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Abstract. We present a new approach for automatic verification of
data-dependent programs manipulating dynamic heaps. A heap is encoded by a
graph where the nodes represent the cells, and the edges reflect the pointer struc-
ture between the cells of the heap. Each cell contains a set of variables which
range over the natural numbers. Our method relies on standard backward reacha-
bility analysis, where the main idea is to use a simple set of predicates, called sig-
natures, in order to represent bad sets of heaps. Examples of bad heaps are those
which contain either garbage, lists which are not well-formed, or lists which are
not sorted. We present the results for the case of programs with a single next-
selector, and where variables may be compared for (in)equality. This allows us to
verify for instance that a program, like bubble sort or insertion sort, returns a list
which is well-formed and sorted, or that the merging of two sorted lists is a new
sorted list. We report on the result of running a prototype based on the method on
a number of programs.

1 Introduction

We consider the automatic verification of data-dependent programs that manipulate dy-
namic linked lists. The contents of the linked lists, here refered to as a heap, is rep-
resented by a graph. The nodes of the graph represent the cells of the heap, while the
edges reflect the pointer structure between the cells (see Figure 1 for a typical example).
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Fig. 1. A typical graph representing the heap

The pro-
gram has a
dynamic be-
haviour in
the sense that
cells may be
created and
deleted; and
that pointers
may be re-directed during the execution of the program. The program is also data-
dependent since the cells contain variables, ranging over the natural numbers, that can
be compared for (in)equality and whose values may be updated by the program. The
values of the local variables are provided as attributes to the corresponding cells. Fi-
nally, we have a set of (pointer) variables which point to different cells inside the heap.
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In this paper, we consider the case of programs with a single next-selector, i.e., where
each cell has at most one successor. For this class of programs, we give a method for au-
tomatic verification of safety properties. Such properties can be either structural prop-
erties such as absence of garbage, sharing, and dangling pointers; or data properties
such as sortedness and value uniqueness. We provide a simple symbolic representa-
tion, which we call signatures, for characterizing (infinite) sets of heaps. Signatures can
also be represented by graphs. One difference, compared to the case of heaps, is that
some parts may be missing from the graph of a signature. For instance, the absence of
a pointer means that the pointer may point to an arbitrary cell inside a heap satisfying
the signature. Another difference is that we only store information about the ordering
on values of the local variables rather than their exact values. A signature can be in-
terpreted as a forbidden pattern which should not occur inside the heap. The forbidden
pattern is essentially a set of minimal conditions which should be satisfied by any heap
in order for the heap to satisfy the signature. A heap satisfying the signature is con-
sidered to be bad in the sense that it contains a bad pattern which in turn implies that
it violates one of the properties mentioned above. Examples of bad patterns in heaps
are garbage, lists which are not well-formed, or lists which are not sorted. This means
that checking a safety property amounts to checking the reachability of a finite set of
signatures. We perform standard backward reachability analysis, using signatures as a
symbolic representation, and starting from the set of bad signatures. We show how to
perform the two basic operations needed for backward reachability analysis, namely
checking entailment and computing predecessors on signatures.

For checking entailment, we define a pre-order � on signatures, where we view a
signature as three separate graphs with identical sets of nodes. The edge relation in
one of the three graphs reflects the structure of the heap graph, while the other two
reflect the ordering on the values of the variables (equality resp. inequality). Given two
signatures g1 and g2, we have g1 � g2 if g1 can be obtained from g2 by a sequence
of transformations consisting of either deleting an edge (in one of the three graphs),
a variable, an isolated node, or contracting segments (i.e., sequence of nodes) without
sharing in the structure graph. In fact, this ordering also induces an ordering on heaps
where h1 � h2 if, for all signatures g, h2 satisfies g whenever h1 satisfies g.

When performing backward reachability analysis, it is essential that the underlying
symbolic representation, signatures in our case, is closed under the operation of com-
puting predecessors. More precisely, for a signature g, let us define Pre(g) to be the
set of predecessors of g, i.e., the set of signatures which characterize those heaps from
which we can perform one step of the program and as a result obtain a heap satis-
fying g. Unfortunately, the set Pre(g) does not exist in general under the operational
semantics of the class of programs we consider in this paper. Therefore, we consider an
over-approximation of the transition relation where a heap h is allowed first to move to
smaller heap (w.r.t. the ordering �) before performing the transition. For the approx-
imated transition relation, we show that the set Pre(g) exists, and that it is finite and
computable.

One advantage of using signatures is that it is quite straightforward to specify sets
of bad heaps. For instance, forbidden patterns for the properties of list well-formedness
and absence of garbage can each be described by 4-6 signatures, with 2-3 nodes in
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each signature. Also, the forbidden pattern for the property that a list is sorted consists
of only one signature with two nodes. Furthermore, signatures offer a very compact
symbolic representation of sets of bad heaps. In fact, when verifying our programs, the
number of nodes in the signatures which arise in the analysis does not exceed ten. In
addition, the rules for computing predecessors are local in the sense that they change
only a small part of the graph (typically one or two nodes and edges). This makes it
possible to check entailment and compute predecessors quite efficiently.

