

Lecture Notes in Computer Science 5799
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Zhiming Liu Anders P. Ravn (Eds.)

Automated Technology
for Verification
and Analysis

7th International Symposium, ATVA 2009
Macao, China, October 14-16, 2009
Proceedings

13

Volume Editors

Zhiming Liu
United Nations University
International Institute of Software Technology (UNU-IIST)
Macao, China
E-mail: z.liu@iist.unu.edu

Anders P. Ravn
Aalborg University
Department of Computer Science
9220 Aalborg, Denmark
E-mail: apr@cs.aau.dk

Library of Congress Control Number: 2009935680

CR Subject Classification (1998): D.2, D.3, F.3, G.4, I.2.2, F.4, B.6, B.7, C.5.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-04760-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04760-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12768271 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 7th International Symposium
on Automated Technology for Verification and Analysis held during October 13-
16 in Macao SAR, China. The primary objective of the ATVA conferences re-
mains the same: to exchange and promote the latest advances of state-of-the-art
research on theoretical and practical aspects of automated analysis, verification,
and synthesis.

Among 74 research papers and 10 tool papers submitted to ATVA 2009, the
Program Committee accepted 23 as regular papers and 3 as tool papers. In all,
33 experts from 17 countries worked hard to make sure that every submission
received a rigorous and fair evaluation. In addition, the program included three
excellent tutorials and keynote talks by Mark Greenstreet (U. British Columbia),
Orna Grumberg (Technion), and Bill Roscoe (Oxford University). The confer-
ence organizers were truly grateful to have such distinguished researchers as
keynote speakers.

Many worked hard and offered their valuable time so generously to make
ATVA 2009 successful. First of all, the conference organizers thank all 229 re-
searchers who worked hard to complete and submit papers to the conference.
The PC members, reviewers, and Steering Committee members also deserve spe-
cial recognition. Without them, a competitive and peer-reviewed international
symposium simply cannot take place.

Many organizations sponsored the symposium. They include: The United
Nations University, International Institute of Software Technology (UNU-IIST);
Macao Polytechnic Institute (MPI); Macao POST; and Formal Methods Europe
(FME). The conference organizers thank them for their generous support and
assistance.

Many individuals offered their enthusiastic help to the conference. We are
grateful to Lei Heong Iok, President of MPI, Cheang Mio Han, Head of the
Academic Affairs Department of MPI, and Hau Veng San, Head of the Division
for Pedagogical Affairs of MPI, for their support. We would like to thank Chris
George, the Conference Chair, Antonio Cerone, the Local Organization Chair,
and Jun Pang, the Publicity Chair, for their hard work; Wang Zhen for writing
the online registration program; Charles Morisset for his help in managing the
proceedings and the program; and last, but not least, the general staff of UNU-
IIST, Wendy Hoi, Kitty Chan, Michelle Ho, Sandy Lee, and Kyle Au, for their
help with the local organization.

We sincerely hope that the readers find the proceedings of ATVA 2009 infor-
mative and rewarding.

August 2009 Zhiming Liu
Anders P. Ravn

Organization

ATVA 2009 was organized by the United Nations University, International In-
stitute for Software Technology (UNU-IIST) in cooperation with the Macao
Polytechnic Institute.

Conference Chairs

General Chair Chris George (UNU-IIST, Macao)
Program Chairs Zhiming Liu (UNU-IIST, Macao)

Anders P. Ravn (Aalborg University,
Denmark)

Organization Chair Antonio Cerone (UNU-IIST, Macao)
Publicity Chair Jun Pang (University of Luxembourg)

Program Committee

Rajeev Alur
Christel Baier
Jonathan Billington
Laurent Fribourg
Masahiro Fujita
Susanne Graf
Mark Greenstreet
Wolfgang Grieskamp
Teruo Higashino
Moonzoo Kim
Orna Kupferman

Marta Kwiatkowska
Insup Lee
Xuandong Li
Shaoying Liu
Kedar Namjoshi
Hanne Nielson
Ernst-Ruediger Olderog
Jun Pang
Doron A. Peled
Abhik Roychoudhury
Natarajan Shankar

Irek Ulidowski
Mahesh Viswanathan
Farn Wang
Xu Wang
Ji Wang
Hsu-Chun Yen
Wang Yi
Tomohiro Yoneda
Wenhui Zhang

Steering Committee

E. Allen Emerson U. Texas at Austin
Teruo Higashino Osaka University
Oscar H. Ibarra U. California, Santa Barbara
Insup Lee U. Pennsylvania
Doron A. Peled Univ. Warwick, Univ. Bar Ilan
Farn Wang National Taiwan Univ.
Hsu-Chun Yen National Taiwan Univ.

VIII Organization

External Referees

Eugene Asarin
Souheib Baarir
Rena Bakhshi
Bruno Barras
Denes Bisztray
Laura Bocchi
Benedikt Bollig
Olivier Bournez
Lei Bu
Doina Bucur
Lin-Zan Cai
Radu Calinescu
Rohit Chadha
Taolue Chen
Vivien Chinnapongse
Thao Dang
Arnab De
Ton van Deursen
Alin Deutsch
Catalin Dima
Bruno Dutertre
Jochen Eisinger
Dana Fisman
Guy Gallasch
Pierre Ganty
Han Gao

Vijay Gehlot
Ankit Goel
Stefan Haar
Stefan Hallerstede
Alejandro Hernandez
Hsi-Ming Ho
Shin Hong
Guo-Chou Huang
Chung-Hao Huang
Lei Ju
Barbara Kordy
Mark Kattenbelt
Joachim Klein
Vijay Korthikanti
Jaewoo Lee
Wanwei Liu
Christof Loeding
Gavin Lowe
Yoad Lustig
Xiaodong Ma
Stephane Messika
Gethin Norman
Chun Ouyang
Jorge A. Perez
Henrik Pilegaard
Pavithra Prabhakar

Jan-David Quesel
Nataliya Skrypnyuk
Martin Stigge
Tim Strazny
Mani Swaminathan
Ashish Tiwari
Paolo Torrini
Ashutosh Trivedi
Somsak Vanit-Anunchai
Jeffrey Vaughan
Ramesh Viswanathan
Xi Wang
Zhaofei Wang
Shaohui Wang
Andrew West
Anton Wijs
Hong-Hsin Wu
Rong-Hsuan Wu
Shaofa Yang
Hsuen-Chin Yang
Lu Yang
Ender Yuksel
Jianhua Zhao
Gethin Norman
Christian W. Probst

Sponsoring Institutions

United Nations University – International Institute for Software Technology
Macao Post
Macao Polytechnic Institute
Formal Methods Europe

Table of Contents

Invited Talks

Verifying VLSI Circuits . 1
Mark R. Greenstreet

3-Valued Abstraction for (Bounded) Model Checking (Abstract) 21
Orna Grumberg

Local Search in Model Checking . 22
A.W. Roscoe, P.J. Armstrong, and Pragyesh

State Space Reduction

Exploring the Scope for Partial Order Reduction . 39
Jaco Geldenhuys, Henri Hansen, and Antti Valmari

State Space Reduction of Linear Processes Using Control Flow
Reconstruction . 54

Jaco van de Pol and Mark Timmer

A Data Symmetry Reduction Technique for Temporal-epistemic
Logic . 69

Mika Cohen, Mads Dam, Alessio Lomuscio, and Hongyang Qu

Tools

TAPAAL: Editor, Simulator and Verifier of Timed-Arc Petri Nets 84
Joakim Byg, Kenneth Yrke Jørgensen, and Jǐŕı Srba

CLAN: A Tool for Contract Analysis and Conflict Discovery 90
Stephen Fenech, Gordon J. Pace, and Gerardo Schneider

UnitCheck: Unit Testing and Model Checking Combined 97
Michal Kebrt and Ondřej Šerý

Probabilistic Systems

LTL Model Checking of Time-Inhomogeneous Markov Chains 104
Taolue Chen, Tingting Han, Joost-Pieter Katoen, and
Alexandru Mereacre

Statistical Model Checking Using Perfect Simulation 120
Diana El Rabih and Nihal Pekergin

X Table of Contents

Quantitative Analysis under Fairness Constraints . 135
Christel Baier, Marcus Groesser, and Frank Ciesinski

A Decompositional Proof Scheme for Automated Convergence Proofs
of Stochastic Hybrid Systems . 151

Jens Oehlerking and Oliver Theel

Medley

Memory Usage Verification Using Hip/Sleek . 166
Guanhua He, Shengchao Qin, Chenguang Luo, and Wei-Ngan Chin

Solving Parity Games in Practice . 182
Oliver Friedmann and Martin Lange

Automated Analysis of Data-Dependent Programs with Dynamic
Memory . 197

Parosh Aziz Abdulla, Muhsin Atto, Jonathan Cederberg, and Ran Ji

Temporal Logic I

On-the-fly Emptiness Check of Transition-Based Streett Automata 213
Alexandre Duret-Lutz, Denis Poitrenaud, and Jean-Michel Couvreur

On Minimal Odd Rankings for Büchi Complementation 228
Hrishikesh Karmarkar and Supratik Chakraborty

Specification Languages for Stutter-Invariant Regular Properties 244
Christian Dax, Felix Klaedtke, and Stefan Leue

Abstraction and Refinement

Incremental False Path Elimination for Static Software Analysis 255
Ansgar Fehnker, Ralf Huuck, and Sean Seefried

A Framework for Compositional Verification of Multi-valued Systems
via Abstraction-Refinement . 271

Yael Meller, Orna Grumberg, and Sharon Shoham

Don’t Know for Multi-valued Systems . 289
Alarico Campetelli, Alexander Gruler, Martin Leucker, and
Daniel Thoma

Logahedra: A New Weakly Relational Domain . 306
Jacob M. Howe and Andy King

Table of Contents XI

Fault Tolerant Systems

Synthesis of Fault-Tolerant Distributed Systems . 321
Rayna Dimitrova and Bernd Finkbeiner

Formal Verification for High-Assurance Behavioral Synthesis 337
Sandip Ray, Kecheng Hao, Yan Chen, Fei Xie, and Jin Yang

Dynamic Observers for the Synthesis of Opaque Systems 352
Franck Cassez, Jérémy Dubreil, and Hervé Marchand

Temporal Logic II

Symbolic CTL Model Checking of Asynchronous Systems Using
Constrained Saturation . 368

Yang Zhao and Gianfranco Ciardo

LTL Model Checking for Recursive Programs . 382
Geng-Dian Huang, Lin-Zan Cai, and Farn Wang

On Detecting Regular Predicates in Distributed Systems 397
Hongtao Huang

Author Index . 413

Verifying VLSI Circuits

Mark R. Greenstreet

Department of Computer Science
University of British Columbia

Vancouver, BC, Canada
mrg@cs.ubc.ca

1 Introduction

Circuit-level verification is a promising area for formal methods research. Simulation
using tools such as SPICE remains the main method for circuit validation. Increasing
integration densities have increased the prevalence of analog/mixed-signal designs. It
is now common for analog components such as DLLs and phase correction circuits to
be embedded deep in digital designs, making the circuits critical for chip functional yet
hard to test. While digital design flows have benefited from systematic methodologies
including the use of formal methods, circuit design remains an art. As a consequence,
analog design errors account for a growing percentage of design re-spins. All of these
have created a pressing need for better circuit-level CAD and motivated a strong interest
in formal verification.

There are many properties of circuit-level design that make it attractive for formal
approaches: key circuits tend to be small. Thus, unlike digital designs, the problems
are not primarily ones of scale. Instead, the challenge is to correctly specify, model and
verify circuit behavior. Furthermore, circuit-level design for both analog and digital
cells is the domain of design experts who expect to spend a substantial amount of time
on each cell designed. Thus, they can consider working with a verification expert if that
interaction leads to a reduction in design time or risk.

In this paper, we identify three types of verification problems: introductory, inter-
mediate, and open challenges, give examples of each, and present verification results.
Section 2 presents “introductory problems” using a simple tunnel diode oscillator that
has been extensively studied by formal methods researchers. These introductory prob-
lems have low-dimensional dynamics described by models chosen for mathematical
convenience rather than physical realism. Such problems can provide a useful introduc-
tion to circuit behavior for verification researchers with expertise developed in other
application domains.

Intermediate problems are introduced in Section 3. These are circuits that are used on
real integrated circuits and modeled with a reasonable level of physical fidelity. Exam-
ples include the ring-oscillator challenge put forward by Rambus last year. Verification
results for these problems may be of immediate use to design experts. Equally impor-
tant, the process of formalizing the specification and circuit model provides a common
language for designers, verifiers, and CAD tool developers.

Finally, Section 4 presents challenge problems whose solutions would have signifi-
cant impact on the circuit design community but at present have not been addressed by

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 1–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 M.R. Greenstreet

+ IR

LR

VR+ − VL+ −

IL ITD IC
Vin−

inVI

− =VC
+ VTDC

Fig. 1. A Tunnel-Diode Oscillator

formal methods. Chief among these are design problems that arise from uncertainty in
device parameters. On chip analog circuits such as oscillators, voltage regulators and
sense amplifiers often include a large number of digital control inputs that compensate
for uncontrollable variations in the fabrication process and operating conditions.. These
circuits are genuine hybrid systems with a digital control loop regulating analog com-
ponents. CAD tools that could verify such designs over a the full range of operating
modes and fabrication parameters would be of great interest to designers and present a
great challenge and opportunity for formal methods research.

2 Introductory Examples

Research in applying formal methods to circuit-level verification dates back Kurshan
and MacMillan’s verification of an nMOS arbiter using COSPAN in 1991 [1]. Interest
in the topic has rapidly grown in the past five years as advances in reachability tools
have made increased the range of problems that can be addressed formally, and as ad-
vances in fabrication technology have led to a prevalence of mixed-signal designs and
to a wide range of circuit-level behaviors that must be considered to obtain a working
design but for which existing CAD flows provide no automated means of verification
or validation. Not surprisingly, much of the early research in this area has focused on
simple circuits and/or used simple models. These simplifications serve two purposes:
first, they provide problems that are tractable with current verification tools; second,
they serve a pedagogical role for formal methods researchers by providing examples
that can be easily understood without a deep knowledge of circuit design and analysis
techniques.

In this section, I will use the tunnel diode oscillator circuit first considered in a formal
verification context by Hartong et al. [2] as an example of an “introductory problem”
and as a way to illustrate dynamical systems concepts that can be applied to circuit
verification. This section closes with a brief description of other problems of a similarly
introductory nature.

2.1 The Tunnel-Diode Oscillator

The tunnel-diode oscillator consists of four components:

Verifying VLSI Circuits 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

I (amperes)

ITD(VTD) =

⎧⎨
⎩

6.0105V 3
TD −0.9917V 2

TD +0.0545VTD 0.000 ≤VTD ≤ 0.055
0.0692V 3

TD −0.0421V 2
TD +0.0040VTD +8.85794×10−4 , 0.055 ≤VTD ≤ 0.350

0.2634V 3
TD −0.2765V 2

TD +0.0968VTD −0.0112, 0.350 ≤VTD

Fig. 2. Current vs. Voltage for a Tunnel Diode

a voltage source provides the voltage (corresponds to mechanical force)
that drives the oscillator. inV

−

+

a resistor, the unavoidable friction or drag in circuit components. By
Ohm’s law, I = V/R where I is the current flowing through the re-
sistor, V is the voltage applied across the resistor, and R is the “re-
sistance” of the resistor. In the mechanical analogy, current is the
velocity of an object, and charge is the distance that it has moved.

R

an inductor, the electrical equivalent of “mass” in mechanical systems.
The current flowing through an inductor grows at a rate proportional
to the voltage applied across the inductor, just as the velocity of
a mass grows at a rate proportional to the force applied to it. The
circuit equation for the inductor is: d

dt IL = V
L .

L

a capacitor, the electrical equivalent of a spring. The charge held in a
(linear) capacitor is proportional to the voltage applied just as the
displacement of a (linear) spring is proportional to the force applied.
The circuit equation for a capacitor is: d

dt V = I
C .

C

a tunnel diode, a non-linear device that compensates for the energy dis-
sipated by the resistor. The distinctive feature of the tunnel diode
is the region where the current decreases with increasing applied
voltage. This creates a “negative incremental resistance” that can be
used to cancel the resistive losses in the inductor (and other com-
ponents). Figure 2 shows the piecewise cubic relationship between
current and voltage from [3] that we use for this example.

We can obtain an ordinary differential equation that models the oscillator circuit using
Kirchoff’s current and voltage laws. Kirchoff’s current law (KCL) states that the sum
of currents entering any node must be zero. This yields:

IVin = IR = IL = ITD + IC (1)

4 M.R. Greenstreet

Kirchoff’s voltage law (KVL) states that the sum of the voltages around any loop must
be zero. This yields:

VTD = VC

Vin = VR +VL +VC
(2)

Combining these with the component models described above yields:

İL = 1
L (Vin − ILR−VC)

V̇C = 1
C (IL − ITD(VC))

(3)

where İL denotes the time derivative of IL and likewise for V̇C.
Numerically integrating Equation 3 yields waveforms for the tunnel-diode oscillator.

Here, we use the circuit parameters from [4]: Vin = 0.3V , L = 1μH, C = 1pF, and the
tunnel-diode model from Figure 2, and we illustrate the behavior for three values of
R, 100Ω , 200Ω and 300Ω with the initial condition that IL = 0 and VC = 0 for all
three cases. Figure 3(a) shows that the circuit oscillates for R = 100Ω and R = 200Ω
but locks-up at a fixpoint when R = 300Ω . Natural questions that a designer could
have about this circuit include: “For what values of R will the circuit oscillate?” “Does
oscillation occur from all initial states, or does proper operation depend on the initial
conditions?” “How much variation amplitude and period variation will appear at the
output of the oscillator?” “How is power supply noise converted into amplitude and
phase noise by the oscillator?” I examine the first two of these questions using methods
from dynamical systems theory in the next section and then conclude this treatment of
this simple oscillator by comparing this dynamical systems approach with time-domain
analysis methods published earlier.

A Dynamical Systems Analysis of the Tunnel-Diode Oscillator. The ODE model
for the tunnel-diode oscillator has two state variables: IL and VC. Thus, the ODE has a
two-dimensional phase-space. Solutions to Equation 3 can be visualized as trajectories
in this IL ×VC space. Figure 3(b) shows two such trajectories for the oscillator circuit
with R = 200Ω . The first starts at the point (IL,VC) = (1.2mA,0.0591V) which is very
close to the (unstable) equilibrium point of the the oscillator. The other trajectory starts

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

time (ns)

V
C

 (
vo

lts
)

R = 100
R = 200
R = 300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−2

0

2

4

6

8

10

12
x 10

−4

V
C

 (volts)

I L (
am

pe
re

s)

(a) Waveforms (b) Trajectories (R = 200Ω)

Fig. 3. Waveforms and Trajectories for the Tunnel Diode Oscillator

Verifying VLSI Circuits 5

at (IL,VC) = (0mA,0.75V) which is well “outside” of the stable orbit of the oscillator.
As can be seen, both trajectories converge rapidly to a clockwise, periodic orbit – the
convergence is fast enough, that they two trajectories are visually indistinguishable for
most of the orbit.

Because the phase-space for the tunnel-diode oscillator’s ODE is two-dimensional,
the trajectory originating at any given initial condition must either converge to a fixed
equilibrium point, diverge to infinity, or enter a periodic orbit [5]. Thus, we first consider
the equilibrium points of the oscillator; these are the points at which İL = 0 and V̇C = 0.
We can find all such points by solving for the roots of three cubic polynomials, one for
each of the regions of the tunnel-diode model. When R = 200Ω the oscillator has one
equilibrium point with IL = 0.84mA and VC = 0.132V. Let f be the function such that
(İL,V̇C) = f (IL,VC). We check the stability of the equilibrium point to computing the
eigenvalues of the Jacobian matrix for f at the equilibrium point:

Jac(f ,(0.84mA,0.132V)) =

[
∂

∂ IL
İL

∂
∂ IL

V̇C
∂

∂VC
İL

∂
∂VC

V̇C

]
IL=0.84mA,VC=0.132V

=
[
−2 ×108s−1 −1 ×106Ω−1s−1

1 ×1012Ωs−1 3.51×109s−1

] (4)

The eigenvalues of this Jacobian matrix are 9.3×107s−1 and 3.2×109s−1. Both have
positive real parts, which shows that this equilibrium point is a repeller: trajectories
starting near this point diverge exponentially away from it.

Having characterized the one equilibrium point of the oscillator, we now know that
every trajectory except for the one that starts exactly at the equilibrium point must con-
verge to a periodic attractor. Furthermore, every periodic attractor in a two-dimensional
system must have an equilibrium point in its interior. Because the the tunnel diode os-
cillator has only one equilibrium point, it has only one periodic attractor. We conclude
that from all initial conditions (except for the equilibrium point itself), trajectories con-
verge to the desired oscillation. In other words, the oscillator is guaranteed to start-up,
and to enter the desired oscillation mode.

For concreteness, the preceding discussion analyzed the tunnel-diode oscillator cir-
cuit assume that R = 200Ω . The conclusions only require that the circuit have a unique
equilibrium point that is a repeller. It is straightforward to show that this condition
holds for any R < 243.59Ω . For larger values of R, the equilibrium point becomes an
attractor, and all trajectories converge to this point. This is an example of a Hopf bi-
furcation, where the qualitative behavior of the system changes at a critical value of a
parameter. Furthermore, the analysis can be extended to consider other values of Vin.
We note that for values of Vin greater than the local minimum in the tunnel-diode’s
current-vs.-voltage function (see Figure 2), it is possible to have multiple equilibrium
points. For example, with Vin = 0.5V and R = 600Ω , there are equilibria for (IL,VC) ∈
{(0.955mA,0.023V),(0.561mA,0.219V),(0.407mA,0.186V)}. The first and last of
these are stable equilibria while the middle one is unstable. In this case, the circuit has
two stable states, and the middle equilibrium is the saddle point (a.k.a. “metastable”
point) between them.

In this section, I’ve shown that the behavior of the tunnel-diode oscillator can be un-
derstood using standard methods from dynamical systems theory. The two-dimensional

6 M.R. Greenstreet

phase space makes a detailed analysis tractable. I’ve shown that for appropriate values
of the series resistor, the oscillator is guaranteed to oscillate from all initial conditions
except for a single point in the phase space. I’ve presented constraints on the value of R
that are necessary and sufficient for correct oscillation. Without external disturbances,
the oscillator settles to a unique, periodic attractor which means that the amplitude and
phase noise go to zero as the oscillator operates. Similar techniques can be used to de-
termine the sensitivity of the output amplitude and period to power supply noise and
answer other questions that a designer might have about the circuit.

Time Domain Analysis of the Tunnel Diode Oscillator. Many formal methods re-
searchers have used the tunnel-diode oscillator circuit from Figure 1 starting with Har-
tong et al. who introduced the problem in [2]. Hartong used a recursive subdivision
algorithm to partition the continuous state space into smaller boxes, constructed a next-
state relation on these boxes, and then used CTL model checking on this relation. They
showed that nearly all boxes lead to the desired oscillating behavior and identified a
fairly tight approximation of the stable orbit. They could not verify that start-up occurs
everywhere except for a single point as in our analysis because of their discretization.
This results in many small boxes near the equilibrium point for which they could not
prove that oscillation is guaranteed. There are also boxes near along the border of their
discretization for which the verification fails because they can’t show that trajectories
remain in with in the discretization.

Other researchers have verified the tunnel-diode oscillator example, generally fol-
lowing the same basic approach as Hartong et al. of discretizing the state space and
model checking the discretization. The variations are mainly in how the discretization
is performed and how the next state relation is determined. Gupta et al. [6] present
a verification of the oscillator CheckMate which represents the reachable space with
flowpipes. They show how they can verify proper oscillation for a 200Ω resistor, but
show that the circuit fails to oscillate with a 242.13Ω resistor. They don’t give the poly-
nomial coefficient for their tunnel-diode model, and given that there seem to be slight
variations in these coefficients from different papers, this could account for their slight
discrepancy with our conclusion that the circuit oscillates for any R < 243.59Ω . For
example [7] verify the oscillator using PHAVer which uses high-dimensional polyhe-
dra to represent reachable sets or over-approximations thereof. Little et al. [3] present
a verification of the tunnel-diode oscillator where the circuit is modeled with a labeled
hybrid Petri net (LHPN) and the reachable state space is represented using difference
bound matrices.

Other Introductory Examples. There are numerous other examples that have ap-
peared in the research literature that I will include in the category of introductory ex-
ample. These are characterized by using simplified, often idealized, circuit models and
having models with a low number of dimensions, typically four or less. Much of the
early work was done at UBC including the verification of an asynchronous arbiter [8],
a toggle flip-flop [9], and a van der Pol oscillator [10]. Like the tunnel-diode oscilla-
tor, these examples have simple, cubic polynomials for their derivative functions, and
the verification approaches were built on results from dynamical systems theory. These
simple examples show how it is possible to specify a wide range of circuit behaviors,

Verifying VLSI Circuits 7

both analog and digital, as topological properties of invariant sets of trajectories. The
simple models make the analysis tractable, and intuitive.

In addition to the tunnel-diode oscillator, Hartong’s paper [2] also also presented a
Schmitt trigger and a low pass filter. Gupta et al. [6] added a Delta-Sigma modula-
tor (analog-to-digital converter) circuit to the set of “standard” examples. This design
differs from the oscillators and other circuits described above as it is modeled with dis-
crete time. Thus, the verification problem is one of computing the reachable space for
an iterated sequence of linear mappings, where each mapping is selected according to
the sequence of threshold decisions made by the comparator. Little et al. [3] presented a
switched capacitor integrator which has continuous, linear dynamics with discrete event
transitions between different dynamics. In a different direction, Seger citeSeger08 de-
scribed the use of the Forte verification tool to find state assignments that minimize the
leakage current of logic blocks in standby, power-saving modes.

3 Intermediate Examples

This section presents design and verification examples that use accurate circuit models
for deep-submicron fabrication processes, are larger circuits that hence have higher-
dimensional state spaces and are problems of interest to practicing VLSI designers.
Section 3.1 examines a differential ring oscillator that was put forward by Jones et
al. [11] as challenge problem: “For what transistor sizings in the oscillator guaranteed
to start-up properly.” I will then describe some recent work on computing synchronizer
failure probabilities. Synchronizers are used to implement reliable communication in
systems that have multiple, independent clocks. It is well-known that it is impossible
to implement a perfect synchronizer. Instead, our goal is to show that the failure prob-
ability for the synchronizer is sufficiently low. While this is not “formal” verification,
the techniques that we present build on the same dynamical systems framework that
we are using throughout this paper, and the problem is critical for today’s chip designs.
Section 3.3 concludes this section with brief descriptions of other intermediate exam-
ples and their verification.

3.1 The Rambus Ring Oscillator

Figure 4 shows the four-stage instantiation of the differential ring-oscillator circuit put
forward by researchers at Rambus [11] as a verification challenge. Although the circuit
has been used by VLSI designers since long before it was proposed as a challenge

x(1,0)

x(0,0)

cc cc

fwd

fwd

x(1,1)

x(0,1)

cc cc

fwd

fwd

x(1,2)

x(0,2)

cc cc

fwd

fwd

x(1,3)

x(0,3)

cc cc

fwd

fwd

Fig. 4. A Four-Stage Differential Ring Oscillator

8 M.R. Greenstreet

problem, it’s introduction to the verification community has given it the moniker, the
“Rambus Oscillator” problem, and I will refer to it as the “Rambus Oscillator” in the
following. Designers have at times had versions of this circuit that worked in simulation,
but once fabricated on a chip would occasionally fail to start. It was understood that
these lock-up issues were related to the relative sizes of the transistors in the “forward”
and “cross-coupling” inverters in the design. If the “forward” inverters (labeled fwd in
the figure), are much larger than the “cross-coupling” inverters (labeled cc), then the
circuit acts like a ring of 2n inverters and will settle to one of two states:

State 1: x(0,0), x(1,0), x(0,2), x(0,2) are high, and
x(0,1), x(1,1), x(0,3), x(0,3) are low.

State 2: x(0,1), x(1,1), x(0,3), x(0,3) are high, and
x(0,0), x(1,0), x(0,2), x(0,2) are low.

(5)

Conversely, if the cross-coupling inverters are much larger than the forward ones, then
the circuit acts like n separate static latches and has 2n stable states. If the forward and
cross-coupling inverters have comparable strength, then the circuit should oscillate in a
stable fashion. The Rambus challenge problem is to determine conditions on the sizes
of the inverters that guarantee that the circuit will enter a stable oscillating condition
from any initial condition. We note that it is easy to show that if a Rambus oscillator
has an odd-number of stages, then it is has two stable DC equilibria. Thus, we only
consider oscillators where n is even in the following.

A Dynamical Systems Analysis of the Rambus Oscillator. Our analysis proceeds
in two phases (see [12] for details). First we describe a method for locating all DC-
equilibria of a ring-oscillator circuit as depicted in Figure 4. We then analyze the stabil-
ity of each equilibrium point. If all equilibria are unstable, then it is impossible for the
circuit to settle at some stationary state. However, our analysis does not rule out the pos-
sibility that the circuit has some chaotic or higher-harmonic behavior. For an oscillator
with a small number of stages, chaotic solutions seem unlikely, and our demonstra-
tion that it does not “lock up” addresses the main initialization concern of practicing
designers.

An n-stage Rambus oscillator has 2n nodes. We model MOSFETs as voltage con-
trolled current sources with associated capacitances, and we model the interconnect in
the oscillator as additional capacitances. We use HSPICE generate tables of current data
for the transistors in our circuit and use bilinear interpolation within this table. By using
a fine grid for the table (0.01V steps with a 1.8V power supply), our models are very
close to the HSPICE model. For simplicity, we ignore wire resistance and inductance
noting that they should be negligible for any reasonably compact layout of the circuit.
The state of the circuit is given by a vector of 2n elements, corresponding to the voltages
on the 2n nodes of the circuit. A state is a DC equilibrium if the total current flowing
into each node through the transistors is zero.

A brute-force analysis of the ring-oscillator would require searching a 2n-dimensional
space for DC equilibria. In addition to being time consuming, it would be difficult to
show that such a search was exhaustive. Instead, we first show how we can simplify the
problem to the search of a 2-dimensional space, and then further reduce it to a

Verifying VLSI Circuits 9

in
Vout

in out
drain
sourcegate

gate source
drain

out+

−

+

−

Iout

Vin

Fig. 5. An Inverter

1-dimensional search problem. This formulation makes the identification of DC equi-
libria straightforward.

Our analysis is based on simple observations of the monotonicity of the drain source
current of a MOSFET. In particular, the drain-to-source current for a transistor (n-
channel or p-channel) is positive monotonic in both the gate-to-source and drain-to-
source voltages. As a consequence, the output current of an inverter (see Figure 5) is
negative monotonic in both the input and output voltages of the inverter.

Because the Iinv function is monotonic, its inverses are also functions. In particular,
we define ininv(Vout, Iout) to be the input voltage to the inverter such that if the output
voltage is Vout, then the output current will be Iout. In other words:

Iinv(ininv(Vout, Iout),Vout) = Iout (6)

We assume that all forward inverters have the same transfer function and that all cross-
coupling inverters have the same transfer function – this assumption is not essential to
the remaining analysis, but it simplifies the presentation. Let Iinv,fwd and Iinv,cc denote
these two transfer functions, and let ininv,fwd denote the ininv function for a forward
inverter. For i∈ {0,1} and 0≤ j < n, let Vi, j denote the voltage on node x(i,j) as indicated
in Figure 4. We note that V is a DC equilibrium iff

Iinv,fwd(x(1,n−1),x(0,0))+ Iinv,cc(x(1,0),x(0,0)) = 0
∧ Iinv,fwd(x(0,n−1),x(1,0))+ Iinv,cc(x(0,0),x(1,0)) = 0
∧ Iinv,fwd(x(0, i),x(0, i+1))+ Iinv,cc(x(1, i+1),x(0, i+1)) = 0,

0 ≤ i < n−1
∧ Iinv,fwd(x(1, i),x(1, i+1))+ Iinv,cc(x(0, i+1),x(1, i+1)) = 0,

0 ≤ i < n−1

(7)

Let

back(V0,i,V1,i) = (ininv,fwd(V0,i, −Iinv,cc(V1,i,V0,i)),
ininv,fwd(V1,i, −Iinv,cc(V1,i,V0,i)))

(8)

In English, given the voltages on the outputs of an oscillator stage, back calculates the
voltages that must be present on the inputs of the stage if the outputs are to be in DC
equilibrium.

We can use back repeatedly to work backwards all the way around the oscillator ring.
In particular, if backn(x,y) = (y,x), then we’ve found a DC equilibrium. Otherwise, we
note that backn(x,y) is positive monotonic in both x and y. Thus for any choice of x,
there exists exactly one choice of y such that there is some z with backn(x,y) = (z,x),
and this value of y can be found using standard root-finding techniques. Our verification
procedure now is:

10 M.R. Greenstreet

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

y
&

 z

y

z

Fig. 6. Searching for DC Equilibria

1. Sweep x from ground to the power supply voltage in small steps.
2. For each choice of x, find the y such that there exists a z with backn(x,y) = (z,x).
3. Find consecutive choices of x such that the sign of y− z changes. perform binary

search on these intervals to find a pair, (x,y). such that backn(x,y) = (y,x). The
pairs found this way are the DC-equilibrium points of the circuit.

The soundness of this method depends on having a small enough step in the sweep
of the x values. In practice, we observe that the value of z changes smoothly with x,
for example, Figure 6 shows the values of y and z that we obtain while sweeping x
– the smoothness of these curves suggests that we are not missing any equilibrium
points. Thus, we have reduced the problems of finding all DC equilibria to a single,
one-dimensional sweep.

To determine whether or not a DC equilibrium is stable, we construct the small-
signal, transient model at each equilibrium point. This gives us a linear model for circuit
behavior in a small neighborhood of the equilibrium:

V̇ ≈ Jeq(V −Veq) (9)

where V̇ is the time derivative of V , Veq is the voltage vector for the equilibrium point,
and Jeq is the matrix representation of the linear approximation for V̇ when V is near
Veq. The solution to Equation 9 is

V (t0 + t) = Veq + etJeq(V −Veq) (10)

If all of the eigenvalues of Jeq have negative real parts, then etJeq goes to zero as t in-
creases, and V (t0 + t) converges to Veq. Thus, such a DC equilibrium is stable (See [5]
for an introduction to the dynamical systems theory). Conversely, if Jeq has any eigen-
values with positive real parts, then its DC equilibrium is unstable.

To compute the Jacobian of −C−1Im(V), we note that J is a matrix with

J(i, j) =
∂V̇i

∂Vj
(11)

For simplicity, we assume that C is constant, and it suffices to compute the partial
derivatives of Im(V) with respect to the components of V .

Verifying VLSI Circuits 11

[1] Q := equilibrium points;
[2] for each q ∈ Q do
[3] J := Jacobian operator at q;
[4] Λ := eigenvalues(J);
[5] μ := maxλ∈Λ Real(λ);
[6] if(μ > 0) then
[7] return(unstable);
[8] endif;
[9] od;
[10] return(stable); 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

−1

−0.5

0

0.5

1

1.5

2

size(cross−couple)/size(forward)

in
st

ab
ili

ty

Pseudo-Code Stability Test for a 4-Stage Oscillator

Fig. 7. Classifying DC Equilibria

Figure 7(a) shows how we combine these pieces to obtain an algorithm to verify that
a Rambus ring-oscillator has no stable DC-equilibria.

We tested the methods described in the previous section by applying them to a family
of Rambus ring oscillator circuits designed in the TSMC 180nm CMOS process. We
implemented our analysis algorithms as Matlab scripts and compared our results with
HSPICE simulations. The p-channel device in each inverter has twice the width of the
n-channel transistor. We varied the transistor width to determine the inverter sizings
required to guarantee oscillation. Figure 7(b) displays the results. Let

r = size(cross−coupling inverter)
size(forward inverter)

instability(r) = minq∈Q(r) maxe∈Λ(q) real(e)
(12)

where Q(r) is the set of all DC equilibria for an oscillator with an inverter size ratio
of r, and Λ(q) is the set of eigenvalues of the Jacobian matrix for V̇ at q. Thus, if
instability(r) > 0, all DC equilibria are unstable and the oscillator will not lock up.
Conversely if instability(r) < 0, the circuit can lock-up for some initial conditions. We
determined that lock-up is excluded for 0.638 < r < 2.243.

We then simulated the oscillator circuit using both HSPICE and Matlab’s numer-
ical integrator function (ode113) to explore the behavior near the critical values. As
expected, we found lock-up behaviors for values of r < 0.638 and r > 2.243. To our
surprise, we found that the four-stage oscillator can support stable oscillations for val-
ues of r very close to zero.

For ε < r < 0.638 (with a very small, positive ε), the four-stage ring has three stable
behaviors: it can lock-up at either of the two stable DC equilibria described in Equa-
tion 5, or it can oscillate. The actual behavior depends on the initial conditions. This
is a potentially treacherous situation for an analog circuit designer. It shows that there
are designs for which many initial conditions (including the default in HSPICE) lead
to the desired behavior, but some conditions can lead to lock-up. Thus, this is a failure
mode that could easily go undetected using standard simulation methods and only be
discovered in the test lab, or after the chip has been shipped in products. We believe that
examples such as this demonstrate the value of a formal approach to analyzing analog
circuits.

12 M.R. Greenstreet

The method presented here (and in more detail in [12]) establishes conditions that
ensure that the oscillator circuit is free from lock-up. While we used a four-stage oscil-
lator as an example, the method works for any (even) number of stages because it only
searches a one-dimensional space regardless of the number of stages in the oscillator. In
particular, it works for the two-stage version originally presented in [11] or for oscilla-
tors with more stages However, this analysis here does not guarantee that there is only
one, stable oscillatory mode, nor does it ensure that unstable, higher-order modes die
out quickly. Showing the uniqueness of the desired oscillatory mode could be attempted
by reachability techniques such as those developed of hybrid systems or through finding
appropriate Lyapunov functions. These remain areas for future research.

Other Approaches to Verifying the Oscillator. Little and Myers [13] analyzed a two-
stage oscillator where they obtained a LHPN model derived from simulation traces and
user-defined thresholds for node voltages. There goal was to establish the stability of
the oscillation and they did not attempt to show that the oscillator starts correctly from
any initial condition. To find lock-up traces with their method requires starting from an
appropriate set of simulation traces and choosing the right set of node voltage thresholds
for partitioning the state space. Tiwary et al. [14] used the Rambus oscillator as an ex-
ample of their SAT-solver based approach to circuit verification. In particular, they used
a SAT solver to identify regions of the state space that might contain DC equilibrium
points. They did not classify the stability of these equilibrium points, and the regions
that they identified covered a large fraction of the total space. They noted that more
exact analysis may be possible by using abstraction refinement. More recently, Zaki
et al. [15] presented a similar approach using HySat [16] that identifies a very small re-
gion for each equilibrium point and characterizes the stability of the point. Comparing
the relative strengths and weaknesses of satisfiability based methods such as [15] and
the dynamical systems approach of [12] is a topic for future research.

3.2 Synchronizer Failure Probabilities

Today’s VLSI designs are often “System-on-a-Chip” [17] that combine a large number
of independently designed “intellectual property” blocks. These blocks can operate at
different clock frequencies because of different I/O requirements, different design tar-
gets, power optimization, etc. Consider two, communicating blocks that operate from
different clocks. A signal from the sending block may change at an arbitrary time relative
to the receiver’s clock. This can create a synchronization failure as depicted in Figure 8.

Q
x

D Q

clk

QD BA C

A

C
B

clk

d

t

Fig. 8. A D Flip-Flop and Metastability

Verifying VLSI Circuits 13

If the D input to the flip-flop changes well before the triggering transition of the
clock, then the value of the Q output well after this rising edge (e.g. at time tx) will
reflect the new value of D. This scenario is depicted by the traces labeled A in Figure 8.
On the other hand, if D changes well after the triggering transition of the clock, the Q
output will retain its old value as depicted by the traces labeled C in the figure. The flip-
flop is implemented by circuits that can be accurately modeled by ODEs with smooth
derivative functions. Thus, the value of Q at any time is a continuous function of the
parameters of the system. In particular, the value of Q at time tx is a continuous function
of the time of the transition of the D input. Thus, there is some time (depicted in the
figure with the traces labeled B) that the D input can change such that the Q output will
be at an intermediate value at time tx no matter how long tx is after the clock event.
Such a scenario is called a metastability failure.

Metastability has been known since the early work of Chaney and Molnar [18], and
many proofs have been published showing that metastability is unavoidable given any
reasonable model of the physical implementation of the synchronizer (e.g. [19,20,21]).
Thus, we cannot hope to prove that a synchronizer circuit will never fail. Fortunately,
the probability of failure decreases exponentially with the time allotted for the synchro-
nizer output to settle. Thus, with a sufficient settling time, the probability of a syn-
chronization failure can be made extremely small. On the other hand, designers do not
want to make the settling time too large as the extra latency of the synchronizer can ad-
versely impact system performance. Kinniment et al. [22] have presented experimental
measurements that show that simple linear models fail to give accurate estimates of
synchronizer failure probabilities because they neglect non-linear circuit behaviors that
occur as metastability “moves” from one latch to the next in a synchronizer chain. Thus,
there is a need to be able to analyze synchronizer failure probabilities.

Consider a synchronizer that must handle an input transition every 10ns. To achieve
a mean time between failure (MTBF) of one year, then the synchronizer must have a
failure probability of less than 10−15. This is close to the resolution of double precision
arithmetic and is impossible to verify with traditional circuit simulators. In fact, from
our experience, simulators such as HSPICE have sufficient numerical accuracy to es-
tablish MTBFs of a few milliseconds, but they cannot establish any MTBF that would
be acceptable for a practical design.

Figure 9 shows a simple latch that could be used in the implementation of a flip-flop
– a typical flip-flop consists of two latches, a master and a slave, that are enable on
opposite polarities of the clock signal. Metastability occurs when a transition on the
d input occurs just before the falling edge of clk bringing nodes x and x to nearly the

q

clk

xx
d

Fig. 9. A Jamb Latch

14 M.R. Greenstreet

4

2

3

1

1

3

3

1

4

0

4

4

0

2
5

2

5

1

2

3

L

VH

VH

VH

L

time

time interval matlab simulation voltage interval

t1 t3 t4 t5t2

tH
Ht

L tt

VH

V

L
VL

VH

V
L VL

VL

VH

VH

V

L

VH

VL
V

Fig. 10. Simulation with Interpolation and Restart

same voltage. In particular, the latch has an equilibrium point where both x and x are
at point where the input and output voltages of the inverters are equal. For any reason-
able inverter designs, this equilibrium point is unstable. In fact, the Jacobian matrix for
the derivative operator must have one positive eigenvalue (the instability) and the other
eigenvalues must be negative. This is what makes the circuit challenging for the numer-
ical integrators used in circuit simulators: the positive eigenvalue means that errors are
amplified in the forward-time direction, and the negative eigenvalues mean that trying
to integrate backwards in time is also numerically unstable.

This instability has an important physical interpretation. Consider two trajectories
that both spend a long time near the metastable point before one settles with q high and
the other settles with q low. For most of this time, both trajectories are very close to the
unstable equilibrium point, and therefore they are very close to each other. This means
that a small-signal, linear model can be used to model the difference between the two
trajectories. The full, non-linear circuit model must be used to determine the common
component of the two trajectories.

Figure 10 shows how we used these observations to obtain an accurate way to com-
pute synchronizer failure probabilities. As with traditional methods, we start with two
simulations with two different input transition time times: one that leads to the syn-
chronizer settling high and the other that leads to it settling low. We bisect on this time
interval until we get two trajectories that are close enough together to safely use linear
interpolation to derive intermediate trajectories, but still sufficiently separated to allow
a clear numerical distinction between these two path. Our algorithm finds a time, t2 in
the diagram, such that linear interpolation is valid in the interval [t1,t2], and the points in
phase space, VL1 and VH1 are sufficiently separated as to allow a new round of bisection
to be performed. Our algorithm repeats this process, finding a sequence of time points
and trajectory endpoint that move closer and closer to “perfectly metastable” trajectory.
Crucial to our analysis is that at each step, the algorithm has a linear mapping from
states at ti+1 back to states at ti. Because the circuit model is highly non-linear, this
mapping is only valid for trajectories that are close to the ones that we have found, but
that is sufficient in out case. Composing these linear mappings, we can determine the
width of the equivalent time interval at t1 that leads to synchronization failures at any
given settling time. We do not attempt to compute the location of this interval any more
accurately than traditional simulation methods as the precise location is unimportant for

Verifying VLSI Circuits 15

determining failure probabilities. We only need to know the width of the interval, and
our algorithm computes very small widths without any numerical difficulties. More de-
tails on this approach are given in [23], and [24] shows how this approach can be used to
generate waveforms, the “counterexamples” that show how metastability failures occur
for particular circuits.

Recently, our software has been used by research collaborators at SUN [25]. The
analysis revealed failure modes that had not been previously considered and showed
ways to improve the reliability of the synchronizer circuits being used in commercial
designs.

This is a paper for a formal verification conference; so the reader might ask: “Is this
really formal verification?” In many ways, the answer to this question is “Of course
not.” As noted above, no synchronizer can be perfect; so, we cannot hope to prove that
a synchronizer never fails. We might hope to prove that its failure probability is ac-
ceptably small. While this is possible, our current techniques are very pragmatically
numerical, and they don’t offer that kind of proof. Nevertheless, I believe that this kind
of research is relevant to the formal methods community. First, it came out of the same
dynamical systems perspective that is behind many of the techniques used for formal
verification of circuits. By learning how to specify and verify circuits, we developed
many of the conceptual tools (as well as much of the software) for computing synchro-
nizer failure probabilities. Second, when an analysis tool indicates that changes should
be made to a design, we need a high level of confidence that these changes really will
improve the quality of the product. Design changes are expensive and risky, and when
they come out of newly developed analysis tools, project managers have a good reason
to scrutinize the claims and results very carefully. Although we have not formally ver-
ified the correctness of our approach, we have carefully checked the results by many
different methods. A formal correctness proof would contribute even more confidence
to using new methods like these, and we see this as a valuable area for future work.

3.3 Other Intermediate Examples

To the best of my knowledge, the first published research on circuit-level verification
was by Kurshan and MacMillan [1]. They verified an arbiter, the asynchronous cousin of
the synchronizers described above. I classify this as an “intermediate” example as they
used fairly realistic transistors models with a real circuit. Their verification assumed
that inputs to the arbiter change instantaneously.

Dastidar and Chakrabarti [26] implemented a model checker for analog circuits. As
in [13], they discretized the state space and used SPICE simulations to achieve a next-
state relation. They extended their discretized state space model to discretizing the pos-
sible input waveforms; in other words, inputs are fine-grained “stair-step” functions. I’m
including this as an “intermediate” example because they presented a systematic proce-
dure for enumerating all possible state transitions relative to these discretizations. They
used their model checker to verify properties of several circuits including a compara-
tor, an operational amplifier, a VCO and a successive-approximation analog-to-digital
converter.

16 M.R. Greenstreet

V

V

V

V

1l

1h

0l

0h

x

4
3

2

dx/dt

x
1

V VV0l 0h V1h

A "typical" trajectory

1l
1 2

The Annulus

4
t

3

Fig. 11. Brockett’s Annulus

Recently, we have verified the CMOS counterpart of Kurshan and MacMillan’s
arbiter [27]. Our verification uses a Brockett’s annulus construction [28] shown in
Figure 11 to specify the allowed input transitions. The annulus defines a relation be-
tween signal voltage and its time derivative. This bounds signals into appropriate in-
tervals for logical low and logical high values; it also specifies monotonic transitions,
and bounds the slopes, and thus transition times, for these transitions. Our verification
applies for any input functions that satisfy these constraints. More details of the con-
struction are in [27]. We have used similar techniques to verify a toggle flip-flop [29].

4 Open Problems

The previous two sections presented examples that show how traditional formal meth-
ods techniques such as reachability analysis and model checking can be combined with
concepts from dynamical systems theory to verify circuits of simple or moderate com-
plexity. Where to we go from here?

Presently, one of the biggest concerns of circuit designers is device parameter vari-
ability [30]. Traditionally, circuit designers have had to cope with the fact that there
could be large parameter variation between different wafers or different die, but that
devices on the same die tend to be very well matched. More recently, this matching has
been limited to devices that are physically proximate, but designers have been extremely
adept at exploiting this matching. As fabrication technology enables the manufacture of
chip with extremely small transistors and wires, statistical fluctuations between devices
have become relatively large, and the traditional design methods no longer work. In-
stead, designers use digital control inputs to analog circuits to adaptively correct for
variations in process parameters and operating conditions. For example, many micro-
processors adaptively adjust the power supply voltage and the body bias (the voltage on
the “fourth” terminal of the transistor that we often don’t bother to include in schemat-
ics) to balance speed and leakage power trade-offs [31,32]. Many chips include on-chip,
dedicated processors simply to manage power supply voltage, clock skew, body bias,
and other variations (e.g. [33]). Thus, chips really are hybrid systems: analog circuits
with non-linear dynamics with discrete control inputs whose values are determined by
a software program.

Verifying VLSI Circuits 17

This mix of analog circuitry with digital, adaptive control creates numerous verifica-
tion challenges. First, detailed simulation with circuit simulators such as SPICE is too
slow to be used while simulating the adaptive algorithm. Thus, designers use mixed-
mode simulation languages such as Verilog-AMS [34] or VHDL-AMS to describe their
designs. Individual circuits are simulated extensively with SPICE, and then the designer
writes a Verilog-AMS model to match the observed behavior. Presently, there is little or
no automatic support to verify that the Verilog-AMS model matches the actual circuit.
Furthermore, the detailed simulations may omit some assignments of the control in-
puts, but the Verilog-AMS code does something “sensible” with that input, even though
it may not be what the actual circuit does. This creates many opportunities for errors to
be hidden in a design.

Based on these observations, I expect that the many of the critical issues for circuit-
level verification will be related to handling design with parameter variations in a sys-
tematic way. This leads to three critical areas for further research:

1. Developing tools to verify that simplified circuit models such as those used in
Verilog-AMS are valid abstractions of the actual circuit. Formal methods re-
searchers have developed many ways of describing and verifying abstractions. I
expect that there are good opportunities for formal methods research to contribute
to this area.

2. Verifying the correct operation of the circuit over the range of possible parameter
values. While a designer can often obtain a high level of confidence in digital de-
signs by simulating the “corner cases,” analog circuits can exhibit more subtle fail-
ures that require consideration of parameters in the interior of the parameter space
as well. While symbolic tools such as PHAVer [4] can analyze a circuit with param-
eters left as symbolic quantities and then derive relations that must hold amongst
the parameters for correct operation, these tools are presently limited to designs that
have a small number of dimensions to their phase space and/or have very simple
dynamics.

3. Verifying the composition of analog circuits with adaptive, digital control. As noted
above, this is a true hybrid systems problem, and there appears to be a good oppor-
tunity to build on the experience and and techniques of the hybrid systems commu-
nity to make contributions here. Again, the complexity of the circuits and control
algorithms along with the non-linearity of the circuit models present challenges that
go beyond current hybrid systems research.

5 Conclusions

I have presented an introduction and survey into results and opportunities for formal
verification of circuits using continuous models. My emphasis has been on using basic
results from dynamical systems theory to specify and analyze circuits. In Section 2,
I described the tunnel-diode oscillator problem that has often been used as an exam-
ple for reachability tools, and showed how it can be verified and characterized using
straightforward dynamical systems methods. This does not invalidate the reachability
approach. Indeed, the challenge of circuit-level verification is largely one of the “curse
of dimensionality:” with continuous variables, a state spac of only five to ten variables

18 M.R. Greenstreet

can be challenging for existing tools. Thus, progress will almost certainly rely on com-
bining reachability methods from the formal methods community with key results from
dynamical systems theory to create tractable methods.

In Section 3, I described “intermediate problems” that are of interest to practicing
circuit designers and can be addressed with existing techniques. Again, I used an os-
cillator as the primary example, in this case the differential ring oscillator challenge
problem posed by researchers at Rambus. I again used a dynamical systems approach,
first finding the equilibrium points of the circuit and then characterizing their stability.
Unlike the tunnel-diode oscillator, refuting the possibility of fixed-point attractors does
not prove that the circuit oscillates as intended. This is because the higher dimension-
ality of the Rambus oscillator’s phase space opens the possibility of more complicated
behaviors than are possible with the tunnel-diode circuit. I also sketched how a dynam-
ical systems approach can be applied to synchronizer analysis and has been used by
industrial designers.

Finally, I posed challenge problems for where we could go next with this work. Chief
among these are finding ways of verifying analog circuits that have digital control in-
puts to compensate for variations in device parameters and operating conditions. These
are genuine hybrid systems that pose challenges for modeling, abstraction, and verifica-
tion. In the past ten years, circuit-level verification has progressed from being academic
curiosity to a topic that addresses concerns of designers working with cutting-edge fab-
rication processes. The high-cost of design and fabrication, the prevalence of mixed-
signal designs, and the challenges of designing deep-submicron processes all motivate
developing new approaches to circuit design. Formal methods has the potential to make
significant contributions to emerging design techniques.

Acknowledgements

I am grateful for interaction with many students and colleagues including Robert Drost,
Kevin Jones, Ian Mitchell, Frank O’Mahony, Chao Yan and Suwen Yang. This work has
been supported in part by grants from Intel, SUN Microsystems, and NSERC CRD–
356905-07.

References

1. Kurshan, R., McMillan, K.: Analysis of digital circuits through symbolic reduction. IEEE
Transactions on Computer-Aided Design 10(11), 1356–1371 (1991)

2. Hartong, W., Hedrich, L., Barke, E.: Model checking algorithms for analog verifica-
tion. In: Proceedings of the 39th ACM/IEEE Design Automation Conference, June 2002,
pp. 542–547 (2002)

3. Little, S., Seegmiller, N., Walter, D., Myers, C., Yoneda, T.: Verification of analog/mixed-
signal circuits using labeled hybrid petri nets. In: Proceedings of the International Conference
on Computer Aided Design, November 2006, pp. 275–282 (2006)

4. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)

5. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra.
Academic Press, San Diego (1974)

Verifying VLSI Circuits 19

6. Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog designs.
In: Proceedings of 2004 IEEE/ACM International Conference on Computer Aided Design,
November 2004, pp. 210–217 (2004)

7. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using for-
ward/backward abstraction refinement. In: Proceedings of Design Automation and Test
Europe, March 2006, pp. 257–262 (2006)

8. Mitchell, I., Greenstreet, M.: Proving Newtonian arbiters correct, almost surely. In: Pro-
ceedings of the Third Workshop on Designing Correct Circuits, Båstad, Sweden (September
1996)

9. Greenstreet, M.R., Huang, X.: A smooth dynamical system that counts in binary. In: Pro-
ceedings of the 1997 International Symposium on Circuits and Systems, Hong Kong, vol. II,
pp. 977–980. IEEE, Los Alamitos (1997)

10. Greenstreet, M.R., Mitchell, I.: Integrating projections. In: Henzinger, T.A., Sastry, S. (eds.)
HSCC 1998. LNCS, vol. 1386, pp. 159–174. Springer, Heidelberg (1998)

11. Jones, K.D., Kim, J., Konrad, V.: Some “real world” problems in the analog and mixed-signal
domains. In: Proc. Workshop on Designing Correct Circuits (April 2008)

12. Greenstreet, M.R., Yang, S.: Verifying start-up conditions for a ring oscillator. In: Proceed-
ings of the 18th Great Lakes Symposium on VLSI (GLSVLSI 2008), May 2008, pp. 201–206
(2008)

13. Little, S., Myers, C.: Abstract modeling and simulation aided verification of analog/mixed-
signal circuits. Presented at the 2008 Workshop on Formal Verification for Analog Circuits
(FAC 2008) (July 2008)

14. Tiwari, S.K., Gupta, A., et al.: fSpice: a boolean satisfiability based approach for formally
verifying analog circuits. Presented at the 2008 Workshop on Formal Verification for Analog
Circuits (FAC 2008) (July 2008)

15. Zaki, M.H., Mitchell, I., Greenstreet, M.R.: Towards a formal analysis of DC equilibria of
analog designs. Presented at the 2009 Workshop on Formal Verification for Analog Circuits
(FAC 2009) (June 2009)

16. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-
linear arithmetic constraint systems with complex boolean structure. JSAT Special Issue on
Constraint Programming and SAT 1, 209–236 (2007)

17. Saleh, R., Wilton, S., H̃u, A.J., Greenstreet, S.M., Ivanov, A., Lemieux, G., Pande, P., Grecu,
C.: System-on-chip: Reuse and integration. Proceedings of the IEEE 94(6), 1050–1069
(2006)

18. Chaney, T., Molnar, C.: Anomalous behavior of synchronizer and arbiter circuits. IEEE
Transactions on Computers C-22(4), 421–422 (1973)

19. Hurtado, M.: Structure and Performance of Asymptotically Bistable Dynamical Systems.
PhD thesis, Sever Institute, Washington University, Saint Louis, MO (1975)

20. Marino, L.: General theory of metastable operation. IEEE Transactions on Computers
C-30(2), 107–115 (1981)

21. Mendler, M., Stroup, T.: Newtonian arbiters cannot be proven correct. In: Proceedings of the
1992 Workshop on Designing Correct Circuits (January 1992)

22. Kinniment, D., Heron, K., Russell, G.: Measuring deep metastability. In: Proceedings of
the Twelfth International Symposium on Asynchronous Circuits and Systems, March 2006,
pp. 2–11 (2006)

23. Yang, S., Greenstreet, M.R.: Computing synchronizer failure probabilities. In: Proceedings
of the 13th Design, Automation and Test, Europe Conference, April 2007, pp. 1361–1366
(2007)

24. Yang, S., Greenstreet, M.R.: Simulating improbable events. In: Proceedings of the 44th
ACM/IEEE Design Automation Conference, June 2007, pp. 154–157 (2007)

20 M.R. Greenstreet

25. Jones, I.W., Yang, S., Greenstreet, M.: Synchronizer behavior and analysis. In: Proceedings
of the Fifthteenth International Symposium on Asynchronous Circuits and Systems, May
2009, pp. 119–126 (2009)

26. Dastidar, T., Chakrabarti, P.: A verification system for transient response of analog circuits
using model checking. In: Proceedings of the 18th International Conference on VLSI Design
(VLSID 2005), January 2005, pp. 195–200 (2005)

27. Yan, C., Greenstreet, M.R.: Verifying an arbiter circuit. In: Proceedings of the 8th Conference
on Formal Methods in Computer Aided Design (FMCAD 2008) (November 2008)

28. Brockett, R.: Smooth dynamical systems which realize arithmetical and logical operations.
In: Nijmeijer, H., Schumacher, J.M. (eds.) Three Decades of Mathematical Systems Theory:
A Collection of Surveys at the Occasion of the 50th Birthday of J. C. Willems. LNCIS,
vol. 135, pp. 19–30. Springer, Heidelberg (1989)

29. Yan, C., Greenstreet, M.R.: Circuit level verification of a high-speed toggle. In: Proceed-
ings of the 7th Conference on Formal Methods in Computer Aided Design (FMCAD 2007)
(November 2007)

30. Bowman, K.A., Duvall, S.G., Meindl, J.D.: Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE
Journal of Solid-State Circuits 37(2), 183–190 (2002)

31. Tschanz, J., Kao, J., et al.: Adaptive body bias for reducing impacts of die-to-die and within-
die parameter variations on microprocessor frequency and leakage. IEEE Journal of Solid-
State Circuits 37(11), 1396–1402 (2002)

32. Chen, T., Naffziger, S.: Comparison of adaptive body bias (ABB) and adaptive supply volt-
age (ASV) for improving delay and leakage under the presence of process variation. IEEE
Transactions on VLSI Systems 11(5), 888–899 (2003)

33. Naffziger, S., Stackhouse, B., et al.: The implementation of a 2-core, multi-threaded Itanium
family processor. IEEE Journal of Solid-State Circuits 41(1), 197–209 (2006)

34. Kundert, K.S.: The Designer’s Guide to Verilog-AMS. Kluwer, Dordrecht (2004)

3-Valued Abstraction for (Bounded) Model

Checking

Orna Grumberg

Computer Science Department, Technion, Haifa, Israel

Abstract. Model Checking is the problem of verifying that a given
model satisfies a specification, given in a formal specification language.
Abstraction is one of the most successful approaches to avoiding the
state explosion problem in model checking. It simplifies the model being
checked, in order to save memory and time.
3-valued abstraction is a strong type of abstraction that can be used

for both verification and refutation. For hardware verification, 3-valued
abstraction can be obtained by letting state variables and inputs range
over the ternary domain 0,1,X, where X stands for “unknown”. X is
used to abstract away parts of the circuit that are irrelevant for the
property being checked. For 3-valued abstractions, checking an abstract
model may result in 1 or 0, indicating that the checked property holds or
fails, respectively, on the original model. Alternatively, model checking
may result in X, indicating that it is impossible to determine whether
the property holds or fails due to a too coarse abstraction. In the latter
case, the abstract model is refined by replacing some of the X’s with the
relevant parts of the circuit. The 3-valued abstraction and refinement
can be applied either automatically or manually.
In this talk we present an automata theoretic approach to 3-valued ab-

straction in hardware model checking. We show how our 3-valued frame-
work can be incorporated into SAT based bounded model checking and
induction based unbounded model checking.
Our method enables applying formal verification of LTL formulae on

very large industrial designs. We developed our method within Intel’s
bounded and unbounded model checking framework, implemented on
top of a state-of-the-art CNF SAT solver. We used it for checking real
life assertions on a large CPU design, and obtained outstanding results.

This is a joint work with Avi Yadgar, Alon Flaisher, and Michael Lifshits.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, p. 21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Local Search in Model Checking

A.W. Roscoe, P.J. Armstrong, and Pragyesh

Oxford University Computing Laboratory
Bill.Roscoe@comlab.ox.ac.uk

Abstract. We introduce a new strategy for structuring large searches
in model checking, called local search, as an alternative to depth-first and
breadth-first search. It is designed to optimise the amount of checking
that is done relative to communication, where communication can mean
either between parallel processors or between fast main memory and
backing store, whether virtual memory or disc files. We report on it in
the context of the CSP refinement checker FDR.

1 Introduction

Recent years have seen an enormous increase in the power of model checking
technology, thanks in part to the more powerful computers that we now have
to run them on and in part to improved algorithms such as techniques for SAT
checking [2,8], partial order reduction [14] and state-space compression [13]. It
is clear, however, that there is still a need for the basic function of searching
through the states of a large but finite automaton to test whether each reachable
state is satisfactory.

The first author has yet to find a problem where FDR, the refinement checker
for CSP (using explicit searching combined with the compression of subpro-
cesses) could not prove a property (i.e. the absence of a counter-example) faster
than the SAT checking models of [10,16]. Even when finding counter-examples,
the option of using FDR in DFS mode is very competitive with these, as shown
in [10].

It is well known that the state spaces of parallel systems tend to grow expo-
nentially with the number of parallel components, and also grow rapidly with the
sizes of the types used in defining systems. This means that many of the exam-
ples one might wish to run on a tool such as FDR either take only a trivial time
or are well beyond the bounds of possibility. What we are going to investigate in
this paper is the region between these two extremes where, for example, either
it becomes desirable to split the effort of a particular run across several CPUs,
the number of states needing to be stored exceeds the limits of fast memory on
the computer, or both.

In any case it is clear that for the foreseeable future there will be demand
for tools that can handle as large as possible a system as quickly as possible.
In what follows we will examine how model-checking technology for explicitly
searching through a state space has evolved with time, and has been affected
by the developments in computing technology over the last two decades. In this

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 22–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Local Search in Model Checking 23

last respect technology has been hugely positive and is alone responsible for the
complete transformation of the capabilities of FDR and other methods. However
it is also true to say that, relative to the huge increase in processing power these
years have brought, the rate at which large amounts of data can be moved
around, in particular on and off backing store such as disc, has not developed so
rapidly on typical workstations. There has therefore been a gradually increasing
need for search algorithms that minimise and optimise the needs for such data
shifting. One particular statistic that is immediately visible to the user of a tool
like FDR is the change in speed that occurs when it comes to occupy more space
than is available to it in fast memory. We will refer to this as the slow down
factor: 1 implying none, 2 meaning that it goes to half speed, and so on.

A crude measure of the slow-down factor is the reciprocal of the proportion
of CPU time that the search tool gets when operating on backing store. (In the
authors’ experience they always use 100% when not fettered in this way.)

This paper presents techniques that we believe will greatly improve this factor.
It represents work in progress in the sense that only relatively primitive and
experimental versions of our methods have been implemented at the time of
writing. The relative importance and effectiveness of the heuristics we introduce
will only become clear after a good deal more work.

The main concepts of local search were proposed by the first author, and
developed by all three during a period when the third author was an intern in
Oxford during the summer of 2009. We expect that an implementation of it will
be released in version 2.91 of FDR towards the end of 2009.

In the next section we review the background to the problem, and see how
model checking algorithms have evolved in relation to this slow-down, and how
both have been affected by the developments in computing technology. We then
introduce the main ideas of local searching, before concentrating on the problem
of how to partition state spaces effectively. We then review the results we have
obtained to date before reviewing how local searching will transfer to parallel
architectures.

This paper focuses on FDR. While we describe those parts of its behaviour
directly relevant to this paper, inevitably we leave out a large amount of related
detail. The interested reader can discover much more in, for example, [4,9], [11]
(especially Appendices B and C) and [12] (forthcoming 2010).

2 Background

Early model checkers, including the first version of FDR, stored state information
in hash tables. To discover if one of the successor states S ′ of the current state
S you are examining has been seen before, just see if it is in the table. This
works well provided the hash table will fit in the main memory of the computer,
but extremely badly otherwise because of the way in which hash tables tend to
create truly random access into the memory they consume: a section of backing
store that is fetched into main memory (and this happens in large blocks) is
unlikely to be much used before being written back.

24 A.W. Roscoe, P.J. Armstrong, and Pragyesh

This problem generated a number of ingenious techniques such as one bit
hashing [5,6,15] in which one did not worry about hash collisions (so the search
one performed was not complete). In this, only one bit is allocated per hash value,
which simply records whether a state with that value has been seen before.

Such techniques were never implemented in FDR1, which saw slow-down
factors approaching 100, making it entirely unusable for checks exceeding the
bounds of RAM. The release of FDR2 in 1994 saw the first introduction of a
searching technique in which, instead of performing each membership test indi-
vidually, they are grouped together into large batches in such a way that the
stored state space can be accessed effectively, with all checks against a particular
block of stored state space being performed together.

The specific technique used by early versions of FDR, and described in [9],
was to store the entire explored state space in a sorted list. The search was then
performed in breadth-first search order, so that all the membership tests of each
level of the check can be done together as follows:

– Initially, the explored state list E (0) is empty and we need to explore the
root state r . The initial ply of the search Ply(0) is therefore {r}.

– Each ply Ply(n) is sorted and combined with the explored states E (n) by
merging to create E (n + 1), by adding only those members of Ply(n) not in
E (n). Ply(n +1) is created as the set of all successors of these added states.

– The search is over when Ply(n) is empty.

At the same time FDR started to apply compression techniques to these sorted
lists, storing them in blocks that were either delta-compressed (i.e. only the bytes
that were different between consecutive states were stored, together with a table
showing where to put them), or compressed using the gzip utility, which was
more expensive in terms of computing, but created compressed files that were
perhaps 30% smaller than delta-compression.

When this was implemented the typical slow-down was reduced to somewhere
between 2 and 4, so this represented a considerable success. In many cases the
more aggressive compression regime gave lower execution times for complete
checks.

The fact that disc access speed did not keep up with processor speed had the
effect, however, of gradually increasing the slow-down factor between 1994 and
the early 2000’s, so that by this time the typical slow-down associated with this
method had increased to perhaps 8-12. This was particularly noticeable towards
the end of a refinement check, when relatively small numbers of new states are
introduced per ply of the BFS, but the above algorithm was still ploughing
through the entire state space each time.

To counter that, from FDR 2.64 onwards, the simple sorted list structure was
replaced by a B-tree, still a sorted structure, but where it is possible to gain
rapid access to a particular state and to omit whole blocks of states that are not
required in a particular pass. Thus the merge of the algorithm reported above
was replaced by repeated insertion into the B-tree represented by the already-
explored states. This was particularly effective towards the end of searches, and
perhaps halved the slow-down factor overall.

Local Search in Model Checking 25

Of course this was not as good as we would have liked, and we are naturally
now once again seeing an increase in this factor. It is this issue that the present
paper addresses: we are looking for ways to reduce the amount of data that has
to be moved to and from memory for each state explored.

Although the memory size of modern workstations is huge compared to those
of a few years ago (2-4Gb being typical at the time of writing) it nevertheless
seems to be the case that this limit is reached more quickly by FDR than in
previous years. This means that, if anything, the problems of a high slow-down
factor has become greater.

Believing that the new technology of disc drives built from flash memory
would help greatly with the problems identified here, we obtained such a ma-
chine in 2008. We were disappointed that, at least with that particular version,
the performance was actually marginally worse than with the same machine’s
conventional disc. This led us to believe that, though this type of technology may
well improve in the future, it is very unlikely to solve the slow down problem
sufficiently.

As we will discuss later, may of the same issues also apply to the parallel
execution of model checking, where a significant barrier may be amount of data
that has to be communicated between processors.

3 Local Search

As we have seen, BFS permits all of the membership tests in each ply of the
search to be combined, which greatly reduces the amount of memory churn that
is required. Nevertheless, even when improved by B-tree structures, it still more-
or-less requires the entire accumulated state space to pass through the CPU on
each ply. This would not matter if the memory bandwidth were sufficiently high
that this happened without diminishing performance, but this is not true.

It gradually became apparent to the first author that the present BFS strategy
required improvement, and so he proposed the following alternative method:

– Begin the search using the same BFS strategy as at present, with a param-
eter set for how much physical memory FDR is supposed to use. Maintain
statistics on the states that are reached, the details of which will be discussed
later.

– Monitor the position at the end of each play of the BFS, and when the mem-
ory used by the combination of the accumulated state space X (n) and the
unexplored successors S (n + 1) exceeds the defined limit, these two sets are
split into a small number (at least two) blocks by applying some partitioning
function.

– This partitioning might either be done as a separate exercise, or be combined
with the next ply of the search.

– From here on the search always consists of a number of these blocks, and a
partitioning function Π that allocates states between them. Each such block
B(i) will have an explored state space EB(i) and a set of unexplored states
UB(i), which may intersect EB(i).

26 A.W. Roscoe, P.J. Armstrong, and Pragyesh

– At any time FDR pursues the search on a single block B only, as a BFS, but
the successors generated are partitioned using Π . The successors belonging
to B(i) are pursued in this BFS. Those belonging to other blocks are added
to UB(j) in a way that does not require operations on the existing body of
UB(j) that require this to be brought into memory.

– The search on B(i) might terminate because after some ply UB(i) becomes
empty. In this case begin or resume the search on some other block with a
nonempty UB(j): if there is none, the search is complete and in FDR the
refinement check gives a positive result. If there is another block to resume
we must realise that B(i) may not be finished for all time since other B(j)
might create a new UB(i) for the block that has just terminated.

– On the other hand the size of the search of B(i) might grow beyond our
limit. In this case Π is refined so that B(i) is split as above. After that a
block which may or may not be one of the results of this last split is resumed.

– On resuming a block B(i) the set UB(i) might have grown very large thanks
to input from other blocks, and furthermore it is possible that there might
be much repetition. There is therefore a strong argument for (repetition
removing) sorting of UB(j) before assessing whether to split B(i) at this
stage.

It is clear that this search will find exactly as many states and successor states
as either BFS or DFS: we explore the successors of every state exactly once. The
objective of this approach is to minimise the amount of transfer in and out of
main memory during the search. The basic rationale is that it makes sense to
explore the successors of some states without always backgrounding them before
doing so. In other words,

– Like DFS, tend to explore states that are already in the foreground.
– Seek to reduce the amount of memory churning performed by BFS.

There are three major parameters to this search method:

– How many pieces to divide blocks into? There are clear arguments for making
this depend on the evolution of the search. If it is growing quickly we would
expect a larger number of pieces to be better.

– Where there is a choice of blocks to resume, which one one should one pick?
One could, for example, pick the largest one, follow a depth-first strategy
(where blocks are arranged into a stack, with new blocks being pushed onto
the stack, and the top of the stack being chosen for resumption), a breadth
first search (where they are organised into a queue), or a hybrid in which,
when a split occurs, we pursue one of the resulting blocks but push the rest
to the back of a queue. Suppose, for example, an initial split generates blocks
A and B , pursuing A generates AA and AB , and that pursuing AA at that
point means that it terminates before splitting. Then the three strategies
would initially follow 〈A,AA,AB〉, 〈A,B〉 and 〈A,AA,B〉.

– Perhaps most importantly, what algorithm should we use for partitioning the
state space? There are two desiderata here: firstly that the parts we divide

Local Search in Model Checking 27

the state space into are the sizes we want. While we might well want them
to be equal in size, this is not inevitable. The second objective is that as
large a proportion of the transitions from a state in each block should be to
the same block: that way there will be relatively little state space to transfer
to other blocks, and the search of a generated block is unlikely to peter out
quickly. We will term this property that transitions tend to be to “nearby”
states as locality and measure it as a percentage: the percentage of computed
transitions that lie inside a single block. It follows that we should hope to
do better than we would with a randomised partition.

How successful we are with this second objective might well influence the
other choices that have to be made.

Whilst we hope that this approach will give us advantages thanks to better
memory management, we also need to be aware of the extra work it introduces.

– Based on the above, we would expect each state to have partitioning func-
tions applied to it as often as the blocks it happens to be in are split.

– Similarly we would expect there to be a cost in re-organising the data struc-
tures used to store states each time a block is split.

– There will also be costs in devising partitioning functions and collecting and
analysing statistics to help in this.

4 Partitioning the State Space

We will assume in what follows that the overall state space is stored in a sorted
structure in the general style of FDR as described earlier. We do not, however,
discount the possibility that the same ideas might work in conjunction with hash
tables.

Given this choice, there is an obvious way of partitioning a state space quickly:
to break it into k pieces choose k − 1 states as pivots, with the pieces being the
k − 2 sections between consecutive pairs of pivots, and the other two being the
those less than, and greater than, all pivots. We might conventionally include
the pivots themselves in the section immediately above them.

The most obvious way of picking these pivots is to spread them evenly either
in the relevant UB(i) or EB(i) or both. The most obvious advantage of this
approach is that the partitioning and restructuring work essentially disappears.

A clear disadvantage is that there is no good reason to suspect that this
partitioning approach will give good locality properties: for this to happen we
would need to design an order where most transitions are to states that are close
(in the order) to their origins. We will show later how this can be achieved.

If we are to look for ways of improving the locality of a partition we must
understand how one’s tool, in our case FDR, represents states and generates
transitions.

Since FDR is checking the refinement of a “specification” process Spec by
an ‘implementation” process Impl , the things it searches through are not single
states but actually “state-pairs”: the pairs (ss , is) where ss is a state of the

28 A.W. Roscoe, P.J. Armstrong, and Pragyesh

specification and is is a state of the implementation that are reachable on some
trace t .

ss is an integer index into an explicit representation of the normal form of
Spec. An explicit state machine is an array of states, each of which carries a list
of transitions, with each transition being the label of the action and the index
of the target state. In some cases the states might have additional labelling. A
normal form state machine is one in which (i) there are no τ (invisible) actions
and (ii) no state has more than one action with any given label. Thus given the
root state of a normal form machine, and a trace, then if it can perform the
trace t then after t its state is completely determined.

If the refinement check is over any model other than T , the traces model,
then the normal form state will be labelled with information representing, for
example, divergence and refusal-set information.

In most cases FDR computes the normal form in advance, but there is also the
option to use the function lazynorm(Spec), which means that only those normal
form states relevant to traces of Impl are explored. The motivation for lazynorm
is that sometimes the normalisation of Spec is a time-consuming activity, and
lazynorm means that only the necessary parts of the normalisation are done.
This is potentially an important distinction for our partitioning activities, since
preliminary analysis can be carried out on a complete Spec, but less on one that
has yet to be evaluated.

In a large proportion of FDR checks, the specification is extremely simple,
frequently having just one or two states. For example, the specifications for
“deadlock-free” and “the event a never occurs” each have just one state. There
is clearly very little potential for partitioning the space of state pairs based on
the specification state in cases like this1.

The situation with the implementation state is is analogous to that with lazy
normalisation: at the start of the check we have no idea which states will be
reached or what their transitions will be. They are both examples of implicit
state machines: a representation of the root state together with a set of recipes
for computing the actions and resulting target states from any given state.

To understand the structure of an implementation state we need to understand
the two-level treatment of CSP’s operational semantics in FDR. The CSPM input
language of FDR allows the user to lay out a network using functional program-
ming. Broadly speaking FDR will reduce (in functional programming terms) the
description of a network until it either hits a true recursion or gets below the
level of all “high-level” operators, the most important of which are parallel, hid-
ing and renaming. The syntax it encounters below that dividing line is compiled
into explicit state machines using a symbolic representation of the operational
semantics: these must be finite state and will be called components. Above that
level it devises one or more recipes for combining together the states and actions

1 It is possible in these cases artificially to increase the number of states in the specifi-
cation, and indeed in our trial implementations we have sometimes done this. There
are various good reasons such as loss of compression and the difficulty of automating
this process that make this option very unattractive as a long-term solution.

Local Search in Model Checking 29

of the components into states and actions of the whole implementation. We call
these recipes supercombinators: see below.

Components do not only arise from compiling low-level syntax. They can also
be generated by one of the various operators in CSP that compresses the state
space of a process, typically because it has been applied to the parallel/hiding
combination of a proper subset of what would otherwise have been the compo-
nents of the complete system. Components can vary in size from a single state
to hundreds of thousands or even millions.

Each of the recipes for combining components is called a format. In the ma-
jority of practical checks, there is just a single format that is effectively a parallel
composition of the N (say) components, with perhaps some hiding and renaming
mixed in.

Where there is more than one format, it is because one or more CSP operators
that are usually low level get pushed up to high level by having some parallel
operator beneath them in the reduced syntax tree, as in

(P ‖ Q); R and (a → (P ‖ Q)) � (b → R)

In both of these there will be format that consists of a state of P and one of Q ,
and a format that consists of a state of R. In the right-hand process there is also
a format representing the initial state that has no components.

FDR already stores the different formats separately, but where there are more
than one they will frequently have very different numbers of states. So while it
may well make sense to incorporate formats into a partitioning strategy, they are
unlikely ever to be an important part of it. For the rest of this section, therefore,
we will concentrate on partitioning an implementation process that has only a
single format.

FDR calculates the actions of such a state in one of two ways. Firstly, any
τ action of one of the components is promoted to be an action of the complete
system, in which only the component that performs the τ changes state. Sec-
ondly, FDR produces a number of supercombinator rules. Each of these can be
described by a partial function φ from the component indices to Σ, the visible
event labels, together with a result action, which may either be in Σ or τ . This
rule can fire just when, for each i ∈ dom(φ), component i can perform the event
φ(i). Just the components that are in dom(φ) change state.

Thus each component processes simply moves around its own state space as
the complete implementation progresses. One of the best prospects for partition-
ing the complete state space is to partition one of the components, and simply
assign each state or state pair to a group determined by what state that com-
ponent is in. This can clearly be generalised to look at the states of a small
collection of the components, particularly in the case where the individual com-
ponents each have very few states.

The mapping that sends each overall state to the state of the j th component
may be far from uniform: some states may be represented many more times
than others. It follows that what seems like a well-balanced partition of this
component may not yield a well-balanced partition of the complete space. It is

30 A.W. Roscoe, P.J. Armstrong, and Pragyesh

not at all unusual, for example, for a component process to have one or more error
states that we hope will never be reached in the entire system. It therefore seems
unlikely that there will be good automatic ways of deciding what component-
based partition will be used in advance of running the search. We will, however,
later show how to create a range of options for this in advance.

In our single format case, where the format has N components, we can think of
each state pair as an N +1-tuple of states, the extra one being the specification.
There is no reason why partitions cannot be based on the specification state just
as for a component of the implementations, but nor is there any reason to expect
specification state distributions to be any more uniform.

We offer two different strategies for partitioning the state space, which we
term pre-computed and dynamic.

4.1 Pre-computed Partitioning

In pre-computed partitioning, we decide on some partitioning options in advance,
based on the state spaces of one or more of the N + 1 processes that represent
a state pair.

We need an algorithm which will take a state machine and divide it into two
or more state machines that are relatively self-contained, in the sense that as
few transitions as possible pass between these parts.

This algorithm will come in two parts. The first part will assign weights to
the various nodes and transitions of the component state machine. These will
assess how likely it is that the machine will be in a given state or take a given
transition. The second part will be to choose partition(s) of the state machine
that attempt to deliver roughly equal node weight in each part and minimal
edge weight between them so as to improve the locality of the search.

Each of these two algorithms will inevitably only give approximations to op-
timal results. In the first case this is because we cannot predict the weights that
apply to a given search without running the search, and in the second case be-
cause even if we could formulate the correct balance between the two criteria,
it would almost certainly be NP-hard to optimise them. Since the size of com-
ponents we will want to partition will vary from 2 to millions, we will have to
choose extremely efficient algorithms, place an upper bound on the size of com-
ponent we will apply our algorithms to, or have different algorithms for different
sizes of component.

This is not the place to go into great detail about these algorithms, but we
give a few ideas below.

Weighting algorithms. In the absence of evidence about how a system be-
haves in practice, we can make intelligent guesses about how often particular
transitions and nodes are used.

The state explosion problem arises because potentially, and frequently, the
state spaces of the component processes multiply to give the state space of the
entire system. Though in many cases this is not literally true, it is hard to think
of a general way other than running the search to identify statistical information
about which of these potential states are reachable and which are not. What we

Local Search in Model Checking 31

will therefore do is to build up a stochastic model built on the assumption that
all combinations of component states are reachable. We exclude the specification
from the computation of this model since it participates in every visible action.

What we will estimate is the probability, for each state γ of each component
i of the system, that if the ith component of a global state Γ is γ, and Γ ’s
other components are random, a randomly chosen action of Γ leads component
i being in each of γ and the states immediately reachable from it. The sum of
the probabilities of those states that are in the same partition as γ provides
a measure of the locality of the actions starting from a randomly chosen Γ ,
conditional on this ith component.

We will call γ an i-state. We note that it might stay in γ either because it
took an action that did not change the state, or because the global action did
not involve component i .

For each labelled action x that each component j can make, we can compute
Ej (x) the expected number of times j can perform x from a random state: this
is simply the number of x actions from its states divided by the number of
states i has. Note that some of the states might have more than one x , so this
expectation can be greater than 1.

We can therefore calculate, for each supercombinator ρ = (φ, x) the expected
number of times E (ρ) it can fire in an random state, namely the product of
Ej (φ(j)) as j ranges over dom(φ). We can similarly calculate Ej (ρ | γ) the
expected number of times that ρ can fire given that the i-state is γ.

– If i
∈ dom(φ), it is E (ρ).
– If i ∈ dom(φ), then it is the product of the number of φ(i) actions γ has and

all the Ej (φ(j)) as j ranges over dom(φ) − {i}.
The total number of actions EAi(γ) we can expect a random state Γ whose
i-state is some fixed γ to perform is

ct(τ, γ) + Σ{Ej (τ) | j ∈ {1..N } − {i}} + Σ{Ei(ρ) | ρ ∈ SC}

where ct(x , γ′) is the number of different x actions that the state γ′ can perform
from its initial state.

The expected number of times E1i(x | γ) that component i has a single one
of its x actions enabled is then

– 1 if x = τ .
– If x
= τ , it is the sum, over all supercombinators (φ, y) with φ(i) = x , of

the product of Ej (φ(j)) as j ranges over dom(φ) − {i}.
We can now say that the probability of a specific action (x , γ′) of γ firing from
Γ whose other components are randomly chosen is E1i(x | γ)/EAi(γ), namely
the number of times we expect it to fire as an action of such a Γ divided by the
total number of actions of Γ . If EAi(γ) = 0 then it is also 0.

The probability PTi (γ, γ′) of γ making a transition to γ′
= γ is therefore the
sum of this value over all labels x such that γ

x−→ γ′. The probability the state
is unchanged is

PTi(γ, γ) = 1 − Σγ′ �=γPT (γ, γ′)

32 A.W. Roscoe, P.J. Armstrong, and Pragyesh

which takes into account the possibility of some x with γ
x−→ γ firing, and

component i not being involved in the transition.
The above model depends crucially on our simplifying assumption that all

states of the Cartesian product of the component state spaces are reachable.
Under that assumption we know that every state of a given component i is
reached equally often, so there is no point in trying to assign weights to these
states representing how often each is represented in the complete system. There
may, however, be reason to assign weights to them which include the number of
times we expect that state to appear as a successor in the search, since that will
affect the memory consumption of each block. This is because some component
states may be represented more often than others in successors, even though they
all appear equally often in the final state space. We do not propose a specific
method at this time.

4.2 Example

In Chapter 15 of [11], the first case study given is peg solitaire, see Figure 1.
We have added the letters A–G to show typical examples of the seven sym-
metry classes of slot under rotation and reflection. Games like this are useful
benchmarks for FDR because they demonstrate the complexity of the problems

AAAA B

C D

E F

G

Fig. 1. Solitaire board with representatives of symmetry classes

Local Search in Model Checking 33

being solved, because they usually give a counter-example (which is much more
appealing than demonstrating an example where refinement holds) and because
in FDR’s standard breadth-first search the counter-example is found (as in soli-
taire) at the very end of the search, meaning that the search profile is almost
identical to a check that succeeds. The model consists of 33 two-state processes,
one representing each peg. A solitaire move is the in one of the directions up,
down, left and right, and hops a peg over another peg into an empty slot. The
complete alphabet has 19 moves in each of the four directions, plus a special
event done that all the processes synchronise on when they reach their target
state. The diagram shows the initial configuration, and the target is the opposite
one – a single peg in the middle.

None of the processes can perform a τ . The nine central slots (in classes E , F
and G) can each perform 12 different moves: they can be hopped out of, over,
or into in any of the four directions. The twelve slots adjacent to them (classes
C and D) can each perform 6 different move events, and the twelve slots around
the edges (A and B) can each perform only 4. Since there is one supercombinator
for each event – the one that demands that each of the 3 or 33 processes that
can perform the event do so – and since only one of the two states of each event
can perform it, our probability model calculates the probability of each move
event being enabled as 2−3 and the probability that done is enabled as 2−33. In
other words Ei(x) = 0.5 for every event x and slot i .

The model predicts that the probability of any component process being in-
volved in an arbitrary transition is close to the number of moves it is involved in,
divided by the total number of move (76). This model, of course, is based on the
assumption that all the 233 states are reachable2 whereas in fact 187, 636, 299
are (about 2.2%).

By symmetry of the puzzle, it follows immediately from the fact that not all
reachable configurations can be carried forward to a solution that more of the
states will be encountered beyond the half-way point (i.e the 16th move of 31)
than before it. This means, that Ei(x) is, on average, less than 0.5 since each
move requires two pegs present and one absent. Thus it is not surprising that
the actual number of successor states found (1,487M) is less than the 1,781M
that the model of (76/8)× 187M suggests. While the model suggests that all 76
moves will be enabled roughly equally often, in fact they vary from 12.4M times
to 24.1M.

Both the model and the statistics from the check itself suggest that the outer
pegs (classes A and B) are the best ones to partition on, since they change state
in the smallest proportion of the transitions.

Partitioning a weighted graph. Now suppose that we have computed, for
each component i , a node weight for each state γ, representing the proportion
by which we expect to encounter Γ s with this γ during the search, and an edge

2 As discussed in [1], the 233 states break down naturally into 16 equal-size equivalence
classes such that every reachable state is in the same class as the starting one. Thus
the 2.2% reachability actually represents about 35% of the equivalence class of the
starting state.

34 A.W. Roscoe, P.J. Armstrong, and Pragyesh

weight on each pair (γ, γ′) such that γ
= γ′ and γ′ is reachable in one step from
γ. The edge weight represents the probability that, given that the ith component
of Γ is γ, a successor Γ will have γ′.

The previous section we assumed that all node weights are equal, and that
the edge weights are PTi (γ, γ′). We will suggest some more possibilities later.
In a case where node weights are not equal, then the edge weights from a state
γ should be an estimate of the product w(γ) and the probabilities of the various
actions given we are in γ.

In partitioning component i into roughly equal weight but localised parts
(localised meaning that most of its transitions lie within the part), there is a
tension between these two objectives. In general, of course, we will want to divide
a component machine into more than two pieces, or two be able to subdivide a
machine that has already been partitioned. Some possibilities are as follows.

– We could deploy algorithms for finding a minimum cut between two re-
gions of the state machine that have been identified an have non-trivial node
weight. An example of this (and the one we have deployed in our preliminary
implementation) is the Kerninghan-Lin algorithm [7].

– We could successively remove inter-node edges in reverse order of weight
until the machine becomes disconnected, again with restrictions to ensure
the pieces do not become too large.

– Starting from a number of well-spaced points in the graph of nodes, build
up components Ci . Successively add a node to the lightest Ci : the node for
which the sum of edge weights between Ci and it (both ways) is maximised.

Where we have partitioned a component into more than two parts C1, . . . ,Cn ,
whatever algorithm we use for the above task should also generate a linear order
on the Ci with a view to each of the

⋃s
i=r Ci also making sense in terms of

locality. One way of achieving this is to join together the two Ci with the largest
(sum of edge weights) connection between them, and then successively add on
another whose connection at either end makes most sense.

To follow the pre-computed partitioning algorithm, we then arrange the com-
ponents into order by the quality of the partitioning, judged in some way. Sup-
pose the j th part (in its linear order) of the ith component process (ordered in
decreasing order of quality) is Ci,j . We then define the partitioning function Π ,
when applied to a state Γ to be a tuple whose ith component is j , where the
ith component γ(i) of Γ lies in Ci,j .

The range of Π is naturally linearly ordered by lexicographic order (i.e., the
first component takes precedence, then the second, and so on).

Recalling that FDR stores the accumulated state space in a sorted structure,
we can make Π(Γ) the primary sorting key for the states Γ . Then to partition
the state space all we have to do is find the point(s) in the range of Π(Γ) which
is closest to giving the desired sizes of the sections, or (probably) better, find
points determined by as few components γ(i) as possible that are within some
tolerance of the desired division points.

Local Search in Model Checking 35

The effect of this technique is to pre-compute many potential ways to partition
the state space, and then structure the search so that it is trivial to split either
B-trees or sorted lists of states.

Only experience can tell us how effective the probability-based weight calcula-
tions set out above are. It is reasonable to expect that we will find methods that
are effective for searches that are in some sense “typical”. It is also very likely
that it will be possible to construct possibly pathological examples for which it
works badly.

There are two alternatives to this: one is to use Monte Carlo methods to
conduct a partial exploration of the state space in advance, simply to be able
to give estimates for the node and edge weights of the components. Using
this is will still be possible to use the partitioning function Π that stays con-
stant during a search. The other alternative is to use a dynamic partitioning
method.

4.3 Dynamic Partitioning

We have seen that there is a significant data structuring advantage in using a
pre-computed, linearly ordered, partitioning function. There are also the disad-
vantages that we have to work to give predictions about the structure of the
check, and that we are committed to using the N + 1 component processes in a
fixed order regarding partitioning.

The alternative is to gather information about the node and edge weights of
the various components as the check progresses: we can actually count how many
times each of the states of these processes is represented in the accumulated state
space, and how often each of their transitions is possible in these states.

This is very easy and relatively cheap to collect during a search, and we can
then use whatever part of it we wish when a particular block of states has to
be partitioned. A possible approach to this is, for each block that is searched,
to collect information about those states in it that arose since that block either
began as the initial one with the root state, or was last split.

We should, however, notice that the statistics from the part of the check
already done may not be a good predictor of the future. For example, in the
solitaire example, we would expect that the probability that any given slot is
empty will increase during a run.

It is likely that in many cases it will be possible to choose a better-performing
partition of such a block, probably based on only one component, that using the
fixed function.

The algorithms for choosing the best ways to partition a given component
process will, however, follow the same lines as those above.

Whether using dynamic or pre-computed partitioning, we always have the op-
tion of deciding how many pieces to break a block into at the point when the split
is made. We note that it may be wise to estimate the eventual size of the block to
be partitioned in order to guide this decision.

36 A.W. Roscoe, P.J. Armstrong, and Pragyesh

5 Preliminary Practical Results

There are two main options as to how to use FDR in respect of memory man-
agement. The default mode is to have it run as a simple UNIX process, storing
everything as part of process state. Typical Linux implementations limit the size
of a process to 2Gb or 4Gb. A modern processor typically fills this up in less
than an hour when running FDR, in many cases without needing backing store
at all.

The other option is via FDRPAGEDIRS and FDRPAGESIZE, environment variables
which direct the tool to store blocks of states, whose size are determined by the
latter, in directories specified by the former. The latter, naturally, represent
backing store, but of course in many cases these are buffered in main memory.

Our main experiments have been based on two classes of example: variants of
the peg solitaire puzzle discussed earlier, and the distributed database example
set out in Chapter 15 of [11].

Our implementations to date use a partitioning algorithm based on the spec-
ification process only, without edge or node weighting calculations of the sort
set out earlier. Nevertheless they have shown reasonable locality on the above
examples: 93% (of states leading to same partition) in the database example,
and 84% for solitaire.

They have shown considerable promise in speeding up large checks, in par-
ticular in the database example where we found better locality, but are still
considerably sub-optimum in the way they handle the sets of states that are
passed around between blocks.

For this reason we have decided not to publish a performance table in this
version of this paper, but will instead include one in a later version to appear
on the web.

6 Parallel Implementation

A parallel version of FDR was reported in [3], the modus operandi of which is
to allocate states between processors using a randomising hash function whose
range is the same size as the number of processors, and which implements the
usual BFS by having the processors “trade” successors at the end of each ply.

Though its performance was excellent in terms of speed up (linear in most
cases), this parallel version has never been included in the general FDR release
because its usability would be restricted to just one of the many parallel ar-
chitectures in existence. It is clear, however, that a parallel version for at least
multi-core architectures is now required.

The concepts of local search clearly transfer extremely well to parallel execu-
tion, and offer the prospects of reducing the amount of communication between
processors and reducing the amount of time that one process will spend waiting
for another. One possible implementation would be to use the idea of proces-
sor farming: keep a set of search blocks in a queue and, each time a processor
becomes free, give it the next member of this queue.

Local Search in Model Checking 37

The effectiveness of local search versus BFS, and the most efficient way to use
it, is likely to differ between parallel architectures. Let us examine the difference
between a cluster of processors with independent memory and discs, and multi-
core architectures that share these things. It is, of course, likely that we will have
two-level architectures consisting of clusters of multi-core processors.

– In a shared-resource multi-core architecture we should have very fast inter-
core communication. On the other hand the imbalance (from the point of
view of model checking) between processor power and fast memory (i.e. the
problem that local search is designed to alleviate) will simply be multiplied
when running a check on more than one core, and disc bandwidth-per-core
will be divided. It may therefore prove a good idea to concentrate on high
locality between the set of blocks currently being explored on all the cores,
and the set of blocks presently stored on disc. There might also be an argu-
ment for performing different aspects of the search on different cores, though
that might be harder to balance and scale.

– The behaviour of a cluster of processors is likely to be governed by the
relative rates at which data (transfers of states) is passed between processors,
and the speeds at which the processors can (a) transfer data in and out of
their own disc store and (b) process the results.

Our initial aim will be to release a multi-core parallel implementation, hopefully
by the end of 2009.

7 Conclusions

In this paper we have analysed the issue of keeping the usage of slow forms of
memory down to the level where this does not force processing to be delayed,
and seen that this challenge has gradually increased as processing capability has
grown faster, and will increase further with the number of processor cores.

We have developed the local search strategy in an attempt to solve this prob-
lem, which is crucially dependent on our ability to partition the state space into
pieces whose transitions are primarily local, namely to other members of this
partition.

We have shown that by analysing the transition patterns of the component
processes that are combined by FDR generate the transitions of a particular
refinement check, there is a good prospect that we can choose good partitioning
algorithms.

Since local search is not BFS it removes the guarantee that the first coun-
terexample it finds will be a shortest one. There is, however, still a choice akin
to the distinction between DFS and BFS that we have to make, namely in which
order do we process the outstanding blocks of our search. We discussed three
possibilities for this earlier.

The next state of our work will be to implement these possibilities and a va-
riety of partitioning algorithms in FDR and experiment with their effectiveness.
Our objective is to provide a limited range of options so that the user does not
have to understand all of this technology to use it.

38 A.W. Roscoe, P.J. Armstrong, and Pragyesh

Acknowledgements

We are grateful for discussions with Michael Goldsmith. The computing support
staff at Oxford University Computing Laboratory were very helpful by providing
the machines with a small amount of memory that we requested. This work has
benefited from funding from the US Office of Naval Research and EPSRC.

References

1. Beasley, J.D.: The ins and outs of peg solitaire. Oxford University Press, Oxford
(1985)

2. Een, N., Sorenson, N.: An extensible SAT solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

3. Goldsmith, M.H., Martin, J.M.R.: The parallelisation of FDR. In: Proc. Workshop
on Parallel and Distributed model Checking (2002)

4. Goldsmith, M.H., et al.: Failures-Divergences Refinement (FDR) manual
(1991-2009)

5. Holzmann, G.: An improved reachability analysis technique. Software P&E 18(2),
137–161 (1988)

6. Holzmann, G.: Design and validation of computer protocols. Prentice Hall,
Englewood Cliffs (1991)

7. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell System Tech. Journal 49, 291–307 (1970)

8. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

9. Roscoe, A.W.: Model checking CSP. In: A classical mind: essays in honour of C.A.R.
Hoare. Prentice Hall, Englewood Cliffs (1994)

10. Palikareva, H., Ouaknine, J., Roscoe, A.W.: Faster FDR counter-example genera-
tion using SAT solving. To appear in proceedings of AVoCS 2009 (2009)

11. Roscoe, A.W.: The theory and practice of concurrency. Prentice-Hall, Englewood
Cliffs (1997)

12. Roscoe, A.W.: Understanding concurrent systems. Springer, Heidelberg (forthcom-
ing, 2010)

13. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Steffen, B., Cleave-
land, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019.
Springer, Heidelberg (1995)

14. Valmari, A.: Stubborn sets for reduced state space generation. In: Proceedings of
10th International conference on theory and applications of Petri nets (1989)

15. Wolper, P.L., Leroy, D.: Reliable hashing without collision detection. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)

16. Sun, J., Liu, Y., Dong, J.S.: Bounded model checking of compositional processes.
In: Proc. 2nd IEEE International Symposium on Theoretical Aspects of Software
Engineering, pp. 23–30. IEEE, Los Alamitos (2008)

Exploring the Scope for Partial Order Reduction

Jaco Geldenhuys1, Henri Hansen2, and Antti Valmari2

1 Computer Science Division, Department of Mathematical Sciences
Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

jaco@cs.sun.ac.za
2 Department of Software Systems, Tampere University of Technology

PO Box 553, FI-33101 Tampere, Finland
{henri.hansen,antti.valmari}@tut.fi

Abstract. Partial order reduction methods combat state explosion by
exploring only a part of the full state space. In each state a subset of en-
abled transitions is selected using well-established criteria. Typically such
criteria are based on an upper approximation of dependencies between
transitions. An additional heuristic is needed to ensure that currently dis-
abled transitions stay disabled in the discarded execution paths. Usually
rather coarse approximations and heuristics have been used, together
with fast, simple algorithms that do not fully exploit the information
available. More powerful approximations, heuristics, and algorithms had
been suggested early on, but little is known whether their use pays off.
We approach this question, not by trying alternative methods, but by
investigating how much room the popular methods leave for better re-
duction. We do this via a series of experiments that mimic the ultimate
reduction obtainable under certain conditions.

1 Introduction

Partial order reduction is a widely-used and particularly effective approach to
combat the state explosion problem. Broadly speaking, partial order reduction
rules out a part of the state space as unnecessary for verifying a given property.
This is achieved by exploiting the commutativity of transitions that arises from
their concurrent execution or other reasons. The term “partial order reduction”
is somewhat inaccurate, but it is used for historical reasons.

There are several approaches to partial order reduction. For the purpose of
this paper, we consider methods that for each state expand some subset of en-
abled transitions. Such methods are highly similar; the sets of transitions that
are expanded are called either stubborn sets [12], ample sets [11], or persistent
sets [4]. The methods differ slightly in the way they are defined, and each method
has a number of different formulations. Nonetheless, the key ideas in all of them
are more or less equivalent [13].

In this paper we use the ample set method as presented in [1] as the starting
point of our investigation. It is easy to implement, and its primitive operations
are fast but, in return, it wastes some reduction power. We investigate experi-
mentally how much potential there is for better reduction. We are interested in

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 39–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 J. Geldenhuys, H. Hansen, and A. Valmari

the ultimate results that would be obtainable by an ideal method that is based
on partial order principles.

We restrict our attention to reductions that preserve deadlocks. More sophis-
ticated verification questions use additional rules such as visibility of transitions
and various cycle closing conditions. We postpone them for future work, because
they introduce more complications than can be discussed in this paper.

The concept of dependency between transitions refers to situations where two
transitions may interfere with each other. Dependency is central in the calcula-
tion of ample sets, and some approximation that overapproximates dependency
is used. We explore how much additional reduction in the resulting state space
is to be gained from using a more accurate dependency relation. Analysis of
dependency could be taken further by engaging in dynamic analysis as in [3,10],
where the notion of dependency is refined during the generation of state spaces.

There is even more variability in the treatment of disabled transitions that
are dependent on transitions in the ample set. The correctness of the methods
requires that they remain disabled until a transition in the ample set occurs. This
can be ensured using different heuristics, some more complicated and presumably
also more powerful than others. In this paper we use a rather straightforward
precedence heuristic and leave the allegedly stronger ones for future work.

In addition to the issues above, there is the question of calculating ample
sets. The basic algorithm considers only subsets that are local to a single pro-
cess. If no suitable process is found, it gives up and returns the set of all enabled
transitions. However, a more sophisticated algorithm can often do better in this
situation. How much further reduction is gained from using the more sophisti-
cated algorithm, is also a matter of investigation here.

Section 2 defines the formal model of concurrent systems that is used through-
out the paper. Section 3 describes exactly how ample sets and the transition
dependency and precedence we employ are calculated. In Section 4 we compare
experimental results from using the different algorithms for ample sets and dif-
ferent versions of dependencies and precedences, and conclusions are presented
in Section 5.

2 Mathematical Background

In the first part of this section we present a formal description of our model of
computation. This is not mere formality for its own sake. Although the formal-
ization is detailed, its purpose is to make it possible to describe the computation
of ample sets in a precise manner.

2.1 Model of Computation

Our model of computation has three components: a set of variables, a set of
transitions, and a set of processes.

Definition 1. Let V = (v1, v2, . . . , vn) be an ordered set of variables. The values
of variable vi are taken from some finite domain Xi. Let X = X1×X2×· · ·×Xn.

Exploring the Scope for Partial Order Reduction 41

– An evaluation e ∈ X associates a value with each variable.
– A guard g: X → B is a total function that maps each evaluation to a Boolean

value. B = {true, false}.
– An assignment a: X → X is a total function that maps one evaluation to

another. ��

Each process is described fully by its transitions and a designated variable called
a program counter. A transition is a pair of the form (g, a) where g is a guard and
a is an assignment. A transition is enabled in states where its guard evaluates as
true. If the transition fires (i.e., is executed), it changes the values of variables
as described by its assignment component. In almost all cases, the guard checks
that the program counter has an appropriate value, and the assignment changes
the value of the program counter.

Definition 2. A process over variables V is a pair (Σ, pc), where Σ is a set
of transitions, and pc ∈ V is a variable called the program counter. For each
transition (g, a) in Σ there is a value x such that the guard g is of the form
(pc = x) ∧ ϕ. ��

For e ∈ X , we write pc(e) to denote the value of the program counter at e.

Definition 3. Let V be an ordered set of variables over the finite domain X and
let P = {P1, P2, . . . , Pk} be a set of processes over V , such that Pi = (Σi, pci).
We assume all the pci are different. Let ê be an evaluation. The state space of P
from ê is M = (S, ê, Σ, Δ), where ê ∈ X is the initial state, Σ = Σ1 ∪ . . . ∪ Σk,
and S and Δ are the smallest sets such that S ⊆ X, Δ ⊆ S×Σ×S, ê ∈ S, and if
t = (g, a) ∈ Σ and s ∈ S and g(s) = true, then a(s) ∈ S and (s, t, a(s)) ∈ Δ. ��

We say that S is the set of states and ê is the initial state. The elements of Σ
above are referred to as structural transitions, while the elements of Δ are called
semantic transitions. From now on, when we write just “transition”, we are re-
ferring to the structural ones. This convention agrees with Petri net terminology
and disagrees with process algebra and Kripke structure terminology.

The following notation is used throughout the paper:

Definition 4. Let M = (S, ê, Σ, Δ) be the state space of P from ê, and let s be
some state of M .

– The enabled transitions of s are en(s) = {t ∈ Σ | ∃s′ ∈ S: (s, t, s′) ∈ Δ}.
– We write s−→t when t ∈ en(s).
– We write s−→t s′ when (s, t, s′) ∈ Δ.
– We write s−−−−→t1t2t3··· , when ∃s1, s2, . . . ∈ S : s−→t1 s1−→t2 s2−→t3 . . .
– The local transitions of process Pi in state s are current i(s) = {(g, a) ∈ Σi |

∃e ∈ X : pci(s) = pci(e) ∧ g(e) = true}.
– The enabled local transitions of Pi are en i(s) = current i(s) ∩ en(s).
– The disabled local transitions of Pi are dis i(s) = current i(s) \ en(s). ��

Lastly, we need to know which other variables are involved in which transitions.
These relationships are only defined in the context of a state space.

42 J. Geldenhuys, H. Hansen, and A. Valmari

Definition 5. Let V = (v1, v2, . . . , vn) be an ordered set of variables, let P be a
set of processes over V , and let M = (S, ê, Σ, Δ) be the state space of P from ê.
Given evaluations e, e′ ∈ X, for 1 ≤ i ≤ n:

– ei denotes the value of vi in e, and
– δ(e, e′) = {i | ei
= e′i} is the set of indices on which e and e′ disagree.

If t = (g, a) ∈ Σ, then

– the test set of t is Ts(t) = {vi | ∃e, e′ ∈ X : δ(e, e′) = {i} ∧ g(e)
= g(e′)},
– the write set of t is Wr(t) = {vi | ∃e ∈ X : ei
= a(e)i},
– the read set of t is Rd(t) = {vi | ∃e, e′ ∈ X : δ(e, e′) = {i} ∧ ∃j: vj ∈ Wr(t) ∧

a(e)j
= a(e′)j}, and
– the variable set of t is Vr(t) = Ts(t) ∪ Rd(t) ∪Wr(t). ��

The test, write, and read sets are conservative syntactic estimates of those vari-
ables that may be involved in the different aspects of a transition’s execution.
Variables with disjoint variable sets are clearly independent, but an even finer
condition will be given in Section 3.1..

2.2 Ample Sets, Dependency and Precedence

It is important to distinguish which transitions may interfere with one another
and to this end we define the following:

Definition 6. Let M = (S, ê, Σ, Δ) be the state space of P from ê, and S′ ⊆ S.
A dependency relation D ⊆ Σ×Σ for S′ is a symmetric, reflexive relation such
that (t1, t2)
∈ D implies that for all states s ∈ S′, the following are true:

1. If s−→t1 s′ and s−→t2 , then s′−→t2 (independent transitions do not disable one
another).

2. If s−−→t1t2 s′ and s−−→t2t1 s′′ then s′ = s′′ (the final state is independent of the
transition order).

Given D and T ⊆ Σ, we write dep(T) = {t | ∃t′ ∈ T : (t, t′) ∈ D}. ��

The definition implies that if D is a dependency relation, D′ is symmetric, and
D ⊆ D′, then D′ is also a dependency relation. If S′ = S in this definition, we
get the usual notion of dependency. We shall, however, also use other S′.

Here we use the definition of ample sets from [1], modified to accommodate
S′ instead of S.

Definition 7. Let M = (S, ê, Σ, Δ) be the state space of P from ê, let S′ ⊆ S
and let D be a dependency relation for S′. A set ample(s) ⊆ Σ of transitions is
an ample set for state s ∈ S′ if and only if the following hold:

A0 ample(s) = ∅ if and only if en(s) = ∅.
A1 For every path of the state space that begins at s, no transition that is not

in ample(s) and is dependent on a transition in ample(s), can occur without
some transition in ample(s) occurring first.

Exploring the Scope for Partial Order Reduction 43

Because condition A1 talks about future transitions, some of which may not be
enabled in the current state, we need information about not only those transi-
tions that are currently enabled, but also those that may become enabled in the
future.

Definition 8. Let M = (S, ê, Σ, Δ) be the state space of P from ê, and S′ ⊆ S.
A precedence relation R ⊆ Σ×Σ for S′ is such that if there is some state s ∈ S′

such that ¬s−→t2 and s−−→t1t2 , then (t1, t2) ∈ R.
Given R and T ⊆ Σ, we write pre(T) = {t | ∃t′ ∈ T : (t, t′) ∈ R}. ��

The definition implies that if R is a precedence relation and R ⊆ R′, then R′ is
also a precedence relation. The precedence relation makes it possible to detect
all the transitions that can enable a given transition. It is a coarse heuristic. A
finer heuristic, commonly used in the stubborn set method, takes advantage of
the fact that if the guard of t is of the form ϕ∧ψ where ϕ evaluates to true and
ψ evaluates to false in the current state, then it would suffice to only consider
those transitions which may affect ψ.

3 The Calculation of D, R, and Ample Sets

3.1 Calculating D and R

In Section 2.1 we carefully make a distinction between structural and semantic
transitions, and between the description of a model (its variables and processes)
and the state space it generates. This difference plays an important role when it
comes to the calculation of the D and R relations.

Specifically, the static (structural) description of a model is almost always
available and can be used to calculate an overapproximation of the smallest
possible D and R. The full state space, on the other hand, is seldom available for
realistic models; the purpose of partial order methods is to avoid its construction!

In this paper we consider three versions of D/R. The first, which we refer to
as Ds/Rs, is based on the static model description and is calculated as follows:
Let M = (S, ê, Σ, Δ) be a state space, and t1, t2 ∈ Σ.

– (t1, t2) ∈ Ds if and only if Wr(t1) ∩ Vr(t2)
= ∅ or Wr(t2) ∩ Vr(t1)
= ∅.
– (t1, t2) ∈ Rs if and only if Wr(t1) ∩Ts(t2)
= ∅.

It is easy to see that these dependency and precedence relations are not the
smallest possible. For example, consider the two transitions

ta : true −→ x := (x + 1) mod 5
tb : true −→ x := (x + 2) mod 5

(Here we use Dijkstra’s guarded command notation to describe the guards and
assignments of the transitions.) If ta and tb belong to two different processes,
they are clearly independent: they cannot disable each other and the order in
which they execute has no effect on the final state. Nevertheless, according to

44 J. Geldenhuys, H. Hansen, and A. Valmari

the rules above (ta, tb) ∈ Ds because each transition reads a variable (x) that is
written to by the other.

The second version of the relations is called Df/Rf , and is based on the full
state space:

– (t1, t2) ∈ Df if and only if for some state s ∈ S where s−→t1 s1 and s−→t2 s2,
either ¬s1−→t2 or s1−→t2 s′ ∧ ¬s2−→t1 s′.

– (t1, t2) ∈ Rf if and only if for some state s ∈ S, both ¬s−→t2 and s−−→t1t2 .

The third and final version of the relations, Dd/Rd, is based on the full state
space and the current state:

– (t1, t2) ∈ Dd(s) if and only if for some state s′ ∈ S reachable from s and
where s′−→t1 s1 and s′−→t2 s2, either ¬s1−→t2 or s1−→t2 s′′ ∧ ¬s2−→t1 s′′.

– (t1, t2) ∈ Rd(s) if and only if for some state s′ ∈ S reachable from s, both
¬s′−→t2 and s′−−→t1t2 .

Note that the definition of ample sets in Definition 7 is only sensitive to what
happens in the current state and its subsequent states. It is therefore correct
to restrict Dd and Rd to the part of the state space that is reachable from the
current state. Here we make use of the S′ in Definitions 6 and 8: for Dd(s) and
Rd(s), we let S′ be the set of all those states that are reachable from s.

Ds/Rs are based on structural transitions, whereas both Dd/Rd and Df/Rf

are defined with respect to semantic transitions. While in practice the latter two
versions may be expensive to calculate in full, they provide some idea of the
limits of partial order reduction.

3.2 Calculating Ample Sets

It is reasonable to always consider all the current transitions in a given process as
dependent, and therefore the smallest possible sets that are eligible as ample sets
are the sets en i(s) of enabled local transitions in each process. A conservative
estimate of when such a set can be selected is based on the following sufficient
condition [1]:

Proposition 1. eni(s) is an ample set if for each process Pj
= Pi we have

1. pre(dis i(s)) ∩ Σj = ∅, and
2. dep(en i(s)) ∩ Σj = ∅. ��

A straightforward method for using this information tests the en i sets one by
one. If either of the conditions fails to hold, the set is discarded and we consider
the next candidate. If no suitable candidate is found, the set en(s) is used as an
ample set. This approach is shown in Figure 1, and it is also roughly how partial
order reduction is implemented in SPIN [7].

As it stands, the algorithm returns the first valid ample set it encounters. This
is somewhat arbitrary, since it depends on the order in which the processes are
examined, which, in turn, often depends on their order of declaration. This may

Exploring the Scope for Partial Order Reduction 45

ample1(s)
1 for i ∈ {1, . . . , k} such that eni(s) �= ∅ do
2 A← true
3 for j �= i do
4 if pre(disi(s)) ∩Σj �= ∅ or dep(eni(s)) ∩Σj �= ∅ then
5 A← false
6 break
7 if A then return eni(s)
8 return en(s)

Fig. 1. Ample set selection from [2]

give the user some control over the selection of ample sets, but it is doubtful
whether such control is ever exercised and whether it is effective. Instead, we
refer to this default version in Figure 1 as first choice, and we consider two
alternative approaches:

– Minimum choice: The algorithm is modified to compute all the valid ample
sets of the form eni(s) (it merely records the set index in line 7), and returns
the smallest set (or one of the smallest sets) in line 8, reverting to en(s) if
no en i(s) qualifies.

– Random choice: As for minimum choice, the algorithm computes all valid
ample sets of the form eni(s) and then randomly picks one of these to return
in line 8, reverting to en(s) if necessary.

On the surface, random choice seems just as arbitrary as first choice. However, in
Section 4 the same partial order reduction run is repeated many times with the
random choice approach. This allows us to measure experimentally how sensitive
the reduction is to the choice of ample set.

3.3 Using SCCs for Ample Sets

One drawback of the approach in the previous section is that the ample set
contains the enabled transitions of either all or exactly one of the processes. It
is easy to imagine a scenario of four processes P1 . . .P4 where en1 and en2 are
mutually dependent, and en3 and en4 are mutually dependent, and all other
pairings are independent. In this scenario it is possible to choose ample = en1 ∪
en2 or ample = en3 ∪ en4, but this is never done.

In [12] an algorithm that constructs a graph whose maximal strongly con-
nected components (SCCs) are used as candidates for ample is presented.

Definition 9. Let M = (S, ê, Σ, Δ) be the state space of P from ê, D be a
dependency relation, R be a precedence relation, and s ∈ S a state of M .

– For two processes Pi and Pj, if one or both of the conditions in Proposition 1
are violated, then Pj is a conflicting process for Pi in state s.

46 J. Geldenhuys, H. Hansen, and A. Valmari

ample2(s)
1 E ← ∅
2 for i ∈ {1, . . . , k} do
3 A← true
4 for j �= i do
5 if pre(disi(s)) ∩Σj �= ∅ or dep(eni(s)) ∩Σj �= ∅ then
6 A← false
7 E ← E ∪ {(i, j)}
8 if A ∧ en i(s) �= ∅ then return en i(s)
9 return enH(s) where H is some SCC of Gs = ({1, . . . , k}, E)

that satisfies the conditions of Proposition 2

Fig. 2. Ample set selection using a conflict graph

– Gs = (W, E) is a conflict graph for state s such that the vertices are process
indices: W = {1, . . . , k} and (i, j) ∈ E if and only if Pj is a conflicting
process for Pi in state s.

– If H is an SCC of the conflict graph Gs, then enH(s) = ∪i∈Hen i(s). ��
Then we have the following:

Proposition 2. Let M = (S, ê, Σ, Δ) be the state space of P from ê, s ∈ S be
some state of M , and Gs be the conflict graph for state s. If H is an SCC of Gs

such that

1. enH(s)
= ∅, and
2. for all SCCs H ′
= H that are reachable from H, enH′ (s) = ∅,

then enH(s) is an ample set for state s. ��
This gives us the correctness of the algorithm in Figure 2.

To see how this approach can improve upon ample1, consider the model of
the philosophers’ banquet, shown in Figure 3. The whole system consists of two
completely independent copies of the classic four dining philosophers system,
as illustrated in Figure 3(b). (The details of a single philosopher are shown in
Figure 3(a).)

No reduction is possible with ample1, because each eni(s) set of each philoso-
pher contains transitions that are dependent on the transitions of the philosopher
to the left or right, and is therefore invalid according to Proposition 1. On the
other hand, ample2 is able to select an ample set ∪i∈Table1eni(s). The full sys-
tem has 6400 states and 33920 transitions, which ample2 reduces to 95 states
and 152 transitions; as mentioned, ample1 does not reduce the state space at
all.

As in the case of ample1, we shall consider three versions of ample2:

– First choice: The algorithm as it stands.
– Minimum choice: The algorithm modified to compute all valid enH , and to

return the smallest such candidate.
– Random choice: The algorithm modified to compute all valid enH , and to

return a random candidate.

Exploring the Scope for Partial Order Reduction 47

(a)

���
� �

� �

think
� �

� �

hasL

� �

� �

hasR
� �

� �

done

�
fL = 0→
fL := 1

�

fR = 0→
fR := 1

�
fL := 0

�

fR := 0

(b)

� �

� 	

�

�
� �

�

�
� �

�

�
� �

�

�
� �

Table 1

� �

� 	

�

�
� �

�

�
� �

�

�
� �

�

�
� �

Table 2

Fig. 3. Model of the philosophers’ banquet. (a) Details of a single philosopher; fL

and fR refer to a philosopher’s left and right forks. (b) A banquet consisting of two
independent copies of the classic dining philosophers model.

4 Experimental Results

The previous section presented three different versions of the D and R relations,
two different algorithms (ample1 and ample2) that use the relations to compute
potential ample sets, and three different ways (first , minimum, and random) of
choosing an actual ample set.

Each of the 18 combinations of techniques are evaluated by applying them
to models taken from the BEEM repository [8]. The full repository contains
300 variants of 57 basic models, and covers a range of genres: protocols, mutual
exclusion and leader election algorithms, hardware control, scheduling and plan-
ning, and others. Since the experiments are long-running, only the 114 smallest
models were chosen, but with at least one variant for each basic model. The sizes
of the models range from 80 to 124 704 states, and 212 to 399 138 transitions.

For each model, the original model source code is converted to a C program
that generates the full state space and writes the resulting graph (without detailed
state contents) to a file. The Ds/Rs and Df/Rf relations are also computed and
stored along with the graphs. In all cases the full state space is identical to those
described on the BEEM website.

All the numbers in the tables that follow refer to the percentage of states in the
full state space explored by a method. This provides some measure of savings
with respect to memory consumption, independent of specific data structures
and architecture. The overhead costs involved in calculating ample sets make it
hard to give a similarly independent measure for computation time.

4.1 Conflict Graph in the Static Case

The first question we address is whether the use of the conflict graph makes
any difference. Algorithm ample2 never fares worse than algorithm ample1;
Table 1(a) shows those cases where it fares better. For all but a small number
of models its impact is negligible.

48 J. Geldenhuys, H. Hansen, and A. Valmari

Table 1. Comparison of ample1 and ample2 algorithms in the static case. (a) In-
stances where ample1 and ample2 differ. (b) Further instances where ample1 or
ample2 or both achieve reduction.

(a)

ample1 ample2
Model Ds/Rs Ds/Rs

phils3 100.00 32.37
trgate2 100.00 54.77
trgate3 100.00 55.61
trgate1 100.00 59.12
phils1 100.00 60.00
bopdp1 100.00 95.74
elev21 100.00 96.30

(b)

ample1 ample2
Model Ds/Rs Ds/Rs

mcs4 5.88 5.88
anders4 46.47 46.47
anders2 61.55 61.55
peters1 62.25 62.25
mcs2 65.06 65.06
szyman1 69.46 69.46
ldrfil2 76.57 76.57
peters2 82.42 82.42
ldrfil4 82.71 82.71
mcs1 89.30 89.30
ldrfil3 96.39 96.39
krebs2 97.60 97.60

This is partly due to the fact that the Ds/Rs relations are crude overap-
proximations of the true dependency between transitions, that do not provide
much information for either ample1 or ample2 to exploit. Table 1(b) shows all
further models for which any reduction at all was achieved. For the remaining
92 models both ample1 and ample2 explored the entire state space.

In all tables the rows are ordered according to the reduction reported in the
rightmost column. In some tables we omit results for the same model with a
different parameterization, due to lack of space.

4.2 The Static v. Full Calculation of D/R

With the exception of the msc4 model, the results in Tables 1(a) and (b) could
be seen as disappointing. On the other hand, they demonstrate what can be
achieved with very basic static analysis.

The question that arises is how much can be gained by refining the D/R
relations. There are essentially two ways of achieving this.

Firstly, a more sophisticated analysis of the structural transition guards and
assignments can eliminate unnecessary dependencies between some transitions.
Such an analysis may include, for example, the kind of reasoning employed to
conclude that transitions ta and tb in Section 3.1 are independent of one another.
This is what Godefroid and Pirottin call refined dependency [5].

Secondly, some dependencies can be computed on-the-fly. For example, in mod-
els of concurrency with asynchronous communication, the emptiness or fullness of
a bounded-length communication channel affects the dependency of some opera-
tions on the channel. Godefroid and Pirottin refer to this approach as conditional

Exploring the Scope for Partial Order Reduction 49

Table 2. Comparison of static and full D/R relations

ample2 ample1 ample2
Model Ds/Rs Df/Rf Df/Rf

cycsch1 100.00 1.19 1.19
mcs4 5.88 4.13 4.13
fwtree1 100.00 6.25 6.25
phils3 32.37 29.63 10.84
mcs1 89.30 18.35 18.35
anders4 46.47 22.78 22.78
iprot2 100.00 26.16 25.97
mcs2 65.06 34.45 34.45
phils1 60.00 60.00 47.50
fwlink2 100.00 51.37 50.66
krebs1 100.00 90.06 51.09
ldrelc3 100.00 54.26 54.26
teleph2 100.00 59.55 59.55
ldrelc1 100.00 60.52 60.52
szyman1 69.46 62.98 62.98
prodcl2 100.00 63.12 63.12
at1 100.00 65.71 65.35
szyman2 72.22 65.76 65.76
ldrfil2 76.57 65.94 65.94
lamp1 100.00 66.24 66.24
prots2 100.00 72.51 67.69
collsn1 100.00 68.46 68.46
drphls1 100.00 68.54 68.54

ample2 ample1 ample2
Model Ds/Rs Df/Rf Df/Rf

prots3 100.00 72.45 70.75
peters2 82.42 71.54 71.54
drphls2 100.00 72.25 72.25
collsn2 100.00 73.94 73.94
prodcl1 100.00 74.08 74.08
teleph1 100.00 75.16 75.16
lamp3 100.00 75.18 75.18
fwlink1 100.00 81.61 78.83
pgmprt4 100.00 80.82 80.82
ldrfil3 96.39 83.20 83.20
bopdp2 95.35 85.81 84.78
fischr1 100.00 87.38 87.38
bakery3 100.00 87.51 87.51
exit2 100.00 100.00 87.78
brp21 100.00 87.96 87.96
pubsub1 100.00 94.48 88.97
fwtree2 100.00 98.93 89.43
pgmprt2 100.00 89.49 89.49
brp2 100.00 99.51 96.46
extinc2 100.00 98.95 96.87
cycsch2 100.00 100.00 98.55
synaps2 100.00 100.00 99.75
plc1 100.00 99.95 99.95

dependency [5], and a related technique is briefly described by Peled [9] and more
fully by Holzmann [6].

Both these approaches are subsumed by Df/Rf as defined in Section 3.1. In
other words, the full versions of the D and R relations supply an upper bound
to the reduction that can be achieved with refined and conditional dependency.
Table 2 compares the ample2 algorithm for the static D/R, and the ample1
and ample2 algorithms for the full D/R.

As the table shows, a significant reduction can be achieved for some models,
even when using ample1. Nevertheless, the SCC approach is able to exploit the
improved dependency relations even further.

These results lead to a further question: given the choice of improving D or
improving R, which of the two relations should be refined, if possible? To answer
this question, we combined the static version of D with the full version of R,
and vice versa. The results of these experiments are shown in Table 3.

Only for the four topmost models in the table does the Ds/Rf combination
make a greater impact than the Df/Rs combination. In all other cases, a more
accurate version of D leads to greater reduction.

50 J. Geldenhuys, H. Hansen, and A. Valmari

Table 3. Combinations of static/full D/R

ample2 ample2 ample2 ample2
Model Ds/Rs Ds/Rf Df/Rs Df/Rf

fwtree1 100.00 9.19 100.00 6.25
bopdp2 95.35 93.24 95.11 84.78
bopdp1 95.74 93.42 95.33 86.88
exit2 100.00 87.78 100.00 87.78

phils3 32.37 32.37 10.84 10.84
mcs1 89.30 89.30 20.11 18.35
anders4 46.47 46.47 22.78 22.78
iprot2 100.00 100.00 27.40 25.97
iprot1 100.00 100.00 30.82 28.94
mcs2 65.06 65.06 38.28 34.45
brp1 100.00 100.00 99.15 96.98
brp2 100.00 100.00 99.51 96.46
plc1 100.00 100.00 99.97 99.95

Table 4. Comparison of the full and dynamic D/R relations

ample2 ample2
Model Df/Rf Dd/Rd

mcs2 34.45 22.73
fwtree2 89.43 28.51
ldrflt1 88.70 50.62
cycsch2 98.55 53.73
prots3 70.75 70.18
pubsub1 88.97 88.10
needhm1 100.00 89.54
bakery1 94.42 93.63
bakery2 100.00 98.87
gear1 100.00 99.40

4.3 Dynamic Version of D/R

The effect of using the dynamic version of D/R is compared to the full version in
Table 4. For the majority of the 114 models, little further reduction is achieved,
and only a couple of models (mcs2, fwtree2, ldrflt1, cycsch2, and needhm1)
exhibit significant reduction (more than 10%). Of course, the use of Df/Rf

already reduces the state space for many models, and there is less “room” for
additional reduction. Furthermore, if the state space of a system is strongly
connected, the Df and Dd relations are identical, as are Rf and Rd.

Exploring the Scope for Partial Order Reduction 51

Table 5. Comparison of the first, minimum, and random choice

ample2, Df/Rf

Model 1st min random

fwtree1 6.25 6.25 6.25 6.99
mcs1 18.35 18.35 18.05. . .18.37
iprot2 25.97 25.98 27.48. . .29.61
iprot1 28.94 28.96 29.78. . .34.00
mcs2 34.45 34.45 34.38. . .34.87
fwlink2 50.66 50.68 50.66. . .50.68
ldrelc3 54.26 54.28 54.12. . .54.21
ldrelc1 60.52 60.55 60.27. . .60.57
szyman1 62.98 62.98 63.12. . .63.33
prodcl2 63.12 63.12 63.30. . .64.06
ldrelc2 64.38 64.05 64.07. . .64.20
krebs2 65.17 65.17 65.18. . .65.22
at1 65.35 65.35 65.35. . .65.38
krebs1 51.09 47.95 57.92. . .65.51

ample2, Df/Rf

Model 1st min random

ldrflt2 65.94 65.94 65.86. . .65.99
szyman2 65.76 65.76 66.05. . .66.22
drphls1 68.54 68.54 68.54. . .68.55
prots2 67.69 68.25 68.99. . .69.52
drphls2 72.25 72.25 72.30. . .72.36
at2 72.73 72.73 72.73. . .72.75
prots3 70.75 72.31 71.28. . .73.09
prodcl1 74.08 74.08 74.40. . .75.45
prots1 78.77 78.11 78.27. . .79.51
pgmprt4 80.82 80.82 80.87. . .80.92
fwlink4 82.06 82.06 82.45. . .82.73
collsn2 73.94 73.94 83.09. . .85.50
exit2 87.78 87.10 87.84. . .88.01
fischr1 87.38 87.38 86.75. . .88.17

ample2, Dd/Rd

Model 1st min random

mcs2 22.73 22.87 23.08. . .24.43
fwtree2 28.51 28.76 31.54. . .35.35
ldrflt1 50.62 50.28 50.24. . .52.17
cycsch2 53.73 57.42 54.09. . .55.15
prots3 70.18 72.31 71.67. . .72.91
prots1 78.77 78.11 78.44. . .79.42

ample2, Dd/Rd

Model 1st min random

teleph1 75.78 70.00 77.42. . .82.97
pubsub1 88.10 88.10 87.41. . .88.10
needhm1 89.54 89.54 89.34. . .91.15
bakery1 93.63 93.63 93.63. . .94.02
bakery2 98.87 98.87 98.95. . .99.48
gear1 99.40 99.55 99.44. . .99.70

4.4 First, Minimum, and Random Choice

Lastly, Table 5 shows the results of experiments in which a different choice of
valid ample sets is exercised. In the case of Df/Rf , the choice of first, minimum,
and random ample sets produces no effect for either the ample1 or ample2
approaches. This may be explained by the fact that the choices are so limited
that it does not matter which ample set is selected.

In the case of the full and dynamic versions of D/R, however, some variation
can be observed. For six models, selecting the SCC with the smallest number
of enabled transitions produces an improvement in the reduction; their names
are shown in italics. Note, however, that this strategy does not consistently
improve the reduction and that the same model behaved differently in the full
and dynamic versions. The improvement is largest for teleph1 (−5.78%) and
for krebs1 (−3.14%); for the other models it is less than 1%. For 12 models
the minimum choice leads to losses of reduction, although these are generally
smaller than the improvements.

The situation is somewhat similar when a valid SCC is chosen at random.
Each experiment was repeated 50 times for Df/Rf and 20 times for Dd/Rd to

52 J. Geldenhuys, H. Hansen, and A. Valmari

produce the results in Table 5. In the case of Df/Rf , this strategy produces a
range of 7.59% for the krebs1 model, and for Dd/Rd a range of 5.55% for the
teleph1 model. All other ranges are smaller than 5% for the remaining models
shown, and zero for the rest.

The relatively small ranges seem to indicate that in the majority of cases, re-
duction is not overtly sensitive to the choice of ample set. However, this does not
rule out the possibility that more advanced, systematic heuristics for choosing
an ample set could produce significant savings.

5 Discussion

The use of partial order reduction is widespread, and many improvements to the
basic techniques have been proposed. Before such proposals are pursued, it is
worthwhile to try to determine whether any significant improvement is possible
at all. This paper has attempted to partially address this question. We have

– presented empirical lower bounds for partial order reduction based on a
rough approximation of the dependency relation between transitions;

– presented empirical upper bounds based on information derived from the full
state space;

– demonstrated that it is possible to improve reduction using a relatively sim-
ple technique such as a conflict graph that exploits information about tran-
sition dependency more fully than the standard technique; and

– shown that, given a choice of ample sets, choosing the smallest set, or a
random set does not lead to significantly greater reduction in any of our
experiments.

It is important to point out that it is unlikely that the upper bounds we present
here are achievable. We have left the effect of the cycle-closing conditions and
visibility for future work. Both tend to reduce the effect of partial order reduc-
tion. Generally speaking, the reduction does not appear to be as significant as
reported elsewhere.

References

1. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Software Tools for Technology Transfer 2(3), 279–287
(1999)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

3. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd Annual ACM
Symposium on Principles of Programming Languages, January 2005, pp. 110–121
(2005)

4. Godefroid, P.: Partial-order Methods for the Verification of Concurrent Systems: an
Approach to the State-explosion Problem. LNCS, vol. 1032. Springer, Heidelberg
(1996)

Exploring the Scope for Partial Order Reduction 53

5. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS,
vol. 697, pp. 438–449. Springer, Heidelberg (1993)

6. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2004)

7. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Hogrefe, D.,
Leue, S. (eds.) Proceedings of the 7th IFIP TC6/WG6.1 International Conference
on Formal Description Techniques (FORTE 1994), June 1994, pp. 197–211 (1994)

8. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007), http://anna.fi.muni.cz/models/

9. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

10. Peled, D., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Methods in System Design 19(3), 275–289 (2001)

11. Peled, D.A.: All from one, one for all: on model checking using representatives.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer,
Heidelberg (1993)

12. Valmari, A.: A stubborn attack on state explosion. Formal Methods in System
Design 1(1), 297–322 (1992)

13. Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Generation.
PhD thesis, Digital Systems Laboratory, Helsinki University of Technology (May
1998)

http://anna.fi.muni.cz/models/

State Space Reduction of Linear Processes

Using Control Flow Reconstruction

Jaco van de Pol and Mark Timmer�

University of Twente, Department of Computer Science, The Netherlands
Formal Methods & Tools

{pol,timmer}@cs.utwente.nl

Abstract. We present a new method for fighting the state space explo-
sion of process algebraic specifications, by performing static analysis on
an intermediate format: linear process equations (LPEs). Our method
consists of two steps: (1) we reconstruct the LPE’s control flow, detect-
ing control flow parameters that were introduced by linearisation as well
as those already encoded in the original specification; (2) we reset pa-
rameters found to be irrelevant based on data flow analysis techniques
similar to traditional liveness analysis, modified to take into account the
parallel nature of the specifications. Our transformation is correct with
respect to strong bisimilarity, and never increases the state space. Case
studies show that impressive reductions occur in practice, which could
not be obtained automatically without reconstructing the control flow.

1 Introduction

Our society depends heavily on computer systems, asking increasingly for meth-
ods to verify their correctness. One successful approach is model checking; per-
forming an exhaustive state space exploration. However, for concurrent systems
this approach suffers from the infamous state space explosion, an exponential
growth of the number of reachable states. Even a small system specification can
give rise to a gigantic, or even infinite, state space. Therefore, much attention
has been given to methods for reducing the state space.

It is often inefficient to first generate a state space and then reduce it, since
most of the complexity is in the generation process. As a result, intermediate
symbolic representations such as Petri nets and linear process equations (LPEs)
have been developed, upon which reductions can be applied. We concentrate
on LPEs, the intermediate format of the process algebraic language μCRL [12].
Although LPEs are a restricted part of μCRL, every specification can be trans-
formed to an LPE by a procedure called linearisation [13, 19]. Our results could
also easily be applied to other formalisms employing concurrency.

An LPE is a flat process description, consisting of a collection of summands
that describe transitions symbolically. Each summand can perform an action
and advance the system to some next state, given that a certain condition based
� This research has been partially funded by NWO under grant 612.063.817 (SYRUP).

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 54–68, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

State Space Reduction of Linear Processes 55

on the current state is true. It has already been shown useful to reduce LPEs
directly (e.g. [5, 14]), instead of first generating their entire (or partial) state
spaces and reducing those, or performing reductions on-the-fly. The state space
obtained from a reduced LPE is often much smaller than the equivalent state
space obtained from an unreduced LPE; hence, both memory and time are saved.

The reductions we will introduce rely on the order in which summands can be
executed. The problem when using LPEs, however, is that the explicit control
flow of the original parallel processes has been lost, since they have been merged
into one linear form. Moreover, some control flow could already have been en-
coded in the state parameters of the original specification. To solve this, we first
present a technique to reconstruct the control flow graphs of an LPE. This tech-
nique is based on detecting which state parameters act as program counters for
the underlying parallel processes; we call these control flow parameters (CFPs).
We then reconstruct the control flow graph of each CFP based on the values it
can take before and after each summand.

Using the reconstructed control flow, we define a parameter to be relevant if,
before overwritten, it might be used by an enabling or action function, or by a
next-state function to determine the value of another parameter that is relevant
in the next state. Parameters that are not relevant are irrelevant, also called
dead. Our syntactic reduction technique resets such irrelevant variables to their
initial value. This is justified, because these variables will be overwritten before
ever being read.

Contributions. (1) We present a novel method to reconstruct the control flow of
linear processes. Especially when specifications are translated between languages,
their control flow may be hidden in the state parameters (as will also hold for our
main case study). No such reconstruction method appeared in literature before.

(2) We use the reconstructed control flow to perform data flow analysis, re-
setting irrelevant state parameters. We prove that the transformed system is
strongly bisimilar to the original, and that the state space never increases.

(3) We implemented our method in a tool called stategraph and provide
several examples, showing that significant reductions can be obtained. The main
case study clearly explains the use of control flow reconstruction. By finding
useful variable resets automatically, the user can focus on modelling systems in
an intuitive way, instead of formulating models such that the toolset can handle
them best. This idea of automatic syntactic transformations for improving the
efficiency of formal verification (not relying on users to make their models as
efficient as possible) already proved to be a fruitful concept in earlier work [21].

Related work. Liveness analysis techniques are well-known in compiler theory [1].
However, their focus is often not on handling the multiple control flows arising
from parallelism. Moreover, these techniques generally only work locally for each
block of program code, and aim at reducing execution time instead of state space.

The concept of resetting dead variables for state space reduction was first
formalised by Bozga et al. [7], but their analysis was based on a set of sequential
processes with queues rather than parallel processes. Moreover, relevance of vari-
ables was only dealt with locally, such that a variable that is passed to a queue

56 J. van de Pol and M. Timmer

or written to another variable was considered relevant, even if it is never used
afterwards. A similar technique was presented in [22], using analysis of control
flow graphs. It suffers from the same locality restriction as [7]. Most recent is [10],
which applies data flow analysis to value-passing process algebras. It uses Petri
nets as its intermediate format, featuring concurrency and taking into account
global liveness information. We improve on this work by providing a thorough
formal foundation including bisimulation preservation proofs, and by showing
that our transformation never increases the state space. Most importantly, none
of the existing approaches attempts to reconstruct control flow information that
is hidden in state variables, missing opportunities for reduction.

The μCRL toolkit already contained a tool parelm, implementing a basic
variant of our methods. Instead of resetting state parameters that are dead given
some context, it simply removes parameters that are dead in all contexts [11].
As it does not take into account the control flow, parameters that are sometimes
relevant and sometimes not will never be reset. We show by examples from the
μCRL toolset that stategraph indeed improves on parelm.

