of (2) are the absolute values of the eigenvalues of X.

For symmetric systems, when compared to the classical balancing procedure, there are
two advantages: the first is that instead of solving two Lyapunov equations, whose com-
putational complexity is known to be a drawback, only one Sylvester equation is solved.
The second advantage consists of avoiding in this way the balancing procedure. Since
the Hankel singular values satisfy σi =

√
λi, λi ∈ λ (WM), i = 1, ...,n, the problem of

finding them turns into an eigenvalue problem of the cross Gramian X .

Remark 1. There exists a relation between the controllability and observability oper-
ators, and the cross Gramian. Define by x = C (u) =

∫ ∞
0 eAtBu(t)dt, the controllability

operator and by y = O(x) = CeAtx the observability operator of the system (A,B,C).
Then, by the definition of the cross Gramian, we have: Xx = CO(x). It can be proven
that, under minimality and symmetry assumptions as in the definitions presented here,
the eigenvalues of the COCO operator are the squared Hankel singular values of the
system, i.e. the eigenvalues of H ∗H .
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3 Review of Gradient Systems

The nonlinear extension of the notion of symmetric systems is the gradient systems.
The property of a system being gradient is described in terms of necessary and sufficient
conditions satisfied by the prolongation (variational) system and the gradient extension
associated with (1). We will give a brief overview of the results in [3,15].

Definition 3. [3,15] A nonlinear system (1) is called a gradient system if:

1. There exists a pseudo-Riemannian metric G, on the manifold M , given

as
m

∑
i, j=1

gi j(x)dxi ⊗ dx j, with gi j(x) = g ji(x) smooth functions of x, and

G(x) = [gi j(x)]i, j=1...n invertible, for all x.
2. There exists a smooth potential function V : M → R,

such that the system (1) can be written as:⎧⎨⎩ ẋ = gradGV(x)−
m

∑
i=1

uigradGhi(x), x ∈ R
n

yi = hi(x), i = 1, ...,m
. (8)

In local coordinates x = [x1 x2 ... xn]T ∈M , the system can be written as:⎧⎨⎩ ẋ =−G−1(x)
∂TV
∂x

(x)+ G−1(x)
∂T h
∂x

(x)u

y = h(x)
. (9)

Next, we present the definition of the prolonged system associated with (1).

Definition 4. [3] The prolongation Σp of (1) is defined by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ = f (x)+ g(x)u

v̇ =
∂ f (x)
∂x

v +
m

∑
j=1

u j
∂g j(x)
∂x

v + g(x)up

y = h(x), yp =
∂h(x)
∂x

v

, (10)

where v ∈ TM , the tangent bundle of the manifold M .

3.1 The Riemannian Metric on T ∗M

Since a canonical pseudo-Riemannian structure on the cotangent bundle T ∗M of the
manifold M does not exist, a pseudo-Riemannian metric cannot be defined directly. In
this case a torsion-free affine connection defined on the manifold M and its Riemannian
extension GC to T ∗M are used.
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Definition 5. An affine connection on a manifold M is defined as an assignment ∇ :
(X ,Y ) → ∇XY , where X , Y and ∇XY are vectorfields on M , satisfying the following
properties: it is R-bilinear, ∇ f XY = f∇XY and ∇X ( fY ) = f∇XY + X( f )Y , for every
f ∈C∞(M ).

Let X and Y be any two vectorfields on M . Their symmetric product is given as: < X :
Y >= ∇XY +∇Y X . We introduce the construction that associates to each vectorfield X
a function V X on T ∗M , given by V X(x, p) =< p,X(x) >, x ∈M , p ∈ T ∗M .

If ∇ is a torsion-free affine connection (see [3] and references therein for more de-
tails) then it defines a pseudo-Riemannian metric GC as a unique (0,2)-tensor on T ∗M
which satisfies:

GC(X ,Y ) =−V<X :Y> (11)

Now the gradient vectorfield associated with the function V X ∈ C∞(T ∗M ),X vector-
field on M , can be expressed locally as:

gradGCV X = Xi
∂
∂xi

+ pi

(
∂Xi

∂x j
+ 2Γ a

jkXk

)
∂
∂ p j

, (12)

where X is a vectorfield on M , i, j,k = 1, ,n and Γ i
jk represent the Christoffel symbols

of the affine connection ∇ (relation (2.8) in [3]).
For our purpose, we assume that GC is properly defined ([3]) and we will use the

local expression from (12) to express the gradient extension of (1), comprising all the
terms 2piΓ a

jkXk
∂
∂ p j

in a function F .

3.2 The Gradient Extension of a Nonlinear System

Definition 6. The gradient extension of (1) is defined by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = f (x)+ g(x)u

ṗ =
∂T ( f (x)+ g(x)u)

∂x
p +F (gi j(x),

∂gi j(x)
∂xk

, fk(x),u,g(x), p)+
∂h(x)
∂x

ug,

y = h(x), yg = gT (x)p, i, j,k = 1, ...,n.

(13)

Remark 2. Notice that for the linear system (2) the prolongation is the system itself
written twice and the gradient extension contains the system itself and the dual of the
prolonged variable part, yielding, respectively:⎧⎨⎩

ẋ = Ax + Bu
v̇ = Av + Bup

y = Cx, yp = Cv
,

⎧⎨⎩
ẋ = Ax + Bu
ṗ = AT p +CT ug

y = Cx, yg = BT p
. (14)

Remark 3. According to [3, Corollaries 3.3, 3.6] (1) is zero-state observable if and
only the prolonged system is zero-state observable and the zero-state observability of
(1) implies the zero-state observability of the gradient extension.
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The main result, useful for our purpose, is:

Theorem 4. [3, Theorem 5.4, Corollary 4.4] Let (1) be as in Assumption 4. Assume
that there exists a torsion-free affine connection on M with which the system is compati-
ble, and that the system is observable with its observability distribution having constant
dimension. Then, system (1) is a gradient control system, as in Definition 3, if and only
if the prolonged system Σp and the gradient extension Σg have the same input-output
behavior.

Remark 4. In the linear systems case, this result becomes a property between the sys-
tem itself and its dual counterpart, which immediately leads to the definition of sym-
metric systems. The metric is given by the matrix T , showing that a linear symmetric
system is a particular case (linear version) of the gradient system.

Lemma 1. [3, Lemmas 5.5, 5.6] If (1) is a gradient control system, then there exists
a diffeomorphism φ(x,v) = (x,G(x)v), such that (x, p) = φ(x,G(x)v), where v and p
satisfy (14), and G(x) is the matrix associated to the metric.

Remark 5. For linear systems this means, indeed that p = T v.

4 Linearization Results

For (1) satisfying Assumptions 1 and 3 we define the observability function ([9])

Lo(x) =
1
2

∫ ∞

0
||y(t)||2L2

dt, x(0) = x, x(∞) = x0 (15)

and the controllability function ([9])

Lc(x) = min
u∈L−2 ,x(0)=x, x(−∞)=x0

1
2

∫ 0

−∞
||u(t)||2L2

dt (16)

If the system satisfies Assumption 4 as well, then Lc(x) exists, is finite, Lc(x) > 0,
Lc(x0) = 0 and satisfies the Hamilton-Jacobi equation ([9]):

∂Lc

∂x
f (x)+

1
2
∂Lc

∂x
g(x)gT (x)

∂T Lc

∂x
= 0 (17)

such that−
(

f (x)+ g(x)gT (x)
∂Lc(x)
∂x

)
is asymptotically stable. If the system also sat-

isfies Assumption 5, then Lo(x) exists, is finite, Lo(x) > 0, Lo(x0) = 0, and satisfies the
nonlinear Lyapunov equation ([9]):

∂Lo

∂x
f (x)+

1
2

hT (x)h(x) = 0. (18)

Suppose x0,u = 0 is an equilibrium point and assume that h(x0) = 0. Then

−G−1(x0) ∂
T V
∂x (x0) = 0. Taking Taylor series expansion in system (8), we can write:

ẋ = G−1(x0)
∂ 2V
∂x2 (x0)(x− x0)+

[
n

∑
i, j=1

∂gi j

∂xi
(x0)

∂V
∂x j

(x0)

]
i, j=1...n

(x− x0)+ ... (19)
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Since ∂V
∂x j

(x0) = 0, j = 1, ...,n, then the linearization of the gradient system (8) yields:⎧⎪⎪⎨⎪⎪⎩
ẋ =−G−1(x0)

∂ 2V
∂x2 (x0)x + G−1(x0)

∂T h
∂x

(x0)u

y =
∂h
∂x

(x0)x
. (20)

Lemma 2. The system (20) is a gradient (symmetric) system with the metric T = G(x0).

Proof. Denote G = G(x0), Q = ∂ 2V
∂x2 (x0). Since V is smooth, Q is symmetric. G, by

definition is symmetric and invertible. Then:

H(s) = C(sI + G−1Q)−1G−1CT = C(sG−1G+ G−1Q)−1G−1CT

= C
[
G−1(sI + QG−1)G

]−1
G−1C = CG−1(sI + QG−1)CT = HT (s).

(21)

��

Let W and M be the controllability and the observability Gramians of (20), respectively,
and assume W > 0, M > 0, i.e. (20) is controllable and observable. Then:

M =
∂ 2Lo

∂x2 (x0), W−1 =
∂ 2Lc

∂x2 (x0). (22)

The asymptotic reachability of the nonlinear system implies its accessibility and this
implies the controllability of the linear system, see [12]. Since the linearized system
is assumed symmetric, controllability implies observability, and this implies the local
zero-state observability of the nonlinear system. So, locally there exists a duality of
the controllability and observability property, which motivates the search for a cross
Gramian for the nonlinear gradient system.

The linearized system is gradient and then, according to Theorem 3, statement 2, we
have that near x0: (

∂ 2Lo

∂x2 (x)
)−1

G(x) = G−1(x)
∂ 2Lc

∂x2 (x). (23)

Remark 6. Given a system (1), the linearization of the prolonged system Σp around
x0,v = 0,u = up = 0 and of the gradient extension Σg around x0, p = 0,u = ug = 0,
respectively, we obtain the linear systems (14). If the system is symmetric then p =
T v, G(x0) = T .

Since the duality in properties takes place between the v part and the p part of the two
systems, we are going to extract these parts from the nonlinear system and study them.

4.1 The Isomorphic Case

Another case related to linearization is that when the system is equivalent to a linear
system, as treated in [15]. This means that there exists a coordinate transformation
x′ = η(x), such that in the new coordinates, the system is described by a linear state-
space realization. If the equivalent linear system is a gradient system, as well, and the
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transformation η is an isometry (see e.g. [8]), then the gradient system is said to be
isomorphic to the linear symmetric system. Then, the linear idea of cross Gramian can
be extended to the nonlinear gradient system via the diffeomorphismη and the isometry
relation, as follows.

Denote by Lo(x′) = 1
2 x′T Mx′ the observability function and by Lc(x′) = 1

2 x′TW
−1

x′

the controllability function of the linear system, where

M =
∂ 2Lo

∂x′2
(x′), W

−1 =
∂ 2Lc

∂x′2
(x′) (24)

are the constant Gramians of the linear system. Moreover

Lo(x′) = Lo(η−1(x)), Lc(x′) = Lc(η−1(x)).

This leads to the following relation:

∂Lo

∂x′
(x′) =

∂Lo

∂x
(η−1(x′))

(
∂η
∂x

(η−1(x′))
)−1

(25)

Let T be the matrix associated with the metric for the symmetric linear system. Then,
according to Theorem 3, statement 2, WT = T−1M that can be rewritten as M

−1
T =

T−1W
−1. Postmultiplying with x′ we get:

(
∂ 2Lo(x′)/∂x′2

)−1
T x′=T−1(∂T Lc(x′)/∂x′).

Using relation (25) and x′ = η(x) we can write:

∂T Lc

∂x
(x) =

∂Tη
∂x

(x) ·T ·
(
∂ 2Lo

∂x′2
(η(x))

)−1

·T ·η(x) (26)

which shows that the observability function, the metric, and the isomorphism between
the systems give the controllability function of the gradient system. This can be called
a nonlinear version of the cross Gramian idea for this particular case, and it motivates
the search for the nonlinear cross Gramian in the general case.

5 Nonlinear Cross Gramian

In this section, we will make an analysis of the variational part of the prolonged system.
Denote by:

Σ ′p :

⎧⎪⎪⎨⎪⎪⎩
v̇ =

∂ ( f (x)+ g(x)u)
∂x

v + g(x)up

yp =
∂h(x)
∂x

v

, (27)

where x is considered a parameter varying according to (1).
Since the system is asymptotically stable, by the definition of its variational asso-

ciated system, the latter is also asymptotically stable. By Theorem 4, Σ ′p has the same
input-output behavior as the system Σ ′g, given by:⎧⎪⎨⎪⎩

ṗ =
∂T ( f (x)+ g(x)u)

∂x
p +F (gi j(x),

∂gi j(x)
∂xk

, fk(x),u,g(x), p)+
∂T h(x)
∂x

ug

yg = gT (x)p
, (28)
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where x again is a parameter varying as in (1). According to Lemma 1, there exists a
coordinate transformation such that p = ψ(x,v), given by ψ(x,v) = G(x)v, where G(x)
is symmetric and invertible (as in the definition of (8)) and is given by the pseudo-
Riemannian metric. Applying the coordinate transformation on Σ ′p, we get:

G(x)g(x) =
∂T h(x)
∂x

and
∂h(x)
∂x

G−1(x)p = gT (x)p. (29)

Remark 7. In the linear systems case, everything fits with the definition and charac-
terization of the property of symmetry. Moreover, the linearization of Σ ′p and Σ ′g around
an equilibrium point (x0,0,0,0) yields the v part and p part of (14), with p = Tv, with
T invertible and symmetric.

Based on the local existence of the cross Gramian, we make an analysis of the observ-
ability function of Σ ′p. In this case, u = 0, up = 0 and Σ ′p becomes:⎧⎪⎪⎨⎪⎪⎩

v̇ =
∂ f (x)
∂x

v

yp =
∂h(x)
∂x

v

. (30)

Assuming the zero-state observability combined with the asymptotic stability of Σ ′p
implies the existence of the observability function Lp

o(x,v) > 0, Lp
o(x0,0) = 0, defined

as:

Lp
o(x,v) =

1
2

∫ ∞

t
yT

p (τ)yp(τ)dτ (31)

and satisfying the nonlinear Lyapunov equation:

∂Lp
o(x,v)
∂v

∂ f (x)
∂x

v +
1
2

vT ∂T h(x)
∂x

∂h(x)
∂x

v =−∂Lp
o(x,v)
∂x

f (x). (32)

Since the system is linear in v, without loss of generality, we can write Lp
o(x,v) as:

Lp
o(x,v) =

1
2

vT L (x)v (33)

with L (x) symmetric, positive definite and with smooth elements.
In the sequel, we determine the nonlinear counterpart of the Sylvester equation which

in the linear case gives the cross Gramian. Taking the derivative with respect to v and
using (29), we get:

∂ 2Lp
o(x,v)
∂v2

∂ f (x)
∂x

v +
∂T f (x)
∂x

∂T Lp
o(x,v)
∂v

+ G(x)g(x)
∂h(x)
∂x

v =−∂
2Lp

o(x,v)
∂v∂x

f (x).
(34)

Applying the coordinate transformation, p = G(x)v, on (30) we get:

∂ f
∂x

v = G−1(x)
∂T f
∂x

G(x)v +F (gi j(x),
∂gi j(x)
∂xk

, fk(x),u,g(x), p), (35)

where F = F −G−1(x)Ġ(x)v.
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Premultiplying the equation with vT and using (35) we obtain:

pT G−1(x)L (x)
∂ f (x)
∂x

v + pT ∂ f (x)
∂x

G−1(x)L (x)v + pT g(x)
∂h
∂x

v =

− vT ∂ 2Lp
o(x,v)
∂v∂x

f (x)−F
T
L (x)v.

(36)

Using the coordinate transformation (29) and equation (32) we get:

pT G−1(x)L (x)
∂ f
∂x

v +
1
2

pT g(x)
∂h
∂x

v =

− vT ∂ 2Lp
o(x,v)
∂v∂x

f (x)+
∂Lp

o(x,v)
∂x

f (x)−F
T
L (x)v.

(37)

Remark 8. In the linear systems case, (34) becomes: vT MAv + vT AT Mv + pT BCv
= 0. Since v = T−1 p, we get:

pT T−1MAv + pT AT−1Mv + pT BCv = 0. (38)

Using the symmetry property, this immediately leads to the Sylvester equation (4).
Moreover, the relation X = T−1M is satisfied as in Theorem 3. Equation (38) becomes

XA +
1
2

BC = 0.

We are now ready to define the cross Gramian for a nonlinear gradient system.

Definition 7. We call
X (x) = G−1(x)L (x) (39)

the cross-Gramian matrix associated to Σ ′p and it satisfies (37).

This is an extension of statement 2 in Theorem 3, i.e. the cross Gramian is given
by the gradient metric and the observability Gramian. In order to explain the cross
Gramian and its importance we present in a nutshell the study of Hankel singular val-
ues for a nonlinear system (1) as in [6,11]. Suppose that (1) is asymptotically reachable
from x(0), then the controllability function Lc(x) exists and is positive definite, with
Lc(x0) = 0.

If H (u) is the Hankel operator of the system then for finding out the Hankel singular
values of the system the differential problem is solved: (dH (u))∗H (u) = λu, where
(dH (u))∗ represents the adjoint of the (dH (u)) operator (see [6] for further details).
A solution for this problem is given by the following result:

Lemma 3. [6] If there exists λ �= 0 such that

∂Lo

∂x
(x(0)) = λ

∂Lc

∂x
(x(0)), (40)

then λ is an eigenvalue of the operator (dH (u))∗H (u), with the corresponding eigen-
vector u = C †(x(0)), where C (u) is the controllability operator associated to (1).
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Remark 9. In the linear case, this problem becomes: Mx(0) = λW−1x(0). Since W >
0, we can write WMx(0) = λx(0) and if, moreover, the system is gradient, then, accord-
ing to Theorem 6 we have: X2x(0) = λx(0), X being the cross Gramian. This means
that λ is the squared Hankel singular value σ , which for a symmetric system is an
eigenvalue of X.

Still, in order to make the connection between λ ’s and the Hankel singular values of (1)
the Hankel norm is involved. The following results give the relation:

Theorem 5. [6] Suppose that the linearization of (1) has non-zero distinct Hankel
singular values. Then, there exists a neighborhood U ⊂ R of 0 and ρi(s) > 0, i =
1, ...n such that: min{ρi(s),ρi(−s)} ≥max{ρi+1(s),ρi+1(−s)} holds for all s ∈U, i =
1, ...,n−1. Moreover, there exist ξi(s), satisfying the following:

Lc(ξi(s)) = s2/2,Lo(ξi(s)) = ρi(s)s2/2,
∂Lo

∂x
(ξi(s)) = λi(s)

∂Lc

∂x
(ξi(s)),

λi(s) = ρ2
i (s)+

s
2

dρ2
i (s)
ds

.

(41)

Even more, if U = R, the Hankel norm of the system is supsρ1(s).

The ρi(s) are a clear extension of the Hankel singular values for a nonlinear system and
they can be obtained from the Hankel singular value functions of the nonlinear system,
as defined in [9]. The following result establishes this link:

Theorem 6. [11] If (1) is in input-normal, output-diagonal form, i.e. Lc(x) =
xT x/2, Lo(x) = xT diag(τ1(x), ...,τn(x))x/2, then

ρ2
i (x j) = τi(0, ...,x j, ...,0), i �= j,

ρ2
j (x j) = τ j(0, ...,x j, ...,0)+

1
2
∂τ j

∂x j
(0, ...,x j, ...,0)x j.

(42)

Returning to our case, we state the following

Conjecture 1. Let (1) be a nonlinear gradient system with the associated variational
system Σ ′p. If λi, i = 1, ...,n, satisfy Theorem 5, then they are the squared eigenvalues of
X (x).

We aim at proving this conjecture by finding the meaning of the gradient extension in
the context of the balancing procedure (following the reasoning in e.g. [6]), in order to
be able to obtain an equivalent of equation (40) written in terms of the cross Gramian.
In this way, the λ ’s in (40) associated to Σp, are related to the eigenvalues of the cross
Gramian and thus, the Hankel singular value functions can be obtained from solving an
eigenvalue problem for the cross Gramian.

Remark 10. For linear systems this falls into place with the theory for symmetric sys-
tems, see Remark 9 .

Then using Theorem 5, the Hankel singular values of the original system are obtained,
avoiding the balancing procedure.
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6 Example

Given a double mass double spring system (see Figure 1), we compute the cross
Gramian of the gradient system associated to it.

Fig. 1. Double mass double spring system

The system is given by:{
m1ẍ1 + k1(x1)+ k2(x1,x2) = 0
m2ẍ2− k2(x1,x2)+ u = 0

, (43)

where x1,x2 are the displacements, m1,m2 > 0 are the masses and k1(x1),k2(x1,x2)
are the corresponding elastic forces, with the initial conditions x1(0) = 1,x2(0) = 0.

The potential energy of the system is given by V (x), smooth, such that ∂V (x)
∂x1

=

k1(x1),
∂V (x)
∂x2

= k2(x1,x2). We choose k1(x1) =−x3
1 and k2(x1,x2) = x1−x2 (elastic co-

efficients constant and equal to 1). We take m1 = m2 = 1. The Hamiltonian of the system
is H(x) = 1

2 ẋT M−1(x)ẋ +V (x), with M(x) = I2. Since M > 0, G(x) = M−1(x) = I2 can
define a Riemannian metric on R

n (e.g. see [10, Chapter 6, Section 6.1]). The associated
gradient system, of the form (8), is:

ẋ =
[
−x3

1
x1− x2

]
+
[

2
1

]
u, y = x1. (44)

Denote L (x(t)) = [li j(x(t))]i, j=1,2 = [li j(t)]i, j=1,2. Solving equation (37) associated to
(44), for all v ∈ TM , yields the following parameter-varying system to be solved:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dl11(t)
dt

= 3x2
1(t)l11(t)− l12(t)−1

dl12(t)
dt

=
(

3
2 x2

1(t)+ 1
)

l12(t)+ l22(t)
dl22(t)

dt
= l22(t)

. (45)

Solving system (44) for u(t) = 0, t > 0,x1(0) = 1 we get x1(t) =
1√

2t + 1
. Substituting

in (45) we obtain a time varying system. We solve it using approximation of 3rd order
and obtain:

L (t) = X (t) =
[

3 + 10t + 9t2 + 2t3 −t− 3
2 t2− 1

6 t3

−t− 3
2 t2− 1

6 t3 1 + t + 1
2 t3 + 1

6 t3

]
(46)

The eigenvalue functions of the cross Gramian are given as:

λ1(t) = 3 + 10t + 10t2−3t3 + O(t4)

λ2(t) = 1 + t + 0.9t3 + O(t4)
(47)
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7 Conclusions and Future Work

We present here the nonlinear counterpart of the cross Gramian for gradient systems.
We do this in terms of the variational system. The reason is that in the next step we
want to prove that the eigenvalues obtained from the cross Gramian are related in a
direct manner to the Hankel singular values of the system. For later concern we will
also take into account the computational aspect of solving equation (37).

Acknowledgements. The authors gratefully acknowledge the contribution of National
Research Organization and reviewers’ comments.
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Abstract. In this article parameter estimation problems for a nonlinear elliptic
problem are considered. Using Tikhonov regularization techniques the identifi-
cation problems are formulated in terms of optimal control problems which are
solved numerically by an augmented Lagrangian method combined with a glob-
alized sequential quadratic programming algorithm. For the discretization of the
partial differential equations a Galerkin scheme based on proper orthogonal de-
composition (POD) is utilized, which leads to a fast optimization solver. This
method is utilized in a bilevel optimization problem to determine the parameters
for the Tikhonov regularization. Numerical examples illustrate the efficiency of
the proposed approach.

1 Introduction

Parameter estimation problems for partial differential equations are very important in
application areas. Using Tikhonov regularization techniques (see, e.g., [20]) these prob-
lems can often be expressed in terms of constrained optimal control problems so that
numerical optimization can be applied to solve the parameter identification problems nu-
merically. Here, we apply an augmented Lagrangian method (see, e.g., [2,3]) combined
with a globalized sequential quadratic programming (SQP) algorithm as described in
[6]. In this article we continue our successful development of solution methods for pa-
rameter estimation problems for nonlinear elliptic partial differential equations (PDEs);
see [12,13,22]. The goal is to derive efficient, robust and fast solvers where the PDEs are
discretized by a Galerkin scheme based on proper orthogonal decomposition. POD is a
powerful method to derive low-dimensional models for nonlinear systems. It is based
on projecting the system onto subspaces consisting of basis elements that contain char-
acteristics of the expected solution. This is in contrast to, e.g., finite element techniques,
where the elements of the subspaces are uncorrelated to the physical properties of the
system that they approximate. It is successfully used in different fields including signal
analysis and pattern recognition (see, e.g., [5]), fluid dynamics and coherent structures
(see, e.g., [7,15]) and more recently in control theory (see, e.g., [10]). The relationship
between POD and balancing is considered in [9,19,23]. In contrast to POD approxi-
mations, reduced-basis element methods for parameter dependent elliptic systems are
investigated in [1,8,16,18], for instance.
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In the present paper we determine numerically parameters in a Tikhonov regular-
ization. This regularization technique is used to formulate the identification problem
in terms of an optimal control problem. For any admissible parameter p ∈ Pad ⊂ R

N

let u(p) denote the solution to the underlying semilinear elliptic PDE. The identifica-
tion problem is to find a parameter p∗ ∈ Pad so that for a given (measurement) data ud

(e.g., on the boundary or on a part of the domain) the quantity ‖u∗ − ud‖ is minimal,
where u∗ = u∗(p∗). For a precise introduction we refer to Sect. 2. For the Tikhonov
regularization we take a κ > 0 and solve the optimal control problem

min
(p,u)

1
2
‖u−ud‖2 +

κ
2
‖p‖2 subject to (s.t.) u solves PDE for p ∈ Pad. (1)

By (uκ , pκ) we denote a (local) optimal solution to (1). Then we introduce the following
bilevel optimization problem:

min
κ
‖uκ −ud‖2 s.t. (pκ ,uκ) solves (1) for κ ≥ κa (2)

with κa > 0. To solve (2) numerically we apply the MATLAB routine fmincon, where
the solution pair (pκ ,uκ) to (1) is computed by a fast optimization solver based on a
POD Galerkin projection.

Note that the inner optimization problem (1) is non-convex, thus there might exist
more than one local minimum. By varying the Tikhonov parameter κ we search an
optimal κ∗ so that (1) for κ = κ∗ yields a solution (p∗,u∗) for which the error in a
given norm between the state u∗ and the noisy measuring data ud is minimal.

A similar approach compared to the method of solving the bilevel problem above
is to fix κ , but start the inner optimization loop with varying starting values (p0,u0).
In this work we only deal with the previous case (bilevel problem with varying κ),
though. In both methods we exploit the fact that – using the POD approximation – one
optimization loop takes very little time. Thus, it is no matter of temporal cost to solve
an optimization problem like (1) many times successively.

The paper is organized in the following manner. In Sect. 2 we introduce the under-
lying parameter estimation problem. The POD method is briefly reviewed in Sect. 3.
The POD basis is used to derive a POD Galerkin projection for the optimal control
problem. Finally, numerical examples are carried out in the last section. In particular,
we apply the reduced-basis method to obtain appropriate snapshots for the POD basis
computation in one of the numerical tests.

2 The Identification Problem

LetΩ ⊂R
d , d = 2,3, be an open, bounded and connected set with Lipschitz-continuous

boundary Γ = ∂Ω . Let q > d/2 + 1 and r > d + 1. For given f ∈ Lq(Ω), g ∈ Lr(Γ ),
c,q ∈ L∞(Ω) with c≥ ca > 0 in Ω almost everywhere (a.e.) and q ≥ qa ≥ 0 in Ω a.e.,
σ ≥ 0 we consider the nonlinear problem

−cΔu + qu + eu = f in Ω ,

c
∂u
∂n

+σu = g in Γ .
(3)
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There exists a unique weak solution u ∈ H1
b (Ω) = H1(Ω)∩L∞(Ω) satisfying∫

Ω
c∇u ·∇ϕ+

(
qu + eu)ϕ dx +

∫
Γ
σuϕ ds =

∫
Ω

fϕ dx +
∫
Γ

gϕ ds (4)

for all ϕ ∈H1(Ω), where the Banach space H1
b (Ω) is endowed with the common norm

‖u‖H1
b (Ω) = ‖u‖H1(Ω) + ‖u‖L∞(Ω) for u ∈ H1

b (Ω). Moreover, this solution belongs to

C(Ω). For a proof we refer the reader to [4], for instance.

2.1 Estimation of Diffusion and Potential Parameter

The goal of the first estimation problem is to identify the parameter pair

p = (c,q) ∈ P1
ad =

{
p̃ = (c̃, q̃) ∈R

2
∣∣ c̃≥ ca and q̃≥ qa

}
from measurements for the weak solution u ∈ H1

b (Ω) to (3) on the boundary Γ and on
a subset Ωm of the domain Ω . Let α1,α2 denote nonnegative weights, κc,κq be positive
regularization parameters and cd ,qd ∈R stand for nominal parameters. Introducing the
quadratic cost functional

J1(p,u) =
α1

2

∫
Γ

∣∣u−uΓ
∣∣2 ds+

α2

2

∫
Ωm

∣∣u−uΩ
∣∣2 dx +

κc

2

∣∣c− cd
∣∣2 +

κq

2

∣∣q−qd
∣∣2

for p = (c,q) ∈R
2 and u ∈H1(Ω) we express the identification problem as the follow-

ing constrained optimal control problem

minJ1(p,u) s.t. p = (c,q) ∈ P1
ad and u ∈ H1

b (Ω) satisfy (4). (5)

Throughout the paper we suppose that (5) admits at least one local solution x∗= (p∗,u∗)
with p∗ = (c∗,q∗) ∈ P1

ad.

2.2 Estimation of Varying Diffusion Parameter

In the second example we suppose that Ω is split into two measurable disjunct subsets
Ωi, i = 1,2, and that c is constant on Ωi, i.e., c ≡ ci on Ωi for i = 1,2. Hence, we
introduce the set of admissible parameters by

P2
ad =

{
p̃ = (c̃1, c̃2) ∈ R

2
∣∣ c̃i ≥ ca for i = 1,2

}
. (6)

The goal is to identify c from given measurements for the weak solution u ∈ H1
b (Ω) to

(3) on the boundary Γ . Let α1 denote a nonnegative weight, κ1,κ2 be positive regular-
ization parameters and c1,d ,c2,d ∈R stand for nominal potential parameters. Introducing
the cost functional

J2(p,u) =
α1

2

∫
Γ

∣∣u−uΓ
∣∣2 ds+

κ1

2

∣∣c1− c1,d
∣∣2 +

κ2

2

∣∣c− c2,d
∣∣2 (7)

for p = (c1,c2) ∈ R
2 and u ∈ H1(Ω) we express the identification problem as the fol-

lowing constrained optimal control problem

minJ2(p,u) s.t. p = (c1,c2) ∈ P2
ad and u ∈ H1

b (Ω) satisfies (4). (8)

We assume that (8) admits at least one local solution x∗ = (p∗,u∗) with p∗ = (c∗1,c
∗
2).
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3 The POD Method

In this section we introduce briefly the POD method. Suppose that for points p j ∈ Pi
ad ,

j = 1, . . . ,n and i = 1,2, we know (at least approximately) the solution u j to (3), e.g.,
by utilizing a finite element or finite difference discretization. We set

V = span
{

u1, . . . ,un
}
⊂ H1

b (Ω) ⊂ H1(Ω) (9)

with d = dimV≤ n. Then the POD basis of rank �≤ d is given by the solution to

min
ψ1,...,ψ�

n

∑
j=1

β j

∥∥∥u j−
�

∑
i=1
〈u j,ψi〉H1(Ω)ψi

∥∥∥2

H1(Ω)
s.t. 〈ψi,ψ j〉H1(Ω) = δi j (10)

with nonnegative weights {β j}n
j=1. For the choice of the β j’s we refer to [11,14].

The solution to (10) is characterized by the eigenvalue problem

Rψi = λiψi, 1≤ i≤ �, (11)

where λ1 ≥ λ2 ≥ . . .≥ λ� ≥ . . .≥ λd > 0 denote the eigenvalues of the linear, bounded,
self-adjoint, and nonnegative operator R : H1(Ω)→ V defined by

Rz =
n

∑
j=1

β j 〈u j,z〉H1(Ω) u j for z ∈ H1(Ω); (12)

see [7,14,21]. Suppose that we have determined a POD basis {ψi}�
i=1. We set

V � = span
{
ψ1, . . . ,ψ�

}
⊂ V⊂ H1(Ω). (13)

Then the following relation holds

n

∑
j=1

β j

∥∥∥u j−
�

∑
i=1

〈u j,ψi〉H1(Ω)ψi

∥∥∥2

H1(Ω)
=

d

∑
i=�+1

λi, (14)

i.e., a rapid decay of the eigenvalues λi indicates that the vectors u1, . . . ,un can be well
approximated by taking only a few ansatz functions {ψi}�

i=1 with �� d.
Now we introduce the POD Galerkin scheme for (4) as follows: the function u� =

∑�
i=1 u�

iψi ∈V � solves∫
Ω

c∇u� ·∇ψ dx +
∫
Ω

(
qu� + eu�

)
ψ dx +

∫
Γ
σu�ψ ds

=
∫
Ω

fψ dx +
∫
Γ

gψ ds for all ψ ∈V �.
(15)

Problem (15) is a nonlinear system for the � unknown modal coefficients u�
1, . . . ,u

�
� ∈R.

If

E (�) = ∑�
i=1λi

∑d
i=1λi

≈ 1 for �� d, (16)

holds, (15) is called a low-dimensional model for (4).
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4 Numerical Experiments

In this section we present numerical examples for the identification problem. The nu-
merical tests are executed on a standard 3.0 GHz desktop PC. We are using the MATLAB

7.1 package together with FEMLAB 3.1.

Run 1 (Problem (5)). Suppose that the domain Ω is given by

Ω =
{

x = (x1,x2)|
x2

1

1.22 + x2
2 < 1

}
⊂ R

2; (17)

see Fig. 1. In (3) we choose f = 5, σ = 3/2, and g =−1. For cex = 1.2 and qex = 11 we
calculate a finite element (FE) solution uh

ex = uh(cex,qex) with 1275 degrees of freedom.
The parameter pex = (cex,qex) is our reference parameter.

Fig. 1. Run 1: Domain Ω and the interior points for which we have measurements

Basis computation. We distinguish three different techniques in deriving a basis for the
Galerkin projection.

1) First we compute 20 snapshots by varying the parameters c and q simultaneously.
We define the equidistant grid

(c,q) ∈ {0.2,0.8,1.4,2}×{1,8,15,22,29} (18)
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and calculate a POD model with � = 6 basis functions. In (10) we choose trape-
zoidal weights. Thus, we consider

min
4

∑
i=1

5

∑
j=1

βiβ̃ j

∥∥∥uh(ci,q j)−
�

∑
k=1

〈uh(ci,q j),ψk〉H1(Ω)ψk

∥∥∥2

H1(Ω)
(19)

where

β1 =
c2− c1

2
, βi =

ci+1− ci−1

2
for i = 2,3, β4 =

c4− c3

2
(20)

and

β̃1 =
q2−q1

2
, β̃ j =

q j+1−q j−1

2
for j = 2,3,4, β̃5 =

q5−q4

2
. (21)

The relative error in the H1-norm between the FE state uh
ex and the POD state u�

ex =
u�(cex,qex) is 6.2 ·10−4.

2) Alternatively, we use the reduced-basis method (see [8,16,18], for instance) in or-
der to obtain a 6-dimensional model of the elliptic system. The idea of the reduced-
basis method is to choose the parameter instances for which the snapshots are com-
puted intelligently and to use these snapshots directly as basis in the Galerkin pro-
jection. Therefore we apply the simplified formula taken from [17]:

qrb
k = exp(− lnγ+ k ·δ q)− 1

γ
for k = 1, ...,N, (22)

where we set γ = 0.02, qmax = 29, N = 3, and δ q = ln(γ ·qmax + 1)/N. Hence, we
find that the parameters for which the snapshots should be computed are: qrb

1 = 4.3,
qrb

2 = 12.68, and qrb
3 = 29. Analogously we set γ = 0.02, cmax = 2, M = 2, and

δ c = ln(γ · cmax + 1)/M and choose

crb
k = exp(− lnγ+ k ·δ c)− 1

γ
, k = 1, ...,M, (23)

hence we find crb
1 = 0.91 and crb

2 = 2. Thus, the 6 reduced-basis elements are the
solutions uh(c,q) to (3) computed for the parameter instances

(c,q) ∈ {0.91,2}×{4.3,12.68,29} (24)

The relative error in the H1-norm between the FE state uh
ex and the reduced order

model urb
ex = urb(cex,qex) is 1.7 ·10−4.

3) The best approximation of the FE state can be obtained by combining both methods
(POD and reduced-basis). Therefore we compute 20 snapshots at the parameter
instances calculated by the reduced-basis ansatz (i.e., we set N = 5 and M = 4 and
use the formula from above again). We find that the snapshots should be computed
at the 20 snapshot pairings

(c,q) ∈ {0.43,0.91,1.43,2}×{2.23,5.57,10.53,17.95,29}. (25)
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Then we construct a 6-dimensional POD basis. The relative error in the H1-norm
between the FE state uh

ex and this reduced order model u�,rb
ex = u�,rb(cex,qex) is now

about 10−4.
We proceed by using this POD basis for the reduced-order modeling. The com-

putation of the POD solution takes 437 seconds (411 seconds thereof are for the
computation of the 20 FE snapshots whereas one solve of the nonlinear POD model
only takes 0.06 seconds). From Table 1 it can be observed that the relative error
between the FE state and the POD state decreases as the number of POD basis
functions increases.

Table 1. Run 1: Relative errors between the FE state and the POD state for increasing number of
POD basis functions

� = 4 � = 5 � = 6 � = 7

‖uh−u�,rb‖H1(Ω )

‖uh‖H1(Ω )
1.2e-3 5.3e-4 1.0e-4 1.1e-5

Identification problem. Now turn to the identification problem. Let ca = qa = 0.01 to
ensure that both parameters are positive. Moreover, we choose cd = qd = 0, i.e., no a-
priori knowledge on the parameters is available. We add a random noise of 8% to the
FE state uh

ex. For the weights in the cost functional we take α1 = α2 = 1000, and we
choose

Ωm =
{

x = (x1,x2) ∈Ω |(x1 + 0.1)2 +(x2−0.1)2 < 0.852
}

(26)

for the partial measurement. Furthermore, we suppose that measurements are not given
on the whole subdomain Ωm, but only on 381 points (of totally 762 grid points) in Ωm.
The points for which we have measurements (besides the points on the boundary) are
indicated by the circles in Fig. 1. Now we consider the bilevel optimization problem
(compare (2))

min
κ=(κc,κq)

∫
Γ

∣∣uκ −uΓ
∣∣2 ds s.t. (cκ ,qκ ,uκ) solves (5) for κc,κq ≥ 10−16 (27)

By using the MATLAB function fmincon we determine – after 56.2 seconds – the
optimal weighting parameters κ∗c = 0.1691 and κ∗q = 10−16. For these optimal weights
we solve the reduced order model by means of an augmented Lagrange-SQP algorithm
and use the POD Galerkin projection. Altogether 50 SQP iterations are required and we
find numerically an optimal solution (c∗,q∗,u∗) to (27); in particular, c∗ = 1.1972 and
q∗ = 10.9827. Thus,

‖pex− p∗‖2

‖pex‖2
≈ 0.16% with pex = (cex,qex) and p∗ = (c∗,q∗). (28)

The relative errors in the state variable to the exact (unnoisy) data and to the noisy
data are stated for 3 different norms in Table 2. The CPU time for the optimization is
small compared to the POD computation time. The POD optimization algorithm for (5)
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Table 2. Run 1: Relative errors of the suboptimal state u∗ compared to the exact data uh
ex and to

the noisy data uΓ for the optimal (κ∗c ,κ∗q ) = (0.1691,10−16) and for (κ( j)
c ,κ( j)

q ), j = 1,2,3

‖u∗−u‖L2(Γ )
‖u‖L2 (Γ )

‖u(1)−u‖L2(Γ )
‖u‖L2(Γ )

‖u(2)−u‖L2(Γ )
‖u‖L2(Γ )

‖u(3)−u‖L2 (Γ )
‖u‖L2(Γ )

u = uh
ex 0.004592 0.091625 0.013806 0.018451

u = uΓ 0.037749 0.095162 0.042008 0.044252

only takes 1.7 seconds. For comparison, when we use the FE discretized model in the
augmented SQP-Lagrange algorithm, it takes about 290 seconds to obtain a solution.

Note that for the choice κ (1)
c = 5 ·κ∗c and κ (1)

q = κ∗q , we find the solution c(1) = 1.1746

and q(1) = 10.9273, which gives

‖pex− p(1)‖2

‖pex‖2
≈ 0.7% with p(1) = (c(1),q(1)) (29)

and the relative errors are as stated in Table 2. The same can be done with κ (2)
c = 0.2 ·κ∗c

and κ (2)
q = κ∗q . We find c(2) = 1.2021 and q(2) = 10.9947. Thus,

‖pex− p(2)‖2

‖pex‖2
≈ 0.05% with p(2) = (c(2),q(2)). (30)

Finally, we choose κ (3)
c = κ (3)

q = 10−16. The resulting parameters are c(3) = 1.2034 and
q(3) = 10.9978, which gives

‖pex− p(3)‖2

‖pex‖2
≈ 0.04% with p(3) = (c(3),q(3)) (31)

We observe that the relative error in the coefficients is smaller for both p(2) and p(3)

compared to p∗. However, we observe from Table 2 that the relative errors of the PDE
solution u∗ on the boundaryΓ are the smallest ones. Note that in (27) the term ‖u−uΓ ‖2

is minimized. For the absolute errors we refer to Table 3. Also the absolute errors are
for κ∗ the smallest ones, in particular also the error of u∗ −uh

ex.

Table 3. Run 1: Absolute errors of the suboptimal state u∗ compared to the exact data uh
ex and to

the noisy data uΓ for the optimal (κ∗c ,κ∗q ) = (0.1691,10−16) and for (κ( j)
c ,κ( j)

q ), j = 1,2,3

‖u∗ −u‖L2(Γ ) ‖u(1)−u‖L2(Γ ) ‖u(2)−u‖L2(Γ ) ‖u(3)−u‖L2(Γ )

u = uh
ex 0.000166 0.003320 0.000500 0.000667

u = uΓ 0.001363 0.003437 0.001517 0.001598
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Fig. 2. Run 2: Domain Ω and subdomains Ω1, Ω2

Run 2 (Problem (8)). Now let Ω = {x = (x1,x2) |x2
1 + x2

2 < 1} be the open unit circle
in R

2 and the subdomains Ω1, Ω2 be given as

Ω1 =Ω \Ω2, Ω2 =
{

x = (x1,x2) ∈Ω | (x1−0.2)2

a2 + (x2+0.1)2

b2 < 1
}

(32)

with a = 0.5 and b = 0.4; see Fig. 2. In (3) we choose q ≡ 20, f ≡ 4, σ = 2, and
g(x) = 10 + cos(πx1/2) · cos(πx2/2). For pex = (c1,ex,c2,ex) = (0.8,1.3) we compute
the FE solution with 1070 degrees of freedom. To derive a POD basis we choose the
diffusion values p j = (ηk,ηl) ∈ R

2
+, 1≤ j ≤ n, with

j = 5(k−1)+ l for 1≤ k, l ≤ 5, ηk = 0.5 +
k−1

4
for k = 1, . . . ,5 (33)

and compute the corresponding FE solutions uh
j = uh(p j) ∈H1(Ω) to (3), i.e., we have

n = 25 snapshots {uh
j}n

j=1. The computation of the snapshots requires 307 seconds.
Next we compute the POD basis of rank � = 7 as described in Sect. 3 and construct the
POD model u�(c̄) which has a relative error to the FE state uh

ex of 1.38 ·10−4. Now (2)
has the form

min
κ=(κ1,κ2)

∫
Γ

∣∣uκ −uΓ
∣∣2 ds s.t. (cκ1 ,cκ2 ,uκ) solves (8) for κ1,κ2 ≥ 10−16. (34)

In the optimization algorithm for noisy data (3%) we choose α1 = 100 and find the op-
timal weight κ∗ = (κ∗1 ,κ∗2 ) = (0.7534,0.0023). The corresponding optimal coefficient
is p∗ = (0.7873,1.3247). Moreover, the relative and absolute errors in the state vari-

able are stated in Table 4. If we take κ (1) = (κ (1)
1 ,κ (1)

2 ) = (10−16,10−16) instead of κ∗,
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Table 4. Run 2: Relative errors of the suboptimal state u∗ compared to the exact data uh
ex and to

the noisy data uΓ for κ1 = 0.7534 and κ2 = 0.0023

‖u∗−u‖L2(Γ )
‖u‖L2 (Γ )

‖u∗ −u‖L2(Γ )

u = uh
ex 0.004276 0.016811

u = uΓ 0.012713 0.050184

the result is p(1) = (0.7902,1.4185) solves (8). Then, ‖pex− p(1)‖2/‖pex‖2 ≈ 8%, but
‖pex− p∗‖2/‖pex‖2 ≈ 2%.

Now, let the subdomains Ω1 and Ω2 be given as

Ω1 =Ω \Ω2, Ω2 =
{

x = (x1,x2) ∈Ω |x2
1 +(x2 + 0.1)2 < 0.752

}
. (35)

We choose pex = (c1,ex,c2,ex) = (1.2,0.9), all other parameters in (3) remain the same.
Moreover, the measuring data ud is much more noisy (15%) than before. In this case we
observe that – due to the bigger noise – both components of the ideal κ∗ are far away
from zero (see Fig. 3). The cost funtional in (2) for κ (1) = (10−16,10−16) has a value of
0.2757, while for κ∗ = (0.3465,0.6675) the cost is only 0.2745. However, the relative
error in the parameter p = (p1, p2) is much smaller for the solution using κ (1) rather
than κ∗. We observe ‖pex− p(1)‖2/‖pex‖2 ≈ 0.8%, but ‖pex− p∗‖2/‖pex‖2 ≈ 14%.
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Fig. 3. Run 2: Cost functional in (2) for a grid of different κ = (κ1,κ2) (left plot) and contour plot
of the cost functional. The absolute minimum is approximately at κ∗ = (0.35,0.67) (right plot).

Acknowledgements. The authors gratefully acknowledge partial support by the Aus-
trian Science Fund FWF under grant no. P19588-N18 and by the SFB Research Center
“Mathematical Optimization in Biomedical Sciences” (SFB F32).



Estimation of Regularization Parameters by POD Model Reduction 317

References

1. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method:
application to efficient reduced-basis discretization of partial differential equations. Comptes
Rendus de’l Académie des Sciences Paris I(339), 667–672 (2004)

2. Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers. Academic Press, New
York (1982)

3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
4. Casas, E., Raymond, J.-P., Zidani, H.: Optimal control problem governed by semilinear ellip-

tic equations with integral control constraints and pointwise state constraint. In: Desch, W., et
al. (eds.) Control and estimation of distributed parameter systems. International conference
in Vorau, Austria, July 14-20. Birkhauser, Basel (1996); ISNM, Int. Ser. Numer. Math. 126,
89–102 (1998)

5. Fukuda, K.: Introduction to Statistical Recognition. Academic Press, New York (1990)
6. Hintermüller, M.: A primal-dual active set algorithm for bilaterally control constrainted op-

timal control problems. Quarterly of Applied Mathematics 61, 131–160 (2003)
7. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Sys-

tems and Symmetry. In: Cambridge Monographs on Mechanics. Cambridge University Press,
Cambridge (1996)

8. Ito, K., Ravindran, S.S.: Reduced basis method for unsteady viscous flows. Int. J. of Comp.
Fluid Dynamics 15, 97–113 (2001)

9. Lall, S., Marsden, J.E., Glavaski, S.: Empirical model reduction of controlled nonlinear sys-
tems. In: Proceedings of the IFAC Congress, vol. F, pp. 473–478 (1999)

10. Ly, H.V., Tran, H.T.: Modelling and control of physical processes using proper orthogonal
decomposition. Mathematical and Computer Modeling 33, 223–236 (2001)

11. Kahlbacher, M., Volkwein, S.: Galerkin proper orthogonal decomposition methods for para-
meter dependent elliptic systems. Discussiones Mathematicae: Differential Inclusions, Con-
trol and Optimization 27, 95–117 (2007)

12. Kahlbacher, M., Volkwein, S.: Model reduction by proper orthogonal decomposition for es-
timation of scalar parameters in elliptic PDEs. In: Wesseling, P., Onate, E., Periaux, J. (eds.)
Proceedings of ECCOMAS CFD, Egmont aan Zee (2006)

13. Kahlbacher, M., Volkwein, S.: Estimation of diffusion coefficients in a scalar Ginzburg-
Landau equation by using model reduction. Submitted (2007),
http://www.uni-graz.at/imawww/reports/archive-2007/IMA05-07.
pdf

14. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general
equation in fluid dynamics. SIAM J. Numer. Anal. 40, 492–515 (2002)

15. Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I-III. Quarterly of
Applied Mathematics XLV, 561–590 (1987)

16. Machiels, L., Maday, Y., Patera, A.T.: Output bounds for reduced-order approximations of
elliptic partial differential equations. Computer Methods in Applied Mechanics and Engi-
neering 190, 3413–3426 (2001)

17. Maday, Y., Patera, A.T., Turinici, G.: Global a priori convergence theory for reduced-basis
approximations of single-parameter symmetric coercive elliptic partial differential equations.
Comptes Rendus de’l Académie des Sciences Paris I(335), 289–294 (2002)

18. Maday, Y., Rønquist, E.M.: A reduced-basis element method. Journal of Scientific Comput-
ing 17, 1–4 (2002)

19. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition.
International Journal of Bifurcation and Chaos 15, 997–1013 (2005)

http://www.uni-graz.at/imawww/reports/archive-2007/IMA05-07.pdf
http://www.uni-graz.at/imawww/reports/archive-2007/IMA05-07.pdf


318 M. Kahlbacher and S. Volkwein

20. Vogel, C.R.: Computational Methods for Inverse Problems, Philadlphia. SIAM Frontiers in
Applied Mathematics (2002)

21. Volkwein, S.: Model Reduction using Proper Orthogonal Decomposition. Lecture Notes,
Institute of Mathematics and Scientific Computing, University of Graz,
http://www.uni-graz.at/imawww/volkwein/POD.pdf

22. Volkwein, S., Hepberger, A.: Impedance Identification by POD Model Reduction Techniques
(2008) (submitted),
http://www.uni-graz.at/imawww/reports/archive-2008/IMA01-08.
pdf

23. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition.
American Institute of Aeronautics and Astronautics (AIAA) 40, 2323–2330 (2002)

http://www.uni-graz.at/imawww/volkwein/POD.pdf
http://www.uni-graz.at/imawww/reports/archive-2008/IMA01-08.pdf
http://www.uni-graz.at/imawww/reports/archive-2008/IMA01-08.pdf


Identification of Material Models
of Nanocoatings System Using
the Metamodeling Approach

Magdalena Kopernik, Andrzej Stanisławczyk, Jan Kusiak, and Maciej Pietrzyk

AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
magdalenakopernik@interia.pl, astan@agh.edu.pl,

kusiak@agh.edu.pl, pietrzyk@agh.edu.pl

Abstract. Hard systems of nanocoatings deposited using PVD (physical vapor
deposition) are used in the artificial heart prosthesis. Correct determination of
nanomaterial parameters is crucial for accuracy of simulation. The objective of
this work is identification of material parameters of nanocoatings in hard sys-
tem using the inverse analysis based on the artificial neural network metamodel-
ing. The inverse analysis was preceded by the development of the Finite Element
Method (FEM) model dedicated to the nanoindentation test of the hard nanocoat-
ings system. The performed sensitivity analysis is focused on determination of
parameters, having the highest influence on FEM model response. The obtained,
reliable FEM model was used next in the inverse analysis. The objective of that
analysis was evaluation of the parameters of the individual layers of the nanocoat-
ing system. In order to decrease the computation time connected with the inverse
analysis, the metamodeling approach was proposed. The used metamodel was
based on the artificial neural network technique. The obtained results confirm the
usefulness of the presented method in the identification of the material properties
of the complex, nanocoating systems.

1 Introduction

Thin hard nanocoating systems exhibit interesting tribological and functional proper-
ties, which are difficult to achieve in conventional, homogenous materials. On the other
hand, due to very small scale and contrasting physical properties in adjacent, very thin
layers, physical and numerical modeling of these systems face essential difficulties.
Hard nanocoatings and their systems are usually investigated in experimental nanoin-
dentation tests, because other, standard experimental methods performed in macro and
micro scale are not suitable for such case [12]. Analytical methods for nanoindentation
tests, which lead to evaluation of mechanical properties, were developed by Oliver and
Pharr [12]. However, all these solutions are dedicated to monolayer materials. There-
fore, the authors of the present work have undertaken some attempts towards the nu-
merical FEM modeling of multilayer system [7]. FEM modeling of nanoindentation
test appears difficult, because of the small thickness of layers, which involves necessity
of mesh regeneration. Accuracy of the FEM simulation of the layered, multimaterial
system depends on adequate evaluation of the properties of every single layer, which is
crucial in modeling of nanocoatings. As the result of mentioned above difficulties, the

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 319–330, 2009.
© IFIP International Federation for Information Processing 2009
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direct numerical model for nanoindentation test is computationally expensive. There-
fore, development of the alternative, computationally effective method, based on the
metamodel principle, is the main objective of the present work.

The first part of work describes the nanoindentation test of hard nanocoatings and
explains how hardness in nanoscale is measured. The next part of the paper is dedicated
to the development of the efficient and robust FEM model of nanoindentation test. FEM
modeling was preceded by the sensitivity analysis oriented towards the determination
of material model parameters and nanotest settings, which have the greatest influence
on a response of generated FEM model of nanocoatings system.

The main objective of the present work is the inverse analysis, which allows the iden-
tification of material parameters of inner nanocoating in system of hard nanocoatings
composed of various nanomaterial layers. The metamodel approach [9] based on the
FEM modeling and artificial neural network techniques [6,10] is proposed in the paper.

2 Nanoindentation Tests

The first objective of the work was investigation of properties of tribological hard
nanocoatings system, which is composed of TiAlN [3] and TiN [2]. These materials are
deposited on the elastic substrate like carbide using PVD technique. Titanium nitride is
used for some particular and the most demanding applications, because it increases the
biocompatibility of the material. An artificial left blood chamber and its constructional
element, which is an aortic valve, are the good examples of biotechnological applica-
tion [11] of these materials, especially of TiN. The properties (hardness and Young’s
modulus) of a specimen are examined in the experimental nanoindentation tests.