The whole verification process is fully automatic since both the approximation and
the reachability analysis are carried out without user intervention. Notice that if we
verify a safety property in the approximate transition system then this also implies its
correctness in the original system. We have implemented a prototype based on our
method, and carried out automatic verification of several programs such as insertion
in a sorted lists, bubble sort, insertion sort, merging of sorted lists, list partitioning,
reversing sorted lists, etc. Although the procedure is not guaranteed to terminate in
general, our prototype terminates on all these examples.

Outline. In the next section, we describe our model of heaps, and introduce the pro-
gramming language together with the induced transition system. In Section 3, we in-
troduce the notion of signatures and the associated ordering. Section 4 describes how
to specify sets of bad heaps using signatures. In Section 5 we give an overview of
the backward reachability scheme, and show how to compute the predecessor and en-
tailment relations on signatures. The experimental results are presented in Section 6.
In Section 7 we give some conclusions and directions for future research. Finally, in
Section 8, we give an overview of related approaches and the relationship to our work.

2 Heaps

In this section, we give some preliminaries on programs which manipulate heaps.
Let N be the set of natural numbers. For sets A and B, we write f : A→ B to denote

that f is a (possibly partial) function from A to B. We write f (a) = ⊥ to denote that
f (a) is undefined. We use f [a← b] to denote the function f ′ such that f ′(a) = b and
f ′(x) = f (x) if x 	= a. In particular, we use f [a←⊥] to denote the function f ′ which
agrees on f on all arguments, except that f ′(a) is undefined.

Heaps. We consider programs which operate on dynamic data structures, here called
heaps. A heap consists of a set of memory cells (cells for short), where each cell has one
next-pointer. Examples of such heaps are singly liked lists and circular lists, possibly
sharing their parts (see Figure 1). A cell in the heap may contain a datum which is
a natural number. A program operating on a heap may use a finite set of variables
representing pointers whose values are cells inside the heap. A pointer may have the
special value null which represents a cell without successors. Furthermore, a pointer
may be dangling which means that it does not point to any cell in the heap. Sometimes,
we write the “x-cell” to refer to the the cell pointed to by the variable x. We also write
“the value of the x-cell” to refer to the value stored inside the cell pointed to by x. A
heap can naturally be encoded by a graph, as the one of Figure 1. A vertex in the graph
represents a cell in the heap, while the edges reflect the successor (pointer) relation on
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the cells. A variable is attached to a vertex in the graph if the variable points to the
corresponding cell in the heap. Cell values are written inside the nodes (absence of a
number means that the value is undefined).

Assume a finite set X of variables. Formally, a heap is a tuple (M,Succ,λ,Val) where

– M is a finite set of (memory) cells. We assume two special cells # and ∗ which
represent the constant null and the dangling pointer value respectively. We define
M• := M∪{#,∗}.

– Succ : M→M•. If Succ(m1) = m2 then the (only) pointer of the cell m1 points to the
cell m2. The function Succ is total which means that each cell in M has a successor
(possibly # or ∗). Notice that the special cells # and ∗ have no successors.

– λ : X→M• defines the cells pointed to by the variables. The function λ is total, i.e.,
each variable points to one cell (possibly # or ∗).

– Val : M→ N is a partial function which gives the values of the cells.

In Figure 1, we have 17 cells of which 15 are in M, The set X is given by {x,y,z,v,w}.
The successor of the z-cell is null. Variable w is attached to the cell ∗, which means
that w is dangling (w does not point to any cell in the heap). Furthermore, the value of
the x-cell is 6, the value of the y-cell is not defined, the value of the successor of the
y-cell is 3, etc.

Remark. In fact, we can allow cells to contain multiple values. However, to simplify
the presentation, we keep the assumption that a cell contains only one number. This
will be sufficient for our purposes; and furthermore, all the definitions and methods we
present in the paper can be extended in a straightforward manner to the general case.
Also, we can use ordered domains other than the natural numbers such as the integers,
rationals, or reals.

Programming Language. We define a simple programming language. To this end, we
assume, together with the earlier mentioned set X of variables, the constant null where
null 	∈ X . We define X# := X ∪{null}. A program P is a pair (Q,T ) where Q is a
finite set of control states and T is a finite set of transitions. The control states represent
the locations of the program. A transition is a triple (q1,op,q2) where q1,q2 ∈ Q are
control states and op is an operation. In the transition, the program changes location
from q1 to q2, while it checks and manipulates the heap according to the operation op.
The operation op is of one of the following forms

– x = y or x 	= y where x,y ∈ X#. The program checks whether the x- and y-cells are
identical or different.

– x := y or x.next := y where x ∈ X and y ∈ X#. In the first operation, the program
makes x point to the y-cell, while in the second operation it updates the successor
of the x-cell, and makes it equal to the y-cell.

– x := y.next where x,y ∈ X . The variable x will now point to the successor of the
y-cell.

– new(x), delete(x), or read(x), where x ∈ X . The first operation creates a new cell
and makes x point to it; the second operation removes the x-cell from the heap;
while the third operation reads a new value and assigns it to the x-cell.