Organisation of the paper. After the preliminaries in Section 2, we discuss the
reconstruction of control flow graphs in Section 3, the data flow analysis in
Section 4, and the transformation in Section 5. The results of the case studies
are given in Section 6, and conclusions and directions for future work in Section 7.

Due to space limitations, we refer the reader to [20] for the full version of the
current paper, containing all the complete proofs, and further insights about ad-
ditional reductions, potential limitations, and potential adaptions to our theory.

2 Preliminaries

Notation. Variables for single values are written in lowercase, variables for sets
or types in uppercase. We write variables for vectors and sets or types of vectors
in boldface.

Labelled transition systems (LTSs). The semantics of an LPE is given in terms
of an LTS : a tuple 〈S, s0, A, Δ〉, with S a set of states, s0 ∈ S the initial state,
A a set of actions, and Δ ⊆ S × A × S a transition relation.

Linear process equations (LPEs). The LPE [4] is a common format for defin-
ing LTSs in a symbolic manner. It is a restricted process algebraic equation,
similar to the Greibach normal form for formal grammars, specifications in the
language UNITY [8], and the precondition-effect style used for describing au-
tomata [16]. Usenko showed how to transform a general μCRL specification into
an LPE [13, 19].

Each LPE is of the form

X(d : D) =
∑
i∈I

∑
ei : Ei

ci(d, ei) ⇒ ai(d, ei) · X(gi(d, ei)),

where D is a type for state vectors (containing the global variables), I a set
of summand indices, and Ei a type for local variables vectors for summand i.

State Space Reduction of Linear Processes 57

The summations represent nondeterministic choices; the outer between different
summands, the inner between different possibilities for the local variables. Fur-
thermore, each summand i has an enabling function ci, an action function ai

(yielding an atomic action, potentially with parameters), and a next-state func-
tion gi, which may all depend on the state and the local variables. In this paper
we assume the existence of an LPE with the above function and variable names,
as well as an initial state vector init.

Given a vector of formal state parameters d, we use dj to refer to its jth

parameter. An actual state is a vector of values, denoted by v; we use vj to refer
to its jth value. We use Dj to denote the type of dj , and J for the set of all
parameters dj . Furthermore, gi,j(d, ei) denotes the jth element of gi(d, ei), and
pars(t) the set of all parameters dj that syntactically occur in the expression t.

The state space of the LTS underlying an LPE consists of all state vectors.
It has a transition from v to v′ by an atomic action a(p) (parameterised by the
possibly empty vector p) if and only if there is a summand i for which a vector
of local variables ei exists such that the enabling function is true, the action is
a(p) and the next-state function yields v′. Formally, for all v, v′ ∈ D, there is a
transition v

a(p)−→ v′ if and only if there is a summand i such that

∃ei ∈ Ei · ci(v, ei)∧ ai(v, ei) = a(p)∧ gi(v, ei) = v′.

Example 1. Consider a process consisting of two buffers, B1 and B2. Buffer B1
reads a datum of type D from the environment, and sends it synchronously to
B2. Then, B2 writes it back to the environment. The processes are given by

B1 =
∑
d : D

read(d) · w(d) · B1, B2 =
∑
d : D

r(d) · write(d) · B2,

put in parallel and communicating on w and r. Linearised [19], they become

X(a : { 1, 2 }, b: { 1, 2 }, x : D, y : D) =∑
d : D a = 1 ⇒ read(d) · X(2, b, d, y) (1)

+ b = 2 ⇒ write(y) · X(a, 1, x, y) (2)
+ a = 2∧ b = 1 ⇒ c(x) · X(1, 2, x, x) (3)

where the first summand models behaviour of B1, the second models behaviour
of B2, and the third models their communication. The global variables a and b
are used as program counters for B1 and B2, and x and y for their local memory.

Strong bisimulation. When transforming a specification S into S′, it is obviously
important to verify that S and S′ describe equivalent systems. For this we will
use strong bisimulation [17], one of the most prominent notions of equivalence,
which relates processes that have the same branching structure. It is well-known
that strongly bisimilar processes satisfy the same properties, as for instance
expressed in CTL∗ or μ-calculus. Formally, two processes with initial states p
and q are strongly bisimilar if there exists a relation R such that (p, q) ∈ R, and

– if (s, t) ∈ R and s
a→ s′, then there is a t′ such that t

a→ t′ and (s′, t′) ∈ R;
– if (s, t) ∈ R and t

a→ t′, then there is a s′ such that s
a→ s′ and (s′, t′) ∈ R.

58 J. van de Pol and M. Timmer

3 Reconstructing the Control Flow Graphs

First, we define a parameter to be changed in a summand i if its value after
taking i might be different from its current value. A parameter is directly used
in i if it occurs in its enabling function or action function, and used if it is either
directly used or needed to calculate the next state.

Definition 1 (Changed, used). Let i be a summand, then a parameter dj is
changed in i if gi,j(d, ei)
= dj, otherwise it is unchanged in i. It is directly
used in i if dj ∈ pars(ai(d, ei)) ∪ pars(ci(d, ei)), and used in i if it is directly
used in i or dj ∈ pars(gi,k(d, ei)) for some k such that dk is changed in i.

We will often need to deduce the value s that a parameter dj must have for
a summand i to be taken; the source of dj for i. More precisely, this value is
defined such that the enabling function of i can only evaluate to true if dj = s.

Definition 2 (Source). A function f : I × (dj:J) → Dj ∪ {⊥} is a source
function if, for every i ∈ I, dj ∈ J , and s ∈ Dj, f(i, dj) = s implies that

∀v ∈ D, ei ∈ Ei · ci(v, ei) =⇒ vj = s.

Furthermore, f(i, dj) = ⊥ is always allowed; it indicates that no unique value s
complying to the above could be found.

In the following we assume the existence of a source function source.

Note that source(i, dj) is allowed to be ⊥ even though there might be some
source s. The reason for this is that computing the source is in general unde-
cidable, so in practice heuristics are used that sometimes yield ⊥ when in fact
a source is present. However, we will see that this does not result in any errors.
The same holds for the destination functions defined below.

Basically, the heuristics we apply to find a source can handle equations, dis-
junctions and conjunctions. For an equational condition x = c the source is
obviously c, for a disjunction of such terms we apply set union, and for conjunc-
tion intersection. If for some summand i a set of sources is obtained, it can be
split into multiple summands, such that each again has a unique source.

Example 2. Let ci(d, ei) be given by (dj = 3∨ dj = 5)∧ dj = 3∧ dk = 10, then
obviously source(i, dj) = 3 is valid (because ({ 3 } ∪ { 5 }) ∩ { 3 } = { 3 }), but
also (as always) source(i, dj) = ⊥.

We define the destination of a parameter dj for a summand i to be the unique
value dj has after taking summand i. Again, we only specify a minimal
requirement.

Definition 3 (Destination). A function f : I × (dj :J) → Dj ∪ {⊥} is a des-
tination function if, for every i ∈ I, dj ∈ J , and s ∈ Dj, f(i, dj) = s implies

∀v ∈ D, ei ∈ Ei · ci(v, ei) =⇒ gi,j(v, ei) = s.

Furthermore, f(i, dj) = ⊥ is always allowed, indicating that no unique destina-
tion value could be derived.

In the following we assume the existence of a destination function dest.

State Space Reduction of Linear Processes 59

Our heuristics for computing dest(i, dj) just substitute source(i, dj) for dj in the
next-state function of summand i, and try to rewrite it to a closed term.

Example 3. Let ci(d, ei) be given by dj = 8 and gi,j(d, ei) by dj + 5, then
dest(i, dj) = 13 is valid, but also (as always) dest(i, dj) = ⊥. If for instance
ci(d, ei) = dj = 5 and gi,j(d, ei) = e3, then dest(i, dj) can only yield ⊥, since
the value of dj after taking i is not fixed.

We say that a parameter rules a summand if both its source and its destination
for that summand can be computed.

Definition 4 (Rules). A parameter dj rules a summand i if source(i, dj)
= ⊥
and dest(i, dj)
= ⊥.

The set of all summands that dj rules is denoted by Rdj = { i ∈ I | dj rules i }.
Furthermore, Vdj denotes the set of all possible values that dj can take before and
after taking one of the summands which it rules, plus its initial value. Formally,

Vdj = { source(i, dj) | i ∈ Rdj } ∪ { dest(i, dj) | i ∈ Rdj } ∪ { initj }.

Examples will show that summands can be ruled by several parameters.
We now define a parameter to be a control flow parameter if it rules all sum-

mands in which it is changed. Stated differently, in every summand a control flow
parameter is either left alone or we know what happens to it. Such a parameter
can be seen as a program counter for the summands it rules, and therefore its
values can be seen as locations. All other parameters are called data parameters.

Definition 5 (Control flow parameters). A parameter dj is a control flow
parameter (CFP) if for all i ∈ I, either dj rules i, or dj is unchanged in i. A
parameter that is not a CFP is called a data parameter (DP).

The set of all summands i ∈ I such that dj rules i is called the cluster of dj.
The set of all CFPs is denoted by C, the set of all DPs by D.

Example 4. Consider the LPE of Example 1 again. For the first summand we may
define source(1, a) = 1 and dest(1, a) = 2. Therefore, parameter a rules the first
summand. Similarly, it rules the third summand. As a is unchanged in the second
summand, it is a CFP (with summands 1 and 3 in its cluster). In the same way,
we can show that parameter b is a CFP ruling summands 2 and 3. Parameter x is
a DP, as it is changed in summand 1 while both its source and its destination are
not unique. From summand 3 it follows that y is a DP.

Based on CFPs, we can define control flow graphs. The nodes of the control flow
graph of a CFP dj are the values dj can take, and the edges denote possible tran-
sitions. Specifically, an edge labelled i from value s to t denotes that summand
i might be taken if dj = s, resulting in dj = t.

Definition 6 (Control flow graphs). Let dj be a CFP, then the control flow
graph for dj is the tuple (Vdj , Edj), where Vdj was given in Definition 4, and

Edj = { (s, i, t) | i ∈ Rdj ∧ s = source(i, dj)∧ t = dest(i, dj) }.

60 J. van de Pol and M. Timmer

a = 1

a = 2

(1) (3)

(a) Control flow graph for a.

b = 1

b = 2

(3) (2)

(b) Control flow graph for b.

Fig. 1. Control flow graphs for the LPE of Example 1

Figure 1 shows the control flow graphs for the LPE of Example 1.
The next proposition states that if a CFP dj rules a summand i, and i is

enabled for some state vector v = (v1, . . . , vj , . . . , vn) and local variable vector
ei, then the control flow graph of dj contains an edge from vj to gi,j(v, ei).

Proposition 1. Let dj be a CFP, v a state vector, and ei a local variable vector.
Then, if dj rules i and ci(v, ei) holds, it follows that (vj , i, gi,j(v, ei)) ∈ Edj .

Note that we reconstruct a local control flow graph per CFP, rather than a global
control flow graph. Although global control flow might be useful, its graph can
grow larger than the complete state space, completely defeating its purpose.

4 Simultaneous Data Flow Analysis

Using the notion of CFPs, we analyse to which clusters DPs belong.

Definition 7 (The belongs-to relation). Let dk be a DP and dj a CFP, then
dk belongs to dj if all summands i ∈ I that use or change dk are ruled by dj.
We assume that each DP belongs to at least one CFP, and define CFPs to not
belong to anything.

Note that the assumption above can always be satisfied by adding a dummy
parameter b of type Bool to every summand, initialising it to true, adding
b = true to every ci, and leaving b unchanged in all gi.

Also note that the fact that a DP dk belongs to a CFP dj implies that the
complete data flow of dk is contained in the summands of the cluster of dj .
Therefore, all decisions on resetting dk can be made based on the summands
within this cluster.

Example 5. For the LPE of the previous example, x belongs to a, and y to b.

If a DP dk belongs to a CFP dj , it follows that all analyses on dk can be made
by the cluster of dj . We begin these analyses by defining for which values of dj

(so during which part of the cluster’s control flow) the value of dk is relevant.
Basically, dk is relevant if it might be directly used before it will be changed,

otherwise it is irrelevant. More precisely, the relevance of dk is divided into
three conditions. They state that dk is relevant given that dj = s, if there is a

State Space Reduction of Linear Processes 61

summand i that can be taken when dj = s, such that either (1) dk is directly
used in i; or (2,3) dk is indirectly used in i to determine the value of a DP that
is relevant after taking i. Basically, clause (2) deals with temporal dependencies
within one cluster, whereas (3) deals with dependencies through concurrency
between different clusters. The next definition formalises this.

Definition 8 (Relevance). Let dk ∈ D and dj ∈ C, such that dk belongs to dj.
Given some s ∈ Dj, we use (dk, dj , s) ∈ R (or R(dk, dj , s)) to denote that the
value of dk is relevant when dj = s. Formally, R is the smallest relation such
that

1. If dk is directly used in some i ∈ I, dk belongs to some dj ∈ C, and s =
source(i, dj), then R(dk, dj , s);

2. If R(dl, dj , t), and there exists an i ∈ I such that (s, i, t) ∈ Edj , and dk

belongs to dj, and dk ∈ pars(gi,l(d, ei)), then R(dk, dj , s);
3. If R(dl, dp, t), and there exists an i ∈ I and an r such that (r, i, t) ∈ Edp ,

and dk ∈ pars(gi,l(d, ei)), and dk belongs to some cluster dj to which dl does
not belong, and s = source(i, dj), then R(dk, dj , s).

If (dk, dj , s)
∈ R, we write ¬R(dk, dj , s) and say that dk is irrelevant when
dj = s.

Although it might seem that the second and third clause could be merged, we
provide an example in [20] where this would decrease the number of reductions.

Example 6. Applying the first clause of the definition of relevance to the LPE of
Example 1, we see that R(x, a, 2) and R(y, b, 2). Then, no clauses apply anymore,
so ¬R(x, a, 1) and ¬R(y, b, 1). Now, we hide the action c, obtaining

X(a : { 1, 2 }, b: { 1, 2 }, x : D, y : D) =∑
d : D a = 1 ⇒ read(d) · X(2, b, d, y) (1)

+ b = 2 ⇒ write(y) · X(a, 1, x, y) (2)
+ a = 2∧ b = 1 ⇒ τ · X(1, 2, x, x) (3)

In this case, the first clause of relevance only yields R(y, b, 2). Moreover, since x
is used in summand 3 to determine the value that y will have when b becomes 2,
also R(x, a, 2). Formally, this can be found using the third clause, substituting
l = y, p = b, t = 2, i = 3, r = 1, k = x, j = a, and s = 2.

Since clusters have only limited information, they do not always detect a DP’s ir-
relevance. However, they always have sufficient information to never erroneously
find a DP irrelevant. Therefore, we define a DP dk to be relevant given a state
vector v, if it is relevant for the valuations of all CFPs dj it belongs to.

Definition 9 (Relevance in state vectors). The relevance of a parameter dk

given a state vector v, denoted Relevant(dk, v), is defined by

Relevant(dk, v) =
∧

dj∈C
dk belongs to dj

R(dk, dj , vj).

Note that, since a CFP belongs to no other parameters, it is always relevant.

62 J. van de Pol and M. Timmer

Example 7. For the LPE of the previous example we derived that x belongs
to a, and that it is irrelevant when a = 1. Therefore, the valuation x = d5 is not
relevant in the state vector v = (1, 2, d5, d2), so we write ¬Relevant(x, v).

Obviously, the value of a DP that is irrelevant in a state vector does not matter.
For instance, v = (w, x, y) and v′ = (w, x′, y) are equivalent if ¬Relevant(d2, v).
To formalise this, we introduce a relation ∼= on state vectors, given by

v
∼= v′ ⇐⇒ ∀dk ∈ J : (Relevant(dk, v) =⇒ vk = v′k) ,

and prove that it is a strong bisimulation; one of the main results of this paper.

Theorem 1. The relation ∼= is a strong bisimulation.

Proof (sketch). It is easy to see that ∼= is an equivalence relation (1). Then, it
can be proven that if a summand i is enabled given a state vector v, it is also
enabled given a state vector v′ such that v

∼= v′ (2). Finally, it can be shown
that if a summand i is taken given v, its action is identical to when i is taken
given v′ (3), and their next-state vectors are equivalent according to ∼= (4).

Now, let v0 and v′
0 be state vectors such that v0

∼= v′
0. Also, assume that

v0
a→ v1. By (1) ∼= is symmetric, so we only need to prove that a transition

v′
0

a→ v′
1 exists such that v1

∼= v′
1.

By the operational semantics there is a summand i and a local variable vec-
tor ei such that ci(v0, ei) holds, a = ai(v0, ei), and v1 = gi(v0, ei). Now, by
(2) we know that ci(v′

0, ei) holds, and by (3) that a = ai(v′
0, ei). Therefore,

v′
0

a→gi(v′
0, ei). Using (4) we get gi(v0, ei)

∼= gi(v′
0, e), proving the theorem. ��

5 Transformations on LPEs

The most important application of the data flow analysis described in the pre-
vious section is to reduce the number of reachable states of the LTS underlying
an LPE. Note that by modifying irrelevant parameters in an arbitrary way, this
number could even increase. We present a syntactic transformation of LPEs,
and prove that it yields a strongly bisimilar system and can never increase the
number of reachable states. In several practical examples, it yields a decrease.

Our transformation uses the idea that a data parameter dk that is irrelevant
in all possible states after taking a summand i, can just as well be reset by i to
its initial value.

Definition 10 (Transforms). Given an LPE X of the familiar form, we define
its transform to be the LPE X ′ given by

X ′(d : D) =
∑
i∈I

∑
ei : Ei

ci(d, ei) ⇒ ai(d, ei) · X ′(g′i(d, ei)),

with

g′i,k(d, ei) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gi,k(d, ei) if
∧

dj∈C
dj rules i

dk belongs to dj

R(dk, dj , dest(i, dj)),

initk otherwise.

State Space Reduction of Linear Processes 63

We will use the notation X(v) to denote state v in the underlying LTS of X,
and X ′(v) to denote state v in the underlying LTS of X ′.

Note that g′i(d, ei) only deviates from gi(d, ei) for parameters dk that are irrel-
evant after taking i, as stated by the following lemma.

Lemma 1. For every i ∈ I, state vector v, and local variable vector ei, given
that ci(v, ei) = true it holds that gi(v, ei)

∼= g′i(v, ei).

Using this lemma we show that X(v) and X ′(v) are bisimilar, by first proving
an even stronger statement.

Theorem 2. Let ≈= be defined by

X(v) ≈= X ′(v′) ⇐⇒ v
∼= v′,

then ≈= is a strong bisimulation. The relation ∼= is used as it was defined for X.

Proof. Let v0 and v′
0 be state vectors such that X(v0) ≈= X ′(v′

0), so v0
∼= v′

0.
Assume that X(v0) a→ X(v1). We need to prove that there exists a transition

X ′(v′
0) a→ X ′(v′

1) such that X(v1) ≈= X ′(v′
1). By Theorem 1 there exists a state

vector v′′
1 such that X(v′

0) a→ X(v′′
1) and v1

∼= v′′
1 . By the operational semantics,

for some i and ei we thus have ci(v′
0, ei), ai(v′

0, ei) = a, and gi(v′
0, ei) = v′′

1 . By
Definition 10, we have X ′(v′

0) a→ X ′(g′i(v
′
0, ei)), and by Lemma 1 gi(v′

0, ei)
∼=

g′i(v
′
0, ei). Now, by transitivity and reflexivity of ∼= (Statement (1) of the proof

of Theorem 1), v1
∼= v′′

1 = gi(v′
0, ei)

∼= g′i(v
′
0, ei), hence X(v1) ≈= X ′(g′i(v

′
0, ei)).

By symmetry of ∼=, this completes the proof. ��

The following corollary, stating the desired bisimilarity, immediately follows.

Corollary 1. Let X be an LPE, X ′ its transform, and v a state vector. Then,
X(v) is strongly bisimilar to X ′(v).

We now show that our choice of g′(d, ei) ensures that the state space of X ′ is
at most as large as the state space of X . We first give the invariant that if a
parameter is irrelevant for a state vector, it is equal to its initial value.

Proposition 2. For X ′(init) invariably ¬Relevant(dk, v) implies vk = initk.

Using this invariant it is possible to prove the following lemma, providing a
functional strong bisimulation relating the states of X(init) and X ′(init).

Lemma 2. Let h be a function over state vectors, such that for any v ∈ D it is
given by hk(v) = vk if Relevant(dk, v), and by hk(v) = initk otherwise. Then,
h is a strong bisimulation relating the states of X(init) and X ′(init).

Since the bisimulation relation is a function, and the domain of every function
is at least as large as its image, the following corollary is immediate.

64 J. van de Pol and M. Timmer

Corollary 2. The number of reachable states in X ′ is at most as large as the
number of reachable states in X.

Example 8. Using the above transformation, the LPE of Example 6 becomes

X ′(a : { 1, 2 }, b : { 1, 2 }, x : D, y : D) =∑
d : D a = 1 ⇒ read(d) · X ′(2, b, d, y) (1)

+ b = 2 ⇒ write(y) · X ′(a, 1, x, d1) (2)
+ a = 2∧ b = 1 ⇒ τ · X ′(1, 2, d1, x) (3)

assuming that the initial state vector is (1, 1, d1, d1). Note that for X ′ the state
(1, 1, di, dj) is only reachable for di = dj = d1, whereas in the original specifica-
tion X it is reachable for all di, dj ∈ D such that di = dj .

6 Case Studies

The proposed method has been implemented in the context of the μCRL toolkit
by a tool called stategraph. For evaluation purposes we applied it first on a
model of a handshake register, modelled and verified by Hesselink [15]. We used
a MacBook with a 2.4 GHz Intel Core 2 Duo processor and 2 GB memory.

A handshake register is a data structure that is used for communication be-
tween a single reader and a single writer. It guarantees recentness and sequen-
tiality; any value that is read was at some point during the read action the last
value written, and the values of sequential reads occur in the same order as they
were written). Also, it is waitfree; both the reader and the writer can complete
their actions in a bounded number of steps, independent of the other process.
Hesselink provides a method to construct a handshake register of a certain data
type based on four so-called safe registers and four atomic boolean registers.

We used a μCRL model of the handshake register, and one of the imple-
mentation using four safe registers. We generated their state spaces, minimised,
and indeed obtained identical LTSs, showing that the implementation is correct.
However, using a data type D of three values the state space before minimisation
is already very large, such that its generation is quite time-consuming. So, we
applied stategraph (in combination with the existing μCRL tool constelm [11])
to reduce the LPE for different sizes of D. For comparison we also reduced the
specifications in the same way using the existing, less powerful tool parelm.

For each specification we measured the time for reducing its LPE and gener-
ating the state space. We also used a recently implemented tool1 for symbolic
reachability analysis [6] to obtain the state spaces when not using stategraph,
since in that case not all specifications could be generated explicitly. Every exper-
iment was performed ten times, and the average run times are shown in Table 1
(where x:y.z means x minutes and y.z seconds).

1 Available from http://fmt.cs.utwente.nl/tools/ltsmin

http://fmt.cs.utwente.nl/tools/ltsmin

State Space Reduction of Linear Processes 65

Table 1. Modelling a handshake register; parelm versus stategraph

constelm | parelm | constelm constelm | stategraph | constelm

states time (expl.) time (symb.) states time (expl.) time (symb.)

|D| = 2 540,736 0:23.0 0:04.5 45,504 0:02.4 0:01.3
|D| = 3 13,834,800 10:10.3 0:06.7 290,736 0:12.7 0:01.4
|D| = 4 142,081,536 – 0:09.0 1,107,456 0:48.9 0:01.6
|D| = 5 883,738,000 – 0:11.9 3,162,000 2:20.3 0:01.8
|D| = 6 3,991,840,704 – 0:15.4 7,504,704 5:26.1 0:01.9

Observations. The results show that stategraph provides a substantial reduc-
tion of the state space. Using parelm explicit generation was infeasible with just
four data elements (after sixteen hours about half of the states had been gen-
erated), whereas using stategraph we could easily continue until six elements.
Note that the state space reduction for |D| = 6 was more than a factor 500.
Also observe that stategraph is impressively useful for speeding up symbolic
analysis, as the time for symbolic generation improves an order of magnitude.

To gain an understanding of why our method works for this example, observe
the μCRL specification of the four safe registers below.

Y (i : Bool, j : Bool, r : { 1, 2 , 3 }, w : { 1, 2, 3 }, v : D, vw : D, vr : D) =
r = 1 ⇒ beginRead(i, j) · Y (i, j, 2, w, v, vw, vr) (1)

+ r = 2∧w = 1 ⇒ τ · Y (i, j, 3, w, v, vw, v) (2)
+
∑

x : D r = 2∧w
= 1 ⇒ τ · Y (i, j, 3, w, v, vw, x) (3)
+ r = 3 ⇒ endRead(i, j, vr) · Y (i, j, 1, w, v, vw, vr) (4)
+
∑

x : D w = 1 ⇒ beginWrite(i, j, x) · Y (i, j, r, 2, v, x, vr) (5)
+ w = 2 ⇒ τ · Y (i, j, r, 3, vw, vw, vr) (6)
+ w = 3 ⇒ endWrite(i, j) · Y (i, j, r, 1, vw, vw, vr) (7)

The boolean parameters i and j are just meant to distinguish the four compo-
nents. The parameter r denotes the read status, and w the write status.

Reading consists of a beginRead action, a τ step, and an endRead action.
During the τ step either the contents of v is copied into vr, or, when writing is
taking place at the same time, a random value is copied to vr. Writing works by
first storing the value to be written in vw, and then copying vw to v.

The tool discovered that after summand 4 the value of vr is irrelevant, since it
will not be used before summand 4 is reached again. This is always preceded by
summand 2 or 3, both overwriting vr. Thus, vr can be reset to its initial value
in the next-state function of summand 4. This turned out to drastically decrease
the size of the state space. Other tools were not able to make this reduction,
since it requires control flow reconstruction. Note that using parallel processes
for the reader and the writer instead of our solution of encoding control flow in
the data parameters would be difficult, because of the shared variable v.

66 J. van de Pol and M. Timmer

Table 2. Modelling several specifications; parelm versus stategraph

constelm | parelm | constelm constelm | stategraph | constelm

specification time states summands pars time states summands pars

bke 0:47.9 79,949 50 31 0:48.3 79,949 50 21
ccp33 – – 1082 97 – – 807 94
onebit 0:25.1 319,732 30 26 0:21.4 269,428 30 26

AIDA-B 7:50.1 3,500,040 89 35 7:11.9 3,271,580 89 32
AIDA 0:40.1 318,682 85 35 0:30.8 253,622 85 32
ccp221 0:28.3 76,227 562 63 0:25.6 76,227 464 62
locker 1:43.3 803,830 88 72 1:32.9 803,830 88 19
swp32 0:11.7 156,900 13 12 0:11.8 156,900 13 12

Although the example may seem artificial, it is an almost one-to-one formalisa-
tion of its description in [15]. Without our method for control flow reconstruction,
finding the useful variable reset could not be done automatically.

Other specifications. We also applied stategraph to all the example specifica-
tions of μCRL, and five from industry: two versions of an Automatic In-flight
Data Acquisition unit for a helicopter of the Dutch Royal Navy [9]; a cache coher-
ence protocol for a distributed JVM [18]; an automatic translation from Erlang
to μCRL of a distributed resource locker in Ericsson’s AXD 301 switch [2]; and
the sliding window protocol (with three data elements and window size two) [3].
The same analysis as before was performed, but now also counting the number
of summands and parameters of the reduced LPEs. Decreases of these quantities
are due to stategraph resetting variables to their initial value, which may turn
them into constants and have them removed. As a side effect, some summands
might be removed as their enabling condition is shown to never be satisfied.
These effects provide a syntactical cleanup and fasten state space generation, as
seen for instance from the ccp221 and locker specifications.

The reductions obtained are shown in Table 2; values that differ significantly
are listed in boldface. Not all example specifications benefited from stategraph
(these are omitted from the table). This is partly because parelm already performs
a rudimentary variant of our method, and also because the lineariser removes pa-
rameters that are syntactically out of scope. However, although optimising LPEs
has been the focus for years, stategraph could still reduce some of the standard
examples. Especially for the larger, industrial specifications reductions in state
space, but also in the number of summands and parameters of the linearised form
were obtained. Both results are shown to speed up state space generation, proving
stategraph to be a valuable addition to the μCRL toolkit.

7 Conclusions and Future Work

We presented a novel method for reconstructing the control flow of linear pro-
cesses. This information is used for data flow analysis, aiming at state space
reduction by resetting variables that are irrelevant given a certain state. We

State Space Reduction of Linear Processes 67

introduced a transformation and proved both its preservation of strong bisim-
ilarity, and its property to never increase the state space. The reconstruction
process enables us to interpret some variables as program counters; something
other tools are not able to. Case studies using our implementation stategraph
showed that although for some small academic examples the existing tools al-
ready suffice, impressive state space reductions can be obtained for larger, indus-
trial systems. Since we work on linear processes, these reductions are obtained
before the entire state space is generated, saving valuable time. Surprisingly, a re-
cently implemented symbolic tool for μCRL also profits much from stategraph.

As future work it would be interesting to find additional applications for the
reconstructed control flow. One possibility is to use it for invariant generation,
another (already implemented) is to visualise it such that process structure can
be understood better. Also, it might be used to optimise confluence checking [5],
since it could assist in determining which pairs of summands may be confluent.

Another direction for future work is based on the insight that the control flow
graph is an abstraction of the state space. It could be investigated whether other
abstractions, such as a control flow graph containing also the values of important
data parameters, might result in more accurate data flow analysis.

Acknowledgements. We thank Jan Friso Groote for his specification of the hand-
shake register, upon which our model has been based. Furthermore, we thank
Michael Weber for fruitful discussions about Hesselink’s protocol.

References

[1] Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

[2] Arts, T., Earle, C.B., Derrick, J.: Verifying Erlang code: A resource locker case-
study. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391,
pp. 184–203. Springer, Heidelberg (2002)

[3] Badban, B., Fokkink, W., Groote, J.F., Pang, J., van de Pol, J.: Verification of a
sliding window protocol in μCRL and PVS. Formal Aspects of Computing 17(3),
342–388 (2005)

[4] Bezem, M., Groote, J.F.: Invariants in process algebra with data. In: Jonsson,
B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 401–416. Springer,
Heidelberg (1994)

[5] Blom, S., van de Pol, J.: State space reduction by proving confluence. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 596–609.
Springer, Heidelberg (2002)

[6] Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recursive
data types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC
2008. LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008)

[7] Bozga, M., Fernandez, J.-C., Ghirvu, L.: State space reduction based on live
variables analysis. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694,
pp. 164–178. Springer, Heidelberg (1999)

[8] Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley,
Reading (1988)

68 J. van de Pol and M. Timmer

[9] Fokkink, W., Ioustinova, N., Kesseler, E., van de Pol, J., Usenko, Y.S., Yushtein,
Y.A.: Refinement and verification applied to an in-flight data acquisition unit. In:
Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 1–23. Springer, Heidelberg (2002)

[10] Garavel, H., Serwe, W.: State space reduction for process algebra specifications.
Theoretical Computer Science 351(2), 131–145 (2006)

[11] Groote, J.F., Lisser, B.: Computer assisted manipulation of algebraic process spec-
ifications. Technical report, SEN-R0117, CWI (2001)

[12] Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Proc. of the 1st
Workshop on the Algebra of Communicating Processes (ACP 1994), pp. 26–62.
Springer, Heidelberg (1994)

[13] Groote, J.F., Ponse, A., Usenko, Y.S.: Linearization in parallel pCRL. Journal of
Logic and Algebraic Programming 48(1-2), 39–72 (2001)

[14] Groote, J.F., van de Pol, J.: State space reduction using partial τ -confluence. In:
Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 383–393. Springer,
Heidelberg (2000)

[15] Hesselink, W.H.: Invariants for the construction of a handshake register. Informa-
tion Processing Letters 68(4), 173–177 (1998)

[16] Lynch, N., Tuttle, M.: An introduction to input/output automata.
CWI-Quarterly 2(3), 219–246 (1989)

[17] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

[18] Pang, J., Fokkink, W., Hofman, R.F.H., Veldema, R.: Model checking a cache
coherence protocol of a Java DSM implementation. Journal of Logic and Algebraic
Programming 71(1), 1–43 (2007)

[19] Usenko, Y.S.: Linearization in μCRL. PhD thesis, Eindhoven University (2002)
[20] van de Pol, J., Timmer, M.: State space reduction of linear processes using control

flow reconstruction (extended version). Technical report, TR-CTIT-09-24, CTIT,
University of Twente (2009)

[21] Winters, B.D., Hu, A.J.: Source-level transformations for improved formal verifi-
cation. In: Proc. of the 18th IEEE Int. Conference on Computer Design (ICCD
2000), pp. 599–602 (2000)

[22] Yorav, K., Grumberg, O.: Static analysis for state-space reductions preserving
temporal logics. Formal Methods in System Design 25(1), 67–96 (2004)

A Data Symmetry Reduction Technique for

Temporal-epistemic Logic

Mika Cohen1, Mads Dam2, Alessio Lomuscio1, and Hongyang Qu3

1 Department of Computing, Imperial College London, UK
2 Access Linnaeus Center, Royal Institute of Technology, Sweden

3 Oxford University Computing Laboratory, UK

Abstract. We present a data symmetry reduction approach for model
checking temporal-epistemic logic. The technique abstracts the epistemic
indistinguishably relation for the knowledge operators, and is shown to
preserve temporal-epistemic formulae. We show a method for statically
detecting data symmetry in an ISPL program, the input to the temporal-
epistemic model checker MCMAS. The experiments we report show an
exponential saving in verification time and space while verifying security
properties of the NSPK protocol.

1 Introduction

Abstraction by data symmetry reduction [1] is one of the techniques put for-
ward to tackle the state-explosion problem in model checking reactive systems.
While the effectiveness of the methodology is well understood in the context of
temporal logics, this is not the case for richer logics. Specifically, no analysis
has been conducted so far in the context of temporal-epistemic logic [2]. This
seems unsatisfactory as efficient symbolic checkers for epistemic languages have
been put forward recently [3,4,5] and the usefulness of temporal-epistemic spec-
ifications demonstrated in a number of application-critical scenarios including
web-services [6], automatic fault-detection [7], and security [8].

The models for the applications above display large numbers of initial states,
often resulting from randomisation of data parameters (such as nonces and mes-
sages), exacerbating further the problem of checking large models. In such mod-
els, as it is known, a group of computation paths may well be the same up
to renaming the data parameters in question. While in pure temporal logic we
can safely collect representatives on these traces and conduct our checks only
on these, this is not immediately possible in the presence of temporal-epistemic
specifications. In fact, as we recall below, in these frameworks the epistemic
operators are defined analysing all possible global states in which the local com-
ponent for the agent in question is the same even if these belong to different
computation paths. Because of this, simply collapsing traces would make some
epistemic specifications satisfied in the abstract model even if they were not in
the concrete one.

In this paper we show that an alternative methodology solving this problem
may be defined. Specifically, we show how we can still reduce the number of

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 69–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 M. Cohen et al.

initial states to be considered by using an “abstracted” version of the epistemic
relations for agents in the system. We show this reduction is sound and complete
for temporal-epistemic specifications, in the sense that no false positives or false
negatives are found in the reduced model. We also show how to compute the ab-
stract epistemic relations efficiently, and how to statically detect data symmetry
in the input to the temporal-epistemic model checker MCMAS [5] by means of
scalarset annotations [1]. The experiments we report on a prototype extension
to MCMAS show an exponential reduction in time and space for the verification
of the security protocol NSPK.

Related work. Data symmetry reduction is a known abstraction technique
aiming to collapse states that are equivalent up to a renaming of data, thereby
yielding a bisimilar quotient model [1]. There has been no attempt in the litera-
ture to extend data symmetry reduction from temporal logic to epistemic logic.
Indeed, while abstraction for temporal properties is a well-established research
area, abstraction for epistemic properties has only recently begun to receive some
attention. In [9,10], Kripke models for epistemic logic are abstracted by approx-
imating the epistemic relations. However, the models are not computationally
grounded, which hampers concrete applications [11]. In [12], computationally
grounded systems are abstracted by collapsing local states and actions of agents.

Closer to our contribution, [13] gives a technique for component symmetry
reduction [14,15] not too dissimilar from the data symmetry reduction technique
in this paper. Indeed, Theorem 1 in this paper has a close analogue in [13],
although the semantics for the epistemic modality is abstracted there into a
counterpart semantics [16]. Beyond this, the main contribution in this paper
is to address abstraction and symmetry detection in terms of concrete models
represented in the MCMAS model checker. Specifically, we introduce a symbolic
extension of MCMAS on which a syntactic criteria can be given that guarantees
data symmetry, and we compute the abstract semantics without quantifying over
permutations. This allows significantly improved savings in relation to [13].

Overview of paper. The rest of the paper is organised as follows. In section 2 we
review the interpreted systems framework, the temporal-epistemic logic CTLK,
and the model checker MCMAS. In Section 3 we present the data symmetry re-
duction technique for CTLK properties of interpreted systems. In Section 4 we
show how to detect data symmetry in an interpreted system description in the
input language to MCMAS. In Section 5 we report on experimental results for a
prototype extension to MCMAS. Finally, Section 6 concludes.

2 Interpreted Systems, CTLK, and MCMAS

We model multi-agent systems in the mainstream interpreted systems framework
[2] and express system requirements in the temporal-epistemic logic CTLK [17];
this section summarises the basic definitions. More details can be found in [2].
We also describe MCMAS [5], a model checker for the verification of CTLK
properties of interpreted systems.

A Data Symmetry Reduction Technique for Temporal-epistemic Logic 71

Interpreted systems. Consider a set Ag = {1...n} of agents. For each agent
i, assume a non-empty set Li of local states that agent i can be in, and a
non-empty set ACTi of actions that agent i can perform. Assume also a non-
empty set LEnv of states for the environment and a non-empty set ACTEnv of
actions for the environment. Let S = L1 × · · · × Ln × LEnv be the set of all
possible global states and ACT = ACT1 × · · · × ACTn × ACTEnv the set of all
possible joint actions. For each agent i assume a local protocol Pi : Li −→ 2ACTi

selecting actions depending on the local state of i, and a local evolution function
ti : Li × ACT −→ Li specifying how agent i evolves from one local state to
another depending on its action, the actions of the other agents, and the action of
the environment. Analogously, assume an environment protocol PEnv : LEnv −→
2ACTEnv , and an environment evolution function tEnv : LEnv ×ACT −→ LEnv.
Let P = 〈P1, · · · , Pn, PEnv〉 be the joint protocol and t = 〈t1, · · · , tn, tEnv〉 be
the joint evolution function. Finally, consider a non-empty set I0 ⊆ S of initial
states, and an evaluation function V : A −→ 2S for some non-empty set A of
propositional atoms.

Definition 1 (Interpreted system). An interpreted system is a tuple I =
〈S, ACT, P, t, I0, V 〉 with a set S of possible global states, a set ACT of possible
joint actions, a joint protocol P , a joint evolution function t, a set I0 of initial
states, and an evaluation function V .

For any global state g = 〈l1, . . . , ln, lEnv〉 ∈ S, we write gi for the local state li
of agent i in g, and gEnv for the environment state lEnv in g.

The local protocols and the local evolution functions together determine how
the system of agents proceeds from one global state to the next. The global
transition relation R ⊆ S × S is such that 〈g, g′〉 ∈ R if and only if there exists
a = 〈a1, . . . , an, aEnv〉 ∈ ACT such that for all i ∈ Ag∪{Env}, ti(a, gi) = g′i and
ai ∈ Pi(gi). We assume throughout the paper that the global transition relation
R is serial, i.e., for every g ∈ S, there is g′ ∈ S such that gRg′.

A path in I is an infinite sequence g0, g1, . . . of global states in S such that
each pair of adjacent states forms a transition, i.e., gjRgj+1 for all j. The set G
of reachable states in I contains all global states g ∈ S for which there is a path
g0, g1, . . . , g, . . . starting from some g0 ∈ I0.

Intuitively, the local state gi contains all the information available to agent i:
if gi = g′i then global state g could, for all agent i can tell, be global state g′.
This observation can be used to employ a knowledge modality defined on the
relation given by the equality on the local components [2]:

Definition 2 (Epistemic relation). The epistemic indistinguishability rela-
tion ∼i⊆ G × G for agent i is such that g ∼i g′ iff gi = g′i.

Computation Tree Logic of Knowledge. We consider specifications in the
temporal-epistemic logic CTLK which extends CTL with epistemic modalities.

Definition 3 (CTLK). Assume a set Ag = {1..n} of agents i and a non-empty
set A of propositional atoms p. CTLK formulae are defined by the expression:

φ ::= p | ¬φ | φ ∧ φ | Kiφ | EXφ | EGφ | E(φUφ)

72 M. Cohen et al.

The knowledge modality Ki is read “Agent i knows that”, the quantifier E is
read “For some computation path” and the temporal operators X , G and U
are read “In the next state”, “Always” and “Until” respectively. We assume
customary abbreviations: Ki encodes the diamond epistemic modality ¬Ki¬;
AGφ represents ¬E(true U ¬φ) (“For all paths, always φ”); AF φ abbreviates
¬EG¬φ (“For all paths, eventually φ”).

Satisfaction of the language above with respect to interpreted systems is de-
fined as standard. Specifically, the knowledge modality Ki is evaluated on an
interpreted system I on a point g by means of Definition 2 as follows:

– (I, g) |= Kiφ iff for all g′ such that g ∼i g′ we have that (I, g′) |= φ.

The CTL modalities are interpreted on the serial paths generated by the global
transition relation R: (I, g) |= EXφ iff for some path g0, g1, . . . in I such that
g = g0, we have (I, g1) |= φ; (I, g) |= EGφ iff for some path g0, g1, . . . in I such
that g = g0, we have (I, gi) |= φ for all i ≥ 0; (I, g) |= E(φUφ′) iff for some
path g0, g1, . . . in I such that g = g0, there is a natural number i such that
(I, gi) |= φ′ and (I, gj) |= φ for all 0 ≤ j < i.

We write [[φ]] for the extension of formula φ in I, i.e., the set of reachable
states g ∈ G such that (I, g) |= φ. We say that formula φ is true in system I,
written I |= φ, iff I0 ⊆ [[φ]].

MCMAS. The tool MCMAS is a symbolic model checker for the verification of
CTLK properties of interpreted systems [5]. We illustrate its input language, the
Interpreted Systems Programming Language (ISPL), with the bit-transmission
protocol, a standard example in temporal-epistemic logic [2].

Example 1 (Bit-transmission protocol [2]). A sender and a receiver communicate
over a lossy channel. Their goal is to transmit a bit value b ∈ {0, 1} from the
sender to the receiver in such a way that the sender will know that the receiver
knows the value of b. The sender sends the bit value and continues to do so until
it receives an acknowledgement of receipt. The receiver waits until it receives a
bit value and then sends an acknowledgement and re-sends it indefinitely.

The protocol can be modelled as an interpreted system I with a sender agent
S, a receiver agent R and the environment Env as the unreliable channel. We
would like to verify that once the sender receives the acknowledgement, the bit
held by the receiver is the same as the bit held by the sender, that the receiver
knows this, and that the sender knows that the receiver knows this:

AG (recack −→ KS KRagree) (1)

where KS and KR are the epistemic modalities for the sender and receiver agents
respectively, and the propositional atom agree holds at a global state g if the
variable bit in the receiver agrees with the variable bit in the sender, i.e.,
gR(bit) = gS(bit), and the propositional atom reckack holds when the sender
has received an acknowledgement. The code in Fig.1 describes the system I
and the CTLK specification (1) in ISPL. The code should be straightforward to
understand in view of the above. We refer to [5] for more details.

A Data Symmetry Reduction Technique for Temporal-epistemic Logic 73

Agent S
Vars
bit: {0,1};
rec_ack: {true,false};

Actions = {send__0,send__1,null};
Protocol
rec_ack=false and bit=0: {send__0};
rec_ack=false and bit=1: {send__1};
rec_ack=true: {null};

end Protocol
Evolution
rec_ack=true if
R.Action=sendack and
Env.Action=transmit;

end Evolution
end Agent

Agent Env
Vars:
state: {ok, error};

end Vars
Actions = {transmit,drop};
Protocol:
state=ok: {transmit};
state=error: {drop}

end Protocol
-- Evolution omitted
end Agent

Agent R
Vars
bit: {0, 1};
rec_bit: {true, false};

-- Actions, Protocol omitted
Evolution
bit=0 and rec_bit=true if

S.Action=send__0 and
Env.Action=transmit;

bit=1 and rec_bit=true if
S.Action=send__1 and
Env.Action=transmit;

end Evolution
end Agent

InitStates
S.rec_ack=false and
R.rec_bit=false;

end InitStates

Evaluation
agree if S.bit=R.bit;
recack if S.rec_ack=true;

end Evaluation

Formulae
AG recack -> K(S,K(R,agree))

end Formulae

Fig. 1. Bit-transmission protocol in ISPL

We briefly describe the features of basic ISPL needed to follow the discussion
below; Fig.1 can be consulted for an example. An ISPL programs σ reflects the
structure of the defined interpreted system I(σ), with one program section for
each agent, and for each agent section four subsections containing, respectively:

– Local variable and domain definitions of the form X: {d0, . . . , dn}.
– Action declarations listing the actions such as send 0 available to the agent.
– Local protocol specifications of the form lcond : {a0, . . . , an} where the ai

are actions and lcond is a boolean combination of (domain correct) local
equalities of the form X = X ′ or X = d.

– Local evolution function specifications of the form assign if acond where
assign is a conjunction of local equalities and acond is a boolean combination
of atoms i.Action = a, where a is an action declared in the agent named i.

In addition, an ISPL program provides an initial state condition and truth con-
ditions for atomic propositions, all in the form of global state conditions built
from (domain correct) equalities of the form i.X = j.Y or i.X = d, where X
and Y are local variables of agents i and j respectively.

3 A Data Symmetry Reduction Technique

In this section we present a data symmetry reduction technique for CTLK prop-
erties of interpreted systems. Subsection 3.1 extends the notion of data symme-
try [1] to interpreted systems; Subsection 3.2 establishes the reduction result;
Subsection 3.3 shows how to compute the reduced epistemic relations.

74 M. Cohen et al.

3.1 Data Symmetry

We assume that local states are built from variables (as they are in ISPL pro-
grams). In detail, an interpreted system I is given together with a set V ari of
local variables for every agent i ∈ Ag ∪ {Env}, where each X ∈ V ari is associ-
ated with a non-empty set DX , the data domain of X . A local state l ∈ Li of
agent i is a type respecting assignment to the variables in V ari, i.e., l(X) ∈ DX

for every X ∈ V ari. We write D for the collection of all domains.
Following [1] we mark domains as either ordered or unordered.1 Informally, a

system is expected to treat all data from the same unordered domain in a sym-
metric fashion: Every permutation of data from such a domain should preserve
the behaviours of the system.

Definition 4 (Domain permutation). A domain permutation is a family π =
{πD}D∈D of bijections πD : D −→ D that only change values in unordered
domains, i.e., if D is ordered, then πD(d) = d, for d ∈ D.

The domain permutation π naturally defines a bijection on the local states Li

of agent i and a bijection on the global states S by point-wise application on
data elements inside the states. In detail, for each l ∈ Li, π(l) ∈ Li is defined by
π(l)(X) = πDX (l(X)) for local variable X ∈ V ari; For each global state g ∈ S,
π(g) = 〈π(g1), ..., π(gn), π(gEnv)〉.

Definition 5 (Data symmetry). A set Δ ⊆ S of states is data symmetric
iff g ∈ Δ iff π(g) ∈ Δ for all domain permutations π. A relation Δ ⊆ S × S
between states is data symmetric iff 〈g, g′〉 ∈ Δ iff 〈π(g), π(g′)〉 ∈ Δ for all
domain permutations π. The system I is data symmetric iff the induced global
transition relation R, the set I0 of initial states, and each extension V (p) of a
propositional atom p are data symmetric.

Example 2. Consider the protocol model I in Example 1 and mark the bit do-
main {0, 1} as an unordered domain. Two domain permutations are possible:
the identity ι leaving all values unchanged, and the transposition flip such that
flip{0,1}(0) = 1 and flip{0,1}(1) = 0. It can be checked that both ι and flip
preserve the global transition relation, the set of initial states, and the extension
of the propositional atom agree. Therefore the system I is data symmetric.

Lemma 1. If system I is data symmetric, then so is the set G of reachable
states, each epistemic relation ∼i, and any formula extension [[φ]].

Proof. (Sketch) G is data symmetric: Since I0 and R are data symmetric, ∼i

is data symmetric: Assume g ∼i g′; then gi = g′i and g, g′ ∈ G. From the
former, π(gi) = π(g′i), i.e., π(g)i = π(g′)i. But, since G is data symmetric,
π(g), π(g′) ∈ G. Thus, π(g) ∼i π(g′). [[φ]] is data symmetric: By induction
on φ we can show that (I, g) |= φ iff (I, π(g)) |= φ. For the base step note
that the extension V (p) of an atomic proposition is data symmetric. Induction
step, epistemic modalities: Since ∼i is data symmetric. Induction step, temporal
modalities: Since the global transition relation R is data symmetric.
1 Unordered domains are called scalarsets in [1].

A Data Symmetry Reduction Technique for Temporal-epistemic Logic 75

Given a data symmetric system I, the global states g, g′ ∈ S are said to be data
symmetric, written g ≡ g′, if and only if, π(g) = g′ for some domain permutation
π. The equivalence class [g] of global state g with respect to ≡ is called the orbit
of g. Analogously, the local states l, l′ ∈ Li are said to be data symmetric, l ≡ l′,
if and only if, π(l) = l′ for some domain permutation π.

3.2 Data Symmetry Reduction

In this section we present a technique that exploits data symmetries to reduce
the number of initial states in interpreted systems.

Let I be a data symmetric interpreted system. An abstraction of I is an
interpreted system IA = 〈S, ACT, P, t, I ′0, V 〉 where I ′0 ⊆ I0 is minimal such
that I0 = {[g] : g ∈ I ′0}. Thus, the abstract system has a single representative
initial state g for each orbit [g] of symmetric initial states in I0.

Example 3. Consider the system I from Example 2. There are eight initial states
in I0 reflecting the eight possible joint assignments to the variable bit in the
sender/receiver and the variable state in the environment. We can form an
abstraction IA = 〈S, ACT, P, t, I ′0, V 〉 of I such that I ′0 contains only four initial
states and in each of these S.bit=1. Observe that IA |= KR agree∨KR ¬agree,
i.e., in the abstract system initially the receiver knows whether its variable agrees
with the senders variable. This follows from the fact that agree ↔ R.bit = 1
holds at all reachable states in IA. By contrast, I
|= KR agree ∨ KR ¬agree.

As the example illustrates temporal-epistemic formulae are not preserved from
the abstraction IA to the original system I (or vice versa). However, we show
that we can make formulae invariant between the original system and the ab-
stract system by abstracting the satisfaction relation.

Definition 6 (Abstract epistemic relation). The abstract epistemic indis-
tinguishability relation ∼A

i ⊆ G × G for agent i is such that g ∼A
i g′ iff gi ≡ g′i.

In other words, data symmetric local states are indistinguishable under the ab-
stract epistemic relation ∼A

i . In the abstract semantics the knowledge modality
Ki for agent i is defined by the abstract epistemic relation ∼A

i for agent i.

Definition 7 (Abstract satisfaction). Abstract satisfaction of φ at g in I,
written (I, g) |=A φ, is defined inductively by:

– Non-epistemic cases are the same as for standard satisfaction (Section 2)
– (I, g) |=A Kiφ iff (I, g′) |=A φ for all g′ ∈ G such that g ∼A

i g′

Example 4. Continuing Example 3, the abstract semantics avoids the unintended
validity, i.e., IA
|=A KR agree∨KR ¬agree. Pick an initial state g ∈ I ′0 in which
gS(bit) = gR(bit) = 1. Then, g′ = 〈gS , f lip(gR), gEnv〉 ∈ I ′0 and g ∼A

R g′, since
gR ≡ flip(gR). However, the atom agree has different truth values in g and g′.

Standard satisfaction on a data symmetric interpreted system I is equivalent to
abstract satisfaction on the abstract system IA.

76 M. Cohen et al.

Theorem 1 (Reduction). I |= φ iff IA |=A φ, assuming I is data symmetric.

Proof. (Sketch) By Lemma 1, G is data symmetric, and so G = {π(g) | anyπ, g ∈
GA}, where G and GA are the sets of reachable states in I and IA respectively.
Therefore, we can evaluate the epistemic modality in I by scanning the reduced
space G′ and apply agent permutations “on the fly”, expanding each state g′

into its equivalence class [g′]. So, (I, g) |= Kiφ iff ∀g′ ∈ GA : ∀π : g ∼i π(g′) ⇒
(I, π(g′)) |= φ. By Lemma 1, [[φ]] is data symmetric, and so we can replace the
test of the property φ at π(g′) with the test of φ at g′, and so obtain: (I, g) |= Kiφ
iff ∀g′ ∈ GA : ∀π : g ∼i π(g′) ⇒ (I, g′) |= φ. In other words, (I, g) |= Kiφ iff
∀g′ ∈ GA : gi ≡ g′i ⇒ (I, g′) |= φ. By induction over φ, therefore, we obtain:
(I, g) |= φ iff (IA, g) |=A φ, for all g ∈ GA. The theorem follows from this, since
[[φ]] is data symmetric by Lemma 1.

3.3 Computing the Abstract Epistemic Relations

Computing the abstract epistemic relations may seem expensive when there is a
large number of domain permutations. However, as we show below, we can com-
pute the abstract epistemic relations without applying any domain permutation
at all; two local states l and l′ are data symmetric if l and l′ satisfy the same
equalities between variables with the same unordered domain, and in addition
each variable with an ordered domain has the same value in l and l′.

Proposition 1 (Equivalence check). For any l, l ∈ Li, l ≡ l′, if and only if,
for all variables X, Y ∈ V ari with the same unordered domain DX = DY ,

1. l(X) = l(Y) iff l′(X) = l′(Y)

and for all variables X ∈ V ari with an ordered domain DX ,

2. l(X) = l′(X)

Proof. Pick two local states l, l′ ∈ Li. For each domain D ∈ D, define the
relation πD = {〈l(X), l′(X)〉|X ∈ V ari, DX = D}. Condition (1) holds iff for
each unordered domain D, πD is functional and injective, i.e., can be extended
to a bijection on D. Condition (2) holds iff for each ordered domain D, πD

preserves values, i.e., can be extended to the identity on D.

For symbolic model checkers, Proposition 1 provides a constructive way of com-
puting a boolean formula encoding of the abstract epistemic relations.

4 Data Symmetry Detection

In this section we establish a static test on ISPL programs that establishes
whether a given interpreted system is data symmetric, and so amenable to re-
duction. A natural check [1] is to verify whether or not the program explicitly
distinguishes between different values from an unordered domain.

A Data Symmetry Reduction Technique for Temporal-epistemic Logic 77

Agent S
-- Vars, Evolution as in Fig.1
Actions = {send(?bit),null};
Protocol
rec_ack=false: {send(bit)};
rec_ack=true: {null};

end Protocol
end Agent
-- Agent Env, InitStates,
-- Evaluation as in Fig.1

Agent R
-- Vars, Actions, Protocol
-- as in Fig.1
Evolution
bit=?bit and rec_bit=true if

S.Action=send(?bit) and
Env.Action=transmit;

end Evolution
end Agent

Fig. 2. Bit-transmission protocol in extended ISPL

Definition 8 (Symbolic program). Assume an ISPL program σ and a par-
tition of the variables’ domains in σ into ordered and unordered. The program
σ, or a program section of σ, is symbolic iff ground values from an unordered
domain appear only in domain definitions.

For the concept of symbolic ISPL program to be useful, the actions in it need
to carry parameters from unordered domains.

Example 5. Consider the program in Fig.1 with the bit-domain marked as un-
ordered; the program is not symbolic. Intuitively, the atomic actions send 0
and send 1 could be replaced by one action and a parameter.

4.1 Extended ISPL

We extend ISPL with structured actions that explicitly carry parameters from
a specified domain; the parameter can be indicated symbolically by a variable.

The syntax of the extended version of ISPL is as follows; Fig.2 can be consulted
for an example. Local variables X of agents are declared as in basic ISPL. Each
entry in the list of actions has the form a(?X), where X is a local variable.2

Intuitively, the macro-variable ?X represents an arbitrary value of the domain
of X . A term t is either a local variable X , a macro variable ?X , or a ground
element d (drawn from some domain). A parametric action is an expression of
the form a(t) where the operation a and the argument term t have identical
domains. The syntax for protocol sections and evolution sections are given in
the same way as for basic ISPL but using the above definitions of term and
parametric action. The initial states condition and the evaluation section are
the same as in basic ISPL (i.e., no macro variables are allowed in equalities).

Intuitively, local variables such as bit are evaluated and bound at time of
execution in the expected fashion. For instance, in the protocol of S, Fig.2, the
parametric action send(bit) represents both send 0 and send 1 depending
on how the term bit is instantiated. By contrast, the macro-variable ?bit in
the protocol of R represents an arbitrary bit value.

Translation into basic ISPL. Extended ISPL programs are expanded into ba-
sic ones by means of the rewrite rules given in Fig. 3. As an illustration, the
2 For ease of presentation we restrict attention to the unary case.

78 M. Cohen et al.

{a1(?X1), . . . , an(?Xn)} → {a1(d1,1), . . . , a1(d1,m1), . . . , an(dn,1), . . . , an(dn,mn)} (2)

lcond : actions(x, y)→
∧

d1,d2

x = d1 and lcond : actions(d1, d2) (3)

assign(y) if acond(x, y)→
∧

d1,d2

assign(d2) if acond(d1, d2) (4)

Fig. 3. Extended ISPL Translation Rules

(symbolic) program in Fig.2 translates to the (non-symbolic) program in Fig.1.
Action lists are expanded according to (2) where {di,1, . . . , di,mi} is the domain
of ?Xi. Protocol and evolution rules are expanded to sets of rules (denoted as
conjunctions) where x is the list of local variables and y is the list of macro
variables occurring in the rule under consideration, and where we assume that
substitutions respect domain assignments. Thus, each macro-variable is replaced
during the translation by the elements from its domain.

4.2 Detection Theorem

We show that symbolic programs in extended ISPL define data symmetric sys-
tems. We assume throughout an extended ISPL program Σ which translates
into a basic ISPL program σ, and we write I(Σ) for the interpreted system I(σ)
defined by σ. We assume domains are divided into ordered and unordered.

Observe that a domain permutation π defines a substitution of code frag-
ments of σ. In particular, π(a d) = a π(d) for atomic actions a d, and π(x =
d) = (x = π(d)) for local equalities (x = d). Continuing, π lifts to a bijec-
tion on the set ACT of joint actions by component-wise application: π(a) =
〈π(a1), . . . , π(an), π(aE)〉.

According to the following lemma, if program Σ is symbolic then agent i is
“syntactically data symmetric” in the sense that the set of protocol rules and the
set of evolution rules in the translation σ are closed under domain permutations.

Lemma 2 (Syntactic agent closure). Assume agent i is symbolic in Σ.

1. If Δ is a rule i’s protocol in σ, then so is π(Δ).
2. If Δ is a rule in i’s evolution in σ, then so is π(Δ).

Proof. (Sketch) (1): By rewrite rule (3) of Fig. 3, there is a “source” proto-
col entry lcond : actions(x, y) in agent i in Σ such that Δ is the rule (x =
d1 and lcond : actions(d1, d2)), for some d1, d2. By rewrite rule (3) again, (x =
π(d1) and lcond : actions(π(d1), π(d2)) is a protocol rule in agent i in σ. But,
this rule is precisely π(Δ), since both lcond and actions(x, y) are symbolic. (2):
By rewrite rule (4) of Fig. 3, there is an evolution entry assign(y) if acond(x, y)
in agent i in Σ such that Δ is the rule (assign(d2) if acond(d1, d2)), for some

A Data Symmetry Reduction Technique for Temporal-epistemic Logic 79

d1, d2. By rewrite rule (4) again, (assign(π(d2)) if acond(π(d1), π(d2))) is also
an evolution rule in agent i in σ. But, this rule is π(Δ), since both assign(y) and
acond(x, y) are symbolic.

It follows that agents are “semantically data symmetric” as defined below.

Definition 9 (Symmetric agent). Agent i is data symmetric in I(Σ) iff

1. a ∈ Pi(l) iff π(a) ∈ Pi(π(l))
2. ti(a, l) = l′ iff ti(π(a), π(l)) = π(l′).

Lemma 3. If agent i is symbolic in Σ, agent i is data symmetric in I(Σ).

Proof. (Sketch) The local protocol Pi is data symmetric: Assume a ∈ Pi(l).
By the semantics of basic ISPL, there is a protocol rule lcond : actions in
agent i in the translation σ such that a ∈ actions and l satisfies lcond, and so
π(a) ∈ π(actions) and π(l) |= π(lcond). But, by Lemma 2.1, π(lcond : actions)
is also a protocol rule in agent i in σ, and so π(a) ∈ Pi(π(l)). We conclude that
a ∈ Pi(l) implies π(a) ∈ Pi(π(l)). The converse implication follows by applying
π−1. The local evolution function ti is data symmetric: Assume ti(a, l) = l′.
By the semantics of basic ISPL, there is an evolution entry assign if acond in
agent i in σ such that a satisfies acond and l [assign] l′, using Floyd–Hoare logic
style notation for local state updates. It follows that π(a) satisfies π(acond) and
π(l) [π(assign)] π(l′). But, by Lemma 2.2, π(assign if acond) is an evolution
rule in agent i in σ, and so ti(π(a), π(l)) = π(l′). We conclude that ti(a, l) = l′

implies ti(π(a), π(l)) = π(l′). The converse implication follows by applying π−1.

If agents are data symmetric then so is the induced global transition relation.

Lemma 4. If each agent is data symmetric in I(Σ), then so R.

Proof. By definition of R, 〈g, g′〉 ∈ R iff there is a such that 〈gi, g
′
i〉 ∈ ti(a) and

ai ∈ Pi(gi) for i ∈ Ag ∪ {E}. Since i is data symmetric, this is equivalent to
〈π(gi), π(g′i)〉 ∈ ti(π(a)) and π(ai) ∈ Pi(π(gi)) for i ∈ Ag ∪ {E}. In turn this is
equivalent to 〈π(g)i, π(g′)i〉 ∈ ti(π(a)) and π(ai) ∈ Pi(π(g)i) for i ∈ Ag ∪ {E}.
By definition of R, this is equivalent to 〈π(g), π(g′)〉 ∈ R.

We reach the symmetry detection result stating that every symbolic program in
the extended ISPL defines a data symmetric interpreted system.

Theorem 2 (Detection). If extended ISPL program Σ is symbolic then inter-
preted system I(Σ) is data symmetric.

Proof. (i) R is data symmetric: By Lemmas 3 and 4. (ii) I0 is data symmetric:
The initial states condition cond in the translation σ of Σ is symbolic, and so g
satisfies cond iff π(g) satisfies cond. (iii) V (p) is data symmetric: Shown as (ii).

5 Implementation and Experiments

In this section we describe a prototype extension to MCMAS implementing the
data symmetry reduction presented above and report on its performance for a
well-known security protocol.

80 M. Cohen et al.

Implementation. The prototype extension takes as input an extended ISPL pro-
gram in which some domains are marked as unordered, checks that the supplied
program is data symmetric (using Detection Theorem 2), compiles it to basic
ISPL (using the translation in Section 4), reduces the initial states (as described
below) and, finally, checks the supplied CTLK specifications against the abstract
semantics (using Proposition 1).

To reduce the initial states, the prototype constructs the symbolic represen-
tation of a set S′ which contains exactly one representative state for each orbit
class, i.e., S′ ⊆ S is minimal such that S = {[s] : s ∈ S′}, where S is the set
of possible global states for the supplied program. Roughly, the symbolic repre-
sentation of S′ is a disjunction of assignments, one assignment for each possible
pattern of identities between variables with unordered domains. In detail, let V
be the set of variables with unordered domains, and let Δ ⊆ 2V be a partition
of V such that each block δ ∈ Δ contains only variables that share the same
domain. Intuitively, the partition Δ represents a pattern of identities between
variables in V : X = Y if and only if X and Y belong to the same block δ ∈ Δ.
For every such partition Δ, the prototype selects an assignment to variables in
V that “agrees” with Δ; The symbolic representation of S′ is the disjunction of
all such assignments:

symS′ =
∨
Δ

∧
δ∈Δ,X∈δ

X = d(δ) (5)

where d(δ) is a value from the domain shared by variables in block δ; the value
d(δ) is different for different blocks δ ∈ Δ from the same partition.

A symbolic representation of the reduced set I ′0 of initial states can then
be obtained by conjuncting symS′ with the initial states condition symI0 in the
supplied program. To optimise the construction, the prototype distributes symI0

over the disjunction in symS′ :

symI′
0

=
∨
Δ

(symI0 ∧
∧

δ∈Δ,X∈δ

X = d(δ)) (6)

i.e., it conjuncts with symI0 “on the fly” as symS′ is being constructed. As a
further optimisation, the prototype generates only some of the possible variable
partitions Δ. In particular, if (X = Y) ∧ symI0 is empty for two variables
X, Y ∈ V , the prototype excludes variable partitions Δ that have a subset δ
containing both X and Y .

The prototype computes the symbolic representation of the extension [[Kiφ]]
with respect to the abstract satisfaction relation as follows:

sym[[Kiφ]] = symG ∧ ¬
∨
Δ

(symΔ ∧ PreImage(sym[[¬φ]] ∧ symΔ,≈))

where symG is the symbolic representation of the set of reachable states; Δ
ranges over partitions of the set of agent i’s local variables with unordered do-
mains; symΔ expresses that variables in agent i agree with Δ, i.e., the conjunc-
tion of equalities X = Y and inequalities X
= Z for X, Y belonging to the same

A Data Symmetry Reduction Technique for Temporal-epistemic Logic 81

block in Δ and X, Z belonging to different blocks in Δ; sym[[¬φ]] is the sym-
bolic representation of the extension [[¬φ]]; ≈ relates global states with identical
values for the variables in agent i with ordered domains, i.e., ≈ is the condition∧
X

X = prim(X) where X ranges over agent i’s variables with ordered domains.

NSPK. To evaluate the performance of the technique we tested the prototype
on the Needham-Schroeder Public Key protocol (NSPK), a standard example in
the security literature [18]. The NSPK protocol involves a number of A–agents
and B–agents; each A–agent starts with a nonce (unique, unpredictable number)
Na, and each B–agent starts with a nonce Nb. We considered the following
CAPSL [19] authentication goal for the protocol:

Knows B : Knows A : agree A : B : Na, Nb (7)

stating that when a protocol session between an A–agent and a B–agent ends,
the agents share the nonces Na and Nb, the A–agent knows this and the B–agent
knows that the A–agent knows this.3

To verify the CAPSL goal (7) we modelled the NSPK protocol as an extended
ISPL program with N agents, some of them A–agents and others B–agents. In
addition, we modelled a Dolev-Yao attacker [21] in the environment agent. The
intruder and all agents start with a unique, non-deterministic nonce value – a
value for Na in the case of A–agents and value for Nb in the case of B–agents.
Thus we assumed a domain of N + 1 nonces; one nonce for the intruder and
one for each agent.4 We marked the domain of nonces as unordered. Finally, we
translated the CAPSL goal (7) into the following CTLK formula:∧

i:B

AG (i.Step = 3 → Ki

∨
j:A

(agree(i, j) ∧ Kj

∨
i:B

agree(i, j))) (8)

where i : B ranges over B–agents, and j : A ranges over A–agents, and agree(i, j)
states that agents i and j agree on the protocol variables Na, Nb, A and B, i.e.,
i.Na = j.Na, i.Nb = j.Nb, etc. The specification (8) states that whenever a
B–agent i has completed all three protocol steps, the agent i knows that some
A–agent j agrees with i, and agent i knows that this agent j knows that some
B–agent i agrees with j.

Experiments. Table 1 shows the total verification time (including the time it
takes to reduce the initial states) in seconds and the number of reachable states
for CTLK specification (8) and different number of participating agents. The
experiments ran on a 2 GHz Intel machine with 2GB of memory running Linux.
Each run was given a time limit of 24 hours. For this experiment we observed
an exponential reduction in both time and space in the number N of agents.
Specifically, the state space is reduced by the factor (N + 1)!, while the re-
duction in verification time is more irregular given that MCMAS is a symbolic
3 The goal was derived manually in [20].
4 It would be reasonable to provide the intruder with more than just one initial nonce;
the reduction would then yield even bigger savings.

82 M. Cohen et al.

Table 1. Verification results for NSPK

Agents Without reduction With reduction
States Time States Time

3 1 536 3 64 1
4 11 400 28 95 4
5 651 600 7 716 905 9
6 – > 86 400 12 256 24
7 – > 86 400 21 989 91

model checker. We can expect even greater savings for security protocols that
involve more than just one unique, unpredictable data value (nonce, session key,
password, etc.) per agent.

6 Conclusions

We presented a data symmetry reduction technique for temporal-epistemic logic
in the mainstream interpreted systems framework. The technique uses an ab-
stract satisfaction relation in the reduced system; this was shown to make the
reduction sound and complete, i.e., there are no false positives or false negatives
in the reduced system. To facilitate the detection of data symmetric systems,
i.e., systems amenable to reduction, we extended the interpreted systems pro-
gramming language (ISPL) with parametric actions. We showed that symbolic
programs in the extended ISPL define data symmetric systems. Experiments on
the NSPK security protocol show an exponential reduction in verification time
and state space for temporal-epistemic security goals.

The reduction technique in this paper reduces initial states only. However,
we emphasize that for some applications, such as the security protocol model
considered in this paper, collapsing data symmetric initial states alone yields
the same reduced state space as collapsing all data symmetric states, i.e., it
yields the quotient model with respect to the orbit relation.

Acknowledgments. The research described in this paper is partly supported by
EPSRC funded project EP/E035655, by the European Commission Framework
6 funded project CONTRACT (IST Project Number 034418), and by grant
2003-6108 from the Swedish Research Council.

References

1. Ip, C.N., Dill, D.L.: Better verification through symmetry. Form. Methods Syst.
Des. 9(1-2), 41–75 (1996)

2. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge. MIT
Press, Cambridge (1995)

3. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

A Data Symmetry Reduction Technique for Temporal-epistemic Logic 83

4. Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter, M.: VerICS

2004: A model checker for real time and multi-agent systems. In: Proc. CS&P
2004, pp. 88–99. Humboldt University (2004)

5. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for multi-
agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 682–688. Springer, Heidelberg (2009)

6. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service
composition. In: Proc. ICWS 2008, pp. 254–261. IEEE Computer Society, Los
Alamitos (2008)

7. Ezekiel, J., Lomuscio, A.: Combining fault injection and model checking to verify
fault tolerance in multi-agent systems. In: Proc. AAMAS 2009 (to appear, 2009)

8. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the din-
ing cryptographers. In: Proc. CSFW 2004, Washington, DC, USA, p. 280. IEEE
Computer Society, Los Alamitos (2004)

9. Dechesne, F., Orzan, S., Wang, Y.: Refinement of kripke models for dynamics.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 111–125. Springer, Heidelberg (2008)

10. Enea, C., Dima, C.: Abstractions of multi-agent systems. In: Burkhard,
H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS
(LNAI), vol. 4696, pp. 11–21. Springer, Heidelberg (2007)

11. Wooldridge, M.: Computationally grounded theories of agency. In: Proc. ICMAS
2000, pp. 13–22. IEEE Press, Los Alamitos (2000)

12. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking
multi-agent systems. In: Proc. AAMAS 2009 (to appear, 2009)

13. Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A symmetry reduction technique for
model checking temporal epistemic logic. In: Proc. IJCAI 2009 (to appear, 2009)

14. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des. 9(1-2), 77–104 (1996)

15. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst.
Des. 9(1-2), 105–131 (1996)

16. Lewis, D.: Counterpart theory and quantified modal logic. Journal of Philoso-
phy 65, 113–126 (1968)

17. van der Meyden, R., Wong, K.S.: Complete axiomatizations for reasoning about
knowledge and branching time. Studia Logica 75(1), 93–123 (2003)

18. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

19. Denker, G., Millen, J.: Capsl integrated protocol environment. In: Proc. DISCEX
2000, pp. 207–221. IEEE Computer Society, Los Alamitos (2000)

20. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

21. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

TAPAAL: Editor, Simulator and Verifier of

Timed-Arc Petri Nets

Joakim Byg, Kenneth Yrke Jørgensen, and Jǐŕı Srba�

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg Øst, Denmark

Abstract. TAPAAL is a new platform independent tool for modelling,
simulation and verification of timed-arc Petri nets. TAPAAL provides a
stand-alone editor and simulator, while the verification module translates
timed-arc Petri net models into networks of timed automata and uses the
UPPAAL engine for the automatic analysis.
We report on the status of the first release of TAPAAL (available at

www.tapaal.net), on its new modelling features and we demonstrate the
efficiency and modelling capabilities of the tool on a few examples.

1 Introduction

Petri net is a popular mathematical model of discrete distributed systems in-
troduced in 1962 by Carl Adam Petri in his PhD thesis. Since then numerous
extensions of the basic place/transition model were studied and supported by
a number of academic as well as industrial tools [8]. Many recent works con-
sider various extensions of the Petri net model with time features that can be
associated to places, transitions, arcs or tokens. A recent overview aiming at a
comparison of the different time dependent models (including timed automata)
is given in [15].

In the TAPAAL tool we consider Timed-Arc Petri Nets (TAPN) [4, 7] where
an age (a real number) is associated with each token in a net and time intervals
are placed on arcs in order to restrict the ages of tokens that can be used for
firing a transition. The advantages of this model are an intuitive semantics and
the decidability of a number of problems like coverability and boundedness (for
references see [15]). On the other hand, the impossibility to describe urgent
behaviour limited its modelling power and wider applicability. TAPAAL extends
the TAPN model with new features of invariants and transport arcs in order to
model urgent behaviour and transportation of tokens without resetting their age.

TAPAAL has an intuitive modelling environment for editing and simulation
of TAPN. It also provides a verification module with automatic checking of
bounded TAPN models against safety and liveness requirements via a translation
to networks of timed automata and then using the UPPAAL [16] engine as a
back-end for verification.
� Author was partially supported by Ministry of Education of the Czech Republic,
project No. MSM 0021622419.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 84–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TAPAAL: Editor, Simulator and Verifier of Timed-Arc Petri Nets 85

The connection between bounded TAPN and timed automata was studied
in [13, 14, 5] and while theoretically satisfactory, the translations described in
these papers are not suitable for a tool implementation as they either cause
an exponential blow-up in the size or create a new parallel component with a
fresh local clock for each place in the net. As UPPAAL performance becomes
significantly slower with the growing number of parallel processes and clocks,
the verification of larger nets with little or no concurrent behaviour (few tokens
in the net) becomes intractable.

In TAPAAL we suggest a novel translation technique where a fresh parallel
component (with a local clock) is created only for each token in the net. The
proposed translation also transforms safety and liveness properties (EF, AG,
EG, AF) into equivalent UPPAAL queries. One of the main advantages of this
translation approach is the possibility to use active clock reduction and symmetry
reduction techniques recently implemented in UPPAAL. As a result the verifiable
size of models increases by orders of magnitude.

To the best of our knowledge, TAPAAL is the first publicly available tool
which offers modelling, simulation and verification of timed-arc Petri nets with
continuous time. There is only one related tool prototype mentioned in [1] where
the authors discuss a coverability algorithm for general (unbounded) nets, though
without any urgent behaviour. Time features (time stamps) connected to tokens
can be modelled also in Coloured Petri Nets using CPN Tools [10], however,
time passing is represented here using a global clock rather than the local ones
as in TAPN, only discrete time semantics is implemented in CPN Tools and
the analysis can be nondeterministic as the time stamps are in some situations
ignored during the state-space construction.

2 TAPAAL Framework

TAPAAL offers an editor, a simulator and a verifier for TAPN. It is written in
Java 6.0 using Java Swing for the GUI components and it is so available for the
majority of existing platforms.

TAPAAL’s graphical editor features all necessary elements for a creation of
TAPN models, including invariants on places and transport arcs. The user inter-
face supports, among others, a select/move feature for moving a selected subnet
of the model as well as an undo/redo buttons allowing the user to move back-
ward and forward in the history during a creation of larger models. Constructed
nets and queries are saved in an interchangeable XML format using the Petri
Net Markup Language (PNML) [12] further extended with TAPAAL specific
timing features. An important aspect of the graphical editor is that it disallows
to enter syntactically incorrect nets and hence no syntax checks are necessary
before calling further TAPAAL modules.

The simulator part of TAPAAL allows one to inspect the behaviour of a
TAPN by graphically simulating the effects of time delays and transition firings.
When firing a transition the user can either manually select the concrete tokens
that will be used for the firing or simply allow the simulator to automatically

86 J. Byg, K.Y. Jørgensen, and J. Srba

select the tokens based on some predefined strategy: youngest, oldest or random.
The simulator also allows the user to step back and forth in the simulated trace,
which makes it easier to investigate alternative net behaviours.

TAPAAL’s verification module enables us to check safety and liveness queries
in the constructed net. Queries are created using a graphical query dialog, com-
pletely eliminating the possibility of introducing syntactical errors and offering
an intuitive and easy to use query formulation mechanism. The TAPAAL query
language is a subset of the CTL logic comprising EF, AG, EG and AF temporal
operators1, however, several TCTL properties can be verified by encoding them
into the net. The actual verification is done via translating TAPN models into
networks of timed automata and by using the model checker UPPAAL. The veri-
fication calls to UPPAAL are seamlessly integrated inside the TAPAAL environ-
ment and the returned error traces (if any) are displayed in TAPAAL’s simulator.
For safety questions concrete traces are displayed whenever the command-line
UPPAAL engine can output them, otherwise the user is offered an untimed
trace and can in the simulation mode experiment with suitable time delays in
order to realize the displayed trace in the net. A number of verification/trace
options found in UPPAAL are also available in TAPAAL, including a symmetry
reduction option which often provides orders of magnitude improvement with
respect to verification time, though at the expense of disallowing trace options
(a current limitation of UPPAAL). Finally, it is possible to check whether the
constructed net is k-bounded or not, for any given k. The tool provides a suitable
under-approximation of the net behaviour in case the net is unbounded.

The TAPAAL code consists of two parts: the editor and simulator, extending
the Platform Independent Petri net Editor project PIPE version 2.5 [9], which is
licensed under the Open Software License 3.0, and a framework for translating
TAPN models into UPPAAL, licensed under the BSD License.

3 Experiments

We shall now report on a few experiments investigating the modelling capabilities
and verification efficiency of TAPAAL. All examples are included in the TAPAAL
distribution and can be directly downloaded also from www.tapaal.net.

3.1 Workflow Processes with Deadlines

Workflow processes provide a classical case study suitable for modelling in dif-
ferent variants of Petri nets. A recent focus is, among others, on the addition of
timing aspects into the automated analysis process. Gonzalez del Foyo and Silva
consider in [6] workflow diagrams extended with task durations and the latest
execution deadline of each task. They provide a translation into Time Petri Nets
(TPN), where clocks are associated with each transition in the net, and use the
tool TINA [3] to analyze schedulability questions. An example of a workflow
process (taken from [6]) is illustrated in Fig. 1.
1 At the moment the EG and AF queries are supported only for nets with transitions
that do not contain more than two input and two output places.

TAPAAL: Editor, Simulator and Verifier of Timed-Arc Petri Nets 87

Task Duration Deadline

A0 5 5

A1 4 9

A2 4 15

A3 2 9

A4 2 8

A5 3 13

A6 3 18

A7 2 25

A0

A1 A2

A3

A4

A5 A6

A7

Sync

Sync

Fig. 1. A simple workflow diagram and its timed-arc Petri net model

The translation described in [6] relies on preprocessing of the workflow so that
the individual (relative) deadlines for each task must be computed before a TPN
model can be constructed.

In our model of extended timed-arc Petri nets a more direct translation with-
out any preprocessing can be given. See Fig. 1 for a TAPAAL Petri net model
resulting from the translation of the workflow example. Every transition with
the naming schema Ai done corresponds to the finalisation of the execution of
the task Ai. The duration constraints are encoded directly into the net and the
global deadlines are handled by adding a fresh place called Deadlines, contain-
ing one token (initially of age 0). The latest execution deadline Xi of a task Ai

(where 0 ≤ i ≤ 7) is then ensured by adding (for each i) a pair of transport
arcs constrained with the time interval [0, Xi] between the place Deadlines and
the corresponding transition Ai done. A schematic illustration is given in Fig. 1.
Notice that transport arcs have different arrow tips than the standard arcs and
are annotated with the label 1 to denote which arcs are paired into a route for
the age-preserving token transportation (the annotations are relevant only in
the presence of multiple transport arcs connected to a single transition). As the
age of the token in the place Deadlines is never reset, it is guaranteed that the
latest execution deadlines of all tasks are met.

The workflow example was verified in TAPAAL against the query EF
(Work Done = 1) and by selecting the fastest trace option the tool returned in

88 J. Byg, K.Y. Jørgensen, and J. Srba

0.1s the following scheduling of task executions together with the necessary time
delays: 5, A0 Done, 2, A3 Done, A4 Done, Sync1 Done, 2, A1 Done, 1, A5 Done, 3,
A2 Done, A6 Done, Sync2 Done, 2, A7 Done.

3.2 Fischer’s Protocol and Alternating Bit Protocol

Fischer’s protocol [11] for mutual exclusion and alternating bit protocol [2] for
network communication via lossy communication medium are well-known and
scalable examples used for a tool performance testing. In our experiments we
managed to verify Fischer’s protocol (with a TAPN model taken from [1]) for
200 processes (each with its own clock) within 29 minutes, while an equivalent
timed automaton model of the protocol provided in the UPPAAL distribution
verified 200 processes in 2 hours and 22 minutes. The experiment showed a
speed-up of 205% for 100 processes, 293% for 150 processes and 393% for 200
processes. The explanation to this seemingly surprising phenomenon is that the
translated timed automata model of the protocol contains on one hand more
discrete states than the native UPPAAL model (about twice as many), but on
the other hand the zones that are tested for inclusion are smaller. As a result, the
verification times for the TAPAAL produced automata are significantly faster.

Correctness of the alternating bit protocol was verified for up to 50 messages
(each message has its own time-stamp) currently present in the protocol in less
than two hours, while a native UPPAAL model verification took more than a
day without any result. The speed-up was even more significant than in the case
of Fischer’s protocol: for 15 messages UPPAAL used 136 seconds and TAPAAL
7.3 seconds, for 17 messages UPPAAL needed 32 minutes and TAPAAL 13.7
seconds. There was also a difference in the tool performance depending on what
kind of verification options were used, demonstrating a similar pattern of be-
haviour as in the case of Fischer’s protocol (models with more discrete states
and smaller zones verify faster).

4 Conclusion

TAPAAL offers a graphical environment for editing, simulation and verification
of timed-arc Petri nets and the introduction of novel elements like invariants
on places and transport arcs provides useful features particularly suitable for
modelling of workflow processes, time sensitive communication protocols and
other systems. The tool shows a promising performance in verification of safety
and liveness properties.

The future development will focus on incorporating C-like functions and data
structures into tokens in the net, on extending the firing policies with urgency
and priorities, and on generalizing the query language. The aim is also to provide
concrete error traces for liveness properties, rather than only the abstract or
untimed ones (a current limitation of UPPAAL). We also plan to extend the
model with cost, probability and game semantics and then use the corresponding
UPPAAL branches (CORA, PROB and TIGA) for verification.

TAPAAL: Editor, Simulator and Verifier of Timed-Arc Petri Nets 89

Acknowledgments. We would like to thank the UPPAAL team at Aalborg Uni-
versity and in particular Alexandre David for numerous discussions on the topic.

References

[1] Abdulla, P.A., Nylén, A.: Timed petri nets and BQOs. In: ICATPN 2001. LNCS,
vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

[2] Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex
transmission over half-duplex links. Commun. ACM 12(5), 260–261 (1969)

[3] Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA — construction of
abstract state spaces for Petri nets and time Petri nets. International Journal of
Production Research 42(14), 2741–2756 (2004)

[4] Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS.
In: Proceedings of the IFIP WG 6.1 Tenth International Symposium on Protocol
Specification, Testing and Verification, Ottawa, pp. 1–14 (1990)

[5] Bouyer, P., Haddad, S., Reynier, P.-A.: Timed Petri nets and timed automata: On
the discriminating power of Zeno sequences. Information and Computation 206(1),
73–107 (2008)

[6] Gonzalez del Foyo, P.M., Silva, J.R.: Using time Petri nets for modelling and
verification of timed constrained workflow systems. In: ABCM Symposium Se-
ries in Mechatronics. ABCM, vol. 3, pp. 471–478. ABCM - Brazilian Society of
Mechanical Sciences and Engineering (2008)

[7] Hanisch, H.M.: Analysis of place/transition nets with timed-arcs and its applica-
tion to batch process control. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS,
vol. 691, pp. 282–299. Springer, Heidelberg (1993)

[8] Heitmann, F., Moldt, D., Mortensen, K.H., Rölke, H.: Petri nets tools database
quick overview,
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

[9] Platform Independent Petri net Editor 2.5, http://pipe2.sourceforge.net
[10] Jensen, K., Kristensen, L., Wells, L.: Coloured Petri nets and CPN tools for

modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer (STTT) 9(3), 213–254 (2007)

[11] Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems 5(1), 1–11 (1987)

[12] Petri Net Markup Language, http://www2.informatik.hu-berlin.de/top/pnml
[13] Sifakis, J., Yovine, S.: Compositional specification of timed systems. In: Puech,

C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 347–359. Springer,
Heidelberg (1996)

[14] Srba, J.: Timed-arc Petri nets vs. networks of timed automata. In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 385–402. Springer,
Heidelberg (2005)

[15] Srba, J.: Comparing the expressiveness of timed automata and timed extensions
of Petri nets. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215,
pp. 15–32. Springer, Heidelberg (2008)

[16] UPPAAL, http://www.uppaal.com

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://pipe2.sourceforge.net
http://www2.informatik.hu-berlin.de/top/pnml
http://www.uppaal.com

CLAN: A Tool for Contract Analysis and Conflict
Discovery�

Stephen Fenech1, Gordon J. Pace1, and Gerardo Schneider2

1 Dept. of Computer Science, University of Malta, Malta
2 Dept. of Informatics, University of Oslo, Norway

{sfen002,gordon.pace}@um.edu.mt, gerardo@ifi.uio.no

Abstract. As Service-Oriented Architectures are more widely adopted, it be-
comes more important to adopt measures for ensuring that the services satisfy
functional and non-functional requirements. One approach is the use of contracts
based on deontic logics, expressing obligations, permissions and prohibitions of
the different actors. A challenging aspect is that of service composition, in which
the contracts composed together may result in conflicting situations, so there is
a need to analyse contracts and ensure their soundness. In this paper, we present
CLAN, a tool for automatic analysis of conflicting clauses of contracts written in
the contract language CL. We present a small case study of an airline check-in
desk illustrating the use of the tool.

1 Introduction and Background

In Service-Oriented Architectures services are frequently composed of different sub-
services, each with its own contract. Not only does the service user require a a guarantee
that each single contract is conflict-free, but also that the combination of the contracts
is also conflict-free — meaning that the contracts will never lead to conflicting or con-
tradictory normative directives. This is even more challenging in a dynamic setting, in
which contracts may only be acquired at runtime.

A common view of contracts is that of properties which the system must (or is guar-
anteed) to satisfy. However, when analysing contracts for conflicts, the need to anal-
yse and reason about contracts is extremely important, and looking at contracts simply
as logical properties may hide conflicts altogether. The use of deontic logic to enable
reasoning explicitly about normative information in a contract and about exceptional
behaviour is one alternative approach to contract analysis. CL [3] is a formal language
to specify deontic electronic contracts. The language has a trace semantics [2], which
although useful for runtime monitoring of contracts, lacks the deontic information con-
cerning the obligations, permissions and prohibitions of the involved parties in the con-
tract, and thus it is not suitable for conflict analysis. We have recently developed conflict
analysis techniques for CL [1], and in this paper, we present a tool implementing these
techniques for the automatic analysis of contracts written in CL.
� Partially supported by the Nordunet3 project COSoDIS: “Contract-Oriented Software Devel-

opment for Internet Services”.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 90–96, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

CLAN: A Tool for Contract Analysis and Conflict Discovery 91

The Contract Language CL. Deontic logics enable explicit reasoning about, not only
the actual state of affairs in a system e.g. ‘the client has paid,’ but also about the ideal
state of affairs e.g. ‘the client is obliged to pay’ or ‘the client is permitted to request a
service.’ CL is based on a combination of deontic, dynamic and temporal logics, allow-
ing the representation of the deontic notions of obligations, permissions and prohibi-
tions, as well as temporal aspects. Moreover, it also gives a mean to specify exceptional
behaviours arising from the violation of obligations (what is to be demanded in case an
obligation is not fulfilled) and of prohibitions (what is the penalty in case a prohibition
is violated). These are usually known as Contrary-to-Duties (CTDs) and Contrary-to-
Prohibitions (CTPs) respectively. CL contracts are written using the following syntax:

C := CO|CP |CF |C ∧ C|[β]C|�|⊥
CO := OC(α)|CO ⊕ CO

CP := P (α)|CP ⊕ CP

CF := FC(δ)|CF ∨ [α]CF

α := 0|1|a|α&α|α · α|α + α β := 0|1|a|β&β|β · β|β + β|β∗

A contract clause C can be either an obligation (CO), a permission (CP) or a prohibition
(CF) clause, a conjunction of two clauses or a clause preceded by the dynamic logic
square brackets. OC(α) is interpreted as the obligation to perform α in which case, if
violated, then the reparation contract C must be executed (a CTD). FC(α) is interpreted
as forbidden to perform α and if α is performed then the reparation C must be executed
(a CTP). Permission is represented as P (α), identifying that the action expression α is
permitted. Note that repetition in actions (using the ∗ operator) is not allowed inside
the deontic modalities. They are, however allowed in dynamic logic-style conditions.
[β]C is interpreted as if action β is performed then the contract C must be executed
— if β is not performed, the contract is trivially satisfied. ∧ allows the conjunction
of clauses, ⊕ is used as an exclusive choice between certain clauses, � and ⊥ are
the trivially satisfied (violated) contract. Compound actions can be constructed from
basic ones using the operators &, ·, + and ∗ where & stands for the actions occurring
concurrently, · stands for the actions to occur in sequence, + stands for choice, and ∗

for repetition. 1 is an action expression matching any action, while 0 is the impossible
action. In order to avoid paradoxes the operators combining obligations, permissions
and prohibitions are restricted syntactically. See [3,2] for more details on CL.

As a simple example, let us consider the following clause from an airline company
contract: ‘When checking in, the traveller is obliged to have a luggage within the weight
limit — if exceeded, the traveller is obliged to pay extra.’ This would be represented in
CL as [checkIn]OO(pay)(withinWeightLimit).

Trace Semantics. The trace semantics presented in [2] enables checking whether or
not a trace satisfies a contract. However, deontic information is not preserved in the
trace and thus it is not suitable to be used for conflict detection. By a conflict we mean
for instance that the contract permits and forbids performing the same action at the same
time (see below for a more formal definition).

We will use lower case letters (a, b . . .) to represent atomic actions, Greek letters
(α, β . . .) for compound actions, and Greek letters with a subscript & (α&, β&, . . .) for

92 S. Fenech, G.J. Pace, and G. Schneider

compound concurrent actions built from atomic actions and the concurrency operator &.
The set of all such concurrent actions will be written A&. We use # to denote mutually
exclusive actions (for example, if a stands for ‘opening the check-in desk’ and b for
‘closing the check-in desk’, we write a#b). A trace is a sequence of sets of actions,
giving the set of actions present at each point in time. The Greek letter σ will be used to
represent traces, using functional notation for indexing starting at zero i.e. σ(n) is the
(n − 1)th element of trace σ.

For a trace σ to satisfy an obligation, OC(α&), α& must be a subset of σ(0) or the
rest of the trace must satisfy the reparation C, thus for the obligation to be satisfied all
the atomic actions in α& must be present in the first set of the sequence. For prohibitions
the converse is required, e.g. not all the actions of α& are executed in the first step.

In order to enable conflict analysis, we start by adding deontic information in an
additional trace, giving two parallel traces — a trace of actions (σ) and a trace of deontic
notions (σd). Similar to σ, σd is defined as a sequence of sets whose elements are
from the set Da which is defined as {Oa | a ∈ A} ∪ {Fa | a ∈ A} ∪ {Pa | a ∈
A} where Oa stands for the obligation to do a, Fa stands for the prohibition to do a
and Pa for permission to do a. Also, since conflicts may result in sequences of finite
behaviour which cannot be extended (due to the conflict), we reinterpret the semantics
over finite traces. A conflict may result in reaching a state where we have only the
option of violating the contract, thus any infinite trace which leads to this conflicting
state will result not being accepted by the semantics. We need to be able to check that
a finite trace has not yet violated the contract and then check if the following state is
conflicting. Furthermore, if α is a set of concurrent atomic actions then we will use
Oα to denote the set {Oa | a ∈ α}. Note that the semantics is given in the form of
σ, σd � C, which says that an action trace σ and a trace with deontic information σd

satisfies a contract C. We show the trace semantics for the obligation as an example:

〈〉, 〈〉 � OC(α&)
(β : σ), (βd : σd) � OC(α&) if (α& ⊆ β and O(α&) ∈ βd) or σ, σd � C

Note that in the above, pattern matching is used to split the traces into the head (β and
βd) and the tails (σ and σd). The above says that empty traces satisfy an obligation,
while non-empty traces satisfy the contract if either (i) the obligation is satisfied, and
the obligation is registered in the deontic trace; or (ii) the reparation (CTD) is satisfied
by the remainder of the trace. See [1] for more details.

Conflict Analysis. Conflicts in contracts arise for four different reasons:1 (i) obliga-
tion and prohibition on the same action; (ii) permission and prohibition on the same
action; (iii) obligation to perform mutually exclusive actions; and (iv) permission and
obligation to perform mutually exclusive actions.

With conflicts of the first type one would end up in a state where performing any
action leads to a violation of the contract. The second conflict type results in traces

1 By tabulating all combinations of the deontic operators, one finds that there are two basic un-
derlying cases of conflict — concurrent obligation and prohibition, and concurrent permission
and prohibition. Adding constraints on the concurrency of actions, one can identify the addi-
tional two cases. More complex temporal constraints on actions may give rise to others, but
which can also be reduced to these basic four cases.

CLAN: A Tool for Contract Analysis and Conflict Discovery 93

which also violate the contract even though permissions cannot be broken, since the
deontic information is kept in the semantics. The remaining two cases correspond to
mutually exclusive actions. Freedom from conflict can be defined formally as follows:
Given a trace σd of a contract C, let D, D′ ⊆ σd(i) (with i ≥ 0). We say that D is in
conflict with D′ iff there exists at least one element e ∈ D such that:

e = Oa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Pa ∧ (Fa ∈ D′ ∨ (Pb ∈ D′ ∧ a#b) ∨ (Ob ∈ D′ ∧ a#b))
or e = Fa ∧ (Pa ∈ D′ ∨ Oa ∈ D′)

A contract C is said to be conflict-free if for all traces σ and σd such that σ, σd � C,
then for any D, D′ ⊆ σd(i) (0 ≤ i ≤ len(σd)), D and D′ are not in conflict.

As an example, let us consider the contract C = [a]O(b + c) ∧ [b]F(b), stipulat-
ing the obligation of the choice of doing b or c after an a, and the prohibition of
doing b if previously a b has been done. We have that C is not conflict-free since
〈{a, b}, {b}〉, 〈{∅}, {{Ob, Oc}, {Fb}}〉 � C, and there are D, D′ ⊆ σd(1) such that
D and D′ are in conflict. To see this, let us take D = {Ob, Oc} and e = Ob. We have
then that for D′ = {Fb}, Fb ∈ D′ (satisfying the first line of the above definition).

By unwinding a CL formula according to the finite trace semantics, we create an
automaton which accepts all non-violating traces, and such that any trace resulting in a
violation ends up in a violating state. Furthermore, we label the states of the automaton
with deontic information provided in σd, so we can ensure that a contract is conflict-
free simply through the analysis of the resulting reachable states (non-violating states).
States of the automaton contain a set of formulae still to be satisfied, following the
standard sub-formula construction (e.g., as for CTL). Each transition is labelled with
the set of actions that are to be performed in order to move along the transition.

Once the automaton is generated we can check for the four types of conflicts on all
the states. If there is a conflict of type (i) or (iii), then all transitions out of the state go
to a special violation state. In general we might need to generate all possible transitions
before processing each sub-formula, resulting on a big automaton. In practice, we im-
prove the algorithm in such a way that we create all and only those required transitions
reducing the size considerably. Conflict analysis can also be done on-the-fly without
the need to create the complete automaton. One can process the states without storing
the transitions and store only satisfied subformulae (for termination), in this manner,
memory issues are reduced since only a part of the automaton is stored in memory.

2 A Tool for Contract Analysis

CLAN2 is a tool for detection of normative conflicts in CL contracts, enabling: (i) The
automatic analysis of the contract for normative conflicts; (ii) The automatic generation
of a monitor for the contract. The analyses are particularly useful when the contract is
being written (enabling the discovery of undesired conflicts), before adhering to a given
contract (to ensure unambiguous enforcement of the contract), and during contract en-
forcement (monitoring).

2 CLAN can be downloaded from
http://www.cs.um.edu.mt/˜svrg/Tools/CLTool

94 S. Fenech, G.J. Pace, and G. Schneider

(a)

(b)

Fig. 1. (a) Screen shot of the tool; (b) Automaton generated for [c]O(b) ∧ [a]F(b)

The core of CLAN is implemented in Java, consisting of 700 lines of code. This
does not include the additional code, over and above the conflict discovery algorithm,
for the graphical user interface (a screen shot can be seen in Fig. 1-(a)). CL contracts
and additional information (such as which actions are mutually exclusive) are given to
the tool which then performs the conflict analysis. Upon discovery of a conflict, it gives
a counter-example trace. The tool also offers an aid to analyse traces, and the possibility
of visualising the generated automaton, as the one shown in Fig. 1-(b).

CLAN has been used to analyse a large contract resulting in a graph with 64,000
states, consuming approximately 700MB of memory; the analysis took around 94 min-
utes. The analysis seems to scale linearly in memory and polynomially in the num-
ber of states. The complexity of the automaton increases exponentially on the number
of actions, since all the possible combinations to generate concurrent actions must be
considered. We are currently working on how to optimise the analysis to avoid such
exponential state-explosion.

3 Case Study

We briefly present here a portion of a small case study, starting from a draft contract
written in English, which is formalised in CL and analysed using CLAN. The full exam-
ple can be found in [1]. The case study concerns a contract between an airline company

CLAN: A Tool for Contract Analysis and Conflict Discovery 95

and a company taking care of the ground crew (mainly the check-in process) Some
clauses of the contract expressed in English and CL, are given below:

1. The ground crew is obliged to open the check-in desk and request the passenger manifest
two hours before the flight leaves.
[1∗][twoHBefore]OO(issueFine)(openCheckIn & requestInfo)

2. After the check-in desk is opened the check-in crew is obliged to initiate the check-in process
with any customer present by checking that the passport details match what is written on
the ticket and that the luggage is within the weight limits. Then they are obliged to issue the
boarding pass.
[1∗][openCheckIn][1∗](O(correctDetails & luggageInLimit) ∧

[correctDetails & luggageInLimit]OO(issueFine)(issueBoardingCard))
3. The ground crew is obliged to close the check-in desk 20 minutes before the flight is due to

leave and not before.
([1∗][20mBefore]OO(issueFine)(closeCheckIn)) ∧

([20mBefore
∗
]FO(issueFine)(closeCheckIn))

4. If any of the above obligations and prohibitions are violated a fine is to be paid.
[1∗][closeCheckIn][1∗](FO(issueFine)(openCheckIn)∧FO(issueFine)(issueBoardingCard))

On this size of example, the tool gives practically instantaneous results, identify-
ing conflicts such as the concurrent obligation and prohibition to perform action
issueBoardingCard, together with a counter-example trace. Looking at clause 2, once
the crew opens the check-in desk, they are always obliged to issue a boarding pass
if the client has the correct details. However, according to clause 4 it is prohibited to
issue of boarding pass once the check-in desk is closed. These two clauses are in con-
flict once the check-in desk is closed and a client arrives to the desk with the correct
details.

To fix this problem one has to change clause 2 so that after the check-in desk is
opened, the ground crew is obliged to issue the boarding pass as long as the desk has
not been closed. In the full case study, other conflicts due to mutual exclusion are also
found and fixed in the English contract.

4 Conclusions

The analysis of contracts for the discovery of potential conflicts can be crucial to en-
able safe and dependable contract adoption and composition at runtime. In this paper
we have presented CLAN, a tool for automatic detection of conflicting clauses in con-
tracts written in the deontic language CL. Currently the tool only provides the func-
tionality of detecting conflicts. However, many other analysis may be done by slightly
modifying the underlying algorithm, as for instance the generation of a model from
the contract which can be processed by a model checker. Furthermore, other contract
analysis techniques are planned to be added to the tool to enable analysis for over-
lapping, superfluous and unreachable sub-clauses of a contract. See [1] for related
works.

96 S. Fenech, G.J. Pace, and G. Schneider

References

1. Fenech, S., Pace, G.J., Schneider, G.: Automatic Conflict Detection on Contracts. In: Leucker,
M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 200–214. Springer, Heidelberg
(2009)

2. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic contracts. In:
Cha, S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311,
pp. 397–407. Springer, Heidelberg (2008)

3. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts. In: Bonsangue,
M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189. Springer,
Heidelberg (2007)

UnitCheck: Unit Testing and Model Checking

Combined�

Michal Kebrt and Ondřej Šerý

Charles University in Prague
Malostranské náměst́ı 25

118 00 Prague 1
Czech Republic

michal.kebrt@gmail.com, ondrej.sery@dsrg.mff.cuni.cz
http://dsrg.mff.cuni.cz

Abstract. Code model checking is a rapidly advancing research topic.
However, apart from very constrained scenarios (e.g., verification of de-
vice drivers by Slam), the code model checking tools are not widely used
in general software development process. We believe that this could be
changed if the developers could use the tools in the same way they al-
ready use testing tools. In this paper, we present the UnitCheck tool,
which enhances standard unit testing of Java code with model checking.
A developer familiar with unit testing can apply the tool on standard
unit test scenarios and benefit from the exhaustive traversal performed
by a code model checker, which is employed inside UnitCheck. The
UnitCheck plugin for Eclipse presents the checking results in a conve-
nient way known from unit testing, while providing also a verbose output
for the expert users.

1 Introduction

In recent years, the field of code model checking has advanced significantly. There
exist a number of code model checkers targeting mainstream programming lan-
guages such as C, Java, and C# (e.g., Slam [2], CBMC [6], Blast [11], Java
PathFinder [15], and MoonWalker [7]). In spite of this fact, the adoption
of the code model checking technologies in the industrial software development
process is still very slow. This is caused by two main reasons (i) limited scal-
ability to large software, and (ii) missing tool-supported integration into the
development process.

The current model checking tools can handle programs up to tens of KLOC
and often require manual simplifications of the code under analysis [13]. Unfor-
tunately, such program size is still several orders of magnitude smaller than the
size of many industrial projects.
� This work was partially supported by the Czech Academy of Sciences project
1ET400300504, and the Q-ImPrESS research project (FP7-215013) by the
European Union under the Information and Communication Technologies priority
of the Seventh Research Framework Programme.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 97–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

98 M. Kebrt and O. Šerý

Apart from the scalability issues, there is virtually no support for integration
of the code model checkers into the development process. Although some tools
feature a user interface in the form of a plugin for a mainstream IDE (e.g.,
SatAbs [5]), creation of a particular checking scenario is not often discussed or
supported in any way. A notable exception is Slam and its successful application
in the very specific domain of kernel device drivers.

These two obstacles might be overcome by employing code model checking
in a way similar to unit testing – we use the term unit checking first proposed
in [10]. Unit testing is widely used in industry and developers are familiar with
writing test suites. Providing model checking tools with a similar interface would
allow developers to directly benefit from model checking technology (e.g., of
exploration of all thread interleavings) without changing their habits. Moreover,
applying model checking to smaller code units also helps avoiding the state
explosion problem, the main issue of the model checking tools.

Goals and structure of the paper. We present the UnitCheck tool, which
allows for creation, execution and evaluation of checking scenarios using the
Java PathFinder model checker (JPF). UnitCheck accepts standard JU-
nit tests [1] and exhaustively explores the reachable state space including all
admissible thread interleavings. Moreover, the checking scenarios might feature
nondeterministic choices, in which case all possible outcomes are examined. The
tool is integrated into the Eclipse IDE in a similar way as the JUnit framework
and also an Ant task is provided. As a result, users familiar with unit testing
using JUnit might immediately start using UnitCheck.

public class Account {
private double balance = 0;

public void deposit(double a) {
balance = balance + a; //(1)

}
public void withdraw(double a) {

balance = balance − a;
}
public double getBalance() {

return balance;
}

}

public class Banker
implements Runnable {

private Account account;
private double amount;
private int cnt;

@Override
public void run() {

for (int i=0; i < cnt; ++i) {
account.deposit(amount);

}
}

}

@Test
public void testDepositInThreads() {

Account account = new Account();
Thread t1 = new Thread(

new Banker(account, 5, 5));
Thread t2 = new Thread(

new Banker(account, 10, 5));

t1.start(); t2.start();
t1.join(); t2.join();
assertEquals(account.getBalance(),

25 + 50, 0);
}

@Test
public void testDepositWithdraw() {

Account account = new Account();
int income = Verify.getInt(0, 10);
int outcome = Verify.getInt(0, 10);

account.deposit(income);
assertEquals(account.getBalance(),

income, 0);
account.withdraw(outcome);
assertEquals(account.getBalance(),

Math.max(income − outcome, 0), 0);
}

Fig. 1. Tests that benefit from UnitCheck’s features

UnitCheck: Unit Testing and Model Checking Combined 99

Test example. Examples of two JUnit tests that would benefit from the anal-
ysis performed by UnitCheck (in contrast to standard unit testing) are listed
in Figure 1. The code under test, on the left, comprises of bank accounts and
bankers that sequentially deposit money to an account. The first test creates
two bankers for the same account, executes them in parallel, and checks the
total balance when they are finished. UnitCheck reports a test failure because
the line marked with (1) is not synchronized. Therefore, with a certain thread
interleaving of the two bankers the total balance will not be correct due to the
race condition. In most cases, JUnit misses this bug because it uses only one
thread interleaving. The second test demonstrates the use of a random generator
(the Verify class) to conveniently specify the range of values to be used in the
test. UnitCheck exhaustively examines all values in the range and discovers an
error, i.e., the negative account balance. When using standard unit testing, the
test designer could either use a pseudorandom number generator (the Random
class) and take a risk of missing an error, or explicitly loop through all possible
values, thus obfuscating the testing code.

2 Tool

In this section, the internal architecture of UnitCheck is described. Addition-
ally, we discuss three user interfaces to UnitCheck which can be used to employ
the tool in the development process.

2.1 Architecture

An overview of the UnitCheck’s architecture is depicted in Figure 2. The core
module of UnitCheck, the actual integration of JPF and JUnit, is enclosed
in the central box. It is compiled into a Java library so that it can be easily
embedded into other Java applications (e.g., into an IDE). As an input, the core
module takes an application under analysis, the JUnit-compliant test cases, and
optionally additional properties to fine-tune JPF. The analysis is then driven
and monitored via the UnitCheckListener interface.

It is important to note that neither JPF nor JUnit functionality and struc-
tures are directly exposed outside the core. The UnitCheckListener interface
hides all JPF and JUnit specific details. This solution brings a couple of ad-
vantages. (i) Extensions (e.g., Eclipse plugin) implement only the single (and
simple) listener interface. (ii) In future, both JPF and JUnit can be replaced
with similar tools without modifying existing extensions.

Inside the core, UnitCheckListener is built upon two interfaces – JPF’s
SearchListener and JUnit’s RunListener. SearchListener notifies about
property violations (e.g., deadlocks) and provides complete execution history
leading to a violation. RunListener informs about assertion violations and other
uncaught exceptions. UnitCheck processes reports from both listeners and pro-
vides them in a unified form to higher levels through UnitCheckListener.

100 M. Kebrt and O. Šerý

Fig. 2. JPF and JUnit integration

When analyzing the test cases, two Java virtual machines are employed. The
first one is the host virtual machine in which UnitCheck itself and the underly-
ing JPF are executed. The second one is JPF, a special kind of virtual machine,
which executes JUnit. Subsequently, JUnit runs the input test cases (in Figure 2,
the code executed inside the JPF virtual machine is explicitly marked). The infor-
mation about test case progress provided by the JUnit’s RunListener interface
is available only in the JPF virtual machine. To make this information accessible
in the host virtual machine, the JPF’s Model Java Interface (MJI) API is used.
It allows to execute parts of the application under analysis in the host virtual ma-
chine instead of the JPF virtual machine. Each class that is to be executed in the
host VM has a corresponding peer counterpart. This mechanism is used for the
TestReportListener class.

2.2 User Interface

Currently, there are three different extensions that provide user interface for
checking JUnit tests using UnitCheck – simple command-line application,
Ant task, and Eclipse plugin. The interfaces are designed to make their usage
as close to the usage of the corresponding JUnit tools as possible. As an example,
the Eclipse plugin provides a user interface very similar to the JUnit plugin for
Eclipse, including test summaries, progress reports, and run configurations. On
the other hand, the tools provide also a verbose output for the expert users which
are familiar with model checking tools. In addition to the easy-to-understand

UnitCheck: Unit Testing and Model Checking Combined 101

JUnit-like result summaries, the Eclipse plugin provides also a navigable panel
with a detailed error trace obtained from JPF with different levels of verbosity.1

3 Related work

The notion of unit checking was first used in [10]. The authors study the problem
of symbolic model checking of code fragments (e.g., individual functions) in
separation. In a similar vein, we use the term unit checking in parallel to unit
testing. However, the focus of UnitCheck is in providing users with tool support
for integration of model checking into the software development process.

To our knowledge, the Slam project [2] is by far the most successful appli-
cation of code model checking in real-life software development process. Never-
theless, its success stems from the very constrained domain of device drivers,
where the environment is fixed and known in advance by the tool’s developers.
In contrast, UnitCheck offers benefits of code model checking in a convenient
(and familiar) interface to developers of general purpose Java software.

Another related project is Chess, which is a testing tool that can execute
the target .NET or Win32 program in all relevant thread interleavings. Chess
comes in a form of a plugin into Microsoft Visual Studio and can be used to
execute existing unit tests. As well as with UnitCheck, the user of Chess
is not forced to change his/her habits with unit testing and gets the benefit
of test execution under all relevant thread interleaving for free. In contrast to
UnitCheck, Chess cannot cope with random values in tests, because it uses a
layer over the scheduler-relevant API calls. The presence of a random event in
a test would result in the loss of error reproducibility.

Orthogonal to our work is the progress on generating test inputs for unit tests
for achieving high code coverage [9,16,17]. To name one, the Pex tool [14] uses
symbolic execution and an automated theorem prover Z3 [12] to automatically
produce a small test suite with high code coverage for a .NET program. We
believe that similar techniques can be used in synergy with unit checking.

There are other approaches for assuring program correctness than code model
checking. Static analysis tools (e.g., Splint [8]) are easy to use and scale well.
However, there is typically a trade off between amount of false positives and
completeness of such analysis. The design-by-contract paradigm (e.g., JML [4],
Spec# [3]) relies on user provided code annotations. Specifying these annota-
tions is a demanding task that requires an expertise in formal methods.

4 Conclusion

We presented the UnitCheck tool that brings the benefits of code model check-
ing to the unit testing area the developers are familiar with. Of course, not all
tests are amenable for unit checking. Only tests for which the standard testing
1 The UnitCheck tool and all three user interfaces are available for download at
http://aiya.ms.mff.cuni.cz/unitchecking

http://aiya.ms.mff.cuni.cz/unitchecking

102 M. Kebrt and O. Šerý

is not complete (i.e., tests that feature random values or concurrency) would
benefit from exhaustive traversal using UnitCheck2. As UnitCheck accepts
standard JUnit tests, developers can seamlessly switch among the testing en-
gines as necessary.

References

1. JUnit testing framework, http://www.junit.org
2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey,
C., Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of de-
vice drivers. SIGOPS Oper. Syst. Rev. 40(4), 73–85 (2006)

3. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W.,
Venter, H.: The spec# programming system: Challenges and directions. In: Meyer,
B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer,
Heidelberg (2008)

4. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and eSC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

5. Clarke, E., Kröning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

6. Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

7. de Brugh, N.H.M.A., Nguyen, V.Y., Ruys, T.C.: Moonwalker: Verification of.net
programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 170–173. Springer, Heidelberg (2009)

8. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19(1), 42–51 (2002)

9. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
PLDI 2005: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pp. 213–223. ACM, New York (2005)

10. Gunter, E.L., Peled, D.: Unit checking: Symbolic model checking for a unit of code.
In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp.
548–567. Springer, Heidelberg (2004)

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. SIGPLAN
Not. 37(1), 58–70 (2002)

12. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. Mühlberg, J.T., Lüttgen, G.: Blasting linux code. In: Brim, L., Haverkort, B.R.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346,
pp. 211–226. Springer, Heidelberg (2007)

14. Tillmann, N., de Halleux, J.: Pex white box test generation for.net. In: 2nd Inter-
national Conference on Tests and Proofs, April 2008, pp. 134–153 (2008)

2 Of course, only the (increasing) portion of the standard Java libraries supported by
JPFcan be used in the tests.

http://www.junit.org

UnitCheck: Unit Testing and Model Checking Combined 103

15. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering 10(2), 203–232 (2003)

16. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA 2004), pp. 97–107. ACM, New York (2004)

17. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating
object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

LTL Model Checking of
Time-Inhomogeneous Markov Chains�

Taolue Chen1, Tingting Han2,3,
Joost-Pieter Katoen2,3, and Alexandru Mereacre2

1 Design and Analysis of Communication Systems, University of Twente, The Netherlands
2 Software Modelling and Verification, RWTH Aachen University, Germany

3 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. We investigate the problem of verifying linear-time properties against
inhomogeneous continuous-time Markov chains (ICTMCs). A fundamental ques-
tion we address is how to compute reachability probabilities. We consider two
variants: time-bounded and unbounded reachability. It turns out that both can be
characterized as the least solution of a system of integral equations. We show that
for the time-bounded case, the obtained integral equations can be transformed
into a system of ordinary differential equations; for the time-unbounded case, we
identify two sufficient conditions, namely the eventually periodic assumption and
the eventually uniform assumption, under which the problem can be reduced to
solving a time-bounded reachability problem for the ICTMCs and a reachability
problem for a DTMC. These results provide the basis for a model checking algo-
rithm for LTL. Under the eventually stable assumption, we show how to compute
the probability of a set of ICTMC paths which satisfy a given LTL formula. By
an automata-based approach, we reduce this problem to the previous established
results for reachability problems.

1 Introduction

Continuous-time Markov chains (CTMCs) are one of the most important models in
performance and dependability analysis. They are exploited in a broad range of ap-
plications, and constitute the underlying semantical model of a plethora of modeling
formalisms for real-time probabilistic systems such as Markovian queueing networks,
stochastic Petri nets, stochastic variants of process algebras, and, more recently, calculi
for system biology. These Markov chains are typically homogeneous, i.e., the rates that
determine the speed of changing state as well as the probabilistic nature of mode transi-
tions are constant. However, in some situations constant rates do not adequately model
real behaviors. This applies, e.g., to failure rates of hardware components [10] (that usu-
ally depend on the component’s age), battery depletion [7] (where the power extraction
rate non-linearly depends on the remaining amount of energy), and random phenomena
that are subject to environmental influences. In these circumstances, Markov models

� Financially supported by the DFG research training group 1295 AlgoSyn, the Dutch Bsik
project BRICKS, the NWO project QUPES, the EU project QUASIMODO, and the SRO DSN
project of CTIT, University of Twente.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 104–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

LTL Model Checking of Time-Inhomogeneous Markov Chains 105

with inhomogeneous rates, i.e., rates that are time-varying functions, are much more
appropriate [17].

Temporal logics and accompanying model-checking algorithms have been developed
for discrete-time Markov chains (DTMCs for short), against linear-time properties [8,9]
and branching-time properties [11]; for CTMCs against branching-time properties [2,3]
and linear real-time properties [6]. And some of them have resulted in a number of suc-
cessful model checkers such as PRISM [12] and MRMC [14]. However, the verification
of time-inhomogeneous CTMCs (ICTMCs) has – to the best of our knowledge – not yet
been investigated in depth, with the notable exception [15], which considered model
checking a simple stochastic variant of Hennessy-Milner Logic (without fixed points)
for piecewise-constant ICTMCs. The main aim of the current paper is to fill this gap by
considering model checking ICTMCs w.r.t. linear-time properties.

One of the most fundamental linear-time properties are reachability problems. Here
we address two variants: time-bounded and unbounded reachability. The former asks,
given a set of goal states and a time bound, what is the probability of paths of a given
ICTMC that reach the goal states within the time bound. Time-unbounded reachability
is similar except that the time bound is infinity. To solve both of them, we first provide a
characterization in terms of the least solution of a system of integral equations. This can
be regarded as a generalization of similar results for CTMCs [2,3] to ICTMCs. Further-
more, we show that for the time-bounded case, the obtained integral equations can be
transformed into a system of (homogeneous) ordinary differential equations, which of-
ten enjoys an efficient numerical solution; for the time-unbounded case, generally this is
not possible and one has to solve the system of integral equations directly, which is not
so efficient and numerically unstable. To remedy this deficiency, we identify two suffi-
cient conditions, i.e., the eventually periodicity and eventually uniformity, under which
the problem can be reduced to the time-bounded reachability problem for ICTMCs and
a (time-unbounded) reachability problem for DTMCs and thus can be solved efficiently.
These classes subsume some interesting and important subclasses of ICTMCs, such as,
the piecewise-constant case studied in [15] and ICTMCs with rates function represent-
ing Weibull failure rates. The latter distributions are important to model hazards and
failures, and are popular in, e.g., reliability engineering. We then turn to model check-
ing ICTMCs against LTL. Strictly speaking, we focus on computing the probability of
the set of paths of a given ICTMC which satisfy the LTL formula. One of the main dif-
ficulties here compared to CTMCs is that in ICTMC, rates between states are functions
over time instead of constants, and thus the topological structure of ICTMCs, when con-
sidered as a digraph, is not stable. To circumvent this problem, we identify a condition,
i.e., the eventually stable assumption which intuitively means that after a (finite) time,
the topological structure of the ICTMC does not change any more. Under this assump-
tion, we can adapt the standard automata-based approach. A crucial ingredient is that
we can construct a corresponding separated Büchi automaton from an LTL formula1,
based on which, one can build the product of the given ICTMC and the separated Büchi
automaton while obtaining a well-defined stochastic process. We then reduce the LTL
model checking problem to the previous established results for reachability problems.

1 Note that one can also use deterministic automata, but that would incur an extra (unnecessary)
exponential blowup.

106 T. Chen et al.

2 Preliminaries

Given a set S, let Distr(S) denote the set of probability distributions over S.

Definition 1 (ICTMC). A (labeled) inhomogeneous continuous-time Markov chain
(ICTMC) is a tuple C = (S, AP, L, α,R(t)), where S is a finite set of states; AP is
a finite set of atomic propositions; L : S → 2AP is a labeling function; α ∈ Distr(S)
is an initial distribution; R(t) : S × S × R�0 → R�0 is a rate matrix.

Let diagonal matrix E(t) = diag [Es(t)] ∈ Rn×n
�0 , where n = |S| and Es(t) : S ×

R�0 → R�0 be defined as Es(t) =
∑

s′∈S Rs,s′(t) for all s ∈ S, i.e., Es(t) is the exit
rate of state s at time t. We require that all rates and exit rates, as functions of time t,
are integrable. If all rates (and thus exit rates) are constant, we obtain a CTMC. A state
s is absorbing if Rs,s′(t) = 0, for s′
= s.

Semantics. An ICTMC induces a stochastic process. The probability to take a transition
from s to s′ at time t within Δt time units is given by:

Prob
{
s→s′, t, Δt

}
=

∫ Δt

0

Rs,s′(t+ τ)e−
∫ τ
0 Es(t+υ)dυdτ =

∫ t+Δt

t

Rs,s′(τ)e
− ∫ τ

t Es(v)dvdτ.

Definition 2 (Timed paths). Let C be an ICTMC. An infinite path starting at time x
is a sequence ρx = s0

t0−−→ s1
t1−−→ s2 · · · such that for each i ∈ N, si ∈ S, ti ∈ R>0

and Rsi,si+1(t) > 0 where t = x +
∑i

j=0 tj . A finite path is a prefix of an infinite path
ending in a state.

We will sometimes omit the subscript of ρx if the starting time x is irrelevant. Let
PathsC and PathsC(s, x) denote the set of (finite and infinite) paths in C and those
starting from state s at time x, respectively. The superscript C is omitted whenever
convenient. Let ρ[n] := sn be the n-th state of ρ (if it exists) and ρ〈n〉 := tn the time
spent in state sn. Let ρx@t be the state occupied in ρ at time t ∈ R�0, i.e. ρx@t :=
ρx[n] where n is the smallest index such that x +

∑n
i=0 ρx〈i〉 > t. We assume w.l.o.g.

that the time to stay in any state is strictly greater than 0.
Let I denote the set of all nonempty intervals I ⊆ R�0 and let I ⊕ t (resp. I � t)

denote {x + t | x ∈ I} (resp. {x − t | x ∈ I ∧ x � t}). The definition of a
Borel space over paths through ICTMCs follows [3]. An ICTMC C with initial state
s0 and initial time x yields a probability measure PrCs0,x on paths as follows: Let
Cx(s0, I0, . . ., Ik−1, sk) denote the cylinder set consisting of all paths ρ ∈ Paths(s0, x)
such that ρ[i] = si (i � k) and ρ〈i〉 ∈ Ii (i < k). F(Paths(s0, x)) is the smallest σ-
algebra on Paths(s0, x) which contains all cylinder sets Cx(s0, I0, . . ., Ik−1, sk) for
all state sequences (s0, . . ., sk) ∈ Sk+1 and I0, . . ., Ik−1 ∈ I. The probability measure
PrCs0,x on F(Paths(s0, x)) is the unique measure recursively defined by:

PrCs0,x

(
Cx(s0, I0, . . ., Ik−1, sk)

)
=
∫

I0⊕x

Rs0,s1(τ0)·e−
∫

τ0
x

Es0 (v)dv · PrCs1,τ0

(
Cτ0(s1, I1, . . ., Ik−1, sk)

)
dτ0

LTL Model Checking of Time-Inhomogeneous Markov Chains 107

Example 1. An example ICTMC is illustrated in Fig. 2(a) (page 113), where AP =
{a, b, c} and the rate functions are ri(t) (1 � i � 6). In particular, the exit rate function
of s1 is r2(t) + r3(t). The initial distribution is α(s0) = 1 and α(s) = 0 for s
= s0. A
possible rate function can be the ones depicted in Fig. 1 (page 110).

Linear temporal logic. The set of linear temporal logic (LTL) formulae over a set of
atomic propositions AP is defined as follows:

Definition 3 (LTL syntax). Given a set of atomic propositions AP which is ranged
over by a,b,. . ., the syntax of LTL formulae is defined by:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ.

The semantics of LTL for ICTMC C is defined in a standard way by a satisfaction
relation, denoted |=, which is the least relation |=⊆ PathsC × R�0 × LTL (here we
use LTL to denote the set of LTL formulae) satisfying:

(ρ, t) |= tt (ρ, t) |= ϕ1 ∧ ϕ2 iff (ρ, t) |= ϕ1 and (ρ, t) |= ϕ2
(ρ, t) |= a iff a ∈ L(ρ@t) (ρ, t) |= ¬ϕ iff (ρ, t)
|= ϕ
(ρ, t) |= X ϕ iff ∃Δt � 0. (ρ, t+Δt) |= ϕ and ρ[1] = ρ@(t+Δt)
(ρ, t) |= ϕ1 U ϕ2 iff ∃Δt � 0. (ρ, t+Δt) |= ϕ2 and ∀t′ < t+Δt. (ρ, t′) |= ϕ1

We use ats∈AP as an atomic proposition which holds solely at state s. For F ⊆ S,
we write atF for

∨
s∈F ats. Let Paths(s, x, ϕ) = {ρ ∈ Paths(s, x) | (ρ, x) |= ϕ}.

Note that a timed path ρ = s0
t0−−→ s1

t1−−→ · · · satisfies a formula ϕ iff the “dis-
crete part” of ρ, namely, s0s1s2 · · · (= ρ[0]ρ[1]ρ[2] · · ·) satisfies ϕ. It thus can be
easily shown that the set Paths(s, x, ϕ) is measurable. We denote the probability mea-
sure of Paths(s, x, ϕ) as Prob(s, x, ϕ) = Prs,x (Paths(s, x, ϕ)) and let ProbC(ϕ) =∑

α(s0)>0 α(s0)·Prob(s0, 0, ϕ) be the probability that ICTMC C satisfies ϕ.

3 Reachability Analysis

In this section, we tackle reachability problems for ICTMCs. We distinguish two vari-
ants: time-bounded reachability and time-unbounded reachability. To solve both of them,
we first give a characterization of Prob(s, x,♦IatF), namely, the probability of the set
of paths which reach a set of goal states F ⊆ S within time interval I starting from state
s at time point x. This is done by resorting to a system of integral equations, which is a
generalization of a similar characterization for CTMCs [3].

Proposition 1. Let C = (S, AP, L, α,R(t)) be an ICTMC with s ∈ S, x ∈ R�0,
F ⊆ S and interval I ⊆ R�0 with T1 = inf I and T2 = sup I . The function S×R�0×
I → [0, 1], (s, x, I) → Prob(s, x,♦IatF) is the least fixed point of the operator

Ω : (S × R�0 × I → [0, 1]) → (S × R�0 × I → [0, 1]) ,

108 T. Chen et al.

where Ω(f)(s, x, I) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ T2

0

∑
s′∈S

Rs,s′(x+ τ)e−
∫ τ
0Es(x+v)dv · f(s′, x+ τ, I
 τ)dτ, if s /∈ F (1)

e−
∫ T1
0 Es(x+v)dv+

∫ T1

0

∑
s′∈S

Rs,s′(x+τ)e−
∫ τ
0 Es(x+v)dv·f(s′, x+τ, I
 τ)dτ, if s ∈ F (2)

3.1 Time-Bounded Reachability

We now solve the time-bounded reachability problem, i.e., given ICTMC C, a set of
goal states F ⊆ S and a time bound T ∈ R�0, to compute Prob(s, x,♦�TatF), the
probability of Paths(s, x,♦�TatF) which is the set of paths that reach F within T time
units given the initial time x. To accomplish this, we first compute Prob(s, x,♦=TatF),
where the slightly different property ♦=TatF , in contrast to ♦�TatF , requires that
states in F are reached at exactly time T . Note that ♦�T atF and ♦=T atF can also be
written as ♦[0,T]atF and ♦[T,T]atF , respectively, where I = [0, T] or I = [T, T] is a
time interval. By instantiating (1), (2) in Prop. 1, we obtain that Prob(s, x,♦=TatF) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ T

0

∑
s′∈S

Rs,s′(x+ τ)e−
∫ τ
0 Es(x+v)dv · Prob(s′, x+ τ,♦=T−τatF)dτ, if s/∈F (3)

e−
∫ T
0 Es(x+v)dv+

∫ T

0

∑
s′∈S

Rs,s′(x+τ)e−
∫ τ
0 Es(x+v)dv·Prob(s′,x+τ ,♦=T−τatF)dτ, if s∈F (4)

Intuitively, (3) and (4) are justified as follows: If s /∈ F , the probability of reaching an
F -state from s after exactly T time units given the starting time x equals the probability
of reaching some direct successor s′ of s in τ time units, multiplied by the probability
of reaching an F -state from s′ in the remaining T − τ time units. If s ∈ F at time x,
then it can either stay in s (i.e., delay) for T time units (the first summand in (4)), or
regard s as a non-F state and take a transition (the second summand in (4)).

We now address the problem of solving (3) and (4), read as a system of integral equa-
tions. We define Π(x, T) as the matrix with entries Πi,j(x, T) denoting the probability
of the set of paths starting from state i at time x and reaching state j at time x + T . For
any ICTMC, the following equation holds:

Π(x, T) =
∫ T

0
M(x, τ)Π(x + τ, T − τ)dτ︸ ︷︷ ︸

Markovian jump

+D(x, T)︸ ︷︷ ︸
delay

(5)

M(x, T) is the probability density matrix where Mi,j(x, T) = Ri,j(x + T) ·
e−

∫
T
0 Ei(x+v)dv is the density to move from state i to j at exactly time T and D(x, T)

is the diagonal delay probability matrix with Di,i(x, T) = e−
∫ T
0 Ei(x+v)dv.

We note that Π(x, T) is actually the (equivalent) matrix form of (3) and (4). For
(4), it follows directly that each of its summands has a counterpart in (5). For (3), note
that D(x, T) is a diagonal matrix where all the off-diagonal elements are 0 and that (3)

LTL Model Checking of Time-Inhomogeneous Markov Chains 109

does not allow a delay transition from a non-F state. This correspondence builds a half-
bridge between Prob(s, x,♦=T atF) and Π(x, T), whereas the following proposition
completes the other half bridge between Π(x, T) and the transient probability vector
π(t) of ICTMCs:

Proposition 2. Given ICTMC C with initial distribution α and rate matrix R(t). We
have that Π(0, t) and π(t) satisfy the following two equations:

π(t) = α ·Π(0, t) , (6)

dπ(t)
dt

= π(t) · Q(t), π(0) = α , (7)

where Q(t) = R(t) − E(t) is the infinitesimal generator of C.

Intuitively, this proposition implies that solving the system of integral equations Π(x, t)
boils down to computing the transient probability vector π(t) with each element πs(t)
indicating the probability to be in state s at time t given the initial probability distri-
bution α = π(0). The transient probability is specified by a system of ODEs (7), the
celebrated Chapman-Kolmogorov equations.

Given ICTMC C, let C[F] be the ICTMC obtained by making the states in F ab-
sorbing in C. We have the following theorem:

Theorem 1. For any ICTMC C, ProbC(s, x,♦�TatF) = ProbC[F](s, x,♦=TatF).

To sum up, Proposition 1, 2 together with Theorem 1 suggest that computing time-
bounded reachability probabilities in an ICTMC can be done, by first making the F
states absorbing (and thus obtaining C[F]) followed by solving a system of homoge-
neous ODEs (7) for C[F]. By using standard numerical approaches, e.g., Euler method
or Runge-Kutta method and their variants [16], this system of ODEs (i.e. the transient
probability vector) can be solved.

3.2 Time-Unbounded Reachability

We then turn to the time-unbounded reachability problem, i.e., there are no constraints
on the time to reach the F -states. Let Prob(s, x,♦ atF) denote the reachability proba-
bility from state s at time x to reach F within time interval [0,∞). Using Proposition
1, we can characterize Prob(s, x,♦ atF) as follows:⎧⎪⎨

⎪⎩
∫ ∞

0

∑
s′∈S

Rs,s′(x+ τ)e−
∫ τ
0 Es(x+v)dv · Prob(s′, x+ τ,♦atF)dτ, if s /∈ F (8)

1, if s ∈ F (9)

The case s ∈ F is derived from (2), where the probability to delay in an F -state for
zero units of time is 1 and the probability to leave (i.e. taking a Markovian jump) an
F -state in zero units of time is 0. When s /∈ F , Eq. (8) is similar to (3) except that
there is no bound on the time to leave a state s /∈ F . Note that in contrast to the time-
bounded case, in general it is not possible to reduce this system of integral equations to
a system of ODEs. Since solving a system of integral equations is generally time con-
suming and numerically instable, we propose to investigate some special cases (subsets

110 T. Chen et al.

Ts,s′

ns,s′ ·P

t0

Rs,s′(t)

Ts t0

Rs,s′(t)

Fig. 1. Eventually periodic assumption (left) and eventually stable assumption (right)

of ICTMCs), for which the reduction to ODEs is possible. Here we consider two such
classes, i.e. eventually periodic ICTMCs and eventually uniform ICTMCs. Their com-
mon feature is that rate functions of the given ICTMC exhibit regular behaviors after
some time T . This allows for computing time-unbounded reachability probabilities ef-
ficiently (e.g., via DTMCs). Hence the problem turns out to be reducible to computing
the time-bounded reachability probabilities with time bound T , which has been tack-
led in the previous section, and reachability probabilities for DTMCs. Both of them,
fortunately, enjoy efficient computational methods.

Eventually periodic assumption. We consider eventually periodic ICTMCs.

Definition 4 (Eventually periodic assumption (EPA)). An ICTMC C is eventually
periodic if there exists some time P ∈ R>0 such that for any two states s, s′ ∈ S, there
exists some Ts,s′ ∈ R�0 and ns,s′ ∈ N such that

Rs,s′(t) =

{
R(1)

s,s′(t) if t � Ts,s′

R(2)
s,s′(t) if t > Ts,s′

where R(2)
s,s′(t) = R(2)

s,s′(t + ns,s′ ·P).

An example rate function under the EPA is illustrated in Fig. 1 (left). After time point
Ts,s′ , the function Rs,s′(t) becomes periodic with the period ns,s′ ·P , where P is the
“common factor” of all the periods of rate functions Rs,s′(t), for all s, s′ ∈ S. For any
ICTMC C satisfying EPA, let TEP = maxs,s′∈S Ts,s′ and PEP = (gcds,s′∈S ns,s′)·P .
Intuitively, TEP is the time since when all rate functions are periodic and PEP is the
period of all the periodic rate functions. For instance, suppose there are two rate func-
tions with R(2)

s1,s2(t) = 2 + cos(1
2 t) and R(2)

s2,s3(t) = 3 − sin(1
3 t), and let Ts1,s2 =

10, Ts2,s3 = 15. Then TEP=max{10, 15}=15, P=π, ns1,s2=4 and ns2,s3=6, and
PEP=gcd{4, 6}·π=12π.

Time-unbounded reachability probabilities for an ICTMC under the EPA can be
computed according to Alg. 1 and justified by Theorem 2. Let us explain it in more
detail. Due to (9), once F states are reached, it is irrelevant how the paths continue.
This justifies the model transformation from C to C[F]. The reachability problem can
be divided into two subproblems: (I) first to compute the probability to reach state
s′ ∈ S at exactly time TEC (the second Prob in (10), see below); and (II) then to com-
pute the time-unbounded reachability from s′ ∈ S to F (the third Prob in (10)). In
the following we will focus on (II): Recall that we denote Prob(s, TEP,♦=PEPats′)
to be the probability to reach from s to s′ after time PEP starting from time point

LTL Model Checking of Time-Inhomogeneous Markov Chains 111

TEP. Since after time TEP all rate functions are periodic with period PEP, it holds that
Prob(s, TEP,♦=PEPats′) = Prob(s, TEP+n·PEP,♦=PEPats′), for all n ∈ N. It then
suffices to compute Prob(s, TEP,♦=PEPats′) for any s, s′ ∈ S. Given the ICTMC
C with state space S, we build a DTMC DC = (S,P) with Ps,s′=ProbC(s, TEP,
♦=PEPats′). Intuitively, Ps,s′ is the one-step probability (one-step here means one pe-
riod) to move from s to s′, and the problem (II) is now reduced to computing the reacha-
bility probability from s to F -states in arbitrarily many steps (since the time-unbounded
case is considered), i.e., ProbDC[F](s,♦ atF). This can be done by standard methods,
e.g., value iteration or solving a system of linear equations, see, among others, [4]
(Ch. 10).

Theorem 2. Let C = (S, AP, L, α,R(t)) be an ICTMC satisfying EPA with time TEP
and PEP, s ∈ S and F ⊆ S. Then:

ProbCEP(s, 0,♦ atF)=
∑
s′∈S

ProbC[F](s, 0,♦=TEPats′)·ProbDC[F](s′,♦ atF) (10)

Remark 1. Sometimes we need to compute ProbCEP(s, x,♦ atF) for ICTMC C =
(S, AP, L, α,R(t)), namely, the starting time is x instead of 0. To accomplish this,
we define an ICTMC C′ = (S, AP, L, α,R′(t)) such that R′(t) = R(t + x) and it
follows that C′ still satisfies EPA (with T ′

EP = TEP − x if x � TEP and 0 otherwise;
P ′

EP = PEP) and ProbCEP(s, x,♦ atF) = ProbC
′

EP(s, 0,♦ atF).

Algorithm 1. Time-unbounded reachability for ICTMCs satisfying EPA
Require: ICTMC C = (S, AP, L, α,R(t)), EPA time TEP, period PEP

Ensure: ProbC
EP(s, 0,♦ atF)

1: For any two states s, s′ ∈ S in C[F], compute the time-bounded reachability probability with
time bound TEP, starting from time point x, i.e. ProbC[F](s, 0,♦=TEPats′);

2: For any two states s, s′ ∈ S in C[F], compute the time-bounded reachability probability with
time bound PEP, starting from time point TEP, i.e. ProbC[F](s, TEP,♦=PEPats′);

3: Construct a discrete-time Markov chain (DTMC for short) DC[F] = (S,P) with Ps,s′ =

ProbC[F](s, TEP,♦=PEPats′). We denote the reachability probability from s to F inDC by
ProbDC[F](s,♦ atF);

4: Return
∑

s′∈S ProbC[F](s, 0,♦=TEPats′) · ProbDC[F](s′,♦ atF).

Eventually uniform assumption. The previous section has discussed rate functions en-
joying a periodic behavior. A different class of rate functions are those which increase
or decrease uniformly, e.g., an ICTMC in which all rates are a multiplicative of the
Weibull failure rate which is characterized by the function f(t) = γ

α

(
t
α

)γ−1
, where

γ and α are the shape and scale parameters of the Weibull distribution, respectively.
These distributions can e.g., characterize normal distributions, and are frequently used
in reliability analysis. This suggests to investigate eventually uniform ICTMCs.

Definition 5 (Eventually uniform assumption (EUA)). An ICTMC C is eventually
uniform if there exists some time TEU ∈ R>0 and an integrable function f(t) : R>0 →
R>0 such that limt→∞

∫ t

TEU
f(τ)dτ → ∞ and for any two states s, s′ ∈ S and t �

TEU, Rs,s′(t) = f(t) · Rc
s,s′ , where Rc

s,s′ is a constant.