2.1 Examined Material

The specimen (technical material) of titanium nitride basis and thin mixed hard elastic-
plastic nanolayers deposited on elastic substrate was investigated. The material system
of eleven PVD, thin material layers on carbide (infinite thickness) is shown in Fig. 1.
Two different coatings are deposited periodically. Coating 2 (TiN, an elastic material)
is 40 nm thick and is repeated three times. Coating 1 (TiAlN, an elasticplastic material)
is 400 nm thick and is repeated four times.

2.2 Experiment

The objective of the nanoindentation test is to evaluate the mechanical properties of in-
dented material like hardness and Young’s modulus. The experimental nanoindentation
test is performed in load or depth controlled mode using a Nano Test System [3,2]. Di-
amond (E = 1141 MPa, ν = 0.07), Berkovich pyramid (tip radius R = 150 nm, pyramid
angle α = 70.32°) penetrates into the specimen. The schematic illustration of experi-
ment and the top view of Berkovich indent is shown in Fig. 2.

The multistage process of deformation in nanoindentation test is performed in the
case of testing the multicoating material. This procedure is necessary for specimen
composed of nanocoatings to eliminate the effect of scatter in results and to create a
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Fig. 1. Analyzed system of nanocoatings

(a) (b)

Fig. 2. (a) Schematic illustration of nanoindentation test [5], (b) The real view of Berkovich in-
dent [5]

possibility to achieve the response of bottom layers during long term deformation pro-
cess. The indentation test supplies force versus indentation depth (tool displacement)
data. The load is the main output from the experiment and the Martens hardness for de-
formed material is calculated on the basis of force/displacement or depth data [12,3,2].

3 FEM Model

The earlier research of the authors [7,9,10,8] is focused mainly on overcoming numerical
difficulties occurring in FEM simulation of deformation process of hard nanocoatings,
caused by the nanothickness of layers, necessity of remeshing and scaling operations,
as well as the multimaterial, multistage character of simulation and efforts to decrease
the computing costs.

The objective of the present work was the development of FEM model of nanoinden-
tation test accounting for different control parameters of the test, like indenter shape and
friction conditions, as well as sensitivity of the response of the specimen with respect to
material model parameters. The selected results, which are crucial for the development
of efficient FEM model of nanoindentation, are presented below.
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Fig. 3. Force versus depth results for 2D FEM axisymmetric and 3D FEM models [8]

To decrease the computing costs, the simplified 2D axisymmetric model of the nanoin-
dentation test was considered and the Berkovich indenter was treated as a conical one.
Such simplified model does not cause a loss of important information, which was val-
idated through the full 3D FEM simulation of nanoindentation tests [1,4]. The results
of comparison of 2D simulation and the full 3D model, obtained by the authors of the
present work are shown in Fig. 3 [8]. They confirm that simplified 2D model can be
used in the further research of the present work, which allows decreasing the compu-
tation costs. The velocity of the indenter [3,2] in experimental nanoindentation test is
constant and very small. According to the experimental procedure, the value of the in-
denter constant velocity does not have an effect on behavior of specimen’s material and
in each simulation is equal to 1 nm/s.

3.1 Sensitivity to Indenter Shape, Friction and Material Model Parameters

The design of conditions of an effective nanoindentation test, as well as adequate choice
of the FEM model parameters, were preceded by the sensitivity analysis. This method
allows the estimation of the influence of the individual process parameters on the value
of the analyzed one. The considered parameter was the total load (force) of the nanoin-
dentation test, therefore, its sensitivity with respect to the process parameters was
determined. The performed sensitivity analysis was based on the finite difference ap-
proximation. The sensitivity coefficients ϕp j were defined as:

ϕp j

∣∣∣∣
p∗

:=
p∗j

Fav(p∗)
∂Fav

∂ p j

∣∣∣∣
p∗
∼=

p∗j
Fav(p∗)

Fav(p∗+Δ p jej)−Fav(p∗)
Δ p j

(1)

where: p∗ = (R,α,μ ,E,K,n) - vector composed of considered parameters, ej - vector
of the canonical basis, Δ p - variation of the parameter p, Fav - average value of the total
load, calculated as follows:

Fav =
1
t

∫ t

0
F(τ)dτ (2)

where: F(τ) - the load at the time τ , t - total time of the process.
The sensitivities of the total load of the nanoindentation test with respect to the inden-

ter shape parameters (R,α), friction coefficient (μ) and specimen’s material parameters
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(a)

(b)

Fig. 4. (a) Sensitivity of the load with respect to geometrical indenter tip parameters: R, α and
friction coefficient μ for monocoating specimen. (b) Sensitivity of the load with respect to the
material model parameters E, K and n for the specimen composed of 3 hard nanocoatings.

(E,K,n) were analyzed. Two different specimens were examined: an elastic monocoat-
ing specimen - 400 nm thick and a specimen composed of 3 hard nanocoatings.

For the first, monocoating specimen, twelve Berkovich indenters with four tip radii
equal to 100, 110, 150 and 160 nm, as well as three tip vertex angles: 65.3, 67.5 and
70.32°, all with round tip were investigated. The Coulomb friction law was assumed
with the following Coulomb friction coefficient values: μ = 0.1, μ = 0.15, μ = 0.2 and
μ = 0.25. The Poisson ratio ν = 0.177 and four elastic moduli: E1 = 20, E2 = 22, E3 = 28,
and E4 = 30 GPa were used in the material model defined by:

σ = Eε (3)

where: σ - work-hardening stress, ε - strain, E - Young’s modulus.
196 FEM simulations were performed. The obtained results of the sensitivity analy-

sis presented in Fig. 4a indicate that the nanoindentation test is the most sensitive to the
geometrical parameters of the tip, especially to the higher values of the tip angle. The
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friction does not require special consideration, because very low values of sensitivity
coefficients are observed and, therefore, it can be omitted in future analysis.

The second examined specimen had the following 3 hard nanocoatings: coating 1
(elastic, 400 nm thick) was repeated twice and coating 2 (elasticplastic, 40 nm thick)
was a single interlayer. The coating 1 was considered as an elastic material defined
by Eq. 3. The elasticplastic material of the coating 2 was described by the following
relationship:

σ = Kεn (4)

where: σ - work-hardening stress, ε - strain, K - hardening coefficient, n - hardening
exponent.

The considered values of the Young’s modulus of the material model Eq. 3 of the
coating 1 were: E = 330, 350, 370, 390 and 410 GPa. The chosen values of parameters
in material model Eq. 4 of the coating 2 were: K = 50, 60, 100, 110, 300 and 310 MPa,
while n = 0.1, 0.15, 0.2 and 0.25. Diamond, Berkovich indenter (radius R = 150 nm
and pyramid angle α = 70.32°) penetrates into specimen. The friction coefficient μ is
assumed 0. Finally, 144 FEM simulations were performed.

The obtained results of sensitivity calculations for the second, multicoating specimen
are presented in Fig.4b. They show that for chosen material models Eq. 3 and Eq. 4, the
load is the most sensitive to the parameters E and n, as well as to the parameter K. It
means that each parameter of the material models Eqs. 3 and 4 is important and has to
be considered in future FEM models of nanoindentation test.

3.2 The Final FEM Model of Nanoindentation Test

The aim of research described in Sect. 3.1 was the analysis of the influence of the de-
formation process and material model parameters on the total load (force), as well as
on the evaluation of optimal conditions and input settings for FEM model of nanoin-
dentation test of the hard nanocoatings system. The defined process and material model
parameters used in the developed FEM model of nanoindentation test are:

– the angle of indenter α = 70.32° and tip radius R = 150 nm,
– the indenter velocity v = 1 nm/s and final displacement d = 100 nm,
– the parameters E , K, n in used material models Eqs. 3 and 4, which are specified in

the last section of Sect. 3.1 and presented in Fig. 4b,
– the specimen has three coatings with material models are described by Eqs. 3 and 4,

respectively for elastic coating 1 and elasticplastic coating 2,
– the frictionless conditions between indenter and specimen (μ = 0).

The final, used in further calculations of the present work, FEM mesh has 7000 nodes
and 13 000 elements (Fig. 5a).

The described FEM model was implemented into the FORGE 2 code. The example
of equivalent strain distribution is plotted in Fig. 5b. It can be seen that the maximum
of strain is located in the inner coating.
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(a) (b)

Fig. 5. (a) The developed FEM model (specimen and indenter) of the nanoindentation test. (b)
Distributions of the equivalent strain of 3 hard nanocoatings.

4 Inverse Analysis with Metamodel

Generally, the main goal of the inverse analysis is evaluation of the real parameters of
the model for the tested material. The aim of the present work is evaluation of these
parameters on the basis of the nanoindentation test for multi-nanocoating systems. The
known and described widely in [12] analytical methods used in experimental nanoin-
dentation test lead to evaluation of mechanical properties (hardness, Young’s modulus)
and they produce desired results, but only for monolayer specimen. It is impossible to
extrapolate these solutions to the multilayered nanocoatings.

Therefore, the objective of this research is to evaluate the properties of the inner lay-
ers of the multinanocoating system. The inverse analysis was suggested by the authors
to solve this problem. The load measured for the whole nanocoatings system is the
main output from the nanoindentation experiment, which is indirectly used in the goal
function of the classical inverse approach. Since the inverse analysis of such complex
nanomaterial system is very time-consuming procedure, the classical inverse analysis
was coupled with the artificial neural network (ANN). The ANN approach allows sig-
nificant reduction of the computational costs.

4.1 Classical Inverse Approach

The identification of material model can be done using the classical inverse approach.
The objective of the inverse analysis is to find, using the optimization procedure, the
material model parameters, which give the best matching between results of the FEM
simulation and the experiment. The discrepancy between these values is the optimiza-
tion goal function, which has to be minimized.

Unfortunately, in many cases, the evaluation of goal function requires numerous
time-consuming FEM simulations. It makes the computation time of the whole inverse
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analysis unacceptable. In the analyzed problem one FEM simulation of nanoindenta-
tion test, for conditions described above, is computed at least about three hours and the
whole inverse analysis for one simulation of experiment may last many days.

4.2 Metamodel and Results

The inverse method can be speeded up by using the fast metamodeling approach, in-
stead of running thousands FEM simulations. The idea of the metamodel approach can
be briefly defined as modeling of the existing model. Usually, in the metamodeling
procedure, various methods of approximation or artificial intelligence tools are used to
modeling of existing models of analyzed processes. The latter approach is applied in
the present work.

For the purpose of the inverse analysis of considered nanoindentation test the pro-
posed metamodel is based on the artificial neural network models. Obviously, the ANN
metamodel creation demands numerous time-consuming FEM simulations as the input
data. But this is done once, and later on, the whole inverse procedure may be performed
fast for many simulations of experiment. The idea of the metamodel creation and its
application in the inverse analysis are shown in Fig. 6.

As it was mentioned, the metamodel of the FEM output data of the nanoindentation
test, obtained in the FORGE 2 simulations, is based on the artificial neural network
approach. The Multi Layer Perceptron (MLP) of the 4-2-1 architecture is used (logistic
transfer functions in the first and second layers; linear activation function in the output
layer - see Fig. 7).

The ANN input data are the parameters E , K and n of the material models Eqs. 3
and 4 of the analyzed multinanocoating specimen, as well as the indenter displacement
d. The ANN output data corresponds to force F .

(a)

(b)

Fig. 6. The metamodel: (a) creation, (b) application in the inverse analysis
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Fig. 7. The metamodel based on the ANN

Fig. 8. Results of the artificial neural network test for work-hardening curves of multi-
nanocoating specimen

144 data sets for various n, K and E were used. Each set was composed of 25 val-
ues of force versus displacement data. 142 sets of data were training data, and two sets
were used as for ANN test. The network was trained using Levenberg-Marquardt al-
gorithm [6]. The network was tested for n = 0.15, E = 370 GPa, K = 100 MPa and the
results are shown in Fig. 8. Root mean square error for the two test sets is equal to
20 μN, which confirms good predictive capability of the network.

The trained network was used next as the metamodel in the inverse analysis. The
analyzed goal function of the inverse problem was the root mean square error between
experimental data and the output of the network:

φ(n,E,K) =

√
1
N

N

∑
i=1

(
FEXP(i)−FANN(n,E,K,di)

)2
(5)

where: FEXP - force vs displacements simulated by FEM, FANN - ANN predicted values
of the force, di - displacements, N - number of computing steps.

To find the minimum value of the goal function (Eq. 5) the hybrid optimization pro-
cedure was applied. The genetic algorithm was used in the first phase to the localization
of the minimum, while the Quasi-Newton algorithm was used in the final search. The
whole algorithm of the inverse method with metamodel is shown in Fig. 9.

The experimental data was generated by FEM simulation for the set of material
model parameters: n = 0.175, E = 400 GPa and K = 270 MPa. The results for exam-
ined case are presented in Fig. 10. Evaluated minimum of the goal function (Eq. 5) is
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Fig. 9. Algorithm of the inverse analysis with metamodel

Fig. 10. Results of the inverse analysis for the analyzed case

found at n = 0.17, E = 397 GPa and K = 331 MPa for analyzed case. The goal function
value is φ = 21 μN.

It is shown in Fig. 10 that the experimental (simulated) points match very well the
found solution. Unfortunately, the problem is irreversible. It means that for one set of
force versus displacement many different solutions can be found. This statement is also
confirmed by the second plot, which is shown in Fig. 11. This plot presents logarithm
of goal function (Eq. 5) for the examined case. The chosen goal function for simulated
experimental data set takes minimal values in some area located around experimental
parameters. The minimum of goal function is shallow and therefore, the optimization
result depends on the starting point. The ambiguity problem will be greater for the real
experimental data (not simulated), because there is a big scatter in experimental results.
Thus, the future form of used material model (Eq. 4) should be modified by adding
more parameters or chosen the more complex material model.
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Fig. 11. Plot of the logarithm of the goal function for the experimental data set

5 Conclusions

The presented research and reached results lead to the following conclusions:

– Presented metamodeling approach is useful for considered optimization problem
when the evaluation of the goal function is time-consuming. The proposed algo-
rithm allows radical decrease of the number of long-term FEM calculations. De-
spite of the initial computational efforts connected with the ANN training, the final
use of the network as the metamodel in the evaluation of material model parameters
lasts only a few seconds. So, the reached time-profit is very high.

– The quality of results is very good. Trained ANN gives good compatibility with the
test set.

– There is a certain disadvantage of presented approach - a weak ambiguity, because
similar output curves can be obtained for different combination of chosen input
material model parameters. This observation is proved by the plot of the used goal
function (Eq. 5), which is shown in Fig. 11. The goal function takes minimal values
in some area located around chosen experimental parameters. The minimum of
goal function is shallow and vast. Therefore, the analyzed problem is irreversible.
The disadvantage of such approach appears, because it is impossible to find out
precisely, which combination of parameters in material model is the best solution
of the inverse problem. Therefore, the future research of the authors will be focused
on solving the uniqueness problem by modification of the form of material model,
by adding more parameters or choosing a more complex material model.

– The ANN based metamodel can be used together with another optimization proce-
dure, for example the one defined by heuristic algorithms.

– The key aspects of all the prospects and conclusions are important from the point
of view of the authors, because the examined system of nanocoatings will be used
for demanding biomedical application. These coatings will be also deposited on
polyurethane by PLD (Pulsed Laser Deposition) technique and are supposed to be
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used for artificial heart prosthesis as the constructional materials. Numerical model
of such artificial organ needs the exact material model parameters of all its material
layers.
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3962, is acknowledged.
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Abstract. Self-adjoint extensions of elliptic operators are used to model the so-
lution of a partial differential equation defined in a singularly perturbed domain.
The asymptotic expansion of the solution of a Laplacian with respect to a small
parameter ε is first performed in a domain perturbed by the creation of a small
hole. The resulting singular perturbation is approximated by choosing an appro-
priate self-adjoint extension of the Laplacian, according to the previous asymp-
totic analysis. The sensitivity with respect to the position of the center of the small
hole is then studied for a class of functionals depending on the domain. A numer-
ical application for solving an inverse problem is presented. Error estimates are
provided and a link to the notion of topological derivative is established.

1 Introduction

The standard approach in shape optimization consists in performing smooth perturba-
tions of the boundary of a domain Ω in the normal direction. This technique does not
allow topological changes in the domain. From a numerical point of view, topological
changes can be obtained using levelset methods with this technique, but these changes
are restricted and have no theoretical background.

In order to overcome this difficulty, several techniques have been introduced. We re-
fer to [2] for recent developments, and to [1] for the method of homogenization in topol-
ogy optimization. Other techniques rely on the simplified framework of the asymptotic
analysis of the problems. In particular, the internal topology variations are introduced
in [16], the necessary optimality conditions for simultaneous topology and shape opti-
mization are derived in [17], the Steklov-Poincaré operators for modeling of small holes
are used in [4].

The use of self-adjoint extensions of elliptic operators for modeling the solution in
singularly perturbed domains was introduced in [7,10,11], and an alternative approach
for simultaneous topology and shape optimization using self-adjoint extensions was
presented in [12,13].

In this paper we develop a numerical method based on the application of self-adjoint
extensions of elliptic operators in shape optimization. The singular perturbation of the
geometrical domain Ω in �2 is defined by a small opening ωh

ε of diameter O(ε) and of
center h. The main idea of self-adjoint extensions is to model such a small defect ωh

ε
by a concentrated action, the so-called potential of zero-radii. In this way the solution
uh(x,ε) which has a singular behavior as ε → 0 is replaced by a function with the
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c© IFIP International Federation for Information Processing 2009



332 A. Laurain and K. Szulc

singularity at the center h of the defect. Such an approach is well-known in modeling
of physical processes in material with defects, we refer the reader e.g. to [3,8,15]. The
interesting feature of using self-adjoint extensions is that it can be extended to spectral
problems and evolution boundary value problems. Also, from a numerical point of view,
the singularity created by the small ε-perturbation is costly because the mesh has to
be refined in the neighborhood of this small hole and the geometry of the hole has
to be parameterized. To circumvent this problem, we use the concept of self-adjoint
extensions of elliptic operators to define an approximation of uh which is defined on the
fixed domain Ω .

In the first chapter, the asymptotic analysis of the singularly perturbed Dirichlet prob-
lem is performed using the method of compound asymptotic expansions. The solution
uh(x,ε) of the perturbed problem is approximated by a sequence of limit problems. The
2-dimensional case considered in this paper leads to a specific asymptotic analysis, due
to the nature of the fundamental solution in 2D, which is of logarithm type.

In the second chapter, the self-adjoint extension of the Laplace operator with Dirich-
let boundary conditions is introduced. The approximation of the solution uh(x,ε) is
then the solution vh of a differential equation involving the self-adjoint extension. Error
estimates for this approximation with respect to ε are given. Then, for the numerical
application, the sensitivity with respect to the position h of the hole is studied, and the
continuity with respect to h is proven for certain functionals in Lp spaces.

In the third chapter, the numerical problem is considered. We want to minimize the
L2-distance between the approximation vh and a data z measured on a subset Ω2 of the
domain Ω . The first-order derivative with respect to h of the functional is computed for
use in the conjugate gradient method used in the numerical algorithm.

In the fourth chapter, a link is established with the so-called topological derivative.
The topological derivative can be recovered using the self-adjoint extension model.
Usually, the topological derivative can be used to solve the problem under consider-
ation, however we show here that our algorithm is more precise than the topological
derivative because it involves additional terms of the expansion of the perturbed solu-
tion. Actually, in numerical tests, our algorithm always converges to the true solution
as the space step goes to zero, while the topological derivative can be quite far from the
true solution.

In the fifth chapter, the numerical algorithm is presented. We use a Fletcher-Reeves
conjugate gradient algorithm associated with a line search to minimize the functional.
Finite differences are used to discretize the problems. Finally, in the sixth chapter, nu-
merical results are presented.

2 Problem Formulation

Let Ω and ω , with 0 ∈ ω , 0 ∈ Ω be two open subsets of �2 with smooth boundaries.
Let ε > 0 be a small parameter and h ∈�2. We define the perturbed domains Ω h

ε and
ωh
ε in the following way: ωε = {x ∈�2, x = εξ , ξ ∈ ω} and Ωε =Ω \ωε , ωh

ε = {x =
y + h, y ∈ ωε} and Ω h

ε =Ω \ωh
ε . We consider the following perturbed problem in �2,

with f in L2(Ω):
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−Δuh(x,ε) = f (x) in Ω h
ε , (1)

uh(x,ε) = 0 on ∂Ω , (2)

uh(x,ε) = 0 on ∂ωh
ε . (3)

In order to approximate the solution of (1)-(3), we use the technique of compound
asymptotic expansions. The main idea of this technique is to look for an approximation
in the form of a series with respect to the power of ε , with the coefficients given by a se-
quence of limit problems defined either in the unperturbed domain Ω or in �2 \ω . The
limit problems defined on �2 \ω are called boundary layers because they correspond
to solutions concentrated on the boundary of ωh

ε and vanishing at finite distance of ωh
ε .

The boundary conditions verified by a problem are determined by the discrepancy left
by the higher-order limit problem. Due to the nature of the fundamental solution in di-
mension 2, i.e. a logarithm, a specific procedure needs to be used, which leads to an
expansion containing powers of lnε . Even if the full expansion can be obtained in the
case of the Dirichlet equation we are looking at, we restrict ourselves to the first term
of the expansion, which is the only term of interest for our purposes.

2.1 First Limit Problem

The first approximation v0 solves:

−Δv0(x) = f (x) in Ω , (4)

v0(x) = 0 on ∂Ω . (5)

Since f is in L2(Ω) and Ω is smooth, v0 is in H2(Ω). This approximation is satisfying
outside a neighborhood of the boundary of the hole ωh

ε . Due to the Dirichlet conditions
on the boundary of the hole ωh

ε , uh(x,ε) will be better approximated by

−Δvh(x) = f (x)+βhδ (x−h) in Ω . (6)

vh(x) = 0 on ∂Ω . (7)

We then have
vh(x) = v0(x)+βhG(x,h),

where G(x,y) is the generalized Green function defined by

−ΔxG(x,y) = δ (x− y) in Ω , (8)

G(x,y) = 0 on ∂Ω , (9)

and δ (x− y) is the Dirac mass at y. The function uh(x,ε) is then approximated outside
a neighborhood of ωh

ε by

uh(x,ε) � v0(x)+βhG(x,h).

The function G admits the following representation:

G(x,h) =−
{
(2π)−1 log |x−h|+G (x,h)

}
, (10)
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where | · | stands for the euclidean norm in�2. The function G is the regular part of the
Green function solution of

−ΔxG (x,y) = 0 in Ω , (11)

G (x,y) =−(2π)−1 log |x− y| on ∂Ω , (12)

For x ∈ ∂Ω and as h → 0, we can use Taylor’s formula to expand −(2π)−1 log |x− h|
in (12) with respect to h and obtain

−(2π)−1 log |x−h|=−(2π)−1 log |x|+(2π)−1〈h,
x
|x|2 〉+ rh,

with ‖rh‖L∞(∂Ω) = O(|h|2). Thus G (x,h) admits the expansion

G (x,h) = G (x,0)+Sh(x)+Rh(x), (13)

with Sh(x) and Rh(x) solutions of

−ΔSh(x) = 0 in Ω , (14)

Sh(x) = (2π)−1〈h,
x
|x|2 〉 on ∂Ω . (15)

−ΔRh(x) = 0 in Ω , (16)

Rh(x) = rh on ∂Ω . (17)

Finally, G (h,h) can be decomposed into

G (h,h) = G (0,0)+ 〈h,∇G (0,0)〉+Sh(0)+Rh(h)+ O(|h|2). (18)

Since ‖rh‖L∞(∂Ω) = O(|h|2) we get ‖Rh‖L∞(Ω) = O(|h|2). We also have ‖Sh‖L∞(Ω) =
O(|h|). The approximation uh(x,ε) � v0(x) +βhG(x,h) does not verify the boundary
condition (3) on the hole. Consequently, a boundary layer w0

h(ξh,ε) must be added,
which depends on the fast variable ξh defined as ξh = ε−1(x−h), in order to compensate
for the induced discrepancy. Expanding v0(x)+βhG(x,h) when x → h we get

v0(x)+βhG(x,h) = v0(x)−βh
{
(2π)−1 log |x−h|+G (x,h)

}
= v0(h)−βh

{
(2π)−1 log |εξh|+G (h,h)

}
+ zh

ε(x). (19)

The estimates on the rest zh
ε(x) will be addressed later in Section 3.2. In view of (19),

we introduce the boundary layer w0
h(ξ ,ε) solution of the following system

−Δξh
w0

h(ξh,ε) = 0 in �2 \ωh, (20)

w0
h(ξh,ε) =−v0(h)+βh

{
(2π)−1 log |εξh|+G (h,h)

}
on ∂ωh. (21)

The solution of (20)-(21) is

w0
h(ξh,ε) =−v0(h)+βh

{
(2π)−1 logε+G (h,h)

}
+βhE

0
h (ξh), (22)
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with E 0
h (ξh) solution of

−Δξh
E 0

h (ξh) = 0 in �2 \ωh, (23)

E 0
h (ξh) = (2π)−1 log |ξh| on ∂ωh. (24)

The function E 0
h (ξh) admits the following expansion w.r.t. ξh

E 0
h (ξh) = (2π)−1L+ O(|ξh|−1), (25)

where L is a constant depending only on the shape of ω . The quantity exp(L) is called
the logarithmic capacity of ω . Thus, w0

h(ξh,ε) admits the expansion

w0
h(ξh,ε) =−v0(h)+βh

{
(2π)−1 logε+G (h,h)

}
+βh(2π)−1L+ O(|ξh|−1).

In order to have w0
h(ξh,ε) → 0 as |ξh|→ ∞, a condition is imposed on βh:

βh =
{
(2π)−1(logε+ L)+G (h,h)

}−1
v0(h), (26)

so that
w0

h(ξh,ε) = βhE
0
h (ξh).

As a consequence, the solution uh(x,ε) of (1)-(3) can be represented by

uh(x,ε) = v0(x)+βhG(x,h)+ ũ0
h(x,ε), (27)

where the function ũ0
h(x,ε) is solution of the following problem

−Δ ũ0
h(x,ε) = 0 in Ω h

ε (28)

ũ0
h(x,ε) = 0 on ∂Ω (29)

ũ0
h(x,ε) =− (v0(x)− v0(h))

+βh
{
(2π)−1(log |ξh|−L)

}
+βh{G (x,h)−G (h,h)} on ∂ωh

ε .

(30)

3 Self-adjoint Extension of the Laplacian with Dirichlet
Conditions

3.1 Self-adjoint Extension

For the sake of simplicity, we assume that h = 0 in what follows (without loss of gen-
erality) and we will return to the general case in the next section. In what follows, we
use the notation β instead of β0. The self-adjoint extension of the Laplace operator with
Dirichlet boundary conditions is defined as follows: let A0 be the Laplacian operator
−Δx in L2(Ω) with the domain of definition

D(A0) =
{

v ∈C∞
0 (Ω \ {0})

}
(31)
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The inclusion v ∈ D(A0) indicates that v satisfies the boundary conditions (3) and is
equal to zero in the neighborhood of the center 0 of ωε , this last condition mimicking
the Dirichlet condition (3).

Introduce the cut-off function χδ (x) = χ(δx) where χ is such that χ ∈C∞(�2) and

χ(x) = 1 for |x|< 1, (32)

χ(x) = 0 for |x|> 2. (33)

We assume that δ is chosen such that χδ has compact support in Ω . The closure A0 and
the adjoint A ∗

0 of the operator A0 are given by the following lemma:

Lemma 1. The closure A0 and the adjoint A ∗
0 of the operator A0 are given by the

differential expression −Δx, with the respective domain of definition:

D(A0) =
{

v ∈ H2(Ω), v(0) = 0, v = 0 on ∂Ω
}

(34)

and

D(A ∗
0 ) =

{
v : v(x) = χδ (x)

(
− a

2π
logr + b

)
+ v̄(x), v̄ ∈D(A0), a,b ∈�

}
(35)

Note that in (35), it can be shown that the domain D(A ∗
0 ) does not depend on the cut-

off function χδ . Since the domain of definition of the initial operator A0 is restricted,
the domain of definition of the adjoint is large, and the two operators A0 and A ∗

0 are
not self-adjoints. However, there exists a family of self-adjoint operators A , such that
A0 ⊂ A ⊂ A ∗

0 and the domain of definition D(A ) contains all the required singular
solutions for the Dirichlet problem in Ω .

The family of self-adjoint extensions of the operator A0 is built by restricting the
domain of the operator A ∗

0 . The abstract boundary condition b = Sa is added in the
definition of D(A ∗

0 ) with a given coefficient S. In our case, we will obtain S depending
on the asymptotic expansion of vh w.r.t. ε . With such an S, the influence of the small
hole can be modeled. Therefore, the following theorem can be proved.

Theorem 1. Let A be the restriction of the operator A ∗
0 to the vector space

D(A) = {v ∈D(A ∗
0 ) : b = Sa} (36)

where S = S(ε) = (2π)−1(logε+L), L is a constant which depends on the shape of ω .
Then A is a self-adjoint operator.

The following equation
Av = f ∈ L2(Ω) (37)

admits a unique solution v ∈D(A) and v is given by

v(x) = v0(x)+βG(x,0) ∀x ∈Ω .

Proof. 1) It is enough to prove the following: if for v, f ∈ L2(Ω) the following equality
is true

(v,Az)Ω = ( f ,z)Ω ∀z ∈D(A), (38)
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then v ∈D(A) and f = Av. Since A0 ⊂ A, we can see that v ∈D(A ∗
0 ) and A ∗

0 v = f .
Thus, it is only necessary to show that v ∈ D(A). In view of (38) we can write the
Green’s formula:

0 = (v,Az)Ω − (A ∗
0 v,z)Ω (39)

= lim
δ→0

∫
Ω\�δ

(zΔxv−vΔxz)dx (40)

= lim
δ→0

∫
∂�δ

v∂nz− z∂nvdsx +
∫
∂Ω

v∂nz− z∂nvdsx (41)

= lim
δ→0

∫
∂�δ

v∂nz− z∂nvdsx. (42)

Since v ∈ D(A ∗
0 ), v = 0 on ∂Ω and as a consequence

∫
∂Ω v∂nz− z∂nvdsx = 0. In

what follows we introduce the notation r = |x|. Replacing v and z by the asymptotic
expansions given in the definition of D(A ∗

0 ), with the coefficients denoted respectively
a,b and p,q, we get

0 = lim
δ→0

δ
∫ 2π

0
(b−a

1
2π

logr)
∂
∂ r

(q− p
1

2π
logr)|r=δ

−(q− p
1

2π
logr)

∂
∂ r

(b−a
1

2π
logr)|r=δ dφ

= lim
δ→0

a(q− p
1

2π
logδ )− p(b−a

1
2π

logδ )

= aq−bp

= (Sa−b)p, (43)

and the conclusion is b = Sa which means that v∈D(A). Here we have used the relation
q = Sp since z ∈D(A).
2) First of all, the unicity of the solution is proved. Let v1 and v2 be two functions in
D(A). Then the difference v = v1−v2 verifies Av = 0 in Ω and v = 0 on ∂Ω . Thus v
is the fundamental solution of the Laplacian

v = μG(x,0) =−μ
(
(2π)−1 logr +G (x,0)

)
(44)

where G and G are defined in (8)-(9) and (11)-(12). The asymptotic representation (44)
gives coefficients a = μ and b =−G (0,0)μ . From the definition of D(A) we get b = Sa,
thus we obtain

−G (0,0)μ = ((2π)−1 logε+ L)μ

which implies μ = 0. Thus v≡ 0 and we have proved unicity of the solution.
Now it remains to show that

v(x) = v0(x)+βG(x,0) (45)

is solution of Av = f . In view of definitions (8)-(9) and (4)-(5) of G(x,0) and v0, re-
spectively, we clearly have −Δxu(x,ε) = f (x) in Ω \0 and u(x,ε) = 0 on ∂Ω . We also
have a = β and b = v0(0)−βG (0,0), so that the relation b = Sa is satisfied. As a con-
sequence, we get v ∈D(A). ��
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3.2 Estimates

From now on, we will write vh instead of v to stress the dependence of v on h. According
to (37), vh corresponds to the first-order terms in the expansion (27). Therefore we will
now give an estimate for the L2-norm of ũ0

h = uh− vh. Define ũ1
h, ũ2

h and ũ3
h harmonic

functions on Ωε such that
ũ0

h = ũ1
h + ũ2

h + ũ3
h

and for all x ∈ ∂ωh
ε we have in view of (28)-(30)

ũ1
h(x,ε) = −(v0(x)− v0(h)), (46)

ũ2
h(x,ε) = βh

{
(2π)−1(log |ξh|−L)

}
, (47)

ũ3
h(x,ε) = βh {G (x,h)−G (h,h)} . (48)

Since f ∈ L2(Ω), v0 ∈H2(Ω) and by the Sobolev-Rellich theorem, we have

v0 ∈C0(Ω ) and ∇v0 ∈ L∞(Ω).

Therefore we get
sup

x∈∂ωh
ε

|v0(x)− v0(h)| ≤M1ε sup
x∈ωh

ε

|∇v0(x)|,

where M1 depends only on the shape of ω ; M1 = 1 if ω = B(0,1). By the maximum
principle we get

‖ũ1
h‖L∞(Ωε ) ≤M1ε sup

x∈ωh
ε

|∇v0(x)|

and
‖ũ1

h‖L2(Ωε ) ≤M1ε sup
x∈ωh

ε

|∇v0(x)|,

with M1 depending only on the shape of Ω and ω . In a similar way, since G (·,h) ∈
C∞(Ω), we have

sup
x∈∂ωh

ε

|G (x,h)−G (h,h)| ≤M3ε sup
x∈ωh

ε

|∇G (x,h)|,

and
‖ũ3

h‖L∞(Ωε ) ≤M3βhε sup
x∈ωh

ε

|∇G (x,h)|,

‖ũ3
h‖L2(Ωε) ≤M3βhε sup

x∈ωh
ε

|∇G (x,h)|,

with M3 depending only on the shape of Ω and ω . Now consider the case of ũ2
h. If ω =

B(0,1), we get ũ2
h ≡ 0. In the more general case of any shape for ω , we get according

to (25)
ũ2

h = O(|ξh|−1),

and since ∫
Ωh
ε
|ξh|−2dx =

∫
Ωh
ε
ε2|x−h|−2dx≤ M̃2ε2| logε|,
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where M̃2 is some constant independent of ε and h. In view of the expression of βh we
get

‖ũ2
h‖L2(Ωε ) ≤ M̃2|βh|ε| logε| 1

2 ≤M2|v0(h)|ε,

and M2 depends only on the shape of Ω and ω . Gathering the estimates for ũ1
h, ũ

2
h and

ũ3
h, we obtain

‖ũ0
h‖L2(Ωε) ≤Mε, (49)

with M depending only on the shape of Ω and ω .

3.3 Derivative with Respect to the Position of the Hole

Recall that the function uh(x,ε) of (1)-(3) can be represented by

uh(x,ε) = v0(x)+βhG(x,h)+ ũ0
h(x,ε). (50)

It can also be represented in a form derived from (35)

uh(x,ε) =− ah

2π
logrh + bh + ūh(x,ε) (51)

where
ah = βh =

{
(2π)−1(logε+ L)+G (h,h)

}−1
v0(h), (52)

bh = v0(h)−βhG (h,h) = Sah (53)

with S = (2π)−1(logε + L), and (rh,θh) stand for the polar coordinates of center h.
The coefficient S depends on ε but does not depend on the position of the hole h. The
function ūh belongs to the set D(A0).

3.4 Energy Functionals in Lp

We consider functionals of the form:

F (u,ε) =
∫
Ωε

F(x,u)dx (54)

with u ∈ D(A). We make an assumption on the functional (54), sufficient for further
asymptotic analysis. Namely, the following inequality holds for some p ∈ [1,∞[ and for
all u,v ∈ Lp(Ωε)

|F (u,ε)−F (v,ε)| ≤ c‖u− v‖Lp(Ωε )

(
‖u‖p−1

Lp(Ωε )
+‖v‖p−1

Lp(Ωε )

)
, (55)

where the constant c depends on Ω , but it is independent of the parameter ε and of the
functions u,v. We assume also that the same inequality holds in unperturbed domain Ω ,

|F (u,0)−F (v,0)| ≤ c‖u− v‖p
(
‖u‖p−1

p +‖v‖p−1
p

)
, (56)

where ‖ . ‖p denotes the norm in Lp(Ω). Let uh(x,ε) be the solution of equation (1)-(3).
The function uh is extended by zero over the opening ωh

ε , and the extended function is



340 A. Laurain and K. Szulc

still denoted uh. Since uh ∈ H1
0 (Ωε) we also have uh ∈ H1

0 (Ω); see [6, Prop. 3.1.4, p.
78]. Then, thanks to the imbedding H1(Ω) ⊂ Lp(Ω), p ∈ [1,∞[ and to inequality (56)
we have

|F (u,0)−F (uh,0)| ≤ c‖u−uh‖p
(
‖u‖p−1

p +‖uh‖p−1
p

)
. (57)

According to (51) we can write

‖u−uh‖p =
∥∥∥− a0

2π
logr +

a0

2π
logrh + S(a0−ah)+ ū− ūh

∥∥∥
p
. (58)

In view of the expansion (18) of G (h,h) and the smoothness of v0 solution of (4)-(5)
we get

‖a0−ah‖p = ‖β −βh‖p ≤ c|h| (59)

where c is a constant depending only on Ω , for ε small enough, according to the ex-
pression (52) of βh. For bh we obtain a similar result because of the relation bh = Sah

‖b0−bh‖p = ‖Sa−Sah‖p ≤ Sc|h| (60)

and S = (2π)−1(logε + L). Since ū and ūh belong to D(A0), ū and ūh are in H2(Ω),
and we obtain the same inequality for ‖ū− ūh‖p

‖ū− ūh‖p ≤ c|h| . (61)

The only term that remains to estimate in (58) is − a0
2π logr + a0

2π logrh, since we have
proven the continuity of ‖a0−ah‖p in (59), we only have to estimate ‖ logr− logrh‖p.
Possibly changing the coordinates, we may suppose that h = (|h|,0). Then we can split
the following integral into two parts∫

Ω
| logrh− logr|p dx = Ih

0 + Ih
1

with

Ih
0 =

∫
|x|<2|h|

| log |x + |h|e1|− log |x||p dx

= |h|2
∫
|ξ |<2

| log |ξ + e1|− log |ξ ||p dξ

≤ c|h|2. (62)

We have used the change of variables x = |h|ξ . We also have e1 = (1,0). Further,

Ih
1 =

∫
Ω\|x|<2|h|

∣∣∣∣log
|x|2−2|h|x1 + |h|2

|x|2

∣∣∣∣p dx

≤ Cα

∫
Ω\|x|<2|h|

((
|h|
r

)α p

+
(
|h|2
r2

)α p
)

≤ Cα

(
|h|α p

∫ D

2|h|
r−α p+1 dr + |h|2α p

∫ D

2|h|
r−2α p+1 dr

)
, (63)
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with α ∈]0,1] and Cα is a constant depending only on α . Thus, if α p < 1, then

Ih
1 ≤Cα

(
|h|α p|h|−α p+2 + |h|2α p|h|−2α p+2)= Cα |h|2.

Finally we obtain
‖ logr− logrh‖p ≤Cα |h|2/p. (64)

Therefore, choosing p ∈]1,2] and combining (59), (60), (61) and (64) we obtain

|F (u,0)−F (uh,0)| ≤M|h|, (65)

where M is a constant which depends only on the shape of Ω .

4 Least Squares Functional

In this section, the domain Ω is split into two disjoint open sets Ω1 and Ω2 so that
Ω = Ω1∪Ω2, and we introduce a least squares functional Jε which measures the L2

distance between some data z and an approximation vh of (1)-(3) on Ω2 (see Fig. 1).
The data z corresponds to the solution in a domain with a hole ωh

ε whose position in Ω1

is unknown. In what follows, we assume that ε is known. By minimizing Jε w.r.t. h,
we are able to find the position of the hole ωh

ε .

ωε
h

Ω 1 Ω
2

Fig. 1. The domain ω

From now on, the domain ω is assumed to be a ball of radius 1. The general case
is easily deduced from this particular case. We consider a cost functional defined as
follows:

Jε (h) :=
1
2

∫
Ω2

(vh(x)− z(x))2dx (66)
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where z is a given observation in L2(Ω2) and vh is given by:

vh(x) = v0(x)+
G(x,h)

logε+L
2π +G (h,h)

v0(h), ∀x ∈Ω . (67)

In the case where ωε is the ball B(x0,ε), we get |ξh| = 1 on ∂ωh and therefore L = 0.
We want to solve the minimization problem

min
h∈Ω1

Jε(h). (68)

To this end we use a Fletcher-Reeves algorithm with a line search procedure, therefore
we must first compute the gradient of Jε w.r.t. h.

∇Jε(h) =
∫
Ω2

(vh(x)− z(x))∇hvh(x)dx (69)

where ∇h denotes the gradient with respect to h. To compute ∇hvh(x) let us simplify
(67) by introducing:

λ (h) =
(

logε+ L
2π

+G (h,h)
)−1

. (70)

Thus (67) can be written as

vh(x) = v0(x)+λ (h)G(x,h)v0(h) ∀x ∈Ω . (71)

The gradient ∇hvh(x) takes the form:

∇hvh(x) = λ (h)
[

v0(h)
(

x−h

2πr2
h

−∇yG (x,h)
)

+ G(x,h)∇v0(h)
]

−λ (h)2G(x,h)v0(h)∇h[G (h,h)],

= λ (h)
[

v0(h)
(

x−h

2πr2
h

−∇yG (x,h)
)

+ G(x,h)∇v0(h)
]

−λ (h)2G(x,h)v0(h)[∇xG (h,h)+∇yG (h,h)].

(72)

where rh = |x− h|, and ∇xG and ∇yG are the gradients with respect to the first and
second variables of G , respectively. The value of ∇xG is clearly defined according to
(11) and (12), and ∇yG is solution of

−Δx[∇yG ](x,y) = 0 in Ω
∇yG (x,y) = (2π)−1 x−y

‖x−y‖2 on ∂Ω . (73)

5 Topological Derivative

A new idea was introduced first by Schumacher in 1994 with the so-called “bubble
method”, where the parameterized setting is kept and holes are created in the do-
main according to a certain criterion. This idea was later developed by Sokołowski
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and Żochowski [16], and Guillaume and Masmoudi [4], with the introduction of the
topological derivative. The topological derivative measures the variation of a cost func-
tional depending on the shape of a domain, when a small change in the topology of this
domain is performed, for instance with the creation of a small hole of any shape.

Let Ω and ωε be two open sets in �N , and ωε ⊂ B(h,ε) where B(h,ε) is a ball of
radius ε > 0 centered at h ∈ Ω . Denote Ωε = Ω \ωε , if the cost functional J(Ω) is
differentiable with respect to the creation of this small hole ωε , then we can write the
expansion

J(Ωε) = J(Ω)+ρ(ε)T (h)+ o(ρ(ε)), (74)

with ρ(ε) → 0 as ε → 0, ρ(ε) > 0, and T (h) is the so-called topological derivative of
J. First note that the topological derivative is a pointwise expression defined at every
point of the domain, therefore it is usually easy to compute and gives an efficient criteria
for a descent direction in a gradient method.

There is a link between the self-adjoint extension introduced in Section 3 and the
notion of topological derivative. Indeed, both are obtained through the asymptotic ex-
pansion w.r.t. ε of the solution of (1)-(3). Actually, it is possible to recover the usual
topological derivative from the self-adjoint extension model. In order to do so, we write
the expansion with respect to ε of the functional Jε :

Jε (h) =
1
2

∫
Ω2

(vh(x)− z(x))2dx

=
1
2

∫
Ω

(vh(x)− z(x))2
�Ω2(x)dx

=
1
2

∫
Ω

(v0(x)− z(x))2
�Ω2(x)dx

+
∫
Ω

(v0(x)− z(x))(λ (h)G(x,h)v0(h))�Ω2(x)dx +R1(ε,h), (75)

with

R1(ε,h) = (λ (h)v0(h))2
∫
Ω2

G(x,h)2dx≤M(logε)−2, (76)

and M depends only on the shape ofΩ andΩ2. Then we introduce the following adjoint
state p

−Δ p(x) = (v0(x)− z(x))�Ω2(x) in Ω , (77)

p(x) = 0 on ∂Ω , (78)

and after an integration by parts we obtain

Jε (h) =
1
2

∫
Ω2

(v0(x)− z(x))2dx +λ (h)v0(h)p(h)+R1(ε,h), (79)

Since λ (h) admits the expansion

λ (h) = 2π(logε)−1 + O((logε)−2) as ε → 0,



344 A. Laurain and K. Szulc

we can expand (79) further:

Jε(h) =
1
2

∫
Ω2

(v0(x)− z(x))2dx−2π | logε|−1v0(h)p(h)+R2(ε,h), (80)

with

R2(ε,h) = O((logε)−2) as ε → 0. (81)

Therefore we have obtained expansion (74) with ρ(ε) = 2π | logε|−1 and T (h) =
−v0(h)p(h). We will use this result later to initialize our algorithm.

Remark 1. As expected, the topological derivative T (h) is easy to compute because it
requires only the solution of two Laplacian equations on Ω . The drawback is that the
rest R2(ε,h) is of order (logε)−2, which is not negligible for numerical calculations
compared to the main term in (logε)−1. Therefore, there is a lack of precision when
using the topological derivative to localize the point, and we will see in our numerical
tests that this lack of precision can lead to inaccurate results.

6 Algorithm

The observation z in the functional Jε corresponds to measured data. For the numerical
tests, the position of the hole is known beforehand, and the observation is computed
accordingly.

One should note that if h∗ is the real position of the center of the hole, used to
compute the function z, we cannot expect h∗ to be the solution of the minimization
problem (68) because the corresponding solution vh∗ is only an approximation of z.
One can be more precise by looking at Jε (h∗):

Jε (h∗) =
1
2

∫
Ω2

(vh∗(x)− z(x))2dx.

According to (49), there exists M such that

‖vh∗ − z‖L2(Ωε ) ≤Mε,

and as a consequence
Jε(h∗)≤M2ε2,

which means that h∗ is not necessarily the optimal solution.
Usually, the topological derivative can be used to find the position of the hole. A

possible way to proceed is to compute the topological derivative T (h) at every point
h ∈Ω1, and look for the minimum of T (h) which should give an approximate position
of the unknown hole. Unfortunately, due to the lack of information since z is known only
on Ω2, and according to Remark 1, the numerical tests show that this is not enough to
find the exact position of the hole. It is possible to go further in the expansion of the
topological derivative to have a better approximation, but then we obtain a function
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which is difficult to evaluate at every point of the domain because for every h, one
needs to solve a Laplace equation (to find the function G and compute G (h,h)).

Therefore, the idea of the algorithm is to initialize the position of the hole by using
the topological derivative, and then to use a Fletcher-Reeves conjugate gradient. This
can be related to the speed method in shape optimization, since once the hole is created,
moving the position h is equivalent to moving the boundary of the small hole with a
uniform speed (the shape of the hole remains constant). However, the formulas for the
derivatives of Jε have been derived easily and the numerical application is also less
involved than for the usual speed method setting, where the boundary of the hole needs
to be parameterized.

6.1 The Discrete Algorithm

The usual Fletcher-Reeves algorithm is as follows. At the step k + 1 the point hk be-
comes

hk+1 = hk + tkdk, (82)

where dk is the direction of descent given by

dk =−∇hJ (hk)+
∇hJ (hk)T∇hJ (hk)

∇hJ (hk−1)T∇hJ (hk−1)
dk−1, (83)

and the time step tk is given by a line-search procedure.

Algorithm: In the subsequent algorithm subscript l, for all quantities refers to the dis-
crete counterpart of the respective continuous variable, while the superscript k refers
to the k-th iteration of the algorithm. The discretization is based on finite differences.
We assume that the discretized domain is given by a uniform grid with mesh size l. We
denote the grid points by xi, i = 1, ..,N. For the discretization of the Laplace operator
we use the standard five points stencil. The grid functions v0

l ,Gl , ... are defined on the
grid points.

Step 1: Set k = 0. Compute v0,k
l from (4)-(5) and the topological derivative T k

l (h)
at every h ∈Ω1. Deduce a starting point h0 by taking
h0 = argminh∈Ω1

T k
l (h) . Set a tolerance γ .

Step 2: Compute Gk
l ,G

k
l from the discrete relaxed system corresponding to (8)-(9)

and (11)-(12) and deduce λ k
l (h) and vk

l . Evaluate the cost functional Jk
ε,l(h

k).
Step 3: If the direction dk verifies ‖dk‖ < γl(1 + d0) and ‖hk− hk−1‖ < γl then

stop; otherwise continue with step 4.
Step 4: Update hk. Put k := k + 1. Go to step 2.

7 Numerical Example

Several examples are presented here, with different source terms f . The domain Ω is
taken as the square Ω = [0,1]× [0,1]. For each example, the number of iterations are
given, the initial value for h (given by the topological derivative) and the final value
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of h are compared to the real position of the hole. We also give a plot for the grid
512× 512 of the convergence of the functional Jε (h), of the measured data z and of
the reconstructed solution vh f .

The observation z is artificial, which means that we know ad hoc the location of the
hole h∗ but we start the procedure from another value of h. In order to compute this
observation z precisely, we use finite differences with a Shortley-Weller approximation
[5] to discretize the Laplacian on the boundary of Ωε . The position h∗ denotes the real
center of the hole. The set ω is chosen as a ball of radius 1. The notation h0 and h f

denote the initial and final value of h, respectively. In every example we take Ω1 =
B(h∗,0.4), but h∗ takes different values. In what follows, (x1,x2) denotes the Cartesian
coordinates in �2.

Example 1. In the first example, the data is f ≡ 70 and h∗ = (0.5,0.5). Due to the
very simple and symmetric situation, the topological derivative is enough to find the
position of the hole and no further iterations are needed after the initialization. Results
are presented in Table 1.

Table 1. Example 1

l iterations h0 h f h∗

1/128 1 (0.5,0.5) (0.5,0.5) (0.5,0.5)
1/256 1 (0.5,0.5) (0.5,0.5) (0.5,0.5)
1/512 1 (0.5,0.5) (0.5,0.5) (0.5,0.5)

Example 2. In the second example, the data is f (x1,x2) = 100x2
1x2 + 10 and h∗ =

(0.4,0.4). One can see in this example that the topological derivative (which gives h0)
was far from the optimal solution while our algorithm converges to the true solution as
l → 0. The corresponding figure is Fig. 2. Results are presented in Table 2.

Table 2. Example 2

l iterations h0 h f h∗

1/128 11 (0.6953,0.6640 ) (0.3750,0.3570) (0.4,0.4)
1/256 12 (0.6953,0.6679) (0.3913,0.3828) (0.4,0.4)
1/512 14 (0.6933,0.6718) (0.3965,0.3959) (0.4,0.4)

Example 3. In the third example, the data is f (x1,x2) = 100sin(4πx1)sin(4πx2)+ 10
and h∗ = (0.6,0.6). The topological derivative gives again an initialization far from
the optimal solution while our algorithm converges to the true solution as l → 0. The
corresponding figure is Fig. 3. Results are presented in Table 2.

Example 4. In the fourth example, the data is

f (x1,x2) =−(60cos(4πr)+ 30)�{r<0.4 & r>0.1}
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Fig. 2. Solution vhf
(left) and data z (right)

Table 3. Example 3

l iterations h0 h f h∗

1/128 29 ( 0.3593, 0.3593) (0.6405, 0.6405) (0.6,0.6)
1/256 23 (0.3593 , 0.3593) (0.6214, 0.6214) (0.6,0.6)
1/512 21 (0.3613,0.3613) (0.6055,0.6055) (0.6,0.6)

Fig. 3. Solution vhf
(left) and data z (right)

Table 4. Example 4

l iterations h0 h f h∗

1/128 63 ( 0.4296,0.4296) ( 0.6477,0.6477) (0.6,0.6)
1/256 53 (0.4296,0.4257 ) ( 0.6195 ,0.6202) (0.6,0.6)
1/512 44 (0.4277,0.4277 ) ( 0.6042,0.6042) (0.6,0.6)
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Fig. 4. Solution vhf
(left) and data z (right)

with r = |(x1,x2)−h∗| and h∗ = (0.6,0.6). The corresponding figure is Fig. 4. Results
are presented in table 4. Similar conclusions as for the previous examples are drawn.

8 Conclusion

In the numerical examples above, the experimental data z is given on approximately
50% of the domain. Except for the simple first example, the topological derivative is
not able to find the correct position of the hole, while our algorithm does.

Self-adjoint extensions of elliptic operators are not restricted to Dirichlet conditions,
and can be used with other boundary conditions, including those of Neumann type. Fur-
ther research will be focused on applying this modeling to evolution boundary problems
and spectral problems.

In this paper, we restricted ourselves to the case of a small ball for the numerical
applications, but the general case of any shape can be derived easily. The case of several
holes is also interesting, and requires additional work for the theoretical background.
Indeed, in the expansion of the solution, the holes interact with each other and the
expansion is more involved. Such an analysis can be found, e.g. in [14].
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Abstract. In this work, we shall consider standard optimal control problems for
a class of neutral functional differential equations in Banach spaces. As the basis
of a systematic theory of neutral models, the fundamental solution is constructed
and a variation of constants formula of mild solutions is established. Necessary
conditions in terms of the solutions of neutral adjoint systems are established to
deal with the fixed time integral convex cost problem of optimality. Based on
optimality conditions, the maximum principle for time varying control domain is
presented.

1 Introduction

Let X be a separable Banach space with norm ‖ · ‖X . For any fixed constant r > 0, we
denote by L2

r = L2([−r,0];X) the space of all X-valued equivalence classes of measur-
able functions which are square integrable on [−r,0]. Let X denote the product Banach
space X×L2

r with the norm

‖φ‖X =
√
‖φ0‖2

X +‖φ1‖2
L2

r
for all φ = (φ0,φ1) ∈X . (1)

Consider the following neutral functional differential equation on X ,

d
dt

[
y(t) −

∫ 0

−r
D(θ )y(t +θ )dθ

]
= Ay(t)+

∫ 0

−r
dη(θ )y(t +θ )+ f (t)

for any t > 0,

y(0) = φ0, y0(·) = φ1(·), φ = (φ0,φ1) ∈X ,

(2)

where A : X→X with domain D(A)⊂X is the infinitesimal generator of a C0-semigroup
{S(t);t ≥ 0} on X and yt(θ ) := y(t +θ ) for any θ ∈ [−r,0] and t ≥ 0. Here f (·) is some
properly given function in X and η is the Stieltjes measure given by

η(τ) =−
m

∑
i=1

χ(−∞,−ri](τ)Ai−
∫ 0

τ
B(θ )dθ , τ ∈ [−r,0]. (3)

It is assumed that 0 < r1 < r2 < · · ·< rm ≤ r, Ai ∈L (X), i = 1, · · · ,m, the family of all
bounded, linear operators on X and B(·), D(·) ∈ L2([−r,0];L (X)), the Banach space
of all L (X)-valued equivalence classes of square integrable functions on [−r,0].