Automated Analysis of Data-Dependent Programs with Dynamic Memory 201

6
x

1

6

y

z

3

h0

6
x

1

6

y

9
z

3

h1

6

1

6

y

9
z

3 x

h2

6

1

6

y

9
z

∗
x

h3

6

1

6

y

9
z

∗
x

h4

6

1

6

y

9
z

∗
x

h5

Fig. 2. Starting from the heap h0, the heaps h1, h2, h3, h4, and h5 are generated by performing the
following sequence of operations: z.num :> x.num, x := y.next, delete(x), new(x), and z.next := y.
To simplify the figures, we omit the special nodes # and ∗ unless one of the variables x,y,z is
attached to them. For this reason the cell # is missing in all the heaps, and ∗ is present only in
h3,h4,h5.

– x.num = y.num, x.num < y.num, x.num := y.num, x.num :> y.num, or x.num :<
y.num, where x,y ∈ X . The first two operations compare the values of (number
stored inside) the x- and y-cells. The third operation copies the value of the y-cell to
the x-cell. The fourth (fifth) operation assigns non-deterministically a value to the
x-cell which is larger (smaller) than that of the y-cell.

Figure 2 illustrates the effect of a sequence of operations of the forms described above
on a number of heaps. Examples of some programs can be found in [2].

Transition System. We define the operational semantics of a program P = (Q,T ) by
giving the transition system induced by P. In other words, we define the set of configu-
rations and a transition relation on configurations. A configuration is a pair (q,h) where
q ∈ Q represents the location of the program, and h is a heap.

We define a transition relation (on configurations) that reflects the manner in which
the instructions of the program change a given configuration. First, we define some op-
erations on heaps. Fix a heap h = (M,Succ,λ,Val). For m1,m2 ∈ M, we use
(h.Succ) [m1← m2] to denote the heap h′ we obtain by updating the successor
relation such that the cell m2 now becomes the successor of m1 (without changing
anything else in h). Formally, h′ = (M,Succ′,Val,λ) where Succ′ = Succ [m1← m2].
Analogously, (h.λ) [x← m] is the heap we obtain by making x point to the cell m; and
(h.Val) [m← i] is the heap we obtain by assigning the value i to the cell m. For instance,
in Figure 2, let hi be of the form (Mi,Succi,Vali,λi) for i ∈ {0,1,2,3,4,5}. Then, we
have h1 = (h0.Val) [λ0(z)← 9] since we make the value of the z-cell equal to 9. Also,
h2 = (h1.λ1) [x← Succ1(λ1(y))] since we make x point to the successor of the y-cell.
Furthermore, h5 = (h4.Succ4) [λ4(z)← λ4(y)] since we make the y-cell the successor of
the z-cell.
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Consider a cell m ∈M. We define h�m to be the heap h′ we get by deleting the cell
m from h. More precisely, we define h′ := (M′,Succ′,λ′,Val′) where

– M′ = M−{m}.
– Succ′(m′)= Succ(m′) if Succ(m′) 	= m, and Succ′(m′)= ∗ otherwise. In other words,

the successor of cells pointing to m will become dangling in h′.
– λ′(x)= ∗ if λ(x)= m, and λ′(x) = λ(x) otherwise. In other words, variables pointing

to the same cell as x in h will become dangling in h′.
– Val′(m′) = Val(m′) if m′ ∈ M′. That is, the function Val′ is the restriction of Val

to M′: it assigns the same values as Val to all the cells which remain in M′ (since
m 	∈M′, it not meaningful to speak about Val(m)).

In Figure 2, we have h3 = h2�λ2(x).
Let t = (q1,op,q2) be a transition and let c = (q,h) and c′= (q′,h′) be configurations.

We write c
t−→ c′ to denote that q = q1, q′ = q2, and h

op−→ h′, where h
op−→ h′ holds if

we obtain h′ by performing the operation op on h. For brevity, we give the definition of
the relation

op−→ for three types of operations. The rest of the cases can be found in [2].

– op is of the form x := y.next, λ(y) ∈ M, Succ(λ(y)) 	= ∗, and h′ =
(h.λ) [x← Succ(λ(y))].

– op is of the from new(x), M′ = M ∪ {m} for some m 	∈ M, λ′ = λ [x← m],
Succ′ = Succ [m←∗], Val′(m′) = Val(m′) if m′ 	= m, and Val′(m) = ⊥. This op-
eration creates a new cell and makes x point to it. The value of the new cell is not
defined, while the successor is the special cell ∗. As an example of this operation,
see the transition from h3 to h4 in Figure 2.

– op is of the form x.num :> y.num, λ(x) ∈ M, λ(y) ∈ M, Val(λ(y)) 	= ⊥, and h′ =
(h.Val) [λ(x)← i], where i > Val(λ(y)).

We write c −→ c′ to denote that c
t−→ c′ for some t ∈ T ; and use

∗−→ to denote the
reflexive transitive closure of −→. The relations −→ and

∗−→ are extended to sets of
configurations in the obvious manner.