112 T. Chen et al.

In terms of the infinitesimal generator Q(t) of the ICTMC C, EUA intuitively entails
that there exists some function f(t) and constant infinitesimal generator Qc = Rc−Ec

(Rc and Ec are the constant rate matrix and exit rate matrix, respectively) such that
Q(t) = f(t)·Qc for all t � TEU. We also define the constant transition probability

matrix Pc such that Pc
s,s′ =

Rc
s,s′
Ec

s
.

By restricting to the EUA, one can reduce the time-unbounded reachability prob-
lem for an ICTMC C to computing the time-bounded reachability probability with
time bound TEU and the reachability probability in a DTMC DC

EU[F] with transition
probability matrix Pc[F], where Pc[F]s,s′ = Pc

s,s′ for s /∈ F ; Pc[F]s,s = 1 and
Pc[F]s,s′ = 0, for s ∈ F and s′
= s. This is shown by the following theorem.

Theorem 3. Let C = (S, AP, L, α,R(t)) be an ICTMC with s ∈ S. Given a set F of
goal states and the eventually uniform assumption with the associated time TEU and
DTMC DC

EU, it holds that

ProbC(s, 0,♦ atF) =
∑
s′∈S

ProbC[F](s, 0,♦=TEUats′) · ProbDC
EU[F](s′,♦ atF). (11)

Remark 2. We note that the two assumptions, EUA and EPA are incomparable. There
are rate functions (e.g. polynomials) which can not be represented as periodic functions
but satisfy EUA; on the other hand, in case of EPA one can, for instance, assign the
same sort of rate functions (e.g. sin) with different periods, and thus obtain an ICTMC
which invalidates EUA.

4 LTL Model Checking

In this section, we tackle the problem of model checking properties specified by LTL
formulae for ICTMCs. Model checking CTMCs against LTL is not very difficult, since
one can easily extract the embedded DTMC of the given CTMC, and thus reduce the
problem to the corresponding model checking problem of DTMCs, which is well-
studied, see, e.g. [8]. However, this approach does not work for ICTMCs, since the rates
of the ICTMC vary with time. Below we shall employ an automata-based approach. For
this purpose, some basic definitions are in order.

Definition 6 (Generalized Büchi automata). A generalized Büchi automaton (GBA)
is a tuple A = (Σ, Q, Δ, Q0,F), where Σ is a finite alphabet; Q is a finite set of states;
Δ ⊆ Q×Σ ×Q is a transition relation; Q0 ⊆ Q is a set of initial states, and F ⊆ 2Q

is a set of acceptance sets.

We sometimes write q σ−−→ q′ if (q, σ, q′) ⊆ Δ for simplicity. An infinite word w ∈
Σω is accepted by A, if there exists an infinite run θ ∈ Qω such that θ[0] ∈ Q0,
(θ[i], w[i], θ[i + 1]) ⊆ Δ for i � 0 and for each F ∈ F , there exist infinitely many
indices j ∈ N such that θ[j] ∈ F . Note that w[i] (resp. θ[i]) denotes the i-th letter (resp.
state) on w (resp. θ). The accepted language of A, denoted L(A), is the set of all words
accepted by A. Given a GBA A and state q, we denote by A[q] the automaton A with q
as the unique initial state. Note that L(A) =

⋃
q∈Q0

L(A[q]). A GBA A is separated,
if for any two states q, q′, L(A[q′]) ∩ L(A[q′′]) = ∅.

LTL Model Checking of Time-Inhomogeneous Markov Chains 113

It follows from [9] that the correspondence between LTL formulae and separated
GBA can be established:

Theorem 4. For any LTL formula ϕ over AP, there exists a separated GBA Aϕ =
(Σ, Q, Δ, Q0,F), where Σ = 2AP and |Q| � 2O(|ϕ|), such that L(Aϕ) is the set of
computations satisfying the formula ϕ.

We note that the notion of separated is crucial for the remainder of this paper. A closely
related notion, referred to as unambiguous, has been widely studied in automata and
language theory, dating back to [1]. See also, among others, [5][13] for relevant litera-
ture. To the best of our knowledge, the notion of “separated” was firstly exploited in [9]
for model checking DTMCs against LTL.

Definition 7 (Product). Given an ICTMC C = (S, AP, L, α,R(t)) and a separated
GBA A = (Σ, Q, Δ, Q0,F), the product C ⊗ A is defined as

C ⊗ A = (Loc, AP, L̃, α̃, R̃(t)),

where Loc = S × Q; L̃(〈s, q〉) = L(s); α̃(〈s0, q0〉) = α(s0) if α(s0) > 0 and

q0 ∈ Q0, and undefined elsewhere; and R̃〈s,q〉,〈s′,q′〉(t) = Rs,s′(t) if q
L(s)−−−→ q′.

For the sake of clarity, we call the states of a product as locations.

Example 2. Given ICTMC C (Fig. 2(a)) and separated GBA A (Fig. 2(b)), the product
C ⊗ A is shown in Fig. 2(c).

s0 s1 s2 s3

s4

r1(t) r2(t) r5(t)

r3(t)
r4(t)

r6(t)

{a} {b} {c} {a}

{b}

(a) ICTMC C

q0 q2 q4 q5

q1 q3

a a c

a

b

a
b

c
c

(b) Separated GBA A

�0 = 〈s0, q0〉 �1 = 〈s1, q1〉 �2 = 〈s2, q5〉

�5 = 〈s4, q3〉

�4 = 〈s3, q0〉

�3 = 〈s4, q1〉

�6 = 〈s1, q2〉

�7 = 〈s2, q3〉�8 = 〈s4, q5〉

r1(t) r2(t) r5(t)

�9 = 〈s4, q2〉

r6(t)

r3(t)
r2(t) r4(t)

r4(t)

r6(t)

r3(t)r1(t)

(c) Product C ⊗ A

Fig. 2. Example product construction of ICTMC C and separated GBA A

114 T. Chen et al.

Remark 3. Note that in general the product itself is not an ICTMC. The reason is two-
fold: (1) If |Q0| > 1, then α̃ is not a distribution; (2) The sum of the rates of outgoing
transitions from a location might exceed the exit rate of the location. For instance, in
Example 2, the exit rate of �0, as defined, is Ẽ�0(t) = Es0(t) = r1(t); while the sum
of the rates of its outgoing transitions is 2r1(t). However, due to the fact that A is
separated, as we will see later, it would not be a problem, cf. Proposition 3.

The generalized Büchi acceptance condition, roughly speaking, requires to visit some
states infinitely often. As in the tradition of model checking Markovian models, we need
to identify bottom strongly connected components (BSCCs) of the product (when read
as a graph). A strongly connected component (SCC for short) of the product denotes a
strongly connected set of locations such that no proper superset is strongly connected. A
BSCC is an SCC from which no location outside is reachable. Unfortunately, generally
in ICTMCs, there is no way to define a BSCC over the product since the rate of each
transition is a function of time instead of a constant and thus a BSCC at time t might
not be a BSCC at time t′. In other words, the topological structure (edge relation) of the
product might change at any moment of time, which is one of the main difficulties of
model checking ICTMCs.

To circumvent this problem, we make an (arguably mild) assumption, that is, we
assume that ICTMCs are eventually stable, in the following sense.

Definition 8 (Eventually stable assumption (ESA)). An ICTMC C is eventually sta-
ble if for each state s ∈ S, there exists some time Ts such that for any t � Ts and
s′ ∈ S, either Rs,s′(t) > 0 or Rs,s′(t) = 0.

W.l.o.g., we assume Ts is the smallest time point that the above assumption holds for
state s. Let TES = maxs∈S Ts be the smallest time point that an ICTMC is stable.
Intuitively, an ICTMC is stable if its topological structure does not change any more.
More specifically, transitions can alter their rates, but not from positive to zero or vice
versa, i.e., no transitions will “disappear” or “newly created”. An example rate function
is illustrated in Fig. 1 (right), where after TES the rates keep strictly positive (note the
particular value is irrelevant here). It turns out that ESA is essential for identifying
stable BSCCs (also model checking LTL). A stable product as well as stable BSCC are
defined in the same way, relative to the time point TES. In the sequel, when we refer to
BSCCs, we implicitly refer to the stable BSCCs in the stable product. In accordance
with this, we will sometimes write s → s′ for ICTMC C if Rs,s′(t) > 0 with t � TES;
and similarly for � → �′ in the product.

Definition 9 (aBSCC). Given the product C ⊗ A of an ICTMC C = (S, AP, L,
α,R(t)) satisfying ESA and a GBA A = (Σ, Q, Δ, Q0,F), we define

I. a SCC is a set of locations B ⊆ S × Q such that (i) B is strongly connected
meaning that for any two locations �, �′ ∈ B, � →∗ �′ where →∗ denotes the
reflexive and transitive closure of →, and (ii) no proper superset of B is strongly
connected;

II. a SCC B is accepting if ∀F ∈ F , there exists some 〈s, q〉 ∈ B such that q ∈ F ;
III. a SCC B is an accepting bottom SCC (B ∈ aBSCC for short) if (i) B is ac-

cepting; (ii) for each location � ∈ B, there does not exist any location �′ such that

LTL Model Checking of Time-Inhomogeneous Markov Chains 115

� → �′ and �′ is in any other accepting SCC; (iii) for each location � = 〈s, q〉 ∈ B,
for any s′ with s → s′, 〈s′, q′〉 ∈ B for some q′.

As an example, we note, suppose that r4(t), r5(t), r6(t) > 0 when t � TES, that an
accepting BSCC in the stable product in Fig. 2(c) is formed by �2, �3, �4. Note that
{�7} is not an (accepting) SCC, so III(ii) is not violated. {�8} is not an SCC either,
since we would require that �8 →∗ �8 which fails to be.

Recall that given an LTL formula, one can obtain a corresponding separated au-
tomaton, which renders us very nice properties for the product defined in Definition 7.
A couple of lemmas, dedicated to illustrate these properties are in order. The following
two essentially exploit the fact that for each accepted word of a separated GBA, there
is a unique accepting path.

Lemma 1. Given the product C ⊗ A where A is separated. For any aBSCC B of the
stable product C ⊗ A, it cannot be the case that 〈s, q〉 → 〈s′, q′〉 and 〈s, q〉 → 〈s′, q′′〉
for any 〈s, q〉, 〈s′, q′〉, 〈s′, q′′〉 in B with q′
= q′′.

We say that two locations 〈s, q〉 and 〈s′, q′〉 in the product C ⊗ A are connected, if

q
L(s)−−−→ q′2. We say that from location 〈s, q〉 there is a path leading to a BSCC B, if

there is a sequence 〈s0, q0〉, 〈s1, q1〉, . . . , 〈sn, qn〉 such that 〈s, q〉 = 〈s0, q0〉, 〈si, qi〉
and 〈si+1, qi+1〉 are connected for 0 � i < n and 〈sn, qn〉 ∈ B.

Lemma 2. Given the product C⊗A of an ICTMC C and a separated GBA A, it cannot
be the case that there are two locations 〈s, q〉 and 〈s, q′〉 with q
= q′ such that both of
them have a path reaching an aBSCC.

As said, given ICTMC C and separated GBA A, the product C ⊗ A itself is not an
ICTMC (see Example 2). However, thanks to the fact that A is separated, we can trans-
form C ⊗ A into an ICTMC. Lemma 1 and 2 entail that in the product C ⊗ A, we can
safely remove the locations which do not lead to an accepting BSCC, and thus obtain
an ICTMC model, denoted C⊗A. Let us illustrate this by continuing Example 2. First
note that the dashed locations are the trap locations from which the accepted location �2
cannot be reached. Those locations can safely be removed since the paths passing them
will never be accepted. It is not a coincidence that at most one of the outgoing transi-
tions from those “nondeterministic” locations (i.e., �0, �1, �3, �4) can reach the accepted
locations. This is guaranteed by the separated property of the automaton (Lemma 2).
By deleting all the dashed locations, we obtain C⊗A.

The following proposition claims that C⊗A can be viewed as an ICTMC in the
sense that it defines a stochastic process exactly as an ICTMC. The crucial point is that
in C⊗A, for each location � and time t, the sum of the rates of the emanating transitions
from � does not exceed the exit rate of �. (Note that the sum could be strictly less than
the exit rate as for �1 in Fig. 2(c), thus it is “substochastic”.) With a little abusing of
terms, we call this model an ICTMC.

Proposition 3. C⊗A is an ICTMC. Moreover, for each accepting cylinder set, C and
C⊗A give rise to the same probability.

2 Note that we do not require that s → s′. So “connected” is purely a graph-theoretic notion
where the time is irrelevant.

116 T. Chen et al.

Let C⊗A� be obtained from C⊗A by making each location in the aBSCCs absorb-
ing, and define F � as the set of locations in any aBSCC. Given an ICTMC C with
eventually stable assumption (with TES) and an LTL formula ϕ, the probability of the
set of paths of C satisfying ϕ, denoted ProbC

ES(ϕ), can be computed by Alg. 2.

Theorem 5. For an ICTMC C with TES and an LTL formula ϕ,

ProbC
ES(ϕ) =

∑
α̃(�0)>0

∑
�∈Loc

α̃(�0) · ProbC⊗A(�0, 0,♦=TESat�) · ProbC⊗A�

(�, TES,♦ atF �).

Algorithm 2. Model checking ICTMC against LTL
Require: ICTMC C, LTL formula ϕ, ESA time TES;
Ensure: ProbC

ES(ϕ)
1: Transform ϕ to a separated generalized Büchi automaton A;
2: Build the product C ⊗ A = (Loc, AP, L̃, α̃, R̃(t));
3: Find all accepting BSCCs in the (stable) product C ⊗A;
4: Remove all the trap locations yielding C⊗A;
5: Compute the time-bounded reachability in C⊗A from initial location �0 to each � ∈ Loc,

ProbC⊗A(�0, 0,♦=TES at�);
6: Make each location in the aBSCCs absorbing, thus obtaining C⊗A� and F �;
7: Compute the time-unbounded reachability probability in C⊗A� from each � ∈ Loc to F �,

i.e., ProbC⊗A�
(�, TES,♦ atF �);

8: ProbC
ES(ϕ)=

∑
α̃(�0)>0

∑
�∈Loc α̃(�0)·ProbC⊗A(�0, 0,♦=TESat�)·ProbC⊗A�

(�, TES,♦ atF �).

Note that ProbC⊗A(�0, 0, ♦=TESat�) and ProbC⊗A�

(�, 0,♦at�F �) can be computed
by the approaches in Section 3.1 and 3.2, respectively. Computing the former relies on
solving a system of ODEs, whereas computing the latter, as stated in Section 3.2, one
has to solve a system of integral equations in general.

Remark 4 (EPA, EUA and ESA). EPA and ESA are incomparable, i.e., there are
ICTMCs that are eventually periodic but not stable (see e.g., the ICTMC with one
rate function in Fig. 1 (left)), and vice versa (see, e.g., that in Fig. 1 (right)). When both
assumptions are applied, we obtain ICTMCs that are “eventually positive periodic”,
i.e., eventually periodic and all rate function values in the periods are either strictly pos-
itive or being zero. For this subset of ICTMCs, one can resort to solving a system of
ODEs and linear equations, as presented in Theorem 2 as well as Alg. 1.

EUA and ESA are incomparable as well. The counterexamples for both directions
can be easily constructed. When both assumptions are applied, as in the previous case,
the subset of ICTMCs (where f(t) is eventually strictly positive) can be dealt with by
solving a systems of ODEs and linear equations (Theorem 3).

The comparison of EPA and EUA can be found in Remark 2. We emphasize once
again that ESA is of most importance in LTL model checking, in order to find stable
BSCCs. However EPA or EUA are certain subsets of ICTMCs that we can efficiently
deal with (meaning by solving a system of ODEs and linear equations). We mention that
there are other approaches which can handle and solve the system of integral equations,
e.g., approximation by truncating the infinite range of the integral.

LTL Model Checking of Time-Inhomogeneous Markov Chains 117

Example 3. We continue Example 2 to show how to compute the set of paths of ICTMC
C accepted by A. Let the rate functions be defined as: ri(t) = i for t � 0 and 3 � i � 6;
and

r1(t) =

⎧⎨
⎩

t x ∈ [0, 9.5)
0 x ∈ [9.5, 10)
2 + cos(1

2
t) x ∈ [10,∞)

r2(t) =

{
4.1 x ∈ [0, 15)
7.6− sin(1

3
t) x ∈ [15,∞)

It is not difficult to see that this ICTMC satisfies both the ESA and EPA and TES = 10,
TEP = 15 and PEP = 12π.

To compute ProbC
ES(A), Alg. 2 is applied. Note that we omit the step of transforming

an LTL formula to a GBA and the notation ProbC
ES(A) is self-explanatory. We consider

the first Prob appearing in step 8, namely, to compute ProbC⊗A(�0, 0,♦=10 at�) for all
� in C⊗A. This is actually to compute the transient probability vector in C⊗A at time
TES = 10, which can be done by solving a system of ODEs. We then consider the
second Prob appearing in step 8, namely, to compute ProbC⊗A�

(�, 10,♦ at�2) (note
that F ∗ = {�2}). Finally, we wrap them up as follows:

ProbC
ES(A)

∑
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ProbC⊗A(�0, 0,♦=10 at�0) · ProbC⊗A�

(�0, 10,♦ at�2)

ProbC⊗A(�0, 0,♦=10 at�1) · ProbC⊗A�

(�1, 10,♦ at�2)
ProbC⊗A(�0, 0,♦=10 at�2) · 1
ProbC⊗A(�0, 0,♦=10 at�3) · 1
ProbC⊗A(�0, 0,♦=10 at�4) · 1

(12)

The left column of (12) is the transient probability vector; we then show how to com-
pute the elements in the right column. For this purpose, generally we have to solve a
system of integral equations. Here we obtain the following one:⎧⎨

⎩
f�0(x) =

∫∞
0 r1(x + τ)e−

∫
τ
0 r1(x+v)dv·f�1(x + τ)dτ

f�1(x) =
∫∞
0 r2(x + τ)e−

∫ τ
0 r2(x+v)+r3(x+v)dv·f�2(x + τ)dτ

f�2(x) = 1

In this case, one obtains that f�2(x) = 1,

f�1(10) =

Z 15

10

4.1e−
R

τ
10(4.1+3)dvdτ+

Z ∞

15

(7.6−sin(
1

3
τ))·e−

R 15
10 (4.1+3)dv−

R
τ
15(7.6−sin(1

3 (x+v))+3)dvdτ .

and f�0(10) can be computed accordingly. It follows that ProbC⊗A�

(�0, 10,♦at�2) =
f�0(10) and ProbC⊗A�

(�1, 10,♦at�2) = f�1(10). Hence (12) can be obtained.
Alternatively, let us note that fortunately in this case, the EPA is satisfied. So one

can apply Alg. 1 to compute ProbC⊗A�

(�, 10,♦at�2). Let us illustrate for the case that
� = �0. (The case that � = �1 is similar.) For the first Prob in Alg. 1, step 4, it is again
to compute the transient probability matrix ProbC⊗A�

(�, 10,♦=15−10 at�′), for �, �′ ∈
{�i | 1 � i � 4} (note that �2 is already made absorbing in C⊗A�); and for the second
Prob, we need to construct the DTMC D with P�,�′ = ProbC⊗A�

(�, 15,♦=12π at�′).
It follows that

Prob
C⊗A�

EP (�0, 10,♦ at�2)
∑
=

⎧⎨
⎩

ProbC⊗A�

(�0, 10,♦=15−10 at�0) · ProbD(�0,♦ at�2)

ProbC⊗A�

(�0, 10,♦=15−10 at�1) · ProbD(�1,♦ at�2)

ProbC⊗A�

(�0, 10,♦=15−10 at�2) · 1

118 T. Chen et al.

The P matrix of the DTMC D is as follows (let Θ denote C⊗A�):

P =

⎛
⎝ProbΘ(�0, 15,♦=12π at�0) ProbΘ(�0, 15,♦=12π at�1) ProbΘ(�0, 15,♦=12π at�2)

0 ProbΘ(�1, 15,♦=12π at�1) ProbΘ(�1, 15,♦=12π at�2)
0 0 1

⎞
⎠.

Hence ProbC⊗A�

EP (�0, 10,♦at�2) can be easily computed.

5 Conclusion

We have studied the problem of verifying linear-time properties against ICTMCs. Two
variants of reachability problems, i.e. time-bounded and unbounded reachability, as well
as LTL properties were considered. Future work consists of identifying more classes
of ICTMCs for which efficient computational methods exist such that the approach
studied in this paper can be applied. Other specifications like (D)TA, M(I)TL, will also
be investigated.

References

1. Arnold, A.: Rational omega-languages are non-ambiguous. Theor. Comput. Sci. 26, 221–223
(1983)

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-time Markov
chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

3. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci. 297(1-3), 37–81

(2003)
6. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-

time Markov chains against timed automata specification. In: LICS (to appear, 2009)
7. Cloth, L., Jongerden, M.R., Haverkort, B.R.: Computing battery lifetime distributions. In:

DSN, pp. 780–789 (2007)
8. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.

ACM 42(4), 857–907 (1995)
9. Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking

of probabilistic systems. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850,
pp. 361–375. Springer, Heidelberg (2003)

10. Gokhale, S.S., Lyu, M.R., Trivedi, K.S.: Analysis of software fault removal policies using a
non-homogeneous continuous time Markov chain. Software Quality Control 12(3), 211–230
(2004)

11. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Com-
put. 6(5), 512–535 (1994)

12. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism: A tool for automatic veri-
fication of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

13. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi au-
tomata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 724–735. Springer,
Heidelberg (2008)

LTL Model Checking of Time-Inhomogeneous Markov Chains 119

14. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST,
pp. 243–244 (2005)

15. Katoen, J.-P., Mereacre, A.: Model checking HML on piecewise-constant inhomoge-
neous markov chains. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215,
pp. 203–217. Springer, Heidelberg (2008)

16. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. John Wiley & Sons,
Chichester (1991)

17. Rindos, A., Woolet, S.P., Viniotis, Y., Trivedi, K.S.: Exact methods for the transient analysis
of non-homogeneous continuous-time Markov chains. In: Numerical Solution of Markov
Chains (NSMC), pp. 121–134 (1995)

Statistical Model Checking Using Perfect

Simulation�

Diana El Rabih and Nihal Pekergin

LACL, University of Paris-Est (Paris 12),
61 avenue Général de Gaulle 94010, Créteil, France

delrabih@univ-paris12.fr, nihal.pekergin@univ-paris12.fr

Abstract. We propose to perform statistical probabilistic model check-
ing by using perfect simulation in order to verify steady-state and time
unbounded until formulas over Markov chains. The model checking of
probabilistic models by statistical methods has received increased atten-
tion in the last years since it provides an interesting alternative to numer-
ical model checking which is poorly scalable with the increasing model
size. In previous statistical model checking works, unbounded until for-
mulas could not be efficiently verified, and steady-state formulas had not
been considered due to the burn-in time problem to detect the steady-
state. Perfect simulation is an extension of Markov Chain Monte Carlo
(MCMC) methods that allows us to obtain exact steady-state samples of
the underlying Markov chain, and thus it avoids the burn-in time problem
to detect the steady-state. Therefore we suggest to verify time unbounded
until and steady-state dependability properties for large Markov chains
through statistical model checking by combining perfect simulation and
statistical hypothesis testing.

1 Introduction

Probabilistic model checking is an extension of formal verification methods for
systems exhibiting stochastic behavior. The system model is usually specified
as a state transition system, with probabilities attached to transitions, for ex-
ample Markov chains. From this model, a wide range of quantitative perfor-
mance, reliability, and dependability measures of the original system can be
computed. These measures can be specified using temporal logics as PCTL [5]
for Discrete Time Markov Chains (DTMC) and CSL [2,3] for Continuous Time
Markov Chains (CTMC). Most of the high level formalisms assume a CTMC
as the underlying stochastic process. To perform probabilistic model checking
there are two distinct approaches : numerical approach based on computation of
transient-state or steady-state distribution of the underlying Markov chain and
statistical approach based on hypothesis testing and on sampling by means of
discrete event simulation or by measurement. The numerical approach is highly
accurate but it suffers from the state space explosion problem. The statistical

� This work is supported by a french research project, ANR-06-SETI-002.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 120–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Statistical Model Checking Using Perfect Simulation 121

approach overcomes this problem but it does not guarantee that the verification
result is correct. However it is possible to bound the probability of generat-
ing an incorrect answer so it provides probabilistic guarantees of correctness.
Hence statistical model checking techniques constitute an interesting alternative
to numerical techniques for large scale systems. A comparison of numerical and
statistical approaches for probabilistic model checking has been done in [16].
Statistical approaches for model checking have received increasing attention in
the last years [15,18,9,16,17]. Younes et al. have proposed a statistical approach
based on hypothesis testing and discrete event simulation but with a focus on
time bounded until formulas [15,18]. In [9] Sen et al. have proposed a statistical
approach also based on hypothesis testing and discrete event simulation for veri-
fying time unbounded until properties by introducing a stopping probability, ps,
which is the probability of terminating the generation of a trajectory after each
state transition. This stopping probability must be extremely small to give cor-
rectness guarantees and the accuracy of their verification result would depend
on the state space size, making the approach impractical, except for models
with small state spaces. In fact, the steady-state formula was not studied before
in any existing statistical approach and the unbounded until formula can not
be checked efficiently by the existing approach [9] because of the steady-state
detection problem (stopping probability problem). Thus we have proposed in
[1] a novel approach to perform statistical model checking by combining per-
fect simulation and statistical hypothesis testing in order to check steady-state
formulas and we have shown some preliminary results. Perfect simulation is
an extension of MCMC methods allowing us to obtain exact steady-state sam-
ples of the underlying Markov chain and avoiding the burn-in time problem
to detect the steady-state. Propp and Wilson have designed the algorithm of
coupling from the past to perform perfect simulation [8]. A web page dedi-
cated to this method is maintained by them (http://research.microsoft.com/en-
us/um/people/dbwilson/exact/). As a perfect sampler, we use ψ2 proposed in
[12,10], designed for the steady-state evaluation of various monotone queueing
networks (http://psi.gforge.inria.fr/website/Psi2-Unix-Website/). This tool per-
mits to simulate a stationary distribution or directly a cost function or a reward
of large Markov chains. An extension of this tool is proposed in [14] to study
non monotone queueing networks.

In this paper, we extend our approach proposed in [1] by applying more ef-
ficient statistical hypothesis testing methods. Another extension is to design an
algorithm to generate samples for the verification of time unbounded until for-
mulas. Moreover, we integrate our proposed approach to the perfect sampler Ψ2

[12], to be able to model check large performability and dependability models.
Note that, the proposed approach is applicable both to monotone and to non-
monotone systems, thus it allows us to generate samples for time unbounded
until and steady-state formulas to perform statistical model checking. Moreover
this approach is exteremely efficient for monotone systems and lets us overcome
the state-space explosion problem. As application of our approach, we verify
steady-state and time unbounded until dependability properties for a multistage

122 D. El Rabih and N. Pekergin

interconnection queueing network illustrating its efficiency when considering very
large models.

The rest of this paper is organised as follows: In section 2, we present some
preliminaries on considered temporal logics CSL and PCTL and on the concept
of statistical hypothesis testing. Section 3 is devoted to the perfect simulation. In
section 4, we present our contribution for statistical probabilistic model check-
ing using perfect simulation as well as the applicability and complexity of our
proposed method. Section 5 presents the case study with experimental results.
Finally, we conclude and present our future works in section 6.

2 Preliminaries

2.1 Temporal Logics for Markov Chains

In this subsection we give a brief introduction for the considered temporal log-
ics operators. We consider essentially the until formulas for verification over
execution paths and the steady-state operator for long run behaviours of the un-
derlying model. The stochastic behaviour of the underlying system is described
by a labelled Markov chain, M, which may be in discrete or continuous time.
These operators are defined in CSL defined over CTMCs [2,3] and in PCTL
defined over DTMCs [5].

Let M take values in a finite set of states S, AP denote the finite set of atomic
propositions. L : S → 2AP is the labeling function which assigns to each state
s ∈ S the set L(s) of atomic propositions a ∈ AP those are valid in s. Let p be
a probability, I a time interval, and �� a comparison operator: ��∈ {<, >,≤,≥}.
The syntax is given as follows:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | P��θ(ϕ1 UIϕ2) | P��θ(ϕ1 Uϕ2) | S��θ(ϕ)

The satisfaction operator is denoted by |=, then for all states s ∈ S, s |= true.
Atomic proposition a is satisfied by state s (s |= a) iff a ∈ L(s). The logic
operators are obtained using standard logic equivalence rules : s |= ¬ϕ iff s
|= ϕ,
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 ∧ s |= ϕ2. Until formulas are evaluated over the paths
initiated from a given initial state s. A state s satisfies P��θ(ϕ1 UIϕ2), iff the
sum of probability measures over paths starting from s, passing through only
states satisfying ϕ1 and reaching to a state satisfying ϕ2 in time interval I meets
the bound θ. The until formula without time interval is the time unbounded
until formula which means that I ∈ [0,∞[. The steady-state operator S��θ(ϕ)
lets us to analyze the long-run behaviour of the system. If the sum of steady-
state probabilities of states satisfying ϕ meets θ, this operator is satisfied. If M
is ergodic, the steady-state distribution is independent of the initial state, then
this formula is satisfied or not regardless of the initial state.

2.2 Statistical Hypothesis Testing

The probabilistic model checking consists in deciding whether the probability that
the considered system satisfies the underlying property ϕ meets a given threshold

Statistical Model Checking Using Perfect Simulation 123

θ or not. Without loss of generality, we consider the case P≥θ(ϕ) where ϕ is a
path formula. Obviously, this is equivalent to verify ¬P<θ(ϕ). We can also con-
sider the case S≥θ(ϕ) where ϕ is a state formula. Obviously, this is equivalent to
verify ¬S<θ(ϕ) and S≤1−θ(¬ϕ). Let p be the probability that the system satis-
fies ϕ, then this verification problem P≥θ(ϕ) (resp. S≥θ(ϕ)) can be formulated as
an hypothesis testing: H : p ≥ θ against the alternative hypothesis K : p < θ.
For solving statistical hypothesis testing problems it is not possible to guarantee
a correct result but the probability to accept a false hypothesis can be bounded.
The strength of the statistical test was determined by two parameters, α and β,
where α is a bound on the probability of accepting K when H holds (known as a
type I error, or false negative) and β is a bound on the probability of accepting
H when K holds (a type II error, or false positive), where α + β ≤ 1. Thus the
probability of accepting H can be determined for an hypothesis testing with ideal
performance in the sense that the probability of a type I error is exactly α and
the probability of a type II error is exactly β. The above formulation is problem-
atic since it is impossible to control two probability errors independently. These
conditions are relaxed by introducing an indifference region]p1, p0[of width 2δ,
where p0 = θ + δ and p1 = θ − δ. Then, instead of testing H : p ≥ θ against
K : p < θ, we test H0 : p ≥ p0 against H1 : p ≤ p1. The probability of accepting
H is therefore at least 1− α if p ≥ θ + δ and at most β if p ≤ θ − δ. For the indif-
ference region | p− θ |< δ, the test gives no bound on the probability of accepting
false hypothesis, thus we are indifferent whether H or K is accepted. Suppose that
we have generated n samples (simulations), and a sample Xi is a positive sample
(Xi = 1) if it satisfies ϕ and negative (Xi = 0) otherwise. Xi is a random vari-
able with Bernoulli distribution with parameter p. Thus the probability to obtain
a positive sample is p. There are mainly two methods for statistical hypothesis
testing decision with constraints on error bounds [15,18,17]:

Single Sampling Plan (SSP). It is based on the acceptance sampling with
fixed sample size and with a given acceptance strength (α, β). If

∑n
i=1 Xi >

m, then H0 is accepted otherwise H1 is accepted, where m is the acceptance
threshold. The hypothesis H1 will be accepted with probability F (m, n, p) and
the null hypothesis H0 will be accepted with the probability 1−F (m, n, p), where
F (m, n, p) is a binomial distribution of Y =

∑n
i=1 Xi : F (m, n, p) = Pr(Y ≤

m) =
∑m

i=1 C(n, i)pi(1− p)n−i with C(n, i) is the combination of i from n. It is
required that the probability of accepting H1 when H0 holds is at most α, and
the probability of accepting H0 when H1 holds is at most β. These constraints
can be illustrated as below:
– Pr[H1 is accepted | H0 is true] ≤ α which implies F (m, n, p0) ≤ α (C1)
– Pr[H0 is accepted | H1 is true] ≤ β which implies 1−F (m, n, p1) ≤ β (C2)

The sample size n and the acceptance threshold m must be chosen under these
constraints and for optimal performance n must be minimised. The approxima-
tions formulas of n and m to optimise performance are given in [17,18].

Sequential Probability Ratio Test (SPRT). It is based on the sequential
probability ratio test in which observations are taken into account in a sequential

124 D. El Rabih and N. Pekergin

manner [18,17]. After making the ith simulation (generating the ith sample), one
computes the following quotient:

qi =
i∏

j=1

Pr[Xj = xj | p = p1]
Pr[Xj = xj | p = p0]

=
pdi

1 (1 − p1)i−di

pdi
0 (1 − p0)i−di

where di=
∑i

j=1 Xj denoting the number of positive samples. H0 is accepted if
qi ≤ B, and H1 is accepted if qi ≥ A. Finding A and B with a given strength
(α, β) is non trivial, in practice A is chosen as (1-β)/α and B as β/(1-α). Then
a new test whose strength is (α∗,β∗) is obtained, but such that α∗ + β∗ ≤ α
+ β, meaning that either α∗ ≤ α or β∗ ≤ β. In practice, it is often found that
both inequalities hold.

The advantage of hypothesis testing over other statistical decision methods
was demonstrated numerically in [17]. Note, also, that the SPRT method often
can be used to improve efficiency for the approach based on hypothesis testing.
In fact, if single sampling plan (SSP) method is used with strength (α, β) and
indifference region of half-width δ, then the sample size n is roughly proportional
to log α and log β and inversely proportional to δ2 [18]. Using the SPRT method
instead of single sampling plan method can reduce the expected sample size by
orders of magnitude in most cases, although the SPRT method is not guaranteed
always to be more efficient.

3 Perfect Simulation

Let {Xi, i ≥ 0} be a time-homogeneous DTMC taking values in a finite set S.
The dynamic of the chain can be defined by the following stochastic recursive
function:

Xn+1 = η(Xn, En) (1)

where η is the system transition function, Xn is the nth observed state of the
system, and {En} an innovation process, n ∈ N . Clearly, if {En} are independent
and identically distributed then the stochastic process {Xi, i ≥ 0} defined by an
initial value X0 and recursive equations of Eq. 1 is a Markov chain [10]. In
the sequel, we consider the notations of discrete event systems (the system is
governed by a set of events) thus Eis in Eq. 1 are events e ∈ Σ (Σ is the set of
events). Conversely, given a transition probability matrix P = (pi,j), it is possible
to find a function η such that Markov chain given by Eq. 1 has P as transition
matrix: pi,j =

∑
Ek|η(i,Ek)=j P(Ek). A natural way to construct the transition

function η is to consider the inverse of the probability distribution function. Let
us remark that this characterization is suitable for discrete event simulation.
Practically, the sequence {Ei} can be generated by a standard random function
of programming languages which is uniformly distributed in the interval [0, 1].
Sample paths (trajectories) initiated from all possible initial values are generated
with the same sequence of random numbers (events) by considering Eq. 1. If two
sample paths reach to the same state, we say that they couple and then their

Statistical Model Checking Using Perfect Simulation 125

trajectories will be the same. If the sample paths are generated beginning at
time t=0 and evolving in the future t = 1, 2, ... then it is called coupling in the
future (forward coupling). It has been shown that if samples (observations) are
constituted from states where all paths initiated at time 0 from all possible initial
values are coupled, then this set of samples is not distributed according to the
steady-state distribution [8]. Propp and Wilson [8] have ingeniously overcome
this problem by reversing the time (by coming from the past to the present).
In their algorithm called coupling from the past (backward coupling), they have
shown that when trajectories start at time −∞ and generated by coupling in the
future, if all trajectories are coupled at time 0, it means that the steady-state
behaviour has occured independently from initial states. Thus samples according
to the steady-state distribution (if it exists) can be generated. We do not give
here mathematical background but only present an intuitive sketch of proof to
be able to explain its application for the verification of path formulas. In the case
Ei are independently and identically distributed random variables, the evolution
in n steps from time 0 to n or from time −n to 0 are stochastically equivalent
(they have the same distribution).

η(· · · η(η(s0, E0), E1), · · ·), En−1) =st η(· · · η(η(s0, E−n+1), E−n+2), · · ·), E0)
(2)

Let us suppose that all the trajectories initiated at time −τ from all initial
values are coupled at time 0. Even if these trajectories have initiated earlier in
the past, the coupling at time 0 would occur at the same state for identical
E−τ , E−τ+1, · · ·E0. Therefore if the coupling at time 0 occurs, then it can be
also considered as the sample state when trajectories have initiated at time −∞.
This corresponds indeed to the stationary behavior due to Eq. 2. Thus we can
generate samples according to the steady-state distribution by coupling from the
past. We now present the algorithm given in [10], which is an adaptation of [8]
from the implementation point of view. Generate − event() is a function to
generate the random events; η(x, e) : S×Σ → S is the transition function of the
considered system where x is a state of the state space S and e is an event in the
set of events Σ. Thus η(x, e) is the next state if event e occurs in state x. For

Algorithm 1. Backward coupling simulation
1: t ← 1; E[1] ← Generate − event();
2: repeat
3: t ← 2.t;
4: for all x ∈ S do
5: y(x) ← x; {initialization of trajectories}
6: end for
7: for i=t downto t/2+1 do
8: E[i] ← Generate − event(); {generation of new events from -t/2 +1 to -t}
9: end for
10: for i=t downto 1 do
11: for all x ∈ S do
12: y(x) ← η(y(x), E[i]); {generation of trajectories through events E[i], }
13: end for
14: end for
15: until all y(x) are equal; {coupling of trajectories at time 0}
16: return y(x) {that is the sample state reached at time 0 for the trajectory issued from x ∈ S

at time -t}

126 D. El Rabih and N. Pekergin

the first iteration the trajectories begin at time t = −2, if there is no coupling at
time 0 (line 15), then t = −4 for the next iteration (line 3). Therefore if coupling
exists, τ = −(2i). The optimality of this doubling scheme (Algorithm 1) has
been discussed in [8]. Let us remark that when one goes back more in the past,
we keep already generated events (lines 7-8). Thus Algorithm 1 lets us generate
the samples (line 16) of the stationary behavior (steady-state) of the Markov
chain described by η (see Eq. 1).

Monotone perfect simulation. It has been shown that if the underlying model
has monotone dynamic, it is sufficient to consider only trajectories issued from
the set of minimal m and maximal M states since all other trajectories are
evolved between them [8]. Obviously, this leads to a considerable reduction of
the simulation time and the storage complexity. Moreover, it has been shown
that many of the discrete event systems have a monotone dynamic [4,10]. Note
that, a system is said to be monotone if all events e ∈ Σ are monotone. Formally,
an event e is said to be monotone if it preserves the partial ordering on the state
space S (x ≤ y ⇒ η(x, e) ≤ η(y, e)). In fact, we consider only the set of maximal
M and minimal m states as initial values among all states. So lines 4 and 11 of
Algorithm 1 will be 4 and 11: for all x∈ M ∪ m . In the sequel, we will call
this algorithm as Algorithm 1(monotone version).

Functional monotone perfect simulation. The backward simulation algo-
rithm is improved by generating reward values at the steady state. Thus it will
be sufficient to stop the backward simulation when all the trajectories collapse
at time 0 on the same reward regardless the coupling state. Since the reward
set is generally smaller than the state space, the coupling occurs more quickly
in functional perfect simulation. Moreover, when rewards are monotone, then it
will be sufficient to stop the backward simulation when the trajectories issued
from all maximal M and minimal m states collapse at time 0 on the same re-
ward. This may lead to an important reduction of the coupling time and the
storage complexity [10]. Note that, a reward function r is said to be monotone
if it satisfies ∀ (x, y) ∈ S2, x ≤ y ⇒ r(x) ≤ r(y). The functional monotone
perfect simulation algorithm will be the same as Algorithm 1 apart from lines
4,11,15 and 16. 4 and 11: for all x∈ M ∪ m , 15: until all reward(y(x)) are
equal , 16: return reward(y(x)) . In the sequel, we will call this algorithm as
Algorithm 1(monotone functional version).

4 Statistical Probabilistic Model Checking Using Perfect
Simulation

In this section, we present how sample paths are generated and tested for the
verification of the steady-state formula ψ=S≥θ(ϕ) and the unbounded until for-
mula φ=P≥θ(ϕ1 Uϕ2) through perfect simulation. This is equivalent to verify
ψ=S≤1−θ(¬ϕ) or ψ=¬S<θ(ϕ) and φ=¬P<θ(ϕ1 Uϕ2) . We propose our method
by studying the two possible cases: The considered system can be either mono-
tone or not. Once sample paths are generated, the statistical hypothesis testing

Statistical Model Checking Using Perfect Simulation 127

can be applied on these observations (see section 2.2) for the decision proce-
dure. Sample generation for the time bounded until is straightforward: starting
from an initial state X0 = s0, the evolution in time interval I is generated by
Eq. 1. Moreover, the case of nested formulas are not considered here and we refer
to [15,18,17,9,16]. Let us remark here that the proposed sample paths genera-
tion is compatible with these proposed methods to check nested formulas either
by combining numerical and statistical methods or by computing new precision
bounds by applying only statistical method.

4.1 Decision Method

We will present now our chosen decision method when we perform our statistical
hypothesis testing on generated samples for each one of the steady state and
unbounded until cases. For these two cases, this decision method is derived from
the application of one of SSP or SPRT methods for statistical hypothesis testing
explained in section 2.2, by computing the sampling plan (n, m) having a fixed
statistical strength (α, β) in the first method (SSP method) or by determining
optimized sample size n having also strength (α, β) in the second method (SPRT
method). In fact, in the first method the sample size n and the acceptance
threshold m will be computed by using the approximation formulas given in
[18,17]. Moreover, the labeled Markov Chain M , the threshold θ of the considered
formula, the property ϕ (resp. ϕ1 Uϕ2) (to be verified on each sample), and the
indifference region parameter δ which is a function of θ are given as inputs. In
fact, this decision method tests if ϕ (resp. ϕ1 Uϕ2) is verified (positive sample)
or not (negative sample) on each generated sample path, when counting the
number of positive samples. For SSP method, it provides decision either Yes if
the number of positive samples is greater or equal to m (ψ is satisfied) or No
otherwise (ψ is not satisfied). For SPRT method, it provides decision either Yes
if the ratio qi ≤ β/(1-α) (ψ is satisfied) or No if qi ≥ (1-β)/α (ψ is not satisfied).

4.2 Case of Steady State Operator

As it has been stated in Section 3, there are different cases to provide perfect
samples depending on the monotonicity or not of the underlying model and de-
pending also on the monotonicity or not of the associated reward in the case
of monotone model. However the samples are generated essentially from perfect
simulation Algorithm 1 with some modifications for each case, as explained in
details in [1] (see also Section 4.4). In fact, in order to perform statistical model
checking of the steady-state formula ψ=S≥θ(ϕ) by using monotone and/or func-
tional perfect simulation, we need to test if the obtained steady-state samples
satisfy ϕ or not. Thus we associate the reward rϕ(x) to each state vector x ∈ S
for the given property ϕ:

rϕ(x) = 1, if x |= ϕ (3)
rϕ(x) = 0, otherwise x
|= ϕ

Therefore at time 0, we need indeed to test if the rewards are coupled at reward
0 or 1. In other words, we test if it is a positive or negative sample. Note that,

128 D. El Rabih and N. Pekergin

we suppose in this case that the underlying markov chain is ergodic then the
steady-state formula is satisfied regardless of the initial state.

4.3 Case of Unbounded Until Formula

The statistical checkingprinciple of the timeunboundeduntil formulaP≥θ(ϕ1 Uϕ2)
consists of generating execution sample paths from an initial state s0 and testing
if each sample path verifies the property ϕ1 Uϕ2 or not.

We modify backward simulation algorithm to generate samples for the verifi-
cation of unbounded until formula to design Algorithm 2. This algorithm is built
by taking into account the fact that evolution in n steps from the past to present
and from the present to the future are stochastically equivalent (see Eq. 2). There
are three stopping conditions on each sample path generated from s0:

1. the sample path reaches a ϕ2 state, this path satisfies the property, we can
conclude that it is a positive sample (lines 13 and 14 of Algorithm 2).

2. the sample path reaches a ¬ϕ1 ∧ ¬ϕ2 states, we can conclude that it is a
negative sample (lines 15 and 16 of Algorithm 2).

3. the sample path visits always ϕ1 ∧ ¬ϕ2 states, it must be stopped when the
steady-state is reached. If the steady-state is reached passing through ϕ1
states without reaching a ϕ2 state, then it is a negative one (lines 21 and 22
of Algorithm 2).

The states from which sample paths are initiated depend on monotonicity prop-
erties of the model. If the underlying model is monotone, the considered sample
paths are generated by keeping only trajectories issued from the set of maximal
and minimal states, then S∗ = Max∪Min−s0 in the Algorithm 2. If the model
is not monotone, then we consider all states S∗ = S − s0.

4.4 Applicability and Complexity of Proposed Approach

Perfect simulation can be applied to monotone systems as proposed in [10,12] and
to non monotone systems as proposed in [14]. It can be applied to queuing net-
works, Markov chains [10,12] and to stochastic automata networks [13]. There-
fore our proposed approach can be applied to monotone and to non monotone
systems modeled by Markov chains, queuing networks or stochastic automata
networks.

Monotone systems. In this case, we can apply Algorithm 1 (monotone version)
if we don’t need to compute steady state rewards. Otherwise we have two cases
depending on the monotonicity of the reward function:

– Reward is monotone: Algorithm 1 (monotone functional version) can be
applied in this case.

– Reward is not monotone: Algorithm 1 (monotone version) can be applied in
this case.

Statistical Model Checking Using Perfect Simulation 129

Algorithm 2. Sample generation and testing for unbounded Until
1: t← 1; E[1]← Generate− event(); STOP ← false; Result← 0;
2: repeat
3: t← 2.t;
4: for all x ∈ s0 ∪ S∗ do
5: y(x) ← x; {initialisation of trajectories}
6: end for
7: for i=t downto t/2+1 do
8: E[i]=Generate-event() {generate new events from -t/2 +1 to -t}
9: end for
10: i← t;
11: while (i ≥ 1) ∧ ¬STOP do
12: y(s0) ← η(y(x), E[i]);
13: if y(s0) |= ϕ2 then
14: STOP ← true; Result← 1; { a ϕ2 state is reached}
15: else if y(s0) |= ¬ϕ1 then
16: STOP ← true; Result← 0; {a ¬ϕ1 ∧ ¬ϕ2 state is reached}
17: else
18: for all x ∈ S∗ do
19: y(x) ← η(y(x), E[i]);
20: end for
21: if all y(x) are equal then
22: STOP ← true; Result← 0; {steady-state is reached}
23: end if
24: end if
25: i← i− 1;
26: end while
27: until STOP
28: return Result

Non monotone systems. In this case, we can apply backward simulation algo-
rithm Algorithm 1 if we don’t need to compute steady state rewards, otherwise
Algorithm 1 (functional version) can be applied. The functional version is the
same as Algorithm 1 apart from lines 15 and 16 those are modified as lines 15
and 16 in Algorithm 1 (monotone functional version).

The complexity of our approach is related to statistical model checking com-
plexity which depends on the computed sample size, of the perfect simulation
effort (or complexity) and of the trajectory length in case of path formulas. It
has been shown that if the complexity of the backward simulation algorithm in
the number of transition function evaluation is bounded by |S|.(2.Eτ∗) [10], then
the mean time complexity C can be bounded by C ≤ |S|.(2.Eτ∗).cη where τ∗ is
the coupling time of the backward scheme (coupling from the past scheme), |S|
is the state space size, cη is the mean computation cost of η(x, e). The memory
complexity (storage of the set of generated events) is bounded by 2Eτ∗ and could
be reduced to Elog2τ

∗ + 1 [10]. Thus the complexity of the perfect simulation is
clearly modest in case of monotone systems because we consider only maximal
and minimal states as initial values among all states. In fact, the simulation time

130 D. El Rabih and N. Pekergin

reduction is proportional to the size of the state space in this case [11], which is
usually very large. It has been shown in [11] when studying coupling time dis-
tribution, that simulation times per sample for the studied queueing networks
examples are just a few milli-seconds on a standard PC. In case of non monotone
systems, it has been shown in [14] that there is only a need to compute two tra-
jectories: an infimum and supremum envelopes, then the complexity of perfect
simulation in this case will be also modest. Moreover, because of the indepen-
dence of generated samples, the perfect simulation method can be parallelized
efficiently [13].

5 Case Study and Experimental Results

As case study we present the dependability properties verification at long run
of a multistage interconnection queueing network to illustrate the efficiency of
our proposed method. In telecommunication networks, multistage models are
used for modelling switches [7]. The considered model is a delta network with 4
stages and 8 buffers at each stage (see Fig. 1). Thus the total number of queues
(buffer) is n = 32. With Markovian arrival and service hypothesis, the model can
be defined as a CTMC with a state vector (N1N2 · · ·Nn) where Ni is the number
of packets in the ith queue. The size of the state space is then (Nmax + 1)32, if
the maximum queue size is Nmax. We suppose homogeneous input traffic with
arrival rate λ to the first stage and service rate μ = 1 in each queue. The routing
policy is rejection (packets are lost if the queue is full) and at the end of a service
the routing probabilities are 1/2 for both buffers in the next stage. There are
64 events (8 external arrivals at the 1st level + 8 departures at the 4th level +
2*8 routing events in first three levels). The monotonicity of these events (with
respect to the component-wise order) and so the monotonicity of the model has
been shown in [11].

The availability and saturation properties at long run of the considered model
can be checked through the CSL steady-state and unbounded until formulas.
State labels are defined through atomic propositions depending on the number
of packets in queues. For a given k ∈ {0, · · · , Nmax}, ai(k) is true if Ni ≥ k
and false otherwise. For example, ai (Nmax) is true if the ith buffer is full. The

Fig. 1. Interconnection delta network

Statistical Model Checking Using Perfect Simulation 131

underlying CTMC is labelled with these atomic propositions depending on the
considered property. It is then possible to express different interesting availabil-
ity and reliability measures for the underlying system by means of these atomic
propositions. Let ϕ1 (resp. ϕ2) be the state formula to specify if at least a
queue (resp. all queues) at the fourth level is saturated, thus it is defined as
the disjunction (resp. conjuction) of atomic propositions ai(Nmax), 24 ≤ i ≤ 31.
Steady-state formulas ψ1=S<θ1(ϕ1), ψ2=S<θ2(ϕ2) let us to study steady-state
saturation or availability properties (S>1−θ1(¬ ϕ1), S>1−θ2(¬ ϕ2)). The proper-
ties on execution paths at long run can be studied by means of unbounded until
formulas. Let ϕ3 be the state formula to specify the saturation of at least a queue
at the third level, thus it is defined by the disjunction of atomic propositions
ai(Nmax), 16 ≤ i ≤ 23. We consider ψ3=P<θ1(¬ϕ3 U ϕ1), ψ4=P<θ2(¬ϕ3 U ϕ2).
Note that, ¬ϕ3 represents the availability of all queues at the third level. Then
ψ3 (resp. ψ4) checks if the probability of execution paths in which ¬ϕ3 is verified
until finding one state verifying ϕ1 (resp. ϕ2) meets the threshold θ or not. Since
the underlying model is monotone, sample paths are generated by applying the
monotone perfect simulation (Algorithm 1 (monotone version)). For steady-state
formulas, in order to apply functional monotone perfect simulation (Algorithm
1 (functional monotone version)), it has been shown in [1] that the underlying
reward rϕ is monotone. Contrary if the state formula is defined from ai(k) for
some queues and ¬ai(k) for others, then we can only apply (Algorithm 1 (mono-
tone version)), since the reward is not monotone. Thus the underlying formulas
ψ1 and ψ2 can be checked by applying functional monotone perfect simulation,
while ψ3 and ψ4 will be checked by only using monotone perfect simulation.

Now we suppose that Nmax=30 and λ=0.75 at the first stage. Remark that
the state space size is huge and intractable by conventional techniques (3132 #
5.1047). The perfect samples are generated by using tool Ψ2 which provides
monotone perfect samples [12]. For unbounded until generated sample paths we
consider as initial state s0 the state vector (0 0 · · · 0) (all queues are empty).

We give in the Table 1 for different values of θ, δ, the decision for the con-
sidered steady-state and unbounded until formulas and the computed values of
(Nsamp, m) having statistical strength (α, β) by applying the SSP method of
statistical hypothesis testing described in section 2.2. In the following tables,
Nsamp denotes the sample size, m is the acceptance threshold, SMCD1: sta-
tistical model checking decision for the formula S<θ(ϕ1), SMCD2: statistical
model checking decision for the formula S<θ(ϕ2), SMCD3: statistical model
checking decision for the formula P<θ(¬ϕ3 U ϕ1), SMCD4: statistical model
checking decision for the formula P<θ(¬ϕ3 U ϕ2), α: the computed hypothesis
testing Type I error(false negative), β: the computed hypothesis testing Type II
error(false positive).

Next, we give in the Table 2 for different values of θ, δ, the decision for the con-
sidered steady-state and unbounded until formulas and the computed values of
Nsamp1 for statistical model checking of S<θ(ϕ1), Nsamp2 for statistical model
checking of S<θ(ϕ2), Nsamp3 for statistical model checking of P<θ(¬ϕ3 U ϕ1)
and Nsamp4 for statistical model checking of P<θ(¬ϕ3 U ϕ2) having statistical

132 D. El Rabih and N. Pekergin

Table 1. SMC Decision for S<θ(ϕ1), S<θ(ϕ2), P<θ(¬ϕ3 U ϕ1) and P<θ(¬ϕ3 U ϕ2)
with δ= θ

5
by using SSP

θ α = β Nsamp m SMCD1 SMCD2 SMCD3 SMCD4

10−2 133944 132 Y es Y es No Y es
10−3 10−4 342443 336 Y es Y es No Y es

10−6 559235 548 Y es Y es No Y es
10−8 779255 764 Y es Y es No Y es

10−2 1340669 132 No Y es No Y es
10−4 10−4 3427576 336 No Y es No Y es

10−6 5597491 549 No Y es No Y es
10−8 7799708 765 No Y es No Y es

10−2 13407920 132 No Y es No Y es
10−5 10−4 34278912 336 No Y es No Y es

10−6 55980048 549 No Y es No Y es
10−8 78004244 765 No Y es No Y es

Table 2. SMC Decision for S<θ(ϕ1), S<θ(ϕ2), P<θ(¬ϕ3 U ϕ1) and P<θ(¬ϕ3 U ϕ2)
with δ= θ

5
by using SPRT

θ α = β Nsamp1 SMCD1 Nsamp2 SMCD2 Nsamp3 SMCD3 Nsamp4 SMCD4

10−2 13504 Y es 11477 Y es 1013 No 11477 Y es
10−3 10−4 34153 Y es 23003 Y es 1023 No 23003 Y es

10−6 46669 Y es 34505 Y es 1029 No 34505 Y es
10−8 68306 Y es 46006 Y es 1035 No 46006 Y es

10−2 57104 No 114870 Y es 10013 No 114870 Y es
10−4 10−4 85376 No 230234 Y es 10023 No 230234 Y es

10−6 117344 No 345354 Y es 10029 No 345354 Y es
10−8 144347 No 460472 Y es 10035 No 460472 Y es

10−2 34364 No 1148769 Y es 9013 No 1148769 Y es
10−5 10−4 70088 No 2302537 Y es 9023 No 2302537 Y es

10−6 92233 No 3453843 Y es 9029 No 3453843 Y es
10−8 117900 No 4605125 Y es 9035 No 4605125 Y es

strength (α, β) by applying the SPRT method of statistical hypothesis testing
described in section 2.2.

We have verified properties on a very large system (state space 5.1047) hav-
ing threshold probabilities very close to zero with very small correctness bounds
(α, β). The time per simulation (observation) is just a few milli-seconds on a stan-
dard PC, and it must be multiplied by the number of samples depending on the
required correctness bounds. Our numerical results show that the computed sam-
ple size when applying SPRT is more optimised than the sample size obtained by
applying SSP statistical solution method. Our main goal here is to illustrate the
feasibility of the proposed approach for very large systems and rare events. Note
that, for the steady-state operator the sample generation is stopped only when
steady-state is reached while there are 3 stopping conditions for unbounded until

Statistical Model Checking Using Perfect Simulation 133

formula. Moreover, for steady-state operatorwe have applied the functional mono-
tone perfect simulation while for unbounded until formula we have applied mono-
tone perfect simulation. Thus the time per simulation for steady-state operator is
smaller than that of the unbounded until formula. Let us note that with Nmax=30
and λ = 0.75 we can see that the mean queue length is relatively small, so satu-
ration could be considered as a rare event, which explains our decision SMCD2
and SMCD4 about the probability of saturation of all queues at fourth stage to be
always Y es. Finally, the monotone perfect sampling with statistical decision tech-
niques provide a really interesting alternative for the probabilistic verification of
large systems. Since the discrete event systems have in general monotone dynam-
ics [4,10] this condition is not very restrictive hypothesis for real world models.

6 Conclusion and Future Works

We propose to do statistical model checking by combining perfect sampling and
hypothesis testing. Therefore it will be possible to verify steady-state and un-
bounded time until formulas of temporal logics for Markov chains. In fact, the
statistical model checking by Monte Carlo simulation has been already proposed
for time bounded until formula [18]. However the steady-state operator had not
been studied before and the unbounded until operator can not be efficiently
checked by this approach because of stopping probability and steady-state de-
tection problems [9]. Perfect simulation is a relatively recent extension of Monte
Carlo simulation allowing to sample steady-state without any bias. We have inte-
grated the proposed approach to the perfect sampler Ψ2 [12], to be able to model
check large performability and dependability models. We consider to apply our
proposed approach to verify dependability properties specified by nested formu-
las composed of steady state and unbouned until formulas. The perfect sampler
Ψ2 is extended to study the non monotone models [14]. A new version of this
perfect sampler is under implementation. Thus we plan to apply our proposed
method to non monotone models using this updated version of Ψ2. Another ex-
tension of our work will be to compare our statistical approach with the existing
numerical approaches [6] those verify steady-state and unbounded until formu-
las as well as with the existing discrete event simulation based approaches, in
terms of their complexity and efficiency. A comparison between numerical and
statistical methods has been done in [16] showing that statistical method is more
efficient for large scale systems but less accurate and less complex than numerical
method.

Acknowledgment. The authors thank to Jean-Marc Vincent for fruitful dis-
cussions and for his help on Ψ2 tool.

References

1. El Rabih, D., Pekergin, N.: Statistical model checking for steady state dependabil-
ity verification. In: WIP paper in proceedings of 2nd International conference on
Dependability. DEPEND 2009, IEEE CS proceedings, Athens, Greece (2009)

134 D. El Rabih and N. Pekergin

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model Checking Continuous Time
Markov Chains. ACM Trans. on Comp. Logic 1(1), 162–170 (2000)

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Trans. Software Eng. 29(6), 524–541
(2003)

4. Glasserman, P., Yao, D.: Monotone Structure in Discrete-Event Systems.
John Wiley & Sons, Chichester (1994)

5. Hansson, H., Jonsson, B.: A logic for reasonning about time and reliability. Formal
Aspects Compt. 6, 512–535 (1994)

6. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

7. Keshav, S.: An Engineering approach to computer networking. Addison Wesley,
Reading (1997)

8. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and ap-
plications to statistical mechanics. Random Structures and Algorithms 9(1 and 2),
223–252 (1996)

9. Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic
Systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

10. Vincent, J.M., Marchand, C.: On the exact simulation of functionals of stationary
Markov chains. Linear Algebra and its Applications 386, 285–310 (2004)

11. Vincent, J.-M., Vienne, J.: Perfect simulation of index based routing networks.
Performance Evaluation Review 34(2), 24–25 (2006)

12. Vincent, J.-M., Vienne, J.: PSI2 a Software Tool for the Perfect Simulation of
Finite Queuing Networks. In: QEST, Edinburgh (September 2007)

13. Fernandes, P., Vincent, J.-M., Webber, T.: Perfect Simulation of Stochastic Au-
tomata Networks. In: Al-Begain, K., Heindl, A., Telek, M. (eds.) ASMTA 2008.
LNCS, vol. 5055, pp. 249–263. Springer, Heidelberg (2008)

14. Busic, A., Gaujal, B., Vincent, J.-M.: Perfect simulation and non-monotone
(Markovian) systems. In: Proceedings of 3rd International Conference on Perfor-
mance Evaluation Methodologies and Tools, VALUETOOLS 2008, Athens, Greece,
October (2008)

15. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

16. Younes, H.L., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. Software Tools for Technology Transfer 8(3), 216–228
(2006)

17. Younes, H.L.S.: Error Control for Probabilistic Model Checking. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156. Springer,
Heidelberg (2006)

18. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with
a focus on time-bounded properties. Information and Computation 204(9),
1368–1409 (2006)

Quantitative Analysis under Fairness Constraints

Christel Baier, Marcus Groesser, and Frank Ciesinski

Technische Universtät Dresden
Nöthnitzer Straße 46

01187 Dresden, Germany
{baier,groesser,ciesinsk}@tcs.inf.tu-dresden.de

Abstract. It is well-known that fairness assumptions can be crucial
for verifying progress, reactivity or other liveness properties for inter-
leaving models. This also applies to Markov decision processes as an
operational model for concurrent probabilistic systems and the task to
establish tight lower or upper probability bounds for events that are
specified by liveness properties. In this paper, we study general notions
of strong and weak fairness constraints for Markov decision processes,
formalized in an action- or state-based setting. We present a polynomi-
ally time-bounded algorithm for the quantitative analysis of an MDP
against ω-automata specifications under fair worst- or best-case scenar-
ios. Furthermore, we discuss the treatment of strong and weak fairness
and process fairness constraints in the context of partial order reduction
techniques for Markov decision processes that have been realized in the
model checker LiQuor and rely on a variant of Peled’s ample set method.

1 Introduction

Markov decision processes (MDPs) are widely used as an operational model for
randomized distributed algorithms, network protocols and systems with unreli-
able components. Several verification algorithms have been developed to reason
about the (worst or best case) probabilities for temporal properties of systems
specified by an MDP. In model checking of such systems as well as in the nonprob-
abilistic case, systems under consideration are often characterized by a component
based view, e.g., systems of parallel processes [19,26,3], of modules [1,29], etc. that
compete with each other for the resource of action execution in an abstract execu-
tion environment. Especially (but not only) when verifying liveness properties of
such systems, the concept of fairness is very important. Without a sound notion of
fairness there is almost always the unrealistic possibility of simply ignoring certain
processes which trivially renders even simple liveness properties to not being sat-
isfied. While in context of LTL verification incorporating fairness is an easy task -
fairness conditions are essentially LTL conditions - for CTL a more sophisticated
approach based on a tricky analysis of SCCs has to be applied [20,12]. Compared
to models without fairness this leads to an increase of the complexity linear in the
number of fairness conditions. For probabilistic systems the importance of fair-
ness carries directly over. For Markov decision processes methods were proposed
in principle (see related work below). The rough idea is a reduction to a probabilis-
tic reachability problem (minimum and maximum probabilities) which is enabled
by a graph based preanalysis that examines end components rather than SCCs.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 135–150, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

136 C. Baier, M. Groesser, and F. Ciesinski

For this, however, no precise solutions for efficient algorithms were proposed yet.
For example given k strong fairness assumptions of the form �♦Hi → �♦Ki for
1 ≤ i ≤ k there are (in addition to the fact that the number of end components
in an MDP is exponential) 2k ”ways” to satisfy the fairness condition. Until now
it remained unclear whether there is a polytime algorithm that solves this prob-
lem. We show here that given an arbitrary number of strong and weak fairness
constraints the complexity of the preanalysis step in probabilistic model checking
is increased only by a factor linear in the number of fairness constraints.

More precisely, the contributions of this paper are as follows. First, we provide
algorithms for computing the probabilities for ω-regular properties in worst- or
best-case scenarios when ranging over all fair schedulers, i.e., policies that ensure
that almost surely the nondeterministic choices will be resolved in a fair way.
The underlying fairness condition can be any mixture of strong and weak fairness
constraints, formalized in an action- or state-based setting. The core of our
approach relies on a recursive algorithm to compute end components [14,16,37]
of appropriate sub-MDPs which serves to check the realizability of the given
fairness condition where realizability means the existence of a fair scheduler.
Compared to the quantitative analysis of MDPs against linear-time properties
without fairness assumptions, the overhead of our algorithm is quadratic in the
number of states and linear in the number of strong fairness conditions.

The second contribution of our paper is a discussion on the treatment of
strong and weak process fairness in the context of partial order reduction for
MDPs and stutter-invariant linear-time properties [6,15]. We will show that the
current realization of the partial order reduction in the model checker LiQuor
[4] is compatible with strong and weak process fairness in the sense that the
extremal probabilities for stutter-invariant linear-time properties in the original
MDP and the reduced MDP generated by LiQuor agree.

Related work. Fairness for probabilistic systems with nondeterminism has been
first introduced by Hart, Sharir, Pnueli [24] and Rosier, Yen [37] to reason about
almost-sure termination. Vardi [39] introduced the concept of fair schedulers of
an MDP-like model for checking whether a given linear temporal formula holds
with probability 1. The underlying notion of fairness for paths was strong fairness
in the following sense: if some state s has been visited infinitely often then also
all its successors. Following the approach of [39], we define a scheduler to be fair
if almost all paths that can be generated by that scheduler are fair. However, our
notion of fairness for paths is more general since we allow for any combination of
strong and weak fairness constraints that might impose conditions on the states
that are visited infinitely often (e.g., conditions on the current values of program
or control variables or the enabledness of actions) or conditions on the actions
that are taken infinitely often.

In the context of probabilistic branching time properties (formalized in the
logic PCTL [9]) the concept of strong fairness has been discussed by Baier and
Kwiatkowska in [8]. The paper [8] also contains a short remark on the treatment
of PCTL∗ under strong fairness assumptions and provides a (rather complicated)
characterization of certain sets of states that have to be computed when dealing
with a fair semantics of PCTL∗. Algorithms to compute these sets efficiently
have not been discussed in [8]. Moreover, the notion of fairness studied in [8] is
just a special case of strong fairness studied in this paper, while weak fairness
has not been addressed in [8]. The textbook [7] briefly sketches how extremal

Quantitative Analysis under Fairness Constraints 137

probabilities for linear-time properties under strong fairness assumptions can be
computed via an analysis of end components and a reduction to the maximal
reachability probabilities, but does not provide algorithms for the required ana-
lysis of end components. The difficulty is that the relevant end components might
be overlapping and therefore a naive approach that analyzes all end components
will have exponential time complexity. In this paper we fill this gap by providing
a polynomially time-bounded algorithm.

Different notions for the fairness of randomized schedulers of an MDP together
with algorithms for extremal reachability probabilities and long-run averages
have been presented by de Alfaro [18]. These notions impose lower probability
bounds for the chosen actions rather than requiring that almost all generated
paths are fair.

The concepts of α-fairness [35] or γ-fairness [2] have been introduced as sound
and complete proof techniques to verify that a given linear-time property ϕ holds
almost surely (called P-validity of ϕ in [2]) for an MDP-like model equipped
with action-based strong and weak fairness constraints. The variants of α- and
γ-fairness serve for reducing the question of the P-validity of ϕ to the question
whether ϕ holds for all α- or γ-fair computations of M, which can be checked by
“non-probabilistic” methods. The concept of realizability is irrelevant for [35,2]
(since the considered fairness constraints are trivially realizable). End compo-
nents which are essential for our approach and quantitative properties are not
considered in [35,2].

To the best of our knowledge, partial order reduction techniques for MDPs
with fairness assumptions have not yet been considered in the literature. Our
contribution relies on previous work on the ample set method for MDPs [6,15]
and its realization in the probabilistic model checker LiQuor [4] which shares
many concepts of the model checker SPIN [26]. Beside the differences that origin
from the fact that we deal with probabilistic models and quantitative properties,
while SPIN is a model checker for non-probabilistic systems, SPIN only supports
weak fairness, whereas we deal here with strong and weak (process) fairness.

Organization. Section 2 summarizes the relevant concepts of Markov decision
processes and explains our notations. Algorithms for the quantitative analysis of
MDPs against automata-specifications under fairness assumptions are presented
in Section 3. Section 4 explains the treatment of fairness assumptions within the
partial order reduction framework for MDPs. Section 5 concludes the paper with
some brief experimental results.

2 Preliminaries

The reader is assumed to be familiar with basic concepts of automata over infinite
words and temporal logics (see e.g. [22,13,7]) and fairness for nondeterministic
models (see e.g. [21,31,28]). We often use LTL- or CTL-like notations with the
obvious meanings. E.g., if s is a state, T a set of states and H a set of actions
then the notation s |= ∃♦T denotes that some state in T is reachable from s,
while �♦H stands for the event “infinitely often an action in H is taken”.

Markov decision processes (MDPs) are widely used as an operational in-
terleaving model for programs consisting of concurrent probabilistic processes.

138 C. Baier, M. Groesser, and F. Ciesinski

For the purposes of this paper, we use action names (which, among others, are
needed to formalize process fairness and the ample set method) and labels for
the states by sets of atomic propositions (which are used to specify path proper-
ties). In this section, we explain our notations and summarize the concepts that
are relevant to present our results. For further details on MDPs see e.g. [36]. A
Markov decision process (MDP) is a tuple M = (S, Act, δ, μ, AP, L), where

– S is a finite nonempty set of states,
– Act is a finite nonempty set of actions,
– δ : S × Act × S → [0, 1] is a transition probability function such that∑

t∈S δ(s, α, t) ∈ {0, 1} for each s ∈ S and α ∈ Act,
– μ : S → [0, 1] is a probability distribution on S, called the initial distribution,
– AP is a finite set of atomic propositions and
– L : S → 2AP is a labelling function.

Act(s) def=
{
α ∈ Act : ∃t ∈ S : δ(s, α, t) > 0

}
denotes the set of actions that

are enabled in state s. We require that Act(s) is nonempty for each state s ∈ S.
The intuitive operational behaviour of an MDP is as follows. If s is the current
state, then at first one of the actions α ∈ Act(s) is chosen nondeterministically.
Secondly, action α is executed leading to state t with probability δ(s, α, t).

An infinite path of an MDP is an alternating sequence π = s0 α1 s1 α2 . . .
∈ (S × Act)ω of states and actions such that δ(si, αi+1, si+1) > 0 for all i ≥ 0.
Paths are written in the form π = s0

α1−→ s1
α2−→ s2

α3−→ The trace of π

is defined as the infinite word trace(π) def= L(s0)L(s1)L(s2) . . . over the alphabet
2AP. We define inf(π) to be the set of actions and state-labels (i.e., sets of atomic
propositions) that appear infinitely often in π:

inf(π) def=
{
A ∈ 2AP|

∞
∃ i s.t. L(si) = A

}
∪
{
α ∈ Act|

∞
∃ i s.t. αi = α

}
.

A finite path is a finite prefix of an infinite path that ends in a state. We use
the notation last(π) for the last state of a finite path π and |π| for the length
(number of actions) of a finite path. We denote by Pathfin (and Pathinf) the set
of all finite (infinite) paths of M.

Schedulers. The concept of schedulers is needed to reason about probabili-
ties for certain behaviors of an MDP. Schedulers are a means to resolve the
nondeterminism in the states, and thus, yield a discrete Markov chain and a
probability measure on the paths. Intuitively, a scheduler takes as input the
“history” of a computation (formalized by a finite path π) and chooses the next
action (resp. a distribution on actions). Formally, if M is an MDP as above a
history-dependent randomized scheduler is a function U : Pathfin → Distr(Act),
such that {α ∈ Act : U(π)(α) > 0} ⊆ Act(last(π)) for each π ∈ Pathfin. Here,
Distr(Act) denotes the set of probability distributions on Act. A (finite or infinite)
path s0

α1−→ s1
α2−→ s2 . . . is called a U-path, if U(s0

α1−→ . . .
αi−→ si)(αi+1) > 0

for every 0 ≤ i < |π|. Scheduler U is called deterministic if for each π ∈ Pathfin
there exists an action α such that U(π)(α) = 1 (while U(π)(β) = 0 for ev-
ery other action β
= α). We simply treat deterministic schedulers as functions
that map finite paths to actions. A finite-memory scheduler denotes a deter-
ministic scheduler U that stores the information about the history in a finite-
state automaton. Formally, finite-memory schedulers can be defined as tuples

Quantitative Analysis under Fairness Constraints 139

W = (M, next, dec, m0) where M is a finite set of modes, m0 ∈ M the initial
mode, next : M × S → M the next-mode function and dec : M × S → Act
the decision function where dec(m, s) ∈ Act(s). Given a finite-memory scheduler
W then the induced (history-dependent) deterministic scheduler UW is given
by UW(π) = dec(next∗(m0, π), last(π)) where next∗ : M × Pathfin → M is de-
fined inductively by next∗(m, s) = m, next∗(m, s

α−→ π) = next∗(next(m, s), π) for
all states s and finite paths π such that δ(s, α, t) > 0 if t is the first state of
π. A memoryless scheduler is a finite-memory scheduler with a single mode.
Memoryless schedulers can be specified as functions W : S → Act such that
W(s) ∈ Act(s). The set of all (history-dependent, randomized) schedulers for
M is denoted by Sched. We write SchedD (resp. SchedFM or SchedM) to denote
the set of deterministic (finite-memory, memoryless) schedulers for M. The be-
haviour of M under scheduler U can be formalized by a (possibly infinite-state)
discrete Markov chain. PrUs denotes the standard probability measure on the
σ-algebra of the infinite paths of M that is generated by the basic cylinders of
finite paths starting in s. Given an ω-regular property E over AP (e.g., given by
an LTL formula over AP or an ω-automaton with the alphabet 2AP) then the set
of paths π with trace(π) is measurable [39]. We write

PrU (s |= E) def= PrUs
{
π ∈ Pathinf : trace(π) ∈ E

}
to denote the probability under scheduler U for state s to satisfy property E.

The probability measure induced by scheduler U for an MDP with initial
distribution μ is denoted by PrUM and given by

∑
s∈S μ(s) · PrUs . Sometimes we

add the symbol M also to other notations and write, e.g., PathinfM or SchedM,
to make clear to which MDP the notations refer.

Subgraphs, end components, limit of paths. The key for the quantita-
tive analysis of MDPs against ω-regular properties lies in the concept of end
components [16,17,14,37] which can be seen as the MDP-counterpart to ter-
minal strongly connected components in Markov chains. A subgraph of M is
a pair (T, A) where T ⊆ S and A : T → 2Act such that A(t) ⊆ Act(t) and
{u ∈ S : ∃α ∈ A(t) s. th. δ(t, α, u) > 0} ⊆ T for all t ∈ T . We often identify any
subgraph (T, A) with the directed graph with the node-set T and an edge from
state t to state u iff there exists an action α ∈ A(t) such δ(t, α, u) > 0. An end
component of M is a nonempty strongly connected subgraph of M. In particu-
lar, A(t) is nonempty for all states t ∈ T of an end component (T, A). An end
component (T, A) is called a subcomponent of a subgraph (U, B) if ∅
= T ⊆ U
and A(t) ⊆ B(t) for all t ∈ T . An end component (T, A) is called maximal (in
M) if there is no end component (V, C)
= (T, A) of M such that (T, A) is a
subcomponent of (V, C). Note that each state belongs to at most one maximal
end component and that each state can be contained in several end components,
but it can also happen that a certain state does not belong to any (maximal)
end component. An end component (T, A) of a subgraph (U, B) is said to be
maximal in (U, B) if if there is no subcomponent (V, C)
= (T, A) of (U, B) such
that (T, A) is a subcomponent of (V, C).

Given an infinite path π = s0
α1−→ s1

α2−→ s2
α3−→ . . ., the limit of π, denoted

Lim(π), is the pair (T, A) where T = inf(π) ∩ S is the set of states in π that are
visited infinitely often and A : T → 2Act is the function that assigns to any state

140 C. Baier, M. Groesser, and F. Ciesinski

t ∈ T the set of actions α such that (si = t) ∧ (αi+1 = α) for infinitely many
indices i. In particular, we have ∅
= A(t) ⊆ inf(π) ∩ Act(t).

For each end component E = (T, A) there exists a finite-memory scheduler
UE such that PrUE

t {π ∈ Pathinf : Lim(π) = E} = 1 for all states t ∈ T . Such
a finite-memory scheduler UE can be designed as follows. For t ∈ T we pick an
arbitrary enumeration αt,0, αt,1, . . . αt,kt of the actions in A(t). The modes of UE
are the functions m : T → N such that 0 ≤ m(t) < kt for all t ∈ T . The decision
and next-mode function are defined by dec(m, s) = αs,m(s) and next(m, s) = m′
where m′(t) = m(t) if t ∈ T \ {s} and m′(s) = (m(s) + 1) mod ks. Vice versa,
for each scheduler U , the limit of almost all U-paths of M consistutes an end
component:

Lemma 1 ([16,17,14]). For any given MDP M and scheduler U it holds that
PrUs {π ∈ Pathinf : Lim(π) is an end component } = 1.

Fairness. We deal here with the standard concept of strong and weak fairness
[21,31,28] with a generic syntax that treats state- and action-based fairness in
a uniform way. A (single) fairness constraint for M is a pair (H, K) such that
H, K ⊆ Act ∪ 2AP which can be treated as a weak or strong fairness constraint.
Using LTL-like notations, (H, K) viewed as a strong fairness constraint stands
for �♦H → �♦K, while (H, K) treated as a weak fairness constraint means
♦�H → �♦K. This is formalized by two satisfaction relations $sfair and $wfair.
Given a set X ⊆ Act ∪ 2AP, we define:

X $sfair (H, K) iff X ∩ H = ∅ or X ∩ K
= ∅
X $wfair (H, K) iff X \ H
= ∅ or X ∩ K
= ∅ .

For example, if M models the interleaving behavior of processes P1, . . . ,Pn and
Act� ⊆ Act denotes the set of all actions of process P� then (strong or weak)
process fairness for process P� can be formalized by the pair (H, K) where H =
Enabled� and K = Act� with Enabled� = {A ∈ 2AP : enabled� ∈ A} and enabled�

being an atomic proposition such that enabled� ∈ L(s) iff Act� ∩ Act(s)
= ∅.
A (general) fairness condition for M is a pair F = (SF ,WF) where SF

and WF are sets of (single) fairness constraints. Intuitively, F imposes strong
fairness for all elements in SF and weak fairness for all elements in WF . This is
formalized by the satisfaction relation $fair which for X ⊆ Act∪ 2AP is given by:

X $fair F iff X $sfair (H, K) for all (H, K) ∈ SF and
X $wfair (H, K) for all (H, K) ∈ WF .

We refer to the elements SF as strong fairness constraints and to the elements in
WF as weak fairness constraints. An infinite path π in M is called fair, denoted
π |= F , if inf(π) $fair F . A fairness condition F for M is called realizable if there
exists a scheduler U such that PrUs {π : inf(π) $fair F} = 1 for all states s ∈ S. In
this case, U is called a fair scheduler.

3 Quantitative Analysis under Fairness Assumptions

The standard automata-based approach (see e.g. [16,7]) to compute the maximal
or minimal probabilities for a given ω-regular linear-time property E in an MDP

Quantitative Analysis under Fairness Constraints 141

M relies on a representation of E by a deterministic ω-automaton A. The prod-
uct M×A can then be viewed as an MDP and the task is to compute minimal
or maximal probabilities for the acceptance condition of A in the product. In
what follows, we suppose that we are given an MDP M = (S, Act, δ, μ, AP, L)
(that might stand for the product) which is equipped with a fairness condition
F = 〈SF ,WF〉 and a Streett or Rabin acceptance condition Acc, given by a set
of pairs (H, K) where where H, K ⊆ 2AP. The goal of this section is to present
algorithms for checking realizability of the given fairness condition F and for
computing

Prfairmax
F (s |= Acc) def= sup

U∈FairSched(F)
PrUs {π ∈ Pathinf : π |= Acc}

where s ∈ S and FairSched(F) denotes the set of all fair schedulers, i.e., sched-
ulers U with PrUs {π : inf(π) $fair F} = 1 for all states s in M.

We first address the problem of how to check whether the given fairness con-
dition is realizable. A strong fairness constraint can hold in an end component
E , while it is violated in the maximal end component containing E . Thus, the
relevant end components might be non-maximal and the naive approach to con-
sider all end components has exponential time complexity. Notice that any state
can belong to many end components and the total number of end components
can be exponentially in the number of states of M. We now present a polynomi-
ally time-bounded algorithm for checking realizability which avoids the explicite
consideration of all potential end components and relies on a recursive approach
to compute maximal end components in M and certain subgraphs. An end com-
ponent E of M is said to be fair iff all paths π with Lim(π) = E are fair, i.e., E is
fair iff XE $fair F where XE is the set {L(t) : t ∈ T } ∪

⋃
t∈T A(t). Let FMEC be

the set of all states t such that t ∈ T for some maximal end component (T, A)
that contains a fair subcomponent. We then have:

Lemma 2. There exists a finite-memory scheduler W such that

PrWs {π ∈ Pathinf : π |= F} = 1

for all states s ∈ FMEC.

Theorem 1. F is realizable iff s |= ∃♦FMEC for all states s ∈ S.

Proof. “=⇒”: Suppose F is realizable. Let U be a fair scheduler and s a state.
Lemma 1 yields the existence of some end component E = (T, A) such that
PrUs {π : Lim(π) = E} > 0}. Since U is fair, this end component E must be fair.
But then T ⊆ FMEC (as each end component is contained in some maximal
end component). Thus, PrUs {π : π |= ♦FMEC} > 0 and therefore s |= ∃♦FMEC.
“⇐=”: Suppose s |= ∃♦FMEC for all states s. For each state s we pick a shortest
(finite) path πs from s to some state in FMEC. Let V be a memoryless scheduler
such that for s /∈ FMEC, action V(s) is the first action in πs. Using standard
arguments for finite Markov chains (note that the induced Markov chain of a
memoryless scheduler is finite), we obtain that PrVs {π : π |= ♦FMEC} = 1 for all
states s. We now can compose V and the finite-memory scheduler W of Lemma
2 to obtain a fair scheduler. Thus, F is realizable. �

142 C. Baier, M. Groesser, and F. Ciesinski

The proof of Theorem 1 shows that realizability of F is equivalent to the existence
of a fair finite-memory scheduler. Thanks to Theorem 1, realizability of a given
fairness condition F = 〈SF ,WF〉 can be checked by the following procedure:
(1)compute the maximal end components of M, then (2) compute the set FMEC
by checking for each maximal end component E of M whether E contains a
fair sub-component. Finally (3) perform a reachability analysis in M to check
whether FMEC is reachable from all states. In (1) we can apply the algorithm
presented in [14,16] which relies on an iterative computation of SCCs and runs
in time quadratic in the size of M. Step (2) can be realized by the recursive
algorithm check_fair(E ,F) presented in Algorithm 1. In the initial calls from
the main procedure (step (2) above), E is a maximal end component of M. In
the recursive calls, E is an maximal end component of some sub-MDP, that is,
a possibly non-maximal end component of M.

The considered sub-MDPs arise by removing certain states and/or actions.
They have the form E � H where E = (T, A) is an end component of M and
H ⊆ Act ∪ 2AP. Then, E � H denotes the subgraph (U, B) where U = {t ∈ T :
L(t) /∈ H} and B : U → 2Act, B(t) = {α ∈ A(t)\H :

∑
u∈U δ(t, α, u) = 1} for all

t ∈ U . The notation E $sfair (H, K) for some strong fairness constraint (H, K)
indicates that all paths π with Lim(π) = E satisfy the strong fairness constraint
(H, K). That is, E $sfair (H, K) iff XE $sfair (H, K) where XE is the union of the
sets {L(t) : t ∈ T } and

⋃
t∈T A(t). Similarly, E $wfair (H, K) iff XE $wfair (H, K).

Algorithm 1. Recursive algorithm check_fair(E ,F)
Input: end component E = (T, A), fairness condition F = 〈SF ,WF〉

if E 	
wfair (H,K) for some (H,K) ∈ WF then return “false” end if
if E
sfair (H,K) for all (H,K) ∈ SF then return ”true”
else

pick (H,K) ∈ SF such that E 	
sfair (H,K);
compute the set of all maximal end components of the subgraph E �H ;
for all maximal end components E ′ of E �H
if check_fair(E ′, 〈SF \ {(H,K)},WF〉) then return “true” end if

end for
return “false”

end if

The soundness of Algorithm 1 can be shown (proof omitted), the recursion depth
is bounded by the total number of strong fairness constraints. For each recur-
sive call check_fair(E ′,F ′) inside check_fair(E ,F), E ′ is an end component of
the subgraph E � H of E where (H, K) is a strong fairness constraint such that
E
$sfair (H, K). But then XE ∩ H
= ∅. Hence, size(E ′) < size(E) where the
size of a subgraph (U, B) is defined by size(U, B) = |U | + |{α ∈ Act : α ∈
B(u) for some u ∈ U}|. With n being the total size of an appropriate list repre-
sentation for M, an upper bound for asymptotic cost for step (2) can be provided
by the recurrence

T (n, f) = O(n2) + max
{
T (n1, f−1) + . . . + T (nk, f−1) : (n1, . . . , nk) ∈ N (n)

}
where N (n) consists of all tuples (n1, . . . , nk) ∈ Nk where k ≥ 1, n1, . . . , nk ≥
1 and n1 + . . . + nk < n. The summand O(n2) stands for the time required

Quantitative Analysis under Fairness Constraints 143

to compute the maximal end components of M. We also assume that |SF| +
|WF| ≤ n. Then, the time required to check whether some weak or strong
fairness constraint is violated is also covered by O(n2). The terms T (ni, f−1)
stand for the cost that are caused by the recursive calls for the maximal end
components of the subgraph E � H . If E � H has k maximal end components
and their sizes are n1, . . . , nk then n1 + . . . + nk is bounded by the size of E �H
which is at most n−1. The solution of this recurrence is O(n2 · f). Thus:

Theorem 2. Checking realizablity of a fairness condition F in an MDP M is
solvable by an algorithm that runs in time quadratic in the size of M and linear
in the number of fairness constraints.

For a given Streett or Rabin acceptance condition Acc, we can combine tech-
niques that have been presented in the literature (see e.g. [7] for an explanation
for Rabin acceptance) with our algorithm for checking realizability. For this
some adaptions of Algorithm 1 can be used to compute the set AFMEC that
results from the union of (the state-spaces of) all maximal end components that
contain a fair subcomponent where Acc holds. Then, for F being realizable the
problem of computing maximal probabilities to satisfy Acc under the given fair-
ness condition F boils down to the problem of computing maximal reachability
probabilities for AFMEC under all schedulers. This can be done by applying
well-known techniques of linear programming or value/policy iteration (see e.g.
[36]). If F is not realizable then Prfairmax

F (s |= Acc) can be computed by applying
the above techniques to the sub-MDP MF that results from M by removing all
states that cannot reach FMEC. Note that under any fair scheduler U for M,
the U-paths will never enter a state s with s
|= ∃♦FMEC. Thus, M and MF
have the same fair schedulers. By Theorem 1, it is obvious that the given fairness
condition F is realizable for MF . Hence, we get:

Theorem 3. The values Prfairmax
F (s |= Acc) can be computed in time polynomial

in the size of M and linear in the number of fairness constraints and of (Streett
or Rabin) acceptance pairs.

4 Partial Order Reduction and Fairness

In this section we explain how to treat strong and weak process fairness in the
context of partial order reduction (POR) for MDPs and stutter-invariant linear-
time properties [6,15]. For partial order reduction the starting point is usually a
description of an asynchronous parallel system by a representation of the sub-
systems that run in parallel, e.g., as in ProbMeLa, the input language of the
model checker LiQuor. The rough idea behind partial order reduction is to con-
struct a reduced system by abolishing redundancies in the MDP that originate
from the interleaving of independent activities that are executed in parallel. For
independent actions α and β, the interleaving semantics represents their parallel
execution by the nondeterministic choice between the action sequences αβ and
βα. If αβ and βα have the same effect to the control and program variables, and
thus lead to the same state distribution, the investigation of one order (αβ or
βα) as a representative for both suffices under certain side conditions.

144 C. Baier, M. Groesser, and F. Ciesinski

More general, instead of constructing the full system M, the goal of partial
order reduction is to generate an “equivalent” sub-system Mred of the full tran-
sition system M. We consider here a special instance of POR, namely the ample
set method that has been developed for non-probabilistic systems [33,25,34] in
the early 1990s and has been generalized to the probabilistic setting [6,15,5,23]
in the last few years. The rough idea of the ample set method is to assign to any
reachable state s of an MDP M an action-set ample(s) ⊆ Act(s) and to construct
a reduced system Mred that results by using the action-sets ample(s) instead of
Act(s). That is, starting from the initial states of M, one builds up Mred by
only applying ample transitions. The reduced system should be equivalent to
the original system in the desired sense, e.g., simulation equivalent or bisimula-
tion equivalent, etc. Depending on the desired equivalence the defined ample sets
have to fulfill certain conditions to ensure the equivalence. These equivalences
typically identify those paths whose traces (i.e., words obtained from the paths
by projection on the state labels) agree up to stuttering. In this context stut-
tering refers to the repetition of the same state labels. Two infinite paths π1, π2
are called stutter equivalent, denoted π1 ≡st π2, iff there exists an infinite word
A1A2A3 . . . over 2AP such that trace(π1), trace(π2) ∈ A+

1 A+
2 A+

3 An LT prop-
erty over AP is called stutter-invariant, if it cannot distinguish between stutter
equivalent paths, that is if for all stutter equivalent words ς1, ς2 ∈ (2AP)ω we have
that ς1 ∈ E if and only if ς2 ∈ E. An action α is called a stutter action if for each
states s, t with δ(s, α, t) > 0 it holds that L(s) = L(t). Given two MDPs M1,
M2 with the same set of atomic propositions AP then M1 and M2 are called
stutter-equivalent, denoted M1 ≡st M2, if for each scheduler U1 of M1 there
exists a scheduler U2 of M2 such PrU1

M1
(E) = PrU2

M2
(E) for all stutter-invariant

measurable LT-properties E ⊆ (2AP)ω, and vice versa.

Theorem 4 ([6] Ample set method for MDPs). M = (S, Act, δ, μ, AP, L)
be an MDP and ample : S → 2Act a function satisfying the conditions proposed
in [6]. Then, M ≡st Mred. Here, Mred denotes the reduced MDP that emanates
from the MDP M and the ample sets defined by the function ample.

POR and fairness. We will now explain treating strong and weak (process)
fairness in the context of partial order reduction for MDPs and stutter-invariant
linear-time properties. In particular, we will show that any ample set conditions
ensuring Theorem 4 are compatible with strong and weak LTL fairness con-
ditions and that the implementation of the partial order reduction in LiQuor
[4] (originally designed for nextfree LTL specifications and MDPs without fair-
ness) is adequate for reasoning about extremal probabilities for stutter-invariant
linear-time properties assuming strong or weak process fairness.

LTL fairness. We first observe that any fairness condition F = (SF ,WF),
where H, K ⊆ 2AP for all pairs (H, K) ∈ SF ∪ WF can be represented by a
nextfree LTL formula

ϕF =
∧

(H,K)∈SF
(�♦φH → �♦φK) ∧

∧
(H,K)∈WF

(♦�φH → �♦φK)

where, for J ⊆ 2AP, φJ denotes the formula
∨

A∈J ψA and, for A ⊆ AP, ψA is the
conjunction of the atomic propositions a ∈ A and the literals ¬a for a ∈ AP \A.

Quantitative Analysis under Fairness Constraints 145

A well-known result [30] ensures that each nextfree LTL formula, and therefore
F , describes a stutter-invariant LT-property.

Theorem 5. Let M = (S, Act, δ, μ, AP, L) be an MDP, F an LTL fairness
condition as above that uses only atomic propositions from AP and ample : S →
2Act a function that assigns an ample-set to all states such that M ≡st Mred.
Then, for each stutter-invariant measurable LT property E ⊆ (2AP)ω:

sup
U∈FairSchedM(F)

PrUM(E) = sup
U ′∈FairSchedMred (F)

PrU
′

Mred
(E)

Proof. “≥” is obvious as Mred is a sub-MDP of M. To show “≤” let U be
a fair scheduler of M. As M and Mred are stutter-equivalent there exists a
scheduler U ′ for Mred such that PrUM(E) = PrU

′
Mred

(E) for all stutter-invariants
measurable properties E. We have PrU

′
Mred

(F) = PrUM(F) = 1 as F describes
a stutter-invariant LT property over AP. Thus, U ′ is a fair scheduler of Mred

and moreover PrU
′

Mred
(E) = PrUM(E) for each stutter-invariant measurable LT

property E ⊆ (2AP)ω. �
Theorem 5 holds in the same way for the infimum instead of the supremum. It
shows that with respect to LTL fairness conditions, the POR with the ample set
conditions that are proposed in [6] is still applicable to fair quantitative model
checking against nextfree LTL specifications. A disadvantage of this approach is
that the atomic propositions from the fairness condition have to be taken into
account for the notion of a stutter action and can therefore lead to a reduced
MDP that is larger than the one obtained for the standard analysis (without
fairness) against the same formula.

Process fairness. We will show that the current realization of the partial
order reduction in the model checker LiQuor [4] – which has been designed for
nextfree LTL specifications without fairness – is compatible with strong and
weak process fairness in the sense that the extremal probabilities for stutter-
invariant linear-time properties in the original MDP M and the reduced MDP
Mred generated by LiQuor agree. According to the input language ProbMeLa of
LiQuor we consider a scenario of several probabilistic processes P1, . . . ,Pn that
are executed in parallel. Thus the set of actions Act of the resulting MDP is the
union of the set of actions Acti of the processesPi. (The action sets Act1, . . . , Actn
are supposed to be pairwise disjoint.) ProbMeLa [3] is a probabilistic variant of
ProMeLa [26] which relies on an imperative guarded command language with
Boolean guards that specify the enabledness of actions and a few probabilistic
features (like probabilistic choice and lossy channels). In order to show our claim
we now discuss the ample set conditions that have been implemented in LiQuor.

(A1) for all states s in Mred : ample(s) = Act(s) or ∃i : ample(s) = Acti(s) = {α},
where α is a stutter action and for all β ∈ ∪i�=jActj it holds that the execu-
tion of α does not change the variables that are relevant for the guard of β,
and vice versa.

(A2) Cycles s0s1 . . . sns0 inMred contain a state si such that ample(si) = Act(si).

The soundness of these conditions follows from the fact that these conditions
are stronger than the conditions presented in [6]. The exact conditions from [6]

146 C. Baier, M. Groesser, and F. Ciesinski

are not relevant for the purpose of this paper and are therefore omitted here.
In the sequel, we assume for each process Pi a fresh atomic proposition enabledi

that serves to characterize the states where at least one action of process Pi

(i.e., at least one action in Acti) is enabled. We assume that enabledi is not
contained in the original set AP and define AP′ = AP ∪ {enabledi : 1 ≤ i ≤ n}.
The labeling function of the MDP M is extended to a function L : S → 2AP′

by
enabledi ∈ L(s) iff Acti ∩ Act(s)
= ∅. The original set AP provides the atoms to
formalize the LT properties to be checked (e.g., by means of an LTL formula)
and yields the basis for the notion of the stutter equivalence and stutter actions,
while AP′ serves to formalize process fairness. More precisely, we suppose that
M posseses a fairness condition F = (SF ,WF) that imposes strong or weak
fairness for processes, that is, for all (H, K) ∈ SF ∪WF there is an index i such
that H = Enabledi and K = Acti where Enabledi denotes the set of all subsets A
of AP′ such that enabledi ∈ A. Such a pair describes strong (resp. weak) fairness
for process Pi such that if Pi’s actions are infinitely often (resp. continuously
from some moment) enabled then Pi performs infinitely many actions.
Theorem 6 (Soundness of (A1), (A2) for process fairness). Let M =
(S, Act, δ, μ, AP, L) be an MDP, F a process fairness condition as above and
ample : S → 2Act a function satisfying conditions (A1) and (A2). Let E ⊆ (2AP)ω

be a stutter-invariant measurable LT property. Then:

sup
U∈FairSchedM(F)

PrUM(E) = sup
U ′∈FairSchedMred (F)

PrU
′

Mred
(E)

Proof. As in the proof of Theorem 5, it is sufficient to show “≤”. Given a fair
scheduler U of M, we apply the construction of [6,23] to obtain a corresponding
scheduler Ured of Mred that yields the same probabilities for all stutter-invariant
LT-properties. We now show that this scheduler Ured is fair. The precise construc-
tion of such a scheduler Ured has been presented in [23]. We will sketch here only
the main ideas that are necessary for our argumentation. The construction of
Ured relies on an iterative approach where an infinite sequence U = U0,U1,U2, . . .
of schedulers for M is constructed such that U0, . . . ,Ui agree on all finite paths
of length < i. The scheduler Ured is then defined to be the “limit” of the sched-
ulers Ui. The transformations Ui � Ui+1 all rely on the same schema and we
will sketch here the transformation for a single U0-path into a set of stutter-
equivalent U1-paths. We will show that these U1-paths are fair w.r.t. F if π is
fair w.r.t. F .

Given a U0-path π = s0
α1−→ s1

α2−→ s2
α3−→ . . . of M, let n be the smallest

number such that αn ∈ ample(s). If no αi is an ample-action of s0, let n be ∞.
Suppose first that n is finite. If n = 1 (e.g., if ample(s0) = Act(s0)) then π stays
unchanged. If n > 1 then condition (A1) ensures that αn is enabled in each of
the states s1, . . . , sn−1. Indeed, assuming that {αn} = Actj(s0), for 1 ≤ i ≤ n−1,
αi /∈ Actj as ProbMeLa commands are executed consecutively. By (A1), the exe-
cution of the actions α1, . . . , αn−1 does not change the variables that are relevant
for the guard of αn. Hence, αn stays enabled in the states s1, . . . , sn−1. Moreover,
α1 is enabled in every αn-successor of s0 and we can switch from the action se-
quence α1 α2 . . . αn−1 αn to the action sequence αn α1 α2 . . . αn−1. Both action
sequences can be executed from state s0 and yield the same distribution over
the states that can be reached afterwards which leads to the following picture.

Quantitative Analysis under Fairness Constraints 147

s0 sn−1

αn

α1 α2 αn−2 αn−1

α1 α2

sn−2

sn
αn−2 αn−1

αn αn αn

s1

t0 t1 tn−2

We define U1 such that π1 = s0
αn−−→ t0

α1−→ . . .
αn−2−−−→ tn−2

αn−1−−−→ sn
αn+1−−−→

sn+1
αn+2−−−→ . . . is a U1-path. Let us now suppose that n = ∞. By similar argu-

ments, we define U1 such that π1 = s0
α−→ t0

α1−→ t1
α2−→ . . . is a U1-path, where

ample(s) = {α}. Moreover, U1 is defined in such a way that almost surely every
U1-path originates from a U0-path via such a transformation. In summary, given
a U-path π starting in state s0, the basic idea is to permute the first ample action
of s that occurs along π to the beginning of the action sequence of π. If no such
action exists, an arbitrary ample action of s is prepended to the action sequence
of π. This step is then repeated ad infinitum to yield a scheduler Ured of Mred.

Condition (A2) guarantees that each action of a U0-path π will almost surely
be eventually executed by the “corresponding” Ured-path πred. We therefore get
that almost-surely

inf(π) ∩ Act ⊆ inf(πred) ∩ Act. (1)

Moreover, we observe that if n
= ∞ in the above described transformation, then
π and π1 share a common suffix. Thus:

inf(π) = inf(π1). (2)

If n = ∞ and ample(s0) = Actj(s0) = {α} then

Acti(sk) = Acti(tk), for i
= j and k ≥ 0. (3)

Indeed, condition (A1) ensures that the execution of α does not change the
variables that are relevant for the execution of the actions β ∈ Acti for i
= j. As
each tk is an α-successor of sk, equation (3) follows.

Let (H, K) be a fairness constraint stating fairness for process P�, i.e., K =
Act� and H consists of all subsets A of AP′ such that enabled� ∈ A. Let π = s0

α1−→
s1

α2−→ s2
α3−→ . . . be a path in M. If inf(π) ∩ K
= ∅ then equation (1) ensures

that inf(πred)∩K
= ∅. Now assume that inf(π)∩K = ∅ and inf(π)∩H = ∅. If in
the above described transformation from π to π1, the index n is equal to ∞ then
the chosen ample action α is not in Act�. Otherwise by (A1) α would be enabled
in each state sk for k ≥ 0 (see the above picture), but then inf(π)∩H
= ∅ which
contradicts our assumption. Hence, if n = ∞, the chosen ample action is in some
Actj with j
= � and equation (3) ensures that Act�(sk) = Act�(tk) for k ≥ 0.

Altogether, equations (2) and (3) ensure that (inf(π)∩K = ∅ ∧ inf(π)∩H = ∅)
implies that inf(π1)∩H = ∅. Condition (A2) then ensures that almost surely U-
paths π with π $sfair (H, K) are transformed into Ured-paths πred with πred $sfair

(H, K). With similar arguments, we get that U-paths π with π $wfair (H, K)
transformed into Ured-paths πred with πred $wfair (H, K). We conclude that for a
fair scheduler U of M, the scheduler Ured of Mred is also fair. �

148 C. Baier, M. Groesser, and F. Ciesinski

Note that in Theorem 6 the auxiliary atomic propositions enabledi were only
needed to formalize the fairness constraints, but they do not have to be taken
into account for the construction of the reduced MDP, i.e., they are not used in
the definition of stutter actions which is used in condition (A1).

5 Conclusion

In this paper we presented a solution to an important and so far unaddressed
question in the context of calculating extremal probabilities for a Markov deci-
sion process satisfying a linear time property, namely the question of efficiently
treating strong and weak fairness conditions. The presented approach increases
the complexity only linear in the number of fairness constraints. It relies on a
combination of ideas used in fair CTL model checking or checking emptiness
for Streett automata with the concept of end components that yield the basis to
reasoning about the limiting behavior of MDPs. We integrated algorithm 1 (page
142) in the model checker LiQuor [11] and analysed its performace in practise.
The results suggest (see table below) that the use of process fairness (weak or
strong) does not add a significant amount of time to the calculation times.

MDP building LP building (calculating the set FMEC)
N #states #transitions build #max.ECs #states in FMEC unfair weak strong
(a) Randomized Gossiping, without Partial Order Reduction
3 4015 5298 0.9s 321 3546 1.5s 1.7s 1.7s
4 488902 661307 4.4s 3438 353532 14.3s 16.7s 18.9s
5 n.a. n.a n.a. n.a. n.a. n.a. n.a. n.a.
(b) Randomized Gossiping, reduced with partial order reduction
3 403 488 0.6s 22 402 0.7s 0.8s 0.8s
4 4424 5380 1.3s 378 3652 1.9s 2.3s 2.9s
5 74485 90998 1.4s 3470 58372 2s 3.1s 4.7s
(c) Randomized Distributed Mutex protocol
4 5535 25080 0.3s 1 5535 0.1s 0.2s 1s
5 47675 277820 3.1s 1 47675 0.5s 1.3s 2.4s
6 411255 2875896 37.5s 1 411255 5.6s 6.2s 8.6s
(d) Randomized Distributed Mutex protocol with partial order red.
5 46046 180831 2.6s 1 46046 1.1s 1.5s 2.4s
6 385238 1625928 28.9s 1 385238 4.8s 6.1s 7.5s
7 3013345 15536978 330.3s 1 3013345 54.3s 106.2s 122.6s

For illustration we present results for two models: a version of the random-
ized gossiping protocol (a)-(b), see, [10] and a variant of the randomized din-
ing philosophers [32] we called randomized distributed mutex protocol (c)-(d).
Column N denotes the number of processes. Both models represent two typi-
cal classes of models that are interesting in our context and were modelled in
ProbMeLa. The first model contains many small maximal end components that
have to be analysed seperately by the algorithm while the second model always
consists of one maximal end component. The results indicate that even com-
plex fairness conditions (e.g., strong fairness conditions that involve a fairness
constraints for each process) can be handled efficiently in practise using the ap-
proach presented here. It is worth noting that due to the fact that models (c) and

Quantitative Analysis under Fairness Constraints 149

(d) contain only one maximal end component the algorithm terminates early for
the whole scenario, since only a single accepting fair subcomponent needs to be
found.

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:
An International Journal 15(1), 7–48 (1999)

2. Arons, T., Pnueli, A., Zuck, L.: Parameterized verification by probabilistic
abstraction. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 87–102.
Springer, Heidelberg (2003)

3. Baier, C., Ciesinski, F., Größer, M.: Probmela: a modeling language for communi-
cating probabilistic systems. In: Proc. MEMOCODE (2004)

4. Baier, C., Ciesinski, F., Grösser, M., Klein, J.: Reduction techniques for model
checking markov decision processes. In: Proc.QEST 2008. IEEE CS Press, Los
Alamitos (2008)

5. Baier, C., D’Argenio, P., Größer, M.: Partial order reduction for probabilistic
branching time. In: Proc. QAPL. ENTCS, vol. 153(2) (2006)

6. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: Proc. QEST 2004. IEEE CS Press, Los Alamitos (2004)

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

8. Baier, C., Kwiatkoswka, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11(3) (1998)

9. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026. Springer,
Heidelberg (1995)

10. Chrobak, M., Gasieniec, L., Rytter, W.: A randomized algorithm for gossiping
in radio networks. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, p. 483.
Springer, Heidelberg (2001)

11. Ciesinski, F., Baier, C.: LiQuor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proc. QEST 2007. IEEE CS Press, Los Alamitos
(2007)

12. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM TOPLAS 8(2) (1986)

13. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4) (1995)

15. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: Proc. QEST 2004. IEEE CS Press, Los Alamitos (2004)

16. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis (1997)
17. de Alfaro, L.: Stochastic transition systems. In: Sangiorgi, D., de Simone, R. (eds.)

CONCUR 1998. LNCS, vol. 1466, pp. 423–438. Springer, Heidelberg (1998)
18. de Alfaro, L.: From fairness to chance. In: Proc. PROBMIV. ENTCS, vol. 22 (1999)
19. Dijkstra, E.W.: Guarded commands, non-determinacy and the formal derivation

of programs. Comm. ACM 18 (1975)
20. Allen Emerson, E., Lei, C.-L.: Modalities for model checking: branching time logic

strikes back. Sci. Comput. Program 8(3) (1987)
21. Francez, N.: Fairness. Springer, Heidelberg (1986)
22. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.

LNCS, vol. 2500. Springer, Heidelberg (2002)
23. Größer, M.: Reduction Methods for Probabilistic Model Checking. PhD thesis

(2008)

150 C. Baier, M. Groesser, and F. Ciesinski

24. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs.
ACM TOPLAS 5(3) (1983)

25. Holzmann, G., Peled, D.: An improvement in formal verification. In: Proc. FORTE.
Chapman & Hall, Boca Raton (1994)

26. Holzmann, G.: The model checker SPIN. Software Engineering 23(5) (1997)
27. Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic

omega-automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783,
pp. 51–61. Springer, Heidelberg (2007)

28. Kwiatkowska, M.: Survey of fairness notions. Inf. and Softw.Techn. 31(7) (1989)
29. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model

checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, p. 200. Springer, Heidelberg (2002)

30. Lamport, L.: Specifying concurrent program modules. TOPLAS 5(2) (1983)
31. Lehmann, D., Pnueli, A., Stavi, J.: Impartiality, justice and fairness: the ethics of

concurrent termination. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115,
Springer, Heidelberg (1981)

32. Lehmann, D., Rabin, M.O.: On the advantage of free choice: A symmetric and fully
distributed solution to the Dining Philosophers problem (extended abstract). In:
Proc. POPL (1981)

33. Peled, D.: All from one, one for all: On model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)

34. Peled, D.: Partial order reduction: Linear and branching time logics and process
algebras. In: Partial Order Methods in Verification, DIMACS, vol. 29(10) (1997)

35. Pnueli, A., Zuck, L.: Probabilistic verification. Information and Computa-
tion 103(1) (March 1993)

36. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York (1994)

37. Rosier, L.E., Yen, H.C.: On the complexity of deciding fair termination of proba-
bilistic concurrent finite-state programs. Theoretical Computer Science (1988)

38. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Heidelberg (2003)

39. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.
In: Proc. FOCS (1985)

A Decompositional Proof Scheme for Automated

Convergence Proofs of Stochastic Hybrid
Systems�

Jens Oehlerking and Oliver Theel

Department of Computer Science
University of Oldenburg
26111 Oldenburg, Germany

{jens.oehlerking,oliver.theel}@informatik.uni-oldenburg.de

Abstract. In this paper, we describe a decompositional approach to
convergence proofs for stochastic hybrid systems given as probabilistic
hybrid automata. We focus on a concept called “stability in probability,”
which implies convergence of almost all trajectories of the stochastic
hybrid system to a designated equilibrium point. By adapting classical
Lyapunov function results to the stochastic hybrid case, we show how
automatic stability proofs for such systems can be obtained with the
help of numerical tools. To ease the load on the numerical solvers and to
permit incremental construction of stable systems, we then propose an
automatable Lyapunov-based decompositional framework for stochastic
stability proofs. This framework allows conducting sub-proofs separately
for different parts of the automaton, such that they still yield a proof for
the entire system. Finally, we give an outline on how these decomposition
results can be applied to conduct quantitative probabilistic convergence
analysis, i.e., determining convergence probabilities below 1.

1 Introduction

During the previous decade, there has been significant progress in the field of
automated stability proofs for feedback control systems. Most importantly, meth-
ods for the automatic computation of Lyapunov functions, serving as certificates
of the stability property, have been developed [1,2,3,4]. A Lyapunov function can
be seen as a type of generalized “energy function,” ensuring that a system always
makes some sort of progress while converging toward a desired equilibrium state.
Central tools in this context are semidefinite programming (SDP) solvers, which
numerically solve the constraint systems arising in Lyapunov function computa-
tion. These methods are, in theory, applicable to purely discrete-time (given as
difference equations/inclusions or automata), purely continuous-time (given as
differential equations/inclusions), and hybrid systems (given as a combination

� This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14/2 AVACS), www.avacs.org

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 151–165, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

152 J. Oehlerking and O. Theel

of both). In the hybrid domain, the presence of both complex discrete structures
and continuous dynamics given by differential equations makes the problem hard
to solve in practice. In particular, the presence of complex discrete structures
(i.e., large and irregular automata) often leads to problems with the numerical
solvers: badly conditioned problems, rounding errors, and inaccuracies caused
by the optimization algorithms themselves. Furthermore, it is difficult to de-
sign a stable hybrid system with complex discrete behavior, as existing analysis
methods are only applicable to a complete model of the system. Consequently,
they are of only limited help during the design process. Therefore, it is useful
to decompose the problem of identifying a suitable Lyapunov function into SDP
problems that are as small as possible, while still being able to conduct a conver-
gence proof of the entire system. Apart from a decreased load on the numerical
solver, arguments on parts of the hybrid system can be useful for successfully
designing a system with the desired convergence property.

This paper extends the classes of hybrid systems that can be dealt with ef-
ficiently, by proposing such a decompositional approach for probabilistic hybrid
automata, i.e., systems that contain probabilistic Markovian transitions between
the discrete modes. We presented an automatable decompositional framework
for systems without stochastic behavior in [5]. Here, we mainly focus on qualita-
tive (“does a system converge with probability 1?”) stability analysis, but also
discuss the applicability of the results to quantitative (“with which probability
is the system guaranteed to converge?”) stability analysis. The result is an au-
tomatable decompositional framework allowing for the SDP-based computation
of Lyapunov functions for the probabilistic case. As it turns out, probabilistic
hybrid automata actually sometimes permit a stronger decomposition than their
non-probabilistic counterparts. Furthermore, these results are also, to a certain
extent, applicable to systems with stochastic differential equations instead of
plain differential equations defining the continuous dynamics.

The paper is structured as follows: In Section 2, we formally define a proba-
bilistic hybrid system model and probabilistic stability properties. Section 3 then
states non-decompositional Lyapunov theorems that can be used to prove conver-
gence, and details the computational procedure for computing such functions.
In Section 4, we give decompositional techniques based on the computational
method, yielding several theorems that allow the construction of a convergence
proof from separate local computations. Section 5 shows the decomposition of
a convergence proof for an example automaton. In Section 6, we discuss the ex-
ptension of these results for quantitative convergence analysis, i.e., for deriving
stabilization properties that lie below probability 1. We then conclude in Section
7 with a discussion of the implications of our results.

2 Probabilistic Hybrid Systems

The system model we use in this paper is given next. It consists of standard hybrid
automata, augmented with discrete probabilistic experiments tied to the discrete
transitions. Whenever a transition is taken, we give a probability distribution over

A Decompositional Proof Scheme for Automated Convergence Proofs 153

possible discrete successor states. Furthermore, we allow for differential inclusions
in the mode dynamics instead of just differential equations.

Definition 1 (Probabilistic Hybrid Automaton). Define Dn as the set
of all n-dimensional, nonempty, convex, closed, and upper semicontinuous dif-
ferential inclusions ẋ ∈ F (x) on some state space S. Here, F (x) is a set-
valued function mapping each x onto a set of possible values for the vector field
direction ẋ.

A hybrid automaton H is a tuple (M,S, T ,Flow, Inv, Init), where

– M is a finite set of modes
– S = Rn is the continuous state space
– T is a set of mode transitions given as tuples (m,Target, G,Update), where

• m ∈ M is the source mode
• Target : M → [0, 1],

∑
m∈M Target(m) = 1 is the target mode mapping

• G ⊆ S is the guard set
• Update : S → P(S) is the update function for the continuous state

– Flow : M → Dn is the flow function, mapping each mode onto a continuous
evolution given as differential inclusion

– Inv : M → P(S) is the invariant function, mapping each mode onto a closed
subset of the continuous state space

– Init ⊆ M × S is the set of combinations of initial discrete and continuous
states

Hybrid automata are finite automata where each node corresponds to a mode of
the hybrid system and is labelled with a corresponding differential inclusion via
the Flow function (see Figure 1). The continuous state must evolve according
to this differential inclusion whenever the system is in this mode. Also, via Inv,
each mode has an associated invariant set. A system may only stay in mode
m if the current discrete state x(t) ∈ S is in Inv(m). Note that systems with
only differential equations in the modes, instead of differential inclusions, are
obtained by letting the F (x) be singular sets.

Discrete transitions are driven by the following semantics: whenever the con-
tinuous state x(t) reaches a guard set G of a mode transition with current mode
m as source mode, the transition can be taken. As soon as the invariant set
Inv(m) of the current mode m is left, m must be left immediately, i.e., some
applicable transition must be taken. If this is not possible, then we will not
consider the solution segment with respect to stability. These semantics permit
non-deterministic switching in the sense that transitions can be specified to oc-
cur somewhere in a certain range of states. Whenever a transition is taken, the
function Update is applied to the continuous state, and a new mode is chosen,
based on the probability distribution given by Target.

Definition 2 (Trajectory). A trajectory is a solution x(t) for the hybrid au-
tomaton, considering only the evolution of the continuous state x ∈ S. We only
consider infinite, non-zeno solutions, i.e., x(t) must be defined for all t > 0.1 If
1 Finite solution segments can for instance occur if some invariant set is left, but no
outgoing transition can be taken.

154 J. Oehlerking and O. Theel

Flow(m1)
Inv(m1)

m1
G ∧Update

Flow(m2)
Inv(m2)

Flow(m3)
Inv(m3)

m2

m3

p1 = Target(m1)

p2 = Target(m2)

Fig. 1. Graphical representation of probabilistic hybrid automata

discrete updates of the continuous variables occur via Update functions at time
t, then we consider x(t) as the state after all such updates. Similarly, m(t) is
the discrete mode at time t. The (finite or infinite) mode sequence (mi) lists all
modes visited by a trajectory, in order.

The stability notion used in this paper is global asymptotic stability in probability.
Informally, this term implies that each trajectory converges to an equilibrium
point with probability 1, for all resolutions of possible non-determinism. Fur-
thermore, a property similar to Lyapunov stability for the stochastic case is
implied. Stronger stability definitions (e.g., almost sure stability), exist in the
literature, but we chose global asymptotic stability in probability for two rea-
sons: 1) it already implies convergence with probability 1, and 2) it blends in
nicely with Lyapunov theory and allows the direct use of automatic Lyapunov
function computation methods.

Definition 3 (Global Asymptotic Stability in Probability). A probabilis-
tic hybrid automaton H is globally stable in probability wrt. an equilibrium state
xe if for all trajectories x(t) of H

∀ε, ε′ > 0 ∃δ > 0 : ||x(0) − xe|| < δ ⇒ P (∃t : ||x(t) − xe|| > ε′) < ε

and globally attractive in probability (GA-P) if for all trajectories x(t) of H

P (lim
t→∞x(t) = xe) = 1,

where 0 is the origin of Rn. A system that is both globally stable in probability
and globally attractive in probability is called globally asymptotically stable in
probability (GAS-P).

3 Lyapunov Functions for Probabilistic Systems

Lyapunov functions are a central tool for proving stability properties for various
kinds of dynamic systems. In the following, we present a theorem implying that
the existence of a Lyapunov function whose value is expected to decrease at all
time instants is sufficient for proving GAS-P for probabilistic hybrid automata.

A Decompositional Proof Scheme for Automated Convergence Proofs 155

Whenever a discrete transition is taken, it is permissible that the Lyapunov
function increases, as long as this is not the expected behavior in the long run.
Note that Lyapunov function computation, without loss of generality, assumes
that the equilibrium of the system lies at the origin of the continuous state space.
If one wants to show GAS-P wrt. some other equilibrium state, the system can
be “shifted” accordingly.

Definition 4 (Definiteness). A function f : S → R, S ⊆ Rn is called pos-
itive semidefinite, if for all x ∈ S : f(x) ≥ 0, and positive definite, if it is
positive semidefinite and f(x) = 0 ⇔ x = 0. A function f is called negative
(semi)definite, if −f is positive (semi)definite. A function f : Rn → R is called
positive (semi)definite on a set S ⊂ Rn, if the restricted function f|S is positive
(semi)definite. This definition extends to negative (semi)definiteness accordingly.

Theorem 1 (Discontinuous Lyapunov Functions for Probabilistic Hy-
brid Systems). Let H be a probabilistic hybrid automaton. If for each m ∈ M
there exists a continuously differentiable function Vm : S → R such that

(1) Vm(x) − α||x|| is positive definite on Inv(m) for some α > 0,
(2) V̇m(x) := sup

{
dVm

dx f(x)
∣∣ f(x) ∈ Fm(x)

}
is negative definite on Inv(m), where

Fm is the right hand side of the differential inclusion Flow(m),
(3) for each mode transition (m1,Target, G,Update) ∈ T :

x ∈ G ⇒ Vm1(x) −
∑

m∈M Target(m) · Vm(Update(x)) ≥ 0,
(4) for all m : Vm(x) → ∞ as ||x|| → ∞,

then H is GAS-P wrt. the equilibrium 0. The function Vm is called the local
Lyapunov function (LLF) of H for mode m. The family of the Vm,m ∈ M is
called the global (discontinuous) Lyapunov function (GLF) of H.

Proof. Let x(t) be a trajectory of H with switching times ti and associated mode
sequence (mi). For ease of notation define W (t) := V (x(t)).
Attractivity: Per definition of the semantics for probabilistic hybrid automata
and condition (2), for all ti+1 ≥ t ≥ ti the following holds:

W (t) = W (ti) +
∫ t

ti

Ẇ (τ)dτ ≤ W (ti).

This, together with condition (3), implies that, for all t ≥ 0,

E(W (t)) = W (0) + E

(∑
i

∫ ti+1

ti

Ẇ (τ)dτ

)
+ E

(∑
i

Δi

)
≤ W (0),

where Δi = Vmi(x(ti)) − Vmi+1(Update(x(ti))). Therefore, for all t ≥ s ≥ 0, we
obtain

E(W (t) | {W (τ) | τ ≤ s}) ≤ W (s),

156 J. Oehlerking and O. Theel

i.e., W (t) is a supermartingale2[6, p. 474]. Furthermore,

0 ≤ E(W (t)) = W (0) + E

(∑
i

∫ ti+1

ti

Ẇ (τ)dτ

)
+ E

(∑
i

Δi

)
≤ W (0) < ∞.

Therefore, E(|W (t)|) = E(W (t)) < ∞ for all t ≥ 0 and Doob’s martingale
convergence theorem [6, p. 505] can be applied, giving us

P (∃x0 : lim
t→∞W (t) = x0) = 1.

Condition (2) implies that x0 = 0, therefore,

P (limt→∞W (t) = 0) = 1,

and per conditions (1) and (4),

P (limt→∞x(t) = 0) = 1.

Stability: Since W (t) is a supermartingale, the following inequality holds for all
ε̃ > 0:

P (∃t : W (t) ≥ ε̃) ≤ W (0)/ε̃.

Let ε, ε′ > 0. Choose 0 < ε̃ < min{ε′, 1/ε}. Then

P (∃t : W (t) > ε′) < ε ·W (0).

Set δ := inf{||x|| |Vm(x) ≥ 1,m ∈ M} > 0, then ||x(0)|| < δ implies that

P (∃t : V (x(t)) > ε′) < ε,

and therefore, per condition (1)

P (∃t : ||x(t)|| > ε′) < ε.

This theorem can also be adapted to the case where the differential inclusions
per mode are replaced by stochastic differential equations ẋ = f(x, σ). In this
case, condition (2) can be replaced by

(2’) E
(

dVm

dx f(x, σ)
)

= dVm

dx E(f(x, σ)) is negative definite on Inv(m)

For non-hybrid systems, a proof outline for this case based on results by Kushner
[7] can be found in [8]. For the hybrid case, it can be combined with the proof
for Theorem 1 to accommodate for stochastic differential equations in hybrid
systems.

For linear dynamics and quadratic Lyapunov function candidates of the form
V (x) = xTPx, P ∈ Rn × Rn, the conditions (1) to (4) can directly be mapped
onto a linear matrix inequality (LMI) problem [9], which in turn can be solved
2 Supermartingales are stochastic processes for which, given an evolution to time s,
the expected value at time t ≥ s is never higher than the value at time s.

A Decompositional Proof Scheme for Automated Convergence Proofs 157

automatically with nonlinear optimization techniques [10]. The solution of such
an LMI problem consists of valuations of the entries of P and some auxiliary vari-
ables μi

m, νi
m, and ηi

e that are used to express the invariants and guards through
the so-called S-procedure [10]. Invariants are encoded through an arbitrary num-
ber of matrices Qi

m per mode m that satisfy x ∈ Inv(m) ⇒ xTQi
mx ≥ 0. The

same applies to the guard sets G and the matrices Ri
e. The S-procedure always

results in correct over-approximations of invariant and guard sets, although it
can be conservative [2]. Denote “xTPx is positive semidefinite” as “P ' 0”.
Assume the dynamics for each mode m are given as the conic hull of a family
of linear dynamics, i.e., ẋ ∈ cone {Am,1x, . . . , Am,kx}. Then, the associated LMI
problem looks as follows.

Theorem 2 (LMI Formulation). If the following LMI problem has a solu-
tion, then the system is GAS-P wrt. 0:

Find Pm ∈ Rn × Rn, α > 0, μi
m ≥ 0, νi

m ≥ 0, ηi
e ≥ 0, such that

for each mode m: Pm −
∑

i

μi
mQi

m − αI ' 0 (1)

for each mode m and each j: −AT
m,jP − PAm,j −

∑
i

νi
mQi

m − αI ' 0 (2)

for each transition e and each target mode m′ with Target(m′) > 0:

Pm −
∑
m′

Target(m′) · Pm′ −
∑

i

ηi
eR

i
e ' 0 (3)

Conditions (1) to (3) directly map onto the same conditions of Theorem 1.
Condition (4) of Theorem 1 is already satisfied through the use of quadratic
function templates. If the system dynamics are not linear or a non-quadratic
Lyapunov function candidate is needed, then the sums-of-squares decomposition
[3] can be applied to transform the constraints into an LMI problem.

LMI problems are a representation of semidefinite programming (SDP) prob-
lems, which in turn form a special class of convex optimization problems [10]
that can be solved with dedicated software, e.g., CSDP [11] or SeDuMi [12]. The
result of the computation – if it is successful – yields valuations of the matrix
variables Pm, and thereby a suitable discontinuous Lyapunov function, complet-
ing the stability proof. If no positive result is obtained, then no conclusion about
the stability or instability of the system can be drawn, and it is not easy to iden-
tify the cause of the problem. It is possible that the system is indeed unstable, or
that a different Lyapunov function parameterization (for instance applying the
sums-of-squares decomposition [3]) or a different hybrid automaton representa-
tion of the system might allow for a solution to the LMI problem. Moreover, the
computation might simply fail for numerical reasons, despite the existence of a
Lyapunov function. These problems are more likely to occur, the larger the LMI
problem grows, i.e., the more complex the hybrid automaton is.

For this reason, we next turn to decompositional proofs of GAS-P, keeping the
LMI problems comparatively small, and in case of failure, giving constructive in-
formation about the part of the hybrid automaton that is most likely responsible

158 J. Oehlerking and O. Theel

for the failure. Furthermore, decomposition can also be turned into composition,
in the sense that a stable hybrid automaton can be designed step by step, by
solving LMI problems for the different sub-automata. These sub-automata can
then be composed according to the results in the next section, yielding a new
stable automaton.

4 Decompositional Computation of Lyapunov Functions

This section deals with automaton-based decomposition of stability proofs, as
opposed to techniques like the composition of input-to-state stable systems [4],
which work on the continuous state space. The hybrid automaton is divided
into sub-automata, for which LMI problems can either be solved completely
independently, or sequentially, but with some information being passed from one
computation to the next. In contrast to the non-stochastic setting covered in [5],
it turned out that stochastic stability proofs allow for stronger decompositional
results, which exploit the knowledge of transition properties. The different levels
of decomposition are outlined in the following.

The decompositions take place on the graph structure defined by the automa-
ton. Hence, we will apply graph-theoretic terms to the automaton by viewing
the automaton as a hypergraph with some labels. The modes in the hybrid au-
tomaton are therefore sometimes referred to as nodes, and the transitions as
hyperedges. Since one hybrid system can be represented by different hybrid au-
tomata with potentially different graph structures, some representations of the
system might be more amenable to decomposition than others.

The first level of decomposition concerns the strongly connected components
of the hybrid automaton.

Definition 5 (Strongly Connected Components). A strongly connected
component (SCC) of a hypergraph is a maximal subgraph G, such that each node
in G is reachable from each other node.

Note that, here, reachability is exclusively based on the graph structure: con-
tinuous dynamics, invariants, and guards are not taken into account. It is well
known that every node of a hypergraph belongs to exactly one SCC, and that the
reachability relation between the SCCs of a hypergraph forms an acyclic graph
structure. This property can be exploited to allow for completely independent
Lyapunov function computation for the SCCs of a hybrid automaton.

Theorem 3 (Decomposition into Strongly Connected Components).
Let H be a probabilistic hybrid automaton. If all sub-automata pertaining to the
SCC of H are GAS-P wrt. 0, then so is H.

The consequence of this theorem is that LMI problems as per Theorem 2 can be
solved locally for each SCC, still yielding a proof of GAS-P for the entire system.
The proof is a variant of the proof for non-probabilistic hybrid automata stated
in [5]. The following corollary is a consequence of this property.

A Decompositional Proof Scheme for Automated Convergence Proofs 159

Corollary 1 (Multiple Equilibria). If all SCCs of probabilistic hybrid au-
tomaton H are GA-P, but with respect to different equilibrium states, then each
trajectory of H will converge to one of these states with probability 1.

The second level of decomposition concerns cycles within an SCC and is also
described in detail for non-probabilistic systems in [5]. Since it is based on the
decompositional properties of Lyapunov functions, and not on the system itself,
the result applies to both non-probabilistic and probabilistic hybrid automata.
Therefore, we only give a brief summary of the decomposition technique.

These results are based on a theorem that allows the decomposition of LMI
computations within an SCC. Consider an automaton consisting of two sub-
graphs C1 and C2, which overlap in exactly one node b (see Figure 2(a)). Again,
LMI computations can be conducted separately for C1 and C2. However, the
computations are not completely independent, but a conic predicate given by a
family of local Lyapunov functions Vbi for b is used to “connect” the two Lya-
punov function computations for C1 and C2. First, a local LMI problem is solved
for C1, computing the Vbi (see Figure 2(b)). These Vbi have the property that,
whenever the LLF for node b in a GLF for C2 is a conic combination of the Vbi ,
there exists a GLF for the entire system comprising both subgraphs. Therefore,
this requirement on the LLF of b is added as an additional constraint to the LMI
for C2 (see Figure 2(c)). If there is a solution to this second local LMI problem,
then the system is GAS-P. The probabilistic version of this theorem is given
next. Again, a straightforward modification of the proof from [5] yields a variant
for the probabilistic case.

Theorem 4 (Decomposition inside an SCC). Let H be a probabilistic hy-
brid automaton consisting of two subgraphs C1 and C2 with a single common
node b. Let b, n1, . . . , nj be the nodes of C1 and b,m1, . . . ,mk be the nodes of
C2. Let each Vb1 , . . . , Vbm be a LLF for b belonging to a GLF Vbi , V

i
n1

, . . . , V i
nj

for the entire subgraph C1. If there exists a GLF Vb, Vm1 , . . . , Vmk
for subgraph

C2 with ∃λ1, . . . , λm > 0 : Vb =
∑

i λiVbi , then H is GAS-P wrt. 0.

We employ this theorem for cycle-based decomposition of the stability proof
within an SCC. In a slight abuse of terminology, we will use the term “cycle”
for the graphs generated by a cyclic path, as defined below.

bn1

n2

n3

C1 C2

m1

m2

m3

(a) Two cycles

bn1

n2

n3

C1

Vbi

(b) Computation of
the Vbi for C1

b C2

m1

m2

m3

Vbi

(c) Computation for
C2, using the Vbi

Fig. 2. Decomposition with separate computations for subgraphs C1 and C2

160 J. Oehlerking and O. Theel

Definition 6 (Cycle). A cycle of a hypergraph G is a subgraph G′, such that
there exists a closed path in G, covering all edges and nodes of G′. A cycle C is
simple, if there exists such a path that only traverses each node once.

Since each node inside an SCC is part of at least one simple cycle, this theorem
allows for local LMI computations on a per-cycle basis. While solving the LMI
problem for a cycle C, one can already compute adequate Vbi , which are then
taken into account for other cycles that intersect with C. Note, that this decom-
position is in general conservative, i.e., some Lyapunov functions are lost in the
computation of the Vbi . It is, however, possible to approximate the real set of
existing Lyapunov functions of the chosen parameterization arbitrarily close by
increasing the number of computed Vbi .

The previous two results stem from analysis of stability properties for non-
probabilistic systems. We will now show another decompositional property that
is only applicable to probabilistic hybrid automata. However, this decomposi-
tion will only preserve global attractivity in probability (GA-P), as opposed to
global asymptotic stability in probability (GAS-P). Since attractivity (that is,
convergence to the equilibrium) is usually the more interesting property, this is
still a useful result.

If the automaton has certain local graph structures, then Lyapunov func-
tions can sometimes be computed completely independently per mode, while still
allowing for a proof of global attractivity in probability.

We first define finiteness in probability, a property of individual cycles. In-
formally, this property means that, with probability 1, it is only possible for a
trajectory to traverse the cycle finitely long until the cycle is either not entered
again or the trajectory ends up in a mode of the cycle which is not left any more.

Definition 7 (Finiteness in Probability). A cycle C with node set VC in a
probabilistic hybrid automaton H is called finite in probability if for all trajec-
tories of H with infinite mode sequences (mi) the property P (∃m ∈ VC ∃i0 ∀i ≥
i0 : mi
= m) = 1 holds.

Finiteness in probability is a property that can often be derived directly from
the graph structure, as stated by the following theorem (see also Figure 3).

Lemma 1 (Criterion for Finite in Probability Cycles). Let C be a cycle
in a probabilistic hybrid automaton H. If at least one edge in C belongs to a
hyperedge e, such that there exists a mode m with Targete(m) > 0 belonging to
a different SCC, then C is finite in probability.

Proof. Let (mi) be an infinite mode sequence belonging to a trajectory of H. Let
m̃ be the source mode of edge e. Show that P (∃i0 ∀i ≥ i0 : mi
= m̃) = 1.

Proof by contradiction. Assume that P (∀i0 ∃i ≥ i0 : mi = m̃) > 0. Since
edge e branches to another SCC with probability p > 0, this implies that 0 =∏∞

i=1(1 − p) ≥ P (∀i0 ∃i ≥ i0 : mi = m̃) > 0, which is a contradiction.

The consequence of this property for stability verification is as follows. A cycle
that is finite in probability does not need to be mapped onto one LMI problem

A Decompositional Proof Scheme for Automated Convergence Proofs 161

Flow(m1)
Inv(m1)

m1

Flow(m2)
Inv(m2)

m2

G1 ∧Update1

G2 ∧Update2

Flow(m3)
Inv(m3)

Target2(m3) > 0

m3

Fig. 3. Finite in probability cycle consisting of m1 and m2

for the entire cycle. Instead, it is sufficient to provide a local Lyapunov function
for each mode of the cycle, with no constraints spanning several modes. The
existence of such local Lyapunov functions ensures that the system will always
stabilize, in case a trajectory “gets stuck in a mode”. If it does not get stuck, then
finiteness in probability ensures that the cycle is eventually left with probability
1. The following lemma breaks GA-P down into a probability on the cycles of
the system and will be used to prove the decomposition theorem.

Lemma 2 (GA-P and Finite in Probability Cycles). Let H be a prob-
abilistic hybrid automaton. If for each cycle C of H one of the following two
conditions holds, then H is GA-P wrt. 0:

(1) C is finite in probability and for each m ∈ C there exists a LLF Vm, or
(2) there exists a GLF for C

Proof. Case 1, (mi) is finite: Let mn be the final element of (mi). There either
exists a LLF Vmn for mn per condition (1), or per condition (2) as part of a
GLF. Therefore, x(t) → ∞.
Case 2, (mi) is infinite: Since (mi) only contains modes belonging to a finite
number of SCC C1, . . . , Cm, Cm cannot contain any finite in probability cycles.
Therefore, per condition (2), there exists a GLF for Cm (which can be covered
by a cycle) and therefore Cm is GA-P.

By itself, this result is of limited use, because all cycles of the hybrid automaton
need to be considered. However, it is used to prove the following theorem, which
allows a further decomposition. It implies that nodes lying only on finite in
probability simple cycles can be treated completely separately within an SCC.

Theorem 5 (Decomposition of Lyapunov Functions within an SCC).
Let C be an SCC of a probabilistic hybrid automaton. Let N be the set of modes
that lie only on finite in probability simple cycles. Let C′ be the hybrid automaton
obtained by removing the modes of N and all incident transitions from C. If the
following two conditions both hold, then C is GA-P wrt. 0:

162 J. Oehlerking and O. Theel

(1) for each m ∈ N there exists a LLF Vm, and
(2) there exists a GLF for C′

Proof. We show that the prerequisites of Lemma 2 are always satisfied. Let D be
a cycle in C as required by Lemma 2. There are three cases:
Case 1, D is simple and finite in probability: there exists a LLF for each node
of D, either per condition (1) or as part of a GLF per condition (2). Therefore,
condition (1) of Lemma 2 is satisfied for D.
Case 2, D is not simple, but finite in probability: D can be broken down into a
family D1, . . . , Dn of simple cycles. For each node in a Di, there exists a LLF
either per condition (1) or condition (2), and therefore for all nodes in D.
Case 3, D is not finite in probability: D cannot contain any simple subcycles that
are finite in probability. Therefore, D is a subgraph of C′, and a GLF exists for
D per condition (2), implying condition (2) of Lemma 2.

To check whether a node is in N or not, an enumeration of only the simple
cycles of the automaton is necessary. The result is, that nodes in N can each
be treated separately, since they only require the existence of a local Lyapunov
function. Once a LLF is found, they can be removed from the automaton, and
the cycle-based decomposition procedure from Theorem 4 can be applied to the
remainder of the SCC. Next, we will apply these decomposition results to an
example automaton.

5 Example

As an example, we present a simple cruise controller system with a probabilistic
transition (see Figure 4). The variable v models the difference between actual
speed and desired speed v0 (i.e., the system dynamics are shifted, such that
v = 0 is the desired speed), and a models the acceleration. Mode A1 represents
a saturation, enforcing a maximum acceleration, while mode A2 is the standard
acceleration/deceleration mode that is active whenever a is below the satura-
tion level and v is close to 0. B1 and B2 represent two different service brake
modes, modeling different brake dynamics that are chosen probabilistically with
probabilities p1 > 0 and p2 > 0 (for instance depending on the inclination of the
track or the weather conditions, which are considered random in this model).
Additionally, with a (small) probability p3 > 0, the service brake system might
fail altogether, activating an emergency brake mode F . From any mode except
F , it is also possible that the vehicle is ordered to stop in a regular manner, e.g.,
because the destination has been reached. This is modeled in mode E.