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 350–369, 2009.
c© IFIP International Federation for Information Processing 2009
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The abstract formulation (2) in an infinite dimensional space has been well motivated
both theoretically and practically by such systems as neutral partial functional differen-
tial equations. There exists an extensive literature which deals with various problems of
the so-called distributed parameter systems with time delays in a Banach space (see the
monograph [19], for instance, and references cited therein for a systematic statement).
The system (2) in finite or infinite dimensions was considered in a systematic way by
[8] and [19] in spaces of continuous functions, e.g., in C([−r,0];X), the space of all
continuous functions from [−r,0] into X . The same phase spaces were also used by
many works such as [7,9] and references cited therein. Although this choice certainly
has its advantages, it is often useful to work in Lp space instead. There are at least two
good reasons for this setting. First, it allows ones to work in a Hilbert space. This is par-
ticularly important in control, stability and optimality theory in which an adjoint theory
for the system (2) is essentially needed, e.g., [1,5,6,11,17]. Unfortunately, as indicated
in Hale and Lunel [9], it is generally difficult to have an adjoint theory in a continu-
ous functions space setting. Second, the choice of Lp-phase space allows us to consider
equations having discontinuous solutions. This is the case when ones consider discon-
tinuous initial functions for (2) or the system is perturbed by some random resources
with jumps (cf. [14]).

Although there is some work, e.g., [13], on optimal control of functional differential
equations in infinite dimensions available in the existing literature, there exist however
few results on the same topic for functional differential equations of neutral type. The
current work will devote itself to exploring some basic material. We shall consider
the fixed time integral convex cost problem for mild solutions of a class of functional
differential equations of neutral type in Banach spaces. To this end, we first formulate
and study a class of linear neutral systems to derive fundamental results. Precisely, as
the basis of whole theory we shall construct fundamental solutions or Green operators
and establish a variation of constants formula. Adjoint neutral systems are considered
and the associated representation formulae of adjoint states in terms of fundamental
solutions are established. All of these will allow us to present results on the existence
of optimal controls, necessary conditions of optimality and maximum principle.

The following are some notations and terminologies to be used in the work. The sym-
bol R+ denotes the set of all nonnegative numbers and R

n denotes the n-dimensional
real vector space with the usual Euclidean norm ‖ · ‖Rn . For any λ ∈ C

1, the symbols
ℜ(λ ) and ℑ(λ ) denote the real and imaginary parts of complex number λ , respectively.
For any separable Banach space U , we use U∗ to denote its adjoint space and 〈·, ·〉U,U∗

the dual pairing, respectively. We use L (U,X) to denote the space consisting of all
bounded linear operators T from U into X with domain U . When X = U , L (X ,X) is
denoted by L (X). Every operator norm is simply denoted by ‖ · ‖ when there is no
danger of confusion. The symbols D(T ) and R(T ) will be used to denote the domain
and range of operator T , respectively. For a closed linear operator A on a dense do-
main D(A)⊂ X into X , its adjoint operator is denoted by A∗. Given an interval E ⊂R

1,
the function χE denotes the characteristic function on the interval E . For a measurable
function f : R

1 → X , its Laplace transform f̂ is defined by
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f̂ (λ ) =
∫ ∞

0
e−λ t f (t)dt

whenever the Bochner integral exists.

2 Fundamental Solutions

In this section, we shall consider a class of linear autonomous neutral functional differ-
ential equations on X which are defined formally by

d
dt

[
y(t) −

∫ 0

−r
D(θ )y(t +θ )dθ

]
= Ay(t)+

∫ 0

−r
dη(θ )y(t +θ ) for any t > 0,

y(0) = φ0, y0(·) = φ1(·), φ = (φ0,φ1) ∈X ,

(4)

where A : X → X and η are defined as in (2) and (3). Generally, it is quite restrictive to
find a solution in the usual sense for the equation (4). Instead, it is hoped to consider
an “integrated” form of the system (4). To this end, we further assume that for each i,
i = 1, · · · , m, and θ ∈ [−r,0], R(D(θ ))⊂D(A) such that AD(·) ∈ L2([−r,0];L (X)).

Consider the following integral equation on X

y(t,φ) =
∫ 0

−r
D(θ )y(t +θ ,φ)dθ + S(t)

[
φ0−

∫ 0

−r
D(θ )φ1(θ )dθ

]
+
∫ t

0
S(t− s)

[∫ 0

−r
dη(θ )y(s+θ ,φ)+

∫ 0

−r
AD(θ )y(s+θ ,φ)dθ

]
ds, ∀t > 0,

y(0,φ) = φ0, y0(·,φ) = φ1(·), φ = (φ0,φ1) ∈X .

(5)

For simplicity, we sometimes denote y(t,φ) and yt(·,φ) by y(t) and yt(·), respectively,
in the remainder of this work. The following existence and uniqueness of solutions of
Equation (5) can be established in the spirit of Datko [5] and Wu [18].

Theorem 1. For arbitrary T ≥ 0, φ = (φ0,φ1) ∈ X , (i) there exists a unique solu-
tion y(t,φ) ∈ L2([−r,T ];X) of (5); (ii) for arbitrary t ∈ [0,T ], ‖y(t,φ)‖X ≤Ceγt‖φ‖X

almost everywhere for some constants γ ∈ R
1 and C > 0.

The solution y(t,φ) of the equation (5) is called a mild solution of (4). For any x ∈ X ,
let φ0 = x, φ1(θ ) = 0 for θ ∈ [−r,0) and φ = (x,0), we define the fundamental solution
G(t) ∈L (X), t ∈ R

1, of (5) with such an initial datum by

G(t)x =

{
y(t,φ), t ≥ 0,

0, t < 0.
(6)

The term (6) implies that G(t) is a unique solution of the equation

G(t) = S(t)+
∫ 0

−r
D(θ )G(t +θ )dθ +

∫ t

0
S(t− s)

[∫ 0

−r
dη(θ )G(s+θ )

+
∫ 0

−r
AD(θ )G(s+θ )dθ

]
ds, if t ≥ 0,

G(t) = O, if t < 0,

(7)
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where O is the null operator on X . It is immediate to see that G(t) is strongly continuous
on R

1 and satisfies
‖G(t)‖ ≤C · eγt , t ≥ 0, (8)

for some C > 0 and γ ∈ R
1.

2.1 Variation of Constants Formula

Consider a class of non-autonomous neutral functional differential equations on X

d
dt

[
y(t) −

∫ 0

−r
D(θ )y(t +θ )dθ

]
= Ay(t)+

∫ 0

−r
dη(θ )y(t +θ )+ f (t)

for any t > 0,

y(0) = φ0, y0(·) = φ1(·), φ = (φ0,φ1) ∈X ,

(9)

where A : X → X , η are defined as in the last subsection and f (·) ∈ L2
loc(R+;X), the

Fréchet space of functions which belong to L2([0,T ];X) for any T ≥ 0. Once again, we
intend to consider the following integral equation of (9) on X ,

y(t, f ,φ) =
∫ 0

−r
D(θ )y(t +θ , f ,φ)dθ + S(t)

[
φ0−

∫ 0

−r
D(θ )φ1(θ )dθ

]
+
∫ t

0
S(t− s)

[∫ 0

−r
dη(θ )y(s+θ , f ,φ)

+
∫ 0

−r
AD(θ )y(s+θ , f ,φ)dθ + f (s)

]
ds, ∀t > 0,

y(0,φ) = φ0, y0(·,φ) = φ1(·), φ = (φ0,φ1) ∈X .

(10)

It is extremely useful to find an explicit representation for the solution y(t, f ,φ) of (10)
in applications, e.g., in the optimal control theory. This is possible if we restrict the
initial data of (10) to some proper subset of X . Indeed, let W 1,2([−r,0];X) denote the
Sobolev space of X-valued functions x(·) on [−r,0] such that x(·) and its distributional
derivative belong to L2([−r,0];X), and define W 1,2 = X ×W1,2([−r,0];X).

The following variation of constants formula (11) provides a representation for so-
lutions of (10) in terms of the fundamental solution G(t) ∈L (X).

Theorem 2. For arbitrary φ = (φ0,φ1) ∈ W 1,2, the solution y(t, f ,φ) of (10) can be
represented almost everywhere by

y(t, f ,φ) = G(t)φ0−V(t,0)φ1(0)+
∫ 0

−r
U(t,θ )φ1(θ )dθ

+
∫ 0

−r
V (t,θ )φ ′1(θ )dθ +

∫ t

0
G(t− s) f (s)ds, t ≥ 0,

(11)

where for any t ≥ 0, the kernels

U(t,θ ) =
∫ θ

−r
G(t−θ + τ)dη(τ) ∈ L2([−r,0];L (X)), θ ∈ [−r,0], (12)
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and, similarly,

V (t,θ ) =
∫ θ

−r
G(t−θ + τ)D(τ)dτ ∈ L2([−r,0];L (X)), θ ∈ [−r,0]. (13)

Proof. We first prove (11) by assuming f ∈ L2(R+;X)∩L1(R+;X). To this end, define

x(t) = G(t)φ0−V(t,0)φ1(0)+
∫ 0

−r
U(t,θ )φ1(θ )dθ +

∫ 0

−r
V (t,θ )φ ′1(θ )dθ

+
∫ t

0
G(t− s) f (s)ds, t ≥ 0,

(14)

and x(t) = φ1(t) for t ∈ [−r,0). It is easy to see that x(t) ∈ L2([0,T ];X) and x(t) is
almost everywhere continuous on [0,T ]. For λ ∈C

1 with ℜ(λ ) large enough, define

M(λ ) = I−
∫ 0

−r
eλθD(θ )dθ ,

N(λ ) = R(λ ,A)
[∫ 0

−r
eλθdη(θ )+

∫ 0

−r
eλθD(θ )dθ

]
,

(15)

where I denotes the identity operator on X and R(λ ,A) = (λ I−A)−1 is the resolvent
operator of A. From the structure of both M(λ ) and N(λ ), we see that M(λ ) → I and
‖N(λ )‖→ 0 as ℜ(λ ) → +∞. This implies that there exists a real number λ0 such that
for ℜ(λ ) ≥ λ0, both M−1(λ ) and [I−N(λ )M−1(λ )]−1 exist. Therefore, we can apply
the convolution theorem on Laplace transforms to (7) to obtain that

Ĝ(λ ) = R(λ ,A)+
∫ 0

−r
eλθD(θ )dθ · Ĝ(λ )+ R(λ ,A)

∫ 0

−r
eλθdη(θ ) · Ĝ(λ )

+ R(λ ,A)
∫ 0

−r
eλθAD(θ )dθ · Ĝ(λ ),

(16)

where Ĝ(λ ) denotes the Laplace transform of G(·). This yields that for ℜ(λ )≥ λ0,

Ĝ(λ ) = M−1(λ )
[
I−N(λ )M−1(λ )

]−1
R(λ ,A). (17)

Note that the Laplace transform x̂(λ ) of x(·) makes sense for sufficiently large ℜ(λ ).
Therefore, we apply the convolution theorem on Laplace transforms to (14) and use
Fubini’s theorem to obtain that

x̂(λ ) = Ĝ(λ )
[
φ0−

∫ 0

−r
D(θ )φ1(θ )dθ +

( m

∑
i=1

Aie
−λ ri

∫ 0

−ri

e−λτφ1(τ)dτ
)

+
(∫ 0

−r
eλθB(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ

)
+
∫ 0

−r
λeλθD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ + f̂ (λ )

]
= Ĝ(λ )

[
φ0−

∫ 0

−r
eλθD(θ )φ1(0)dθ +

∫ 0

−r
eλθD(θ )

∫ 0

θ
e−λτdφ1(τ)dθ

+
∫ 0

−r
eλθdη(θ )

∫ 0

θ
e−λτφ1(τ)dτ+ f̂ (λ )

]
.

(18)
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On the other hand, since y(·) satisfies the equation (10) and note that y(t) = φ1(t) for
t ∈ [−r,0), we can use Fubini’s theorem again to calculate the Laplace transform ŷ(λ )
of y(·) which is given by

ŷ(λ ) =
∫ 0

−r
eλθD(θ )dθ ŷ(λ )+

∫ 0

−r
eλθD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ

+ R(λ ,A)
{[
φ0−

∫ 0

−r
D(θ )φ1(θ )dθ

]
+
[∫ 0

−r
eλθdη(θ )+

∫ 0

−r
eλθAD(θ )dθ

]
ŷ(λ )

+
[∫ 0

−r
eλθdη(θ )

∫ 0

θ
e−λτφ1(τ)dτ+∫ 0

−r
eλθAD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ

]
+ f̂ (λ )

}
,

(19)

for sufficiently large ℜ(λ ). In terms of (15), we can rewrite (19) as

(M(λ )−N(λ ))ŷ(λ )

=
{(

I−
∫ 0

−r
eλθD(θ )dθ

)
−R(λ ,A)

[∫ 0

−r
eλθdη(θ )+

∫ 0

−r
eλθAD(θ )dθ

]}
ŷ(λ )

=
∫ 0

−r
eλθD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ + R(λ ,A)

[
φ0−

∫ 0

−r
D(θ )φ1(θ )dθ

]
+ R(λ ,A)

[∫ 0

−r
dη(θ )

∫ 0

θ
eλ (θ−τ)φ1(τ)dτ+∫ 0

−r
AD(θ )

∫ 0

θ
eλ (θ−τ)φ1(τ)dτdθ + f̂ (λ )

]
,

which immediately yields that

ŷ(λ ) = M−1(λ )
[
I−N(λ )M−1(λ )

]−1
{∫ 0

−r
eλθD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ

+ R(λ ,A)
[
φ0−

∫ 0

−r
D(θ )φ1(θ )dθ

]
+ R(λ ,A)

[∫ 0

−r
eλθdη(θ )

∫ 0

θ
e−λτφ1(τ)dτ+∫ 0

−r
eλθAD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ

]
+ R(λ ,A) f̂ (λ )

}
.

(20)
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Then, by virtue of (17), it is immediate to see that for large ℜ(λ ),

ŷ(λ ) = Ĝ(λ )
[
(λ I−A)

(∫ 0

−r
eλθD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ

)
+

φ0−
∫ 0

−r
D(θ )φ1(θ )dθ

+
∫ 0

−r
eλθdη(θ )

∫ 0

θ
e−λτφ1(τ)dτ+∫ 0

−r
eλθAD(θ )

∫ 0

θ
e−λτφ1(τ)dτdθ + f̂ (λ )

]
= Ĝ(λ )

[
φ0−

∫ 0

−r
eλθD(θ )φ1(0)dθ +

∫ 0

−r
eλθD(θ )

∫ 0

θ
e−λτdφ1(τ)dθ

+
∫ 0

−r
eλθdη(θ )

∫ 0

θ
e−λτφ1(τ)dτ+ f̂ (λ )

]
.

(21)

Therefore, from (18) it follows that

ŷ(λ ) = x̂(λ )

for sufficiently large ℜ(λ ). By the uniqueness of Laplace transforms and the almost
everywhere strong continuity of y(t) and x(t) on R+, we obtain that

y(t) = x(t) for almost all t ∈ R+,

which proves the desired result. Lastly, we shall prove (11) for f ∈ L2
loc(R

+;X). To
this end, it suffices to prove (11) for t ∈ [0,T ] with any fixed T ≥ 0. For a given f ∈
L2

loc(R
+;X) and T ≥ 0, we define the truncated function fT (t) = χ[0,T ](t) f (t). Then

fT (·)∈ L2(R+;X)∩L1(R1;X) and the corresponding solution yT (t) of (5) satisfies (11)
for all t ≥ 0. Since yT (t) = y(t) for t ∈ [0,T ], then (11) is true for all f (·) ∈ L2

loc(R
+;X).

The proof is now complete. ��

3 Neutral Resolvent Operators

For each λ ∈C
1, we define the densely defined, closed linear operator Δ(λ ,A,η ,D) by

Δ(λ ,A,η ,D) = λ I−A−
∫ 0

−r
eλθdη(θ )−

∫ 0

−r
λeλθD(θ )dθ .

The neutral resolvent set ρ(A,η ,D) is defined as the set of all values λ in C
1 for which

the operator Δ(λ ,A,η ,D) has a bounded inverse in X .

Proposition 1. (i) Let x ∈ X, then
∫ t

0 G(s)xds ∈ D(A) for almost all t ∈ R+, and the
relation

A
∫ t

0
G(s)xds = G(t)x− x−

∫ t

0

∫ 0

−r
dη(θ )G(s+θ )xds

−
∫ 0

−r
D(θ )G(t +θ )xdθ , t ∈ R+, x ∈ X ,

(22)

holds almost everywhere.
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(ii) Let x ∈D(A), then
∫ t

0 G(s)Axds ∈ X for almost all t ∈ R+, and the commutative
relation ∫ t

0
G(s)Axds = G(t)x− x−

∫ t

0

∫ 0

−r
G(s+θ )dη(θ )xds

−
∫ 0

−r
G(t +θ )D(θ )xdθ , t ∈ R+, x ∈D(A),

(23)

holds almost everywhere.

Proof. We first prove the claim (i). For any x ∈ X and ε > 0, let A(ε) = ε−1(S(ε)− I).
We calculate A(ε)

∫ t
0 G(s)xds as follows:

A(ε)
∫ t

0
G(s)xds = ε−1

∫ t

0

{
S(ε)

[
S(s)+

∫ 0

−r
D(θ )G(s+θ )dθ

+
∫ s

0
S(s−u)

(∫ 0

−r
dη(θ )G(u +θ )+∫ 0

−r
AD(θ )G(u +θ )dθ

)
du
]
−G(s)

}
xds

= ε−1
∫ t

0

{
G(s+ ε)−G(s)+ (S(ε)− I)

∫ 0

−r
D(θ )G(s+θ )dθ−∫ 0

−r
D(θ )G(s+θ + ε)dθ

+
∫ 0

−r
D(θ )G(s+θ )dθ −

∫ ε

0
S(ε− v)

[∫ 0

−r
dη(θ )G(s+ v +θ )

+
∫ 0

−r
AD(θ )G(s+ v +θ )dθ

]
dv
}

xds, t ≥ 0.

(24)

Note the strong continuity of G(t) and it is not difficult for us to deduce that

lim
ε→0+

A(ε)
∫ t

0
G(s)xds = lim

ε→0+
ε−1

∫ ε

0

(
G(t + s)−G(s)

)
xds

+
∫ t

0

∫ 0

−r
AD(θ )G(s+θ )xdθds− lim

ε→0+
ε−1
(∫ t

0

∫ 0

−r
D(θ )G(s+θ + ε)dθds

−
∫ t

0

∫ 0

−r
D(θ )G(s+θ )dθ

)
xds−

∫ t

0

∫ 0

−r
dη(θ )G(s+θ )xds−∫ t

0

∫ 0

−r
AD(θ )G(s+θ )xdθds

= G(t)x− x− lim
ε→0+

ε−1
(∫ t

0

∫ 0

−r
D(θ )G(s+θ + ε)dθds−∫ t

0

∫ 0

−r
D(θ )G(s+θ )dθds

)
x

−
∫ t

0

∫ 0

−r
dη(θ )G(s+θ )xds.

(25)
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However, it is easy to see that

lim
ε→0+

ε−1
(∫ t

0

∫ 0

−r
D(θ )G(s+θ + ε)dθds−

∫ t

0

∫ 0

−r
D(θ )G(s+θ )dθds

)
x

=
∫ 0

−r
D(θ ) lim

ε→0+

{∫ ε

0
ε−1G(t + s+θ )ds−

∫ ε

0
ε−1G(s+θ )ds

}
xdθ =∫ 0

−r
D(θ )G(t +θ )xdθ .

(26)

Therefore,
∫ t

0 G(s)xds ∈D(A) for almost all t ∈ R+, and

A
∫ t

0
G(s)xds =G(t)x− x−

∫ t

0

∫ 0

−r
dη(θ )G(s+θ )xds−∫ 0

−r
D(θ )G(t +θ )xdθ , t ∈ R+,

(27)

almost everywhere. The proof of (i) is complete.
Next, we intend to prove the relation (23). Firstly, by definition note that for suffi-

ciently large ℜ(λ ),

Δ(λ ,A,η ,D) = (λ I−A)
[
I−R(λ ,A)

∫ 0

−r
eλθdη(θ )−R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

]
,

and by using (15), we have that

∥∥∥R(λ ,A)
∫ 0

−r
eλθdη(θ )+ R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

∥∥∥
= ‖N(λ )−M(λ )+ I‖ ≤ ‖N(λ )‖+‖I−M(λ )‖→ 0 as ℜ(λ ) → +∞.

(28)

Hence, the bounded inverse

[
I−R(λ ,A)

∫ 0

−r
eλθdη(θ )−R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

]−1

exists for sufficiently large ℜ(λ ). For such a ℜ(λ ) it is easy to deduce that

Ĝ(λ )x =
[
I−R(λ ,A)

∫ 0

−r
eλθdη(θ )−R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

]−1
R(λ ,A)x, ∀x ∈ X .

(29)
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For any x ∈D(A), it then follows from (29) that

λ Ĝ(λ )x− x =

λ
[
I−R(λ ,A)

∫ 0

−r
eλθdη(θ )−R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

]−1
R(λ ,A)x

−
[
I−R(λ ,A)

∫ 0

−r
eλθdη(θ )−R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

]−1
R(λ ,A)(λ I−A)

·
[
I−R(λ ,A)

∫ 0

−r
eλθdη(θ )−R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

]
x

=
[
I−R(λ ,A)

∫ 0

−r
eλθdη(θ )−R(λ ,A)

∫ 0

−r
λeλθD(θ )dθ

]−1
R(λ ,A)

·
{
λ I−

(
λ I−A−

∫ 0

−r
eλθdη(θ )−

∫ 0

−r
λeλθD(θ )dθ

)}
x

= Ĝ(λ )
(

A +
∫ 0

−r
eλθdη(θ )+

∫ 0

−r
λeλθD(θ )dθ

)
x.

(30)

On the other hand, note that the following Laplace transform holds∫ ∞

0
e−λ t

(∫ t

0

{
G(s)Ax +

∫ 0

−r
G(s+θ )dη(θ )x

}
ds+

∫ 0

−r
G(t +θ )D(θ )xdθ

)
dt

= λ−1Ĝ(λ )
(

A +
∫ 0

−r
eλθdη(θ )+

∫ 0

−r
λeλθD(θ )dθ

)
x,

(31)

for sufficiently large ℜ(λ ). Therefore, by (30), (31) and the uniqueness of Laplace
transforms, we have that for all x ∈D(A),

G(t)x− x =
∫ t

0

{
G(s)Ax +

∫ 0

−r
G(s+θ )dη(θ )x

}
ds+∫ 0

−r
G(t +θ )D(θ )xdθ , t ∈ R+,

(32)

almost everywhere. This completes the proof of (ii). ��

4 Adjoint Theory

In the sequel we shall assume that X is reflexive. We intend to establish an adjoint theory
of neutral functional differential equations. Let ψ∗ = (ψ∗0 ,ψ∗1 ) ∈ X ∗. The “formal”
transposed neutral system of (4) on X∗ is defined by

d
dt

[
y∗(t)−

∫ 0

−r
D∗(θ )y∗(t +θ )dθ

]
= A∗y∗(t)+

∫ 0

−r
dη∗(θ )y∗(t +θ )+ f ∗(t),

t > 0,

y∗(0) = ψ∗0 , y∗0(·) = ψ∗1 (·),ψ∗ = (ψ∗0 ,ψ∗1 ) ∈X ∗,

(33)

where η∗(θ ), D∗(θ ) and A∗ denote the adjoint operators of η(θ ), D(θ ) and A, re-
spectively, and f ∗ ∈ L1([0,T ];X∗). It is well known that A∗ generates a C0-semigroup
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S∗(t) on X∗ which is the adjoint of S(t), t ≥ 0. Hence, we can construct a fundamental
solution G∗(t) which is characterized as the unique solution of

G∗(t) = S∗(t)+
∫ 0

−r
D∗(θ )G∗(t +θ )dθ +

∫ t

0
S∗(t− s)

[∫ 0

−r
dη∗(θ )G∗(θ + s)

+
∫ 0

−r
A∗D∗(θ )G∗(s+θ )dθ

]
ds, t ≥ 0,

G∗(t) = O, t < 0.

(34)

We denote by G∗(t) the adjoint of G(t), t ∈ R
1. The following theorem shows that

G∗(t) = G∗(t) for all t ∈ R
1.

Theorem 3. Let G∗(t) be the solution of (34). Then

G∗(t) = G∗(t) for almost all t ∈ R
1.

Proof. Since G(t) satisfies (7), then

G∗(t) = S∗(t)+
∫ 0

−r
G∗(t +θ )D∗(θ )dθ +

∫ t

0

(∫ 0

−r
G∗(s+θ )dη∗(θ )

+
∫ 0

−r
G∗(s+θ )D∗(θ )A∗dθ

)
S∗(t− s)ds, t ≥ 0.

(35)

Note that S∗(t) is strongly continuous on R+. Then by using (34), (35) and the Lebesgue
dominated convergence theorem, G∗(t)x∗ and G∗(t)x∗ are of exponential order for each
x∗ ∈ X∗. Hence, both G∗(t) and G∗(t) are Laplace transformable. Taking Laplace trans-
form on both sides of (34), we have for sufficiently large ℜ(λ ) that

Ĝ∗(λ ) = R(λ ,A∗)+
∫ 0

−r
eλθD∗(θ )dθ · Ĝ∗(λ )+ R(λ ,A∗)

∫ 0

−r
eλθdη∗(θ ) · Ĝ∗(λ )

+ R(λ ,A∗)
∫ 0

−r
eλθA∗D∗(θ )dθ · Ĝ∗(λ ),

(36)

where R(λ ,A∗) denotes the resolvent of A∗. Similarly to (15), ones can define

M∗(λ ) = I−
∫ 0

−r
eλθD∗(θ )dθ ,

N∗(λ ) = R(λ ,A∗)
[∫ 0

−r
eλθdη∗(θ )+

∫ 0

−r
eλθA∗D∗(θ )dθ

]
,

(37)

for arbitrary λ ∈ C
1 with ℜ(λ ) large enough. It is easy to see that M∗(λ ) → I and

‖N∗(λ )‖ → 0 as ℜ(λ ) → +∞. This implies that for sufficiently large ℜ(λ ), both
M∗(λ )−1 and [I−M∗(λ )−1N∗(λ )]−1 exist. Therefore, by virtue of (37) and (36), we
can rewrite Ĝ∗(λ ) as

Ĝ∗(λ ) =
[
I−M∗(λ )−1N∗(λ )

]−1
M∗(λ )−1R(λ ,A∗). (38)
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On the other hand, the following equality holds

Ĝ(λ )
(
λ I−A−

∫ 0

−r
eλθdη(θ )−

∫ 0

−r
λeλθD(θ )dθ

)
= I (39)

for sufficiently largeℜ(λ ). Substituting λ = λ̄ (complex conjugate) into (39) and taking
its adjoint, we obtain

I =
(
λ̄ I−A−

∫ 0

−r
eλ̄θdη(θ )−

∫ 0

−r
λ̄eλ̄θD(θ )dθ

)∗
(Ĝ(λ̄ ))∗

=
(
λ I−A∗−

∫ 0

−r
eλθdη∗(θ )−

∫ 0

−r
λeλθD∗(θ )dθ

)
Ĝ∗(λ ),

(40)

so that

Ĝ∗(λ ) =
(

I−A∗−
∫ 0

−r
eλθdη∗(θ )−

∫ 0

−r
λeλθD∗(θ )dθ

)−1
. (41)

Note that we have

R(λ ,A∗)−1M∗(λ )
[
I−M∗(λ )−1N∗(λ )

]
= R(λ ,A∗)−1[M∗(λ )−N∗(λ )]

= R(λ ,A∗)−1
{

I−
∫ 0

−r
eλθD∗(θ )dθ−

R(λ ,A∗)
[∫ 0

−r
eλθdη∗(θ )+

∫ 0

−r
eλθA∗D∗(θ )dθ

]}
= λ I−A∗ − (λ I−A∗)

∫ 0

−r
eλθD∗(θ )dθ −

∫ 0

−r
eλθdη∗(θ )−

∫ 0

−r
eλθA∗D∗(θ )dθ

= λ I−A∗ −
∫ 0

−r
λeλθD∗(θ )dθ −

∫ 0

−r
eλθdη∗(θ ).

(42)

Thus, ones have by virtue of (41) and (42) that

Ĝ∗(λ ) =
[
I−M∗(λ )−1N∗(λ )

]−1
M∗(λ )−1R(λ ,A∗),

which, together with (38), immediately implies that for sufficiently large ℜ(λ ),

Ĝ∗(λ ) = Ĝ∗(λ )

and then by the uniqueness of Laplace transforms,

G∗(t) = G∗(t), t ∈R
+,

almost everywhere. Since G∗(t) = G∗(t) = O if t < 0, the desired result follows now.

Note that the adjoint B∗(θ ), D∗(θ ) of B(θ ), D(θ ) defined in (33) satisfy

B∗(·), D∗(·) ∈ L2([−r,0];L (X∗)),
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respectively. For arbitrary ψ∗ = (ψ∗0 ,ψ∗1 ) ∈ X∗ ×W 1,2([−r,0];X∗), the mild solution
y∗(t, f ∗,ψ∗) of the adjoint equation (33) exists and may be represented by

y∗(t, f ∗,ψ∗) = G∗(t)ψ∗0 +V∗(t,0)ψ∗1 (0)+
∫ 0

−r
U∗(t,θ )ψ∗1 (θ )dθ

+
∫ 0

−r
V∗(t,θ )ψ∗1 (θ )′dθ +

∫ t

0
G∗(t− s) f ∗(s)ds,

(43)

where

U∗(t,θ ) =
∫ θ

−r
G∗(t−θ + τ)dη∗(τ) ∈ L2([−r,0];L (X∗)

)
, θ ∈ [−r,0], (44)

and

V∗(t,θ ) =
∫ θ

−r
G∗(t−θ + τ)D∗(τ)dθ ∈ L2([−r,0];L (X∗)

)
, θ ∈ [−r,0]. (45)

Note that the operatorsU∗(t,θ ) and V∗(t,θ ) in (44) and (45) are not necessarily identical
with the adjoints U∗(t,θ ) and V ∗(t,θ ) of U(t,θ ) and V (t,θ ), respectively. In particu-
lar, by an argument similar as for Proposition 1 ones can easily obtain the following
theorem.

Theorem 4. (i) Let x∗ ∈ X∗, then
∫ t

0 G∗(s)x∗ds ∈D(A∗) for almost all t ∈ R+, and the
relation

A∗
∫ t

0
G∗(s)x∗ds = G∗(t)x∗ − x∗ −

∫ t

0

∫ 0

−r
dη∗(θ )G∗(s+θ )x∗ds

−
∫ 0

−r
D∗(θ )G∗(t +θ )x∗dθ , t ∈R+, x∗ ∈ X∗,

(46)

holds almost everywhere.
(ii) Let x∗ ∈D(A∗), then

∫ t
0 G∗(s)A∗x∗ds ∈ X∗ for almost all t ∈R+, and the commuta-

tive relation∫ t

0
G∗(s)A∗x∗ds = G∗(t)x∗ − x∗−

∫ t

0

∫ 0

−r
G∗(s+θ )dη∗(θ )x∗ds

−
∫ 0

−r
G∗(t +θ )D∗(θ )x∗dθ , t ∈R+, x∗ ∈D(A∗),

(47)

holds almost everywhere.

5 Optimal Control

Let T > 0 and U be a separable Banach space. Consider the following neutral hereditary
controlled system on X :

d
dt

[
y(t)−

∫ 0

−r
D(θ )y(t +θ )dθ

]
= Ay(t)+

∫ 0

−r
dη(θ )y(θ + t)+ f (t)+ Q(t)u(t),

t ∈ [0,T ],

y(0) = φ0, y0 = φ1, φ = (φ0,φ1) ∈W 1,2, u ∈Uad ,

(48)
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where A, η , D are given as in (4), f ∈ L2([0,T ];X), Uad ⊂ L2([0,T ];U) and Q ∈
L∞([0,T ];L (U,X)).

The quantities y(·), u(·), Q and Uad in (48) denote a system state, a control, a con-
troller and a class of admissible controls, respectively. It is known by virtue of Theorem
2 that the following form

y(t) = G(t)
[
φ0−

∫ 0

−r
D(θ )φ1(θ )dθ

]
+
∫ 0

−r
U(t,θ )φ1(θ )dθ +

∫ 0

−r
V (t,θ )φ ′1(θ )dθ

+
∫ t

0
G(t− s) f (s)ds+

∫ t

0
G(t− s)Q(s)u(s)ds

= y(t, f ,φ)+
∫ t

0
G(t− s)Q(s)u(s)ds, t ≥ 0,

(49)

is the mild solution of (48) where y(t, f ,φ) is given by (11).

5.1 Existence of Optimal Control

In what follows, the admissible set Uad is assumed to be closed and convex in
L2([0,T ];U). Let J = J(u) be the integral convex cost given by

J = R(y(T ))+
∫ T

0

(
P(y(t),t)+ L(u(t), t)

)
dt, (50)

where R : X → R
1, P : X × [0,T ] → R

1 and L : U × [0,T ] → R
1. We are interested in

the following control problem on the finite interval I = [0,T ]: find a control u ∈Uad

which minimizes the cost J subject to (48).

Assumption A1:

(1) R : X → R
1 is continuous and convex, and there exists a constant c0 > 0 such that

R(x)≥−c0 on X ;
(2) P : X× [0,T ]→R

1 is measurable in t ∈ [0,T ] for each x∈X and continuous, convex
in x ∈ X for t ∈ [0,T ], and there exists a constant c1 > 0 such that P(x, t)≥−c1 on
X× [0,T ];

(3) L : U × [0,T ] → R
1 satisfies that for any u ∈Uad , L(u(t), t) is integrable on [0,T ]

and the functional Γ : Uad → R
1 given by

Γ (u) =
∫ T

0
L(u(t), t)dt

is continuous and convex. Moreover, there exists a monotone increasing function
θ0 ∈C(R+;R1) such that limr→∞ θ0(r) = ∞ and

Γ (u) =
∫ T

0
L(u(t), t)dt ≥ θ0(‖u‖L2([0,T ];U)) for u ∈Uad.

Theorem 5. Assume that the assumption A1 is satisfied. Then there exists a control
u0 ∈Uad that minimizes the cost J in (50).
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Proof. Let {un} be a minimizing sequence of J such that

inf
u∈Uad

J(u) = lim
n→∞

J(un) = m0.

By virtue of A1, it follows that

J(u)≥ θ0(‖u‖L2([0,T ];U))− c0− c1T for u ∈Uad.

Hence, a standard argument with limr→∞ θ0(r) =∞ yields that the minimizing sequence
{un} is bounded in L2([0,T ];U), which, together with the closedness of Uad , implies
that there exists a subsequence (which we denote it again by {un}) of {un} and a u0 ∈
Uad such that

un → u0 weakly in L2([0,T ];U). (51)

We denote yun(t) and yu0(t) the mild solutions of (48) corresponding to un and u0,
respectively. For any fixed x∗ ∈ X∗ and t ∈ [0,T ], since G(t) = O if t < 0, then we have
that for any t ≥ 0,

〈yun(t),x∗〉X ,X∗ = 〈y(t, f ,φ),x∗〉X ,X∗ +
∫ t

0
〈un(s),Q∗(s)G∗(t− s)x∗〉U,U∗ds, (52)

where y(t, f ,φ) is the mild solution of (48) corresponding to Q(·) = O. Since Q(t) ∈
L (U,X) and G(t) is piecewise strongly continuous on [0,T ], it is easy to see that the
function Q∗(·)G∗(t− ·)x∗ belongs to L2([0,T ];U∗). Hence, by virtue of (51) and (52),
it follows that

〈yun(t),x∗〉X ,X∗ → 〈y(t, f ,φ),x∗〉X ,X∗ +
∫ t

0
〈u0(s),Q∗(s)G∗(t− s)x∗〉U,U∗ds

= 〈y(t, f ,φ),x∗〉X ,X∗ +
〈∫ t

0
G(t− s)Q(s)u0(s)ds,x∗

〉
X ,X∗

= 〈yu0(t),x∗〉X ,X∗ as n → ∞,

(53)

i.e.,

yun(t) → yu0(t) weakly in X as n → ∞. (54)

It is well known that continuity plus convexity imply weak lower semi-continuity. Then
the condition (1) in Assumption A1 and (54) with t = T imply

lim
n→∞

R(yun(T ))≥ R(yu0(T )). (55)

In a similar way, we have

lim
n→∞

P(yun(t),t)≥ P(yu0(t),t), t ∈ [0,T ]. (56)

It follows via Fatou’s lemma that

lim
n→∞

∫ T

0
P(yun(t),t)dt ≥

∫ T

0
lim
n→∞

P(yun(t), t)dt ≥
∫ T

0
P(yu0(t), t), t ∈ [0,T ]. (57)
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As for the term
∫ T

0 L(un(t),t)dt, it is clear from (3) in Assumption A1 that

lim
n→∞

Γ (un)≥ Γ (u0) =
∫ T

0
L(u0(t),t)dt. (58)

Therefore, by (55), (57) and (58) we have

m0 = inf
u∈Uad

J(u)≥ lim
n→∞

R(yun(T ))+ lim
n→∞

∫ T

0
P(yun(t), t)dt + lim

n→∞
Γ (un)

≥ R(yu0(T ))+
∫ T

0

[
P(yu0(t), t)+ L(u0(t), t)

]
dt

= J(u0) >−∞,

(59)

so that m0 = J(u0). This proves that u0 is the optimal solution for J.

5.2 Optimality Condition

In this subsection, we shall seek necessary optimality conditions of the optimal solution
u for J in (50). The existence of optimal solutions is assumed but not the closedness of
Uad .

Assumption A2:

(1) R : X → R
1 is continuous and Gâteau differentiable, and the Gâteau derivative

R′(x) ∈ X∗ for each x ∈ X ;
(2) P : X× [0,T ]→R

1 is measurable in t ∈ [0,T ] for each x∈X and continuous, convex
on X for t ∈ [0,T ], and furthermore there exist functions ∂xP : X × [0,T ] → X∗,
θ1 ∈ L1([0,T ];R1), θ2 ∈C(R+;R1) such that:
(a) ∂xP(x,t) is measurable in t ∈ [0,T ] for each x ∈ X and continuous in x ∈ X for

t ∈ [0,T ] and the value ∂xP(x, t) is the Gâteau derivative of P(x,t) in the first
argument for (x,t) ∈ X× [0,T ], and

(b) ‖∂xP(x,t)‖X∗ ≤ θ1(t)+θ2(‖x‖X) for (x,t) ∈ X× [0,T ];
(3) L :U× [0,T ]→R

1 is measurable in t ∈ [0,T ] for each z∈U and continuous, convex
on U for each t ∈ [0,T ]. Moreover, there exist function θ3(·) ∈ L1([0,T ];R1) and
constant M > 0 such that

|L(z,t)| ≤ θ3(t)+ M‖z‖2
U for (z, t) ∈U× [0,T ].

Lemma 1. [12] Consider the function

J(v) = J1(v)+ J2(v)

for any v ∈ L2([0,T ];U) where we assume that the functions Ji(v), i = 1, 2, are contin-
uous and convex. Further assume that the function v → J1(v) is differentiable. Then the
unique element u in Uad satisfying J(u) = infv∈Uad J(v) is characterized by

J′1(u)(v−u)+ J2(v)− J2(u)≥ 0 for all v ∈Uad . (60)
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Now we are in a position to state one of the main theorems in this section.

Theorem 6. Suppose that the assumption A2 holds and u ∈Uad is an optimal solution
for J in (50). Then the integral inequality∫ T

0
〈v(t)−u(t),−Q∗(t)p(t)〉U,U∗dt +

∫ T

0

(
L(v(t), t)−L(u(t), t)

)
dt ≥ 0

for all v ∈Uad

(61)

holds, where

p(t) =−G∗(T − t)R′(yu(T ))−
∫ T

t
G∗(s− t)∂xP(yu(s),s)ds (62)

satisfies that for t ∈ [0,T ],

d
dt

[
p(t)−

∫ 0

−r
D∗(θ )p(t +θ )dθ

]
+ A∗p(t)+∫ 0

−r
dη∗(θ )p(t−θ )− ∂xP(yu(t), t) = 0,

p(T ) =−R′(yu(T )), p(t) = 0, t ∈ (T,T + r],

(63)

in the weak sense.

Proof. By virtue of the assumption A2, we have by Lebesgue’s dominated convergence
theorem that

(J−Γ )′(u)(v−u) =
〈∫ T

0
G(T − s)Q(s)(v(s)−u(s))ds,R′(yu(T ))

〉
X ,X∗

+
∫ T

0

〈∫ s

0
G(s− τ)Q(τ)(v(τ)−u(τ))dτ,∂xP(yu(s),s)

〉
X ,X∗

ds.

(64)

Note that all integrals in (64) are well defined by making use of the assumption A2. The
first term of (64) can be written as∫ T

0
〈v(s)−u(s),Q∗(s)G∗(T − s)R′(yu(T ))〉U,U∗ds. (65)

Using the standard Fubini lemma, the second term of (64) is transformed as∫ T

0

∫ s

0
〈G(s− τ)Q(τ)(v(τ)−u(τ)),∂xP(yu(s),s)〉X ,X∗dτds

=
∫ T

0
〈v(τ)−u(τ),Q∗(τ)

∫ T

τ
G∗(s− τ)∂xP(yu(s),s)ds〉U,U∗dτ.

(66)

If we define p(t) by (62) and apply Lemma 1 to the mapping J = (J−Γ )+Γ , then the
relations (64), (65) and (66) yield the inequality (61). For the last statement, note that
by virtue of (43), the function

−G∗(t)R′(yu(0))−
∫ t

0
G∗(t− s)∂xP(yu(T − s),T − s)ds, t ∈ [0,T ],
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satisfies

d
dt

[
y∗(t)−

∫ 0

−r
D∗(θ )y∗(t +θ )dθ

]
= A∗y∗(t)+

∫ 0

−r
dη∗(θ )y∗(t +θ )

− ∂xP(yu(T − t),T − t), t ∈ [0,T ],
y∗(0) =−R′(yu(0)), y∗(θ ) = 0, θ ∈ [−r,0).

(67)

A change of variable t → T − t yields the desired result. The proof is now complete. ��

5.3 Maximum Principle

In view of Theorem 6, we can obtain from (61) the following “integral” maximum
principle:

max
v∈Uad

∫ T

0

(
〈v(t),Q∗(t)p(t)〉U,U∗ −L(v(t), t)

)
dt =∫ T

0

(
〈u(t),Q∗(t)p(t)〉U,U∗ −L(u(t), t)

)
dt.

(68)

It is possible to improve this result to establish the so-called “pointwise” maximum
principle for the convex cost (50). To this end, the assumption A2 is assumed at the
moment. Let the admissible set Uad be

Uad =
{

u ∈ L2([0,T ];U) : u(t) ∈U(t), t ∈ [0,T ]
}
, (69)

where the (time varying) control domain U(t)⊂U , t ∈ [0,T ], satisfies

Assumption A3:

(1) U(t) is closed and convex in U for each t ∈ [0,T ];
(2) For any t ∈ [0,T ], z ∈ IntU(t), the interior of U(t), there exists an ε0 > 0 such that

z ∈
( ⋂

s∈(t,t+ε0)

U(s)
)
∪
( ⋂

s∈(t−ε0,t)

U(s)
)
. (70)

Theorem 7. Let u ∈Uad be an optimal solution for J in (50). Then

max
z∈U(t)

{
〈Q(t)z, p(t)〉X ,X∗ −L(z,t)

}
= 〈Q(t)u(t), p(t)〉X ,X∗ −L(u(t), t), t ∈ [0,T ],

where p(t) is given by (62).

Proof. Let t ∈ [0,T ] and z ∈ IntU(t). Since z satisfies (70), we suppose, for instance,
z ∈ ∩s∈(t,t+ε0)U(s). Then it is easy to see that for any ε > 0 the function

vε(s) =

{
u(s), s ∈ [0, t) or (t + ε,T ],
z, s ∈ [t, t + ε],

(71)



368 K. Liu

belongs to Uad for the u in (61). Substituting vε for v in (61) and dividing the resulting
inequality by ε , we obtain

1
ε

∫ t+ε

t

{
〈z−u(s),−Q∗(s)p(s)〉U,U∗ +

(
L(z,s)−L(u(s),s)

)}
ds≥ 0. (72)

Since all the integrands in (72) are integrable on [0,T ] by virtue of the assumption A2,
the Lebesgue density theorem can apply. Then by letting ε → 0 in (72), we have

〈z,Q∗(t)p(t)〉U,U∗ −L(z,t)≤ 〈u(t),Q∗(t)p(t)〉U,U∗ −L(u(t),t), t ∈ [0,T ]. (73)

Since the duality pairing 〈z,Q∗(t)p(t)〉U,U∗ is continuous in z, we see from (73) that the
maximum principle is true for such t ∈ [0,T ]. ��
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Relaxations on Networks
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Abstract. Nonlinear network flow problems with linear/nonlinear side con-
straints can be solved by means of Lagrangian relaxations. The dual problem is
the maximization of a dual function whose value is estimated by minimizing ap-
proximately a Lagrangian function on the set defined by the network constraints.
We study alternative stepsizes in the approximate subgradient methods to solve
the dual problem. Some basic convergence results are put forward. Moreover,
we compare the quality of the computed solutions and the efficiency of these
methods.

1 Introduction

Consider the nonlinearly constrained network flow problem (NCNFP)

minimize
x

f (x) (1)

subject to x ∈F (2)

c(x)≤ 0, (3)

where:

– F = {x ∈ Rn | Ax = b, 0≤ x≤ x}, where A is a node-arc incidence m×n-matrix,
b is the production/demand m-vector, x are the flows on the arcs of the network
represented by A, and x is the vector of capacity bounds imposed on the flow of
each arc.

– The side constraints (3) are defined by c : Rn → Rr, such that c = [c1, · · · ,cr]T ,
where ci(x) is linear or nonlinear and twice continuously differentiable on F for
all i = 1, · · · ,r.

– f : Rn → R is nonlinear and twice continuously differentiable on F .

We focus on the primal problem NCNFP and its dual problem

maximize q(μ) = min
x∈F

l(x,μ) (4)

subject to μ ∈M , (5)

where the Lagrangian function is

l(x,μ) = f (x)+ μT c(x) (6)

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 370–381, 2009.
c© IFIP International Federation for Information Processing 2009
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and M = {μ | μ ≥ 0, q(μ)>−∞}. We assume throughout this paper that the constraint
set M is closed and convex. Since q is concave on M , it is continuous on M .
When exact values of q are used, we assume that for every μ ∈ M some vector
x(μ) that minimizes l(x,μ) over x ∈ F can be calculated, yielding a subgradient
c(x(μ)) of q at μ , which allows to solve NCNFP by using primal-dual methods, see
[2]. Nevertheless, a substantial drawback of this kind of methods is the need to obtain at
each iteration an exact solution to the subproblem included in (4). In this paper in order
to allow for inexact solution of this minimization, we consider approximate subgradient
methods [6,8,7] in the solution of this problem. The basic difference between these
methods and the classical subgradient methods is that they replace the subgradients
with inexact subgradients.

Given a scalar ε ≥ 0 and a vector μ ∈M , we say that c is an ε-subgradient (approx-
imate subgradient) at μ if

q(μ)≤ q(μ)+ ε+ cT (μ− μ), ∀μ ∈ Rr. (7)

The set of all ε-subgradients at μ is the ε-subdifferential at μ (i.e. ∂εq(μ)).
In our context, we minimize approximately l(x,μk) over x ∈ F by efficient tech-

niques specialized for networks [15], obtaining a vector xk ∈F with

l(xk,μk)≤ inf
x∈F

l(x,μk)+ εk. (8)

As is shown in [2,8], the corresponding constraint vector, c(xk), is an εk-subgradient at
μk. If we denote qεk(μ

k) = l(xk,μk), by definition of q(μk) and using (8) we have

q(μk)≤ qεk(μ
k)≤ q(μk)+ εk ∀k. (9)

An approximate subgradient method is defined by

μk+1 = [μk +αkck]+, (10)

where ck is an approximate subgradient at μk, [·]+ denotes the projection on the closed
convex set M , and αk is a positive scalar stepsize.

Different ways of computing the stepsize have been considered:

(a) Constant step rule (CSR) with Shor-type scaling [14].
(b) A variant of the constant step rule (VCSR) of Shor.
(c) Diminishing stepsize rule with scaling (DSRS) [13,5,14].
(d) The diminishing stepsize rule without scaling (DSR) suggested by Correa and

Lemaréchal in [3].
(e) A dynamically chosen stepsize rule based on an estimation of the optimal value

of the dual function by means of an adjustment procedure (DSAP) similar to that
suggested by Nedić and Bertsekas in [12] for incremental subgradient methods.

The convergence of these methods was studied in the cited papers for the case of exact
subgradients. The convergence of the approximate subgradient methods was analyzed
by Kiwiel [6].
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An alternative study of the convergence of some of these methods and their applica-
tion in the solution of nonlinear networks was carried out in [8,7].

In this work some basic convergence results obtained by Shor [14] are extended to
approximate subgradient methods. Moreover, we compare the quality of the computed
solution and the efficiency of the approximate subgradient methods when using CSR,
VCSR, DSRS, DSR, and DSAP over NCNFP problems.

This paper is organized as follows: Sect. 2 presents the stepsize rules with the corre-
sponding convergence results; Sect. 3, the solution to the nonlinearly constrained net-
work flow problem; Sect. 4 puts forward the numerical tests; and Sect. 5 displays the
conclusions.

2 Stepsize Rules and Convergence Results

Throughout this section, we use the notation

q∗ = sup
μ∈M

q(μ), M ∗ = {μ ∈M | q(μ) = q∗}, (11)

and ‖ · ‖ denotes the standard Euclidean norm.

Assumption 1 (subgradient boundedness). There exists a scalar C > 0 such that for
μk ∈M , εk ≥ 0 and ck ∈ ∂εk q(μk), we have ‖ck‖ ≤C, for k = 0,1, . . . .

We say that μ is an ε-optimal solution of the dual problem when 0 ∈ ∂εq(μ), i.e.
when q(μ)≥ q∗− ε .

In this paper various kinds of stepsize rules have been considered.

2.1 Constant Step Rule (CSR)

As is well known the classical scaling of Shor (see [14])

αk =
sk

‖ck‖ (12)

with sk = s gives rise to an s-constant-step algorithm.
Note that constant stepsizes (i.e. αk = s for all k) are unsuitable because the function

q may be nondifferentiable at the optimal point and then {ck} does not necessarily tend
to zero, even if {μk} converges to the optimal point, see [14].

Next, we show some basic convergence results when ck is an approximate subgradi-
ent, which are similar to the results obtained by Shor [14] in the case of exact subgradi-
ents.

Proposition 1. Consider the ε-subgradient iteration

μk+1 =
[
μk +αkck

]+
, (13)

where αk = sk/‖ck‖ and sk = s > 0 for any k, and ck ∈ ∂qεk(μ
k), with lim

k→∞
εk = ε ≥ 0.

Then, for any δ > 0 and any dual optimal solution μ∗ ∈M ∗, either one can find k = k,
where μk is an εk-optimal solution, or there exist an index k and a point μ ∈M such

that q(μ) = q(μk)+ εk and ‖μ− μ∗‖<
s
2
(1 + δ ).
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Proof. Let μ∗ ∈M ∗ and let δ > 0 be given. If ck = 0 for some k then μk is an εk-optimal
solution.

When ck �= 0 for all k = 0,1,2, . . . , by the nonexpansiveness of the projection opera-
tion we have

‖μk+1− μ∗‖2 ≤ ‖μk + s
ck

‖ck‖ − μ∗‖2

= ‖μk− μ∗‖2 + s2−2s(μ∗− μk)T ck

‖ck‖ . (14)

Let ak(μ∗) = (μ∗ − μk)T ck

‖ck‖ , which is the distance from μ∗ to the supporting hyper-

plane Hk = {μ ∈M | (μ− μk)T ck = 0}, that is, ak(μ∗) = dist(μ∗,Hk).
On the other hand, we suppose that q(μk)+ εk < q∗, as otherwise 0 ∈ ∂εk q(μk) and

μk is an εk-optimal solution. Therefore, as q(·) is continuous on M we can define the
level set Lεk = {μ ∈ M | q(μ) = q(μk) + εk}, which is closed. Hence, the distance
bk(μ∗) = dist(μ∗,Lεk ) is well defined.

Since the set Lεk and the point μ∗ lie on the same side of Hk and any segment joining
μ∗ with a point of Hk passes through Lεk , we have ak(μ∗)≥ bk(μ∗). Then, from (14) we
obtain

‖μk+1− μ∗‖2 ≤ ‖μk− μ∗‖2 + s2−2sbk(μ∗). (15)

If bk(μ∗)≥
s
2
(1 + δ ) for all k = 0,1,2, . . . , then

‖μk+1− μ∗‖2 ≤ ‖μk− μ∗‖2− δ s2 ≤ ‖μ0− μ∗‖2− δ (k + 1)s2, (16)

for all k.
But ‖μk+1− μ∗‖2 ≥ 0. Therefore, k exists such that

bk(μ
∗) = dist(μ∗,Lε

k
) <

s
2
(1 + δ ), (17)

and, hence, there exists μ ∈ Lε
k

with q(μ) = q(μk)+ εk that verifies ‖μ−μ∗‖<
s
2
(1+

δ ). ��

Corollary 1. If the set M ∗ contains a sphere with radius r > s/2 and the ε-subgradient
method is applied with αk = s/‖ck‖, then there exists k∗ such that μk∗ is an εk∗ -
optimal solution.

Proof. By Proposition 1, for any δ > 0 there exists k such that μ ∈ Lε
k

where q(μ) =

q(μk)+ εk with ‖μ∗− μ‖<
s
2
(1 + δ ) for any μ∗ ∈M ∗.