Remark. One could also allow deterministic assignment operations of the form x.num :=
y.num+ k or x.num := y.num− k for some constant k. However, according the approxi-
mate transition relation which we define in Section 5, these operations will have identical
interpretations as the non-deterministic operations given above.

3 Signatures

In this section, we introduce the notion of signatures. We will define an ordering on
signatures from which we derive an ordering on heaps. We will then show how to use
signatures as a symbolic representation of infinite sets of heaps.

Signatures. Roughly speaking, a signature is a graph which is “less concrete” than a
heap in the following sense:

– We do not store the actual values of the cells in a signature. Instead, we define an
ordering on the cells which reflects their values.

– The functions Succ and λ in a signature are partial (in contrast to a heap in which
these functions are total).
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Formally, a signature g is a tuple of the form (M,Succ,λ,Ord), where M, Succ, λ
are defined in the same way as in heaps (Section 2), except that Succ and λ are now
partial. Furthermore, Ord is a partial function from M×M to the set {≺,≡}. Intu-
itively, if Succ(m) = ⊥ for some cell m ∈M, then g puts no constraints on the succes-
sor of m, i.e., the successor of m can be any arbitrary cell. Analogously, if λ(x) = ⊥,
then x may point to any of the cells. The relation Ord constrains the ordering on the
cell values. If Ord(m1,m2) =≺ then the value of m1 is strictly smaller than that of
m2; and if Ord(m1,m2) =≡ then their values are equal. This means that we abstract
away the actual values of the cells, and only keep track of their ordering (and whether
they are equal). For a cell m, we say that the value of m is free if Ord(m,m′) = ⊥
and Ord(m′,m) = ⊥ for all other cells m′. Abusing notation, we write m1 ≺ m2 (resp.
m1 ≡ m2) if Ord(m1,m2) =≺ (resp. Ord(m1,m2) =≡).

We represent signatures graphically in a manner similar to that of heaps. Figure 3
shows graphical representations of six signatures g0, . . . ,g5 over the set of variables
{x,y,z}. If a vertex in the graph has no successor, then the successor of the correspond-
ing cell is not defined in g (e.g., the y-cell in g4). Also, if a variable is missing in
the graph, then this means that the cell to which the variable points is left unspeci-
fied (e.g., variable z in g3). The ordering Ord on cells is illustrated by dashed arrows.
A dashed single-headed arrow from a cell m1 to a cell m2 indicates that m1 ≺ m2. A
dashed double-headed arrow between m1 and m2 indicates that m1 ≡ m2. To simplify
the figures, we omit self-loops indicating value reflexivity (i.e., m≡m). In this manner,
we can view a signature as three graphs with a common set of vertices, and with three
edge relations; where the first edge relation gives the graph structure, and the other two
define the ordering on cell values (inequality resp. equality).
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Fig. 3. Examples of signatures

In fact, each heap h =
(M,Succ,λ,Val) induces a unique
signature which we denote by
sig (h). More precisely, sig(h) :=
(M,Succ,λ,Ord) where, for all
cells m1,m2 ∈ M, we have m1 ≺
m2 iff Val(m1) < Val(m2) and
m1 ≡m2 iff Val(m1) = Val(m2). In
other words, in the signature of h,
we remove the concrete values in
the cells and replace them by the
ordering relation on the cell val-
ues. For example, in Figure 2 and
Figure 3, we have g0 = sig(h0).

Signature Ordering. We define
an entailment relation, i.e., order-
ing � on signatures. The intuition
is that each signature can be inter-
preted as a predicate which char-
acterizes an infinite set of heaps.
The ordering is then the inverse of
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implication: smaller signatures impose less restrictions and hence characterize larger
sets of heaps. We derive a small signature from a larger one, by deleting cells, edges,
variables in the graph of the signature, and by weakening the ordering requirements on
the cells (the latter corresponds to deleting edges encoding the two relations on data
values). To define the ordering, we give first definitions and describe some operations
on signatures. Fix a signature g = (M,Succ,λ,Ord).

A cell m ∈ M is said to be semi-isolated if there is no x ∈ X with λ(x) = m, the
value of m is free, Succ−1(m) = /0, and either Succ(m) = ⊥ or Succ(m) = ∗. In other
words, m is not pointed to by any variables, its value is not related to that of any other
cell, it has no predecessors, and it has no successors (except possibly ∗). We say that m
is isolated if it is semi-isolated and in addition Succ(m) = ⊥. A cell m ∈M is said to
be simple if there is no x ∈ X with λ(x) = m, the value of m is free, |Succ−1(m)| = 1,
and Succ(m) 	=⊥. In other words, m has exactly one predecessor, one successor and no
label. In Figure 3, the topmost cell of g3 is isolated, and the successor of the x-cell in g4

is simple. In Figure 1, the cell to the left of the w-cell is semi-isolated in the signature
of the heap.