By applying the theorems of Section 4, it is possible to decompose the stability
proof for this system into a number of subproofs. We want to show that the
system will either converge to v = a = 0, or the vehicle will come to a stop in
modes E or F , which means convergence to v = −v0, where v0 is the desired
speed. The modes E and F each form a separate SCC and can therefore be
treated separately through Theorem 3 and Corollary 1. Since the cycles formed
by A2 and B1 and by A2 and B2 are both finite in probability, the nodes B1

A Decompositional Proof Scheme for Automated Convergence Proofs 163

v̇ = 3
ȧ = −0.05v − 0.1a
−30 ≤ v ≤ −18

−5 ≤ a ≤ 5
A1

v̇ = a
ȧ = −0.05v − 0.1a

−20 ≤ v ≤ 10
−5 ≤ a ≤ 5

A2

v̇ = a
ȧ = −0.1v − 0.2a

8 ≤ v ≤ 50
−5 ≤ a ≤ 0

B1

v̇ = a
ȧ = −0.15v − 0.3a

8 ≤ v ≤ 50
−5 ≤ a ≤ 0

B2

v̇ = −5
ȧ = 0

−v0 ≤ v ≤ 50
F

v̇ = −5
ȧ = 0

−v0 ≤ v ≤ 50
E

p1 p2

p3

Fig. 4. Example automaton (guards and updates not pictured) and decomposition
(dashed lines: Theorem 3, dotted lines: Theorem 5)

and B2 can also be analyzed separately per Theorem 5. This yields one LMI
problem as per Theorem 2 for E, F , B1 and B2. Furthermore, one LMI problem
for the cycle given by nodes A1 and A2 must be solved, including the two
edges connecting them. If solutions for all of these independent LMI problems
can be found, then all SCCs are GA-P, and all trajectories converge to either
v = a = 0 or v = −v0 with probability 1. In contrast, solving an LMI containing
all constraints for all modes and transitions of the whole graph in one step
is intractable in practice. The GLF for the SCC consisting of A1 and A2, as
computed by an LMI solver, is given by VA1 = 3.9804v2 + 2.0001ta + 10.502a2

and VA2 = 0.625v2 + 2va + 10.5a2. Examples for LLF for the other nodes are
VB1 = 18.496v2 + 26.314av + 100a2, VB2 = 31.843v2 + 40.98av + 100a2 and
VE = VF = v + v0.

6 Quantitative Analysis

In this section, we outline how the results of the previous section can be employed
for quantitative stability analysis, i.e., the computation of convergence properties
that lie below 1. Generally, this type of analysis is oriented along the SCCs of
the hybrid system. If the convergence probability is strictly smaller than 1, then

164 J. Oehlerking and O. Theel

some trajectories need to reach a permanent decision point, where a stabilizing
decision is taken with probability p < 1 and a non-stabilizing decision is taken
with probability 1 − p. The permanent decision points that are visible in the
hybrid automaton are the transitions between SCCs: once an SCC is left, a return
is impossible. Therefore, such a “decision” is irreversible for the trajectory. This
leads to the conclusion that quantitative stability analysis can be conducted
with help of SCCs: those that are “visible in the graph structure” and those
that are “hidden in the guards and dynamics” and can be exposed by using
alternate hybrid automaton representations of the system. First, we define global
attractivity with probability of less than 1, and then we give a theorem on the
SCCs that are visible in the graph structure.

Definition 8 (Global Attractivity with Probability p < 1). A probabilistic
hybrid automaton H is globally attractive in probability with probability p (GA-
P(p)) with respect to an equilibrium state xe, if for all trajectories x(t) of H:
P (limt→∞ x(t) = xe) ≥ p.

Theorem 6 (Quantitative Analysis). Let H be a probabilistic hybrid au-
tomaton, consisting of an SCC C, that is GA-P wrt. 0 and a number of SCC
C1, . . . , Cm that are successors of C. Assume that Init only contains hybrid states
with nodes of C as their discrete state. Furthermore, assume that each Ci is
known to be GA-P(pi) wrt. 0 for some 0 ≤ pi ≤ 1. Let ci be a lower bound on
the probability that a trajectory of H ends up in Ci Then, the sub-automaton of
H consisting of C and the Ci is GA-P(p) wrt. 0, with p =

∑
cipi.

Proof. Let (mi) be a mode sequence belonging to a trajectory x(t) of H. If (mi)
never leaves C, then x(t) must converge to 0 with probability 1 since C is GA-P.
If this is not the case, then (mi) will enter SCC Ci with a probability of at least
ci. Since ci is GA-P(pi), x(t) will then converge with probability pi. Summing up
over all Ci, we get a lower bound for the probability of convergence as p =

∑
cipi.

Therefore, H is GA-P(p).

Lower bounds ci can, for instance, be computed with the help of discrete time
Markov decision processes, where the steady-state probability of ending up in an
SCC is such a ci. However, to obtain tight bounds on the stabilization property,
it is necessary to have an automaton model of the system where all “branching
points” are visible as transitions between SCC in the graph structure. At this
point, methods for reachable set computation of hybrid systems can be employed
to discover semantically equivalent automata (wrt. the continuous behavior) that
have a “finer” SCC structure.

7 Conclusions

In this paper, we presented a scheme for decomposition of proofs of stability in
probability for probabilistic hybrid automata. The decomposition results can be
used to make automatic stability proofs through Lyapunov function computa-
tion more tractable in practice. Furthermore, the results give conditions, under

A Decompositional Proof Scheme for Automated Convergence Proofs 165

which stability properties of sub-automata to be composed transfer to the newly
obtained larger automaton. Therefore, stable automata can be designed step by
step, applying Lyapunov function arguments that are local in the graph during
the design process. Furthermore, failure of a Lyapunov function is now less prob-
lematic, since it will be visible which computational step – and therefore which
part of the automaton – caused the problem. This knowledge allows for an easier
diagnosis of the problem that prevented the stability proof from succeeding. In
general, we postulate that decompositional reasoning makes it easier to see what
makes or breaks stability properties in probabilistic hybrid automata.

References

1. Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on Automatic Control 43(4), 475–482
(1998)

2. Pettersson, S.: Analysis and Design of Hybrid Systems. PhD thesis, Chalmers
University of Technology, Gothenburg (1999)

3. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming, Series B (96), 293–320 (2003)

4. Heemels, M., Weiland, S., Juloski, A.: Input-to-state stability of discontinuous
dynamical systems with an observer-based control application. In: Bemporad, A.,
Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 259–272. Springer,
Heidelberg (2007)

5. Oehlerking, J., Theel, O.: Decompositional construction of Lyapunov functions for
hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469,
pp. 276–290. Springer, Heidelberg (2009)

6. Shiryaev, A.N.: Probability, 2nd edn. Springer, Heidelberg (1996)
7. Kushner, H.J.: Stochastic stability. Lecture Notes in Mathematics, vol. (249),
pp. 97–124 (1972)

8. Loparo, K.A., Feng, X.: Stability of stochastic systems. In: The Control Handbook,
pp. 1105–1126. CRC Press, Boca Raton (1996)

9. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities
in System and Control Theory. Society for Industrial and Applied Mathematics,
SIAM (1994)

10. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

11. Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Meth-
ods and Software 10(1), 613–623 (1999), https://projects.coin-or.org/Csdp/

12. Romanko, O., Pólik, I., Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones (1999), http://sedumi.ie.lehigh.edu

https://projects.coin-or.org/Csdp/
http://sedumi.ie.lehigh.edu

Memory Usage Verification Using Hip/Sleek

Guanhua He1, Shengchao Qin1, Chenguang Luo1, and Wei-Ngan Chin2

1 Durham University, Durham DH1 3LE, UK
2 National University of Singapore

{guanhua.he,shengchao.qin,chenguang.luo}@durham.ac.uk,
chinwn@comp.nus.edu.sg

Abstract. Embedded systems often come with constrained memory
footprints. It is therefore essential to ensure that software running on
such platforms fulfils memory usage specifications at compile-time, to
prevent memory-related software failure after deployment. Previous pro-
posals on memory usage verification are not satisfactory as they usually
can only handle restricted subsets of programs, especially when shared
mutable data structures are involved. In this paper, we propose a simple
but novel solution. We instrument programs with explicit memory op-
erations so that memory usage verification can be done along with the
verification of other properties, using an automated verification system
Hip/Sleek developed recently by Chin et al. [10,19]. The instrumen-
tation can be done automatically and is proven sound with respect to
an underlying semantics. One immediate benefit is that we do not need
to develop from scratch a specific system for memory usage verification.
Another benefit is that we can verify more programs, especially those
involving shared mutable data structures, which previous systems failed
to handle, as evidenced by our experimental results.

1 Introduction

Ubiquitous embedded systems are often supplied with limited memory and com-
putation resources due to various constraints on, e.g., product size, power con-
sumption and manufacture cost. The consequences of violating memory safety
requirements can be quite severe because of the close coupling of these systems
with the physical world; in some cases, they can put human lives at risk. The
Mars Rover’s anomaly problem was actually due to a memory leak error and it
took fifteen days to fix the problem and bring the Rover back to normal [21]. For
applications running on resource-constrained platforms, a challenging problem
would be how to make memory usage more predictable and how to ensure that
memory usage fulfils the restricted memory requirements.

To tackle this challenge, a number of proposals have been reported on mem-
ory usage analysis and verification, with most of them focused on functional
programs where data structures are mostly immutable and thus easier to han-
dle [1,2,5,7,15,23]. Memory usage verification for imperative/OO languages can
be more challenging due to mutability of states and object sharing. Existing so-
lutions to this are mainly type-based [11,12,16]. Instead of capturing all aliasing

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 166–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Memory Usage Verification Using Hip/Sleek 167

information, they impose restrictions on object mutability and sharing. There-
fore, they can only handle limited subsets of programs manipulating shared
mutable data structures.

The emergence of separation logic [17,22] promotes scalable reasoning via ex-
plicit separation of structural properties over the memory heap where recursive
data structures are dynamically allocated. Since then, dramatic advances have
been made in automated software verification via separation logic, e.g. the Small-
foot tool [3] and the Space Invader tool [6,13,24] for the analysis and verification
on pointer safety (i.e. shape properties asserting that pointers cannot go wrong),
the Hip/Sleek tool [10,18,19] for the verification of more general properties in-
volving both structural (shape) and numerical (size) information, the verification
on termination [4], and the verification for object-oriented programs [9,14,20].

Given these significant advances in the field, a research question that we post
to ourselves is: can we make use of some of these state-of-the-art verification tools
to do a better job for memory usage verification, without the need of construct-
ing a memory usage verifier from scratch? This paper addresses this question
by proposing a simple but novel mechanism to memory usage verification using
the Hip/Sleek system developed by Chin et al. [10,19]. Separation logic offers
a powerful and expressive mechanism to capture structural properties of shared
mutable data structures including aliasing information. The specification mech-
anism in Hip/Sleek leverages structural properties with numerical information
and is readily capable for the use of memory usage specification.

Approach and contributions. Memory usage occur in both the heap and stack
spaces. While heap space is used to store dynamically allocated data structures,
stack memory is used for local variables as well as return addresses of method
calls. On the specification side, we assume that two special global variables heap
and stk of type int are reserved to represent respectively the available heap
and stack memory in the pre-/post-conditions of each method. On the program
side, we instrument the program to be verified with explicit operations over vari-
ables heap and stk using rewriting rules. We call the instrumented programs
as memory-aware programs. The memory usage behaviour of the original pro-
gram is now mimicked and made explicit in its memory-aware version via the
newly introduced primitive operations over heap and stk. We also show that
the original program and its memory-aware version are observationally equiva-
lent modulo the behaviour of the latter on the special variables heap and stk
as well as a fixed memory cost for storing the two global variables. Instead of
constructing and implementing a fresh set of memory usage verification rules for
the original program, we can now pass to Hip/Sleek as inputs the correspond-
ing memory-aware program together with the expected memory specification for
automated memory usage verification.

In summary, this paper makes the following contributions:

– We propose a simple but novel solution to memory usage verification based on
a verification tool Hip/Sleek by first rewriting programs to their memory-
aware counterparts.

168 G. He et al.

– We demonstrate that the syntax-directed rewriting process is sound in the
sense that the memory-aware programs are observationally equivalent to their
original programs with respect to an instrumented operational semantics.

– We have integrated our solution with Hip/Sleek and conducted some initial
experiments. The experimental results confirm the viability of our solution
and show that we can verify the memory safety of more programs compared
with previous type-based approaches.

The rest of the paper is structured as follows. We introduce our programming
and specification languages in Section 2. In Section 3 we present our approach
to memory usage verification in Hip/Sleek . Section 4 defines an underlying
semantics for the programming language and formulates the soundness of our
approach w.r.t. the semantics. Experimental results are shown in Section 5,
followed by related work and concluding remarks afterwards.

2 Language and Specifications

In this section, we first introduce a core imperative language we use to demon-
strate the work, and then depict the general specification mechanism used by
Hip/Sleek and show how memory usage specifications can be incorporated in.

2.1 Programming Language

To simplify presentation, we focus on a strongly-typed C-like imperative lan-
guage in Figure 1.

A program P in our language consists of user-defined data types tdecl, global
variables gVar and method definitions meth. The notation datat stands for the
standard data type declaration used in programs, for example as below:

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right; node3 parent }

The notation spred denotes a user-defined predicate which may be recursively
defined and can specify both structural and numerical properties of data struc-
tures involved. The syntax of spred is given in Figure 2.

P ::= tdecl∗ gVar∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
τ ::= int | bool | void gVar ::= t v
meth ::= t mn (([ref] t v)∗) mspec {e}
e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗) | free(v)

| e1; e2 | t v; e | mn(v∗) | if v then e1 else e2

Fig. 1. A Core (C-like) Imperative Language

Memory Usage Verification Using Hip/Sleek 169

Note that a parameter can be either pass-by-value or pass-by-reference, dis-
tinguished by the ref before a parameter definition. The method specification
mspec, written in our specification language in Figure 2, specifies the expected
behaviour of the method, including its memory usage behaviour. Our aim is to
verify the method body against this specification. Our language is expression-
oriented, so the body of a method is an expression composed of standard instruc-
tions and constructors of an imperative language. Note that the instructions new
and free explicitly deal with memory allocation and deallocation, respectively.
The term kτ denotes a constant value of type τ . While loops are transformed to
tail-recursive methods in a preprocessing step.

2.2 Specification Language

Our specification language is given in Figure 2. Note spred defines a new sep-
aration predicate c in terms of the formula Φ with a given pure invariant π.
Such user-specified predicates can be used in the method specifications. The
method specification requires Φpr ensures Φpo comprises a precondition Φpr and
a postcondition Φpo.

The separation formula Φ, which appears in the predicate definition spred or
in the pre-/post-conditions of a method, is in disjunctive normal form. Each
disjunct consists of a ∗-separated heap constraint κ, referred to as heap part,
and a heap-independent formula π, referred to as pure part. The pure part does
not contain any heap nodes and is restricted to pointer equality/disequality γ
and Presburger arithmetic φ. As we will see later, γ is used to capture the alias
information of pointers during the verification, and φ is to record the numerical
information of data structures, such as length of a list or height of a tree. Fur-
thermore, Δ denotes a composite formula that could always be normalized into
the Φ form [19].

The formula emp represents an empty heap. If c is a data node, the formula
p::c〈v∗〉 represents a singleton heap p →[(f : v)∗] with f∗ as fields of data decla-
ration c. For example, p::node〈0, null〉 denotes that p points to a node structure
in the heap, whose fields have values 0 and null, respectively. If c is a (user-
specified) predicate, p::c〈v∗〉 stands for the formula c(p, v∗) which signifies that

spred ::= root::c〈v∗〉 ≡ Φ inv π
mspec ::= requires Φpr ensures Φpo

Φ ::=
∨
(∃v∗·κ∧π)∗ π ::= γ∧φ

γ ::= v1=v2 | v=null | v1 	=v2 | v 	=null | γ1∧γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
φ ::= b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1=b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

Fig. 2. The Specification Language

170 G. He et al.

the data structure pointed to by p has the shape c with parameters v∗. As an
example, one may define the following predicate for a singly linked list with
length n:

root::ll〈n〉≡(root=null∧n=0)∨(∃i,m, q · root::node〈i, q〉∗q::ll〈m〉∧n=m+1) inv n≥0

The above definition asserts that an ll list either can be empty (the base case
root=null where root is the “head pointer” pointing to the beginning of the
whole structure described by ll), or consists of a head data node (specified
by root::node〈i, q〉) and a separate tail data structure which is also an ll list
(q::ll〈m〉 saying that q points to an ll list with length m). The separation con-
junction ∗ introduced in separation logic signifies that two heap portions are
domain-disjoint. Therefore, in the inductive case of ll’s definition, the separa-
tion conjunction ensures that the head node and the tail ll reside in disjoint
heaps. A default invariant n≥0 is specified which holds for all ll lists. Existential
quantifiers are for local values and pointers in the predicate, such as i, m and q.

A slightly more complicated shape, a doubly linked-list with length n, is de-
scribed by:

root::dll〈p, n〉≡(root=null∧n=0)∨(root::node2〈 , p, q〉∗q::dll〈root, n−1〉) inv n≥0

The dll predicate has a parameter p to represent the prev field of the root
node of the doubly linked list. This shape includes node root and all the nodes
reachable through the next field starting from root, but not the ones reachable
through prev from root. Here we also can see some shortcuts that underscore
denotes an anonymous variable, and non-parameter variables in the right hand
side of the shape definition, such as q, are implicitly existentially quantified.

As can be seen from the above, we can use κ to express the shape of heap
and φ to express numerical information of data structures, such as length. This
allows us to specify data structures with sophisticated invariants. For example,
we may define a non-empty sorted list as below:

root::sortl〈n, min〉 ≡ (root::node〈min, null〉∧n=1 ∨
(root::node〈min, q〉∗q::sortl〈m, k〉∧n=m+1∧min≤k) inv n≥0

The sortedness property is captured with the help of an additional parameter min
denoting the minimum value stored in the list. The formula min≤k ensures the
sortedness. With the aforesaid predicates, we can now specify the insertion-sort
algorithm as follows:

node insert(node x, node vn)

requires x::sortl〈n, min〉 ∗ vn::node〈v, 〉
ensures res::sortl〈n+1, min(v, min)〉;
{· · · }

node insertion sort(node y)

requires y::ll〈n〉 ∧ n>0

ensures res::sortl〈n, 〉;
{· · · }

where a special identifier res is used in the postcondition to denote the result
of a method. The postcondition of insertion sort shows that the output list
is sorted and has the same number of nodes. We can also specify that the input

Memory Usage Verification Using Hip/Sleek 171

and output lists contain the same set of values by adding another parameter to
the sortl predicate to capture the bag of values stored in the list [10].

The semantics of our specification formula is similar to the model given for
separation logic [22] except that we have extensions to handle user-defined shape
predicates. We assume sets Loc of memory locations, Val of primitive values, with
0 ∈ Val denoting null, Var of variables (program and logical variables), and
ObjVal of object values stored in the heap, with c[f1 →ν1, .., fn →νn] denoting an
object value of data type c where ν1, .., νn are current values of the corresponding
fields f1, .., fn. Let s, h |= Φ denote the model relation, i.e. the stack s and heap
h satisfy Φ, with h, s from the following concrete domains:

h ∈ Heaps =df Loc ⇀fin ObjVal s ∈ Stacks =df Var → Val∪Loc

Note that each heap h is a finite partial mapping while each stack s is a total
mapping, as in the classical separation logic [17,22]. The detailed definitions of
the model relation can be found in Chin et al. [10].

2.3 Memory Usage Specification

To incorporate memory usage into the specification mechanism of Hip/Sleek,
we employ two global variables heap and stk to represent the available heap
and stack memory (in bytes). The memory requirement of a method can then
be specified as a pure constraint over heap and stk in the precondition of the
method. The remaining memory space upon the return from a method call can
also be exhibited using a pure formula over heap′ and stk′ in the postcondition.1

Due to perfect recovery of stack space upon return from a method call, stk′ in
a method’s postcondition will always be the same as its initial value stk. As an
example, the method new list(int n), which creates a singly linked list with
length n, is given as follows together with its memory usage specification:

node new list(int n)

requires heap≥8 ∗ n ∧ n≥0 ∧ stk≥12 ∗ n+4
ensures res::ll〈n〉 ∧ heap′=heap−8 ∗ n ∧ stk′=stk

{ node r := null; if (n>0) { r := new list(n−1); r := new node(n, r)}; r }

where the node was declared earlier in Sec 2.1. We assume that we use a 32-bit
architecture; therefore, one node requires 8 bytes of memory. This assumption
can be easily changed for a different architecture. The precondition specifies
that the method requires at least 8 ∗ n bytes of heap space and 12 ∗ n + 4 stack
space before each execution with n denoting the size of the input.2 After method
1 A primed variable x′ in a specification formula denotes the latest value of variable
x, with x representing its initial value.

2 When a new local variable r is declared, 4 bytes of stack memory is consumed. Later
when the method new list is invoked recursively, its parameters, return address
and local variables are all placed on top of the stack. This is why it requires at least
12 ∗ n+4 bytes of stack space.

172 G. He et al.

execution, 8 ∗ n bytes of heap memory is consumed by the returned list, but
the stack space is fully recovered. This is reflected by the formula (heap′ =
heap− 8 ∗ n ∧ stk′ = stk) in the postcondition.

As another example, the following method free list deallocates a list:

void free list(node2 x)

requires x::dll〈n〉 ∧ heap≥0 ∧ stk≥12 ∗ n
ensures emp ∧ heap′=heap+12 ∗ n ∧ stk′=stk

{ if (x 	= null) { node t := x; x := x.next; free(t); free list(x) } }

We can see that 12 ∗ n bytes of heap space is expected to be claimed back
by the method as signified in the postcondition. Notice here the stack and heap
memory are specified in terms of the logical variable n denoting the length of the
list x, showing the possible close relation between the separation (shape and size)
specification and the memory specification. Next we will show how to rewrite
the program to its memory-aware version by using the two global variables heap
and stk to mimic the memory behaviour, so that Hip/Sleek can step in for
memory usage verification.

3 Memory Usage Verification

In this section, we first present the instrumentation process which converts pro-
grams to be verified to memory-aware programs. We then briefly introduce the
automated verification process in Hip/Sleek.

3.1 The Instrumentation Process

The instrumentation process makes use of primitive operations over the global
variables heap and stk to simulate the memory usage behaviour of the original
program. It is conducted via the rewriting rules given in Figure 3.

These rewriting rules form a transformer M which takes in a program and re-
turns its memory-aware version. Note that M conducts identical rewriting except
for the following four cases: (1) heap allocation new c(v∗); (2) heap deallocation
free(v); (3) local block {t v; e}; (4) method declaration t0 mn(t1 v1, .., tn vn){e}.

M(E) ::= E where E ∈ {null, kτ , v, v.f, v1.f :=v2, mn(v∗)}
M(new c(v∗)) ::= dec hp(ssizeof(c)); new c(v∗)
M(free(v)) ::= free(v); inc hp(ssizeof(type(v)))
M({t v; e}) ::= dec stk(sizeof(t)); {t v; M(e)}; inc stk(sizeof(t))
M(v:=e) ::= v:=M(e)
M(e1; e2) ::= M(e1);M(e2)
M(if v then e1 else e2) ::= if v thenM(e1) elseM(e2)
M(t0 mn(t1 v1, .., tn vn){e}) ::= t0 mn(t1 v1, .., tn vn){

dec stk(sizeof(t0, t1, .., tn)+4);M(e); inc stk(sizeof(t0, t1, .., tn)+4)}

Fig. 3. Rewriting Rules for Instrumentation

Memory Usage Verification Using Hip/Sleek 173

To simulate the memory effect of new c(v∗), we employ a primitive method
over variable heap, called dec hp, which is subject to the specification:

void dec hp(int n) requires heap≥n ∧ n≥0 ensures heap
′=heap−n

To successfully call dec hp(n), the variable heap must hold a value no less than
the non-negative integer n at the call site. Upon return, the value of heap is
decreased by n.

To simulate the memory effect of free(v), we employ a primitive method over
heap, called inc hp:

void inc hp(int n) requires n≥0 ensures heap
′=heap+n

The memory effect of local blocks and method bodies can be simulated in a similar
way, and the difference is that they count on the stack instead of heap. For code
blocks, we employ dec stk to check the stack space is sufficient for the local variable
to be declared, and decrease the stack space; meanwhile, at the end of the block, we
recover such space by inc stk due to the popping out of the local variables. As for
method body, stack space is initially acquired (and later recovered) for method
parameters and return address (four bytes), as the last rewriting rule suggests.
The specifications for these two primitive methods are as follows:

void dec stk(int n) requires stk≥n ∧ n≥0 ensures stk′=stk−n

void inc stk(int n) requires n≥0 ensures stk′=stk+n

Note that two different functions sizeof and ssizeof are used in the rewriting rules:
sizeof is applied to both primitive and reference types, while ssizeof is applied
to (user-defined) data types, by summing up the sizes of all declared fields’
types obtained via sizeof. For example, sizeof(int) = 4, sizeof(node) = 4, and
ssizeof(node) = 8, since the node data structure (defined in Section 2) contains
an int field and a reference to another node. We also abuse these functions by
applying them to a list of types, expecting them to return the sum of the results
when applied to each type.

We present below the memory-aware versions for the two examples given in
Section 2.

node new list(int n)
requires emp ∧ heap≥8 ∗ n∧

n≥0 ∧ stk≥12 ∗ n+ 4

ensures res::ll〈n〉 ∧ stk′=stk∧
heap′=heap−8 ∗ n;

{ dec stk(4);
node r := null;
if (n > 0) {
dec stk(8); r := new list(n−1);
inc stk(8); dec hp(8);
r := new node(n, r) };

inc stk(4); r }

Fig. 4. Example 1

void free list(node2 x)
requires x::dll〈p, n〉 ∧ heap≥0∧

stk≥12 ∗ n
ensures emp ∧ stk′=stk ∧

heap′=heap+12 ∗ n;
{ if (x 	= null) {

dec stk(4);
node2 t := x; x := x.next;
free(t); inc hp(12);
dec stk(8); free list(x);
inc stk(8); inc stk(4) }

}

Fig. 5. Example 2

174 G. He et al.

Note that thememory effect is simulated via explicit calls to the afore-mentioned
four primitive methods over heap and stk, which are highlighted in bold.

As one more example, we show in Figure 6 a program with more complicated
memory usage behaviour. The program translates a doubly linked list (node2)
into a singly linked list (node), by deallocating node2 x and then creating a
singly linked list with the same length and content. A heap memory of 4 ∗ n
bytes is reclaimed back since each node2 object has one more field (which takes
4 bytes) than a node object.

node dl2sl(node2 x)
requires x::dll〈 , n〉 ∧ stk≥20∗n ∧ heap≥0
ensures res::ll〈n〉 ∧ stk′=stk ∧ heap′=heap+4∗n;

{ dec stk(4); node r := null;
if (x 	= null) { dec stk(4); int v := x.val; dec stk(4);

node2 t := x; x := x.next; free(t); inc hp(12);
dec stk(8); r := dl2sl(x); inc stk(8);
dec hp(8); r := new node(v, r); inc stk(4); inc stk(4) };

inc stk(4); r }
Fig. 6. Example 3

The instrumented programs are then passed to Hip/Sleek for automated
verification.

3.2 The Hip/Sleek Automated Verification System

HIP: Hoare-style
Forward Verifier

SLEEK: Entailment
Prover

Program
Code

User Supplied Items

Automated Verification System

Pre/Post
Shape

Predicates

Fig. 7. The Hip/Sleek Verification System

An overview of the
Hip/Sleek auto-
mated verification
system is given
in Figure 7. The
front-end of the sys-
tem is a standard
Hoare-style forward
verifier Hip, which
invokes the entail-
ment prover Sleek.
The Hip verifier
comprises a set of forward verification rules to systematically check that the
precondition is satisfied at each call site, and that the declared postcondition
is successfully verified (assuming the given precondition) for each method
definition. The forward verification rules are of the form $ {Δ1} e {Δ2} which
expect the symbolic abstract state Δ1 to be given before computing Δ2. Given
two separation formulas Δ1 and Δ2, the entailment prover Sleek attempts
to prove that Δ1 entails Δ2; if it succeeds, it returns a frame R such that
Δ1 $ Δ2 ∗ R. More details of the Hip and Sleek provers can be found in Chin
et al. [10].

Memory Usage Verification Using Hip/Sleek 175

4 Soundness

This section presents the soundness of our approach with respect to an underly-
ing operational semantics given in Figure 8. Note that we instrument the state
with memory size information, so a program state is represented by 〈s, h, σ, μ, e〉,
where s, h denote respectively the current stack and heap state as mentioned ear-
lier, σ (μ) represents current available stack (heap) memory in bytes, and e is
the program code to be executed. If the execution leads to an error, we denote
the error state as er1 if it is due to memory inadequacy, or as er2 for all other
errors (e.g. null pointer dereference). Note also that an intermediate construct
ret(v∗, e) is introduced to denote the return value of call invocation and local
blocks as in Chin et al. [10]. Later, we use ↪→∗ to denote the composition of any
non-negative number of transitions, and ↑ for program divergence.

〈s, h, σ, μ, v〉↪→〈s, h, σ, μ, s(v)〉 〈s, h, σ, μ, k〉↪→〈s, h, σ, μ, k〉
〈s, h, σ, μ, v:=k〉↪→〈s[v �→k], h, σ, μ, ()〉 〈s, h, σ, μ, (); e〉↪→〈s, h, σ, μ, e〉

s(v) ∈ dom(h)

〈s, h, σ, μ, v.f〉↪→〈s, h, σ, μ, h(s(v))(f)〉
s(v) /∈ dom(h)

〈s, h, σ, μ, v.f〉↪→er2

〈s, h, σ, μ, e1〉↪→〈s1, h1, σ1, μ1, e3〉
〈s, h, σ, μ, e1; e2〉↪→〈s1, h1, σ1, μ1, e3; e2〉

〈s, h, σ, μ, e〉↪→〈s1, h1, σ1, μ1, e1〉
〈s, h, σ, μ, v:=e〉↪→〈s1, h1, σ1, μ1, v:=e1〉

s(v)=true

〈s, h, σ, μ, if v then e1 else e2〉↪→〈s, h, σ, μ, e1〉
s(v)=false

〈s, h, σ, μ, if v then e1 else e2〉↪→〈s, h, σ, μ, e2〉
s(v1) ∈ dom(h) r = h(s(v1))[f �→s(v2)] h1 = h[s(v1)�→r]

〈s, h, σ, μ, v1.f := v2〉↪→〈s, h1, σ, μ, ()〉
s(v1) /∈ dom(h)

〈s, h, σ, μ, v1.f := v2〉↪→er2

s(v)�→l ∈ h h1=h\[s(v)�→l] μ1=μ+ssizeof(type(v))

〈s, h, σ, μ, free(v)〉↪→〈s, h1, σ, μ1, ()〉
s(v) /∈ dom(h)

〈s, h, σ, μ, free(v)〉↪→er2

data c {t1 f1, .., tn fn}∈P ι/∈dom(h)
μ≥ssizeof(c) μ1=μ−ssizeof(c) r=c[fi �→s(vi)]

n
i=1

〈s, h, σ, μ, new c(v∗)〉↪→〈s, h+[ι �→ r], σ, μ1, ι〉
μ<ssizeof(c)

〈s, h, σ, μ, new c(v∗)〉↪→er1

〈s, h, σ, μ, ret(v1, .., vn, k)〉↪→〈s−{v1, .., vn}, h, σ+sizeof(type(v1), .., type(vn)), μ, k〉
〈s, h, σ, μ, e〉↪→〈s1, h1, σ1, μ1, e1〉

〈s, h, σ, μ, ret(v∗, e)〉↪→〈s1, h1, σ1, μ1, ret(v
∗, e1)〉

σ≥sizeof(t) σ1=σ−sizeof(t)

〈s, h, σ, μ, {t v; e}〉↪→〈s+[v �→⊥], h, σ1, μ, ret(v, e)〉
σ<sizeof(t)

〈s, h, σ, μ, {t v; e}〉↪→er1

s1=s+[wi �→s(vi)]
n
i=m

σ≥Σn
i=msizeof(ti) σ1=σ−Σn

i=msizeof(ti)
t0 mn((ref ti wi)

m−1
i=1 , (ti wi)

n
i=m) {e}

〈s, h, σ, μ, mn(v1, .., vn)〉 ↪→
〈s1, h, σ1, μ, ret({wi}n

i=m, [vi/wi]
m−1
i=1 e)〉

σ<Σn
i=msizeof(ti)

〈s, h, σ, μ, mn(v∗)〉↪→er1

Fig. 8. Underlying Semantics

176 G. He et al.

As shown in the transition rule, a successful execution of free(v) increases
the heap size μ by ssizeof(type(v)). Note that we use h \ [s(v) →l] to erase s(v)
from h’s domain. The execution of new c(v∗) first checks if the current heap
space is sufficient for the allocation; if it succeeds, the heap size is decreased by
ssizeof(c). Here we adds ι → r into h by the notation h + [ι → r].

The stack space may be changed when the program enters into or exits from
a local block {t v; e}, or invokes a method, or returns from a method call.
Upon exit from a block or a method call, all local variables are popped out
from the stack (s− {v1, .., vn}) and the corresponding stack space is recov-
ered (σ+sizeof(type(v1), .., type(vn))). Conversely, entering a block or invoking
a method may require some stack space to store newly declared local variables
or returning address of the method. So the relevant semantic rule first checks
whether the stack space is sufficient to cater for a new block or a method invo-
cation, if so, the program state is transformed. Otherwise a memory inadequacy
error is reported.

Due to the recording of memory size information in program state, we need
an extended model to link the underlying semantics with the separation formula,
which is defined as follows:

s, h, σ, μ |= Φ =def s, h |= [σ/stk′, μ/heap′]Φ

where s, h |= Φ was defined in Chin et al. [10].
Next, we show that the instrumented program M(e) is observationally equiv-

alent to the original program e w.r.t. the semantics in Figure 8.

Theorem 1 (Observational Equivalence). For any stack s, heap h, stack
size σ, heap size μ, and program e and its instrumented version M(e), one and
only one of the following cases holds:

1. ∃s1, h1, σ1, μ1 · 〈s, h, σ, μ, e〉 ↪→∗ 〈s1, h1, σ1, μ1, ν〉 ⇐⇒ 〈s[stk →σ, heap →μ],
h, σ, μ,M(e)〉 ↪→∗ 〈s1[stk →σ1, heap →μ1], h1, σ1, μ1, ν〉 where value ν is the
evaluation result of e;

2. 〈s, h, σ, μ, e〉 ↪→∗ er1 ⇐⇒ 〈s[stk →σ, heap →μ], h, σ, μ,M(e)〉 ↪→∗ er1;
3. 〈s, h, σ, μ, e〉 ↪→∗ er2 ⇐⇒ 〈s[stk →σ, heap →μ], h, σ, μ,M(e)〉 ↪→∗ er2;
4. 〈s, h, σ, μ, e〉 ↑ ⇐⇒ 〈s[stk →σ, heap →μ], h, σ, μ,M(e)〉 ↑.

Note that the stack mapping s[stk →σ, heap →μ] is the same as s except that it
maps stk to σ and heap to μ.

Proof. By structural induction over e. �

We assume that the global variables, such as heap and stk, reside in the top
frame of the run-time stack when a program starts to run. Note that invoca-
tions of the four primitive methods, namely inc hp(·), inc stk(·), dec hp(·) and
dec stk(·), modify only the values of heap and stk, but not the rest of the stack.
Each invocation of these methods requires eight bytes of stack space, which is
immediately recovered after the invocation.3

3 Because of this, a memory-aware program may require an additional stack space of
8 bytes. For simplicity, we assume this has been taken into account implicitly.

Memory Usage Verification Using Hip/Sleek 177

Finally, the following theorem ensures the soundness of our memory usage
verification:

Theorem 2. For any method t mn (([ref] t v)∗) requires Φpr ensures Φpo {e},
if we can verify M(e) against specification (Φpr, Φpo), then we have ∀s, h, σ, μ ·
(s, h, σ, μ |= Φpr ∧ 〈s, h, σ, μ, e〉↪→∗〈s1, h1, σ1, μ1, ν〉) =⇒ s1, h1, σ1, μ1 |= Φpo.

Proof. It follows from Theorem 1 and the soundness of the Hip/Sleek veri-
fication process given in Chin et al. [10]. �

5 Experimental Results

We have implemented our proposal and integrated it with the Hip/Sleek sys-
tem to support memory usage verification. We have evaluated the system using
a number of benchmarks, by first converting them to memory-aware programs
and then passing them to the Hip/Sleek system for memory usage verification
(which is done as one pass along with the verification of other safety properties).
One set of programs that we have tested are taken from Nguyen et al. [19]. De-
spite of small-size, these programs are composed of methods manipulating shared
mutable data structures, such as (doubly) linked lists, cyclic linked lists, binary
search trees, most of which cannot be handled by previous type-based memory
usage verifiers. Another set of programs that we have tested are taken from the
Olden Benchmark Suite [8]. These programs are of medium-size and quite of-
ten contain sophisticated memory usage behaviour. For all programs, we have
manually supplied their memory specifications which are precise when validated
through some sample runs. The initial experimental results have shown that the
memory usage specification is expressive and the memory usage verification via
Hip/Sleek is powerful, especially in dealing with mutable data structures with
sophisticated sharing.

Programs Code (lines) Verified Methods Verification (in sec.)

Benchmark programs from Nguyen et al. [19]

singly linked list 72 4/4 0.42

doubly linked list 104 4/4 1.20

binary search tree 62 2/2 0.32

cyclic linked list 78 2/2 0.48

Olden Benchmark suite

treeadd 195 4/4 0.58

bisort 340 6/6 2.80

em3d 462 20/20 1.52

mst 473 22/22 1.64

tsp 545 9/9 3.44

health 562 15/15 7.35

power 765 19/19 5.17

Fig. 9. Experiment Results

178 G. He et al.

Figure 9 summarises some statistics obtained during the experimental study.
The statistics shows that our approach is general enough to handle many inter-
esting data structures such as single linked lists, double linked lists, trees and
cyclic linked lists. Column 4 shows the CPU times used (in seconds) for the ver-
ification. Our experiments were done under Linux platform on Intel Core Quad
2.66 GHz with 8 GB main memory. All programs take under 10 seconds to verify,
even for medium-sized programs with sophisticated memory usage behaviour.

6 Related Work

Previous research on memory usage analysis and verification [1,2,5,7,15] mainly
focuses on functional programs where data structures are mostly immutable
and easier to deal with. Amadio et al. [1] define a simple stack machine for a
first-order functional language and discuss the performance of type, size and
termination verifications at bytecode level of the machine. Their contribution is
to verify a system of annotations for the bytecode at loading time, and ensure
both time and space resource bound required by its execution. Their work only
takes into account stack bounds but not heap memory. Another related work
is the research in the MRG (Mobile Resource Guarantees) project [2,5], which
focuses on building a proof-carrying code system to guarantee that bytecode
programs are free from run-time violations of resource bounds. The analysis
is developed for a linearly typed bytecode language which is compiled from a
first-order functional language, where the bounds are restricted to a linear form.

Hofmann and Jost [15] present a mechanism to obtain linear bounds on the
heap space usage of first-order functional programs. It uses an amortised analysis
by assigning hypothetical amounts of free space to data structures in proportion
to their sizes. The analysis relies on a type system with resource annotations, and
takes space reuse by explicit deallocation. With this approach, memory recovery
can be supported within each function, but not across functions unless the dead
objects are explicitly passed. Their analysis does not consider stack usage and
is limited to a linear form without disjunction. Recently, Campbell [7] gives a
type-based approach to stack space analysis. It uses the depth of data structures
and adds extra structures to typing contexts to describe the form of the bounds.
Heap memory is not considered in his work.

Previous works on memory usage verification [11,12,16] for imperative/OO
programming languages mainly use type-based approaches. Chin et al. [12] pro-
pose a modular memory usage verification system for object-oriented programs.
The system can check whether a certain amount of memory is adequate for safe
execution of a given program. However, the verification framework requires alias
control mechanism to overcome the mutability and sharing problems. Therefore,
it can only handle restricted subsets of programs manipulating shared mutable
data structures. Recently, Chin et al. [11] propose a memory bound analysis sys-
tem for low-level programs. The system tries to infer both stack and heap space
bounds, using fixpoint analyses for recursive methods and loops. However, the
system does not handle shared objects. Hofmann and Jost [16] propose a type-
based heap space analysis for Java style OO programs with explicit deallocation.

Memory Usage Verification Using Hip/Sleek 179

It uses an amortised analysis, and a potential is assigned to each datum accord-
ing to its size and layout. Heap memory usage is calculated by an LP-solver
based on function inputs during the type inference.

Different from previous works which try to build a memory usage verification
system, we re-use a general-purpose verification system Hip/Sleek for mem-
ory usage verification, where shape, size and alias information can be readily
obtained from the specifications given in separation logic. With this tool, we
can verify quite a number of programs that can not be handled by previous
approaches, such as doubly linked lists, cyclic linked lists and binary trees.

7 Conclusion

In this paper we have proposed an approach to memory usage verification, by
resorting to a general-purpose verification system Hip/Sleek based on separa-
tion logic, where memory usage specifications can be depicted using two special
variables heap and stk. Given a program to verify against its memory usage
specifications, instead of constructing and implementing verification rules to
conduct the verification, we rewrite the program to its memory-aware version
where memory usage behaviours are mimicked by explicit operations over vari-
ables heap and stk. The obtained memory-aware program can then be passed to
Hip/Sleek for automated verification. Due to the fact that the memory-aware
program is observationally equivalent to its original program, the memory safety
for the original program follows directly from the memory safety proof of the
instrumented program. We have implemented the rewriting process and inte-
grated it with Hip/Sleek. Our initial experimental study shows that we can
verify quite a number of programs which can not be handled by previous mem-
ory usage verification systems mainly due to the manipulation of sophisticated
shared mutable data structures.

As for future work, we aim to automatically infer memory usage specifications,
where possible, to reduce the burden on users and also improve the level of
automation for memory usage verification. We have just started another EPSRC-
funded project aiming to automatically infer method specifications and loop
invariants in a combined separation and numerical domain, which would benefit
our memory usage analysis and verification.

Acknowledgement. This work was supported in part by the EPSRC projects
[EP/E021948/1, EP/G042322/1] and the A*STAR grant R-252-000-233-305.

References

1. Amadio, R.M., Coupet-Grimal, S., Dal Zilio, S., Jakubiec, L.: A Functional Sce-
nario for Bytecode Verification of Resource Bounds. In: Marcinkowski, J., Tarlecki,
A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 265–279. Springer, Heidelberg (2004)

180 G. He et al.

2. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile resource
guarantees for smart devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.,
Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 1–26. Springer, Heidelberg
(2005)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

4. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

5. Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic certifica-
tion of heap consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS
(LNAI), vol. 3452, pp. 347–362. Springer, Heidelberg (2005)

6. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: ACM POPL, pp. 289–300 (2009)

7. Campbell, B.: Amortised memory analysis using the depth of data structures. In:
ESOP. LNCS, vol. 5502, pp. 190–204. Springer, Heidelberg (2009)

8. Carlisle, M.C., Rogers, A.: Software caching and computation migration in Olden.
ACM SIGPLAN Notices 30(8), 29–38 (1995)

9. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular oo verification
with separation logic. In: ACM POPL, pp. 87–99 (2008)

10. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification
of shape, size and bag properties via user-defined predicates in separation
logic. Under Consideration by Science of Computer Programming (2009),
http://www.dur.ac.uk/shengchao.qin/papers/SCP-draft.pdf

11. Chin, W.-N., Nguyen, H.H., Popeea, C., Qin, S.: Analysing memory resource
bounds for low-level programs. In: International Symposium on Memory Man-
agement (ISMM), pp. 151–160. ACM Press, New York (2008)

12. Chin, W.-N., Nguyen, H.H., Qin, S., Rinard, M.: Memory usage verification for
oo Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672,
pp. 70–86. Springer, Heidelberg (2005)

13. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separa-
tion logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

14. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
ACM OOPSLA, pp. 213–226 (2008)

15. Hofmann, M., Jost, S.: Static prediction of heap space usage for first order func-
tional programs. In: ACM POPL, January 2003, pp. 185–197 (2003)

16. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg (2006)

17. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: ACM POPL, January 2001, pp. 14–26 (2001)

18. Nguyen, H.H., Chin, W.-N.: Enhancing program verification with lemmas. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer,
Heidelberg (2008)

19. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

20. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In:
ACM POPL, pp. 75–86 (2008)

http://www.dur.ac.uk/shengchao.qin/papers/SCP-draft.pdf

Memory Usage Verification Using Hip/Sleek 181

21. Reeves, G., Neilson, T., Litwin, T.: Mars exploration rover spirit vehicle anomaly
report. Jet Propulsion Laboratory Document No. D-22919 (July 2004)

22. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: IEEE
LICS, July 2002, pp. 55–74 (2002)

23. Xi, H.: Imperative programming with dependent types. In: IEEE LICS, June 2000,
pp. 375–387 (2000)

24. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Solving Parity Games in Practice

Oliver Friedmann and Martin Lange

Dept. of Computer Science, University of Munich, Germany

Abstract. Parity games are 2-player games of perfect information and
infinite duration that have important applications in automata theory
and decision procedures (validity as well as model checking) for tempo-
ral logics. In this paper we investigate practical aspects of solving parity
games. The main contribution is a suggestion on how to solve parity
games efficiently in practice: we present a generic solver that intertwines
optimisations with any of the existing parity game algorithms which is
only called on parts of a game that cannot be solved faster by simpler
methods. This approach is evaluated empirically on a series of bench-
marking games from the aforementioned application domains, showing
that using this approach vastly speeds up the solving process. As a
side-effect we obtain the surprising observation that Zielonka’s recursive
algorithm is the best parity game solver in practice.

1 Introduction

Parity games are two-player games of perfect information played on directed
graphs whose nodes are labeled with priorities. The winner of a play is deter-
mined by the parity (even or odd) of the maximal priority occurring infinitely
often. Parity games have various applications in computer science, and the the-
ory of formal languages and automata in particular. They are closely related to
other games of infinite duration, in particular mean and discounted payoff as well
as stochastic games [4,14]. An efficient parity game solver may be extendable to
efficient solvers for those games as well.

Solving a parity game is equivalent (from a complexity-theoretic point of
view) under linear-time reductions to the model checking problem for the modal
μ-calculus [14]. Hence, any parity game solver is also a model checker for the
μ-calculus (and vice-versa) and all its fragments like CTL, PDL, CTL∗, etc.
However, typical verification problems result in parity games with few priorities
only for which specialised algorithms should be more efficient than a general
solver.

Parity games also arise in decision procedures for temporal logics. While the
satisfiability problem for linear-time logics like LTL, PSL or the linear-time μ-
calculus reduces – in one form or the other – to the inclusion problem for non-
deterministic Büchi automata (NBA) and therefore requires complementation
thereof, branching-time logics require the determinisation of NBA in addition.
So far, the only known constructions for determinising and complementing an
NBA are Safra’s [10], Piterman’s [9], and Kähler and Wilke’s [7]. The first one

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 182–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving Parity Games in Practice 183

yields a deterministic Streett automaton which is algorithmically not very easy
to handle. The two others yield parity automata. Using these, the satisfiability
(or validity) problem for branching-time logics not only reduces to the solving
of parity games, there also does not seem to be a feasible alternative. The same
holds for controller synthesis problems which are tackled by a reduction to the
satisfiability problem of, typically, some branching-time logic like the modal μ-
calculus [2]. Hence, being able to solve parity games well in practice is also vital
for obtaining good satisfiability and controller synthesis tools.

A variety of algorithms for solving parity games has been invented so far.
The most prominent deterministic ones are the constructive proof of memory-
less determinacy by Zielonka [18] which yields a recursive algorithm, the local
μ-calculus model checker by Stevens and Stirling [13], Jurdziński’s small progress
measures algorithm [5] with a symbolic version [8], the strategy improvement al-
gorithm by Jurdziński and Vöge [17] with a locally optimal variation by Schewe
[12], and the subexponential algorithm by Jurdziński, Paterson and Zwick [6]
with a so-called big-step variant by Schewe [11]. This variety is owed to the the-
oretical challenge of answering the question whether parity games can be solved
in polynomial time, rather than practical motivations. Nonetheless, a parity
game solver that is efficient in practice is necessary for practical decision proce-
dure for branching-time logics and for controller synthesis, and may even be used
as a model checker. Van de Pol and Weber describe a parallel implementation
of Jurdziński’s small progress measures algorithm [16] but it turns out that in
many cases, this algorithm is not the most efficient one. Also, their implementa-
tion does not feature known tricks that are supposed to be optimisations to any
parity game solver.

The literature contains a few suggestions on how to tune a parity game solver.
Jurdziński [5] mentions decomposition into SCCs and solving SCC-wise, removal
of self-cycles on nodes, and priority compression. Huth et al. [1] mention the
latter two and, in addition, priority propagation. In any case, these are suggested
heuristics that have not been put to the test yet. While it is plausible that they
are useful in speeding up parity game solvers in practice, no proper evidence of
this has been given so far.

In this paper we present a rigorous empirical treatment of these optimisations.
After recalling the theory of parity games in Sect. 2, we shortly describe such
optimisations in Sect. 3 and devise a so-called generic solver. It is an algorithm
which employs some of these optimisations in a certain order and fashion, and
intertwines them with calls to a real algorithm for solving parity games. The
choice of the optimisations and the design of the order etc. is motivated by
common sense and experience in practice. Hence, this paper presents a particular
way of employing particular optimisations that has turned out to be successful
while others are less succesful (or even harmful). The success is quantified in
Sect. 4 which examines the result that employing these optimisations has on the
times needed to solve certain games. There are no families of games that people
agree on as standard benchmarks. We therefore use hand-made games, some of
which are taken from application domains listed above.

184 O. Friedmann and M. Lange

The approach presented in this paper is implemented in a publicly available
tool which shows that parity games can – despite the lack of proof or fact about
being polynomial-time solvable – be solved efficiently in practice. It also bears
some surprises. All of the deterministic algorithms for solving parity games that
have appeared in the literature so far have been implemented in the tool which
therefore allows them to be compared w.r.t. their usability in practice. As a
result, the small progress measures algorithm as well as the strategy improvement
turn out to be generally slower than the recursive algorithm. This is a huge
surprise since this algorithm was commonly accepted to be a constructive proof of
determinacy but nothing more, in particular not to have any practical relevance
at all. Furthermore, there are “optimisations” that have been suggested as a
means for speeding up the solving which one should not employ because they
turn out to slow down the solving.

The rest of the paper is organised as follows. Sect. 2 recalls parity games and
necessary technicalities. Sect. 3 describes the aforementioned optimisations and
presents the generic solver which is assembled out of these. Sect. 4 evaluates the
solver empirically on some families of benchmarking games.

2 Preliminaries

A parity game is a tuple G = (V, V0, V1, E,Ω) where (V,E) forms a directed
graph in which each node has at least one successor. The set of nodes is parti-
tioned into V = V0∪V1 with V0∩V1 = ∅, and Ω : V → N is the priority function
that assigns to each node a natural number called the priority of the node. We
write |Ω| for the index of the parity game, that is the number of different prior-
ities assigned to its nodes. The graph is required to be total, i.e. for every v ∈ V
there is a w ∈ W s.t. (v, w) ∈ E. Here we only consider games based on finite
graphs.

We also use infix notation vEw instead of (v, w) ∈ E and define the set of
all successors of v as vE := {w | vEw}, as well as the set of all predecessors
of w as Ew := {v | vEw}. For a set U ⊆ V and nodes v, w ∈ V we will write
G \ U for the game that is obtained from G by eliminating all nodes in U , i.e.
(V \U, V0 \U, V1 \U,E \ (V ×U ∪U ×V), Ω) and G \ {(v, w)} for the game that
results from eliminating a possible edge between v and w – assuming that the
result is still total – i.e. (V, V0, V1, E \ {(v, w)}, Ω).

The game is played between two players called 0 and 1 in the following way.
Starting in a node v0 ∈ V they construct an infinite path through the graph
as follows. If the construction so far has yielded a finite sequence v0 . . . vn and
vn ∈ Vi then player i selects a w ∈ vnE and the play continues with the sequence
v0 . . . vnw.

Every play has a unique winner given by the parity of the greatest priority
that occurs infinitely often in a play. The winner of the play v0v1v2 . . . is player
i iff max{p | ∀j ∈ N ∃k ≥ j : Ω(vk) = p} ≡2 i (where i ≡2 j holds iff |i − j|
mod 2 = 0). That is, player 0 tries to make an even priority occur infinitely often
without any greater odd priorities occurring infinitely often, player 1 attempts
the converse.

Solving Parity Games in Practice 185

A positional strategy for player i in G is a – possibly partial – function σ :
Vi → V . A play v0v1 . . . conforms to a strategy σ for player i if for all j ∈ N we
have: if vj ∈ Vi then vj+1 = σ(vj). Intuitively, conforming to a strategy means
to always make those choices that are prescribed by the strategy. A strategy σ
for player i is a winning strategy in node v if player i wins every play that begins
in v and conforms to σ. We say that player i wins the game G starting in v iff
he/she has a winning strategy for G starting in v.

With G we associate two sets W0,W1 ⊆ V ; Wi is the set of all nodes v s.t.
player i wins the game G starting in v. Here we restrict ourselves to positional
strategies because it is well-known that a player has a (general) winning strategy
iff she has a positional winning strategy for a given game. In fact, parity games
enjoy positional determinacy meaning that for every node v in the game either
v ∈ W0 or v ∈ W1 [3]. Furthermore, it is not difficult to show that, whenever
player i has winning strategies σv for all v ∈ U for some U ⊆ V , then there is
also a single strategy σ that is winning for player i from every node in U .

The problem of solving a given parity game is to compute W0 and W1 as well
as corresponding winning strategies σ0 and σ1 for the players on their respective
winning regions. We will write [] for the strategy with empty domain, and σ[v →
w] with vEw for the strategy that behaves like σ on all nodes in V \ {v} and
that maps v to w. Given two strategies σ, σ′ for player i, we define their right-
join σ +� σ′ as (σ +� σ′)(v) = σ(v) if σ′(v) is undefined and (σ +� σ′)(v) = σ′(v)
otherwise.

Let U ⊆ V and i ∈ {0, 1}. The i-attractor of U contains all nodes from
which player i can move “towards” U and player 1− i must move “towards” U .
Attractors will play an important role in the solving procedure described below
because they can efficiently be computed using breadth-first search on the inverse
graph underlying the game. At the same time, it is possible to construct an
attractor strategy which is a positional strategy in a reachability game. Following
this strategy guarantees player i to reach a node in U eventually, regardless of
the opponent’s choices. Define, for all k ∈ N:

Attr0
i (U) := U

Attrk+1
i (U) := Attrk

i (U) ∪ {v ∈ Vi | ∃w ∈ Attrk
i (U) s.t. vEw}

∪ {v ∈ V1−i | ∀w : vEw ⇒ w ∈ Attrk
i (U)}

Attri(U) :=
⋃
k∈N

Attrk
i (U)

Note that any attractor on a finite game is necessarily finite, and the approxi-
mation defined above thus terminates after at most |V | many steps. It is also not
difficult to see that Attr i(U) can be computed in time O(|E|) for any i and U
if the set operations take constant time only, using boolean arrays for example.
The corresponding attractor strategy is defined as

σAttr
i (v) :=

⎧⎪⎨
⎪⎩

w, if there is k > 0 s.t. v ∈ (Vi ∩ Attrk
i (U)) \Attrk−1

i (U)
and w ∈ Attrk−1

i (U) ∩ vE

⊥, otherwise

186 O. Friedmann and M. Lange

Note that the choice of w is not unique, but any w with the prescribed property
will suffice.

An important property that has been noted before [18,14] is that removing
the i-attractor of any set of nodes from a game will still result in a total game
graph.

3 Universal Optimisations and a Generic Solver

This section describes some universal optimisations – in the form of pre-transfor-
mations or incomplete solvers. These try to efficiently reduce the overall com-
plexity of a given parity game in order to reduce the effort spent by any solver.
Clearly, such optimisations have to ensure that a solution of the modified game
can be effectively and efficiently translated back into a valid solution of the orig-
inal game. Here we describe four: (1) SCC decomposition [5]; (2) detection of
three special cases – two from [1]; (3) priority compression [5], and (4) priority
propagation [1]. At the end we present a generic solver that makes use of most of
them. The choice is motivated by two facts: their worst-case running time is low
in comparison to that of a real solver: at most O(|Ω| · |E|), resp. O(|V | log |V |).
More importantly, they are empirically found to be beneficial.

3.1 SCC Decomposition

Let G = (V, V0, V1, E,Ω) be a parity game. A strongly connected component
(SCC) is a non-empty set C ⊆ V with the property that every node in C can
reach every other node in C, i.e. uE∗v for all u, v ∈ C (where E∗ denotes the
reflexive-transitive closure of E). We always assume SCCs to be maximal. We
call an SCC C proper if |C| > 1 or C = {v} for some v with vEv. Every
parity game G = (V, V0, V1, E,Ω) can, in time O(|E|), be partitioned into SCCs
C0, ..., Cn using Tarjan’s algorithm for example [15].

There is a topological ordering → on these SCCs which is defined as Ci → Cj

iff i �= j and there are u ∈ Ci, v ∈ Cj with uEv. An SCC C is called final if
there is no SCC C′ s.t. C → C′. Note that every finite graph must have at least
one final SCC.

Parity games can be solved SCC-wise. Each play eventually gets trapped in an
SCC, and the winner of the play is determined by the priorities of the nodes in
this SCC alone, in particular not by priorities of nodes not in this SCC. Hence,
an entire parity game can be solved by solving its SCCs starting with the final
ones and working backwards in their order.

It is reasonable to assume that SCC decomposition speeds up the solving of
a game. Suppose that the time it takes to solve a game G is f(G), and that
G can be decomposed into SCCs C0, . . . , Cn. Then solving SCC-wise will take
time f(C1) + . . . + f(Cn) +O(|G|) which is asymptotically better than f(G) if
f is superlinear. Note that it takes at least linear time to solve a parity game
because every node has to be visited at least once in order to determine which
Wi it belongs to.

Solving Parity Games in Practice 187

W1
W0

Attr 0(W0)

W1
W0

Fig. 1. Solving a game SCC-wise with refined decompositions

A näıve implementation of SCC-wise solving handles final SCCs and replaces
the winning regions in those with two single self-looping nodes that are won by
the respective players, and then continues with the next SCCs. A slightly more
clever way is the following, as suggested by Jurdziński [5]. First, let WG

i and σG
i

be empty sets resp. strategies for the players i ∈ {0, 1} on G.

1. Decompose G into SCCs C0, . . . , Cn. W.l.o.g. say that C0, . . . , Cm are final
for some m ≤ n. Then one solves these obtaining winning regions W j

i and
strategies σj

i for i ∈ {0, 1} and j = 0, . . . ,m. Add W j
i to WG

i for every i, j

and add σj
i to σG

i via right-join.
2. Compute Ai := Attr i(W 0

i ∪ . . . ∪ Wm
i) for i ∈ {0, 1} and corresponding

attractor strategies σi which are also added to WG
i and σG

i via right-join.
3. Repeat step 1 with (G \A0) \A1 until G is entirely solved.

Note that the attractors of the winning regions in some SCC can extend into
SCCs further up, and eliminating them can result in a finer SCC structure than
before. Hence, it suffices to decompose those of Cm+1, . . . , Cn that intersect with
one of the attractors.

An example is depicted in Fig. 1. On the left it shows a parity game that
is decomposed into 5 SCCs of which one is final. That is then solved using an
arbitrary solver which partitions it into the winning regions W0 and W1. The
middle then shows the attractor of W0 reaching into other SCCs. On the right it
shows the shaded regions already declared as winning for the respective players,
and the two affected non-final SCCs being decomposed into SCCs again. This
then yields a smaller parity game with 6 SCCs which can be solved iteratively
until the winning regions partition the entire game.

3.2 Detection of Special Cases

There are certain games that can be solved very efficiently. W.l.o.g. we assume
games to be proper and final SCCs. Note that non-proper SCCs are being solved
using attractor computations in the procedure described above.

Self-cycle games. Suppose there is a node v such that vEv. Then there are two
cases depending on the node’s owner p and the parity of the node’s priority. If

188 O. Friedmann and M. Lange

Ω(v) �≡2 p then taking the edge (v, v) is always a bad choice for player p and this
edge can be removed from the game. If v is v’s only successor then v itself can be
removed and the process iterated in order to preserve totality. If Ω(v) ≡2 p then
taking this edge is always good in the sense that the partial function [v → v]
is a winning strategy for player p on v. Hence, its attractor can be removed
as described above. It is therefore possible to remove self-cycles from a game
in time O(|E|), returning winning sets Wi and strategies σi for i ∈ {0, 1} that
result from the attractors of those nodes that are good for the respective players.

One-parity games. If all nodes in a proper SCC have the same parity the whole
game is won by the corresponding player no matter which choice she makes.
Hence, a winning strategy can be found by random choice in time O(|V |).

One-player games. A game G is a one-player game for player i iff for all v ∈ V1−i

we have |vE| = 1. It can be solved in time O(|Ω| · |E|) as follows. Consider the
largest priority p in G, and let P := {v | Ω(v) = p}. There are two cases.

– If p ≡2 i then player i wins the entire G because it is assumed to be a proper
SCC and player 1− i does not make any choices, so she can reach a node in
P from any node in the game. A winning strategy can easily be constructed
from an attractor strategy for P .

– If p �≡2 then let A := Attr1−i(P). Note that A consists of all nodes from
which player i has to move through a node with priority p which is bad for
her. Let C0, . . . , Cm be a decomposition of G \ A into SCCs. Now, player i
wins from all nodes in G iff she wins from all nodes in one of C0, . . . , Cm,
simply because they are part of the original SCC G in which player 1 − i
does not move, so the attractor of any winning node is always the entire G.

This gives a simple recursive algorithm which considers the largest priority and
either terminates or removes attractors, decomposes into SCCs and calls itself
recursively on the sub-SCCs. If player 1 − i does not win on the entire G, then
player 1− i wins on the entire G, and this is the case if in all the recursive calls
no sub-SCC is won by player i. Clearly, this can be realised in time O(|Ω| · |E|).

3.3 Priority Compression

The complexity of a parity game rises with |Ω|. This optimisation step attempts
to reduce this number. Note that it is not the actual values of priorities that
determine the winner. It is rather their parity on the one hand and their ordering
on the other. For instance, if there are two priorities p1 < p2 in a game with
p1 ≡2 p2 but there is no p′ such that p1 < p′ < p2 and p′ �≡2 p1 then every
occurrence of p2 can be replaced by p1.

The compression of G is a partial mapping ω : N → N that is defined on
all Ω(v) for any node v of the underlying game G; monotonic (x ≤ y implies
ω(x) ≤ ω(y)); decreasing (ω(x) ≤ x); parity-preserving (ω(x) ≡2 x); dense
(ω(x) < ω(y) − 1 implies ∃z.ω(x) < ω(z) < ω(y)); and minimal (min{ω(x) |
ω(x) �= ⊥} < 2). Note that a compression of G is unique and can easily be

Solving Parity Games in Practice 189

computed in time O(|V | log |V |): sort all nodes in ascending order of priority
and then construct ω in a single sweep through this order, starting with 0 or 1
depending on the least priority in G.

If G = (V, V0, V1, E,Ω) and ω is its compression then Comp(G) = (V, V0, V1,
E, ω ◦ Ω). It is the case that G and Comp(G) have the same winning regions
and strategies.

3.4 Priority Propagation

Suppose a play passes through a node v. Then it ultimately has to pass through
some of its successors as well. If the priority of v is at most as high as that of
all its successors, then one can replace the priority of v with the minimum of its
successors’ priorities without changing the winning regions and strategies. This
is backwards propagation. Equally, in forwards propagation one replaces a node’s
priority with the minimum of the priorities of all its predecessors if that is greater
than the current priority. This is sound because a node can only contribute to
the determination of the winner of a play if it is visited repeatedly, i.e. if the
play passes through one of its predecessors as well.

Technically, priority propagation on G = (V, V0, V1, E,Ω) computes a game
G = (V, V0, V1, E,Ω′) s.t. for all v ∈ V : Ω′(v) := max{Ω(v),min{Ω(w) | w ∈
Uv}} where Uv = vE in case of backwards propagation and Uv = Ev otherwise.

Note that propagation can be iterated, the forwards and backwards facets can
be intertwined, and this process is guaranteed to terminate because priorities are
at most increased but never beyond the maximal priority in G. Hence, the worst-
case running time is O(|Ω| · |V | · |E|), on average it will be much faster though.

Note that, even though priority propagation increases priorities, it decreases
the range of priorities in a game, and is therefore supposedly beneficial to pre-
ceed compression, because it allows for more compressed priorities. Empirically,
however, the use of priority propagation turns out to be harmful. This is why it
is not considered in the generic solver presented next.

3.5 A Generic Solver

We propose to solve parity games using the following generic algorithm which
takes as parameter a real solver and applies it only where necessary. It relies
heavily on SCC decomposition and attractor computations. Self-cycle elimina-
tion is done first because it can only be applied once and for all. Then the game is
decomposed, and from then on, only final SCCs are being solved. Their priorities
are being compressed – note that compression within an SCC rather than the
entire game generally leads to better results – and are checked for being special
cases. If this does not solve the SCC then the parameter solver is put to work
on it. Finally, attractors of computed winning regions are formed, and the SCC
decomposition is refined accordingly.

190 O. Friedmann and M. Lange

GenericSolver(G = (V, V0, V1, E,Ω),S) =
1 initialise empty winning regions W0,W1 and strategies σ0, σ1
2 eliminate self-cycles from G
3 while G is not empty do
4 decompose G into SCCs
5 for each final SCC C do
6 if C is a one-player-SCC then
7 solve C directly
8 else
9 if C is a one-parity-SCC then
10 solve C directly
11 else
12 compress priorities on C
13 solve C using S
14 compute and remove attractors of the winning regions in C

Here we assume that the procedures in lines 2,7,11 and 13 update the variables
W0,W1, σ0, σ1 with the information about winning regions and strategies that
they have found on parts of the game. Hence, the solution to the entire game is
stored in these variables in the end. Note that this generic algorithm is sound
whenever the backend S is sound, meaning that the answer it computes for
a node is correct. It is complete – an answer is computed for every node – if
the backend is complete. However, this is not necessary. In order to guarantee
completeness one does not need completeness of the backend. Instead it suffices if
the backend solves at least one node of a given game. Then the generic algorithm
will eventually terminate with W0 ∪W1 = V .

4 Empirical Evaluation

The generic solver described above, together with 8 real solvers from the liter-
ature has been implemented in a tool called PGSolver1. The tool is written
in OCaml; and it uses standard array representations for manipulating game
graphs, in particular no symbolic methods.

Here we report on some of PGSolver’s runtime result on benchmarking
families of games. These benchmarks should cover typical applications of par-
ity games, in particular games from the area of model checking and decision
problems for branching-time logics. However, we remark that so far there is no
standard collection of parity game benchmarks. Here we start with the following.

– Decision procedures. We apply to certain (hard) formulas the exponential
reduction of the validity problem for the modal μ-calculus to the parity
game problem using Piterman’s determinisation procedure [9].

– Model checking. We encode two verification problems (fairness and reacha-
bility) as parity games.

1 Publicly available via http://www.tcs.ifi.lmu.de/pgsolver

Solving Parity Games in Practice 191

– Random games. Because of the absence of meaningful standardised parity
game benchmarks we also evaluate the generic solver on random games.

The benchmarking games are presented in detail in the following. We only report
on runtime results of the generic solver using the recursive algorithm, strategy
improvement and the small progress measures algorithm as a backend because,
on a separate note, these three algorithms turn out to be best in the sense that
in general, they solve games faster than the other algorithms like the local model
checker for example. This holds regardless of whether they are used directly or
as a backend to the generic solver.

In order to exhibit the benefits of using the generic solver we present runtime
results using various combinations of these optimisations: table columns labeled
all contain running times obtained from the generic solver as presented above,
i.e. using removal of self-cycles, SCC decomposition, priority compression and
detection of special cases. Equally, columns none indicate using none of these,
i.e. the entire game is solved by the backend. Columns labeled scc contain re-
sults from using SCC decomposition only, while cyc indicates the application
of both SCC decomposition and removal of self-cycles. Finally, columns named
pcsg imply the application of SCC decomposition, priority compression as well
as detection of special cases. Note that the series presented in the tables to fol-
low do not start with the smallest instances. We only present instances with
non-negligable running times. On the other hand, the solving of larger instances
not presented in the tables anymore has experienced time-outs after one hour,
marked †, or the games were already to large to be stored in the heap space.

All tests have been carried out on a machine with two 2.4GHz Intel R© XeonTM

processors and 4GB RAM space. The implementation does not (yet) support
parallel computations, hence, each test is run on one processor only.

Decision Procedures. Consider the following μ-calculus formulas ϕn := ψn∨¬ψn,
n ∈ N, where

ψn := μX1.νX2 . . . σnXn.

(
q1 ∨ ♦

(
X1 ∧

(
q2 ∨ ♦(X2 ∧ . . . (qn ∨ ♦Xn))

)))
with σn = μ if n is odd, and σn = ν otherwise. Obviously, ϕn is valid. It has
been chosen because of its high alternation depth which requires a relatively
large NBA An that checks for the unfoldings of ν-formulas. The nodes of the
parity game Gn resulting from ϕn are sets of subformulas of ϕn together with
a state of a deterministic parity automaton Bn which is equivalent to An and
which gives the game node its priority. The number of priorities in Bn depends
on the size of An [9]. Hence, ϕn is chosen in order to yield games of large index.

Another family to be considered is the following μ-calculus formula

ϕ′
n := νX.

(
q ∧ ♦(q ∧ ♦(. . .♦(q︸ ︷︷ ︸

2n times

∧♦(¬q ∧ ♦X)) . . .))
)

→ νZ.μY.(¬q ∧ ♦Z) ∨ (q ∧ ♦(q ∧ ♦Y))

which describes the language inclusion ((aa)nb)ω ⊆ ((aa)∗b)ω.

192 O. Friedmann and M. Lange

Recursive Algorithm Strategy Improvement Small Progress Measures

n nodes sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
2 462 84 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.2s 0.0s 0.2s 1.0s 0.0s 0.1s 0.0s 0.1s 0.3s

3 2.5K 219 0.0s 0.0s 0.0s 0.0s 0.5s 0.2s 5.8s 0.2s 6.2s 4.7m 0.2s 1.6s 0.2s 1.7s 4.6s

ϕn 4 14K 966 0.1s 0.1s 0.2s 0.2s 6.4s 7.4s 4.1m 8.1s 4.6m † 0.6s 12s 0.8s 13s 39s

5 58K 3.4K 0.6s 0.7s 1.2s 1.2s 53s 49s 33m 75s 40m † 2.2s 56s 2.9s 60s 2.4m

6 262K 15K 5.0s 5.2s 29s 29s 17m 12m † 14m † † 5.1s 6.7m 32s 7.8m †
7 982K 55K 22s 25s 4.6m 5.2m † † † † † † 35s 42m 5.1m 44m †
10 4.5K 1.1K 0.1s 0.1s 0.1s 0.2s 0.3s 0.1s 22m 0.1s 30m † 0.0s 0.4s 0.0s 0.4s 0.9s

50 21.5K 5.5K 0.5s 0.5s 3.3s 4.5s 7.8s 0.6s † 6.5s † † 0.0s 13.6s 0.0s 15s 61s

ϕ′
n 100 42.6K 10.8K 0.6s 0.7s 20s 20s 2.7m 1.1s † 21s † † 0.1s 2.2m 0.2s 2.3m 6.5m

500 211K 54.1K 5.4s 6.7s 13m 13m 29m 6.5s † 11m † † 0.3s † 5.1s † †
1K 423K 108K 6.5s 7.6s 53m 54m † 7.9s † 43m † † 0.6s † 17s † †
2K 846K 216K 24s 27s † † † 18s † † † † 1.4s † 87s † †

Fig. 2. Runtime results on games from the decision procedures domain

The times needed to solve the resulting games as well as their sizes are pre-
sented in Fig. 2.

Model Checking I. We encode a simple fairness verification problem as a parity
game. States of a transition system modelling an elevator for n floors are of
type {1, . . . , n} × {o, c} × (

⋃
{Perm(S) | S ⊆ {1, . . . , n}). The first component

describes the current position of the elevator as one of the floors. The second
component indicates whether the door is open or closed. The third component
– a permutation of a subset of all available floors – holds the requests, i.e. those
floors that should be served next. The transitions on these are as follows.

– At any moment, any request or none can be issued. For simplicity reasons,
we assume that at most one floor is added to the requests per transition.
Note that nondeterministically, no request can be issued, and a request for
a certain floor that is already contained in the current requests does not
change them.

– If the door is open then it is closed in the next step, the current floor does
not change.

– If it is closed, the elevator moves one floor (up or down) into the direction of
the first request. If the floor reached that way is among the requested ones,
the door is opened and that floor is removed from the current requests.
Otherwise, the door remains closed.

We consider two different implementations of this elevator model: the first one
stores requests in FIFO style, the second in LIFO style. The games Gn (with
FIFO), resp. G′

n (with LIFO) result from encoding the model checking problem
for this transition system and the CTL∗ formula A(GFisPressed → GFisAt) as a
parity game [14]. Proposition isPressed holds in any state s.t. the request list
contains the number n, and isAt holds in a state where the current floor is
n. Hence, this formula requires all runs of the elevator to satisfy the following
fairness property: if the top floor is requested infinitely often then it is being
served infinitely often. It can easily be formulated in the modal μ-calculus using
a formula of size 11 and alternation depth 2 (of type ν–μ–ν). Hence the resulting

Solving Parity Games in Practice 193

Recursive Algorithm Strategy Improvement Small Progress Measures

n nodes sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
3 564 95 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.1s 0.10s 0.0s 0.0s 0.0s 0.0s 0.1s

4 2.6K 449 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 1.8s 0.1s 2.0s 3.1s 0.1s 0.4s 0.1s 0.4s 0.4s

Gn 5 15.6K 2.6K 0.4s 0.5s 0.6s 0.7s 1.4s 0.5s 2.0s 0.7s 2.2s 2.3s 0.5s 2.9s 0.7s 3.0s 3.9s

6 108K 18K 3.1s 4.7s 4.9s 6.0s 11s 3.1s † 4.5s † † 4.0s 33s 5.8s 33s 37s

7 861K 143K 34s 44s 50s 73s 1.8m 36s † 53s † † 39s 6.7m 59s 6.9m 7.6m

3 588 99 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s

G′
n 4 2.8K 473 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 0.3s 0.7s 0.1s 0.2s 0.1s 0.2s 0.2s

5 16.3K 2.7K 0.6s 0.7s 0.8s 0.9s 1.0s 0.6s 2.4s 0.8s 5.7s 13s 0.5s 1.3s 0.5s 1.5s 1.5s

6 111K 18.5K 3.8s 4.3s 5.6s 6.0s 7.1s 3.8s 21s 8.7s 46s 5.3m 5.2s 20s 7.0s 24s 24s

Fig. 3. Runtime results on games from the elevator verification example

parity games have constant index 3. Note that Gn encodes a positive instance
of the model checking problem whereas G′

n encodes a negative one. The times
needed to solve them as well as their sizes are presented in Fig. 3. Larger instances
caused out-of-memory failures due to the size of the underlying transition system.

Model Checking II. Typical verification problems often lead to special parity
games for which there are specialised solvers. For instance, CTL model checking
problems lead to alternation-free parity games, i.e. those in which every SCC
is a single-parity SCC with index 0 or 1. We therefore consider a second set
of benchmarks from the verification domain in the form of very special games.
We model the well-known Towers of Hanoi represented as a transition system
in which states consist of three stacks containing the numbers {1, . . . , n}. The
initial state is ([1, . . . , n], [], []), and each state has up to 6 successors resulting
from shifting the top element of one stack to another for as long as the top of
that is not smaller.

The property to be tested is the CTL formula EFfin, where fin holds in the
state ([], [1, . . . , n], []) only. The resulting game Gn = (V, V0, V1, E,Ω) is special
because V1 = ∅ and only priorities 0 and 1 are being assigned to the states.
The times needed to solve these games and their sizes are shown in Fig. 4.
Note that the interesting part of solving the games of the former example is
the computation of the winning regions which show those states from which the
elevator has fair runs. Here, however, the interesting part is the computation of
the winning strategy for player 0 since it represents a strategy for solving the
Towers-of-Hanoi game.

Random Games. Finally, we evaluate the generic solver on random games. Note
that the standard model of a random game which chooses, for each node, some d
successors and randomly assigns priorities as well as node owners, leads to graphs
which typically consist of one large SCC and several 1-node SCCs which have
successors in the large one. Those do not add significantly to the runtime of the
solving process which is predominantly determined by the large SCC. Hence,
SCC decomposition would not necessarily prove to be useful in this random
model. The truth, however, is that SCC decomposition is indeed useful in general
but this random model creates special games on which it is not. While special

194 O. Friedmann and M. Lange

Recursive Algorithm Strategy Improvement Small Progress Measures

n nodes sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
5 972 244 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.9s 0.0s 0.0s 0.0s 0.0s 0.3s

6 2.9K 730 0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0.0s 15s 0.0s 0.0s 0.0s 0.0s 2.2s

7 8.7K 2.1K 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 0.1s 0.1s 0.1s 5.4m 0.1s 0.1s 0.1s 0.1s 13s

8 26K 6.5K 0.2s 0.2s 0.4s 0.4s 0.7s 0.2s 0.2s 0.4s 0.4s † 0.2s 0.2s 0.4s 0.4s 77s

9 78K 19K 0.7s 0.7s 1.0s 1.0s 2.2s 0.7s 0.7s 1.0s 1.0s † 0.7s 0.7s 1.0s 1.0s 9.9m

10 236K 59K 2.3s 2.3s 3.3s 3.3s 4.1s 2.3s 2.3s 3.3s 3.3s † 2.3s 2.3s 3.3s 3.3s 37m

11 708K 177K 7.2s 7.2s 13s 13s 21s 7.2s 7.2s 13s 13s † 7.2s 7.2s 13s 13s †

Fig. 4. Runtime results on games from the Towers-of-Hanoi example

Recursive Algorithm Strategy Improvement Small Progress Measures

nodes avg.sccs all cyc pcsg scc none all cyc pcsg scc none all cyc pcsg scc none
1K 31 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.3s 0.3s 1.2s 0.0s 0.0s † † †
2K 71 0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.3s 0.3s 6.7s 0.0s 0.0s † † †
5K 130 0.1s 0.1s 0.1s 0.1s 0.2s 0.1s 0.1s 0.7s 0.7s 61s 0.1s 0.1s † † †
10K 244 0.2s 0.2s 0.2s 0.2s 0.5s 0.2s 0.2s 0.8s 0.9s 5.9m 0.4s 0.4s † † †
20K 458 0.3s 0.4s 0.3s 0.4s 1.1s 0.4s 0.4s 2.7s 2.7s 32m 0.7s 0.7s † † †
50K 1K 0.8s 1.1s 0.8s 1.1s 2.9s 1.1s 1.1s 3.7s 3.7s † 1.7s 1.8s † † †
100K 1.5K 2.7s 4.1s 2.9s 4.1s 6.3s 3.9s 4.0s 6.0s 11s † 6.2s 6.5s † † †
200K 2.3K 5.9s 8.4s 5.5s 8.4s 14s 8.4s 8.4s 16s 22s † 13s 14s † † †
500K 3.4K 16s 20s 18s 19s 60s 19s 20s 34s 34s † 30s 31s † † †
1M 12K 99s 2.1m 1.7m 2.3m 14m 1.7m 1.7m 13m 26m † 2.8m 3.0m † † †

Fig. 5. Runtime results on random games

games are important to consider, random games should be more general ones
since a random model is typically employed in order to capture all sorts of other
games. Thus, we enhance this simple random model in order to obtain more
interesting games of size n: first, create clusters of sizes < n according to this
model, then combine these whilst adding random edges between the clusters.
Fig. 5 presents the average number of SCCs that these random games posses,
as well as the corresponding average runtime results. Each row represents 100
random games of corresponding size.

5 Conclusions

The previous section shows that it is possible to solve large parity games effi-
ciently in practice. Contrary to common believe, even a large number of priorities
does not necessarily pose a great difficulty in practice. All in all, there are five
notable, maybe even surprising observations that can generally be made here.

(1) The recursive algorithm is much better than the other two algorithms
if applied without any optimisation and preprocessing techniques. We believe
that this is due to the nature of the recursive algorithm being itself based on a
continuous decomposition of the game.

(2) SCC decomposition alone is highly profitable already, and in general even
moreso when combined with any of the other optimisations, particularly the
elimination of self-cycles.

Solving Parity Games in Practice 195

(3) Not every optimisation speeds up all algorithms likewise. The recursive
algorithm seems to profit more from self-cycle elimination than from priority
compression and solving of special cases. This could be due to the fact that
without eliminating self-cycles it expectedly requires a deep recursive descend
in order to detect them by the recursion mechanism. On the other hand, the
considered special cases can be solved quite fast by the recursive algorithm. Re-
garding strategy iteration and small progress measures iteration, it is the other
way round: the detection of special cases as well as priority compression speed up
the algorithms much more than treating self-cycles beforehand. The former is not
surprising because both algorithms summarize nodes with the same priority and
it is clear that the direct solution of special cases is faster than applying the iter-
ation techniques to them. Finally it is also clear why the strategy iteration does
not profit as much from elimination of self-cycles as the recursive algorithm since
strategy iteration basically detects cycles and computes attractor-like strategies
seeking cycles which is similar to the preprocessing technique that removes self-
cycles. Similarly, the small progress measures algorithm easily detects self-cycles
and back-propagates them through the graph which also corresponds to the
computation of attractor-like strategies.

(4) There are even complex instances like the Towers-of-Hanoi example that
are completely solved by the generic algorithm, i.e. without calling the backend
even once. Obviously, generic optimisations as discussed in this paper have not at
all the potential to give rise to a polynomial time algorithm that solves arbitrary
parity games. But solving real-world parity game problems in practice can be
heavily sped up by generic optimisation techniques.

(5) In general, it is advisable to enable all optimisations. Thus even an in-
experienced user is on the safe side by activitating all of them. Also, using can
cause tremendous speed-ups, which is witnessed for example in the drop of the
average runtime from 14 to 1.5 minutes on random games with 1 million nodes
using the recursive algorithm.

Despite developing additional universal optimisation techniques and paralleliz-
ing existing backend algorithms, there is another approach that should turn out to
be of high value for practical solving: since it is very unlikely that one would ever
find a real-world family of games on which all of the known backend algorithms
show bad performance, there is an immediate improvement for the generic solver:
it could take an arbitrary number of complete solvers as arguments and run them
in parallel on those parts that cannot be solved by simpler methods. As soon as
any of them provides a solution, the other computations can be killed.

References

1. Antonik, A., Charlton, N., Huth, M.: Polynomial-time under-approximation of win-
ning regions in parity games. Technical report, Dept. of Computer Science, Imperial
College London (2006)

2. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with
partial observation. Theor. Comput. Sci. 303(1), 7–34 (2003)

196 O. Friedmann and M. Lange

3. Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In:
Proc. 32nd Symp. on Foundations of Computer Science, San Juan, Puerto Rico,
pp. 368–377. IEEE, Los Alamitos (1991)

4. Jurdziński, M.: Deciding the winner in parity games is in UP∩co-UP . Inf. Pro-
cess. Lett. 68(3), 119–124 (1998)

5. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

6. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: Proc. ACM-SIAM Symp. on Discrete Algorithms,
SODA 2006, pp. 114–123. ACM/SIAM (2006) (to appear)

7. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 724–735. Springer, Heidelberg (2008)

8. Lange, M.: Solving parity games by a reduction to SAT. In: Majumdar,
R., Jurdziński, M. (eds.) Proc. Int. Workshop on Games in Design and Verification,
GDV 2005 (2005)

9. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: Proc. 21st Symp. on Logic in Computer Science, LICS 2006,
pp. 255–264. IEEE Computer Society, Los Alamitos (2006)

10. Safra, S.: On the complexity of ω-automata. In: Proc. 29th Symp. on Foundations
of Computer Science, FOCS 1988, pp. 319–327. IEEE, Los Alamitos (1988)

11. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

12. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369–384. Springer, Heidelberg (2008)

13. Stevens, P., Stirling, C.: Practical model-checking using games. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 85–101. Springer, Heidelberg (1998)

14. Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR
1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

15. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J.
Computing 1, 146–160 (1972)

16. van de Pol, J., Weber, M.: A multi-core solver for parity games. Electr. Notes
Theor. Comput. Sci. 220(2), 19–34 (2008)

17. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

18. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. TCS 200(1–2), 135–183 (1998)

Automated Analysis of Data-Dependent Programs with
Dynamic Memory

Parosh Aziz Abdulla1, Muhsin Atto2, Jonathan Cederberg1, and Ran Ji3

1 Uppsala University, Sweden
2 University of Duhok, Kurdistan-Iraq

3 Chalmers University of Technology, Gothenburg, Sweden

Abstract. We present a new approach for automatic verification of
data-dependent programs manipulating dynamic heaps. A heap is encoded by a
graph where the nodes represent the cells, and the edges reflect the pointer struc-
ture between the cells of the heap. Each cell contains a set of variables which
range over the natural numbers. Our method relies on standard backward reacha-
bility analysis, where the main idea is to use a simple set of predicates, called sig-
natures, in order to represent bad sets of heaps. Examples of bad heaps are those
which contain either garbage, lists which are not well-formed, or lists which are
not sorted. We present the results for the case of programs with a single next-
selector, and where variables may be compared for (in)equality. This allows us to
verify for instance that a program, like bubble sort or insertion sort, returns a list
which is well-formed and sorted, or that the merging of two sorted lists is a new
sorted list. We report on the result of running a prototype based on the method on
a number of programs.

1 Introduction

We consider the automatic verification of data-dependent programs that manipulate dy-
namic linked lists. The contents of the linked lists, here refered to as a heap, is rep-
resented by a graph. The nodes of the graph represent the cells of the heap, while the
edges reflect the pointer structure between the cells (see Figure 1 for a typical example).

5 6
x

1

6

y

3
v

4
z

∗
w

Fig. 1. A typical graph representing the heap

The pro-
gram has a
dynamic be-
haviour in
the sense that
cells may be
created and
deleted; and
that pointers
may be re-directed during the execution of the program. The program is also data-
dependent since the cells contain variables, ranging over the natural numbers, that can
be compared for (in)equality and whose values may be updated by the program. The
values of the local variables are provided as attributes to the corresponding cells. Fi-
nally, we have a set of (pointer) variables which point to different cells inside the heap.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 197–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 P.A. Abdulla et al.

In this paper, we consider the case of programs with a single next-selector, i.e., where
each cell has at most one successor. For this class of programs, we give a method for au-
tomatic verification of safety properties. Such properties can be either structural prop-
erties such as absence of garbage, sharing, and dangling pointers; or data properties
such as sortedness and value uniqueness. We provide a simple symbolic representa-
tion, which we call signatures, for characterizing (infinite) sets of heaps. Signatures can
also be represented by graphs. One difference, compared to the case of heaps, is that
some parts may be missing from the graph of a signature. For instance, the absence of
a pointer means that the pointer may point to an arbitrary cell inside a heap satisfying
the signature. Another difference is that we only store information about the ordering
on values of the local variables rather than their exact values. A signature can be in-
terpreted as a forbidden pattern which should not occur inside the heap. The forbidden
pattern is essentially a set of minimal conditions which should be satisfied by any heap
in order for the heap to satisfy the signature. A heap satisfying the signature is con-
sidered to be bad in the sense that it contains a bad pattern which in turn implies that
it violates one of the properties mentioned above. Examples of bad patterns in heaps
are garbage, lists which are not well-formed, or lists which are not sorted. This means
that checking a safety property amounts to checking the reachability of a finite set of
signatures. We perform standard backward reachability analysis, using signatures as a
symbolic representation, and starting from the set of bad signatures. We show how to
perform the two basic operations needed for backward reachability analysis, namely
checking entailment and computing predecessors on signatures.

For checking entailment, we define a pre-order � on signatures, where we view a
signature as three separate graphs with identical sets of nodes. The edge relation in
one of the three graphs reflects the structure of the heap graph, while the other two
reflect the ordering on the values of the variables (equality resp. inequality). Given two
signatures g1 and g2, we have g1 � g2 if g1 can be obtained from g2 by a sequence
of transformations consisting of either deleting an edge (in one of the three graphs),
a variable, an isolated node, or contracting segments (i.e., sequence of nodes) without
sharing in the structure graph. In fact, this ordering also induces an ordering on heaps
where h1 � h2 if, for all signatures g, h2 satisfies g whenever h1 satisfies g.

When performing backward reachability analysis, it is essential that the underlying
symbolic representation, signatures in our case, is closed under the operation of com-
puting predecessors. More precisely, for a signature g, let us define Pre(g) to be the
set of predecessors of g, i.e., the set of signatures which characterize those heaps from
which we can perform one step of the program and as a result obtain a heap satis-
fying g. Unfortunately, the set Pre(g) does not exist in general under the operational
semantics of the class of programs we consider in this paper. Therefore, we consider an
over-approximation of the transition relation where a heap h is allowed first to move to
smaller heap (w.r.t. the ordering �) before performing the transition. For the approx-
imated transition relation, we show that the set Pre(g) exists, and that it is finite and
computable.

One advantage of using signatures is that it is quite straightforward to specify sets
of bad heaps. For instance, forbidden patterns for the properties of list well-formedness
and absence of garbage can each be described by 4-6 signatures, with 2-3 nodes in

Automated Analysis of Data-Dependent Programs with Dynamic Memory 199

each signature. Also, the forbidden pattern for the property that a list is sorted consists
of only one signature with two nodes. Furthermore, signatures offer a very compact
symbolic representation of sets of bad heaps. In fact, when verifying our programs, the
number of nodes in the signatures which arise in the analysis does not exceed ten. In
addition, the rules for computing predecessors are local in the sense that they change
only a small part of the graph (typically one or two nodes and edges). This makes it
possible to check entailment and compute predecessors quite efficiently.

The whole verification process is fully automatic since both the approximation and
the reachability analysis are carried out without user intervention. Notice that if we
verify a safety property in the approximate transition system then this also implies its
correctness in the original system. We have implemented a prototype based on our
method, and carried out automatic verification of several programs such as insertion
in a sorted lists, bubble sort, insertion sort, merging of sorted lists, list partitioning,
reversing sorted lists, etc. Although the procedure is not guaranteed to terminate in
general, our prototype terminates on all these examples.

Outline. In the next section, we describe our model of heaps, and introduce the pro-
gramming language together with the induced transition system. In Section 3, we in-
troduce the notion of signatures and the associated ordering. Section 4 describes how
to specify sets of bad heaps using signatures. In Section 5 we give an overview of
the backward reachability scheme, and show how to compute the predecessor and en-
tailment relations on signatures. The experimental results are presented in Section 6.
In Section 7 we give some conclusions and directions for future research. Finally, in
Section 8, we give an overview of related approaches and the relationship to our work.

2 Heaps

In this section, we give some preliminaries on programs which manipulate heaps.
Let N be the set of natural numbers. For sets A and B, we write f : A→ B to denote

that f is a (possibly partial) function from A to B. We write f (a) = ⊥ to denote that
f (a) is undefined. We use f [a← b] to denote the function f ′ such that f ′(a) = b and
f ′(x) = f (x) if x �= a. In particular, we use f [a←⊥] to denote the function f ′ which
agrees on f on all arguments, except that f ′(a) is undefined.

Heaps. We consider programs which operate on dynamic data structures, here called
heaps. A heap consists of a set of memory cells (cells for short), where each cell has one
next-pointer. Examples of such heaps are singly liked lists and circular lists, possibly
sharing their parts (see Figure 1). A cell in the heap may contain a datum which is
a natural number. A program operating on a heap may use a finite set of variables
representing pointers whose values are cells inside the heap. A pointer may have the
special value null which represents a cell without successors. Furthermore, a pointer
may be dangling which means that it does not point to any cell in the heap. Sometimes,
we write the “x-cell” to refer to the the cell pointed to by the variable x. We also write
“the value of the x-cell” to refer to the value stored inside the cell pointed to by x. A
heap can naturally be encoded by a graph, as the one of Figure 1. A vertex in the graph
represents a cell in the heap, while the edges reflect the successor (pointer) relation on

200 P.A. Abdulla et al.

the cells. A variable is attached to a vertex in the graph if the variable points to the
corresponding cell in the heap. Cell values are written inside the nodes (absence of a
number means that the value is undefined).

Assume a finite set X of variables. Formally, a heap is a tuple (M,Succ,λ,Val) where

– M is a finite set of (memory) cells. We assume two special cells # and ∗ which
represent the constant null and the dangling pointer value respectively. We define
M• := M∪{#,∗}.

– Succ : M→M•. If Succ(m1) = m2 then the (only) pointer of the cell m1 points to the
cell m2. The function Succ is total which means that each cell in M has a successor
(possibly # or ∗). Notice that the special cells # and ∗ have no successors.

– λ : X →M• defines the cells pointed to by the variables. The function λ is total, i.e.,
each variable points to one cell (possibly # or ∗).

– Val : M → N is a partial function which gives the values of the cells.

In Figure 1, we have 17 cells of which 15 are in M, The set X is given by {x,y,z,v,w}.
The successor of the z-cell is null. Variable w is attached to the cell ∗, which means
that w is dangling (w does not point to any cell in the heap). Furthermore, the value of
the x-cell is 6, the value of the y-cell is not defined, the value of the successor of the
y-cell is 3, etc.

Remark. In fact, we can allow cells to contain multiple values. However, to simplify
the presentation, we keep the assumption that a cell contains only one number. This
will be sufficient for our purposes; and furthermore, all the definitions and methods we
present in the paper can be extended in a straightforward manner to the general case.
Also, we can use ordered domains other than the natural numbers such as the integers,
rationals, or reals.

Programming Language. We define a simple programming language. To this end, we
assume, together with the earlier mentioned set X of variables, the constant null where
null �∈ X . We define X# := X ∪{null}. A program P is a pair (Q,T) where Q is a
finite set of control states and T is a finite set of transitions. The control states represent
the locations of the program. A transition is a triple (q1,op,q2) where q1,q2 ∈ Q are
control states and op is an operation. In the transition, the program changes location
from q1 to q2, while it checks and manipulates the heap according to the operation op.
The operation op is of one of the following forms

– x = y or x �= y where x,y ∈ X#. The program checks whether the x- and y-cells are
identical or different.

– x := y or x.next := y where x ∈ X and y ∈ X#. In the first operation, the program
makes x point to the y-cell, while in the second operation it updates the successor
of the x-cell, and makes it equal to the y-cell.

– x := y.next where x,y ∈ X . The variable x will now point to the successor of the
y-cell.

– new(x), delete(x), or read(x), where x ∈ X . The first operation creates a new cell
and makes x point to it; the second operation removes the x-cell from the heap;
while the third operation reads a new value and assigns it to the x-cell.

Automated Analysis of Data-Dependent Programs with Dynamic Memory 201

6
x

1

6

y

z

3

h0

6
x

1

6

y

9
z

3

h1

6

1

6

y

9
z

3 x

h2

6

1

6

y

9
z

∗
x

h3

6

1

6

y

9
z

∗
x

h4

6

1

6

y

9
z

∗
x

h5

Fig. 2. Starting from the heap h0, the heaps h1, h2, h3, h4, and h5 are generated by performing the
following sequence of operations: z.num :> x.num, x := y.next, delete(x), new(x), and z.next := y.
To simplify the figures, we omit the special nodes # and ∗ unless one of the variables x,y,z is
attached to them. For this reason the cell # is missing in all the heaps, and ∗ is present only in
h3,h4,h5.

– x.num = y.num, x.num < y.num, x.num := y.num, x.num :> y.num, or x.num :<
y.num, where x,y ∈ X . The first two operations compare the values of (number
stored inside) the x- and y-cells. The third operation copies the value of the y-cell to
the x-cell. The fourth (fifth) operation assigns non-deterministically a value to the
x-cell which is larger (smaller) than that of the y-cell.

Figure 2 illustrates the effect of a sequence of operations of the forms described above
on a number of heaps. Examples of some programs can be found in [2].

Transition System. We define the operational semantics of a program P = (Q,T) by
giving the transition system induced by P. In other words, we define the set of configu-
rations and a transition relation on configurations. A configuration is a pair (q,h) where
q ∈ Q represents the location of the program, and h is a heap.

We define a transition relation (on configurations) that reflects the manner in which
the instructions of the program change a given configuration. First, we define some op-
erations on heaps. Fix a heap h = (M,Succ,λ,Val). For m1,m2 ∈ M, we use
(h.Succ) [m1 ← m2] to denote the heap h′ we obtain by updating the successor
relation such that the cell m2 now becomes the successor of m1 (without changing
anything else in h). Formally, h′ = (M,Succ′,Val,λ) where Succ′ = Succ [m1 ← m2].
Analogously, (h.λ) [x← m] is the heap we obtain by making x point to the cell m; and
(h.Val) [m← i] is the heap we obtain by assigning the value i to the cell m. For instance,
in Figure 2, let hi be of the form (Mi,Succi,Vali,λi) for i ∈ {0,1,2,3,4,5}. Then, we
have h1 = (h0.Val) [λ0(z)← 9] since we make the value of the z-cell equal to 9. Also,
h2 = (h1.λ1) [x← Succ1(λ1(y))] since we make x point to the successor of the y-cell.
Furthermore, h5 = (h4.Succ4) [λ4(z)← λ4(y)] since we make the y-cell the successor of
the z-cell.

202 P.A. Abdulla et al.

Consider a cell m ∈M. We define h�m to be the heap h′ we get by deleting the cell
m from h. More precisely, we define h′ := (M′,Succ′,λ′,Val′) where

– M′ = M−{m}.
– Succ′(m′)= Succ(m′) if Succ(m′) �= m, and Succ′(m′)= ∗ otherwise. In other words,

the successor of cells pointing to m will become dangling in h′.
– λ′(x)= ∗ if λ(x)= m, and λ′(x) = λ(x) otherwise. In other words, variables pointing

to the same cell as x in h will become dangling in h′.
– Val′(m′) = Val(m′) if m′ ∈ M′. That is, the function Val′ is the restriction of Val

to M′: it assigns the same values as Val to all the cells which remain in M′ (since
m �∈M′, it not meaningful to speak about Val(m)).

In Figure 2, we have h3 = h2�λ2(x).
Let t = (q1,op,q2) be a transition and let c = (q,h) and c′ = (q′,h′) be configurations.

We write c
t−→ c′ to denote that q = q1, q′ = q2, and h

op−→ h′, where h
op−→ h′ holds if

we obtain h′ by performing the operation op on h. For brevity, we give the definition of
the relation

op−→ for three types of operations. The rest of the cases can be found in [2].

– op is of the form x := y.next, λ(y) ∈ M, Succ(λ(y)) �= ∗, and h′ =
(h.λ) [x← Succ(λ(y))].

– op is of the from new(x), M′ = M ∪ {m} for some m �∈ M, λ′ = λ [x← m],
Succ′ = Succ [m←∗], Val′(m′) = Val(m′) if m′ �= m, and Val′(m) = ⊥. This op-
eration creates a new cell and makes x point to it. The value of the new cell is not
defined, while the successor is the special cell ∗. As an example of this operation,
see the transition from h3 to h4 in Figure 2.

– op is of the form x.num :> y.num, λ(x) ∈ M, λ(y) ∈ M, Val(λ(y)) �= ⊥, and h′ =
(h.Val) [λ(x)← i], where i > Val(λ(y)).

We write c −→ c′ to denote that c
t−→ c′ for some t ∈ T ; and use

∗−→ to denote the
reflexive transitive closure of −→. The relations −→ and

∗−→ are extended to sets of
configurations in the obvious manner.

Remark. One could also allow deterministic assignment operations of the form x.num :=
y.num+ k or x.num := y.num− k for some constant k. However, according the approxi-
mate transition relation which we define in Section 5, these operations will have identical
interpretations as the non-deterministic operations given above.

3 Signatures

In this section, we introduce the notion of signatures. We will define an ordering on
signatures from which we derive an ordering on heaps. We will then show how to use
signatures as a symbolic representation of infinite sets of heaps.

Signatures. Roughly speaking, a signature is a graph which is “less concrete” than a
heap in the following sense:

– We do not store the actual values of the cells in a signature. Instead, we define an
ordering on the cells which reflects their values.

– The functions Succ and λ in a signature are partial (in contrast to a heap in which
these functions are total).

Automated Analysis of Data-Dependent Programs with Dynamic Memory 203

Formally, a signature g is a tuple of the form (M,Succ,λ,Ord), where M, Succ, λ
are defined in the same way as in heaps (Section 2), except that Succ and λ are now
partial. Furthermore, Ord is a partial function from M×M to the set {≺,≡}. Intu-
itively, if Succ(m) = ⊥ for some cell m ∈M, then g puts no constraints on the succes-
sor of m, i.e., the successor of m can be any arbitrary cell. Analogously, if λ(x) = ⊥,
then x may point to any of the cells. The relation Ord constrains the ordering on the
cell values. If Ord(m1,m2) =≺ then the value of m1 is strictly smaller than that of
m2; and if Ord(m1,m2) =≡ then their values are equal. This means that we abstract
away the actual values of the cells, and only keep track of their ordering (and whether
they are equal). For a cell m, we say that the value of m is free if Ord(m,m′) = ⊥
and Ord(m′,m) = ⊥ for all other cells m′. Abusing notation, we write m1 ≺ m2 (resp.
m1 ≡ m2) if Ord(m1,m2) =≺ (resp. Ord(m1,m2) =≡).

We represent signatures graphically in a manner similar to that of heaps. Figure 3
shows graphical representations of six signatures g0, . . . ,g5 over the set of variables
{x,y,z}. If a vertex in the graph has no successor, then the successor of the correspond-
ing cell is not defined in g (e.g., the y-cell in g4). Also, if a variable is missing in
the graph, then this means that the cell to which the variable points is left unspeci-
fied (e.g., variable z in g3). The ordering Ord on cells is illustrated by dashed arrows.
A dashed single-headed arrow from a cell m1 to a cell m2 indicates that m1 ≺ m2. A
dashed double-headed arrow between m1 and m2 indicates that m1 ≡ m2. To simplify
the figures, we omit self-loops indicating value reflexivity (i.e., m≡m). In this manner,
we can view a signature as three graphs with a common set of vertices, and with three
edge relations; where the first edge relation gives the graph structure, and the other two
define the ordering on cell values (inequality resp. equality).

x

y

z

g0

x

y

z

g1

x

y

z

g2

x

yg3

x

yg4

x

yg5

Fig. 3. Examples of signatures

In fact, each heap h =
(M,Succ,λ,Val) induces a unique
signature which we denote by
sig (h). More precisely, sig(h) :=
(M,Succ,λ,Ord) where, for all
cells m1,m2 ∈ M, we have m1 ≺
m2 iff Val(m1) < Val(m2) and
m1 ≡m2 iff Val(m1) = Val(m2). In
other words, in the signature of h,
we remove the concrete values in
the cells and replace them by the
ordering relation on the cell val-
ues. For example, in Figure 2 and
Figure 3, we have g0 = sig(h0).

Signature Ordering. We define
an entailment relation, i.e., order-
ing � on signatures. The intuition
is that each signature can be inter-
preted as a predicate which char-
acterizes an infinite set of heaps.
The ordering is then the inverse of

204 P.A. Abdulla et al.

implication: smaller signatures impose less restrictions and hence characterize larger
sets of heaps. We derive a small signature from a larger one, by deleting cells, edges,
variables in the graph of the signature, and by weakening the ordering requirements on
the cells (the latter corresponds to deleting edges encoding the two relations on data
values). To define the ordering, we give first definitions and describe some operations
on signatures. Fix a signature g = (M,Succ,λ,Ord).

A cell m ∈ M is said to be semi-isolated if there is no x ∈ X with λ(x) = m, the
value of m is free, Succ−1(m) = /0, and either Succ(m) = ⊥ or Succ(m) = ∗. In other
words, m is not pointed to by any variables, its value is not related to that of any other
cell, it has no predecessors, and it has no successors (except possibly ∗). We say that m
is isolated if it is semi-isolated and in addition Succ(m) = ⊥. A cell m ∈M is said to
be simple if there is no x ∈ X with λ(x) = m, the value of m is free, |Succ−1(m)| = 1,
and Succ(m) �=⊥. In other words, m has exactly one predecessor, one successor and no
label. In Figure 3, the topmost cell of g3 is isolated, and the successor of the x-cell in g4

is simple. In Figure 1, the cell to the left of the w-cell is semi-isolated in the signature
of the heap.

The operations (g.Succ) [m1 ←m2] and (g.λ)[x← m] are defined in identical fash-
ion to the case of heaps. Furthermore, for cells m1,m2 and � ∈ {≺,≡,⊥}, we define
(g.Ord) [(m1,m2)← �] to be the signature g′ we obtain from g by making the ordering
relation between m1 and m2 equal to �. For a variable x, we define g�x to be the signa-
ture g′ we get from g by deleting the variable x from the graph, i.e., g′ = (g.λ)[x←⊥].
For a cell m, we define the signature g′ = g�m = (M′,Succ′,λ′,Ord′) in a manner
similar to the case of heaps. The only difference is that Ord′ (rather than Val′) is the
restriction of Ord to pairs of cells both of which are different from m.

Now, we are ready to define the ordering. For signatures g = (M,Succ,λ,Ord) and
g′ = (M′,Succ′,λ′,Ord′), we write that g � g′ to denote that one of the following prop-
erties is satisfied:

– Variable Deletion: g = g′ � x for some variable x,
– Cell Deletion: g = g′ �m for some isolated cell m ∈M′,
– Edge Deletion: g = (g′.Succ) [m←⊥] for some m ∈M′,
– Contraction: there are cells m1,m2,m3 ∈ M′ and a signature g1 such that m2 is

simple, Succ′(m1) = m2, Succ′(m2) = m3, g1 = (g′.Succ) [m1 ← m3] and g = g1�
m2, or

– Order Deletion: g = (g′.Ord) [(m1,m2)←⊥] for some cells m1,m2 ∈M′.

We write g � g′ to denote that there are g0 � g1 � g2 � · · ·� gn with n ≥ 0, g0 = g,
and gn = g′. That is, we can obtain g from g′ by performing a finite sequence of vari-
able deletion, cell deletion, edge deletion, order deletion, and contraction operations.
In Figure 3 we obtain: g1 from g0 through three order deletions; g2 from g1 through
one order deletion; g3 from g2 through one variable deletion and two edge deletions; g4

from g3 through one node deletion and one edge deletion; and g5 from g4 through one
contraction. It means that g5 � g4 � g3 � g2 � g1 � g0 and hence g5 � g0.

Heap Ordering
We define an ordering � on heaps such that h � h′ iff sig(h) � sig(h′). For a heap h
and a signature g, we say that h satisfies g, denoted h |= g, if g� sig(h). In this manner,

Automated Analysis of Data-Dependent Programs with Dynamic Memory 205

each signature characterizes an infinite set of heaps, namely the set [[g]] := {h|h |= g}.
Notice that [[g]] is upward closed w.r.t. the ordering� on heaps. We also observe that, for
signatures g and g′, we have that g� g′ iff [[g′]]⊆ [[g]]. For a (finite) set G of signatures
we define [[G]] :=

⋃
g∈G [[g]]. Considering the heaps of Figure 2 and the signatures of

Figure 3, we have h1 |= g0, h2 �|= g0, h0 � h1, h0 �� h2, etc.

Remark. Our definition implies that signatures cannot specify “exact distances” be-
tween cells. For instance, we cannot specify the set of heaps in which the x-cell and the
y-cell are exactly of distance one from each other. In fact, if such a heap is in the set
then, since we allow contraction, heaps where the distance is larger than one will also
be in the set. On the other hand, we can characterize sets of heaps where two cells are
at distance at least k from each other for some k ≥ 1.

4 Bad Configurations

In this section, we show how to use signatures in order to specify sets of bad heaps for
programs which produce ordered linear lists. A signature is interpreted as a forbidden
pattern which should not occur inside the heap. Typically, we would like such a program
to produce a heap which is a linear list. Furthermore, the heap should not contain any
garbage, and the output list should be ordered. For each of these three properties, we
describe the corresponding forbidden patterns as a set of signatures which characterize
exactly those heaps which violate the property. Later, we will collect all these signatures
into a single set which exactly characterizes the set of bad configurations.

First, we give some definitions. Fix a heap h = (M,Succ,λ,Val). A loop in h is a set
{m0, . . . ,mn} of cells such that Succ(mi) = mi+1 for all i : 0≤ i < n, and Succ(mn) = m0.
For cells m,m′ ∈M, we say that m′ is visible from m if there are cells m0,m1, . . . ,mn for
some n ≥ 0 such that m0 = m, mn = m′, and mi+1 = Succ(mi) for all i : 0 ≤ i < n. In
other words, there is a (possibly empty) path in the graph leading from m to m′. We say
that m′ is strictly visible from m if n > 0 (i.e. the path is not empty). A set M′ ⊆M is
said to be visible from m if some m′ ∈M′ is visible from m.

Well-Formedness. We say that h is well-formed w.r.t a variable x if # is visible form the
x-cell. Equivalently, neither the cell ∗ nor any loop is visible from the x-cell. Intuitively,
if a heap satisfies this condition, then the part of the heap visible from the x-cell forms
a linear list ending with #. For instance, the heap of Figure 1 is well-formed w.r.t. the
variables v and z.

In Figure 2, h0 is not well-formed w.r.t. the variables

x
∗b1: b2: ∗

x

x
b3: b4: x

x and z (a loop is visible), and h4 is not well-formed w.r.t.
z (the cell ∗ is visible). The set of heaps violating well-
formedness w.r.t. x are characterized by the four signatures
in the figure to the right. The signatures b1 and b2 charac-
terize (together) all heaps in which the cell ∗ is visible from
the x-cell. The signatures b3 and b4 characterize (together) all heaps in which a loop is
visible from the x-cell.

206 P.A. Abdulla et al.

x
b5: b6:

x

x
#b7: b8: #

x

x
b9: ∗ b10: ∗

x

Garbage. We say that h contains garbage w.r.t a vari-
able x if there is a cell m ∈ M in h which is not visi-
ble from the x-cell. In Figure 2, the heap h0 contains
one cell which is garbage w.r.t. x, namely the cell with
value 1. The figure to the right shows six signatures
which together characterize the set of heaps which con-
tain garbage w.r.t. x.

Sortedness. A heap is said to be sorted if it satisfies the condition that whenever a cell
m1 ∈ M is visible from a cell m2 ∈ M then Val(m1) ≤ Val(m2).

b11:
For instance, in Figure 2, only h5 is sorted. The figure to the right
shows a signature which characterizes all heaps which are not
sorted.

Putting Everything Together. Given a (reference) variable x, a configuration is con-
sidered to be bad w.r.t. x if it violates one of the conditions of being well-formed w.r.t.
x, not containing garbage w.r.t. x, or being sorted. As explained above, the signatures
b1, . . . ,b11 characterize the set of heaps which are bad w.r.t. x. We observe that b1 � b9,
b2� b10, b3� b5 and b4� b6, which means that the heaps b9.b10,b5,b6 can be discarded
from the set above. Therefore, the set of bad configurations w.r.t. x is characterized by
the set {b1,b2,b3,b4,b7,b8,b11}.
Remark. Other types of bad patterns can be defined in a similar manner. Examples can
be found in [2].

5 Reachability Analysis

In this section, we show how to check safety properties through backward reachability
analysis. First, we give an abstract transition relation −→A which is an
over-approximation of the transition relation −→. Then, we describe how to compute
predecessors of signatures w.r.t. −→A; and how to check the entailment relation. Fi-
nally, we introduce sets of initial heaps (from which the program starts running), and
describe how to check safety properties using backward reachability analysis.

Over-Approximation. The basic step in backward reachability analysis is to compute
the set of predecessors of sets of heaps characterized by signatures.

x,y
g:

More precisely, for a signature g and an operation op, we would like to

compute a finite set G of signatures such that [[G]] =
{

h|h op−→ [[g]]
}

. Con-

sider the signature g to the right. The set [[g]] contains exactly all heaps
where x and y point to the same cell. Consider the operation op defined by y := z.next.
The set H of heaps from which we can perform the operation and obtain a heap in [[g]]
are all those where the x-cell is the immediate successor of the z-cell. Since signatures
cannot capture the immediate successor relation (see the remark in the end of Section 3),
the set H cannot be characterized by a set G of signatures, i.e., there is no G such that
[[G]] = H. To overcome this problem, we define an approximate transition relation−→A

which is an over-approximation of the relation −→. More precisely, for heaps h and h′,
we have h

op−→A h′ iff there is a heap h1 such that h1 � h and h1
op−→ h′.

Automated Analysis of Data-Dependent Programs with Dynamic Memory 207

z x
g1: g2:

x,z

Computing Predecessors. We show that, for an operation
op and a signature g, we can compute a finite set Pre(op)(g)
of signatures such that [[Pre(op)(g)]] =

{
h|h op−→A [[g]]

}
. For

instance in the above case the set Pre(op)(g) is given by the {g1,g2} shown in the
figure to the right. Notice that [[{g1,g2}]] is the set of all heaps in which the x-cell is
strictly visible from the z-cell. In fact, if we take any heap satisfying [[g1]] or [[g2]], then
we can perform deletion and contraction operations (possibly several times) until the
x-cell becomes the immediate successor of the z-cell, after which we can perform op
thus obtaining a heap where x and y point to the same cell.

For each signature g and operation op, we show how to compute Pre(op)(g) as a
finite set of signatures. Due to lack of space, we show the definition only for the oper-
ation new. The definitions for the rest of the operations can be found in the [2]. For a
cell m ∈M and a variable x ∈ X , we define m being x-isolated in a manner similar to
m being isolated, except that we now allow m to be pointed to by x (and only x). More
precisely, we say m is x-isolated if λ(x) = m, λ(y) �= m if y �= x, the value of m is free,
Succ−1(m) = /0, and Succ(m) =⊥. We define m being x-semi-isolated in a similar man-
ner, i.e., by also allowing ∗ to be the successor of the x-cell. For instance, the leftmost
cell of the signature b1 in Section 4, and the x-cell in the signature sig (h5) in Figure 2
are x-semi-isolated.

We define Pre(g)(new(x)) to be the set of signatures g′ such that one of the following
conditions is satisfied:

– λ(x) is x-semi-isolated, and there is a signature g1 such that g1 = g� λ(x) and
g′ = g1� x.

– λ(x) =⊥ and g′ = g or g′ ∈ g�m for some semi-isolated cell m.

Initial Heaps. A program starts running from a designated set HInit of initial heaps. For
instance, in a sorting program, HInit is the set of well-formed lists which are (potentially)
not sorted. Notice that this set is infinite since there is no bound on the lengths of the
input lists. To deal with input lists, we follow the methodology of [7], and augment the
program with an initialization phase. The program starts from an empty heap (denoted
hε) and systematically (and non-deterministically) builds an arbitrary initial heap. In the
case of sorting, the initial phase builds a well-formed list of an arbitrary length. We can
now take the set HInit to be the singleton containing the empty heap hε.

Checking Entailment. For signatures g and g′, checking whether g � g′ amounts to
constructing an injection from the cells of g to those of g′. It turns out that a vast major-
ity (more than 99%) of signatures, compared during the reachability analysis, are not
related by entailment. Therefore, we have implemented a number of heuristics to detect
negative answers as quickly as possible. An example is that a cell m in g should have
(at most) the same labels as its image m′ in g′; or that the in- and out-degrees of m are
smaller than those of m′. The details of the entailment algorithm are included in [2].

Checking Safety Properties. To check a safety property, we start from the set GBad

of bad signatures, and generate a sequence G0,G1,G2, . . . of finite sets of signatures,
where G0 = GBad and Gi+1 =

⋃
g∈Gi

Pre(g). Each time we generate a signature g such
that g′ � g for some already generated signature g′, we discard g from the analysis.

208 P.A. Abdulla et al.

We terminate the procedure when we reach a point where no new signatures can be
added (all the new signatures are subsumed by existing ones). In such a case, we have
generated a set G of signatures that characterize all heaps from which we can reach a
bad heap through the approximate transition relation −→A. The program satisfies the
safety property if g �� sig(hε) for all g ∈G.

6 Experimental Results

We have implemented the method described above in a prototype written in Java. We
have run the tool on several examples, including all the benchmarks on singly linked
lists with data known to us from the TVLA and PALE tools. Table 1 shows the results
of our experiments. The column “#Sig.” shows the total number of signatures that were
computed throughout the analysis, the column “#Final” shows the number of signatures
that remain in the visited set upon termination, the column “#Ent” shows the total num-
ber of calls to entailment that were made, and the last column shows the percentage of
such calls that returned true. We have also considered buggy versions of some programs
in which case the prototype reports an error.

Table 1. Experimental results

Prog. Time #Sig. #Final #Ent Ratio
EfficientInsert 0.1 s 44 40 1570 0.7%
NonDuplicateInsert 0.4 s 111 99 8165 0.2%
Insert 2.6 s 2343 1601 2.2 ·106 0.03%
Insert (bug) 1.4 s 337 268 86000 0.09%
Merge 23.5 s 11910 5830 3.6 ·107 0.017%
Reverse 1.5 s 435 261 70000 0.3%
ReverseCyclic 1.6 s 1031 574 375000 0.1%
Partition 2 m 49 s 21058 15072 1.8 ·108 0.003%
BubbleSort 35.9 s 11023 10034 7.5 ·107 0.001%
BubbleSortCyclic 36.6 s 11142 10143 7.7 ·107 0.001%
BubbleSort (bug) 1.76 s 198 182 33500 0.07%
InsertionSort 11 m 53 s 34843 23324 4.4 ·108 0.003%

All experiments
were performed
on a 2.2 GHz In-
tel Core 2 Duo
with 4 GB of
RAM. For each
program, we ver-
ify well-formed-
ness, absence of
garbage, and
sortedness. Also,
in the case of the
Partition pro-
gram, we verify
that the two re-
sulting lists do
not have com-
mon elements.

7 Conclusions, Discussion, and Future Work

We have presented a method for automatic verification of safety properties for pro-
grams which manipulate heaps containing data. There are potentially two drawbacks
of our method, namely the analysis is not guaranteed to terminate, and it may generate
false positives (since we use an over-approximation). A sufficient condition for ter-
mination is well quasi-ordering of the entailment relation on signatures (see e.g. [3]).
The only example known to us for non-well-quasi-ordering of this relation is based
on a complicated sequence pattern by Nash-Williams (described in [13]) which shows

Automated Analysis of Data-Dependent Programs with Dynamic Memory 209

non-well-quasi-ordering of permutations of sequences of natural numbers. Such artifi-
cial patterns are unlikely to ever appear in the analysis of typical pointer-manipulating
programs. In fact, it is quite hard even to construct artificial programs for which the
Nash-Williams pattern arises during backward reachability analysis. This is confirmed
by the fact that our implementation terminates on all the given examples. As for false
positives, the definition of the heap ordering � means that the abstract transition re-
lation −→A allows three types of imprecisions, namely it allows: (i) deleting garbage
(nodes which are not visible from any variables), (ii) preforming contraction, and (iii)
only storing the ordering on cell variables rather than their actual values. Program runs
are not changed by (i) since we only delete nodes which are not accessible from the
program pointers in the first place. Also, most program behaviors are not sensitive to
the exact distances between nodes in a heap and therefore they are not affected by (ii).
Finally, data-dependent programs (such as sorting or merge algorithms) check only or-
dering rather than complicated relations on data inside the heap cells. This explains
why we do not get false positives on any of the examples on which we have run our
implementation.

The experimental results are quite encouraging, especially considering the fact that
our code is still highly unoptimized. For instance, most of the verification time is spent
on checking entailment between signatures. We believe that adapting specialized algo-
rithms, e.g. [20], for checking entailment will substantially improve performance of the
tool.

Several extensions of our framework can be carried out by refining the considered
preorder (and the abstraction it induces). For instance, if needed, our framework can be
extended in a straightforward manner to handle arithmetical relations which are more
complicated than simple ordering on data values such as gap-order constraints [17] or
Presburger arithmetic. Given the fact that the analysis terminates on all benchmarks, it is
tempting to characterize a class of programs which covers the current examples and for
which termination is theoretically guaranteed. Another direction for future work is to
consider more general classes of heaps with multiple selectors, and then study programs
operating on data structures such as doubly-linked lists and trees both with and without
data.

8 Related Work

Several works consider the verification of singly linked lists with data. The paper [14]
presents a method for automatic verification of sorting programs that manipulate linked
lists. The method is defined within the framework of TVLA which provides an abstract
description of the heap structures in 3-valued logic [19]. The user may be required to
provide instrumentation predicates in order to make the abstraction sufficiently precise.
The analysis is performed in a forward manner. In contrast, the search procedure we
describe in this paper is backward, and therefore also property-driven. Thus, the signa-
tures obtained in the traversal do not need to express the state of the entire heap, but
only those parts that contribute to the eventual failure. This makes the two methods
conceptually and technically different. Furthermore, the difference in search strategy
implies that forward and backward search procedures often offer varying degrees of ef-
ficiency in different contexts, which makes them complementary to each other in many

210 P.A. Abdulla et al.

cases. This has been observed also for other models such as parameterized systems,
timed Petri nets, and lossy channel systems (see e.g. [4,9,1]).

Another approach to verification of linked lists with data is proposed in [6,7] based
on abstract regular model checking (ARMC) [8]. In ARMC, finite-state automata are
used as a symbolic representation of sets of heaps. This means that the ARMC-based
approach needs the manipulation of quite complex encodings of the heap graphs into
words or trees. In contrast, our symbolic representation uses signatures which provide a
simpler and more natural representation of heaps as graphs. Furthermore, ARMC uses
a sophisticated machinery for manipulating the heap encodings based on representing
program statements as (word/tree) transducers. However, as mentioned above, our oper-
ations for computing predecessors are all local in the sense that they only update limited
parts of the graph thus making it possible to have much more efficient implementations.

The paper [5] uses counter automata as abstract models of heaps which contain data
from an ordered domain. The counters are used to keep track of lengths of list segments
without sharing. The analysis reduces to manipulation of counter automata, and thus
requires techniques and tools for these automata.

Recently, there has been an extensive work to use separation logic [18] for per-
forming shape analysis of programs that manipulate pointer data structures (see e.g.
[10,21]). The paper [16] describes how to use separation logic in order to provide a
semi-automatic procedure for verifying data-dependent programs which manipulate
heaps. In contrast, the approach we present here uses a built-in abstraction princi-
ple which is different from the ones used above and which makes the analysis fully
automatic.

The tool PALE (Pointer Assertion Logic Engine) [15] checks automatically proper-
ties of programs manipulating pointers. The user is required to supply assertions ex-
pressed in the weak monadic second-order logic of graph types. This means that the
verification procedure as a whole is only partially automatic. The tool MONA [11],
which uses translations to finite-state automata, is employed to verify the provided
assertions.

Recently, there have been several works which aim at algorithmic verification of sys-
tems whose configurations are finite graphs (e.g. [12,3]). These works may seem similar
since they are all based on backward reachability using finite graphs as symbolic rep-
resentations. However, they use different orderings on graphs which leads to entirely
different methods for computing predecessor and entailment relations. In fact, the main
challenge when designing verification algorithms on graphs, is to come up with the
“right” notion of ordering: an ordering which allows computing entailment and prede-
cessors, and which is sufficiently precise to avoid too many false positives. For instance,
the graph minor ordering used in [12] to analyze distributed algorithms, is too weak to
employ in shape analysis. The reason is that the contraction operation (in the case of
the graph minor relation) is insensitive to the directions of the edges; and furthermore
the ordering allows merging vertices which carry different labels (different variables),
meaning that we would get false positives in almost all examples since they often rely
tests like x = y for termination. In our previous work [3], we combined abstraction with
backward reachability analysis for verifying heap manipulating programs. However,
the programs in [3] are restricted to be data-independent. The extension to the case of

Automated Analysis of Data-Dependent Programs with Dynamic Memory 211

data-dependent programs requires a new ordering on graphs which involves an intricate
treatment of structural and data properties. For instance, at the heap level, the data order-
ing amounts to keeping track of (in)equalities, while the structural ordering is defined
in terms of garbage elimination and edge contractions (see the discussion in Section 7).
This gives the two orderings entirely different characteristics when computing prede-
cessors and entailment. Also, there is a non-trivial interaction between the structural
and the data orderings. This is illustrated by the fact that even specifications of basic
data-dependent properties like sortedness require forbidden patterns that contain edges
from both orderings (see Section 4). Consequently, none of the programs we consider in
this paper can be analyzed in the framework of [3]. In fact, since the programs here are
data-dependent, the method of [3] may fail even to verify properties which are purely
structural. For instance, the program EfficientInsert (described in [2]) gives a false
non-well-formedness warning if data is abstracted away.

References

1. Abdulla, P.A., Annichini, A., Bouajjani, A.: Using forward reachability analysis for verifica-
tion of lossy channel systems. Formal Methods in System Design (2004)

2. Abdulla, P.A., Atto, M., Cederberg, J., Ji, R.: Automated analysis of data-dependent pro-
grams with dynamic memory. Technical Report 2009-018, Dept. of Information Technology,
Uppsala University, Sweden (2009),
http://user.it.uu.se/˜jonmo/datadependent.pdf

3. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic abstraction for
programs with dynamic memory heaps. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 341–354. Springer, Heidelberg (2008)

4. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular model checking without
transducers (on efficient verification of parameterized systems). In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

5. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with
lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 517–531. Springer, Heidelberg (2006)

6. Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying programs with dynamic
1-selector-linked structures in regular model checking. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 13–29. Springer, Heidelberg (2005)

7. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract tree regular model check-
ing of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 52–70. Springer, Heidelberg (2006)

8. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

9. Ganty, P., Raskin, J., Begin, L.V.: A complete abstract interpretation framework for cover-
ability properties of wsts. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 49–64. Springer, Heidelberg (2006)

10. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion synthesis.
In: Proc. PLDI 2007, vol. 42 (2007)

11. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.:
Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland,
W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019. Springer, Heidelberg
(1995)

http://user.it.uu.se/~jonmo/datadependent.pdf

212 P.A. Abdulla et al.

12. Joshi, S., König, B.: Applying the graph minor theorem to the verification of graph transfor-
mation systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 214–226.
Springer, Heidelberg (2008)

13. Laver, R.: Well-quasi-orderings and sets of finite sequences. In: Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 79, pp. 1–10 (1976)

14. Lev-Ami, T., Reps, T.W., Sagiv, S., Wilhelm, R.: Putting static analysis to work for verifica-
tion: A case study. In: Proc. ISSTA 2000 (2000)

15. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: Proc. PLDI 2001,
vol. 26, pp. 221–231 (2001)

16. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape and size
properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS,
vol. 4349, pp. 251–266. Springer, Heidelberg (2007)

17. Revesz, P.: Introduction to Constraint Databases. Springer, Heidelberg (2002)
18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. LICS

2002 (2002)
19. Sagiv, S., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.

on Programming Languages and Systems 24(3), 217–298 (2002)
20. Valiente, G.: Constrained tree inclusion. J. Discrete Algorithms 3(2-4), 431–447 (2005)
21. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scalable

shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 385–398. Springer, Heidelberg (2008)

On-the-fly Emptiness Check of
Transition-Based Streett Automata

Alexandre Duret-Lutz1, Denis Poitrenaud2, and Jean-Michel Couvreur3

1 EPITA Research and Development Laboratory (LRDE)
2 Laboratoire d’Informatique de Paris 6 (LIP6)

3 Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)

Abstract. In the automata theoretic approach to model checking, checking a
state-space S against a linear-time property ϕ can be done in O(|S| × 2O(|ϕ|))
time. When model checking under n strong fairness hypotheses expressed as a
Generalized Büchi automaton, this complexity becomes O(|S| × 2O(|ϕ|+n)).

Here we describe an algorithm to check the emptiness of Streett automata,
which allows model checking under n strong fairness hypotheses in O(|S| ×
2O(|ϕ|) ×n). We focus on transition-based Streett automata, because it allows us
to express strong fairness hypotheses by injecting Streett acceptance conditions
into the state-space without any blowup.

1 Introduction

The Automata Theoretic Approach to Model Checking [29, 28] is a way to check
that a model M verifies some property expressed as a temporal logic formula ϕ, in
other words: to check whether M |= ϕ. This verification is achieved in four steps,
using automata over infinite words (ω-automata):

1. Computation of the state space of M . This graph can be seen as an ω-automaton
AM whose language L (AM) is the set of all possible executions of M .

2. Translation of the temporal property ϕ into an ω-automaton A¬ϕ whose language,
L (A¬ϕ), is the set of all executions that would invalidate ϕ.

3. Synchronized product of these two objects. This constructs an automaton AM ⊗
A¬ϕ whose language is L (AM)∩L (A¬ϕ): the set of executions of the model M
that invalidate the temporal property ϕ.

4. Emptiness check of this product. This operation tells whether AM⊗A¬ϕ accepts an
infinite word (a counterexample). The model M verifies ϕ iff L (AM ⊗A¬ϕ) = ∅.

On-the-fly algorithms. In practice the above steps are usually tightly tied by the imple-
mentation, due to transversal optimizations that forbid a sequential approach. One such
optimization is the on-the-fly model checking, where the computation of the product,
state space, and formula automaton are all driven by the progression of the emptiness
check procedure: nothing is computed before it is required.

Being able to work on-the-fly has three practical advantages:

– Large parts of AM may not need to be built because of the constraints of A¬ϕ.
– The emptiness check may find a counterexample without exploring (and thus con-

structing) the entire synchronized product.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 213–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

214 A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur

– To save memory we can throw away states that have been constructed but are not
actually needed. We would rebuild them later should they be needed again. [13]

From an implementation standpoint on-the-fly model checking puts requirements on the
interface of the automata representing the product, the state graph, and the formula. For
instance the interface used in Spot [8] amounts to two functions: one to obtain the initial
state of the automata, another to get the successors of a given state. It is common to say
that an emptiness check is on-the-fly when it is compatible with such an interface. For
instance Kosaraju’s algorithm [2, §23.5] for computing strongly connected components
(SCC) will not work on-the-fly because it has to know the entire graph to transpose
it. The algorithms of Tarjan [25] and Dijkstra [5, 6] are more suited to compute SCCs
on-the-fly, because they perform a single depth-first search.

Fairness hypotheses [10] is a way to restrict the verification to a subset of “fair” ex-
ecutions of the model. For instance if we have a model of two concurrent processes
running on the same host, we might want to assume that the scheduler is fair and that
both processes will get slices of CPU-time infinitely often. When considering all the
possible executions of the model, this hypothesis amounts to discarding all executions
in which a process is stuck.

Transition-based Büchi and Streett automata. We shall consider two kinds of ω-
automata that are expressively equivalent: Büchi automata and Streett automata. Büchi
automata are more commonly used because there exist simple translations from LTL
formulæ to Büchi automata and there exist many emptiness check algorithms for these
automata [4]. Readers familiar with Büchi automata might be surprised that we use
transition-based acceptance conditions rather than state-based ones. As noted by several
authors [19, 3, 11, 12, 4, 26] this allows LTL formulæ to be translated into smaller
automata, and for our purpose it will be useful to show why weak (resp. strong) fairness
hypotheses can be added to a Büchi (resp. Streett) automaton without any blowup.

Streett Automata can also be used as intermediate steps in some methods to comple-
ment Büchi automata [27]. For instance in the automata theoretic approach to model
checking, we could want to express a property P to verify, not as an LTL formula, but
as a (more expressive) Büchi automaton AP (or equivalently, an ω-regular expression).
To ensure that M |= AP we should check that L (AM ⊗ ¬AP) = ∅. One way to com-
pute ¬AP is to use Safra’s construction [21] to construct a Streett automaton, and then
convert this Streett automaton back into a Büchi automaton.

Our objective is to introduce an on-the-fly emptiness check for transition-based Streett
automata, in order to efficiently verify linear-time properties under strong fairness hy-
potheses, or simply to check the emptiness of AM⊗¬AP without the cost of converting
¬Ap into a Büchi automaton. Existing emptiness checks for Streett automata [20, 15]
share the same asymptotic complexity, but are state-based and will not work on-the-fly.

Outline. Section 2 briefly reviews LTL and transition-based Büchi automata. Section 3
then introduces fairness hypotheses and Streett automata. We recall that weak fair-
ness hypotheses are free and show that strong fairness hypotheses are less costly to
express with Streett automata. Finally section 4 gives an on-the-fly algorithm to check

On-the-fly Emptiness Check of Transition-Based Streett Automata 215

the emptiness of a Streett automaton in a way that is only linearly slower (in the number
of acceptance conditions) than the emptiness check of a Büchi automaton.

2 Background

2.1 Linear-time Temporal Logic (LTL)

An LTL formula is constructed from a set AP of atomic propositions, the usual boolean
operators (¬, ∨, ∧,→) and some temporal operators: X (next), U (until), F (eventually),
G (globally). An LTL formula can express a property on the execution of the system
to be checked. Because we focus on fairness properties we shall not be concerned with
the full semantics of LTL [1, 18], it is enough to describe the following two idioms:

– G F p means that property p is true infinitely often (i.e., at any instant of the execu-
tion you can always find a later instant so that p is true),

– F Gp means that property p is eventually true continuously (i.e., at some instant in
the future p will stay true for the remaining of the execution).

The size |ϕ| of an LTL formula ϕ is its number of operators plus atomic propositions.

2.2 Büchi Automata

Definition 1. (TGBA) A Transition-based Generalized Büchi Automaton [12] over Σ
is a Büchi automaton with labels and generalized acceptance conditions on transitions.
It can be defined as a tuple A = 〈Σ,Q, q0, δ,F〉 where Σ is an alphabet,Q is a finite
set of states, q0 ∈ Q is a distinguished initial state, δ ⊆ Q × Σ × Q is the (non-
deterministic) transition relation, F ⊆ 2δ is a set of sets of accepting transitions.

Graphically we represent the elements of F (which we call acceptance conditions) as
small circles such as or on Fig. 1a, 1b and 1d. We will also merge into a single
transition all transitions between two states with identical acceptance conditions, as if
the transition relation was actually in Q× 2Σ ×Q.1

For the purpose of model checking we have AP equal to the set of all atomic propo-
sitions that can characterize a configuration, and we use these automata with Σ = 2AP

(i.e., each configuration of the system can be mapped into a letter of Σ). Graphically,
with the aforementioned merging of transitions, it is therefore equivalent to label the
transitions of the automata by propositional formulæ over AP .

An infinite word σ = σ(0)σ(1) · · · over the alphabet Σ is accepted by A if there
exists an infinite sequence ρ = (q0, l0, q1)(q1, l1, q2) . . . of transitions of δ, starting at
q0 = q0, and such that ∀i � 0, σ(i) = li, and ∀f ∈ F , ∀i � 0, ∃j � i, ρ(j) ∈ f .
That is, each letter of the word is recognized, and ρ traverses each acceptance condition
infinitely often.

Given two TGBAs A and B, the synchronous product of A and B, denoted A ⊗ B
is a TGBA that accepts only the words that are accepted by A and B. If we denote
|A|s the number of accessible states of A, we have |A ⊗ B|s ≤ |A|s × |B|s. If we
denote |A|t the number of transitions of A, we always have |A|t ≤ |A|2s × |Σ|. Also
|A ⊗ B|t ≤ (|A|s × |B|s)2 × |Σ| ≤ |A|t × |B|t. Finally if a TGBA C has only one
state and is deterministic, then |A⊗ C|s ≤ |A|s and |A⊗ C|t ≤ |A|t.

1 This optimization is pretty common in implementations; we only use it to simplify figures.

216 A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur

3 Coping with Fairness Hypotheses

Fairness hypotheses are a way to filter out certain behaviors of the model that are
deemed irrelevant. For instance when modeling a communication between two pro-
cesses over a lossy channel, we might want to assume that any message will eventually
reach its destination after a finite number of retransmissions. Although there is one be-
havior of the model in which the retransmitted message is always lost, we may want to
ignore this possibility during verification.

3.1 Weak and Strong Fairness

Let us give a definition of fairness involving a pair of events en and oc in a model M .
An event could be the progress of some process, the execution of a particular instruction
of the model, or even the fact that an instruction is enabled (i.e., could be executed).

Definition 2. (Unconditional fairness) An event oc is unconditionally fair if it will hap-
pen infinitely often, i.e., if M |= G F oc.

Definition 3. (Weak fairness) A pair of events (en , oc) is weakly fair if whenever en
occurs continuously, then oc will occur infinitely often: M |= (F Gen → G F oc).

Because we have F Gen → G F oc ≡ G F((¬en) ∨ oc) weak fairness can be handled
like unconditional fairness.

Fig. 1a shows an example of a 1-state TGBA recognizing G F((¬en) ∨ oc). This
TGBA is deterministic: for any configuration given by a set of truth values of en and
oc, there is only one transition that can be followed. In fact, any formula of the form∧n

i=1(F Geni → G F oci), representing a combination of n weak (or unconditional)

¬en ∨ oc

en ∧ ¬oc

(a) F = { }

�

oc¬oc ¬en ¬en

�

¬enoc¬oc

(b) F = { , }

oc

en ∧ ¬oc

¬en ∧ ¬oc

(c) F = {(,)}

¬en

oc

�¬en

�

(d) F = { }

¬en

oc

�¬en
�

(e) F = {(,)}

Fig. 1. (a) A TGBA equivalent to the LTL formula G F((¬en) ∨ oc); (b),(d) two TGBAs equiv-
alent to ϕ = (G F en → G F oc); (c),(e) two TSAs equivalent to ϕ. � denotes the true value.

On-the-fly Emptiness Check of Transition-Based Streett Automata 217

fairness hypotheses, can be translated into a 1-state deterministic TGBA with 2n tran-
sitions. Note that this “1-state determinism” property holds both because we are con-
sidering generalized automata and transition-based acceptance conditions, it would not
not hold for state-based acceptance conditions.

Definition 4. (Strong fairness) A pair of events (en , oc) is strongly fair if whenever en
occurs infinitely often, then oc will occur infinitely often: M |= (G F en → G F oc).

Fig. 1b and 1d show two TGBAs corresponding to the formula G F en → G F oc.
The first, bigger automaton is produced by LTL-to-Büchi translation algorithms such
those of Couvreur [3] or Tauriainen [26]. The smaller one is a TGBA adaptation of
an automaton shown by Kesten et al. [14]; we do not know of any general LTL-
to-Büchi translation algorithm that would produce this automaton. Attempts to con-
struct automata for conjunctions of strong fairness hypotheses, i.e. formulæ of the form∧n

i=1(G F eni → G F oci), will lead to a nondeterministic automaton that has either
3n + 1 or 3n states depending on whether we base the construction on Fig. 1b or 1d.
These automata have 2O(n) transitions.

3.2 Fairness in the Automata Theoretic Approach

Given a model M and an LTL formula ϕ, we can check whether M |= ϕ by checking
whether the automaton AM ⊗ A¬ϕ accepts any infinite word (such a word would be a
counterexample). Because |A¬ϕ|t = 2O(|ϕ|), we have |AM⊗A¬ϕ|t ≤ |AM |t×2O(|ϕ|).
Checking the emptiness of a TGBA can be done in linear time with respect to its size,
regardless of the number of acceptance conditions [4], so the whole verification process
requires O(|AM |t × 2O(|ϕ|)) time.