Let r > s/2, then we take δ such that 0 < δ <
r− s/2

s/2
, for which some k∗ must exist

such that
dist(μ∗,Lεk∗) <

s
2
(1 + δ) < r,
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for which there exists μ̂ ∈ Lεk∗ such that

‖μ∗ − μ̂‖<
s
2
(1 + δ) < r,

then μ̂ ∈ S(μ∗;r)⊂M ∗, that is, q(μ̂) = q∗.
Since q(μ̂) = q(μk∗)+ εk∗ (by definition of Lεk∗ ), then q(μk∗)+ εk∗ = q∗ and μk∗ is

an εk∗ -optimal solution. ��

Note that if εk = 0 for all k, we have Corollary 2 of Theorem 2.1 in [14]. In this work
by default s = 100.

2.2 Variant of the Constant Step Rule (VCSR)

Since ck is an approximate subgradient, there can exist a k such that ck ∈ ∂εk q(μk) with
‖ck‖= 0, but εk not being sufficiently small. In order to overcome this trouble we have
considered the following variant

αk =
s

δ +‖ck‖ , (18)

where s and δ are positive constants. The following proposition shows its kind of con-
vergence (see [7]).

Proposition 2. Let Assumption 1 hold. Let the optimal set M ∗ be nonempty. Suppose
that a sequence {μk} is calculated by the ε-subgradient method given by (10), with the
stepsize (18), where ∑∞

k=1 εk < ∞. Then

q∗ − limsup
k→∞

qεk(μ
k) <

s
2
(δ +C). (19)

Note that for very small values of δ the stepsize (18) is similar to Shor’s classical
scaling; in contrast, for big values of δ (with regard to sup{‖ck‖}) the stepsize (18)
looks like a constant stepsize. As a result we have chosen by default δ = 10−12 with
s = 100.

2.3 Diminishing Stepsize Rule with Scaling (DSRS)

It can be seen from the proof of Proposition 1 that at each iteration of (13) the reduction
in the distance to the optimal set M ∗ is guaranteed only outside a certain neighborhood
of that set, with the size of that neighborhood depending on the value of the steplength s.
Therefore, to obtain standard convergence results it is necessary to require that sk tends
to zero. The reduction of steplengths, however, should not be too rapid. In particular, if
the series∑∞

k=1 sk is convergent then the sequence {μk} has a limit, but this limit may lie
outside M ∗. So for (13), with αk = sk/‖ck‖, we have arrived at the classical conditions:

sk > 0, {sk}→ 0 as k → ∞, and
∞

∑
k=1

sk = ∞. (20)
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There are several alternative proofs of convergence of this method for exact subgra-
dients [13,5]. Below we present our version of the proof of the convergence of the
approximate subgradient method, which is based on Theorem 2.2 given by Shor in [14]
for exact subgradients (see also [6]).

Proposition 3. Let {εk} → 0. Consider the ε-subgradient iteration (13) for αk =
sk/‖ck‖, where sk > 0 is such that limk→∞ sk = 0 and ∑∞

k=1 sk = ∞. Assume that M ∗

is closed, bounded, and non-empty. Then either an index k exists such that μk ∈M ∗ or
else

lim
k→∞

dist(μk,M ∗) = 0, lim
k→∞

q(μk) = q∗, (21)

and limk→∞ qεk(μ
k) = q∗.

Proof. Let μ∗ ∈ M ∗. If there exists a k such that μk ∈ M ∗, the proposition holds.
Assume that this k does not exist, i.e μk �∈M ∗ for all k. Then μk can be an εk-optimal
solution or not. If μk is not an εk-optimal solution, like in the proof of Proposition 1
(see (15)), we obtain

‖μk+1− μ∗‖2 ≤ ‖μk− μ∗‖2 + s2
k−2skbk(μ∗). (22)

For a fixed a > 0, consider the set {μ ∈M | q(μ)≥ q∗−a} and its boundaryΓq∗−a. By
assumption, the set M ∗ is closed and bounded. Thus Γq∗−a is compact, as q is concave
over M convex, and, hence, it is continuous (see Proposition B.9 in [2]).

Since {εk}→ 0, there exists Nε , such that for all k ≥ Nε , a > εk. Furthermore,
M ∗ ∩Γq∗−a = /0 and there exists a number

ρ(a) = dist(Γq∗−a,M
∗) = min

μ∗∈M ∗,λ∈Γq∗−a

‖λ − μ∗‖. (23)

Since {sk}→ 0, one can find Nρ(a) ≥ Nε such that for all k > Nρ(a), sk < ρ(a) and
a > εk.

If q(μk) < q∗ −a, then bk(μ∗) > ρ(a) and from (22) we have

‖μk+1− μ∗‖2 ≤ ‖μk− μ∗‖2−ρ(a)sk, ∀k > Nρ(a), (24)

as by adding the inequalities s2
k < ρ(a)sk and −2skbk(μ∗) < −2skρ(a) we obtain

s2
k −2skbk(μ∗) <−ρ(a)sk for all k > Nρ(a).

By adding (24), we have

‖μk+1− μ∗‖2 ≤ ‖μ0− μ∗‖2−ρ(a)
k

∑
i=1

si, (25)

and as ∑∞
k=1 sk =∞, there must exist Na > Nρ(a) such that for all k≥Na it holds q(μk)≥

q∗ −a.
From here on both cases (when μk is an εk-optimal solution and when it is not) are

unified. Note that if μk is an εk-optimal solution, we have q(μk)≥ q∗ − εk > q∗ −a.

Define d(a) = max
λ∈Γq∗−a

{ min
μ∗∈M ∗

‖λ − μ∗‖}. If q(μk) ≥ q∗ − a, then min
μ∗∈M ∗

‖μk −

μ∗‖ ≤ d(a).
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By the nonexpansiveness of the projection operator for all k it holds

‖μk+1− μ∗‖ ≤
∥∥∥∥(μk + sk

ck

‖ck‖

)
− μ∗

∥∥∥∥≤ ‖μk− μ∗‖+ sk. (26)

Therefore, for k = k we have

min
μ∗∈M ∗

‖μk+1− μ∗‖ ≤ min
μ∗∈M ∗

‖μk− μ∗‖+ sk ≤ d(a)+ sk, ∀k ≥ Na. (27)

On the other hand, for all k > Nρ(a) with q(μk) < q∗ −a, by (24), we have

‖μk+1− μ∗‖ ≤ ‖μk− μ∗‖, (28)

and hence,
min

μ∗∈M ∗
‖μk+1− μ∗‖ ≤ min

μ∗∈M ∗
‖μk− μ∗‖. (29)

By combining (27) and (29) we obtain

‖μk+1− μ∗‖ ≤ d(a)+ max
k>Na

{sk} (30)

for all k > Na > Nρ(a).
Since d(a) → 0 as a → 0, for all δ > 0 there exists aδ such that d(aδ )≤ δ/2.
Next, one can find an index Nδ such that q(μk)≥ q∗−aδ and sk ≤ δ/2 for all k > Nδ .

Therefore, for all k > Nδ , by (30) we have

min
μ∗∈M ∗

‖μk− μ∗‖ ≤ δ . (31)

This proves that lim
k→∞

(
min

μ∗∈M ∗
‖μk− μ∗‖

)
= 0.

By continuity of q, we have lim
k→∞

q(μk) = q∗. Moreover, as {εk}→ 0, by the inequal-

ities (9) we obtain lim
k→∞

qεk(μ
k) = q∗, which completes the proof. ��

An example of such a stepsize is

αk =
sk

‖ck‖ , with sk = s/k̂, (32)

for k̂ = !k/m"+ 1. We use by default s = 100 and m = 5.

2.4 Diminishing Stepsize Rule (DSR)

The convergence of the subgradient method using a diminishing stepsize was shown by
Correa and Lemaréchal, see [3]. Next, we consider the special case where ck is an
εk-subgradient and αk = sk in (13).

The following proposition is proved in [8].
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Proposition 4. Let the optimal set M ∗ be nonempty. Also, assume that the sequences
{sk} and {εk} are such that

sk > 0,
∞

∑
k=0

sk = ∞,
∞

∑
k=0

s2
k <∞,

∞

∑
k=0

skεk < ∞. (33)

Then, the sequence {μk}, generated by the ε-subgradient method, where ck ∈ ∂εk q(μk)
(with {‖ck‖} bounded), converges to some optimal solution.

An example of such a stepsize is

αk = sk = s/k̂, (34)

for k̂ = !k/m"+ 1. In this work we use by default s = 100 and m = 5.
An interesting alternative for the ordinary subgradient method is the dynamic stepsize

rule

αk = γk
q∗ −q(μk)
‖ck‖2 , (35)

with ck ∈ ∂q(μk) and 0 < γ ≤ γk ≤ γ < 2, [13,14].

Unfortunately, in most practical problems q∗ and q(μk) are unknown. Then, the
latter can be approximated by qεk(μ

k) = l(xk,μk) and q∗ replaced with an estimate
qk

lev. This leads to the stepsize rule

αk = γk
qk

lev−qεk(μ
k)

‖ck‖2 , (36)

where ck ∈ ∂εk q(μk) is bounded for k = 0,1, . . . .

2.5 Dynamic Stepsize with Adjustment Procedure (DSAP)

An option to estimate q∗ is to use the adjustment procedure suggested by Nedić and
Bertsekas [12], but fitted for the ε-subgradient method

In this procedure qk
lev is the best function value achieved up to the kth iteration, in

our case max0≤ j≤k qε j(μ j), plus a positive amount δk, which is adjusted according to
algorithm’s progress.

The adjustment procedure obtains qk
lev as follows:

qk
lev = max

0≤ j≤k
qε j(μ

j)+ δk, (37)

and δk is updated according to

δk+1 =

⎧⎪⎨⎪⎩
ρδk, if qεk+1(μ

k+1)≥ qk
lev,

max{βδk,δ}, if qεk+1(μ
k+1) < qk

lev,

(38)

where δ0, δ , β , and ρ are fixed positive constants with β < 1 and ρ ≥ 1.
The convergence of the approximate subgradient method for this stepsize was ana-

lyzed in [8]; see also [6].
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3 Solution to NCNFP

An algorithm is given below for solving NCNFP. This algorithm uses the approximate
subgradient method described in Sect. 1.

The value of the dual function q(μk) is estimated by minimizing approximately
l(x,μk) over x ∈F (the set defined by the network constraints) so that the optimal-
ity tolerance, τk

x , becomes more rigorous as k increases, i.e. the minimization will be
asymptotically exact [1]. In other words, we set qεk(μ

k) = l(xk,μk), where xk mini-
mizes approximately the nonlinear network subproblem NNSk

minimize
x∈F

l(x,μk) (39)

in the sense that this minimization stops when we obtain an xk that verifies the KKT
conditions with τk

x accuracy, which implies that the norm of the reduced gradient holds

‖ZT∇xl(xk,μk)‖ ≤ τk
x , (40)

where limk→∞ τk
x = 0 and Z represents the reduction matrix whose columns form

a base of the null subspace generated by the rows of the matrix of active network
constraints of this subproblem (including the active capacity constraints on the flows
of each arc), see [11]. Let xk be the minimizer of this subproblem approximated
by xk. Then, it can be proved (see [8]) that there exists a positive w, such that
l(xk,μk) ≤ l(xk,μk) + wτk

x for k = 1,2, . . . . If we set εk = ωτk
x , this inequality be-

comes (8). Moreover, as

τk+1
x = στk

x , for a fixed σ ∈ (0,1), (41)

then ∑∞
k=1 εk < ∞, and so limk→∞ εk = 0. Consequently, to solve this problem we can

use the approximate subgradient methods with the stepsizes described in Sect. 2. We
denote qεk(μ

k) = l(xk,μk), which satisfies the inequality (9). In this work, σ = 10−1

by default. Note that in this case, εk = τk
xω = 10−(k−1)τ1

xω .

Algorithm 1 (Approximate subgradient method for NCNFP)

Step 0: Initialize. Set k = 1, Nmax, τ1
x , εq, εμ and τμ . Set μ1 = 0.

Step 1: Compute the dual function estimate, qεk(μ
k), by solving NNSk with accuracy

τk
x , then xk ∈F is an approximate solution, qεk(μ

k) = l(xk,μk), and ck = c(xk) is
an εk-subgradient of q in μk.

Step 2: Check the stopping rules for μk.

T1: Stop if max
i=1,...,r

{
(ck

i )
+
}

< τμ , where (ck
i )

+ = max{0,ci(xk)}.

T2: Stop if
|qk− (qk−1 + qk−2 + qk−3)/3|

1 + |qk| < εq , where ql = qεl (μ
l).

T3: Stop if
1
5

4

∑
i=0

‖μk−i− μk−i−1‖∞ < εμ .

T4: Stop if k reaches a prefixed value Nmax.
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If μk fulfils one of these tests, then it is deemed approximately optimal, and
(xk,μk) is an approximate primal-dual solution.

Step 3: Update the estimate μk by means of the iteration

μk+1
i =

⎧⎪⎨⎪⎩
μk

i +αkck
i , if μk

i +αkck
i > 0

0, otherwise

(42)

where αk is computed using some stepsize rule. Go to Step 1.

In Step 0, for the stopping rules, τμ = 10−5, εq = 10−7, εμ = 10−3 and Nmax = 200
have been taken. In addition, τ1

x = 10−2 by default.
Step 1 is carried out by the code PFNL (described in [9]), which is based on the

specific procedures for nonlinear network flows [15] and the active set procedure [11],
using a spanning tree as the basis matrix of the network constraints.

In Step 2, alternative heuristic tests have been used for practical purposes. T1 checks
the feasibility of xk, as if the violation of the side constraints has been sufficiently
reduced, then (xk,μk) is an acceptable primal-dual solution for NCNFP. T2 and T3

mean that μ does not improve for the last iterations. T4 is used to stop the algorithm
when this is not able to find a good enough solution.

To obtain αk in Step 3, we have used the iteration (10) (see Sect. 1) with the five
stepsize rules considered in Sect. 2: CSR, VCSR, DSRS, DSR, and DSAP. In the imple-
mentation of DSAP we use ρ = 2, β = 1/ρ , δ0 = 0.5‖(c1)+‖, and δ = 10−7|l(x0,μ1)|,
where x0 is the initial feasible point for Step 1 and k = 1.

The values given above have been heuristically chosen. The implementation in
Fortran-77 of the previous algorithm, termed PFNRN05, was designed to solve large-
scale nonlinear network flow problems with nonlinear side constraints.

4 Numerical Tests

In order to obtain a computational comparison of the performance of the stepsizes CSR,
VCSR, DSRS, DSR, and DSAP, some computational tests are carried out, which con-
sist in solving nonlinear network flow problems with nonlinear side constraints using
PFNRN05 code with the alternative stepsizes, where the objective functions are strictly
convex and the side-constraint functions are convex. Therefore, these problems have a
unique primal solution x∗ and the duality gap is zero. The numerical tests have been
carried out on a Sun Enterprise 250 under UNIX.

The problems used in these tests were created by means of the DIMACS-random-
network generators Rmfgen and Gridgen (see [4]). These generators provide linear
flow problems in networks without side constraints. The side constraints are defined
by convex quadratic functions and were generated through the Dirnl random generator
described in [9,10].

These test problems have up to 4008 variables, 1200 nodes, and 1253 side con-
straints, see [7]. The objective functions are nonlinear and strictly convex, and are either
Namur functions (n1) or polynomial functions (e2). The polynomial functions give rise
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to problems with a moderate number of superbasic variables (degrees of freedom) at
the optimizer, whereas the Namur functions [15] generate a high number of superbasic
variables. More details in [7].

In Table 1 we compare the quality of the solution by means of the value of maximum
violation of the side constraints at the optimal solution, c∗ = ‖[c(x∗)]+‖∞, and the effi-
ciency by the CPU times (in seconds) used to compute the solution. Note that c∗ offers
information about the feasibility of this solution and, hence, about its duality gap.

Table 1. Comparison of the quality/efficiency for the stepsizes

Prob. CSR VCSR DSRS DSR DSAP
c15e2 10−5/4.5 10−5/4.4 10−4/8.5 10−4/2.9 10−8/2.2
c17e2 10−5/6.0 10−5/7.2 10−4/13.7 10−4/6.3 10−6/3.1
c18e2 10−5/21.3 10−5/30.7 10−4/67.0 10−2/24.3 10−5/38.0
c13n1 10−6/64.3 10−6/54.5 10−6/64.3 10−5/84.6 10−6/44.2
c15n1 10−6/82.3 10−6/61.4 10−6/83.2 10−4/426.9 10−8/99.8
c17n1 10−5/78.9 10−5/75.2 10−5/79.1 10−4/361.1 10−6/92.3
c22e2 10−5/3.8 10−5/3.9 10−4/8.5 10−4/2.5 10−6/2.0
c23e2 10−5/6.3 10−5/6.2 10−4/6.0 10−3/5.0 10−7/5.9
c24e2 10−5/15.9 10−5/15.9 10−4/94.8 10−2/40.4 10−9/5.2
c34e2 10−6/4.8 10−6/5.3 10−6/4.9 – 10−8/5.1
c35e2 10−6/2.0 10−6/2.3 10−6/2.0 10−7/2.9 10−9/2.4
c38e2 10−6/8.2 10−5/7.4 10−6/8.4 10−5/12.4 10−8/8.0
c42e2 10−7/19.0 10−7/14.1 10−7/18.9 10−7/14.1 10−7/14.5
c47e2 10−5/404.9 10−5/401.0 10−5/448.0 – 10−7/657.1
c48e2 10−5/114.4 10−5/132.2 10−5/116.7 – 10−7/257.6

Table 1 points out that the quality of the solution computed by PFNRN05 for the
stepsize DSR is lower than that of DSRS, whereas that of this stepsize is slightly lower
than that of CSR and VCSR. Also, the quality of the solution obtained with the stepsize
DSAP is clearly higher than that computed for the rest of stepsizes.

Regarding the efficiency of PFNRN05 for these stepsizes, we observe that the ef-
ficiency when we use DSAP is similar to that obtained for CSR, VCSR, and DSRS,
whereas our code for DSR is less efficient and robust than for the other stepsizes.

5 Conclusions

In this work some basic convergence results of subgradient methods for the step-
sizes CSR and DSRS have been extended to approximate subgradient methods. More-
over, in the numerical tests carried out over convex nonlinear problems of nonlinearly
constrained networks we have observed that the quality of the solution obtained by
PFNRN05 for the dynamic stepsize rule DSAP is higher than that obtained for the
other stepsizes, while the efficiency is similar.

The results of the numerical tests encourage to carry out further experimentation with
other kind of problems and to compare the efficiency with that of well-known codes.
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search, Universitat Politècnica de Catalunya, Barcelona, Spain (1996),
http://www.ehu.es/˜mepmifee

10. Mijangos, E., Nabona, N.: On the first-order estimation of multipliers from Kuhn-Tucker
systems. Computers and Operations Research 28, 243–270 (2001)

11. Murtagh, B.A., Saunders, M.A.: Large-scale linearly constrained optimization. Mathematical
Programming 14, 41–72 (1978)
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Abstract. In the paper a phenomenon of the existence of a sample time minimiz-
ing the settling time in a digital control system is described. As a control plant
an experimental heat object was used. The control system was built with the use
of a soft PLC system SIEMENS SIMATIC. As the control algorithm a finite di-
mensional dynamic compensator was applied. During tests of the control system
it was observed that there exists a value of the sample time which minimizes the
settling time in the system. This phenomenon is tried to explain.

1 Introduction

In the paper a digital control system for an experimental heat control plant is considered.
The control plant is shown in Fig. 1. It has the form of a thin copper rod 30 cm long with
an electric heater of length Δxu localized at one end and resistive temperature sensor of
length Δx at the other end. The input signal of the system is the standard current signal
0 – 5 [mA]. It is amplified to the range 0 – 1.5 [A] and it is the input signal for the
heater. The temperature of the rod is measured with the use of a resistance sensor. The
signal from the sensor is transformed to the standard current signal 0 – 5 [mA] with the
use of a transducer.

The structure of the digital control system is shown in Fig. 2. In this figure y+(k) =
y(kh),h > 0,k = 0,1,2, . . . and u(t) = u+(k) for t ∈ [kh, (k + 1)h), h > 0 denotes the
sample time of D/A and A/D converters working synchronically. During tests of this
control system it was observed that the settling time (after this time the difference
between the seat point r and the process value y(t) is stably smaller than 5%) is a
function of the sample time h > 0, tk = kh, k = 0,1,2, . . . , and this function has a min-
imum. This means that there exists a value of the sample time minimizing the settling
time, which is one of fundamental direct control cost functions, applied in the industrial
practice.

This effect was observed during tests of a discrete, finite-dimensional dynamic com-
pensator. The control algorithm is based on the mathematical model of the control
plant shown in Fig. 1, the control algorithm was implemented at the SIEMENS multi-
panel based “soft PLC” system. The hardware and software scheme of this system is
shown in Fig. 6. In the control system shown in Fig. 2, D/A and A/D converters work
synchronically.

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 382–396, 2009.
c© IFIP International Federation for Information Processing 2009
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Fig. 1. The experimental heat control plant
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Fig. 2. The structure of the control system

In this paper the existence of the sample time minimizing the settling time is tried
to explain. A method of optimal sample time determination for the considered control
system is also proposed.

2 The Mathematical Model of the Control Plant

The mathematical model of the control plant we deal with is the following heat transfer
equation:

∂T (x,t)
∂ t = a ∂ 2T (x,t)

∂x2 −RaT (x, t)+ b(x)u(t), 0≤ x≤ 1, t ≥ 0
∂T (0,t)
∂x = 0, ∂T (1,t)

∂x = 0, t ≥ 0
T (x,0) = 0, 0≤ x≤ 1

y(t) = y0

∫ 1

0
T (x,t)c(x)dx

(1)
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where T (x,t) denotes the temperature of the rod at the point x ∈ [0,1] and time moment
t, a and Ra are the suitable heat transfer coefficients. All variables and constants are
dimensionless. The coefficient Ra describes the heat exchange along the side surface
of the rod. The coefficient y0 is the gain of the slotted line. The heat exchange at the
ends of rod is much smaller than along the side surface and it can be described by the
homogeneous Neumann’s boundary conditions. To make the model simpler, the length
of the rod was assumed equal to one: x ∈ [0,1]. The diameter of the rod is much smaller
than its length, that is why in equation (1) only length of rod x is considered. The control
and observation in the plant we deal with (see Fig. 1) are distributed. Both the heater
characteristic function b(x) and sensor characteristic function c(x) depend on the length
of these elements. The length of the heater is equal to Δxu = 1/13 and its characteristic
function is as follows:

b(x) =
{

1 for x ∈ (0,x0)
0 for x /∈ (0,x0)

(2)

where x0 = 1/13. The temperature of the rod is measured in the segment Δx = x2−x1 =
1/13 (distributed observation). The temperature sensor is described by the following
characteristic function:

c(x) =
{

1 for x ∈ (x1,x2)
0 for x /∈ (x1,x2)

(3)

where x1 = 25/52, x2 = 27/52.
The above model was tested in laboratory (see Fig. 3) and discussed in a number of

previous papers, for example in [9,10,8]. The practical realization of control and ob-
servation justifies the assumption that the control and observation are distributed. This
also simplifies the mathematical model of the plant. An interesting example of analysis
of this problem with pointwise control and observation was presented by Grabowski in
1997 [1].

The numerical values of the heat exchange coefficients a and Ra were calculated
with the use of the least squares method and the experimental step response of the
plant (see [9]). They are equal to a= 0.000945, Ra= 0.0271. The idea of identification
of the coefficients was to minimize (w.r.t. the parameters a and Ra) the following cost
function:

J0(a,Ra) =
S

∑
k=1

[y(kh)− ỹ(kh)]2 (4)

where kh,k = 1,2,3, . . . ,S are discrete time moments, y(kh) is the output of (1) for
the control signal u(t) = 1(t), ỹ(kh) is the step response of the real plant (see Fig. 1)
measured at discrete time moments kh,k = 1,2,3, . . . ,S. During the identification ex-
periment the sample time h was equal to 0.1 [s] and the number of samples S was equal
to 3000.

The value of the steady-state gain y0 was calculated via comparison of y(kh) with
ỹ(kh) after a suitably long time tS = Sh. The value of this gain is equal to 25.7922.

Let L(U,X) denote the space of linear continuous operators S : U → X with the fol-
lowing natural norm: ||S||= sup{||Sv||X : ||v||U ≤ 1}. Let X = L2(0,1;R) be a Hilbert
space with scalar product (p | d) =

∫ 1
0 p(x)d(x)dx. The boundary problem (1) can be
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interpreted ([12], [11], p. 106; [2], p. 488) as the following differential equation in the
Hilbert space L2(0,1;R):

Ṫ (t) = AT (t)+ Bu(t), T (0) = 0, 0≤ t
y(t) = CT (t) (5)

where T (t) ∈ X = L2(0,1;R), u(t) ∈ R = U , y(t) ∈ R = Y , B ∈ L(U,X), (Bu(t))(x) =
b(x)u(t), C ∈ L(X ,Y ), CT (t) = y0 (T (t)|c), A is a linear operator with the domain D(A):

Aw = aw′′ −Raw, w′′(x) = d2w(x)/dx2,
D(A) = {w ∈ X : w′′ ∈ X ,w′(0) = 0,w′(1) = 0} (6)

The operator defined by (6) is self-adjoint and has a compact resolvent. This implies that
A is a discrete operator. The spectrum of a discrete operator consists only of isolated
eigenvalues and all eigenvalues have finite multiplicities. The operator given by (6) has
a discrete spectrum with the simple eigenvalues:

λi =−i2aπ2−Ra, i = 0,1,2,3, . . . (7)

Eigenvectors associated with the eigenvalues (7) are defined as follows:

wi(x) =
{

1, i = 0√
2cos(iπx), i = 1,2, . . .

(8)

The eigenvectors (8) build an orthonormal basis of the space X = L2(0,1;R).
If the basis of X = L2(0,1;R) is built by the set of eigenvectors (8), then the oper-

ators A,B and C in (5) can be expressed as the following infinite-dimensional matrices
(see [13]):

A = diag{λ0,λ1,λ2, . . .}, B = [b0 b1 b2 . . .]T , C = y0[c0 c1 c2 . . .] (9)

where bi =
∫ 1

0 b(x)wi(x)dx = (b|wi), ci =
∫ 1

0 c(x)wi(x)dx = (c|wi), i = 0,1,2, . . ..
The operator (6) is the generator of an analytical, exponentially stable C0- semigroup

eAt , t ≥ 0 in the space X = L2(0,1;R), where:

eAtw =
∞

∑
i=0

eλi t(w|wi)wi (10)

The analysis of (7) and (10) justifies the use of finite-dimensional approximation of (5).
Instead of i = 0, 1, 2, 3, . . . we will use: i = 0, 1, 2, 3, . . . , N. A suitable value of N for
finite-dimensional approximation is N= 25 (see [9]). The respective finite-dimensional
matrix representations of the operators A,B and C for the presented model (5) are as
follows:

A = diag (−0.0271,−0.0364,−0.0644,−0.1110,−0.1763,−0.2603,−0.3629,
−0.4841,−0.6240,−0.7826,−0.9598,−1.1556,−1.3702,−1.6033,−1.8551,
−2.1256,−2.4148,−2.7225,−3.0490,−3.3941,−3.7578,−4.1402,−4.5413,
−4.9610,−5.3993),
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B = col ( 0.0769, 0.1077, 0.1046, 0.0995, 0.0926, 0.0842, 0.0745,
0.0638, 0.0526, 0.0412, 0.0299, 0.0190, 0.0090, 0.0000,−0.0077,
−0.0139,−0.0187,−0.0218,−0.0234,−0.0235,−0.0223,−0.0200,−0.0168,
−0.0130,−0.0087),
C�= col ( 0.9920, 0.0000,−1.3995, 0.0000, 1.3893, 0.0000,−1.3724,

0.0000, 1.3489, 0.0000,−1.3191, 0.0000, 1.2832, 0.0000,−1.2415,
0.0000, 1.1944, 0.0000,−1.1423, 0.0000, 1.0856, 0.0000,−1.0248,
0.0000, 0.9605).
The form of operators (9) enables the decomposition of the system (5) into an infinite

number of one-dimensional subsystems. Notice that the matrices B and C contain zero
elements. This implies that the finite-dimensional approximation is both uncontrollable
and unobservable, but the subsystems containing suitable nonzero elements of B and C
are controllable and observable.

3 Digital Control System

The scheme of the digital control system is shown in Fig. 2. Both D/A and A/D convert-
ers work synchronically with the sample time h > 0 and their work can be described as
follows: y+(k) = y(kh) and u(t) = u+(k) fort ∈ [kh, (k+1)h), where k = 0,1,2, . . .. The
serial connection of a D/A converter, a continuous control plant and an A/D converter
builds the discrete system described as follows (see, for example, [7], p. 140, 236):

T+(k + 1) = A+T +(k)+ B+u+(k), y+(k) = C+T+(k) (11)

where k = 0,1,2, . . .

A+ = eAh, B+ =
∫ h

0
eAtBdt, C+ = C (12)

and the matrices A, B and C are described by (9).
For the discrete system (11), the finite-dimensional discrete compensator proposed

in [3] (p. 60), [4,5,6], or [7] (p. 236) can be built (see Fig. 2). The nonlinear element
(saturation) is necessary to describe the technical realization of control, because real
control signals are always bounded. The control system with the dynamic compensator
and bounded control signal was discussed by Mitkowski and Oprzędkiewicz in 1999
[8].

Notice that the matrices B+ and C+ = C contain zero elements. This implies that
the system is neither controllable nor observable. The damping coefficients can be im-
proved only in controllable and observable subsystems.

Let T +(k) = T (kh), where k = 0,1,2, . . .. Equations (9) and (12) allow us to make
the following decomposition of the system (11):⎡⎣T+

1 (k + 1)
T+

2 (k + 1)
T+

3 (k + 1)

⎤⎦=

⎡⎣A+
1 0 0
0 A+

2 0
0 0 A+

3

⎤⎦⎡⎣T +
1 (k)

T +
2 (k)

T +
3 (k)

⎤⎦+

⎡⎣B+
1

B+
2

B+
3

⎤⎦u+(k),

y+(k) = C+
1 T +

1 (k)+C+
2 T +

2 (k)+C+
3 T +

3 (k)

(13)

where T +
i (k) ∈ Xi, i = 1,2,3, dim X1 < +∞,dimX2 = p < +∞,dimX3 = +∞.
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For further considerations a finite-dimensional approximation with N = 25 and ex-
ample value of sample time h = 5 [s] will be applied. Using the equations (12) we obtain
the following values of matrices for the system after discretization:

A+ = diag (0.8733, 0.8335, 0.7247, 0.5740, 0.4141, 0.2722, 0.1629, 0.0889,
0.0442, 0.0200, 0.0082, 0.0031, 0.0011, 0.0003, 0.0001, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000),

B+ = col (0.3597, 0.4924, 0.4471, 0.3818, 0.3077, 0.2354, 0.1718, 0.1201,
0.0806, 0.0515, 0.0308, 0.0164, 0.0065, 0.0000,−0.0041,−0.0066,−0.0077,
−0.0080,−0.0077,−0.0069,−0.0059,−0.0048,−0.0037,−0.0026,−0.0016).
As both D/A and A/D converters work synchronically, then C+ = C.

In the scheme of Fig. 2, r denotes the seat point in the system, y(t) denotes the
system’s output (the process value), u(t) denotes the control signal, y+(k) and u+(k)
denote discrete versions of control and output. The difference y+(k)− r describes the
error in the control system. The compensator is described as follows:[

w+
1 (k + 1)

w+
2 (k + 2)

]
= A+

S ·
[

w+
1 (k)

w+
2 (k)

]
+ B+

S

[
y+(k)− r

]
u+(k) = K+

1 w+
1 (k)+ N+r

(14)

where

A+
S =

[
A+

1 −G+
1 C+

1 + B+
1 K+

1 −G+
1 C+

2
B+

2 K+
1 A+

2

]
, B+

S =
[

G+
1

0

]
(15)

In (14) and (15) w+
1 (k), w+

2 (k) denote the state variables of the compensator, the con-
stant N+ should assure the steady-state error equal to zero (after a suitably long time
y(t) = r for the seat point r = const). The dynamics of the whole closed-loop control
system is described by transient states, the same for increasing and decreasing values
of r.

The whole closed-loop system of Fig. 2 for r = 0 and without the nonlinear element
can be described as underneath:⎡⎢⎢⎢⎢⎣

e+
1 (k + 1)

e+
2 (k + 1)

T+
1 (k + 1)

T+
2 (k + 1)

T+
3 (k + 1)

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
A+

1 −G+
1 C+

1 −G+
1 C+

2 0 0 −G+
1 C+

3
0 A+

2 0 0 0
B+

1 K+
1 0 A+

1 + B+
1 K+

1 0 0
B+

2 K+
1 0 B+

2 K+
1 A+

2 0
B+

3 K+
1 0 B+

3 K+
1 0 A+

3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

e+
1 (k)

e+
2 (k)

T+
1 (k)

T+
2 (k)

T+
3 (k)

⎤⎥⎥⎥⎥⎦
e+

i (k) = w+
i (k)−T+

i (k), i = 1, 2
(16)

where k = 0, 1, 2, . . .. Notice that the state operator:

A+ = blocdiag(A+
1 ,A+

2 ,A+
3 ) (17)

of the system (13) is diagonal and it has a discrete spectrum containing the following
eigenvalues:

λ+
i = eλih, i = 0, 1, 2, . . . , (18)
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where λi is expressed by (7), h > 0. This implies that |λ+
i |< 1 and the discrete system

(13) is asymptotically stable. The state operator of the discrete system (16) has the
following form:

Ã+ = blocdiag(A+
1 ,A+

2 ,A+
1 ,A+

2 ,A+
3 )+ D (19)

where D is a bounded operator (it describes a bounded perturbation of A+). This implies
that the operator Ã+ has a discrete spectrum only.

The discrete system (16) with discrete operator Ã+ is asymptotically stable, if its
discrete spectrum is localized inside the unit circle: |λ (Ã+)|< 1. The matrices A+

1 and
A+

2 are finite-dimensional. The matrices G+
1 and K+

1 should assure the meeting of the
following condition:

|λ (A+
1 −G+

1 C+
1 )|< 1 and |λ (A+

1 + B+
1 K+

1 )|< 1 (20)

This condition can be fulfilled only if the suitable subsystems are controllable and ob-
servable.

In particular, the matrices G+
1 and K+

1 can be assigned to assure the eigenvalues of
A+

1 −G+
1 C+

1 and A+
1 + B+

1 K+
1 equal to zero. Furthermore, when the dimension of A+

1 is
equal to 1 (dimX1 = 1 in equation (13)), the matrices G+

1 and K+
1 , assuring eigenvalues

equal to zero turn to real numbers equal to

G+
1 =

A+
1

C+
1

=
λ+

0

y0c0
, K+

1 =−A+
1

B+
1

=−λ
+
0

b+
0

(21)

In (21), λ+
0 = eλ0h denotes the first, most poorly damped element of the discrete sys-

tem’s spectrum, y0,c0 and b+
0 denote suitable elements of output and control matrices

for discrete system.
Denote the maximal eigenvalue of A+

2 by λ+
max = maxλ (A+

2 ). Notice that if ||C+
3 ||→

0 for dimX2 → +∞, then the bounded perturbation theorem implies the existence of
such a p < +∞ that the discrete system (16) is exponentially stable with a damping
coefficient γ ∈ (λ+

max, λ+
0 ).

Generally, the construction of feedback (14), (15) consists in calculating the matrices
K+

1 and G+
1 . It can be done with the use of finite-dimensional approach, for example LQ

(see [7], pp. 71, 78). The assumed damping coefficient can be obtained by increasing
the dimension of the subsystem X2: p = dimX2. The constant N+ is calculated to assure
the steady-state error in the control system equal to zero.

4 The Sample Time Optimization

Assume for further considerations that dimX1 = 1 and p = dimX2 = 2. The subsystem
X1 is controllable and observable, because b0 �= 0 and y0c0 �= 0 (see (12)). Then from
(21) we obtain:

G+
1 =

e−Rah

y0c0
, K+

1 =
Rae−Rah

b0 (e−Rah−1)
(22)

The coefficients G+
1 and K+

1 of the compensator (14) are functions both of plant’s pa-
rameters and sample time h > 0.
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5 Experiments

The general hardware and software scheme of the laboratory control system is shown
in Fig. 3, the scheme of the control plant is shown in Fig. 1.

The control system with the compensator for the plant shown in Fig. 1 was im-
plemented on the “soft PLC” platform shown in Fig. 6. During experiments a servo
problem was tested. Example experimental plots of the seat point r, the control signal
u(t) and the output y(t) are shown in Fig. 4. They were obtained after a step change of
the seat point from the value r = 0.25 [mA] to r = 1.75 [mA]. The sample time h was
equal to 723 [ms].

the control plant

PROFIBUS DP

7
4

MP 370 Touch: Windows ME,
Win AC MP, SCADA, 
the discrete compensator 

The process interface: 
A/D and D/A converters

PLC

Fig. 3. The hardware and software scheme of the laboratory control system
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Fig. 4. Plots of y(t), u(t) and r in the considered control system
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Table 1. Experimentally determined values of settling time Tc

Sample time h [ms] settling time Tc[s]
300 52.37
400 50.52
500 49.17
600 48.35
700 48.01
800 48.17
900 48.73
1000 50.05

The settling time is a time, after which the error in the control system (the difference
between the seat point r and the system’s output y(t)) is stably smaller than 5%. It
will be denoted by Tc. Experimentally determined values of the settling time in the
considered control system are presented in Table 2.

With the use of the above experimental results interpolation polynomials were built.
The following polynomials were considered:

W2(h) = a2 h2 + a1 h + a0

W3(h) = a3 h3 + a2 h2 + a1 h + a0

W5(h) = a5 h5 + a4 h4 + a3 h3 + a2 h2 + a1 h + a0

(23)

Numerical values of coefficients of polynomials (23) are given in Table 2.

Table 2. Coefficients of interpolation polynomials (23)

W2 W3 W5

a2 = 2.5220 ·10−5

a1 =−0.0362
a0 = 60.9604

a3 = 1.8434 ·10−9

a2 = 2.1626 ·10−5

a1 =−0.0340
a0 = 60.5650

a5 = 9.0705 ·10−14

a4 =−2.7670 ·10−14

a3 = 3.2368 ·10−7

a2 =−1.5593 ·10−4

a1 = 0.0123
a0 = 55.9942

The settling time Tc as a function of the sample time h, and all its interpolations are
presented in Fig. 5.

Polynomials (23) were applied to estimate the values of sample time h minimizing
the settling time Tc. The estimated optimal values of h are presented in Table 4. In
the same table the experimentally determined values of settling time for the optimal
estimated sample times are also presented.

From the diagrams in Fig. 5 and Table 3 we can conclude that the estimated and
experimental results are very close.
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Fig. 5. The settling time Tc as a function of sample time h – experiments and all interpolation
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Table 3. Values of sample time h and corresponding values of settling time Tc , determined
experimentally and estimated with the use of polynomials (23)

Polynomial W2 W3 W5
Estimated optimal sample time [ms] 715 721 723
Estimated optimal settling time [s] 47.98 47.97 48.02
Experimentally determined settling time
for estimated optimal sample time [s]

48.17 48.13 48.12

6 Simulations

The control system described in the previous section was also tested with the use of
MATLAB/SIMULINK. During simulations the dependence of the settling time Tc on
the sample time h was tested. The SIMULINK model of the control system is shown
in Fig. 6. The simulation parameters were as follows: the stop time 300[s], numerical
method: Ode 45 (Dormand Prince), variable step, minimal step size: 0.005[s], maximal
step size: 0.01[s], initial step size: 0.01[s].

The settling time Tc as a function of the sample time h is shown in Table 4 and in
Fig. 7.

The minimal value of the function shown in Fig. 7 is localized between h = 12.6 [s]
and h = 12.8 [s].



392 W. Mitkowski and K. Oprzędkiewicz
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Fig. 6. The SIMULINK model of the control system

Table 4. The settling time as a function of the sample time

sample time h [s] settling time Tc [s]
12.0 69.92
12.1 69.83
12.2 69.75
12.3 69.69
12.4 69.64
12.5 69.61
12.6 69.59
12.7 69.59
12.8 69.59
12.9 69.6
13.0 69.63
13.1 69.66
13.2 69.70
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Fig. 7. The settling time Tc as a function of the sample time h
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7 A Comparison with a Weighted Cost Function

Consider the cost function J(h) proposed in [3], p. 61, [4] and [7], p. 241:

J (h) =
∥∥G+

1 (h)
∥∥+
∥∥K+

1 (h)
∥∥+α h (24)

This cost function is a weighted sum of the settling time, approximately expressed by
the term α h and the norms ||G+

1 || and ||K+
1 || describing gain coefficients of the discrete

compensator (14). For the particular case, if G+
1 and K+

1 are described by (22), the cost
function (24) has the following form:

J (h) =
e−Rah

y0c0
+

Rae−Rah

b0 (1− e−Rah)
+α h (25)

where c0 and b0 are appropriate elements of the output and control matrices.
The cost function (25) depends on model’s parameters and sample time h > 0. An ex-

ample diagram of function (25) for the considered object parameters, weight coefficient
α = 25 and range of sample time h from 0.5 to 1.0 [s] is shown in Fig. 8.
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Fig. 8. The cost function (25) as a function of sample time h

The value hopt of the sample time h minimizing the function shown in Fig. 8 was
calculated numerically and it is equal to

hopt = 0.7216 (26)
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The value of function (25) for the sample time hopt is equal to

J(hopt) = 36.8738 (27)

The comparison of the cost function (25) proposed theoretically and shown in Fig. 8
with the experimental results shown in Fig. 5 allows us to conclude that the value of the
sample time hopt minimizing the cost function (25) is equal to the value of h, which min-
imizes the interpolating polynomial W3. The value of J(hopt) is smaller than Tc(hopt),
because the function J does not express the settling time.

Furthermore, the general form of the dependence of the settling time Tc on the sample
time h obtained with the use of simulation, described by Table 1 and shown in Fig. 7 is
the same as the functions shown in Fig. 8 and 5. It also has a minimum, but the sample
time minimizing the settling time is much longer.

Notice also that it is possible to modify the cost function (25) so that it directly ex-
presses the settling time Tc. The proposed modification of J(h) is described underneath.
It changes the value of function without changing the localization of the minimum. Let
us consider the cost function J̃(h) = J(h)+ ζ , ζ ∈ R. From (25) we obtain:

J̃ (h) =
e−Rah

y0c0
+

Rae−Rah

b0 (1− e−Rah)
+α h + ζ (28)
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Fig. 9. Comparison of modified cost function J̃(h) with experimental data and interpolation poly-
nomial W3(h)
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Fig. 9 shows the diagrams of J̃(h) for ζ = 11.1 and the interpolation polynomial W3(h),
which was obtained with the use of experimental data.

From the diagrams presented in Fig. 9 we can conclude that the modified cost func-
tion (28) for h ∈ (650,1000), obtained theoretically can be used as a good approxima-
tion of the settling time Tc as a function of sample time h in the considered laboratory
control system.

8 Conclusions and Open Problems

The final conclusions of the paper can be formulated as follows:

1. During tests of the control system with the discrete dynamic compensator a new,
interesting phenomenon was observed. The dependence between the sample time
and the settling time was observed both in the real control system and during sim-
ulations. Additionally, the diagram of the cost function proposed in (25) is very
similar to diagrams describing the dependence of the settling time on the sample
time for real case and simulations.

2. An important open problem is to explain the significant difference between the
value of sample time minimizing the settling time in simulation and experiments.
This difference can be caused by the fact, that the equation (5) and its finite-
dimensional approximation used to simulate the control plant in MATLAB are
dimensionless in contrast to the real plant. Additionally, the input-output model
of the considered system operates only with the use of the standard current signal,
although the model describes the heat transfer process, whose measure is tempera-
ture. The dependence of the temperature of rod on input and output current signals
is very complicated and a knowledge about it is not necessary for the synthesis of
the control system for the plant. A correct scaling of the model used to simulations
may be the solution of this problem.

3. In the construction of the finite-dimensional compensator the bounded perturbation
theorem is applied (see [2], p. 497; [11], p. 79, 81). Relations (12) allow us to use
this theorem to the discrete time case.

4. The modified cost function (28) can be applied as a measure of the settling time Tc

in real control system. It sufficiently well describes the dependence of the settling
time Tc on the model’s parameters and the sample time h > 0.

5. The relation (28) was proposed after the analysis of the simple model of the con-
sidered control plant. It can be helpful to explain the phenomenon of the existence
of optimal sample time hopt observed during experiments with the use of real soft
PLC control system, presented in Fig. 3. The determining of the parameters α and
ξ in modified cost function (28) will be considered by authors in the future.

6. The simulation tests of the function we deal with also confirmed the existence of
the sample time minimizing the settling time in the system, but the localization of
minimum is significantly different from theoretical and experimental case.

7. As another model of the considered control plant the transfer function with delay
can be also considered. It has the following, known form: G(s) = Ke−τ s/(Ts+ 1).
Its parameters: delay time τ and time constant Tare relatively simple to identify.
During an analysis of this model it was observed that α ≈ 1.2τ and ζ ≈ 0.5τ .
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Abstract. This paper deals with simultaneous topology and shape optimization
of elastic contact problems. The structural optimization problem for an elastic
contact problem is formulated. Shape as well as topological derivatives formu-
lae of the cost functional are provided using material derivative and asymptotic
expansion methods, respectively. These derivatives are employed to formulate
necessary optimality condition for simultaneous shape and topology optimiza-
tion and to calculate a descent direction in numerical algorithm. Level set based
numerical algorithm for the solution of this optimization problem is proposed.
Numerical examples are provided and discussed.

1 Introduction

The paper is concerned with the formulation of a necessary optimality condition and the
numerical solution of a structural optimization problem for an elastic body in unilateral
contact with a rigid foundation. The contact with a given friction, described by Coulomb
law, is assumed to occur at a portion of the boundary of the body. The displacement field
of the body in unilateral contact is governed by an elliptic variational inequality of the
second order. The results concerning the existence, regularity and finite-dimensional
approximation of solutions to contact problems are given in [10]. The structural opti-
mization problem for the elastic body in contact consists in finding such topology as
well as such shape of the boundary of the domain occupied by the body that the normal
contact stress along a contact boundary is minimized. It is assumed that the volume of
the body is bounded.

Shape optimization of static elastic contact problems is considered, among others,
in [10,20], where necessary optimality conditions, results concerning convergence of
finite-dimensional approximation and numerical results are provided. Material deriva-
tive method is employed in monograph [20] to calculate the sensitivity of solutions to
contact problems as well as the derivatives of domain depending functionals with re-
spect to variations of the boundary of the domain occupied by the body. Necessary opti-
mality conditions for shape optimization of elastic contact problems are formulated also
in monograph [15]. In this monograph contact problems are considered in the mixed
variational formulation and the results of numerical experiments are reported. Shape
optimization of a dynamic contact problem with Coulomb friction and heat flow is con-
sidered in [13]. In this paper the material derivative method is employed to formulate
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a necessary optimality condition. The finite element method for the spatial derivatives
and the finite difference method for the time derivatives are employed to discretize the
optimization problem. The level set based method is applied to find numerically the
optimal solution.

Topology optimization deals with the optimal material distribution within the body
resulting in its optimal shape [22]. The topological derivative is employed to account
variations of the solutions to state equations or shape functionals with respect to emerg-
ing of small holes in the interior of the domain occupied by the body. The notion of the
topological derivative and results concerning its application in optimization of elastic
structures are reported in the series of papers [2,6,7,9,14,21,22,23]. Among others, pa-
per [23] deals with the calculation of topological derivatives of solutions to Signorini
and elastic contact problems. Asymptotic expansion method combined with transfor-
mation of energy functional are employed to calculate these derivatives. Simultaneous
shape and topology optimization of Signorini and elastic contact problems with or with-
out friction are analyzed in papers [6] and [14], [16] respectively. In these papers the
level set method is incorporated in the numerical algorithm.

In structural optimization the level set method [4,12,19,25] is employed in numeri-
cal algorithms for tracking the evolution of the domain boundary on a fixed mesh and
finding an optimal domain. This method is based on an implicit representation of the
boundaries of the optimized structure. A level set model describes the boundary of the
body as an isocontour of a scalar function of a higher dimensionality. The evolution of
the boundary of the domain is governed by Hamilton-Jacobi equation. While the shape
of the structure may undergo major changes, the level set function remains simple in
its topology. Level set methods are numerically efficient and robust procedures for the
tracking of interfaces, which allows domain boundary shape changes in the course of
iteration. Applications of the level set methods in structural optimization can be found,
among others, in [1,2,14,16,25]. The speed vector field in Hamilton-Jacobi equation
driving the propagation of the level set function is given by the Eulerian derivative of an
appropriately defined cost functional with respect to the variations of the free boundary.
Recently, in the series of papers [8,9,11,18,26,27] different numerical improvements of
the level set method employed for the numerical solution of the structural optimization
problems are proposed and numerically tested.

This paper deals with topology and shape optimization of elastic contact problems.
The optimization problem for elastic contact problem is formulated. Shape as well
as topological derivatives formulae of the cost functional are provided using material
derivative [20] and asymptotic expansion [22] methods, respectively. These derivatives
are employed to formulate necessary optimality condition for simultaneous shape and
topology optimization. Level set based numerical algorithm for the solution of the shape
optimization problem is proposed. The finite element and finite difference methods [10]
are used as the discretization methods. Numerical examples are provided and discussed.

The paper extends the author’s previous results in the field of structural optimization
of contact systems contained in [15,16] by considering besides shape also topology
optimization of these systems or developing optimality conditions, respectively.
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2 Problem Formulation

Consider deformations of an elastic body occupying two-dimensional domain Ω with
the smooth boundaryΓ . AssumeΩ ⊂D where D is a bounded smooth hold-all subset of
R2. The body is subject to body forces f (x) = ( f1(x), f2(x)), x ∈Ω . Moreover, surface
tractions p(x) = (p1(x), p2(x)), x∈Γ , are applied to a portionΓ1 of the boundaryΓ . We
assume that the body is clamped along the portion Γ0 of the boundary Γ , and that the
contact conditions are prescribed on the portionΓ2, whereΓi∩Γj = /0, i �= j, i, j = 0,1,2,
Γ = Γ̄0∪ Γ̄1∪ Γ̄2.

We denote by u = (u1,u2), u = u(x), x ∈ Ω , the displacement of the body and by
σ(x) = {σi j(u(x))}, i, j = 1,2, the stress field in the body. Consider elastic bodies obey-
ing Hooke’s law, i.e., for x ∈Ω and i, j,k, l = 1,2

σi j(u(x)) = ai jkl(x)ekl(u(x)). (1)

We use here and throughout the paper the summation convention over repeated indices
[10]. The strain ekl(u(x)), k, l = 1,2, is defined by:

ekl(u(x)) =
1
2
(uk,l(x)+ ul,k(x)), (2)

where uk,l(x) = ∂uk(x)
∂xl

. The stress field σ satisfies the system of equations [10]

−σi j(x), j = fi(x) x ∈Ω , i, j = 1,2, (3)

where σi j(x), j = ∂σi j(x)
∂x j

, i, j = 1,2. The following boundary conditions are imposed

ui(x) = 0 on Γ0, i = 1,2, (4)

σi j(x)n j = pi on Γ1, i, j = 1,2, (5)

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ2, (6)

| σT |≤ 1, uTσT + | uT |= 0 on Γ2, (7)

where n = (n1,n2) is the unit outward versor to the boundary Γ . Here uN = uini and
σN = σi jnin j, i, j = 1,2, represent the normal components of displacement u and stress
σ , respectively. The tangential components of displacement u and stress σ are given by
(uT )i = ui− uNni and (σT )i = σi jn j−σNni, i, j = 1,2, respectively. | uT | denotes the
Euclidean norm in R2 of the tangent vector uT . Recall [10], (6) - (7) describe Signorini
non-penetration condition and Coulomb friction law, respectively. For the sake of sim-
plicity it is assumed that the tangential contact stress is bounded by 1, i.e., the product
of the static friction coefficient and given normal contact stress is equal to 1. The equal-
ity in (7) can be written in the equivalent form as uTσT ≤ 0 and (1− | σT |)uT = 0.
Therefore (7) describes friction phenomenon including sliding. The results concerning
the existence of solutions to (1) - (7) can be found in [10,20].
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2.1 Variational Formulation of Contact Problem

Let us formulate contact problem (3) - (7) in variational form. Denote by Vsp and K the
space and set of kinematically admissible displacements:

Vsp = {z ∈ [H1(Ω)]2 : zi = 0 on Γ0, i = 1,2}, (8)

K = {z ∈Vsp : zN ≤ 0 on Γ2}. (9)

H1(Ω) denotes Sobolev space of square integrable functions and their first derivatives;
[H1(Ω)]2 = H1(Ω)×H1(Ω). Denote also by Λ the set

Λ = {ζ ∈ L2(Γ2) : | ζ | ≤ 1}.

Variational formulation of problem (3) - (7) has the form: find a pair (u,λ ) ∈ K×Λ
satisfying ∫

Ω
ai jklei j(u)ekl(ϕ−u)dx−

∫
Ω

fi(ϕi−ui)dx−
∫
Γ1

pi(ϕi−ui)ds

+
∫
Γ2

λ (ϕT −uT )ds≥ 0 ∀ϕ ∈ K,
(10)

∫
Γ2

(ζ −λ )uT ds≤ 0 ∀ζ ∈Λ , (11)

i, j,k, l = 1,2. Function λ is interpreted as a Lagrange multiplier corresponding to term
| uT | in equality constraint in (7) [10,20]. This function is equal to tangent stress along
the boundary Γ2, i.e., λ = σT|Γ2

. Function λ belongs to the space H−1/2(Γ2), i.e., the

space of traces on the boundary Γ2 of functions from the space H1(Ω). Here, following
[10] function λ is assumed to be more regular , i.e., λ ∈ L2(Γ2). The results concerning
the existence of solutions to system (10) - (11) can be found, among others, in [10].