The operations (g.Succ) [m1←m2] and (g.λ)[x← m] are defined in identical fash-
ion to the case of heaps. Furthermore, for cells m1,m2 and � ∈ {≺,≡,⊥}, we define
(g.Ord) [(m1,m2)← �] to be the signature g′ we obtain from g by making the ordering
relation between m1 and m2 equal to �. For a variable x, we define g�x to be the signa-
ture g′ we get from g by deleting the variable x from the graph, i.e., g′ = (g.λ)[x←⊥].
For a cell m, we define the signature g′ = g�m = (M′,Succ′,λ′,Ord′) in a manner
similar to the case of heaps. The only difference is that Ord′ (rather than Val′) is the
restriction of Ord to pairs of cells both of which are different from m.

Now, we are ready to define the ordering. For signatures g = (M,Succ,λ,Ord) and
g′ = (M′,Succ′,λ′,Ord′), we write that g � g′ to denote that one of the following prop-
erties is satisfied:

– Variable Deletion: g = g′ � x for some variable x,
– Cell Deletion: g = g′ �m for some isolated cell m ∈M′,
– Edge Deletion: g = (g′.Succ) [m←⊥] for some m ∈M′,
– Contraction: there are cells m1,m2,m3 ∈ M′ and a signature g1 such that m2 is

simple, Succ′(m1) = m2, Succ′(m2) = m3, g1 = (g′.Succ) [m1← m3] and g = g1�
m2, or

– Order Deletion: g = (g′.Ord) [(m1,m2)←⊥] for some cells m1,m2 ∈M′.

We write g � g′ to denote that there are g0 � g1 � g2 � · · ·� gn with n ≥ 0, g0 = g,
and gn = g′. That is, we can obtain g from g′ by performing a finite sequence of vari-
able deletion, cell deletion, edge deletion, order deletion, and contraction operations.
In Figure 3 we obtain: g1 from g0 through three order deletions; g2 from g1 through
one order deletion; g3 from g2 through one variable deletion and two edge deletions; g4

from g3 through one node deletion and one edge deletion; and g5 from g4 through one
contraction. It means that g5 � g4 � g3 � g2 � g1 � g0 and hence g5 � g0.

Heap Ordering
We define an ordering � on heaps such that h � h′ iff sig(h) � sig(h′). For a heap h
and a signature g, we say that h satisfies g, denoted h |= g, if g� sig(h). In this manner,
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each signature characterizes an infinite set of heaps, namely the set [[g]] := {h|h |= g}.
Notice that [[g]] is upward closed w.r.t. the ordering� on heaps. We also observe that, for
signatures g and g′, we have that g� g′ iff [[g′]]⊆ [[g]]. For a (finite) set G of signatures
we define [[G]] :=

⋃
g∈G [[g]]. Considering the heaps of Figure 2 and the signatures of

Figure 3, we have h1 |= g0, h2 	|= g0, h0 � h1, h0 	� h2, etc.

Remark. Our definition implies that signatures cannot specify “exact distances” be-
tween cells. For instance, we cannot specify the set of heaps in which the x-cell and the
y-cell are exactly of distance one from each other. In fact, if such a heap is in the set
then, since we allow contraction, heaps where the distance is larger than one will also
be in the set. On the other hand, we can characterize sets of heaps where two cells are
at distance at least k from each other for some k ≥ 1.

4 Bad Configurations

In this section, we show how to use signatures in order to specify sets of bad heaps for
programs which produce ordered linear lists. A signature is interpreted as a forbidden
pattern which should not occur inside the heap. Typically, we would like such a program
to produce a heap which is a linear list. Furthermore, the heap should not contain any
garbage, and the output list should be ordered. For each of these three properties, we
describe the corresponding forbidden patterns as a set of signatures which characterize
exactly those heaps which violate the property. Later, we will collect all these signatures
into a single set which exactly characterizes the set of bad configurations.

First, we give some definitions. Fix a heap h = (M,Succ,λ,Val). A loop in h is a set
{m0, . . . ,mn} of cells such that Succ(mi) = mi+1 for all i : 0≤ i < n, and Succ(mn) = m0.
For cells m,m′ ∈M, we say that m′ is visible from m if there are cells m0,m1, . . . ,mn for
some n ≥ 0 such that m0 = m, mn = m′, and mi+1 = Succ(mi) for all i : 0 ≤ i < n. In
other words, there is a (possibly empty) path in the graph leading from m to m′. We say
that m′ is strictly visible from m if n > 0 (i.e. the path is not empty). A set M′ ⊆M is
said to be visible from m if some m′ ∈M′ is visible from m.

Well-Formedness. We say that h is well-formed w.r.t a variable x if # is visible form the
x-cell. Equivalently, neither the cell ∗ nor any loop is visible from the x-cell. Intuitively,
if a heap satisfies this condition, then the part of the heap visible from the x-cell forms
a linear list ending with #. For instance, the heap of Figure 1 is well-formed w.r.t. the
variables v and z.