Verifyingϕ under some fairness hypothesis represented as an LTLformulaψ amounts
to checking whether M |= (ψ → ϕ), i.e., ϕ should hold only for the runs where ψ also
holds. We can see that AM ⊗A¬(ψ→ϕ) = AM ⊗Aψ∧¬ϕ = AM ⊗Aψ ⊗A¬ϕ. In other
words, a fairness hypothesis could be represented by just an extra synchronized product
before doing the emptiness check.

Weak fairness. We have seen that n weak fairness hypotheses can be represented by a
1-state deterministic TGBA. This means that the operation AM ⊗ Aψ is basically free:
it will not add new states to those of AM . In practice each transition of AM would be
labelled during its on-the-fly construction with the acceptance conditions of Aψ. Model
checking under n week fairness hypotheses is therefore independent of n2 and requires
O(|AM |t × 2O(|ϕ|)) time.

Strong fairness. Model checking under n strong fairness hypotheses is costly with
Büchi automata: we have seen that these n hypotheses can be represented by a TGBA
with 2O(n) transitions, the verification therefore requires O(|AM |t × 2O(|ϕ|+n)) time.

3.3 Streett Automata

Definition 5. (TSA) A Transition-based Streett Automaton is a kind of TGBA in which
acceptance conditions are paired. It can be also be defined as a tuple A = 〈Σ,Q, q0, δ,

2 This is because we assume that we are using a generalized emptiness check [4].

218 A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur

F〉 where F = {(l1, u1), (l2, u2), . . . , (lr, ur)} is a set of pairs of acceptance condi-
tions with li ⊆ δ and ui ⊆ δ.

The difference between TSA and TGBA lies in the interpretation of F . An infinite
word σ over the alphabet Σ is accepted by A if there exists an infinite sequence ρ =
(q0, l0, q1)(q1, l1, q2) . . . of transitions of δ, starting at q0 = q0, and such that ∀i �
0, σ(i) = li, and ∀(l, u) ∈ F , (∀i � 0, ∃j � i, ρ(j) ∈ l) =⇒ (∀i � 0, ∃j � i, ρ(i) ∈
u). That is, each letter of the word is recognized, and for each pair (l, u) of acceptance
conditions, if ρ encounters l infinitely often, then it encounters u infinitely often.

Given two TSA A and B, it is also possible to define their synchronous product
A⊗B such that |A⊗ B| = O(|A| × |B|) and L (A⊗B) = L (A) ∩L (B).

Büchi and Streett automata are known to be expressively equivalent [21]. Obviously
a TGBA with acceptance conditions F = {u1, u2, . . . , un} can be translated into an
equivalent TSA without changing its structure: we simply use the acceptance conditions
F ′ = {(Q, u1), . . . , (Q, un)}. For instance Fig. 1e shows the TSA resulting from this
rewriting applied to the TGBA of Fig. 1d.

The converse operation, translating Streett automata to Büchi, induces an exponential
blowup of the number of states [22]. For instance Löding [16] shows how to translate
a state-based Streett automaton of |Q| states and n pairs of acceptance conditions into
a state-based Büchi automaton with |Q| × (4n − 3n + 2) states (and 1 acceptance
condition). The following construction shows how to translate a TSA of |Q| states and
n pairs acceptance conditions of into a TGBA of |Q|× (2n +1) states and n acceptance
conditions. (The same construction could be achieved for state-based automata: here
the gain is only due to the use of generalized acceptance conditions.)

Given a TSA A = 〈Σ,Q, q0,F , δ〉 with F = {(l1, u1), (l2, u2), . . . , (ln, un)}, let
N = {1, 2, . . . , n}, and for any (S, t) ∈ 2N × δ let pending(S, t) = (S ∪ {i ∈ N | t ∈
li})\{i ∈ N | t ∈ ui}. Now define the TGBAA′ = 〈Σ,Q′, q0, δ′,F ′〉whereQ′ = Q∪
(Q×2N), δ′ = δ∪{(s, g, (d, ∅)) | (s, g, d) ∈ δ}∪{((s, S), g, (d, pending(S, (s, g, d))) |
(s, g, d) ∈ δ, S ∈ 2N}, and F ′ = {fi | i ∈ 2N} with fi = {((s, S), l, (d,D) ∈ δ′ |
N \ S = i}. Then L (A) = L (A′).

The justification behind this construction is that any run accepted by a Streett automa-
ton can be split in two parts: a finite prefix, where any transition can occur, followed by a
infinite suffix where it is guaranteed that any transition in li will be eventually followed
by a transitions in ui. The original TGBA is therefore cloned 2n +1 times to construct
the corresponding TSA. The first clone, usingQ and δ, is where the prefix is read. From
there the automaton can non-deterministically switch to the clone that is using states in
Q×{∅}. From now on the automaton has to remember which ui it has to expect: this is
the purpose of the extra set added to the state. An automaton is in state (s, S) that fol-
lows a transition in li will therefore reach state (s, S∪{i}), and conversely, following a
transition in ui will reach state (s, S \ {i}). The function pending(S , t) defined above
computes those pending uis. The acceptance conditions are defined to complement the
set of pending uis, to be sure they are eventually fulfilled.

3.4 Strong Fairness with Streett Automata

The TSA of Fig. 1e is however not the most compact way to translate a strong fairness
formula: Fig. 1c shows how it can be done with a 1-state deterministic TSA.

On-the-fly Emptiness Check of Transition-Based Streett Automata 219

Actually any LTL formula
∧n

i=1 G F en → G F oc representing n strong fairness
hypotheses can be translated into a 1-state deterministic TSA with n pairs of accep-
tance conditions and 4n transitions. It is the TSA A = 〈2AP , {q}, q, δ,F〉 where
AP = {oc1, oc2, . . . , ocn, en1, en2, . . . enn}, δ = {〈q, E, q〉 | E ∈ 2AP}, and
F = {(l1, u1), (l2, u2), . . . , (ln, un)} with li = {(q, E, q) ∈ δ | eni ∈ E} and
ui = {(q, E, q) ∈ δ | oci ∈ E}. Again this “1-state determinism” would not hold
for state-based Streett acceptance condition.

Combining this automaton with the construction of section 3.3, we can represent n
strong fairness hypotheses using a TGBA of 2n + 1 states (and 4n(2n + 1) transitions).
This is better than the TGBA of 3n states presented in section 3.1, but the complexity
of the verification would remain in O(|AM |t × 2O(|ϕ|+n)) time.

As when model checking under weak fairness hypotheses, the Streett acceptance
conditions representing strong fairness hypotheses can be injected in the automaton AM

during its on-the-fly generation: any transition of AM labelled by E ∈ 2AP receives
the acceptance conditions α(E). The verification under n strong fairness hypotheses
amounts to checking the emptiness of a TSA of size O(|AM |t × 2O(|ϕ|)), with n pairs
of acceptance conditions.

We now show how to check this TSA emptiness in O(|AM |t × n× 2O(|ϕ|)) time by
adapting an algorithm by Couvreur [3, 4] that was originally designed for the emptiness
check of TGBA.

4 Emptiness Check for Streett Automata

The behavior of the algorithm is illustrated on Fig. 2 on a TSA with 2 pairs of ac-
ceptance conditions: (,) and (,). We are looking for runs that visit (resp.)
infinitely often if they visit (resp.) infinitely often.

As its older brother (for TGBA [3, 4]) this algorithm performs a DFS to discover
strongly connected components (SCC). Each SCC is labelled with the set of acceptance
conditions that can be found on its edges, and will stop as soon as it finds an SCC whose
label verifies (→)∧(→). Figures 2a–2f show the first steps until a terminal SCC
(i.e. with no outgoing transition) is found. Let us denote F = {(l1, u1), (l2, u2), . . . ,
(ln, un)} the set of acceptance conditions of the Streett automaton, and acc ⊆ F the set
of acceptance conditions of the terminal SCC encountered. When such a terminal SCC
is found we can be in one of the three following cases.

1. Either the SCC is trivial (i.e. has no loops): it cannot be accepting and all its states
can be ignored from now on.

2. Or the SCC is accepting: ∀i, li ∈ acc =⇒ ui ∈ acc.
In that case the algorithm terminates and reports the existence of an accepting run.
It is better to check this condition any time a non-trivial SCC is formed, not only
for terminal SCC: this gives the algorithm more chance to terminate early.

3. Or ∃i, li ∈ acc ∧ ui �∈ acc.
In that case we cannot state whether the SCC is accepting or not. Maybe it contains
an accepting run that does not use any transition of li. Fig. 2f is an instance of this
case: F = {(,), (,)} and acc = { , , } so the algorithm cannot conclude
immediately.

220 A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur

(a) A DFS numbers states and stacks them as triv-
ial SCCs.

(b) Backlinks cause SCCs to be merged.

(c) DFS continues. . .

(d) . . .

(e) . . .

(f) This terminal SCC could hide an accepting
run that visits only finitely often.

(g) We start another DFS, this time handling
differently.

1 2

(h) . . .

1 2 3 4
2

(i) Crossing sets a threshold.

(j) Merges are allowed above the threshold. . .

(k) . . . but disallowed across the threshold.

(l) The right SCC is accepting; we stop.

Fig. 2. Running the emptiness check on a TSA with F = {(,), (,)}

To solve third case, the algorithm will revisit the whole SCC, but avoiding transitions
t such that ∃i, t ∈ li ∧ui �∈ acc. Practically, we define the set avoid = {li ∈ acc | ui �∈
acc} of li that cannot be satisfied, all the states from the SCC are removed from the
hash table of visited states, and the algorithm makes another DFS with the following
changes:

– amongst the outgoing transitions of a state, those who carry acceptance condition
of avoid are visited last

– crossing a transition labelled by an avoided acceptance condition sets up a threshold
(denoted by a dashed vertical line on Fig. 2i)

– if a transition going out from a SCC goes back to another SCC in the search stack,
then the two SCC will be merged only if the two SCC are behind the last threshold

On-the-fly Emptiness Check of Transition-Based Streett Automata 221

set. Fig. 2j shows one case where merging has been allowed, while Fig 2k shows a
forbidden attempt to merge two SCCs.

This new visit will construct smaller SCCs instead of the original terminal SCC. The
only way to merge these smaller SCCs would be to accept a cycle using a transition
from an acceptance condition (of avoid) that cannot be satisfied. For each of these
smaller SCCs we can then decide whether they are trivial, accepting, or if they contain
acceptance conditions (not already listed in avoid) that cannot be satisfied. In the latter
case avoid is augmented and the process is repeated. This recursion cannot exceed |F|
levels since we complete avoid at each step with at least one pair of F .

Compared to the original emptiness check for TGBA that visits each state and transi-
tions only once, this variant will in the worst case visit each state and transitions |F|+1
times. On a TSA A this algorithm therefore works in O(|A|t × |F|) time.

Input: A Streett automaton A = 〈Σ,Q, q0, δ,F〉1

Output: � iff L (A) = ∅2

Data: SCC: stack of3

〈state ∈ Q, root ∈ N, la ⊆ F , acc ⊆ F , rem ⊆ Q, succ ⊆ δ, fsucc ⊆ δ〉
H : map of Q �→ N
avoid: stack of 〈root ∈ N, acc ⊆ F〉
min: stack of N
max ← 0

begin4

min.push(0)5

avoid.push(〈1, ∅〉)6

DFSpush(∅, q0)7

while ¬SCC.empty() do8

if SCC.top().succ = ∅ then9

if SCC.top().fsucc �= ∅ then10

swap(SCC.top().succ, SCC.top().fsucc)11

min.push(max)12

else13

DFSpop()14

else15

pick one 〈s, e, d〉 off SCC.top().succ16

a ← {f ∈ F | (s, e, d) ∈ f}17

if d �∈ H then18

DFSpush(a, d)19

else if H [d] > min.top() then20

merge(a, H [d])21

acc ← SCC.top().acc22

if ∀〈l, u〉 ∈ F , (l ∈ acc) =⇒ (u ∈ acc) then return ⊥23

return �24

end25

Fig. 3. Emptiness check of a Streett automaton

222 A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur

DFSpush(a ⊆ F , q ∈ Q)26

max ← max+ 127

H [q]← max28

SCC.push(〈q, max, a, ∅, ∅, {〈s, l, a, d〉 ∈ δ | s = q, a ∩ avoid.top().acc = ∅},29

{〈s, l, a, d〉 ∈ δ | s = q, a ∩ avoid.top().acc �= ∅}〉)
end30

DFSpop()31

〈q, n, la, acc, rem, , 〉 ← SCC.pop()32

max ← n − 133

if n ≤ min.top() then34

min.pop()35

old avoid ← avoid.top().acc36

if n = avoid.top().root then37

avoid.pop()38

new avoid ← old avoid ∪ {l | 〈l, u〉 ∈ F , l ∩ acc �= ∅, u ∩ acc = ∅}39

if new avoid �= old avoid then40

foreach s ∈ rem do41

delete H [s]42

avoid.push(n, new avoid)43

DFSpush(la, q)44

else45

foreach s ∈ rem do46

H [s]← 047

end48

merge(a ⊆ F , t ∈ N)49

r ← ∅50

s ← ∅51

f ← ∅52

while t < SCC.top().root do53

a ← a ∪ SCC.top().acc ∪ SCC.top().la54

r ← r ∪ SCC.top().rem ∪ SCC.top().state55

s ← s ∪ SCC.top().succ56

f ← f ∪ SCC.top().fsucc57

SCC.pop()58

SCC.top().acc ← SCC.top().acc ∪ a59

SCC.top().rem ← SCC.top().rem ∪ r60

SCC.top().succ ← SCC.top().succ ∪ s61

SCC.top().fsucc ← SCC.top().fsucc ∪ f62

end63

Fig. 3. (Continued)

On-the-fly Emptiness Check of Transition-Based Streett Automata 223

Relation to other algorithms. The basic idea to using strongly connected components
to check strong fairness is old [17, 9], and has been declined in a few algorithms to
check the emptiness of (state-based) Streett automata [20, 15]. But these algorithms
modify the graph before visiting it again, hindering on-the-fly computations.

At a high level, our algorithm is close to the one presented by Latvala and Heljanko
[15], who suggests using any algorithm to compute SCCs. However we have more
than implementation detail differences. Our algorithm is targeted to transition-based
acceptance conditions, actually shows how to make the emptiness check on-the-fly, and
uses two tricks that are dependent on the algorithm used to compute SCC. As mentioned
in the introduction, there exists two similar algorithms to compute SCCs on-the-fly:
Tarjan’s [25] and Dijkstra’s [5, 6]. The latter is less known, but better suited to model
checking (it has less overhead and can abort earlier). Our trick to use a threshold to
prevent SCC merges could work with either algorithms, but for the emptiness-check to
be correct we also need to perform the DFS in terms on SCCs instead of working in
terms of states. This ordering is possible with Dijkstra’s algorithm, but not Tarjan’s.

Implementation. Fig. 3 presents the algorithm. Its structure mimics that of the empti-
ness check for TGBA of Couvreur et al. [4], especially it profits from the idea of per-
forming the DFS in terms of SCCs rather than states: the stack SCC serves both as a
stack of connected components and as the DFS stack. The constituents of each entry are
state (the root state of the SCC), root (its DFS number), la (the acceptance conditions
of the incoming transition to state), acc (the acceptance conditions of the cycles inside
the SCC), rem (the other states of the SCC), succ and fsucc (the unexplored successors
of the SCC).

These unexplored successors are split into succ and fsucc to ensure a proper ordering
with respect to avoided acceptance conditions. When a state is pushed down on SCC
at line 29, fsucc is loaded with all transitions in acceptance conditions that must be
avoided, while succ receive the others. The latter will be visited first: the algorithm
always pick the next successor to visit from succ (line 16) and will swap fsucc and
succ once succ is empty (lignes 9–11).

Thresholds, meant to prevent merging SCCs using a cycle that would use an unsat-
isfiable acceptance condition, are represented by the number (in DFS order) of the last
state of the SCC from which the threshold transition is going out (that is 2 on our exam-
ple). These numbers form the min stack; they are used line 20 before deciding whether
to merge; they are pushed when fsucc and succ are swapped line 12, and are popped
when the state of that number is removed line 35.

The acceptance conditions to avoid are pushed on top of a stack called avoid which
is completed anytime the algorithm needs to revisit an SCC (line 43). Each element
of this stack is a pair (ar, acc) where root is the number of the first state of the SCC
starting at which acceptance conditions in acc should be avoided. This stack is popped
when the SCC rooted at root has been visited and has to be removed (lines 37–38).

Correctness. Termination is guaranteed by the DFS and the fact that the number of
avoided acceptance conditions cannot exceed |F|. By lack of space, we only give the
scheme of our proof that this algorithm will return ⊥ if an accepting run exists in the
input TSA, and will return � otherwise. (A complete proof is available in French [7].)

224 A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur

Let us use the following notations to describe the state of the algorithm:

SCC =〈state0, root0, la0, acc0, rem0, succ0, fsucc0〉
〈state1, root1, la1, acc1, rem1, succ1, fsucc1〉
...

〈staten, rootn, lan, accn, remn, succn, fsuccn〉
min =min0min1 . . .minp

avoid =〈ar0, acc0〉〈ar1, acc1〉 . . . 〈arr, accr〉

Furthermore, let us denote Si the set of states represented by SCC[i], and ϕ(x) the
index of the SCC containing the state numbered x:

Si ={s ∈ Q | rooti ≤ H [s] < rooti+1} for 0 ≤ i < n

Sn ={s ∈ Q | rootn ≤ H [s]}
ϕ(x) =max{i | rooti ≤ x}

Lemma 1. At any time between the execution of lines 8–23, for any pair 〈ari, acci〉
on the avoid stack, there exists a unique entry 〈statej, rootj , laj, accj, remj , succj,
fsuccj〉 on the SCC stack such that ari = rootj . In other words, the avoid entries are
always associated to roots of SCCs.

Lemma 2. When line 16 is run to pick a state amongst the successors of the top of
SCC, the value of accr is the same as when this set of successors was created at
line 29.

Lemma 3. The values of (rooti)i∈[[0,n]] are strictly increasing and we have rootn ≤
max at all times between the execution of lines 8–23.

Lemma 4. Let us call n′ the value of n at a moment right after lines 11–12 have been
run. The sets succn′ and fsuccn′ will never increase.

Lemma 5. The function g that to any i ∈ {0, ..., p} associates g(i) = ϕ(mini) is
injective. In other words, two states numbered mini1 and mini2 (with i1 �= i2) cannot
belong to the same SCC. Furthermore, if n > minp, rootϕ(minp)+1 = minp + 1. In
other words, minp is the number of the last state of the SCC whose root has the number
rootϕ(minp). Finally, rootϕ(minp) ≤ minp ≤ max.

The state set Q of the TSA to check can be partitioned in three sets:

– active states are those which appear in H associated to a non-null value,
– removed states are those which appear in H with a null value,
– unexplored states are not yet in H .

The algorithm can move a state from the unexplored set to the active set, and from there
it can move it either to the removed set or back to the unexplored set (lines 41–42).

The following invariants are preserved by all the lines of the main function (lines 8–
23). They need to be proved together as their proofs are interdependent.

On-the-fly Emptiness Check of Transition-Based Streett Automata 225

Invariant 1. For all i ≤ n, the subgraph induced by the states of Si is a SCC. Fur-
thermore there exists a cycle in this SCC that visits all acceptance conditions of acci.
Finally S0,S1, . . . ,Sn is a partition of the set of active states.

Invariant 2. ∀i < n, ∃s ∈ Si, ∃s′ ∈ Si+1, ∃p ∈ 2Σ, {f ∈ F | (s, p, s′) ∈ f} =
lai+1. I.e., there exists a transition between the SCCs indexed by i and i + 1 that is in
all that acceptance conditions of lai+1.

Invariant 3. There is exactly max active states. No state of H is associated to a value
greater than max. If two different states are associated to the same value in H , this
value is 0. In particular, this means that for any value v between 1 and max, there
exists a unique active state s such that H [s] = v.

Invariant 4. For all integer i ≤ n, the set remi holds all the states of Si \ {statei}.

Invariant 5. Any removed state q cannot be part of an accepting run.

Invariant 6. There is no state accessible from staten from which we could find an
accepting cycle using a transition in an acceptance condition from accr.

Invariant 7. All transitions going from Sϕ(minp) to Sϕ(minp)+1 are labelled by an
acceptance condition of accr. (In particular, laϕ(minp)+1 ∩ accr �= ∅.)

Invariant 8. ∀j ≥ ϕ(minp), accj∩accr = ∅ and ∀j > ϕ(minp)+1, laj∩accr = ∅.
In other words, the SCC built after the last threshold, and the transitions between them,
are not in acceptance conditions from accr, except for the first transition visited after
the last threshold (in laϕ(minp)+1).

The first two invariants imply that if the algorithm finds an i such that ∀(l, u) ∈
F , acci ∈ l =⇒ acci ∈ u, then SCC[i] is an accepting SCC (inv. 1) that is ac-
cessible (inv. 1 & 2), so the algorithm can terminate with ⊥. Invariant 5 assures that no
accepting run exists once all states have been removed: the algorithm therefore termi-
nates with �.

5 Conclusion

We have introduced a new algorithm for the on-the-fly emptiness check of transition-
based Streett automata (TSA), that generalizes the algorithm for transition-based Büchi
automata of Couvreur [3]. This algorithm checks the emptiness of a TSA A with |A|t
transitions and |F| acceptance pairs in O(|A|t × |F|) time. We have seen that this
algorithm allows us to check a linear-time property on a model AM under n strong
fairness hypotheses in O(|AM |t×2O(|ϕ|)×n) time instead of the O(|AM |t×2O(|ϕ|+n))
we would have using Büchi automata.

It should be noted that since Büchi automata can be seen as Streett automata without
any structural change, this very same algorithm can also be used to check the emptiness
of Büchi automata. In that case SCCs will never have to be revisited (the avoid stack
stays empty) and the algorithms performs the same operations as the original algorithm
for Büchi automata.

226 A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur

Using Streett automata could also be useful to translate some LTL properties that
look like strong fairness properties. For instance Sebastiani et al. [24] give the following
LTL formula as an example of a property that is hard to translate to Büchi automata
(most of the tools blow up):(

(G F p0 → G F p1) ∧ (G F p2 → G F p0)∧

(G F p3 → G F p2) ∧ (G F p4 → G F p2)∧
(G F p5 → G F p3) ∧ (G F p6 → G F(p5 ∨ p4))∧

(G F p7 → G F p6) ∧ (G F p1 → G F p7)
)
→ G F p8

Spot’s LTL-to-Büchi translator [8] produces a TGBA with 1731 states. With a dedi-
cated algorithm Sebastiani et al. were able to produce a 1281-state Generalized Büchi
automaton. However this formula has the form ψ → ϕ where ψ is a combinaison of
8 strong fairness hypotheses, and ¬ϕ can be expressed as a Büchi automaton with 2
states and one acceptance condition. The whole formula can therefore be expressed as
a transition-based Streett automaton with two states and 9 pairs of acceptance condi-
tions.3 This reduction should not be a surprise since Streett automata are exponentially
more succinct than Büchi automata [23], however this example shows that it would
be useful to have an efficient algorithm to translate LTL formulæ to Streett automata.
Unfortunately we are not aware of any published work in this area.

References

[1] Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)
[2] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.

The MIT Press, Cambridge (2001)
[3] Couvreur, J.-M.: On-the-fly verification of temporal logic. In: Wing, J.M., Woodcock,

J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg
(1999)

[4] Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly emptiness checks for general-
ized Büchi automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 169–184.
Springer, Heidelberg (2005)

[5] Dijkstra, E.W.: EWD 376: Finding the maximum strong components in a directed graph
(May 1973),
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

[6] Dijkstra, E.W.: Finding the maximal strong components in a directed graph. In: A Discipline
of Programming, ch. 25, pp. 192–200. Prentice-Hall, Englewood Cliffs (1976)

[7] Duret-Lutz, A.: Contributions à l’approche automate pour la vérification de propriétés de
systèmes concurrents. PhD thesis, Université Pierre et Marie Curie (Paris 6) (July 2007)

[8] Duret-Lutz, A., Poitrenaud, D.: Spot: an extensible model checking library using transition-
based generalized Büchi automata. In: Proc. MASCOTS 2004, Volendam, The Netherlands,
October 2004, pp. 76–83. IEEE Computer Society, Los Alamitos (2004)

3 Combining this with the TSA to TGBA construction from section 3.3 yields a TGBA of 2 ×
(29 + 1) = 1026 states that is even smaller than that of Sebastiani et al.

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

On-the-fly Emptiness Check of Transition-Based Streett Automata 227

[9] Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time logic strikes
back. Science of Computer Programming 8(3), 275–306 (1987)

[10] Francez, N.: Fairness. Springer, Heidelberg (1986)
[11] Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H.,

Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
[12] Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation of LTL for-

mulæ to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529,
pp. 308–326. Springer, Heidelberg (2002)

[13] Godefroid, P., Holzmann, G., Pirottin, D.: State-space caching revisited. Formal Methods
in System Design 7(3), 227–241 (1995)

[14] Kesten, Y., Pnueli, A., Vardi, M.Y.: Verification by augmented abstraction: The automata-
theoretic view. Journal of Computer and System Sciences 62(4), 668–690 (2001)

[15] Latvala, T., Heljanko, K.: Coping with strong fairness. Fundamenta Informaticae 43(1–4),
1–19 (2000)

[16] Löding, C.: Methods for the transformation of ω-automata: Complexity and connection to
second order logic. Diploma thesis, Institue of Computer Science and Applied Mathematics
(1998)

[17] Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their
linear specification. In: Proc. the 12th ACM Symposium on Principles of Programming
Languages (POPL 1985), pp. 97–107. ACM, New York (1985)

[18] Merz, S.: Model checking: A tutorial overview. In: Cassez, F., Jard, C., Rozoy, B., Dermot,
M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 3–38. Springer, Heidelberg (2001)

[19] Michel, M.: Algèbre de machines et logique temporelle. In: Fontet, M., Mehlhorn, K. (eds.)
STACS 1984. LNCS, vol. 166, pp. 287–298. Springer, Heidelberg (1984)

[20] Rauch Henzinger, M., Telle, J.A.: Faster algorithms for the nonemptiness of Streett au-
tomata and for communication protocol pruning. In: Karlsson, R., Lingas, A. (eds.) SWAT
1996. LNCS, vol. 1097, pp. 16–27. Springer, Heidelberg (1996)

[21] Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann Institute
of Science, Rehovot, Israel (March 1989)

[22] Safra, S.: Exponential determinization for ω-automata with strong-fairness acceptance con-
dition. In: Proc. STOC 1992. ACM, New York (1992)

[23] Safra, S., Vardi, M.Y.: On ω-automata and temporal logic (preliminary report). In: Proc.
STOC 1989, pp. 127–137. ACM, New York (1989)

[24] Sebastiani, R., Tonetta, S., Vardi, M.Y.: Symbolic systems, explicit properties: on hybrid
approches for LTL symbolic model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 350–363. Springer, Heidelberg (2005)

[25] Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Comput-
ing 1(2), 146–160 (1972)

[26] Tauriainen, H.: Automata and Linear Temporal Logic: Translation with Transition-based
Acceptance. PhD thesis, Helsinki University of Technology, Espoo, Finland (September
2006)

[27] Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

[28] Vardi, M.Y.: Automata-theoretic model checking revisited (Invited paper.). In: Cook, B.,
Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg
(2007)

[29] Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F.,
Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer,
Heidelberg (1996)

On Minimal Odd Rankings for Büchi

Complementation

Hrishikesh Karmarkar and Supratik Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Abstract. We study minimal odd rankings (as defined by Kupferman
and Vardi[KV01]) for run-DAGs of words in the complement of a nonde-
terministic Büchi automaton. We present an optimized version of the
ranking based complementation construction of Friedgut, Kupferman
and Vardi [FKV06] and Schewe’s[Sch09] variant of it, such that every ac-
cepting run of the complement automaton assigns a minimal odd ranking
to the corresponding run-DAG. This allows us to determine minimally
inessential ranks and redundant slices in ranking-based complementa-
tion constructions. We exploit this to reduce the size of the complement
Büchi automaton by eliminating all redundant slices. We demonstrate
the practical importance of this result through a set of experiments
using the NuSMV model checker.

1 Introduction

The problem of complementing nondeterministic ω-word automata is fundamen-
tal in the theory of automata over infinite words. In addition to the theoretical
aspects of the study of complementation techniques, efficient complementation
techniques are extremely useful in practical applications as well. Vardi’s excel-
lent survey paper on the saga of Büchi complementation spanning more than 45
years provides a brief overview of various such applications of complementation
techniques [Var07].

Various complementation constructions for nondeterministic Büchi automata
on words (henceforth referred to as NBW) have been developed over the years,
starting with Büchi [Büc62]. Büchi’s algorithm resulted in a complement au-
tomaton with 22O(n)

states, starting from an NBW with n states. This upper
bound was improved to 2O(n2) by Sistla et al [SVW87]. Safra [Saf88] provided
the first asymptotically optimal nO(n) upper bound for complementation that
passes through determinization. By a theorem of Michel [Mic88], it was known
that Büchi complementation has a n! lower-bound. With this, Löding [Löd99]
showed that Safra’s construction is asymptotically optimal for Büchi deter-
minization, and hence for complementation. The O(n!) (approximately (0.36n)n)
lower bound for Büchi complementation was recently sharpened to (0.76n)n

by Yan [Yan08] using a full-automata technique. The complementation con-
structions of Klarlund [Kla91], Kupferman and Vardi [KV01] and Kähler and

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 228–243, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Minimal Odd Rankings for Büchi Complementation 229

Wilke [KW08] for nondeterministic Büchi automata are examples of determiniza-
tion free (or Safraless as they are popularly called) complementation construc-
tions for Büchi automata. The best known upper bound for the problem until
recently was (0.97n)n, given by Kupferman and Vardi. This was recently sharp-
ened by Schewe[Sch09] to an almost tight upper bound of (0.76n)n modulo a
factor of n2.

NBW complementation techniques based on optimized versions of Safra’s de-
terminization construction (see, for example, Piterman’s recent work [Pit07])
have been experimentally found to work well for automata of small sizes (typ-
ically 8 − 10 states) [TCT+08]. However, these techniques are complex and
present fewer opportunities for optimized implementations. Ranking-based com-
plementation constructions [KV01, FKV06, Sch09] are comparatively simpler
and appear more amenable to optimizations, especially when dealing with larger
automaton sizes. For example, several optimization techniques for ranking based
complementation constructions have been proposed recently [FKV06, GKSV03].
Similarly, language universality and containment checking techniques that use
the framework of ranking-based complementation but avoid explicit construc-
tion of complement automata have been successfully applied to NBW with more
than 100 states [DR09, FV09]. This leads us to believe that ranking-based com-
plementation constructions hold much promise, and motivates our study of new
optimization techniques for such constructions.

The primary contributions of this paper can be summarized as follows : (i) We
present an improvement to the ranking based complementation constructions of
[FKV06] and [Sch09] for NBW. All accepting runs of our automaton on a word in
the complement language correspond to a minimal odd ranking of the run-DAG.
(ii) We show how to reduce the size of the complement automaton by efficiently
identifying and removing redundant slices without language containment checks.
(iii) We present an implementation of the proposed technique using the BDD-
based symbolic model checker NuSMV, and experimentally demonstrate the
advantages of our technique on a set of examples.

2 Ranking-Based NBW Complementation

Let A = (Q, q0, Σ, δ, F) be an NBW, where Q is a set of states, q0 ∈ Q is an
initial state, Σ is an alphabet, δ : Q × Σ → 2Q is a transition function, and
F ∈ 2Q is a set of accepting states. An NBW accepts a set of ω-words, where
an ω-word α is an infinite sequence α0α1 . . ., and αi ∈ Σ for all i ≥ 0. A run ρ
of A on α is an infinite sequence of states given by ρ : N → Q, where ρ(0) = q0
and ρ(i + 1) ∈ δ(ρ(i), αi) for all i ≥ 0. A run ρ of A on α is called accepting
if inf (ρ) ∩ F �= ∅, where inf (ρ) is the set of states that appear infinitely often
along ρ. The run ρ is called rejecting if inf (ρ)∩F = ∅. An ω-word α is accepted
by A if A has an accepting run on it, and is rejected otherwise. The set of all
words accepted by A is called the language of A, and is denoted L(A). The
complementation problem for NBW is to construct an automaton Ac from a
given NBW A such that L(Ac) = Σω \ L(A). We will henceforth denote the

230 H. Karmarkar and S. Chakraborty

complement language Σω \ L(A) by L(A). An NBW is said to be in initial
normal form (INF) if (i) the initial state is non-accepting and has a transition
back to itself on every letter in Σ, and (ii) no other state has a transition to
the initial state. An NBW is said to be complete if every state has at least one
outgoing transition on every letter in Σ. Every NBW can be transformed to INF
and made complete without changing the accepted language by adding at most
one non-accepting initial state and at most one non-accepting “sink” state. All
NBW considered in the remainder of this paper are assumed to be complete and
in INF.

The (possibly infinite) set of all runs of an NBW A = (Q, q0, Σ, δ, F) on a
word α can be represented by a directed acyclic graph Gα = (V,E), where V is
a subset of Q × N and E ⊆ V × V . The root vertex of the DAG is (q0, 0). For
all i > 0, vertex (q, i) ∈ V iff there is a run ρ of A on α such that ρ(i) = q.
The set of edges of Gα is E ⊆ V × V , where ((q, i), (q′, j)) ∈ E iff both (q, i)
and (q′, j) are in V , j = i + 1 and q′ ∈ δ(q, αi). Graph Gα is called the run-
DAG of α in A. A vertex (q, l) ∈ V is called an F -vertex if q ∈ F , i.e, q is a
final state of A. A vertex (q, l) is said to be F-free if there is no F -vertex that
is reachable from (q, l) in Gα. Furthermore, (q, l) is called finite if only finitely
many vertices are reachable from (q, l) in Gα. For every l ≥ 0, the set of vertices
{(q, l) | (q, l) ∈ V } constitutes level l of Gα. An accepting path in Gα is an
infinite path (q0, 0), (qi1 , 1), (qi2 , 2) . . . such that q0, qi1 , . . . is an accepting run
of A. The run-DAG Gα is called rejecting if there is no accepting path in Gα.
Otherwise, Gα is said to be accepting.

2.1 Ranking Functions and Complementation

Kupferman and Vardi [KV01] introduced the idea of assigning ranks to vertices
of run-DAGs, and described a rank-based complementation construction for al-
ternating Büchi automata. They also showed how this technique can be used to
obtain a ranking-based complementation construction for NBW, that is easier
to understand and implement than the complementation construction based on
Safra’s determinization construction[Saf88]. In this section, we briefly overview
ranking-based complementation constructions for NBW.

Let [k] denote the set {1, 2, . . . , k}, and [k]odd (respectively [k]even) denote the
set of all odd (respectively even) numbers in the set {1, 2, . . . , k}. Given an NBW
A with n states and an ω-word α, let Gα = (V,E) be the run-DAG of α in A. A
ranking r of Gα is a function r : V → [2n] that satisfies the following conditions:
(i) for all vertices (q, l) ∈ V , if r((q, l)) is odd then q /∈ F , and (ii) for all edges
((q, l), (q′, l+1)) ∈ E, we have r((q′, l+1)) ≤ r((q, l)). A ranking associates with
every vertex in Gα a rank in [2n] such that the ranks along every path in Gα are
non-increasing, and vertices corresponding to final states always get even ranks.
A ranking r is said to be odd if every infinite path in Gα eventually gets trapped
in an odd rank. Otherwise, r is called an even ranking. We use max odd(r) to
denote the highest odd rank in the range of r.

A level ranking for A is a function g : Q → [2n] ∪ {⊥} such that for every
q ∈ Q, if g(q) ∈ [2n]odd, then q /∈ F . Let L be the set of all level rankings for

On Minimal Odd Rankings for Büchi Complementation 231

A. Given two level rankings g, g′ ∈ L, a set S ⊆ Q and a letter σ, we say that
g′ covers (g, S, σ) if for all q ∈ S and q′ ∈ δ(q, σ), if g(q) �= ⊥, then g′(q′) �= ⊥
and g′(q′) ≤ g(q). For a level ranking g, we abuse notation and let max odd(g)
denote the highest odd rank in the range of g. A ranking r of Gα induces a
level ranking for every level l ≥ 0 of Gα. If Ql = {q | (q, l) ∈ V } denotes the
set of states in level l of Gα, then the level ranking g induced by r for level l is
as follows: g(q) = r((q, l)) for all q ∈ Ql and g(q) = ⊥ otherwise. It is easy to
see that if g and g′ are level rankings induced for levels l and l + 1 respectively,
then g′ covers (g,Ql, αl), where αl is the lth letter in the input word α. A level
ranking g is said to be tight if the following conditions hold: (i) the highest rank
in the range of g is odd, and (ii) for all i ∈ [max odd(g)]odd, there is a state
q ∈ Q with g(q) = i.

Lemma 1 ([KV01]). The following statements are equivalent:

(P1) All paths of Gα see only finitely many F-vertices.
(P2) There is an odd ranking for Gα.

Kupferman and Vardi [KV01] provided a constructive proof of (P1) ⇒ (P2) in
the above Lemma. Their construction is important for some of our subsequent
discussions, hence we outline it briefly here. Given an NBW A with n states, an ω-
word α ∈ L(A) and the run-DAG Gα of A on α, the proof in [KV01] inductively
defines an infinite sequence of DAGs G0 ⊇ G1 ⊇ . . ., where (i) G0 = Gα,
(ii) G2i+1 = G2i\ {(q, l) | (q, l) is finite in G2i}, and (iii) G2i+2 = G2i+1\
{(q, l) | (q, l) is F-free in G2i+1}, for all i ≥ 0. An interesting consequence of this
definition is that for all i ≥ 0, G2i+1 is either empty or has no finite vertices.
It can be shown that if all paths in Gα see only finitely many F-vertices, then
G2n−1 and all subsequent Gis must be empty. A ranking rKV

A,α of Gα can therefore
be defined as follows: for every vertex (q, l) of Gα, rKV

A,α((q, l)) = 2i if (q, l) is finite
in G2i, and rKV

A,α((q, l)) = 2i+ 1 if (q, l) is F-free in G2i+1. Kupferman and Vardi
showed that rKV

A,α is an odd ranking [KV01]. Throughout this paper, we will
use rKV

A,α to denote the odd ranking computed by the above technique due to
Kupferman and Vardi (hence KV in the superscript) for NBW A and α ∈ L(A).
When A and α are clear from the context, we will simply use rKV for notational
convenience.

The NBW complementation construction and upper size bound presented in
[KV01] was subsequently tightened in [FKV06], where the following important
observation was made.

Lemma 2 ([FKV06]). Given a word α ∈ L(A), there exists an odd ranking r
of Gα and a level llim ≥ 0, such that for all levels l > llim, the level ranking
induced by r for l is tight.

Lemma 2 led to a reduced upper bound for the size of ranking-based com-
plementation constructions, since all non-tight level rankings could now be ig-
nored after reading a finite prefix of the input word. Schewe[Sch09] tightened

232 H. Karmarkar and S. Chakraborty

the construction and analysis further, resulting in a ranking-based complemen-
tation construction with an upper size bound that is within a factor of n2 of the
best known lower bound [Yan08]. Hence, Schewe’s construction is currently the
best known ranking-based construction for complementing NBW. Gurumurthy
et al [GKSV03] presented a collection of practically useful optimization tech-
niques for keeping the size of complement automata constructed using ranking
techniques under control. Their experiments demonstrated the effectiveness of
their optimizations for NBW with an average size of 6 states. Interestingly,
their work also highlighted the difficulty of complementing NBW with tens of
states in practice. Doyen and Raskin [DR09] have recently proposed powerful
anti-chain optimizations in ranking-based techniques for checking universality
(L(A) =? Σω) and language containment (L(A) ⊆? L(B)) of NBW. Fogarty and
Vardi [FV09] have evaluated Doyen and Raskin’s technique and also Ramsey-
based containment checking techniques in the context of proving size-change ter-
mination (SCT) of programs. Their results bear testimony to the effectiveness
of Doyen and Raskin’s anti-chain optimizations for ranking-based complemen-
tation in SCT problems, especially when the original NBW is known to have
reverse-determinism [FV09].

Given an NBW A, let KVF(A) be the complement NBW constructed us-
ing the Friedgut, Kupferman and Vardi construction with tight level rankings
[KV01, FKV06]. For notational convenience, we will henceforth refer to this
construction as KVF-construction. Similarly, let KVFS(A) be the complement
automaton constructed using Schewe’s variant[Sch09] of the KVF-construction.
We will henceforth refer to this construction as KVFS-construction.

The work presented in this paper can be viewed as an optimized variant
of Schewe’s [Sch09] ranking-based complementation construction. The proposed
method is distinct from other optimization techniques proposed in the literature
(e.g. those in [GKSV03]), and adds to the repertoire of such techniques. We first
show that for every NBW A and word α ∈ L(A), the ranking rKV is minimal
in the following sense: if r is any odd ranking of Gα, then every vertex (q, l) in
Gα satisfies rKV((q, l)) ≤ r((q, l)). We then describe how to restrict the transi-
tions of the complement automaton obtained by the KVFS-construction, such
that every accepting run of α assigns the same rank to all vertices in Gα as is
assigned by rKV. Thus, our construction ensures that acceptance of α happens
only through minimal odd rankings. This allows us to partition the set of states
of the complement automaton into slices such that for every word α ∈ L(A),
all its accepting runs lie in exactly one slice. Redundant slices can then be iden-
tified as those that never contribute to accepting any word in L(A). Removal
of such redundant slices results in a reduced state count, while preserving the
language of the complement automaton. The largest k(> 0) such that there is
a non-redundant slice with that assigns rank k to some vertex in the run-DAG
gives the rank of A, as defined by [GKSV03]. Notice that our sliced view of the
complement automaton is distinct from the notion of slices as used in [KW08].

Gurumurthy et al have shown [GKSV03] that for every NBW A, there exists an
NBW B with L(B) = L(A), such that both the KVF- and KVFS-constructions

On Minimal Odd Rankings for Büchi Complementation 233

for Bc require at most 3 ranks. However, obtaining B from A is non-trivial, and
requires an exponential blowup in the worst-case [FKV06]. Therefore, ranking-
based complementation constructions typically focus on reducing the state count
of the complement automaton starting from a given NBW A, instead of first com-
puting B and then constructing Bc. We follow the same approach in this paper.
Thus, we do not seek to obtain an NBW with the minimum rank for the comple-
ment of a given ω-regular language. Instead, we wish to reduce the state count of
Kupferman and Vardi’s rank-based complementation construction, starting from
a given NBW A.

3 Minimal Odd Rankings

Given an NBW A and an ω-word α ∈ L(A), an odd ranking r of Gα is said to
be minimal if for every odd ranking r′ of Gα, we have r′((q, l)) ≥ r((q, l)) for all
vertices (q, l) in Gα.

Theorem 1. For every NBW A and ω-word α ∈ L(A), the ranking rKV
A,α is

minimal.

Proof. Let α be an ω-word in L(A). Since A and α are clear from the context,
we will use the simpler notation rKV to denote the ranking computed by Kupfer-
man and Vardi’s method. Let r be any (other) odd ranking of Gα, and let Vr,i

denote the set of vertices in Gα that are assigned the rank i by r. Since A is
assumed to be a complete automaton, there are no finite vertices in Gα. Hence,
by Kupferman and Vardi’s construction, VrKV,0 = ∅. Note that this is consistent
with our requirement that all ranking functions have range [2n] = {1, . . .2n}.

We will prove the theorem by showing that Vr,i ⊆
⋃i

k=1 VrKV,k for all i > 0.
The proof proceeds by induction on i, and by following the construction of DAGs
G0, G1, . . . in Kupferman and Vardi’s proof of Lemma 1.

Base case: Consider G1 = G0 \ {(q′, l′) | (q′, l′) is finite in G0} = Gα \ ∅ = Gα.
Let (q1, l1) be a vertex in G1 such that r((q1, l1)) = 1. Let (qf , lf) be an F -
vertex reachable from (q1, l1) in Gα, if possible. By virtue of the requirements
that F -vertices must get even ranks, and ranks cannot increase along any path,
r((qf , lf)) must be < 1. However, this is impossible given that the range of r
must be [2n]. Therefore, no F -vertex can be reachable from (q1, l1). In other
words, (q1, l1) is F-free in G1. Hence, by definition, we have rKV(q1, l1) = 1.
Thus, Vr,1 ⊆ VrKV,1.

Hypothesis: Assume that Vr,j ⊆
⋃j

k=1 VrKV,k for all 1 ≤ j ≤ i.

Induction: By definition, Gi+1 = Gα\
⋃i

s=1 VrKV,s. Let (qi+1, li+1) be a vertex
in Gi+1 such that r((qi+1, li+1)) = i + 1. Since r is an odd ranking, all paths
starting from (qi+1, li+1) must eventually get trapped in some odd rank ≤ i + 1
(assigned by r). We consider two cases.

– Suppose there are no infinite paths starting from (qi+1, li+1) in Gi+1. This
implies (qi+1, li+1) is a finite vertex in Gi+1. We have seen earlier that for

234 H. Karmarkar and S. Chakraborty

all k ≥ 0, G2k+1 must be either empty or have no finite vertices. Therefore,
i + 1 must be even, and rKV((qi+1, li+1)) = i + 1 by Kupferman and Vardi’s
construction.

– There exists a non-empty set of infinite paths starting from (qi+1, li+1) in
Gi+1. Since Gi+1 = Gα\

⋃i
s=1 VrKV,s, none of these paths reach any vertex

in
⋃i

s=1 VrKV,s. Since Vr,j ⊆
⋃

k∈{1,2,...,j} VrKV,k for all 1 ≤ j ≤ i, and since
ranks cannot increase along any path, it follows that r must assign i + 1
to all vertices along each of the above paths. This, coupled with the fact
that r is an odd ranking, implies that i + 1 is odd. Since F -vertices must
be assigned even ranks by r, it follows from above that (qi+1, li+1) is F -
free in Gα. Therefore, rKV((qi+1, li+1)) = i + 1 by Kupferman and Vardi’s
construction.

We have thus shown that all vertices in Gi+1 that are assigned rank i + 1 by r
must also be assigned rank i+1 by rKV. Therefore, Vr,i+1 \

⋃i
j=1 VrKV,j ⊆ VrKV,i+1.

In other words, Vr,i+1 ⊆
⋃i+1

j=1 VrKV,j.
By the principle of mathematical induction, it follows that Vr,i ⊆

⋃i
k=1 VrKV,k

for all i > 0. Thus, if a vertex is assigned rank i by r, it must be assigned a rank
≤ i by rKV. Hence rKV is minimal. !"

Lemma 3. For every α ∈ L(A), the run-DAG Gα ranked by rKV
A,α (or simply

rKV) satisfies the following properties.

1. For every vertex (q, l) that is not an F -vertex such that rKV((q, l)) = k, there
must be at least one immediate successor (q′, l+1) such that rKV((q′, l+1)) = k.

2. For every vertex (q, l) that is an F -vertex, such that rKV((q, l)) = k, there
must be atleast one immediate successor (q′, l+1) such that rKV((q′, l+1)) = k
or rKV((q′, l + 1)) = k − 1

3. For every vertex (q, l) such that rKV((q, l)) = k, where k is odd and > 1,
there is a vertex (q′, l′) for l′ > l such that (q′, l′) is an F -vertex reachable
from (q, l) and rKV((q′, l′)) = k − 1.

4. For every vertex (q, l) such that rKV((q, l)) = k, where k is even and > 0,
every path starting at (q, l) eventually visits a vertex with rank less than k.
Furthermore, there is a vertex (q′, l′) for l′ > l such that (q′, l′) is reachable
from (q, l) and rKV((q′, l′)) = k − 1.

We omit the proof due to lack of space. The reader is referred to [KC09] for
details of the proof.

4 A Motivating Example

We have seen above the KVFS-construction leads to almost tight worst case
bounds for NBW complementation. This is a significant achievement consid-
ering the long history of Büchi complementation [Var07]. However, the KVFS-
construction does not necessarily allow us to construct small complement
automata for every NBW. Specifically, there exists a family of NBW

On Minimal Odd Rankings for Büchi Complementation 235

A = { A3, A5, . . . } such that for every i ∈ {3, 5, . . .}: (i) Ai has i states, (ii) each
of the ranking-based complementation constructions in [KV01], [FKV06] and

[Sch09] produces a complement automaton with at least i(
i−1
2)

ei states, and (iii) a
ranking-based complementation construction that assigns minimal ranks to all
run-DAGs results in a complement automaton with Θ(i) states.

a,b

a,b a,b a,b

b

a

a,b

q1 q2 q3 q4 q5

Fig. 1. Automaton A5

Automata in the family A can be
described as follows. Each Ai is an
NBW (Qi, q1, Σ, δi, Fi), where Qi =
{q1, q2, . . . , qi}, Σ = {a, b}, q1 is
the initial state and Fi = {qj |
qj ∈ Qi, j is even }. The transi-
tion relation δi is given by: δi =

{(qj , a, qj+1), (qj , b, qj+1) | 1 ≤ j ≤ i − 2} ∪ {(q1, a, q1), (q1, b, q1), (qi, a, qi),
(qi, b, qi), (qi−1, b, qi−1), (qi−1, a, qi)}. Figure 1 shows the structure of automaton
A5 defined in this manner. Note that each Ai ∈ A is a complete automaton in
INF. Furthermore, bω ∈ L(Ai) and aω �∈ L(Ai) for each Ai ∈ A. Let KVF(Ai)
and KVFS(Ai) be the complement automata for Ai constructed using the KVF-
construction and KVFS-construction respectively.

Lemma 4. For every Ai ∈ A, the number of states in KVF(Ai) and KVFS(Ai)
is atleast (i)(i−1)/2

ei . Furthermore, there exists a ranking-based complementation
construction for Ai that gives a complement automaton Ai

′ with Θ(i) states.

Proof sketch: The proof is obtained by considering the run-DAG for aω (which
is ∈ L(Ai)), and by showing that at least (i)(i−1)/2

ei states are required in both
the KVF- and KVFS-constructions in order to allow all possible consistent rank
assignments to vertices of the run-DAG. On the other hand, a complementation
construction that uses the ranking f(qi) = 1, f(q1) = 3 and f(qj) = 2 for all
2 ≤ j ≤ i − 1 at all levels of the run-DAG can be shown to accept L(A) with
Θ(i) states. Details of the proof may be found in [KC09].

This discrepancy in the size of a sufficient rank set and the actual set of
ranks used by the KVF- and KVFS-constructions motivates us to ask if we can
devise a ranking-based complementation construction for NBW that uses the
minimum number of ranks when accepting a word in the complement language.
In this paper, we answer this question in the affirmative, by providing such a
complementation construction.

5 Complementation with Minimal Ranks

Motivated by the example described in the previous section, we now describe
an optimized ranking-based complementation construction for NBW. Given an
NBW A, the complement automaton A′ obtained using our construction has the
special property that when it accepts an ω-word α, it assigns a rank r to Gα

that agrees with the ranking rKV
A,α at every vertex in Gα. This is achieved by non-

deterministically mimicking the process of rank assignment used to arrive at rKV
A,α.

236 H. Karmarkar and S. Chakraborty

Our construction imposes additional constraints on the states and transitions of
the complement automaton, beyond those in the KVF- and KVFS-constructions.
For example, if k is the smallest rank that can be assigned to vertex (q, l), then
the following conditions must hold: (i) if (q, l) is not an F -vertex then it must
have a successor of the same rank at the next level, and (ii) if (q, l) is an F -vertex
then it must have a successor at the next level with rank k or k − 1. The above
observations are coded as conditions on the transitions of A′, and are crucial if
every accepting run of A′ on α ∈ L(A) must correspond to the unique ranking
rKV
A,α of Gα.

Recall that in [FKV06], a state of the automaton that tracks the ranking of
the run-DAG vertices at the current level is represented as a triple (S,O, f),
where S is a set of Büchi states reachable after reading a finite prefix of the
word, f is a tight level ranking, and the O-set checks if all even ranked vertices
in a (possibly previous) level of the run-DAG have moved to lower odd ranks.
In our construction, we use a similar representation of states, although the O-
set is much more versatile. Specifically, the O-set is populated turn-wise with
states of the same rank k, for both odd and even k. This is a generalization of
Schewe’s technique that uses the O-set to check if even ranked states present at
a particular level have moved to states with lower odd ranks. The O-set in our
construction, however, does more. It checks if every state of rank k (whether
even or odd) in an O-set eventually reaches a state with rank k− 1. If k is even.
then it also checks if all runs starting at states in O eventually reach a state
with rank k − 1. When all states in an O-set tracking rank 2 reach states with
rank 1, the O-set is reset and loaded with states that have the maximal odd
rank in the range of the current level ranking. The process of checking ranks is
then re-started. This gives rise to the following construction for the complement
automaton A′.

Let A′ = (Q′, Q′
0, Σ, δ′, F ′), where

– Q′ = {2Q × 2Q × R} is the state set, such that if (S,O, f) ∈ Q′, then
S ⊆ Q and S �= ∅, f ∈ R is a level ranking, O ⊆ S, and either O = ∅ or
∃k ∈ [2n− 1] ∀q ∈ O, f(q) = k.

– Q′
0 =

⋃
i∈[2n−1]odd{(S,O, f) | S = {q0}, f(q0) = i, O = ∅} is the set of initial

states.
– For every σ ∈ Σ, the transition function δ′ is defined such that if (S′, O′, f ′) ∈

δ′((S,O, f), σ), the following conditions are satisfied.
1. S′ = δ(S, σ), f ′ covers (f, S, σ).
2. For all q ∈ S \ F , there is a q′ ∈ δ(q, σ) such that f ′(q′) = f(q).
3. For all q ∈ S ∩ F one of the following must hold

(a) There is a q′ ∈ δ(q, σ), such that f ′(q′) = f(q).
(b) There is a q′ ∈ δ(q, σ), such that f ′(q′) = f(q)− 1.

4. In addition, we have the following restrictions:
(a) If f is not a tight level ranking, then O′ = O
(b) If f is a tight level ranking and O �= ∅, then

i. If for all q ∈ O, we have f(q) = k, where k is even, then
• Let O1 = δ(O, σ) \ {q | f ′(q) < k}.

On Minimal Odd Rankings for Büchi Complementation 237

• If (O1 = ∅) then O′ = {q | q ∈ Q ∧ f ′(q) = k − 1}, else
O′ = O1.

ii. If for all q ∈ O, we have f(q) = k, where k is odd, then
• If k = 1 then O′ = ∅
• If k > 1 then let O2 = O \ {q | ∃q′ ∈ δ(q, σ), (f ′(q′) = k− 1)}.

- If O2 �= ∅ then O′ ⊆ δ(O2, σ) such that
∀q ∈ O2 ∃q′ ∈ O′, q′ ∈ δ(q, σ) ∧ f ′(q′) = k.

- If O2 = ∅ then O′ = {q | f ′(q) = k − 1}.
(c) If f is a tight level ranking and O = ∅, then O′ = {q | f ′(q) =

max odd(f ′)}.
– As in the KVF- and KVFS-constructions, the set of accepting states of A′

is F ′ = {(S,O, f) | f is a tight level ranking, and O = ∅}

Note that unlike the KVF- and KVFS-constructions, the above construction
does not have an initial phase of unranked subset construction, followed by a
non-deterministic jump to ranked subset construction with tight level rankings.
Instead, we start directly with ranked subsets of states, and the level rankings
may indeed be non-tight for some finite prefix of an accepting run. The value of
O is inconsequential until the level ranking becomes tight; hence it is kept as ∅
during this period. Note further that the above construction gives rise to multiple
initial states in general. Since an NBW with multiple initial states can be easily
converted to one with a single initial state without changing its language, this
does not pose any problem, and we will not dwell on this issue any further.

Theorem 2. L(A′) = L(A)

The proof proceeds by establishing three sub-results: (i) every accepting run of
A′ on word α assigns an odd ranking to the run-DAG Gα and hence corresponds
to an accepting run of KVF(A), (ii) the run corresponding to the ranking rKV

A,α is
an accepting run of A′ on α, and (iii) L(KVF(A)) = L(A)[KV01]. Details of the
proof may be found in [KC09].

Given an NBW A and the complement NBW A′ constructed using the above
algorithm, we now ask if A′ has an accepting run on some α ∈ L(A) that induces
an odd ranking r different from rKV

A,α. We answer this question negatively in the
following lemma.

Lemma 5. Let α ∈ L(A), and let r be the odd ranking corresponding to an
accepting run of A′ on α. Let Vr,i (respectively, VrKV

A,α,i) be the set of vertices in

Gα that are assigned rank i by r (respectively, rKV
A,α). Then Vr,i = VrKV

A,α,i for all
i > 0.

Proof. We prove the claim by induction on the rank i. Since A and α are clear
from the context, we will use rKV in place of rKV

A,α in the remainder of the proof.

Base case: Let (q, l) ∈ VrKV,1. By definition, (q, l) is F -free. Suppose r((q, l)) = m,
where m > 1, if possible. If m is even, the constraints embodied in steps (2), (3)

238 H. Karmarkar and S. Chakraborty

and (4(b)i) of our complementation construction, coupled with the fact that theO-
set becomes ∅ infinitely often, imply that (q, l) has an F -vertex descendant (q′, l′)
in Gα. Therefore, (q, l) is not F -free – a contradiction! Hence m cannot be even.

Suppose m is odd and > 1. The constraint embodied in step (4(b)ii) of our
construction, and the fact that the O-set becomes ∅ infinitely often imply that
(q, l) has a descendant (q′′, l′′) that is assigned an even rank by r. The constraints
embodied in steps (2), (3) and (4(b)i), coupled with the fact that the O-set
becomes ∅ infinitely often, further imply that (q′′, l′′) has an F -vertex descendant
in Gα. Hence (q, l) has an F -vertex descendant, and is not F -free. This leads
to a contradiction again! Therefore, our assumption must have been incorrect,
i.e. r((q, l)) ≤ 1. Since 1 is the minimum rank in the range of r, we finally have
r((q, l)) = 1. This shows that VrKV,1 ⊆ Vr,1.

Now suppose (q, l) ∈ Vr,1. Since r corresponds to an accepting run of A′, it
is an odd-ranking. This, coupled with the fact that ranks cannot increase along
any path in Gα, imply that all descendants of (q, l) in Gα are assigned rank 1 by
r. Since F -vertices must be assigned even ranks, this implies that (q, l) is F -free
in Gα. It follows that rKV((q, l)) = 1. Therefore, Vr,1 ⊆ VrKV,1. From the above
two results, we have Vr,1 = VrKV,1.

Hypothesis: Assume that Vr,j = VrKV,j for 1 ≤ j ≤ i.

Induction: Let (q, l) ∈ VrKV,i+1. Then by the induction hypothesis, (q, l) cannot
be in any Vr,j for j ≤ i. Suppose r((q, l)) = m, where m > i + 1, if possible. We
have two cases.

1. i + 1 is odd: In this case, the constraints embodied in steps (2), (3), (4(b)i)
and (4(b)ii) of our construction, coupled with the fact that the O-set becomes
∅ infinitely often, imply that vertex (q, l) has an F -vertex descendant (q′, l′)
(possibly its own self) such that (i) r((q′, l′)) = i + 2, and (ii) vertex (q′, l′)
in turn has a descendant (q′′, l′′) such that r((q′′, l′′)) = i+1. The constraint
embodied in (2) of our construction further implies that there must be an
infinite path π starting from (q′′, l′′) in Gα such that every vertex on π is
assigned rank i+1 by r, and none of these are F -vertices. Since rKV((q, l)) =
i+1 is odd, and since (q′, l′) is an F -vertex descendant of (q, l), we must have
rKV((q′, l′)) ≤ i, where i is even. Furthermore, since rKV is an odd ranking,
every path in Gα must eventually get trapped in an odd rank assigned by
rKV. Hence, eventually every vertex on π is assigned an odd rank < i by rKV

A,α.
However, we already know that the vertices on π are eventually assigned
the odd rank i + 1 by r. Hence Vr,j �= VrKV,j for some j ∈ {1, . . . i}. This
contradicts the inductive hypothesis!

2. i + 1 is even: In this case, the constraints embodied in steps (2), (3), (4(b)i)
and (4(b)ii) of our construction, and the fact that the O-set becomes ∅
infinitely often, imply that (q, l) has a descendant (q′, l′) in Gα such that
r((q′, l′)) = i+2 (which is odd), and there is an infinite path π starting from
(q′, l′) such that all vertices on π are assigned rank i+2 by r. However, since
rKV is an odd ranking and since rKV((q, l)) = i + 1 (which is even), vertices
on π must eventually get trapped in an odd rank ≤ i assigned by rKV. This

On Minimal Odd Rankings for Büchi Complementation 239

implies that Vr,j �= VrKV,j for some j ∈ {1, . . . i}. This violates the inductive
hypothesis once again!

It follows from the above cases that r((q, l)) ≤ i + 1. However, (q, l) �∈ VrKV,j

for 1 ≤ j ≤ i (since (q, l) ∈ VrKV,i+1), and Vr,j = VrKV,j for 1 ≤ j ≤ i (by
inductive hypothesis). Therefore, (q, l) �∈ Vr,j for 1 ≤ j ≤ i. This implies that
r((q, l)) = i + 1, completing the induction.

By the principle of mathematical induction, we VrKV
A,α,i = Vr,i for all i > 0. !"

Theorem 3. Every accepting run of A′ on α ∈ L(A) induces the unique mini-
mal ranking rKV

A,α.

Proof. Follows from Lemma 5.

5.1 Size of Complement Automaton

The states of A′ are those in the set {2Q × 2Q × R}. While some of these states
correspond to tight level rankings, others do not. We first use an extension of the
idea in [Sch09] to encode a state (S,O, f) with tight level ranking f as a pair (g, i),
where g : Q → {1, . . . , r} ∪ {−1,−2} and r = max odd(f). Thus, for all q ∈ Q,
we have q /∈ S iff g(q) = −2. If q ∈ S and q /∈ O, we have g(q) = f(q). If q ∈ O
and f(q) is even, then we let g(q) = −1 and i = f(q). This part of the encoding is
exactly as in [Sch09]. We extend this encoding to consider cases where q ∈ O and
f(q) = k is odd. There are two sub cases to consider: (i) O � {q | q ∈ S ∧ f(q) =
k}, and (ii) O = {q | q ∈ S ∧ f(q) = k}. In the first case, we let i = k and
g(q) = −1 for all q ∈ O. In the second case, we let i = k and g(q) = f(q) = k
for all q ∈ O. Since, f is a tight level ranking, the O-set cannot be empty when
we check for states with an odd rank in our construction. Therefore, there is no
ambiguity in identifying the set O in both cases (i) and (ii) above. It is now easy to
see that g is always onto one of the three sets {1, 3, . . . , r}, {−1}∪ {1, 3, . . . , r} or
{−2}∪ {1, 3, . . . , r}. By Schewe’s analysis [Sch09], the total number of such (g, i)
pairs is upper bounded by O(tight(n + 1)).

Now, let us consider states with non-tight level rankings. Our construction
ensures that once an odd rank i appears in a level ranking g along a run ρ, all
subsequent level rankings along ρ contain every rank in {i, i+2, . . .max odd(g)}.
The O-set in states with non-tight level ranking is inconsequential; hence we
ignore this. Suppose a state with non-tight level ranking g contains the odd
ranks {i, i − 2, . . . , j}, where 1 < j ≤ i = max odd(g). To encode this state,
we first replace g with a level ranking g′ as follows. For all k ∈ {j, . . . , i} and
q ∈ Q, if g(q) = k, then g′(q) = k − j + c, where c = 0 if j is even and 1
otherwise. Effectively, this transforms g to a tight level ranking g′ by shifting
all ranks down by j − c. The original state can now be represented as the pair
(g′,−(j − c)). Note that the second component of a state represented as (g, i)
is always non-negative for states with tight level ranking, and always negative
for states with non-tight level ranking. Hence, there is no ambiguity in decoding
the state representation. Clearly, the total no. of states with non-tight rankings

240 H. Karmarkar and S. Chakraborty

is O(n.tight(n)) = O(tight(n + 1)). Hence, the size of A′ is upper bounded by
O(tight(n + 1)) which differs from the lower bound of Ω(tight(n− 1)) given by
[Yan08] by only a factor of n2.

6 Slices of Complement Automaton

The transitions of the complement automaton A′ obtained by our construction
have the property that a state (S,O, f) has a transition to (S′, O′, f ′) only if
max odd(f) = max odd(f ′). Consequently, the set of states Q′ can be parti-
tioned into slices Q1, Q3, . . . , Q2n−1, where the set Qi = {(S,O, f)|(S,O, f) ∈
Q′ ∧ max odd(f) = i} is called the ith slice of A′. It is easy to see that Q′ =⋃

i∈[2n−1]odd Qi. Let ρ be an accepting run of A′ on α ∈ L(A). We say that ρ is
confined to a slice Qi of A′ iff ρ sees only states from Qi. If ρ is confined to slice
i, and if r is the odd ranking induced by ρ, then max odd(r) = i.

Lemma 6. All accepting runs of A′ on α ∈ L(A) are confined to the same slice.

Proof. Follows from Theorem 3. !"

The above results indicate that if a word α is accepted by the ith slice of our au-
tomatonA′, then it cannot be accepted by KVF(A) using a tight ranking with max
odd rank < i. It is however possible that the same word is accepted by KVF(A) us-
ing a tight ranking with max odd rank > i. Figure 1 shows an example of such an
automaton, where the word aω is accepted by KVF(A) using a tight ranking with
max odd rank 5, as well as with a tight ranking with max odd rank 3. The same
word is accepted by only the 3rd slice of our automaton A′. This motivates the def-
inition of minimally inessential ranks. Given an NBW A with n states, odd rank i
(1 ≤ i ≤ 2n−1) is said to be minimally inessential if every word α that is accepted
by KVF(A) using a tight ranking with max odd rank i is also accepted by KVF(A)
using a tight ranking with max odd rank j < i. An odd rank that is not mini-
mally inessential is called minimally essential. As the example in Figure 1 shows,
neither the KVF-construction nor the KVFS-construction allows us to detect min-
imally essential ranks in a straightforward way. Specifically, although the 5th slice
of KVF(A) for this example accepts the word aω, 5 is not a minimally inessential
rank. In order to determine if 5 is minimally inessential, we must isolate the 5th

slice of KVF(A), and then check whether the language accepted by this slice is a
subset of the language accepted by KVF(A) sans the 5th slice. This involves com-
plementing KVF(A) sans the 5th slice, requiring a significant blowup. In contrast,
the properties of our automatonA′ allow us to detect minimally (in)essential ranks
efficiently. Specifically, if we find that the ith slice of A′ accepts a word α, we can
infer than i is minimally essential. Once all minimally essential ranks have been
identified in this manner, we can prune automaton A′ to retain only those slices
that correspond to minimally essential ranks. This gives us a way of eliminating
redundant slices (and hence states) in KVF(A).

On Minimal Odd Rankings for Büchi Complementation 241

7 An Implementation of Our Algorithm

We have implemented the complementation algorithm presented in this paper
as a facility on top of the BDD-based model checker NuSMV. In our imple-
mentation, states of the complement automaton are encoded as pairs (g, i), as

a,b,c

b

a,b,c

0 1 2 3

456

a,c

b

a,b

b

a,b,c a,b

a,b,c

a,b,ca,b,c

a,b,c

Fig. 2. Example automaton with gaps

explained in Section 5.1. Our tool
takes as input an NBW A, and gen-
erates the state transition relation of
the complement automaton A′ using
the above encoding in NuSMV’s in-
put format. Generating the NuSMV
file from a given description of NBW
takes negligible time (< 0.01s). The
number of boolean constraints used
in expressing the transition relation
in NuSMV is quadratic in n. We use

NuSMV’s fair CTL model checking capability to check whether there exists an
infinite path in a slice of A′ (corresponding to a maximum odd rank k) that visits
an accepting state infinitely often. If NuSMV responds negatively to such a query,
we disable all transitions to and from states in this section of the NuSMV model.
This allows us to effectively detect and eliminate redundant slices of our comple-
ment automaton, resulting in a reduction of the overall size of the automaton.
For purposes of comparison, we have also implemented the algorithm presented
in [Sch09] in a similar manner using a translation to NuSMV. We also compared
the performance of our technique with those of Safra-Piterman [Saf88, Pit07]
determinization based complementation technique and Kupferman-Vardi’s rank-
ing based complementation technique [KV01], as implemented in the GOAL
tool [TCT+08]. Table 1 shows the results of some of our experiments. We used
the CUDD BDD library with NuSMV 2.4.3, and all our experiments were run

Table 1. Experimental Results. XX:timeout. (after 10 min)

Automaton KVFS algorithm Our algorithm GOAL
(states,trans.,final) States MI Ranks States MI Ranks WAA SP

michel4(6,15,1) 157 {9,7} 117 {9,7} XX 105
g15 (6,17,1) 324 {9,7,5} 155 {9,7,5} XX 39
g47 (6,13,3) 41 {5} 29 {5,3} XX 28
ex4 (8,9,4) 3956 ∅ 39 {7,5} XX 7
ex16 (9,13,5) 10302 ∅ 909 {7} XX 30
ex18 (9,13,5) 63605 ∅ 2886 ∅ XX 71
ex20 (9,12,5) 17405 ∅ 156 {7} XX 24
ex22 (11,18,7) 258 {7,5} 23 {7,5} XX 6
ex24 (13,16,8) 4141300 ∅ 19902 {9,7} XX 51
ex26 (15,22,11) 1042840 ∅ 57540 {7,5} XX XX
gap1 (15,22,11) 99 {5,1} 26 {5,1} XX 16
gap2 (15,22,11) 532 {1} 80 {5,1} XX 48

242 H. Karmarkar and S. Chakraborty

on an Intel Xeon 3GHz with 2 GB of memory and a timeout of 10 minutes.
The entry for each automaton1 lists the number of states, transitions and final
states of the original automaton, the number of states of the complement au-
tomaton computed by the KVFS-construction and by our construction, and the
set of minimally inessential ranks (denoted as “MI Ranks”) identified by each of
these techniques. In addition, each row also lists the number of states computed
by the “Safra-Piterman” (denoted as “SP”) technique and “Weak Alternating
Automata” (denoted as “WAA”) technique in GOAL.

A significant advantage of our construction is its ability to detect “gaps” in
slices. As an example, the automaton in Figure (2) has ranks 1, 5 as minimally
inessential, while ranks 3 and 7 are minimally essential (see Table (1)). In this
case, if we compute the rank of the NBW (as suggested in [GKSV03]) and then
consider slices only upto this rank, we will fail to detect that rank 5 is minimally
inessential. Therefore, eliminating redundant slices is a stronger optimization than
identifying and eliminating states with ranks greater than the rank of the NBW.

8 Conclusion

In this paper, we presented a complementation algorithm for nondeterministic
Büchi automata that is based on the idea of ranking functions introduced by
Kupferman and Vardi[KV01]. We showed that the ranking assignment presented
in [KV01] always results in a minimal odd ranking for run-DAGs of words in
the complement language. We then described a complementation construction
for NBW such that the complement NBW accepts only the run-DAG with the
minimal odd ranking for every word in the complement. We observed that the
states of the complement NBW are partioned into slices, and that each word in
the complement is accepted by exactly one such slice. This allowed us to check
for redundant slices and eliminate them, leading to a reduction the size of the
complement NBW. It is noteworthy that this ability to reduce the size of the
final complement NBW comes for free since the worst case bounds coincide with
the worst case bounds of the best known NBW complementation construction.
In the future, we wish to explore techniques to construct unambiguous automata
and deterministic Rabin automata from NBW, building on the results presented
here.

References

[Büc62] Büchi, J.R.: On a decision method in restricted second order arithmetic. In:
Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy of Science,
pp. 1–11. Stanford Univ. Press, Stanford (1962)

[DR09] Doyen, L., Raskin, J.-F.: Antichains for the automata based approach to
model checking. Logical Methods in Computer Science 5, 1–20 (2009)

1 All example automata from this paper and the translator from automaton descrip-
tion to NuSMV are available at http://www.cfdvs.iitb.ac.in/reports/minrank

On Minimal Odd Rankings for Büchi Complementation 243

[FKV06] Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made
tighter. Int. J. Found. Comput. Sci. 17(4), 851–868 (2006)

[FV09] Fogarty, S., Vardi., M.Y.: Büchi complementation and size-change termina-
tion. In: Proc. TACAS, pp. 16–30 (2009)

[GKSV03] Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On comple-
menting nondeterministic büchi automata. In: Geist, D., Tronci, E. (eds.)
CHARME 2003. LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003)

[KC09] Karmarkar, H., Chakraborty, S.: On minimal odd rankings for Büchi com-
plementation (May 2009),
http://www.cfdvs.iitb.ac.in/reports/index.php

[Kla91] Klarlund, N.: Progress measures for complementation of ω-automata with
applications to temporal logic. In: Proc. 32nd IEEE FOCS, San Juan,
pp. 358–367 (1991)

[KV01] Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak.
ACM Transactions on Computational Logic 2(3), 408–429 (2001)

[KW08] Kähler, D., Wilke, T.: Complementation, disambiguation, and determiniza-
tion of Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part I. LNCS, vol. 5125, pp. 724–735. Springer, Heidelberg (2008)

[Löd99] Löding, C.: Optimal bounds for transformations of ω-automata. In: Pandu
Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738,
pp. 97–109. Springer, Heidelberg (1999)

[Mic88] Michel, M.: Complementation is more difficult with automata on infinite
words. In: CNET, Paris (1988)

[Pit07] Piterman, N.: From nondeterministic Büchi and Streett automata to de-
terministic Parity automata. Logical Methods in Computer Science 3(3:5),
1–217 (2007)

[Saf88] Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE FOCS,
pp. 319–327 (1988)

[Sch09] Schewe, S.: Büchi complementation made tight. In: Proc. STACS,
pp. 661–672 (2009)

[SVW87] Prasad Sistla, A., Vardi, M.Y., Wolper, P.: The complementation problem
for Büchi automata with applications to temporal logic. Theoretical Com-
puter Science 49, 217–237 (1987)

[TCT+08] Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Chan, W.-C., Luo, C.-J.: Goal ex-
tended: Towards a research tool for omega automata and temporal logic. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
346–350. Springer, Heidelberg (2008)

[Var07] Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P.
(eds.) STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

[Yan08] Yan, Q.: Lower bounds for complementation of omega-automata via the
full automata technique. Logical Methods in Computer Science 4(1), 1–20
(2008)

http://www.cfdvs.iitb.ac.in/reports/index.php

Specification Languages for Stutter-Invariant

Regular Properties�

Christian Dax1, Felix Klaedtke1, and Stefan Leue2

1 ETH Zurich, Switzerland
2 University of Konstanz, Germany

Abstract. We present specification languages that naturally capture
exactly the regular and ω-regular properties that are stutter invariant.
Our specification languages are variants of the classical regular expres-
sions and of the core of PSL, a temporal logic, which is widely used in
industry and which extends the classical linear-time temporal logic LTL
by semi-extended regular expressions.

1 Introduction

Stutter-invariant specifications do not distinguish between system behaviors that
differ from each other only by the number of consecutive repetitions of the ob-
served system states. Stutter invariance is crucial for refining specifications and
for modular reasoning [13]. Apart from these conceptual reasons for restricting
oneself to stutter-invariant specifications, there is also a more practical moti-
vation: stuttering invariance is an essential requirement for using partial-order
reduction techniques (see, e.g., [2, 11, 15, 16, 20]) in finite-state model checking.

Unfortunately, checking whether an LTL formula or an automaton describes
a stutter-invariant property is PSPACE-complete [18]. To leverage partial-order
reduction techniques in finite-state model checking even when it is unknown
whether the given property is stutter-invariant, Holzmann and Kupferman [12]
suggested to use a stutter-invariant overapproximation of the given property.
However, if the given property is not stutter-invariant, we might obtain coun-
terexamples that are false positives. Moreover, the overapproximation of the
property blows up the specification and decelerates the model-checking process.

Another approach for avoiding the expensive check whether a given property is
stutter-invariant, is to use specification languages that only allow one to specify
stutter-invariant properties. For instance, LTL without the next operator X,
LTL−X for short, captures exactly the stutter-invariant star-free properties [10,
17]. An advantage of such a syntactic characterization is that it yields a sufficient
and easily checkable condition whether partial-order reduction techniques are
applicable. However, LTL−X is limited in its expressive power.

Independently, Etessami [9] and Rabinovich [19] gave similar syntactic char-
acterizations of the stutter-invariant ω-regular properties. However, these char-
acterizations are not satisfactory from a practical point of view. Both extend
� Partly supported by the Swiss National Science Foundation.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 244–254, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Specification Languages for Stutter-Invariant Regular Properties 245

fragments of LTL−X by allowing one to existentially quantify over propositions.
To preserve stutter invariance the quantification is semantically restricted. Due
to this restriction, the meaning of quantifying over propositions becomes unin-
tuitive and expressing properties in the proposed temporal logics becomes diffi-
cult. Note that even the extension of LTL with the standard quantification over
propositions is considered as difficult to use in practice [21]. Another practical
drawback of the temporal logic in [19] is that the finite-state model-checking
problem has a non-elementary worst-case complexity. The finite-state model-
checking problem with the temporal logic in [9] remains in PSPACE, as for LTL.
This upper bound on the complexity of the model-checking problem is achieved
by additionally restricting syntactically the use of the non-standard quantifica-
tion over propositions. The downside of this restriction is that the logic is not
syntactically closed under negation anymore, which can make it more difficult or
even impossible to express properties naturally and concisely in it. Expressing
the complement of a property might lead to an exponential blow-up.

In this paper, we give another syntactic characterization in terms of a temporal
logic of the ω-regular properties that are stutter invariant. Our characterization
overcomes the limitations of the temporal logics from [9] and [19]. Namely, it is
syntactically closed under negation, it is easy to use, and the finite-state model-
checking problem with it is solvable in practice. Furthermore, we also present a
syntactic characterization of the stutter-invariant regular properties. Our char-
acterizations are given as variants of the classical regular expressions and the
linear-time core of the industrial-strength temporal logic PSL [1], which extends
LTL with semi-extended regular expressions (SEREs). We name our variants
siSEREs and siPSL, respectively. Similar to PSL, siPSL extends LTL−X with
siSEREs. For siSEREs, the use of the concatenation operator and the Kleene
star is syntactically restricted. Moreover, siSEREs make use of a novel iteration
operator, which is a variant of the Kleene star.

2 Preliminaries

Words. For an alphabet Σ, we denote the set of finite and infinite words by
Σ∗ and Σω, respectively. Furthermore, we write Σ∞ := Σ∗ ∪ Σω and Σ+ :=
Σ∗\{ε}, where ε denotes the empty word. The concatenation of words is written
as juxtaposition. The concatenation of the languages K ⊆ Σ∗ and L ⊆ Σ∞ is
K ; L := {uv : u ∈ K and v ∈ L}, and the fusion of K and L is K : L :=
{ubv ∈ Σ∗ : b ∈ Σ, ub ∈ K, and bv ∈ L}. Furthermore, for L ⊆ Σ∗, we define
L∗ :=

⋃
n≥0 Ln and L+ :=

⋃
n≥1 Ln with L0 := {ε} and Li+1 := L ;Li, for i ∈ N.

We write |w| for the length of w ∈ Σ∞ and we denote the (i + 1)st letter of w
by w(i), where we assume that i < |w|. For a word w ∈ Σω and i ≥ 0, we define
w≥i := w(i)w(i + 1) . . . and w≤i := w(0) . . . w(i).

Stutter-Invariant Languages. Let us recall the definition of stutter invariance
from [18]. The stutter-removal operator � : Σ∞ → Σ∞ maps a word v ∈ Σ∞ to
the word that is obtained from v by replacing every maximal finite substring of
identical letters by a single copy of the letter. For instance, �(aabbbccc) = abc,

246 C. Dax, F. Klaedtke, and S. Leue

�(aab(bbc)ω) = a(bc)ω, and �(aabbbcccω) = abcω. A language L ⊆ Σ∞ is stutter-
invariant if u ∈ L⇔ v ∈ L, for all u, v ∈ Σ∞ with �(u) = �(v). A word w ∈ Σ∞

is stutter free if w = �(w). For L ⊆ Σ∞, we define L	 := {�(w) : w ∈ L}.

Propositional Logic. For a set of propositions P , we denote the set of Boolean
formulas over P by B(P), i.e., B(P) consists of the formulas that are inductively
built from the propositions in P and the connectives ∧ and ¬. For M ⊆ P and
b ∈ B(P), we write M |= b iff b evaluates to true when assigning true to the
propositions in M and false to the propositions in P \M .

Semi-extended Regular Expressions. The syntax of semi-extended regular expres-
sions (SEREs) over the proposition set P is defined by the grammar

r ::= ε
∣∣ b ∣∣ r∗ ∣∣ r ; r

∣∣ r : r
∣∣ r ∪ r

∣∣ r ∩ r ,

where b ∈ B(P). We point out that in addition to the concatentation opera-
tor ;, SEREs have the operator : for expressing the fusion of two languages. The
language of an SERE over P is inductively defined:

L(r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{ε} if r = ε,
{b ∈ 2P : b |= r} if r ∈ B(P),
L(s) � L(t) if r = s � t,(
L(s)

)∗ if r = s∗,

where � ∈ {;, :,∪,∩}. The size of an SERE is its syntactic length, i.e., ||ε|| := 1,
||b|| := 1, for b ∈ B(P), ||r�s|| := 1+||r||+||s||, for � ∈ {∪,∩, ;, :}, and ||r∗|| := 1+||r||.

Propositional Temporal Logic. The core of the linear-time fragment of PSL [1]
is as follows. Its syntax over the set P of propositions is given by the grammar

ϕ ::= p
∣∣ cl(r)

∣∣ ¬ϕ ∣∣ ϕ ∧ ϕ
∣∣ Xϕ

∣∣ ϕ U ϕ
∣∣ r� ϕ ,

where p ∈ P and r is an SERE over P . A PSL formula1 over P is interpreted
over an infinite word w ∈ (2P)ω as follows:

w |= p iff p ∈ w(0)
w |= cl(r) iff ∃k ≥ 0: w≤k ∈ L(r) or ∀k ≥ 0: ∃v ∈ L(r) : w≤k is a prefix of v
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ¬ϕ iff w �|= ϕ
w |= Xϕ iff w≥1 |= ϕ
w |= ϕ U ψ iff ∃k ≥ 0: w≤k |= ψ and ∀j < k : w≥j |= ϕ
w |= r� ϕ iff ∃k ≥ 0: w≤k ∈ L(r) and w≥k |= ϕ

The language of a PSL formula ϕ is L(ϕ) := {w ∈ (2P)ω : w |= ϕ}. As for
SEREs, we define the size of a PSL formula as its syntactic length. That means,
||p|| := 1, ||cl(r)|| := 1 + ||r||, ||¬ϕ|| := ||Xϕ|| := 1 + ||ϕ||, ||ϕ ∧ ψ|| := ||ϕ U ψ|| :=
1 + ||ϕ||+ ||ψ||, and ||r� ϕ|| := 1 + ||r|| + ||ϕ||.
1 For the ease of exposition, we identify PSL with its linear-time core.

Specification Languages for Stutter-Invariant Regular Properties 247

Syntactic Sugar. We use the standard conventions to omit parenthesis, e.g., tem-
poral operators bind stronger than Boolean connectives and the binary operators
of the SEREs are left associative. We also use standard syntactic sugar for the
Boolean values, the Boolean connectives, and the linear-time temporal opera-
tors: ff := p ∧ ¬p, for some proposition p ∈ P , tt := ¬ff, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ),
ϕ→ ψ := ¬ϕ∨ψ, Fϕ := tt Uϕ, Gϕ := ¬F¬ϕ, and ϕWψ := (ϕUψ)∨Gϕ, where
ϕ and ψ are formulas. Moreover, r� ϕ abbreviates ¬(r� ¬ϕ).

3 Stutter-Invariant Regular Properties

In this section, we present syntactic characterizations for stutter-invariant reg-
ular and ω-regular languages. In Section 3.1, we define a variant of SEREs that
can describe only stutter-invariant languages. Furthermore, we show that this
variant of SEREs is complete in the sense that any stutter-invariant regular
language can be described by such an expression. Similarly, in Section 3.2, we
present a variant of PSL for expressing stutter-invariant ω-regular languages.
In Section 3.3, we give examples that illustrate the use of our stutter-invariant
variant of PSL.

3.1 Stutter-Invariant SEREs

It is straightforward to see that stutter-invariant languages are not closed un-
der the concatenation and the Kleene star. A perhaps surprising example is the
SERE p+ ; q+ over the proposition set {p, q}, which does not describe a stutter-
invariant language, although L(p+) and L(q+) are stutter-invariant languages.2

In our variant of SEREs, we restrict the use of concatenation and replace the
Kleene star by an iteration operator, which uses the fusion instead of the con-
catenation for gluing words together. Namely, for a language L of finite words,
we define L⊕ :=

⋃
n∈N

Ln, where L0 := L and Li+1 := Li : L, for i ∈ N.
The following lemma summarizes some closure properties of the class of stutter-

invariant languages.

Lemma 1. Let K ⊆ Σ∗ and L,L′ ⊆ Σ∞ be stutter-invariant languages. The
languages L ∩ L′, L ∪ L′, K : L, and K⊕ are stutter-invariant. Furthermore,
Σ∗ \K, Σω \ L, and Σ∞ \ L are stutter-invariant.

Proof. We only show that the language K : L is stutter-invariant. The other
closure properties are similarly proved. Assume that u ∈ K : L and �(u) = �(v)
for u, v ∈ Σ∞. Let u = u′bu′′, for some u′ ∈ Σ∗, u′′ ∈ Σ∞, and b ∈ Σ with
u′b ∈ K and bu′′ ∈ L. Since K is stutter-invariant, we can assume without loss of
generality that if u′ is nonempty then u′(|u′|−1) �= b. Since �(u) = �(v), there are
v′ ∈ Σ∗ and v′′ ∈ Σ∞ such that v = v′bv′′, �(v′) = �(u′), and �(bv′′) = �(bu′′).
From the stutter invariance of K and L, it follows that v ∈ K : L. !"

Our variant of SEREs is defined as follows.
2 Note that the word {p, q} {p, q} belongs to L(p+ ; q+) but the word {p, q} does not.

248 C. Dax, F. Klaedtke, and S. Leue

Definition 1. The syntax of siSEREs over the proposition set P is given by the
grammar

r ::= ε
∣∣ b+ ∣∣ b∗ ; r

∣∣ r ; b∗
∣∣ r : r

∣∣ r ∪ r
∣∣ r ∩ r

∣∣ r⊕ ,

where b ranges over the Boolean formulas in B(P). The language L(r) of an
siSERE r is defined as expected.

By an induction over the structure of siSEREs, which uses the closure properties
from Lemma 1, we easily obtain the following theorem.

Theorem 1. The language of every siSERE is stutter-invariant.

In the remainder of this subsection, we show that any regular language that
is stutter-invariant can be described by an siSERE. We prove this result by
defining a function κ that maps SEREs to siSEREs. We show that it preserves the
language if the given SERE describes a stutter-invariant language. The function
κ is defined recursively over the structure of SEREs:

κ(ε) := ε

κ(b) := b+

κ(s ∪ t) := κ(s) ∪ κ(t)
κ(s ∩ t) := κ(s) ∩ κ(t)
κ(s : t) := κ(s) : κ(t)

κ(s ; t) :=
(
κ(s) :

⋃
a∈2P

(
â+ :

(
â∗ ; κ(t))

))
∪
{
κ(t) if ε ∈ L(s)
ff otherwise

κ(s∗) := ε ∪ κ(s) ∪
(
κ(s) :

(⋃
a∈2P

(
â+ : (â∗ ; κ(s))

))⊕)
,

where b ∈ B(P), s, t are SEREs, and â :=
∧

p∈a p ∧
∧

p�∈a ¬p, for a ∈ 2P .

Lemma 2. For every SERE r, the equality L	(r) = L	(κ(r)) holds.

Proof. We show the lemma by induction over the structure of the SERE r. The
base cases where r is ε or b with b ∈ B(P) are obvious. The step cases where r is
of one of the forms s∪ t, s∩ t, or s : t follow straightforwardly from the induction
hypothesis.

Next, we prove the step case where r is of the form s ; t. For showing L	(r) ⊆
L	(κ(r)), assume that u ∈ L	(r). There are words x ∈ L(s) and y ∈ L(t) such
that u = �(xy). By induction hypothesis, we have that �(x) ∈ L	(κ(s)) and
�(y) ∈ L	(κ(t)). The case where x the empty word is obvious. Assume that
x �= ε and a ∈ 2P is the last letter of x. We have that �(xy) ∈ L	

(
(κ(s) : â) ;κ(t)

)
and

L	

(
(κ(s) : â) ; κ(t)

)
⊆ L	

(
(κ(s) : (â ; κ(t))

)
⊆ L	

(
κ(s) : ((â : â) ; κ(t))

)
⊆ L	

(
κ(s) : (â+ : (â∗ ; κ(t)))

)
.

For showing L	(r) ⊇ L	(κ(r)), assume that u ∈ L	(κ(r)). We make a case split.

Specification Languages for Stutter-Invariant Regular Properties 249

1. If ε ∈ L(s) and u ∈ L	(κ(t)) then u ∈ L	(t) by induction hypothesis. We
conclude that u ∈ L	(ε ; t) ⊆ L	(s ; t) = L	(r).

2. Assume that u ∈ L	(κ(s):
⋃

a∈2P

(
â+ :(â∗ ;κ(t))

)
). There is a letter a ∈ 2P such

that u ∈ L	(κ(s) : (â+ : (â∗ ; κ(t)))) = L	(κ(s) : (â ;κ(t))). It follows that there
are words x and y such that u = xay, xa ∈ L	(κ(s)), and ay ∈ L	(â ; κ(t)).
We have that either ay ∈ L	(κ(t)) or y ∈ L	(κ(t)). By induction hypothesis,
we have that xa ∈ L	(s) and either ay ∈ L	(t) or y ∈ L	(t). It follows that
u ∈ L	(r).

Finally, we prove the step case where r is of the form s∗. We first show L	(r) ⊆
L	(κ(r)). Assume that u ∈ L	(s∗). If u is the empty word or u ∈ L	(s) then
there is nothing to prove. Assume that u is of the form u1u2 . . . un with ui ∈
L	(s) and ui �= ε, for all 1 ≤ i ≤ n. By induction hypothesis, we have that
ui ∈ L	(κ(s)). Let ai be the last letter of ui, for each 1 ≤ i < n, respectively. We
have that �(ai−1ui) ∈ L	(â+

i−1 : (â∗i−1 ; κ(s))), for all 1 < i ≤ n. It follows that
�(u1a1u2 . . . an−1an) ∈ L(κ(s)) : L	(â+

1 : (â∗2 ; κ(s))) : . . . : L	(â+
n−1 : (â∗n ; κ(s))).

Since �(u) = �(u1a1u2 . . . an−1an), we conclude that �(u) ∈ L	(κ(r)).
For showing L	(r) ⊇ L	(κ(r)), we assume that u ∈ L	(κ(r)). The cases u = ε

and u ∈ L	(κ(s)) are obvious. So, we assume that u ∈ L	

(
κ(s) :

(⋃
a∈2P (â+ :

(â∗ ;κ(s)))
)⊕) = L	

(
κ(s) :

(⋃
a∈2P (â ;κ(s))

)⊕) = L	

(
s :
(⋃

a∈2P (â ; s)
)⊕), where

the last equality holds by induction hypothesis. There is an integer n ≥ 2 and
words u1, u2, . . . , un ∈ L(s) and letters a1, a2, . . . , an−1 ∈ 2P such that u =
�(u1a1u2 . . . an−1un) and �(ui) = �(uiai), for all 1 ≤ i < n. It follows that
u = �(u1u2 . . . un) ∈ L	(s∗). !"

A consequence of Lemma 2 is that the translated siSERE describes the mini-
mal stutter-invariant language that overapproximates the language of the given
SERE.

Lemma 3. For every SERE r, L(r) ⊆ L(κ(r)) and if K is a stutter-invariant
language with L(r) ⊆ K then L(κ(r)) ⊆ K.

Proof. Let K be a stutter-invariant language with L(r) ⊆ K and let w ∈ L(κ(r)).
We have to show that w ∈ K. Since L(κ(r)) is stutter-invariant, we have that
�(w) ∈ L(κ(r)). With Lemma 2, we conclude that �(w) ∈ L	(r). It follows that
there is a word u ∈ L(r) with �(u) = �(w). Since K ⊇ L(r), we have that
�(w) ∈ K and thus, w ∈ K since K is stutter-invariant.

It remains to be proven that L(r) ⊆ L(κ(r)). For w ∈ L(r), we have that
�(w) ∈ L	(r). By Lemma 2, we have that �(w) ∈ L	(κ(r)). Since L(κ(r)) is
stutter-invariant, we conclude that w ∈ L(κ(r)). !"

From Lemma 3 we immediately obtain the following theorem.

Theorem 2. For every stutter-invariant regular language L, there is an siSERE
r such that L(r) = L.

Note that the intersection and the fusion operation is not needed for SEREs to
describe the class of regular languages. However, they are convenient for express-
ing regular languages naturally and concisely. It follows immediately from the

250 C. Dax, F. Klaedtke, and S. Leue

definition of the function κ that siSEREs even without the intersection operation
exactly capture the class of stutter-invariant regular languages. However, in con-
trast to the intersection operator, the fusion operator is essential for describing
this class of languages with siSEREs.

Finally, we remark that when translating an SERE of the form r ; s or s∗,
we obtain an siSERE that contains a disjunction of all the letters in 2P that
contains 2|P | copies of κ(s). We conclude that in the worst case, the size of the
siSERE κ(r) for a given SERE r is exponential in ||r||. It remains open whether
for every SERE that describes a stutter-invariant regular language, there is a
language-equivalent siSERE of polynomial size.

3.2 Stutter-Invariant PSL

Similar to the previous subsection, we define a variant of the core of PSL and
show that this temporal logic describes exactly the class of stutter-invariant
ω-regular languages.

Definition 2. The syntax of siPSL formulas is similar to that of PSL formulas
except that the formulas do not contain the temporal operator X and instead of
SEREs they contain siSEREs. The semantics is defined as expected.

By a straightforward induction over the structure of siPSL formulas and by using
the closure properties from Lemma 1, we obtain the following theorem. Note that
L(r�ϕ) = L(r) :L(ϕ). Furthermore, it is easy to see that the language L(cl(r))
is stutter-invariant if r is an SERE or siSERE that describes a stutter-invariant
language.

Theorem 3. The language of every siPSL formula is stutter-invariant.

In the following, we show that every stutter-invariant ω-regular language can be
described by an siPSL formula. We do this by extending the translations in [17]
for eliminating the temporal operator X in LTL formulas to PSL formulas. We
define the function τ that translates PSL formulas into siPSL formulas as follows.
It is defined recursively over the formula structure and it uses the function κ from
Section 3.1 for translating SEREs into siSEREs.

τ(p) := p

τ(cl(r)) := cl(κ(r))
τ(¬ϕ) := ¬τ(ϕ)

τ(ϕ ∧ ψ) := τ(ϕ) ∧ τ(ψ)
τ(ϕ U ψ) := τ(ϕ) U τ(ψ)

τ(r� ϕ) := κ(r)� τ(ϕ)

τ(Xϕ) :=
∨

a∈2P

((
Gâ ∧ τ(ϕ)

)
∨

∨
b∈2P \{a}

(
â U
(
b̂ ∧ τ(ϕ)

)))

The intuition of the elimination of the outermost operator X in a formula Xϕ is
as follows: “the first time after now that some new event happens, ϕ must hold,
or else, if nothing new ever happens, ϕ must hold right now.”

Specification Languages for Stutter-Invariant Regular Properties 251

Note that the size of the resulting siPSL formula is in the worst case exponen-
tial in the size of the given PSL formula. The sources of the blow-up are (1) the
translation of the SEREs in the given PSL formula into siSEREs and (2) the
elimination of the temporal operator X. We can improve the translation τ with
respect to the size of the resulting formula by using the translation defined in [10]
for eliminating the operator X in LTL formulas that describe stutter-invariant
languages. The translation in [10] avoids the conjunctions over the letters in 2P .
Instead the conjunctions only range over the propositions in P . The elimination
of an operator X is not exponential in |P | anymore. However, the resulting trans-
lation for PSL into siPSL is still exponential in the worst case because of (1).
The question whether the exponential blow-up can be avoided remains open.

The following lemma for τ is the analog of Lemma 2 for the function κ.

Lemma 4. For every PSL formula ϕ, the equality L	(ϕ) = L	(τ(ϕ)) holds.

Similar to Lemma 3 for SEREs, we obtain that the function τ translates PSL
formulas into siPSL formulas that minimally overapproximate the described lan-
guages with respect to stutter invariance.

Lemma 5. For every PSL formula ϕ, L(ϕ) ⊆ L(τ(ϕ)) and if L is a stutter-
invariant language with L(ϕ) ⊆ L then L(τ(ϕ)) ⊆ L.

From Lemma 5 we immediately obtain the following theorem.

Theorem 4. For every stutter-invariant ω-regular language L, there is an siPSL
formula ϕ such that L(ϕ) = L.

We remark that the finite-state model-checking problem for PSL and siPSL
fall into the same complexity classes. Namely, the finite-state model-checking
problem for siPSL is EXPSPACE-complete and the problem becomes PSPACE-
complete when the number of intersection operators in the given siPSL formulas
is bounded. These complexity bounds can be easily established from the existing
bounds on PSL, see [4] and [5,14]. Note that the automata-theoretic realization
of the iteration operator ⊕ is similar to the one that handles the Kleene-star.

Recently, we proposed an extension of PSL with past operators [7]. As for
LTL−X [17], we remark that our result on the stutter invariance of siPSL straight-
forwardly carries over to an extension of siPSL with past operators.

3.3 siPSL Examples

In the following, we illustrate that stutter-invariant ω-regular properties can be
naturally expressed in siPSL. For comparison, we describe these properties in
siPSL and other temporal logics that express stutter-invariant properties.

Star-Free Properties. Consider the following commonly used specification pat-
terns taken from [8]:

(P1) Absence: p is false after q until r.
(P2) Existence: p becomes true between q and r.

252 C. Dax, F. Klaedtke, and S. Leue

Table 1. siPSL formulas and LTL−X formulas of the specification patterns

pattern siPSL formula LTL−X formula

P1 G(q+ : ¬r+� ¬p) G(q ∧ ¬r → (¬p)W r)
P2 G((q ∧ ¬r)+ : (¬p∗ ; r+)� ff) G(q ∧ ¬r → (¬r)W (p ∧ ¬r))
P3 G(q+ : ¬r+ : ¬p : (¬r∗; r+)� ff) G(q ∧ ¬r ∧ Fr → p U r)
P4 G(q+ : (¬r ∧ ¬s)+� ¬p) G(q ∧ ¬r → (¬p)W (s ∨ r))
P5 G(q+ : ¬r+ : p� (¬r+ : s+� tt)) G(q ∧ ¬r → (p → (¬r) U (s ∧ ¬r))W r)

(P3) Universality: p is true between q and r.
(P4) Precedence: s precedes p, after q until r.
(P5) Response: s responds to p, after q until r.

Table 1 contains the formalization of these specification patterns in siPSL and
LTL−X. Note that any LTL−X is also an siPSL formula. However, since practi-
tioners often find it easier to use (semi-extended) regular expressions than the
temporal operators in LTL, we have used siSEREs in the siPSL formulas to for-
malize the patterns in siPSL. An advantage of siPSL over LTL−X is that one
can choose between the two specifications styles and mix them.

Omega-regular Properties. We consider the stutter-invariant ω-regular language

Ln := {w ∈ (2{p})ω : the number of occurrences of the subword {p}∅ in w
is divisible by n} ,

for n ≥ 2. The following siPSL formula describes the language Ln:

neverswitch ∨
(
((¬p∗ ; switch) : . . . : (¬p∗ ; switch)︸ ︷︷ ︸

n times

)⊕� neverswitch
)
,

where switch := p+ : (p∗ ; ¬p+) and neverswitch := (¬p) W Gp.
Note that the language Ln is not star-free and thus, it cannot be described

in LTL−X. In the following, we compare our siPSL formalization of Ln with
a formalization in the temporal logic SI-EQLTL from [9], which has the same
expressive power as siPSL. We briefly recall the syntax and semantics of SI-
EQLTL. The formulas in SI-EQLTL are of the form ∃hq1 . . . ∃hqnϕ, where ϕ is an
LTL−X formula over a proposition set that contains the propositions q1, . . . , qn.
The semantics of the quantifier ∃h is as follows. Let P be a proposition set with
q �∈ P . The word w ∈ (2P∪{q})ω is a harmonious extension of v ∈ (2P)ω if for all
i ∈ N, it holds that v(i) = w(i) ∩ P and if v(i) = v(i + 1) then w(i) = w(i + 1).
For v ∈ (2P)ω, we define v |= ∃hq ϕ iff w |= ϕ, for some harmonious extension
w ∈ (2P∪{q})ω of v.

For readability, we only state an SI-EQLTL formula that describes the lan-
guage L2 (the formula can be straightforwardly generalized for describing the
language Ln with n ≥ 2):

Specification Languages for Stutter-Invariant Regular Properties 253

∃hq
(
q ∧ G(q → neverswitch ∨ switch2) ∧ F neverswitch

)
,

where

switch2 := (¬p ∧ q) U

(
(p ∧ q) U

(
(¬p ∧ ¬q) U

(
(p ∧ ¬q) U (¬p ∧ q)

)))
.

Intuitively, the subformula switch2 matches subwords that contain two occur-
rences of {p}∅. Furthermore, the harmoniously existentially quantified proposi-
tion q marks every position k of a word in L2, where the number of occurrences
of {p}∅ in w≤k is even.

We remark that we did not manage to come up with a simpler SI-EQLTL for-
mula for describing the language Ln.3 Nevertheless, we consider the SI-EQLTL
formula for Ln still hard to read because of the harmonious quantified variable q
and the nesting of the temporal operators, which is linear in n. Furthermore, note
that the advantage of siPSL over LTL−X, namely, to mix different specification
styles, is also an advantage of siPSL over SI-EQLTL.

4 Concluding Remarks

We have presented the specification languages siSEREs and siPSL, which cap-
ture exactly the classes of stutter-invariant regular and ω-regular languages,
respectively. siSEREs are a variants of SEREs and siPSL is a variant of the tem-
poral logic PSL [1], which is nowadays widely used in industry. siPSL inherits
the following pleasant features from PSL. First, siPSL is easy to use. Second, the
computational complexities for solving the finite-state model-checking problem
with siPSL and fragments thereof are similar to the corresponding problems for
PSL. Third, with only minor modifications we can use the existing tool support
for PSL (like the model checker RuleBase [3], the formula translator into non-
deterministic Büchi automata rtl2ba [7], or the translator used in [6] with all its
optimizations) for siPSL. We only need to provide additional support for the
new Kleene-star-like iteration operator ⊕ of the siSEREs.

References

1. IEEE standard for property specification language (PSL). IEEE Std 1850TM
(October 2005)

2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order
reduction in symbolic state-space exploration. Form. Method. Syst. Des. 18(2),
97–116 (2001)

3. Beer, I., Ben-David, S., Eisner, C., Geist, D., Gluhovsky, L., Heyman, T., Landver,
A., Paanah, P., Rodeh, Y., Ronin, G., Wolfsthal, Y.: RuleBase: Model checking
at IBM. In: Marie, R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) TOOLS
1997. LNCS, vol. 1245, pp. 480–483. Springer, Heidelberg (1997)

3 We encourage the reader to find a simpler SI-EQLTL formula that describes Ln.

254 C. Dax, F. Klaedtke, and S. Leue

4. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata
construction algorithms optimized for PSL. Technical report, The Prosyd Project
(2005), http://www.prosyd.org

5. Bustan, D., Havlicek, J.: Some complexity results for SystemVerilog assertions. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 205–218. Springer,
Heidelberg (2006)

6. Cimatti, A., Roveri, M., Tonetta, S.: Symbolic compilation of PSL. IEEE Trans.
on CAD of Integrated Circuits and Systems 27(10), 1737–1750 (2008)

7. Dax, C., Klaedtke, F., Lange, M.: On regular temporal logics with past. In:
Proceedings of the 36th International Colloquium on Automata, Languages, and
Programming, ICALP (to appear, 2009)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property speci-
fications for finite-state verification. In: Proceedings of the 21st Interna-
tional Conference on Software Engineering (ICSE), pp. 411–420 (1999),
http://patterns.projects.cis.ksu.edu/

9. Etessami, K.: Stutter-invariant languages, ω-automata, and temporal logic. In:
Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248.
Springer, Heidelberg (1999)

10. Etessami, K.: A note on a question of Peled and Wilke regarding stutter-invariant
LTL. Inform. Process. Lett. 75(6), 261–263 (2000)

11. Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Com-
put. 110(2), 305–326 (1994)

12. Holzmann, G., Kupferman, O.: Not checking for closure under stuttering. In: Pro-
ceedings of the 2nd International Workshop on the SPIN Verification System. Series
in Discrete Mathematics and Theoretical Computer Science, vol. 32, pp. 163–169
(1996)

13. Lamport, L.: What good is temporal logic? In: Proceedings of the 9th IFIP World
Computer Congress. Information Processing, vol. 83, pp. 657–668 (1983)

14. Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 90–104. Springer, Heidelberg (2007)

15. Peled, D.: Combining partial order reductions with on-the-fly model-checking.
Form. Method. Syst. Des. 8(1), 39–64 (1996)

16. Peled, D.: Ten years of partial order reduction. In: Y. Vardi, M. (ed.) CAV 1998.
LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

17. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next operator. Inform. Process. Lett. 63(5), 243–246 (1997)

18. Peled, D., Wilke, T., Wolper, P.: An algorithmic approach for checking closure
properties of temporal logic specifications and ω-regular languages. Theoret. Com-
put. Sci. 195(2), 183–203 (1998)

19. Rabinovich, A.M.: Expressive completeness of temporal logic of action. In: Brim,
L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 229–238.
Springer, Heidelberg (1998)

20. Valmari, A.: A stubborn attack on state explosion. Form. Method. Syst. Des. 1(4),
297–322 (1992)

21. Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai,
S. (eds.) Logic and Its Applications. LNCS, vol. 5378, pp. 89–115. Springer,
Heidelberg (2009)

http://www.prosyd.org
http://patterns.projects.cis.ksu.edu/

Incremental False Path Elimination for Static

Software Analysis

Ansgar Fehnker, Ralf Huuck, and Sean Seefried

National ICT Australia Ltd. (NICTA)�

Locked Bag 6016
University of New South Wales
Sydney NSW 1466, Australia

Abstract. In this work we introduce a novel approach for removing
false positives in static program analysis. We present an incremental
algorithm that investigates paths to failure locations with respect to fea-
sibility. The feasibility test it done by interval constraint solving over a
semantic abstraction of program paths. Sets of infeasible paths can be
ruled out by enriching the analysis incrementally with observers. Much
like counterexample guided abstraction refinement for software verifica-
tion our approach enables to start static program analysis with a coarse
syntactic abstraction and use richer semantic information to rule out
false positives when necessary and possible. Moreover, we present our
implementation in the Goanna static analyzer and compare it to other
tools for C/C++ program analysis.

1 Introduction

One technique to find bugs in large industrial software packages is static pro-
gram analysis. While it has been proven to be scalable and fast, it typically
suffers to one degree or another from potential false positives. The main reason
is that unlike software model checking, static program analysis typically works
on a rather abstract level, such as control flow graphs (CFG) without any data
abstraction. Therefore, a syntactic model of a program is a coarse abstraction,
and reported error paths can be spurious, i.e. they may not correspond to an
actual run in the concrete program.

In this paper we present an incremental algorithm that automatically investi-
gates error paths and checks if they are infeasible. To do so, semantic information
in the form of interval equations is automatically added to a previously purely
syntactic model. This semantic information is only incorporated once a poten-
tial bug has been detected, i.e., a counterexample generated. While this ensures
scalability and speed for the bug-free parts of a program, it allows to drill down
further once a bug has been found.

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 255–270, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

256 A. Fehnker, R. Huuck, and S. Seefried

The feasibility of a counterexample is analyzed using constraint solving over
the interval domain, i.e., the possible ranges of all variables within a given path. A
counterexample path is spurious if the least solution of a corresponding equation
system is empty. The subset of equations responsible for an empty solution is
called a conflict. In a second step we refine our syntactic model by a finite
observer which excludes all paths that generate the same conflict. These steps
are applied iteratively, until either no new counterexample can be found, or until
a counterexample is found that cannot be proven to be spurious.

This approach is obviously inspired by counterexample guided abstraction
refinement (CEGAR), as used in [1,2]. A main difference is the use of the pre-
cise least solution for interval equations [3] in the place of SAT-solving. This
technique deals directly with loops, without the need to discover additional
loop-predicates [2,4], or successive unrolling of the transition relation [5]. An
alternative to SAT-based CEGAR in the context of static analysis, using poly-
hedral approximations, was proposed in [6,7]. Pre-image computations along the
counterexamples are used to improve the accuracy of the polyhedral approx-
imation. Our approach in contrast uses a precise least solution of an interval
equation system, which is computationally faster, at the expense of precision.
Our proposed approach combines nicely with the static analysis approach put
forward in [8]. It defines, in contrast to semantic software model checking, syn-
tactic properties on a syntactic abstraction of the program. The experimental
results confirm that the proposed technique situates our tool in-between software
model checking and static analysis tools. False positives are effectively reduced
while interval solving converges quickly, even in the presence of loops.

The next section introduces preliminaries of labeled transition systems, inter-
val solving and model checking for static properties. Section 3 introduces Inter-
val Automata, the model we use to capture the program semantics. Section 4
presents the details of our approach. Implementation details and a comparison
with other tools are given in Section 5.

2 Basic Definitions and Concepts

2.1 Labeled Transition Systems

This paper uses labeled transition systems (LTS) to describe the semantics of
our abstract programs. An LTS is defined by (S, S0, A,R, F) where S is a set of
states, S0 ⊆ S is a sub-set of initial states, A is a set of actions and R ⊆ S×A×S
is a transition relation where each transition is labeled with an action a ∈ A,
and F ⊆ S is a set of final states. An LTS is deterministic if for every state s ∈ S
and action a ∈ A there is at most one successor state such that (s, a, s′) ∈ R.

The finite sequence ρ = s0a0s1a1 . . . an−1sn is an execution of an LTS P =
(S, S0, A,R, F), if s0 ∈ So and (si, ai, si+1) ∈ R for all i ≥ 0. An execution is
accepting if sn ∈ F . We say w = a0 . . . an−1 ∈ A∗ is a word in P , if there exist
si, i ≥ 0, such that s0a0s1a1 . . . an−1sn form an execution in P . The language of
P is defined by the set of all words for which there exists an accepting execution.
We denote this language as LP .

Incremental False Path Elimination for Static Software Analysis 257

The product of two labeled transition systems P1 = (S1, S10 , A,R1, F1) and
P2 = (S2, S20 , A,R2, F2), denoted as P× = P1 × P2, is defined as P× = (S1 ×
S2, S10 × S10 , A,R×, F1 × F2) where ((s1, s2), a, (s′1, s′2)) ∈ R× if and only if
(s1, a, s

′
1) ∈ R1 and (s2, a, s

′
2) ∈ R2. The language of P× is the intersection of

the language defined by P1 and P2.

2.2 Interval Equation Systems

We define an interval lattice I = (I,⊆) by the set I = {∅} ∪ {[z1, z2]|z1 ∈
Z∪{−∞}, z2 ∈ Z∪{∞}, z1 ≤ z2} with the partial order implied by the contained
in relation ”⊆” , where a non-empty interval [a, b] is contained in [c, d], if a ≥
c and b ≤ d. The empty element is the bottom element of this lattice, and
[−∞,+∞] the top element. Moreover, we consider the following operators on
intervals: addition (+), multiplication (·), union ", and intersection ! with the
usual semantics [[.]] defined on them.

For a given finite set of variables X = {x0, . . . , xn} over I we define an interval
expression φ as follows:

φ
.= a | x | φ " φ | φ ! φ | φ + φ | φ · φ

where x ∈ X , and a ∈ I. The set of all expression over X is denoted as C(X).
For all operation we have that [[φ ◦ ϕ]] is [[φ]] ◦ [[ϕ]], where ◦ can be any of

",!,+, ·. A valuation is a mapping v : X → I from an interval variable to an
interval. Given an interval expression φ ∈ C(X), and a valuation v, the [[φ]]v
denoted the expression φ evaluated in v, i.e. it is defined to be the interval
[[φ[v(x0)/x0, . . . , v(xn)/xn]]], which is obtained by substituting each variable xi

with the corresponding interval v(xi).
An interval equation system is a mapping IE : X → C(X) from interval

variables to interval expressions. We also denote this by xi = φi where i ∈
1, . . . , n. The solution of such an interval equation system is a valuation satisfying
all equations, i.e., [[xi]] = [[φi]]v for all i ∈ 1, . . . , n. As shown in [3] there always
is a precise least solution which can be efficiently computed. By precise we mean
precise with respect to the interval operators’s semantics and without the use of
additional widening techniques. Of course, from a program analysis point of view
over-approximations are introduced, e.g., when joining two intervals [1, 2]" [4, 5]
results in [1, 5]. This, however, is due to the domain we have chosen.

2.3 Static Analysis by Model Checking

This work is based on an automata based static analysis framework as described
in [8], which is related to [9,10,11]. The basic idea is to map a C/C++ program
to its CFG, and to label it with occurrences of syntactic constructs of interest.
The CFG together with the labels are mapped to, either a Kripke structure, or
to the input language of a model checker, in our case NuSMV.

A simple example of this approach is shown in Fig. 1. Consider the contrived
program foo which is allocating some memory, copying it a number of times

258 A. Fehnker, R. Huuck, and S. Seefried

1 void foo() {

2 int x, *a;

3 int *p=malloc(sizeof(int));

4 for(x = 10; x > 0; x--) {

5 a = p;

6 if(x == 1)

7 free(p)

8 }

9 }

l0

l1 mallocp

l2

l3 usedp

l4

l6

l5freep

l7

Fig. 1. Example program and labeled CFG for use-after-free check

to a, and freeing the memory in the last loop iteration. In our automata based
approach we syntactically identify program locations that allocate, use, and free
resource p. We automatically label the program’s CFG with this information
as shown on the right hand side of Fig. 1. To check whether after freeing some
allocated resource, it is not used afterwards, we can check the CTL property:

AG (mallocp ⇒ AG (freep ⇒ ¬EF usedp)),

which means that whenever there is free after malloc for a resource p, there is
no path such that p is used later on. Obviously, neglecting any further semantic
information will lead to an alarm in this example, which is a false positive as p
only gets freed in the last loop iteration.

3 Interval Automata

This section introduces interval automata (IA) which abstract programs and
capture their operational semantics on the domain of intervals. We define an
IA as an extended state machine where the control structure is a finite state
machine, extended by a mapping from interval variables to interval expressions.
We will show later how to translate a C/C++ program to an IA.

Definition 1 (Syntax). An interval automaton is a tuple (L, l0, X,E, update),
with

– a finite set of locations L,
– an initial location l0,
– a set of interval variables X,
– a finite set of edges E ⊆ L× L, and
– an effect function update : E → (X × C(X)).

The effect update assigns to each edge a pair of an interval variable and an
interval expression. We will refer to the (left-hand side) variable part update|X

Incremental False Path Elimination for Static Software Analysis 259

as lhs, and to the (right-hand side) expression part update|C(X) as rhsexpr. The
set of all variables that appear in rhsexpr will be denoted by rhsvars. Note,
that only one variable is updated on each edge. This restriction is made for the
sake of simplicity, but does not restrict the expressivity of an IA.

Definition 2 (Semantics). The semantics of an IA P = (L, l0, X,E, update)
are defined by a labeled transition system LTS(P) = (S, S0, A,R, F), such that

– the set of states S contains all states (l, v) with location l, and an interval
valuation v.

– the set of initial states S0 contains all states s0 = (l0, v0), with v0 ≡ [−∞,∞].
– the alphabet A is the set of edges E.
– the transition relation R ⊆ S ×A× S contains a triple ((l, v), (l, l′), (l′, v′)),

i.e a transition from state (l, v) to (l′, v′) labeled (l, l′), if there exists a (l, l′)
in E, such that v′ = v[lhs(e)← [[rhsexpr(e)]]v] and [[rhsexpr(e)]]v′ �= ∅.

– the set of final states F = S, i.e. all states are final states

It might seem a bit awkward that the transitions in the LTS are labeled with the
edges of the IA, but this will be used later to define the synchronous composition
with an observer. Since each transition is labeled with its corresponding edge we
obtain a deterministic system, i.e., for a given word there exists only one possible
run. We identify a word ((l0, l1), (l1, l2), . . . , (lm−1, lm)) in the remainder by the
sequence of locations (l0, . . . , lm).

Given an IA P . Its languageLP contains all sequences (l0, . . . , ln) which satisfy
the following:

l0 = l0 (1)
∧ ∀i = 0, . . . , n− 1. (li, li+1) ∈ E (2)
∧ v0 ≡ [−∞,+∞] ∧ ∃v1, . . . , vn.([[rhsexpr(li, li+1)]]vi �= ∅

∧ vi+1 = vi[lhs(li, li+1)← [[rhsexpr(li, li+1)]]vi])
(3)

This mean that a word (1) starts in the initial location, (2) respects the edge
relation E, and (3) that there exists a sequence of non-empty valuations that
satisfies the updates associated with the edges. We use this characterization
of words as satisfiability problem to generate systems of interval equations that
have a non-empty solution only if a sequence (l0, . . . , ln) is a word. We will define
for a given IA P and sequence w a conflict as an interval equation system with
an empty least solution which proves that w cannot be a word of the IA P .

4 Path Reduction

The labeled CFG as defined in Section 2.3 is a coarse abstraction of the actual
program. Like most static analysis techniques this approach suffers from false
positives. In the context of this paper we define a property as a regular language,
and satisfaction of a property as language inclusion. The program itself will be
defined by an Interval Automaton P and its behavior is defined by the language

260 A. Fehnker, R. Huuck, and S. Seefried

of the corresponding LTS(P). Since interval automata are infinite state systems,
we do not check the IA itself but an abstraction P̂ . This abstraction is initially
an annotated CFG as depicted in Fig. 1.

A positive is a word in the abstraction P̂ that does not satisfy the property. A
false positive is a positive that is not in the actual behavior of the program, i.e.
it is not in the language of the LTS(P). Path reduction is then defined as the
iterative process that restricts the language of the abstraction, until either a true
positive has been found, or until the reduced language satisfies the property.

4.1 Path Reduction Loop

Given an IA P = (L, l0, E,X, update) we define its finite abstraction P̂ as follows:
P̂ = (L, l0, E,E′, L) is a labeled transition system with states L, initial state l0,
alphabet E, transition relation E′ = {(l, (l, l′), l′)|(l, l′) ∈ E}, and the entire set
L as final states. The LTS P̂ is an abstraction of the LTS(P), and it represents
the finite control structure of P . The language of P̂ will be denoted by LP̂ . Each
word of P̂ is by construction a word of LTS(P). Let Lφ be the language of the
specification.

We assume to have a procedure that checks if the language of LTS LP̂ is a
subset of Lφ, and produces a counterexample if this is not the case (cf. Sec-
tion 4.5). If it finds a word in LP̂ that is not in Lφ, we have to check whether
this word is in LP , i.e. we have to check whether it satisfies equation (1) to (3).
Every word w = (l0, . . . , lm) in LP̂ satisfies by construction (1) and (2). If a
word w = (l0, . . . , lm) can be found such that there exists no solution for (3), it
cannot be a word of LP . In this case we call the word spurious.

If we assume in addition to have a procedure to check whether a word is spuri-
ous (cf. Section 4.2), we can use these in an iterative loop to check if the infinite
LTS of IA P satisfies the property, by checking a finite product of abstraction
P̂ with observers instead as follows:

1. Let P̂0 := P̂ , and i = 0.
2. Check if w ∈ LP̂i

\ Lφ exists. If such a w exists got to step 3, otherwise exit
with “property satisfied”.

3. Check if w ∈ LP . If w �∈ LP build observer Obsw, otherwise exit with
“property not satisfied”. The observer (1) accepts w, and (2) satisfies that
all accepted words w′ are not in LP .

4. Let P̂i+1 := P̂i ×ObsC
w , with . P̂i ×ObcC

w is the synchronous composition of
P̂i and the complement of Obsw. Increment i and goto step 3.

The remainder of this section explains how to check if a word is in LP , how
to build a suitable observer, and how to combine it in a framework which uses
NuSMV to model check the finite abstraction P̂i.

Example. The initial coarse abstraction as CFG in Fig. 1 loses the information
that p cannot be used after it was freed. The shortest counterexample in Fig. 1
initializes x to 10 in line 4, enters the for-loop, takes the if-branch, frees p in
line 7, decrements x, returns to the beginning of the for-loop, and then uses

Incremental False Path Elimination for Static Software Analysis 261

1 void foo() {

2 int x, *a;

3 int* p=malloc(sizeof(int));

4 for(x = 10; x > 0; x--) {

5 a = p;

6 if(x == 1)

7 free(p)

8 }

9 }

l0

l1

l2

l3

l4

l6

l5

l7

x′ = (x � [−∞, 0])
�(x � [2,∞])

a′ = p

x′ = x � [1,∞]

x′ = [10, 10]

p′ = [1,∞]

x′ = x � [1, 1]

p′ = [−∞,∞]

x
′
=

x
+

[−
1
,−

1]

x′ = x � [−∞, 0]

Fig. 2. Abstraction of the program as IA. Analysis of the syntactic properties of the
annotated CFG in Fig.1 is combined with an analysis of the IA to the right.

p in line 5. This counterexample is obviously spurious. Firstly, because the if-
branch with condition x == 1 at line 7 is not reachable while x = 10. Secondly,
because if the programm could enter the if-loop, it would imply x == 1, and
hence impossible to reenter the loop, given decrement x-- and condition x > 0.

4.2 Checking for Spurious Words

Every word w = (l0, . . . , lm) in LP̂ satisfies by construction (1) and (2). It
remains to be checked if condition (3) can be satisfied. A straightforward ap-
proach is to execute the trace on LTS(P). However this can only determine if
that particular word is spurious. Our proposed approach builds an equation sys-
tem instead, which allows us to find a set of conflicting interval equations, which
can in turn be used to show that an entire class of words is spurious. Another
straightforward approach to build such an equation system is to introduce for
each variable and edge in w an interval equation, and to use an interval solver
to check if a solution to this system of interval equations exists. A drawback of
this approach is that it introduces (m + 1)× n variables, and m× n equations.
In the following we present an approach to construct an equation system with
at most one equation and one variable for each edge in w.

Interval Equation System for a Sequence of Transitions. We describe
how to obtain an equation system for a word w ∈ LP̂ , such that it has a non-
empty least solution only if w ∈ LP . This system is generated in three steps:

I. Tracking variables. Let XL be a set of fresh variables xl. For each update
of a variable, i.e. x = lhs(li−1, li) we introduce a fresh variable xli . We use
the notation x(i) to refer to the last update of x before the i-th transition in
w = (l0, . . . , lm). If no such update exist x(i) will be xl0 .

262 A. Fehnker, R. Huuck, and S. Seefried

w

(l0, l1)
(l1, l2)
(l2, l3)
(l3, l4)
(l4, l5)
(l5, l6)
(l6, l2)
(l2, l3)
(l3, l4)

var

pl1
xl2
xl3
al4
xl5
pl6
xl2
xl3
al4

exprw(i)

[1,∞]
[10, 10]
xl2 � [1,∞]
pl1
xl3 � [1, 1]
[−∞,∞]
xl5 + [−1,−1]
xl2 � [1,∞]
pl6

IEw⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

pl1 = [1,∞]
xl2 = [10, 10]�

(xl5 + [−1,−1])
xl3 = (xl2 � [1,∞])
al4 = pl1 � pl6
xl5 = xl3 � [1, 1]
pl6 = [−∞,∞]

Reduced conflicts

co
n
fl
ic

t
1⎫⎪⎪⎪⎬

⎪⎪⎪⎭
xl2 = [10, 10]
xl3 = xl2 � [1,∞]
xl5 = xl3 � [1, 1]

co
n
fl
ic

t
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

xl5 = [−∞,∞] � [1, 1]
xl2 = xl5 + [−1,−1]
xl3 = xl2 � [1,∞]

Fig. 3. Equations for counterexample w of the IA depicted in Fig. 2

II. Generating equations. For each edge in w we generate an interval expression
over XL. We define exprw : {0, . . . ,m} → C(XL) as follows:

exprw(i) → rhsexpr(li−1, li)[x(i−1)/x]x∈rhsvars(li−1,li) (4)

An expression exprw(i) is the right-hand side expression of the update on (li−1, li),
where all occuring variables are substituted by variables in XL.

III. Generating equation system. Locations may occur more than once in a
word, and variables maybe updated by multiple edges. Let writesw ⊆ XL the
set {xl|∃i s.t.x = lhs(li−1, li), and Ωw be a mapping each xl ∈ writesw the set
{i|x = lhs(li−1, li)∧li = l}. The system IEw : XL → C(XL) is defined as follows:

xl →
{ ⊔

i∈Ωw(xl) exprw(i) if xl ∈ writesw

[−∞,∞] otherwise
(5)

System IEw assigns each variable xl ∈ writesw to a union of expressions; one
expression for each element in Ωw(x, l).

Example. Fig. 3 depicts for word w = (l0, l1, , l2, l3, l4, l5, l6, l2, l3, l4) how to
generate IEw. The first column gives the transitions in w. The second column
gives the variable in writesw. The variable pl1 , for example, refers to the update
of p on the first transition (l0, l1) of the IA in Fig. 2. We have that x(5) = xl3 ,
since the last update of x before (l4, l5) was on edge (l2, l3).

The third column gives the equations exprw(i). For example, the right-hand
side rhsexpr(l4, l5) is x′ = x ! [1, 1]. Since x(4) = xl3 , we get that exprw(5) is
xl3 ! [1, 1]. The fourth column shows the equation system IEw derived from the
equations. We have, for example, that x is updated on (l1, l2), the second edge
in w, and (l6, l2), the 8th edge. Hence, Ωw(xl2) = {2, 8}. Equation IEw(xl2) is
then defined as the union of exprw(2), which is [10, 10], and exprw(8), which is
xl5 + [−1,−1]. The least solution of the equation system IEw is pl1 = [1,∞],
xl2 = [10, 10], xl3 = [10, 10], al4 = [−∞,∞], xl5 = ∅, and pl6 = [−∞,∞]. Since
xl5 = ∅, there exists no solution, and w is spurious. �

Incremental False Path Elimination for Static Software Analysis 263

Lemma 1. Given awordw ∈ LP̂ . Then there exist a sequence of non-empty valua-
tions v1, . . . , vm such that (3) holds forw only if IEw has a non-empty least solution.

Proof. Given solution to (3) we can construct non-empty solution of IEw, which
must be included in the least solution of IEw. �
An advantage of creating interval equations as described is that reason natu-
rally over loops. A third or fourth repetition does not introduce new variable
in writesw, and neither new expressions. This means that the equation system
for a word, which is a concatenation αβββγ, has no non-empty solution, if the
concatenation αββγ has. The least solution will be the same.

4.3 Conflict Discovery

The previous subsection described how to check if a given word w ∈ LP̂ is
spurious. Interval solving, however, leads to an over-approximation, mostly due
to the "-operation. This subsection describes how to reduce the numbers of (non-
trivial) equations in a conflict and at the same time the over-approximation error,
by restricting conflicts to fragments and cone-of influence.

For CEGAR approaches for infinite-state systems it has been observed that it
is sufficient and often more efficient to find a spurious fragments of a counterex-
ample, rather than a spurious counterexample [12,13]. The effect is similar to
small or minimal predicates in SAT-based approaches. The difference between a
word and a fragment in our context is that a fragment may start in any location.

Given a word w = (l0, . . . , lm) a fragment w′ = (l′0, . . . , l′m′) is a subsequence
of w. For fragment w′ of a word w we can show the analog of Lemma 1. If the
least solution of IEw′ is empty, i.e. if the fragment w′ is spurious, then the word
w is spurious. If there exists a sequence of non-empty valuations v1, . . . , vm for
w, then they also define a non-empty subsequence of valuations for w′, and these
have to be contained in the least solution of IEw′ .

A word of length m−1 has m2/2 fragments. Rather than checking all of these
we can rule out most of these based on two observations. To be useful at least the
last edge of a fragment has to result in an empty solution. An update in (3) can
only result in an empty solution, if there exist an element in I that is mapped to
the empty set by update. We call such updates restricting. An example of such
updates are intersections with constants such as x′ = x! [1,∞]. We can omit all
(li−1, li) after the last last restricting update in w′. Similarly, we find that edges
with updates that map valuation v ≡ [−∞,∞] to [−∞,∞], can be omitted from
the beginning of a fragment.

Given thus reduced fragment w′, we can reduce IEw′ further, by omitting all
equations that are not in the cone-of-influence of the last restricting update. We
refer to the resulting system of equations as IEw′ . In the remainder we will refer
to IEw′ as the reduced conflict, which is uniquely determined by the fragment
w′. The reduction to the cone-of-influence, guarantees that IEw′ has an empty
least solution if IEw′ has. The converse is not true. However, since we consider
all possible fragments, it is guaranteed that if a set of removed equations result
in an conflict, these will appear as reduced conflict of another fragment.

264 A. Fehnker, R. Huuck, and S. Seefried

Example. There are two conflicts among the candidate fragments in Fig. 3.
Conflict 1, for fragment (l1, l2, l3, l4, l5), has as least solution xl2 = [10, 10], xl3 =
[10, 10], xl5 = ∅. Conflict 2, for fragment (l4, l5, l6, l2, l3), has as least solution
xl5 = [1, 1], xl2 = [0, 0], xl3 = ∅. The equation was pl6 was not included in the
second conflict, as it is not in the cone-of-influence of xl3 . Note, that variable x
in equation IE (xl5) was substituted by [−∞,∞]. This expression was generated
by the first edge (l4, l5) of the fragment (l4, l5, l6, l2, l3). The last update before
this edge is outside of the scope of the fragment, and hence x was assumed to
be [−∞,∞], which is a conservative over-approximation.

4.4 Conflict Observer

Given a reduced conflict IEw for a fragment w = (l0, . . . , lm), we construct an
observer such that if a word w′ ∈ LP̂ is accepted, then w′ /∈ LP . The observer
is a LTS over the same alphabet E as LTS(P) and P̂ .

Definition 3. Given IA P = (L, l0, E,X, update) and reduced conflict IEw for
a fragment w = (l0, . . . , lm), define Xw as the set of all variables x ∈ X such
that x = lhs(li−1, li), for some edge (li−1, li) in w. Observer Obsw is a LTS with

– set SObs of states (current, eqn, conflict) with valuation current : Xw →
L, valuation eqn : writesw → {unsat, sat} , and location conflict ∈
{all, some, none}.

– initial state (write0, eqn0, loc0) with current0 ≡ l0, eqn0 ≡ unsat, and
conflict0 = none.

– alphabet E
– transition relation SObs × E × SObs.
– a set final states F . A state is final if conflict = all.

Due to the limited space we give an informal definition of the transition relation.
The detailed formal definition can be found on [14].

– Variable conflict changes its state based on the next state of eqn. We have
that conflict′(xl) is all, some, none, if eqn′(xl) = sat for all, some or no
xl ∈ writesw, respectively. Once conflict is in all it remains there forever.

– Variable eqn represents IEw(xl) for xl ∈ writesw. The successor eqn′(xl) will
change if x = lhs(λ, λ′) and λ′ = l. If substituting variables x by xcurrent(x)

in rhserpr(λ, λ′), results in an expression that does not appear in IEw(xl),
for any xl, then eqn′(xl) = unsat for all xl. Otherwise, the successor eqn′(xl)
is sat for matching variables xl, and remains unchanged for all others. This
is a simple syntactic match, achieved by comparing the indices and variables
that appear in IEw(xl) with the values of current(x).

– Variable current is used to record for each variable the location of the last
update. If conflict’ is none, then current’(x) = l0. Otherwise, if (λ, λ′) is in w,
and x = lhs(λ, λ′), then current’(x) = λ′. Otherwise, it remains unchanged.

The interaction between current, eqn, and conflict is somewhat subtle. The idea
is that the observer is initially in conflict = none. If an edge is observed such

Incremental False Path Elimination for Static Software Analysis 265

which generates an expression expr(i) that appears in IEw(xl), with i ∈ Ωw(xl)
(see Eq. (5)), then conflict′ = some, and the corresponding eqn(xl) = sat. It
can be deduced IEw(xl) is satisfied, unless another expression is encountered
that might enlarge the fix-point. This is the case when an expression for xl will
generated, that does not appear in IEw(xl). It is conservatively assumed that
this expression increases the fixpoint solution.

If conflict = all it can be deduced that the observed edges produce an equation
system IEw′ that has a non-empty solution only if IEw has a non-empty solution.
And from the assumption we know that IEw has an empty-solution, and thus
also IEw′ . Which implies that the currently observed run is infeasible and cannot
satisfy Eq. 3.

Given a reduced conflict IEw for fragment w we have two properties.

– If a word w′ ∈ LP̂ is accepted by Obsw, then w �∈ LP .
– Given a fragment w′ such that IEw′ = IEw, and a word w′′ such that w′ is

a subsequence, then w′′ is accepted by Obsw.

The first property states that the language of P̂ ′ = P̂ × ObsC
w contains LP .

The second ensures that each observer is only constructed once. This is needed
to ensure termination. Each observer is uniquely determined by the finite set
expressions that appear in it, and since XL and E are finite, there exists only
a finite set of possible expressions that may appear in (4). Consequently, there
can only exist a finite set of conflicts as defined by (5).

Example. The observer for the first conflict in Fig. 3 accepts a word if a fragment
generates conflict xl2 → [10, 10], xl3 → xl2 ! [1,∞], xl5 → xl3 ! [1, 1]. This is the
case if it observes edge (l1, l2), edge (l2, l3) with a last write to x at l2, and edge
(l4, l5) with a last write to x at l3. All other edges are irrelevant, as long as
they do not write to x2, x3 or x5, and change the solution. This would be, for
example, the case for (l2, l3) if current(x) �= l2. This would create an expression
different from xl2 ! [1,∞], and thus potentially enlarge the solution set.

The observer for the other conflicts is constructed similarly. The complement
of these observers are obtained by labeling all states in S\F as final. The product
of the complemented observers with the annotated CFG in Fig.1 removes all
potential counterexamples. The observer for the first conflict prunes all runs
that enter the for-loop once, and then immediately enter the if-branch. The
observer for the second conflict prunes all words that enter the if-branch and
return into the loop.

4.5 Path Reduction with NuSMV

The previous subsections assumed a checker for language inclusion for LTS. In
practice we use however the CTL model checker NuSMV. The product of P̂
with the complement of the observers is by construction proper a abstractions
of LTS(P). The results language inclusion would therefore extend also to in-
variant checking, path inclusion, LTL and ACTL model checking. For pragmatic
reasons we do not restrict ourselves to any of these, but use full CTL and LTL1.
1 NuSMV 2.x supports LTL as well.

266 A. Fehnker, R. Huuck, and S. Seefried

Whenever NuSMV produces a counterexample path, we use interval solving as
described before to determine if this path is spurious.

Note, that path reduction can also be used to check witnesses, for example
for reachability properties. In this case path reduction will check if a property
which is true on the level of abstraction is indeed satisfied by the program.

The abstraction P̂ and the observers are composed synchronously in NuSMV.
The observer synchronizes on the current and next location of P̂ . The property
is defined as a CTL property of P̂ . The acceptance condition of the complements
of observers is modeled as LTL fairness condition G¬(conflict = all).

5 Implementation and Experiments

5.1 C to Interval Equations

This section describes how to abstract a C/C++ program to a set of interval
equations, and covers briefly expression statements, condition statements as well
as the control structures.

Expressions statements involving simple operations such as addition and mul-
tiplication are directly mapped to interval equations. E.g., an expression
statement x=(x+y)*5 is represented as xi+1 = (xi + yi) ∗ [5, 5]. Subtraction
such as x = x− y can be easily expressed as xi+1 = xi + ([−1,−1] ∗ yi).

Condition statements occur in constructs such as if-then-else, for-loops, while-
loops etc. For every condition such as x<5 we introduce two equations, one
for the true-case and one for the false-case. Condition x<5 has two possible
outcomes xtt = x ! [−∞, 4] and xff = x ! [5,∞]. More complex conditions
involving more than one variable can also be approximated and we refer the
interested reader to [15].

Joins are introduced where control from two different branches can merge. For
instance, let xi be the last lhs-variable in the if-branch of an if-then-else,
and let xj be the last lhs-variables in the else-branch. The values after the
if-then-else is then the union of both possible values, i.e., xk = xi " xj .

For all other operations which we cannot accurately cover we simply over-
approximate their possible effect. Function calls, for example, are handled as
conservatively as possible, i.e., x=foo() is abstracted as xi = [−∞,+∞]. The
same holds for most of pointer arithmetic, floating point operations and division.

It should be noted that infeasible paths mostly depend on combinations of
conditions which cannot be satisfied. Typically, condition expressions and the
operations having an effect on them are rather simple. Therefore, it is a sufficient
first approach to over-approximate most but the aforementioned constructs.

5.2 Comparison

To evaluate our path reduction approach we added it to our static checker
Goanna, and compared its results with three other static analysis tools, and

Incremental False Path Elimination for Static Software Analysis 267

three software model checkers. One of the static analyzers is a commercial tool.
We applied these tools to five programs.2

P1 The first program is the one discussed throughout the paper. It is similar to
the example discussed in [4].

P2 The second program is identical, except that the loop is initialized to x=100.
P3 The third program tests how different tools deal with unrelated clutter. The

correctness depends on two if-conditions: the first sets a flag, and the second
assigns a value to a variable only if the first is set. In between the two if-blocks
is some unrelated code, in this case a simple if-then-else.

P4 The fourth program is similar to the third, except that a for-loop counting
up to 10 was inserted in-between the two relevant if-blocks .

P5 The last one is similar to the first program. This program uses however two
counter-variables x and y. The correctness of the programm depends on the
loop-invariant x = y. It is similar to the examples presented in [16].

For each of the programs we constructed one instance with a bug, and one
without. For the first program P1, e.g. the loop condition was changed to x>=0.
Since not all tools check for the same properties, we introduced slightly different
bugs for the different tools, which however all depended on the same paths.

The results in Table 1 show the static analysis tools often fail to produce cor-
rect warnings. Splint, for example, produces for the instances with and without
a bug the same warnings, which is only correct in half of the cases. The software
model checking tools in contrast always give the correct result. Our proposed
path reduction produces one false positive, for program P5. The least solution of
the interval equation shows that both variables take values in the same interval,
but the solver is unable to infer the stronger invariant x = y.