2.2 Optimization Problem

Before formulating a structural optimization problem for (10) - (11) let us introduce the
set Uad of admissible domains. Denote by Vol(Ω) the volume of the domain Ω equal
to

Vol(Ω) =
∫
Ω

dx. (12)

Domain Ω is assumed to satisfy the volume constraint of the form

Vol(Ω)−Volgiv ≤ 0, (13)

where the constant Volgiv = const0 > 0 is given. In the case of shape optimization of
problem (10) - (11) the optimized domain Ω is assumed to satisfy equality volume
condition, i.e., (13) is assumed to be satisfied as equality. In the case of topology opti-
mization Volgiv is assumed to be the initial domain volume and (13) is satisfied in the
form Vol(Ω) = r f rVolgiv with r f r ∈ (0,1) [22]. The set Uad has the following form

Uad = {Ω : E ⊂Ω ⊂ D⊂ R2 : Ω is Lipschitz continuous,

Ω satisfies condition (13),PD(Ω)≤ const1},
(14)
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where E ⊂ R2 is a given domain such that Ω as well as all perturbations of it satisfy
E ⊂ Ω . PD(Ω) =

∫
Γ dx is the perimeter of a domain Ω in D [5], [20, p. 126]. The

perimeter constraint is added in (14) to ensure the compactness of the set Uad in the
square integrable topology of characteristic functions as well as the existence of optimal
domains. The constant const1 > 0 is assumed to exist. The set Uad is assumed to be
nonempty. In order to define a cost functional we shall also need the following set Mst

of auxiliary functions

Mst = {φ = (φ1,φ2) ∈ [H1(D)]2 : φi ≤ 0 on D, i = 1,2,‖ φ ‖[H1(D)]2≤ 1}, (15)

where the norm ‖ φ ‖[H1(D)]2= (∑2
i=1 ‖ φi ‖2

H1(D))
1/2.

In order to formulate an optimization problem we have to define the cost functional.
Measurements and engineering practice indicate that when two surfaces are in contact
a large stress on the contact boundary occurs. Usually, the normal contact stress σN at-
tains maximal values in the middle of the contact area. The goal of structural engineers
is to reduce this maximal value of the stress as much as possible. Thus, the cost func-
tional S(Γ2) = maxx∈Γ2 | σN(x) | is natural criterion of optimization directly reflecting
the design objectives. Unfortunately, the optimization problem with the cost functional
S(Γ2) is nonsmooth and difficult for analysis and numerical solution [15]. This is the
reason why the criterion of maximal contact stress is approximated by integral, dif-
ferentiable functionals. Recall from [15] the cost functional approximating the normal
contact stress on the contact boundary

Jφ (u(Ω)) =
∫
Γ2

σN(u)φN(x)ds, (16)

depending on the auxiliary given bounded function φ(x) ∈ Mst . Function φ in most
cases, including finite-dimensional spaces, is chosen piecewise constant or piecewise
linear in a hold-all domain D. The integral (16) is nonnegative for all φ ∈ K. For given
φ , the bigger is the normal contact stress on the boundary, the bigger is the value of the
cost functional. This integral is also related to the strain energy of the body (for details
see [10,15]). σN and φN are the normal components of the stress field σ corresponding
to a solution u satisfying system (10) - (11) and the function φ , respectively.

Consider the following structural optimization problem: for a given function φ ∈Mst ,
find a domain Ω � ∈Uad such that

Jφ (u(Ω �)) = min
Ω∈Uad

Jφ (u(Ω)). (17)

The existence of an optimal domain Ω � ∈ Uad follows by standard arguments (see
[5,20]).

3 Optimality Conditions

3.1 Shape Derivative

Consider variations of domainΩ ⊂D with respect to the boundaryΓ only. Assume that
in (14) volume condition is satisfied as equality, i.e., constant volume condition holds.
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Let τ be a given parameter such that 0≤ τ < τ0, τ0 is prescribed, and V =V (x,τ), x∈Ω ,
be a given admissible velocity field. The set of admissible velocity fields V consists of
vector fields regular enough (Ck class, k ≥ 1, for details see [20]) with respect to x
and τ and such that on the boundary ∂D of D either V = 0 at singular points of this
boundary or normal component V · n of V equals V · n = 0 at points of this boundary
where the outward unit normal field n exists. Therefore the perturbations of domain Ω
are governed by the transformation

T (τ,V ) : D̄ → D̄,

i.e., Ωτ = T (τ,V )(Ω) [20]. Since only small perturbations of Ω are considered, this
transformation can have the form of perturbation of the identity operator I in R2. An
example of such transformation is T (τ,Ṽ ) = I + τṼ (x), where Ṽ denotes a smooth
vector field defined on R2 [20].

The Euler derivative of the domain functional Jφ (Ω) is defined as

dJφ (Ω ,V ) = lim
τ→0+

Jφ (Ωτ)− Jφ (Ω)
τ

. (18)

In [15], using the material derivative approach [20], the Euler derivative of the cost
functional (16) has been calculated and a necessary optimality condition for the shape
optimization problem (17) has been formulated. This Euler derivative has the form

dJφ (u(Ω);V ) =
∫
Γ
(σi jekl(φ + padt)− f ·φ)V (0) ·nds

−
∫
Γ1

[
∂ (p · (padt +φ))

∂n
+κ p · (padt +φ)]V (0) ·nds

+
∫
Γ2

[λ (padt
T +φT )+ qadtuT ]κV (0) ·nds,

(19)

where i, j,k, l = 1,2, V (0) = V (x,0), the displacement u ∈ Vsp and the stress λ ∈ Λ
satisfy state system (10) - (11). κ denotes the mean curvature of the boundary Γ . The
adjoint functions padt ∈K1 and qadt ∈Λ1 satisfy for i, j,k, l = 1,2, the following system∫

Ω
ai jklei j(φ + padt)ekl(ϕ)dx +

∫
Γ2

qadtϕT ds = 0, ∀ϕ ∈ K1, (20)

and ∫
Γ2

ζ (padt
T +φT )ds = 0, ∀ζ ∈Λ1, (21)

where the cones K1 and Λ1 are given by [15,20]

K1 = {ξ ∈Vsp : ξN = 0 on Ast}, (22)

Λ1 = {ζ ∈ L2(Γ2) : ζ (x) = 0 on B1∪B2∪B+
1 ∪B+

2 }, (23)

while the coincidence set Ast = {x∈Γ2 : uN = 0}. Moreover B1 = {x∈Γ2 : λ (x)=−1},
B2 = {x ∈ Γ2 : λ (x) = +1}, B̃i = {x ∈ Bi : uN(x) = 0}, i = 1,2, B+

i = Bi \ B̃i, i = 1,2.
The necessary optimality condition is formulated in [15].

Lemma 1. Let Ω � ∈Uad be an optimal solution to the problem (17). Then there exist
Lagrange multipliers μ1 ∈ R, associated with the constant volume constraint and μ2 ∈
R, μ2 ≥ 0, associated with the finite perimeter constraint such that for all admissible
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vector fields V and such that all perturbations δΩ ∈Uad of domain Ω ∈ Uad satisfy
E ⊂Ω ∪δΩ ⊂D, at any optimal solution Ω � ∈Uad to the shape optimization problem
(17) the following conditions are satisfied:

dJφ (u(Ω �);V )+ μ1

∫
Γ �

V (0) ·nds+ μ2dPD(Ω �;V )≥ 0, (24)

μ1(
∫
Ω�

dx− const0) = 0,(μ∼2 − μ2)(PD(Ω �)− const1)≤ 0, (25)

∀μ∼2 ∈ R, μ∼2 ≥ 0, (26)

where u(Ω �) denotes the solution to (10) - (11) in the domainΩ �, Γ � = ∂Ω �, the Euler
derivative dJφ (u(Ω �);V ) is given by (19) and dPD(Ω ;V ) denotes the Euler derivative
of the finite perimeter functional PD(Ω) (see [20, p. 126]). The given constant const0 >
0 and constant const1 > 0 are the same as in (14).

3.2 Topological Derivative

Classical shape optimization is based on the perturbation of the boundary of the initial
shape domain. The initial and final shape domains have the same topology. The aim of
the topological optimization is to find an optimal shape without any a priori assumption
about the structure’s topology.

The value of the goal functional (16) can be minimized by the topology variation of
the domainΩ . The topology variations of geometrical domains are defined as functions
of a small parameter ρ such that 0 < ρ < R, R > 0 given. They are based on the creation
of a small hole

B(x,ρ) = {z ∈ R2 :| x− z |< ρ} (27)

of radius ρ at a point x ∈ Ω in the interior of the domain Ω . The Neumann boundary
conditions are prescribed on the boundary ∂B of the hole. Denote the perturbed domain
by Ωρ =Ω \B(x,ρ).

The topological derivative TJφ (Ω ,x) of the domain functional Jφ (Ω) at Ω ⊂ R2 is a
function depending on a center x of the small hole and is defined by [1,17,22]

T Jφ (Ω ,x) = lim
ρ→0+

[Jφ (Ω \B(x,ρ))− Jφ(Ω)]/πρ2. (28)

This derivative is calculated by the asymptotic expansion method [22]. To minimize the
cost functional Jφ (Ω) the holes have to be created at the points of domainΩ where T Jφ
is negative.

The formulae for topological derivatives of cost functionals for plane elasticity sys-
tems or contact problems are provided, among others, in papers [6,7,21,23]. Using the
methodology from [22] as well as the results of differentiability of solutions to vari-
ational inequalities [20], we can calculate the formulae of the topological derivative
T Jφ (Ω ;x0) of the cost functional (16) at a point x0 ∈Ω . This derivative is equal to

T Jφ (u(Ω),x0) =−[ f (φ + wadt)+
1
E

(auawadt+φ + 2bubwadt+φ cos2δ )]|x=x0

−
∫
Γ2

(sadtuT +λ (wadt
T +φT ))κds,

(29)
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where aβ̃ = σI(β̃ )+σII(β̃ ) , bβ̃ = σI(β̃ )−σII(β̃ ) , and either β̃ = ”u” or β̃ =
”wadt +φ”, σI(u) and σII(u) denote principal stresses for displacement u, δ is the angle
between principal stresses directions [22]. E denotes Young modulus.

In order to obtain formula (29), the plane elasticity system (3) - (5) is written in
the polar coordinate system aligned with the principal stress directions. The asymptotic
expansions of displacement, strain and stress with respect to parameter ρ in the ring
adjacent to the hole B(x,ρ) hold [21]. Taking into account these asymptotic expansions,
the regularity of solutions to the state system (3) - (7), calculating the derivatives of the
cost functional (16) and solutions to the state system (3) - (7) with respect to parameter
ρ as well as using the results of differentiability of solutions to variational inequalities
we obtain (29). The integral term in (29) follows from the assumption that tangent
displacement and stress functions along Γ2 are dependent on the parameter ρ .

The adjoint state (wadt
ρ ,sadt

ρ ) ∈ K1×Λ1 satisfies system (20) - (21) in domain Ωρ
rather than Ω , i.e.,∫

Ωρ
ai jklei j(φ + wadt

ρ )ekl(ϕ)dx +
∫
Γ2

sadt
ρ ϕT ds = 0, ∀ϕ ∈ K1, (30)

and ∫
Γ2

ζ (wadt
ρT +φT )ds = 0, ∀ζ ∈Λ1, (31)

where wadt
ρ |ρ=0

= wadt(x0). By standard arguments [5,20,21] it can be shown that if

Ω � ∈ Uad is an optimal domain to the problem (17) it satisfies for all x0 ∈ Ω � the
necessary optimality condition of the form (24) - (26) with topological derivative (29)
rather than Euler derivative (19) in (24), and inequality in (25) rather than equality as
well as with Lagrange multiplier μ1 ≥ 0.

3.3 Domain Differential

Finally consider the variation of the functional (16) resulting both from the nucleation
of the internal small hole as well as from the boundary variations. In order to take
into account these perturbations, in [21] the notion of the domain differential of the
domain functional has been introduced. The domain differential DJφ (Ω ;V,x0) of the
shape functional (16) at Ω ⊂ R2 in direction V and at point x0 ∈Ω is defined as

DJφ (Ω ;V,x0)(τ,ρ) = τdJφ (Ω ,V )+πρ2T Jφ (Ω ,x0). (32)

This differential completely characterizes the variation of the cost functional Jφ (Ω)
with respect to the simultaneous shape and topology perturbations (for details see [21]).
The shape derivative dJφ (u(Ω),V ) and the topological derivative T Jφ (u(Ω), x0) are
provided by (19) and (29) respectively. They depend on the solution u to the state system
(10) - (11). Using standard arguments [20] we can show

Lemma 2. Let Ω � ∈Uad be an optimal solution to the problem (17). Then there exist
Lagrange multipliers μ1 ∈ R, μ1≥ 0, associated with the volume constraint and μ2 ∈ R,
μ2≥ 0, associated with the finite perimeter constraint such that for all admissible vector
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fields V , for all admissible pairs (ρ ,τ) of parameters and for all x0 ∈Ω � and such that
all perturbations δΩ ∈Uad of domainΩ ∈Uad satisfy E ⊂Ω ∪δΩ ⊂D, at any optimal
solution Ω � ∈Uad to the shape and topology optimization problem (17) the following
conditions are satisfied:

DJφ (u(Ω �);V,x0)(τ,ρ)+ μ1

∫
Γ �

V (0) ·nds+ μ2dPD(Ω �;V )≥ 0, (33)

(μ∼1 − μ1)(
∫
Ω�

dx− const0)≤ 0,∀μ∼1 ∈ R, μ∼1 ≥ 0, (34)

(μ∼2 − μ2)(PD(Ω �)− const1)≤ 0,∀μ∼2 ∈ R, μ∼2 ≥ 0, (35)

where u(Ω �) denotes the solution to (10) - (11) in the domain Ω �, Γ � = ∂Ω �, the
domain differential DJφ (u(Ω �);V,x0)(τ,ρ) is given by (32) and dPD(Ω ;V ) denotes the
derivative of the finite perimeter functional PD(Ω) (see [1,6],[20, p. 126]). The given
constant const0 > 0 and constant const1 > 0 are the same as in (14).

4 Shape Representation by Level Set Method

In the paper the level set method [19] is employed to solve numerically problem (17).
Consider the evolution of a domain Ω under a velocity field V . Let t > 0 denote the
time variable. Under the mapping T (t,V ) we have

Ωt = T (t,V )(Ω) = (I + tV)(Ω), t > 0. (36)

By Ω−
t we denote the interior of the domain Ωt and by Ω+

t we denote the outside
of the domain Ωt . The domain Ωt and its boundary ∂Ωt are defined by a function
Φ =Φ(x, t) : R2× [0,t0) → R satisfying⎧⎪⎨⎪⎩

Φ(x, t) = 0, if x ∈ ∂Ωt ,

Φ(x, t) < 0, if x ∈Ω−
t ,

Φ(x, t) > 0, if x ∈Ω+
t ,

(37)

i.e., the boundary ∂Ωt is the level curve of the function Φ . Recall [19], the gradient
of the implicit function is defined as ∇Φ = ( ∂Φ∂x1

, ∂Φ∂x2
), the local unit outward normal

n to the boundary is equal to n = ∇Φ
|∇Φ| , the mean curvature κ = ∇ · n. In the level set

approach, Heaviside function H(Φ) and Dirac function δ (Φ) are used to transform
integrals from domain Ω into domain D. These functions are defined as

H(Φ) = 1 if Φ ≥ 0, H(Φ) = 0 if Φ < 0, (38)

δ (Φ) = H ′(Φ),δ (x) = δ (Φ(x)) | ∇Φ(x) |, x ∈ D. (39)

Assume that velocity field V is known for every point x lying on the boundary ∂Ωt ,
i.e., with Φ(x, t) = 0. Therefore the equation governing the evolution of the interface in
D× [0,t0] has the form [19]

Φt(x,t)+V(x,t) ·∇xΦ(x, t) = 0, (40)

where Φt denotes a partial derivative of Φ with respect to the time variable t. Equation
(40) is known as Hamilton-Jacobi equation.
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4.1 Structural Optimization Problem in Domain D

Using the notion of the level set function (37) as well as functions (38) and (39) struc-
tural optimization problem (17) may be reformulated in the following way: for a given
function φ ∈Mst , find function Φ such that

Jφ (u(Φ�)) = min
Φ∈UΦ

ad

Jφ (u(Φ)) (41)

where

Jφ (u(Φ)) =
∫

D
σN(u)φN(x)δ (Φ) | ∇Φ | ds, (42)

UΦ
ad = {Φ : Φ satisfies (37), Vol(Φ)≤Volgiv,PD(Φ) ≤ const1}, (43)

Vol(Φ) =
∫

D
H(Φ)dx, (44)

PD(Φ) =
∫

D
δ (Φ) | ∇Φ | dx. (45)

Moreover, a pair (u,λ ) ∈ K×Λ satisfies system∫
D

ai jklei j(u)ekl(ϕ−u)H(Φ)dx−
∫

D
fi(ϕi−ui)H(Φ)dx

−
∫

D
pi(ϕi−ui)δ (Φ) | ∇Φ | dx

+
∫

D
λ (ϕT −uT )δ (Φ) | ∇Φ | dx≥ 0∀ϕ ∈ K,

(46)

∫
D
(ζ −λ )uTδ (Φ) | ∇Φ | dx≤ 0 ∀ζ ∈Λ , (47)

while Vsp and K are defined by (8) and (9), respectively, on domain D rather than Ω and
i, j,k, l = 1,2.

5 Level Set Based Numerical Algorithm

The topological derivative can provide better prediction of the structure topology with
different levels of material volume than the method based on updating the shape of ini-
tial structure containing many regularly distributed holes [1,25]. Our approach is based
on the application of the topological derivative to predict the structure topology and
substitute material according to the material volume constraint and next to optimize
the structure topology to merge the unreasonable material interfaces and to change the
shape of material boundary. For the sake of simplicity in the description of the algo-
rithm we omit the bounded perimeter constraint in (14). Therefore the level set method
combined with the shape or topological derivatives results in the following conceptual
algorithm (A1) to solve structural optimization problem (17):

Step 1: Choose: a computational domain D such that Ω ⊂ D, an initial level set func-
tion Φ0 = Φ0 representing Ω 0 = Ω , function φ ∈Mst , parameters r0, ε1,ε2, μ̃0

1 =
μ0

1 = 0, k = n = 0.
Step 2: Calculate the solution (un,λ n) to the state system (46) - (47).
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Step 3: Calculate the solution ((wadt)n,(sadt)n) to the adjoint system (30) - (31) as well
as the topological derivative TJφ (Ω n,x) of the cost functional (16) given by (29).

Step 4: For given μ̃n
1 set Ω n+1 = {x ∈ Ω n : T Jφ (Ω ,x) ≥ χn+1} where χn+1 is chosen

in such a way that Vol(Ω n+1) = mn+1, mn+1 = qmn. Fill the void part D \Ω n+1

with a very weak material with Young modulus Ew = 10−5E . Update μ̃n+1
1 = μ̃n

1 +
rn(Volgiv

1 ), rn > 0, Volgiv
1 = Vol(Ω n+1)− r f rVolgiv. If | μ̃1

n+1− μ̃1
n | ≤ ε1 then set

Ω k =Ω n+1 and go to Step 5. Otherwise set n = n + 1, go to Step 2.
Step 5: Calculate the solution ((padt)k,(qadt)k) to the adjoint system (20) - (21). Cal-

culate the shape derivative dJφ (u(Ω k)) of the cost functional (16) given by (19).
Step 6: For given μk

1 solve the level set equation (40) to calculate the level set function
Φk+1.

Step 7: Set Ω k+1 equal to the zero level set of function Φk+1. Calculate μk+1
1 = μk

1 +
rk(Vol(Ω k+1)−Volgiv

1 ), rk > 0. If | μk+1
1 − μk

1 | ≤ ε2 then Stop. Otherwise set
k = k + 1, Ω n =Ω k+1, and go to Step 2.

Let us remark that having localized a small hole one can consider to perform further
the size optimization of the radius of the existing hole rather than shape optimization.
However such approach, confining to hole change only inside the optimized domain and
not allowing for the change of the shape of the external boundary of the body seems
to be not versatile. Level set approach allowing for tracking changes of internal and
external interfaces of the optimized domain on a fixed mesh, including the merging of
holes, seems to be more suitable in simultaneous shape and topology optimization of
domains.

State (10) - (11) and adjoint (20) - (21) systems are discretized using finite element
method [10]. Displacement and stress functions in state system (10) - (11) are approx-
imated by piecewise bilinear functions in domain D and piecewise constant functions
on the boundary Γ2 respectively. Similar approximation is used to discretize the ad-
joint system (20) - (21) or (30) - (31). These systems are solved using the primal-dual
algorithm with active set strategy [3,24]. In level set approach these state and adjoint
systems are transferred from domain Ω into fixed hold-all domain D using the regular-
ized Heaviside and Dirac functions. Finite difference method is employed to discretize
Hamilton-Jacobi equation and the explicit up-wind scheme is used to solve it. For more
details concerning implementation of this algorithm see [16].

6 Numerical Methods and Example

The discretized structural optimization problem (17) is solved numerically. The numer-
ical algorithms described in the previous sections have been used. The algorithm is
programmed in Matlab environment. As an example a body occupying 2D domain

Ω = {(x1,x2) ∈ R2 : 0≤ x1 ≤ 8∧0 < v(x1)≤ x2 ≤ 4}, (48)

is considered. The boundary Γ of the domain Ω is divided into three pieces

Γ0 = {(x1,x2) ∈ R2 : x1 = 0,8∧0 < v(x1)≤ x2 ≤ 4}, (49)

Γ1 = {(x1,x2) ∈ R2 : 0≤ x1 ≤ 8∧ x2 = 4}, (50)

Γ2 = {(x1,x2) ∈ R2 : 0≤ x1 ≤ 8∧ v(x1) = x2}. (51)
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Fig. 1. Shape optimization – optimal domain
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Fig. 2. Simultaneous topology and shape optimization – optimal domain

The domain Ω and the boundary Γ2 depend on the function v. This function is the vari-
able subject to shape optimization [13,15,16]. The initial position of the boundaryΓ2 is
given as in Fig. 1. The computations are carried out for the elastic body characterized
by the Poisson’s ratio ν = 0.29, the Young modulus E = 2.1 · 1011N/m2. The body is
loaded by boundary traction p1 = 0, p2 = −5.6 · 106 N along Γ1, body forces fi = 0,
i = 1,2. Auxiliary function φ is selected as piecewise constant (or linear) on D and is
approximated by a piecewise constant (or bilinear) functions. The computational do-
main D = [0,8]× [0,4] is selected. Domain D is discretized with a fixed rectangular
mesh of 24 × 12.

Fig. 1 displays the optimal solution of shape optimization problem (17). Fig. 2
presents the optimal domain obtained by solving topological and shape optimization
problem (17) in the computational domain D using algorithm (A1) and employing the
optimality condition (33) - (35). The areas of holes denoted by dotted lines appear in the
central part of the body and near the fixed edges. These areas result from the merging of
small holes from which the material has been removed into the bigger ones. Recall that
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the application of formula (29) allows to insert infinitesimal holes only. Although the
shape of the optimal contact boundaryΓ2 is similar to the optimal shape obtained in the
case of shape optimization only (see Fig. 2) but the obtained shape of the boundary Γ2

is not so strongly changed comparing to the initial one as the optimal shape obtained in
the case of shape optimization only. The obtained normal contact stress is almost con-
stant along the optimal shape boundary and has been significantly reduced comparing
to the initial one.

7 Conclusions

The structural optimization problem for elastic contact problem with the prescribed
friction is solved numerically in the paper. The topological derivative method as well as
the level set approach combined with the shape gradient method are used. The friction
term complicates both the form of the gradients of the cost or penalty functionals as
well as numerical process.

Obtained preliminary numerical results seem to be in accordance with physical rea-
soning. They indicate that the proposed numerical algorithm allows for significant im-
provements of the structure from one iteration to the next. They also indicate the future
research direction aiming at better reconciliation in one algorithm holes nucleation flex-
ibility and geometric update fidelity.
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Abstract. Second order sufficient optimality conditions for bang-bang control
problems in a very general form have been obtained in [15,21,13,12,1]. These
conditions require the positive definiteness (coercivity) of an associated quadratic
form on the finite-dimensional critical cone. In the present paper, we investigate
similar conditions for optimal control problems with a control variable having
two components: a continuous unconstrained control appearing nonlinearly and
a bang-bang control appearing linearly and belonging to a convex polyhedron.
The coercivity of the quadratic form can be verified by checking solvability of
an associated matrix Riccati equation. The results are applied to an economic
control problem in optimal production and maintenance, where existing sufficient
conditions fail to hold.

1 Introduction

The classical sufficient second order optimality conditions for an optimization problem
with constraints require that the second variation of the Lagrangian be positive defi-
nite on the cone of critical directions. In this paper, we investigate sufficient quadratic
optimality conditions of such type for optimal control problems with a vector control
variable having two components: a continuous unconstrained control appearing nonlin-
early in the control system and a bang-bang control appearing linearly and belonging
to a convex polyhedron.

In the pure bang-bang case, where all control components appear linearly, second
order necessary and sufficient optimality conditions in a very general form have been
obtained in Milyutin, Osmolovskii[15], Osmolovskii [21], Agrachev, Stefani, Zezza [1],
and Maurer, Osmolovskii [13,12,24]. Two alternative approaches were developed to es-
tablish sufficiency: (1) check the positive definiteness of an associated quadratic form
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on the finite-dimensional critical cone; (2) verify second-order sufficient conditions for
an induced finite-dimensional optimization problem with respect to switching times and
free final time. Second order sufficient optimality conditions for control problems where
the control variable appears nonlinearly, more precisely, where the strict Legendre con-
dition holds, have been given, e.g., in Malanowski [8], Maurer [9], Maurer, Pickenhain
[14], Milyutin, Osmolovskii [15], and Zeidan [28]. Here, one way to check the positive
definiteness of the quadratic form is by means of the solvability of an associated Riccati
equation.

In this paper, we investigate a class of control problems having two control compo-
nents, a continuous and a bang-bang component. Such control problems are frequently
encountered in practice. Our aim is to obtain second-order sufficient optimality condi-
tions for this class of control problems. It does not come as a surprise that the proof
techniques for obtaining sufficient conditions combine the above mentioned methods
in the pure bang-bang case and the case where the strict Legendre condition holds. For
simplicity, we shall consider control problems on a fixed time interval.

In Sect. 2, we give a statement of the control problem with continuous and bang-
bang control components (main problem), formulate the minimum principle (first order
necessary optimality condition) and introduce the notion of bounded-strong local min-
imum. In Sect. 3, we present second-order sufficient optimality conditions (SSC) for
a bounded-strong minimum in the problem. The main result in Theorem 1 is stated
without proof, which is very similar to the proof in the bang-bang case; cf. Milyutin,
Osmolovskii [15] and Osmolovskii, Maurer [24], Part 1. Details of the proof will be
published elsewhere. In Sect. 4, we give criteria for the positive definiteness of the
quadratic form on the critical cone in terms of solutions to a matrix Riccati equation
which may be discontinuous at the switching times. In Sect. 5, the main result in The-
orem 2 is applied to an economic control problem for optimal production and main-
tenance which was introduced by Cho, Abad and Parlar [4]. We will show that the
numerical solution obtained in Maurer, Kim, and Vossen [10] satisfies the second order
test derived in Sect. 4 while existing sufficiency results fail to hold.

2 Control Problem on a Fixed Time Interval

2.1 The Main Problem

Let x(t) ∈ R
d(x) denote the state variable and u(t) ∈ R

d(u), v(t) ∈ R
d(v) the control

variables in the time interval t ∈ [t0, t f ] with fixed initial time t0 and final time t f . We
shall refer to the following optimal control problem (1)-(4) as the main problem:

Minimize J (x(·),u(·),v(·)) = J(x(t0),x(t f )) (1)

subject to the constraints

ẋ(t) = f (t,x(t),u(t),v(t)), u(t) ∈U, (t,x(t),v(t)) ∈Q, (2)

F(x(t0),x(t f ))≤ 0, K(x(t0),x(t f )) = 0, (x(t0),x(t f )) ∈P, (3)

where the control variable u appears linearly in the system dynamics,

f (t,x,u,v) = a(t,x,v)+ B(t,x,v)u. (4)
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Here, F,K,a are column-vector functions, B is a d(x)× d(u) matrix function, P ⊂
R

2d(x), Q ⊂ R
1+d(x)+d(v) are open sets and U ⊂ R

d(u) is a convex polyhedron. The
functions J,F,K are assumed to be twice continuously differentiable on P and the
functions a,B are twice continuously differentiable on Q. The dimensions of F,K are
denoted by d(F), d(K). By Δ = [t0, t f ] we shall denote the interval of control and use
the abbreviations

x0 = x(t0), x f = x(t f ), p = (x0,x f ). (5)

A process
Π = {(x(t),u(t),v(t)) | t ∈ [t0,t f ]} (6)

is said to be admissible, if x(·) is absolutely continuous, u(·), v(·) are measurable and
bounded on Δ and the triple of functions (x(t),u(t),v(t)) together with the endpoints
p = (x(t0),x(t f )) satisfies the constraints (2) and (3).

Definition 1. An admissible processΠ affords a Pontryagin local minimum, if for each
compact set C ⊂ Q there exists ε > 0 such that J (Π̃) ≥J (Π) for all admissible
processes Π̃ = {(x̃(t), ũ(t), ṽ(t)) | t ∈ [t0, t1]} such that:

(a) max
Δ
|x̃(t)− x(t)|< ε;

(b)
∫
Δ
|ũ(t)−u(t)|dt < ε;

∫
Δ
|ṽ(t)− v(t)|dt < ε;

(c) (t, x̃(t), ṽ(t)) ∈ C a.e. on Δ .

2.2 First Order Necessary Optimality Conditions

Let
Π = {(x(t),u(t),v(t)) | t ∈ [t0,t f ]} (7)

be a fixed admissible process such that the control u(t) is a piecewise constant function
and the control v(t) is a continuous function on the interval Δ = [t0, t f ]. In order to make
the notations simpler, we do not use such symbols and indices as zero, hat or asterisk to
distinguish this trajectory from others. Denote by

θ = {t1, . . . ,ts}, t0 < t1 < · · ·< ts < t f , (8)

the finite set of all discontinuity points (jump points) of the control u(t). Then ẋ(t) is a
piecewise continuous function whose discontinuity points belong to θ , and hence x(t)
is a piecewise smooth function on Δ . Henceforth, we shall use the notation

[u]k = uk+−uk− (9)

to denote the jump of the function u(t) at the point tk ∈ θ , where

uk− = u(tk−0), uk+ = u(tk + 0) (10)

are the left hand and the right hand values of the control u(t) at tk, respectively. Simi-
larly, we denote by [ẋ]k the jump of the function ẋ(t) at the point tk.
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Let us formulate first-order necessary conditions of a Pontryagin minimum for the
process Π in the form of the Pontryagin minimum principle. To this end we introduce
the Pontryagin or Hamiltonian function

H(t,x,ψ ,u,v) = ψ f (t,x,u,v) = ψ a(t,x,v)+ψB(t,x,v)u, (11)

where ψ is a row vector of dimension d(ψ) = d(x), while x,u, f ,F and K are column
vectors. The row vector of dimension d(u),

σ(t,x,ψ ,v) = ψB(t,x,v), (12)

will be called the switching function for the u-component of the control. Denote by l the
endpoint Lagrange function

l(α0,α,β , p) = α0J(p)+αF(p)+βK(p), p = (x0,x f ), (13)

where α and β are row-vectors with d(α) = d(F), d(β ) = d(K), and α0 is a number.
We introduce a tuple of Lagrange multipliers

λ = (α0,α,β ,ψ(·)) (14)

such that
ψ(·) : Δ → R

d(x) (15)

is continuous on Δ and continuously differentiable on each interval of the set Δ \ θ .
In the sequel, we shall denote first or second order partial derivatives by subscripts
referring to the variables.

Denote by M0 the set of the normalized tuples λ satisfying the minimum principle
conditions for the process Π :

α0 ≥ 0, α ≥ 0, αF(p) = 0, α0 +∑αi +∑ |β j|= 1, (16)

ψ̇ =−Hx, ∀t ∈ Δ \θ , (17)

ψ(t0) =−lx0 , ψ(t f ) = lx f , (18)

H(t,x(t),ψ(t),u,v)≥ H(t,x(t),ψ(t),u(t),v(t))

for all t ∈ Δ \θ , u ∈U, v ∈ R
d(v) such that (t,x(t),v) ∈Q. (19)

The derivatives lx0 and lx f are taken at the point (α0,α,β , p), where p =(x(t0),x(t f )),
and the derivative Hx is evaluated at the point

(t,x(t),ψ(t),u(t),v(t)), t ∈ Δ \θ . (20)

The condition M0 �= /0 constitutes a first-order necessary condition of a Pontryagin min-
imum for the process Π which is called the Pontryagin minimum principle, cf., Pon-
tryagin et al. [25], Hestenes [7], Milyutin, Osmolovskii [15]. The set M0 is a finite-
dimensional compact set and the projector λ �→ (α0,α,β ) is injective on M0.

In the sequel, it will be convenient to use the abbreviation (t) for indicating all
arguments (t,x(t),ψ(t),u(t),v(t)), e.g.,

H(t) = H(t,x(t),ψ(t),u(t),v(t)), σ(t) = σ(t,x(t),ψ(t),v(t)). (21)
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Let λ = (α0,α,β ,ψ(·)) ∈M0. It is well-known that H(t) is a continuous function. In
particular, [H]k = Hk+−Hk− = 0 holds for each tk ∈ θ , where Hk− := H(tk− 0) and
Hk+ := H(tk + 0). We shall denote by Hk the common value of Hk− and Hk+:

Hk := Hk− = Hk+. (22)

The relations
[H]k = 0, [ψ ]k = 0, k = 1, . . . ,s, (23)

constitute the Weierstrass-Erdmann conditions for a broken extremal. We formulate
one more condition of this type which will be important for the statement of second
order conditions for extremal with jumps in the control. Namely, for λ ∈M0 and tk ∈ θ
consider the function

(ΔkH)(t) = H(t,x(t),ψ(t),uk+,v(tk))−H(t,x(t),ψ(t),uk−,v(tk))

= σ(t,x(t),ψ(t),v(tk)) [u]k.
(24)

Proposition 1. For each λ ∈M0 the following equalities hold

d
dt

(ΔkH)
∣∣
t=tk−0 =

d
dt

(ΔkH)
∣∣
t=tk+0, k = 1, . . . ,s. (25)

Consequently, for each λ ∈M0 the function (ΔkH)(t) has a derivative at the point tk ∈ θ .
In the sequel, we will consider the quantities

Dk(H) =− d
dt

(ΔkH)(tk), k = 1, . . . ,s. (26)

Then the minimum condition (19) implies the following property:

Proposition 2. For each λ ∈M0 the following conditions hold:

Dk(H)≥ 0, k = 1, . . . ,s. (27)

Note that the value Dk(H) also can be written in the form

Dk(H) =−Hk+
x Hk−

ψ + Hk−
x Hk+

ψ − [Ht]k = ψ̇k+ẋk−− ψ̇k−ẋk+ + [ψ0]k (28)

where Hk−
x and Hk+

x are the left- and the right-hand values of the function Hx(t) at tk,
respectively, [Ht ]k is the jump of the function Ht(t) at tk, etc., and ψ0(t) =−H(t).

2.3 Integral Cost Function, Unessential Variables, Bounded-Strong Minimum

It is well-known that any control problem with a cost functional in integral form

J =

t f∫
t0

f0(t,x(t),u(t),v(t))dt (29)



416 N.P. Osmolovskii and H. Maurer

can be reduced to the form (1) by introducing a new state variable y defined by the state
equation

ẏ = f0(t,x,u,v), y(t0) = 0. (30)

This yields the cost function J = y(t f ). The control variable u is assumed to appear
linearly in the function f0,

f0(t,x,u,v) = a0(t,x,v)+ B0(t,x,v)u. (31)

The component y is called an unessential component in the augmented problem. The
general definition of an unessential component is as follows.

Definition 2. The i-th component xi of the state vector x is called unessential if the
function f does not depend on xi and if the functions F,J,K are affine in xi0 = xi(t0)
and xi f = xi(t f ).

In the following, let x denote the vector of all essential components of state vector x.

Definition 3. The process Π affords a bounded-strong minimum, if for each compact
set C ⊂Q there exists ε > 0 such that J (Π̃) ≥J (Π) for all admissible processes
Π̃ = {(x̃(t), ũ(t), ṽ(t)) | t ∈ [t0,t f ]} such that

(a) |x̃(t0)− x(t0)|< ε ,

(b) max
Δ
|x̃(t)− x(t)|< ε ,

(c) (t, x̃(t), ṽ(t)) ∈ C a.e. on Δ .

The strict bounded-strong minimum is defined in a similar way, with the non-strict
inequality J (Π̃)≥J (Π) replaced by the strict one and the process Π̃ required to be
different from Π .

3 Quadratic Sufficient Optimality Conditions

In this section, we shall formulate a quadratic sufficient optimality condition for a
bounded-strong minimum (Definition 3) for given control process. This quadratic con-
dition is based on the properties of a quadratic form on the so-called critical cone, whose
elements are first order variations along a given process Π .

3.1 Critical Cone

For a given process Π we introduce the space Z 2(θ ) and the critical cone K ⊂
Z 2(θ ). Denote by PθW 1,2(Δ ,Rd(x)) the space of piecewise continuous functions x̄(·) :
Δ → R

d(x), which are absolutely continuous on each interval of the set Δ \θ and have
a square integrable first derivative. By L2(Δ ,Rd(v)) we denote the space of square inte-
grable functions v̄(·) : Δ → R

d(v). For each x̄ ∈ PθW 1,2(Δ ,Rd(x)) and for tk ∈ θ we set

x̄k− = x̄(tk−0), x̄k+ = x̄(tk + 0), [x̄]k = x̄k+− x̄k−. (32)
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Let z̄ = (ξ , x̄, v̄), where ξ ∈ R
s, x̄ ∈ PθW 1,2(Δ ,Rd(x)), v̄ ∈ L2(Δ ,Rd(v)). Thus,

z̄ ∈Z 2(θ ) := R
s×PθW 1,2(Δ ,Rd(x))×L2(Δ ,Rd(v)). (33)

For each z̄ we set
x̄0 = x̄(t0), x̄ f = x̄(t f ), p̄ = (x̄0, x̄ f ). (34)

The vector p̄ is considered as a column vector. Denote by

IF(p) = {i ∈ {1, . . . ,d(F)} | Fi(p) = 0} (35)

the set of indices of all active endpoint inequalities Fi(p) ≤ 0 at the point p = (x(t0),
x(t f )). Denote by K the set of all z̄ ∈Z 2(θ ) satisfying the following conditions:

J′(p)p̄ ≤ 0, F ′i (p)p̄≤ 0 ∀ i ∈ IF(p), K′(p)p̄ = 0, (36)
˙̄x(t) = fx(t)x̄(t)+ fv(t)v̄(t), (37)

[x̄]k = [ẋ]kξk, k = 1, . . . ,s, (38)

where p = (x(t0),x(t f )) and [ẋ]k = ẋ(tk +0)− ẋ(tk−0). It is obvious that K is a convex
cone in the Hilbert space Z 2(θ ) with finitely many faces. We call K the critical cone.

3.2 Quadratic Form

Let us introduce a quadratic form on the critical cone K defined by the conditions
(36)-(38). For each λ ∈M0 and z̄ ∈K we set

Ω(λ , z̄) = 〈lpp(p)p̄, p̄〉+
s

∑
k=1

(Dk(H)ξ 2
k − [ψ̇]kx̄k

avξ̄k)

+

t f∫
t0

(
〈Hxx(t)x̄(t), x̄(t)〉+ 2〈Hxv(t)v̄(t), x̄(t)〉+ 〈Hvv(t)v̄(t), v̄(t)〉

)
dt,

(39)

where

lpp(p) = lpp(α0,α,β , p), p = (x(t0),x(t f )), x̄k
av =

1
2
(x̄k−+ x̄k+), (40)

Hxx(t) = Hxx(t,x(t),ψ(t),u(t),v(t)), etc. (41)

Note that the functional Ω(λ , z̄) is linear in λ and quadratic in z̄.

3.3 Quadratic Sufficient Optimality Conditions

Denote by M+
0 the set of all λ ∈M0 satisfying the conditions:

(a) H(t,x(t),ψ(t),u,v) > H(t,x(t),ψ(t),u(t),v(t)) for all t ∈ Δ \ θ , u ∈ U ,
v ∈ R

d(v), such that (t,x(t),v) ∈Q and (u,v) �= (u(t),v(t)) ;

(b) H(tk,x(tk),ψ(tk),u,v) > Hk for all tk ∈ θ , u ∈ U, v ∈ R
d(v) such that

(tk,x(tk),v) ∈Q, (u,v) �= (u(tk−0),v(tk)), (u,v) �= (u(tk + 0),v(tk)), where Hk :=
Hk− = Hk+.
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Let Arg min
ũ∈U

σ(t)ũ be the set of points v ∈U where the minimum of the linear function

σ(t)ũ is attained.

Definition 4. For a given admissible process Π with a piecewise constant control u(t)
and continuous control v(t) we say that u(t) is a strict bang-bang control, if the set M0

is nonempty and there exists λ ∈M0 such that

Argmin
ũ∈U

σ(t)ũ = [u(t−0),u(t + 0)], (42)

where [u(t−0),u(t + 0)] denotes the line segment spanned by the vectors u(t−0) and
u(t + 0).

If dim(u) = 1, then the strict bang-bang property is equivalent to σ(t) �= 0 for all t ∈
Δ \ θ . For dim(u) > 1 the strict bang-bang property requires that two or more control
components do not switch simultaneously and the components of the switching vector
function vanish only at the switching points. If the set M+

0 is nonempty, then, obviously,
u(t) is a strict bang-bang control.

Definition 5. An element λ ∈ M0 is said to be strictly Legendrian if the following
conditions are satisfied:

(a) for each t ∈ Δ \ θ the quadratic form 〈Hvv(t,x(t),ψ(t),u(t),v(t))v̄, v̄〉 is positive
definite on R

d(v);
(b) for each tk ∈ θ the quadratic form 〈Hvv(tk,x(tk),ψ(tk),u(tk−0),v(tk))v̄, v̄〉 is posi-

tive definite on R
d(v);

(c) for each tk ∈ θ the quadratic form 〈Hvv(tk,x(tk),ψ(tk),u(tk + 0),v(tk))v̄, v̄〉 is posi-
tive definite on R

d(v);
(d) Dk(H) > 0 for all tk ∈ θ .

Let Leg+(M+
0 ) be the set of all strictly Legendrian elements λ ∈M+

0 and put

γ̄(z̄) = 〈ξ ,ξ 〉+ 〈x̄(t0), x̄(t0)〉+
t f∫

t0

〈v̄(t), v̄(t)〉dt. (43)

Theorem 1. Let the following Condition B be fulfilled for the process Π :

(a) the set Leg+(M+
0 ) is nonempty, hence, in particular u(t) is a strict bang-bang con-

trol;
(b) there exists a nonempty compact set M ⊂ Leg+(M+

0 ) and a number C > 0 such
that max

λ∈M
Ω(λ , z̄)≥Cγ̄(z̄) for all z̄ ∈K .

Then Π is a strict bounded-strong minimum.

Remark. If the set Leg+(M+
0 ) is nonempty and K ={0}, then (b) is fulfilled automat-

ically. This case can be considered as a first order sufficient optimality condition for a
strict bounded-strong minimum.

The proof of Theorem 1 is very similar to the proof of the sufficient quadratic optimality
condition for the pure bang-bang case given in Milyutin, Osmolovskii [15] Theorem
12.2, p. 302 and Osmolovskii, Maurer [24], Part 1. The proof is based on the SSC for
broken extremals in the general problem of calculus of variations; see Osmolovskii [21].
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4 Riccati Approach

The following question suggests itself from a numerical point of view: how does the
numerical check of the quadratic sufficient optimality conditions in Theorem 1 proceed?
For simplicity, we shall assume that (a) the initial value x(t0) is fixed and (b) there
are no endpoint constraints of inequality type. Assumptions (a) and (b) will simplify
the boundary conditions for the solution of the associated Riccati equation. Thus we
consider a problem:

Minimize J(x(t f )) (44)

under the constraints

x(t0) = x0, K(x(t f )) = 0, ẋ = f (t,x,u,v), u ∈U, (45)

where
f (t,x,u,v) = a(t,x,v)+ B(t,x,v)u, (46)

U ⊂ R
d(u) is a convex polyhedron and J,K,B are C2-functions. In the sequel, we shall

assume that there exists λ ∈M0 such that α0 > 0.

4.1 Critical Cone K and Quadratic Form Ω

For this problem, the critical cone is a subspace which is defined by the relations

x̄(t0) = 0, Kxf (p)x̄(t f ) = 0, (47)

˙̄x(t) = fx(t)x̄(t)+ fv(t)v̄(t), [x̄]k = [ẋ]kξk, k = 1, . . . ,s. (48)

These relations imply that J′(p)p̄ = 0 since α0 > 0. Hence, the quadratic form is given
by

Ω(λ , z̄) = 〈lx f x f (p)x̄ f , x̄ f 〉+
s

∑
k=1

(Dk(H)ξ 2
k −2[ψ̇]kx̄k

avξk)

+

t f∫
t0

(
〈Hxx(t)x̄(t), x̄(t)〉+ 2〈Hxv(t)v̄(t), x̄(t)〉+ 〈Hvv(t)v̄(t), v̄(t)〉

)
dt,

(49)

where, by definition, x̄ f = x̄(t f ). We assume that there exists λ ∈M+
0 such that

Dk(H) > 0, k = 1, . . . ,s, (50)

and the strengthened Legendre condition is satisfied with respect to v:

〈Hvv(t)v̄, v̄〉 ≥ c〈v̄, v̄〉 ∀ v̄ ∈ R
d(v), ∀t ∈ [t0, t f ]\θ (c > 0). (51)

From now on we shall fix λ ∈M+
0 with these properties.
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4.2 Q-Transformation of Ω on K

Set n = d(x) and let Q(t) be a symmetric n× n matrix on [t0,t f ] with piecewise con-
tinuous entries that are absolutely continuous on each interval of the set [t0,t f ]\θ . For
each z̄ ∈K we obviously have

t f∫
t0

d
dt
〈Qx̄, x̄〉dt = 〈Qx̄, x̄〉

∣∣∣∣t f

t0

−
s

∑
k=1

[〈Qx̄, x̄〉]k , (52)

where [〈Qx̄, x̄〉]k is the jump of the function 〈Qx̄, x̄〉 at the point tk ∈ θ . Using the equa-
tion ˙̄x = fxx̄+ fvv̄ and the initial condition x̄(t0) = 0, we obtain

−〈Q(t f )x̄ f , x̄ f 〉+
s

∑
k=1

[〈Qx̄, x̄〉]k

+

t f∫
t0

(
〈Q̇x̄, x̄〉+ 〈Q( fxx̄ + fvv̄), x̄〉+ 〈Qx̄, fxx̄+ fvv̄〉

)
dt = 0.

(53)

Adding this zero term to the form Ω(λ , z̄) in (49) we get

Ω(λ , z̄) = 〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉+

s

∑
k=1

(
Dk(H)ξ 2

k −2[ψ̇]kx̄k
avξk +[〈Qx̄, x̄〉]k

)

+

t f∫
t0

(
〈(Hxx + Q̇+ Q fx + f T

x Q)x̄, x̄〉+ 〈(Hxv + Q fv)v̄, x̄〉

+ 〈(Hvx + f T
v Q)x̄, v̄〉+ 〈Hvv(t)v̄(t), v̄(t)〉

)
dt .

(54)

We call this formula the Q-transformation of Ω on K .

4.3 Transformation of Ω on K to Perfect Squares

In order to transform the integral term in Ω(λ , z̄) to a perfect square we assume that
Q(t) satisfies the following matrix Riccati equation; cf. also [9,14,28]:

Q̇+ Q fx + f T
x Q+ Hxx− (Hxv + Q fv)H−1

vv (Hvx + f T
v Q) = 0. (55)

Then the integral term in Ω can be written as

t f∫
t0

〈H−1
vv h̄, h̄〉dt, where h̄ = (Hvx + f T

v Q)x̄ + Hvvv̄. (56)

A remarkable fact is that the terms

ωk := Dk(H)ξ 2
k −2[ψ̇]kx̄k

avξk +[〈Qx̄, x̄〉]k (57)
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can also be transformed to perfect squares if the matrix Q(t) satisfies a special jump
condition at each point tk ∈ θ . This jump condition was obtained in Osmolovskii, Lem-
pio [22]. Namely, for each k = 1, . . . ,s put

Qk− = Q(tk−0), Qk+ = Q(tk + 0), [Q]k = Qk+−Qk−, (58)

qk− = ([ẋ]k)T Qk−− [ψ̇]k, bk− = Dk(H)− (qk−)[ẋ]k, (59)

where [ẋ]k is a column vector, while qk−, ([ẋ]k)T and [ψ̇ ]k are row vectors, and bk− is a
number. We shall assume that

bk− > 0, k = 1, . . . ,s, (60)

holds and that Q satisfies the following jump conditions

[Q]k = (bk−)−1(qk−)T (qk−), (61)

where (qk−) is a row vector, (qk−)T is a column vector and hence (qk−)T (qk−) is a
symmetric n×n matrix. Then one can show (see [22]) that

ωk = (bk−)−1((bk−)ξk +(qk−)(x̄k+)
)2 = (bk−)−1(Dk(H)ξk +(qk−)(x̄k−)

)2
. (62)

Therefore, we obtain the following transformation of the quadratic form Ω = Ω(λ , z̄)
to perfect squares on the critical cone K :

Ω = 〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉+

s

∑
k=1

(bk−)−1(Dk(H)ξk +(qk−)(x̄k−)
)2

+

t f∫
t0

〈H−1
vv h̄, h̄〉dt,

(63)

where
h̄ = (Hvx + f T

v Q)x̄ + Hvvv̄. (64)

In addition, let us assume that

〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉 ≥ 0 (65)

for all x̄ f ∈ R
d(x) such that

Kxf (x(t f ))x̄ f = 0. (66)

Then, obviously,Ω(λ , z̄)≥ 0 on K . Let us show now thatΩ(λ , z̄) > 0 for each nonzero
element z̄∈K . This means thatΩ(λ , z̄) is positive definite on the critical cone K since
Ω(λ , z̄) is a Legendrian quadratic form.

Assume that Ω(λ , z̄) = 0 for some element z̄ ∈K . Then, for this element, the fol-
lowing equations hold

x̄(t0) = 0, (67)

Dk(H)ξk +(qk−)(x̄k−) = 0, k = 1, . . . ,s, (68)

h̄(t) = 0 a.e. in Δ . (69)
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From the last equation we get

v̄ =−H−1
vv (Hvx + f T

v Q)x̄. (70)

Using this formula in the equation

˙̄x = fxx̄ + fvv̄,

we see that x̄ is a solution of the linear equation

˙̄x = ( fx− fvH−1
vv (Hvx + f T

v Q))x̄. (71)

This equation together with initial condition x̄(t0) = 0 implies that

x̄(t) = 0 for all t ∈ [t0, t1). (72)

Consequently, x̄1− = 0, and then ξ1 = 0 by virtue of (68) with k = 1. The equality ξ1 = 0
together with jump condition [x̄]1 = [ẋ]1ξ1 imply that [x̄]1 = 0, i.e., x̄ is continuous at t1.
Consequently, x̄1+ = 0. From the last condition and equation (71) it follows that

x̄(t) = 0 for all t ∈ (t1, t2). (73)

Repeating this argument we obtain

ξ1 = ξ2 = . . . = ξs = 0, x̄(t) = 0 ∀t ∈ [t0, t f ]. (74)

Then from (70) it follows that v̄ = 0. Consequently, we have z̄ = 0 and thus have proved
the following theorem.

Theorem 2. Assume that there exists a symmetric matrix Q(t), defined on [t0,t f ], such
that

(a) Q(t) is piecewise continuous on [t0,t f ] and continuously differentiable on each in-
terval of the set [t0,t f ]\θ ;

(b) Q(t) satisfies the Riccati equation

Q̇+ Q fx + f T
x Q+ Hxx− (Hxv + Q fv)H−1

vv (Hvx + f T
v Q) = 0 (75)

on each interval of the set [t0, t f ]\θ ;
(c) at each point tk ∈ θ matrix Q(t) satisfies the jump condition

[Q]k = (bk−)−1(qk−)T (qk−), (76)

where
qk− = ([ẋ]k)T Qk−− [ψ̇]k, bk− = Dk(H)− (qk−)[ẋ]k > 0; (77)

(d) 〈
(
lx f x f −Q(t f )

)
x̄ f , x̄ f 〉 ≥ 0 for all x̄ f ∈ R

d(x) such that

Kxf (x(t f ))x̄ f = 0. (78)

Then Ω(λ , z̄) is positive definite on the subspace K .
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Remark. No strict inequality is imposed in the boundary condition (d), since the ini-
tial state is fixed. This property easily follows from a perturbation argument; cf., e.g.,
[11]. When endpoint conditions include inequality constraints of the form F(x(t f ))≤ 0,
then the inequality (d) has to be checked on the cone of elements x̄ f ∈ R

d(x) satisfying
Kxf (x(t f ))x̄ f = 0 and Fi,x f (x(t f ))x̄ f ≤ 0 if Fi(x(t f )) = 0.

In some problems, it is more convenient to integrate the Riccati equation (75) backwards
from t = t f . A similar proof shows that we can replace condition (c) in Theorem 2 by
the following condition:

(c+) at each point tk ∈ θ the matrix Q(t) satisfies the jump condition

[Q]k = (bk+)−1(qk+)T (qk+),
where qk+ = ([ẋ]k)T Qk+− [ψ̇]k, bk+ = Dk(H)+ (qk+)[ẋ]k > 0. (79)

In the next section, we shall discuss an optimal control problem in economics, where all
conditions in Theorem 2 can be verified numerically. Let us mention, however, that The-
orem 2 is not applicable to the minimum-fuel orbit transfer problem in Oberle, Taubert
[16], since the strict Legendre condition (51) does not hold along the zero thrust arc.
Nevertheless, Rosendahl [26] has succeeded in deriving second-order sufficient condi-
tions for those controls that belong to a given control structure. For that purpose, the
Riccati approach in [11] is extended to multiprocess control problems that are induced
by the given control structures.

5 Numerical Example: Optimal Control of Production and
Maintenance

Cho, Abad and Parlar [4] have introduced an optimal control model where a dynamic
maintenance problem is incorporated into a production control problem to simultane-
ously compute optimal production and maintenance policies. In this model, the dy-
namics is linear with respect to both production and maintenance control, whereas the
cost functional is quadratic with respect to production control and linear with respect
to maintenance control. Hence, the model fits into the more general type of control
problems considered in (1)-(4). Recently, a detailed numerical analysis for different
final times and two types of cost functionals has been given in Maurer, Kim, Vossen
[10]. For a certain range of final times, the production control is continuous while the
maintenance control is bang-bang. The aim in this section is to show that the sufficient
conditions in Theorem 2 are satisfied for the computed solutions.