In Figure 2, h0 is not well-formed w.r.t. the variables

x ∗b1: b2: ∗
x

x
b3: b4: x

x and z (a loop is visible), and h4 is not well-formed w.r.t.
z (the cell ∗ is visible). The set of heaps violating well-
formedness w.r.t. x are characterized by the four signatures
in the figure to the right. The signatures b1 and b2 charac-
terize (together) all heaps in which the cell ∗ is visible from
the x-cell. The signatures b3 and b4 characterize (together) all heaps in which a loop is
visible from the x-cell.
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x
b5: b6:

x

x
#b7: b8: #

x

x
b9: ∗ b10: ∗

x

Garbage. We say that h contains garbage w.r.t a vari-
able x if there is a cell m ∈ M in h which is not visi-
ble from the x-cell. In Figure 2, the heap h0 contains
one cell which is garbage w.r.t. x, namely the cell with
value 1. The figure to the right shows six signatures
which together characterize the set of heaps which con-
tain garbage w.r.t. x.

Sortedness. A heap is said to be sorted if it satisfies the condition that whenever a cell
m1 ∈ M is visible from a cell m2 ∈ M then Val(m1) ≤ Val(m2).

b11:
For instance, in Figure 2, only h5 is sorted. The figure to the right
shows a signature which characterizes all heaps which are not
sorted.

Putting Everything Together. Given a (reference) variable x, a configuration is con-
sidered to be bad w.r.t. x if it violates one of the conditions of being well-formed w.r.t.
x, not containing garbage w.r.t. x, or being sorted. As explained above, the signatures
b1, . . . ,b11 characterize the set of heaps which are bad w.r.t. x. We observe that b1 � b9,
b2� b10, b3� b5 and b4� b6, which means that the heaps b9.b10,b5,b6 can be discarded
from the set above. Therefore, the set of bad configurations w.r.t. x is characterized by
the set {b1,b2,b3,b4,b7,b8,b11}.
Remark. Other types of bad patterns can be defined in a similar manner. Examples can
be found in [2].

5 Reachability Analysis

In this section, we show how to check safety properties through backward reachability
analysis. First, we give an abstract transition relation −→A which is an
over-approximation of the transition relation −→. Then, we describe how to compute
predecessors of signatures w.r.t. −→A; and how to check the entailment relation. Fi-
nally, we introduce sets of initial heaps (from which the program starts running), and
describe how to check safety properties using backward reachability analysis.

Over-Approximation. The basic step in backward reachability analysis is to compute
the set of predecessors of sets of heaps characterized by signatures.

x,y
g:

More precisely, for a signature g and an operation op, we would like to

compute a finite set G of signatures such that [[G]] =
{

h|h op−→ [[g]]
}

. Con-

sider the signature g to the right. The set [[g]] contains exactly all heaps
where x and y point to the same cell. Consider the operation op defined by y := z.next.
The set H of heaps from which we can perform the operation and obtain a heap in [[g]]
are all those where the x-cell is the immediate successor of the z-cell. Since signatures
cannot capture the immediate successor relation (see the remark in the end of Section 3),
the set H cannot be characterized by a set G of signatures, i.e., there is no G such that
[[G]] = H. To overcome this problem, we define an approximate transition relation−→A

which is an over-approximation of the relation −→. More precisely, for heaps h and h′,
we have h

op−→A h′ iff there is a heap h1 such that h1 � h and h1
op−→ h′.
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z x
g1: g2:

x,z

Computing Predecessors. We show that, for an operation
op and a signature g, we can compute a finite set Pre(op)(g)
of signatures such that [[Pre(op)(g)]] =

{
h|h op−→A [[g]]

}
. For

instance in the above case the set Pre(op)(g) is given by the {g1,g2} shown in the
figure to the right. Notice that [[{g1,g2}]] is the set of all heaps in which the x-cell is
strictly visible from the z-cell. In fact, if we take any heap satisfying [[g1]] or [[g2]], then
we can perform deletion and contraction operations (possibly several times) until the
x-cell becomes the immediate successor of the z-cell, after which we can perform op
thus obtaining a heap where x and y point to the same cell.

For each signature g and operation op, we show how to compute Pre(op)(g) as a
finite set of signatures. Due to lack of space, we show the definition only for the oper-
ation new. The definitions for the rest of the operations can be found in the [2]. For a
cell m ∈M and a variable x ∈ X , we define m being x-isolated in a manner similar to
m being isolated, except that we now allow m to be pointed to by x (and only x). More
precisely, we say m is x-isolated if λ(x) = m, λ(y) 	= m if y 	= x, the value of m is free,
Succ−1(m) = /0, and Succ(m) =⊥. We define m being x-semi-isolated in a similar man-
ner, i.e., by also allowing ∗ to be the successor of the x-cell. For instance, the leftmost
cell of the signature b1 in Section 4, and the x-cell in the signature sig (h5) in Figure 2
are x-semi-isolated.

We define Pre(g)(new(x)) to be the set of signatures g′ such that one of the following
conditions is satisfied:

– λ(x) is x-semi-isolated, and there is a signature g1 such that g1 = g� λ(x) and
g′ = g1� x.

– λ(x) =⊥ and g′ = g or g′ ∈ g�m for some semi-isolated cell m.

Initial Heaps. A program starts running from a designated set HInit of initial heaps. For
instance, in a sorting program, HInit is the set of well-formed lists which are (potentially)
not sorted. Notice that this set is infinite since there is no bound on the lengths of the
input lists. To deal with input lists, we follow the methodology of [7], and augment the
program with an initialization phase. The program starts from an empty heap (denoted
hε) and systematically (and non-deterministically) builds an arbitrary initial heap. In the
case of sorting, the initial phase builds a well-formed list of an arbitrary length. We can
now take the set HInit to be the singleton containing the empty heap hε.