The experiments were performed on a DELL PowerEdge SC1425 server, with
an Intel Xeon processor running at 3.4 GHz, 2 MiB L2 cache and 1.5 GiB DDR-2
400 MHz ECC memory. The following table gives the maximal, minimal, mean
and median run-times in seconds:

Table 1. The table on the left-hand side shows for each tool if it found a true pos-
itive/negative “+” or a false positive/negative “-”. Entries “(-)” and “(+)” refer to
warnings that there may be an error. The table on the right-hand-side compares the
number of iterations of the three software model checkers with Goanna.

no violation violation
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Splint + + - - - - - + + +
UNO (-) (-) (-) (-) - (+) (+) + + +
com. tool + + + + - - - + + +
Goanna + + + + - + + + + +
Blast + + + + + + + + + +
Satabs + + + + + + + + + +
CBMC + + + + + + + + + +

no violation violation
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Goanna 2 2 3 2 1 2 2 4 3 2
Blast 3 3 4 12 12 11 101 5 12 10
Satabs 4 4 1 1 21 10 100 3 1 19
CBMC 10 100 1 10 10 11 101 1 10 11

2 These can be found on http://www.cse.unsw.edu.au/∼ansgar/fpe/

268 A. Fehnker, R. Huuck, and S. Seefried

max min mean median

Splint 0.012 0.011 0.012 0.012
UNO 0.032 0.025 0.028 0.025
com. tool 0.003 0.002 0.003 0.003
Goanna 0.272 0.143 0.217 0.226
Blast 58.770 0.126 6.371 0.529
Satabs 5374.037 0.076 539.694 0.336
CBMC 0.221 0.079 0.137 0.121

The static analysis tools are overall fast, and their run times are almost indepen-
dent of the example program. For test programs as small at these the run-time
reflect mostly the time for overhead and setup. The run-times for the model
checkers vary more, the maximum is attained for the instance of program P2
(x=100) that contains a bug. Satabs in particular showed exponential run times.
The default for Satabs is to abort after 50 iterations. It takes about 460 seconds
to reach this limit. After doubling the maximal number of iterations to 100,
the runtime increases more than 10 times. Memory is not a problem, as Satabs
never exceeds 5% of the available memory. Blast shows also exponential run-
times, but less pronounced. The run-times for CBMC, in contrast, grow about
linearly with an increasing number of iterations. When the loop is initialized to
x=1000 it takes, for example, about 2.4 sec to complete all 1000 iterations. With
Goanna the run time for program P1 and P2 are independent of the number
of loops, as expected. Goanna benefits from the fact that interval solving deals
efficiently with loops without unrolling [3].

6 Conclusions

In this work we presented an approach to enhance static program analysis with
counterexample guided path reduction to eliminate false positives. While by de-
fault we investigate programs on a purely syntactic level, once we find a potential
counterexample, it is mapped to an interval equation system. In case that the
least solution of this system is empty, we know that the counterexample is spu-
rious and identify a subset of equations which caused the conflict. We create an
observer for the conflict, augment our syntactic model with this observer, re-run
the analysis with the new model and keep repeating this iterative process until
no more counterexamples occur or none can be ruled out anymore.

One of the advantages of our approach is that we do not require to unroll
loops or to detect loop predicates as done in some CEGAR approaches. In fact,
path-based interval solving is insensitive to loop bounds, and handles loops just
like any other construct. However, path-based interval solving adds precision to
standard abstract interpretation interval analysis. Moreover, we only use one
data abstraction, namely a simple interval semantics for C/C++ programs.

We implemented our approach in our static analysis tool Goanna and compared
it for a set of examples to existing software model checkers and static program
analyzers. This demonstrated that Goanna is typically more precise than standard
program analyzers and almost as precise as static model checkers. Of course, the

Incremental False Path Elimination for Static Software Analysis 269

design and strength of software model checkers is to check for a much richer class
of properties.

Future work is to evaluate our approach further on real life software to identify
a typical false alarm reduction ratio. Given that static analysis typically turns
up a few bugs per 1000 lines of code, this will require some extensive testing.
Moreover, we like to explore if slightly richer domains can be used to get addi-
tional precision without a signification increase in computation time and, most
importantly, if this makes any significant difference for real life software.

References

1. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648,
pp. 235–239. Springer, Heidelberg (2003)

2. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

3. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg
(2007)

4. Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate
abstraction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 152–
165. Springer, Heidelberg (2006)

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

6. Gulavani, B., Rajamani, S.: Counterexample driven refinement for abstract inter-
pretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 474–488. Springer, Heidelberg (2006)

7. Wang, C., Yang, Z., Gupta, A., Ivancic, F.: Using counterexamples for improving the
precision of reachability computation with polyhedra. In: Damm,W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 352–365. Springer, Heidelberg (2007)

8. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model checking soft-
ware at compile time. In: Proc. TASE 2007. IEEE Computer Society, Los Alamitos
(2007)

9. Holzmann, G.: Static source code checking for user-defined properties. In: Proc.
IDPT 2002, Pasadena, CA, USA (June 2002)

10. Dams, D.R., Namjoshi, K.S.: Orion: High-precision methods for static error anal-
ysis of C and C++ programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 138–160. Springer, Heidel-
berg (2006)

11. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998)

12. Fehnker, A., Clarke, E., Jha, S., Krogh, B.: Refining abstractions of hybrid systems
using counterexample fragments. In: Morari, M., Thiele, L. (eds.) HSCC 2005.
LNCS, vol. 3414, pp. 242–257. Springer, Heidelberg (2005)

13. Jha, S.K., Krogh, B., Clarke, E., Weimer, J., Palkar, A.: Iterative relaxation ab-
straction for linear hybrid automata. In: Proc. HSCC 2007. LNCS (2007)

270 A. Fehnker, R. Huuck, and S. Seefried

14. Fehnker, A., Huuck, R., Rauch, F., Seefried, S.: Counterexample guided path re-
duction. Technical Report (number to be assigned), NICTA (January 2008)

15. Ermedahl, A., Sjödin, M.: Interval analysis of C-variables using abstract interpre-
tation. Technical report, Uppsala University (December 1996)

16. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

A Framework for Compositional Verification of
Multi-valued Systems via Abstraction-Refinement�

Yael Meller, Orna Grumberg, and Sharon Shoham

Computer Science Department, Technion, Haifa, Israel
{ymeller,orna,sharonsh}@cs.technion.ac.il

Abstract. We present a framework for fully automated compositional verifi-
cation of μ-calculus specifications over multi-valued systems, based on multi-
valued abstraction and refinement.

Multi-valued models are widely used in many applications of model checking.
They enable a more precise modeling of systems by distinguishing several levels
of uncertainty and inconsistency. Successful verification tools such as STE (for
hardware) and YASM (for software) are based on multi-valued models.

Our compositional approach model checks individual components of a sys-
tem. Only if all individual checks return indefinite values, the parts of the com-
ponents which are responsible for these values, are composed and checked. Thus
the construction of the full system is avoided. If the latter check is still indefinite,
then a refinement is needed.

We formalize our framework based on bilattices, consisting of a truth lattice
and an information lattice. Formulas interpreted over a multi-valued model are
evaluated w.r.t. to the truth lattice. On the other hand, refinement is now aimed at
increasing the information level of model details, thus also increasing the infor-
mation level of the model checking result. Based on the two lattices, we suggest
how multi-valued models should be composed, checked, and refined.

1 Introduction

Model checking [8] is a successful technique which is widely used for hardware and
software verification. It is limited, however, by its high memory requirement, referred to
as the state explosion problem. Two of the most successful approaches for fighting this
problem are abstraction and compositional verification. In [21] the two approaches are
joined in the context of 3-valued abstraction. There, each component Mi of a composed
system M is lifted into a 3-valued model Mi ↑which forms an abstraction of M . Model
checking a formula ϕ on Mi ↑ can result in either a definite value true or false, or an
indefinite value. In the former case, it is guaranteed that the result is also the value of ϕ
on M . In the latter case, however, nothing can be deduced about the composed system.
If the checks of all individual components return indefinite values, then the parts of the
components which are responsible for these values are identified, composed, and model
checked. Thus, the construction of the full composed system is avoided. Finally, if the
latter check is still indefinite then a refinement is applied to each component separately.

� An extended version including full proofs is published as a technical report in [19].

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 271–288, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

272 Y. Meller, O. Grumberg, and S. Shoham

In this work we present a framework generalizing the compositional approach in [21]
to general multi-valued models. Our interest in such a framework stems from the fact
that multi-valued modeling is widely used in many applications of model checking. It
is used to model concrete systems more precisely and to define abstract models.

Multi-valued models enable a more precise modeling of systems by distinguishing
several levels of uncertainty and inconsistency. For example, 3-valued models are used
to describe models with partial information [3]. 4-valued models can model disagree-
ment and their generalizations are used to handle inconsistent views of a system [10,16].
Temporal logic query checking [6,5] can also be reduced to multi-valued model check-
ing. Multi-valued models have been widely used for abstraction as well: 3-valued (ab-
stract) models allow proving truth as well as falsity of formulas for the concrete models
they represent [13]. The 6-valued models in [1] are tuned to better achieving proofs
of falsification. 4-valued models extend 3-valued abstractions by enabling to capture
inconsistencies in software [14] and hardware (in STE) [20]. Tools to provide multi-
valued verification such as YASM ([14]) and STE ([20]) were developed and success-
fully applied to software and hardware verification.

Multi-valued models may still suffer from the state explosion problem. Thus, a com-
positional approach may enhance the verification of larger systems.

The first step we take in formalizing a compositional multi-valued framework is to
introduce bilattices [11]. A bilattice defines two lattices over a given set of elements:
the truth lattice and the information lattice, each accompanied with an order. Formu-
las interpreted over a multi-valued model are evaluated w.r.t. the truth lattice. On the
other hand, the relation of “more abstract” over models is based on the information
lattice: Roughly, a model M2 is more abstract than a model M1 if values of atomic
propositions and transitions in M2 are smaller or equal by the information order than
the corresponding values in M1. Consequently, the valuation of a formula in M2 will
be smaller or equal by the information order than its value in M1. In fact, since we
consider the full μ-calculus, a bidirectional correspondence between transitions of M1
and M2 is needed. To capture this, we define a mixed-simulation relation, based on the
information lattice, which turns out to be nontrivial.

Bilattices provide a natural way to identify lattice elements that are consistent, mean-
ing they represent some concrete elements of the bilattice (to be formalized later). We
can also identify definite elements. Those are elements that need not be refined. For
simplicity, in the rest of the paper we restrict the discussion to Consistent Partial Dis-
tributive Bilattices (CPDB), which consist of exactly all the consistent elements.

Once we establish our setting by means of bilattices, we can fill in the rest of the
framework’s ingredients. First, we define the notion of composition of multi-valued
systems. Next, we use the model checking algorithm for multi-valued systems and the
alternation-free μ-calculus, suggested in [22]. We also show, in case the checks on in-
dividual components are indefinite, how to identify, compose, and check the parts of
the models that are needed for the evaluation of the checked formula. As we exemplify
later, the resulting composed system is often much smaller than the full composed sys-
tem. Finally, we develop a heuristics for finding a criterion for refinement, in case the
result of model checking the composed system is indefinite.

A Framework for Compositional Verification 273

In the framework above we do not discuss the construction of multi-valued abstract
models. This is investigated for instance in [15], which presents a methodology for a
systematic construction of an abstract model for a given concrete one.

Other works deal with several aspects of multi-valued model checking, but none
investigate a compositional approach. Multi-valued symbolic model checking is de-
scribed in [7]. An alternative definition of (bi)simulation is suggested in [18]. However,
there, the relation returns a value, indicating how “close” the models are. Our mixed
simulation, on the other hand, returns either true or false, indicating whether one model
is an abstraction of the other. A relation similar to our mixed simulation is defined in [1].
Preservation of formulas via simulation is described there in terms of information or-
der. However, they handle a 6-valued framework, rather then a general multi-valued one.
Also, they suggest refinement only if the result is the smallest element in the informa-
tion order, ⊥. In contrast, we allow refinement for any indefinite value in the bilattice.
Bilattices are used also in [15]. However, they are not exploited there for refinement.

To summarize, the main contributions of this paper are:

– We present a framework for fully automated compositional verification of multi-
valued systems w.r.t. μ-calculus specifications. The framework is based on multi-
valued abstraction-refinement. To the best of our knowledge, this is the first
compositional approach for multi-valued model checking.

– We apply our framework to the alternation-free μ-calculus model checking algo-
rithm. In particular, we develop an algorithm for refinement in this context.

– We formalize our framework based on bilattices. This allows to naturally define the
consistent and definite elements in the bilattice. It also provides a clear definition
of abstraction and refinement in the multi-valued context. It thus provides a better
understanding of the multi-valued framework.

– Based on the information order of a bilattice, we define a mixed simulation relation
over multi-valued models, preserving μ-calculus specifications.

2 Preliminaries

In this section we introduce the concepts of lattices, multi-valued Kripke models, μ-
calculus and multi-valued model checking graphs.

Definition 1. A lattice L= (L,≤) consists of a set L with a partial order ≤ over L,
where every finite subset B of L has a least upper bound, join, denoted �B, and a
greatest lower bound, meet, denoted �B, both in L. A lattice is distributive if � and �
distribute over each other.

Examples of lattices are shown in Fig. 1(a),(b),(c) and (e).

Definition 2. D= (L,≤,¬) is a De Morgan algebra if (L,≤) is a finite distributive lat-
tice, ¬ : L → L is a negation function s.t. ∀a, b: ¬¬a = a, a ≤ b ⇔ ¬b ≤ ¬a, and De
Morgan laws are satisfied.

All De Morgan algebras have a greatest (top) element, denoted true, and a least (bot-
tom) element, denoted false.

274 Y. Meller, O. Grumberg, and S. Shoham

2.1 Multi-valued Models and μ-Calculus

Definition 3. A Multi-Valued Kripke model is a 6-tuple M = 〈L, AP, S, s0, R, Θ〉, where
L= (L,≤,¬) is a De Morgan algebra, AP is a set of atomic propositions, S is a finite set
of states, s0 is the initial state, R : S × S → L is a mapping of transitions to values in
L, and Θ : AP → (S → L) associates with each atomic proposition p, a mapping from
S to L, describing the truth value of p in each state.

Definition 4. Let AP be a set of atomic propositions and V ar a set of propositional
variables, s.t. p ∈ AP and Z ∈ V ar. The μ-calculus in negation normal form is defined
by:

ϕ ::= p | ¬p | Z | ψ ∨ ψ′ | ψ ∧ ψ′ | �ψ | ♦ψ | μZ.ψ | νZ.ψ

Let Lμ denote the set of all formulas generated by the above grammar. Fixpoint quanti-
fiers μ and ν are variable binders. We write η for either μ or ν. We assume formulas are
well-named, i.e. no variable is bound more than once in any formula. Thus for a closed
formula ϕ ∈Lμ, every variable Z identifies a unique subformula fp(Z) = ηZ.ψ of ϕ.
The set Sub(ϕ) includes all subformulas of ϕ.

An environment V : V ar → (S → L) defines the meaning of free variables. For a
variable Z ∈ V ar and a mapping l : S → L, we write V [Z = l] for the environment
that agrees with V except that it maps Z to l.

The multi-valued semantics ‖ϕ‖M
V of a μ-calculus formula ϕ w.r.t. a multi-valued

Kripke model M and an environment V [4] is given as a mapping S → L, in which
each state s of M is mapped to a value in L describing the truth value of ϕ in s. In the
following, lfp, gfp stand for least and greatest fixpoints, respectively, which exist based
on [23]. ‖ϕ‖M

V is defined by:

‖p‖M
V = λs.Θ(p)(s) ‖¬p‖M

V = λs.¬Θ(p)(s)

‖ϕ1 ∨ ϕ2‖M
V = λs.‖ϕ1‖M

V ∨ ‖ϕ2‖M
V ‖ϕ1 ∧ ϕ2‖M

V = λs.‖ϕ1‖M
V ∧ ‖ϕ2‖M

V
‖♦ϕ‖M

V = λs.
∨

s′∈S(R(s, s
′) ∧ ‖ϕ‖M

V (s
′)) ‖�ϕ‖M

V = λs.
∧

s′∈S(¬R(s, s′) ∨ ‖ϕ‖M
V (s

′))

‖Z‖M
V = V(Z) ‖νZ.ϕ‖M

V = gfp(λg.‖ϕ‖M
V[Z=g]) ‖μZ.ϕ‖M

V = lfp(λg.‖ϕ‖M
V[Z=g])

For closed formulas we drop the environment, and refer to ‖ϕ‖M .

2.2 Multi-valued Model-Checking Algorithm

A multi-valued model checking algorithm for a closed Lμ formula over a multi-valued
Kripke model is suggested in [22]. There, multi-valued games are introduced, and a
multi-valued model checking problem is translated into a problem of finding the value
of a multi-valued game. In this work, we only use the model checking graph (further
referred to as mc-graph) defined in [22], with its connections to the model checking
algorithm.

Let M be a multi-valued Kripke model over L= (L,≤,¬) and ϕ0 a closed Lμ for-
mula. The mc-graph is defined by G(M, ϕ0) = (n

0, N, E), where N is a set of nodes,
E ⊆ N × N is a set of edges in the graph and n0 ∈ N is the initial node. Nodes in the
mc-graph are elements of S × Sub(ϕ0), denoted t � ψ, and n0 = s0 � ϕ0. Nodes of
type s � ϕ0 ∨ ϕ1 or s � ♦ϕ are considered ∨-nodes, whereas nodes of type s � ϕ0 ∧ ϕ1

A Framework for Compositional Verification 275

or s � �ϕ are ∧-nodes. Nodes of type s � Z or s � ηZ.ϕ can be either ∨-nodes or ∧-
nodes. The edges of the mc-graph are defined by the following rules.

s � ϕ0 ∨ ϕ1

s � ϕi
i ∈ {0, 1} s � ηZ.ϕ

s � Z

s � ♦ϕ

t � ϕ
R(s, t) �= false

s � ϕ0 ∧ ϕ1

s � ϕi
i ∈ {0, 1} s � Z

s � ϕ
if fp(Z) = ηZ.ϕ

s � �ϕ

t � ϕ
R(s, t) �= false

Every edge (n, n′) ∈ E corresponds to a rule where n, n′ are of the form of the upper,
respectively lower, part of the rule. If no rule is defined from some node n, then there
are no outgoing edges from n in the mc-graph. This happens in terminal nodes of the
form t (p or t (¬p, or in terminal nodes of the form t (♦ϕ or t (�ϕ where there
are no transitions from the state t in the Kripke model.

Each edge in E is associated with a value from L: edges that refer to a transition
of the model get the value of that transition. The rest get the value true. By abuse of
notation we use R(n, n′) to refer to the value of an edge (n, n′) ∈ E.

Definition 5. ([22]) Let n ∈ G be a terminal node, val(n) is defined as follows. val(t �
q) = Θ(q)(t), val(t � ¬q) = ¬Θ(q)(t), val(t � ♦ϕ) = false and val(t � �ϕ) = true.

In [22] an algorithm for computing a value of nodes on a mc-graph is presented. The
algorithm handles the alternation-free fragment of Lμ, where no nesting of fixpoints is
allowed. Given a mc-graph G(M,ϕ0) = (n0, N,E) and a function val : N → L which
maps terminal nodes in G to values in L (Def. 5), the algorithm returns a mc-function
χ : N → L that maps each node to a value from L.

Algorithm 1 (mc-algorithm [22]). G is partitioned to Maximal Strongly Connected
Components (MSCCs) and a (total) order on them is determined, reflected by their
numbers: Q1,...,Qk. The order fulfills the rule that if i < j then there are no edges from
Qi to Qj . The components are handled by increasing values of i. Consider a single Qi.
Each node n ∈ Qi is associated with a value χ(n) as follows. For a terminal node n,
χ(n) = val(n). For a ∨-node n we set χ(n) to be

∨
{R(n, n′) ∧ χ(n′)|R(n, n′) �=

false}. Similarly, if n is a ∧-node then χ(n) =
∧
{¬R(n, n′) ∨ χ(n′)|R(n, n′) �=

false}. If Qi is a non-trivial MSCC then it contains exactly one fixpoint variable Z . In
this case, first label the nodes in Qi with temporary values, temp(n), that are updated
iteratively. For nodes of the form n = s (Z , initialize temp(n) to true if Z is of type
ν, or to false if Z is of type μ (the rest remain uninitialized). Then apply the previous
rules for ∨,∧-nodes until the temporary values do not change anymore. Finally, set
χ(n) = temp(n) for every node n in Qi. Return χ as the mc-function.

In [22], the connection between χ and the model checking problem is proved, by show-
ing that χ(n0) = ‖ϕ0‖M (s0). In the context of this work we will be interested also in
the internal nodes of G. We therefore generalize the correspondence between χ and the
multi-valued semantics to all nodes in G.

For ψ ∈ Sub(ϕ0), ψ∗ denotes the result of replacing every free occurrence of Z ∈
V ar in ψ by fp(Z). Note that ψ∗ is a closed formula, and if ψ is closed then ψ∗ = ψ.

276 Y. Meller, O. Grumberg, and S. Shoham

Theorem 1. Let G(M,ϕ0) be a mc-graph, s.t. ϕ0 is an alternation-free closed Lμ

formula. Let χ be the mc-function returned by the mc-algorithm, then for every s (
ψ ∈ N , χ(s (ψ) = ‖ψ∗‖M (s).

3 Bilattices and Partial Bilattices

In this section we introduce bilattices, consider several of their attributes, and define the
notion of partial bilattices.

Definition 6. [11] A distributive bilattice is a structure B=(B,≤i,≤t,¬) s.t.: (1) Bi=
(B,≤i) is a lattice, Bt=(B,≤t,¬) is a De Morgan algebra; (2) meet(⊗), join(⊕) of
Bi, and meet(∧), join(∨) of Bt are monotone w.r.t. both ≤i and ≤t; (3) all meets and
joins distribute over each other; and (4) negation (¬) is ≤i monotone.

The bilattices considered in this work are distributive, thus the use of the term bilattice
refers to distributive bilattice. In our context, the relation ≤t is an order on the “degree
of truth”. The bottom in this order is denoted by false and the top by true. The relation
≤i is an order on the “degree of information”. Thus, if x ≤i y, y gives us at least as
much information as x (and possibly more). The bottom in the information order is
denoted by ⊥ and the top by �.

Theorem 2. [11] Let D= (D,≤,¬) be a De Morgan algebra, and B(D) be a structure
(D × D,≤i,≤t,¬) s.t. (1) 〈a, b〉 ≤i 〈c, d〉 	 a ≤ c and b ≤ d; (2) 〈a, b〉 ≤t 〈c, d〉 	 a ≤ c

and d ≤ b; and (3) ¬〈a, b〉 	 〈b, a〉. Then, B(D) is a distributive bilattice. Furthermore,
every distributive bilattice is isomorphic to B(D) for some De Morgan algebra D.

Intuitively, for a De Morgan algebra D, an element 〈x, y〉 of B(D) is interpreted as a
value whose “degree of truth” is x and “degree of falsity” is y. If we view D as a concrete
truth domain, B(D) can be viewed as its abstract truth domain. Given an element c ∈ D,
〈x, y〉 ∈ D × D approximates c if x is no more true than c, and y is no more false than c.
Thus, 〈c,¬c〉 is the best approximation of c, and 〈x, y〉 approximates c if 〈x, y〉 ≤i 〈c,¬c〉.
We say that 〈x, y〉 ∈ D × D is consistent if 〈x, y〉 ≤i 〈c,¬c〉 for some c ∈ D. Thus 〈x, y〉
is consistent iff y ≤ ¬x (defined similarly in [15]). We say that 〈x, y〉 ∈ D × D is definite
if 〈c,¬c〉 ≤i 〈x, y〉 for some c ∈ D. Thus 〈x, y〉 is definite iff y ≥ ¬x. If 〈x, y〉 ∈ D × D

is definite and consistent, then 〈x, y〉 = 〈c,¬c〉 for some c ∈ D.

Example 1. Fig. 1(a),(b) present an example of the distributive bilattice for the 4-valued
Belnap structure ([2]). This bilattice is isomorphic to the bilattice B(D) created from
the 2-valued De Morgan algebra D= ({T, F},≤,¬), where F ≤ T , ¬T = F . Thus,
t 	 〈T, F 〉, f 	 〈F, T 〉, � 	 〈T, T 〉 and ⊥ 	 〈F, F 〉. t, f are best approximations of
T , resp. F . �, representing maximal degree of truth and falsity, is inconsistent. t,f and
� are definite elements. ⊥ is indefinite.

When referring to a bilattice B, we sometimes implicitly refer to the structure B(D)
isomorphic to B (which exists by Thm. 2). In particular, we use ‘≤’ to denote the order
on the elements in the De Morgan algebra D of B(D).

A Framework for Compositional Verification 277

Definition 7. P= (B,≤) is a partial lattice if it is a lattice, except that join is not always
defined. A partial distributive bilattice is a structure P= (B,≤i,≤t,¬) defined similarly
to a distributive bilattice (Def. 6), except that Pi= (B,≤i) is a partial lattice, and re-
quirements (2) and (3) hold for join of Pi only if it is defined.

Definition 8. Let B(D)= 〈D × D,≤i,≤t,¬〉 be a bilattice, and let P ⊆ D × D be the
set of all consistent elements in B(D). Then P(B)= 〈P,≤i,≤t,¬〉 is the consistent struc-
ture induced by B(D), where ≤t, ≤i and ¬ in P(B) are as in B(D), restricted to P .

Theorem 3. Let B(D)= 〈D × D,≤i,≤t,¬〉 be a bilattice, and let P(B)= 〈P,≤i,≤t,¬〉
be the consistent structure induced by it, then P(B) is a partial distributive bilattice.

We refer to consistent structures, which, by Thm. 3, are also partial distributive bilat-
tices, as consistent partial distributive bilattices (CPDB). Note that in CPDBs we do
not have �. ⊥, true and false always exist. Note further that for CPDBs, the set of
maximal elements w.r.t.≤i is exactly the set of definite elements, all of the form 〈c,¬c〉
for some c ∈ D.

Theorem 4. Let B= 〈B,≤i,≤t ¬〉 be either a distributive bilattice or a CPDB, and
let a, b ∈ B be definite values. Then a ∧ b, a ∨ b and ¬a are definite as well.

Example 2. Examples of CPDBs appear in Fig. 1. The CPDB induced by the bilattice
of the Belnap structure is described in Fig. 1(a) and (b), as the un-boxed elements,
which are all the consistent elements. This CPDB is isomorphic to the standard 3-valued
structure, where ? 	 ⊥, T 	 t and F 	 f . The structure 3×3 is defined by the CPDB
in Fig. 1(e) and (f). This CPDB is isomorphic to the CPDB induced by the bilattice
B(D) created from the 2-views De Morgan algebra D= ({T, F} × {T, F},≤,¬), where
≤ and ¬ are defined bitwise. That is, for a1a2, b1b2 ∈{T, F} × {T, F}, a1a2 ≤ b1b2
iff a1 ≤ b1 and a2 ≤ b2. Also, ¬a1a2 	 ¬a1¬a2. The 3×3 structure represents two
different views, which may be contradictory (e.g. TF). However, such elements should
not be confused with inconsistent elements in B(D) such as 〈TT,TT 〉.

The consistent elements of B(D) are mapped into pairs over {T,F,?} in the 3×3 struc-
ture. E.g., 〈TF, FF 〉 is represented by T? and 〈TT,FF 〉 is represented by TT. The re-
sulting structure contains both representations of the elements of the concrete 2-views
domain (e.g. TT), and their approximations (e.g. T?).

t

f
(a)

ft

(b)

T

T

M

F

F

(c)

T M F

FT

(d)

TT

T? ?T

TF ?? FT

?F F?

FF

(e)

FF

?F F? T?

TF FT TT

?T

??

(f)

Fig. 1. Truth (a) and information (b) orders of 4-valued Belnap structure; Truth (c) and informa-
tion (d) orders of 6-valued structure; Truth (e) and information (f) orders of 3×3 structure; Boxed
nodes are inconsistent

278 Y. Meller, O. Grumberg, and S. Shoham

Multi-valued Kripke models as well as the semantics of Lμ formulas and mc-graphs
are defined over a De Morgan algebra L. These definitions can easily be extended to a
multi-valued structure, which is either a distributive bilattice or a CPDB. Thus, we have
both information and truth lattices. In this case, the lattice L used in the multi-valued
semantics is the truth lattice. For simplicity, in the rest of this work we use CPDBs.

4 Mixed Simulation and Refinement of Multi-valued Models

In this section we define a mixed simulation relation between two multi-valued Kripke
models M1 and M2, and present a refinement algorithm based on the multi-valued
model checking algorithm. We first define a relation between two multi-valued Kripke
models, both defined over the same CPDB B, which guarantees preservation of Lμ

formulas w.r.t the multi-valued semantics. The relation is defined by means of the in-
formation order. Intuitively, it identifies the fact that M2 contains less information than
M1. Thus, M2 is an abstraction of M1.

Definition 9. Let Mi = 〈B, AP, Si, s
i
0, Ri, Θi〉 for i ∈ {1, 2} be multi-valued Kripke mod-

els. H ⊆ S1 × S2 is a mixed simulation from M1 to M2 if (s1, s2) ∈ H implies:

1. ∀p ∈ AP : Θ2(p)(s2) ≤i Θ1(p)(s1).
2. ∀t1 ∈ S1 s.t. R1(s1, t1) �= false ∃t2 ∈ S2 s.t. (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).
3. ∀t2 ∈ S2 s.t. R2(s2, t2) �≤i false ∃t1∈ S1 s.t. (t1, t2) ∈ H and R2(s2, t2) ≤i R1(s1, t1).
If exists a mixed simulation H s.t. (s1

0, s
2
0) ∈ H , then M2 abstracts M1, denoted

M1 � M2.

Note that requirements (2) and (3) are not symmetrical. By requirement (2), every tran-
sition in M1 has a representation in M2, whereas by requirement (3), only transitions
in M2 s.t. R2(s2, t2) �≤i false have a representation in M1. These requirements are
similar to the requirements of mixed simulation in the 3-valued case ([12,9]). There,
every may transition in M1 has a representation in M2, and every must transition in M2
has a representation in M1. In the multi-valued case transitions which are may and not
must are transitions s.t. R(s, t) ≤i false.

Theorem 5. Let H ⊆ S1 × S2 be a mixed simulation relation from M1 to M2, and let ϕ
be a closed Lμ formula. Then for every (s1, s2) ∈ H , ‖ϕ‖M2 (s2) ≤i ‖ϕ‖M1(s1).

The mixed simulation relation can be used to describe the relation between a concrete
model, Mc, and its abstraction, MA: Mc � MA, where Mc is defined over D and MA is
defined over P(B(D)). This is because Mc can be interpreted as a model over P(B(D)),
where the values are all definite (by Thm. 4 the semantics is maintained).

Given an abstract model, the information order enables us to capture the notion of
a model checking result being “not good enough”, namely, a result that needs to be
refined. This is a result that does not give us the most information possible. That is, it is
indefinite.

Let Mc be a concrete model over D, and let MA be an abstract model for it over
P(B(D)), i.e. Mc � MA, s.t. MA should be refined. Our refinement consists of two parts.
First, we choose a criterion for model refinement. Then, based on the criterion, the

A Framework for Compositional Verification 279

model is refined by either increasing the information level of some transition or of
an atomic proposition in some state, or by splitting states. These refinement steps are
similar to the refinement steps in [17]. The refinement is applied directly on the mc-
graph. In fact, it suffices to refine the indefinite subgraph, where the mc-graph is pruned
in definite nodes.

In the rest of the section we study choosing a criterion for model refinement. For a
mc-function χ : N → L, given that χ(n0) is indefinite, our goal in the refinement is to
find and eliminate at least one of the reasons of the indefinite result. The criterion for
the refinement is obtained from a failure node. This is a node n = s � ϕ ∈ N s.t. (1)
χ(n) is indefinite; (2) χ(n) affects χ(n0); and (3) χ(n) can be changed by increasing
the information level of either an atomic proposition in s or some transition from s. (3)
means that n itself is responsible for introducing (some) uncertainty. (1) and (2) require
that this uncertainty is relevant to χ(n0).

We adapt the mc-algorithm (Algo. 1) to remember for each node whose value is
indefinite a failure node and a failure reason. The failure node and reason of n0 will be
used for refining the model. For a terminal node n, if χ(n) is indefinite, the failure node
and reason attached to it are the node itself. To handle nonterminal nodes, we define
an auxiliary function f : N → L that keeps for each node n ∈ N its most updated value
in the algorithm: If χ(n) is already defined, then f(n) = χ(n). Otherwise, if temp(n) is
defined, then f(n) = temp(n).

Let n be a node for which f(n) has been updated last. If f(n) is definite, then no
failure node and reason are attached to it. If f(n) is indefinite, do the following:

1. If n is a ∨-node, find node n′ with R(n, n′) �= false, for which the following hold:
(a) ∀n′′ ∈ N where n′ �= n′′ and R(n,n′′) �= false, (R(n, n′′)∧f(n′′)) ≤t (R(n, n′)∧

f(n′)) or (R(n, n′′) ∧ f(n′′)) and (R(n, n′) ∧ f(n′)) are uncomparable.
(b) R(n, n′) ∧ f(n′) is indefinite.
Intuitively, for some n′, if requirement (a) holds then R(n, n′) ∧ f(n′) is maximal,
and thus affects f(n). Requirement (b) ensures that it is possible to refine R(n, n′)
or f(n′). For the given node n and a chosen node n′ satisfying (a),(b) define a failure
node and reason for n as follows:

i If f(n′) is definite or R(n, n′) �t f(n′), then n is the failure node, and the edge
(n, n′) is the failure reason.

ii If R(n, n′) is definite or f(n′) �t R(n, n′), then the failure node and reason of
n are those of n′.

iii Otherwise, arbitrarily choose either n as a failure node and the edge as a failure
reason, or the failure node and reason of n′ as the failure node and reason of n.

2. The case where n is a ∧-node is dual, where instead of searching for a maximal
R(n, n′) ∧ f(n′), we now try to find a minimal ¬R(n, n′) ∨ f(n′).

Definite values are closed under ¬, ∧ and ∨ (Thm. 4), thus if a node is given an in-
definite value, this indefinite value results from an indefinite value of either a son
n′ of n, or an edge from n. For example, consider case 1(i). If f(n′) is definite,
then R(n, n′) is necessarily indefinite (Thm. 4). Similarly, if R(n, n′) �t f(n′), then
R(n, n′) ∧ f(n′) = R(n, n′), which again, means that R(n, n′) is indefinite. Either way,
R(n, n′) can be refined and is therefore a failure reason. The correctness of the failure
search is formalized by the following lemma.

280 Y. Meller, O. Grumberg, and S. Shoham

Lemma 1. For every node n, if f(n) is given an indefinite value, then there exists n′

s.t. R(n,n′) �= false, which satisfies requirements (a),(b). Furthermore, f(n′) is already
defined at that time. In addition, if the updating of failure node and reason of n is based
on n′, then n′ also has a failure node and reason.

A failure node and reason for n is updated every time f(n) is updated. Thus, when the
mc-algorithm terminates, for every n, if χ(n) is indefinite, then the failure node and
reason for n is based on χ. Altogether there are two cases in which we consider the
node itself as a failure node. The first case is when the node is a terminal node whose
value is indefinite, for which the failure reason is clear. The second case is when the
node has an indefinite edge to n′ which is the failure reason. In this case n is the failure
node since refining the value of the edge may change the value of n. The failure reason
translates to an atomic proposition with an indefinite value in the first case, and to an
indefinite transition in the second case. Note that the algorithm is heuristic in the sense
that it does not guarantee that all possible refinements of the failure node and reason
will increase the information level of the result. It greedily searches for a failure node
and reason which is most likely to increase the result w.r.t. the information order.

Example 3. Consider the mc-graph in Fig. 3(b). For the node n0 marked (s2, t2) � ♦o

there are three possible failure nodes and reasons. The first is n0 itself being the failure
node and the edge to node n3 marked (s3, t2) � o being the reason. The second is node
n1 marked (s2, t2) � o being the failure node and reason, and the third is node n0 itself
and the edge to n1 being the reason.

Recall that refinement is done by either increasing the information level of some tran-
sition or atomic proposition, or by splitting states. The information lattice of the under-
lying multi-valued structure is finite. Thus, if the underlying concrete model is finite,
then there is a finite number of refinement steps possible. We conclude:

Lemma 2. If Mc is finite then in a finite number of refinement steps the model checking
result will be the same as the one in the underlying concrete model, Mc.

5 Partial Model Checking and Subgraphs

In this section we investigate properties of the mc-algorithm (Algo. 1). In particular,
we present sufficient conditions under which a subgraph of a mc-graph can be valuated
“correctly” (to be formally defined later) without considering the full mc-graph. In the
rest of the section, G denotes a multi-valued mc-graph over B= (L,≤i,≤t,¬).

Definition 10. Let G be a mc-graph and let f : N → L be a function. For a non-terminal
node n ∈ G, and two nodes n′, n′′ sons of n, n′ covers n′′ under f w.r.t n, if one of the
following holds:

– n is a ∧-node and: (1) (¬R(n, n′) ∨ f(n′)) ≤t (¬R(n, n′′) ∨ f(n′′)); and (2) ∀v′, v′′

∈ L : if f(n′) ≤i v′ and f(n′′) ≤i v′′ then (¬R(n, n′) ∨ v′) ≤t (¬R(n, n′′) ∨ v′′).
– n is a ∨-node and: (1) (R(n,n′′) ∧ f(n′′)) ≤t (R(n, n′) ∧ f(n′)); and (2) ∀v′, v′′ ∈

L : if f(n′) ≤i v′ and f(n′′) ≤i v′′ then (R(n, n′′) ∧ v′′) ≤t (R(n, n′) ∧ v′).

A Framework for Compositional Verification 281

Intuitively, a son n′ covers a son n′′ in the sense that if f defines the value of the sons,
then it suffices to take into account n′ (and ignore n′′) in order to determine the value of
the node n. In our setting, f will sometimes only provide a lower bound w.r.t. ≤i on the
value of the nodes. However, the second requirement ensures that the covering holds
for every f ′ ≥i f as well. Note that the notion of covering defines a partial order on the
nodes of the mc-graph. As a result, for every covered node n′′ there exists a covering
node n′ s.t. n′ is non-covered.

Example 4. Consider the mc-graph in Fig. 3(b). Assume the underlying structure is
the 3× 3 structure (Fig. 1(e), (f)). The values of the edges are R(n0, n1) =?T and
R(n0, n2) =??. Let f(n1) =?T and f(n2) = F ?. We show that n2 is covered by n1

under f . Clearly, requirement (1) holds (F ?∧?? ≤t?T∧?T). For requirement (2), we
need to show that ∀v1, v2 ∈ L : if f(n1) ≤i v2 and f(n2) ≤i v2 then (R(n0, n2) ∧ v2) ≤t

(R(n0, n1)∧v1). Specifically, we need to show that ∀v1 ∈ {?T, TT, FT}, ∀v2 ∈ {F ?, FF,

FT}: v2∧?? ≤t v1∧?T , which obviously holds.

In the example, the value given to n0 based on all its sons is the same as if the son n2

had not been considered. We will next exploit this property.

Definition 11. Let G be a mc-graph and χ its mc-function. A subgraph G′ of G is closed
if every node n in G′ is either terminal in G′, or G′ contains all non-covered sons of n

under χ and corresponding edges.

Let G be a mc-graph, χ its mc-function, and χI : N → L a partial mc-function. χI is
correct w.r.t. χ if for every n ∈ G, if χI(n) is defined, then χI(n) = χ(n).

Theorem 6. Let G be a mc-graph and χ its mc-function. Consider a closed subgraph
G′ of G with a partial mc-function χI which is correct w.r.t. χ and defined over (at
least) all terminal nodes in G′. Then applying the mc-algorithm on G′ with χI as an
initial valuation (replacing val) results in a mc-function χ′ of G′ s.t. for every n in G′,
χ′(n) = χ(n).

6 Compositional Model Checking

In this section we define the composition of two models, and describe an algorithm for
model checking the composed system, without fully constructing it.

In compositional model checking the goal is to verify a formula ϕ on a composed
system M1||M2. In our setting M1 and M2 are multi-valued Kripke models defined over
the same CPDB B= (L,≤i,≤t,¬). The models synchronize on the joint labelling of the
states. In the following, for i ∈ {1, 2} we assume that every (abstract) model Mi has an
underlying concrete model Mc

i s.t. Mc
i � Mi. Let Mi = 〈B, APi, Si, s

i
0, Ri, Θi〉, we use

i to denote the remaining index in {1, 2} \ {i}.

Definition 12. Let s1 ∈ S1, s2 ∈ S2 be states in M1 and M2 resp. Then, s1, s2 are
weakly composable if for every p ∈ AP1 ∩ AP2 : Θ1(p)(s1)⊕ Θ2(p)(s2) is defined.

Note that ⊕ might be undefined since B is a CPDB (Def. 8). Intuitively, if ⊕ is defined,
then the composition of the states is consistent on all atomic propositions.

282 Y. Meller, O. Grumberg, and S. Shoham

Definition 13. States s1 ∈ S1, s2 ∈ S2 are composable if they are weakly composable,
and for every p ∈ AP1 ∩ AP2 : Θ1(p)(s1) and Θ2(p)(s2) are definite.

In fact, since the definite values in CPDB are highest in the information order, if s1 and
s2 are composable, then for every p ∈ AP1 ∩ AP2, Θ1(p)(s1) = Θ2(p)(s2).

We say that M1 and M2 are composable if their initial states are composable.

Definition 14. Let M1 and M2 be composable models. Their composition, denoted
M1||M2, is the multi-valued Kripke model M = 〈B, AP, S, s0, R, Θ〉, where AP =

AP1 ∪ AP2, s0 = (s
1
0, s

2
0), S = {(s1, s2) ∈ S1 × S2|s1, s2 are weakly composable}. For

each (s1, s2), (t1, t2) ∈ S: If t1, t2 are composable, R((s1, s2), (t1, t2)) = R1(s1, t1) ∧
R2(s2, t2). Otherwise, if t1, t2 are weakly composable, R((s1, s2), (t1, t2)) = R1(s1, t1)∧
R2(s2, t2) ∧⊥. For each (s1, s2) ∈ S and p ∈ AP : if p ∈ AP1 ∩ AP2 then Θ(p)(s1, s2) =

Θ1(p)(s1)⊕ Θ2(p)(s2), if p ∈ APi \ APī then Θ(p)(s1, s2) = Θi(p)(si).

The definition of the states in the composed model enables composition of states that
are weakly composable but not composable. Such states do not exist in a composed
concrete model (since the values of all atomic propositions in a concrete model are
maximal w.r.t. ≤i). However, they might exist when considering a composed abstract
model. Unlike composable states, the weakly composable states in a composed abstract
model might not have any corresponding state in the underlying concrete model. This is
because in the concrete model, where the information level of some atomic propositions
increases, the states might disagree on some p in their joint labelling.

Even though we are enabling weakly composable states which might not exist in the
underlying concrete model, we want the abstract composed model to be an abstraction
of the concrete composed model (i.e., we want to maintain a mixed simulation relation
between these models). This is done with the definition of R. In the case where the target
states are composable, the definition of R is immediate. If the target states are weakly
composable but not composable, then we want to take into account the possibility that
the transition does not exist. Defining its value to be ⊥ achieves this goal. However,
we can in fact guarantee more than that (in terms of the information order) by taking
the meet w.r.t. ≤t with ⊥. This ensures that the value of the composed transition is no
“more true” than ⊥, but may be “more false” than ⊥ and thus more informative. More
precisely, consider the CPDB P(B(D)) isomorphic to B, where D= (D,≤,¬) is a De
Morgan algebra. Then⊥ is defined as 〈d⊥, d⊥〉 ∈ D × D where for every a ∈ D.d⊥ ≤ a.
Thus, for every 〈a, b〉 ∈ D × D, 〈a, b〉 ∧ ⊥=〈d⊥, b〉, which means that the falsity level of
〈a, b〉 is preserved, whereas the truth level is minimal.

Allowing weakly composable states gives freedom to the user when abstracting each
of the models, as all atomic propositions can be abstracted. In contrast, in [21], where
composition of 3-valued models is discussed, joint labelling cannot be abstracted, thus
all composable states in the abstract model represent composable states in the concrete
model. There is a tradeoff presented with this freedom. On the one hand, the user can
define a very coarse abstraction in each of the separate models. On the other hand, the
abstract composed model might now include more states that do not represent any state
in the concrete model.

From now on we fix AP to be AP1 ∪AP2.

A Framework for Compositional Verification 283

Next, we define lifting of models for the purpose of compositional verification. The
idea is to view each model Mi as an abstraction of M1||M2.

Definition 15. The lifted model of Mi = 〈 B, APi, Si, s
i
0, Ri, Θi〉 is Mi ↑= 〈 B, AP, Si, s

i
0,

Ri ↑, Θi ↑〉 where: for every si, ti ∈ Si: Ri ↑ (si, ti) = Ri(si, ti) ∧ ⊥. For every si ∈ Si,
p ∈ AP : if p ∈ APi then Θi ↑ (p)(si) = Θi(p)(si). If p ∈ AP \ APi then Θi ↑ (p)(si) = ⊥.

The value of each literal over AP \ APi in each state of Mi ↑ is minimal w.r.t. the ≤i

order (⊥). Indeed, its value in M will be determined by Mi. In addition, each transition
of Mi is also uncertain, in the sense that it cannot be “more true” than⊥. This is because
in the composition it might be removed if a matching transition does not exist in Mi.

Theorem 7. For every i ∈ {1, 2}, M1||M2 � Mi ↑. The mixed simulation relation H ⊆
S × Si is given by {((s1, s2), si)|(s1, s2) ∈ S}.

Since each Mi ↑ abstracts M1||M2, we are able to first consider each component sepa-
rately: Theorem 5 ensures that for every closed Lμ formula ϕ, ‖ϕ‖Mi↑ ≤i ‖ϕ‖M1||M2 . In
particular, ‖ϕ‖M1↑ ⊕ ‖ϕ‖M2↑ is defined, and a definite result on one of the components
suffices to determine a definite value on M1||M2. Note that a definite value on M1||M2

can be achieved even if both ‖ϕ‖Mi↑ are indefinite, but ‖ϕ‖M1↑ ⊕ ‖ϕ‖M2↑ is definite.
A more typical case is when the valuation of ϕ on both M1 ↑ and M2 ↑ is indefinite.

This reflects the fact that ϕ depends on both components and on their synchronization.
Typically, such a result requires some refinement of the abstract model. Considering
the composition of the two components is a refinement of the lifted models. Still, having
considered each component separately can guide us into focusing on the places where
we indeed need to consider the composition of the components.

We use the mc-graphs of M1 ↑ and M2 ↑ for building a subgraph for M1||M2, and by
that avoid building the full composed model. The mc-graphs of the two components
present all the information gained from model checking each component. To resolve
the indefinite result, we first try to compose the parts of the mc-graphs which might be
needed to determine the value of the formula.

Definition 16. For every i ∈ {1, 2} let Gi = (n
0
i , Ni, Ei) be the mc-graph of Mi ↑, with

χi its mc-function. χf : N1 × N2 → L is defined by χf (n1, n2) = χ1(n1)⊕ χ2(n2). Ef :

(N1 × N2) × (N1 × N2) → L is defined as follows. Let n′
i = (s′i � ϕ′) ∈ Ni, then

Ef ((n1, n2), (n
′
1, n

′
2)) = R1(s1, s

′
1)∧R2(s2, s

′
2) if s′1 and s′2 are composable, and Ef ((n1,

n2), (n
′
1, n

′
2)) = R1(s1, s

′
1) ∧ R2(s2, s

′
2) ∧ ⊥ if s′1 and s′2 are weakly composable but not

composable.

Let G = (n0, N, E) be a mc-graph and let f : N → L and e : N × N → L be two func-
tions. For a non-terminal node n in G, and two nodes n′ and n′′ which are sons of n,
we abuse the notion of covering (Def. 10) and say that n′ covers n′′ under f and e w.r.t.
n, if n′ covers n′′ under f w.r.t. n when e replaces the transition relation R.

Definition 17. (Product Graph) For every i ∈ {1, 2} let Gi = (n
0
i , Ni, Ei) be the mc-

graph of Mi ↑, with an initial node n0
i = (s

0
i � ϕ) ∈ Ni. Also let χi be the mc-function of

284 Y. Meller, O. Grumberg, and S. Shoham

Gi. The product graph of G1 and G2, denoted G‖ = (n0
‖, N‖, E‖), is defined as the least

graph that obeys the following:

– n0
‖ = (s

0
1, s

0
2) � ϕ is the initial node in G‖.

– Let n1 = s1 � ψ, n2 = s2 � ψ be s.t. (n1, n2) ∈ N‖, and χf (n1, n2) is indefinite. Then
for every n′

1 = (s
′
1 � ψ′) ∈ N1 and n′

2 = (s
′
2 � ψ′) ∈ N2, if the following holds:

(1) s′1, s′2 are weakly composable; (2) E1(n1, n
′
1) �= false and E2(n2, n

′
2) �= false;

and (3) (n′
1, n

′
2) is not covered under χf and Ef w.r.t. (n1, n2).

Then: (a) (n′
1, n

′
2) ∈ N‖; and (b) E‖((n1, n2), (n

′
1, n

′
2)) = Ef ((n1, n2), (n

′
1, n

′
2)).

Lemma 3. Let G‖ be the product graph defined above. ∀n ∈ N‖, χf (n) is defined.

Note that the value of the edges in G‖ is identical to their value in the composed model.
This is because the product graph already refers to the complete system M1||M2. In
contrast, the values of the edges in the mc-graphs of each component are all smaller or
equal by truth order than ⊥.

The product graph is constructed by a top-down traversal on the mc-graphs of the
two models, where, starting from the initial node, nodes that share the same formu-
las and whose states are weakly composable, will be considered. Whenever two non-
terminal nodes n1, n2 are composed, if χf (n1, n2) is indefinite, then the outgoing edges
are computed as the product of their outgoing edges, restricted to weakly compos-
able nodes. In particular, this means that if a node in one mc-graph has no match-
ing node in the other, then it will be omitted from the product graph. After comput-
ing all legal sons based on the outgoing edges, the nodes which are covered under
χf will be removed, leaving as outgoing edges and nodes only nodes which are not
covered under χf . In addition, when a terminal node of one mc-graph is composed
with a non-terminal node of the other, the resulting node is a terminal node in G‖.
Note that we compute χf and Ef only by need. In fact, when constructing G‖ it suf-
fices to consider the indefinite subgraphs G?

1 and G?
2 of G1 and G2 resp. (pruned in

definite nodes). This is because whenever a definite node is composed with another
node (definite or not), χf of the resulting node is definite, which makes it a terminal
node.

We accompany G‖ with an initial mc-function, χI , for its terminal nodes, based on
the mc-functions of the two mc-graphs. We use the following observation:

Let n = (s1, s2) � ψ be a terminal node in G‖. Then at least one of the following
holds. Either (a) at least one of s1 � ψ and s2 � ψ is a terminal node in its mc-graph; Or
(b) χf (s1 � ψ, s2 � ψ) is definite; Or (c) both s1 � ψ and s2 � ψ are non-terminal but no
outgoing edges were left in their composition.

Definition 18. The initial mc-function χI of G‖ is defined as follows. Let n = (s1, s2) �
ψ ∈ N‖ be a terminal node. If it fulfills case (a) or (b), then χI(n) = χ1(s1 � ψ)⊕χ2(s2 �
ψ). If it fulfills case (c), then χI(n) = true if n is a ∧-node, and χI(n) = false if n is a
∨-node. χI is undefined for the rest of the nodes.

Theorem 8. The resulting product graph G‖ is a closed subgraph of G, the mc-graph
over M1||M2 with a mc-function χ. In addition, χI is defined over all the terminal nodes
of G‖, and is correct w.r.t. χ.

A Framework for Compositional Verification 285

M ::2

r=FF
o=TT

?? 0t

 2t

 3t

 1t

r=FF
i=FF

TT

r=T?
i=TT

TT

M ::1
 0s

 2s 1s
i=TF

r=FT

 3s

?TT? TT

?T

TT

??

??

??

r=?T

TT

o=F?

r=TT

o=?T

r=FT

o=FF

F?

F?

F?TT

?T
??

r=TT

i=TF

TT ?T ?T

Fig. 2. Components M1 and M2

Theorems 6 and 8 imply that
applying the mc-algorithm on
G‖ with χI results in a correct
mc-function χ w.r.t. G‖. Thus,
χ(n0

‖) is the value of the model
checking of ϕ in M1||M2. As
a result, to model check ϕ on
M1||M2 it remains to model
check G‖. Note that the full
graph for M1||M2 is not con-
structed.

If the model checking result
is indefinite (which is only possible if M1||M2 is abstract), then refinement is performed
on each component separately, as described in the following steps, which summarize
our compositional algorithm for checking an alternation-freeLμ formula ϕ on M1||M2.

Step 1: Model check each Mi ↑ separately (for i ∈ {1, 2}):
1. Construct the mc-graph Gi for ϕ and Mi ↑.
2. Apply multi-valued model checking on Gi. Let χi be the resulting mc-function.

If χ1(n
0
1) or χ2(n

0
2) is definite, return the corresp. model checking result for M1||M2.

Step 2: Consider the composition M1||M2:
1. Construct the product graph G‖ of the mc-graphs G?

1 and G?
2.

2. Apply multi-valued model checking on G‖ (with the initial mc-function).
If χ‖(n

0
‖) is definite, return the corresp. model checking result for M1||M2.

Step 3: Refine: Consider the failure node and reason returned by model checking G‖
(where χ‖(n

0
‖) is indefinite). If it is p for some p ∈ APi, then refine G?

i ;
Else let it be a transition ((s1, s2), (s

′
1, s

′
2)). Then:

1. If s′1, s′2 are weakly composable but not composable, refine both G?
1 and G?

2
according to AP1 ∩ AP2.

2. If Ri(si, s
′
i) ≤t Rī(sī, s

′̄
i), refine the transition Ri(si, s

′
i) in G?

i .
3. If Ri(si, s

′
i) and Rī(sī, s

′̄
i) are uncomparable, refine the subgraph(s) in which

the transition is indefinite.
Go to Step 1(2) with the refined indefinite subgraphs.

Theorem 9. For finite components, the compositional algorithm is guaranteed to ter-
minate with a definite answer.

Example 5. An example for the algorithm is given in Fig. 2,3. The two (abstract) com-
ponents are described in Fig. 2. The underlying multi-valued structure is the 3×3 struc-
ture (described in Fig. 1(e), (f)). The atomic proposition o is local to M1, i is local to
M2, and r is a joint atomic proposition that M1 and M2 synchronize on. We wish to
verify the property �(¬i ∨ ♦o). The mc-graph of the lifted model M1 ↑ is described in
Fig. 3(a). The mc-graph of M2 ↑ can be created similarly. Note that the edges of the
mc-graph get a different value than their value in the model, as this is a mc-graph of the
lifted model, thus we can no longer guarantee the existence of these edges. The model
checking on each of the models does not result in a definite answer, and we need to

286 Y. Meller, O. Grumberg, and S. Shoham

o 0s 0s 1s 1s 2s 2s

 0s 1s 2s 3s

 0s i o 1s i o 2s i o

 0s (i o)G ::1

?? ?? ????

F?
????F?

F?

??
F???

FTTT ?? F? ??FT

i o i i o

o o o o

TT TT TT TT TT TT

TT

??

FT ?T

?? ??

?T G ::||

,)(2s 2t 1s 1t,)(0s 0t(,)

 0s 0t(,)

,)(2s 2t

,)(3s 3t,)(3s 2t

,)(2s 2t

,)(2t 2s on 1 :: ,)(2s 3t o::n 2 3n ::

?T

?T

TTTT

???????T

??

FT

(i o)

FT

i o
?T

i o

i
?T

o o

i o
TT

??

T? ?F

o::n 0

?T F?

(a) (b)

Fig. 3. (a) mc-graph of M1 ↑; (b) the product graph. Dashed nodes are covered. Solid lines mark
actual product graph.

consider their composition. The parts that are actually composed are marked with solid
lines in Fig. 3(a). The product graph and its model checking is shown in Fig. 3(b), where
the edges get their actual value. The nodes which are covered are marked with dashed
lines. These nodes are created and removed on-the-fly, since they are covered. The ac-
tual nodes that compose the product graph are marked with solid lines. The property
is still not verified in the composed model, thus a refinement is needed. Note that the
product graph considers only a small part of the compound system, as it takes advantage
of the information from model checking the separate components.

7 Discussion

This paper describes a framework for multi-valued model checking of Lμ formulas w.r.t.
systems composed of several components. The framework is described as follows.

– Lift each individual component Mi into a component Mi ↑ s.t. M1||M2)Mi ↑.
– Model check each of the lifted models separately. If the result is definite, then this

also holds for the full system.
– Construct the product graph of the individual mc-graphs; model check it correctly.
– If the result on the product graph is definite, then this result holds for the full system.

Otherwise, refine the components as needed.

We showed how our framework can be implemented for model checking of CPDBs, and
alternation-free Lμ formulas. We applied a specific model checking and reason finding
algorithm (Algo. 1, Sec. 4), but these can be replaced by other algorithms.

Our framework is suitable for full Lμ, provided that the model checking and reason
finding algorithm can handle the full Lμ. Examples of such algorithms for a 3-valued
structure can be found in [13]. Indeed, in [21] a compositional framework such as ours,
but with the 3-valued semantics, has been presented for the full Lμ.

A Framework for Compositional Verification 287

Our framework can also be used for logics other than the μ-calculus. For example,
the full-PML logic, which extends the modal operators with past operators, AY and
EY , is used in [1], along with a 6-valued structure (described in Fig. 1(c),(d)). The
structure is a CPDB, but since they use a logic with significantly different semantics,
specific adaptations in some of the framework stages should be done.

References

1. Ball, T., Kupferman, O., Yorsh, G.: Abstraction for falsification. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 67–81. Springer, Heidelberg (2005)

2. Belnap, N.D.: A useful four-valued logic. In: Modern uses of multiple valued logics (1977)
3. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics.

In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer,
Heidelberg (1999)

4. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 281–293. Springer,
Heidelberg (2004)

5. Bruns, G., Godefroid, P.: Temporal logic query checking. In: LICS 2001 (2001)
6. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,

vol. 1855, pp. 450–463. Springer, Heidelberg (2000)
7. Chechik, M., Devereux, B., Easterbrook, S.M., Gurfinkel, A.: Multi-valued symbolic model-

checking. In: ACM Transactions on Software Engineering and Methodology, vol. 12 (2003)
8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
9. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans.

Program. Lang. Syst. 19(2) (1997)
10. Easterbrook, S.M., Chechik, M.: A framework for multi-valued reasoning over inconsistent

viewpoints. In: ICSE 2001 (2001)
11. Fitting, M.: Bilattices are nice things. In: Self-Reference (2002)
12. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model checking. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 137. Springer, Heidelberg
(2002)

13. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning:
Abstraction and refinement for the full μ-calculus. Information and Computation 205(8)
(2007)

14. Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In: Hermanns, H.,
Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 212–226. Springer, Heidelberg (2006)

15. Gurfinkel, A., Wei, O., Chechik, M.: Systematic construction of abstractions for model-
checking. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 381–397. Springer, Heidelberg (2006)

16. Huth, M., Pradhan, S.: Lifting assertion and consistency checkers from single to multiple
viewpoints. In: TR 2002/11, Dept. of Computing. Imperial College, London (2002)

17. Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word level predicate abstraction and
refinement for verifying RTL Verilog. In: DAC 2005 (2005)

18. Kupferman, O., Lustig, Y.: Latticed simulation relations and games. In: Namjoshi, K.S.,
Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 316–330.
Springer, Heidelberg (2007)

19. Meller, Y., Grumberg, O., Shoham, S.: A framework for compositional verification of multi-
valued systems via abstraction-refinement. In: TR CS-2009-14, Dept. of Computer Science.
Technion – Israel Institute of Technology (2009)

288 Y. Meller, O. Grumberg, and S. Shoham

20. Seger, C.-J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-ordered
trajectories. Formal Methods in System Design 6(2) (1995)

21. Shoham, S., Grumberg, O.: Compositional verification and 3-valued abstractions join forces.
In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 69–86. Springer,
Heidelberg (2007)

22. Shoham, S., Grumberg, O.: Multi-valued model checking games. In: Peled, D.A., Tsay, Y.-K.
(eds.) ATVA 2005. LNCS, vol. 3707, pp. 354–369. Springer, Heidelberg (2005)

23. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5
(1955)

Don’t Know for Multi-valued Systems

Alarico Campetelli, Alexander Gruler, Martin Leucker, and Daniel Thoma

Institut für Informatik, Technische Universität München, Germany

Abstract. This paper studies abstraction and refinement techniques in the setting
of multi-valued model checking for the μ-calculus. Two dimensions of abstrac-
tions are identified and studied: Abstraction by joining states of the underlying
multi-valued Kripke structure as well as abstraction of truth values, for each fol-
lowing both an optimistic and pessimistic account. It is shown that our notion
of abstraction is conservative in the following sense: The truth value in a con-
crete system is “between” the optimistic and pessimistic assessment. Moreover,
model checking of abstracted systems is shown to be again a multi-valued model
checking problem, allowing to reuse multi-valued model checking engines. Fi-
nally, whenever the optimistic and pessimistic model checking result differ, the
cause for such an assessment is identified, allowing the abstraction to be refined
to eventually yield a result for which both the optimistic and pessimistic assess-
ment coincide.

1 Introduction

In multi-valued logics, a formula evaluates no longer to just true or false but to one
of many truth values. This allows to express to which extent a property is considered
satisfied by a program, or, in the setting of trust models, how much a person can be
trusted [1]. The main motivation of this work is, however, inspired by our study of
software product lines (or software product families). Within software product lines
[2] a set of similar systems, called products, is modelled explicitly expressing their
commonalities and differences. We have shown in [3] that a software product family
can conveniently be modeled as one single multi-valued system, in which each value
corresponds to a subset of products. Thus, the question of which products of the product
line satisfy a certain property corresponds to the truth value of the formula encoding the
property with respect to the multi-valued system.

As explained in [4,5], a Kripke structure (KS) can be extended to the multi-valued
setting by assigning to each proposition in each state one of many (truth) values and
likewise to each transition also a value, resulting in the notion of a multi-valued Kripke
structure (mv-KS). A value of some proposition might then be interpreted as to which
extend a proposition holds, a person may be trusted initially, or in which products of
a product line a certain proposition holds. Similarly, the value of a transition might
identify to which amount a transition might influence the truth value, might modify
the trust value of some person when taking the transition, or, in which products the
transition is actually present.

In model checking, a temporal or modal logic is typically used to specify (intended)
properties of a given mv-KS. As such a logic typically ranges over atomic proposition,

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 289–305, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

290 A. Campetelli et al.

Boolean combinations, and temporal or modal operators, it is helpful to consider values
from a lattice, where meet (!) and join (") naturally yield a semantics for conjunction
and disjunction, respectively. The meaning of temporal or modal operators is adjusted
appropriately. Then, the semantics of a formula with respect to a mv-KS is one element
of the lattice, denoting either the extent to which the formula holds, the trust value
of some person performing actions, or the set of all products satisfying the formula.
Model Checking multi-valued versions of the classical logics LTL, CTL, CTL∗, and
the μ-calculus has the been extensively studied already, for example in [6,4,5,7].

The state explosion problem in (two-valued) model checking—complicating its prac-
tical application—does, of course, not vanish in the multi-valued setting. Therefore, it
is important to study abstraction techniques also for multi-valued model checking. This
paper studies abstraction and refinement techniques in the setting of multi-valued model
checking for the μ-calculus as introduced in [5].

We identify and study two orthogonal forms of abstractions for mv-KS: Firstly, we
consider abstractions of mv-KS induced by joining states to form abstract states, as
it is typically considered also in the two-valued setting. In this setting, a meanwhile
popular form of abstraction is to consider structures that are simultaneously an over
as well as under-approximation of a system, as introduced in [8] in the setting of the
μ-calculus. To this end, Larsen’s and Thomsen’s Kripke modal transition systems are
used to describe abstract systems in which a transition can be may, denoting an over-
approximation, or must, denoting an under-approximation [9]. This, essentially leads
to three possible values for a transition: It is there for sure, it is not there for sure, or
it may be there. This explains that three-valued settings are themselves often used for
abstractions [10]. In this paper, however, we study abstraction of rather than abstraction
by mv-KS. Over-approximation can be intuitively explained as an optimistic account of
the system’s transitions, while we consider an under-approximation a pessimistic ac-
count. We then transfer this understanding to the multi-valued setting to obtain notions
of abstractions. A first, interesting result is that an abstract mv-KS can be again consid-
ered as a mv-KS, yet over a richer lattice, which we call the op-lattice. This allows to
reuse multi-valued model checking engines also for abstraction.

The second source of abstraction that we study is that by abstracting values. Espe-
cially in the setting of product lines, in which a family of N products gives rise to the
powerset lattice with 2N elements, it is essential to also abstract lattice elements, prac-
tically say by identifying different products, hereby reducing N . To follow both the
optimistic and pessimistic view, we need, however, two abstractions for the lattice ele-
ments, here given as usual in abstract interpretation by (two) Galois connections [11].
We introduce a simulation relation and show that in the presence of such a relation the
actual model checking values lies “between” the optimistic and pessimistic one that is
based on the abstract system. Note that in [12] the concept of a latticed simulation is in-
troduced, which, however, does not allow to combine a pessimistic and optimistic view
into one abstraction.

Finally, whenever the optimistic and pessimistic model checking result differ, the
cause for such an assessment is identified. We explain how to compute the cause based
on the structure of the formula to be checked. Knowing causes allows to refine the

Don’t Know for Multi-valued Systems 291

abstraction to eventually yield a result for which both the optimistic and pessimistic
assessment coincide.

2 Preliminaries

Lattices. An algebraic structure (L,!,") consisting of a set L, a binary operation
! : L × L → L called meet and a binary operation " : L × L → L called join is a
lattice if it satisfies the following equations for all elements x, y, z ∈ L: (i) x!y = y!x
and x " y = y " x, (ii) x ! (y ! z) = (x ! y) ! z and x " (y " z) = (x " y) " z,
(iii) x!(y"x) = x and x"(y!x) = x, and (iv) x!x = x and x"x = x. Equivalently
to the definition as an algebraic structure, a lattice can be defined as a partially ordered
set (L,�) where for each x, y ∈ L, there exists (i) a unique greatest lower bound (glb),
which is called the meet of x and y, denoted by x ! y, (ii) and a unique least upper
bound (lub), which is called the join of x and y, denoted by x " y. Depending on the
application, in the following we use one or the other form for dealing with lattices.

The definitions of glb and lub extend to finite sets of elements A ⊆ L as expected,
which are then denoted by

�
A and

⊔
A, respectively. A lattice is called finite iff L

is finite. Every finite lattice has a least element, called bottom, denoted by ⊥, and a
greatest element, called top, denoted by �. A lattice is distributive, iff x ! (y " z) =
(x! y) " (x! z), and, dually, x" (y ! z) = (x " y) ! (x " z). In a de Morgan lattice,
every element x has a unique dual element ¬x, such that ¬¬x = x and x � y implies
¬y � ¬x. Typically, we denote a de Morgan lattice as a quadruple (L,!,",¬).

A complete distributive lattice is called Boolean iff for all elements x ∈ L we have
x " ¬x = � and x ! ¬x = ⊥. A typical Boolean lattice is the one induced by the
power of some non-empty finite set {1, . . . , N}, for N ∈ �: (2N ,⊆) where meet, join,
and dual of elements, are given by set intersection, set union, and complement of sets,
respectively. For example, Figure 4(a) shows the powerset lattice for N = 3.

Multi-valued Kripke Structures. Let P be a set of propositional constants. A multi-
valued Kripke structure (mv-KS) is a tuple K = (S,L,R, L) where S is a set of states,
L is a de Morgan lattice,R : S×S → L is a transition function associating an element
of the lattice to each pair of states, and L : S → (P → L) is yields for a proposition in
each state an element of the lattice. WithMK we denote the set of all mv-KS.

A Kripke structure in the usual sense can be seen as a mv-KS with values over the
two element lattice consisting of a bottom ⊥ and a top � element, ordered as shown in
Figure 3(a). Value� then means that the property holds in the considered state while⊥
means that it does not hold. Similarly, R(s, s′) = � reads as there is a corresponding
transition whileR(s, s′) = ⊥ means there is no transition between the states s and s′.

Multi-valued modal μ-calculus. In the following we introduce a multi-valued modal
version of the μ-calculus along the lines of [7]. Let V be a set of propositional variables.
Formulae of the multi-valued modal μ-calculus are given by

ϕ ::= true | false | q | ¬ϕ | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | μZ.ϕ | νZ.ϕ

where q ∈ P , and Z ∈ V . Let mv -Lμ denote the set of closed formulae generated
by the above grammar, where the fixpoint quantifiers μ and ν are variable binders. The

292 A. Campetelli et al.

[[true]]ρ := λs.�
[[false]]ρ := λs.⊥

[[q]]ρ := λs.L(s)(q)

[[¬ϕ]]ρ := λs.¬[[ϕ]]ρ(s)
[[Z]]ρ := ρ(Z)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ � [[ψ]]ρ
[[♦ϕ]]ρ := λs.

⊔{R(s, s′) � [[ϕ]]ρ(s′)}
[[�ϕ]]ρ := λs.

�{¬R(s, s′) � [[ϕ]]ρ(s′)}
[[μZ.ϕ]]ρ :=

� {f | [[ϕ]]ρ[Z �→f] � f}
[[νZ.ϕ]]ρ :=

⊔ {f | f � [[ϕ]]ρ[Z �→f]}

Fig. 1. Semantics of mv -Lμ formulae

semantics of a mv -Lμ formula is an element of LS , i.e., a function from S to L yielding
for the formula at hand and a given state its satisfaction value measured in terms of the
lattice. In the setting of software product lines, for example, this is the set of all products
for which the formula holds in the given state. More precisely, the semantics [[ϕ]]Kρ of a
mv -Lμ formula ϕ with respect to a mv-KS K and an environment ρ : V → LS , which
explains the meaning of free variables in ϕ, is defined as shown in Figure 1, where
ρ[Z → f] denotes the environment that maps Z to f and agrees with ρ on all other
arguments. When clear from the context, we drop indices K and ρ.

Regarding motivation, consider the ♦-operator as an example: ♦ϕ is classically sup-
posed to hold in states that have a successor satisfying ϕ. In a multi-valued version,
we first take the value of a transition and reduce it (meet it) with the value of ϕ in that
successor. As there might be transitions to different successors, we take the best value.

The functionals λf.[[ϕ]]ρ[Z �→f] : LS → LS are monotone wrt. � for any Z,ϕ and
S. By [13], least and greatest fixpoints of these functionals exist. Approximants of mv -
Lμ formulae are defined as usual: if fp(Z) = μZ.ϕ then Z0 := λs.⊥, Zn+1 :=
[[ϕ]]ρ[Z �→Zn] for any ordinal n and any environment ρ, and Zλ :=

�
n<λ Zn for a limit

ordinal λ. Dually, if fp(Z) = νZ.ϕ then Z0 := λs.�, Zn+1 := [[ϕ]]ρ[Z �→Zn], and

Zλ :=
⊔

n<λ Zn.

3 Conservative Abstractions for MV-Kripke Structures

In this section we introduce two different kinds of abstractions for multi-valued Kripke
structures, both motivated by practical applications, and made explicit by respective
abstraction operators. As we show, the combined application of both abstraction op-
erations (i) yields again a mv-KS, which means that we can technically deal with the
abstracted system in the same way as with the concrete system, i. e. in particular, we
can apply the same model checking techniques, and (ii) that it is conservative in the
sense that the result of evaluating any mv -Lμ formulae on the abstract system is always
a conservative abstraction of the evaluation on the concrete system.

Abstraction by joining states. Consider the part of a mv-KS shown in Figure 2(a). A
standard idea of abstraction, which we follow as our first approach, is to join states in
a concrete system to form combined abstract states in the abstract system. For example,

Don’t Know for Multi-valued Systems 293

s10

s11

s2

s3

s4

{1}

{1, 2}
{3}
{3, 4}

(a) Concrete system.

s′1

s′2

s′3

s′4

({1, 2}, {1})

({3/4}, ∅)

({3/4}, {3/4})

(b) Abstract system (mv-KS).

Fig. 2. An Example of a combined abstraction. The abstraction joined states as indicated by the
dashed lines, e. g. s10 and s11, and does additionally abstract the original lattice elements 3 and
4 with one abstract element denoted by 3/4.

the concrete states s10 and s11 in Figure 2(a) are joined (indicated by the dashed line)
to form the abstract state s′1 in Figure 2(b).1

Regarding transitions, we label the abstract transitions with values representing over-
and under-approximation of the corresponding concrete (original) transitions. More
specifically, the two transitions from the concrete states s10 and s11 to s4, respectively,
are over-approximated by the label {1, 2} and under-approximated with {1}, in the ab-
straction. We combine this approximation information to label the corresponding transi-
tion in the abstract system with a tuple consisting of the over- and under-approximation.
This results again in a latticeLop of tuples based on the latticeL used to label transitions
in the concrete system as follows:

Definition 1 (op-lattice). Let L be a de Morgan lattice. The lattice

Lop = ({(m1,m2) ∈ L × L | m1 * m2},!op,"op,¬op)

with the operations !op, "op, ¬op given by

(m1,m2) !op (m′
1,m

′
2) := (m1 !m′

1,m2 !m′
2)

(m1,m2) "op (m′
1,m

′
2) := (m1 "m′

1,m2 "m′
2)

¬op(m1,m2) := (¬m2,¬m1)

is called the optimistic-pessimistic lattice (op-lattice) for L.

We called Lop an optimistic-pessimistic lattice as its elements embody these two kinds
of views—regardless whether we interpret its elements as degrees of truth or configura-
tions of a software product line: The first entry of the tuple represents the best case, e. g.
the “highest” truth value or the largest set of configurations of a software product family,
while the second entry represents the (worst) case which is achieved at the least, e. g.

1 Please ignore the transitions from s′2 and s′3 to s′4 for the moment.

294 A. Campetelli et al.

�

⊥
(a)

(�,�)

(�,⊥)

(⊥,⊥)
(b)

{1, 2}

{1}

{∅}

{2}

(c)

({1, 2}, {1, 2})

({1, 2}, {1})

({1}, {1})

({1}, {∅})

({1, 2}, {∅})

({∅}, {∅})

({1, 2}, {2})

({2}, {2})

({2}, {∅})

(d)

Fig. 3. In (b) true, false and don’t know lattice for the two-element lattice (a), in (c) lattice for two
product lines and corresponding op-lattice in (d)

the “lowest” guaranteed truth value or the (smallest) set of configurations which still
guarantees a certain property. The op-lattice of the two valued and four valued Boolean
lattices shown in Figures 3(a) and 3(c) are given in Figures 3(b) and 3(d), respectively.
Observe that Figure 3(b) shows the three-valued lattices commonly used for abstraction
in the setting of the μ-calculus [14].

Let us formalize the abstraction process motivated before. To this end, we define
what it means to combine concrete states and abstract them to an abstract state in an
abstract system. Let the function γ : SA → P(SC) be a mapping which identifies
(i) which concrete states in SC are combined, (ii) and to which abstract state in SA

they are abstracted. We require γ to be abstraction complete , i.e., for all sC ∈ SC

there is sA ∈ SA with sC ∈ γ(sA). Thus each concrete state is accounted by at least
one abstract state. Now, we are prepared to define an abstraction operator absS which
represents the act of abstracting by joining states.

Definition 2 (State Abstraction Operator). We call the function absS yielding the ab-
stract mv-KS absS ((SC ,LC ,RC , LC), γ) = (SA,LA,RA, LA) of the concrete mv-
KS (SC ,LC ,RC , LC) by joining states according to the abstraction complete function
γ the state abstraction operator, where the set SA of abstract states is implicitly given
by γ, the lattice LA is the op-lattice of LC and

RA(sA, s′A) =

⎛
⎝ ⊔

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)

RC(sC , s′C) ,
�

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)

RC(sC , s′C)

⎞
⎠

LA(sA, p) =

⎛
⎝ ⊔

sC∈γ(sA)

LC(sC , p) ,
�

sC∈γ(sA)

L(sC , p)

⎞
⎠

The function absS maps a mv-KS representing a concrete system to a mv-KS which
representing its abstraction by combining states via function γ. For the pessimistic view,
it takes the worst of the (best) combinations of states. For example, the lattice shown in
Figure 3(d) is the op-lattice which defines the transition labels for an abstract mv-KS
which is constructed by abstracting from a concrete mv-KS where the transitions were

Don’t Know for Multi-valued Systems 295

labeled with elements of the lattice shown in Figure 3(c). Also note, that following our
construction we exactly get the usual three-valued lattice (cf. Figure 3(b)) if we abstract
a (two-valued) Kripke structure, where the existence and missing of transitions is equal
to labeling the transitions with the two-valued Boolean lattice as shown in Figure 3(a)
[14].

Abstraction of lattices elements. The abstraction of states as performed by our first
abstraction operation absS reduces the state space by joining states. Thus, the abstract
system usually also has significantly fewer transitions. To further reduce the abstract
system, we may want to identify some elements of the lattice. Therefore, we also con-
sider abstractions of the original lattice. In the following we introduce such a kind of
abstraction and provide a definition of a second abstraction operator, correspondingly.
Note, that the first abstraction operator yields a mv-KS labeled with an op-lattice, on
which we can apply the second abstraction operator subsequently.

Consider again Figure 2(b): Assume that we no longer want to differ between the two
lattice elements 3 and 4. Thus, we abstract these elements to a single element—denoted
by 3/4—in the abstract lattice. Being the only abstraction of lattice elements we make,
the resulting abstract lattice consists of the three elements {1, 2, 3/4}, which may now
be used to label transitions in the abstract system. The effect of this abstraction is shown
in Figure 2(b): Since we abstract 3 and 4 together, whenever 3 and 4 occur apart from
each other in the concrete system, this asks for an optimistic and a pessimistic view in

the abstract system, represented by the transition s′2
(3/4,∅)−−−−→ s′4: There is no transition

in the pessimistic case (entry ∅ of the tuple), yet a transition for the element 3/4 in the
optimistic view.

In order to formalize such an abstraction from lattices we use the concept of Galois
connections which is well know in the area of abstract interpretation.

Definition 3 (Galois Connection [11]). Let L1 and L2 be lattices. A pair (↑, ↓) of
monotone functions ↑ : L1 → L2 and ↓ : L2 → L1 is a Galois connection from L1 to
L2, if ∀l ∈ L1 : l � ↓(↑(l)) and ∀a ∈ L2 : ↑(↓(a)) � a.

For the soundness proof of our approach we depend on some of the common proper-
ties of Galois connections. In particular, any Galois connection (↑, ↓) from L1 to L2
fulfills (i) ↑(l) � m ⇔ l � ↓(m), (ii) ↑(

⊔
L) =

⊔
l∈L ↑(l), and (iii) ↓(

�
M) =�

m∈M ↓(m). Figure 4 shows an example of a Galois connection between two lattices
which illustrates these properties. The abstraction combines the (concrete) elements 1
and 2 of the lattice L1 (cf. Figure 4(a)) to the single element 1/2 in the lattice L2. The
solid line shows an example of how the Galois connection (↑, ↓) works: We abstract (↑)
element {2} to {1/2} and concretize (↓) then back to the {1, 2}. This is an optimistic
approximation as {2} � {1, 2}. In particular, properties (i)-(iii) are fulfilled.

Usually Galois connections are applied for abstractions by using ↑ as the abstrac-
tion function and ↓ as the concretization function. Since by definition l � ↓(↑(l))
holds, this abstraction yields an over-approximation, or an optimistic approximation
in our terminology. For our approach we additionally need a pessimistic approxima-
tion (under-approximation). We define the pessimistic approximation using a second
Galois connection and swapping the interpretation of the mapping functions: For the
pessimistic case we use ↓ as an abstraction function and ↑ as a concretization function.

296 A. Campetelli et al.

{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

(a) L1

{1/2, 3}

{1/2}

∅

{3}

↑

↓

(b) L2

Fig. 4. A galois connection allows to interpret the lattice L2 as an abstraction of L1, where the
(concrete) lattice elements 1 and 2 are abstracted to a single element in L2, denoted by 1/2.
Dashed and solid lines illustrate a part of the galois connection (↑, ↓).

We now define the lattice to label our abstract systems. We call it the abstract op-
lattice. It is based on the original lattice from which we abstract elements and two
Galois connections which define our optimistic and pessimistic view. Since we now
use different lattices for the optimistic and pessimistic approximation, it is no longer
possible to define negation for the elements of the abstract lattice directly. Therefore
we additionally require two negation functions, that map between the optimistic and
pessimistic view appropriately.

Definition 4 (aop-lattice). Let LC be a de Morgan lattice and Lo and Lp be lattices.
Let (↑o, ↓o) with ↑o : LC → Lo and ↓o : Lo → LC and (↑p, ↓p) with ↑p : Lp → LC

and ↓p : LC → Lp be Galois connections. Furthermore, let Lo and Lp be connected
by two anti-monotone negation functions ¬o : Lo → Lp and ¬p : Lp → Lo with
¬o↑o(x) � ↓p(¬x) and ↑o(¬x) � ¬p↓p(x). We call the lattice

Laop =
(
{(mo,mp) ∈ Lo × Lp | ↓o(mo) * ↑p(mp)}, !aop, "aop, ¬aop

)
with the operations given by

(mo,mp) !aop (m′
o,m

′
p) := (mo !m′

o , mp !m′
p)

(mo,mp) "aop (m′
o,m

′
p) := (mo "m′

o , mp "m′
p)

¬aop(mo,mp) := (¬pmp , ¬omo)

the abstract optimistic-pessimistic lattice (aop-lattice) for the lattice LC .

Using the properties of Galois connections and the definition of the negation functions,
we easily see:

Proposition 1 (aop-lattice is well-defined). For all lattice values x ∈ LC it holds that
(↑o(x), ↓p(x)) ∈ Laop and that "aop, !aop, ¬aop are well-defined and in the sense that
they preserve the condition ↓o(mo) * ↑p(mp).

Negation on an aop-lattice always yields an over- and under-approximation of a cor-
responding concrete element. But it also allows for the loss of information, since the

Don’t Know for Multi-valued Systems 297

{1, 2, 3}

{1, 2}

{1}

{2, 3}

{2}

∅

{1, 3}

{3}

(a) LC

{1/2, 3}

{1/2}

∅

{3}

↑o

↓p

¬o

↑o

↓p

¬p

(b) Lo = Lp

Fig. 5. Illustration of the negation function(s) in a aop-lattice

result of negation in the concrete might not be representable “exactly” in the abstract.
Figure 5 illustrates such a situation. It shows the lattice LC that we consider for the con-
crete system, whereas for the abstraction, the same lattices Lo = Lp for the optimistic
and pessimistic case are used. Consider the concrete element x = {2} and its negation
¬x = {1, 3} (in the concrete system). Following the arrows shows ¬o↑o(x) = {3} �
{3} = ↓p(¬x) and ↑o(¬x) = {1/2, 3} � {1/2, 3} = ¬p↓p(x). This means that the
negation of the optimistic-pessimistic tuple encloses the actually correct negation result.

An aop-lattice is obviously distributive, but the preceding discussion shows that it is
not a de Morgan lattice. However, our whole theory and model checking machinery can
be extended to non-de Morgan lattices. In particular, Theorem 1 also holds for non de
Morgan lattices. Nevertheless, using the same lattice for the over and underapproxima-
tion (cf. Theorem 2) yields an aop-lattice which is a de Morgan lattice. Thus, to simplify
presentation, we silently assume that an aop-lattice is indeed a de Morgan lattice. Note,
that if using the state abstraction operator only, we get an op-lattice which also is a de
Morgan lattice.

Now we make precise the idea of abstraction by abstracting the lattice and provide a
suitable abstraction operator absL.

Definition 5 (Lattice Abstraction Operator). Let (SA,LA,RA, LA) be a mv-KS, and
↑o, ↓p be two Galois connections with corresponding negation functions ¬o,¬p. Then,
the lattice abstraction operator absL yields an abstracted mv-KS

absL
(
(SA,LA,RA, LA), ↑o, ↓p,¬o,¬p

)
= (S′

A,L′
A,R′

A, L′
A)

labeled with an aop-lattice L′
A, where S′

A = SA and

R′
A(s, s′) =

(
↑o ((RA(s, s′))1) , ↓p ((RA(s, s′))2)

)
L′

A(s, p) =
(
↑o ((LA(s, p))1) , ↓p ((LA(s, p))2)

)
This completes our idea of abstraction: For any concrete mv-KS, the subsequent appli-
cation of both abstraction operators—absL after absS —yields a mv-KS labeled with an
aop-lattice representing the combination of both kinds of abstractions.

While we have provided two abstraction operators to exemplify our ideas of abstrac-
tion, we show that model checking the abstract system yields conservative results for
the concrete system by means of a conservative abstraction.

298 A. Campetelli et al.

Definition 6 (Conservative Abstraction). Let LC be a de Morgan lattice and LA an
aop-lattice with the Galois connections (↑o, ↓o) from LC to Lo and (↑p, ↓p) from Lp to
LC with the negation functions ¬o and ¬p. Let KC = (SC ,LC ,RC , LC) be the con-
crete and KA = (SA,LA,RA, LA) the abstract multi-valued Kripke-structure. Fur-
thermore, let γ be an abstraction complete function which specifies how to abstract
concrete states. Then, we call KA a conservative abstraction of KC , if the following
conditions hold:

↑p((LA(sA, p))2) �
�

sC∈γ(sA)

L(sC , p) (ca-lab (i))

↓o((LA(sA, p))1) *
⊔

sC∈γ(sA)

L(sC , p) (ca-lab (ii))

↑p((RA(sA, s′A))2) �
�

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)

RC(sC , s′C) (ca-trans (i))

↓o((RA(sA, s′A))1) *
⊔

sC∈γ(sA)

⊔
s′

C∈γ(s′
A)
RC(sC , s′C) (ca-trans (ii))

Note that both abstraction operators as well as their concatenation induce conservative
abstractions. A conservative abstraction is exactly that kind of abstract mv-KS which
we require such that the evaluation of a formula ϕ ∈ mv -Lμ (cf. Section 2) yields useful
results. More precisely, evaluating a mv -Lμ formula on a conservative abstraction of a
concrete system KC always yields a tuple representing the optimistic and pessimistic
approximation of the result that would be produced when evaluating the formula onKC

directly. Theorem 1 states this correctness result in a formal manner.

Theorem 1 (Correctness of abstraction). Let KC = (SC ,LC ,RC , LC) be the con-
crete multi-valued Kripke-structure and KA = (SA,LA,RA, LA) be a conservative
abstraction ofKA. Let the corresponding Galois connections (↑o, ↓o), (↑p, ↓p), and the
abstraction function γ be defined as in Definition 6. Then for all sA ∈ SA, for all
sC ∈ γ(sA) and for all formulae ϕ ∈ mv -Lμ it holds that:

↑p (mp) � �ϕ�KC
∅

(sC) � ↓o (mo)

where (mo,mp) = �ϕ�KA
∅

(sA) is the result of the evaluation of ϕ on KA.

Proof. The proof is carried out by induction over the structure of aμ-calculus formula. To
demonstrate the central ideas, we explain the induction step for the ♦-operator. We con-
fine ourselves to the correctness of the under-approximation as the over-approximation
can be proved in an similar, slightly simpler way.

Let ()2 denote the second, pessimistic entry of an aop-lattice tuple. We want to
prove, that ↑p ((�♦ϕ�(sA))2) yields an under-approximation for each concrete state
sC ∈ γ(sA) of the evaluation of the same formula on the concrete system. By semantics
of the ♦-operator we obtain ↑p(

⊔
s′

A
{(R(sA, s′A))2 ! (�ϕ�(s′A))2}). By induction we

know that (�ϕ�(s′A))2 � ↓p(
�

ŝ′
C∈γ(s′

A)�ϕ�(ŝ′C)). This yields an upper bound for our
under-approximation:

Don’t Know for Multi-valued Systems 299

↑p(
⊔
s′

A

{↓p(
�

s̃C∈γ(sA)

⊔
s̃′

C∈γ(s′
A)

R(s̃C , s̃′C)) ! ↓p(
�

ŝ′
C∈γ(s′

A)

�ϕ�(ŝ′C))})

Now we can apply Galois connection properties and choose s̃C = sC and thus obtain a
weaker upper bound

⊔
s′

A
{
⊔

s̃′
C∈γ(s′

A)R(sC , s̃′C)!
�

ŝ′
C∈γ(s′

A)�ϕ�(ŝ′C)}. By exploiting
distributivity of ! and " this can be simplified to:⊔

s′
A

⊔
s̃′

C∈γ(s′
A)

�

ŝ′
C∈γ(s′

A)

{R(sC , s̃′C) ! �ϕ�(ŝ′C)}

We can now choose ŝ′C = s̃′C and obtain once again a weaker upper bound:⊔
s′

C

{R(sC , s′C) ! �ϕ�(s′C)} = �♦ϕ�(sC)

This least upper bound is identical to the definition of the ♦-operator semantics and thus
completes the proof. �

So far, we have presented the most general setting, in which we used different lattices
for the optimistic and pessimistic approximation, respectively. However, it may usually
be more convenient to use the same (de Morgan) lattice for both kinds of approximation.
Doing so allows to define one of the two required Galois connections in terms of the
other one and to use the negation defined on the lattice instead of the two negation
functions mapping between separated lattices:

Theorem 2 (Simplification). Let LC be a lattice and Lop be a de Morgan lattice.
Let (↑o, ↓o) be a Galois connection from LC to Lop. This Galois connection induces
two other functions ↑p : x → ¬↓o(¬x) and ↓p : x → ¬↑o(¬x) which also define
a Galois connection (↑p, ↓p) from Lop to LC . Together with the negation functions
¬o(x) = ¬p(x) = ¬x we obtain an aop-lattice for LC .

We can prove this theorem by showing that (↑p, ↓p) fulfills the Galois connection prop-
erties and that the conditions for the negation functions stated in Definition 4 hold. If
not stated differently we will work with such a simple form of abstraction.

4 Causes for Indefinite Results and Refinement

Whenever the optimistic and pessimistic assessment of a formula evaluated on the ab-
stract system differ, we might be interested in refining (one of) the abstractions, to even-
tually obtain a result that coincides with that for the concrete system. While we leave
precise ideas of refinement for future work, we elaborate a function causes that returns
the causes of why the semantics of a formula interpreted over a mv-Kripke structure
using the aop-lattice is a tuple in which the left and right components differ. To deter-
mine the causes, we analyze the results of the required steps to compute the semantics
of a formula by means of a standard fixpoint computation. Revisit Figure 1, in which
the semantics of a mv -Lμ formula is given. Since the semantics of μ-calculus fixpoint
operators can be computed in an iterative manner [13], they do not have to be treated

300 A. Campetelli et al.

explicitly. The semantics of the �- and ♦-operators is given by means of transitions and
meet and join operators. Thus, a relevant computation step for determining causes is
basically one of (i) the evaluation of the labeling function L for some atomic proposi-
tion p and state s (ii) the evaluation of the transition relation function R for two states
s and s′, (iii) the computation of negation, or (iv) the computation of meet and join. In
the latter case, the meet and join operators may be indexed by state variables iterating
over the states of the Kripke structure needed to compute the semantics of the �- and
♦-operator. Therefore, to describe a computation, we define a formula language LΦwith
state variables si by the following grammar:

Φ := ¬Φ | Φ ! Φ | Φ " Φ |
�

si

Φ |
⊔
si

Φ | L(si, p) | R(si, sj)

Before we give a precise definition of causes, we present the intuition behind this no-
tion. At first, let us discuss in which way the abstraction from lattices (the shift from op-
lattice to aop-lattice) gives rise to imprecision. Consider the optimistic and pessimistic
abstraction of the powerset lattice over the elements 1, . . . , 5 shown in Figures 6(a)
and 6(b), respectively, in which abstract elements are named according to their con-
crete counter parts. Now, consider a meet of the elements {1, 2, 3, 4} and {2, 3, 4, 5}
within the pessimistic lattice. As there is no element {2, 3, 4}, the result is ∅. Thus,
the computation of a pessimistic value might be more pessimistic just because of the
lattice abstraction. To identify the situations that pessimistic as well as optimistic val-
ues are diluted by such meet and join operations, we consider causes as elements in the
concrete rather than the abstract lattice.

The other source for different optimistic and pessimistic assessment is due to abstrac-
tion by joining states. More precisely, propositions and transitions may be assessed with
differing optimistic and pessimistic values. However, combining such imprecise ver-
dicts by meet and join may actually eliminate certain imprecision: Take for example the
three-valued lattice in which (�,⊥) ! (⊥,⊥) yields the precise verdict (⊥,⊥), thus
eliminating any cause for refinement.

Hence, we should study in which way meet, join, and negation operators actually
modify causes for why the respective subformulae have a differing verdict, both due to
the fact that imprecision determined for subformulae may be eliminated by meet and
join but also introduced due to the lattice abstraction.

We are now set to introduce our ideas formally. LetLo be the lattice for the optimistic
and Lp for the pessimistic view as introduced in Definition 4. The function causes
that returns the set of causes for one computation step from a causes domain � made
precise below uses the result of the present computation step, the results of the directly
preceding computation steps, and the causes computed for the preceding steps (its sub-
formulae). Thus, the function causes has the type:

causes : (LΦ × Lo × Lp)× ((LΦ → Lo)× (LΦ → Lp))× (LΦ → �) → �

Let us now elaborate on the causes domain: We consider a cause to be a pair (mo,mp)
of elements of the concrete lattice LC , which limit the possible range of values for
the semantics, together with a context, describing the qualitative origin of the different
assessment. More specifically, a context could denote one of (i) a proposition in some

Don’t Know for Multi-valued Systems 301

{1, 2, 3, 4, 5}

{1, 2, 3, 5}

∅
(a)

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2} {1, 4} {1, 3}

{3}

∅

{2, 3, 4, 5}

{3, 5} {2, 5} {4, 5}

(b)

Fig. 6. An optimistic lattice Lo and a pessimistic lattice Lp, where {3} is added during refinement

state, (ii) some transition, (iii) or o/p identifying the latticesLp orLo. The latter symbols
are used to indicate the situation that the results are diluted due to abstraction of lattices.
Consequently, we define the domain of causes as � := LC×� and the set of contexts as
� := (S×P)∪ (S×S)∪ {o, p}, where (i) S×P refers to a label of a state, (ii) S×S
to a transition, and (iii) {o, p} to the optimistic or pessimistic lattice Lo or Lp.

In the following we will use as names for the function parameters mo for the op-
timistic and mp for the pessimistic result, ξo (ξp) for the function mapping preceding
computations to their optimistic (pessimistic, resp.) results and ζ ⊆ � to their causes.
We give the definition of causes in an inductive fashion.

Atomic propositions. For an atomic proposition p a cause is just the pair of concrete
lattice elements, for which the proposition is undetermined for some state s:

causes(p(s),mo,mp, ξo, ξp, ζ) = {(s, p, (↓o(mo), ↑p(mp)))}

For example, if an atomic proposition p evaluates to {1, 2, 3, 4, 5} in the optimistic and
to {2, 3, 4, 5} in the pessimistic account, the cause is (s, p, ({1, 2, 3, 4, 5}, {2, 3, 4, 5})).

Transitions. Causes for transitions are similarly defined as for atomic propositions:

causes(R(s, s′),mo,mp, ξo, ξp, ζ) = {(s, s′, (↓o(mo), ↑p(mp)))}

Let us illustrate the causes for transitions, which may be raised by two different rea-
sons: Several states could have been joined and therefore differently labeled transitions
(or propositions respectively) could have been merged as shown in Figure 7(a) or infor-
mation could have been lost due to the abstraction from the concrete lattice as shown in
Figure 7(b). A combination of both cases is likewise possible as shown in Figure 7(c),
where the example is driven over the powerset lattice of three elements.

Negation. When using different lattices for the optimistic and pessimistic view, nega-
tion results in a loss of precision if the complement of an element of one lattice is not
exactly representable in the other lattice. A cause in this case expresses, that in one
of the abstract lattices a given element is missing. Since negation never increases pre-
cision, causes for preceding computations can just be passed on. Figure 8 shows how
information can be lost due to negation.

302 A. Campetelli et al.

{1, 2, 3, 5}

∅

({1, 2, 3, 5}, ∅)

(a)

{2, 3}

({1, 2, 3, 5}, ∅)

(b)

{1, 2, 3}

{2, 3, 4}

({1, 2, 3, 4, 5}, ∅)

(c)

Fig. 7. Imprecision due to joining states 7(a), to lattice abstraction 7(b), and to both 7(c)

{1, 2, 3} {4, 5, 6}

({1, 2, 3, 4}, {1, 2}) ({2, 3, 4, 5, 6}, {5})

¬

¬

Fig. 8. Information loss due to negation. Negating
{1, 2, 3} results in {4, 5, 6}. Negating the abstraction
{1, 2, 3, 4}, {1, 2} could yield ({3, 4, 5, 6}, {5, 6}) but
the result in this example is even less precise.

To define the cause for nega-
tion formally, let us consider
one case: Recall that mp =
¬ξo(ϕ(s)). If this computation
would have been carried out in
the concrete lattice, we would
have obtained ↓o(ξo(ϕ(s))). If
the negation of the latter value
is different from ↑p(mp), we
have a further imprecision due
to the lattice abstraction. Other-
wise, the only imprecision is due to the so far accounted ones denoted by ζ. Thus, we
define causes as follows:

causes((¬ϕ)(s),mo,mp, ξo, ξp, ζ) =

ζ(ϕ(s)) ∪
{
{(¬↓o(ξo(ϕ(s))), ↑p(mp))} if components differ

{(↑p(ξp(ϕ(s))),¬↓o(mo))} if components differ

Meet and join. Let us consider the case of a meet operation. The treatment of the join
operator is dual and omitted here. Let (mo,mp) be obtained by ((ξ1

o ! ξ2
o), (ξ1

p ! ξ2
p)),

where ξj
σ = ξσ(ϕj(s)), for j ∈ {1, 2}, σ ∈ {o, p}.

As with negation calculating the meet can, on one hand, result in further imprecision
(because of the lattice abstraction). However, due to the properties of Galois connec-
tions both operations are exact on either the optimistic or the pessimistic view. There-
fore we can only lose informations because of missing elements in one of the abstract
lattices. So, as seen below, we add, similarly as in the case of negation, causes.

On the other hand, a meet may result in a gain of information due to the meet in
the pessimistic view. The additional information can be used to remove or reduce the
imprecision listed in causes of preceding computation steps. To illustrate the idea, con-
sider the meet of ξ1 = ({2, 3}, {2, 3}) and ξ2 = ({1, 2, 3}, {3}), which results into
(mo,mp) = ({2, 3}, {3}). Note that ξ2, in the product line interpretation, denotes that
no precise information about products 1 and 2 is available, while ξ1 represents a precise
result. Now, considering the result ({2, 3}, {3}), we observe that the imprecision about
product 1 is no longer a concern, while that for product 2 is still of interest. Practically,

Don’t Know for Multi-valued Systems 303

the result may be expressed by taking the cause based on ξ2 = (ξ2
o , ξ

2
p) and adjusting

its components by the result mo and mp as follows: (ξ2
o !mo, (ξ2

p "mp) ! (ξ2
o !mo)),

where the meet in the second component with the first component is only to make sure
that the second component is smaller than the first component. This modification is ex-
pressed by the following operator fil , that takes an optimistic result mo, a pessimistic
result mp and a cause:

fil(mo,mp, (k, (lo, lp))) = (k, lo ! ↓o(mo), (lp " ↑p(mp)) ! (lo ! ↓o(mo)))

Then we are ready to define the function causes for a meet operation as:

causes((ϕ1 ! ϕ2)(s),mo,mp, ξo, ξp, ζ) =
{(↓o(ξo(ϕ1(s))) ! ↓o(ξo(ϕ2(s))), ↑p(mp))} if components differ

∪
⋃

c∈ζ(ϕ1(s))∪ζ(ϕ(s))

fil(mo,mp, c)

Example 1. For a better understanding of the propagation of causes we consider as
example the meet of ({1, 2, 3, 4, 5}, {1, 2, 3, 4}) and ({1, 2, 3, 4, 5}, {2, 3, 4, 5}). Using
the lattices in Figures 6(a) and 6(b) for the optimistic respectively pessimistic view,
this results in ({1, 2, 3, 4, 5},∅). Calculating the meet in an exact manner would have
resulted in ({1, 2, 3, 4, 5}, {2, 3, 4}). We therefore obtain the cause (p, ({2, 3, 4},∅)).

Now, let us assume that the fixpoint computation (expressed by a formula of the
grammar introduced above) requires to join the previous result ({1, 2, 3, 4, 5},∅) with
the pair ({1, 2, 3, 4, 5}, {1, 2}) which results in ({1, 2, 3, 4, 5}, {1, 2}). Since we now
have information about 2, we can modify the cause to (p, ({2, 3, 4}!{1, 2, 3, 4, 5}, (∅"
{1, 2}) ! {2, 3, 4})), resulting in (p, ({2, 3, 4}, {2}).

As next step we take the meet of ({1, 2, 3, 4, 5}, {1, 2}) and ({1, 2, 3, 5}, {1, 2})
which results in ({1, 2, 3, 5}, {1, 2}). Since we obtained information about 4, the cause
is further simplified to (p, ({2, 3}, {2}). We can now modify the lattice for the pes-
simistic view Lp by adding an element for 3 as shown in Figure 6(b). Repeating the
computation results in ({1, 2, 3, 5}, {1, 2, 3}) and thus yield the same imprecision as
we started the computation with.

Note that the treatment of causes as pairs (mo,mp) can be simplified in Boolean lattices
to a single value mo ! ¬mp actually representing set difference.

The computation of causes can be interweaved with the computation of the seman-
tics. In case of a don’t know result, meaning that the optimistic and pessimistic assess-
ment differ, a cause can be picked according to a meaningful heuristics, whose discus-
sion is beyond the scope of this paper, and a suitable refinement may be accomplished.
Reassessment of the semantics eventually yields a precise model checking result.

5 Conclusion

In this paper we have introduced abstraction techniques for multi-valued Kripke struc-
tures. More precisely, we have given two different kinds of abstraction: The first kind
abstracts by joining states, in the usual way. The second kind of abstraction combines

304 A. Campetelli et al.

lattice elements realizing the idea of not differing between certain concrete products
(of a software product line) or truth values in the abstract anymore. The combination
of both abstractions yields again a multi-valued Kripke structure which represents the
abstract system. Here, the transitions are labeled with a tuple representing the optimistic
and pessimistic assessment of this transition.

On such an abstract multi-valued Kripke structure we can evaluate properties using
the existing multi-valued model checking machinery. More importantly, we have shown
that the result of evaluating a mv -Lμ formula on the abstract system always yields the
optimistic and pessimistic limits, in which the concrete value is located for sure.

To eventually obtain a model checking result for which the optimistic and pessimistic
assessment coincide, refinement of abstractions in needed. Therefore, we have intro-
duced the notion of causes: Whenever the optimistic and pessimistic assessment differ,
a cause guides us during the process of concretization and gives us those states in the
abstract, which we have to concretize first.

References

1. Sassone, V., Krukow, K., Nielsen, M.: Towards a formal framework for computational trust.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS,
vol. 4709, pp. 175–184. Springer, Heidelberg (2007)

2. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison-Wesley, Reading (2001)

3. Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and model checking software product
lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 113–131.
Springer, Heidelberg (2008)

4. Chechik, M., Easterbrook, S.M., Petrovykh, V.: Model-checking over multi-valued logics. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 72–98. Springer, Heidelberg
(2001)

5. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 281–293. Springer,
Heidelberg (2004)

6. Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking infinite state-space systems with
fine-grained abstractions using spin. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp.
16–36. Springer, Heidelberg (2001)

7. Shoham, S., Grumberg, O.: Multi-valued model checking games. In: Peled, D.A., Tsay, Y.-K.
(eds.) ATVA 2005. LNCS, vol. 3707, pp. 354–369. Springer, Heidelberg (2005)

8. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics.
In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer,
Heidelberg (1999)

9. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE Computer
Society, Los Alamitos (1988)

10. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal
transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 426–440. Springer, Heidelberg (2001)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified model for static analysis of pro-
grams by construction or approximation of fixpoints. In: Proc.4th ACM Symp. on Principles
of Programming Languages, pp. 238–252 (1977)

Don’t Know for Multi-valued Systems 305

12. Kupferman, O., Lustig, Y.: Latticed simulation relations and games. In: Namjoshi, K.S.,
Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 316–330.
Springer, Heidelberg (2007)

13. Tarski, A.: A lattice-theoretical fixpoint theorem and its application. Pacific J. Math. 5, 285–
309 (1955)

14. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in the μ-calculus. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer, Heidelberg (2005)

Logahedra: A New Weakly Relational Domain

Jacob M. Howe1 and Andy King2,3

1 Department of Computing, City University London, EC1V 0HB, UK
2 Portcullis Computer Security Limited, Pinner, HA5 2EX, UK

3 Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK

Abstract. Weakly relational numeric domains express restricted classes
of linear inequalities that strike a balance between what can be described
and what can be efficiently computed. Popular weakly relational do-
mains such as bounded differences and octagons have found application
in model checking and abstract interpretation. This paper introduces lo-
gahedra, which are more expressiveness than octagons, but less expres-
sive than arbitrary systems of two variable per inequality constraints.
Logahedra allow coefficients of inequalities to be powers of two whilst
retaining many of the desirable algorithmic properties of octagons.

1 Introduction

Polyhedra are used in abstract interpretation [4] and model checking real-time
[9] and hybrid systems [7]. The domain operations of general polyhedra can be
prohibitively expensive, thus there has been much recent interest in so-called
weakly relational domains that seek to balance expressivity and cost by impos-
ing restrictions on the class of inequalities that can be represented. For example,
octagons [11] restrict polyhedra [4] to inequalities of at most two variables where
the coefficients are -1, 0 or 1 and thereby obtain (at worst) cubic domain opera-
tions. Other weakly relational domains whose operations reside in low complexity
classes are pentagons [10], two variable per inequality (TVPI) constraints [17]
and bounded differences [9]. Domains that do not impose the two variable per
inequality restriction include octahedra [3] and template constraints [14].

This paper introduces a new class of weakly relational domain called logahe-
dra. A logahedron is a system of implicitly conjoined two variable inequalities
where the coefficients are constrained to be powers of two (or zero). Such coeffi-
cients naturally arise because the size of primitive types. For instance, suppose
an array of 32-bit integers was dynamically allocated with, say, malloc(n) where
n is the size of the memory block in bytes. Then an array index i is in range iff the
logahedral inequalities 0 ≤ i and 4i+4 ≤ n are satisfied. Logahedra are proposed
as a solution to two problems arising in program analysis. The first problem is
that octagons, whilst having good computational properties, are restricted in
what they can describe. The second problem is that when the coefficients of
inequalities are not constrained (as they are for octagons), for example in gen-
eral polyhedra or TVPI, the coefficients can easily become very large, requiring
multiple precision libraries for their storage and manipulation. This can be pro-
hibitively costly [16]. Logahedra address the first problem by allowing a greater

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 306–320, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Logahedra: A New Weakly Relational Domain 307

variety of constraints to be expressible than octagons, whilst retaining octagons’
good computational properties (indeed, logahedra are a true generalisation of
octagons; logahedra are strictly more expressive, with octagons being a special
case). They address the second problem by restricting the possible coefficients
of inequalities; further, since the allowable coefficients are powers of two, they
can be represented by their exponents rather than by the number itself, allowing
very large coefficients to be represented using machine integers.

Logahedra are themselves a strict subset of TVPI constraints and inherit
many of their domain operations. Yet the most important domain operation,
(full) completion, has the same complexity as for octagons hence is more efficient
than for TVPI, being (truly) cubic. The most complicated domain operation, as
with TVPI, is incremental completion. This is the operation of adding a single
constraint to an already complete system to give an updated complete system.
Incrementally adding constraints is more in tune with the needs of analysis than
full completion, therefore incremental completion is arguably the key operation.
This operation is also the most complicated and is synthesised from the way new
inequalities can be derived in the act of completing a system. This result is appli-
cable to arbitrary two variable systems, not just logahedra. The paper advances
the theory of weakly relation domains by making the following contributions:

– The class of logahedral constraints is introduced and it is argued that they
have representational advantages over TVPI constraints, whilst being more
expressive than octagons.

– A parameterised subclass of logahedra, bounded logahedra, is defined that
is a generalisation of octagons in that octagons are a special case of bounded
logahedra. Bounded logahedra are more expressive than octagons, whilst
retaining their asymptotic complexity.

– Domain operations for both logahedral and bounded logahedral constraints
are defined and algorithms for the operations are presented. In part, these
build on TVPI operations and include original approaches to completion and
abstraction that are applicable to other weakly relational domains.

– Preliminary experiments (and an example) indicate that logahedra have the
potential to significantly increase the power of analysis.

2 Logahedral Constraints

Logahedra fall between octagons [11] and TVPI [17] in that octagonal constraints
can be expressed as logahedral constraints which, in turn, can be expressed as
TVPI constraints, that are themselves two variable restrictions of polyhedral
constraints. These classes are defined over a set of (indexed) variables X :

Definition 1. Oct = {ax + by ≤ d | x, y ∈ X ∧ a, b ∈ {−1, 0, 1} ∧ d ∈ Q}

Definition 2. Log = {ax+by ≤ d | x, y ∈ X∧a, b ∈ {−2n, 0, 2n |n ∈ Z}∧d ∈ Q}

Definition 3. TVPI = {ax + by ≤ d | x, y ∈ X ∧ a, b, d ∈ Q}

308 J.M. Howe and A. King

Definition 4. Poly = {
∑|X|

i=1 aixi ≤ d | xi ∈ X ∧ ai, d ∈ Q}
Both Oct and TVPI, like Poly, are closed under variable elimination, that is, if
y ∈ X and S ⊆ Oct (respectively S ⊆ TVPI) then ∃y.S ∈ Oct (respectively
∃y.S ∈ TVPI). For instance, if S = {x− 2y ≤ 5, 3y + z ≤ 7, 5y − u ≤ 0} ⊆ TVPI
then ∃y.S can be derived by combing pairs of inequality with opposing signs for
y to obtain ∃y.S = {3x + 2z ≤ 29,−2u + 5x ≤ 25} which is indeed in TVPI.
Variable elimination (projection) is an important operation in program analysis
and an abstract domain should ideally be closed under it so as to minimise the
loss of information; Log possesses this property. Furthermore, as well as being
more expressive than Oct, Log has representational advantages over TVPI. This
makes Log a natural object for study.

2.1 Representation of Coefficients

The representational advantages of logahedra are hinted at by their name. Since
the absolute value of the coefficients are powers of two, it suffices to represent
the logarithm of the value, rather than the value itself. This allows coefficients
to be presented by their exponents in machine words, thereby avoiding the com-
putational burden of large coefficients.

As with TVPI inequalities, a logahedral inequality can be binary, that is, involve
two variables, when a �= 0 and b �= 0; or be unary, when either a = 0 or b = 0 (but
not both); or be constant when a = b = 0. Constant constraints are written as
either true or false. A dense representation for the binary case can be achieved
by observing that ax + by ≤ d can be expressed as x + (b/a)y ≤ d/a if a > 0
and −x− (b/a)y ≤ −d/a otherwise. Thus to represent ax + by ≤ d it is sufficient
to distinguish the variables x and y, represent the signs of a and b (as two bits)
and then either represent lg |b/a| and d/a or lg |b/a| and−d/a. A unary inequality
such as ax ≤ d can be expressed as x ≤ d/a if a > 0 and −x ≤ −d/a otherwise,
therefore it is not even necessary to represent a logarithm. Henceforth, without loss
of generality, all logahedra will be represented with first coefficient of -1, 0 or 1.

2.2 Representation of Constants

Unlike TVPI, that can alternatively be defined with a, b, d ∈ Z, the constant d is
required to be rational, even without a restriction on the first coefficient. Consider,
for example, 4x−2y ≤ 2/3. This has no equivalent logahedral representation with
an integer constant. Furthermore, rational constants are required for closure under
variable elimination. Consider eliminating y from a system such as {x−2y ≤ 3, x+
4y ≤ −1}which yields the single inequality 3x ≤ 5. This, in itself, is not logahedral
but the constraint can be equivalently expressed as x ≤ 5/3 which is logahedral.

2.3 Bounded Logahedra and Their Representation

The Log class contains an unbounded number of inequalities for each two vari-
able pair. The Oct class, however, is bounded since the size of the coefficients is
bounded. Therefore it is worth considering restricting the coefficients of logahe-
dra to within a bound:

Logahedra: A New Weakly Relational Domain 309

Definition 5. Logk = {ax+ by ≤ d | x, y ∈ X ∧a ∈ {−1, 0, 1}∧b ∈ Ck ∧d ∈ Q}
where Ck = {−2n, 0, 2n |n ∈ Z ∧ −k ≤ n ≤ k}, k ∈ N.

Notice that Oct = Log0. An alternative definition would restrict the first coeffi-
cient to be a power of two rather than a unit. However, it is curious to observe
that the class Log3 is not expressible with the alternative definition.

The case for Logk is further motivated by considering the inequalities required
to describe relationships between values stored in machine integers. The following
proposition states that inside a bounded box (induced by the size of the type)
the set of integer points described by a Log constraint can also be described by
a Logk constraint where k is determined by the size of the bounding box.

Proposition 1. Suppose ax + by ≤ d ∈ Log and Boxk = ([−2k, 2k − 1] ∩ Z)2.
Then there exists ax+ b′y ≤ d′ ∈ Logk+1 such that {〈x, y〉 ∈ Boxk | ax+ by ≤ d}
= {〈x, y〉 ∈ Boxk | ax + b′y ≤ d′}

Proof. Wlog suppose c ≡ ax + by ≤ d ∈ Log where a ∈ {−1, 1} and b �∈ Ck+1.
Find 〈x∗, y∗〉 ∈ Z2 that maximises ax + by subject to ax + by ≤ d, −2k ≤

x ≤ 2k − 1 and −2k ≤ y ≤ 2k − 1. (This can be achieved in O(lg |b|) time [5].)
The Log constraint ax+ by ≤ d′, where d′ = ax∗ + by∗, describes the same set of
integer points in Boxk as c. Put s = sign(b), l = lg(|b|), k′ = sign(l)(k + 1) and
b′ = s2k′

. Then c′ := (ax + b′y ≤ d′) ∈ Logk+1.
If b′ = s2k+1 then c′ adds no new integer solutions since Boxk has height

2k+1 − 1 and c′ passes through 〈x∗, y∗〉. Likewise, if b′ = s2−(k+1) then again
c′ adds no new solutions since Boxk has width 2k+1 − 1 and c′ passes through
〈x∗, y∗〉. The result follows.

The Logk class has 4(2k + 1) binary and 4 unary inequalities for each pair of
variables, therefore, for fixed k, the domain is bounded. The force of the proposi-
tion is that for an signed integer representation of, say, 32 bits, it is sufficient to
restrict attention to Log33. For unsigned integers analogous results hold. Impor-
tantly, observe that for any given Boxk, the domain Logk+1 retains closure under
variable elimination. This is because, by proposition 1, any inequality (obtained
by combining a pair of inequalities) that falls outside Logk+1 can be replaced
with another drawn from Logk+1 without loss of information. A final observation
that is potentially exploitable is that for a given Boxk and a pair of coefficients,
there is a maximum value for the constant beyond which the inequality does not
restrict the box. For example, x + y ≤ d is vacuous if 2k+1 − 2 ≤ d.

3 Worked Example

This section contains an example to demonstrate the use of logahedra in value
range analysis. It serves to illustrate the domain operations required, for which
definitions and algorithms will be given in the next section. In addition, the
example illustrates the expressivity of logahedra versus octagons.

In the following C program, read value() reads a value from a file. The objec-
tive of the analysis is to verify the safety of the array access in line 5, no matter

310 J.M. Howe and A. King

what values are read. To this end, the set of 〈x, y〉 values that can arise imme-
diately after executing lines (1) . . . (6) are over-approximated by the logahedra
P1, . . . , P6. Each of the these logahedra are defined by a separate equation. The
set P ′

2 over-approximates the set of 〈x, y〉 values occurring immediately before
line 2. P ′

2 differs from P2 in that P2 assumes that the loop condition holds. The
updates at lines (3), (4) and (6) are modelled as translations. Since the value
read value() is not known at analysis time, the values of 〈x, y〉 at line (5) can be
either that at line (3) or (4). P5 is thus defined as the join of P3 and P4. P ′

2 is
also formulated as the join of P1 and P6, but also applies widening,
.

(1) int x = 0, y = 0, array[8]; P1 = {〈0, 0〉}
(2) while (x < 4) P ′

2 = P ′
2
(P1 " P6) P2 = P ′

2 ! {〈x, y〉 | x < 4}
{ if (read value() == 0)

(3) y = y+2; P3 = {〈x, y + 2〉 | 〈x, y〉 ∈ P2}
else

(4) y = y+1; P4 = {〈x, y + 1〉 | 〈x, y〉 ∈ P2}
(5) array[y] = y; P5 = P3 " P4
(6) x = x+1; } P6 = {〈x + 1, y〉 | 〈x, y〉 ∈ P5}

Solutions to the equations, or at least upper-approximations to them, can be
found by repeatedly applying the equations until a fixpoint is reached. As in
other polyhedral analyses [4], widening is introduced to enforce convergence since
P1, P

′
2, . . . , P6 grow as the equations are reapplied. To obtain convergence, it is

sufficient to put Q1
Q2 = Q1 "Q2 if Q1 and Q2 differ in dimension; otherwise
Q1
Q2 is defined as the (non-redundant) inequalities of Q1 that hold for Q2.
This removes unstable bounds from Q1 whilst ensuring Q1 "Q2 ⊆ Q1
Q2 [6].

The diagrams in Fig. 1 show how P1, P
′
2, . . . , P6 develop during the fixpoint

calculation from their initial values of ∅. Diagram (a) shows how P1 is changed by
the first equation; thereafter P1 is stable. Initially P6 = ∅ so that P1 " P6 = P1.

(a)

�

��
P1

(b)

�

��
P ′

2, P2
(c)

�

�
�

�P5

(d)

�

�
�

�P6

(e)

�

��

�

�

���
��

P ′
2, P2

(f)

�

�
�

� �

�

��
�
��

P5

(g)

�

�
�

� �

�

��
�
�� P6

(h)

�

��

�

�

�
��

�
�
�
��P1 � P6

(i)

�

���
�

�
��

�
�
�
�
�
�
�
�
��

P ′
2

(j)

�

��

�

�

�
�

��

�
�
�
�
�
�
�

P2

(k)

�

�
�

�

�

�

�
�

��
�
�
�
�
�
�
�

P5

(l)

�

�
�

�

�

�

�
�

��
�
�
�
�
�
�
�

P6

Fig. 1. Logahedra P1, P
′
2, P2, P5 and P6 (P3 and P4 are omitted)

Logahedra: A New Weakly Relational Domain 311

(a)

�

��
P1

(b)

�

��
P ′

2, P2
(c)

�

�
�

�P5

(d)

�

�
�

�P6

(e)

�

��

� �

�

��
��

P ′
2, P2

(f)

�

�
�

�

�

�

��

��
P5

(g)

�

�
�

�

�

�

��

�� P6

(h)

�

��

� �

�

�
��

�
��

P1 � P6

(i)

�

���
�

�
��

P ′
2

(j)

�

��

�

�
�

��

P2

(k)

�

�
�

�

�
�

��

P5

(l)

�

�
�

�

�
�

��

P6

Fig. 2. Octagons P1, P
′
2, P2, P5 and P6 (P3 and P4 are omitted)

Since P ′
2 = ∅ differs in dimension from P1, the second equation assigns P1 to P ′

2.
Diagram (c) illustrates P5, which is a line segment, that is the join of P3 and
P4 which are themselves translations of P2. P6 in diagram (d) is a translation
of P5. When reapplying the second equation, P ′

2 and P1 " P6 again differ in
dimension so that P ′

2 is updated to the solid triangle depicted in diagram (e).
Diagrams (f) and (g) illustrate the effect of translations and a join, P5, and
another translation, P6. On the third application of the second equation, P ′

2 and
P1 " P6 are 2 dimensional, hence P ′

2 is updated to just retain the two stable
inequalities, as illustrated in (i). Diagram (j) shows how the loop condition is
reinserted. P ′

2 remains unchanged when its equation is applied a fourth time. The
〈x, y〉 values summarised by P5 in diagram (k) show that y can possibly take a
value of 8, indicating a possibly erroneous array access. The analysis shows that
enlarging the array by one element alleviates the problem. For this example, the
analysis would terminate without widening, though this is not always so.

Fig. 2 repeats the analysis with octagons. Diagrams (e) and (h) show that the
upper bound on y is unstable since the domain cannot express y ≤ 2x. Hence, in
diagram (i), P ′

2 loses crucial information on the maximal values of y. Moreover,
if widening was not applied, then the upper bound of y would grow indefinitely.
Thus the loss of information cannot be remedied by more sophisticated widening.
Curiously, the example was not manufactured to show the benefits of logahedra,
but rather to illustrate polyhedral analysis to a lay audience.

4 Logahedral Domain Operations

This section details the domain operations previously introduced. These operate
on finite sets of inequalities, such as ℘f(Log) and ℘f(Logk), where ℘f (S) denote
the set of finite subsets of a given set S. The entailment ordering on ℘f (Poly),
and its subdomains ℘f (TVPI), ℘f (Log) and ℘f (Logk), is given by I1 |= I2 iff

312 J.M. Howe and A. King

any assignment that satisfies each inequality c1 ∈ I1 also satisfies each c2 ∈ I2.
Equivalence is defined as I ≡ I ′ iff I |= I ′ and I ′ |= I.

Example 1. If I = {x−2y ≤ 7, y ≤ 2} and I ′ = {x ≤ 12} then I |= I ′ since every
assignment to x and y satisfying I also satisfies I ′. But I ′ �|= I. If c := 3x ≤ 2 and
c′ := x ≤ 2/3 then {c}≡{c′} and indeed c and c′ are multiples of one another.

4.1 Completion

The algorithms for many operations on logahedra (and other weakly relational
domains) require implied inequalities to be made explicit. The process of infer-
ring all implied constraints is called completion and is the dominating compu-
tational expense in the operations of which it forms a part. Therefore a clear
understanding of how completion is applied, along with efficient algorithms, is
essential. Completion is formalised in terms of syntactic projection:

Definition 6. If Y ⊆ X then syntactic projection onto Y is defined πY (S) =
{c ∈ S | vars(c) ⊆ Y }, where vars(c) is the set of variables occurring in c.

Definition 7. The set of logahedral inequalities I ⊆ Log is complete iff for all
c ∈ Log it holds that if I |= c then πvars(c)(I) |= c.

Example 2. Let I0 = {x − y ≤ 0, 2x + y ≤ 1}. I0 is not complete because
I0 |= x ≤ 1/3 but π{x}(I0) = ∅ �|= x ≤ 1/3. Put I1 = I0∪{x ≤ 1/3}. The constant
constraint true does not compromise completion since π∅(I1) = ∅ |= true.

Example 3. Suppose I0 = {x − y ≤ −1, y − z ≤ −1, z − x ≤ −1}. I0 is not
complete since π{x,z}(I0) �|= x − z ≤ −2 and π{x,y}(I0) �|= y − x ≤ −2. Put
I1 = I0 ∪{x− z ≤ −2, y− x ≤ −2}. I1 is still not complete since π∅(I1) |= false
(I0 is unsatisfiable). Put I2 = I1 ∪ {false}. Then I2 is complete.

The action of deriving implied inequalities, or computing resultants to use the
terminology of Nelson [12], is formalised below:

Definition 8. If c = ax + by ≤ d, c′ = a′x + b′z ≤ d′ and a.a′ < 0 then
result(c, c′, x) = |a′|by + |a|b′z ≤ |a′|d + |a|d′ otherwise result(c, c′, x) = ⊥.

The operation result(c, c′, x) is analogously defined when c := ax ≤ d or c′ :=
a′x ≤ d′. Note that it is necessary to stipulate which variable is eliminated
because a single pair of inequalities may possess two resultants, as is illustrated
by the pair c := x+ y ≤ 1, c′ := −2x− 3y ≤ 1 for which result(c, c′, x) = −y ≤ 3
and result(c, c′, y) = x ≤ 4. The resultant operator lifts to sets of inequalities:

Definition 9. If I1, I2 ⊆ TVPI then

result(I1, I2) = {c | ci ∈ Ii ∧ x ∈ vars(c1) ∩ vars(c2) ∧ c = result(c1, c2, x) �= ⊥}

Logahedra: A New Weakly Relational Domain 313

Full Completion. Completing a set of inequalities I [17] amounts to repeat-
edly augmenting I with result(I, I) until an I ′ is obtained such that no further
(non-redundant) inequalities can be added to πY (I ′) for any Y ⊆ X . During
completion, the computation of resultants is interleaved with the removal of
redundant inequalities. An inequality c is considered to be redundant in I iff
πvars(c)(I) \ {c} |= c, that is, c is redundant in its syntactic projection πvars(c)(I).
To remove such constraints from I, the existence of an operator filterY (I) = I ′ is
assumed for each Y ⊆ X such that |Y | ≤ 2. The operator is assumed to satisfy
the three conditions that I ′ ⊆ I, I ′ ≡ I and I ′′ �≡ I for all I ′′ ⊂ I ′. Such an
operator can be constructed straightforwardly, and resides in O(|I|) when I is
ordered [8, section 2]. With filterY in place, it is possible to filter an entire system
I ⊆ Log by computing filter(I) = ∪{filterY (πY (I)) | Y ⊆ X ∧ |Y | = 2}.

Definition 10. The (full) completion operator complete : ℘(Log) → ℘(Log) is
defined: complete(I) = ∪i≥0Ii where I0 = I and Ii+1 = filter(Ii ∪ result(Ii, Ii)) .

Nelson [12], working over TVPI, used a divide and conquer argument to bound
the number of iterations that need be computed before stability is achieved:

Lemma 1. complete(I) = Im where m = -lg(|X |). and Im is defined as above.

This result becomes more intruiging when the domain is Logk. Completion can be
calculated in a semi-naive fashion by defining I0 = I and δ0 = I and computing
Ii+1 = filter(Ii ∪ result(δi, Ii)) and δi+1 = Ii+1 \ Ii for i ∈ [0,m − 1]. Since
|∪m

i=0 δi| is in O(|X |2) it follows that the cumulative running time of result(δi, Ii)
is O(|X |3). Since each invocation of filter resides in O(|X |2) and it is called m−1
times, it follows that the running time of completion is O(|X |3). Hence, like Oct,
but unlike TVPI, Logk comes with a (full) completion operation that resides in
O(|X |3). It is conceivable that this result extends to other subclasses of TVPI
that also retain closure under variable elimination.

Incremental Completion. During analysis inequalities are encountered one
by one. Thus an important addition to full completion is incremental completion
that takes a complete system, augments it with an additional inequality and
returns the completion of the augmented system. Such an algorithm has been
proposed for TVPI [15, Algorithm 7], together with a sketched correctness proof.
Given the importance of completion, the following proposition, whose proof is
given in [8], provides a rigorous foundation for an incremental algorithm.

Proposition 2. If c′ ∈ Log, I ⊆ Log is complete and c ∈ complete(I ∪ {c′})
then one of the following holds:

– c ∈ I ∪ {c′}
– c ∈ result(c′, c0) where c0 ∈ I
– c ∈ result(result(c′, c0), {c1}) where c0, c1 ∈ I

I∪{c′} can thus be completed by computing I2 = filter(I1∪result(I1\{c′}, I1\I))
where I1 = filter(I ∪ {c′} ∪ result(I, {c′})). Nelson showed that if J1, J2 ⊆ TVPI

314 J.M. Howe and A. King

where vars(J1) = {x, y} and vars(J2) = {y, z} then |result(J1, J2)| ≤ 2|J1|+2|J2|
[12, section 3]. It follows that |I1| ≤ 3|I|+ 3 and |I2| ≤ 13|I|+ 13, thus although
computing I2 for Log takes O(|I|2) time it requires O(|I|) space overall. For
Logk with fixed k, computing I1 and I2 both reside in O(|X |2). This squares
with incremental closure for octagons which is also in O(|X |2).

4.2 Entailment

The value of completeness is that it simplifies other operations. To illustrate,
consider the problem of detecting if a fixpoint has been reached, that is, deciding
whether I1 |= I2 for I1, I2 ∈ ℘f (Log). Suppose I1 is complete. If false ∈ I1 then
it follows I1 |= I2. Otherwise I1 |= I2 iff πY (I1) |= πY (I2) for all Y ⊆ X and
|Y | = 2. Moreover, recall that inequalities ax+by ≤ d are maintained in the form
a ∈ {−1, 0, 1} and suppose b ∈ {−1, 1} if a = 0. Then the planar entailment check
πY (I1) |= πY (I2) can be decided by testing filterY (πY (I1) ∪ πY (I2)) = πY (I1).

4.3 Variable Elimination

Variable elimination (projection) is required to remove out of scope variables,
and all information pertaining to them, from a logahedral abstraction. Fourier-
Motzkin can be applied to eliminate a variable x from I ∈ ℘f (Log) which
amounts to computing ∃x.I = ∪{c | c = result(c1, c2, x) ∧ c1, c2 ∈ I ∧ c �= ⊥}.
However if I is complete then ∃x.I = ∪{πY (I) | Y ⊆ X \ {x} ∧ |Y | ≤ 2}.
If I were incomplete then ∃x.I may lose some information as is witnessed by
I = {w − x ≤ 0, x − y ≤ 0}. Then ∪{πY (I) | Y ⊆ X \ {x} ∧ |Y | ≤ 2} = ∅ yet
∃x.I |= w − y ≤ 0.

Projection also provides a way to realise translations induced by assignments
of the form x = x+c where c ∈ Z. If I describes the state prior to the assignment,
then the state after is described by ∃x′.({x = x′} ∪ ∃x.(I ∪ {x′ = x + c})).

4.4 Abstraction

This section explains how to approximate a finite set of arbitrary Poly constraints
by a finite set of Log constraints. Abstraction is employed as a component of join
but is also used to translate program statements, for example, loop conditions,
into logahedral inequalities. Approximation has two stages: projection onto pla-
nar sets of TVPI constraints and relaxation of these to logahedral constraints.
Consider the latter step first, and suppose I ⊆ TVPI is finite and that vars(I) ⊆ Y
where |Y | = 2. Suppose I = {c0, ..., cn−1} is non-redundant and ordered by ori-
entation. This can be achieved in O(|I| lg |I|) time. Wlog each ci is assumed to
take the form aix+biy ≤ di where ai ∈ {−1, 0, 1}. Let c1∠c2 be a predicate that
holds when a1b2 − a2b1 < 0, that is, that c1 is oriented before c2 in a clockwise
relative order by angle. Suppose also that c−1 = cn−1 and cn = c0. If ci and ci+1
do not intersect at a vertex let pi = ⊥, otherwise let pi = (ψi, φi) be this vertex,
which can be calculated in constant time. If bi = 0 then put li = ui = 0, other-
wise define li = sign(bi)2�lg(|bi|)� and ui = sign(bi)2�lg(|bi|)�. For each i ∈ [0, n−1]
put c′i = ⊥ if pi−1 = ⊥ otherwise define

Logahedra: A New Weakly Relational Domain 315

c′i =
{

aix + uiy ≤ aiψi−1 + uiφi−1 if ai =sign(bi)
aix + liy ≤ aiψi−1 + liφi−1 if ai �=sign(bi)

Likewise if pi = ⊥ put c′′i = ⊥ otherwise define

c′′i =
{

aix + liy ≤ aiψi + liφi if ai =sign(bi)
aix + uiy ≤ aiψi + uiφi if ai �=sign(bi)

The ai = sign(bi) test determines whether the inequalities resulting from the
upper and lower approximations of |bi| support pi−1 or pi. Some of the logahedral
constraints c′i, c

′′
i may be too strong in that I �|= c′i or I �|= c′′i and these, with the

⊥ constraints, are filtered out to abstract I as follows:

Definition 11. Let αY (I) = {c′i | c′i �= ⊥ ∧ ci−1∠c′i} ∪ {c′′i | c′′i �= ⊥ ∧ c′′i ∠ci+1}
where c′i, c

′′
i are defined as above for finite I ⊆ TVPI, vars(I) ⊆ Y and |Y | = 2.

Note that the filtering test amounts to an O(1) orientation check. The angular
test guarantees that the retained inequalities are supporting.

Example 4. The example illustrates the approximation of two constraints from
a larger system I. Suppose ci−1 := −x ≤ 0, ci := −x + (3/2)y ≤ 0, ci+1 :=
−x + (5/2)y ≤ 2 and pi+1 = ⊥. The logahedral approximation is illustrated
in Fig. 3. Observe pi−1 = (0, 0) and pi = (3, 2). Since li = 2�lg(3/2)� = 1,
ui = 2�lg(3/2)� = 2, ai �= sign(bi), pi−1 �= ⊥ and pi �= ⊥ it can be seen that
c′i := −x + y ≤ 0 and c′′i := −x + 2y ≤ 1. Moreover, since li+1 = 2�lg(5/2)� = 2,
ui+1 = 2�lg(5/2)� = 4, ai+1 �= sign(bi+1), pi �= ⊥ and pi+1 = ⊥ it follows
c′i+1 := −x + 2y ≤ 1 and c′′i+1 := ⊥.

Now suppose instead, ci+1 := −x+ (7/4)y ≤ 1/2, which preserves pi = (3, 2).
Then I �|= c′′i and c′′i is not an approximating constraint. But c′′i ∠ci+1 does not
hold since (−1.7/4)− (−1.2) > 0, hence c′′i �∈ αY (I). Likewise c′i+1 �∈ αY (I).

Although αY is partial, it can be used to abstract arbitrary TVPI systems:

Definition 12. The abstraction map α : ℘f (TVPI) → ℘f (Log) is given by
α(I) = ∪{αY (∃Y.I) | Y ⊆ X ∧ |Y | = 2}

�

�

�����

�
�

�
�

�
�

��
�����
�

�

� � �
� �

ci−1 := −x ≤ 0

ci := −x+ (3/2)y ≤ 0

ci+1 := −x+ (5/2)y ≤ 2

c′i := −x+ y ≤ 0
c′′i := −x+ 2y ≤ 1

c′i+1 := −x+ 2y ≤ 1

�
�

�
�

�
�

														

Fig. 3. Approximation with logahedral constraints

316 J.M. Howe and A. King

In the above ∃Y.I denotes project I onto Y , that is, the repeated application
of Fourier-Motzkin to elimination of all variables x ∈ X \ Y from I. However,
if I is complete then α(I) = ∪{πY (I) | Y ⊆ X ∧ |Y | = 2}. Interestingly, α can
be immediately lifted to α : ℘f (Poly) → ℘f(Log) since if I is a finite set then
∃Y.I is a finite set. The symbol α hints at the existence of a Galois connection
between 〈℘f (Poly), |=〉 and 〈℘f (Log), |=〉, and indeed α is monotonic. But such
a structure can only be obtained by quotienting ℘f (Poly) and ℘f (Log) by ≡ to
obtain posets. The upper adjoint of α is the identity.

To abstract the inequalities I or I ∪ Boxk to Logk put c′i := sign(bi)y ≤
sign(bi)φi−1 and c′′i := aix+ sign(bi)2ky ≤ aiψi + sign(bi)2kφi if ai = sign(bi) and
k < -lg(|bi|).. Likewise, if /lg(|bi|)0 < −k then put c′i := aix + sign(bi)2−ky ≤
aiψi−1 + sign(bi)2−kφi−1 and c′′i := aix ≤ aiψi. Similarly for ai �= sign(bi).

4.5 Meet and Abstraction

Meet over 〈℘f (Log), |=〉 can be defined by [I1]≡ ! [I2]≡ = [I1 ∪ I2]≡. Thus, meet
reduces to set union when a class [I]≡ is represented by a set I. Henceforth
quotienting will be omitted, for brevity, and to reflect implementation.

A less trivial problem is that of computing α(I1 ∪ I2) where I1 ∈ ℘f (Log) and
I2 ∈ ℘f (Poly). This arises as a special case when a statement is encountered, such
as a loop condition x ≤ y+z or an assignment x = y+z, that cannot be expressed
logahedrally. If these statements are described respectively by I2 = {x ≤ y + z}
and I2 = {y+z ≤ x, x ≤ y+z}, and I1 is a logahedral description of the program
state, then the subsequent state is described by α(I1 ∪ I2). Thus, in an analysis,
α(I1 ∪ I2) performs the role of meet when I2 is not logahedral.

This problem has been tackled using linear programming [15]. To illustrate,
suppose I2 = {c′} where c′ :=

∑n
k=1 a′kxk ≤ d′. Let i, j ∈ [1, n] where i �= j

and minimise
∑

k �=i,k �=j a
′
kxk subject to I1 and c′. If a minimum di,j exists then

it follows I1 ∪ {c′} |= a′ixi + a′jxj ≤ d′ − di,j . TVPI inequalities found this way
are added to I1. An alternative and potentially more precise approach, which
is applicable to both TVPI and logahedra, is based on extending the resultant
operator to polyhedral inequalities in the following fashion:

Definition 13. If c := aixi + ajxj ≤ d ∈ TVPI, c′ :=
∑n

k=1 a′kxk ≤ d′ ∈ Poly,
a′j �= 0 and ai.a

′
i < 0 then result(c, c′, xi) = (|a′i|aj + |ai|a′j)xj +

|ai|
∑

k �∈{i,j} a′kxk ≤ |a′i|d + |ai|d′ otherwise result(c, c′, xi)=⊥.

The a′j �= 0 condition ensures |vars(result(c, c′, xi))| < |vars(c′)|. Thus if c′ is
ternary then result(c, c′, xi) is either binary or undefined. The partial result map
can be lifted to a total map result(I1, I2) for I1 ⊆ TVPI and I2 ⊆ Poly by analogy
with definition 9. With this in place, an operator extend(I1, I2) is introduced,
designed so that α(I1 ∪ I2) |= extend(I1, I2).