The notations for state and control variables are different from [4,10] and are chosen
in conformity with those in the preceding sections: x1(t): inventory level at time t ∈
[0,t f ] with fixed final time t f > 0; x2(t): proportion of good units of end items produced
at time t; v(t): scheduled production rate (control); m(t): preventive maintenance rate
to reduce the proportion of defective units produced (control); α(t): obsolescence rate
of the process performance in the absence of maintenance; s(t): demand rate; ρ > 0:
discount rate. The dynamics of the process is given by

ẋ1(t) = x2(t)v(t)− s(t), x1(0) = x10 > 0,

ẋ2(t) =−α(t)x2(t)+ (1− x2(t))m(t), x2(0) = x20 > 0,
(80)
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with the following bounds on the control variables,

0≤ v(t)≤V, 0≤ m(t)≤M for 0≤ t ≤ t f . (81)

Since all demands must be satisfied, the following state constraint is imposed:

0≤ x1(t) for 0≤ t ≤ t f . (82)

Computations show that this state constraint is automatically satisfied if we impose the
boundary condition

x1(t f ) = 0. (83)

The optimal control problem then is to maximize the total discounted profit plus the
salvage value of x2(t f ),

J(x1,x2,m,v) =

t f∫
0

[ws−hx1(t)− rv(t)2− cm(t)]e−ρt dt + bx2(t f )e−ρt f , (84)

under the constraints (80)-(83). For later computations, the values of constants are cho-
sen as in Cho et al. [4]:

s(t)≡ 4, α(t)≡ 2, x10 = 3, x20 = 1, V = 3, M = 4,

ρ = 0.1, w = 8, h = 1, c = 2.5, b = 10, r = 2 .
(85)

In the discussion of the minimum principle (16)-(19), we will not use the current value
Hamiltonian function as in [4,10] but will work with the Hamiltonian (Pontryagin) func-
tion (11):

H(t,x1,x2,ψ1,ψ2,m,v) = e−ρt(−ws+ hx1 + rv2 + cm)
+ψ1(x2v− s)+ψ2(−αx2 +(1− x2)m),

(86)

where ψ1,ψ2 denote the adjoint variables. The adjoint equations (17) and transversality
conditions (18) yield in view of x1(t f ) = 0 and the salvage term in the cost functional:

ψ̇1 =−he−ρt, ψ1(t f ) = μ ,

ψ̇2 =−ψ1v +ψ2(α+ m), ψ2(t f ) =−be−ρt f .
(87)

The multiplier μ is not known a priori and will be computed later. We choose a time
horizon for which the control constraint 0 ≤ v(t) ≤ 3 does not become active. Hence,
the minimization in (19) leads to the equation 0 = Hv = 2re−ρtv +ψ1x2 , which yields
the control

v =−ψ1x2eρt/2r. (88)

Since the maintenance control enters the Hamiltonian linearly, the control m is deter-
mined by the sign of the switching function

σm(t) = Hm = e−ρt c +ψ2(t)(1− x2(t)) (89)



Second Order Sufficient Optimality Conditions for a Control Problem 425

as the policy

m(t) =

⎧⎪⎨⎪⎩
M, if σm(t) < 0

0, if σm(t) > 0

singular, if σm(t)≡ 0 for t ∈ Ising ⊂ [0, t f ]

⎫⎪⎬⎪⎭ . (90)

For the final time t f = 1 which was considered in [4] and [10], the maintenance control
contains a singular arc. But the computations in [10] show that for final times t f ∈
[0.15,0.98] the maintenance control has two bang-bang arcs:

m(t) =

{
0, for 0≤ t ≤ t1
M = 4, for t1 < t ≤ t f

}
. (91)

Let us study the control problem with final time t f = 0.9 in more detail. To compute a
solution candidate, we apply nonlinear programming methods to the discretized control
problem with a large number N of grid points τi = i · t f /N, i = 0,1, ...,N; cf. [2,3]. We
use the modeling language AMPL of Fourer et al. [6], the interior point optimization
code IPOPT of Wächter et al. [27] and the integration method of Heun.

For N = 5000 grid points, the computed state, control and adjoint functions are dis-
played in Fig. 1. We find the following values for the switching time, functional value
and some selected state and adjoint variables:

t1 = 0.65691, J = 26.705,

x1(t1) = 0.84924, x2(t1) = 0.226879,

x1(t f ) = 0., x2(t f ) = 0.574104,

ψ1(0) = −7.8617, ψ2(0) = −4.70437,

ψ1(t1) = −8.4975, ψ2(t1) = −3.2016,

ψ1(t f ) = −8.72313, ψ2(t f ) = −9.13931.

(92)

Let us apply now the second-order sufficient conditions in Theorem 2. Observe first
that the sufficiency theorem in Feichtinger and Hartl [5], p. 36, Satz 2.2, is not appli-
cable here. The assumptions in this theorem require that the minimized Hamiltonian
Hmin(t,x,ψ(t)) be convex in the state variable x = (x1,x2). However, using the mini-
mizing control v =−ψ1x2eρt/2r from (88), we obtain

Hmin(t,x,ψ(t)) =−eρt

4r
ψ1(t)2x2

2 + L(x), (93)

where L(x) denotes a linear function in the variable x. Since ψ1(t) �= 0 for t ∈ [0, t f ],
the minimized Hamiltonian is strictly concave in the variable x2. Hence, the sufficiency
theorem in [5], Satz 2.2, cannot be used here.

Now we compute the quantities needed in Theorem 2 and (79). The derivative of the
switching function σm(t) = e−ρtc +ψ2(t)(1− x2(t)) in (89) is given by

σ̇m =−ρe−ρtc−ψ1v(1− x2)+ψ2α, v =−ψ1x2eρt/2r. (94)

Inserting the values given in (92) we get

D1(H) =−4σ̇m(t1) = 27.028 > 0, σm(t) �= 0 ∀ t �= t1. (95)
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Fig. 1. From above: state variables x1(t) and x2(t); control variables v(t) and m(t); adjoint vari-
ables ψ1(t) and ψ2(t)

Hence, the maintenance control m(·) is a strict bang-bang control; see Fig 2.
Now we evaluate the Riccati equation

Q̇ =−Q fx− f T
x Q−Hxx +(Hxv + Q fv)(Hvv)−1(Hvx + f T

v Q) (96)

for the symmetric 2×2-matrix Q =

(
q11 q12

q12 q22

)
. Computing the expressions

fx =

(
0 v

0 −(α+ m)

)
, fv =

(
x2

0

)
, Hxx = 0, Hxv = (0,ψ1)T , Hvv = 2re−ρt , (97)
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Fig. 2. Switching function σm(t)

the matrix Riccati equation (96) yields the following ODE system:

q̇11 = q2
11x2

2eρt/2r , (98)

q̇12 =−q11v + q12(α+ m)+ eρtq11x2(ψ1 + q12x2)/2r , (99)

q̇22 =−2q12v + 2q22(α+ m)+ eρt(ψ1 + q12x2)2/2r . (100)

Since equations (98) and (99) are satisfied by zero functions q11 and q12, we can try
to find a solution to the Riccati system with q11(t) = q12(t) ≡ 0 on [0, t f ]. Then (100)
reduces to the linear equation

q̇22 = 2q22(α+ m)+ eρtψ2
1/2r. (101)

Obviously, this linear equation has always a solution. The remaining difficulty is to
satisfy the jump and boundary conditions in Theorem 2 (c) and (d). Instead of condition
(c) we will verify conditions (c+) and (79) which are more convenient for the backward
integration of (100). The boundary conditions in Theorem 2 (d) show that the initial
value Q(0) can be chosen arbitrarily while the terminal condition imposes the sign
condition q22(t f )≤ 0, since x2(t f ) is free. We shall take the boundary condition

q22(t f ) = 0. (102)

Using the computed values in (92), we solve the linear equation (101) with terminal
condition (102). At the switching time t1 we obtain the value

q22(t1) =−1.5599. (103)

Next, we evaluate the jump in the state and adjoint variables and will check conditions
(79). We get

([ẋ]1)T = (0, M(1− x2(t1))), [ψ̇]1 = (0, Mψ2(t1)), (104)
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which yield the quantities

q1+ = ([ẋ]1)T Q1+− [ψ̇]1 = (0, M(1− x2(t1))q22(t1+)−Mψ2(t1))
= (0,8.2439), (105)

b1+ = D1(H)+ (q1+)[ẋ]1

= D1(H)+ M2(1− x2(t1))((1− x2(t1))q22(t1+)−ψ2(t1))
= 27.028 + 133.55 = 160.58 > 0. (106)

Then the jump condition in (79),

[Q]1 = (b1+)−1(q1+)T (q1+) =

(
0 0

0 [q22]1

)
, (107)

reduces to a jump condition for q22(t) at t1. However, we do not need to evaluate this
jump condition explicitly because the linear equation (101) has a solution regardless
of the value q22(t1−). Hence, we conclude from Theorem 2 that the numerical solution
characterized by (92) and displayed in Fig. 1 provides a strict bounded-strong minimum.

Acknowledgements. We are indebted to Kazimierz Malanowski for helpful comments.
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Abstract. In the paper compressible, stationary Navier-Stokes (N-S) equations
are considered. The model is well-posed, there exist weak solutions in bounded
domains, subject to inhomogeneous boundary conditions. The shape sensitivity
analysis is performed for N-S boundary value problems, in the framework of
small perturbations of the so-called approximate solutions. The approximate so-
lutions are determined from Stokes problem and the small perturbations are given
by solutions to the full nonlinear model. Such solutions are unique. The differ-
entiability of the specific solutions with respect to the coefficients of differential
operators implies the shape differentiability of the drag functional. The shape
gradient of the drag functional is derived in the classical and useful for compu-
tations form, an appropriate adjoint state is introduced to this end. The proposed
method of shape sensitivity analysis is general, and can be used to establish the
well-posedness for distributed and boundary control problems as well as for in-
verse problems in the case of the state equations in the form of compressible
Navier-Stokes equations.

1 Introduction

Shape optimization for compressible Navier-Stokes equations (N-S) is important for
applications [9] and it is investigated from numerical point of view in the field of scien-
tific computations, however the mathematical analysis of such problems is not available
in the existing literature. One of the reasons is the lack of the existence results for in-
homogeneous boundary value problems for such equations. We refer the reader to the
chapter [21] for the state of art and some new results in this domain.

The results established in the paper lead in particular to the first order optimality
conditions for a class of shape optimization problems for compressible Navier-Stokes
equations.
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Our results for Fourier-Navier-Stokes (F-N-S) and N-S boundary value problems can
be presented according to the following plan.

– Mathematical modeling, well posedness of solutions to the boundary value prob-
lems. The most general setting for such analysis is introduced in [20] and covers the
F-N-S boundary value problems in bounded domains with inhomogeneous bound-
ary conditions. We point out that in [18] the diatomic gases are considered and the
existence of solutions for the mathematical models is shown. The shape differentia-
bility of solutions is proved in [19] for the Navier-Stokes boundary value problems
in bounded domains with inhomogeneous boundary conditions.

– The drag functional is minimized, however the same approach can be used for
more general problems of shape optimization including the lift maximization and
the density distribution optimization at the outlet of the flow domain.

– Framework for the shape sensitivity analysis. The new results are derived for small
perturbations of the approximate solutions to compressible N-S equations. In [19]
the shape sensitivity analysis is performed with respect to the adjugate matrix de-
fined for the Jacobi matrix of a given domain transformation mapping. Our ap-
proach allows for substantial simplification of the sensitivity analysis compared to
the existing results obtained in the case of incompressible fluids by using the ve-
locity or perturbation of identity methods of shape sensitivity analysis.

– Material derivatives of solutions to compressible N-S equations in the fixed domain
setting are obtained in [19]. The shape differentiability of solutions for compress-
ible N-S boundary value problems is shown with respect to weak norms, i.e., in the
negative Sobolev spaces for the hyperbolic component, that is, the transport equa-
tion, however the obtained material derivatives are sufficiently regular in order to
obtain the shape gradients given by some functions, and such a result is actually
very useful for possible application of numerical methods of shape optimization of
the level set type – since the shape gradients are the coefficients of the non linear
hyperbolic equation.

– Shape gradient of the drag functional is determined by means of the complicated
adjoint state, and we observe that the expression obtained is sufficiently smooth
and given by a function, it implies that e.g., the level set method can be employed
for numerical solution of the shape optimization for the drag minimization.

The shape optimization for compressible Navier-Stokes equations is an important branch
of the research, e.g. in aerodynamics. The main difficulty in analysis of such optimization
problems is the mathematical modeling, i.e., the lack of the existence results for inho-
mogeneous boundary value problems in bounded domains [18]. The authors proved the
existence of an optimal shape for drag minimization in three spatial dimensions under
the Mosco convergence of admissible domains and assuming that the family of admissi-
ble domains is nonempty [17]. This is a result on the compactness of the set of solutions
to Navier-Stokes equations for the admissible family of obstacles, we refer the reader
to [14]-[17] for further details. The shape differentiability of solutions to N-S equations
with respect to boundary perturbations is shown in [19], and leads to the optimality sys-
tem for the shape optimization problem under considerations.
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2 Compressible, Stationary Fourier-Navier-Stokes Equations

The most general results on the existence of solutions to N-S equations from the point
of view of drag minimization are established in [20] for the complete model including
the heat conduction. The model is formulated in the following way.

Modeling. Let us consider the following set of equations with the state variables: u is
the velocity field in the bounded domain Ω in three spatial dimensions, ρ > 0 stands
for the mass density, and ϑ ≥ 0 is the temperature

Δu+λ∇divu = k div(ρu⊗u)+ω∇
(
ρ(1 +ϑ)

)
+ρ g in Ω , (1)

div(ρu) = 0 in Ω , (2)

Δϑ = kγ−1
(
ρu∇ϑ +(γ−1)(1 +ϑ)ρdivu

)
− kω−1(1− γ−1)D in Ω , (3)

where k = R, ω = R/(γε2), R is the Reynolds number, ε is the Mach number, λ is the
viscosity ratio, γ is the adiabatic constant, g denotes the dimensionless mass force, and
the dissipative function D is defined by the equality

D =
1
2
(∇u+∇u∗)2 +(λ −1)divu2. (4)

The governing equations should be supplemented with the boundary conditions. The
velocity of the gas coincides with a given vector field U ∈C∞(R3)3 on the surface ∂Ω .
In this framework, the boundary of the flow domain is divided into three subsets: the
inlet Σin, outgoing set Σout, and characteristic set Σ0 defined by the equalities

Σin =
{

x ∈ Σ : U ·n < 0
}

, Σout =
{

x ∈ Σ : U ·n > 0
}

, (5)

Σ0 = {x ∈ ∂Ω : U ·n = 0}, where n stands for the unit outward normal to ∂Ω .
The state variables satisfy the boundary conditions

u = U, ϑ = 0 on ∂Ω , ρ = g on Σin, (6)

in which g is a given positive function.

Emergent vector field conditions. The existence of solutions to the mathematical model
can be established under geometrical conditions related to the characteristic set Γ ⊂ Σ0

and the boundary data U for the velocity field, see Fig. 1 for a specific geometry of the
bounded flow domain Ω with an obstacle S. Note that the boundary of the obstacle is
not important for such a condition. The emergent vector field condition is known in the
theory of PDE’s for the oblique derivative problems, and it is introduced and exploited
in our papers for the compressible N-S equations with the hyperbolic component for the
mass transport. In our case the condition allows us to construct in an appropriate way
the solutions to the mass transport equation.

Assume that a characteristic set Γ ⊂ ∂Ω and a given vector field U satisfy the fol-
lowing conditions, referred to as the emergent vector field conditions.
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Emergent vector field conditions: The set Γ is a a closed C∞ one-dimensional mani-
fold. Moreover, there is a positive constant c such that

U ·∇(U ·n) > c > 0 on Γ . (7)

Since the vector field U is tangent to ∂Ω on Γ , the quantity in the left-hand side of (7)
is well defined.

S

Γ Σ
Σin

out

U U

Fig. 1. Characteristic set Γ ⊂ ∂B on the exterior boundary of the flow domain Ω

This condition is obviously fulfilled for all strictly convex domains and constant
vector fields. It has a simple geometric interpretation, that U ·n only vanishes up to the
first order at Γ , and for each point P ∈ Γ , the vector U(P) points to the part of ∂Ω
where U is an exterior vector field.

Boundary value problem. We use the approximate solutions of the F-N-S boundary
value problems in order to show the existence, uniqueness and the stability of solutions
to F-N-S boundary value problems. The method is general and well suited in the frame-
work of mathematical modeling in the shape optimization, in the optimal control and in
solution of inverse problems.

Let us consider the following boundary value problem for the incompressible Navier-
Stokes equations

Δu0−∇p0 = kdiv(u0⊗u0), divu0 = 0 in Ω , u0 = U on ∂Ω , Π p0 = p0. (8)

In our notations Π is the projection,

Πu = u− 1
measΩ

∫
Ω

udx. (9)

It is well known that for each U ∈C∞(Ω) satisfying the orthogonality conditions∫
∂Ω

U ·nds = 0 (10)

and all sufficiently small k, this problem has a unique C∞-solution. The triple
(ρ0,u0,ϑ0) =: (1,u0,0) is an approximate solution for small Mach numbers.
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Theorem 1. There exist positive constants k∗, ω∗ such that for each fixed k ∈ [0,k∗],
and allω >ω∗, the stationary N-S-F problem has a solution (uω ,ρω ,ϑω )∈ (X1+s,r)3×
Xs,r×X1+s,r such that

‖uω −u0‖1+s,r +‖ρω−1‖s,r +‖ϑω‖1+s,r → 0 as ω → ∞. (11)

Proof is given in [20]. Applications of Theorem 1 to the existence of optimal shapes, as
well as to the shape differentiability of solutions to the F-N-S boundary value problem
are presented in the forthcoming publications.

3 Compressible, Stationary Navier-Stokes Equations

We restrict ourselves to the inhomogeneous boundary value problems for compress-
ible, stationary Navier-Stokes equations. Such modeling is considered in [14]-[19]. In
particular, the well-posedness for inhomogeneous boundary value problems of elliptic-
hyperbolic type is shown in [19]. Analysis is performed for small perturbations of the
approximate solutions, which are determined from the Stokes problem. The existence
and uniqueness of solutions close to approximate solution are proved, and in addition,
the differentiability of solutions with respect to the coefficients of differential operators
is shown in [19]. The results on the well-posedness of nonlinear problem are interesting
on their own, and are used to obtain the shape differentiability of the drag functional for
incompressible Navier-Stokes equations. The shape gradient of the drag functional is
derived in the classical and useful for computations form, an appropriate adjoint state is
introduced to this end. The shape derivatives of solutions to the Navier-Stokes equations
are given by smooth functions, however the shape differentiability is shown in a weak
norm. The method of analysis proposed in [19] is general, and can be used to establish
the well-posedness for distributed and boundary control problems as well as for inverse
problems in the case of the state equations in the form of compressible Navier-Stokes
equations. The differentiability of solutions to the Navier-Stokes equations with respect
to the data leads to the first order necessary conditions for a broad class of optimization
problems.

4 Drag Minimization

We present an example of shape optimization in aerodynamics. Mathematical analysis
of the drag minimization problem for compressible Navier-Stokes equations can be
found, e.g., in [17] on the domain continuity of solutions, and in [19] on the shape
differentiability of the drag functional.

Mathematical model in the form of N-S equations. We assume that the viscous gas
occupies the double-connected domain Ω = B\S, where B ⊂ R

3 is a hold-all domain
with the smooth boundary Σ = ∂B, and S ⊂ B is a compact obstacle. Furthermore, we
assume that the velocity of the gas coincides with a given vector field U ∈C∞(R3)3 on
the surface Σ . In this framework, the boundary of the flow domain Ω is divided into
the three subsets (see (5)), inlet Σin, outgoing set Σout, and Σ0. In its turn, the compact
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Γ = Σ0∩Σ splits the surface Σ into three disjoint parts Σ = Σin∪Σout∪Γ . The problem
is to find the velocity field u and the gas density ρ satisfying the following equations
along with the boundary conditions

Δu+λ∇divu = Rρu ·∇u+ R
ε2∇p(ρ) in Ω , div(ρu) = 0 in Ω , (12)

u = U on Σ , u = 0 on ∂S, ρ = ρ0 on Σin, (13)

where the pressure p = p(ρ) is a smooth, strictly monotone function of the density, ε is
the Mach number, R is the Reynolds number, λ is the viscosity ratio, and ρ0 is a positive
constant.

Drag minimization. One of the main applications of the theory of compressible viscous
flows is the optimal shape design in aerodynamics. The classical example is the problem
of minimization of the drag of airfoil traveling in the atmosphere with uniform speed
U∞. Recall that in our framework the hydrodynamical force acting on the body S is
defined by the formula,

J(S) =−
∫
∂S

(∇u+(∇u)∗+(λ −1)divuI− R
ε2 pI) ·ndS. (14)

In a frame attached to the moving body the drag is the component of J parallel to U∞,

JD(S) = U∞ ·J(S), (15)

and the lift is the component of J in the direction orthogonal to U∞. For the fixed data,
the drag can be regarded as a functional depending on the shape of the obstacle S. The
minimization of the drag and the maximization of the lift are among shape optimization
problems of some practical importance. We show the shape differentiability of the drag
functional with respect to the boundary variations.

5 Shape Sensitivity Analysis

We start with description of our framework for shape sensitivity analysis, or more gen-
eral, for well-posedness of compressible N-S equations. The detailed proofs of the
results presented in the section are given in the forthcoming paper [19]. To this end
we choose the vector field T ∈ C2(R3)3 vanishing in the vicinity of Σ , and define the
mapping

y = x + εT(x), (16)

which describes the perturbation of the shape of the obstacle. We refer the reader to [25]
for more general framework and results in shape optimization. For small ε , the mapping
x �→ y takes diffeomorphically the flow regionΩ onto Ωε = B\Sε , where the perturbed
obstacle Sε = y(S). Let (ūε , ρ̄ε) be solutions to problem (12) in Ωε . After substituting
(ūε , ρ̄ε) into the formulae for J, the drag becomes the function of the parameter ε . Our
aim is, in fact, to prove that this function is well-defined and differentiable at ε = 0.
This leads to the first order shape sensitivity analysis for solutions to compressible
Navier-Stokes equations. It is convenient to reduce such an analysis to the analysis of
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dependence of solutions with respect to the coefficients of the governing equations. To
this end, we introduce the functions uε(x) and ρε(x) defined in the unperturbed domain
Ω by the formulae

uε (x) = Nūε(x + εT(x)), ρε(x) = ρ̄ε(x + εT(x)), (17)

where
N(x) = [det(I+ εT′(x))(I+ εT′(x))]−1. (18)

is the adjugate matrix of the Jacobi matrix I+εT′. Furthermore, we also use the notation
g(x) =

√
detN. It is easy to see that the matrix N(x) depends analytically upon the small

parameter ε and
N = I+ εD(x)+ ε2D1(ε,x), (19)

where D = divTI−T′. Calculations show that for uε ,ρε , the following boundary value
problem is obtained

Δuε +∇
(
λg

−1divuε −
R
ε2 p(ρε)

)
= A uε + RB(ρε ,uε ,uε) in Ω , (20)

div
(
ρεuε

)
= 0 in Ω , (21)

uε = U on Σ , uε = 0 on ∂S, (22)

ρε = ρ0 on Σin. (23)

Here, the linear operator A and the nonlinear mapping B are defined in terms of N,

A (u) = Δu−N−1div
(
g−1NN∗∇(N−1u)

)
, (24)

B(ρ ,u,w) = ρ(N∗)−1
(

u∇
(
N−1w

))
. (25)

The specific structure of the matrix N does not play any particular role in the further
analysis. Therefore, we consider a general problem of the existence, uniqueness and
dependence on coefficients of the solutions to equations (20)-(23) under the assumption
that N is a given matrix-valued function which is close, in an appropriate norm, to the
identity mapping I and coincides with I in the vicinity of Σ . By abuse of notations,
we write simply u and ρ instead of uε and ρε , when studying the well-posedness and
dependence on N. Before formulation of main results we write the governing equation
in more transparent form using the change of unknown functions proposed, e.g., in [13].
To do so we introduce the effective viscous pressure

q =
R
ε2 p(ρ)−λg

−1divu, (26)

and rewrite equations (20)-(23) in the equivalent form

Δu−∇q = A (u)+ RB(ρ ,u,u) in Ω , (27)
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divu = aσ0 p(ρ)− gq
λ

in Ω , (28)

u ·∇ρ+gσ0 p(ρ)ρ =
gq
λ
ρ in Ω , (29)

u = U on Σ , u = 0 on ∂S, (30)

ρ = ρ0 on Σin , (31)

where σ0 = R/(λε2). We point out that the solutions to the compressible N-S equations
are determined in the form (34). In the new variables (u,q,ρ) the expression for the
force J reads

J =−
∫
Ω

[
g
−1(N∗∇(Nu)+∇(Nu)∗N−divu

)
−q−Rρu⊗u

]
N∗∇η dx, (32)

where η ∈C∞(Ω) is an arbitrary function, which is equal to 1 in an open neighborhood
of the obstacle S and 0 in a vicinity of Σ . The value of J is independent of the choice of
the function η .

6 Perturbations of the Approximate Solutions

We assume that λ # 1 and R� 1, which corresponds to almost incompressible flow
with low Reynolds number. In such a case, the approximate solutions to problem (27)-
(31) can be chosen in the form (ρ0,u0,q0), where ρ0 is a constant in boundary condition
(31), and (u0,q0) is a solution to the boundary value problem for the Stokes equations,

Δu0−∇q0 = 0, divu0 = 0 in Ω , u0 = U on Σ , u0 = 0 on ∂S, Πq0 = q0 , (33)

where Π is the projector (9). Equations (33) can be obtained as the limit of equations
(27)-(31) for the passage λ → ∞, R → 0. It follows from the standard elliptic theory
that for the boundary ∂Ω ∈ C∞, we have (u0,q0) ∈ C∞(Ω). We look for solutions to
problem (27)-(31) in the form

u = u0 + v, ρ = ρ0 +ϕ , q = q0 +λσ0 p(ρ0)+π+λm, (34)

with the unknown functions ϑ = (v,π ,ϕ) and the unknown constant m. Substituting
(34) into (27)-(31) we obtain the following boundary problem for ϑ ,

Δv−∇π = A (u)+ RB(ρ ,u,u) in Ω , (35)

divv = g

( σ
ρ0
ϕ−Ψ [ϑ ]−m

)
in Ω , (36)

u ·∇ϕ+σϕ =Ψ1[ϑ ]+ mgρ in Ω , (37)
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v = 0 on ∂Ω , ϕ = 0 on Σin, Ππ = π , (38)

where

Ψ1[ϑ ] = g

(
ρΨ [ϑ ]− σ

ρ0
ϕ2
)

+σϕ(1−g), (39)

Ψ [ϑ ] =
q0 +π
λ

− σ
p′(ρ0)ρ0

H(ϕ), (40)

σ = σ0 p′(ρ0)ρ0, (41)

H(ϕ) = p(ρ0 +ϕ)− p(ρ0)− p′(ρ0)ϕ , (42)

the vector field u and the function ρ are given by (34). Finally, we specify the constant
m. In our framework, in contrast to the case of homogeneous boundary problem, the
solution to such a problem is not trivial. Note that, since divv is of the null mean value,
the right-hand side of equation (37) must satisfy the compatibility condition

m
∫
Ω

gdx =
∫
Ω

g
( σ
ρ0
ϕ−Ψ [ϑ ]

)
dx, (43)

which formally determines m. This choice of m leads to essential mathematical dif-
ficulties. To make this issue clear note that in the simplest case g = 1 we have m =
ρ−1

0 σ(I−Π)ϕ+O(|ϑ |2,λ−1), and the principal linear part of the governing equations
(35)-(38) becomes⎛⎝Δ −∇ 0

div 0 − σ
ρ0

0 0 u∇+σ

⎞⎠⎛⎝ v
π
ϕ

⎞⎠+

⎛⎝ 0
m

−mρ0

⎞⎠∼
⎛⎝ Δv−∇π

divv− σ
ρ0
Πϕ

u∇ϕ+σΠϕ

⎞⎠ (44)

Hence, the question of solvability of the linearized equations derived for (35)-(38),
(46), (47) can be reduced to the question of solvability of the boundary value problem
for nonlocal transport equation

u∇ϕ+σΠϕ = f , (45)

which is very difficult because of the loss of maximum principle. In fact, this question
is concerned with the problem of the control of the total gas mass in compressible
flows. Recall that the absence of the mass control is the main obstacle for proving
the global solvability of inhomogeneous boundary problems for compressible Navier-
Stokes equations, we refer to [8] for discussion. In order to cope with this difficulty we
write the compatibility condition in a sophisticated form, which allows us to control the
total mass of the gas. To this end we introduce the auxiliary function ζ satisfying the
equations

−div(uζ )+σζ = σg in Ω , ζ = 0 on Σout, (46)

and fix the constant m as follows

m = κ

∫
Ω

(ρ−1
0 Ψ1[ϑ ]ζ −gΨ [ϑ ])dx, κ =

(∫
Ω

g(1− ζ −ρ−1
0 ζϕ)dx

)−1
. (47)

In this way the auxiliary function ζ becomes an integral part of the solution to problem
(35)-(38), (46), (47).
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7 Function Spaces

In this section we assemble some technical results which are used throughout the paper.
Function spaces play a central role, and we recall some notations, fundamental defini-
tions and properties, which are classical. The proofs of some results given here can be
found, e.g. in [19].

For our applications we need the results in three spatial dimensions, however the
results are presented for the dimension d ≥ 2.

Let Ω be the whole space R
d or a bounded domain in R

d with the boundary ∂Ω
of class C1. For an integer l ≥ 0 and for an exponent r ∈ [1,∞), we denote by Hl,r(Ω)
the Sobolev space endowed with the norm ‖u‖Hl,r(Ω) = sup|α |≤l ‖∂αu‖Lr(Ω). For real
0 < s < 1, the fractional Sobolev space Hs,r(Ω) is obtained by the interpolation between
Lr(Ω) and H1,r(Ω), and consists of all measurable functions with the finite norm

‖u‖Hs,r(Ω) = ‖u‖Lr(Ω) + |u|s,r,Ω (48)

where
|u|rs,r,Ω =

∫
Ω×Ω

|x− y|−d−rs|u(x)−u(y)|r dxdy. (49)

In the general case, the Sobolev space Hl+s,r(Ω) is defined as the space of measurable
functions with the finite norm ‖u‖Hl+s,r(Ω) = sup|α |≤l ‖∂αu‖Hs,r(Ω). For 0 < s < 1, the

Sobolev space Hs,r(Ω) is, in fact the interpolation space [Lr(Ω),H1,r(Ω)]s,r.
Furthermore, the notation Hl,r

0 (Ω), with an integer l, stands for the closed subspace
of the space Hl,r(Ω) of all functions u ∈ Lr(Ω) which being extended by zero outside
of Ω belong to Hl,r(Rd).

Denote by H 0,r
0 (Ω) and H 1,r

0 (Ω) the subspaces of Lr(Rd) and H1,r(Rd), respec-

tively, of all functions vanishing outside of Ω . Obviously H 1,r
0 (Ω) and H1,r

0 (Ω) are
isomorphic topologically and algebraically and we can identify them. However, we
need the interpolation spaces H s,r

0 (Ω) for non-integers, in particular for s = 1/r.

Definition 1. For all 0 < s≤ 1 and 1 < r <∞, we denote by H s,r
0 (Ω) the interpolation

space [H 0,r
0 (Ω),H 1,r

0 (Ω)]s,r endowed with one of two equivalent norms [19] defined
by interpolation method.

It follows from the definition of interpolation spaces that H s,r
0 (Ω) ⊂ Hs,r(Rd) and for

all u ∈H s,r
0 (Ω),

‖u‖Hs,r(Rd) ≤ c(r,s)‖u‖H s,r
0 (Ω), u = 0 outside Ω . (50)

In other words, H s,r
0 (Ω) consists of all elements u ∈ Hs,r(Ω) such that the extension

u of u by 0 outside of Ω has the finite [H 0,r
0 (Ω),H 1,r

0 (Ω)]s,r-norm. We identify u

and u for the elements u ∈H s,r
0 (Ω). With this identification it follows that H1,r

0 (Ω)⊂
H s,r

0 (Ω) and the space C∞
0 (Ω) is dense in H s,r

0 (Ω). It is worthy to note that for 0 <
s < 1 and for 1 < r < ∞, the function u belongs to the space Hs,r(Rd) if and only
if u ∈ Hs,r(Ω) and dist (x,∂Ω)−su ∈ Lr(Ω). We also point out that the interpolation
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space H s,r
0 (Ω) coincides with the Sobolev space Hs,r

0 (Ω) for s �= 1/r. Recall that the
standard space Hs,r

0 (Ω) is the completion of C∞
0 (Ω) in the Hs,r(Ω)-norm.

Embedding theorems. For sr > d and 0 ≤ α < s− r/d, the embedding Hs,r(Ω) ↪→
Cα(Ω) is continuous and compact. In particular, for sr > d, the Sobolev space Hs,r(Ω)
is a commutative Banach algebra, i.e. for all u,v ∈Hs,r(Ω),

‖uv‖Hs,r(Ω) ≤ c(r,s)‖u‖Hs,r(Ω)‖v‖Hs,r(Ω). (51)

If sr < d and t−1 = r−1− d−1s, then the embedding Hs,r(Ω) ↪→ Lt(Ω) is continuous.
In particular, for α ≤ s, (s−α)r < d and β−1 = r−1−d−1(s−α),

‖u‖Hα,β (Ω) ≤ c(r,s,α,β ,Ω)‖u‖Hs,r(Ω). (52)

It follows from (50) that all the embedding inequalities remain true for the elements of
the interpolation space H s,r

0 (Ω).

Duality. We define

〈u,v〉=
∫
Ω

uvdx (53)

for any functions such that the right hand side makes sense. For r ∈ (1,∞), each el-
ement v ∈ Lr′(Ω), r′ = r/(r− 1), determines the functional Lv of (H s,r

0 (Ω))′ by the
identity Lv(u) = 〈u,v〉. We introduce the (−s,r′)-norm of an element v ∈ Lr′(Ω) to be
by definition the norm of the functional Lv, that is

‖v‖H −s,r′ (Ω) = sup
u∈H

s,r
0 (Ω)

‖u‖
H

s,r
0 (Ω)=1

|〈u,v〉|. (54)

Let H −s,r′(Ω) denote the completion of the space Lr′(Ω) with respect to (−s,r′)-
norm. For an integer s, H −s,r′(Ω) is topologically and algebraically isomorphic to
(Hs,r

0 (Ω))′. The same conclusion holds true for all s ∈ (0,1). Moreover, we can identify

H −s,r′(Ω) with the interpolation space [Lr′(Ω),H−1,r′
0 (Ω)]s,r, see e.g., [19]. With this

denotations we have the duality principle

‖u‖H s,r
0 (Ω) = sup

v∈C∞0 (Ω)

‖v‖
H −s,r′ (Ω)

=1

|
〈
u,v
〉
|. (55)

With applications to the theory of Navier-Stokes equations in mind, we introduce the
smaller dual space defined as follows. We identify the function v ∈ Lr′(Ω) with the
functional Lv ∈ (Hs,r(Ω))′ and denote by H

−s,r′(Ω) the completion of Lr′(Ω) in the
norm

‖v‖
H−s,r′ (Ω) := sup

u∈Hs,r(Ω)
‖u‖Hs,r(Ω)=1

|
〈
u,v
〉
|. (56)
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In the sense of this identification the space C∞
0 (Ω) is dense in the interpolation space

H
−s,r(Ω). It follows immediately from the definition that

H
−s,r′(Ω) ⊂ (Hs,r(Ω))′ ⊂H −s,r′(Ω). (57)

For an arbitrary bounded domain Ω ⊂ R
3 with a Lipschitz boundary, we introduce the

Banach spaces

Xs,r = Hs,r(Ω)∩H1,2(Ω), (58)

Y s,r = Hs+1,r(Ω)∩H2,2(Ω), (59)

Zs,r = H s−1,r(Ω)∩L2(Ω) (60)

equipped with the norms

‖u‖Xs,r = ‖u‖Hs,r(Ω) +‖u‖H1,2(Ω), (61)

‖u‖Ys,r = ‖u‖H1+s,r(Ω) +‖u‖H2,2(Ω), (62)

‖u‖Zs,r = ‖u‖H s−1,r(Ω) +‖u‖L2(Ω). (63)

It can be easily seen that the embeddingsY s,r ↪→Xs,r ↪→ Zs,r are compact and for sr > 3,
each of the spaces Xs,r and Y s,r is a commutative Banach algebra.

8 Existence and Uniqueness Theory

Denote by E the closed subspace of the Banach space Y s,r(Ω)3×Xs,r(Ω)2 in the fol-
lowing form

E = {ϑ = (v,π ,ϕ) : v = 0 on ∂Ω , ϕ = 0 on Σin, Ππ = π} , (64)

and denote by Bτ ⊂ E the closed ball of radius τ centered at 0. Next, note that for
sr > 3, elements of the ball Bτ satisfy the inequality

‖v‖C1(Ω) +‖π‖C(Ω) +‖ϕ‖C(Ω) ≤ ce(r,s,Ω)‖ϑ‖E ≤ ceτ, (65)

where the norm in E is defined by

‖ϑ‖E = ‖v‖Ys,r(Ω) +‖π‖Xs,r(Ω) +‖ϕ‖Xs,r(Ω). (66)

Theorem 2. Assume that the surface Σ and given vector field U satisfy emergent field
conditions. Furthermore, let σ∗, τ∗ be given constants determined in [19], and let pos-
itive numbers r, s, σ satisfy the inequalities

1/2 < s≤ 1, 1 < r < 3/(2s−1), sr > 3, σ > σ∗. (67)

Then there exists τ0 ∈ (0,τ∗], depending only on U,Ω ,r,s,σ , such that for all

τ ∈ (0,τ0], λ−1,R ∈ (0,τ2], ‖N− I‖C2(Ω) ≤ τ2, (68)

problem (35)-(38), (46), (47), with u0 given by (33), has a unique solution ϑ ∈ Bτ .
Moreover, the auxiliary function ζ and the constants κ,m admit the estimates
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‖ζ‖Xs,r + |κ| ≤ c, |m| ≤ cτ < 1, (69)

where the constant c depends only on U,Ω ,r,s and σ .

9 Material Derivatives of Solutions

Theorem 2 guarantees the existence and uniqueness of solutions to problem (35)-(38),
(46), (47) for all N close to the identity matrix I. The totality of such solutions can be
regarded as the mapping from N to the solution of the Navier-Stokes equations. The
natural question is the smoothness properties of this mapping, in particular its differ-
entiability. With application to shape optimization problems in mind, we consider the
particular case where the matrices N depend on the small parameter ε and have repre-
sentation (19). We assume that C1 norms of the matrix-valued functions D and D1(ε)
in (19) have a majorant independent of ε . By virtue of Theorem 2, there are the positive
constants ε0 and τ such that for all sufficiently small R,λ−1 and ε ∈ [0,ε0], problem
(35)-(38), (46), (47) with N = N(ε) has a unique solution ϑ(ε) = (v(ε),π(ε),ϕ(ε)),
ζ (ε),m(ε), which admits the estimate

‖ϑ(ε)‖E + |m(ε)| ≤ cτ, ‖ζ (ε)‖Xs,r ≤ c, (70)

where the constant c is independent of ε , and the Banach space E is defined by (64).
Denote the solution for ε = 0, (ϑ(0),m(0),ζ (0)) by (ϑ ,m,ζ ), and define the finite
differences with respect to ε

(wε ,ωε ,ψε ) = ε−1(ϑ −ϑ(ε)), ξε = ε−1(ζ − ζ (ε)), nε = ε−1(m−m(ε)). (71)

Formal calculations show that the limit (w,ω ,ψ ,ξ ,n) = lim
ε→0

(wε ,ωε ,ψε ,ξε ,nε) is a

solution to linearized equations

Δw−∇ω = RC0(w,ψ)+D0(D) in Ω ,

divw = b0
21ψ−b0

22ω+ b0
23 n + b0

30 d in Ω ,

u∇ψ+σψ =−w ·∇ϕ+ b0
11ψ+ b0

12ω+ b0
13 n + b0

10d in Ω ,

−div(uξ )+σξ = div(ζw)+σd in Ω ,

w = 0 on ∂Ω , ψ = 0 on Σin, ξ = 0 on Σout,

ω−Πω = 0, n = κ

∫
Ω

(
b0

31ψ+ b0
32ω+ b0

34 ξ + b0
30 d)dx,

(72)

where d = 1/2Tr D, the variable coefficients b0
i j and the operators C0, D0, are defined

by the formulae
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b0
11 =Ψ [ϑ ]−ρH ′(ϕ)+ m− 2σ

ρ0
ϕ ,

b0
12 = λ−1ρ ,

b0
13 = ρ ,

b0
10 = ρΨ [ϑ ]− σ

ρ0
ϕ2−σϕ+ mρ ,

b0
21 =

σ
ρ0
ψ0 + H ′(ϕ),

b0
22 =−λ−1,

b0
23 =−1,

b0
20 = σϕρ−1

0 −Ψ [ϑ ]−m,

b0
31 = ρ−1

0 ζ
(
Ψ [ϑ ]−ρH ′(ϕ)− 2σ

ρ0
ϕ
)
−H ′(ϕ)+ mρ−1

0 ζ ,

b0
32 = (λρ0)−1ρζb0

12 +λ−1,

b0
34 = ρ−1

0 Ψ1[ϑ ]+ m(1 +ρ−1
0 ϕ)

b0
30 = ρ−1

0 ζ (d0−mρ)+Ψ [ϑ ]−m(1− ζ−ρ−1
0 ζϕ),

(73)

C0(ψ ,w) = Rψu∇u+ Rρw∇u,+Rρu∇w, (74)

D0(D) = Ru∇(Du)+ RD∗(u∇u) (75)

+ div
(
(D+ D∗)∇u− 1

2
TrD∇u

)
−DΔu−Δ(Du).

The justification of the formal procedure meets serious problems, since the smoothness
of solutions to problem (35)-(38), (46), (47) is not sufficient for the well-posedness of
problem (72) in the standard weak formulation. In order to cope with this difficulty we
define very weak solutions to problem (72). The construction of such solutions is based
on the following lemma [19]. The lemma is given in R

d , for our application d = 3.

Lemma 1. Let Ω ⊂ R
d be a bounded domain with the Lipschitz boundary, let expo-

nents s and r satisfy the inequalities sr > d, 1/2≤ s≤ 1 and ϕ ,ς ∈Hs,r(Ω)∩H1,2(Ω),
w ∈H 1−s,r′

0 (Ω)∩H1,2
0 (Ω). Then there is a constant c depending only on s,r and Ω ,

such that the trilinear form

B(w,ϕ ,ς) =−
∫
Ω
ςw ·∇ϕ dx (76)

satisfies the inequality

|B(w,ϕ ,ς)| ≤ c‖w‖
H 1−s,r′

0 (Ω)
‖ϕ‖Hs,r(Ω)‖ς‖Hs,r(Ω), (77)

and can be continuously extended to B : H 1−s,r′
0 (Ω)d ×Hs,r(Ω)2 → R. In particular,

we have ς∇ϕ ∈H s−1,r(Ω) and ‖ς∇ϕ‖H1−s,r(Ω) ≤ c‖ϕ‖Hs,r(Ω)‖ς‖Hs,r(Ω).
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Definition 2. The vector field w ∈ H 1−s,r′
0 (Ω)3, functionals (ω ,ψ ,ξ ) ∈ H

−s,r′(Ω)3

and constant n are said to be a weak solution to problem (72), if 〈ω ,1〉 = 0 and the
identities∫

Ω
w
(

H−Rρ∇u ·h+ Rρ∇h∗u
)

dx−B(w,ϕ ,ς)−B(w,υ ,ζ )

+
〈
ω ,G−b0

12ς −b0
22g−κb0

32

〉
+
〈
ψ ,F−b0

11ς −b0
21g−κb0

31−Ru ·∇u ·h
〉

+
〈
ξ ,M−κb0

34

〉
+ n
(
1−
〈
1,b0

13ς
〉)

=
〈
d,b0

10ς + b0
20g +κb0

30 +συ
〉
+
〈
D0,h

〉
.

(78)

hold true for all (H,G,F,M) ∈ (C∞(Ω))6 such that G = ΠG. Here d = 1/2 Tr D, the
test functions h, g, ς , υ are defined by the solutions to adjoint problems

Δh−∇g = H, divh = G, L ∗ς = F, L υ = M in Ω , (79)

h = 0 on ∂Ω , Πg = g,ς = 0 on Σout, υ = 0 on Σin. (80)

We are now in a position to formulate the third main result of this paper.

Theorem 3. Under the above assumptions,

wε → w weakly in H 1−s,r′
0 (Ω), nε → n in R,

ψε → ψ , ωε → ω , ξε → ξ (∗)-weakly in H
−s,r′(Ω) as ε → 0,

(81)

where the limits, vector field w, functionals ψ ,ω ,ξ , and the constant n are given by the
weak solution to problem (72).

Note that the matrices N(ε) defined by equalities (18) meet all requirements of
Theorem 3, and in the special case we have in representation (19)

D(x) = divT(x)I−T′(x). (82)

Therefore, Theorem 3, together with the formulae (15) and (32), imply the existence of
the shape derivative for the drag functional at ε = 0. Straightforward calculations lead
to the following result.

Theorem 4. Under the assumptions of Theorem 3, there exists the shape derivative

d
dε

JD(Sε)
∣∣∣
ε=0

= Le(T)+ Lu(w,ω ,ψ), (83)

where the linear forms Le and Lu are defined by the equalities

Le(T) =
∫
Ω

divT(∇u+∇u∗ −divuI)U∞ dx

−
∫
Ω

[
∇u+∇u∗−divu−qI−Rρu⊗u

]
D∇η ·U∞ dx

−
∫
Ω

[
D∗∇u+∇u∗D+∇(Du)+∇(Du)∗

]
∇η ·U∞ dx

(84)
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and

Lu(w,ω ,ψ) =
∫
Ω

w
[
ΔηU∞ + Rρ(u ·∇η)U∞+ Rρ(u ·U∞)∇η

]
dx

+
〈
ω ,∇η ·U∞

〉
+ R
〈
ψ ,(u ·∇η)(u ·U∞)

〉
.

(85)

While Le depends directly on the vector field T, the linear form Lu depends on the weak
solution (w, ψ ,ω) to problem (72), thus depends on the direction T in a very implicit
manner, which is inconvenient for applications. In order to cope with this difficulty, we
define the adjoint state Y = (h,g,ς ,υ , l)� given as a solution to the linear equation

LY−UY−VY =Θ , (86)

supplemented with boundary conditions (80). Here the operators L, U, V and the vector
fieldΘ are defined by

L =

⎛⎜⎜⎜⎜⎝
Δ −∇ 0 0 0
div 0 0 0 0
0 0 L ∗ 0 0
0 0 0 L 0
0 0 −B13 0 1

⎞⎟⎟⎟⎟⎠ , (87)

U =

⎛⎜⎜⎜⎜⎝
0 0 −∇ϕ −ζ∇ 0
0 0 Π21 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , (88)

V =

⎛⎜⎜⎜⎜⎝
Rρ(∇u−u∇) 0 0 0 0

0 −λ−1Π 0 0 κΠb0
32

Ru ·∇u b0
12 b0

11 0 κb0
31

0 0 0 0 κb0
34

0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , (89)

Θ = (ΔηU∞ + Rρ(∇η⊗U∞+ U∞⊗∇η)u,Π(∇η ·U∞),R(u∇η)(uU∞),0,0) , (90)

Π2i(·) =Π(b0
2i(·)), B13(·) =

〈
1,b0

13(·)
〉
. (91)

The following theorem guarantees the existence of the adjoint state and gives the ex-
pression of the shape derivative for the drag functional in terms of the vector field T.

Theorem 5. Assume that a given solution ϑ ∈Bτ , (ζ ,m) ∈ Xs,r×R to problem (35)-
(38), (46), (47) meets all requirements of Theorem 2. Then there exists a positive con-
stant τ1 (depending only on U, Ω and r,s) such that, if τ ∈ (0,τ1] and Rλ−1 ≤ τ2

1 , then
there exists a unique solution Y ∈ (Y s,r)3× (Xs,r)3×R to problem (86), (80). The form
Lu has the representation

Lu(w,ψ ,ω) =
∫
Ω

[
divT

(
b0

10ς + b0
20g +συ+κb0

30l
)
+D0(divT−T′)h

]
dx (92)

where the coefficients b0
i j and the operator D0 are defined by the formulae (73), (75).
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Abstract. An important subclass of well-posed linear systems is formed by the
conservative systems. A conservative system is a system for which a certain en-
ergy balance equation is satisfied both by its trajectories and those of its dual
system. In Malinen et al. [10], a number of algebraic characterizations of con-
servative linear systems are given in terms of the operators appearing in the state
space description of the system. Weiss and Tucsnak [20] identified by a detailed
argument a large class of conservative linear systems described by a second order
differential equation in a Hilbert space and an output equation, and they may have
unbounded control and observation operators. In this paper, we give two exam-
ples of conservative linear control systems described by the linear Schrödinger
equation on an n-dimensional domain with boundary control and boundary ob-
servation. These examples do not fit into the framework of [20].

1 Introduction

Abstract representation of particular classes of infinite dimensional systems has re-
ceived considerable attention in the literature. For partial differential equations subject
to control either acting on the boundary of, or else as a point control within, a mul-
tidimensional bounded domain we refer to Balakrishnan [1] and Washburn [17] for
parabolic problems and to Triggiani [15], Lasiecka and Triggiani [4], Flandoli et al. [3]
for hyperbolic and Petrowsky-type problems. For functional differential equations with
delays in control and observation, see Salamon [12] and Delfour [2]. In [13], Salamon
introduced the class of well-posed infinite dimensional linear systems. The aim was
to provide a unifying abstract framework to formulate and solve control problems for
systems described by functional and partial differential equations. Roughly speaking, a
well-posed linear system is a linear time invariant system such that on any finite time
interval, the operator from the initial state and the input function to the final state and
the output function is bounded. An important subclass of well-posed linear systems is
formed by the conservative systems. A conservative system is a system for which a
certain energy balance equation is satisfied both by its trajectories and those of its dual
system. In Malinen et al. [10], a number of algebraic characterizations of conservative
linear systems are given in terms of the operators appearing in the state space descrip-
tion of the system.

Weiss and Tucsnak [20] identified by a detailed argument a large class of conserva-
tive linear systems described by a second order differential equation in a Hilbert space

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 448–458, 2009.
c© IFIP International Federation for Information Processing 2009
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and an output equation, and they may have unbounded control and observation opera-
tors.

In this paper, we give two examples of conservative control systems described by the
linear Schrödinger equation with boundary control and boundary observation. These
examples do not fit into the framework of [20].

The following notations are used. Let X be a Hilbert space, then:

– Cn(0,+∞;X) : the space of n times continuously differentiable X-valued functions
on [0,+∞), n ∈ N.

– BCn(0,+∞;X) : the space of those f ∈Cn(0,+∞;X) for which f , f ′, ..., f (n) are all
bounded on [0,+∞).

– Hn(0,+∞;X) : the Sobolev space of X-valued functions with n ∈ N.

2 Some Concepts from Conservative Well-Posed Linear Systems

In this section, we first gather some basic facts about admissible control and observation
operators and about well-posed linear systems. For more details we refer to Falandoli
et al. [3] (though here the expressions ”admissible” and ”well-posed” are not stated
explicitly), Salamon [13], Weiss [18] and Staffans [14]. Then, we recall the definition
and some basic properties of conservative systems, see Weiss et al. [19], Tucsnak and
Weiss [16], Weiss and Tucsnak [20] for further details.

Let X be a Hilbert space and A : D(A)→ X be the generator of a strongly continuous
semigroup S on X . We define the Hilbert space X1 as D(A) with the norm ‖y‖1 =
‖(β I−A)y‖ where β ∈ ρ(A) is fixed. The Hilbert space X−1 is the completion of X
with respect to the norm ‖y‖−1 =

∥∥(β I−A)−1y
∥∥ . It is known that X−1 = D(A∗)′, the

dual space with respect to the pivot space X . We have

X1 ⊂ X ⊂ X−1 (1)

with continuous dense injections.
S extends to a semigroup on X−1 denoted by the same symbol. The generator of this

semigroup is an extension of A whose domain is X so that A : X → X−1.

Definition 1. Let U be a Hilbert space. The operator B is said to be an admissible
control operator of S if the input maps {Φt}t≥0 are bounded from L2(0,+∞;U) to X for
all finite t ≥ 0 where

Φt u :=
∫ t

0
S(t− τ)Bu(τ)dτ. (2)

If y is a solution of
y′(t) = Ay(t)+ Bu(t), t ≥ 0, (3)

which is an equation in X−1 with y(0) ∈ X and u ∈ L2(0,+∞;U), then y(t) ∈ X for all
t ≥ 0. In this case y is a continuous X-valued function of t and we have for all t ≥ 0

y(t) = S(t)y(0)+
∫ t

0
S(t− τ)Bu(τ)dτ. (4)
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The admissible control operator is called infinite-time admissible if for any u ∈
L2(0,+∞;U) the map

t →Φt u (5)

from [0,+∞) to X is bounded.

Definition 2. Let Y be another Hilbert space. The operator C ∈L (X1,Y ) is called an
admissible observation operator for S if for every t > 0 there exists a kt ≥ 0 such that∫ t

0
‖CS(τ)y0‖2 dτ ≤ kt ‖y0‖2 , ∀y0 ∈D(A). (6)

The admissibility of C means that there is a continuous operator

Ψ : X → L2
loc(0,+∞;Y ) (7)

such that
(Ψy0)(t) = CS(t)y0, ∀y0 ∈ D(A). (8)

The operatorΨ is completely determined by (8) because D(A) is dense in X .
C is said to be an infinite-time admissible observation operator for S if there exists

K > 0 such that ∫ +∞

0
‖CS(τ)y0‖2 dτ ≤ K ‖y0‖2 , ∀y0 ∈ D(A). (9)

The following duality result holds.

Theorem 1. (Salamon [13], Staffans [14]) C is an (infinite-time) admissible observa-
tion operator for S if and only if C∗ is an (infinite-time) admissible control operator for
the adjoint semigroup S

∗.

Remark 1. In view of the above theorem, we see that Definition 1 is equivalent to the
Hypothesis (H1) in Flandoli et al. [3].

Remark 2. For PDE systems with boundary control such as the multidimensional
Schrödinger equation with Dirichlet control, the admissibility of B is a sharp trace reg-
ularity result not obtainable by the standard trace theory. It is established by PDE hard
analysis energy methods (see Lasiecka and Triggiani [5] and [6] and the references
therein).