Checking Entailment. For signatures g and g′, checking whether g � g′ amounts to
constructing an injection from the cells of g to those of g′. It turns out that a vast major-
ity (more than 99%) of signatures, compared during the reachability analysis, are not
related by entailment. Therefore, we have implemented a number of heuristics to detect
negative answers as quickly as possible. An example is that a cell m in g should have
(at most) the same labels as its image m′ in g′; or that the in- and out-degrees of m are
smaller than those of m′. The details of the entailment algorithm are included in [2].

Checking Safety Properties. To check a safety property, we start from the set GBad

of bad signatures, and generate a sequence G0,G1,G2, . . . of finite sets of signatures,
where G0 = GBad and Gi+1 =

⋃
g∈Gi

Pre(g). Each time we generate a signature g such
that g′ � g for some already generated signature g′, we discard g from the analysis.
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We terminate the procedure when we reach a point where no new signatures can be
added (all the new signatures are subsumed by existing ones). In such a case, we have
generated a set G of signatures that characterize all heaps from which we can reach a
bad heap through the approximate transition relation −→A. The program satisfies the
safety property if g 	� sig(hε) for all g ∈G.

6 Experimental Results

We have implemented the method described above in a prototype written in Java. We
have run the tool on several examples, including all the benchmarks on singly linked
lists with data known to us from the TVLA and PALE tools. Table 1 shows the results
of our experiments. The column “#Sig.” shows the total number of signatures that were
computed throughout the analysis, the column “#Final” shows the number of signatures
that remain in the visited set upon termination, the column “#Ent” shows the total num-
ber of calls to entailment that were made, and the last column shows the percentage of
such calls that returned true. We have also considered buggy versions of some programs
in which case the prototype reports an error.

Table 1. Experimental results

Prog. Time #Sig. #Final #Ent Ratio
EfficientInsert 0.1 s 44 40 1570 0.7%
NonDuplicateInsert 0.4 s 111 99 8165 0.2%
Insert 2.6 s 2343 1601 2.2 ·106 0.03%
Insert (bug) 1.4 s 337 268 86000 0.09%
Merge 23.5 s 11910 5830 3.6 ·107 0.017%
Reverse 1.5 s 435 261 70000 0.3%
ReverseCyclic 1.6 s 1031 574 375000 0.1%
Partition 2 m 49 s 21058 15072 1.8 ·108 0.003%
BubbleSort 35.9 s 11023 10034 7.5 ·107 0.001%
BubbleSortCyclic 36.6 s 11142 10143 7.7 ·107 0.001%
BubbleSort (bug) 1.76 s 198 182 33500 0.07%
InsertionSort 11 m 53 s 34843 23324 4.4 ·108 0.003%

All experiments
were performed
on a 2.2 GHz In-
tel Core 2 Duo
with 4 GB of
RAM. For each
program, we ver-
ify well-formed-
ness, absence of
garbage, and
sortedness. Also,
in the case of the
Partition pro-
gram, we verify
that the two re-
sulting lists do
not have com-
mon elements.

7 Conclusions, Discussion, and Future Work

We have presented a method for automatic verification of safety properties for pro-
grams which manipulate heaps containing data. There are potentially two drawbacks
of our method, namely the analysis is not guaranteed to terminate, and it may generate
false positives (since we use an over-approximation). A sufficient condition for ter-
mination is well quasi-ordering of the entailment relation on signatures (see e.g. [3]).
The only example known to us for non-well-quasi-ordering of this relation is based
on a complicated sequence pattern by Nash-Williams (described in [13]) which shows
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non-well-quasi-ordering of permutations of sequences of natural numbers. Such artifi-
cial patterns are unlikely to ever appear in the analysis of typical pointer-manipulating
programs. In fact, it is quite hard even to construct artificial programs for which the
Nash-Williams pattern arises during backward reachability analysis. This is confirmed
by the fact that our implementation terminates on all the given examples. As for false
positives, the definition of the heap ordering � means that the abstract transition re-
lation −→A allows three types of imprecisions, namely it allows: (i) deleting garbage
(nodes which are not visible from any variables), (ii) preforming contraction, and (iii)
only storing the ordering on cell variables rather than their actual values. Program runs
are not changed by (i) since we only delete nodes which are not accessible from the
program pointers in the first place. Also, most program behaviors are not sensitive to
the exact distances between nodes in a heap and therefore they are not affected by (ii).
Finally, data-dependent programs (such as sorting or merge algorithms) check only or-
dering rather than complicated relations on data inside the heap cells. This explains
why we do not get false positives on any of the examples on which we have run our
implementation.

The experimental results are quite encouraging, especially considering the fact that
our code is still highly unoptimized. For instance, most of the verification time is spent
on checking entailment between signatures. We believe that adapting specialized algo-
rithms, e.g. [20], for checking entailment will substantially improve performance of the
tool.