Definition 14. The map extend : ℘f(TVPI)× ℘f (Poly) → ℘f (TVPI) is defined
extend(I, δ) = ∪i≥0Ii where I0 = complete(I ∪ (δ ∩ TVPI)), δ0 = δ \ TVPI,
Ri+1 = result(Ii, δi), Ii+1 = complete(Ii∪ (Ri+1∩TVPI)) and δi+1 = Ri+1 \ Ii+1.

Logahedra: A New Weakly Relational Domain 317

If δ is comprised of ternary constraints, which is the dominating case [15],
then result is applied once. If desired, incremental closure can be used to com-
pute complete(Ii ∪ (Ri+1 ∩ TVPI)), since proposition 2 extends to TVPI [8]. If
extend(I, δ) is not logahedral, then α must subsequently be applied.

Example 5. Consider augmenting I = {x − y ≤ 0,−x + y ≤ 0} with c′ :=
x−2y+z ≤ 0. Then I0 = I and δ0 = {c′}. Thus R1 = result(I0, δ0) = {y+z ≤ 0}
whence δ1 = ∅ and I1 = complete(I0 ∪R1) = I ∪ {y + z ≤ 0, x + z ≤ 0}. These
inequalities cannot be inferred with the linear programming technique of [15].

Example 6. Let I = {w − x ≤ 0, y − z ≤ 0} and c′ := w + x + y + z ≤ 1. Then
I0 = complete(I) = I and δ0 = {c′}. Thus R1 = result(I0, δ0) = {2w + y + z ≤ 1,
x+w+2y ≤ 1}, I1 = I0 and δ1 = R1. Next R2 = result(I2, δ1) = {2w+2y ≤ 1},
I2 = complete(I1 ∪R2) = I1 ∪R2 = I ∪ {w + y ≤ 1/2} and δ2 = ∅.

4.6 Join

Join is required to merge abstractions on different paths, as is shown with P5
in section 3. If quotienting is omitted, then join over ℘f (Log) can be defined
I1"I2 = ∪{∃Y.I1"Y ∃Y.I2 | Y ⊆ X∧|Y | = 2} where J1"Y J2 = αY (J1∨J2) and
∨ is join (planar convex hull) for TVPI [15]. Join also benefits from completeness
since if Ii is complete then ∃Y.Ii = πY (Ii). The TVPI operation ∨ is O(n lg n)
where n = |J1|+ |J2|, hence the overall cost of " is dominated by completion.

With ! and " thus defined, 〈℘f (Log), |=,!,"〉 forms a lattice. Furthermore,
Logk has additional structure since Ck is finite (see definition 5). In particular,
if I ⊆ Logk then there exists a finite K ⊆ I such that I ≡ K. As a consequence
〈℘f (Logk), |=,!,"〉 is a complete lattice.

Widening [6] is often applied with join in order to enforce termination. As has
been explained elsewhere [11,15], care must be taken not to reintroduce inequal-
ities through completion that have been deliberately discarded in widening.

5 Logahedra versus Octagons and TVPI

Logahedra are theoretically well motivated and their representational advan-
tages, as a generalisation of octagons, are of interest. To provide preliminary
data on the power of bounded logahedra two sets of experiments were performed.

In the first experiment sets of integer points, {〈x, y〉 | x, y ∈ [−32, 32]} were
randomly selected. For each set, between 1 and 63 points were generated. The
best Oct = Log0 and Logk (for k ∈ [1, 5]) abstractions were computed and com-
pared with the best TVPI abstraction. The comparison is based on the number
of integer points in the abstractions. For example, one set of 23 points had 7
extreme points. The Oct, the five Log and the TVPI descriptions were satisfied
by 3221, 3027, 2881, 2843, 2835, 2819, 2701 integer points. Thus the precision
loss incurred by Oct over TVPI is (3321−2701)/2701 = 0.230. Likewise the losses
for Log relative to TVPI are 0.121, 0.067, 0.053, 0.050 and 0.044. This was done

318 J.M. Howe and A. King

Table 1. Precision comparison of Oct and Logk against TVPI on random data

Logk

vertices sets Oct k=1 k=2 k=3 k=4 k=5

1 2044 0.000 0.000 0.000 0.000 0.000 0.000
2 2958 82.640 43.941 30.675 26.396 25.024 24.481
3 5923 1.874 0.998 0.700 0.611 0.584 0.576
4 10423 0.557 0.294 0.195 0.163 0.153 0.149
5 14217 0.352 0.192 0.125 0.100 0.092 0.089
6 13550 0.276 0.152 0.097 0.075 0.067 0.064
7 9058 0.234 0.131 0.081 0.061 0.054 0.051
8 4345 0.205 0.115 0.071 0.053 0.046 0.043
9 1508 0.188 0.105 0.064 0.047 0.040 0.038
10 398 0.171 0.096 0.058 0.042 0.035 0.033
11 64 0.165 0.095 0.054 0.037 0.031 0.029
12 6 0.179 0.107 0.06 0.045 0.038 0.036

for 64K sets and the results are summarised in Table 1. The table presents the
mean precision loss where the sets are grouped by their number of vertices.

The data reveals that describing exactly two points is by far the most inaccu-
rate scenario for Oct and Logk; if the angle between the points is suitably acute
then the TVPI constraints are satisfied by just the two points whereas the Oct
and Logk constraints can be satisfied by a band of integral points. Precision loss
decreases beyond this two point case. Enlarging the sample space does not no-
ticeably effect the relative precision loss other than accentuating the two point
case. Observe that the relative precision loss declines as k increases, suggesting
that logahedra can offer a significant precision improvement over octagons.

The second set of experiments compares the abstractions of two variable pro-
jections of the results of a polyhedral analysis tightened to integer points for a
series of benchmarks [1,2,13]. As in the first experiment, comparisons are made
between the number of points in the TVPI, Oct and Logk abstractions. Table 2
details benchmarks, their number of variables, the pair of variables in the pro-
jection, the number of integer points in the TVPI abstraction and the number
of additional points for Oct and Logk abstractions. Benchmarks and projections
where Oct and TVPI give the same abstraction are omitted from the table. This
was the case for the additional 12 programs in the benchmark suite.

The data illustrates the power of octagons, with the majority of two variable
projections being octagonal (indeed, many of these were intervals). It also illus-
trates that there are cases when non-octagonal constraints occur, with (as in the
first experiment) Logk precision improving as k increases.

Together, the results motivate further study. The random data demonstrates
that logahedra have the potential to deliver precision gains over octagons, how-
ever, the analysis data adds a note of caution. It is not surprising that many
program invariants can be described by intervals, nor that many of the remainder
are octagonal. The data (and the example in section 3) shows that the descriptive
power of logahedra can improve analysis, leaving open the question of whether

Logahedra: A New Weakly Relational Domain 319

Table 2. Precision comparison of Oct and Logk against TVPI on analysis data

Logk

fixpoint vars project Oct k=1 k=2 k=3 k=4 k=5 TVPI
cars.inv 5 (4, 5) 312 234 78 54 54 54 3640
efm1.inv 6 (3, 6) 1 0 0 0 0 0 128
heap.inv 5 (1, 2) 1056 0 0 0 0 0 33
heap.inv 5 (3, 4) 465 0 0 0 0 0 1055
heap.inv 5 (3, 5) 465 0 0 0 0 0 1055
robot.inv 3 (1, 2) 528 0 0 0 0 0 1089

scheduler-2p.invl1 7 (3, 6) 135 120 90 30 18 18 180
scheduler-2p.invl1 7 (4, 6) 115 100 70 20 12 12 260
scheduler-2p.invl1 7 (6, 7) 135 120 90 30 18 18 180
scheduler-2p.invl2 7 (4, 6) 189 168 126 42 26 26 245
scheduler-2p.invl2 7 (6, 7) 90 80 60 20 12 12 215
scheduler-3p.invl1 10 (4, 9) 264 198 66 45 45 45 390
scheduler-3p.invl1 10 (9, 10) 264 198 66 45 45 45 390
scheduler-3p.invl3 10 (4, 8) 312 234 78 54 54 54 455
scheduler-3p.invl3 10 (8, 9) 144 108 36 24 24 24 405
scheduler-3p.invl3 10 (9, 10) 534 128 128 128 128 128 1725

see-saw.inv 2 (1, 2) 990 231 110 110 110 110 2454
swim-pool-1.inv 9 (4, 6) 62 61 59 55 47 31 4162

the additional cost (a higher constant in the complexity) pays for itself with
improved accuracy. The answer to this question is in part application specific.

6 Conclusion

This paper has introduced logahedra, a new weakly relational abstract domain. A
variant of logahedra, bounded logahedra Logk, where k is the maximum exponent
is also introduced. Logahedra lie strictly between octagons and TVPI in terms
of expressive power, with octagons forming a special case, Oct = Log0. Bounded
logahedra retain the good computational properties of octagons, whilst being
less restrictive. The theory for the abstract domain has been given, along with
algorithms for each domain operation. Logahedra have the further advantage
that their variable coefficients can be represented by their exponents, mitigating
the problem of large coefficients that arise when using polyhedra or TVPI. A
preliminary investigation into the expressive power of logahedra, plus a worked
example, suggests that they can lead to more accurate analysis, but cautions that
many invariants can be described using intervals and octagons. Future work will
further investigate the application of logahedra in verification.

Acknowledgements. The authors thank Phil Charles, Tim Hopkins, Stefan Kahrs
and Axel Simon for useful discussions. The work was supported by EPSRC
projects EP/E033105/1 and EP/E034519/1. The authors would like to thank
the University of St Andrews and the Royal Society for their generous support.

320 J.M. Howe and A. King

References

1. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast Acceleration of Symbolic
Transition Systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 118–121. Springer, Heidelberg (2003)

2. Charles, P.J., Howe, J.M., King, A.: Integer Polyhedra for Program Analysis. In:
AAIM. LNCS, vol. 5564, pp. 85–99. Springer, Heidelberg (2009)

3. Clarisó, R., Cortadella, J.: The Octahedron Abstract Domain. Science of Computer
Programming 64, 115–139 (2007)

4. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Vari-
ables of a Program. In: POPL, pp. 84–97. ACM Press, New York (1978)

5. Eisenbrand, F., Laue, S.: A Linear Algorithm for Integer Programming in the
Plane. Mathematical Programming 102(2), 249–259 (2005)

6. Halbwachs, N.: Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. PhD thesis, Université Scientifique et Médicale de
Grenoble (1979)

7. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A Model Checker for Hybrid
Systems. Software Tools for Technology Transfer 1, 110–122 (1997)

8. Howe, J.M., King, A.: Closure Algorithms for Domains with Two Variables
per Inequality. Technical Report TR/2009/DOC/01, School of Informatics, City
University London (2009),
http://www.soi.city.ac.uk/organisation/doc/research/tech_reports/

9. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient Verification of Real-time
Systems: Compact Data Structure and State-space Reduction. In: IEEE Real-Time
Systems Symposium, pp. 14–24. IEEE Computer Society, Los Alamitos (1997)

10. Logozzo, F., Fähndrich, M.: Pentagons: a Weakly Relational Abstract Domain
for the Efficient Validation of Array Accesses. In: ACM Symposium on Applied
Computing, pp. 184–188. ACM Press, New York (2008)

11. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

12. Nelson, C.G.: An nlg n Algorithm for the Two-Variable-Per-Constraint Linear Pro-
gramming Satisfiability Problem. Technical Report STAN-CS-78-689, Stanford
University, Computer Science Department (1978)

13. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint Based Linear Relations
Analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004)

14. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Sys-
tems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

15. Simon, A.: Value-Range Analysis of C Programs: Towards Proving the Absence of
Buffer Overflow Vulnerabilities. Springer, Heidelberg (2008)

16. Simon, A., King, A.: Exploiting Sparsity in Polyhedral Analysis. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg
(2005)

17. Simon, A., King, A., Howe, J.M.: Two Variables per Linear Inequality as an
Abstract Domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp.
71–89. Springer, Heidelberg (2003)

http://www.soi.city.ac.uk/organisation/doc/research/tech_reports/

Synthesis of Fault-Tolerant Distributed Systems�

Rayna Dimitrova�� and Bernd Finkbeiner

Saarland University, Germany

Abstract. A distributed system is fault-tolerant if it continues to per-
form correctly even when a subset of the processes becomes faulty. Fault-
tolerance is highly desirable but often difficult to implement. In this
paper, we investigate fault-tolerant synthesis, i.e., the problem of deter-
mining whether a given temporal specification can be implemented as
a fault-tolerant distributed system. As in standard distributed synthe-
sis, we assume that the specification of the correct behaviors is given
as a temporal formula over the externally visible variables. Additionally,
we introduce the fault-tolerance specification, a CTL∗ formula describing
the effects and the duration of faults. If, at some point in time, a process
becomes faulty, it becomes part of the external environment and its fur-
ther behavior is only restricted by the fault-tolerance specification. This
allows us to model a large variety of fault types. Our method accounts
for the effect of faults on the values communicated by the processes, and,
hence, on the information available to the non-faulty processes. We prove
that for fully connected system architectures, i.e., for systems where each
pair of processes is connected by a communication link, the fault-tolerant
synthesis problem from CTL∗ specifications is 2EXPTIME-complete.

1 Introduction

Fault-tolerance is an important design consideration in distributed systems.
A fault-tolerant system is able to withstand situations where a subset of its
components breaks: depending on the chosen type of fault-tolerance, the system
may completely mask the fault, return to correct behavior after a finite amount
of time, or switch to a behavior that is still safe but possibly less performant.
Fault-tolerance is highly desirable but often difficult to implement. Thus, formal
methods for verification [7] and synthesis [10] of fault-tolerance are necessary.

Traditionally, fault-tolerance requirements are chosen manually. While it is
obviously desirable to stay as close as possible to the normal behavior, the ques-
tion which type of fault-tolerance can be realized in a given system is difficult to
decide and requires a careful analysis of both the desired system functionality
and the possible faults. In this paper, we develop algorithmic support for this

� This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center Automatic Verification and
Analysis of Complex Systems (SFB/TR 14 AVACS).

�� Supported by a Microsoft Research European PhD Scholarship.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 321–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 R. Dimitrova and B. Finkbeiner

design step. We present a synthesis algorithm that determines if a given tempo-
ral specification has a fault-tolerant implementation, and, in case the answer is
positive, automatically derives such an implementation.

Our goal is thus more ambitious than previous approaches (cf. [10, 2, 4])
to fault-tolerant synthesis, which transform an existing fault-intolerant imple-
mentation into a fault-tolerant version. While such approaches are often able
to deliver fault-tolerant systems, they are inherently incomplete, and can there-
fore not be used to decide whether a given fault-tolerance requirement can be
realized. In order to obtain a decision procedure, we cannot treat the implemen-
tation of the system functionality and the implementation of its fault-tolerance
as two separate tasks, but must rather extend the synthesis algorithm to address
both concerns at once. In the restricted setting of closed systems, i.e., of systems
without input, such a combination has already been carried out: Attie et al. [1]
represent faults by a finite set of fault actions that may be carried out by a
malicious environment. Their method then synthesizes a program that is correct
with respect to a specified set of such possible environments.

The key challenge in moving from simple closed systems to general distributed
systems is to account for the incomplete information available to the individual
processes. Faults may affect the communication between processes, which af-
fects the information the non-faulty processes have. Our setting builds on that
of standard distributed synthesis [6], where the communication links between the
processes are described as a directed graph, called the system architecture. We
assume the architecture is fully connected and the system specification is exter-
nal [13, 8], i.e., it does not refer to the internal variables. For standard synthesis,
this case is known to be decidable: while the processes may read different inputs,
they can simply transmit all information to the other processes through the in-
ternal communication links. The distributed system thus resembles a monolithic
program in the sense that all processes are aware of the global state.

The situation is more difficult in a fault-tolerant system, since, when a fault
occurs in some process, the process essentially becomes part of the hostile envi-
ronment and the remaining processes can no longer rely on receiving accurate
information about the external input at its site. We present a synthesis algorithm
for CTL∗ specifications that accounts for the resulting incomplete information.
The given CTL∗ specification is a fault-tolerance specification which encodes the
effects and the durations of the faults and the desired type of tolerance.

Our algorithm is based on a transformation of the architecture and of the
fault-tolerance specification. The architecture transformation changes the set of
external input variables by introducing a new input variable for each process and
making the original input variables unobservable for all processes in the archi-
tecture. The transformation of the specification establishes the relation between
the original input of a process and the new faulty input. The two inputs are
constrained to be the same during the normal operation of the corresponding
process, which guarantees the correctness of the transformation, and may differ
when the process is faulty, which allows us to assume that in the transformed
architecture the faults do not affect the transmission of external input. Thus, we

Synthesis of Fault-Tolerant Distributed Systems 323

can reduce the distributed synthesis problem for the original architecture and
fault-tolerance specification to the one of finding a monolithic implementation
that satisfies the transformed specification in the presence of faults.

We hence establish that the synthesis of fault-tolerant distributed systems
with fully connected system architectures and external specifications is decidable.
In fact, the problem is no more expensive than standard synthesis: fault-tolerant
distributed synthesis from CTL∗ specifications is 2EXPTIME-complete.

2 Modelling Fault-Tolerant Systems

2.1 Faults and Fault-Tolerance

Types of Faults. In the field of fault-tolerant distributed computing faults are
categorized in a variety of ways. The categorization of faults according to the
behavior they cause, results in several standard classes [3, 1]. Stuck-at faults can,
for example, cause a component or a wire to be stuck in some state. If a process
is affected by a fail-stop or a crash fault, it stops (potentially permanently) exe-
cuting any actions before it violates its input-output specification. In both cases
the process is uncorrectably corrupted, but while fail-stop faults are detectable,
that is, other processes are explicitly notified of the fault, crash stops are unde-
tectable. If a process fails to respond to an input from another component, i.e.,
some action is omitted, it is said to exhibit an omission fault. Omission faults
are a subset of the class of timing faults that cause the component to respond
with the correct value but outside the required time interval. The most general
class of Byzantine faults encompasses all possible faults, including arbitrary and
even malicious behavior of the affected process, and are in general undetectable.

According to their duration, faults can be permanent, transient, or intermit-
tent. In the latter two cases, upon recovery the affected process returns to normal
operation from the arbitrary state it has reached in the presence of the fault.

Fault-Tolerance Requirements. Usually the system is not required to satisfy the
original specification after a fault occurs, but instead comply with some fault-
tolerance policy. Fault-tolerance properties are generally classified according to
whether and how they respect the safety and liveness parts of the original specifi-
cation. This classification yields three main types of tolerance. Masking tolerance
always respects both safety and liveness. In non-masking tolerance, however, the
safety property might be temporarily violated, but is guaranteed to be eventu-
ally restored, while the liveness part is again always respected. A third type is
fail-safe tolerance. When formalizing fail-safe tolerance it is assumed that the
original specification is given as conjunction of a safety and a liveness specifica-
tions [12], and after fault occurrence only the safety conjunct has to be satisfied.

2.2 Architectures for Fault-Tolerant Synthesis

An architecture describes the communication between the processes in a dis-
tributed system and their interaction with the external environment. We model

324 R. Dimitrova and B. Finkbeiner

the occurrence of a fault as an action of the environment. In the following, we as-
sume that faults are detectable, that is there exists a reliable unit of the external
environment that notifies all processes immediately when a fault occurs in some
of them, and also informs them exactly which processes were faulty in the pre-
vious execution step. To this end, we consider architectures with a distinguished
set of external input fault-notification variables, which all processes in the sys-
tem are allowed to read. Alternatively, the fault-notification variables could be
made invisible to the system processes, in which case finding the fault-detection
mechanism would be part of the synthesis problem.

An architecture A = (env , P,Ext , C, (D(v))v∈Ext , (In(p),Out(p))p∈P) is a tu-
ple that consists of: environment env, a finite set of processes P , a set Ext of
external variables together with a finite domain D(v) for each v ∈ Ext , a set
C (disjoint from Ext) of internal variables, and read and write permissions for
each p ∈ P . The set Ext is the union of the disjoint sets I, O, H and N , where:

– The set I consists of the external input variables whose values are supplied
by the environment env . The set I is the union of the sets Ip, where for each
process p, Ip is a set of external input variables, this process can read. Each
variable in I is read by at least one (possibly several) processes in P .

– The set O consists of the external output variables, via which the processes
provide their output to the environment env. The set O is the union of the
disjoint sets Op, where for each process p, Op is the set of external output
variables written by that process, which no other process in P can read.

– The set H consists of the external private environment variables written by
the environment env , and which none of the processes in P can read.

– The set N = {np,mp | p ∈ P} of external input variables for fault notifica-
tion contains one variable np for each process p that is used by the environment
to notify all processes for a fault occurrence in p and a variable mp that indi-
cates whether p was faulty in the previous execution step. The variables in N can
be read by all processes and are written only by the environment. The domain
D(np) of np is a finite subset of N that consists of the different faults that can
occur in process p, where 0 indicates normal operation. Similarly for mp.

The set C consists of the variables used for internal communication between
the processes. It is the union of the disjoint sets Cp, where for each process p,
Cp is the set of internal variables written by p via which it communicates to the
other processes. We denote with V the set of all variables in an architecture A.

For a process p, the set In(p) consists of all variables (internal or external)
this process is allowed to read and Out(p) = Cp ∪ Op consists of all variables
that this process is allowed to write. By definition, the sets Out(p) are disjoint.

The architecture associates with each external variable v ∈ Ext a finite
nonempty domain D(v) together with some designated element d0(v) ∈ D(v).
The domains of the internal variables are unconstrained by the architecture, and
hence the capacity of the communication channels is not limited a priori.

Consider some nonempty finite domains D(v)v∈C for the internal variables in
A. For a subset U ⊆ V , we denote with D(U) the Cartesian product

∏
u∈U D(u)

and with d0(U) the tuple (d0(u))u∈U . For d ∈ D(U), u ∈ U and U ′ ⊆ U , d〈u〉 and

Synthesis of Fault-Tolerant Distributed Systems 325

d〈U ′〉 denote the projections of d on the variable u and on the subset of variables
U ′, respectively. For a finite or infinite sequence σ = d0d1d2 . . . of elements of
D(U) and j ≥ 0, we denote by σ[j] the element dj and with σ(j) the prefix of
length j of σ (if j = 0, then σ(j) = ε). Projection trivially extends to sequences
and prefixes. When σ is finite, we denote with |σ| the number of elements of σ.

We consider synchronous communication with delay: at each step, each pro-
cess reads its current external input and the output of the processes in P de-
layed by one step. For a global computation history σ ∈ D(V)∗ we have that
σ[0] = d0(V) and for every j ≥ 1, σ[j]〈I ∪H ∪N〉 is the input provided by the
environment at step j and σ[j]〈V \ (I ∪H ∪N)〉 is the output of the processes at
step j − 1, i.e., the history reflects the delay. Thus, for simplicity of the presen-
tation we have assumed that the delay of each variable v ∈ V \ (I ∪H ∪N) is 1.
Our results can be easily extended to the case of arbitrary a priori fixed delays.

Fully Connected Architectures. An architecture A is fully connected if every pair
of processes is connected via a communication link with sufficient capacity.

From now on, we consider only fully connected architectures and w.l.o.g. assume
that C = {cp, tp | p ∈ P}, where for each process p, the variables cp and tp are
written by p and read by all processes, and the domain of cp is fixed to be D(Ip).
Thus, process p can use cp to communicate its input. We denote with cv

p the com-
ponent of the variable cp used for the transmission of v ∈ Ip. The domains of the
variables tp for p ∈ P are left unspecified in the architecture.

2.3 The Specification Language CTL∗

Syntax. Let AP be a finite set of atomic propositions. The logic CTL∗ distin-
guishes state and path formulas. State formulas are called CTL∗ formulas.

State formulas over AP are formed according to the following grammar, where
p ∈ AP and θ stands for a path formula: ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | Eθ.
Path formulas are formed according to the following grammar, where ϕ is a state
formula and θ, θ1 and θ2 are path formulas: θ ::= ϕ | ¬θ | θ1 ∧ θ2 | Xθ | θ1 U θ2.

As abbreviations we can define the remaining usual boolean operators over
state and path formulas. For a path formula θ, we define the state formula Aθ
as ¬E¬θ, the path formula Fθ as true U θ and the path formula Gθ as ¬F¬θ.

Trees. As usual, for a finite set X , an X-tree is a prefix-closed subset T ⊆ X∗ of
finite words over X . The direction of every nonempty node σ ·x ∈ X+ is defined
as dir(σ · x) = x, and for ε, dir (ε) = x0 where x0 ∈ X is some designated root
direction. A X-tree T is called total if ε ∈ T and for every σ ∈ T there exists
at least one successor σ · x ∈ T , x ∈ X . If T = X∗, then T is called full. For a
given finite set Y , a Y -labeled X-tree is a pair 〈T, l〉, where T is an X-tree and
l : T → Y is a labelling function that maps each node in T to an element of Y .

Semantics. Consider a set of variables V with D(V) being the Cartesian prod-
uct of their domains. Let AP be a finite set of atomic propositions over V . A
CTL∗ formula ϕ over AP can then be interpreted over total D(V)-labeled trees

326 R. Dimitrova and B. Finkbeiner

according to the standard semantics [5] of CTL∗. A total D(V)-labeled tree 〈T, l〉
is a model of ϕ, written 〈T, l〉 |= ϕ, iff the root node of 〈T, l〉 satisfies ϕ.

2.4 Specifying Fault-Tolerance

The system specification describes the desired input-output behavior of the
system in the absence of faults and leaves the internal communication uncon-
strained. That is, we are given an external specification as a CTL∗ formula ϕ
over atomic propositions from the set AP = {v = a | v ∈ Ext \N, a ∈ D(v)}, i.e.,
about external variables. The models of ϕ are total D(Ext)-labeled D(Ext)-trees.

In the presence of faults, the system need not satisfy the original specification,
but instead comply with some (possibly weaker) fault-tolerance specification. An
external specification for an architecture A can refer to the fault notification
variables in N . This allows for specifying the intended fault-tolerance policy as
well as encoding the effects and durations of faults in the input CTL∗ formula.

Given the original specification ϕ, we first construct a formula ΦTOL accord-
ing to the required type of fault-tolerance. The user can describe manually as
a CTL∗ formula the desired properties of the behavior of the system in the
presence of particular faults in particular processes and combinations thereof.
Of course, classical fault-tolerance requirements, such as masking, non-masking
or fail-safe, can be also specified (for masking tolerance it suffices to leave the
specification unchanged). Moreover, in the case of simple specifications such as
invariants, i.e., of the form AGψ, this compilation can be done automatically:
For fail-safe and non-masking tolerance, the tolerance properties are respectively
AG(ψ ∨ (fault -present ∧ ψsafe)) and AG(ψ ∨ (fault -present ∧ AFAGψ)), where
fault -present =

∨
p∈P ¬(np = 0) and ψsafe is the safety conjunct of ψ.

In our model, the occurrence of a fault causes the affected process to behave
in an arbitrary way, i.e., it exhibits maximal behavior. However, by constraining
this behavior in the fault-tolerance specification, we can model several of the
fault types mentioned in the beginning of this section, as well as many more.

Given a set of faults with their effects on the behavior of a process and their
durations, we transform the formula ϕTOL into the fault-tolerance specification
Φt, by relativizing the path quantifiers in the formula ϕTOL w.r.t. the corre-
sponding assumptions on the environment. These assumptions are encoded in the
formulas fault -behavior , fault -duration , and fault -distribution , whose construc-
tion we discuss below. Thus, the fault-tolerance specification Φt is obtained from
the formula ϕTOL by substituting each occurrence of Aθ by A((fault -behavior ∧
fault -duration ∧ fault -distribution) → θ), and each occurrence of Eθ by
E(fault -behavior ∧ fault -duration ∧ fault -distribution ∧ θ).

The formula fault -behavior describes the possible behaviors of the processes
in the presence of each of the given faults. Let faulty-output(d, p) be a state
formula describing the possible outputs of process p when affected by the fault
of type d (we can assume that a stopped process outputs some default element
⊥). Then, fault -behavior = G

∧
p∈P

∧
d∈D(np)(np = d→ X(faulty-output(d, p))).

The formula fault -duration constrains the duration of faults. Let D′(np) and
D′′(np) be the subsets of D(np) consisting of the permanent and the transient

Synthesis of Fault-Tolerant Distributed Systems 327

faults, respectively, for a process p ∈ P . For each d ∈ D′′(np), we assume the exis-
tence of a boolean variable rd

p in H , where rd
p being true means that process p has

recovered from d. The path formulas permanent(d, p) = G((np = d) → G(np =
d)) and transient(d, p) = G(((np = d) → (np = d U rd

p)) ∧ (rd
p → (¬(np = d) ∧

Grd
p))) state that the occurrence of fault of type d in process p is permanent, re-

spectively transient (i.e., the duration of the fault is finite and the recovered pro-
cess cannot perturb again, cf. [7]). Finally, we define the formula fault -duration =∧

p∈P ((
∧

d∈D′(np) permanent(d, p)) ∧ (
∧

d∈D′′(np) transient(d, p))).
The user can also provide a path formula fault -distribution that constrains

the number of faulty processes in the considered system during the execution,
e.g., there is at most one faulty process at every point of the execution.

To avoid restriction to only memoryless implementations, we assume that at
every point of the system’s execution at least one process is not faulty, i.e., the
synthesized system is designed to tolerate up to n − 1 simultaneously faulty
processes, where n is the total number of processes. Thus, we assume that the
formula fault -distribution is a conjunction of the user specified requirements and:
the formula G

∨
p∈P (np = 0) which guarantees that there is at least one non-

faulty process at every point, and the formula G
∧

p∈P (np = d → X(mp = d)),
which states that the values of the variables mp and np are correctly related.

Note that for common fault types such as fail-stop or stuck-at, as well as for
the usual constraints on the duration of faults, the fault-tolerance specification
can be compiled automatically from the original specification. The user can also
specify customized requirements expressible in CTL∗. From now on, we assume
that the fault-tolerance specification is given as input to our algorithm.

Example (Reliable Broadcast). In a broadcast protocol, the environment consists
of n clients E1, . . . , En, which broadcast messages. The system consists of n
servers, S1, . . . , Sn that correspond to the processes p1, . . . , pn, which deliver the
messages to the clients. Each client Ej communicates only with the correspond-
ing server Sj and we assume that each message sent by a client is unique.

A system with 3 servers is depicted on Fig. 1, where we have omitted the
internal communication variables. Let M be the finite set of possible message
contents. The domain of each input, output or communication variable v ∈
{ij, oj , cj | j = 1, 2, 3} is D(v) = {(m, j) | m ∈ M, j ∈ {1, 2, 3}} ∪ {⊥}, where j
denotes the broadcaster’s name and ⊥ indicates the absence of message.

In the absence of faults, the correctness can be specified by the following
standard requirements: (1) If a client Ej broadcasts a message m, then the
server Sj eventually delivers m; (2) If a server delivers a message m, then all

E1

S1

i1
o1

E2

S2

i2
o2

E3

S3

i3
o3

env

system

D

n1, n2, n3

Fig. 1. Architecture of a distributed server

328 R. Dimitrova and B. Finkbeiner

servers eventually deliver m; (3) For every message m, every server delivers (m, l)
at most once and does so only if m was previously broadcast by the client El.

The environment component D notifies all servers when a fault in server j
occurs, by setting nj to 1. A faulty server sends arbitrary messages to the corre-
sponding client and to the other servers. The duration of faults is unconstrained.
Thus, both formulas fault -behavior and fault -duration are equivalent to true.

We specify the fault-tolerance requirement as follows. We replace each require-
ment that a server eventually delivers a message m by the weaker requirement
that it has to eventually deliver a message, provided that from that point on it
is never faulty. The safety property that the servers do not invent messages is
also weakened to hold only for non-faulty processes. Thus, we obtain a variation
of the standard requirements for reliable broadcast from [9].
Validity: If a client Ej broadcasts a message m and the corresponding server
Sj is never faulty from that point on, then Sj eventually delivers m.

ϕV
j = AG

∧
m∈M ((ij = (m, j) ∧ G(nj = 0))→ F(oj = (m, j)))

Agreement: If a non-faulty server Ej delivers a message (m, l), then all servers
that are non-faulty from that point on eventually deliver (m, l).

ϕA
j = AG

∧
m∈M,l∈P (oj = (m, l)∧nj = 0 →

∧
p∈P (G(np = 0)→ F(op = (m, l))))

Integrity: For every message m, every non-faulty server Ej delivers (m, l) at
most once and does so only if m was previously broadcast by the client El.

ϕI
j = AG

∧
m∈M,l∈P ((nj = 0 ∧ oj = (m, l))→ XG(nj = 0→ ¬(oj = (m, l))))∧

AG
∧

m∈M,l∈P ¬((¬il = (m, l)) U (oj = (m, l) ∧ nj = 0 ∧ ¬il = (m, l)))

2.5 The Fault-Tolerant Synthesis Problem

Let A = (env , P,Ext , C, (D(v))v∈Ext , (In(p),Out(p))p∈P) be a fully connected
architecture. A distributed implementation for the architecture A consists of a
tuple (D(v))v∈C of sets defining domains for the internal variables and a tuple
ŝ = (sp)p∈P of implementations for the processes in P , where an implementation
for a process p is a function (strategy) sp : D(In(p))∗ → D(Out(p)) which maps
each local input history for p to an assignment to the variables written by p.
A distributed implementation ŝ is finite-state if for each process p, the domain
D(Cp) is finite and the strategy sp can be represented by a finite automaton.

In the absence of faults, a distributed implementation ŝ = (sp)p∈P defines a
computation tree CT (ŝ) = 〈T, dir〉, where T ⊆ D(V)∗ is the greatest total tree
such that for all σ ∈ D(V)∗ and all d ∈ D(V), if σ · d ∈ T , then σ ∈ T and for
every p ∈ P it holds that d〈Out(p)〉 = sp(σ〈In(p)〉). Recall that the realizability
problem for an architecture A with fixed finite domains for all variables and a
CTL∗ specification ϕ over Ext \ N is to decide whether there exists a finite-
state distributed implementation ŝ for A such that CT (ŝ) |= ϕ. The distributed
synthesis problem requires finding such an implementation if one exists.

In the presence of faults, a distributed implementation ŝ = (sp)p∈P defines
a fault computation tree FCT (ŝ) = 〈T, dir 〉, where T ⊆ D(V)∗ is the greatest

Synthesis of Fault-Tolerant Distributed Systems 329

total tree such that for all σ ∈ D(V)∗ and d ∈ D(V), if σ ·d ∈ T , then σ ∈ T and
for every p ∈ P such that dir (σ)〈np〉 = 0 it holds that d〈Out(p)〉 = sp(σ〈In(p)〉),
i.e., the output of only non-faulty processes determines the successors of a node.

The implementations for the processes in P should be independent of infor-
mation about the external environment the processes do not have. Consider an
external input variable v ∈ I and assume that at some point all processes al-
lowed to read v are faulty. The behavior of the (non-faulty) processes in P at
this and at later points of the execution of the system should not depend on the
value of v at that moment, because the faulty processes may communicate the
value incorrectly and their states may be arbitrarily perturbed. Thus, we say
that two local histories for a process p are equivalent up to faults if they differ
only in the values of external input variables at points when all processes reading
them were faulty. A distributed implementation is consistent w.r.t. faults if all
strategies produce the same output for histories that are equivalent up to faults.

Note that for an implementation that is consistent w.r.t. faults, the output
of a strategy for a process p is allowed to depend on the value of a variable
v ∈ Ip from points in the history in which process p was faulty, as long as some
process allowed to read v was not faulty. Thus, provided that at each point of
the execution of the system there exists at least one process that is not faulty
(an assumption that can be specified in the fault-tolerance specification as shown
above), a recovered process is allowed to depend on the history up to equivalence
w.r.t. faults. This is possible since in a fully connected architecture a process can,
upon recovery from a fault, receive information about the current state of the
system from another process that was not faulty at the previous step.

Definition 1 (Equivalence up to faults). For a process p ∈ P , we define
the equivalence relation ≡f

p on D(In(p))∗ in the architecture A as follows. For
σ1 ∈ D(In(p))∗ and σ2 ∈ D(In(p))∗, we have σ1 ≡f

p σ2 if and only if |σ1| = |σ2|,
σ1[|σ1| − 1] = σ2[|σ2| − 1] and for every 0 ≤ j < |σ1| − 1 it holds that: (1)
σ1[j]〈In(p) \ Ip〉 = σ2[j]〈In(p) \ Ip〉 and (2) for every v ∈ Ip, if there exists a
process q ∈ P with v ∈ Iq and σ[j]〈nq〉 = 0, then it holds that σ1[j]〈v〉 = σ2[j]〈v〉.

Definition 2 (Consistency w.r.t. faults). We say that a distributed strategy
ŝ for the architecture A is consistent w.r.t. faults if for every p ∈ P and for
every σ1 and σ2 in D(In(p))∗ with σ1 ≡f

p σ2 it holds that sp(σ1) = sp(σ2).

Definition 3 (Fault-Tolerant Synthesis Problem). The fault-tolerant real-
izability problem for an architecture A and a CTL∗ fault-tolerance specification
Φt is to decide whether there exists a finite-state distributed implementation ŝ for
A that is consistent w.r.t. faults and such that FCT (ŝ) |= Φt. The fault-tolerant
synthesis problem requires finding such an implementation if the answer is yes.

3 Synthesis

Our synthesis algorithm builds on that of single-process synthesis under incom-
plete information [11], via a standard reduction for fully connected architectures

330 R. Dimitrova and B. Finkbeiner

and external specifications [8]. We now provide the necessary preliminaries based
on the classical synthesis case and in the next sections we present the method-
ology we developed to employ a similar approach in the fault-tolerant setting.

3.1 Synthesis for Fully Connected Architectures

Transmission Delay. In a fully connected architecture, the output of every pro-
cess p may depend, with a certain delay, on all external input variables in I ∪N .
The delay, delay(v, p), of the transmission of an external input variable v to a
process p in a fully connected architecture is 0 if v ∈ Ip ∪N and 1 otherwise.
Input-Output Functions. An input-output function for a process p is a function
gp : D(I ∪N)∗ → D(Op) which based on the global input history assigns values
to the variables in Op. A global input-output function g : D(I ∪ N)∗ → D(O)
assigns values to all external output variables, based on the global input history.

An input-output function gp is delay-compatible if for each σ1, σ2 ∈ D(I∪N)∗,
for which for every v ∈ I∪N it holds that σ1〈v〉(|σ1|−delay(v, p)) = σ2〈v〉(|σ2|−
delay(v, p)), it holds that gp(σ1) = gp(σ2). A global input-output function g is
delay-compatible iff so is the projection of g on Op, for every process p ∈ P .

Routing Strategies. Given a nonempty set D(v) for each v ∈ C, a routing r̂ =
(rp)p∈P for an architecture A is a tuple of local memoryless strategies, called
routing strategies, where for each p ∈ P , rp : D(In(p)) → D(Cp) is a function
that given values for the variables in In(p), assigns values to the variables in Cp.

In a fully connected architecture A, each process p can transmit the values of
Ip to the other processes via the variable cp. A simple routing r̂ = (rp)p∈P is one
for which rp(d)〈cp〉 = d〈Ip〉 and it allows every process to trivially reconstruct the
value of every variable in I. A distributed implementation ŝ for A has simple rout-
ing if for every σ ∈ D(V)∗ and p ∈ P it holds that sp(σ〈In(p)〉)〈cp〉 = dir (σ)〈Ip〉,
i.e., the strategies directly forward the external input. For fully connected archi-
tectures it suffices to consider only implementations with simple routing.

Synthesis for Fully Connected Architectures and External Specifications. In [8]
it was shown that the distributed synthesis problem is decidable for uniformly
well-connected architectures with linearly preordered information and external
specifications, and it can be reduced to finding a collection of delay-compatible
input-output functions for the processes in P . Fully connected architectures are a
special case of uniformly well-connected architectures in which all processes have
the same information and hence fall in this class. Moreover, in order to find such
a collection of input-output functions, it suffices to find a delay-compatible global
input-output function and use projection to obtain functions for the processes
in P . Thus, the problem reduces to the single-process synthesis problem under
incomplete information with the additional requirement of delay-compatibility.

3.2 Single-Process Synthesis under Incomplete Information

Let A = (env , {p},Ext, ∅, (D(v))v∈Ext , (I ∪ N,O)) be a single-process architec-
ture and ψ be a CTL∗ specification over the variables in V = I ∪H ∪N ∪O.

Synthesis of Fault-Tolerant Distributed Systems 331

Tree Automata. An alternating parity tree automaton is a tuple A = (Y,X,Q, q0,
δ, α), where Y is a finite alphabet, X is a finite set of directions, Q is a finite set of
states, q0 ∈ Q is the initial state, δ : Q×Y → B+(Q×X) is a transition function
that maps a state and an input letter to a positive boolean combination of pairs
of states and directions, and a coloring function α : Q → Col ⊂ N that maps
each state to some color from a finite set Col . An alternating automaton runs on
full Y -labeled X-trees. A run tree on a given full Y -labeled X-tree 〈X∗, l〉 is a
Q×X∗-labeled tree where the root is labeled with (q, ε) and where for every node
ρ with label (q, σ) the set of children K of ρ satisfies the following properties:
(1) for every ρ′ ∈ K, the label of ρ′ is (q′, σ · x) for some q′ ∈ Q and x ∈ X such
that (q′, x′) is an atom of δ(q, l(σ)), and (2) the set of atoms defined by the set
of children K satisfies δ(q, l(σ)). An infinite path fulfills the parity condition if
the maximal color of the states appearing infinitely often is even. A run tree is
accepting if all infinite paths fulfill the parity condition. A full Y -labeled X-tree
is accepted if it has an accepting run tree. A nondeterministic automaton is an
alternating automaton, in which, in the DNF of each transition every disjunct
contains exactly one (q, x) for every x ∈ X .

Symmetric alternating automata are a variant of alternating automata that
run on total Y -labeled X-trees. For a symmetric alternating automaton S =
(Y,Q, q0, δ, α), Q,q0, and α are as above, but the transition function δ : Q ×
Y → B+(Q × {�,♦}) maps a state and an input letter to a positive boolean
combination over atoms that refer to some(♦) or all(�) successors in the tree.
A run tree on a given Y -labeled X-tree 〈T, l〉 is a Q × X∗-labeled tree where
the root is labeled with (q, ε) and where for every node ρ with label (q, σ) the
set of children K of ρ satisfies the following properties: (1) for every ρ′ ∈ K, the
label of ρ′ is (q′, σ · x) for some q′ ∈ Q, x ∈ X and σ · x ∈ T such that (q′,�) or
(q′,♦) is an atom of δ(q, l(σ)), and (2) interpreting each occurrence of (q′,�) as∧

x∈X,σ·x∈T (q′, x) and each occurrence of (q′,♦) as
∨

x∈X,σ·x∈T (q′, x), the set of
atoms defined by the set of children K satisfies δ(q, l(σ)).

Automata-Theoretic Solution. For a CTL∗ formula ψ one can construct an al-
ternating parity tree automaton Aψ with 2O(|ψ|) states that accepts exactly the
models of ψ [11]. Via the automata transformations described in [11], the real-
izability problem for the single process architecture A and the specification ψ
can be reduced to the nonemptiness of an alternating tree automaton Cψ that is
obtained from Aψ and that has the same number of states as Aψ.

Theorem 1 (from [11]). The single-process synthesis problem for CTL∗ with
incomplete information is 2EXPTIME-complete.

4 Encoding Fault-Tolerant Realizability

In this section we present a transformation of the architecture and the fault-
tolerance specification to an architecture and a specification for which the
distributed fault-tolerant synthesis problem can be reduced to single-process
synthesis under incomplete information. The key challenge is to account for the

332 R. Dimitrova and B. Finkbeiner

fact, that the non-faulty processes cannot rely on receiving accurate information
about the external input of a faulty process. We describe how we model the effect
of a fault occurrence on the informedness of the non-faulty processes. We show
that the described transformations do not affect fault-tolerant realizability.

Architecture Transformation. To circumvent the change of informedness of the
processes in the architecture caused by the occurrences of faults, and yet al-
low a faulty process to communicate incorrectly its external input to the other
processes, we introduce a faulty copy of the external input of each process.

Formally, we transform the architecture A into an architecture Af defined as
follows: Af = (env , P,Extf , C, (D(v))v∈Extf , (Inf (p),Out(p))p∈P), where V f is
partitioned into If = F , Hf = H ∪ I, N , C and O. The new set of variables
F = {fp | p ∈ P} consists of the external faulty-input variables, one for each
process p in P , whose values are supplied by the environment. For p ∈ P we
have Inf (p) = (In(p)\ Ip)∪{fp}. The domain of each fp is D(Ip) and we denote
with fv

p the component of fp that corresponds to a variable v ∈ Ip.
In the architecture Af , none of the processes is allowed to read the values of

the original input variables in I and thus, a routing strategy for process p can
only transmit the value of the faulty-input variable fp to the other processes.

Specification Transformation. The relation between the correct and the faulty
input in normal execution and after the occurrence of a fault is established by
an assumption on the environment introduced in the specification: While the
tuple of values given by the environment to the input variables of a process p
and the value given to the corresponding faulty-input variable for that process
are constrained to be the same during the normal execution of process p, during
the time process p is faulty this may not be the case. Formally, the assumption is
faulty-input = G

∧
p∈P,v∈Ip

(np = 0 → fv
p = v). Then the formula Φf is obtained

by substituting in the fault-tolerance specification Φt each occurrence of Aθ by
A(faulty-input → θ) and each occurrence of Eθ by E(faulty-input ∧ θ).

For implementations for the architecture Af we assume that faults do not
affect the forwarding of external input by a faulty process. This results in the
fault computation tree FCT f (ŝ) = 〈T, dir〉, where T ⊆ D(V f)∗ is the greatest
total tree such that for all σ ∈ D(V f)∗ and all d ∈ D(V f), if σ ·d ∈ T , then σ ∈ T
and for every p ∈ P it holds that d〈cp〉 = sp(σ〈Inf (p)〉)〈cp〉 and if dir (σ)〈np〉 = 0
then d〈Out(p)〉 = sp(σ〈Inf (p)〉)〈Out(p)〉. The following theorem establishes the
connection between the fault computation trees for the implementations for the
architecture Af and the implementations for the original architecture A.

Theorem 2. There exists a finite-state distributed implementation ŝ with sim-
ple routing for the architecture A that is consistent w.r.t. faults and such that
the fault computation tree FCT (ŝ) is a model of Φt iff there exist a finite-state
distributed implementation ŝf with simple routing for the architecture Af such
that the fault computation tree FCT f (ŝf) is a model of Φf .

Proof (Idea). We define mappings from local input histories for a process p ∈ P
in the architecture A to local input histories for p in Af and vice versa. An

Synthesis of Fault-Tolerant Distributed Systems 333

element of D(In(p))∗ is mapped to an element of D(Inf (p))∗, where the value
of fp in a state of the image prefix is the value of cp from the next state in
the original prefix, if such a state exists, and is equal to the tuple of values for
Ip in the corresponding state of the original prefix otherwise. When mapping
D(Inf (p))∗ to D(In(p))∗, the value of a variable v ∈ Ip in a state of the image
prefix is the same as the value of cv

q from the next state in the original prefix,
if such a state exists and there exists a process q with v ∈ Iq that is not faulty
in the corresponding state of the original prefix, and is the value of fv

p from the
corresponding state in the original prefix otherwise. Based on these mappings we
define the respective strategies and show that they have the required properties.
The formal definitions and proof can be found in the full version of this paper.

5 From Fault Input-Output Trees to Full Trees

We now present a modification of the classical construction that transforms
an automaton on total trees into one that accepts full trees. Our construction
accounts for the shape of the total tree resulting from the occurrences of faults.

Consider the architecture Af and the formula Φf obtained as described in
Sect. 4 from the architecture A and the fault-tolerance specification Φt.

For a global input-output function g for Af , we define a fault input-output
tree FOT (g) = 〈T, dir 〉 similarly to fault computation trees: T ⊆ D(Extf)∗ is
the greatest total tree such that for all σ ∈ D(Extf)∗ and all d ∈ D(Extf),
if σ · d ∈ T , then σ ∈ T and for all p ∈ P with dir (σ)〈np〉 = 0 it holds
that d〈Op〉 = g(σ〈If 〉)〈Op〉. The tree FOT (g), which is a total D(Extf)-labeled
D(Extf)-tree, can be represented as a full D(Extf)×D(O)-labeled D(Extf)-tree
where the nodes are labeled additionally with the output of g that determines the
enabled directions. Given a full D(Extf)×D(O)-labeled D(Extf)-tree T , we can
determine the corresponding total characteristic tree under faults, charF (T).

Definition 4. Let 〈D(Extf)∗, l〉 be a full D(Extf) × D(O)-labeled D(Extf)-
tree. We define the characteristic tree under faults as the total D(Extf)-labeled
D(Extf)-tree 〈T, dir 〉 = charF (〈D(Extf)∗, l〉) as follows: T ⊆ D(Extf)∗ is the
greatest total tree such that for all σ ∈ D(Extf)∗ and all d′ ∈ D(Extf), if
σ · d′ ∈ T , then σ ∈ T and the condition (∗) below holds:
(∗) for every p ∈ P , if d〈np〉 = 0, then d′〈Op〉 = do〈Op〉, where l(σ) = 〈d, do〉.
For the CTL∗ formula Φf , we can construct [11] a symmetric parity automaton
SΦ that accepts exactly the models of Φf . This automaton runs on total D(Extf)-
labeled trees, has 2O(|Φf |) states and five colors. Since automata transformations
are simpler for automata running on full trees, from the symmetric automaton
SΦ we construct the alternating parity automaton AΦ that accepts a full tree iff
its characteristic tree under faults is a model of Φf . The transition function of
AΦ uses the information about enabled successors given in the labels: Where SΦ

sends a copy to all successors (some successor), AΦ sends a copy to all enabled
successors (some enabled successor). However, here the enabled successors are
determined only according to the output of the processes that are non-faulty
according to the node’s label.

334 R. Dimitrova and B. Finkbeiner

Theorem 3. If SΦ is a symmetric automaton over D(Extf)-labeled D(Extf)-
trees, we can construct an alternating parity automaton AΦ such that AΦ accepts
a D(Extf)×D(O)-labeled D(Extf)-tree T iff SΦ accepts charF (T). The automa-
ton AΦ has the same state space and acceptance condition as SΦ.

6 Synthesis of Fault-Tolerant Systems

We reduced the fault-tolerant synthesis problem for the architecture A and the
formula Φt to the corresponding problem for the architecture Af and Φf . In Af

we can assume that faults do not affect the routing of input and therefore we
can reduce the problem to finding delay-compatible input-output functions.

Delay-Compatible Global Input-Output Functions for Af . From a symmetric au-
tomaton SΦ that accepts exactly the total D(Extf)-labeled D(Extf)-trees that
are models of Φf , we construct, as explained in the previous section, an alter-
nating parity tree automaton AΦ that accepts a full D(Extf) × D(O)-labeled
D(Extf)-tree T iff charF (T) is a model of Φf . Via standard transformations we
obtain from AΦ a nondeterministic automaton NΦ with number of states doubly
exponential in the size of Φf that accepts a D(O)-labeled D(If ∪N)-tree T iff
T corresponds to a global input-output function for A whose fault input-output
tree is a model of Φf . Via a construction similar to the one in [8], we transform
NΦ into a nondeterministic tree automaton DΦ that accepts exactly the labeled
trees accepted by NΦ that correspond to delay-compatible global input-output
functions. The size of DΦ is linear in the size of NΦ. If the language of DΦ is
nonempty the nonemptiness test produces a finite-state delay-compatible global
input-output function g : D(If ∪N)∗ → D(O) for Af for which FOT (g) |= Φf .

From Global Input-Output Functions to Distributed Implementations. By pro-
jecting a finite-state delay-compatible global input-output function g for Af on
the sets Op of variables we obtain a set of delay-compatible input-output func-
tions (gp)p∈P for the processes in Af . These functions are represented as finite
automata, which have the same set of states Qg, which are labeled by elements
of D(Op), and the same deterministic transition function δg. For each variable
tp ∈ C, we define D(tp) = Qg ∪ {⊥}, d0(tp) = ⊥ and for each cp ∈ C we have
D(cp) = D(If

p). Then, we define a simple routing r̂ = (rp)p∈P as follows. For
every process p and d ∈ D(Inf (p)), the value assigned to tp by rp is determined
as follows. If d〈tq〉 = ⊥ for all q, this value is q0

g (the initial state). Otherwise,
the value is δg(t, d′), where t = d〈tq〉 for some process q with d〈mq〉 = 0 if one
exists, or some fixed process q otherwise, and for every fq ∈ If , d′〈fq〉 = d〈cq〉.

Combining the functions (gp)p∈P with this simple routing we obtain a finite-
state distributed implementation ŝf = (sf

p)p∈P for Af . If the tree FOT (g) is a
model of Φf , then so is the tree FCT f (ŝf).

Clearly, vice versa, if there exists a distributed implementation ŝ for Af with
FCT f (ŝf) |= Φf , then there exists a delay-compatible global input-output func-
tion g with FOT (g) |= Φf and hence the language of DΦ is not empty.

Synthesis of Fault-Tolerant Distributed Systems 335

Recalling the relation between the implementations in the architectures A and
Af we established in Sect. 4, we obtain the following result.

Theorem 4. The fault-tolerant distributed synthesis problem is 2EXPTIME-
complete for fully connected architectures and external specifications.

7 Conclusion

We have presented a synthesis algorithm that determines for a fully connected ar-
chitecture and a temporal specification whether a fault-tolerant implementation
exists, and, in case the answer is positive, automatically derives such an imple-
mentation. We demonstrated that the framework of incomplete information is
well-suited for encoding the effects of faults on the informedness of individual
processes in a distributed system. This allowed us to reduce the fault-tolerant
distributed synthesis problem to single-process synthesis with incomplete infor-
mation for a modified specification. We thus showed that the fault-tolerance
synthesis problem is decidable and no more expensive than standard synthesis.
Establishing general decidability criteria for architectures that are not fully con-
nected as well as extending the scope to broader fault types such as Byzantine
faults are two open problems that deserve further study.

References

[1] Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-tolerant concurrent pro-
grams. ACM Trans. Program. Lang. Syst. 26(1), 125–185 (2004)

[2] Bonakdarpour, B., Kulkarni, S.S., Abujarad, F.: Distributed synthesis of fault-
tolerant programs in the high atomicity model. In: Masuzawa, T., Tixeuil, S.
(eds.) SSS 2007. LNCS, vol. 4838, pp. 21–36. Springer, Heidelberg (2007)

[3] Dolev, D., Strong, H.R.: A simple model for agreement in distributed systems. In:
Simons, B., Spector, A.Z. (eds.) Fault-Tolerant Distributed Computing. LNCS,
vol. 448, pp. 42–50. Springer, Heidelberg (1990)

[4] Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: a framework for automatic syn-
thesis of fault-tolerance. STTT 10(5), 455–471 (2008)

[5] Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science. Formal Models and Sematics (B), vol. B, pp. 995–1072 (1990)

[6] Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. LICS 2005,
June 2005, pp. 321–330 (2005)

[7] Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed
protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 315–331. Springer, Heidelberg (2008)

[8] Gastin, P., Sznajder, N., Zeitoun, M.: Distributed synthesis for well-connected ar-
chitectures. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
pp. 321–332. Springer, Heidelberg (2006)

[9] Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and
related problems. In: Distributed Systems, 2nd edn., Addison-Wesley, Reading
(1993)

[10] Kulkarni, S.S., Arora, A.: Automating the addition of fault-tolerance. In: Formal
Techniques in Real-Time and Fault-Tolerant Systems, pp. 82–93 (2000)

336 R. Dimitrova and B. Finkbeiner

[11] Kupferman, O., Vardi, M.Y.: Church’s problem revisited. Bulletin of Symbolic
Logic 5(2), 245–263 (1999)

[12] Manolios, P., Trefler, R.: Safety and liveness in branching time. In: Proc. LICS,
pp. 366–374. IEEE Computer Society Press, Los Alamitos (2001)

[13] Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS, vol. II, pp. 746–757. IEEE, Los Alamitos (1990)

Formal Verification for High-Assurance Behavioral
Synthesis�

Sandip Ray1, Kecheng Hao2, Yan Chen3, Fei Xie2, and Jin Yang4

1 Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712
2 Department of Computer Science, Portland State University, Portland, OR 97207

3 Toyota Technological Institute at Chicago, Chicago, IL 60637��

4 Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124

Abstract. We present a framework for certifying hardware designs generated
through behavioral synthesis, by using formal verification to certify the associ-
ated synthesis transformations. We show how to decompose this certification into
two components, which can be respectively handled by the complementary verifi-
cation techniques, theorem proving and model checking. The approach produces
a certified reference flow, composed of transformations distilled from production
synthesis tools but represented as transformations on graphs with an associated
formal semantics. This tool-independent abstraction disentangles our framework
from the inner workings of specific synthesis tools while permitting certification
of hardware designs generated from a broad class of behavioral descriptions. We
provide experimental results suggesting the scalability on practical designs.

1 Introduction

Recent years have seen high complexity in hardware designs, making it challenging
to develop reliable, high-quality systems through hand-crafted Register Transfer Level
(RTL) or gate-level implementations. This has motivated a gradual migration away from
RTL towards Electronic System Level (ESL) designs which permit description of de-
sign functionality abstractly in high-level languages, e.g., SystemC. However, the ESL
approach crucially depends on reliable tools for behavioral synthesis, that is, automated
synthesis of a hardware circuit from its ESL description. Behavioral synthesis tools ap-
ply a sequence of transformations to compile the ESL description to an RTL design.

Several behavioral synthesis tools are available today [1,2,3,4]. Nevertheless, and
despite its great need, behavioral synthesis has not yet found wide acceptance in in-
dustrial practice. A major barrier to its adoption is the lack of designers’ confidence in
correctness of synthesis tools themselves. The difference in abstraction level between a
synthesized design and the ESL description puts the onus on behavioral synthesis to en-
sure that the synthesized design indeed conforms to the description. On the other hand,
synthesis transformations necessary to produce designs satisfying the growing demands
of performance and power include complex and aggressive optimizations which must
respect subtle invariants. Consequently, synthesis tools are often either (a) error-prone
or (b) overly conservative, producing circuits of poor quality and performance [4,5].

� This research was partially supported by a grant from Intel Corporation.
�� Yan Chen was a M.S. student at Portland State University when he participated in this research.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 337–351, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

338 S. Ray et al.

In this paper, we develop a scalable, mechanized framework for certifying behavioral
synthesis flows. Certification of a synthesis flow amounts to the guarantee that its output
preserves the semantics of its input description; thus, the question of correctness of the
synthesized design is reduced to the question of analysis of the behavioral description.
Our approach is distinguished by two key features:

– Our framework is independent of the inner workings of a specific tool, and can be
applied to certify designs synthesized by different tools from a broad class of ESL
descriptions. This makes our approach particularly suitable for certifying security-
critical hardware which are often synthesized from domain-specific languages [6].

– The approach produces a certified reference flow, which makes explicit generic
invariants that must be preserved by different transformations. The reference flow
serves as a formal specification for reliable, aggressive synthesis transformations.

Formal verification has enjoyed significant successes in the analysis of industrial hard-
ware designs [7,8]. Nevertheless, applying formal verification directly to certify a syn-
thesized design is undesirable for two reasons. First, it defeats the very purpose of
behavioral synthesis as a vehicle for raising design abstraction since it requires reason-
ing at the level of the synthesized design rather than the behavioral description. Second,
the cost of analyzing a complex design is substantial and the cost must be incurred
for each design certification. Instead, our approach targets the synthesis flow, thereby
raising the level of abstraction necessary for design certification.

In the remainder of this section, we first provide a brief overview of behavioral syn-
thesis with an illustrative example; we then describe our approach in greater detail.

1.1 Behavioral Synthesis and an Illustrative Example

A behavioral synthesis tool accepts a design description and a library of hardware re-
sources; it performs a sequence of transformations on the description to generate RTL.
The transformations are roughly partitioned into the following three phases.

– Compiler transformations. These include loop unrolling, common subexpression
elimination, copy propagation, code motion, etc. Furthermore, expensive opera-
tions (e.g., division) are often replaced with simpler ones (e.g., subtraction).

– Scheduling. This phase determines the clock step for each operation. The ordering
between operations is constrained by the data and control dependencies. Scheduling
transformations include chaining operations across conditional blocks and decom-
posing one operation into a sequence of multi-cycle operations based on resource
constraints. Furthermore, several compiler transformations are employed, exploit-
ing (and creating opportunities for) operation decomposition and code motions.

– Resource binding and control synthesis. This phase binds operations to func-
tional units, allocates and binds registers, and generates the control circuit to im-
plement the schedule.

After these transformations, the design can be expressed as RTL. This design is sub-
jected to further manual optimizations to fine-tune for performance and power.

Each synthesis transformation is non-trivial. The consequence of their composition
is a significant difference in abstraction from the original description. To illustrate this,

Formal Verification for High-Assurance Behavioral Synthesis 339

void encrypt (u i n t 3 2 t∗ v , u i n t 3 2 t∗ k) {
/∗ set up ∗ /
u i n t 3 2 t v0=v [0] , v1=v [1] , sum=0 , i ;
/∗ a key schedule constant ∗ /
u i n t 3 2 t de l t a =0x9e3779b9 ;
/∗ cache key ∗ /
u i n t 3 2 t k0=k [0] , k1=k [1] ,

k2=k [2] , k3=k [3] ;

/∗ basic cyc le s t a r t ∗ /
for (i =0; i < 32; i ++) {

sum += de l ta ;
v0 += ((v1<<4)+k0) ˆ (v1 + sum)

ˆ ((v1>>5)+k1) ;
v1 += ((v0<<4)+k2) ˆ (v0 + sum)

ˆ ((v0>>5)+k3) ;
}

/∗ end cyc le ∗ /
v [0]= v0 ; v [1]= v1 ;

}

V1_0p

tmp39

Phi
newPhi

newbin

1

Phi
V1_0

== 32

sum0

0x
9e

37
79

b9

Phi
V0_0

tmp26

tmp49

tmp41

out = ((i0<<4) +i1)^i2
i0 i1 i2

out

FSM

0

out =(i0+i1)^((i0>>5)+i2)
i0 i1 i2

out

V[1]k2

k0 k1

k3

V[0]

V[1]

V[0]

Pipeline
logic

out = ((i0<<4)
+i2)^(i0+i1)^((i0>>5)+i3)

i0 i1 i2 i3

out

(A) (B)

Fig. 1. (A) C code for TEA encryption function. (B) Schema of RTL synthesized by AutoPilot.

consider the synthesis of the Tiny Encryption Algorithm (TEA) [9]. Fig. 1 shows a
C implementation and the circuit synthesized by the AutoPilot behavioral synthesis
tool [10]. The following transformations are involved in the synthesis of the circuit.

– In the first phase, constant propagation removes unnecessary variables.
– In the second phase, the key scheduling transformation performed is pipelining, to

enable overlapping execution of operations from different loop iterations.
– In the third phase, operations are bound to hardware resources (e.g., “+” operation

to an adder), and the FSM module is generated to schedule circuit operations.

Each transformation must respect subtle design invariants. For instance, paralleling
operations from different loop iterations must avoid race conditions, and scheduling
must respect data dependencies. Since such considerations are entangled with low-level
heuristics, it is easy to have errors in the synthesis tool implementation, resulting in
buggy designs [5]. However, the difference in abstraction level makes direct comparison
between the C and RTL descriptions impractical; performing such comparison through
sequential equivalence checking [11] requires cost-prohibitive symbolic co-simulation
to check input/output correspondence.

1.2 Approach Overview

We address the above issue by breaking the certification of behavioral synthesis trans-
formations into two components, verified and verifying.1 Fig. 2 illustrates our frame-
work. A verified transformation is formally certified once and for all using theorem

1 The terms “verified” and “verifying” as used here are borrowed from analogous notions in the
compiler certification literature.

340 S. Ray et al.

Yes/No

Description
Behavioral Design

Resource Library
Hardware

primitive transformations
Sequence of applied

Equivalence Checking

V
erified C

om
ponent

(T
heorem

 Proving or
D

ecision Procedures)

V
erifying C

om
ponent

(M
odel C

hecking)

(Algorithms/heuristics/user−guidence
deciding sequence of primitive

Application of primitive transformations)
transformations to be applied;

Behavioral Synthesis

Synthesized RTL

Manual RTL Optimizations

Manually Optimized RTL

Golden Circuit Model
(Clocked Control/Data Flow Graphs)

primitive transformations;
(Application of certified

Offline proof of transformation rules;)

Certified Compiler

Fig. 2. Framework for certification of behavioral synthesis flows

proving; a verifying transformation is not itself verified, but each instance is accom-
panied by a verification of correspondence between input and output. The viability of
decomposition is justified by the nature of behavioral synthesis. Transformations ap-
plied at the higher level, (e.g., compiler and scheduling transformations) are generic.
The cost of a monolithic proof is therefore mitigated by the reusability of the transfor-
mation over different designs. Such transformations make up the verified component.
On the other hand, the optimizations performed at the lower levels are unique to the de-
sign being synthesized; these transformations constitute the verifying component. Since
the verification is discharged per instance, it must be fully automatic. However, these
transformations tend to be localized and independent of global invariants, making it
tractable to verify them automatically by sequential equivalence checking.

1.3 Golden Circuit Model and Synthesis Certification

In a practical synthesis tool, transformations are implemented with low-level, optimized
code. A naive approach for the verified component, e.g., to formally verify such a tool
with all optimizations would be prohibitive. Furthermore, such an approach would tie
the framework to a single tool, limiting reusability.

To mitigate this challenge, we develop a formal, graph-based abstraction called
clocked control/data flow graph (CCDFG), which serves as the universal golden circuit
model. We discuss our formalization of CCDFG in Section 2. CCDFG is an abstrac-
tion of the control/data flow graph (CDFG) — used as an intermediate representation in
most synthesis tools — augmented with a schedule. The close connection between the
formal abstraction and the representation used in a synthesis flow enables us to view
synthesis transformations as transformations on CCDFG, while obviating a morass of
tool-specific details. We construct a reference flow as a sequence of CCDFG transforma-
tions as follows: each transformation generates a CCDFG that is guaranteed to preserve
semantic correspondence with its input. A production transformation is decomposed
into primitive transformations, together with algorithms/heuristics that determine the

Formal Verification for High-Assurance Behavioral Synthesis 341

application sequence of these transformations. Once the primitive transformations are
certified, the algorithms or heuristics do not affect the correctness of a transformation
sequence, only the performance. The reference flow requires no knowledge about the
algorithms/heuristics which are often confidential to a synthesis tool.

Given a synthesized hardware designD and its corresponding behavioral description,
the certification of the hardware can be mechanically performed as follows.

– Extract the CCDFG C from the behavioral description.
– Apply the certified primitive transformations from the reference flow, following the

application sequence provided by the synthesis tool. The result is a CCDFG C′ that
is close to to D in abstraction level.

– Apply equivalence checking to guarantee correspondence between C′ and D.

The overall correctness of this certification is justified by the correctness of the verified
and verifying components and their coupling through the CCDFG C′.

How does the approach disentangle the certification of a synthesized hardware from
the inner workings of the synthesis tool? Although each certified transformation mimics
a corresponding transformation applied by the tool, from the perspective of certifying
the hardware they are merely heuristic guides transforming CCDFGs to facilitate equiv-
alence checking: certification of the synthesized hardware reduces to checking that the
initial CCDFG reflects the design intent. The initial CCDFG can be automatically ex-
tracted from the synthesis tools’ initial internal representation.2 Furthermore, the frame-
work abstracts low-level optimizations making the verification problem tractable.

The rest of the paper is organized as follows. In Section 2 we present the semantics of
CCDFG. In Section 3 we discuss how to use theorem proving to verify the correctness
of generic CCDFG transformations. In Section 4 we present our equivalence checking
procedure. We provide initial experimental results in Section 5, discuss related work in
Section 6, and conclude in Section 7.

2 Clocked Control/Data Flow Graphs

A CCDFG can be viewed as a formal control/data flow graph (CDFG) — used as inter-
nal representation in most synthesis tools including Spark and Autopilot — augmented
with a schedule. Fig. 3 shows two CCDFGs for the TEA encryption. The semantics
of CCDFG are formalized in the logic of the ACL2 theorem prover [12]. This section
briefly discusses the formulation of a CCDFG; for a more complete account, see [13].

The formalization of CCDFG assumes that the underlying language provides the
semantics for a collection ops of primitive operations. The primitive operations in Fig. 1
include comparison and arithmetic operations. We also assume a partition of design
variables into state variables and input variables. Variable assignments are assumed to
be in a Static in Single Static Assignment (SSA) form. Design descriptions are assumed
to be amenable to control and data flow analysis. Control flow is broken up into basic

2 Since the input description is normally unclocked, the initial CCDFG does not contain sched-
ule information, and can be viewed as a CDFG. Schedules are generated by synthesis transfor-
mations that turn the unclocked representation to a clocked one.

342 S. Ray et al.

newPhi = phi (0, newbin);
v1_0 = phi (v[1], tmp56);
v0_0 = phi (v[0], tmp41)

newPhi == 32

Input

newbin = newPhi + 1

sum0 = newPhi*delta0

v[0] = v0_0;
v[1] = v1_0

return

tmp26 = sum0+delta0

tmp39 = (v1_0 << 4) + k0) ^
(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39+v0_0

tmp49 = (tmp41+tmp26)
^((tmp41>>5)+k3)

tmp54 = ((tmp41 << 4 + k2) ^
tmp49)

tmp56 = tmp54+v1_0

Y

N

Scheduling
Step

Microstep delta0 = 0x9e3779b9
pl_start = 0

tmp54 = (tmp41 << 4 + k2) ^
tmp49

tmp56 = tmp54 + v1_0

newPhi = phi (0, newbin);
v1_0 = phi (v[1],tmp56);
v0_0 = phi (v[0], tmp41)

newPhi == 32

newbin = newPhi + 1

sum0 = newPhi*0x9e3779b9

pl_start = 1

tmp26 = sum0+0x9e3779b9

tmp39 = ((v1_0 << 4) + k0) ^
(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39 + v0_0

tmp49 = (tmp41 + tmp26) ^
((tmp41 >> 5) + k3)

v[0] = v0_0
v[1] = v1_0

return

pl_start == 1

Input

N

Y

Y

N

(A) (B)

Fig. 3. (A) Initial CCDFG of TEA encryption function. (B) Transformed CCDFG after pipelining.
The shaded regions represent scheduling steps, and white boxes represent microsteps. For brevity,
only the control flow is shown; data flow is omitted. Although the underlying operations are
assumed to be in SSA form, the diagrams aggregate several single assignments for simplicity.

blocks. Data dependency is given by “read after write” paradigm: opj is data dependent
on opi if opj occurs after opi in some control flow path and computes an expression over
some state variable v that is assigned most recently by opi in the path. The language is
assumed to disallow circular data dependencies.

Definition 1 (Control and Data Flow Graphs). Let ops 	 {op1, . . . , opn} be a set
of operations over some set V of (state and input) variables, and bb be a set of basic
blocks each consisting of a sequence of operations. A data flow graph GD over ops is
a directed acyclic graph with vertex set ops. A control flow graph GC is a graph with
vertex set bb and each edge labeled with an assertion over V .

An edge in GD from opi to opj represents data dependency, and an edge in GC from bbi

to bbj indicates that bbi is a direct predecessor of bbj in the control flow of. An assertion
on an edge holds whenever program control makes the corresponding transition.

Definition 2 (CDFG). Let ops 	 {op1, . . . , opm} be a set of operations over a set
of variables V , bb 	 {bb1, . . . , bbn} be a set of basic blocks over ops , GD and GC

are data and control flow graphs over ops and bb respectively. A CDFG is the tuple
GCD 	 〈GD, GC , H〉, where H is a mapping H : ops → bb such that H(opi) = bbj

iff opi occurs in bbj .

Formal Verification for High-Assurance Behavioral Synthesis 343

The execution order of operations in a CDFG is irrelevant as long as control and data
dependencies are respected. The definition of microsteps makes this notion explicit.

Definition 3 (Microstep Ordering and Partition). Let GCD 	 〈GC , GD, H〉, where
the set of vertices of GC is bb 	 {bb1, . . . , bbl}, and the set of vertices in GD is
ops 	 {op1, . . . , opn}. For each bbk ∈ bb, a microstep ordering is a relation ≺k

over ops(bbk) 	 {opi : H(opi) = bbk} such that opa ≺k opb if and only if there is
a path from opa to opb in the subgraph GD,k of GD induced by ops(bbk). A microstep
partition of bbk under ≺k is a partition Mk of ops(bbk) satisfying the following two
conditions. (1) For each p ∈ Mk, if opa, opb ∈ p then opa �≺ opb and opb �≺k opa. (2)
If p, q ∈ Mk with p �= q, opa ∈ p, opb ∈ q, and opa ≺k opb, then for each opa′ ∈ p
and opb′ ∈ q opb′ �≺k opa′ . A microstep partition of GCD is a set M containing each
microstep partition Mk.

If opa and opb are in the same partition, their order of execution does not matter; if p
and q are two microsteps where p ≺k q, the operations in p must be executed before
q to respect the data dependencies. Note that we treat different instances of the same
operation as different (with same semantics); this permits stipulation of H as a function
instead of a relation, and simplifies the formalization. In Fig. 3, each white box corre-
sponds to a microstep partition. Since GD is acyclic, ≺k is an irreflexive partial order
on ops(bbk) and the notion of microstep partition is well-defined. Given a microstep
partition M 	 {m0,m1, . . .} of GCD each mi is called a microstep of GCD. It is
convenient to view ≺k as a partial order over the microsteps of bbk.

CCDFGs are formalized by augmenting a CDFG with a schedule. Consider a mi-
crostep partition M of GCD. A schedule T of M is a partition or grouping of M ; for
m1,m2 ∈M , if m1 and m2 are in the same group in T , we say that they belong to the
same scheduling step. Informally, if two microsteps in M are in the same group in T
then they are executed within the same clock cycle.

Definition 4 (CCDFG). A CCDFG is a tuple G 	 〈GCD,M, T 〉, where GCD is a
CDFG, M is a microstep partition of GCD , and T is a schedule of M .

We formalize CCDFG executions through a state-based semantics. A CCDFG state is
a valuation of state variables, and a CCDFG input is a valuation of input variables. We
also assume a well-defined initial state. Given a sequence I of inputs, an execution of
a CCDFG G = 〈GCD,M, T 〉 is a sequence of CCDFG states that corresponds to an
evaluation of the microsteps in M respecting T .

Finally, we consider outputs and observation. An output of a CCDFG G is some
computable function f of (a subset of) state variables of G; informally, f corresponds
to some output signal in the circuit synthesized from G. To formalize this in ACL2’s
first order logic, the output is restricted to a Boolean expression of the state variables;
the domain of each state variable itself is unrestricted, which enables us to represent
programs such as the Greatest Common Divider (GCD) algorithm that do not return
Boolean values. For each state s of G, the observation corresponding to an output f at
state s is the valuation of f under s. Given a set F of output functions, any sequence E
of states of G induces a sequence of observations O; we refer to O as the observable
behavior of E under F .

344 S. Ray et al.

3 Certified Compilation

Certifying a transformationT requires showing that if the application of T on a CCDFG
G generates a new CCDFG G′, then there is provable correspondence between the
executions of G and G′. The certification process crucially depends on a formal notion
of correspondence to relate the executions of G and G′. Note that the notion must
comprehend differences between execution order of operations as long as the sequence
of observations is unaffected. The notion we use is loosely based on stuttering trace
containment [14,15]. Roughly, a CCDFG G′ refines G if for each execution of G′ there
is an execution of G that produces the same observable behavior up to stuttering. We
formalize this notion below.

Definition 5 (Compressed Execution). Let E 	 s0, s1, . . . be an execution of CCDFG
G and F be a set of output functions over G. The compression of E under F is the
subsequence of E obtained by removing each si such that f(si) = f(si+1) for every
f ∈ F .

Definition 6 (Trace Equivalence). Let G and G′ be two CCDFGs on the same set
of state and input variables, E and E ′ be executions of G and G′ respectively, and F
be a set of output functions. We say that E is trace equivalent to E ′ if the observable
behavior of the compression of E under F is the same as the observable behavior of the
compression of E ′ under F .

Definition 7 (CCDFG Refinement). We say that a CCDFG G′ refines G if for each
execution E ′ of G′ there is an execution E of G such that E is trace equivalent to E ′.

Remark 1. For the verified component, we use refinement instead of full equivalence as
a notion of correspondence between CCDFGs, to permit connecting the same ESL de-
scription with a number of different concrete implementations. In the verifying frame-
work, we will use a stronger notion of equivalence (and indeed, equivalence without
stuttering), to facilitate sequential equivalence checking.

In addition to showing that a transformation on a CCDFG G produces a refinement of
G, we must account for the possibility that a transformation may be applicable to G
only if G has a specific structural characteristic; furthermore the result of application
might produce a CCDFG with a characteristic to facilitate a subsequent transformation.
To make explicit the notion of applicability of a transformation, we view a transforma-
tion as a “guarded command” τ 	 〈pre, T , post〉: τ is applicable to a CCDFG which
satisfies pre and produces a CCDFG which satisfies post.

Definition 8 (Transformation Correctness). A transformation τ 	 〈pre, T , post〉 is
correct if the result of applying T to any CCDFG G satisfying pre refines G and satisfies
post .

The following theorem is trivial by induction on the sequence of transformations. Here
[T0, . . . , Tn] represents the composition of T0, . . . , Tn.

Theorem 1 (Correctness of Transformation Sequences). Let τ0, . . . , τn be some se-
quence of correct transformations, where τi 	 〈prei, Ti, post i〉, Let post i ⇒ prei+1,
1 ≤ i < n. Then the transformation 〈pre1, [T0, T1, . . . , Tn], postn〉 is correct.

Formal Verification for High-Assurance Behavioral Synthesis 345

Theorem 1 justifies decomposition of a transformation into a sequence of primitive
transformations. Note that the proof of Theorem 1 is independent of a specific transfor-
mation. We thus construct a reference flow as follows. (1) Identify and distill a sequence
τ0, . . . , τn of primitive transformations; (2) verify τi individually; and (3) check that for
each 0 ≤ i < n, post i ⇒ prei+1. Theorem 1 guarantees the correctness of the flow.

Verifying the correctness of individual guarded transformations using theorem prov-
ing might involve significant manual effort. To ameliorate this cost, we identify and
derive generic theorems that can certify a class of similar transformations. As a simple
example, consider any transformation that refines the schedule. The following theorem
states that each such transformation is correct.

Theorem 2 (Correctness of Schedule Refinement). Let G 	 〈GCD,M, T 〉 and G′ 	
〈GCD,M, T ′〉 be CCDFGs such that for any two microsteps mi,mj ∈M if T ′ assigns
mi and mj the same group then so does T . Then G′ is a refinement of G.

Theorem 2 is admittedly trivial; it is only shown here for illustration purposes. How-
ever, the same approach can verify more complex transformations. For example, con-
sider the constant propagation and pipelining transformations shown in Figure 3 for
our TEA example. The implementations of these transformations involve significant
heuristics, for instance, to determine whether to apply the transformations in a specific
case, how many iterations of the loop should be pipelined, etc. However, from the per-
spective of correctness, the only relevant conditions about the two transformations are:
(1) if a variable v is assigned a constant c, then v can be eliminated by replacing each
occurrence with c; and (2) a microstep mi can be overlapped with microstep mj from a
subsequent iteration if for each opi ∈ mi and opj ∈ mj , opj �≺ opi in G. Since these
conditions are independent of a specific design (e.g., TEA) to which the transforma-
tion is applied, the same certification can be used to justify its applicability for diverse
designs. The approach is viable because we employ theorem proving which supports
an expressive logic, thereby permitting stipulation of the general conditions above as
formal predicates in the logic. For example, as we show in previous work [16], we can
make use of first-order quantification to formalize a generic refinement proof of arbi-
trary pipelines, which is directly reusable for verification of the pipeline transformation
in our framework. Another generic transformation that is widely employed in behav-
ioral synthesis is operation balancing; its correctness depends only on the fact that the
operations involved are associative and commutative and can be proven for CCDFGs
containing arbitrary associative-commutative operations.

We end the discussion of the verified framework with another observation. Since the
logic of ACL2 is executable, pre and post can be efficiently executed for a given con-
crete transformation. Thus, a transformation τ 	 〈pre, T , post〉 can be applied even
before verification by using pre and post for runtime checks: if a CCDFG G indeed
satisfies pre and the application of τ on G results in a CCDFG satisfying post then the
instance of application of τ on G can be composed with other compiler transformations;
furthermore, the expense of the runtime assertion checking can be alleviated by gener-
ating a proof obligation for a specific instance, which is normally more tractable than a
monolithic generic proof of the correctness of τ . This provides a trade-off between the
computational expense of runtime checks and verification of individual instances with
a (perhaps deep) one-time proof of the correctness of a transformation.

346 S. Ray et al.

4 Equivalence Checking

We now discuss how to check equivalence between a CCDFG and its synthesized cir-
cuit. The verified component facilitates close correspondence between the transformed
CCDFG and the synthesized circuit, critical to the scalability of equivalence checking.

4.1 Circuit Model

We represent a circuit as a Mealy machine specifying the updates to the state elements
(latches) in each clock cycle. Our formalization of circuits is typical in traditional hard-
ware verification, but we make combinational nodes explicit to facilitate the correspon-
dence with CCDFGs.

Definition 9 (Circuit). A circuit is a tuple M = 〈I,N, F 〉 where I is a vector of
inputs; N is a pair 〈Nc, Nd〉 where Nc is a set of combinational nodes and Nd is a set
of latches; and F is a pair 〈Fc, Fd〉 where Fc maps each combinational node c ∈ Nc

to an expression over Nc ∪Nd ∪ I and for each latch d ∈ Nd, Fd maps each latch d to
n ∈ Nc ∪Nd ∪ I where Fd is a delay function which takes the current value of n to be
the next-state value of d.

A circuit state is an assignment to the latches in Nd. Given a sequence of valuations
to the inputs i0, i1, . . ., a circuit trace of M is the sequence of states s0, s1, . . ., where
(1) s0 is the initial state and (2) for each j > 0, the state sj is obtained by updating the
elements in Nd given the state valuation sj−1 and input valuation ij−1. The observable
behavior of the circuit is the sequence of valuations of the outputs which are a subset
of latches and combinational nodes.

4.2 Correspondence between CCDFGs and Circuits

Given a CCDFG G and a synthesized circuit M , it is tempting to define a notion of
correspondence as follows: (1) Establish a fixed mapping between the state variables
of G and the latches in M , and (2) stipulate an execution of G to be equivalent to
an execution of M if they have the same observable behavior. However, this does not
work in general since the mappings between state variables and latches may be differ-
ent in each clock cycle. To address this, we introduce EMap : ops → Nc, mapping
CCDFG operations to the combinational nodes in the circuit: each operation is mapped
to the combinational node that implements the operation; the mapping is independent
of clock cycles. Fig. 4 shows the mapping for the synthesized circuit of TEA. Recall
from Section 1.1 that the FSM decides the control signals for the circuit; the FSM is
thus excluded from the mapping. We now define the equivalence between G and M .

Definition 10. A CCDFG state x of G is equivalent to a circuit state s of M with
respect to an input i and a microstep partition t, if for each operation op in t, the inputs
to op according to x and i are equivalent to the inputs to EMap(op) according to s and
EMap(i), i.e., the values of each input to op and the corresponding input to EMap(op)
are equivalent, and the outputs of op are equivalent to the outputs of EMap(op).

Formal Verification for High-Assurance Behavioral Synthesis 347

pl_start = 0

tmp54 = (tmp41 << 4 + k2) ^
tmp49

tmp56 = tmp54 + v1_0

newPhi = phi (0, newbin);
v1_0 = phi (v[1],tmp56);
v0_0 = phi (v[0], tmp41)

newPhi == 32

newbin = newPhi + 1

sum0 = newPhi*0x9e3779b9

pl_start = 1

tmp26 = sum0+0x9e3779b9

tmp39 = ((v1_0 << 4) + k0) ^
(tmp26 + v1_0) ^ ((v1_0>>5)

+ k1))

tmp41 = tmp39 + v0_0

tmp49 = (tmp41 + tmp26) ^
((tmp41 >> 5) + k3)

v[0] = v0_0;
v[1] = v1_0

return

pl_start == 1

V1_0p

tmp39

Phi
newPhi

newbin

1

Phi
V1_0

== 32

sum0

0x
9e

37
79

b9

Phi
V0_0

tmp26

tmp49

tmp41

out = ((i0<<4) +i1)^i2
i0 i1 i2

out

FSM

0

out =(i0+i1)^((i0>>5)+i2)
i0 i1 i2

out

V[1]k2

k0 k1

k3

V[0]

V[1]

V[0]

Input

Pipeline
logic

N

Y

Y

N

out = ((i0<<4)
+i2)^(i0+i1)^((i0>>5)+i3)

i0 i1 i2 i3

out

Fig. 4. Synthesized circuit for TEA and the corresponding operation mapping with pipelined
CCDFG; dotted lines represent mapping from CCDFG operations to combinational circuit nodes

Definition 11. Given a CCDFG G and a circuit M , G is equivalent to M if and only
if for any execution [x0, x1, x2, . . .] of G generated by an input sequence [i0, i1, i2, . . .]
and by microstep partition [t0, t1, . . .] of G, and the state sequence [s0, s1, s2, . . .] of
M generated by the input sequence [EMap(i0), EMap(i1), EMap(i2), . . .], xk and
sk are equivalent with respect to tk under ik, k ≥ 0.

4.3 Dual-Rail Simulation for Equivalence Checking

We check equivalence between CCDFG G and circuit M by dual-rail symbolic simu-
lation (Fig. 5); the two rails simulate G and M respectively, and are synchronized by
clock cycle. The equivalence checking in clock cycle k is conducted as follows:

1. The current CCDFG state xk and circuit state sk are checked to see whether for the
input ik, the inputs to each operation op in the scheduling step tk are equivalent to
the inputs to EMap(op). If yes, continue; otherwise, report inequivalence.

2. G is simulated by executing tk on xk under ik to compute xk+1 and recording the
outputs of each op ∈ tk. M is simulated for one clock cycle from sk under input
EMap(ik) to compute sk+1. The outputs for each op are checked for equivalence
with the outputs of EMap(op). If yes, continue; otherwise, report inequivalence.

3. The next scheduling step tk+1 is determined from control flow. If tk has multiple
outgoing control edges, the last microstep of tk executed is identified. The outgoing
control edge from this microstep whose condition evaluates to true leads to tk+1.

We permit both bounded and unbounded (fixed-point) simulations. In particular, the
simulation proceeds until (i) the equivalence check fails, (ii) the end of a bounded input
sequence is reached, or (iii) a fixed point is reached for an unbounded input sequence.

348 S. Ray et al.

or Execution up to Given BoundMapping
Eqivalence

Constraints
Input Yes. Fixed Point Computation No

CCDFG
Simulation of CCDFG

Single Clock Cycle

Simulation of Circuit
Single Clock Cycle

Equivalent?

Circuit

Fig. 5. Dual-Rail simulation scheme for equivalence checking between CCDFG and circuit

We have implemented the dual-rail scheme on the bit level in the Intel Forte envi-
ronment [17], where symbolic states are represented using BDDs. We have also im-
plemented the scheme on the word level with several built-in optimizations, using
Satisfiability Modulo Theories (SMT); this is viable since word-level mappings be-
tween operations and circuit nodes are explicit. We use bit-vectors to encode the vari-
ables in the CCDFG and the circuit; the SMT engine checks input/output equivalence
and determines control paths. Our word-level checker is based on the CVC3 SMT
engine [18].

The bit-level and word-level checkers are complementary. The bit-level checker en-
sures that the equivalence checking is decidable, while the word-level checker provides
the optimizations crucial to scalability. The word-level checker can make effective use
of results from bit-level checking in many cases. One typical scenario is as follows.
Suppose M is a design module of modest complexity but is awkward to check at word-
level. Then the bit-level checker is used to check the equivalence of the CCDFG of M
with its circuit implementation; when the word-level checker is used for equivalence
checking of a module that calls M , it skips the check of M , treating the CCDFG of M
and its circuit implementation as equivalent black boxes.

5 Experimental Results

We used the bit-level checker on a set of CCDFGs for GCD and the corresponding
circuits synthesized by AutoPilot. The experiments were conducted on a workstation
with 3GHz Intel Xeon processor with 2GB memory. Table 1 shows the statistics before
and after schedule refinement (Theorem 2). Since we bit-blast all CCDFG operations,
the running time grows exponentially with the bit width; for 8-bit GCD, checking re-
quires about 2 hours. It is interesting to understand how schedule refinement affects
the performance of equivalence checking. Schedule refinement partitions operations in
the loop body into two clock cycles. This does not change fixed-point computation;
however, the number of cycles for which the circuit is simulated doubles. For small bit-
widths, the running time after schedule refinement is about two times slower than that
before. However, for large bit widths, the running time is dominated by the complexity
of the CCDFG simulation instead of the circuit simulation. The decrease in time with
the increase in bit width from 7 to 8 is likely due to BDD variable reordering.

Formal Verification for High-Assurance Behavioral Synthesis 349

Table 1. Bit-level equivalence checking statistics

Circuit Before schedule refinement After schedule refinement
Bit Width # of Nodes Time (Sec.) BDD Nodes Time (Sec.) BDD Nodes

2 96 0.02 503 0.02 783
3 164 0.05 4772 0.07 11113
4 246 0.11 42831 0.24 20937
5 342 0.59 16244 1.93 99723
6 452 12.50 39968 27.27 118346
7 576 369.31 220891 383.98 164613
8 714 6850.56 1197604 3471.74 581655

Table 2. Word-level equivalence checking statistics

Design GCD TEA DCT 3DES 3DES key
C Code Size (# of Lines) 14 12 52 325 412

RTL Size (# of Lines) 364 1001 688 18053 79976
Time (Seconds) 2 15.6 30.1 355.7 2351.7

Memory (Megabytes) 4.1 24.6 49.2 59.4 307.2

Using our word-level checker, we have checked several RTL designs synthesized
by AutoPilot with CCDFGs derived from AutoPilot’s intermediate representations; the
statistics are shown in Table 2. The designs illustrate different facets of the framework.
GCD contains a loop whose number of iterations depends on the inputs. TEA has an
explicitly bounded loop. DCT contains sequential computation without loop. 3DES rep-
resents a practical design of significant size. 3DES key is included to illustrate the scal-
ability of our approach on relatively large synthesized designs. The results demonstrate
the efficacy of our word-level equivalence checking. In contrast, full word-level sym-
bolic simulation comparing the input/output relations of C and RTL runs out of memory
on all the designs but DCT (for which it needs twice as much time and memory).

6 Related Work

An early effort [19] on verification of high-level synthesis targets the behavioral portion
of VHDL [20]. A translation from behavioral VHDL to dependence flow graphs [21]
was verified by structural induction based on the CSP [22] semantics. Recently, there
has been research on certified synthesis of hardware from formal languages such as
HOL [23] in which a compiler that automatically translates recursive function defini-
tions in HOL to clocked synchronous hardware has been developed. A certified hard-
ware synthesis from programs in Esterel, a synchronous design language, has been also
been developed [24] in which a variant of Esterel was embedded in HOL.

Dave [25] provides a comprehensive bibliography of compiler verification. One of
the earliest work on compiler verification was the Piton project [26], which verified a
simple assembly language compiler. Compiler certification forms a critical component
of the Verisoft project [27], aiming at correctness of implementations of computing sys-
tems with both hardware and software components. The Verifix [28] and CompCert [29]

350 S. Ray et al.

projects have explored a general framework for certification of compilers for various C
subsets [30,31]. There has also been work on a verifying compiler, where each instance
of a transformation generates a proof obligation discharged by a theorem prover [32].

There has been much research on sequential equivalence checking (SEC) between
RTL and gate-level hardware designs [33,34]. Research has also be done on combina-
tional equivalence checking between high-level designs in software-like languages (e.g.,
SystemC) and RTL-level designs [11]. There has also been effort for SEC between soft-
ware specifications and hardware implementations [35]: GSTE assertion graphs [36]
were extended so that an assertion graph edge have pre and post condition labels, and
also associated assignments that update state variables. There has also been work on
equivalence checking with other graph representations, e.g., Signal Flow Graph [37].

7 Conclusion

We have presented a framework for certifying behavioral synthesis flows. The frame-
work includes a combination of verified and verifying paradigms: high-level transfor-
mations are certified once and for all by theorem proving, while low-level tweaks and
optimizations can be handled through model checking. We demonstrated the use of the
CCDFG structure as an interface between the two components. Certification of differ-
ent compiler transformations is uniformly specified by viewing them as manipulation of
CCDFGs. The transformed CCDFG can then be used for equivalence checking with the
synthesized design. One key benefit of the approach is that it obviates the need for de-
veloping formal semantics for each different intermediate representation generated by
the compiler. Furthermore, the low-level optimizations implemented in a synthesis tool
are abstracted from the reasoning framework without weakening the formal guarantee
on the synthesized design. Our experimental results indicate that the approach scales to
verification of realistic designs synthesized by production synthesis tools.

In future work, we will make further improvements to improve scalability. In the
verified component, we are formalizing other generic transformations e.g., code motion
across loop iterations. In the verifying component, we are considering the use of theo-
rem proving to partition a CCDFG into smaller subgraphs for compositional certifica-
tion. We are also exploring ways to tolerate limited perturbations in mappings between
CCDFGs and circuits (e.g., due to manual RTL tweaks) in their equivalence checking.

References

1. Forte Design Systems: Behavioral Design Suite, http://www.forteds.com
2. Celoxica: DK Design Suite, http://www.celoxica.com
3. Cong, J., Fan, Y., Han, G., Jiang, W., Zhang, Z.: Behavioral and Communication Co-

Optimizations for Systems with Sequential Communication Media. In: DAC (2006)
4. Gajski, D., Dutt, N.D., Wu, A., Lin, S.: High Level Synthesis: Introduction to Chip and

System Design. Kluwer Academic Publishers, Dordrecht (1993)
5. Kundu, S., Lerner, S., Gupta, R.: Validating High-Level Synthesis. In: Gupta, A., Malik, S.

(eds.) CAV 2008. LNCS, vol. 5123, pp. 459–472. Springer, Heidelberg (2008)
6. Galois, Inc.: Cryptol: The Language of Cryptography (2007)

http://www.forteds.com
http://www.celoxica.com

Formal Verification for High-Assurance Behavioral Synthesis 351

7. Russinoff, D.: A Mechanically Checked Proof of IEEE Compliance of a Register-Transfer-
Level Specification of the AMD-K7 Floating-point Multiplication, Division, and Square
Root Instructions. JCM 1 (1998)

8. O’Leary, J., Zhao, X., Gerth, R., Seger, C.J.H.: Formally Verifying IEEE Compliance of
Floating-point Hardware. Intel Technology Journal Q1 (1999)

9. Wheeler, D.J., Needham, R.M.: Tea, a tiny encryption algorithm. In: Fast Software Encryp-
tion (1994)

10. AutoESL: AutoPilot Reference Manual. AutoESL (2008)
11. Hu, A.J.: High-level vs. RTL combinational equivalence: An introduction. In: ICCD (2006)
12. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach.

Kluwer Academic Publishers, Boston (2000)
13. Ray, S., Chen, Y., Xie, F., Yang, J.: Combining theorem proving and model checking for

certification of behavioral synthesis flows. Technical Report TR-08-48, University of Texas
at Austin (2008)

14. Abadi, M., Lamport, L.: The Existence of Refinement Mappings. TCS 82(2) (1991)
15. Lamport, L.: What Good is Temporal Logic? Information Processing 83 (1983)
16. Ray, S., Hunt Jr., W.A.: Deductive Verification of Pipelined Machines Using First-Order

Quantification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 31–43.
Springer, Heidelberg (2004)

17. Seger, C.J.H., Jones, R., O’Leary, J., Melham, T., Aagaard, M., Barrett, C., Syme, D.: An
industrially effective environment for formal hardware verification. TCAD 24(9) (2005)

18. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

19. Chapman, R.O.: Verified high-level synthesis. PhD thesis, Ithaca, NY, USA (1994)
20. IEEE: IEEE Std 1076: IEEE standards VHDL language reference manual
21. Johnson, R., Pingali, K.: Dependence-based program analysis. In: PLDI (1993)
22. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
23. Gordon, M., Iyoda, J., Owens, S., Slind, K.: Automatic formal synthesis of hardware from

higher order logic. TCS 145 (2006)
24. Schneider, K.: A verified hardware synthesis for Esterel. In: DIPES (2000)
25. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT SEN 28(6) (2003)
26. Moore, J.S.: Piton: A Mechanically Verified Assembly Language. Kluwer Academic

Publishers, Dordrecht (1996)
27. Verisoft Project: http://www.verisoft.de
28. Verifix Project: http://www.info.uni-karlsruhe.de/˜verifix
29. CompCert Project: http://pauillac.inria.fr/˜xleroy/compcert
30. Leinenbach, D., Paul, W.J., Petrova, E.: Towards the formal verification of a C0 compiler:

Code generation and implementation correctness. In: SEFM (2005)
31. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a

proof assistant. In: POPL (2006)
32. Pike, L., Shields, M., Matthews, J.: A Verifying Core for a Cryptographic Language Com-

piler. In: ACL2 (2006)
33. Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable sequential

equivalence checking across arbitrary design transformations. In: ICCD (2006)
34. Kaiss, D., Goldenberg, S., Hanna, Z., Khasidashvili, Z.: Seqver: A sequential equivalence

verifier for hardware designs. In: ICCD (2006)
35. Feng, X., Hu, A.J., Yang, J.: Partitioned model checking from software specifications. In:

ASP-DAC (2005)
36. Yang, J., Seger, C.J.H.: Introduction to generalized symbolic trajectory evaluation.

TVLSI 11(3) (2003)
37. Claesen, L., Genoe, M., Verlind, E.: Implementation/specification verification by means of

SFG-Tracing. In: CHARME (1993)

http://www.verisoft.de
http://www.info.uni-karlsruhe.de/~verifix
http://pauillac.inria.fr/~xleroy/compcert

Dynamic Observers for the Synthesis
of Opaque Systems

Franck Cassez1,�, Jérémy Dubreil2,��, and Hervé Marchand2,��

1 National ICT Australia & CNRS, Sydney, Australia
2 INRIA Rennes - Bretagne Atlantique, Campus de Beaulieu, Rennes, France

Abstract. In this paper, we address the problem of synthesizing opaque systems
by selecting the set of observable events. We first investigate the case of static
observability where the set of observable events is fixed a priori. In this context,
we show that checking whether a system is opaque and computing an optimal
static observer ensuring opacity are both PSPACE-complete problems. Next, we
introduce dynamic partial observability where the set of observable events can
change over time. We show how to check that a system is opaque w.r.t. a dynamic
observer and also address the corresponding synthesis problem: given a system
G and secret states S, compute the set of dynamic observers under which S is
opaque. Our main result is that the synthesis problem can be solved in EXPTIME.

1 Introduction

Security is one of the most important and challenging aspects in designing services de-
ployed on large open networks like Internet or mobile phones, e-voting systems etc. For
such services, naturally subject to malicious attacks, methods to certify their security
are crucial. In this context there has been a lot of research to develop formal methods for
the design of secure systems and a growing interest in the formal verification of secu-
rity properties [1,2,3] and in their model-based testing [4,5,6,7,8]. Security properties
are generally divided into three categories: integrity, availability and confidentiality.
We focus here on confidentiality and especially information flow properties. We use the
notion of opacity defined in [9] formalizing the absence of information flow, or more
precisely, the impossibility for an attacker to infer the truth of a predicate (it could be
the occurrence in the system of some particular sequences of events, or the fact that
the system is in some particular configurations). Consider a predicate ϕ over the runs
of a system G and an attacker observing only a subset of the events of G. We assume
that the attacker knows the model G. In this context, the attacker should not be able to
infer that a run of G satisfies ϕ. The secret ϕ is opaque for G with respect to a given
partial observation if for every run of G that satisfies ϕ, there exists a run, observation-
ally equivalent from the attacker’s point of view, that does not satisfy ϕ. In such a case,
the attacker can never be sure that a run of G satisfying ϕ has occurred. In the sequel,
we shall consider a secret ϕ corresponding to a set of secret states. Finally, note that

� Author supported by a Marie Curie International Outgoing Fellowship within the 7th European
Community Framework Programme.

�� Authors partially supported by the Politess RNRT project.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 352–367, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Observers for the Synthesis of Opaque Systems 353

the definition of opacity is general enough to define other notions of information flow
like trace-based non-interference and anonymity (see [9]). Note also that secrecy [10]
can be handled as a particular case of opacity (see Section 3) and thus our framework
applies to secrecy as well.

Related Work. Methods for the synthesis of opaque systems have already been inves-
tigated from the supervisory control point of view. In these frameworks, some of the
events are uncontrollable and the set of events an external attacker can observe is fixed.
If the system is G, the approach is then to restrict G (remove some of its behaviors) us-
ing a supervisor (or controller) C, in order to render a secret ϕ opaque in the supervised
system C(G). In [11], the authors consider several secrets and attackers with differ-
ent sets of observable events. They provide sufficient conditions to compute an optimal
controller preserving all secrets assuming that the controller has complete knowledge
of the system and full control on it. In [12,13], the authors consider a control problem
under partial observation and provide algorithms to compute the optimal controller en-
suring the opacity of one secret against one attacker. Other works on the enforcement
of opacity by means of controllers can be found in [14]. Note that these approaches are
intrusive in the sense that the system G has to be modified.

Our Contribution. In this paper, instead of restricting the behavior of the system by
means of a controller C which disables some actions, we consider dynamic observers
that will dynamically change the set of observable events in order to ensure opacity.
Compared to the previous approaches related to the supervisory control theory, this
approach is not intrusive in the sense that it does not restrict G but only hides some
events at different points in the course of the execution of the system. Indeed, one can
think of a dynamic observer as a filter (See Figure 1) which is added on top of G.

System G Filter D Attacker Uu ∈ Σ∗ D(u)

Fig. 1. Architecture Filtering out Sequences of Events in G

The main contributions of this paper are two-fold. First, we extend the notion of
opacity for static observers (i.e., the natural projection) to dynamic observers.1 We show
how to check opacity when the dynamic observer is given by a finite automaton. Second
we give an algorithm to compute the set of all dynamic observers which can ensure
opacity of a secret ϕ for a given system G. Finally we consider an optimization problem
which is to compute a least expensive dynamic observer.

The notion of dynamic observers was already introduced in [15] for the fault diag-
nosis problem. Notice that the fault diagnosis problem and the opacity problems are
not reducible one to the other and thus we have to design new algorithms to solve the
opacity problems under dynamic observations.

Organization of the Paper. In Section 2 we introduce some notations for words, lan-
guages and finite automata. In Section 3 we define the notion of opacity with static

1 At this point, it should be mentioned that we assume the attacker has not only a perfect knowl-
edge of the system but also of the observer.

354 F. Cassez, J. Dubreil, and H. Marchand

observers and show that deciding opacity for finite automata is PSPACE-complete. We
also consider the optimization problem of computing a largest set (cardinality-wise) of
observable events to ensure opacity and we show that this problem is PSPACE-complete
as well. Section 4 is the core of the paper and considers dynamic observers for ensuring
opacity. We prove that the set of all observers that ensure opacity can be computed in
EXPTIME. In Section 5 we briefly discuss how to compute optimal dynamic observers.
Omitted proofs and details are given in Appendix or available in the extended version
of this paper [16].

2 Notation and Preliminaries

Let Σ be a finite alphabet. Σ∗ is the set of finite words over Σ and contains the empty
word ε. A language L is any subset of Σ∗. Given two words u ∈ Σ∗ and v ∈ Σ∗, we
denote u.v the concatenation of u and v which is defined in the usual way. |u| stands
for the length of the word u (the length of the empty word is zero). We let Σn with
n ∈ N denote the set of words of length n over Σ. Given Σ1 ⊆ Σ, we define the
projection operator on finite words, PΣ1 : Σ∗ → Σ∗

1 , that removes in a sequence of Σ∗

all the events that do not belong to Σ1. Formally, PΣ1 is recursively defined as follows:
PΣ1(ε) = ε and for λ ∈ Σ, s ∈ Σ∗, PΣ1(s.λ) = PΣ1(s).λ if λ ∈ Σ1 and PΣ1(s)
otherwise. Let K ⊆ Σ∗ be a language. The definition of projection for words extends
to languages: PΣ1(K) = {PΣ1(s) | s ∈ K}. Conversely, let K ⊆ Σ∗

1 . The inverse
projection of K is P−1

Σ,Σ1
(K) = {s ∈ Σ∗ | PΣ1(s) ∈ K}. We omit the subscript Σ1 in

the sequel when it is clear from the context.
We assume that the system is given by an automaton G which is a tuple (Q, q0, Σ, δ,

F) with Q a set of states, q0 ∈ Q is the initial state, δ : Q× Σ → 2Q is the transition
relation and F ⊆ Q is the set of accepting states. If Q is finite, G is a finite automaton

(FA). We write q
λ−−→ whenever δ(q, λ) �= ∅. An automaton is complete if for each

λ ∈ Σ and each q ∈ Q, q
λ−−→. G is deterministic if for all q ∈ Q, λ ∈ Σ, |δ(q, λ)| ≤ 1.

A run ρ from state q0 in G is a finite sequence of transitions q0
λ1−→ q1

λ2−→
q2 · · · qi−1

λi−→ qi · · · qn−1
λn−−→ qn s.t. λi+1 ∈ Σ and qi+1 ∈ δ(qi, λi+1) for

0 ≤ i ≤ n − 1. The trace of the run ρ is tr(ρ) = λ1.λ2 · · ·λn. We let last(ρ) = qn,
and the length of ρ, denoted |ρ|, is n. For i ≤ n we denote by ρ[i] the prefix of the run

ρ truncated at state qi, i.e., ρ(i) = q0
λ1−−→ q1 · · · qi−1

λi−−→ qi. The set of finite runs
from q0 in G is denoted Runs(G). A word u ∈ Σ∗ is generated by G if u = tr(ρ) for
some ρ ∈ Runs(G). Let L(G) be the set of words generated by G. The word u ∈ Σ∗

is accepted by G if u = tr(ρ) for some ρ ∈ Runs(G) with last(ρ) ∈ F . The language
of (finite) words LF (G) of G is the set of words accepted by G. If G is a FA such that
F = Q we simply omit F in the tuple that defines G.

In the sequel we shall use the Post operator defined by: let X ⊆ Q, Post(X, ε) = X
and for u ∈ Σ∗, λ ∈ Σ,Post(X,u.λ) = ∪q∈Post(X,u)δ(q, λ). We also let Post(X,L) =
∪u∈LPost(X,u) for a non empty language L.

The product of automata is defined in the usual way: the product automaton repre-
sents the concurrent behavior of the automata with synchronization on the common

Dynamic Observers for the Synthesis of Opaque Systems 355

events. Given G1 = (Q1, q
1
0 , Σ1, δ1, F1) and G2 = (Q2, q

2
0 , Σ2, δ2, F2) we denote

G1 ×G2 the product of G1 and G2.

3 Opacity with Static Projections

In the sequel, we let G = (Q, q0, Σ, δ, F) be a non-deterministic automaton over Σ and
Σo ⊆ Σ. Enforcing opacity aims at preventing an attacker U , from deducing confiden-
tial information on the execution of a system from the observation of the events in Σo.
Given a run of G with trace u, the observation of the attacker U is given by the static
natural projection PΣo(u) following the architecture of Figure 1 with D(u) = PΣo(u).
In this paper, we shall consider that the confidential information is directly encoded in
the system by means of a set of states F 2. If the current trace of a run is u ∈ L(G), the
attacker should not be able to deduce, from the knowledge of PΣo(u) and the structure
of G, that the current state of the system is in F . As stressed earlier, the attacker U
has full knowledge of the structure of G (he can perform computations using G like
subset constructions) but only has a partial observation upon its behaviors, namely the
observed traces in Σ∗

o . The set of Σo-traces of G is TrΣo(G) = PΣo(L(G)). We
define the operator [[·]]Σo by: [[ε]]Σo = {ε} and for μ ∈ Σ∗

o and λ ∈ Σo, [[μ.λ]]Σo =
P−1

Σ (μ).λ ∩ L(G). In other words, u ∈ [[μ.λ]]Σo iff (1) the projection of u is μ.λ and
(2) the sequence u ends with an observable “λ” event and (3) u ∈ L(G).

Remark 1. We suppose that U is reacting faster than the system. Therefore, when an
observable event occurs, U can compute the possible set of states of G before G moves
even if G can do an unobservable action. 1

Next we introduce the notion of opacity defined in [9]. Intuitively, a set of states F is
said to be opaque with respect to a pair (G,Σo) if the attacker U can never be sure that
the current state of G is in the set F .

Definition 1 (State Based Opacity). Let F ⊆ Q. The secret F is opaque with respect
to (G,Σo) if for all μ ∈ TrΣo(G), Post({q0}, [[μ]]Σo) �⊆ F.

We can extend Definition 1 to a (finite) family of sets F = {F1, F2, · · · , Fk}: the secret
F is opaque with respect to (G,Σo) if for each F ∈ F , F is opaque w.r.t. (G,Σo).
This can be used to express other kinds

q0 q1 q2 q3

q4 q5 q6b

a

a

b a
a,b

b

a

b
a,b

Fig. 2. State based opacity illustration

of confidentiality properties. For exam-
ple, [10] introduced the notion of secrecy
of a set of states F . Intuitively, F is not
secret w.r.t. G and Σo whenever after an
observation μ, the attacker either knows
that the system is in F or knows that it
is not in F . Secrecy can thus be han-
dled considering the opacity w.r.t. a fam-
ily {F,Q \F}. In the sequel we consider only one set of states F and, when necessary,
we point out what has to be done for solving the problems with family of sets.

2 Equivalently, the secret can be given by a regular language over Σ∗, see [16].

356 F. Cassez, J. Dubreil, and H. Marchand

Example 1. Consider the automaton G of Figure 2, with Σo = Σ = {a, b}. The secret
is given by the states F = {q2, q5}. The secret F is certainly not opaque with respect
to (G,Σ), as by observing a trace b∗.a.b, the attacker U knows that the system is in a
secret state. Note that he does not know whether it is q2 or q5 but still he knows that the
state of the system is in F . �
In the sequel we shall focus on variations of the State Based Opacity Problem:

Problem 1 (Static State Based Opacity Problem).
INPUT: A non-deterministic FA G = (Q, q0, Σ, δ, F) and Σo ⊆ Σ.
PROBLEM: Is F opaque w.r.t. (G,Σo) ?

3.1 Checking State Based Opacity

In order to check for the opacity of F w.r.t. (G,Σo), we first introduce the classical
notion of determinization via subset construction adapted to our definition of opacity:
Deto(G) = (X , X0, Σo, Δ, Fo) denotes the deterministic automaton given by:

– X ⊆ 2Q \ ∅, X0 = {q0} and Fo = 2F ,
– given λ ∈ Σo, if X ′ = Post(X, (Σ \Σo)∗.λ) �= ∅ then Δ(X,λ) = X ′.

Checking whether F is opaque w.r.t. (G,Σo) amounts to checking whether a state in
Fo is reachable. To check opacity for a family {F1, F2, · · · , Fk}, we define Fo to be the
set 2F1 ∪ 2F2 ∪ · · · ∪ 2Fk (as pointed out before, this enables us to handle secrecy).

The previous construction shows that opacity on non-deterministic FA can be
checked in exponential time. Actually, checking state based opacity for (non-
deterministic) FA is PSPACE-complete. Given a FA G over Σ and F the set of ac-
cepting states, the (language) universality problem is to decide whether LF (G) = Σ∗.
If not, then G is not universal. Checking language universality for non-deterministic FA
is PSPACE-complete [17] and Problem 1 is equivalent to universality.

Theorem 1. Problem 1 is PSPACE-complete for non-deterministic FA.

Proof. We assume that G is complete i.e., L(G) = Σ∗. Note that [[u]]Σ = u. Now, G
is not universal iff there exists u ∈ Σ∗ such that Post({q0}, [[u]]Σ) ⊆ Q \ F . With the
definition of state based opacity, taking Σo = Σ, we have:

Q \ F is not opaque w.r.t. (G,Σ) ⇐⇒ ∃μ ∈ Σ∗s.t. Post({q0}, [[μ]]Σ) ⊆ Q \ F. �
PSPACE-easiness was already known and follows from a result in [18]: the model-
checking problem for a temporal logics which can specify security properties is proved
to be PSPACE-complete.

3.2 Maximum Cardinality for Static Projections

If a secret is opaque w.r.t. a set of observable events Σo, it is worthwhile noticing that
it will still be opaque w.r.t. any subset of Σo. It might be of interest to hide as few
events as possible from the attacker still preserving opacity of a secret. Indeed, hiding
an event can be seen as energy consuming or as limiting the interactions or visibility
for users of the system (and some of them are not malicious attackers) and thus should
be avoided. Given the set of events Σ of G, we can check whether the secret is opaque
w.r.t. Σo ⊆ Σ. In that case, we may increase the number of visible letters and check
again if the secret remains opaque. This suggests the following optimization problem:

Dynamic Observers for the Synthesis of Opaque Systems 357

Problem 2 (Maximum Cardinality of Observable Events).
INPUT: A non-deterministic FA G = (Q, q0, Σ, δ, F) and n ∈ N s.t. n ≤ |Σ|.
PROBLEMS:
(A) Is there any Σo ⊆ Σ with |Σo| = n, such that F is opaque w.r.t. (G,Σo) ?
(B) If the answer to (A) is “yes”, find the maximum n0 such that there exists Σo ⊆ Σ

with |Σo| = n0 and F is opaque w.r.t. (G,Σo).

Theorem 2. Problem 2.(A) and Problem 2.(B) are PSPACE-complete.

Proof. PSPACE-easiness follows directly as we can guess a set Σo with |Σo| = n
and check in PSPACE whether F is opaque w.r.t. (G,Σo). Thus Problem 2.(A) is in
NPSPACE and thus in PSPACE. PSPACE-hardness is also easy because taking n = |Σ|
amounts to checking that F is opaque w.r.t. (G,Σ) which has been shown equivalent
to the universality problem (proof of Theorem 1).

To solve Problem 2.(B) it suffices to iterate a binary search and thus Problem 2.(B)
is also in PSPACE. To see it is PSPACE-complete, to check whether F is opaque
w.r.t. (G,Σ), it suffices to solve Problem 2.(B) and then check whether n0 = |Σ|. �

4 Opacity with Dynamic Projection

So far, we have assumed that the observability of events is given a priori and this is why
we used the term static projections. We generalize this approach by considering the
notion of dynamic projections encoded by means of dynamic observers as introduced
in [15]. Dynamic projection allows us to render unobservable some events after a given
observed trace (for example, some outputs of the system). To illustrate the benefits of
such projections, we consider the following example:

Example 2. Consider again the automaton G of Example 1, Figure 2, where F =
{q2, q5}. With Σo = Σ = {a, b}, F is not opaque. If either Σo = {a} or Σo = {b},
then the secret becomes opaque. Thus if we have to define static sets of observable
events, at least one event will have to be permanently unobservable. However, the less
you hide, the more important is the observable behavior of the system. Thus, we should
try to reduce as much as possible the hiding of events. We can be more efficient by us-
ing a dynamic projection that will render unobservable an event only when necessary.
Indeed, after observing b∗, the attacker knows that the system is in the initial state.
However, if a subsequent “a” follows, then the attacker should not be able to observe
“b” as in this case it could know the system is in a secret state. We can then design a
dynamic events’s hider as follows: at the beginning, everything is observable; when an
“a” occurs, the observer hides any subsequent “b” occurrences and permits only the
observation of “a”. Once an “a” has been observed, the observer releases its hiding
by letting both “a” and “b” be observable again. 1

4.1 Opacity Generalized to Dynamic Projection

We now define the notion of dynamic projection and its associated dynamic observer.

358 F. Cassez, J. Dubreil, and H. Marchand

Dynamic Projections and Observers. A dynamic projection is a function that will de-
cide to let an event be observable or to hide it, thus playing the role of a filter between
the system and the attacker to prevent information flow (see Figure 1).

Definition 2. A dynamic observability choice is a mapping T : Σ∗ → 2Σ . The (obser-
vation-based) dynamic projection induced by T is the mapping D : Σ∗ → Σ∗ defined
by D(ε) = ε, and for all u ∈ Σ∗ and all λ ∈ Σ,

D(u.λ) = D(u).λ if λ ∈ T (D(u)) and D(u.λ) = D(u) otherwise. (1)

Assuming that u ∈ Σ∗ occurred in the system and μ ∈ Σ∗ has been observed by the
attacker i.e., μ = D(u), then the events of T (μ) are the ones currently observable.
Note that this choice does not change until an observable event occurs. Given μ ∈ Σ∗,
D−1(μ) = {u ∈ Σ∗ | D(u) = μ} is the set of sequences that project onto μ.

Example 3. A dynamic projection D : Σ∗ → Σ∗ corresponding to the one of Exam-
ple 2 can be induced by the dynamic observability choice T defined by T (u) = {a} for
all u ∈ b∗.a and T (u) = {a, b} for all the other sequences u ∈ Σ∗. 1

Given a FA G and a dynamic projection D, we denote by TrD(G) = D(L(G)), the set
of observed traces. Conversely, given μ ∈ TrD(G), the set of words [[μ]]D of G that are
compatible with μ is defined by:

[[ε]]D = {ε} and for μ ∈ Σ∗, λ ∈ Σ : [[μ.λ]]D = D−1(μ).λ ∩ L(G).

Given two different dynamic projections D1 and D2 and a system G over Σ, we say
that D1 and D2 are G-equivalent, denoted D1 ∼G D2, whenever for all u ∈ L(G),
D1(u) = D2(u). The relation ∼G identifies two dynamic projections when they agree
on L(G); they can disagree on other words in Σ∗ but since they will not be generated
by G, it will not make any difference from the attacker point of view. In the sequel we
will be interested in computing the interesting part of dynamic projections given G, and
thus will compute one dynamic projection in each class.

Opacity with Dynamic Projection. We generalize Definition 1 by taking into account
the new observation interface given by D.

Definition 3. Given a FA G = (Q, q0, Σ, δ, F), F is opaque with respect to (G,D) if

∀μ ∈ TrD(G), Post({q0}, [[μ]]D) �⊆ F. (2)

Again, this definition extends to family of

1

Γ (1) = {a, b}
2

Γ (2) = {a}
3

Γ (3) = {a, b}

b b a, b

a a

Fig. 3. Example of a Dynamic Observer

sets. We say that D is a valid dynamic pro-
jection if (2) is satisfied (i.e., whenever F is
opaque w.r.t. (G,D)) and we denote by D
the set of valid dynamic projections. Obvi-
ously if D1 ∼G D2, then D1 is valid if and
only if D2 is valid. We denote by D∼G the
quotient set of D by ∼G.

Dynamic Observers for the Synthesis of Opaque Systems 359

Remark 2. Let Σo ⊆ Σ, then if D is a dynamic projection that defines a constant map-
ping making actions in Σo always observable (and the others always unobservable),
we have D(u) = PΣo(u) and we retrieve Definition 1. The property of secrecy can be
extended as well using dynamic projection. 1

In the sequel, we shall be interested in checking the opacity of F w.r.t. (G,D) or to syn-
thesize such a dynamic projection D ensuring this property. In Section 3, the dynamic
projection was merely the natural projection and computing the observational behavior
of G was easy. Here, we need to find a characterization of these dynamic projections
that can be used to check opacity or to enforce it. To do so, we introduce the notion of
dynamic observer [15] that will encode a dynamic projection in terms of automata.

Definition 4 (Dynamic observer). A dynamic observer is a complete deterministic la-
beled automaton O = (X,x0, Σ, δo, Γ) where X is a (possibly infinite) set of states,
x0 ∈ X is the initial state, Σ is the set of input events, δo : X×Σ → X is the transition
function (a total function), and Γ : X → 2Σ is a labeling function that specifies the set
of events that the observer keeps observable at state x. We require that for all x ∈ X
and for all λ ∈ Σ, if λ /∈ Γ (x), then δo(x, λ) = x, i.e., if the observer does not want
an event to be observed, it does not change its state when such an event occurs.

We extend δo to words of Σ∗ by: δo(q, ε) = q and for u ∈ Σ∗, λ ∈ Σ, δo(q, u.λ) =
δo(δo(q, u), λ). Assuming that the observer is at state x and an event λ occurs, it outputs
λ whenever λ ∈ Γ (x) or nothing (ε) if λ /∈ Γ (x) and moves to state δo(x, λ). An
observer can be interpreted as a functional transducer taking a string u ∈ Σ∗ as input,
and producing the output which corresponds to the successive events it has chosen to
keep observable. An example of dynamic observer is given in Figure 3. We now relate
the notion of dynamic observer to the one of dynamic projection.

Proposition 1. LetO = (X,x0, Σ, δo, Γ) be an observer and define DO by: DO(ε) =
ε, and for all u ∈ Σ∗, DO(u.λ) = DO(u).λ if λ ∈ Γ (δo(x0, u)) and DO(u) other-
wise. Then DO is a dynamic projection. In the sequel, we write [[μ]]O for [[μ]]DO .

Proof. To prove that DO defined above is a dynamic projection, it is sufficient to exhibit
a dynamic observability choice T : Σ∗ → 2Σ and to show that (1) holds. Let T (u) =
Γ (δo(xo, DO(u))). It is easy to show by induction that δo(xo, u) = δo(xo, DO(u))
because δo(x, λ) = x when λ /∈ Γ (x). We can then define T (u) = Γ (δo(xo, u)) and
the result follows from this remark. �
Proposition 2. Given a dynamic projection D induced by T , let OD = (Σ∗, ε, Σ, δD,
T) where δD(w, λ) = D(w.λ). Then OD is a dynamic observer.

Proof. OD is complete and deterministic by construction. Moreover after a sequence u
if D(u.λ) = D(u) then δD(u, λ) = u. �

Note that there might exist several equivalent observers that encode the same dynamic
projection. For example, the observer depicted in Figure 3 is one observer that encodes
the dynamic projection described in Example 3. But, one can consider other observers
obtained by unfolding an arbitrary number of times the self-loops in states 1 or 3. Fi-
nally, to mimic the language theory terminology, we will say that a dynamic projection
D is regular whenever there exists a finite state dynamic observerO such that DO = D.

360 F. Cassez, J. Dubreil, and H. Marchand

To summarize this part, we can state that with each dynamic projection D, we can as-
sociate a dynamic observer OD such that D = DOD . In other words, we can consider
a dynamic projection or one of its associated dynamic observers whenever one repre-
sentation is more convenient than the other. If the dynamic projection D derived from
O is valid, we say thatO is a valid dynamic observer. In that case, we will say that F is
opaque w.r.t. (G,O) and we denote byOBS(G) the set of all valid dynamic observers.

4.2 Checking Opacity with Dynamic Observers

The first problem we are going to address consists in checking whether a given dynamic
projection ensures opacity. To do so, we assume given a dynamic observer which defines
this projection map. The problem, we are interested in, is then the following:

Problem 3 (Dynamic State Based Opacity Problem).
INPUT: A non-deterministic FA G = (Q, q0, Σ, δ, F) and a dynamic observer

O = (X,x0, Σ, δo, Γ).
PROBLEM: Is F opaque w.r.t. (G,O) ?

We first construct an automaton which represents what an attacker will see under the
dynamic choices of observable events made by O. To do so, we define the automaton
G⊗O = (Q×X, (q0, x0), Σ ∪ {τ}, δ, F ×X) where τ is a fresh letter not in Σ and
δ is defined for each λ ∈ Σ ∪ {τ}, and (q, x) ∈ Q×X by:

– δ((q, x), λ) = δG(q, λ) × {δo(x, λ)} if λ ∈ Γ (x);
– δ((q, x), τ) =

(
∪λ∈Σ\Γ (x)δG(q, λ)

)
× {x}.

Proposition 3. F is opaque w.r.t. (G,O) iff F ×X is opaque w.r.t. (G⊗O, Σ).

Proof. Let μ ∈ TrO(G) be a trace observed by the attacker. We prove the following by
induction on the length of μ:

q ∈ PostG({q0}, [[μ]]O) ⇐⇒ (q, x) ∈ PostG⊗O({(q0, x0)}, [[μ]]Σ) for some x ∈ X .

If μ = ε, the result is immediate. Assume that μ′ = μ.λ. Let q ∈ PostG({q0}, [[μ′]]O).
By definition of [[μ′]]O we have q0

u→q′ v→q′′ λ→q with u ∈ [[μ]]O , u.v.λ ∈ [[μ.λ]]O .
By induction hypothesis, it follows that (q′, δo(x0, u)) ∈ PostG⊗O({(q0, x0)}, [[μ]]Σ)
where δo(x0, u) is the (unique) state of O after reading u. Then, there exists a word
w ∈ (Σ ∪ {τ})∗ such that PΣ(w) = μ and (q0, x0)

w→(q′, δo(x0, u)) is a run of
G ⊗ O. Assume v = v1.v2. · · · .vk, k ≥ 0. As O(u.v) = O(u) , we must have
vi �∈ Γ (δo(x0, u.v1. · · · .vi)) when 1 ≤ i ≤ k. Hence, by construction of G ⊗ O,
there is a sequence of transitions in G⊗O of the form

(q′, δo(x0, u)) τ−−→ δo(x0, u.v1)
τ−−→ · · · τ−−→ (q′′, δo(x0, u.v))

with λ ∈ Γ (δo(x0, u.v)). Thus, (q0, x0)
w−−→ (q′, δo(x0, u)) τk.λ−−−−→ (q, δo(u.v.λ)) is

a run of G ⊗ O with PΣ(w.τk .λ) = μ.λ = μ′. This implies (q, δo(x0, u.v.λ)) ∈
PostG⊗O({(q0, x0)}, [[μ′]]Σ). For the converse if we have a sequence of τ transitions in
G⊗O, they must originate from actions in G which are not observable. �

Dynamic Observers for the Synthesis of Opaque Systems 361

The previous result is general, and if O is a FA we obtain the following theorem:

Theorem 3. For finite state observers, Problem 3 is PSPACE-complete.

Proof. As the size of the product G⊗O is the product of the size of G and the size of
O and opacity can be checked in PSPACE, PSPACE-easiness follows. Now, checking
state based opacity with respect to (G,Σ) can be done using a simple observer with
one state which always let Σ observable and PSPACE-hardness follows. �

As Proposition 3 reduces the problem of checking opacity with dynamic observers to
the problem of checking opacity with static observers, Theorem 3 extends to family of
sets (and thus to secrecy).

4.3 Enforcing Opacity with Dynamic Projections

So far, we have assumed that the dynamic projection/observer was given. Next we will
be interested in synthesizing one in such a way that the secret becomes opaque w.r.t. the
system and this observer.

Problem 4 (Dynamic Observer Synthesis Problem).
INPUT: A non-deterministic FA G = (Q, q0, Σ, δ, F).
PROBLEM: Compute the set of valid dynamic observersOBS(G)3.

Deciding the existence of a valid observer is trivial: it is sufficient to check whether
always hiding Σ is a solution. Moreover, note that OBS(G) can be infinite. To solve
Problem 4, we reduce it to a safety 2-player game. Player 1 will play the role of an
observer and Player 2 what the attacker observes. Assume the automaton G can be in
any of the states s = {q1, q2, · · · , qn}, after a sequence of actions occurred. A round of
the game is: given s, Player 1 chooses which letters should be observable next i.e., a set
t ⊆ Σ; then it hands it over to Player 2 who picks up an observable letter λ ∈ t; this
determines a new set of states G can be in after λ, and the turn is back to Player 1. The
goal of the Players are defined by:

– The goal of Player 2 is to pick up a sequence of letters such that the set of states
that can be reached after this sequence is included in F . If Player 2 can do this, then
it can infer the secret F . Player 2 thus plays a reachability game trying to enforce a
particular set of states, say Bad (the states in which the secret is disclosed).

– The goal of Player 1 is opposite: it must keep the game in a safe set of states where
the secret is not disclosed. Thus Player 1 plays a safety game trying to keep the
game in the complement set of Bad.

As we are playing a (finite) turn-based game, Player 2 has a strategy to enforce Bad
iff Player 1 has no strategy to keep the game in the complement set of Bad (turn-based
finite games are determined [19]).

We now formally define the 2-player game and show it allows us to obtain a finite
representation of all the valid dynamic observers. Let H = (S1 ∪S2, s0,M1∪M2, δH)
be the deterministic game automaton derived from G and given by:

3 Our aim is actually to be able to generate at least one observer for each representative of D∼G ,
thus capturing all the interesting dynamical projections.

362 F. Cassez, J. Dubreil, and H. Marchand

– S1 = 2Q is the set of Player 1 states and S2 = 2Q × 2Σ the set of Player 2 states;
– the initial state of the game is the Player 1 state s0 = {q0};
– Player 1 will choose a set of events to hide in Σ, then Player 1 actions are in the

alphabet M1 = 2Σ and Player 2 actions are in M2 = Σ;
– the transition relation δH ⊆ (S1 ×M1 × S2) ∪ (S2 ×M2 × S1) is given by:

• Player 1 moves (observable events): if s ∈ S1, t ⊆ Σ, then δH(s, t) = (s, t);
• Player 2 moves (observed events): if (s, t) ∈ S2, λ ∈ t and

s′ = Post(s, (Σ \ t)∗.λ) �= ∅, then δH((s, t), λ) = s′.

Remark 3. If we want to exclude the possibility of hiding everything for Player 1, it
suffices to build the game H with this constraint on Player 1 moves i.e., ∀s ∈ S1, and
t �= ∅, δH(s, t) = (s, t). 1

We define the set of Bad states to be the set of Player 1 states s s.t. s ⊆ F . For
a family of sets F1, F2, · · · , Fk, Bad is the set of states 2F1 ∪ 2F2 ∪ · · · ∪ 2Fk . Let
Runsi(H), i = 1, 2 be the set of runs of H that end in a Player i state. A strategy for
Player i is a mapping fi : Runsi(H) → Mi that associates with each run that ends
in a Player i state, the new choice of Player i. Given two strategies f1, f2, the game
H generates the set of runs Outcome(f1, f2, H) combining the choices of Players 1
and 2 w.r.t. f1 and f2. f1 is a winning strategy for Playing 1 in H for avoiding Bad
if for all Player 2 strategies f2, no run of Outcome(f1, f2, H) contains a Bad state.
A winning strategy for Player 2 is a strategy f2 s.t. for all strategy f1 of Player 1,
Outcome(f1, f2, H) reaches a Bad state. As turn-based games are determined, either
Player 1 has a winning strategy or Player 2 has a winning strategy.

We now relate the set of winning strategies for Player 1 in H to the set of valid
dynamic projections. Let PM2(%) = PΣ(tr(%)) for a run % of H . The proof of the
following Proposition 4 is given in Appendix.

Definition 5. Given a dynamic projection D, we define the strategy fD such that for
every % ∈ Runs1(H), fD(%) = TD(PM2 (%)).

Proposition 4. Let D be a dynamic projection. D is valid if and only if fD is a winning
strategy for Player 1 in H .

Given a strategy f for Player 1 in H , for all μ ∈ Σ∗, there exists at most one run
%μ ∈ Outcome1(f,H) such that PM2(tr(%μ)) = μ.

Definition 6. Let f be a strategy for Player 1 in H . We define the dynamic projection
Df induced by the dynamic observability choice Tf : Σ∗ → 2Σ given by: Tf (μ) =
f(%μ) if %μ is in Outcome(f,H) and Tf(μ) = Σ otherwise.

Notice that when %μ is not in Outcome(f,H), it does not really matter how we define
Tf because there is no word w ∈ L(G) s.t. μ = Df (w).

Proposition 5. If f is a winning strategy for Player 1 in H , then Df is a valid dynamic
projection.

Proof. Applying the construction of Definition 5 yields fDf
= f . Since f is a winning

strategy, by Proposition 4, we get that Df is a valid dynamic projection. �

Dynamic Observers for the Synthesis of Opaque Systems 363

Notice that we only generate a representative for each of the equivalence classes induced
by ∼G. However, an immediate consequence of the two previous propositions is that
there is a bijection between the set of winning strategies of Player 1 and D∼G .

4.4 Most Permissive Dynamic Observer

We now define the notion of most permissive valid dynamic observers. For an observer
O = (X,xo, Σ, δo, Γ) and w ∈ Σ∗, recall that Γ (δo(xo, w)) is the set of events thatO
chooses to render observable after observing w. Assume that w = λ1λ2 · · ·λk. Let w =
Γ (xo).λ1.Γ (δo(xo, w[1])).λ2.Γ (δo(xo, w[2])) · · ·λk.Γ (δo(xo, w[k])) i.e., w contains
the history of what O has chosen to observe at each step and the next observable event
that occurred after each choice.

Definition 7. Let O∗ : (2Σ .Σ)∗ → 22Σ

. The mappingO∗ is the most permissive valid
dynamic observer4 ensuring the opacity of F if the following holds:

O = (X,xo, Σ, δo, Γ) is a valid observer ⇐⇒ ∀w ∈ L(G), Γ (δo(xo, w)) ∈ O∗(w).

The definition of the most permissive valid observer states that any valid observer O
must choose a set of observable events in O∗(w) on input w; if an observer chooses its
set of observable events in O∗(w) on input w, then it is a valid observer.

Theorem 4. The most permissive valid observerO∗ can be computed in EXPTIME.

Proof. The detailed proof is given in Appendix. For a sketch, the most permissive valid
dynamic observer is obtained using the most permissive winning strategy in the game
H . It is well-known result [20] that for a finite game, if there is a winning strategy, there
is a memoryless most permissive one. Moreover whether there is a winning strategy can
be decided in linear time in the size of the game. As the size of H is exponential in the
size of G and Σ the result follows. �

We let FH be the automaton representing the most permissive observer. Theorem 4
states that FH can be used to generate any valid observer. In particular, given a finite-
memory winning strategy, the corresponding valid observer is finite and thus its as-
sociated dynamic projection is regular. An immediate corollary of Theorem 4 is the
following:

Corollary 1. Problem 4 is in EXPTIME.

Example 4. To illustrate this section, we consider the following small example. The sys-
tem is depicted by the automaton in Figure 4(a). The set of secret states is reduced to the
state (2). Figure 4(b) represents the associated game automaton. The states of Player 1
are represented by circles whereas the ones of Player 2 are represented by squares. The
only bad states is the state (2). The most permissive valid dynamic observer is obtained
when Player 1 does not allow transition {a, b} to be triggered in state (1) (otherwise,

4 Strictly speaking O∗ is not an observer because it maps to sets of sets of events whereas
observers map to sets of events. Still we use this term because it is the usual terminology in
the literature.

364 F. Cassez, J. Dubreil, and H. Marchand

1

1.a1.b 12

12.a

12.b

12.ab

2.a 2.b

1.ab 22.ab

(b): The Game H

21

(a): The Automaton G

x1

Γ (x1) = {a}

x2

Γ (x2) = {a, b}
(c): A Finite Observer

{a}
{b}

{a, b}
{a}

{b}

{a, b}

{a}
{b}

{a, b}
a

b

a, b

a
b

a, b

a

b

a, b

a

b

a

b

b

a

a, b

Fig. 4. Most Permissive Dynamic Observer

Player 2 could choose to observe either event a or b and in this case the game will
evolve into state (2) and the secret will be revealed). The dashed lines represents the
transitions that are removed from the game automaton to obtain the most permissive
observer. Finally, Figure 4(c) represents a valid observer O generated from the most
permissive observer with the memoryless strategy f(1) = {a} and f(12) = {a, b}. 1

5 Optimal Dynamic Observer

Among all the possible observers that ensure the opacity of the secret, it is worth-
while noticing that some are better (in some sense) than other: they hide less events
on average. We here define a notion of cost for observers which captures this intu-
itive notion. We first introduce a general cost function and we show how to compute
the cost of a given pair (G,O) where G is a system and O a finite state observer.
Second, we show that among all the valid observers (that ensure opacity), there is
an optimal cost, and we can compute an observer which ensures this cost. The prob-
lems in this section and the solutions are closely related to the results in [15] and use
the same tools: Karp’s mean-weight algorithm [21] and a result of Zwick and Pater-
son [22]. We want to define a notion of cost which takes into account the set of events
the observer chooses to hide and also how long it hides them. We assume that the ob-
server is a finite automatonO = (X,x0, Σ, δo, Γ). With each set of observable events
Σ′ ∈ 2Σ we associate a cost of hiding Σ \ Σ′ which is a positive integer. We denote

Dynamic Observers for the Synthesis of Opaque Systems 365

Cost : 2Σ → N this function. Now, if O is in state x, the current cost per time unit is
Cost(Γ (x)). Let Runsn(G) be the set of runs of length n in Runs(G). Given a run

ρ = q0
λ1−−→ q1 · · · qn−1

λn−−→ qn ∈ Runsn(G), let xi = δo(x0, wi) with wi = tr(ρ[i]).
The cost associated with ρ ∈ Runsn(G) is defined by:

Cost(ρ,G,O) =
1

n + 1
·
∑

i=0..n

Cost(Γ (xi)).

Notice that the time basis we take is the number of steps which occurred in G. Thus if
the observer is in state x, and chooses to observe Γ (x) at steps i and i + 1, Cost(Γ (x))
will be counted twice: at steps i and i+1. The definition of the cost of a run corresponds
to the average cost per time unit, the time unit being the number of steps of the run
in G. Define the cost of the set of runs of length n that belongs to Runsn(G) by:
Cost(n,G,O) = max{Cost(ρ,G,O) | ρ ∈ Runsn(G)}. The cost of an observer with
respect to a system G is

Cost(G,O) = lim sup
n→∞

Cost(n,G,O) (3)

(notice that the limit may not exist whereas the limit sup is always defined.) To compute
the cost of a given observer, we can use a similar algorithm as the one given in [15],
and using Karps’s maximum mean-weight cycle algorithm [21]:

Theorem 5. Computing Cost(G,O) is in PTIME.

Proof. We can prove that the cost of an observer is equal to the maximum mean-weight
cycle in G ⊗ O. The size of G ⊗ O is polynomial in the size of G and O. Computing
the maximum mean-weight cycle can be done in linear time w.r.t. the size of G⊗O. �

Finally we can solve the following optimization problem:

Problem 5 (Bounded Cost Observer).
INPUTS: an automaton G = (Q, q0, Σ, δ, F) and an integer k ∈ N.
PROBLEMS:
(A) Is there anyO ∈ OBS(G) s.t. F is opaque w.r.t. (G,O) and Cost(G,O) ≤ k ?
(B) If the answer to (A) is “yes”, compute a witness observerO s.t. Cost(G,O) ≤ k.

To solve this problem we use a result from Zwick and Paterson [22], which is an exten-
sion of Karp’s algorithm for finite state games.