Theorem 2. If B ∈ L (U,X−1) is an admissible control operator for S and C ∈
L (X1,Y ) is an admissible operator for S, then the transfer functions of the system
Σ given by the triple (A,B,C) are solutions of

G : ρ(A) → L (U,Y ) (10)

of
G(s)−G(β ) =−(s−β )C(sI−A)−1(β I−A)−1B (11)

for s and β in ρ(A).
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Definition 3. The system Σ given by the triple (A,B,C) is said to be a well-posed linear
system if B ∈L (U,X−1) is an admissible control operator for S and C ∈L (X1,Y ) is
an admissible operator for S, and its transfer functions are bounded on some right-half
plane.

For a well-posed linear system the operator Σt from the initial state and the input
function to the final state and the output function is bounded on any finite time interval
[0,t]. The input and output functions u and z are locally L2 with values in U and Y
respectively. The state trajectory y is an X-valued function.

The boundedness property mentioned above means that for every t > 0, there is a
ct > 0 such that

‖y(t)‖2 +
∫ t

0
‖z(τ)‖2 dτ ≤ ct(‖y(0)‖2 +

∫ t

0
‖u(τ)‖2 dτ). (12)

Remark 3. The class of well-posed linear systems includes many systems described by
partial differential equations or delay differential equations. The formal resemblance to
finite dimensional systems is one of its main advantages. Much work has been done on
this class of systems, see Staffans [14] and the references therein. There are however
important systems that do not belong to this class, see Lasiecka and Triggiani [6,7].

Definition 4. A well-posed linear system Σ given by the triple (A,B,C) is called con-
servative if for every t ≥ 0, the operator

Σt : X×L2(0,t;U) → X×L2(0,+∞;Y ) (13)

is unitary. This means that for every t ≥ 0, the following statements are true:

(i) Σt is an isometry, i.e.

‖y(t)‖2 +
∫ t

0
‖z(τ)‖2 dτ = ‖y(0)‖2 +

∫ t

0
‖u(τ)‖2 dτ (14)

(ii) Σt is onto.

Theorem 3. (Weiss and Tucsnak [20]) The system Σ is conservative if and only if the
balance equation (14) or its differential form

d
dt
‖y(t)‖2 = ‖u(t)‖2−‖z(t)‖2 (15)

holds for all state trajectories of Σ as well as for all state trajectories of the dual system
Σd for suitable initial state and input function.

In Tucsnak and Weiss [16], the authors investigated conditions under which such sys-
tems are exponentially stable or strongly stable. It turns out that these properties are
equivalent to certain controllability and observability properties.
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3 The Schrödinger Equation with Dirichlet-Type Boundary
Feedback

Let Ω be an open bounded domain in R
n with C2-boundary Γ = Γ0∪Γ 1 where Γ0 and

Γ1 are disjoint parts of Γ with Γ1 �= ∅.
Let G : H−1(Ω) → H1

0 (Ω) be the operator defined by:

G f = ϕ if and only if ϕ ∈ H1
0 (Ω) and −Δϕ = f . (16)

We consider the system described by the equations

yt(x,t) = iΔy(x, t) in Ω × (0,+∞) (17)

y(x,0) = y0(x) in Ω (18)

y = 0 on Γ0× (0,+∞) (19)

y +
i
2
∂ (Gy)
∂ν

= u on Γ1× (0,+∞). (20)

In (20), ν = (ν1, ...,νn) is the unit outward normal on Γ .
The input of this system is the function u in (20). The output associated with this

system is

z = y− i
2
∂ (Gy)
∂ν

on Γ1× (0,+∞). (21)

Remark 4. The system (17)-(20) without the term i ∂ (Gy)
∂ν has been considered in Lasiecka

and Triggiani [5] where H−1(Ω) is identified as the space of optimal regularity and ex-
act controllability and uniform stabilization results have been established on this space,
the latter via the dissipative feedback u = -i ∂ (Gy)

∂ν .

The precise statement of well-posedness and conservativity of the system described by
(17)-(21) is given in the following theorem.

Theorem 4. The equations (17)-(21) determine a conservative linear system Σ with
input and output space U = L2(Γ1) and state space X = H−1(Ω).

If

y0 ∈ ZD = { f ∈ L2(Ω) : Δ f ∈ H−1(Ω), f |Γ ∈ L2(Γ ) and f = 0 on Γ0} (22)

and the compatibility condition

y0(x)+
i
2
∂ (Gy0)
∂ν

(x) = u(x,0) for x ∈ Γ1 (23)

holds, then (17)-(21) have a unique solution y,z satisfying

y ∈ BC(0,+∞;ZD)∩BC1(0,+∞;H−1(Ω)), z ∈ H1(0,+∞;U). (24)

Proof. We proceed as in Lasiecka and Triggiani [5] to rewrite the system (17)-(21) into
an abstract form. Let AD : D(AD) → X be defined by

D(AD) = H1
0 (Ω) and ADϕ =−Δϕ , ∀ϕ ∈ D(AD) (25)

AD is self-adjoint, positive and boundedly invertible.
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Let D ∈L (L2(Γ1),L2(Ω)) be the Dirichlet map given by

g = Dv ⇐⇒ {Δg = 0 in Ω , g|Γ0
= 0, g|Γ1

= v} (26)

Define the operator B ∈L (U,D(AD)′), by

Bu = iADDu (27)

Then

B∗ϕ = iD∗ϕ = i
∂ (Gϕ)
∂ν

(28)

Using these operators, we can formulate (17)-(21) as an abstract system of the form

y′(t) = (−iAD−
1
2

BB∗)y(t)+ Bu(t) (29)

y(0) = y0 (30)

z(t) = −B∗y(t)+ u(t) (31)

To continue we need the following results.

Lemma 1. (Lasiecka and Triggiani [5]) The operator A1 =−iAD− 1
2 BB∗ is the gener-

ator of a strongly continuous contraction semigroup S on X.

Lemma 2. (Salamon [13], Weiss & Tucsnak [20]) Let u ∈ H2(0,+∞;U) and y0 ∈ X
satisfy the compatibility condition

A1y0 + Bu(0) ∈ X . (32)

Then the initial value problem (29), (30) has a unique solution y given by

y(t) = S(t)y0 +
∫ t

0
S(t− τ)Bu(τ)dτ, (33)

which satisfies
y ∈C1(0,+∞;X)∩C(0,+∞;Z), (34)

where
Z = D(A1)+ (β I−A)−1BU. (35)

Lemma 3. Under the assumptions of Lemma 2, we have the identity

d
dt
‖y(t)‖2 = ‖u(t)‖2−‖z(t)‖2 (36)

Proof. Taking the inner product of both sides of (29) with y(t), we obtain

d
dt
‖y(t)‖2 = 2Re〈A1y(t)+ Bu(t),y(t)〉. (37)

From the expression of A1, we obtain

d
dt
‖y(t)‖2 =−‖B∗u(t)‖2 + 2Re〈Bu(t),y(t)〉 (38)
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Using now the formula

‖z(t)‖2 = ‖B∗u(t)‖2−2Re〈Bu(t),y(t)〉+‖u(t)‖2 (39)

we get the desired identity. ��

Lemma 4. B is an infinite-time admissible control operator for S.

Proof. Suppose first that

u ∈ H2
L(0,+∞;U) = {v ∈ H2(0,+∞;U);v(0) = 0} (40)

and define y(t) =Φt u for all t ≥ 0. Then A1y(0)+ Bu(0)∈ X .
It follows from Lemma 2, that y(.)∈C1(0,+∞;X). Integrating the identity in Lemma

3 on [0, t] we get that for all u ∈H2
L(0,+∞;U)

‖Φt u‖2 ≤
∫ t

0
‖u(τ)‖2 dτ ≤ ‖u‖2

L2(0,+∞;U) . (41)

Since H2
L(0,+∞;U) is dense in L2(0,+∞;U), we conclude that B is infnite-time admis-

sible. ��

Lemma 5. Let C be the restriction of −B∗ to D(A1). Then C is an infinite-time admis-
sible operator for S.

Proof. Let y0 ∈ D(A1) and take y(t) = S(t)y0. It follows from Lemma 2 that y ∈
C1(0,+∞;X). Integrating (36) with u = 0 on [0,t], we get∫ t

0
‖z(τ)‖2 dτ ≤ ‖y0‖2 . (42)

But z(t) =−B∗y(t) = Cy(t). Therefore the estimate∫ t

0
‖CS(τ)y0‖2 dτ ≤ ‖y0‖2 (43)

holds for every t > 0. ��

From the previous results, we deduce that the equations (17)-(21 ) define a well-posed
linear system Σ with state space X = H−1(Ω) and input and output space U = L2(Γ1).

The dual system of Σ denoted by Σd is described by

y′d(t) = (iAD−
1
2

BB∗)yd(t)−Bud(t) (44)

z(t) = B∗yd(t)+ ud(t) (45)

where ud(t), yd(t) and zd(t) are the input, state and output of Σd at some t ≥ 0.
Proceeding as in the proof of Lemma 3, one can show that the state trajectory and the

output function of Σd satisfy the energy balance equation (36). Hence the conservativity
of Σ .
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Now, notice the following:

– The space Z = D(A1)+ (β I−A)−1D introduced in Lemma 1 is given in this case
by Z = D(AD)+ DU and coincides with ZD.

– The condition (23) is equivalent to A1y(0)+ Bu(0)∈ X .
– The transfer function G(s) of Σ satisfies, because of the conservativity of Σ ,

‖G(s)‖ ≤ 1 for all s ∈ C0. (46)

Using these facts together with Lemma 1, Lemma 4 and Lemma 5, we conclude that
for every y0 ∈ ZD and every u ∈ H1(0,+∞;U) such that

y0(x)+
i
2
∂ (Gy0)
∂ν

(x) = u(x,0) for x ∈ Γ1 (47)

the state trajectory y and the output function z satisfy the smoothness boundedness
conditions

y ∈ BC(0,+∞;ZD)∩BC1(0,+∞;H−1(Ω)), z ∈ H1(0,+∞;U). (48)

(Proposition 4.6 in Weiss and Tucsnak [20]). ��

Remark 5. Assume the following additional condidtions on the triple {Ω ,Γ0,Γ1} : there
exists a real vector field h(x) ∈ [C1(Ω)]n such that

Re(
∫
Ω

H(x)v(x).v(x)dΩ)≥ ρ
∫
Ω
|v(x)|2 dΩ ,∀v ∈ [L2(Ω)]n for some ρ > 0,

where H(x) = (
∂hi(x)
∂x j

), i, j = 1, ...,n
(49)

and
h.ν ≤ 0 on Γ0. (50)

Then the semigroup S is exponentially stable (Lasiecka and Triggiani [5]). Thus, from
Russell [11], Tucsnak and Weiss [16], we conclude that the pair (A1,B) is exactly con-
trollable in finite time and the pair (A1,C) is exactly observable in finite time.

4 The Schrödinger Equation with Neumann-Type Boundary
Feedback

In this section, we suppose that the boundary Γ is of class C2 and satisfies

Γ = Γ0∪Γ1 with Γ1∩Γ0 = /0 (51)

where both Γ0 and Γ1 are nonempty.
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Let a(.) be an L∞(Γ1) such that a(x) �= 0 for all x ∈ Γ1.
We are interested in the linear system described by

yt(x,t) = iΔy(x,t) in Ω × (0,+∞) (52)

y(x,0) = y0(x) in Ω (53)

y(x, t) = 0 on Γ0× (0,+∞) (54)

∂
∂ν

y(x,t)− i |a(x)|2 y(x,t) =
√

2a(x)u(x,t) on Γ1× (0,+∞) (55)

∂
∂ν

y(x,t)+ i |a(x)|2 y(x, t) =
√

2a(x)z(x, t) on Γ1× (0,+∞) (56)

Remark 6. Lasiecka et al. [9] have considered the system (52)-(55) with u = 0. They
have proved under an additional assumption on the triple {Ω ,Γ0,Γ1} that the energy
decays exponentially to zero in the uniform topology of L2(Ω).

Theorem 5. The equations (52)-(56) determine a conservative linear system Σ with
input and output space U = L2(Γ1) and state space X = L2(Ω). If

y0 ∈ ZN = { f ∈H1
Γ0

(Ω) : Δ f ∈ L2(Ω),
∂ f
∂ν

∈ aL2(Γ1)},u ∈ H1(0,+∞;U)} (57)

and the compatibility condition

∂
∂ν

y(x,0)− i |a(x)|2 y(x,0) =
√

2a(x)u(x,0) for x ∈ Γ1 (58)

holds. Then (52)-(56) have a unique solution y, z satisfying

y ∈ BC(0,+∞;ZN)∩BC1(0,+∞;L2(Ω)), z ∈ H1(0,+∞;U). (59)

Proof. The equations (52)-(56) can be written as an abstract system of the form (see
Lasiecka et al. [9] and Lasiecka and Triggiani [8])

y′(t) = A2y(t)+ Bu(t) (60)

y(0) = y0 (61)

z(t) = −B∗y(t)+ u(t) (62)

where

– A2 =−iAN− 1
2 BB∗;

– The operator AN : D(AN) → L2(Ω) is defined by

ANϕ =−Δϕ , ϕ ∈D(AN) = {ϕ ∈ ZN :
∂ϕ
∂ν

= 0 on Γ1}; (63)

– B ∈L (U ;D(A2)′) is defined by

Bu = i
√

2ANN(a(x)u); (64)

– N ∈L (L2(Γ1);L2(Ω)) is the Neuman map given by

g = Nv ⇐⇒ {Δg = 0 in Ω , g|Γ0
= 0,

∂g
∂ν

∣∣∣∣
Γ1

= v}; (65)

– B∗ϕ =−i
√

2a(x)ϕ .



Conservative Control Systems Described by the Schrödinger Equation 457

Now, the theorem can be established by following the steps of the proof of
Theorem 4. ��

Remark 7. Following Lasiecka et al. [9] and Lasiecka and Triggiani [8], the assertions
of Remark 5 hold also for the system (52)-(56).

Acknowledgements. The author is indebted to the anonymous referee for the construc-
tive criticisms and suggestions that led to a significant improvement of the paper.
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B.P. 239, 54506 Vandoeuvre lés Nancy Cedex, France
Jan.Sokolowski@iecn.u-nancy.fr

2 Systems Research Institute of the Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warszawa, Poland

zochowsk@ibspan.waw.pl

Abstract. We present a method for construction of the topological derivatives in
plane elasticity. It is assumed that a hole is created in the subdomain of the elas-
tic body which is filled out with isotropic material. The asymptotic analysis of
elliptic boundary value problems in singularly perturbed geometrical domains is
used in order to derive the asymptotics of the shape functionals depending on the
solutions to the boundary value problems. Our method allows for the asymptotic
expansions of arbitrary order, since the explicit solutions to the boundary value
problems are obtained by the method of elastic potentials. Some numerical re-
sults are presented to show the applicability of the proposed method in numerical
analysis of elliptic problems.

1 Introduction

One of the most important applications of the topological derivatives of shape func-
tionals is elasticity, in particular in the fields of optimal design in structural mechanics
and the numerical solution for inverse problems of detection of small imperfections.
The mathematical theory of asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains, is considered in [6] and [10]. The method of compound
asymptotic expansions in the framework of the asymptotic analysis leads to the asymp-
totic expansions of solutions and to the topological derivatives of the shape functionals
as it is described in details, e.g., in the paper [12] for boundary value problems of lin-
earized elasticity. The concept of topological derivatives of shape functionals [18] is
derived in the framework of the method of compound asymptotic expansions [10], one
of the techniques used in the asymptotic analysis of the boundary value problems in sin-
gularly perturbed geometrical domains. The so-called truncation method is described,
e.g., in [9] (see [3] for further developments). The asymptotic analysis in impedance
imaging and the theory of composite materials can be found, e.g., in [1].

We present here the results on asymptotics of the shape functionals for the spe-
cific class of the elliptic boundary value problems. Let there be given an elastic body
which occupies the reference domain Ω ⊂ R

d , d = 2,3, with the material properties
defined by the Hooke’s tensor Ci jkl , i, j,k, l = 1, . . . ,d. We assume that there is a ball
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BR(x)⊂Ω , R > 0, with the center x∈Ω , filled with an isotropic material characterized
by its Lame coefficients λ ,μ . We investigate the asymptotics for ρ→ 0 of the displace-
ment and the stress fields in the body Ωρ = Ω \Bρ(x) due to the creation of a small
hole Bρ(x)⊂ BR(x) of the radius R > ρ → 0. We also perform the asymptotic analysis
of some shape functionals depending on the solution of the elasticity boundary value
problems in Ωρ = Ω \Bρ(x) for ρ → 0. It seems that the imposed condition on the
isotropy of BR(x) cannot be avoided since for the specific application of the existing
methods of asymptotic analysis we need the knowledge of fundamental solution of the
elliptic operator in the region BR(x). In order to obtain the required asymptotics in the
whole domain we employ [21] a domain decomposition technique combined with
the fine analysis of the properties of the Steklov-Poincaré operator Aρ , ρ ≥ 0, defined
in the ball BR(x) as well as in the ring C(R,ρ) = BR(x)\Bρ(x).

The paper contains the complete mathematical tools which are used to derive the
form of topological derivatives for the specific class of composite elastic materials in
two spatial dimensions.

2 Topological Derivatives of Shape Functionals in Isotropic
Elasticity

We are going to present the results which can be obtained for 2D boundary value prob-
lems of linear elasticity. The results for 3D are not in the same explicit form. The same
type of results on topological derivatives is derived for the contact problems by means
of the asymptotic analysis combined with the domain decomposition technique [21].

We briefly introduce the concept of the topological derivative for an arbitrary shape
functional. The topological derivative denoted by TΩ of a shape functional J (Ω) is
introduced in [18] in order to characterize the infinitesimal variation of J (Ω) with
respect to the infinitesimal variation of the topology of the domain Ω . The topological
derivative allows us to derive the new optimality condition in the interior of an optimal
domain, if such a domain exists and if the shape functional under studies admits the
topological derivatives, for the shape optimization problem:

J (Ω ∗) = inf
Ω

J (Ω). (1)

The optimal domain Ω ∗ is characterized by the first order condition [17] defined on the
boundary of the optimal domain Ω ∗, dJ(Ω ∗;V )≥ 0 for all admissible vector fields V ,
and by the following optimality condition defined in the interior of the domain Ω∗:

TΩ∗(x)≥ 0 in Ω ∗. (2)

The other use of the topological derivative is connected with approximating the influ-
ence of the holes in the domain on the values of integral functionals of solutions, which
allows us, e.g., to solve a class of shape inverse problems.

In general terms the notion of the topological derivative (TD) has the following
meaning. Assume that Ω ⊂ IRN is an open set and that there is given a shape func-
tional

J : Ω \K → IR (3)
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for any compact subset K ⊂ Ω . We denote by Bρ(x),x ∈ Ω , the ball of radius ρ > 0,
Bρ(x) = {y ∈ IRN |‖y− x‖ < ρ}, Bρ(x) is the closure of Bρ(x), and assume that there
exists the following limit

T(x) = lim
ρ↓0

J (Ω \Bρ(x))−J (Ω)

|Bρ(x)|
. (4)

The function T(x),x ∈ Ω , is called the topological derivative of J (Ω), and provides
the information on the infinitesimal variation of the shape functional J if a small hole
is created at x ∈ Ω . This definition is suitable for Neumann–type boundary conditions
on ∂Bρ .

In many cases this characterization is constructive [5,2,3,8,12,14,15], i.e. TD can be
evaluated for shape functionals depending on solutions of partial differential equations
defined in the domain Ω .

2.1 Problem Setting for Elasticity Systems

We introduce the elasticity system in a form convenient for the evaluation of topological
derivatives. Let us consider the elasticity equations in IRN , where N = 2 for 2D and
N = 3 for 3D, ⎧⎨⎩

div σ(u) = 0 in Ω
u = g on ΓD

σ(u)n = T on ΓN

(5)

and the same system in the domain with the spherical cavity Bρ(x0) ⊂ Ω centered at
x0 ∈Ω , Ωρ =Ω \Bρ(x0), ⎧⎪⎪⎨⎪⎪⎩

div σρ(uρ) = 0 in Ωρ
uρ = g on ΓD

σρ(uρ)n = T on ΓN

σρ(uρ)n = 0 on ∂Bρ(x0)

(6)

where n is the unit outward normal vector on ∂Ωρ = ∂Ω ∪ ∂Bρ(x0). Assuming that
0 ∈Ω , we can consider the case x0 = 0.

Here u and uρ denote the displacement vectors fields, g is a given displacement on
the fixed part ΓD of the boundary, t is a traction prescribed on the loaded part ΓN of the
boundary. In addition, σ is the Cauchy stress tensor given, for ξ = u (eq. 5) or ξ = uρ
(eq. 6), by

σ(ξ ) = D∇sξ , (7)

where ∇s(ξ ) is the symmetric part of the gradient of vector field ξ , that is

∇s(ξ ) =
1
2

(
∇ξ +∇ξ T) , (8)

and D is the elasticity tensor,

D = 2μII +λ (I⊗ I) , (9)
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with

μ =
E

2(1 +ν)
, λ =

νE
(1 +ν)(1−2ν)

and λ = λ ∗ =
νE

1−ν2 , (10)

E being the Young’s modulus, ν the Poisson’s ratio and λ ∗ the particular case for plane
stress. In addition, I and II respectively are the second and fourth order identity tensors.
Thus, the inverse of D is

D−1 =
1

2μ

[
II− λ

2μ+ Nλ
(I⊗ I)

]
. (11)

The first shape functional under consideration depends on the displacement field,

Ju(ρ) =
∫
Ωρ

F(uρ)dΩ , F(uρ) = (Huρ ·uρ)p, (12)

where F is a C2 function. It is also useful for further applications in the framework of
elasticity to introduce the yield functional of the form

Jσ (ρ) =
∫
Ωρ

Sσ(uρ) ·σ(uρ)dΩ , (13)

where S is an isotropic fourth-order tensor. Isotropicity means here that S may be ex-
pressed as follows

S = 2mII + l (I⊗ I) , (14)

where l,m are real constants. Their values may vary for particular yield criteria. The
following assumption assures that Ju, Jσ are well defined for solutions of the elasticity
system.

(CONDITION A) The domain Ω has piecewise smooth boundary, which may have
reentrant corners with α < 2π created by the intersection of two planes. In addition, g,
t must be compatible with u ∈H1(Ω ; IRN).

The interior regularity of u in Ω is determined by the regularity of the right hand
side of the elasticity system. For simplicity the following notation is used for functional
spaces,

H1
g (Ωρ ) = {ψ ∈ [H1(Ωρ)]N | ψ = g on ΓD}, (15)

H1
ΓD

(Ωρ) = {ψ ∈ [H1(Ωρ)]N | ψ = 0 on ΓD}, (16)

H1
ΓD

(Ω) = {ψ ∈ [H1(Ω)]N | ψ = 0 on ΓD}, (17)

here we use the convention that, e.g., H1
g (Ωρ) stands for the Sobolev space of vector

functions [H1
g (Ωρ)]N .

The weak solutions to the elasticity systems are defined in the standard way.
Find uρ ∈ H1

g (Ωρ) such that, for every φ ∈ H1
ΓD

(Ω),∫
Ωρ

D∇suρ ·∇sφ dΩ =
∫
ΓN

T ·φ dS . (18)



Topological Derivatives in Plane Elasticity 463

We introduce the adjoint state equations in order to simplify the form of shape deriva-
tives of functionals Ju,Jσ . For the functional Ju they take on the variational form: Find
wρ ∈H1

ΓD
(Ωρ), ∫

Ωρ
D∇swρ ·∇sφ dΩ =−

∫
Ωρ

F ′u(uρ) ·φ dΩ , (19)

for every φ ∈ H1
ΓD

(Ω), whose Euler-Lagrange equation reads⎧⎪⎪⎨⎪⎪⎩
div σρ(wρ ) = F ′u(uρ) in Ωρ

wρ = 0 on ΓD

σρ(wρ)n = 0 on ΓN

σρ(wρ)n = 0 on ∂Bρ(x0)

(20)

while vρ ∈ H1
ΓD

(Ωρ) is the adjoint state for Jσ and satisfies for all test functions φ ∈
H1
ΓD

(Ω) the following integral identity:

∫
Ωρ

D∇svρ ·∇sφ dΩ =−2
∫
Ωρ

DSσ(uρ) ·∇sφ dΩ , (21)

whose associated Euler-Lagrange equation becomes⎧⎪⎪⎨⎪⎪⎩
div σρ (vρ) = −2div

(
DSσρ(uρ)

)
in Ωρ

vρ = 0 on ΓD

σρ(vρ)n = −2DSσρ(uρ)n on ΓN

σρ(vρ)n = −2DSσρ(uρ)n on Sρ(x0) = ∂Bρ(x0)

(22)

Remark 1. We observe that DS can be written as

DS = 4μmII + γ (I⊗ I) (23)

where

γ = λ lN + 2(λm+ μ l) . (24)

Thus, when γ = 0, the boundary condition on ∂Bρ(x0) in equation (22) becomes homo-
geneous and the yield criteria must satisfy the constraint

m
l

=−
(
μ
λ

+
N
2

)
, (25)

which is satisfied for the energy shape functional. In this particular case, tensor S is
given by

S =
1
2

D−1 ⇒ γ = 0 and 2m+ l =
1

2E
, (26)

which implies that the adjoint solution associated to Jσ can be explicitly obtained, such
that vρ =−(uρ −g).
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2.2 Topological Derivatives in 2D Elasticity

We recall here the results derived in [18] for the 2D case. The principal stresses associ-
ated with the displacement field u are denoted by σI(u), σII(u), the trace of the stress
tensor σ(u) is denoted by trσ(u) = σI(u) +σII(u). The shape functionals Ju, Jσ are
defined in the same way as presented before, with the tensor S isotropic (that is similar
to D). The weak solutions to the elasticity system as well as adjoint equations are de-
fined in standard way. Then, from the expansions presented in the Appendix, we may
formulate the following result [18]:

Theorem 1. The expressions for the topological derivatives of the functionals Ju, Jσ
have the form

T Ju(x0) =−
[

F(u)+
1
E

(auaw + 2bubw cos2δ )
]

x=x0

=−
[

F(u)+
1
E

(4σ(u) ·σ(w)− trσ(u)trσ(w))
]

x=x0

(27)

T Jσ (x0) =−
[
η(a2

u + 2b2
u)+

1
E

(auav + 2bubv cos2δ )
]

x=x0

=−
[
η(4σ(u) ·σ(u)− (trσ(u))2)

+
1
E

(4σ(u) ·σ(v)− trσ(u)trσ(v))
]

x=x0

(28)

Some of the terms in (27), (28) require explanation. According to equation (24) for
N = 2, constant η is given by

η = l + 2
(

m+ γ
ν
E

)
. (29)

Furthermore, we denote

au = σI(u)+σII(u), bu = σI(u)−σII(u),
aw = σI(w)+σII(w), bw = σI(w)−σII(w),
av = σI(v)+σII(v), bv = σI(v)−σII(v).

(30)

δ denotes the angle between principal stress directions for displacement fields u and w
in (27), and for displacement fields u and v in (28).

Remark 2. For the energy stored in a 2D elastic body, tensor S is given by eq. (26),
γ = 0 and η = 1/(2E). Thus, since v =−(u−g), we obtain the following well-known
result

T Jσ (x0) =
1

2E

[
4σ(u) ·σ(u)− (trσ(u))2

]
x=x0

. (31)
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3 Topological Derivatives for Contact Problems

In order to describe the domain decomposition method applied to the asymptotic anal-
ysis, and introduce the Steklov-Poincaré operators for the rings C(R,ρ), ρ ≥ 0, we
present the related results for the two dimensional frictionless contact problems. Such
problems are non smooth, therefore, in general, only the first term of the exterior asymp-
totic expansion of solutions can be derived. However, this leads to the topological
derivatives of some shape functionals. We change the notation, compared to the pre-
vious sections, in particular u stands now for the displacement vector, and σ(u) is the
corresponding stress tensor.

We consider the isotropic two dimensional elasticity problem in plane stress formu-
lation, the isotropy is in fact required only in the vicinity of a small hole. On a part Γu

of ∂Ω we assume that the body is clamped u = 0, the part Γg is loaded σ(u).n = g and
on the part Γc there is the frictionless contact

un ≥ 0, σn ≤ 0,

σnun = 0, στ = σ .n−σnn = 0.
(32)

Here un = uini, σn = niσi jn j, σ .n = {σi jn j}i=1,2. We define also the ring C(R,ρ) =
B(R)\B(ρ) with R > ρ and such that B(R)⊂Ω , as well as Ω(r) =Ω \B(r).

For such a problem it is impossible to evaluate topological derivatives of shape
functionals by means of adjoint variables without additional assumptions on the strict
complementarity type for the unknown solution. Therefore, we propose a method for
computing the perturbation, caused by the hole B(ρ), of the solution itself.

The bilinear form corresponding to the elastic energy may be written as

a(ρ ;u,v) =
1
2

∫
Ω(ρ)

σ(u) : ε(v)dx (33)

(σ : ε = σi jεi j) for u,v ∈H1(Ω) and the work of external forces is

L(u) =
∫
Γg

u�gds. (34)

The method of the domain decomposition type is based on the analysis of the Steklov-
Poincaré operator Aρ defined in the following way. Consider the boundary value prob-
lem

L w = 0 in C(R,ρ), σn(w) = 0 on ∂B(ρ), w = v on ∂B(R). (35)

Then we set
Aρv = σn(w) on ∂B(R). (36)

Thus Aρ is a mapping

Aρ : H1/2(∂B(R)) �→ H−1/2(∂B(R)). (37)

It can be demonstrated constructively that

Aρ = A0 +ρ2A1 +ρ4A2 + . . . (38)
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in the linear operator norm corresponding to (37). Using this notation we have

a(ρ ;u,u) =
1
2

∫
Ω(R)

σ(u) : ε(u)dx +
1
2

∫
C(R,ρ)

σ(u) : ε(u)dx (39)

as well as

1
2

∫
C(R,ρ)

σ(u) : ε(u)dx =
1
2
〈Aρu,u〉∂B(R)

=
1
2
〈A0u,u〉∂B(R) +

1
2
ρ2〈A1u,u〉∂B(R) +R(u,u)

(40)

where R(u,u) is of the order O(ρ4) on bounded sets in H1/2(∂B(R)). With A1 we
associate the bilinear form

b(u,v) =
1
2
〈A1u,u〉∂B(R). (41)

It is sufficient to consider the following approximation of the energy bilinear form in or-
der to construct one term exterior approximation of the solution to the contact problem

a(ρ ;u,u) := a(0;u,u)+ρ2b(u,u). (42)

Denote by H1
Γu

(Ω) = {v ∈ H1(Ω) | v = 0 on Γu} the Sobolev space, and let K be the
convex cone

K = {v ∈H1
Γu

(Ω) | vn ≥ 0 on Γc}. (43)

Recall that the following variational inequality furnishes the weak solutions to our con-
tact problem in Ω(ρ)

u ∈ K : a(ρ ;u,u−v)≥ L(v−u) ∀v ∈ K. (44)

Taking into account the approximation (42) and using abstract results on the differen-
tiability of metric projection onto the polyhedric convex sets in Dirichlet space [16] we
have the following result.

Theorem 2. For ρ sufficiently small we have on Ω(R) the following expansion of the
solution u with respect to the parameter ρ at 0+,

u = u0 +ρ2q+ o(ρ2) in H1(Ω(R)), (45)

where the topological derivative q of the solution u to the contact problem is given by
the unique solution of the following variational inequality

q ∈SK(u) : a(0;q,v−q)+ b(u,v−q)≥ 0 ∀v ∈SK(u), (46)

where
SK(u) = {v ∈H1

Γu
(Ω) | vn ≤ 0 on Ξ(u), a(0;u,v) = 0}. (47)

The coincidence set Ξ(u) = {x∈Γc | un(x)= 0} is well defined [16] for any u∈H1(Ω),
and u0 ∈ K is the solution of (44) for ρ = 0.
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4 Complex Variable Method

In order to find an exact form of the Steklov-Poincaré operator in plane elasticity we
need an analytic form of the solution for the elasticity system in the ring, with general
displacement condition on the outer boundary and traction free inner boundary, param-
eterized by the (small) inner radius ρ . Let us assume for simplicity that the center of
the ring lies at origin of the coordinate system, and take polar coordinates (r,θ ) with er

pointing outwards and eθ perpendicularly in the counter-clockwise direction. Then the
displacement on the outer boundary r = R may be given in the form of a Fourier series

2μ(ur + iuθ ) =
k=+∞

∑
k=−∞

Ukeikθ . (48)

The regularity condition for the boundary data translate into some inequalities for coef-
ficients Uk, as will be made precise later.

The solution in the ring must be compared with the solution in the full circle, so we
will have to construct it as well. Probably the best tool for obtaining both exact solutions
is the complex variable method, described in [11]. It states that for plane domains with
one hole these solutions have the form

σrr− iσrθ = 2ℜφ ′ − e2iθ (z̄φ ′′+ψ ′),
σrr + iσθθ = 4ℜφ ′,

2μ(ur + iuθ ) = e−iθ (κφ − zφ̄ ′ − ψ̄),

(49)

where φ , ψ are given by complex series

φ = A log(z)+
k=+∞

∑
k=−∞

akzk,

ψ =−κĀ log(z)+
k=+∞

∑
k=−∞

bkzk.

(50)

Here μ is the Lame constant, ν is the Poisson ratio, κ = 3−4ν in the plain strain case,
and κ = (3−ν)/(1 +ν) for plane stress.

Now we can substitute displacement condition for r = R into

2μ(ur + iuθ ) = 2κAr log(r)
1
z
− Ā

1
r

z+

+
p=+∞

∑
p=−∞

[κrap+1− (1− p)ā1−pr−2p+1− b̄−(p+1)r
−2p−1]zp

(51)

and obtain the infinite system of linear equations

p =−1: 2κAr log(r)+ (κa0− b̄0)−2ā2r2 = U−1

p = 1: − Ā+κr2a2− b̄−2
1
r2 = U1

p /∈ {−1,1} : κrp+1ap+1− (1− p)ā1−pr−p+1− b̄−(p+1)r
−(p+1) = Up.

(52)
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The traction-free condition
σ .er = [σrr,σrθ ]� (53)

on some circle means σrr = σrθ = 0. Hence, assuming r := ρ , we have another infinite
system

p =−1: 2A + 2ā2r2 + 2
1
r2 b−2 = 0

p = 1: (κ+ 1)
1
r2 Ā = 0

p /∈ {−1,1} : (1 + p)ap+1 + ā1−pr−2p +
1
r2 bp−1 = 0.

(54)

Denote d0 = κa0− b̄0 since a0,b0 appear only in this combination. Using (52) we may
recover the solution for the full circle. Because in this case the singularities must vanish,
we have b−k = a−k = A = 0 for k = 1,2, . . . and comparing the same powers of r:

d0
0 = U−1 +

2
κ

Ū1, ℜa0
1 =

1
(κ−1)R

ℜU0, ℑa0
1 =

1
(κ+ 1)R

ℑU0

a0
k =

1
κRk Uk−1, b0

k =− 1
Rk [(k + 2)

1
κ

Uk+1 +Ū−(k+1)], k > 1.

(55)

Now let us repeat the same procedure for the ring. Now the singularities may be present,
because 0 does not belong to the domain. Hence, from (52) for r = R and (54) for r = ρ
we obtain A = 0 and the formulas

d0 = A−1 +
2R4

κR4 +ρ4Ū1, a2 =
R2

κR4 +ρ4U1

ℜa1 =
R

(κ −1)R2 + 2ρ2ℜU0, ℑa1 =
1

κ+ 1
ℑA0

b−1 =− 2ρ2R
(κ−1)R2 + 2ρ2ℜU0, b−2 =− ρ4R2

κR4 +ρ4Ū1

(56)

The rest of the coefficients will be computed later. However, we may at this stage com-
pare the results with known solutions for the uniformly stretched circle or ring obtained
in another way. In such a case U0 = 2μur(R) does not vanish and, for the full circle,
ψ = 0, φ = a0

1z with

a0
1 =

2μ
(κ−1)R

ur(R). (57)

For the ring we have φ = a1z, ψ = b−1
1
z where

a1 =
1

(κ−1)+ 2ρ2 2μuR(1), b−1 =− 2ρ2

(κ−1)+ 2ρ2 2μuR(1). (58)

After substitutions we obtain, in both cases, the same results as given in [7]. Similarly
the comparison with the solution for the ring with displacement conditions on both
boundaries, obtained in [4] also using complex method, confirms the correctness of the
formulas.
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There remains to compute the rest of the coefficients ak,bk for the case of the ring.
Taking p =−k, k = 2,3, . . . in conditions on both boundaries gives the system

κa−(k−1)R
−(k−1)− (k + 1)āk+1Rk+1− b̄k−1Rk−1 = U−k

−(k−1)a−(k−1)ρ2 + āk+1ρ2(k+1) + b−(k+1) = 0,
(59)

while p = +k, k = 2,3, . . . results in

κak+1Rk+1 +(k−1)ā−(k−1)R
−(k−1)− b̄−(k+1)R

−(k+1) = Uk

(k + 1)ak+1ρ2(k+1) + ā−(k−1)ρ2 + bk−1ρ2k = 0.
(60)

These systems may be represented in a recursive form, convenient for numerical com-
putations and further analysis. Namely,

Sk(ρ) ·
[

ak+1

bk−1

]
=
[

Uk

Ū−k

]
(61)

where Sk has entries

Sk(ρ)11 = κRk+1− (k2−1)R1−kρ2k + k2R−(k+1)ρ2(k+1)

Sk(ρ)12 =−(k−1)(R1−kρ2(k−1)−R−(k+1)ρ2k)

Sk(ρ)21 =−(k + 1)(Rk+1 +κR1−kρ2k)

Sk(ρ)22 =−Rk−1−κR1−kρ2(k−1)

(62)

as well as [
a−(k−1)
b−(k+1)

]
= Tk(ρ) ·

[
āk+1

b̄k−1

]
, (63)

where

Tk(ρ) =
[
−(k + 1)ρ2k , −ρ2(k−1)

−k2ρ2(k+1) , −(k−1)ρ2k

]
. (64)

In fact the formulas (63), (61) are correct also for k = 0,1 and in the limit ρ −→ 0+,
but the derivation must separate these cases.

Thus, for given k > 1 and using some initial ak,bk obtained earlier, we may first
compute ak+1,bk−1 using (61) and then a−(k−1),b−(k+1) from (63).

We may now use the above results for the asymptotic analysis of the solution. To
simplify the formulas, we assume R = 1, which means only rescaling and does not
diminish generality (in general case ρ would be replaced by ρ/R). Then by direct com-
putation we get the following bounds for the differences between the coefficients on the
full circle and the ring. For the initial values of k they read

d0−d0
0 =−ρ4 2

κ(κR4 +ρ4)
Ū1

a1−a0
1 =−ρ2 2

(κ−1)R((κ−1)R2 + 2ρ2)
ℜU0

a2−a0
2 =−ρ4 1

κR2(κR4 +ρ4)
U1

(65)
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and for higher values
|a3−a0

3| ≤Λ
(
|U2|ρ4 + |U−2|ρ2) (66)

and for k = 4,5, . . .

|ak−a0
k| ≤Λ

(
|Uk−1|ρ3(k−1)/2 + |U1−k|ρ3(k−2)/2

)
(67)

where the exponent k/2 has been used to counteract the growth of k2 in terms like
k2ρk/2. Similarly

|b1−b0
1| ≤Λ

(
|U2|ρ4 + |U−2|ρ2) (68)

and for k = 2,3, . . .

|bk−b0
k| ≤Λ

(
|Uk+1|ρ3(k+1)/2 + |U−(k+1)|ρ3k/2

)
. (69)

From relation (63) we get further estimates

|a−k| ≤Λρ2k (|Uk+1|+ |U−(k+1)|
)
, k = 1,2, . . .

|b−k| ≤Λρ2(k−1) (|Uk−1|+ |U1−k|) , k = 3,4, . . .
(70)

Here Λ is a constant independent from ρ and Ui. Observe that the corrections propor-
tional to ρ2 are present only in a1, b1, a3, b−1, a−1. The rest is of the order at least
O(ρ3) (in fact O(ρ4)).

These estimates may be translated into the following theorem concerning the solution
of the elasticity system in the ring.

Theorem 3. The condition
‖u‖H1/2(∂B(R)) ≤Λ0 (71)

which in terms of Ui means

k=+∞

∑
k=−∞

√
1 + k2 |Uk|2 ≤Λ0 (72)

ensures that the expression for elastic energy concentrated in the ring splits into the
one corresponding to the full circle, correction proportional to ρ2 and the rest, which
is uniformly of the order Λ0ρ3.

4.1 Numerical Illustration

We shall show two solutions corresponding to different boundary conditions on the
outer boundary, obtained using the representations derived above in terms of (in these
particular cases finite) complex series.

Rugby-like deformation. Let us take ur = s0 cos2 θ = 1
2 s0 + 1

2 s0 cos2θ . Hence

[Uk, k ∈ ZZ] = [. . . ,
1
2
μs0,0, U0 = μs0 ,0,

1
2
μs0, . . .]. (73)
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Fig. 1. Rugby-like and bubble-like distortions

Fig. 2. The pattern of distortions for both experiments

The resulting distortion for size of the internal hole ρ = 0.2 at the radius r = 0.3 are
shown in Fig. 1 (solid line - undeformed, dashed - deformed ring, dotted - deformed
ball):

Bubble-like deformation. Now we take ur = s0 sin4θ . Hence

[Uk, k ∈ ZZ] = [. . . ,μs0i,0,0,0, A0 = 0 ,0,0,0,−μs0i, . . .]. (74)

The resulting distortions for ρ = 0.2 and r = 0.3 shows also Fig. 1, using the same types
of lines.

In the second numerical experiment - bubble - only U−4 and U4 were nonzero, which
means that the difference between positions of the contour r = 0.3 for full circle and
the ring should behave like ρ6. In the first experiment it should be ρ2, i.e. the influence
of boundary condition should vanish quicker. The deformations for ρ = 0.2 and several
intermediate radii (dashed - undeformed, solid - deformed contours) are visible in Fig. 2
and they confirm this observation.
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5 Correction Term for Steklov-Poincaré Operator

The elastic energy contained in the ring has the form

2E (ρ ,R) =
∫

C(ρ ,R)
σ(uρ) : ε(uρ)dx =

∫
ΓR

uρσ(uρ).nds. (75)

Since uρ = u on ΓR,

2E (ρ ,R) =
∫
ΓR

uσ(uρ).nds. (76)

Now σ(uρ) is in fact of the form σ(uρ) = σρ(u), because uρ = u on ΓR, which means
that uρ = uρ(u). If we split σρ into

σρ(u) = σ0 +ρ2σ1(u)+ O(ρ4) (77)

then
2E (ρ ,R) = 2E (0,R)+ρ2

∫
ΓR

uσ1(u).nds+ O(ρ4). (78)

Thus finding A1 reduces to computing σ1(u). From (49), (50) we know that σρ(u) is
a linear function of infinite vectors a = [ak, k ∈ ZZ], b = [bk, k ∈ ZZ], while σ 0(u) is the
same function of a0,b0. Here a0,b0 are computed for B(R), while a,b correspond to
C(ρ ,R). In order to obtain σ1(u) it is enough to express a,b as

a = a0 +ρ2a1 + O(ρ4), b = b0 +ρ2b1 + O(ρ4) (79)

because then
σ1(u) = σ1(a1,b1). (80)

In addition, the only nonzero terms in a1,b1 are a1
3,a

1
1,a

1
−1,b

1
−1,b

1
1.

Taking into account that A = 0 in (50) for our problem,

φ = φ0 +ρ2φ1 + O(ρ4), ψ = ψ0 +ρ2ψ1 + O(ρ4) (81)

where

φ1 = a1
−1

1
z

+ a1
1z+ a1

3z3, ψ1 = b1
−1

1
z

+ b1
1z. (82)

Using formulas derived in preceding section, we may explicitly compute the coefficients
appearing in (82).

a1
−1 =−b̄0

1, a1
3 =

1
κR4 b0

1, b1
1 =

3 +κ2

κR2 b0
1,

a1
1 =− 2

(κ−1)R2ℜa0
1, b1

−1 =−2ℜa0
1.

(83)

As is obvious from earlier calculations, only U0, U2, U−2 will contribute to these cor-
rections, Since

Uk =
μ
π

∫ 2π

0
(ur + iuθ )e−ikθ dθ (84)
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as well as

ur + iuθ = (u1 + iu2)e−iθ (85)

then

U0 =
μ
π

∫ 2π

0
(u1 + iu2)e−iθ dθ

U2 =
μ
π

∫ 2π

0
(u1 + iu2)e−3iθ dθ

U−2 =
μ
π

∫ 2π

0
(u1 + iu2)e+iθ dθ .

(86)

After collecting all formulas we obtain the final expression

∫
ΓR

u�σ1(u).nds =
1

R2

[2(κ−2)
(κ −1)2 (ℜU0)2− (κ+ 1)|U−2|2

− 9(κ+ 1)
κ2 |U2|2−

6(κ+ 1)
κ

ℜ(U2U−2)
]
.

(87)

From (86) it follows that

ℜU0 =
μ
π

∫ 2π

0
(u1 cosθ + u2 sinθ )dθ

U2 =
μ
π

∫ 2π

0
(u1 cos3θ + u2 sin3θ)dθ + i

μ
π

∫ 2π

0
(u2 cos3θ −u1 sin3θ )dθ

U−2 =
μ
π

∫ 2π

0
(u1 cosθ −u2 sinθ )dθ + i

μ
π

∫ 2π

0
(u2 cosθ + u1 sinθ )dθ .

(88)

Here values of displacements are taken as ui(Rcosθ ,Rsinθ ). After discretization these
integrals constitute weighted sums of values of ui at certain points on ΓR. If we assume
piecewise linear approximation over triangles, then it is well known that

uh
i (x) = x�

⎡⎣ x1
1 x1

2 1
x2

1 x2
2 1

x3
1 x3

2 1

⎤⎦−1

Uh
i = x�M−1Uh

i (89)

and

x�M−1Uh
i = (M−�x)�Uh

i = c�Uh
i (90)

where uh
i (x) is a value of the approximation of ui at a point x inside the triangle defined

by vertices x1,x2,x3 and Uh
i is a vector of the values of uh

i at these vertices. Observe that
c is a vector of weights with which nodal values enter into the expression for uh

i (x).
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Let now Uh = [uh1
1 ,uh1

2 , . . . ,uhK
1 ,uhK

2 ]� be a vector of nodal values of uh for the global
triangulation. Then we may write down the following formulae

μ
π

∫ 2π

0
u1 cosθ dθ = c�11Uh μ

π

∫ 2π

0
u2 sinθ dθ = s�21Uh

μ
π

∫ 2π

0
u1 cos3θ dθ = c�13Uh μ

π

∫ 2π

0
u2 sin3θ dθ = s�23Uh

μ
π

∫ 2π

0
u1 sinθ dθ = s�11Uh μ

π

∫ 2π

0
u2 cosθ dθ = c�21Uh

μ
π

∫ 2π

0
u1 sin3θ dθ = s�13Uh μ

π

∫ 2π

0
u2 cos3θ dθ = c�23Uh.

(91)

Here si j,ci j are sparse vectors of weights with which nodal values of u enter into ap-
propriate integrals. In this notation

(ℜU0)2 = ‖(c11 + s21)�Uh‖2

|U2|2 = ‖(c13 + s23)�Uh‖2 +‖(c23− s13)�Uh‖2

|U−2|2 = ‖(c11− s21)�Uh‖2 +‖(c21 + s11)�Uh‖2

ℜ(U2U−2) = (Uh)�(c13 + s23)(c11− s21)Uh

− (Uh)�(c23− s13)(c21 + s11)Uh.

(92)

Taking into account (87) we may conclude that the first term in the correction of energy
is a well defined quadratic form. Similar, only more complicated expressions may be
obtained for further asymptotics corresponding to ρ4.
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14. Novotny, A.A., Feijóo, R.A., Padra, C., Taroco, E.A.: Topological sensitivity analysis. Com-
puter Methods in Applied Mechanics and Engineering 192, 803–829 (2003)
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Abstract. Model order reduction is a mathematical technique to transform non-
linear dynamical models into smaller ones, that are easier to analyze. In this
paper we demonstrate how model order reduction can be applied to nonlinear
electronic circuits. First we give an introduction to this important topic. For lin-
ear time-invariant systems there exist already some well-known techniques, like
Truncated Balanced Realization. Afterwards we deal with some typical problems
for model order reduction of electronic circuits. Because electronic circuits are
highly nonlinear, it is impossible to use the methods for linear systems directly.
Three reduction methods, which are suitable for nonlinear differential algebraic
equation systems are summarized, the Trajectory piecewise Linear approach, Em-
pirical Balanced Truncation, and the Proper Orthogonal Decomposition. The last
two methods have the Galerkin projection in common. Because Galerkin projec-
tion does not decrease the evaluation costs of a reduced model, some interpolation
techniques are discussed (Missing Point Estimation, and Adapted POD). Finally
we show an application of model order reduction to a nonlinear academic model
of a diode chain.

1 Introduction

The dynamics of electrical circuits at time t can be generally described by the nonlinear,
first order, differential-algebraic equation (DAE) system of the form:{

d
dt [q(x)]+ j(x)+ Bu = 0, x(0) = x0,

y = h(x),
(1)

where x : R → R
d represents the unknown vector of circuit variables in time t, the

vector-valued functions q, j : R×R
d → R

d represent the contributions of, respectively,
reactive elements (such as capacitors and inductors) and of nonreactive elements (such
as resistors) and B∈R

d×m is the distribution matrix for the excitation vector u : R→R
m

that controls the output response y : R → R
p. We assume that d >> m, p. There are

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 476–491, 2009.
c© IFIP International Federation for Information Processing 2009
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several established methods, such as sparse-tableau, modified nodal analysis, etc. which
generate the system (1) from the netlist description of electrical circuit. The dimension d
of the unknown vector x is of the order of the number of elements in the circuit, which
means that it can be extremely large, as today’s VLSI (Very Large Scale Integrated)
circuits have hundreds of millions of elements.

Mathematical model order reduction (MOR) aims to replace the original model (1)
by a system of much smaller dimension, which can be solved by suitable DAE solvers
within acceptable time. Because we are only interested in the relationship between u
and y in the time-domain, the model can be replaced by a low-order model for z : R →
R

r, like {
d
dt [q̃(z)]+ j̃(z)+ B̃u = 0, z(0) = z0,

y = h̃(z).
(2)

At present, however, only linear MOR techniques are well-enough developed and prop-
erly understood to be employed [1]. To that end, we either linearize the system (1) or de-
couple it into nonlinear and linear subcircuits (interconnect macromodeling of parasitic
subcircuits [9]). For dynamical systems the observability and controllability functions
[1] are defined by

Lc(x0) = min{ 1
2

∫ 0
−∞ ‖u(t)‖2dt : u ∈ L2(−∞,0), x(−∞) = 0, x(0) = x0}, (3)

Lo(x0) = 1
2

∫ ∞
0 ‖y(t)‖2dt, ∀τ∈[0,∞)u(τ) = 0, x(0) = x0. (4)

They represent the minimum amount of input energy to reach state x0 and the output
energy that comes free when starting at state x0 (compare kinetic and potential energy
in mechanical systems). The system is in balanced form at basis V if the (energy) ratio
Lo(Vz)
Lc(Vz)

is balanced. For linear time-invariant (LTI) systems as{
ẋ = Ax+ Bu, x(0) = x0,

y = Cx,
(5)

we have Lc(x0) = 1
2 xT

0 W−1x0 and Lo(x0) = 1
2 xT

0 Mx0, where W,M ∈R
d×d are the con-

trollability and observability Gramians, which are symmetric positive definite matrices.
They satisfy the well-known Lyapunov equations

AW+ WAT =−BBT , (6)

AT M+ MA =−CT C. (7)

An LTI system is balanced w.r.t. basis V if W = VΣVT and M = V−TΣV−1 are simul-
taneously diagonalized, such that

Lo(x)
Lc(x)

=
xT Mx

xT W−1x
=

xT V−TΣV−1x

xT V−1Σ−1V−T x
=

zTΣ2z
zT z

. (8)

For redundant systems the singular values of Σ converge rapidly to zero. This allows
to obtain an accurate reduced model by Truncated Balanced Realization (TBR). There
also exist many other much cheaper MOR techniques for LTI systems, like PRIMA,
PVL, PMTBR, SPRIM, etc. For the special case A = AT ,B = CT it follows from (6),
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(7) that W = M. Then it is possible to find an orthogonal V such that W = M = VΣVT

are balanced.
For nonlinear systems as (1) it is no longer possible to apply these linear MOR tech-

niques. Then we try to exploit the (piecewise) linear structure as well as possible. The
reduced model can be constructed for a benchmark simulation, such that it is accurate if
the solution is in the neighborhood of the benchmark solution. In this paper we present
the application of some promising nonlinear reduction methods on some electronic cir-
cuit models. These are the Trajectory Piecewise Linear approach (TPWL) [13] and the
Proper Orthogonal Decomposition (POD) [2] supported by the Missing Point Estima-
tion (MPE) technique [5]. This paper does not include an error analysis but interested
readers could look at [7,10,13].

2 Model Order Reduction for Subcircuits

A continuously increasing number of functions is combined in each single integrated
circuit. Therefore, complex devices are designed in a modular manner. Functional units
like e.g., decoders, mixers, and operational amplifiers, are developed by different ex-
perts and stored in device libraries. Other circuit designers then choose these models
according to their requirements and instantiate them in higher level circuits. To enable
the combination of different blocks, each model is equipped with its own number of
junctions, or pins, by which a communication with the outside world is possible.

In the first instance, numerical simulations are run to verify a design. Hence, it is
desirable to have, besides the exact circuit schematic, a suitable description of the indi-
vidual model that enables fast simulations, i.e., a library of reduced subcircuit models.

In circuits that are developed to act as a subcircuit in higher hierarchies a subset of
its nodes are terminals. To these nodes both known inner elements as well as elements
whose nature may change with different instantiations of the model are connected. Due
to Kirchhoff’s current law, the sum of all currents flowing into each single node is zero
at each timepoint. In terms of the network equations (1) the contribution of currents
from inner elements at the terminals is covered by d

dt q(x) and j(x), respectively. As
the nature, i.e. reactive or nonreactive, of the adjacent elements in the final circuit is
not known, when the cell is designed, additional unknowns jpin, i.e. pin currents, are
introduced on the subcircuit level. We assume that the cell under consideration has de

nodes and dpin < de of them are terminals. Then we can extend (1) to

d
dt

[q(x)]+ j(x)+ Bu(t)+ Apinjpin = 0, (9)

with jpin ∈ R
dpin and where Apin ∈ {0,1}d×dpin with dpin columns containing exactly

one non-zero element is an incidence matrix describing the topological distribution of
the pin.