Several extensions of our framework can be carried out by refining the considered
preorder (and the abstraction it induces). For instance, if needed, our framework can be
extended in a straightforward manner to handle arithmetical relations which are more
complicated than simple ordering on data values such as gap-order constraints [17] or
Presburger arithmetic. Given the fact that the analysis terminates on all benchmarks, it is
tempting to characterize a class of programs which covers the current examples and for
which termination is theoretically guaranteed. Another direction for future work is to
consider more general classes of heaps with multiple selectors, and then study programs
operating on data structures such as doubly-linked lists and trees both with and without
data.

8 Related Work

Several works consider the verification of singly linked lists with data. The paper [14]
presents a method for automatic verification of sorting programs that manipulate linked
lists. The method is defined within the framework of TVLA which provides an abstract
description of the heap structures in 3-valued logic [19]. The user may be required to
provide instrumentation predicates in order to make the abstraction sufficiently precise.
The analysis is performed in a forward manner. In contrast, the search procedure we
describe in this paper is backward, and therefore also property-driven. Thus, the signa-
tures obtained in the traversal do not need to express the state of the entire heap, but
only those parts that contribute to the eventual failure. This makes the two methods
conceptually and technically different. Furthermore, the difference in search strategy
implies that forward and backward search procedures often offer varying degrees of ef-
ficiency in different contexts, which makes them complementary to each other in many
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cases. This has been observed also for other models such as parameterized systems,
timed Petri nets, and lossy channel systems (see e.g. [4,9,1]).

Another approach to verification of linked lists with data is proposed in [6,7] based
on abstract regular model checking (ARMC) [8]. In ARMC, finite-state automata are
used as a symbolic representation of sets of heaps. This means that the ARMC-based
approach needs the manipulation of quite complex encodings of the heap graphs into
words or trees. In contrast, our symbolic representation uses signatures which provide a
simpler and more natural representation of heaps as graphs. Furthermore, ARMC uses
a sophisticated machinery for manipulating the heap encodings based on representing
program statements as (word/tree) transducers. However, as mentioned above, our oper-
ations for computing predecessors are all local in the sense that they only update limited
parts of the graph thus making it possible to have much more efficient implementations.

The paper [5] uses counter automata as abstract models of heaps which contain data
from an ordered domain. The counters are used to keep track of lengths of list segments
without sharing. The analysis reduces to manipulation of counter automata, and thus
requires techniques and tools for these automata.

Recently, there has been an extensive work to use separation logic [18] for per-
forming shape analysis of programs that manipulate pointer data structures (see e.g.
[10,21]). The paper [16] describes how to use separation logic in order to provide a
semi-automatic procedure for verifying data-dependent programs which manipulate
heaps. In contrast, the approach we present here uses a built-in abstraction princi-
ple which is different from the ones used above and which makes the analysis fully
automatic.

The tool PALE (Pointer Assertion Logic Engine) [15] checks automatically proper-
ties of programs manipulating pointers. The user is required to supply assertions ex-
pressed in the weak monadic second-order logic of graph types. This means that the
verification procedure as a whole is only partially automatic. The tool MONA [11],
which uses translations to finite-state automata, is employed to verify the provided
assertions.

Recently, there have been several works which aim at algorithmic verification of sys-
tems whose configurations are finite graphs (e.g. [12,3]). These works may seem similar
since they are all based on backward reachability using finite graphs as symbolic rep-
resentations. However, they use different orderings on graphs which leads to entirely
different methods for computing predecessor and entailment relations. In fact, the main
challenge when designing verification algorithms on graphs, is to come up with the
“right” notion of ordering: an ordering which allows computing entailment and prede-
cessors, and which is sufficiently precise to avoid too many false positives. For instance,
the graph minor ordering used in [12] to analyze distributed algorithms, is too weak to
employ in shape analysis. The reason is that the contraction operation (in the case of
the graph minor relation) is insensitive to the directions of the edges; and furthermore
the ordering allows merging vertices which carry different labels (different variables),
meaning that we would get false positives in almost all examples since they often rely
tests like x = y for termination. In our previous work [3], we combined abstraction with
backward reachability analysis for verifying heap manipulating programs. However,
the programs in [3] are restricted to be data-independent. The extension to the case of
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data-dependent programs requires a new ordering on graphs which involves an intricate
treatment of structural and data properties. For instance, at the heap level, the data order-
ing amounts to keeping track of (in)equalities, while the structural ordering is defined
in terms of garbage elimination and edge contractions (see the discussion in Section 7).
This gives the two orderings entirely different characteristics when computing prede-
cessors and entailment. Also, there is a non-trivial interaction between the structural
and the data orderings. This is illustrated by the fact that even specifications of basic
data-dependent properties like sortedness require forbidden patterns that contain edges
from both orderings (see Section 4). Consequently, none of the programs we consider in
this paper can be analyzed in the framework of [3]. In fact, since the programs here are
data-dependent, the method of [3] may fail even to verify properties which are purely
structural. For instance, the program EfficientInsert (described in [2]) gives a false
non-well-formedness warning if data is abstracted away.
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