Theorem 6. Problem 5 can be solved in EXPTIME.

The solution to this problem is the same as the one given in [15], and the proof for
the opacity problem is detailed in [16]. The key result is Theorem 4, which enables
us to represent all the winning strategies in H as a finite automaton. Synchronizing G
and the most permissive valid dynamic observer FH produces a weighted game, the
optimal value of which can be computed in PTIME (in the size of the product) using
the algorithm in [22]. The optimal strategies can be computed in PTIME as well. As
G×FH has size exponential in G and Σ, the result follows.

366 F. Cassez, J. Dubreil, and H. Marchand

6 Conclusion

In this paper, we have investigated the synthesis of opaque systems. In the context of
static observers, where the observability of events is fixed a priori, we provided an algo-
rithm (PSPACE-complete) to compute a maximal subalphabet of observable actions en-
suring opacity. We have also defined a model of dynamic observers determining whether
an event is observable after a given observed trace. We proved that the synthesis of dy-
namic observers can be solved in EXPTIME, and EXPTIME-hardness is left open.

We assumed that the dynamic observers can change the set observable events only
after an observable event has occurred. This assumption should fit most applications
since the knowledge of the attacker also depends on observed traces. It would be inter-
esting to investigate also the case where this decision depends on the word executed by
the system. The case where the observability depends on the state of the system should
also be considered as it would be easy to implement in practice. Finally, the notion of
semantics of an observed trace used throughout this article is based on the assumption
that the attacker can react, i.e., acquire knowledge, faster than the system’s evolution. It
would be interesting to adapt this work to other types of semantics.

References

1. Lowe, G.: Towards a completeness result for model checking of security protocols. Journal
of Computer Security 7(2-3), 89–146 (1999)

2. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for
Security Protocols. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
Chicago, IL, pp. 331–340. IEEE Computer Society, Los Alamitos (2005)

3. Hadj-Alouane, N., Lafrance, S., Lin, F., Mullins, J., Yeddes, M.: On the verification of in-
transitive noninterference in mulitlevel security. IEEE Transaction On Systems, Man, And
Cybernetics—Part B: Cybernetics 35(5), 948–957 (2005)

4. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

5. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-time se-
curity policies. Int. J. Inf. Sec. 4(1-2), 2–16 (2005)

6. Darmaillacq, V., Fernandez, J.C., Groz, R., Mounier, L., Richier, J.L.: Test generation for net-
work security rules. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS,
vol. 3964, pp. 341–356. Springer, Heidelberg (2006)

7. Le Guernic, G.: Information flow testing - the third path towards confidentiality guarantee. In:
Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp. 33–47. Springer, Heidelberg (2007)

8. Dubreil, J., Jéron, T., Marchand, H.: Monitoring information flow by diagnosis techniques.
Technical Report 1901, IRISA (August 2008)

9. Bryans, J., Koutny, M., Mazaré, L., Ryan, P.: Opacity generalised to transition systems. In-
ternational Journal of Information Security 7(6), 421–435 (2008)

10. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 107–118.
Springer, Heidelberg (2006)

11. Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud, B., Darondeau, P.: Concurrent
secrets. Discrete Event Dynamic Systems 17, 425–446 (2007)

12. Dubreil, J., Darondeau, P., Marchand, H.: Opacity enforcing control synthesis. In: Pro-
ceedings of the 9th International Workshop on Discrete Event Systems (WODES 2008),
Göteborg, Sweden, May 2008, pp. 28–35 (2008)

Dynamic Observers for the Synthesis of Opaque Systems 367

13. Dubreil, J., Darondeau, P., Marchand, H.: Opacity enforcing control synthesis. Technical
Report 1921, IRISA (February 2009)

14. Takai, S., Oka, Y.: A formula for the supremal controllable and opaque sublanguage arising
in supervisory control. SICE Journal of Control, Measurement, and System Integration 1(4),
307–312 (2008)

15. Cassez, F., Tripakis, S.: Fault diagnosis with static or dynamic diagnosers. Fundamenta In-
formatica 88(4), 497–540 (2008)

16. Cassez, F., Dubreil, J., Marchand, H.: Dynamic Observers for the Synthesis of Opaque Sys-
tems. Technical Report 1930, IRISA (May 2009)

17. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary
report. In: STOC, pp. 1–9. ACM, New York (1973)

18. Alur, R., Cerný, P., Chaudhuri, S.: Model checking on trees with path equivalences. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 664–678. Springer, Heidelberg
(2007)

19. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
20. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.)

STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995), Invited talk
21. Karp, R.: A characterization of the minimum mean cycle in a digraph. Discrete

Mathematics 23, 309–311 (1978)
22. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical

Computer Science 158(1–2), 343–359 (1996)

Symbolic CTL Model Checking of Asynchronous

Systems Using Constrained Saturation�

Yang Zhao and Gianfranco Ciardo

Department of Computer Science and Engineering
University of California, Riverside

{zhaoy,ciardo}@cs.ucr.edu

Abstract. The saturation state-space generation algorithm has demon-
strated clear improvements over state-of-the-art symbolic methods for
asynchronous systems. This work is motivated by efficiently applying sat-
uration to CTL model checking. First, we introduce a new “constrained
saturation” algorithm which constrains state exploration to a set of states
satisfying given properties. This algorithm avoids the expensive after-
the-fact intersection operations and retains the advantages of saturation,
namely, exploiting event locality and benefiting from recursive local fix-
point computations. Then, we employ constrained saturation to build the
set of states satisfying EU and EG properties for asynchronous systems.
The new algorithm can achieve orders-of-magnitude reduction in runtime
and memory consumption with respect to methods based on breath-first
search, and even with a previously-proposed hybrid approach that al-
ternates between “safe” saturation and “unsafe” breadth-first searches.
Furthermore, the new approch is fully general, as it does not require
the next-state function to be expressable in Kronecker form. We con-
clude this paper with a discussion of some possible future work, such as
building the set of states belonging to strongly connected components.

1 Introduction

CTL model checking is an important state-of-the-art approach in formal verifi-
cation. Paired with the use of BDDs [2], which provide a time and space efficient
data structure to perform operations such as union, intersection, and relational
product over sets of states, symbolic model checking [13] is one of the most suc-
cessful techniques to verify industrial hardware and embedded software systems.

Most current symbolic model checkers, such as NuSMV [12], employ methods
based on breath-first search (BFS). The saturation algorithm [7] employs a very
different philosophy, recursively computing “local fixpoints”. A series of publi-
cations has proven the clear advantages of saturation for state-space generation
over traditional symbolic approaches [6,8,9,14], while extending its applicabil-
ity to increasingly general settings. However, our previous attempts to apply
saturation to CTL model checking have been only partially successful [10].
� Work supported in part by the National Science Foundation under grant CCF-
0848463.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 368–381, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Symbolic CTL Model Checking of Asynchronous Systems 369

This paper addresses CTL model checking for asynchronous systems by propos-
ing an extended constrained saturation algorithm. This algorithm constrains the
saturation-based state-space exploration to a given set of states without explicitly
executing the expensive intersection operations normally required to implement
CTL operators. Furthermore, unlike the original approach [10] where the next-
state function had to satisfy a Kronecker expression, the proposed algorithm is
fully general, as it employs a disjunctive-then-conjunctive encoding that exploits
the common characteristics of asynchronous systems. Constrained saturation can
be used to compute the set of states satisfying an EU formula as well as to effi-
ciently compute the backward reachability relation, which we in turn use for a new
algorithm to compute the set of states satisfying an EG formula.

The remainder of this paper is organized as follows. Section 2 introduces
the relevant background on MDDs and the saturation algorithm. Section 3 in-
troduces constrained saturation and new EU computation algorithm. Section 4
proposes a new EG computation algorithm based on the backward reachability
relation. We conclude this paper and outline future work in the last section.

2 Preliminaries

Consider a discrete-state model (S,Sinit, E ,N) where the state space S is given
by the product SL × · · · × S1 of local state spaces of L submodels, that is, each
(global) state i is a tuple (iL, · · · , i1), where ik ∈ Sk, for L ≥ k ≥ 1; the set
of initial states is Sinit ⊆ S; the set of (asynchronous) events is E ; the next-
state function N : S → 2S is described in disjunctively partitioned form as
N =

⋃
α∈E Nα, where Nα(i) is the set of states that can be reached in one step

when α occurs, or fires, in state i. We say that α is enabled in state i if Nα(i) �= ∅.
Correspondingly, N−1 and N−1

α denote the inverse next-state functions, e.g.,
N−1

α (i) is the set of states that can reach i in one step by firing event α.
For high-level models, the generation of the state space S is an important

and interesting problem in itself. This is particularly true for models such as
Petri nets, where the sets Sk might not be known a priori. However, using the
saturation algorithm, the state spaces of complex models can usually be gen-
erated in acceptable runtime, so we now assume that state-space generation is
a preprocessing step that has been already performed prior to model checking.
Consequently, the sets Sk, their sizes nk, and the reachable state space Srch ⊆ S
are assumed known in the following discussion, and we let Sk = {0, ..., nk − 1},
without loss of generality. More details about our state-space generation algo-
rithm are reviewed in Section 2.3.

2.1 Symbolic Encoding of Sets of States

Binary decision diagrams (BDDs) [2] are the most widely used data structure
to store and manipulate sets of states. Instead of BDDs, we employ multi-way
decision diagrams (MDDs) to encode sets of states. MDDs extend BDDs by
allowing integer-valued variables, so that the choices for nodes at level k naturally
correspond to the local states of submodel k.

370 Y. Zhao and G. Ciardo

Definition 1. A quasi-reduced MDD is an acyclic directed edge-labeled graph
where:

- Each node a belongs to a level in {L, · · · , 1, 0}, denoted by a.lvl.
- There is a single root node.
- The only terminal nodes are 0 and 1, and are at level 0.
- A nonterminal node a at level k, with L ≥ k ≥ 1, has nk outgoing edges

labeled with a different integer in {0, ..., nk − 1}. The node pointed by the
edge labeled with ik is denoted a[ik], and, if not 0, it must be at level k− 1.

The set encoded by MDD node a at level k > 1 is then recursively defined as

B(a) =
⋃

ik∈Sk

{ik} × B(a[ik]).

with terminal cases B(0) = ∅ and B(a) = {i1 ∈ S1 : a[i1] = 1} if a.lvl = 1.

2.2 Symbolic Encoding of the Next-State Functions

In a traditional symbolic approach, the next-state function N is encoded using
a 2L-level BDD or MDD, with levels ordered as L,L′, ..., 1, 1′, 0, where levels L
through 1, corresponding to the “from” states, and levels L′ through 1′, corre-
sponding to the “to” states, are interleaved. Given a next-state function N and
a set of states X , the image computation or relational product builds the set
N (X) = {j : ∃i ∈ X , (i, j) ∈ N}.

A commonly employed technique is to conjunctively or disjunctively partition
the next-state function encoded by a monolithic MDD into several MDDs [3,11].
For asynchronous systems, it is natural to disjunctively store each next-state
function Nα, for each event α ∈ E , so that the overall next-state function N =⋃

α∈E Nα is actually never stored as a single MDD.
Locality is a fundamental property enjoyed by most asynchronous systems: an

event α is independent of the kth submodel (or, briefly, of k) if its enabling does
not depend on ik and its firing does not change the value of ik. A level k belongs
to the support set of event α, denoted supp(α), if α is not independent of k. We
define Top(α) and Bot(α) to be the maximum and minimum levels in supp(α),
and Ek to be the set of events {α ∈ E : Top(α) = k}. Also, we let Nk be the
next-state function corresponding to all events in Ek, i.e., Nk =

⋃
Top(α)=kNα.

In previous work [9], the locality of events is indicated by the presence of
identity matrices in a Kronecker description of the model’s next-state function.
However, while the existence of a Kronecker description is not a restriction for
some formalisms (e.g., ordinary Petri nets, even if extended with inhibitor and
reset arcs), it does impose constraints on the decomposition granularity in others
(e.g., Petri nets with arbitrary marking-dependent arc cardinalities or transition
guards). [11] proposes a new encoding for the transition relation based on a
disjunctive-conjunctive partition and a fully-identity reduction rule for MDDs.
[14] compares several possible MDD reduction rules and finally adopts the quasi-
identity-fully (QIF) reduction rule for MDDs encoding next-state functions. This

Symbolic CTL Model Checking of Asynchronous Systems 371

1

0

0

0

3

2

1

1

0 1

1

3

3’

1

0

1

2

2’

1

0

1 0

1

1

0

1

1

0 1

1

3

3’

2

2’

0

1

1

1’

1

1’

0

1

Sinit Nα

Nβ Nγ

N3

N2

(a) (b) (c)

Fig. 1. An example of set and next-state function encoding using MDDs

encoding is successfully applied to saturation and allows for complex variable
dependencies in asynchronous systems. A 2L-level MDD encoding next-state
function Nα with this QIF reduction rule satisfies the following:

- The root node is at level Top(α), an unprimed level.
- (Interleaving) Level k is immediately followed by level k′, for L ≥ k ≥ 1.
- (Quasi-reduced rule) If k ∈ supp(α), level k is present on every path in the

MDD encoding Nα.
– (Identity-reduced rule) If k ∈ supp(α), level k′ can be present on a path in

the MDD encoding Nα, or it can be absent. In the latter case, the meaning of
an edge a[ik] = b, with a.lvl = k > b.lvl is that a singular node c at level k′

has been skipped, i.e., a node with c[ik] = b and c[jk] = 0 for jk ∈ Sk \ {ik}.
- (Fully-reduced rule) If k �∈ supp(α), level k is absent on every path in the

MDD encoding Nα. The meaning of an edge a[il] = b, with a.lvl > k > b.lvl
is that a redundant node c at level k has been skipped, i.e., a node with
c[ik] = b for every ik ∈ Sk.

- (Fully-identity-reduced pattern) This is really a combination of the two pre-
ceding cases. The interpretation of an edge skipping levels k and k′ (or of
the root being at a level below k′) is that α is independent of ik, i.e., event
α is enabled when the kth local state is ik, for any ik ∈ Sk, and that, if α
fires, the kth local state remains equal to ik in the new state.

Figure 1(a) shows a 3-level MDD encoding an initial set of states containing a
single state, Sinit = {000}. Figure 1(b) shows three MDDs encoding next-state
functions for events α, β, and γ, respectively. Figure 1(c) shows the next-state
functions merged by levels, N3 = Nα, N2 = Nβ ∪ Nγ , and N1 = ∅ (not shown).
Note, for example, that N2 does not depend on level 1 and that the node at level
3′ for the 1-child of the root of N3 is skipped due to the identity-reduced rule.

2.3 State Space Generation

All symbolic approaches to state-space generation use some variant of symbolic
image computation. The simplest approach is a breadth-first iteration, directly

372 Y. Zhao and G. Ciardo

implementing the definition of the state space Srch as the fixpoint of the expres-
sion Sinit ∪ N (Sinit) ∪N 2(Sinit) ∪N 3(Sinit) ∪ · · · .

Locality and disjunctive partition of the next-state function form instead the
basis is for the saturation algorithm. The key idea is to fire events node-wise,
bottom-up, and exhaustively, instead of level-wise and exactly once per iteration.
A node a is saturated if it is a fixpoint with respect to firing any event that is
independent of all levels above k:

∀h, k ≥ h ≥ 1, ∀α ∈ Eh,SL × · · · × Sk+1 × B(a) ⊇ Nα(SL × · · · × Sk+1 × B(a))

Starting from the MDD encoding the initial states, the nodes in the MDD are
saturated in order, from the bottom level to the top level. Of course, one of
the advantages of saturation is that, given the QIF reduction, the application
of Nα needs to start at level Top(α), and not all the way up, at the root of
entire MDD. Every node is saturated before being checked in the unique table,
including nodes newly created when firing an event on a node at a higher level.

2.4 CTL Model Checking

CTL is a widely used temporal logic to describe the system properties because of
its simple yet expressive syntax. All CTL properties are state properties and can
be checked by manipulating sets of states. It is well-known that {EX,EU,EG}
is a complete set of operators for CTL, that is, it can be used to express any
other CTL operator (for example, the EF operator is a special case of EU, since
EFp ≡ EtrueUp). The EXp operator can be easily computed as the relational
product N−1(P), where P is the set of states satisfying property p. Building the
set of states satisfying EFp is instead essentially the same process as state-space
generation, the only differences being that we start from P instead of Sinit and
that we go backwards instead of forwards, thus we use N−1 (or N−1

α , or N−1
k ,

as appropriate) instead of N .
The traditional algorithm to obtain the set of states satisfying EpUq computes

a least fixpoint (see EUtrad in Figure 2; all sets of states and relations over states
in our pseudocode are encoded using MDDs, of course). Starting from Q, the
set of states satisfying q, it computes the intersection of the preimage of the
explored states, X , with the states in P . The newly computed states are added
to the explored states, for the next iteration. The number of iterations is thus
equal to the longest path of states in P \Q reaching a state in Q.

A saturation-based EU computation algorithm was instead proposed in [10]
(see EUsat in Figure 2). First, it partitions the set E of events into safe, ES , and
unsafe, EU = E \ ES , where α ∈ E is safe iff N−1

α (P ∪ Q) ⊆ P , i.e., it is such
that, following its firing backwards, we can only find states in P (alternatively,
we can restrict all sets by intersecting them with the reachable states Srch in the
above test). The algorithm iteratively (1) saturates the MDD encoding the set
of explored states using only safe events, then (2) fires each unsafe event once
using N−1

U =
⋃

α∈EU
N−1

α in breadth-first fashion, then (3) intersects the result
with P , and finally (4) adds the result to the working set X .

Symbolic CTL Model Checking of Asynchronous Systems 373

EUtrad(in P ,Q): set of state

1 declare X : set of states
2 X ← Q;
3 repeat
4 X ← X ∪ (N−1(X) ∩ P);
5 until X does not change;
6 return X ;

EGtrad(in P): set of state

1 declare X : set of states
2 X ← P ;
3 repeat
4 X ← X ∩N−1(X);
5 until X does not change;
6 return X ;

EUsat(in P ,Q): set of state

1 declare X ,Y: set of state;
2 declare EU , ES: set of event;
3 ClassifyEvents(P ∪Q, EU , ES)
4 X ← Q;
5 Saturate(X ,ES)
6 repeat
7 Y ← X ;
8 X ← X ∪ (N−1

U (X) ∩ (P ∪Q))
9 if X �= Y then

10 Saturate(X ,ES)
11 until X = Y;
12 return X ;

Fig. 2. Traditional and saturation-based CTL model checking algorithms

The traditional EG algorithm (see EGtrad in Figure 2) computes a greatest
fixpoint by iteratively eliminating states without successors in the working set
X . [10] also attempts to compute set of states satisfying EGp using forward and
backward EU saturation from a single state in P . However, this approach is more
efficient than the traditional algorithm only in very special cases.

3 Constrained Saturation for the EU Operator

The set of states satisfying EpUq is a least fixpoint, where the saturation algo-
rithm could be efficiently employed. However, the challenge arises from the need
to “filter out” the states not in P before exploring their predecessors. Failure
to do so can results in paths which temporarily go out of P , so that the result
may include some states not satisfying EpUq. The saturation algorithm does
not find states in breadth-first-search order, as the process of saturating a node
often consists of firing a series of events. Performing an expensive intersection
operation after each firing would be enormously less time and memory efficient.

The advantage of Algorithm EUsat [10] over EUtrad depends on the structure
of the model. If there are no safe events with respect to a given property p,
EUsat degrades to the simple breadth-first exploration of EUtrad . To overcome
this difficulty, we propose two approaches, both aimed at exploring only states
in P without requiring an expensive intersection operation after each firing.

1. Saturation with Constrained Next-State Functions. For each N−1
k ,

we build a constrained inverse next-state function N−1
k,P such that

j ∈ N−1
k,P (i)⇐⇒ (j ∈ P) ∧ j ∈ N−1

k (i).

Algorithm ConsNSF in Figure 3 builds the MDD representation of N−1
α,P .

374 Y. Zhao and G. Ciardo

2. Constrained Saturation. This is the main contribution of our paper. We do
not explicitly constrain the next-state functions, but perform instead a “check-
and-fire” step when computing the constrained preimage (function ConsRelProd
in the pseudocode of Figure 3), based on the following observation:

B(t)=RelProd(s, r) ∩ B(a)⇐⇒ B(t[i′])=
⋃

i∈Sl

RelProd(s[i], r[i][i′]) ∩ B(a[i′]), (1)

where t and s are L-level MDDs encoding sets of states, l = s.lvl, and r is a
2L-level encoding a next-state function. This can be considered as a form of
ITE operator [2], widely used in BDD operations, but extended from boolean to
integer variables. The overall process of EU computation based on constrained
saturation is then shown in Figure 3. The key differences from the saturation
algorithm in [9] are marked with a “�”.

The idea of the first approach is straightforward: all constrained next-state
functions N−1

α,P are forced to be safe by definition. According to the saturation-
based EU computation algorithm in Figure 2, the result is obtained in a single
iteration (a single call to Saturate). The downside of this approach is a possible
decrease in locality. A property p is dependent on level k if the value of ik affects
the satisfiability of p, i.e., if the (fully-reduced) encoding of p has nodes at level k.
After constraining a next-state function Nα with p, the levels on which p depends
become part of the support, thus, Top(N−1

α,P) = max{Top(P),Top(N−1
α)}. If P

depends on level L, all the constrained next-state functions belong to E−1
L and

the saturation algorithm degrades to BFS, losing its advantages.
The second approach, constrained saturation, does not modify the transition

relation explicitly, but constrains the state exploration “on-the-fly” following the
“check-and-fire” policy. This policy guarantees that the state exploration is con-
strained to set P . At the same time, it retains the advantages of saturation due
to exploiting event locality and employing recursive local fixpoint computations.
In the pseudocode shown in the right portion of Figure 3, the “check-and-fire”
policy can be summarized into two cases:

1. If p[i] = 0, s[i] is kept unchanged without adding new states (line 4 in
function ConsSaturate).

2. When computing the relational product, check whether the newly generated
local state is included in p on each level (line 7 in function ConsSaturate
and line 5 in function ConsRelProd). If instead p[i′] = 0 in formula (1), the
relational product stops the recursive execution and returns 0.

Another tradeoff affecting efficiency is how to select the set of states P when
checking EpUq. In high-level models, P is often associated with an atomic prop-
erty, e.g., “place a of the Petri Net is empty” or a “localized” property dependent
on just a few levels. There are then two reasonable choices to define P :

– P = Ppot: include all states in the potential state space S that satisfy the
given property, even if they are not reachable (recall that the potential state
space is finite because the bound for each local state space Sk is known).

Symbolic CTL Model Checking of Asynchronous Systems 375

mdd EUsatConsNSF (mdd P , mdd Q)
1 foreach α ∈ E do N−1

α,P ← ConsNSF (P ,N−1
α);

2 mdd s←Saturate(Q);
3 s ← intersection(s,Srch);
4 return s;

mdd ConsNSF (mdd a, mdd r)

1 if a = 1 and r = 1 then return 1;
2 if InCacheConsNSF (a,r,t) then return t;
3 mdd t ← 0; level lr ← r.lvl ; level la ← a.lvl ;
4 if lr < la then
5 foreach i ∈ Sla s.t. a[i] �= 0 do t[i][i]← ConsNSF (a[i], r);
6 else if lr > la then
7 foreach i, i′ ∈ Slr s.t. r[i][i′] �= 0 do t[i][i′]← ConsNSF (a, r [i][i ′]);
8 else • lr = la
9 foreach i,i′∈Slr s.t. r[i][i′] �=0 and a[i′] �=0 do t[i][i′]←ConsNSF (a[i′],r[i][i′]);

10 CacheAddConsNSF (a, r, t);
11 return t;

mdd EUconsSat(mdd a, mdd b) • a: the constraint; b: the set being saturated

1 mdd s ← ConsSaturate(a, b);
2 s ← intersection(s,Srch);
3 return s;

mdd ConsSaturate(mdd a, mdd s) • a: the constraint; s: the set being saturated

1 if InCacheConsSaturate(a, s, t) then return t;
2 level l ← s.lvl ; mdd t ← NewNode(l); mdd r ← N−1

l ;
3 foreach i ∈ Sl s.t. s[i] �= 0 do
4� if a[i′] �= 0 then t[i]←ConsSaturate(a[i], s[i]); else t[i]←s[i];
5 repeat
6 foreach i, i′ ∈ Sl s.t. r[i][i′] �=0 do
7� if a[i′] �= 0 then
8 mdd u←ConsRelProd(a[i′],t[i],r[i][i′]); t[i′]← Or(t[i′], u);
9 until t does not change;

10 t←UniqueTablePut(t); CacheAddConsSaturate(a, s, t);
11 return t;

mdd ConsRelProd(mdd a, mdd s, mdd r)

1 if s = 1 and r = 1 then return 1;
2 if InCacheConsRelProd (a, s, r, t) then return t;
3 level l ← s.lvl ; mdd t ← 0;
4 foreach i, i′ ∈ Sl s.t. r[i][i′] �=0 do
5� if a[i′] �= 0 then
6� mdd u←ConsRelProd(a[i′],s[i],r[i][i′]);
7� if u �= 0 then
8� if t = 0 then t ← NewNode(l);
9� t[i′]← Or(t[i′], u);

10 t ← ConsSaturate(a,UniqueTablePut(t)); CacheAddConsRelProd (a, s, r, t);
11 return t;

Fig. 3. EU computation: saturation using a constrained next-state function
(EUsatConsNSF) and constrained saturation (EUconsSat)

376 Y. Zhao and G. Ciardo

– P = Prch: include in P only the reachable states that satisfy the given
property, Prch = Ppot ∩ Srch.

We are normally only interested in reachable states and, of course, backward
state exploration from unreachable states can only lead to more unreachable
states; all these unreachable states can be filtered out after saturation, without
affecting the correctness of the result (unlike the discussion at the beginning of
this section, pertaining to filtering out states not in P). Exploration including
the unreachable states might result in greater time and memory requirements, in
which case using Prch is preferable for algorithmic efficiency. On the other hand,
Ppot is often dependent on very few levels, while, for most models, Prch is a strict
subset of S, thus depends on many levels, and this increases the complexity of
algorithm, especially for the first approach. In the ideal case, we can constrain
the state exploration to Prch with an acceptable overhead.

The experimental results in Section 5 demonstrate that constrained saturation
using Prch tends to perform much better than saturation with constrained next-
state functions in both runtime and memory consumption. We select it as our
main method to compute the EU operator, as well as the reachability relation,
which we introduce in the next section.

4 Reachability Relation and the EG Operator

The EGp property describes the existence of a path in P from a state leading to a
nontrivial strongly-connected component (SCC), where p holds in all states along
the path and in the SCC. In this section, we propose a new EGp computation
algorithm based on the reachability relation, built using constrained saturation.

The following defines the (backward) reachability relation of a set of states X
within P , denoted with (N−1

X ,P)+.

Definition 2. Given a state i ∈ X , j ∈ (N−1
X ,P)+(i) iff there exists a nontrivial

(i.e., positive length) forward path π from j to i and all states in π belong to P.

If j ∈ (N−1
X ,P)+(i), we know that j is in P . Since it is not always necessary

to compute the reachability relation for all i ∈ S, we can build the reachability
relation starting only from states in X , to reduce time and memory consumption.

Claim 1. If j∈(N−1
S,P)+(i), then ∃i′∈N−1(i) ∩ P s.t. j∈ConsSaturate(P , {i′}).

This claim comes from the definition of constrained saturation and derives
a way of building the reachability relation efficiently. Starting from the MDD
encoding N−1, appropriately restricted to a set of states (e.g., P), we compute
the constrained saturation for states encoded at the primed levels. Analogous to
constrained saturation, this process can be performed bottom-up recursively on
each level.

Claim 2. EGp holds in state j iff ∃i ∈ P s.t. i ∈ (N−1
P,P)+(i) and j ∈ (N−1

P,P)+(i).
From this claim, we can obtain an algorithm to compute the set of states

satisfying EGp. Given a 2L-level MDD encoding the reachability relation, it is

Symbolic CTL Model Checking of Asynchronous Systems 377

easy to obtain the set of states Sscc = {i : i ∈ (N−1
P,P)+(i)}. These states belong

to SCCs where property P holds continuously. Then, the result of EGp can be
obtained computing RelProd(Sscc, (N−1

P,P)+).
Building the reachability relation is a time and memory intensive task, consti-

tuting the bottleneck for our new EG algorithm. On the other hand, the reach-
ability relation contains more information than the basic EG property and has
further applications. We discuss one of them: EG computation under a weak
fairness constraint. Fairness is widely used in formal specification of protocols;
in particular, weak fairness specifies that there is an infinite execution on which
some states, say in F , appear infinitely often. The difficulty lies in that the fact
that executions in SCCs which do not contains states in F must be eliminated
to guarantee the fairness, and the traditional EG algorithm cannot handle this
problem. However, this extension is easy in our framework, as discussed next.

Claim 3. EGp under weak a fairness constraint F holds in state j iff ∃i ∈ F s.t.
i ∈ (N−1

F∩P,P)+(i) and j ∈ (N−1
F∩P,P)+(i).

Since i ∈ F , the SCCs containing such a state satisfy the fairness constraint.
We only need to build reachability relation on these states. An interesting point
is that many fewer state pairs are in (N−1

F∩P,P)+ than in (N−1
P,P)+. Although,

in symbolic approaches, fewer states do not always lead to smaller MDDs, thus
lower time and memory requirements, it is often the case in our framework that
considering fairness will reduce the runtime, which is quite the opposite than in
traditional approaches.

5 Experimental Results

We implemented the proposed approach in SmArT [5] and report on experiments
run on an Intel Xeon 3.0Ghz workstation with 3GB RAM under SuSE Linux 9.1.
Detailed descriptions of the models we use in the experiments can be found in
the SmArT User Manual [4]. The state space size for each model is controlled
by a parameter N . For comparison, we study each model in both SmArT and
NuSMV version 2.4.3 [1].

5.1 Results for the EU Computation

Table 1 shows the results for each EU query. The runtime (seconds), final (mem-
f) and peak memory (mem-p) consumption (Kbytes) required by NuSMV, the
old version of SmArT [10], and our new approach are shown in the corresponding
columns, fo reach model. We compare the following five approaches:

- BFS : the traditional EU algorithm implemented in SmArT
- ConNSFSat -Ppot: Saturation using constrained next-state functions, where

the next-state functions are constrained using Ppot

- ConNSFSat -Prch: Saturation using constrained next-state functions, where
the next-state functions are constrained using Prch.

- ConSat -Ppot: Constrained saturation with Ppot.
- ConSat -Prch: Constrained saturation with Prch.

378 Y. Zhao and G. Ciardo

M
od

el

E
U

qu
er

y
N

u
S
M

V
O

ld
S
m

ar
t

Sm
A
r T

[1
]

[1
0]

B
F
S

C
o
n
sN

S
F
S
a
t
-P

p
o

t
C
o
n
sN

S
F
S
a
t
-P

r
c
h

C
o
n
sS

a
t
-P

p
o

t
C
o
n
sS

a
t
-P

r
c
h

se
c

K
B

(f
)

se
c
K

B
(f

)K
B

(p
)

se
c

K
B

(f
)

K
B

(p
)

se
c

K
B

(f
)

K
B

(p
)

se
c

K
B

(f
)

K
B

(p
)

se
c

K
B

(f
)

K
B

(p
)

se
c

K
B

(f
)

K
B

(p
)

le
ad

er
E
(p

re
f
1

=
0)

U
(s

ta
tu

s
0

=
le

a
d
e
r
)

5
44

.1
62

,0
57

9.
8

16
3

6,
99

8
1.

6
3,

11
2

6,
53

9
28

.8
63

2
80

9
1.

1
1,

35
1

2,
37

5
17

.6
54

4
77

6
1.

2
60

2
72

8
6

30
4.

8
18

0,
98

8
29

6.
1

46
3

40
,4

29
8.

3
12

,1
75

24
,0

80
2,

02
2.

5
1,

28
3

2,
32

8
19

.8
3,

15
3

8,
04

6
1,

03
2.

9
1,

47
3

2,
28

4
14

.9
1,

05
4

1,
33

7
7
1,

79
1.

5
66

6,
77

9
–

–
–

39
.8

44
,5

51
91

,4
66

–
–

–
34

7.
3

8,
72

6
23

,3
32

–
–

–
11

4.
9

2,
07

8
2,

61
6

8
–

–
–

–
–
37

1.
5
17

1,
86

7
27

7,
64

9
–

–
–

–
–

–
–

–
–
4,

05
8.

2
4,

11
0

5,
13

9
p
h
il
.

E
(p

h
il

1
�=

e
a
t)

U
(p

h
il

0
=

e
a
t)

50
1,

64
4.

2
75

,2
82

<
0.

1
73

28
7

4.
7

3,
24

8
4,

58
6

<
0.

1
46

4
46

5
0.

2
1,

11
7

1,
59

1
0.

2
43

6
43

6
<

0.
1

43
5

43
5

10
0

–
–

0.
2

14
7

87
2

60
.6

7,
14

1
16

,4
46

0.
2

86
1

86
4

0.
8

3,
11

9
4,

90
7

0.
4

81
7

84
3

0.
3

81
6

84
1

50
0

–
–

2.
9

74
0

16
,0

82
–

–
–

0.
3

3,
83

7
3,

87
0

16
0.

7
52

,4
47

87
,7

91
0.

7
3,

85
6

3,
88

5
0.

4
3,

85
0

3,
87

6
1,

00
0

–
–

4.
1

1,
03

6
30

,7
07

–
–

–
0.

6
5,

26
2

5,
26

9
1,

22
8.

2
10

0,
51

6
16

4,
13

7
4.

8
7,

58
9

7,
69

7
0.

8
5,

25
3

5,
27

1
ro

b
in

E
(p

1
�=

lo
a
d
)U

(p
0

=
s
e
n

d
)

10
29

.2
70

,5
83

5.
1

18
6

4,
44

7
0.

1
49

4
57

4
<

0.
1

92
92

<
0.

1
20

4
20

4
<

0.
1

90
90

<
0.

1
64

64
20

–
–

–
–

–
1.

4
3,

08
8

3,
73

8
<

0.
1

28
3

31
7

<
0.

1
59

8
65

9
0.

1
31

2
31

2
<

0.
1

16
6

16
6

10
0

–
–

–
–

–
–

–
–

5.
7

14
,2

72
14

,2
74

63
6.

1
17

,3
98

30
,8

33
3.

6
15

,8
99

15
,9

07
<

0.
1

4,
26

9
4,

29
8

20
0

–
–

–
–

–
–

–
–

16
3.

1
10

5,
78

7
10

5,
78

8
–

–
–

11
1.

6
11

9,
98

8
11

9,
98

8
0.

4
28

,7
81

28
,7

90
fm

s
E
(M

1
>

0)
U
(P

1
s

=
P

2
s

=
P

3
s

=
N

)
10

57
8.

9
18

1,
35

3
0.

1
27

62
8

5.
2

35
,9

79
35

,9
80

0.
4

40
7

47
7

43
.2

99
3

2,
96

5
<

0.
1

25
7

28
8

<
0.

1
25

6
28

6
25

–
–

1.
6

15
5

8,
22

3
–

–
–

31
.5

63
8

1,
36

2
–

–
–

1.
8

98
1

1,
10

7
1.

9
97

7
1,

10
4

50
–

–
24

.0
81

2
75

,8
84

–
–

–
2,

56
6.

3
1,

44
9

6,
97

2
–

–
–

39
.1

1,
24

7
6,

01
8

40
.5

1,
24

6
6,

00
6

10
0

–
–

–
–

–
–

–
–

–
–

–
–

–
–
1,

12
8.

0
4,

30
2

40
,5

88
1,

20
0.

9
4,

29
9

40
,5

04
qu

ee
n
s

E
(p

[N
−

1]
[N

]
=

1)
U
(p

[N
−

1]
[N

]
=

0)
10

15
.3

77
,8

61
–

–
–

1.
1

9,
74

4
9,

74
4

<
0.

1
2,

72
8

2,
72

8
<

0.
1

1,
89

9
1,

89
9

0.
2

3,
53

2
3,

53
2

<
0.

1
1,

84
1

1,
84

1
11

84
.0

32
7,

90
7

–
–

–
7.

2
41

,2
52

41
,2

52
0.

5
12

,4
45

12
,4

45
0.

1
7,

28
9

7,
31

2
1.

6
15

,8
77

15
,8

77
<

0.
1

7,
04

3
7,

06
2

12
59

5.
1
1,

35
5,

12
8

–
–

–
23

7.
2
18

6,
36

0
18

6,
36

0
2.

3
52

,7
64

52
,7

65
0.

7
80

,7
85

80
,8

59
9.

1
75

,3
47

75
,3

47
<

0.
1

29
,7

14
29

,7
63

13
–

–
–

–
–

–
–

–
10

.9
23

6,
50

1
23

6,
50

6
6.

1
16

6,
71

1
16

6,
83

7
86

.9
33

7,
26

5
33

7,
26

5
<

0.
1
13

3,
12

1
13

3,
12

1

T
a
b
le

1
.
R
es
u
lt
s
fo
r
th
e

E
U
co
m
p
u
ta
ti
o
n

Symbolic CTL Model Checking of Asynchronous Systems 379

Our main method, constrained saturation using Prch, outperforms (sometimes
by orders-of-magnitude) NuSMV and other methods in both time and memory.
In comparison with NuSMV, the saturation-based methods excel because of the
local fixpoint iteration scheme. The improvement of our new work over our old
approach [10] can be attributed to both the MDD encoding of the next-state
function and the more advanced saturation schemes.

Overall, ConSat requires less runtime as well as memory than ConNSFSat,
because the constrained next-state functions often impose overhead on relational
product operations. The difference between the results of ConNSFSat -Ppot and
ConNSFSat -Prch shows the tradeoff discussed at the end of Section 3. ConSat
constrained with Prch is more advantageous than with Ppot because ConSat is
not sensitive to the complexity of the constraint set due to our lightweight “check-
and-fire” policy. The reduction in state exploration becomes the dominant factor
for efficiency.

5.2 Results for the EG Computation

Table 2 compares the results of NuSMV, BFS (SmArT-BFS) and the method
in Section 4 (SmArT-RchRel) for EG computation with or without fairness con-
straints. For BFS, the number of iterations is listed in column itr.

Without fairness, traditional BFS (in NuSMV or SmArT-BFS) is often orders-
of-magnitude faster than our algorithm based on the reachability relation. This
result is not surprising due to the time and memory complexity of building the
reachability relation, even if this is done using saturation.

Another experiment is provided to show the merit of our algorithm. We build
a simple model with a long path from an SCC where EGp holds to a terminal
state, with p holding on every state on this path. We parameterize the length of

Table 2. Results for the EG computation

Model
EG query Fairness

NuSMV SmArT-BFS SmArT-RchRel NuSMV SmArT-RchRel
sec KB(f) itr sec KB(f)KB(p) sec KB(f) KB(p) sec KB sec KB(f)KB(p)

leader EG(status0 �= leader) pref0 = 1
3 0.2 9,308 14 0.1 139 196 4.9 934 1,115 0.6 11,428 0.02 266 268
4 3.0 50,187 18 < 0.1 400 436 791.6 5,999 7,225 11.2 49,655 207.4 5,271 6,394

phil. EG(phil0 �= eat) phil0 = has left fork

10 0.1 7,193 4 < 0.1 95 95 0.1 170 170 0.2 8,447 < 0.1 113 113
50 3.0 50,187 4 < 0.1 220 241 0.2 682 682 1,244.5 75,274 < 0.1 393 399

100 – – 4 0.1 444 562 1.1 1,180 1,191 – – 0.1 704 705
robin EG(true) p1 = Ask

10 2.3 70,581 1 < 0.1 86 86 0.1 437 437 73.5 73,145 < 0.1 222 222
50 – – 1 0.1 1,263 1,263 4.8 15,676 15,676 – – 0.3 1,902 1,902

100 – – 1 1.0 7,688 7,688 53.9 100,719 102,941 – – 1.5 9,317 9,317
fms EG¬(P1s = P2s = P3s = N) P1s = N

5 0.8 18,474 1 < 0.1 61 135 1.9 1,022 1,024 2.5 35,238 0.27 419 475
10 16.5 60,559 1 < 0.1 128 220 1,062.4 4,338 6,231 191.8 62,188 77.7 607 1,050

kanban EG(P1out > 0 ∨ P2out > 0 ∨ P3out > 0 ∨ P4out > 0) P1out = N

8 2.1 42,925 1 < 0.1 279 415 1,131.1 1,949 2,714 2.2 43,511 6.2 1,303 1,486
10 4.4 58,693 1 < 0.1 529 930 – – – 4.6 58,705 27.0 2,507 2,939

380 Y. Zhao and G. Ciardo

Fig. 4. EG computation based on BFS v.s. reachability relation

the path to control the number of iterations which a traditional EG algorithm
will require to reach the fixpoint. For different numbers of iterations, from 500 to
50,000, we compare the runtimes (in seconds) of traditional (BFS) search and our
algorithm (SatTR) in Figure 4. As the number of iterations grows, the runtime
of our algorithm grows much slower than that of the traditional algorithm, due
to the efficient state exploration scheme in constrained saturation.

If we consider fairness, as discussed in Section 4, the time and memory com-
plexity of building the reachability relation is often reduced, while that of the
traditional algorithm in NuSMV increases. The advantage of our algorithm is
observable in this case, especially for some complex models which are not man-
ageable in NuSMV.

6 Conclusion and Future Work

In this paper, we focus on symbolic CTL model checking based on the idea of the
saturation algorithm. To constrain state exploration in a given set of states, we
present a constrained saturation algorithm. The “check-and-fire” policy filters
out the states not in the given set when saturating MDD nodes recursively.
For the EG operator, we first symbolically build the reachability relation, using
constrained saturation, then compute the set of states satisfying EGp. We discuss
desirable properties of our new EU and EG algorithms and analyze a set of
experimental results.

Symbolic CTL Model Checking of Asynchronous Systems 381

Constrained saturation enables building the reachability relation for some
complex systems. The application of the reachability relation can be further ex-
tended to SCC construction, a basic problem in emptiness checking for Büchi
automata. Another future work is to reduce the cost of building the reacha-
bility relation. For SCC enumeration, X in R+

X ,S can be refined to reduce the
computation complexity.

References

1. NuSMV: a new symbolic model checker, http://nusmv.irst.itc.it/
2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

3. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned
transition relations. In: Halaas, A., Denyer, P.B. (eds.) Int. Conference on Very
Large Scale Integration, Edinburgh, Scotland, August 1991. IFIP Transactions,
pp. 49–58. North-Holland, Amsterdam (1991)

4. Ciardo, G., et al.: SMART: Stochastic Model checking Analyzer for Reliability and
Timing, User Manual, http://www.cs.ucr.edu/~ciardo/SMART/

5. Ciardo, G., Jones, R.L., Miner, A.S., Siminiceanu, R.: Logical and stochastic mod-
eling with SMART. Perf. Eval. 63, 578–608 (2006)

6. Ciardo, G., Luettgen, G., Miner, A.S.: Exploiting interleaving semantics in sym-
bolic state-space generation. Formal Methods in System Design 31, 63–100 (2007)

7. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: An efficient iteration strategy
for symbolic state space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)

8. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg
(2003)

9. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for sym-
bolic state space exploration. Software Tools for Technology Transfer 8(1), 4–25
(2006)

10. Ciardo, G., Siminiceanu, R.: Structural symbolic CTL model checking of asyn-
chronous systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 40–53. Springer, Heidelberg (2003)

11. Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005)

12. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
p. 359. Springer, Heidelberg (2002)

13. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA (May 1992), CMU-CS-92-131

14. Wan, M., Ciardo, G.: Symbolic state-space generation of asynchronous systems
using extensible decision diagrams. In: Nielsen, M., Kucera, A., Miltersen, P.B.,
Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404,
pp. 582–594. Springer, Heidelberg (2009)

http://nusmv.irst.itc.it/
http://www.cs.ucr.edu/~ciardo/SMART/

LTL Model Checking for Recursive Programs

Geng-Dian Huang1, Lin-Zan Cai1, and Farn Wang1,2

1 Dept. of Electrical Engineering, National Taiwan University
2 Grad. Inst. of Electronic Engineering, National Taiwan University

Abstract. Wepropose a complete algorithm to model check LTL (Linear
Temporal Logic) formulas with recursive programs. Our program models
are control flow graphs extended with procedure calls. The LTL formu-
las may then be used to specify constraints on the global variables and
the local variables in the current scope. Our algorithm is based on semi-
symbolic simulation of control-flow graphs to search for counter-examples.
We apply post-dominance relation to reduce the number of the exploration
traces. The existence of counter-examples is reduced to Boolean satisfia-
bility while the termination of the exploration is reduced to Boolean
unsatisfiability. We report our implementation and experiment.

1 Introduction

For finite-state systems, the LTL (Linear Temporal Logic) model checking prob-
lem can be reduced to the problem of finding a loop, which is a counter-example
for an LTL property, in a given state graph [15]. Likewise, for a recursive pro-
gram, the corresponding problem can also be reduced to the problem of finding
a loop in a given control-flow graph [7] extended with procedure calls. Such a
loop corresponds to either a repetition of state sequences or a divergent recur-
sive procedure invocation sequence. An execution of a recursive program can be
characterized by a state sequence. Conceptually, a state is a tuple (g,Ω) where
g is a valuation of global variables and Ω is a stack. A stack element consists
of a location n in a control-flow graph and a valuation l of local variables. An
execution forms a loop if (i) the valuation of global variables in the head is the
same as that in the tail, (ii) the top of the stack in the head is the same as that
of the tail, and (iii) the stack height of the head is the lowest in the program
trace. Conditions (i) and (ii) identify a possible loop. Condition (iii) ensures that
the loop is genuine, i.e., it can be repeated for infinitely many times.

Based on the dataflow algorithm in [13], we propose an algorithm to model
check LTL formulas for recursive programs. We employ the semi-symbolic simu-
lation technique [2], i.e., constructing a simulation tree by unfolding the control-
flow graphs and record program variables symbolically in every tree node. For
each tree path, a Boolean formula can be constructed to check the loop con-
ditions. Note that we do not record the stack in tree nodes. Instead, we use
the summary techniques to bypass procedure-call and return pairs [4]. Condi-
tion (iii) is assured by the construction of the simulation tree. To manage the
complexity of formula construction, instead of constructing a whole formula for

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 382–396, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

LTL Model Checking for Recursive Programs 383

satisfiability checking, we present techniques to incrementally construct inter-
mediate formulas using semi-symbolic simulation. Without recording the stack
explicitly in tree nodes, each tree path has a loop diameter. We can construct
another Boolean formula to check if the loop diameter is reached. Our algorithm
terminates if either a counter-example is found or all tree paths reach their loop
diameters.

The size of a simulation tree grows exponentially to the number of branches
in a program. To reduce the size of the simulation tree, we propose to join the
branches in the post-dominators. The post-dominance relation is widely used
in the static analysis of programs[9]. In our experiment, the sizes of simulation
trees were reduced effectively.

In section 2 reviews related work. Section 3 defines the problem of LTL model-
checking with recursive programs. Section 4 explains semi-symbolic simulation
[2]. Section 5 presents our LTL model-checking algorithm. Section 6 reports our
experiment. Finally, section 7 concludes this work.

2 Related Work

By generalizing a dataflow algorithm [13], Ball et al. proposed a reachability
analysis algorithm for recursive programs in [4]. They used BDDs (binary de-
cision diagrams) to record summaries that represent pairs of program states
before and after a procedure call. Based on [4], Basler et al. also proposed a
reachability algorithm for recursive programs [3]. To handle recursion, they used
QBF (Quantified Boolean Formulas) solvers to compute summaries. SAT solvers
can replace the QBF solvers by representing the summaries in Boolean formulas
which encode program traces of sufficient recursive depths and sufficient lengths
[2,14]. In contrast to above work, we consider the LTL model-checking problem.
Our algorithm extends the summary technique in searching for counter-examples
for LTL formulas.

Esparza et al.[6] proposed an algorithm to model check LTL formulas with
pushdown automata. Instead of recording summaries of procedures, their algo-
rithm works on head reachability graphs. A head consists of a pushdown automa-
ton state and the top symbol on the corresponding stack. In a head reachability
graph, a head h connects to a head h′ if there is a valid program trace from h
to h′. A loop in the head reachability graph corresponds to a counter-example
for the corresponding LTL formula. Esparza et al. also extended the technique
to model check LTL formulas with Boolean programs [7]. Program states cor-
respond to heads and program transition relations are encoded with BDDs in
the head reachability graph. SAT-based algorithms have been shown useful for
the approach [5]. In contrast, we encode the head reachability relation with a
Boolean formula and reduce the loop search to Boolean satisfiability.

Huang and Wang [11] used SAT solvers to model-check the universal fragment
of alternation-free μ-calculus formulas on context-free processes by encoding
the local model checking algorithm in [12]. The formalization of context-free
processes does not have variables. It blows up the model size to encode variables
in context-free processes.

384 G.-D. Huang, L.-Z. Cai, and F. Wang

3 Problem Definition

In section 3.1, we introduce our model language, control-flow graphs. In
section 3.2, we briefly explain LTL (Linear Temporal Logic) as our specifica-
tion language. In LTL model checking, Büchi automatas are used to express
LTL formulas [15]. In section 3.3, we define our problem in terms of control flow
graphs and Büchi automatas.

3.1 Control Flow Graph with Procedure-Calls

Assume that a program P consists of a set of procedures p0, . . . , pm, where p0 is
the main procedure. We consider variables of Boolean type. Let B = {true, false}
be the domain of a Boolean variable. For simplicity, assume that all procedures
have the same set of variables. Let VG and VL be the set of global variables and
local variables. Let G and L denote the domain of global variables B|VG| and
the domain of local variables B|VL| respectively. In the sequel, we use g and l
to denote a valuation of VG and of VL respectively. Let R = 2(G×L×G×L) be all
possible transition relations. A transition relation defines the pre-condition and
post-condition of a program statement. The mapping from program statements
to transition relations can be found in [4]. Given a transition relation r ∈ R,
we write r(g, l, g′, l′) for (g, l, g′, l′) ∈ r. We model a procedure by a control-flow
graph. Let Gi be the control-flow graph for pi.

Definition 1. For a procedure pi in a program, its control-flow graph Gi is a
directed graph (Ni, Ei, Δi, callee i , si , ei) where

– Ni is the set of nodes,
– Ei ⊆ Ni ×Ni is the set of edges,
– Δi : Ei → R labels edges with transition relations,
– callee i ⊆ Ei → P labels edges with callees,
– ςi, εi ∈ Ni are the entry node and the exit node.

Let succEi (n) = {n ′ | (n,n ′) ∈ Ei} denote the successors of n in Ei. Ei can
be partitioned into a set of intraprocedural edges E→

i and a set of call-to-return
edges E�

i . An intraprocedural edge e is labelled with the transition relation
Δi(e). A call-to-return edge e represents a procedure call to procedure callee i(e).
Assume that e = (n, n′) and callee i(e) = pj . n is a call-location and n′ is a
return-location. Given e, let e↗ denote the call-to-entry edge (n, ςj) and e↘

denote the exit-to-return edge (εj , n
′). Assume that the passing-parameters and

return values are stored by auxiliary global variables. We label e↗ with transition
relation r↗ = {(g, l, g, l′) | g ∈ G, l ∈ L, l′ ∈ L} and label e↘ with r↘ =
{(g, l, g, l′) | g ∈ G, l ∈ L, l′ ∈ L}. There is no constraint on l and l′ because the
scope of VL is limited to a procedure. In the sequel, we will show the valuation
of VL in the call-location n is the same as the one in the return-location n′.

Given the control-flow graphs, the program P can be represented as a control-
flow graph (N,E,Δ, callee , s , e) that is the combination of the the control-flow
graphs for p0, . . . , pm defined as follows. Let N =

⋃
i Ni, E→ =

⋃
i E

→
i , E� =

LTL Model Checking for Recursive Programs 385

⋃
i E

�

i , E↗ = {e↗ | e ∈ E�}, E↘ = {e↘ | e ∈ E�}, and E = E→ ∪
E� ∪ E↗ ∪ E↘. Let Δ(e) = Δi(e) for e ∈ E→

i and Δ(e) = {(g, l, g, l′) | g ∈
G, l ∈ L, l′ ∈ L} for e ∈ E↗ ∪ E↘. Let callee(e) = callee i(e) for e ∈ E�

i . We
may write callee(e) as callee(n,n ′) for e = (n, n′). A program state is a tuple
〈n, g, l〉 where n ∈ N is a location, g ∈ G is a valuation of global variables, and
l ∈ L is a valuation of local variables. We characterize the executions of the
program P as program traces. A program trace is a sequence of program states
〈n1, g1, l1〉〈n2, g2, l2〉 . . . 〈nm, gm, lm〉 that fulfills the following constraints.

– For each consecutive pair of program states 〈ni, gi, li〉 and 〈ni+1, gi+1, li+1〉,
〈ni, gi, li〉 transits to 〈ni+1, gi+1, li+1〉 via edge ei = (ni, ni+1), which is either
an intraprocedural edge, a call-to-entry edge, or an exit-to-return edge.

– Each transition relation Δ(ei) = ri is fulfilled, i.e.,ri(gi, li, gi+1, li+1). More-
over, assume that ei is a call-to-entry edge and εj is the corresponding exit-to
return edge. The valuation of VL in ni is the same as the one in nj+1, i.e.,
li = lj+1, since a procedure calls only affect the valuations of global variables.

– The sequence of edges e1e2 . . . em−1 can be derived from the non-terminal
symbol valid in the grammar in table 1.

Table 1. Context-free Grammar for Program Traces

valid ::= match | match e↗1 valid
match ::= ε | e→1 match | (n, ςi) match (εi, n

′) match

Here e↗1 ∈ E↗ is a procedure-call transition edge. ε is a null sequence. e→1 ∈ E→

is an intraprocedural transition edge. (n, ςi) and (εi, n
′) are a pair of matching

procedure-call transition and procedure-return transition such that there is an
e = (n, n′) and callee(e) = pi . That is, a program trace must be context-sensitive
[13]. The grammar rule for non-terminal match specifies that in a trace, transi-
tions for procedure-entries and procedure-exits must match in a nested fashion.
The program trace is matched if match can derive e1e2 . . . em−1.

The language of a program P , denoted by L(P), is the set of program traces.

3.2 LTL and Büchi Automata

We use LTL (Linear Temporal Logic) as our specification language for program
traces. An LTL formula is constructed on top of atomic propositions for program
states. Consider a program with a set of locations N and a set of Boolean
variables VG∪VL. We define the following atomic propositions for program states:
loc = n, v = true, v = false, true, and false , where n ∈ N and v ∈ VG ∪ VL.
loc = n asserts that the location of a program state is n. v, as a proposition,
asserts that the value of v is true. Let AP be the set of atomic propositions. A
state predicate is a combination of atomic propositions with Boolean operators
¬, ∨, and ∧. Let Ψ denote the set of state predicates. A program state 〈n, g, l〉
satisfies a state predicate ψ, 〈n, g, l〉 |= ψ, if and only if ψ is evaluated true
according to 〈n, g, l〉.

386 G.-D. Huang, L.-Z. Cai, and F. Wang

Definition 2. Suppose we are given a set AP of atomic propositions. An LTL
formula ϕ is inductively defined with the following rule.

ϕ ::= α|¬ϕ|ϕ1 ∨ ϕ2| © ϕ|ϕ1Uϕ2

α ∈ AP is an atomic proposition. “©ϕ” means “ϕ is true on the next state”.
“ϕ1Uϕ2” means “From now on, ϕ1 is always true until ϕ2 is true”. “♦ϕ” is the
abbreviation of “trueUϕ”, which means ”From now on, ϕ is eventually true”.
“�ϕ” is the abbreviation of “¬♦¬ϕ”, which means ”From now on, ϕ is always
true”.

Given an LTL formula ϕ, we use L(ϕ) to denote the set of program traces
satisfying ϕ. For LTL model checking, usually we convert LTL formulas to Büchi
automata [10] with the same program traces.

Definition 3. A Büchi automata B is a tuple (Q, δ, q0, F) where

– Q is a finite set of states,
– δ ⊆ Q× Ψ ×Q defines a finite set of transitions,
– q0 is the initial state, and
– F is a set of final states.

Given a (q, ψ, q′) ∈ δ and a program state 〈n, g, l〉, we write q
〈n,g,l〉−→ q′ if

〈n, g, l〉 satisfies ψ. A run is a sequence of the form q1
〈n1,g1,l1〉−→ q2

〈n2,g2,l2〉−→
. . .

〈nm,gm,lm〉−→ qm+1. The word of the run is the sequence of program states
〈n1, g1, l1〉〈n2, g2, l2〉 . . . 〈nm, gm, lm〉 of the run. Note that a word needs not be
a program trace. An infinite run ρ is accepting if and only if it starts from q0
and it visits a final state infinitely often. That is, ρ contains a loop which visits
a final state. B accepts a sequence of program states w if and only if there is
an accepting run whose word is w. The language of B, denoted by L(B), is the
sequences of program states accepted by B.

3.3 LTL Model Checking Problem

A program P satisfies an LTL formula ϕ, denoted by P |= ϕ, if and only if L(P)
is included in the sequences specified by ϕ. For verifying P |= ϕ, we negate ϕ
and construct a Büchi automata B¬ϕ, which accepts the sequences of program
states not specified by ϕ. P |= ϕ if and only if L(P) ∩ L(B¬ϕ) = ∅.

Given a program P = {p0, . . . , pm} and a Büchi automata B = (Q, δ, q0, F),
we can simulate P and B concurrently to verify L(P) ∩ L(B) = ∅. A simu-
lation state 〈q, n, g, l〉 records a state q ∈ Q and a program state 〈n, g, l〉. A
simulation state 〈q, n, g, l〉 is final if q ∈ F . Let → denote the transition re-
lation of simulation states. we have 〈q, n, g, l〉 → 〈q′, n′, g′, l′〉 if and only if

q
〈n,g,l〉−→ q′ and (g, l, g′, l′) ∈ Δ(n, n′). A simulation trace is a sequence of the

form 〈q1, n1, g1, l1〉 → 〈q2, n2, g2, l2〉 → . . . → 〈qm, nm, gm, lm〉 where 〈n1, g1, l1〉
〈n2, g2, l2〉 . . . 〈nm, gm, lm〉 is a program trace. The simulation trace is matched if
〈n1, g1, l1〉〈n2, g2, l2〉 . . . 〈nm, gm, lm〉 is matched. A tuple (〈ςi, g, l〉, 〈εi, g

′, l′〉) is a

LTL Model Checking for Recursive Programs 387

summary of procedure pi if there is a matched simulation trace from the 〈ςi, g, l〉
to 〈εi, g

′, l′〉, where ςi and εi are the entry location and exit location respectively.
Assume (n, n′) ∈ E→∪E↗∪E�. A simulation state 〈q, n, g, l〉 can reach another
simulation state 〈q′, n′, g′, l′〉 , denoted by 〈q, n, g, l〉 ⇒ 〈q′, n′, g′, l′〉, if either one
of the following conditions holds.

– (n, n′) ∈ E→ ∪ E↗ and 〈q, n, g, l〉 → 〈q′, n′, g′, l′〉.
– (n, n′) ∈ E� and there is a matched simulation trace:
〈q, n, g, l〉 → 〈q1, n1, g1, l1〉 → . . . → 〈qm, nm, gm, lm〉 → 〈q′, n′, g′, l′〉
such that callee(n,n ′) = pi , n1 = ςi, and nm = εi.
Here, (〈q1, n1, g1, l1〉, 〈qm, nm, gm, lm〉) is a summary of procedure pi.

We write 〈q, n, g, l〉 true⇒ 〈q′, n′, g′, l′〉 if either q ∈ F or ∃1 ≤ i ≤ m.qi ∈ F . That is,
〈q, n, g, l〉 reaches 〈q′, n′, g′, l′〉 via a simulation trace which visits a final simula-

tion state. Otherwise, we write 〈q, n, g, l〉 false⇒ 〈q′, n′, g′, l′〉. A reachability path is
a sequence of the form 〈q1, n1, g1, l1〉 ⇒ 〈q2, n2, g2, l2〉 ⇒ . . .⇒ 〈qm, nm, gm, lm〉.
Intuitively, the stack height of the program is monotonic increasing in a reacha-
bility path. A reachability path is matched if the stack height is not increasing,
i.e., ∀(ni, ni+1) ∈ E→∪E�. Let⇒+ denote the transitive closure, and let⇒∗ de-

note the reflexive transitive closure. If 〈q1, n1, g1, l1〉
b1⇒ . . .

bm−1⇒ 〈qm, nm, gm, lm〉,
we have 〈q1, n1, g1, l1〉

b1∨...∨bm−1=⇒
+
〈qm, nm, gm, lm〉. For verifying L(P)∩L(B) =

∅, we have the following theorem.

Theorem 1. [7] L(P) ∩ L(B) �= ∅ if and only if ∃g0, l0, 〈q, n, g, l〉.
〈q0, ς0, g0, l0〉 ⇒∗ 〈q, n, g, l〉 true⇒

+
〈q, n, g, l〉.

Intuitively, the program trace accepted by both P and B shall be able to loop.
The stack height at the second occurrence of 〈q, n, g, l〉 is higher or equal to that
at the second occurrence of 〈q, n, g, l〉. The program trace can loop.

(a) (b)

Fig. 1. (a)Control flow graph of p0 (b) Büchi automaton B♦�(loc �=n3)

388 G.-D. Huang, L.-Z. Cai, and F. Wang

Now, we show an example of P |= �♦(loc = n3), which checks if n3 is entered
infinitely often. Assume that P = {p0} and we give the control flow graph of p0
in Fig 1(a). ς0 is the entry node, and ε0 is the exit node. Location n1 branches to
location n2 and location n3. (n2, ε0) and (n3, ε0) are call-to-return edges, which
represent procedure calls to p0 itself. In Fig 1(b), we show a Büchi automa-
ton B♦�(loc �=n3)), where ♦�(loc �= n3)) = ¬(�♦(loc = n3)). By simulating P

and B concurrently, we can find out a reachability path: 〈q0, ς0, true, true〉 false⇒
〈q1, n1, true, true〉 true⇒ 〈q1, n2, true, true〉 true⇒ 〈q1, ς0, true, true〉 true⇒ 〈q1, n1, true,
true〉. The state 〈q1, n1, true, true〉 reoccurs in the reachability path so that we
can infer that L(P) ∩ L(B) �= ∅ according to the Theorem 1, and it implies
P � �♦(loc = n3).

4 Semi-symbolic Simulation

Suppose a program P = {p0, . . . , pk} and a Büchi automata B = (Q, δ, q0, F). We
semi-symbolic simulate P and B concurrently. That is, we explicitly simulate on
the locations while keeping the states Q and the program variables symbolically.
We use a set of Boolean variables VQ to encode the set of states Q. That is,
each state is represented by a unique valuation of VQ. We write [q] to denote
the valuation for a specific state q. Let v̄ denote a set of Boolean variables. Let
q̄, ḡ, and l̄ be of size |VQ|, |VG|, and |VL| respectively. We give the definition of
semi-symbolic states in definition 4.

Definition 4. A semi-symbolic state is a tuple 〈q̄, n, ḡ, l̄〉 in which we keep a
location n and sets of Boolean variables q̄, ḡ, and l̄.

A semi-symbolic state 〈q̄, n, ḡ, l̄〉 can represent a set of simulation states with
the same location n. An assignment π on a set of Boolean variables v̄ is a
mapping from v̄ to B. Let |[v̄]|π ∈ B|v̄| denote the valuation of v̄ according to
the assignment π. Given an assignment π of (q̄ ∪ ḡ ∪ l̄), 〈|[q̄]|π, n, |[ḡ]|π, |[l̄]|π〉
is a simulation state. Let |[〈q̄, n, ḡ, l̄〉]|π denote 〈|[q̄]|π, n, |[ḡ]|π, |[l̄]|π〉. Assume
σ = 〈q̄, n, ḡ, l̄〉 and σ′ = 〈q̄′, n′, ḡ′, l̄′〉. Let eq(σ, σ′) denote a Boolean formula
which is satisfied by an assignment π if and only if |[σ]|π = |[σ′]|π . Let [F](q̄) be
a Boolean formula which is satisfied by an assignment π if and only if |[q̄]|π ∈ F .
Let τ(σ, σ′) be the characteristic function for transition relation of simulation
states. τ(σ, σ′) is satisfied by an assignment π if and only if |[σ]|π → |[σ′]|π. The
construction for these Boolean formulas is straightforward and is skipped here.

Definition 5. A semi-symbolic state 〈q̄, n, ḡ, l̄〉 can reach another semi-symbolic
state 〈q̄′, n′, ḡ′, l̄′〉, denoted by 〈q̄, n, ḡ, l̄〉 ↪→ 〈q̄′, n′, ḡ′, l̄′〉, if and only if (n, n′) ∈
E→ ∪ E↗ ∪ E�.

We define the reachability relation for semi-symbolic states in definition 5.
Compare with the definition for simulation states, we only check the locations
since we only keep the locations explicitly in semi-symbolic states. Assuming
σ = 〈q̄, n, ḡ, l̄〉 and σ′ = 〈q̄′, n′, ḡ′, l̄′〉. we define a Boolean formula T (σ, b, σ′) in

LTL Model Checking for Recursive Programs 389

table 4. Intuitively, T (σ, b, σ′) is the characteristic function for the reachability
relation of simulation states. T (σ, b, σ′) is satisfied by an assignment π if and

only if |[σ]|π
|[b]|π⇒ |[σ′]|π. That is,

– (n, n′) ∈ E→ ∪ E↗ and |[σ]|π → |[σ′]|π, or
– (n, n′) ∈ E�, callee(n,n ′) = pi , and there is a matched simulation trace
|[σ]|π → 〈qς , ςi, gς , lς〉 → . . . → 〈qε, εi, gε, lε〉 → |[σ′]|π .

Moreover, |[b]|π = true if and only if |[q̄]|π ∈ F or ∃1 ≤ i ≤ m.|[q̄i]|π ∈ F ,
and |[b]|π = false otherwise. For the case (n, n′) ∈ E�, T (σ, b, σ′) is defined on
Σ(σς , b

′, σε). Intuitively, Σ(σς , b
′, σε) encodes the summary [2,14] of procedure pi.

By the definition, Σ(σς , b
′, σε) is satisfied by an assignment π if and only if there

is a matched reachability path from |[σς]|π to |[σε]|π. That is, there is a matched
simulation trace 〈qς , ςi, gς , lς〉 → . . . → 〈qε, εi, gε, lε〉 where |[σς]|π = 〈qς , ςi, gς , lς〉
and |[σε]|π = 〈qε, εi, gε, lε〉. Moreover, |[b′]|π = true if and only if the matched
simulation trace visits a final simulation state, and |[b′]|π = false otherwise.

Table 2. Definitions of T (σ, b, σ′) and Σ(σ, b, σ′)

T (σ, b, σ′) 	

⎧⎨
⎩

τ (σ, σ′) ∧ b ⇔ [F](q̄) if (n, n′) ∈ E→ ∪ E↗

τ (σ, σς) ∧ Σ(σς , b
′, σε) ∧ τ (σε, σ

′) ∧ b
⇔ ([F](q̄) ∨ b′ ∨ [F](q̄ε)) if (n, n′) ∈ E�

where callee(n,n ′) = pi , σς = 〈q̄ς , ςi, ḡς , l̄ς〉, and σε = 〈q̄ε, εi, ḡε, l̄ε〉.

Σ(σ, b, σ′) 	
{

eq(σ, σ′) ∧ b ⇔ false if n = n′∨
1≤i≤m T (σ, bi, σi) ∧ Σ(σi, b

′
i, σ

′) ∧ b ⇔ (bi ∨ b′i) if n �= n′

where succ(n) = {n1 , . . . ,nm} and σi = 〈q̄i, ni, ḡi, l̄i〉

Definition 6. A semi-symbolic path is a sequence of the form σ1 ↪→ σ2 ↪→
. . . ↪→ σm.

Given a semi-symbolic path σ1 ↪→ σ2 ↪→ . . . ↪→ σm, we define the following
Boolean formula to check the existence of loops.

χLoop(σ1, σ2, . . . , σm) 	
∧

1≤i<m T (σi, bσiσi+1 , σi+1)∧∨
1≤i<j≤m(eq(σi, σj) ∧

∨
i≤k<j bσkσk+1).

Intuitively, the satisfiability of χLoop(σ1, σ2, . . . , σm) is corresponding to the ex-
istence of loop. χLoop(σ1, σ2, . . . , σm) is satisfied by an assignment π if and only
if there is a reachability path |[σ1]|π ⇒ |[σ2]|π ⇒ . . . ⇒ |[σm]|π such that
∃i, j.|[σi]|π = |[σj]|π and ∃k.bσkσk+1 . We also define the following Boolean for-
mula to check if the loop diameter is reached.

χDiameter(σ1, σ2, . . . , σm) 	
∧

1≤i<m T (σi, bσiσi+1 , σi+1)∧∧
1≤i<j≤m ¬eq(σi, σj).

The unsatisfiability of χDiameter(σ1, σ2, . . . , σm) is corresponding to that the
loop diameter is reached.

390 G.-D. Huang, L.-Z. Cai, and F. Wang

Construction of T (σ, b, σ′) and Σ(σ, b, σ′). We construct the Boolean formulas
T (σ, b, σ′) and Σ(σ, b, σ′) inductively. We define a set of equations which can
represent a Boolean formula. The LHS (left-hand-side) of an equation is a term
of the form T (σ, b, σ′) and Σ(σ, b, σ′). Note that we interpret T (σ, b, σ′) and
Σ(σ, b, σ′) as terms instead of Boolean formulas in the sequel. According to
table 4, we define the LHS term by the RHS (right-hand-side) in which there
may be other terms.

We illustrate the construction by example. T (σ, b, σ′) = τ(σ, σς)∧Σ(σς , b
′, σε)

∧ τ(σε, σ
′) ∧ b ⇔ ([F](q̄) ∨ b′ ∨ [F](q̄ε)) is an equation for defining T (σ, b, σ′)

and there is a term Σ(σς , b
′, σε) in the RHS. In turn, we define an equation

for Σ(σς , b
′, σε). We iteratively define a set of equations Φ for T (σ, b, σ′). Let

Undef(Φ) denote the terms which only appear in the LHS of equations. Intu-
itively, if a term t ∈ Undef(Φ), t is undefined. We can solve the set of equations
by SAT solvers. The set of solutions for T (σ, b, σ′)∧Φ over-approximates the set of
solutions for the Boolean formula T (σ, b, σ′). In contrast, the set of solutions for
T (σ, b, σ′)∧Φ∧

∧
t∈Undef(Φ) ¬t is an under-approximation. With sufficient equa-

tions, the set of solutions for T (σ, b, σ′) ∧ Φ and T (σ, b, σ′) ∧ Φ ∧
∧

t∈Undef(Φ) ¬t
reach a fix-point, which is equivalent to the set of solutions for the Boolean
formula T (σ, b, σ′)[14].

5 Model Checking Algorithm

Suppose a program P = {p0, . . . , pk} and a Büchi automata B = (Q, δ, q0, F).
We construct a simulation tree to enumerate possible semi-symbolic paths. The
simulation tree is constructed by unfolding the control flow graphs and by in-
stantiating semi-symbolic states for the locations. An instantiation for a lo-
cation n is a semi-symbolic state 〈q̄, n, ḡ, l̄〉, where q̄′, ḡ, and l̄′ are new sets
of Boolean variables serve as a copy of VG, VQ, and VL respectively. A tree
node is a semi-symbolic state. A tree node 〈q̄, n, ḡ, l̄〉 has a child 〈q̄′, n′, ḡ′, l̄′〉 if
(n, n′) ∈ E→ ∪ E↗ ∪ E�. A tree node 〈q̄, n, ḡ, l̄〉 has no child if n is an exit
location. A tree path in the simulation tree is a semi-symbolic path.

Example 1. In Fig 2(a), we give the control flow graph of a procedure p0 The
entry node ς0 branches to location n1 and location n2. (n1, ε0) is a call-to-return
edge, which represents a procedure call to p0 itself. In Fig 2(b), we give the
simulation tree constructed by unfolding the control flow graph. A node with
double circles is leaf in the simulation tree.

Given a simulation tree, we define a set of equations. Let σ = 〈q̄, n, ḡ, l̄〉 and σ′ =
〈q̄′, n′, ḡ′, l̄′〉. For each tree edge (σ, σ′), we define an equation φ for T (σ, bσσ′ , σ′)
according to table 4. If (n, n′) ∈ E→ ∪ E↗, it is straightforward to define φ as
T (σ, bσσ′ , σ′) = τ(σ, σ′) ∧ bσσ′ ⇔ [F](q̄). If (n, n′) ∈ E�, φ depends on a sum-
mary of procedure callee(n,n ′) = pk . Since (n, n′) ∈ E�, we have (n, ςk) ∈ E↗.
Assume that σ has a child σς = 〈q̄ε, ςk, ḡε, l̄ε〉. We instantiate a semi-symbolic
state σε = 〈q̄ε, εk, ḡε, l̄ε〉 for the exit location εk. We define φ as T (σ, bσσ′ , σ′) =
τ(σ, σς) ∧Σ(σς , bσςσε , σε) ∧ τ(σε, σ

′) ∧ bσσ′ ⇔ ([F](q̄) ∨ bσς ,σε ∨ [F](q̄ε)).

LTL Model Checking for Recursive Programs 391

(a) (b) (c)

Fig. 2. (a)Control flow graph of p0 (b)Simulation tree (c)Simulation tree applying
immediately post-dominance relation

Let σς = 〈q̄ς , ςk, ḡς , l̄ς〉 and σε = 〈q̄ε, εk, ḡε, l̄ε〉. For a summary Σ(σς , bσςσε , σε),
we define a set of equations. For each tree node σ = 〈q̄, n, ḡ, l̄〉 reachable from
σς without visiting an entry location, we define an equation φ for Σ(σ, bσσε , σε).
Assume n �= εk and σ has m children σ1, . . . , σm where σi = 〈q̄i, ni, ḡi, l̄i〉 and ni

is not an entry location. We define φ as Σ(σ, bσσε , σε) =
∨

1≤i≤m T (σ, bσσi , σi)∧
Σ(σi, bσiσε , σε) ∧ b ⇔ (bσσi ∨ bσiσε). If n = εk, σ is an instantiation for the exit
location εk and the valuation of σ shall be the same as the valuation of σε. We
define φ as Σ(σ, bσσε , σε) = eq(σ, σε) ∧ bσσε ⇔ false.

Algorithm. We list our algorithm in table 5. We construct a simulation tree G
and define a set of equations Φ on the fly. The worklist wl is used to record
current leafs. In each iteration, we pop a leaf σ = 〈q̄, n, ḡ, l̄〉 from the work-
list. We expand the simulation tree from σ and define an equation φT (σ,bσσ′ ,σ′)
for T (σ, bσσ′ , σ′) for each new edge (σ, σ′). After the expansion, we check if
Σ(σ, bσσε , σε) ∈ Undef(Φ). If so, we need define an equation φΣ(σ,bσσε ,σε) for
Σ(σ, bσσε , σε). Then, we check all semi-symbolic paths in the simulation tree to
find looping reachability path. Let % ∈ G denote that % is a path from the root
to a leaf in the simulation tree G. We define a Boolean formula

Ξ−(G,Φ) 	
∨

�∈G χLoop(%) ∧ Φ ∧
∧

t∈Undef(Φ) ¬t.

The satisfiability of Ξ−(G,Φ) is corresponding to the existence of looping reach-
ability paths. We have the following lemma.

Lemma 1. Ξ−(G,Φ) is satisfiable eventually if and only if ∃g0, l0, 〈q, n, g, l〉.
〈q0, ς0, g0, l0〉 ⇒∗ 〈q, n, g, l〉 true⇒

+
〈q, n, g, l〉.

392 G.-D. Huang, L.-Z. Cai, and F. Wang

Table 3. Bounded Model Checking Algorithm

1: G = ∅;Φ = ∅;wl = {〈[q0], ς0, q̄, l̄〉}.
2: while wl �= ∅ do
3: wl = wl \ σ, where σ = 〈q̄, n, ḡ, l̄〉
4: for each (n, n′) ∈ E→ ∪ E↗ ∪ E� do
5: instantiate a semi-symbolic state σ′ = 〈q̄′, n′, ḡ′, l̄′〉;wl = wl ∪ {σ′}
6: G = G ∪ {(σ, σ′)}
7: Φ = Φ ∪ {φT (σ,bσσ′ ,σ′)}
8: end for
9: if Σ(σ, bσσε , σε) ∈ Undef(Φ) then
10: Φ = Φ ∪ {φΣ(σ,bσσε ,σε)}
11: end if
12: if Ξ−(G, Φ) is satisfiable then
13: print L(P) ∩ L(B) �= ∅; exit
14: else if Ξ+(G, Φ) is unsatisfiable then
15: print L(P) ∩ L(B) = ∅; exit
16: end if
17: end while

We can stop a semi-symbolic path if it has reached its loop diameter. Otherwise,
we shall continue to expand the semi-symbolic path. Our algorithm terminates
if no semi-symbolic paths needs expansion. We define a Boolean formula

Ξ+(G,wl) 	
∨

�∈G χDiameter(%) ∧ Φ.

The unsatisfiability of Ξ+(G,Φ) is corresponding to the absence of semi-symbolic
paths which need expansion. In other words, our algorithm can terminate. We
have the following lemma.

Lemma 2. Ξ+(G,wl) is unsatisfiable eventually if and only if �g0, l0, 〈q, n, g, l〉.
〈q0, ς0, g0, l0〉 ⇒∗ 〈q, n, g, l〉 true⇒

+
〈q, n, g, l〉.

Applying Post-dominance Relation. Consider a control-flow graph G = (N,E,Δ,
callee, s , e). A location n is post-dominated by a location n′, denoted by n ⇒ n′,
if and only if all paths from n to e must visit n′. A location n is immediately
post-dominated by a location n′ if and only if n ⇒ n′, and there is no location
n′′ such that n ⇒ n′′ and n′′ ⇒ n′. Given a location n, let ipd(n) denote the
location which immediately post-dominates n.

While program variables are kept symbolic, the locations are still explicitly
tracked in simulation. The size of the simulation tree grows exponentially to the
number of branches in a program. To reduce the size of the simulation tree, we
join the branches at immediately post-dominators and continue to unfold the
control flow graphs from the immediately post-dominators.

Example 2. Follow Example 1. The location ς0 has two branches and has a im-
mediately post-dominator n1. In Fig 2(c), we give the simulation tree applied

LTL Model Checking for Recursive Programs 393

the immediately post-dominance relation. We stop these two branches at n1. We
add an additional edge (ς0, n1) (in the right-most side) and continue to unfold
the control flow graphs from the n1.

Consider a tree node σ = 〈q̄, n, ḡ, l̄〉 and assume that n has more than one succes-
sors. We instantiate a semi-symbolic state σipd = 〈q̄ipd, ipd(n), ḡipd, l̄ipd〉 for the
immediately post-dominator ipd(n) and add an edge (σ, sigmaipd). For the edge
(σ, sigmaipd), we define an equation T (σ, bσσipd

, σipd) = Σ(σ, bσσipd
, σipd). Intu-

itively, T (σ, bσσipd
, σipd) shall be satisfied by an assignment π if there is a matched

reachability path from |[σ]|π to |[σipd]|π. It is equivalent to Σ(σ, bσσipd
, σipd). For

each node σ′ in the branches, we define an equation for Σ(σ′, bσ′σipd
, σipd) accord-

ing to table 4. Assume that there is a function term Σ(σ, bσσε , σε) ∈ Undef(Φ).
We change the equation for Σ(σ, bσσε , σε) to Σ(σ, bσσε , σε) = T (σ, bσσipd

, σipd)∧
T (σipd, bσipdσε , σε) since we join the branches at ipd(n).

6 Experiments

Given a program P = {p0, . . . , pk} and an LTL formula ϕ, we have implemented
our model checking algorithm to verify P |= ϕ. In our implementation, we con-
struct the Büchi automata B¬ϕ for the negation of ϕ by LTL2BA[10] and solve
instances of Boolean satisfiability by Zchaff solver. We collect our data in a 1.6
GHz Intel machine with 1Gb memory.

In figure 3, we show the growth of tree size on a quicksort program [7]. We
construct the simulation tree in the breadth-first order and record the number of
tree nodes in each iteration. As can been seen, the growth of tree size is smooth
when applying the post-dominance relation. In the 25th iteration, the simulation
tree is constructed completely with 1682 tree nodes. Without applying the post-
dominance relation, the growth of tree size is rapid and the algorithm ran out
of memory in the 17th iteration.

Fig. 3. Tree Size Comparison of IPD and without IPD

394 G.-D. Huang, L.-Z. Cai, and F. Wang

Table 4. Performance Comparison

#procedure/
avg. #location

liveness safety
ans. moped lmc IPD ans. moped lmc IPD

3/1k No 0.04 0.03 0.04 Yes 0.02 0.08 0.02

4/2k No 0.06 0.13 0.09 No 0.12 0.02 0.11

5/4k No 0.09 0.16 0.10 Yes 0.14 1.70 0.09

6/8k No 0.26 0.52 0.26 Yes 0.44 6.82 0.27

7/16k No 0.93 1.42 0.71 No 1.98 3.79 4.88

8/32k No 14.87 6.61 2.49 No 28.32 6.88 3.04

9/64k No 18.99 7.82 3.01 No 37.90 7.87 2.96

10/128k No 361.47 37.46 13.24 No O/M 42.70 17.96
moped: BDD-based model-checker. lmc: SAT-based model-checker.

O/M: out of memory

Table 5. Profiling Data

#process/ avg.
#location

liveness safety
lmc IPD lmc IPD

create solve create solve create solve create solve

3/1k <0.01 <0.01 <0.01 <0.01 0.03 <0.01 <0.01 <0.01

4/2k <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.03

5/4k <0.01 <0.01 <0.01 <0.01 1.22 0.24 <0.01 0.01

6/8k <0.01 <0.01 <0.01 <0.01 4.04 2.24 <0.01 0.01

7/16k <0.01 <0.01 <0.01 <0.01 1.89 0.31 0.04 4.01

8/32k <0.01 <0.01 <0.01 <0.01 0.47 0.83 0.01 0.25

9/64k <0.01 <0.01 <0.01 <0.01 0.04 <0.01 0.01 0.07

10/128k 0.32 0.04 0.01 0.02 3.09 0.31 0.75 5.18

(execution time in seconds)

Table 6. SAT Comparison

#procedure/
avg. #location

liveness safety
lmc IPD lmc IPD

3/1k 105/349 106/270 3013/13100 251/447

4/2k 176/632 70/168 1772/8402 2529/3424

5/4k 481/2019 164/322 29407/135576 370/657

6/8k 93/297 106/270 134441/619434 1471/2036

7/16k 196/722 70/168 11564/68900 104813/68656

8/32k 316/1295 122/268 11453/55430 14313/14414

9/64k 387/1528 120/234 1544/6950 5576/9277

10/128k 10463/44562 2435/4112 84382/383924 191320/ 303415

(number of Boolean variables/number of clauses are listed)

In table 4, we compare our algorithm with a BDD-based algorithm [7] and
a SAT-based algorithm [11] on randomly generated programs [11]. A location
is either sequential, branching, or looping with probabilities 0.6, 0.2, and 0.2
respectively. A procedure may be called with probability 0.2 on a sequential

LTL Model Checking for Recursive Programs 395

location. We checked a liveness property and a safety property on the generated
programs. The liveness property asserts that a random location of the main
procedure is reachable. The safety property asserts that a random procedure is
never called, i.e., ςi is not reachable. As can be seen, our algorithm outperforms
the other two for most cases. For the larger cases (8/32k, 9/64k, 10/128k), our
algorithm uses less than half the time consumed by the other algorithms.

In table 5, we give the profiling data of our algorithm and the SAT-based al-
gorithm. We measure the time for creating instances of Boolean satisfiability and
the time for solving the instances1. Our algorithm uses less time in creating in-
stances of Boolean satisfiability. For the cases 7/16k and 10/128k, our algorithm
uses longer time in solving the instances of Boolean satisfiability. To investi-
gate the reason, we measure the number of Boolean variables and the number
of clauses in the instances of Boolean satisfiability. We show the result in table
6. As can been seen, our algorithm creates more variables and clauses for the
cases 7/16k and 10/128k. It may affect the performance of the SAT solver. We
believe that Further investigation is helpful to reduce the size of the instances
of Boolean satisfiability.

7 Conclusions

We propose an algorithm to model check LTL formulas with recursive programs.
We search counter-examples based on the semi-symbolic simulation technique.
The post-dominance relation is applied to prune the search space. The experi-
ment result suggests that the post-dominance relation is helpful. The experiment
result also shows that our algorithm outperforms other algorithm in some cases.
We would like to conduct more experiments to compare our algorithm with the
algorithm in [11] in the future.

There are many strategies to search counter-examples, i.e., construct the sim-
ulation tree. In our preliminary implementation, we adopt breadth-first strategy.
We believe that the performance can be improved with sophisticated strategies.

References

1. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model
Checking: 1020 States and Beyond. IEEE LICS (1990)

2. Basler, G., Kroening, D., Weissenbacher, G.: SAT-based Summarization for
Boolean Programs. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS,
vol. 4595, pp. 131–148. Springer, Heidelberg (2007)

3. Basler, G., Kroening, D., Weissenbacher, G.: A Complete Bounded Model Checking
Algorithm for Pushdown Systems. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899,
pp. 202–217. Springer, Heidelberg (2008)

4. Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs. In:
Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885. Springer,
Heidelberg (2000)

1 The rest time is used in reading inputs and building models.

396 G.-D. Huang, L.-Z. Cai, and F. Wang

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: DAC, pp. 317–320. ACM Press, New
York (1999)

6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

7. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

8. Ivancic, F., Yang, Z., Ganai, M., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
Software Verification Platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005)

9. Gupta, R.: Generalized Dominators and Post-dominators. In: ACM Symp. on Prin-
ciples of Programming Languages, pp. 246–257 (1992)

10. Gastin, P., Oddoux, D.: Fast LTL to Bchi Automata Translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

11. Huang, G.D., Wang, B.Y.: Complete SAT-based Model Checking for Context-
Free Processes. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.)
ATVA 2007. LNCS, vol. 4762, pp. 51–65. Springer, Heidelberg (2007)

12. Hungar, H., Steffen, B.: Local model checking for context-free processes. Nordic
Journal of Computing 1(3), 364–385 (1994)

13. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proc. of the ACM Symposium on Principles of Programming
Languages (POPL 1995), pp. 49–61 (1995)

14. Rustan, K., Leino, M.: A SAT characterization of boolean-program correctness. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 104–120. Springer,
Heidelberg (2003)

15. Vardi, M.Y.: Automata-Theoretic Model Checking Revisited. In: Cook, B.,
Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Hei-
delberg (2007)

16. Wang, B.Y.: Proving ∀μ-calculus properties with SAT-based model checking. In:
Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 113–127. Springer, Heidelberg
(2005)

On Detecting Regular Predicates in Distributed

Systems�

Hongtao Huang1,2

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

2 Graduate University, Chinese Academy of Sciences, Beijing 100190, China
hht@ios.ac.cn

Abstract. Given a distributed computation and a predicate, detection
of the predicate in Definitely modality means checking whether in every
path from the least state to the greatest state in the state space generated
from the computation, there exists a state satisfying the predicate. It is
well known that the state space is a lattice. The regular predicate is
a class of predicates. All the states satisfying a regular predicate form
a sublattice of the lattice. In this paper, we prove that detection of a
regular predicate in Definitely modality is coNP-complete.

1 Introduction

Predicate detection in a distributed system is an important problem. It is useful
in debugging and testing of the distributed system. A predicate is an interesting
property that we want to check in the execution of a distributed system. Two
modalities are introduced for predicate detection by Cooper and Marzullo [2].
They are denoted by Possibly and Definitely. We know that the state space of
an execution of a distributed system is a distributive lattice. Given a predicate
Φ, Possibly(Φ) means that there exists one path from the initial state to the
final state in the lattice, which passes through a state satisfying Φ. Definitely(Φ)
means that all paths from the initial state to the final state in the lattice pass
through a state satisfying Φ. Possibly(Φ) is usually used to check the property
Φ that we want to avoid, such as, the number of tokens in a system is less than
a constant. While Definitely(Φ) is usually used to check the desired property Φ
that we want to guarantee, such as, a leader is elected.

The regular predicate [4] is a special class of predicates. In the state space
the consistent states satisfying the regular predicate form a sublattice of the
distributive lattice of computation, which implies that the sublattice is also a
distributive lattice [3]. It has an interesting property. From the original compu-
tation we can derive a computation, of which the consistent states are exactly
the consistent states satisfying the regular predicate. Therefore, we can obtain
� Supported by the National Natural Science Foundation of China under Grant Nos.
60721061, 60833001 and 60603049, and the National High Technology Research and
Development Program (”863”Program) of China under Grant No. 2007AA01Z112.

Z. Liu and A.P. Ravn (Eds.): ATVA 2009, LNCS 5799, pp. 397–411, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

398 H. Huang

a succinct expression of the consistent states satisfying the regular predicate.
Computation slicing [4,10] given by Garg and Mittal is the technique for obtain-
ing the succinct expression. It also enlightens us on the forms of zones considered
in this paper.

The regular predicate is also an extension of the conjunctive predicate in
semantics, because it is easy to prove that every conjunctive predicate is a regular
predicate. The conjunctive predicate is very useful in describing conditions in
application. And detection of conjunctive predicates in both Possibly modality
and Definitely modality has polynomial time algorithms [5][7][6][14].

In [11] the complexity of detection of regular predicates in Definitely modality
is introduced as an open problem.

In [12] sufficient conditions and necessary conditions are given to detect a
regular predicate in Definitely modality in polynomial time.

In this paper, we prove that detection of a regular predicate in Definitely
modality is coNP-complete. For proving it, we prove that the SAT problem
could be reduced into the detection of false runs in the state space in polynomial
time, where a false run is a path from the least state to the greatest state which
does not pass through any true state. We can see that detection of false runs
is the dual problem of detection of a regular predicate in Definitely modality.
For achieving this reduction, we first reduce the SAT problem to the problem of
finding a desired path in a directed graph. Then according to the directed graph,
we construct a distributed computation and a regular predicate. And we reduce
the path searching problem in the directed graph to the problem of detection of
false runs in the state space generated from the constructed computation.

The remainder of the paper is organized as follows: Section 2 discusses the
model that we use. In section 3, we prove that detection of a regular predicate
in Definitely modality is coNP-complete. Section 4 gives an example. Section 5
concludes the paper.

2 Model

We assume a loosely-coupledmessage-passing asynchronous system. A distributed
system consists of n sequential processes denoted by P1, P2, . . . , Pn. Each process
in the distributed system is sequential. For eachprocessPi, 1 ≤ i ≤ n, the sequence
of events in the process is E1

i E
2
i E

3
i · · ·. Let Ei denote the set of events in Pi. Let

E = E1 ∪ E2 ∪ . . . ∪ En. We use Lamport’s happened-before relation [8] to give
an irreflexive partial order → on E. Happened-before relation is defined as the
smallest relation satisfying the following conditions: for two events e, f ∈ E, (1) if
e and f belong to the same process, and e occurs before f , then e→ f ; (2) if e is an
event which sends a message and f is an event which receives the message sent by
e, then e→ f ; (3) if there exists an event g ∈ E such that e→ g and g → f , then
e → f . Based on the induced order, we model the given execution of the system
as an irreflexive partial order set 〈E,→〉. We call it a computation.

A state of a computation 〈E,→〉 is a subset G of E such that for each event
e in G, any event f occurring before e in the process that e belongs to, is in
G. A state G is a consistent state, if for each event e, any event f satisfying

On Detecting Regular Predicates in Distributed Systems 399

f → e, is in G. The intuitive meaning of consistent states is that for each event
in the state, all the events that should occur before it have occurred. The set of
consistent states forms a distributive lattice under the relation of ⊆ [9][4]. Let
L(E) denote the distributive lattice.

We can represent a state G by an n-dimension vector S = (s1, s2, . . . , sn),
where for each i, 1 ≤ i ≤ n, if Ei ∩ G �= ∅, then Esi

i is the greatest ele-
ment in Ei ∩ G; otherwise si = 0. For two states S and S′ in L(E), S ≤ S′

if and only if si ≤ s′i, for all i, 1 ≤ i ≤ n. S < S′ if and only if S ≤ S′

and S �= S′. S ! S′ = (min(s1, s
′
1),min(s2, s

′
2), . . . ,min(sn, s

′
n)). S " S′ =

(max(s1, s
′
1),max(s2, s

′
2), . . . ,max(sn, s

′
n)).

A run of a computation is a total order of the events in E, which is compatible
with →, that is, if e→ f , then e comes before f in the run. A run is also a chain
of states from ⊥ to � in the lattice L(E).

When detecting a predicate in a computation, each event has an associated
value, and each process has an interesting variable which is used to check some
properties of the execution. Given a consistent state S = (s1, s2, . . . , sn), the
value of the variable on Pi is the associated value of event Esi

i , if si > 0; other-
wise, it is a given initial value.

Given a predicate Φ, two modalities are usually used in predicate detection [2]:
Definitely(Φ). It is true if for every run of the computation, there exists a

consistent state satisfying Φ on this run.
Possibly(Φ). It is true if there exists a run of the computation such that a

consistent state on this run satisfies Φ.
In general, detection of Possibly(Φ) is NP-complete [1] and detection of

Definitely(Φ) is coNP-complete [13].
For example, in the computation of figure 1, assume the interesting variables

in P1 and P2 are x and y respectively and the predicate we want to detect is
Φ = x > y. We can see that Possibly(Φ) is true, while Definitely(Φ) is false.

1

1
E 2

1
E 3

1
E 4

1
E

1
2E 2

2E 3
2E 4

2E

10 10 10 11

5 20 5 2020

holds

does not hold

2,4

0,0

1,0
1,1

0,1

2,0 0,2

2,2

3,2 2,3
3,3

4,3 3,4

4,2

4,4

2,1 1,2

Fig. 1. A computation and its corresponding lattice

400 H. Huang

3 Detection of a Regular Predicate in Definitely
Modality Is coNP-Complete

In this section we show that detection of a regular predicate in Definitely modal-
ity is coNP-complete.

Definition 1. A predicate is regular, if given two consistent states S and T
satisfying the predicate, S " T and S ! T also satisfy the predicate.

We can see that the consistent states satisfying a regular predicate form a sub-
lattice of the distributive lattice of the computation.

For proving that detection of a regular predicate in Definitely Modality is
coNP-complete, we give a reduction from the SAT problem to the problem of
determining whether there exists a false run. A false run is a run that does not
pass through any true state. It is obvious that the problem is the dual problem
of detection of a regular predicate in Definitely modality.

Now we briefly describe the idea of the proof. A run is path from the least state
to the greatest state. For associating the satisfiability of a CNF formula with a
run, in step 1 we first reduce the SAT problem to a path searching problem in a
directed graph. Then we have two types of paths. For associating the two types
of paths, in step 2 we construct a computation, which generates a state space.
Then we assign each vertex in the graph a zone of states in the state space. The
constructed computation in step 2 does not have order relations. Thus all the
states of the computation are consistent. In step 3, we add some order relations
to the computation. It makes some states inconsistent. Using the relations we
shape the state space, and put some restrictions on the runs in the state space.
In step 4, we construct a regular predicate. The regular predicate defines true
states and false states. Then we can consider the false runs. In the last step,
we reduce the path searching problem in the directed graph to the problem of
determining whether there exists a false run of the regular predicate in the state
space.

3.1 Step 1

In this step, we reduce the SAT problem to a problem of finding a desired path
in a directed graph.

Given a CNF formula Ψ = (L1
1 ∨L2

1 ∨ . . .∨Ln1
1)∧ . . .∧ (L1

m ∨L2
m∨ . . .∨Lnm

m),
we construct a directed graph GSAT as the following.

The graph contains an initial vertex I, a final vertex F , and m groups of
vertices denoted by V1, . . . ,Vm. Vi has ni vertices, V1

i ,V2
i , . . . ,V im

i . Vj
i has an

assigned label Lj
i , where 1 ≤ j ≤ ni. There is an edge from the initial vertex to

each vertex in V1. There are edges from each vertex in Vi to all vertices in Vi+1,
for all i, 1 ≤ i ≤ m − 1. There is an edge from each vertex in Vm to the final
vertex.

Lemma 1. Ψ is satisfiable, if and only if there exists a path from the initial
vertex to the final vertex in GSAT such that in the path there do not exist two
vertices with conflicting labels.

On Detecting Regular Predicates in Distributed Systems 401

2
1[]L

1
1[]nL

1[]mL

[]mn
mL

1
1[]L 1

2[]L

2
2[]L

2
2[]nL

2[]mL

1 2 m

Fig. 2. The directed graph GSAT

Proof. (⇒): There is an evaluation satisfying Ψ . Under this evaluation, we know
that for each 1 ≤ i ≤ m, the set {L1

i , L
2
i , . . . , L

ni

i } contains at least one true
literal Lαi

i .
Then IVα1

1 Vα2
2 . . .Vαm

m F is a desired path in GSAT .
(⇐): Let the assigned labels in vertices in the path be true. Then Ψ is true. �

3.2 Step 2

In this step we construct a distributed computation for the directed graph GSAT .
And we associate each vertex a set of states in the state space of the computation.
Then in the later steps we can can reduce the problem of searching desired path
in GSAT to a problem of detection of false runs for a regular predicate.

Now we construct a computation with 2(
m∑

i=1
nm + 2) processes. Each process

has one event. Let n = 2(
m∑

i=1
nm + 2).

we can see that the state space has n dimensions, and contains at most 2n

states. If a state S = (s1, . . . , sn) is in the state space, then si = 0 or si = 1, for
each 1 ≤ i ≤ n.

Let the n dimensions be denoted by ξ1, . . . , ξn.
For associating a set of states for each vertex, we introduce a concept, zones,

which can be informally seen as a hypercube in the state space.

Definition 2. A zone Z[(a1, b1), (a2, b2), . . . , (an, bn)] is a set of states. A state
S = (s1, s2, . . . , sn) ∈ Z if and only if ai ≤ si ≤ bi for all i, 1 ≤ i ≤ n.

If a zone does not contain any true consistent state, we call it a false zone.
In the paper, we have two special forms of zones. They are given two deno-

tations. Let H [ξi < u, ξj ≥ v] denote a zone Z[(a1, b1), (a2, b2), . . . , (an, bn)]
such that ai = 0, bi = u − 1, aj = v, bj = |Ej |, and ak = 0, bk = |Ek|,
for all k, 1 ≤ k ≤ n, k �= i, k �= j. Let H [u ≤ ξi ≤ v] denote a zone
Z[(a1, b1), (a2, b2), . . . , (an, bn)] such that ai = u, bi = v, and ak = 0, bk = |Ek|,
for all k, 1 ≤ k ≤ n, k �= i. If u = v, we can express H [u ≤ ξi ≤ v] as H [ξi = u].

Then for every vertex in GSAT we will assign it a zone.

402 H. Huang

For each vertex, we first assign it different two numbers from 1 to n. All the
numbers assigned to the vertices are required to be different. Let x be the first
number, and y be the second number. If the vertex is not the initial vertex and
the final vertex, the corresponding zone of the vertex is H [ξx < 1, ξy ≥ 1]. If
the vertex is the initial vertex, the corresponding zone of the vertex is H [ξx <
1, ξy ≥ 0]. If the vertex is the final vertex, the corresponding zone of the vertex
is H [ξx < 2, ξy ≥ 1]. It is obvious that in the state space generated from the
computation, H [ξx < 1, ξy ≥ 0] = H [ξx = 0] and H [ξx < 2, ξy ≥ 1] = H [ξy = 1].
In this section we do this only for treating zones in a unified way.

For knowing which two numbers are assigned to a zone, we define an operation
on zones, X (H) = x and Y (H) = y.

Let H be the set of all the assigned zones for vertices.

3.3 Step 3

In the previous part we construct a computation, which has only several pro-
cesses, and has no order. In this step, we add some orders into the computation,
which means some states in the state space become inconsistent. Thus we shape
the state space.

We know that in Pi, there is |Ei| events E1
1 , . . . , E

|Ei|
i . In the following, for con-

venience in each process Pi, we introduce two imaginary events E0
i and E

|Ei|+1
i .

We assume that no event e satisfies that e→ E0
i , or E

|Ei|+1
i → e.

Given two zones H [ξx < α, ξy ≥ β] and H ′[ξx′ < α′, ξy′ ≥ β′], where x, x′, y, y′

are different, we use Disjoint(H,H ′) to denote an order relation Eα
x → Eβ′

y′ .
Now based the Disjoint relation, we add some order relations into the com-

putation. Given any two vertices v and v′ in the directed graph, suppose that
their corresponding zones are H and H ′ respectively. The adding rules are as
the following:

(1) If v and v′ belong to the same group Vk, then we add Disjoint(H,H ′)
and Disjoint(H ′, H) into the computation.

(2) If v and v′ are not in the same group, there is path from v to v′, and there
is not a edge from v to v′, then we add Disjoint(H,H ′) into the computation.

(3) If v and v′ are not in the same group, there is path from v to v′, and v and
v′ have conflicting labels, then we add Disjoint(H ′, H) into the computation.

We have added some order relations into the computation. Based on the form of
Disjoint(H,H ′), it is easy to verify that the added order relations form a partial
order. Thus the computation we consider here is reasonable.

Lemma 2. The added order relations form a partial order.

Next we list some properties related to Disjoint(H,H ′).
The properties considered in the remainder of the section is about consis-

tent states. From the definition of consistent states, it is easy to get the next
proposition.

On Detecting Regular Predicates in Distributed Systems 403

Proposition 1 A state S = (s1, . . . , sn) is consistent, if and only if Esi

i .next �→
E

sj

j , for all i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j.

Given a set S of states, we use Con(S) to denote the consistent states in S.
Lemma 3 is used to determine whether a zone contains consistent states.

Lemma 4 is used to find the minimal state in a zone Z, if Con(Z) �= ∅.

Lemma 3. None of the states in Z[(a1, b1), (a2, b2), . . . , (an, bn)] is consistent,
i.e. Con(Z) = ∅, if and only if there exist u and v such that Ebu

u .next→ Eav
v .

Proof. (⇒): We prove that if there do not exist such u and v, then there exists
a consistent state in Z.

Let Θi = {k|∀j(Ek
i .next �→ E

bj

j)}. According to the precondition, we have
that Θi �= ∅. Let θi = min(Θi). Now we show that (θ1, . . . , θn) is consistent.

Assume that it is not consistent. From proposition 1 we know that there exists
Eθx

x and E
θy
y such that Eθx

x .next→ E
θy
y .

We have θy �= by (otherwise, Eθx
x .next→ E

by
y , which contradicts to θx ∈ Θx).

Because θy is the minimal element in Θy, there exists w such that E
θy−1
y .next→

Ebw
w , that is E

θy
y → Ebw

w . Then Eθx
x .next→ Ebw

w , which contradicts to θx ∈ Θx.
The we can conclude that (θ1, . . . , θn) is consistent.
(⇐): We have that Ebu

u .next → Eav
v . Because for any state S = (s1, . . . , sn)

in Z, su ≤ bu and sv ≥ av, we can conclude that Esu
u .next → Esv

v . From
proposition 1, S is not consistent. Thus none of the states in Z is consistent. �

Lemma 4. Suppose Con(Z) �= ∅. S = (s1, s2, . . . , sn) is the minimal consistent
state in Z[(a1, b1), (a2, b2), . . . , (an, bn)], if and only if Esi

i is the first event in
Pi satisfying that Esi

i .next �→ E
aj

j , for all i, 1 ≤ i ≤ n.

Proof. We notice that S = (s1, s2, . . . , sn) is the state (θ1, . . . , θn) in the proof
of lemma 3. Thus we can conclude that S is consistent.

Assume that there exists a consistent state T = (t1, t2, . . . , tn) in Z such
that T < S, or T can be compared with S. Then we can conclude there exists
some k such that tk < sk. Because tk < sk and T ∈ Z, sk �= ak. Because of
the precondition for S, there exists j such that Esk−1

k .next → E
aj

j . Because
tk ≤ sk − 1 and aj ≤ tj , Etk

k .next → E
tj

j , which contradicts to that T is
consistent.

Thus S is the minimal state. �

In the two previous lemmas, we see that Eav
v or E

aj

j plays an important role. If
aj = 0, E

aj

j = E0
j . Because no event e satisfies e → E0

j , when we use lemma 3
and lemma 4, we only need to consider the E

aj

j , where aj �= 0.
Lemma 5 shows the meaning of Disjoint. For two zones H = [ξi < u, ξj ≥ v]

and H ′ = [ξi′ < u′, ξj′ ≥ v′], Disjoint(H,H ′) or Disjoint(H ′, H) guarantees that
the two zones have not common parts.

Lemma 5. For two zones H = [ξi < u, ξj ≥ v] and H ′ = [ξi′ < u′, ξj′ ≥ v′],
Con(H ∩H ′) = ∅, if and only if Disjoint(H,H ′) or Disjoint(H ′, H).

404 H. Huang

Proof. It is easy to see that H∩H ′ is a zone Z[(a1, b1), (a2, b2), . . . , (an, bn)], where
ai = 0, bi = u − 1, ai′ = 0, bi′ = u′ − 1, aj = v, bj = |Ej |, aj′ = v′, bj′ = |Ej′ |,
and ak = 0, bk = |Ek|, for all k, k �= i, i′, j, j′.

Among a1, . . . , an only aj and aj′ are not 0, from lemma 3, Con(H ∩H ′) = ∅,
if and only if Disjoint(H,H ′) or Disjoint(H ′, H). �

Given two consistent states S = (s1, s2, . . . , sn) and T = (t1, t2, . . . , tn). We use
S)T to denote that fact for only one dimension k, tk = sk +1, and for all i �= k,
ti = si. It means that T is the state obtained by moving one step from S.

Lemma 6 guarantees that if a run has entered into H and Disjoint(H,H ′)
holds, then when the run goes out of H , it can not directly enter into H ′.

Lemma 6. Given two zones H = [ξi < u, ξj ≥ v] and H ′ = [ξi′ < u′, ξj′ ≥ v′].
If Disjoint(H,H ′), then there dose not exist two consistent states S and T such
that S ∈ H, S) T , T �∈ H, and T ∈ H ′.

Proof. Because S ∈ H and T �∈ H , we can conclude that si = u − 1 and ti = u.
Because Disjoint(H,H ′), Eu

i → Ev′
j′ . Because T ∈ H ′, v′ ≤ tj′ . Because S) T ,

sj′ = tj′ . Thus we can conclude that Esi

i .next→ E
sj′
j′ , which contradicts to that

S is consistent. �

Lemma 7 guarantees that if a run has entered into H and Disjoint(H ′, H) holds,
then when the run goes out of H , it can never enter into H ′.

Lemma 7. Given two zones H = [ξi < u, ξj ≥ v] and H ′ = [ξi′ < u′, ξj′ ≥ v′]
satisfying Disjoint(H ′, H). If a run of the computation passes through a state S
in H, then the path from S to � along this run does not pass through any state
in H ′.

Proof. Because a run pass through S = (s1, s2, . . . , sn), S is consistent. We know
that si′ ≥ u′. Otherwise because Disjoint(H ′, H) = Eu′

i′ → Ev
j , si′ < u′ and

v ≤ sj , we have that E
si′
i′ .next→ E

sj

j . It contradicts to that S is consistent.
If T = (t1, t2, . . . , tn) is on the path from S to �, then ti ≥ si for all 1 ≤ i ≤ n.

Then ti′ ≥ si′ ≥ u′, which implies that T is not in H ′. �

The next lemma shows that although the added order relations make some states
in the state space become inconsistent, the order relations do not make all the
states in any zone become inconsistent. From the forms of added order relations
and lemma 3, it easy to prove the next lemma.

Lemma 8. Any H ∈ H contains consistent states.

3.4 Step 4

In this step, we assign a truth value of each consistent states in the state space.
And we prove that after the assignment, we obtain a regular predicate. Thus in
the next step, we can reduce the problem of searching desired path in GSAT to
a problem of detection of false runs for the regular predicate.

On Detecting Regular Predicates in Distributed Systems 405

For each consistent state S in the state space, the truth value of S is false, if
and only if S ∈

⋃
H∈H

H . This means that we treat all zones in H false zones.

Then we obtain a predicate Φ. The next lemma shows that Φ is a regular
predicate.

Lemma 9. Φ is a regular predicate.

Proof. Given two consistent states S = (s1, s2, . . . , sn) and T = (t1, t2, . . . , tn)
satisfying the predicate. We should prove that S ! T and S " T satisfy the
predicate. Here we prove that S!T satisfies the predicate. And it can be proved
similarly that S " T satisfies the predicate.

We prove it by contradiction. Assume that U = S ! T does not satisfy the
predicate. We have that ui = min(si, ti), for all 1 ≤ i ≤ n. Because U is a false
state, it must belong to a false zone H in H.

If H has the form H = [ξj = c], then uj = c. Then sj = c or tj = c. Then
S ∈ H or T ∈ H , which contradicts to that S and T satisfy the predicate.

If H has the form H = [ξj < c, ξk ≥ d], then min(sj, tj) < c and min(sk, tk) ≥
d.Becausemin(sk, tk) ≥ d,weknowthatsk ≥ dand tk ≥ d.Becausemin(sk, tk) <
c, we know that sk < c or tk < c. Then S ∈ H or T ∈ H , which contradicts to that
S and T satisfy the predicate. �

3.5 Step 5

Based on the above construction of computation and predicate, in this step we
reduce the path searching problem to detection of false runs. Thus we can show
that detection of a regular predicate in Definitely modality is coNP-complete.

Lemma 10 shows that if a sequence of false zones satisfies the conditions stated
in the lemma, then we can derive a false run. Using lemma 10 and lemma 11 we
can prove lemma 12, which is the key lemma in this section.

Lemma 10. There exists a false run, if there exists a sequence of zones H0H1
. . . Hq, where Hi ∈ H, 1 ≤ i ≤ q, satisfying the following two conditions: (1)⊥ ∈
H0, � ∈ Hq. (2) Let U0 = {⊥}. For each i, 1 ≤ i ≤ q, let T i−1 = min(Ui−1),
and let Ui = Con({S|S ∈ (Hi−1 ∩Hi) ∧ T i−1 ≤ S}). It holds that Ui �= ∅.

Proof. We can construct a false path using T 0, T 1, . . . , Tm.
We start from T 0 = ⊥. We know that T 0 ∈ H0. Because T 1 ∈ H0 ∩ H1,

T 1 ∈ H0. Because T 0 and T 1 are consistent, and T 0 < T 1, we have that there
is a path from T 0 to T 1 in the state space. Because H0 is a zone, it is easy to
conclude that all the states in the path from T 0 to T 1 are in H0. Thus the path
from T 0 to T 1 does not pass through any true state.

Similarly, we could have those false paths from T 1 to T 2, from T 2 to T 3,...,
from T n−1 to T n, from T n to �. By concatenating these false paths, we obtain
a false run from ⊥ to �. �

Lemma 11. Given a zone Z and a consistent state T , if Con({S|S ∈ Z, T ≤
S}) �= ∅, then min(Con({S|S ∈ Z, T ≤ S})) = min(Con(Z)) " T .

406 H. Huang

Proof. Let U = (u1, u2, . . . , un) = min(Con(Z)). For all S in Con({S|S ∈ Z, T ≤
S}), we have that (U " T) ! S = (U ! S) " (T ! S) = U " T . Thus U " T ≤ S.

Because U and T are both consistent, we have that U " T is consistent.
Then we only need to show that U " T satisfies U " T ∈ Z and T ≤ U " T .

The second condition is obvious. Now we verify the first condition. We have that
ti ≤ Z.bi, for all 1 ≤ i ≤ n. Otherwise Con({S|S ∈ Z, T ≤ S}) will be empty. Let
V = (v1, v2, . . . , vn) be U " T . We can conclude that Z.ai ≤ ui ≤ max(ui, ti) =
vi = max(ui, ti) ≤ Z.bi. Thus U " T ∈ Z.

Thus U " T is the minimal element. �

Lemma 12. There exists a false run, if and only if there exists a path in GSAT

which does not contain vertices with conflicting labels.

Proof. (⇐): For every vertex in the path, we have a corresponding zone. Thus
from the path, we have a corresponding sequence of zones H0H1 . . . Hm+1, where
H0 is the corresponding zone for the initial vertex, and Hm+1 is the corre-
sponding zone for the final vertex. Let Xi = {X (Hk)|i − 1 ≤ k ≤ m + 1}.
According to the way of adding order relations in step 3, we have two prop-
erties about H0H1 . . . Hm+1. For all 1 ≤ i ≤ m + 1, ¬Disjoint(Hi−1, Hi) and
¬Disjoint(Hi, Hi−1). For all 1 ≤ i ≤ m + 1, ¬Disjoint(Hi, Hj), where j < i.

Now we prove that the sequence of zone satisfies the conditions stated in
lemma 10, which implies that there exists a false run. We know that ⊥ ∈ H0
and � ∈ Hm+1. Then we show that the second condition in lemma 10 is satisfied.

By induction we prove that Ui �= ∅, where 1 ≤ i ≤ m + 1. And at the same
time, for T i = (ti1, . . . , tin) we prove that tij = 0 for all j ∈ Xi.

Induction base (i = 1). Because T 0 = ⊥, U1 = Con({S|S ∈ (H0 ∩ H1)}).
Because ¬Disjoint(H0, H1) and ¬Disjoint(H1, H0), from lemma 5, U1 �= ∅.

Let x = X (H0), x′ = X (H1), y = Y (H0), y′ = Y (H1). We know that Hk ∩
Hk+1 is a zone Z ′[(a1, b1), (a2, b2), . . . , (an, bn)], where ax = bx = 0,ax′ = bx′ = 0,
ay = by = 1,ay′ = by′ = 1, and aj = 0, bj = 1, for all j, j �= x, x′, y, y′. Let T 1 =
min(Z ′). Because among a1, . . . , an only ay and ay′ are 1, from lemma 4, t1j = 1
if and only if E

aj

j .next→ E
ay
y or E

aj

j .next→ E
ay′
y′ . Because ¬Disjoint(H0, H1)

and ¬Disjoint(H1, H0), and for any H in H2 . . . Hm+1, ¬Disjoint(H,H0) and
¬Disjoint(H,H1), we can conclude that E

aj

j .next �→ E
ay
y and E

aj

j .next �→ E
ay′
y′ ,

if j ∈ X1. Thus t1j = 0 for all j ∈ X1.
Induction step. Assuming that the assertion is true up to i = k, we prove that

it holds for i = k + 1.
First we show that {S|S ∈ (Hk ∩Hk+1)∧T k ≤ S} �= ∅. Let x = X (Hk), x′ =

X (Hk+1), y = Y (Hk), y′ = Y (Hk+1). It is easy to conclude that Hk ∩ Hk+1
is a zone Z ′[(a1, b1), (a2, b2), . . . , (an, bn)], where ax = bx = 0,ax′ = bx′ = 0,
ay = by = 1,ay′ = by′ = 1, and aj = 0, bj = 1, for all j, j �= x, x′, y, y′. At the
same time {S|T k ≤ S} is a zone Z ′′[(a1, b1), (a2, b2), . . . , (an, bn)], where aj = tkj
and bj = 1, for all j, 1 ≤ j ≤ n. It is easy to see that {S|S ∈ (Hk∩Hk+1)∧T k ≤
S} = Z ′ ∩ Z ′′. Because of the assumption to i = k, we know that tkx = tkx′ = 0.
Thus Z ′ ∩Z ′′ �= ∅. Let a zone Z[(a1, b1), (a2, b2), . . . , (an, bn)] be Z ′ ∩Z ′′, where

On Detecting Regular Predicates in Distributed Systems 407

ax = bx = 0,ax′ = bx′ = 0, ay = by = 1,ay′ = by′ = 1, and aj = tkj , bj = 1, for all
j, j �= x, x′, y, y′.

Now we prove that Ui = Con(Z) �= ∅ by contradiction. Assume that Ui =
Con(Z) = ∅. From the form of Z and lemma 3, Con(Z) = ∅ if and only if
∃j(E1

x → E
Z.bj

j) or ∃j(E1
x′ → E

Z.bj

j), where j �= x and j �= x′. Suppose ∃j(E1
x →

E
Z.bj

j). If j = y, from lemma 3, Hk contains no consistent states, which leads to a
contradiction. If j = y′, then Disjoint(Hk, Hk+1). It also leads to a contradiction.

If j �= x, x′, y, y′, we have that E
tk
x

x .next = E1
x → E

Z.bj

j = E
tk
j

j , which contradicts
to that T k is consistent. We can similarly derive a contradiction for the case
∃j(E1

x′ → E
Z.bj

j). Thus Ui = Con(Z) �= ∅.
From the properties of H0 . . . Hm+1, we know that ¬Disjoint(Hk, Hk+1) and

¬Disjoint(Hk+1, Hk), and for any H in Hk+2 . . . Hm+1, ¬Disjoint(H,Hk) and
¬Disjoint(H,Hk+1). Because of the form of Z ′ = Hk ∩ Hk+1, similarly as the
reasoning for H0 ∩ H1, we can conclude that, letting V = (v1 . . . vn) be the
minimal state of Con(Z ′), vj = 0 for all j ∈ Xk. From lemma 11, T k+1 = V "T .
Because tkj = 0, where j ∈ Xk, we have that tk+1

j = 0, where j ∈ Xk+1.
Therefore, we can conclude that there exists a false run.
(⇒): Let r be the run.
Because ⊥ is in the zone corresponding the initial vertex I, let H0 be this

zone.
Suppose that S is the first state in the run from ⊥, which is not in H0. For

any zone H corresponding to the vertex in V2 ∪ . . .∪Vm ∪{F}, according to the
order relation in step 3, Disjoint(H0, H). From lemma 6, S is not in H . Then
S must be in a zone, which corresponds to a vertex in V1. Let H1 be this zone,
and ve1 be this vertex. Because I does not have a label, there are not conflicting
labels in I and ve1. At the same time, we obtain a sequence of zones H0H1. r
passes through H0 and H1.

Suppose that we have obtained a sequence of vertices Ive1 . . . vek, where vei

is in Vi, and the labels in these vertices are not conflicting. Let the corresponding
sequence of zones be H0 . . .Hk. r passes through each zone in the sequence. Let
S be the first state we encounter when the run gets out of Hk. We will show that
S must be in a zone corresponding to a vertex vek+1 in Vk+1, and the label of
vek+1 is not conflicting with any label in the previous vertices in the sequence.

For any zone H corresponding to a vertex in Vk+2 ∪ . . . ∪ Vm ∪ {F}, we have
Disjoint(Hk, H). From lemma 6, S can not be in a zone corresponding to a
vertex in Vk+2 ∪ . . . ∪ Vm ∪ {F}. For any zone H corresponding to a vertex in
{I} ∪ V1 ∪ . . . ∪ Vk−2, Disjoint(H,Hk). From lemma 7, S can not be in a zone
corresponding to a vertex in {I} ∪ V1 ∪ . . . ∪ Vk−2.

Thus S could only be in a zone corresponding to a vertex in Vk−1 or a zone
corresponding to a vertex in Vk+1.

If S is in a zone corresponding to a vertex in Vk+1, let the zone be Hk+1
and the vertex be vek+1. From lemma 7, we have that for any H in H0 . . . Hk,
¬Disjoint(Hk, H). Thus the label of vek+1 is not conflicting with any label in
the previous vertices in the sequence.

408 H. Huang

If S is in a zone corresponding to a vertex in Vk−1, we can derive a contradic-
tion. Based on the above reasoning, we know that if we can reach � from S along
the run, the run must go through another zone H ′ corresponding a vertex in Vk.
From step 3, we have Disjoint(H ′, Hk). Then from lemma 7, it is impossible.

Continue the above process until we reach a vertex vem in Vm, and then reach
the final vertex F . Ive1 . . . vemF is the desired path in GSAT . �

From lemma 1 and lemma 12, we can obtain the next corollary.

Corollary 1. Ψ is satisfiable, if and only if there exists a false run in the com-
putation.

Theorem 1 is the main result of the paper.

Theorem 1. Detection of a regular predicate in Definitely modality is coNP-
complete.

Proof. First we show that the time cost of reduction from the SAT problem to the
false run searching problem is polynomial. Suppose that the number of literals in
the SAT formula is l. Thus the number of vertices and the number of zones are
both l+2. The time cost of constructing the directed graph for the SAT problem
in step 1 is O(l2). The time cost of construction of the computation and assign-
ment of zones to vertices in step 2 is O(l). The time cost of adding Disjoint rela-
tions in step 3 is O(l2). The time cost of construction of the predicate in step 4 is
O(l2). We explain it briefly. Because Φ(S) ≡

∧
H∈H

S �∈ H . Then Φ can be written

as the conjunction of l+2 formula. Given a zone Z[(a1, b1), (a2, b2), . . . , (an, bn)]
and a state S = (s1, s2, . . . , sn), determining whether S ∈ Z can be written as
the following formula: S ∈ Z ≡

∨
1≤i≤n

(si < ai ∨ si > bi). Because n = 2l + 4, the

length of Φ is O(l2).
Thus the overall time cost is O(l2).
Next it is easy to see that the problem of determining whether there exists a

false run is in NP, because from the above we know that the time complexity of
determining whether a state satisfies the predicate is polynomial.

Thus determining whether there exists a false run is NP-complete. Because
it it the dual problem of detection of a regular predicate in Definitely modality,
we can conclude that detection of a regular predicate in Definitely modality is
coNP-complete. �

4 An Example

In this section we give an example for the five steps in the previous section. The
CNF formula is Ψ = (p ∨ q ∨ r) ∧ (¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ r). The formula is
satisfiable.

(Step 1) First we construct a directed graph. The graph has 11 vertices. In
the graph we can find several paths satisfying the condition stated in lemma 1.
The graph is drawn in figure 3 and figure 4.

On Detecting Regular Predicates in Distributed Systems 409

q

r

p

1H

2H

3H

4H

1H

q

r

p

5H

6H

7H

q

r

p

8H

9H

10H

3H 5H 8H

11H

11H

Fig. 3. The (⇐) part in lemma 12

(Step 2) Next we construct a computation, which has 2× 11 = 22 processes.
Now the state space has 22 dimensions. The 22 dimensions are denoted by
ξ1, . . . , ξ22. We associate each vertex a zone. H1 is for the initial vertex. H11
is for the final vertex. H2, . . . , H10 is for the other 9 vertices. For each zone Hi,
1 ≤ i ≤ 11, the two numbers assigned to its corresponds vertex is 2× i− 1 and
2× i. The form of H1 is H [ξ1 < 1, ξ2 ≥ 0]. The form of H2 is H [ξ3 < 1, ξ4 ≥ 1].

(Step 3) We add some order relations into the computation.
For example, for H1, based on the adding rule (2), we add Disjoint(H1, H5),

Disjoint(H1, H6), . . . ,Disjoint(H1, H11) into the computation.
For H2, based on the adding rule (1), we add Disjoint(H2, H3), Disjoint(H3,

H2), Disjoint(H2, H4) and Disjoint(H4, H2) into the computation. For H2, based
on the adding rule (2), we add Disjoint(H2, H8), . . . ,Disjoint(H2, H11) into the
computation. For H2, based on the adding rule (3), we add Disjoint(H5, H2)
and Disjoint(H8, H2) into the computation.

(Step 4) If a state is not in any zone in H1, . . . , H11, then let the state be a
true state. Now all the false states are in H1, . . . , H11.

(Step 5) Lemma 12 is the key lemma for proving the complexity result.
Figure 3 is for the (⇐) part in lemma 12. There exists a path in the graph

without conflicting vertices. The path is drawn in a thick line in the directed
graph. From the path we obtain a sequence of zones H1H3H5H8H11. Using
lemma 10 and lemma 11 we can prove that there is a false run.

Figure 4 is for the (⇒) part in lemma 12.
There exists a false run. The run must start from H1. Because we have

Disjoint(H1, H5),Disjoint(H1, H6), . . . ,Disjoint(H1, H11), based on lemma 6
and lemma 7 we can conclude that when the run goes out of H1 it must en-
ter into a zone Ha in the first group, that is, H2, H3 and H4. Similarly when
the run goes out of Ha, it must enter into a zone Hb in the second group. The
method of adding orders in step 3 and lemma 7 guarantee that the labels in the
corresponding vertices of Ha and Hb do not conflict. Continue the above process.
Finally we can obtain a sequence of zones H1HaHbHcH11 and a path of vertices
in the graph which does not contain conflicting labels.

410 H. Huang

q

r

p

1H

2H

3H

4H

1H

q

r

p

5H

6H

7H

q

r

p

8H

9H

10H

aH bH cH

11H

11H

Fig. 4. The (⇒) part in lemma 12

5 Conclusion

In this paper, we show that detection of a regular predicate in Definitely modality
is coNP-complete. For proving it we reduce the SAT problem to the problem of
searching false runs, which is the dual problem of detection of a regular predicate
in Definitely modality.

References

1. Chase, C., Garg, V.K.: Efficient detection of restricted classes of global predicates.
In: Helary, J.-M., Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972, pp. 303–317.
Springer, Heidelberg (1995)

2. Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proceed-
ings of ACM/ONR workshop on Parallel and Distributed Debugging, pp. 163–173
(1991)

3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (1990)

4. Garg, V.K., Mittal, N.: On slicing a distributed computation. In: Proceedings of
IEEE International Conference on Distributed Computing Systems, pp. 322–329
(2001)

5. Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems 5(3), 299–307
(1994)

6. Garg, V.K., Waldecker, B.: Detection of strong unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems 7(12), 1323–
1333 (1996)

7. Hurfin, M., Mizuno, M., Raynal, M., Singhal, M.: Efficient detection of conjunctions
of local predicates. IEEE Transactions on Software Engineering 24(8), 664–677
(1998)

8. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–564 (1978)

9. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pp. 120–131
(1989)

On Detecting Regular Predicates in Distributed Systems 411

10. Mittal, N., Garg, V.K.: Techniques and applications of computation slicing.
Distributed Computing 17(3), 251–277 (2005)

11. Sen, A., Garg, V.K.: Detecting temporal logic predicates on the happened before
model. In: Proceedings of the 16th International Symposium on Parallel and Dis-
tributed Processing, pp. 76–83 (2002)

12. Sen, A., Garg, V.K.: On checking whether a predicate definitely holds. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 15–29. Springer, Heidelberg
(2004)

13. Tarafdar, A., Garg, V.K.: Predicate control for active debugging of distributed
programs. In: Proceedings of IEEE 9th Symposium on Parallel and Distributed
Processing(SPDP), pp. 763–769 (1998)

14. Venkatesan, S., Dathan, B.: Test and debugging distributed programs using global
predicates. IEEE Transactions on Software Engineering 21(2), 163–177 (1995)

Author Index

Abdulla, Parosh Aziz 197
Armstrong, P.J. 22
Atto, Muhsin 197

Baier, Christel 135
Byg, Joakim 84

Cai, Lin-Zan 382
Campetelli, Alarico 289
Cassez, Franck 352
Cederberg, Jonathan 197
Chakraborty, Supratik 228
Chen, Taolue 104
Chen, Yan 337
Chin, Wei-Ngan 166
Ciardo, Gianfranco 368
Ciesinski, Frank 135
Cohen, Mika 69
Couvreur, Jean-Michel 213

Dam, Mads 69
Dax, Christian 244
Dimitrova, Rayna 321
Dubreil, Jérémy 352
Duret-Lutz, Alexandre 213

El Rabih, Diana 120

Fehnker, Ansgar 255
Fenech, Stephen 90
Finkbeiner, Bernd 321
Friedmann, Oliver 182

Geldenhuys, Jaco 39
Greenstreet, Mark R. 1
Groesser, Marcus 135
Gruler, Alexander 289
Grumberg, Orna 21, 271

Han, Tingting 104
Hansen, Henri 39

Hao, Kecheng 337
He, Guanhua 166
Howe, Jacob M. 306
Huang, Geng-Dian 382
Huang, Hongtao 397
Huuck, Ralf 255

Ji, Ran 197
Jørgensen, Kenneth Yrke 84

Karmarkar, Hrishikesh 228
Katoen, Joost-Pieter 104
Kebrt, Michal 97
King, Andy 306
Klaedtke, Felix 244

Lange, Martin 182
Leucker, Martin 289
Leue, Stefan 244
Lomuscio, Alessio 69
Luo, Chenguang 166

Marchand, Hervé 352
Meller, Yael 271
Mereacre, Alexandru 104

Oehlerking, Jens 151

Pace, Gordon J. 90
Pekergin, Nihal 120
Poitrenaud, Denis 213
Pragyesh 22

Qin, Shengchao 166
Qu, Hongyang 69

Ray, Sandip 337
Roscoe, A.W. 22

Schneider, Gerardo 90
Seefried, Sean 255
Šerý, Ondřej 97
Shoham, Sharon 271
Srba, Jǐŕı 84

414 Author Index

Theel, Oliver 151

Thoma, Daniel 289

Timmer, Mark 54

Valmari, Antti 39

van de Pol, Jaco 54

Wang, Farn 382

Xie, Fei 337

Yang, Jin 337

Zhao, Yang 368

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Verifying VLSI Circuits
	Introduction
	Introductory Examples
	The Tunnel-Diode Oscillator

	Intermediate Examples
	The Rambus Ring Oscillator
	Synchronizer Failure Probabilities
	Other Intermediate Examples

	Open Problems
	Conclusions
	References

	3-Valued Abstraction for (Bounded) Model Checking
	Local Search in Model Checking
	Introduction
	Background
	Local Search
	Partitioning the State Space
	Pre-computed Partitioning
	Example
	Dynamic Partitioning

	Preliminary Practical Results
	Parallel Implementation
	Conclusions
	References

	State Space Reduction
	Exploring the Scope for Partial Order Reduction
	Introduction
	Mathematical Background
	Model of Computation
	Ample Sets, Dependency and Precedence

	The Calculation of D, R, and Ample Sets
	Calculating D and R
	Calculating Ample Sets
	Using SCCs for Ample Sets

	Experimental Results
	Conflict Graph in the Static Case
	The Static v. Full Calculation of D/R
	Dynamic Version of D/R
	First, Minimum, and Random Choice

	Discussion
	References

	State Space Reduction of Linear Processes Using Control Flow Reconstruction
	Introduction
	Preliminaries
	Reconstructing the Control Flow Graphs
	Simultaneous Data Flow Analysis
	Transformations on LPEs
	Case Studies
	Conclusions and Future Work
	References

	A Data Symmetry Reduction Technique for Temporal-epistemic Logic
	Introduction
	Interpreted Systems, CTLK, and MCMAS
	A Data Symmetry Reduction Technique
	Data Symmetry
	Data Symmetry Reduction
	Computing the Abstract Epistemic Relations

	Data Symmetry Detection
	Extended ISPL
	Detection Theorem

	Implementation and Experiments
	Conclusions
	References

	Tools
	TAPAAL: Editor, Simulator and Verifier of Timed-Arc Petri Nets
	Introduction
	TAPAAL Framework
	Experiments
	Workflow Processes with Deadlines
	Fischer’s Protocol and Alternating Bit Protocol

	Conclusion
	References

	CLAN: A Tool for Contract Analysis and Conflict Discovery
	Introduction and Background
	A Tool for Contract Analysis
	Case Study
	Conclusions
	References

	UnitCheck: Unit Testing and Model Checking Combined
	Introduction
	Tool
	Architecture
	User Interface

	Related work
	Conclusion
	References

	Probabilistic Systems
	LTL Model Checking of Time-Inhomogeneous Markov Chains
	Introduction
	Preliminaries
	Reachability Analysis
	Time-Bounded Reachability
	Time-Unbounded Reachability

	LTL Model Checking
	Conclusion
	References

	Statistical Model Checking Using Perfect Simulation
	Introduction
	Preliminaries
	Temporal Logics for Markov Chains
	Statistical Hypothesis Testing

	Perfect Simulation
	Statistical Probabilistic Model Checking Using Perfect Simulation
	Decision Method
	Case of Steady State Operator
	Case of Unbounded Until Formula
	Applicability and Complexity of Proposed Approach

	Case Study and Experimental Results
	Conclusion and Future Works
	References

	Quantitative Analysis under Fairness Constraints
	Introduction
	Preliminaries
	Quantitative Analysis under Fairness Assumptions
	Partial Order Reduction and Fairness
	Conclusion
	References

	A Decompositional Proof Scheme for Automated Convergence Proofs of Stochastic Hybrid Systems
	Introduction
	Probabilistic Hybrid Systems
	Lyapunov Functions for Probabilistic Systems
	Decompositional Computation of Lyapunov Functions
	Example
	Quantitative Analysis
	Conclusions
	References

	Medley
	Memory Usage Verification Using Hip/Sleek
	Introduction
	Language and Specifications
	Programming Language
	Specification Language
	Memory Usage Specification

	Memory Usage Verification
	The Instrumentation Process
	The Hip/Sleek Automated Verification System

	Soundness
	Experimental Results
	Related Work
	Conclusion
	References

	Solving Parity Games in Practice
	Introduction
	Preliminaries
	Universal Optimisations and a Generic Solver
	SCC Decomposition
	Detection of Special Cases
	Priority Compression
	Priority Propagation
	A Generic Solver

	Empirical Evaluation
	Conclusions
	References

	Automated Analysis of Data-Dependent Programs with Dynamic Memory
	Introduction
	Heaps
	Signatures
	Bad Configurations
	Reachability Analysis
	Experimental Results
	Conclusions, Discussion, and Future Work
	Related Work
	References

	Temporal Logic I
	On-the-fly Emptiness Check of Transition-Based Streett Automata
	Introduction
	Background
	Linear-time Temporal Logic (LTL)
	B\"{u}chi Automata

	Coping with Fairness Hypotheses
	Weak and Strong Fairness
	Fairness in the Automata Theoretic Approach
	Streett Automata
	Strong Fairness with Streett Automata

	Emptiness Check for Streett Automata
	Conclusion
	References

	On Minimal Odd Rankings for B\"{u}chi Complementation
	Introduction
	Ranking-Based NBW Complementation
	Minimal Odd Rankings
	A Motivating Example
	Complementation with Minimal Ranks
	Size of Complement Automaton

	Slices of Complement Automaton
	An Implementation of Our Algorithm
	Conclusion
	References

	Specification Languages for Stutter-Invariant Regular Properties
	Introduction
	Preliminaries
	Stutter-Invariant Regular Properties
	Stutter-Invariant SEREs
	Stutter-Invariant PSL
	siPSL Examples

	Concluding Remarks
	References

	Abstraction and Refinement
	Incremental False Path Elimination for Static Software Analysis
	Introduction
	Basic Definitions and Concepts
	Labeled Transition Systems
	Interval Equation Systems
	Static Analysis by Model Checking

	Interval Automata
	Path Reduction
	Path Reduction Loop
	Checking for Spurious Words
	Conflict Discovery
	Conflict Observer
	Path Reduction with NuSMV

	Implementation and Experiments
	C to Interval Equations
	Comparison

	Conclusions
	References

	A Framework for Compositional Verification of Multi-valued Systems via Abstraction-Refinement
	Introduction
	Preliminaries
	Multi-valued Models and μ-Calculus
	Multi-valued Model-Checking Algorithm

	Bilattices and Partial Bilattices
	Mixed Simulation and Refinement of Multi-valued Models
	Partial Model Checking and Subgraphs
	Compositional Model Checking
	Discussion
	References

	$Don’t Know$ for Multi-valued Systems
	Introduction
	Preliminaries
	Conservative Abstractions for MV-Kripke Structures
	Causes for Indefinite Results and Refinement
	Conclusion
	References

	Logahedra: A New Weakly Relational Domain
	Introduction
	Logahedral Constraints
	Representation of Coefficients
	Representation of Constants
	Bounded Logahedra and Their Representation

	Worked Example
	Logahedral Domain Operations
	Completion
	Entailment
	Variable Elimination
	Abstraction
	Meet and Abstraction
	Join

	Logahedra versus Octagons and TVPI
	Conclusion
	References

	Fault Tolerant Systems
	Synthesis of Fault-Tolerant Distributed Systems
	Introduction
	Modelling Fault-Tolerant Systems
	Faults and Fault-Tolerance
	Architectures for Fault-Tolerant Synthesis
	The Specification Language CTL*
	Specifying Fault-Tolerance
	The Fault-Tolerant Synthesis Problem

	Synthesis
	Synthesis for Fully Connected Architectures
	Single-Process Synthesis under Incomplete Information

	Encoding Fault-Tolerant Realizability
	From Fault Input-Output Trees to Full Trees
	Synthesis of Fault-Tolerant Systems
	Conclusion
	References

	Formal Verification for High-Assurance Behavioral Synthesis
	Introduction
	Behavioral Synthesis and an Illustrative Example
	Approach Overview
	Golden Circuit Model and Synthesis Certification

	Clocked Control/Data Flow Graphs
	Certified Compilation
	Equivalence Checking
	Circuit Model
	Correspondence between CCDFGs and Circuits
	Dual-Rail Simulation for Equivalence Checking

	Experimental Results
	Related Work
	Conclusion
	References

	Dynamic Observers for the Synthesis of Opaque Systems
	Introduction
	Notation and Preliminaries
	Opacity with Static Projections
	Checking State Based Opacity
	Maximum Cardinality for Static Projections

	Opacity with Dynamic Projection
	Opacity Generalized to Dynamic Projection
	Checking Opacity with Dynamic Observers
	Enforcing Opacity with Dynamic Projections
	Most Permissive Dynamic Observer

	Optimal Dynamic Observer
	Conclusion
	References

	Temporal Logic II
	Symbolic CTL Model Checking of Asynchronous Systems Using Constrained Saturation
	Introduction
	Preliminaries
	Symbolic Encoding of Sets of States
	Symbolic Encoding of the Next-State Functions
	State Space Generation
	CTL Model Checking

	Constrained Saturation for the {\sf EU} Operator
	Reachability Relation and the {\sf EG} Operator
	Experimental Results
	Results for the {\sf EU} Computation
	Results for the {\sf EG} Computation

	Conclusion and Future Work
	References

	LTL Model Checking for Recursive Programs
	Introduction
	Related Work
	Problem Definition
	Control Flow Graph with Procedure-Calls
	LTL and B¨uchi Automata
	LTL Model Checking Problem

	Semi-symbolic Simulation
	Model Checking Algorithm
	Experiments
	Conclusions
	References

	On Detecting Regular Predicates in Distributed Systems
	Introduction
	Model
	Detection of a Regular Predicate in $Definitely$ Modality Is coNP-Complete
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	An Example
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