The pin currents jpin can be determined when there is an external circuitry available,
completing the network equations. During the process of developing the single cell a
suitable test bench that emulates the typical environment the subcircuit will operate in
later has to be defined by the designer.
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Communication amongst electrical devices is done in terms of time varying voltages
and currents. Regarding the cell (9) we can either inject the currents jpin and get the
voltage response at the terminals or supply the voltages at the pins and receive the
according currents. The state x comprises the node voltages and the currents through
inductors and voltage sources. With the pin currents’ incidence matrix Apin we can
access the node voltages at the terminals by

xpin = AT
pin ·x. (10)

Now, current injection means regarding jpin as inputs returning xpin as the output.
Therefore, we can write

0 = d
dt [q(x)]+ j(x)+

(
BApin

)( u(t)
jpin(t)

)
, (11)

y = AT
pinx. (12)

Voltage injection on the other hand implies that the node voltages at the terminals are
prescribed and corresponding pin currents are additional unknowns, i.e., they are added
to the state vector:

0 = d
dt

(
q(x)

0

)
+
(

j(x)+ Apinjpin
−AT

pinx

)
+
(

B
I

)(
u(t)

xpin(t)

)
(13)

y =
(
0 I
)( x

jpin

)
(14)

Finally, the common structure of both approaches is

0 = d
dt [q̄λ (x̄λ )]+ j̄λ (x̄λ )+

(
B̄λ Cλ

)(uλ (t)
upin,λ

)
, (15a)

yλ = CT
λ x̄λ ∈R

dpin,λ , (15b)

where we introduce λ as an identifier for the cell, taken from some set I of indices.
Viewed from the outside, the cell (15) appears just in terms of its input-output behavior,
i.e., given upin,λ ∈ R

dpin,λ it returns yλ .
Now, we turn our attention to the circuitry a cell might be embedded in. We assume

that the state space of this circuit level has dimension d, i.e., it is described by the
states x ∈R

d . Furthermore, we let this level consist of r ∈N instantiations of cells, i.e.,
I = {1,2, . . . ,r}, only. After due consideration we see that this electrical system is
described by

0 = ∑
λ∈I

AT
λyλ , with Aλ ∈ {0,1}dpin,λ×d (16)

where yλ is determined by (15) with upin,λ = Aλx for all λ ∈I .
As all the instantiated cells appear just in terms of their input-output behavior, we

are free to reduce the order of single models (15) and use them again on level (16).
Furthermore, as subcircuits are regarded as special elements, we can also include other
elements on this level. Hence we can write in general form again

d
dt

[q(x̂)]+ j(x̂)+ B̂û = 0, with x̂ =
(
xT ,yT

1 , . . . ,yT
r
)T

, (17)
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which can be seen as a subcircuit on another level again. In this way, a hierarchical
model order reduction would be possible.

3 Trajectory Piecewise Linear Model Order Reduction

The idea behind the Trajectory Piecewise Linear (TPWL) method is to linearize (1)
several times along a given trajectory x̃(t) (corresponding to some typical input ũ(t))
that satisfies

d
dt

[q(x̃)]+ j(x̃)+ Bũ = 0. (18)

Note that in [16] an alternative version of TPWL is described where the nonlinear func-
tions q(t,x), j(t,x) are linearized around the Linearization Tuples (ti, x̃(ti)). Below the
nonlinear system itself is linearized around the complete trajectory x̃(t). Furthermore
we can use just Linearization Points (LPs) x̃(ti) instead of Linearization Tuples because
the system in (1) does not depend explicitly on t and behaves linearly with respect to u.
Define y(t) = x(t)− x̃(t) and ū(t) = u(t)− ũ(t). Linearizing the nonlinear equation (1)
gives us

d
dt

[q(x̃)]+ j(x̃)+ Bũ+
d
dt

[C(x̃)y]+ G(x̃)y+ Bū = 0. (19)

Because the trajectory x̃(t) satisfies (18) we obtain the following time-varying linear
system for y

d
dt

[C(x̃(t))y(t)]+ G(x̃(t))y(t)+ Bū(t) = 0. (20)

The main idea of TPWL is to approximate the time-varying Jacobian matrices
C(x̃(t)),G(x̃(t)) by a weighted combination of piecewise constant matrices. Then a
(finite) sequence of linearized local systems is used to create a globally reduced sub-
space. The final TPWL model is constructed as a weighted sum of all locally linearized
reduced systems. The disadvantage of standard linearization methods is that they only
deliver good results in the neighborhood of the chosen linearization point (LP) x(ti)
(see Fig. 1). To overcome this, several linearized models are created in TPWL. The LPs
can be computed simultaneously with the numerical time-integration of (18) for the
trajectory x̃(t). This procedure can be described by the following steps:

1. Set an absolute accuracy factor ε > 0, set i = 1.
2. Linearize the system around x̃i = x̃(ti). This implies:

Ciẏ+ Giy+ Bū(t) = 0, (21)

with Ci = ∂
∂xq(x̃)

∣∣∣
x̃i

and Gi = ∂
∂x j(x̃)

∣∣∣
x̃i

, where x̃i stays for x̃(ti). Save Ci, and Gi.

3. Reduce the linearized system to dimension r � d by an appropriate linear MOR
method, like “Poor Man’s TBR” [12] or by Krylov-subspace methods [11]. This
implies

Cr
i ż+ Gr

i z + Br
i ū(t) = 0, (22)

where Cr
i = VT

i CiV, Gr
i = VT

i GiVi, Br
i = VT

i B with Vi ∈R
d×ri , z∈R

ri and y≈Viz.
Save the local projection matrix Vi. To preserve sparsity it could be preferable
to diagonalize the reduced systems afterwards, although this destroys the
orthogonality.
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Fig. 1. The Linearization Points of this TPWL model are derived from the trajectory A. Because
solutions B and C are in the neighborhood of the surrounding balls, they can be efficiently simu-
lated using a TPWL model. But this is not the case for the solutions D and E.

4. Integrate the original system (1) until ||x̃(tk)−x̃i||
||x̃i||

> ε . Then we choose x̃(tk) as (i+
1)-th LP. Set i = i+ 1 and go to step 2.

Steps 2 to 4 are repeated until the end of the given trajectory. In this way, a finite
number of locally reduced subspaces with bases V1, ...,Vs are created corresponding
to the LPs {x̃(t1), . . . , x̃(ts)}. All locally reduced subspaces are merged into a globally
reduced subspace and each locally linearized system (21) is now projected onto this
global subspace. The procedure can be described by the following steps:

1. Define Ṽ = [V1, . . . ,Vs] ∈ R
d×(r1+...+rs).

2. Calculate the SVD of Ṽ: Ṽ = UΣWT with U = [u1, . . . ,ud ] ∈R
d×d ,Σ ∈ R

d×r̄s and
W ∈ R

r̄s×r̄s, where r̄ = (r1 + . . .+ rs)/s.
3. Define the new global projection matrix V ∈ R

d×r as [u1, . . . ,ur].
4. Project each local linearized system (21) onto V.

Because of the construction of the global projection matrix V it is approximately true
that R(Vi)⊂R(V) for i = 1, . . . ,s. All locally reduced linearized reduced systems are
combined in a weighted sum to build the global TPWL model. Note that the TPWL
model in [16] directly approximates x instead of y = x− x̃ by Vz. Then it is necessary
to add the defect of the trajectory x̃ to the new input vector. But if the original state
x = x̃+ y is approximated by x̃+ Vz the reduced state z ∈ R

r satisfies

s

∑
i=1

wi(z)
[
VT CiVż+ VT GiVz+ VT Bū(t)

]
= 0. (23)
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In (23) we need weighting functions wi(z) that satisfy

s

∑
i=1

wi(z) = 1, wi(z) ∈ [0,1]. (24)

The weighting function wi(z) determines the influence of the i-th local system on the
global system. Therefore it equals zero if z is far from the i-th projected Linearization
Point VT x(ti). A very simple weighting function is defined by

wi(z) =
{

1 if i = min{ j | d j(z) = dmin(z)},
0 otherwise.

(25)

Here di(z) and dmin(z) are distance functions such that

di(z) = ‖z−VT x(ti)‖, i = 1, . . . ,s, (26)

dmin(z) = min{di(z), i = 1, . . . ,s}. (27)

A more advanced alternative, with two free parameters α,ε > 0, can be used like

w̄i(z) =

{
exp(− αdi(z)

dmin(z) ) if exp(− αdi(z)
dmin(z) ) > ε,

0 otherwise.
(28)

wi(z) = [∑s
k=1 w̄k(z)]

−1 w̄i(z). (29)

The TPWL method delivers reduced models that are cheap to simulate because the
reduced model (23) does not need any evaluations of the original functions q, j and Ja-
cobian matrices C,G, because all matrices VT CiV,VT GiV and VT B can be computed
before the simulation. The reduction error of a TPWL method consists of a lineariza-
tion and a truncation part. This error can be controlled by use of the Linearization Points
[16,17]. Clearly the accuracy becomes higher for a large number of them. For strongly
nonlinear systems the price is that a large number of Linearization Points is required to
keep the linearization error sufficiently small. If the weighting functions wi(z) are not
updated within the Newton method this will imply additional stepsize restrictions.

In the next three sections we will show how nonlinear systems can be reduced with-
out linearization. Then the reduced models are obtained by Galerkin projection of the
original model.

4 Empirical Balanced Truncation

For LTI systems the controllability and observability Gramians also satisfy

W =
∫ ∞

0
eAtBBT eAT

tdt, M =
∫ ∞

0
eAT

tCT CeAt dt. (30)

Consider X(t)= [x1, . . . ,xm] = eAtB and Y(t)= [y1, . . . ,yn] = CeAt . Let δ (t) be Dirac’s
delta function, then xi and y j satisfy

d
dt [q(xi)]+ j(xi) = biδ (t), xi(0) = 0, i = 1, . . . ,m, (31){

d
dt [q(x j)]+ j(x j) = 0, x j(0) = e j,

y j = h(x j),
j = 1, . . . ,n. (32)
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Then it follows for LTI systems that the Gramians can be expressed in terms of the
correlations of the states and outputs

W =
∫ ∞

0
eAtBBT eAT

tdt =
∫ ∞

0
X(t)X(t)T dt =

m

∑
i=1

∫ ∞

0
xi(t)xi(t)T dt, (33)

and

M =
∫ ∞

0
eAT

tCT CeAt dt =
∫ ∞

0
Y(t)T Y(t)dt =

n

∑
i=1

∫ ∞

0
yi(t)

T yi(t)dt. (34)

If the states [x1, . . . ,xm] and [y1, . . . ,yn] are available, these Gramians W,M can be
numerically integrated as follows

W≈ Ŵ =
m

∑
i=1

1
N

N

∑
k=1

xi(tk)xi(tk)T , M≈ M̂ =
n

∑
i=1

1
N

N

∑
k=1

yi(tk)
T yi(tk). (35)

For LTI systems we have that Ŵ → W, M̂ → M if N → ∞. Empirical balanced trun-
cation (EBT) applies these formulae for Ŵ,M̂ to nonlinear systems with a larger set
of inputs and initial values to include also the nonlinear properties. It is a powerful
method because it really approximates the relationship between the input and output
and neglects all other phenomena but also needs a lot of experiments. Then TBR or
another linear MOR technique is used to balance Ŵ,M̂ by solving a system of Lya-
punov equations. Thus a basis V can be constructed by truncation. The reduced model
for z ∈R

r is constructed by Galerkin projection.

5 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD), also known as the Principal Component
Analysis (PCA) and the Karhunen-Loéve expansion, is a special case of Empirical Bal-
anced Truncation. It approximates the controllability Gramian Ŵ by using only one
trajectory

Ŵ =
1
N

N

∑
k=1

x1(tk)x1(tk)T = VΣVT . (36)

Because the two Gramians are assumed to be equal, the POD basis can be found from
the singular value decomposition

Ŵ = VΣVT , (37)

where V ∈ R
d×d is an orthogonal matrix and Σ a positive real diagonal matrix.

Thus the POD basis Vr =
(
v1 . . . vr

)
is an orthonormal basis and derived from the

collected state evolutions (snapshots)

X =
(
x(t1) . . . x(tN)

)
. (38)
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The POD method is particularly popular for systems governed by nonlinear partial dif-
ferential equations describing computational fluid dynamics. Analytical solutions do
not exist for such systems and the collected data may serve as the only adequate descrip-
tion of the system dynamics. The POD basis is found by minimizing the time-averaged
approximation error given by

av(‖ x(tk)−xn(tk) ‖2) . (39)

The averaging operator av(·) is defined as:

av( f ) :=
1
N

N

∑
k=1

f (tk). (40)

Solving the minimization problem of (39) is equivalent to computing the eigenvalue
decomposition of 1

N XXT . Because 1
N XXT is a symmetric positive definite matrix there

exists an orthogonal matrix Vr ∈ R
d×r and a positive real diagonal matrix Λr ∈ R

r×r

such that
1
N

XXT Vr = VrΛr. (41)

The term 1
N XXT equals the state covariance matrix. The POD basis is a subset of the

eigenvectors of this covariance matrix and is stored by the matrix Vr. The most im-
portant POD basis function is the eigenvector corresponding to the first eigenvalue. The
truncation degree is determined from the eigenvalue distribution inΛr=diag(λ1, . . . ,λr).
Based on the commonly adopted ad-hoc criterion, the truncation degree r should at least
capture 99% of the total energy. The POD basis minimizes, in Least Squares sense,
(39) over all possible bases. Error estimates for the solutions obtained from the reduced
model are available in [10].

6 Galerkin Projection

For each t let the state x(t) ∈ R
d belong to a separable Hilbert space X , equipped

with the Euclidian inner product. Then for all t the state x can be expanded in a basis
V =

(
v1 . . . vd

)
x(t) =

d

∑
i=1

zi(t)vi. (42)

The basis is derived from various criteria based on the approximation quality of the
original state x by its truncated expansion xr as defined in (43)

x(t)≈ xr(t) =
r

∑
i=1

zi(t)vi. (43)

The order r of the truncated expansion is lower than the order d of the original expan-
sion. Different reduction methods yield different bases.

The reduced order model is the model that describes the dynamics of the basis coef-
ficients or the reduced state z = {z1, . . . ,zr}. In many methods the reduced order model
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is derived by replacing the original state x by its truncated expansion xr and projecting
the original equations onto a truncated basis

Wr =
(
w1 . . . wr

)
. (44)

Galerkin projection of (1) onto Vr along Wr results in the reduced DAE model{
d
dt

[
WT

r q(Vrz)
]
+ WT

r j(Vrz)+ WT
r Bu = 0, z(0) = z0,

y = h(Vrz).
(45)

The original d-dimensional DAE model is reduced to an r-dimensional DAE reduced
order model by means of the Galerkin projection. Unfortunately, the resulting reduced
order model (45) for z ∈ R

r is not always solvable for any arbitrary truncation degree
r. Furthermore, in contrast to TPWL this reduced model still needs evaluations of the
original model, because the functions VT

r q(t,Vrz) and VT
r j(t,Vrz) cannot be expanded

before the simulation.
For circuit models the snapshots can be collected from a transient simulation with

fixed parameters and sources. The reduced model can also be used to approximate the
model for different parameters or sources as long as the solution still approximately lies
in the projected space. For circuit models with a lot of redundancy the reduced model
can have a much smaller dimension. Unfortunately, direct application of POD to circuit
models does not work well in practice. Firstly, for Differential Algebraic Equations
the Galerkin projection scheme may yield an unsolvable reduced order model. This
problem has been studied in more detail in [5,14]. Secondly, the computational effort
required to solve the reduced order model and the original model is about the same in
nonlinear cases. This is due to the fact that the evaluation costs of the reduced model
(45) are not reduced at all because Vr will be a dense matrix in general.

7 Missing Point Estimation (MPE)

As mentioned before, many MOR techniques for nonlinear systems as (1) use Galerkin
projection to obtain a reduced model of the following type

d
dt

[
WT q(Vz)

]
+ WT j(Vz)+ WT Bu = 0. (46)

The original state can be obtained by x = Vz. Thus indeed it is assumed that x∈R(V).
If x ∈ R

d and V ∈ R
d×r where r� d it is clear that the reduced model (46) is of much

smaller size than the original model (1). For LTI systems with q(t,x) = Cx and j(t,x) =
Gx−s(t) it is really possible to reduce the simulation time for small r. In particular if the
reduced model is diagonalized, we certainly get a model that is very cheap to solve. For
the general case it is much worse because then the evaluation costs are not reduced at
all. But if the linear algebra part is dominant, we still can expect a speed-up. Despite the
resulting low dimensional model, the computational effort required to solve the reduced
order model and the original model is relatively the same in nonlinear cases. It may even
occur that the original model is cheaper to evaluate than the reduced order model. The
low dimensionality is obtained by means of projection, either by the Galerkin projection
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method or the least square method. In the projection schemes, the original numerical
model must be projected onto the projection space. It implies that the original model
must be re-evaluated when the original numerical model is time-varying, which is the
general case for nonlinear systems. A consequence is that the evaluation costs for the
reduced model are not reduced at all.

Missing Point Estimation (MPE) is a well-known technique that modifies the matrix
V such that only a part of the equations of the original model have to be evaluated.
This makes POD applicable for model order reduction of nonlinear DAEs. The Missing
Point Estimation (MPE) was proposed in [2] as a method to reduce the computational
cost of reduced order, nonlinear, time-varying models. The method is inspired by the
Gappy-POD approach that was introduced by Everson and Sirovich in [8]. More details
can be found in [5,15].

7.1 Adapted POD Method

Assume that we have a benchmark solution x̃(t) of the DAE (1). Consider the snapshot
matrix X ∈ R

d×N . Consider the singular value decomposition of X:

X = UΣVT , (47)

where U ∈ R
d×d ,V ∈ R

N×N are orthogonal matrices and Σ ∈ R
d×N . Thus the corre-

lation matrix satisfies W = 1
N XXT = 1

N UΣΣT UT . Because ΣΣT ∈ R
d×d is a positive

real diagonal matrix we can write ΣΣT = Γ 2, where Γ ∈ R
d×d is another positive real

diagonal matrix.
In contrast to POD we introduce the matrix L = UΓ ∈ R

d×d , such that also W =
1
N LLT . Note that the columns of L are still an orthogonal basis but not orthonormal.
Then we transform the original system (1) by writing x = Ly and using orthogonal
Galerkin projection as follows

d
dt

[
LT q(Ly)

]
+ LT j(Ly)+ LT Bu = 0, x = Ly. (48)

Note that we are able to compute the matrix LT B before the simulation in contrast to
the nonlinear functions LT q(Ly) and LT j(Ly). Therefore we are going to approximate
LT and L such that LT q(Ly) and LT j(Ly) become cheaper to evaluate. Note that we
will use different approximations for L and LT . Because L = UΓ we can approximate
it by UrΓrPr = LPT

r Pr where Ur ∈R
d×r and Γr ∈R

r×r consists of the r most dominant
singular values of Γ and Pr ∈ {0,1}r×d is a selection matrix. The matrices Ur,Γr and Pr

easily follow from the singular value decomposition. But if we use this approximation
we still have the problem that for each function f the projected function LT f≈ PT

r ΓrUT
r f

needs all elements of f. Therefore we use here also another approximation

LT ≈ TgPg = LT PT
g Pg, (49)

where Pg ∈ {0,1}g×d is another selection matrix and Tg ∈R
d×g contains the g columns

of LT with largest norm. If the singular values of Γ decrease rapidly we often need just
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a small number g of columns. This means that the aliasing error ‖TgPg−LT‖ also
converges rapidly to zero. Now we can approximate the transformed DAE (48) by

d
dt

[
LT PT

g Pgq(LPT
r Pry)

]
+ LT PT

g Pgj(LPT
r Pry)+ LT Bu = 0, x = Ly. (50)

Because L≈ LPT
r Pr and LT ≈ LT PT

g Pg it also follows that

LT ≈ PT
r PrLT PT

g Pg. (51)

Writing a = Pry ∈ R
r we get the following truncated system of r equations

d
dt

[
PrLT PT

g Pgq(LPT
r a)
]
+ PrLT PT

g Pgj(LPT
r a)+ PrLT Bu = 0, x = LPT

r a. (52)

Because L = UΓ and LT = ΓUT we can also write this system as

d
dt

[
ΓrUT

r PT
g Pgq(UrΓra)

]
+ΓrUT

r PT
g Pgj(UrΓra)+ΓrUT

r Bu = 0, x = UrΓra. (53)

This system is still badly scaled. Therefore we have to multiply all equations by Γ−1
r

and write z = Γra, such that we get

d
dt

[
UT

r PT
g Pgq(Urz)

]
+ UT

r PT
g Pgj(Urz)+ UT

r Bu = 0, x = Urz. (54)

We need just g elements of the functions q, j in this case. Define q̄ = Pgq, j̄ = Pgj and
the matrices Wr,g = PrUT PT

g = UT
r PT

g ∈R
r×g, B̄r = UT

r B. Then we get indeed

d
dt

[Wr,gq̄(Urz)]+ Wr,g j̄(Urz)+ B̄ru = 0, x = Urz. (55)

Because the g selected elements q̄, j̄ of q, j only need a small subset of the elements of
Urz, it is possible to replace the dense matrix Ur by a sparse matrix PT

h PhUr such that
all unused rows of Ur are replaced by zero rows. The selection matrix Ph can easily
be found from the average absolute values of the Jacobian matrices C,G along the
benchmark solution. For many applications, e.g. circuit models, the required number h
of rows is just slightly larger than g. Thus the matrix Ūr,h = PhUr ∈ R

h×r is often of
a relatively small size. In this manner we finally get the following reduced model for
z ∈ R

r

d
dt

[
Wr,gq̄(PT

h Ūr,hz)
]
+ Wr,gj̄(PT

h Ūr,hz)+ B̄ru = 0, x = Urz. (56)

This reduced model can be simulated very efficiently because it does not need expensive
function evaluations.

8 Applications

We consider the academic diode chain model shown in Fig. 2, that is described by the
following equations
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V1−Uin(t) = 0,
iE −g(V1,V2) = 0,

g(V1,V2)−g(V2,V3)−C d
dt V2− 1

RV2 = 0,
...

g(VN−1,VN)−g(VN,VN+1)−C d
dt VN− 1

RVN = 0,

g(VN ,VN+1)−C d
dt VN+1− 1

RVN+1 = 0,

g(Va,Vb) =

{
Is(e

Va−Vb
VT −1) if Va−Vb > 0.5 V,
0 otherwise,

Uin(t) =

⎧⎨⎩
20 if t ≤ 10 ns,

170−15t if 10 ns < t ≤ 11 ns,
5 if t > 11 ns.

R C~ R C R C

U
in

V
2 V

300
V

1

Is=1e-14A

V
T
=0.0256V

R=1e4Ω
C=1e-12F

Fig. 2. Structure of the test circuit

Fig. 3 shows the numerical solution (nodal voltage in each node) of the original
model at [0,70 ns], computed in MATLAB by the Euler Backward method with fixed
step sizes of 0.1 ns.

Fig. 4 indicates the redundancy of the model, as most of the eigenvalues of the cor-
relation matrix 1

N XXT can be neglected (left) and also the aliasing error of LT rapidly
converges to zero (right). Fig. 5 shows the relative errors over all nodes in the time inter-

val [0,70 ns], defined as ||Vz−x||
||x|| , for the reduced models of different orders constructed

by TPWL (left) and POD (right). For TPWL the relative error is most of the time lower
then the chosen error bound ε = 0.025. Furthermore, for higher order reduced models,
a smaller number of LPs has been used than for the reduced models with lower order,
as the local systems with higher orders are more accurate. E.g. for a reduced model
of order 100 we have used 42 LPs and for smaller reduced models 60 LPs. The POD
models are, as expected, more accurate, but much slower to simulate than the TPWL
models (see the corresponding extraction and simulation times in Table 1). However, a
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Table 1. Comparison of extraction and simulation times in seconds

Model r Extr. time Sim. time Model r g Extr. time Sim. time

Original 302 0 79 POD 10 302 107 72
TPWL 10 285 1.0 POD 30 302 107 74
TPWL 25 278 1.4 POD + MPE 10 10 107 3.9
TPWL 50 202 2.4 POD + MPE 30 35 107 10.2

significant speed up can be achieved by combining the POD with MPE. The MATLAB
scripts can be optimized by using the command pcode *.m. Using also a modified
Newton method it is even possible to simulate the smallest POD model (k = g = 10)
in 2.4 seconds, which is even about 33 times faster! These results highly improve the
numerical results in [14] for the same example.

9 Conclusion and Outlook

In this paper we studied how nonlinear IC models can be reduced by TPWL and POD.
The first method has the advantage that it really approximates the system behavior of
the linearized model. Well-developed linear model reduction techniques can be used to
reduce the linearized models. However, to maintain sufficient accuracy a large number
of LPs is required, which implies a large extraction time. The POD method delivers re-
duced models which are more accurate because there is no linearization error. Adapted
versions are necessary to achieve a reduction of the simulation time at all because of
the expensive function evaluations. TPWL and POD have in common that the reduced
model is created around a benchmark solution that has to be found first. To make nonlin-
ear MOR applicable in practice it is therefore essential that a proper benchmark solution
can be calculated. This could be done by a cheap integration method at a coarse time-
grid or in a hierarchical way from typical trajectories per subcircuit. Both the MOR
methods TPWL and POD seems to be promising for reducing the simulation time for
nonlinear DAE systems. They offer a good starting point for further research on MOR
of non-linear dynamical systems.

Acknowledgements. We would like to thank Dr. B. Tasić for his help with the diode
chain model and Dr. J. Rommes for his support with the tool Hstar.
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Abstract. We address the regularity of the solution to the time dependent
Maxwell equations of electromagnetics in the case of metallic boundary condition
under minimal regularity of the data. We extend the so-called extractor technique
that we introduced in 1995 for wave equation in several cases (including the non-
cylindrical case of moving domains for which the sharp-hidden regularity [10]
was still an open problem). Concerning the electrical vector field we consider its
normal component e at the boundary and, using a specific version of the so called
pseudo-differential extractor (that we recently introduced in a different context),
we obtain new sharp regularity results that are quantified in terms of curvature
through the oriented distance function and all the intrinsic geometry we devel-
oped in the book [6].

1 Introduction

This paper deals with the regularity of the solution at the boundary of the 3D time-
dependent solution E,H of Maxwell’s equations of Electromagnetics. We show a hid-
den regularity result at the boundary for the electric field on a metallic obstacle. We
consider a domain Ω with boundary Γ on which the boundary condition EΓ = 0 is ap-
plied1. Assuming divergence-free initial data Ei ∈Hi(Ω ,RN), i = 0,1, and divergence-
free current J ∈ L2(0,τ;L2(Ω ,RN)) we show that, at the boundary, the magnetic field
verifies H ∈ H1/2(0,τ;L2(Γ ,R3)) while curlE ∈ H−1/2(0,τ;L2(Γ ,R3)). The proof
makes use of the Extractor technique introduced at ICIAM 1995 [5] and in several pa-
pers ([1,3,2]); we first prove that (DE.n)Γ ∈ L2( ]0,τ[×Γ ,R3), E.n∈H1/2(0,τ ;L2(Γ ))
and ∇Γ E.n ∈ H−1/2(0,τ ; L2(Γ )). The proof of this last regularity follows a pseudo-
differential extractor technique which is developed in a forthcoming paper [7].

2 Divergence-Free Solutions of Maxwell and Wave Equations

As E is the electrical field, we deal with vector functions, say E ∈ C0([0,τ],H1(Ω ,
R

N)), where Ω is a bounded smooth domain with boundary Γ and I = ]0,τ[ is the

1 For N = 3 this condition can be written E×n = 0.

A. Korytowski et al. (Eds.): System Modeling and Optimization, IFIP AICT 312, pp. 492–506, 2009.
c© IFIP International Federation for Information Processing 2009
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time interval. Throughout this paper we shall be concerned with divergence-free initial
conditions E0,E1 and right-hand side F for the classical wave equation formulated in
the cylindrical evolution domain Q = I×Ω . We shall discuss the boundary conditions
on the lateral boundary Σ = I×Γ .

2.1 Wave Deriving from Maxwell Equation

Assuming perfect media (ε = μ = 1) the Ampère law is

curlH =
∂
∂ t

E + J, (1)

where J is the electric current density. The Faraday’s law is

curlE =− ∂
∂ t

H. (2)

The conservation laws are
divE = ρ , divH = 0, (3)

where ρ is the volume charge density. From (1) and (2), as divcurl = 0, we obtain

divJ =−div(Et) =−ρt . (4)

We assume that ρ = 0, which implies that divJ = 0. Under this assumption any E
solving (1) is divergence-free as soon as the initial condition E0 is. We shall also assume
divE0 = 0 so that (6) will be a consequence of (1).

With F = −Jt , we similarly get divF = 0 and E is solution of the usual Maxwell
equation:

Ett + curl curl E = F, E(0) = E0, Et(0) = E1. (5)

Lemma 1. Assume that divF = divE0 = divE1 = 0. Then any solution E to Maxwell
equation (5) verifies the conservation condition (3) (with ρ = 0):

divE = 0. (6)

We have the classical identity

curl curl E =−ΔE +∇(divE) (7)

so that E is also solution of the following wave equation problem

Ett −ΔE = F, E(0) = E0, Et(0) = E1. (8)

2.2 Boundary Conditions

The physical boundary condition for metallic boundary is E×n = 0 which can be writ-
ten as the homogeneous Dirichlet condition on the tangential component of the field E:

EΓ = 0 on Γ . (9)
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We introduce the following Fourier-like boundary condition involving the mean curva-
ture ΔbΩ = λ1 +λ2 of the surface Γ

ΔbΩ E.n + 〈DE.n,n〉= 0 on Γ . (10)

In flat pieces of the boundary this condition reduces to the usual Neumann condition.

Proposition 1. Let E be a smooth element (E ∈ H 2, see below) and the three
divergence-free elements (E0, E1, F)∈H2(Ω ,R3)×H1(Ω ,R3)×L2(0,τ;H1(Ω , R3)).
Then we have the following conclusions.

i) Let E be solution to Maxwell-metallic system (5), (9). Then E solves the mixed
wave problem (8), (9), (10) and, from Lemma 1, E solves also the free divergence
condition (6).

ii) Let E be solution to the wave equation (8) with “metallic” b.c. (9). Then E verifies
the Fourier-like condition (10) if and only if E verifies the free divergence condition
(6).

iii) Let E be a divergence-free solution to the “metallic” wave problem (8), (6), (9),
then E solves the Maxwell problem (5), (9), (10).

Proof. We consider e = divE; if E is solution to Maxwell problem (5) then e solves the
scalar wave equation with initial conditions ei = divEi = 0, i = 0,1 and right hand side
f = divF = 0. If E solves (10) then we get e = 0, as from the following result we get
e = 0 on the boundary:

Lemma 2. Let E ∈H2(Ω) solving the tangential Dirichlet condition (9), then we have
the following expression for the trace of divE:

divE|Γ = ΔbΩ 〈E,n〉+ 〈DE.n,n〉 on Γ . (11)

Proof. The divergence successively decomposes as follows at the boundary (see
[13,12]):

divE|Γ = divΓ (E)+ 〈DE.n,n〉= divΓ (E.nn)+ divΓ (EΓ )+ 〈DE.n,n〉
= 〈∇Γ (E.n),n〉+ E.ndivΓ (n)+ divΓ (EΓ )+ 〈DE.n,n〉 .

(12)

Obviously 〈∇Γ (E.n),n〉 = 0, the mean curvature of the surface Γ is ΔbΩ = divΓ (n)
and if the field E satisfies the tangential Dirichlet condition (9) we get the following
simple expression for the restriction to the boundary of the divergence:

div(E)|Γ = ΔbΩ 〈E,n〉+ 〈DE.n,n〉 . (13)

��

Then if E satisfies the extra “Fourier-like” condition (10) we get e = 0 on Γ , so that
e = 0. ��
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2.3 The Wave-Maxwell Mixed Problem

From previous considerations, it follows that under the divergence-free assumption for
the three data E0, E1, F , the following three problems are equivalent (in the sense that
any smooth solution of one of them is solution to the two others): Maxwell problem
(5), (9), Free-Wave problem (8), (6), (9), and Mixed-Wave problem (8), (9), (10). We
emphasize that any solution to Maxwell problem satisfies the divergence-free condition
(6) and the Fourier-like condition (10). Any solution to the Mixed-Wave problem satis-
fies (for free) the divergence-free condition (6). Any solution to the Free-Wave problem
satisfies (for free) the Fourier-like condition (10). The object of this paper is to develop
the proof of the following regularity result.

Theorem 1. Let (E0,E1,J) be divergence-free vector fields in

H1(Ω ,R3)2×L2(Ω ,R3)×H1(I,L2(Ω ,R3)) (14)

with zero tangential components: (E0)Γ = 0. Assume also curlE1 = 0. The Maxwell
problem (5), (9) has a unique solution

E ∈C0(Ī,H1(Ω ,R3))∩C1(Ī,L2(Ω ,R3)) (15)

verifying the boundary regularity:

curlE|Γ ∈ H−1/2(I×Γ ,R3) (16)

so that the magnetic field H at the boundary verifies

H|Γ ∈ H1/2(I,L2(Γ ,R3)). (17)

Moreover, we have
E|Γ ∈ H1/2(I,L2(Γ ,R3)). (18)

Furthermore, if J|Γ ∈ L2(I,L2(Γ )), from Ampère law (1) we obtain

curlH|Γ ∈ H−1/2(I,L2(Γ ,R3)). (19)

2.3.1 Tangential Decomposition
For any vector field G ∈ H1(Ω ,RN) denote by GΓ the tangential part GΓ =
G|Γ− < G,n > n and (see [12,8,6,11]) consider its tangential Jacobian matrix DΓ G =
D(GopΓ )|Γ and its transpose D∗Γ . To derive the regularity result we shall be concerned
with the following three terms at the boundary:

(DE.n)Γ , ∇Γ (E.n), Et . (20)

Lemma 3. For all E ∈H2(Ω ,RN), we have by direct computation:

DE|Γ = DE.n⊗n + DΓE. (21)
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Obviously, as E = EΓ + 〈E,n〉n, we have:

DΓ E = DΓ EΓ + DΓ (E.nn) (22)

so that

EΓ = 0 ⇒ DΓ E = DΓ (〈E,n〉n). (23)

Now as DΓ (〈E,n〉n) = 〈E,n〉DΓ (n)+ n⊗∇Γ (〈E,n〉) and as DΓ (n) = D2bΩ , we get
the following result.

Lemma 4. Assume that EΓ = 0. Then we have

DΓE = 〈E,n〉D2bΩ |Γ + n⊗∇Γ (〈E,n〉). (24)

Moreover as

divΓ E := divE|Γ −〈DE.n,n〉 (25)

when divE = 0, we get 〈DE.n,n〉 = −divΓ E , and if, in addition, EΓ = 0, we have
〈DE.n,n〉=−divΓ (〈E,n〉n), that is the following result.

Lemma 5. Denote by H = ΔbΩ the mean curvature. Then

EΓ = 0 and divE = 0 (26)

implies the following identities

i)

〈DE.n,n〉=−H E.n, (27)

ii)

DE.n = 〈DE.n,n〉n +(DE.n)Γ =−H E.nn +(DE.n)Γ (28)

and

|DE.n|2 = H2|E.n|2 + |(DE.n)Γ |2 (29)

iii)

DE =−H E.nn⊗n + (DE.n)Γ ⊗n + E.nD2b + n⊗∇Γ (E.n), (30)

iv)

DE..DE = H2|E.n|2 + |(DE.n)Γ |2 + |E.n|2D2b..D2b + |∇Γ (E.n)|2. (31)

Proposition 2. Let E ∈H2(Ω ,RN), divE = 0, EΓ = 0 , then:

DE..DE|Γ = (H2 + D2b..D2b)|E.n|2 + |(DE.n)Γ |2 + |∇Γ (E.n)|2, (32)

that is

DE..DE|Γ = |DE.n|2 + |E.n|2D2b..D2b + |∇Γ (E.n)|2. (33)
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2.4 Boundary Estimate of DE

Define 2ε def= DE + D∗E and 2σ def= DE−D∗E so that

DE = ε(E)+σ(E) (34)

and
‖curlE‖2

L2(Γ ,R3) ≤ 4‖DE‖2
L2(Γ ,RN2 )

. (35)

From the decomposition (21) we have:

‖DE‖L2(I,L2(Γ ,R3)) ≤ ‖DE.n⊗n‖+‖D2bE.n‖, (36)

but

‖DE.n⊗n‖2 =
∫ τ

0

∫
Γ
(DE.n⊗n)..(DE.n⊗n)dtdΓ . (37)

That is

‖DE.n⊗n‖2
L2(I,L2(Γ ,R3)) ≤

∫ τ

0

∫
Γ
|DE.n|2 dt dΓ

=
∫ τ

0

∫
Γ
{|(DE.n)Γ |2 + |< DE.n,n > |2}dt dΓ ,

(38)

but, as 〈DE.n,n〉=−〈E,n〉D2bΩ , we get the estimate (35).

2.5 Extractor Identity

Let I = ]0,τ[ be the time interval and for any integer k ≥ 1 define the spaces

Hk def= C0
(
Ī,Hk(Ω ,R3)

)
∩C1

(
Ī,Hk−1(Ω ,R3)

)
, (39)

H k def=
{

E ∈ Hk : divE = 0, EΓ = 0 on Γ
}

. (40)

Let F ∈ L2(I,L2(Ω ,R3)), E0 ∈ H1(Ω ,R3), E1 ∈ L2(Ω ,R3) with divE0 = divE1 = 0.
Consider E ∈H 1 solution of the equations

A.E := Ett −ΔE = F ∈ L2(I,L2(Ω ,R3)), (41)

E(0) = E0, Et(0) = E1. (42)

2.5.1 The Extractor e(V )
Let E ∈H 2, and V ∈ C0([0,τ[ , C2(D,RN)), 〈V (t, .),n〉 = 0 on ∂D. Consider its flow
mapping Ts = Ts(V ) and the derivative:

e(V ) def=
∂
∂ s

E (V,s)
∣∣∣∣
s=0

, (43)

where

E (V,s) def=
∫ 1

0

∫
Ωs

(
|Et ◦T−1

s |2−D(E ◦T−1
s )..D(E ◦T−1

s )
)

dxdt. (44)
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By change of variable
D(E ◦T−1

s )◦Ts = DE.DT−1
s (45)

we get the second expression

E (V,s) =
∫ 1

0

∫
Ω

(|Et |2− (DE.DT−1
s )..(DE.DT−1

s ))J(t)dxdt. (46)

We have two expressions (44) and (46) for the same term E (V,s). The first one is an
integral on a mobile domain Ωs(V ) while the second one is an integral over the fixed
domain Ω . So taking the derivative with respect to the parameter s we shall obtain two
different expressions for e that we shall respectively denote by e1 and e2.

2.5.2 Expression for e1
As the element E is smooth, E ∈H 2, we can directly apply the classical results from
[12]. For simplicity, assume that divV = 0 so that J(t) = 1. In this specific case we get

e =
∂
∂ s

E

∣∣∣∣
s=0

, (47)

and

e1 = 2
∫ 1

0

∫
Ω
{Et .(−DEt .V )−DE..D(−DE.V)}dxdt

+
∫ 1

0

∫
Γ
{|Et |2−DE..DE}vdΓ dt.

(48)

2.5.3 Green-Stokes Theorem
Using integration by parts:∫ 1

0

∫
Ω
{DE..D(DE.V)}dxdt =

∫ 1

0

∫
Ω
〈−ΔE,DE.V 〉 dxdt

+
∫ 1

0

∫
Γ
〈DE.n,DE.V〉 dΓ (x)dt.

(49)

2.5.4 Time Integration by Parts
Then ∫ 1

0

∫
Ω

Et .(DEt .V )dxdt =
∫ 1

0

∫
Ω

(−Ett .(DE.V )+ Et .(DE.W )) dxdt

−
∫
Ω

Et(0).(DE(0).W )dx.
(50)

Furthermore, assuming that the initial condition is of the form

E0 ∈ H1(Ω ,R3), E1 ∈ L2(Ω ,R3), (51)
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we get

e1 =2
∫ 1

0

∫
Ω
{Ett .(DE.V )−Et.(DE.W )−〈ΔE,DE.V 〉} dxdt

+ 2
∫
Ω

E1.(DE0.W )dx

+
∫ 1

0

∫
Γ
{(|Et |2−DE..DE)〈V,n〉+ 2〈DE.n,DE.V 〉}dΓ (x)dt.

(52)

The discussion is now on the last boundary integral.

2.5.5 Specific Choice for V at the Boundary
As the boundaryΓ = ∂Ω ∈ C2 we can apply all intrinsic geometry material introduced
in [6]. Denoting by p = pΓ the projection mapping onto the manifold Γ (which is
smoothly defined in a tubular neighborhood of Γ ) we consider the oriented distance
function b = bΩ = dΩ c − dΩ where Ω c = R

N \Ω , and its “localized version” defined
as follows (see [4]): let h > 0 be “a small” positive number and ρh(.) ≥ 0 be a cutting
scalar smooth function such that ρh(z) = 0 when |z| > h and ρ(z) = 1 when |z| < h/2.
Then set

bh
Ω

def= ρh ◦ bΩ (53)

and define the associate localized projection mapping

ph
def= Id−bh

Ω∇bh
Ω (54)

smoothly defined in the tubular neighborhood

Uh(Γ ) def= {x ∈ D : |bΩ (x)|< h}. (55)

Let any smooth element v ∈ C0(Γ ) be given and consider the vector field V of the
following form

V (t,x) def= W (x)(1− t), W (x) def= v◦ ph∇bh
Ω . (56)

Then the last term (boundary integral) in (52) takes the following form:∫ 1

0

∫
Γ
{(|Et |2−DE..DE)+ 2〈DE.n,DE.n〉}v(1− t)dΓ (x)dt. (57)

We get:

e1 =
∫ 1

0

∫
Γ
(|Et |2−DE..DE + 2|DE.n|2)vdΓ dt

+ 2
∫

Q
(Ett .DE.V −〈ΔE,DE.V 〉 dxdt−

∫
Ω
〈Et(0),DE(0).W 〉 dx.

(58)

As from (33) we have

DE..DE = |DE.n|2 + D2bΩ ..D2bΩ |E.n|2 + |∇ΓE.n|2 (59)

and as
|DE.n|2 = |(DE.n)Γ |2 +(ΔbΩ )2|E.n|2 (60)

we obtain the following result.
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Proposition 3

e1 =
∫ 1

0

∫
Γ
(τ− t){|Et|2 + |(DE.n)Γ |2−|∇Γ (E.n)|2

+ |E.n|2(H2−D2b..D2b)}vdΓ dt

+ 2
∫

Q
〈A.E,DE.V〉dQ−2

∫
Ω
〈E1,D(E0).W 〉 dx.

(61)

2.5.6 Second Expression for e
From (46) we obtain the s derivative as a distributed integral term as follows

e2 =
∫

Q

{
(|Et |2−DE..DE)divV (0)−2DE..(−DE.DV)

}
dxdt. (62)

2.5.7 Extractor Identity
As e = e1 = e2 we get∫

Σ
(τ− t){(|Et|2−|∇Γ (E.n)|2 + |(DE.n)Γ |2 + |E.n|2(H2−D2b..D2b))}vdΣ

=
∫

Q
{(|Et |2−DE..DE)divV −2DE..(−DE.DV)}dxdt

−
∫

Q
2(Ett −ΔE).DE.V dQ+

∫
Ω

2〈E1,DE0.W 〉 dx.

(63)

That is ∫
Σ
(τ− t){(|Et |2−|∇Γ (E.n)|2 +(DE.n)Γ |2)}vdΣ

=
∫

Q
{(|Et |2−DE..DE)divV −2DE..(−DE.DV)}dxdt

−2
∫

Q
2〈A.E,DE.V〉dQ+

∫
Ω

2〈E1,DE0.W 〉 dx

+
∫
Σ
(1− t)|E.n|2(D2b..D2b−H2)vdΣ .

(64)

Notice that the curvature terms

D2b..D2b−H2 = λ 2
1 +λ 2

2 − (λ1 +λ2)2 =−2κ , (65)

where κ = λ1λ2 is the Gauss curvature of the boundary Γ .

3 Regularity at the Boundary

We apply twice this last identity.
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3.1 Tangential Field Eτ

In a first step consider the “tangential vector field” obtained as Eτ def= E−E.∇bh
Ω ∇bh

Ω .
We get

Eτ
tt −ΔEτ = (Ett −ΔE)− (Ett−ΔE).∇bh

Ω ∇bh
Ω +C. (66)

That is A.Eτ = (A.E)τ +C, where the commutator C ∈ L2(0,T,L2(Ω ,R3)) is given by

C
def= −E.Δbh

Ω ∇bh
Ω −2D2bh

Ω .∇bh
Ω ∇bh

Ω −E.∇bh
Ωd2bh

Ω −2D2bh
Ω .∇(E.bh

Ω ). (67)

The conclusion formally derives as follows: as Eτ ∈ L2(I,H1(Ω ,R3)) we get the traces
terms

Eτ .n = Eτ
t = 0 ∈ L2(I,H1/2(Γ )). (68)

Since e1 = e2, we conclude by choosing the vector field of the form

V (t,x) = (τ− t)∇bh
Ω = (τ − t)ρ ′h ◦ bΩ ∇bΩ . (69)

That is v = 1 and as for 0 < t ≤ τ/2 we have τ/2≤ τ− t, we get:

τ/2
∫ τ/2

0

∫
Γ
|(DEτ .n)Γ |2 dΓ dt ≤

∫ τ/2

0
(τ− t)

∫
Γ
|(DEτ .n)Γ |2 dΓ dt

≤
∫ τ

0
(τ− t)

∫
Γ
|(DEτ .n)Γ |2 dΓ dt

=
∫

Q
(τ− t)

{
(|Eτ

t |2−DEτ ..DEτ)div(∇bh
Ω )−2DEτ ..(−DEτ .D(∇bh

Ω ))
}

dQ

−2
∫

Q
(τ − t)

〈
A.Eτ ,DEτ .(∇bh

Ω )
〉

dQ+
∫
Ω

2
〈

Eτ
1 ,DEτ

0 .(∇bh
Ω )
〉

dx.

(70)

As for 0 < t < τ we have 2/τ(τ− t)≤ 2 we get, with T = τ/2∫ T

0

∫
Γ
|(DEτ .n)Γ |2 dΓ dt

≤ 2
∫ 2T

0

∫
Ω

{
(|Eτ

t |2−DEτ ..DEτ)div(∇bh
Ω )−2DEτ ..(−DEτ .D(∇bh

Ω ))
}

dxdt

−4
∫ 2T

0

∫
Ω

〈
A.Eτ ,DEτ .(∇bh

Ω )
〉

dxdt + 4/T
∫
Ω

〈
Eτ

1 ,DEτ
0 .(∇bh

Ω )
〉

dx,

(71)

there exists a constant M > 0 such that∫ T

0

∫
Γ
{|Eτ

t |2 + |(DEτ .n)Γ |2}dΓ dt

≤M ‖∇bh
Ω‖W1,∞(Ω ,RN ) . . .

·
{
‖Eτ‖2

H 1(0,2T) + |A.Eτ |L2([0,2T ]×Ω ,R3) + 1/T(|Eτ
0 |2H1(Ω ,R3) + |E

τ
1 |2L2(Ω ,R3))

}
.

(72)

Notice that
∇bh

Ω = ρ ′h ◦ bΩ∇bΩ , (73)
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so that
‖∇bh

Ω‖L∞(RN ,RN ) ≤Max0≤s≤h|ρ ′h(s)|. (74)

Moreover

D2bh
Ω = D(ρ ′h ◦ bΩ∇bΩ ) = ρ ′′h ◦ bΩ∇bΩ ×∇bΩ +ρ ′h ◦ bΩD2bΩ (75)

so that

‖D2bh
Ω‖L∞(RN ,RN2 ) ≤

Max0≤s≤h|ρ ′′h (s)|+ Max0≤s≤h|ρ ′h(s)| ‖D2bΩ‖L∞(Uh(Γ ),RN2 ).
(76)

By choice of ρh in the form ρh(s) = f (2s/h−1) when h/2 < s < h and F(x) = 2x3−
3x2 + 1, we obtain

‖ρh‖C2([0,h]) ≤
8
h2 . (77)

So the previous estimate is in the form

‖D2bh
Ω‖L∞(RN ,RN2 ) ≤C0

1
h2 ‖D

2bΩ‖L∞(Uh(Γ ),RN2 ) (78)

for the larger h such that the following condition holds

D2bΩ ∈ L∞(Uh(Γ ),RN2
). (79)

3.1.1 Regularity Result for Eτ

Proposition 4. Let Ω be a bounded domain in R
3 with boundary Γ being a C2 mani-

fold. Let h verify condition (79).
There exists a constant M > 0 such that for any data (E0,E1,F) ∈ L2(Ω ,R3)×

H1(Ω ,R3)×L2(Ω ,R3), the vector

Eτ ∈H 1(0,2τ) def= C0 ([0,2τ],H1(Ω ,R3)
)
∩C1 ([0,2τ],L2(Ω ,R3)

)
(80)

verifies
(DEτ .n)Γ ∈ L2(0,τ;L2(Γ ,R3)) (81)

and ∫ T

0

∫
Γ
{|(DEτ .n)Γ |2}dΓ dt

≤M‖∇bh
Ω‖W1,∞(Ω ,RN) . . .

· {‖E‖2
H 1(0,2T) + |F |L2([0,2T ]×Ω ,R3) + 1/T |Eτ

0 |2H1(Ω ,R3) + 1/T |Eτ
1 |2L2(Ω ,R3)}

(82)

It can be verified that
D(Eτ).n = (DE.n)Γ . (83)
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3.2 The Normal Vector Field e

Set

e
def= E.∇bh

Ω . (84)

Lemma 6

ett −Δe = (Ett −ΔE).∇bh
Ω +θ , (85)

where

θ = D2bh
Ω ..DE + div(D2bh

Ω .E) and
∂
∂n

e = 〈DE.n,n〉=−ΔbΩ e on Γ . (86)

Then e is solution of the wave problem:

ett −Δe =Θ , (87)

where

Θ = F.∇bh
Ω + D2bh

Ω ..DE + div(D2bh
Ω .E). (88)

3.3 Extension to R

Let

ρ ∈C2(R), ρ ≥ 0, supp ρ ⊂ [−2τ,+2τ], ρ = 1 on [−τ,+τ]. (89)

Define

ẽ
def= ρ(t)e(t), t ≥ 0, ẽ = ρ(t)(e0 + te1), t < 0, (90)

which turns to be solution on R to the wave problem

ẽtt −Δ ẽ = H and ∂
∂n ẽ = g, (91)

where

g
def=

⎧⎨⎩
−ΔbΩ ẽ for t > 0

ρ(t)(
∂
∂n

e0 + t
∂
∂n

e1) for t < 0,
on Γ (92)

and H ∈ L2(R,L2(Ω)) verifies

H
def=

⎧⎨⎩ρ(t)Θ +ρ ′′e + 2ρ ′
∂
∂ t

e for t > 0

ρ ′′(e0 + te1)+ 2ρ ′e1−ρ(Δe0 + tΔe1) for t < 0.

(93)
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4 Fourier Transform

Define

z(ζ )(x) def=
∫ +∞

−∞
exp(−iζ t) ẽ(t,x)dt, (94)

which turns to be solution to
∂
∂n

z = F .g on Γ . (95)

Consider the perturbed domain Ωs = Ts(V )(Ω) with boundary Γs = Ts(V )(Γ ), the fol-
lowing integral and derivative

E (s,V ) def=
∫ +∞

−∞
dζ
∫
Ωs(V )

(
|ζ‖z◦Ts(V )−1|2 +

1
1 + |ζ | |∇(z◦Ts(V )−1)|2

)
dx, (96)

e
def=

d
ds

E (s,V )
∣∣∣∣
s=0

, (97)

and compute the derivative in the two different ways.

4.1 By Moving Domain Derivative

Let

e1
def=
∫ +∞

−∞
dζ
∫
Ω

(
|ζ |2Re{〈z,∇z̄.(−V)〉}+

1
1 + |ζ |2Re{〈∇z,∇(∇z̄(−V ))〉}

)
dx

+
∫ +∞

−∞
dζ
(∫

Γ

{
|ζ | |z|2 +

1
1 + |ζ | |∇z|2

}
〈V,n〉dΓ (x)

)
.

(98)

By Stokes theorem we get,∫ +∞

−∞
dζ
∫
Ω

1
1 + |ζ |2Re{∇(z).∇(∇z̄(−V ))}dx

=
∫ +∞

−∞
dζ
∫
Ω

1
1 + |ζ |2Re{Δ(z),(∇z̄.V )}dx

−
∫ +∞

−∞

∫
Γ

1
1 + |ζ |2Re{〈∇z.n,∇z̄.V 〉}dΓ dt.

(99)

As V = vn on Γ , we get for the last term:

−
∫ +∞

−∞

∫
Γ

1
1 + |ζ |2Re{〈∇z.n,∇z̄.n〉}vdΓ dt, (100)

but on Γ we have
〈∇z.n,∇z̄.n〉= |F .g|2. (101)
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Finally, we get

e1 =
∫ +∞

−∞

∫
Γ
{|ζ | |z|2 +

1
1 + |ζ |Re{〈∇z,∇z̄〉}−2|F .g|2}vdΓ dt

+
∫ +∞

−∞
dζ
∫
Ω

(|ζ |2Re{〈z,∇z̄.(−V )〉}+
1

1 + |ζ |2Re{Δz,(∇z̄.V )})dx.
(102)

Then ∫ +∞

−∞

∫
Γ
{|ζ | |z|2 +

1
1 + |ζ | |∇Γ z|2}v

=
∫ +∞

−∞

∫
Γ

1
1 + |ζ | |F .g|2 dΓ dt

−
∫ +∞

−∞
dζ
∫
Ω

1
1 + |ζ |2Re{|ζ |2z+F .H(∇z̄.V )}dx

+
∫ +∞

−∞
dζ
∫
Ω
|ζ |2Re{〈z,∇z̄.V 〉}dx + e2.

(103)

Hence there exists M > 0 such that∫ +∞

−∞

∫
Γ
{|ζ | |z|2 +

1
1 + |ζ | |∇Γ z|2}v≤M

{
‖z‖2

L2(R,H1(Ω)) +‖z‖2
L2(R,L2(Γ ))

}
. (104)

We have
√
|ζ |z ∈ L2(Rζ ,L

2(Γ )) and 1√
|ζ |
∇Γ z ∈ L2(Rζ ,L

2(Γ ,RN)). By a density ar-

gument, we conclude that

E.n ∈ H1/2(I,L2(Γ ))∩L2(I, H1/2(Γ )) (105)

∇Γ (E.n) ∈ H−1/2(I, L2(Γ ,RN)). (106)
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